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Preface

What this book is about

This book offers a fresh approach to computer vision. The whole vision
process from image formation to measuring, recognition, or reacting
is regarded as an integral process. Computer vision is understood as
the host of techniques to acquire, process, analyze, and understand
complex higher-dimensional data from our environment for scientific
and technical exploration.

In this sense this book takes into account the interdisciplinary na-
ture of computer vision with its links to virtually all natural sciences
and attempts to bridge two important gaps. The first is between mod-
ern physical sciences and the many novel techniques to acquire images.
The second is between basic research and applications. When a reader
with a background in one of the fields related to computer vision feels
he has learned something from one of the many other facets of com-
puter vision, the book will have fulfilled its purpose.

This book comprises three parts. The first part, Sensors and Imag-
ing, covers image formation and acquisition. The second part, Signal
Processing and Pattern Recognition, focuses on processing of the spatial
and spatiotemporal signals acquired by imaging sensors. The third part
consists of an Application Gallery, which shows in a concise overview
a wide range of application examples from both industry and science.
This part illustrates how computer vision is integrated into a variety of
systems and applications.

Computer Vision and Applications was designed as a concise edition
of the three-volume handbook:

Handbook of Computer Vision and Applications
edited by B. Jahne, H. HauRecker, and P. GeiRler
Vol 1: Sensors and Imaging;

Vol 2: Signal Processing and Pattern Recognition;
Vol 3: Systems and Applications

Academic Press, 1999

xi



xii Preface

It condenses the content of the handbook into one single volume
and contains a selection of shortened versions of the most important
contributions of the full edition. Although it cannot detail every single
technique, this book still covers the entire spectrum of computer vision
ranging from the imaging process to high-end algorithms and applica-
tions. Students in particular can benefit from the concise overview of
the field of computer vision. Itis perfectly suited for sequential reading
into the subject and it is complemented by the more detailed Handbook
of Computer Vision and Applications. The reader will find references
to the full edition of the handbook whenever applicable. In order to
simplify notation we refer to supplementary information in the hand-
book by the abbreviations [CVA1, Chapter N], [CVA2, Chapter N], and
[CVA3, Chapter N] for the Nt" chapter in the first, second and third
volume, respectively. Similarly, direct references to individual sections
in the handbook are given by [CVA1, Section N], [CVA2, Section N], and
[CVA3, Section N] for section number N.

Prerequisites

It is assumed that the reader is familiar with elementary mathematical
concepts commonly used in computer vision and in many other areas
of natural sciences and technical disciplines. This includes the basics
of set theory, matrix algebra, differential and integral equations, com-
plex numbers, Fourier transform, probability, random variables, and
graph theory. Wherever possible, mathematical topics are described
intuitively. In this respect it is very helpful that complex mathematical
relations can often be visualized intuitively by images. For a more for-
mal treatment of the corresponding subject including proofs, suitable
references are given.

How to use this book

The book has been designed to cover the different needs of its reader-
ship. First, it is suitable for sequential reading. In this way the reader
gets an up-to-date account of the state of computer vision. It is pre-
sented in a way that makes it accessible for readers with different back-
grounds. Second, the reader can look up specific topics of interest.
The individual chapters are written in a self-consistent way with ex-
tensive cross-referencing to other chapters of the book and external
references. Additionally, a detailed glossary allows to easily access the
most important topics independently of individual chapters. The CD
that accompanies this book contains the complete text of the book in
the Adobe Acrobat portable document file format (PDF). This format
can be read on all major platforms. Free Acrobat™ Reader version 4.0
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for all major computing platforms is included on the CDs. The texts are
hyperlinked in multiple ways. Thus the reader can collect the informa-
tion of interest with ease. Third, the reader can delve more deeply into
a subject with the material on the CDs. They contain additional refer-
ence material, interactive software components, code examples, image
material, and references to sources on the Internet. For more details
see the readme file on the CDs.

Acknowledgments

Writing a book on computer vision with this breadth of topics is a major
undertaking that can succeed only in a coordinated effort that involves
many co-workers. Thus the editors would like to thank first all contrib-
utors who were willing to participate in this effort. Their cooperation
with the constrained time schedule made it possible that this concise
edition of the Handbook of Computer Vision and Applications could be
published in such a short period following the release of the handbook
in May 1999. The editors are deeply grateful for the dedicated and pro-
fessional work of the staff at AEON Verlag & Studio who did most of the
editorial work. We also express our sincere thanks to Academic Press
for the opportunity to write this book and for all professional advice.

Last but not least, we encourage the reader to send us any hints
on errors, omissions, typing errors, or any other shortcomings of the
book. Actual information about the book can be found at the editors
homepage http://klimt.iwr.uni-heidelberg.de.

Heidelberg, Germany, and Palo Alto, California
Bernd Jahne, Horst HauRecker
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1.1 Components of a vision system

Computer vision is a complex subject. As such it is helpful to divide
it into its various components or function modules. On this level, it
is also much easier to compare a technical system with a biological
system. In this sense, the basic common functionality of biological and
machine vision includes the following components (see also Table 1.1):

Radiation source. If no radiation is emitted from the scene or the ob-
ject of interest, nothing can be observed or processed. Thus appro-
priate illumination is necessary for objects that are themselves not
radiant.

Camera. The “camera” collects the radiation received from the object
in such a way that the radiation’s origins can be pinpointed. In
the simplest case this is just an optical lens. But it could also be a
completely different system, for example, an imaging optical spec-
trometer, an X-ray tomograph, or a microwave dish.

Sensor. The sensor converts the received radiative flux density into a
suitable signal for further processing. For an imaging system nor-
mally a 2-D array of sensors is required to capture the spatial dis-
tribution of the radiation. With an appropriate scanning system in
some cases a single sensor or a row of sensors could be sufficient.

Computer Vision and Applications Copyright © 2000 by Academic Press
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Table 1.1: Function modules of human and machine vision

Task

Human vision

Machine vision

Visualization

Image
formation

Control of
irradiance

Focusing

Irradiance
resolution

Tracking

Processing
and analysis

Passive, mainly by re-
flection of light from
opaque surfaces

Refractive optical sys-
tem

Muscle-controlled pupil

Muscle-controlled
change of focal length

Logarithmic sensitivity

Highly mobile eyeball

Hierarchically
organized massively
parallel processing

Passive and active (controlled il-
lumination) using electromagnetic,
particulate, and acoustic radiation

Various systems

Motorized apertures, filter wheels,
tunable filters

Autofocus systems based on vari-
ous principles of distance measure-
ments

Linear sensitivity, quantization be-
tween 8- and 16-bits; logarithmic
sensitivity

Scanner and robot-mounted cam-
eras

Serial processing still dominant;
parallel processing not in general
use

Processing unit. It processes the incoming, generally higher-dimen-
sional data, extracting suitable features that can be used to measure
object properties and categorize them into classes. Another impor-
tant component is a memory system to collect and store knowl-
edge about the scene, including mechanisms to delete unimportant

things.

Actors. Actors react to the result of the visual observation. They be-
come an integral part of the vision system when the vision system
is actively responding to the observation by, for example, tracking
an object of interest or by using a vision-guided navigation (active
vision, perception action cycle).

1.2 Imaging systems

Imaging systems cover all processes involved in the formation of an
image from objects and the sensors that convert radiation into elec-
tric signals, and further into digital signals that can be processed by
a computer. Generally the goal is to attain a signal from an object in
such a form that we know where it is (geometry), and what it is or what
properties it has.
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Figure 1.1: Chain of steps linking an object property to the signal measured by
an imaging system.

It is important to note that the type of answer we receive from these
two implicit questions depends on the purpose of the vision system.
The answer could be of either a qualitative or a quantitative nature.
For some applications it could be sufficient to obtain a qualitative an-
swer like “there is a car on the left coming towards you.” The “what”
and “where” questions can thus cover the entire range from “there is
something,” a specification of the object in the form of a class, to a de-
tailed quantitative description of various properties of the objects of
interest.

The relation that links the object property to the signal measured by
an imaging system is a complex chain of processes (Fig. 1.1). Interaction
of the radiation with the object (possibly using an appropriate illumi-
nation system) causes the object to emit radiation. A portion (usually
only a very small part) of the emitted radiative energy is collected by the
optical system and perceived as an irradiance (radiative energy/area).
A sensor (or rather an array of sensors) converts the received radiation
into an electrical signal that is subsequently sampled and digitized to
form a digital image as an array of digital numbers.

Only direct imaging systems provide a direct point-to-point corre-
spondence between points of the objects in the 3-D world and at the
image plane. Indirect imaging systems also give a spatially distributed
irradiance but with no such one-to-one relation. Generation of an im-
age requires reconstruction of the object from the perceived irradiance.
Examples of such imaging techniques include radar imaging, various
techniques for spectral imaging, acoustic imaging, tomographic imag-
ing, and magnetic resonance imaging.

1.3 Signal processing for computer vision

One-dimensional linear signal processing and system theory is a stan-
dard topic in electrical engineering and is covered by many standard
textbooks (e.g., [1, 2]). There is a clear trend that the classical signal
processing community is moving into multidimensional signals, as in-
dicated, for example, by the new annual international IEEE conference
on image processing (ICIP). This can also be seen from some recently
published handbooks on this subject. The digital signal processing
handbook by Madisetti and Williams [3] includes several chapters that
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deal with image processing. Likewise the transforms and applications
handbook by Poularikas [4] is not restricted to 1-D transforms.

There are, however, only a few monographs that treat signal pro-
cessing specifically for computer vision and image processing. The
monograph by Lim [5] deals with 2-D signal and image processing and
tries to transfer the classical techniques for the analysis of time series
to 2-D spatial data. Granlund and Knutsson [6] were the first to publish
amonograph on signal processing for computer vision and elaborate on
a number of novel ideas such as tensorial image processing and nor-
malized convolution that did not have their origin in classical signal
processing.

Time series are 1-D, signals in computer vision are of higher di-
mension. They are not restricted to digital images, that is, 2-D spatial
signals (Chapter 8). Volumetric sampling, image sequences, and hyper-
spectral imaging all result in 3-D signals, a combination of any of these
techniques in even higher-dimensional signals.

How much more complex does signal processing become with in-
creasing dimension? First, there is the explosion in the number of data
points. Already a medium resolution volumetric image with 5123 vox-
els requires 128 MB if one voxel carries just one byte. Storage of even
higher-dimensional data at comparable resolution is thus beyond the
capabilities of today’s computers.

Higher dimensional signals pose another problem. While we do not
have difficulty in grasping 2-D data, it is already significantly more de-
manding to visualize 3-D data because the human visual system is built
only to see surfaces in 3-D but not volumetric 3-D data. The more di-
mensions are processed, the more important it is that computer graph-
ics and computer vision move closer together.

The elementary framework for lowlevel signal processing for com-
puter vision is worked out in Chapters 8 and 9. Of central importance
are neighborhood operations (Chapter 9), including fast algorithms for
local averaging (Section 9.5), and accurate interpolation (Section 9.6).

1.4 Pattern recognition for computer vision

The basic goal of signal processing in computer vision is the extraction
of “suitable features” for subsequent processing to recognize and clas-
sify objects. But what is a suitable feature? This is still less well defined
than in other applications of signal processing. Certainly a mathemat-
ically well-defined description of local structure as discussed in Sec-
tion 9.8 is an important basis. As signals processed in computer vision
come from dynamical 3-D scenes, important features also include mo-
tion (Chapter 10) and various techniques to infer the depth in scenes
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including stereo (Section 11.2), shape from shading and photometric
stereo, and depth from focus (Section 11.3).

There is little doubt that nonlinear techniques are crucial for fea-
ture extraction in computer vision. However, compared to linear filter
techniques, these techniques are still in their infancy. There is also
no single nonlinear technique but there are a host of such techniques
often specifically adapted to a certain purpose [7]. In this volume, we
give an overview of the various classes of nonlinear filter techniques
(Section 9.4) and focus on a first-order tensor representation of of non-
linear filters by combination of linear convolution and nonlinear point
operations (Chapter 9.8) and nonlinear diffusion filtering (Chapter 12).

In principle, pattern classification is nothing complex. Take some
appropriate features and partition the feature space into classes. Why
is it then so difficult for a computer vision system to recognize objects?
The basic trouble is related to the fact that the dimensionality of the in-
put space is so large. In principle, it would be possible to use the image
itself as the input for a classification task, but no real-world classifi-
cation technique—be it statistical, neuronal, or fuzzy—would be able
to handle such high-dimensional feature spaces. Therefore, the need
arises to extract features and to use them for classification.

Unfortunately, techniques for feature selection have very often been
neglected in computer vision. They have not been developed to the
same degree of sophistication as classification, where it is meanwhile
well understood that the different techniques, especially statistical and
neural techniques, can been considered under a unified view [8].

This book focuses in part on some more advanced feature-extraction
techniques. Animportant role in this aspect is played by morphological
operators (Chapter 14) because they manipulate the shape of objects
in images. Fuzzy image processing (Chapter 16) contributes a tool to
handle vague data and information.

Object recognition can be performed only if it is possible to repre-
sent the knowledge in an appropriate way. In simple cases the knowl-
edge can just rest in simple models. Probabilistic modeling in com-
puter vision is discussed in Chapter 15. In more complex cases this is
not sufficient.

1.5 Performance evaluation of algorithms

A systematic evaluation of the algorithms for computer vision has been
widely neglected. For a newcomer to computer vision with an engi-
neering background or a general education in natural sciences this is a
strange experience. It appears to him/her as if one would present re-
sults of measurements without giving error bars or even thinking about
possible statistical and systematic errors.
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What is the cause of this situation? On the one side, it is certainly
true that some problems in computer vision are very hard and that it
is even harder to perform a sophisticated error analysis. On the other
hand, the computer vision community has ignored the fact to a large
extent that any algorithm is only as good as its objective and solid
evaluation and verification.

Fortunately, this misconception has been recognized in the mean-
time and there are serious efforts underway to establish generally ac-
cepted rules for the performance analysis of computer vision algorithms
[9]. The three major criteria for the performance of computer vision al-
gorithms are:

Successful solution of task. Any practitioner gives this a top priority.
But also the designer of an algorithm should define precisely for
which task it is suitable and what the limits are.

Accuracy. This includes an analysis of the statistical and systematic
errors under carefully defined conditions (such as given signal-to-
noise ratio (SNR), etc.).

Speed. Again this is an important criterion for the applicability of an
algorithm.

There are different ways to evaluate algorithms according to the fore-
mentioned criteria. Ideally this should include three classes of studies:

Analytical studies. This is the mathematically most rigorous way to
verify algorithms, check error propagation, and predict catastrophic
failures.

Performance tests with computer generated images. These tests are
useful as they can be carried out under carefully controlled condi-
tions.

Performance tests with real-world images. This is the final test for
practical applications.

Much of the material presented in this volume is written in the spirit
of a careful and mathematically well-founded analysis of the methods
that are described although the performance evaluation techniques are
certainly more advanced in some areas than in others.

1.6 Classes of tasks

Applications of computer vision can be found today in almost every
technical and scientific area. Thus it is not very helpful to list applica-
tions according to their field. In order to transfer experience from one
application to another it is most useful to specify the problems that
have to be solved and to categorize them into different classes.
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Table 1.2: Classification of tasks for computer vision systems

Task References

2-D & 3-D geometry, 6

Position, distance A26

Size, area Al12

Depth, 3-D optical metrology 11.2, A2, A4, A5, A6, A26
2-D form & 2-D shape 14, A13

3-D object shape 6, 7, A2, A4, A5, A6, A7

Radiometry-related, 2

Reflectivity 2.5

Color A2

Temperature Al15, A14

Fluorescence Al17, A18, A25, A26

Hyperspectral imaging A22, A23, A24, A26
Motion, 10

2-D motion field 10, A16, A17, A19, A20

3-D motion field A19, A21

Spatial structure and texture

Edges & lines 9.7

Local wave number; scale 8.9,10.4,12,13
Local orientation 9.8, 13

Texture 9.8

High-level tasks

Segmentation 13, 14, A12, A13

Object identification Al, A12

Object classification Al, A22,7?

Model- and knowledge-based

recognition and retrieval Al, Al11, A12
3-D modeling

3-D object recognition A6, A10, A7

3-D object synthesis A7

Tracking A8, A9, A10, A19, A20
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An attempt at such a classification is made in Table 1.2. The table

categorizes both the tasks with respect to 2-D imaging and the analysis
of dynamical 3-D scenes. The second column contains references to
chapters dealing with the corresponding task.
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12 2 Radiation and Illlumination

2.1 Introduction

Visual perception of scenes depends on appropriate illumination to vi-
sualize objects. The human visual system is limited to a very narrow
portion of the spectrum of electromagnetic radiation, called light. In
some cases natural sources, such as solar radiation, moonlight, light-
ning flashes, or bioluminescence, provide sufficient ambient light to
navigate our environment. Because humankind was mainly restricted
to daylight, one of the first attempts was to invent an artificial light
source—fire (not only as a food preparation method).

Computer vision is not dependent upon visual radiation, fire, or
glowing objects to illuminate scenes. As soon as imaging detector sys-
tems became available other types of radiation were used to probe
scenes and objects of interest. Recent developments in imaging sen-
sors cover almost the whole electromagnetic spectrum from x-rays to
radiowaves (Chapter 5). In standard computer vision applications illu-
mination is frequently taken as given and optimized to illuminate ob-
jects evenly with high contrast. Such setups are appropriate for object
identification and geometric measurements. Radiation, however, can
also be used to visualize quantitatively physical properties of objects
by analyzing their interaction with radiation (Section 2.5).

Physical quantities such as penetration depth or surface reflectivity
are essential to probe the internal structures of objects, scene geome-
try, and surface-related properties. The properties of physical objects
therefore can be encoded not only in the geometrical distribution of
emitted radiation but also in the portion of radiation that is emitted,
scattered, absorbed or reflected, and finally reaches the imaging sys-
tem. Most of these processes are sensitive to certain wavelengths and
additional information might be hidden in the spectral distribution of
radiation. Using different types of radiation allows taking images from
different depths or different object properties. As an example, infrared
radiation of between 3 and 5 ym is absorbed by human skin to a depth
of < 1 mm, while x-rays penetrate an entire body without major attenu-
ation. Therefore, totally different properties of the human body (such
as skin temperature as well as skeletal structures) can be revealed for
medical diagnosis.

This chapter provides the fundamentals for a quantitative descrip-
tion of radiation emitted from sources, as well as the interaction of ra-
diation with objects and matter. We will also show using a few selected
examples, how this knowledge can be used to design illumination se-
tups for practical applications such that different physical properties
of objects are visualized. Radiometry, the measurement of radiation
properties by imaging systems, will be detailed in Chapter 4.
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2.2 Fundamentals of electromagnetic radiation

2.2.1 Electromagnetic waves

Electromagnetic radiation consists of electromagnetic waves carrying
energy and propagating through space. Electrical and magnetic fields
are alternating with a temporal frequency v and a spatial wavelength A.
The metric units of v and A are cycles per second (s~!), and meter (m),
respectively. The unit 1 s! is also called one hertz (1 Hz). Wavelength
and frequency of waves are related by the speed of light c:

c=vA (2.1)

The speed of light depends on the medium through which the electro-
magnetic wave is propagating. In vacuum, the speed of light has the
value 2.9979 x 108ms-!, which is one of the fundamental physical
constants and constitutes the maximum possible speed of any object.
The speed of light decreases as it penetrates matter, with slowdown
being dependent upon the electromagnetic properties of the medium
(see Section 2.5.2).

Photon energy. In addition to electromagnetic theory, radiation can
be treated as a flow of particles, discrete packets of energy called pho-
tons. One photon travels at the speed of light ¢ and carries the energy

_he

ep =hv 3

(2.2)
where h = 6.626 x 10734 J s is Planck’s constant. Therefore the energy
content of radiation is quantized and can only be a multiple of hv for a
certain frequency v. While the energy per photon is given by Eq. (2.2),
the total energy of radiation is given by the number of photons. It was
this quantization of radiation that gave birth to the theory of quantum
mechanics at the beginning of the twentieth century.

The energy of a single photon is usually given in electron volts (1 eV
= 1.602 x 10-19). One eV constitutes the energy of an electron being
accelerated in an electrical field with a potential difference of one volt.
Although photons do not carry electrical charge this unit is useful in
radiometry, as electromagnetic radiation is usually detected by inter-
action of radiation with electrical charges in sensors (Chapter 5). In
solid-state sensors, for example, the energy of absorbed photons is
used to lift electrons from the valence band into the conduction band
of a semiconductor. The bandgap energy E; defines the minimum pho-
ton energy required for this process. As a rule of thumb the detector
material is sensitive to radiation with energies E, > E;. As an example,
indium antimonide (InSb) is a doped semiconductor with a bandgap of
only 0.18 eV. It is sensitive to wavelengths below 6.9 um (which can be
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Figure 2.1: Spectrum of electromagnetic radiation. (By Sven Mann, University
of Heidelberg.)

derived from Eq. (2.2)). Silicon (Si) has a bandgap of 1.1 eV and requires
wavelengths below 1.1 um to be detected. This shows why InSb can
be used as detector material for infrared cameras in the 3-5 um wave-
length region, while silicon sensors are used for visible radiation. It
also shows, however, that the sensitivity of standard silicon sensors
extends beyond the visible range up to approximately 1 ym, which is
often neglected in applications (Chapter 5).

Electromagnetic spectrum. Monochromatic radiation consists of only
one frequency and wavelength. The distribution of radiation over the
range of possible wavelengths is called spectrum or spectral distribu-
tion. Figure 2.1 shows the spectrum of electromagnetic radiation to-
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gether with the standardized terminology! separating different parts.
Electromagnetic radiation covers the whole range from very high energy
cosmic rays with wavelengths in the order of 10~6m (v = 102¢ Hz) to
sound frequencies above wavelengths of 10°m (v = 102Hz). Only a
very narrow band of radiation between 380 and 780 nm is visible to the
human eye.

Each portion of the electromagnetic spectrum obeys the same prin-
cipal physical laws. Radiation of different wavelengths, however, ap-
pears to have different properties in terms of interaction with matter
and detectability that can be used for wavelength selective detectors.
For the last one hundred years detectors have been developed for ra-
diation of almost any region of the electromagnetic spectrum. Recent
developments in detector technology incorporate point sensors into in-
tegrated detector arrays, which allows setting up imaging radiometers
instead of point measuring devices. Quantitative measurements of the
spatial distribution of radiometric properties are now available for re-
mote sensing at almost any wavelength.

2.2.2 Dispersion and attenuation

A mixture of radiation consisting of different wavelengths is subject to
different speeds of light within the medium it is propagating. This fact
is the basic reason for optical phenomena such as refraction and disper-
sion. While refraction changes the propagation direction of a beam of
radiation passing the interface between two media with different opti-
cal properties, dispersion separates radiation of different wavelengths
(Section 2.5.2).

2.2.3 Polarization of radiation

In electromagnetic theory, radiation is described as oscillating electric
and magnetic fields, denoted by the electric field strength E and the
magnetic field strength B, respectively. Both vector fields are given by
the solution of a set of differential equations, referred to as Maxwell’s
equations.

In free space, that is, without electric sources and currents, a special
solution is a harmonic planar wave, propagating linearly in space and
time. As Maxwell’s equations are linear equations, the superposition of
two solutions also yields a solution. This fact is commonly referred to
as the superposition principle. The superposition principle allows us to
explain the phenomenon of polarization, another important property
of electromagnetic radiation. In general, the 3-D orientation of vec-
tor E changes over time and mixtures of electromagnetic waves show

IInternational Commission on Illumination (Commission Internationale de
I’Eclairage, CIE); http://www.cie.co.at/cie
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Figure 2.2: Illustration of a linear and b circular polarization of electromag-
netic radiation. (By C. Garbe, University of Heidelberg.)

randomly distributed orientation directions of E. If, however, the elec-
tromagnetic field vector E is confined to a plane, the radiation is called
linearly polarized (Fig. 2.2a).

If two linearly polarized electromagnetic waves are traveling in the
same direction, the resulting electric field vector is givenby E = E; + E>.
Depending on the phase shift ® in the oscillations of E; and E», the net
electric field vector E remains linearly polarized (& = 0), or rotates
around the propagation direction of the wave. For a phase shift of
® = 90°, the wave is called circularly polarized (Fig. 2.2b). The general
case consists of elliptical polarization, that is, mixtures between both
cases.

Due to polarization, radiation exhibits different properties in differ-
ent directions, such as, for example, directional reflectivity or polariza-
tion dependent transmissivity.

2.2.4 Coherence of radiation

Mixtures of electromagnetic waves, which are emitted from conven-
tional light sources, do not show any spatial and temporal relation. The
phase shifts between the electric field vectors E and the corresponding
orientations are randomly distributed. Such radiation is called incoher-
ent.

Special types of light sources, mainly those operating by stimulated
emission of radiation (e. g., lasers), emit radiation with a fixed system-
atic relationship between the phases of the electromagnetic field vec-
tors, a property called coherence. Such radiation can be subject to con-
structive and destructive interference if it is superposed. As the electric
field vectors can add up to high amplitudes, the local energy impact of
coherent radiation is much more severe and can cause damage to deli-
cate body tissue.
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Figure 2.3: Definition of plane angle.

2.3 Radiometric quantities

2.3.1 Solid angle

In order to quantify the geometric spreading of radiation leaving a
source, it is useful to recall the definition of solid angle. It extends
the concept of plane angle into 3-D space. A plane angle 0 is defined
as the ratio of the arc length s on a circle to the radius » centered at
the point of definition:

0= - (2.3)
The arc length s can be considered as projection of an arbitrary line
in the plane onto the circle (Fig. 2.3). Plane angles are measured in
rad (radians). A plane angle 6 quantifies the angular subtense of a line
segment in the plane viewed from the point of definition. A circle has a
circumference of 21rv and, therefore, subtends a plane angle of 277 rad.
A solid angle Q is similarly defined as the ratio of an area A on the
surface of a sphere to the square radius, as shown in Fig. 2.4:

A

Q= 2 (2.4)
The area segment A can be considered as the projection of an arbitrarily
shaped area in 3-D space onto the surface of a sphere. Solid angles are
measured in sr (steradian). They quantify the areal subtense of a 2-D
surface area in 3-D space viewed from the point of definition. A sphere
subtends a surface area of 41772, which corresponds to a solid angle of
41t sr. Given a surface area A that is tilted under some angle 0 between
the surface normal and the line of sight the solid angle is reduced by a
factor of cos 6:

A
Q= ﬁcos(:) (2.5)
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Figure 2.4: Definition of solid angle. (By C. Garbe, University of Heidelberg.)

Table 2.1: Definitions of radiometric quantities (corresponding photometric
quantities are defined in Table 2.2)

Quantity Symbol Units Definition
. Total energy emitted by a source
R W .
adiant energy Q > or received by a detector
. Total power emitted by a source
Radiant flux ¢ w or received by a detector
. . Power emitted per unit surface
Radiant exitan M W m-2
adiant exitance area
. Power received at unit surface
-2
Irradiance E Wm element
Radiant intensity I Wsr-1 Power leaving a point on a sur-
face into unit solid angle
Radiance I Wm-2sr-1 Power leaving unit projected sur-

face area into unit solid angle

From the definition of angles as ratios of lengths or areas it follows
that they have no physical unit. However, it is advisable always to use
the artificial units rad and sr when referring to quantities related to
angles to avoid confusion. Radiometric and photometric quantities also
have to be defined carefully as their meaning cannot be inferred from
physical units (Tables 2.1 and 2.2).

2.3.2 Conventions and overview

Measurements of radiometric and photometric quantities very often
are subject to confusion related to terminology and units. Due to di-
verse historical developments and often inaccurate usage of names,
radiometry is one of the least understood subjects in the field of op-
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Table 2.2: Definitions of photometric quantities (corresponding radiometric
quantities are defined in Table 2.1)

Quantity Symbol Units Definition

Total luminous energy
Luminous energy Qv Ims emitted by a source or
received by a detector

Total luminous power
Luminous flux ®,, Im (lumen) emitted by a source or
received by a detector

Luminous power emitted

Luminous exitance M, Imm-2 ;
per unit surface area
. Imm-2 Luminous power received
Illuminance E, .
= Ix (lux) at unit surface element
-1 Luminous power leaving
. . . lumensr . .
Luminous intensity I, a point on a surface into

= cd (candela) unit solid angle

Luminous power leaving
unit projected surface
area into unit solid angle

lumenm-2sr-!

Luminance L
v =cdm2

tics. However, it is not very difficult if some care is taken with regard
to definitions of quantities related to angles and areas.

Despite confusion in the literature, there seems to be a trend to-
wards standardization of units. (In pursuit of standardization we will
use only SI units, in agreement with the International Commission on
[Mlumination CIE. The CIE is the international authority defining termi-
nology, standards, and basic concepts in radiometry and photometry.
The radiometric and photometric terms and definitions are in com-
pliance with the American National Standards Institute (ANSI) report
RP-16, published in 1986. Further information on standards can be
found at the web sites of CIE (http://www.cie.co.at/cie/)and ANSI
(http://www.ansi.org), respectively.)

In this section, the fundamental quantities of radiometry will be
defined. The transition to photometric quantities will be introduced by
a generic Equation (2.27), which can be used to convert each of these
radiometric quantities to its corresponding photometric counterpart.

We will start from the concept of radiative flux and derive the most
important quantities necessary to define the geometric distribution of
radiation emitted from or irradiated on surfaces. The six fundamen-
tal concepts relating the spatial distribution of energy in electromag-
netic radiation are summarized in Table 2.1. The term “radiant” is only
added to the names of those quantities that could be confused with the
corresponding photometric quantity (see Table 2.2).
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2.3.3 Definition of radiometric quantities

Radiant energy and radiant flux. Radiation carries energy that can be
absorbed in matter heating up the absorber or interacting with electrical
charges. Radiant energy Q is measured in units of Joule (1 J =1 Ws). It
quantifies the total energy emitted by a source or received by a detector.
Radiant flux ® is defined as radiant energy per unit time interval

o 90

T (2.6)

passing through or emitted from a surface. Radiant flux has the unit
watts (W) and is also frequently called radiant power, which corre-
sponds to its physical unit. Quantities describing the spatial and ge-
ometric distributions of radiative flux are introduced in the following
sections.

The units for radiative energy, radiative flux, and all derived quan-
tities listed in Table 2.1 are based on Joule as the fundamental unit.
Instead of these energy-derived quantities an analogous set of photon-
derived quantities can be defined based on the number of photons.
Photon-derived quantities are denoted by the subscript p, while the
energy-based quantities are written with a subscript e if necessary to
distinguish between them. Without a subscript, all radiometric quanti-
ties are considered energy-derived. Given the radiant energy the num-
ber of photons can be computed from Eq. (2.2)

Qe A
Nr =, = e (2.7)
With photon-based quantities the number of photons replaces the ra-
diative energy. The set of photon-related quantities is useful if radia-
tion is measured by detectors that correspond linearly to the number
of absorbed photons (photon detectors) rather than to thermal energy
stored in the detector material (thermal detector).
Photon flux ®, is defined as the number of photons per unit time
interval

5, - A dQ. A

dt " he dt " he’e (2.8)

Similarly, all other photon-related quantities can be computed from the
corresponding energy-based quantities by dividing them by the energy
of a single photon.

Because of the conversion from energy-derived to photon-derived
quantities Eq. (2.7) depends on the wavelength of radiation. Spectral
distributions of radiometric quantities will have different shapes for
both sets of units.
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Figure 2.5: Illustration of the radiometric quantities: a radiant exitance; and b
irradiance. (By C. Garbe, University of Heidelberg.)

Radiant exitance and irradiance. Radiant exitance M defines the ra-
diative flux emitted per unit surface area
do
M = as (2.9)
of a specified surface. The flux leaving the surface is radiated into the
whole hemisphere enclosing the surface element dS and has to be inte-
grated over all angles to obtain M (Fig. 2.5a). The flux is, however, not
radiated uniformly in angle. Radiant exitance is a function of position
on the emitting surface, M = M (x). Specification of the position on the
surface can be omitted if the emitted flux ® is equally distributed over
an extended area S. In this case M = $/S.
Irradiance E similarly defines the radiative flux incident on a certain
point of a surface per unit surface element
do

E= e (2.10)

Again, incident radiation is integrated over all angles of the enclosing
hemisphere (Fig. 2.5b). Radiant exitance characterizes an actively radi-
ating source while irradiance characterizes a passive receiver surface.
Both are measured in Wm~2 and cannot be distinguished by their units
if not further specified.

Radiant intensity. Radiant intensity I describes the angular distribu-
tion of radiation emerging from a point in space. It is defined as radiant
flux per unit solid angle
do
I= 10 (2.11)
and measured in units of W sr-!. Radiant intensity is a function of the
direction of the beam of radiation, defined by the spherical coordinates
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Figure 2.6: Illustration of radiometric quantities: a radiant intensity; and b
radiance. (By C. Garbe, University of Heidelberg.)

0 and ¢ (Fig. 2.6). Intensity is usually used to specify radiation emitted
from point sources, such as stars or sources that are much smaller than
their distance from the detector, that is, dxdy < r2. In order to use it
for extended sources those sources have to be made up of an infinite
number of infinitesimal areas. The radiant intensity in a given direc-
tion is the sum of the radiant flux contained in all rays emitted in that
direction under a given solid angle by the entire source (see Eq. (2.18)).
The term intensity is frequently confused with irradiance or illumi-
nance. It is, however, a precisely defined quantity in radiometric termi-
nology and should only be used in this context to avoid confusion.

Radiance. Radiance L defines the amount of radiant flux per unit solid
angle per unit projected area of the emitting source

d?® d?®

L=4a dS,  dQdScos6

(2.12)

where dS, = dS cos 0 defines a surface element that is perpendicular
to the direction of the radiated beam (Fig. 2.6b). The unit of radiance is
Wm~2sr-1. Radiance combines the concepts of exitance and intensity,
relating intensity in a certain direction to the area of the emitting sur-
face. And conversely, it can be thought of as exitance of the projected
area per unit solid angle.

Radiance is used to characterize an extended source that has an
area comparable to the squared viewing distance. As radiance is a
function of both position on the radiating surface as well as direction
L = L(x, 0, ¢), it is important always to specify the point in the surface
and the emitting angles. It is the most versatile quantity in radiometry
as all other radiometric quantities can be derived from the radiance
integrating over solid angles or surface areas (Section 2.3.4).
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dQ =sin6 dé do

Figure 2.7: Illustration of spherical coordinates.

2.3.4 Relationship of radiometric quantities

Spatial distribution of exitance and irradiance. Solving Eq. (2.12)
for d®/dS vyields the fraction of exitance radiated under the specified
direction into the solid angle dQ

AM (x) = d(%’) _ L(x,0, ) cos 0dQ 2.13)

Given the radiance L of an emitting surface, the radiant exitance M
can be derived by integrating over all solid angles of the hemispheric
enclosure 7
2mT/2
M(x) = JL(x, 0, ) cos 0dQ — J J L(x, 0, ) cos 0sin 0 d0 d¢b
H 0

0
(2.14)

In order to carry out the angular integration spherical coordinates have
been used (Fig. 2.7), replacing the differential solid angle element dQ
by the two plane angle elements d6 and d¢:

dQ =sin6dod¢ (2.15)

Correspondingly, the irradiance E of a surface S can be derived from a
given radiance by integrating over all solid angles of incident radiation:
2777 /2
E(x) = JL(x, 0, ) cos 0dQ - J J L(x, 0, ) cos 0sin0d0de (2.16)
3 00

Angular distribution of intensity. Solving Eq. (2.12) for d®/ dQ yields
the fraction of intensity emitted from an infinitesimal surface element
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ds

dr=d (%) — L(x,0,)cos 0 dS (2.17)
Extending the point source concept of radiant intensity to extended
sources, the intensity of a surface of finite area can be derived by inte-
grating the radiance over the emitting surface area S:

1(0,¢) = JL(x, 0,¢)cos0 dS (2.18)
s

The infinitesimal surface area dS is givenby dS = ds; dsp, with the gen-
eralized coordinates s = [sl,sz]T defining the position on the surface.
For planar surfaces these coordinates can be replaced by Cartesian co-
ordinates x = [x, y]T in the plane of the surface.

Total radiant flux. Solving Eq. (2.12) for d2® yields the fraction of
radiant flux emitted from an infinitesimal surface element dS under
the specified direction into the solid angle dQ

d?® = L(x,0,¢) cos 0 dS dQ (2.19)

The total flux emitted from the entire surface area S into the hemispher-
ical enclosure H can be derived by integrating over both the surface
area and the solid angle of the hemisphere

2mTT/2
b - ”L(x,e,qb) cos 0 dQdS = ” J L(x, 0, ) cos 0sin 0 d0 dg dS
SH S0 O

(2.20)

Again, spherical coordinates have been used for dQ and the surface
element dS is given by dS = ds; ds, with the generalized coordinates
s = [s1,52]7. The flux emitted into a detector occupying only a fraction
of the surrounding hemisphere can be derived from Eq. (2.20) by inte-
grating over the solid angle Qp subtended by the detector area instead
of the whole hemispheric enclosure 7.

Inverse square law. A common rule of thumb for the decrease of ir-
radiance of a surface with distance of the emitting source is the inverse
square law. Solving Eq. (2.11) for d® and dividing both sides by the
area dS of the receiving surface, the irradiance of the surface is given
by

do dQ
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I,cosO

Figure 2.8: Illustration of angular distribution of radiant intensity emitted from
a Lambertian surface.

For small surface elements dS perpendicular to the line between the
point source and the surface at a distance * from the point source, the
subtended solid angle dQ can be written as dQ = dS/r2. This yields
the expression
Ids I

T odSr2 2 (2.22)
for the irradiance E at a distance v from a point source with radiant
intensity I. This relation is an accurate and simple means of verifying
the linearity of a detector. It is, however, only true for point sources.
For extended sources the irradiance on the detector depends on the
geometry of the emitting surface (Section 2.5).

Lambert’s cosine law. Radiant intensity emitted from extended sur-
faces is usually not evenly distributed in angle. A very important rela-
tion for perfect emitters, or perfect receivers, is Lambert’s cosine law.
A surface is called Lambertian if its radiance is independent of view
angle, that is, L(x,0,¢) = L(x). The angular distribution of radiant
intensity can be computed directly from Eq. (2.18):

I1(0) = cos QJL(x) dS =Ipcos O (2.23)
S

It is independent of angle ¢ and shows a cosine dependence on the
angle of incidence @ as illustrated in Fig. 2.8. The exitance of a planar
Lambertian surface is derived from Eq. (2.14), pulling L outside of the
angular integrals
2mT/2
M(x) =L(x) J J cosOsin® df d¢ = mL(x) (2.24)
0 0
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The proportionality factor of 1 shows that the effect of Lambert’s law
is to yield only one-half the exitance, which might be expected for a sur-
face radiating into 27t steradians. For point sources, radiating evenly
into all directions with an intensity I, the proportionality factor would
be 27r. Non-Lambertian surfaces would have proportionality constants
smaller than 7r.

Another important consequence of Lambert’s cosine law is the fact
that Lambertian surfaces appear to have the same brightness under all
view angles. This seems to be inconsistent with the cosine dependence
of emitted intensity. To resolve this apparent contradiction, radiant
power transfer from an extended source to a detector element with
an area of finite size has to be investigated. This is the basic topic of
radiometry and will be presented in detail in Chapter 4.

It is important to note that Lambert’s cosine law only describes per-
fect radiators or perfect diffusers. It is not valid for real radiators in
general. For small angles of incidence, however, Lambert’s law holds
for most surfaces. With increasing angles of incidence, deviations from
the cosine relationship increase (Section 2.5.2).

2.3.5 Spectral distribution of radiation

So far spectral distribution of radiation has been neglected. Radiative
flux is made up of radiation at a certain wavelength A or mixtures of
wavelengths, covering fractions of the electromagnetic spectrum with
a certain wavelength distribution. Correspondingly, all derived radio-
metric quantities have certain spectral distributions. A prominent ex-
ample for a spectral distribution is the spectral exitance of a blackbody
given by Planck’s distribution [CVA1, Chapter 2].

Let Q be any radiometric quantity. The subscript A denotes the cor-
responding spectral quantity Q, concentrated at a specific wavelength
within an infinitesimal wavelength interval dA. Mathematically, Q, is
defined as the derivative of Q with respect to wavelength A:

The unit of Q, is given by [-/m] with [ -] denoting the unit of the quan-
tity Q. Depending on the spectral range of radiation it sometimes is
more convenient to express the wavelength dependence in units of
[-/um] (1 pym = 105m) or [-/nm] (I1nm = 10~2m). Integrated quan-
tities over a specific wavelength range [A;,A2] can be derived from
spectral distributions by

Az
Q): = JQ/\ dA (2.26)
A1
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Figure 2.9: Spectral luminous efficiency function of the “standard” light-
adapted eye for photopic vision V (A) and scotopic vision V' (A), respectively.

with A; = 0 and A, = ~ as a special case. All definitions and relations
derived in Sections 2.3.3 and 2.3.4 can be used for both spectral distri-
butions of radiometric quantities and total quantities, integrated over
the spectral distribution.

2.4 Fundamental concepts of photometry

Photometry relates radiometric quantities to the brightness sensation
of the human eye. Historically, the naked eye was the first device to
measure light, and visual perception remains important for design-
ing illumination systems and computing the apparent brightness of
sources and illuminated surfaces.

While radiometry deals with electromagnetic radiation of all wave-
lengths, photometry deals only with the visible portion of the electro-
magnetic spectrum. The human eye is sensitive to radiation between
380 and 780nm and only radiation within this visible portion of the
spectrum is called “light.”

2.4.1 Spectral response of the human eye

Light is perceived by stimulating the retina after passing the preretinal
optics of the eye. The retina consists of two different types of receptors:
rods and cones. At high levels of irradiance the cones are used to detect
light and to produce the sensation of colors (photopic vision). Rods are
used mainly for night vision at low illumination levels (scotopic vision).
Both types of receptors have different sensitivities to light at different
wavelengths.

The response of the “standard” light-adapted eye is defined by the
normalized photopic spectral luminous efficiency function V (A) (Fig. 2.9).
It accounts for eye response variation as related to wavelength and
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shows the effectiveness of each wavelength in evoking a brightness sen-
sation. Correspondingly, the scotopic luminous efficiency function V' (A)
defines the spectral response of a dark-adapted human eye (Fig. 2.9).
These curves were formally adopted as standards by the International
Lighting Commission (CIE) in 1924 and 1951, respectively. Tabulated
values can be found in [1, 2, 3, 4, 5]. Both curves are similar in shape.
The peak of the relative spectral luminous efficiency curve for scotopic
vision is shifted to 507 nm compared to the peak at 555 nm for photopic
vision. The two efficiency functions can be thought of as the transfer
function of a filter, which approximates the behavior of the human eye
under good and bad lighting conditions, respectively.

As the response of the human eye to radiation depends on a variety
of physiological parameters, differing for individual human observers,
the spectral luminous efficiency function can correspond only to an
average normalized observer. Additional uncertainty arises from the
fact that at intermediate illumination levels both photopic and scotopic
vision are involved. This range is called mesopic vision.

2.4.2 Definition of photometric quantities

In order to convert radiometric quantities to their photometric counter-
parts, absolute values of the spectral luminous efficiency function are
needed instead of relative functions. The relative spectral luminous
efficiency functions for photopic and scotopic vision are normalized
to their peak values, which constitute the quantitative conversion fac-
tors. These values have been repeatedly revised and currently (since
1980) are assigned the values 6831m W-! (lumen/watt) at 555 nm for
photopic vision, and 17541lm W-! at 507nm for scotopic vision, re-
spectively. The absolute values of the conversion factors are arbitrary
numbers based on the definition of the unit candela (or international
standard candle) as one of the seven base units of the metric system
(Sh [6, 71.

The conversion from photometric to radiometric quantities reduces
to one simple equation. Given the conversion factors for photopic and
scotopic vision, any (energy-derived) radiometric quantity Q. can be
converted into its photometric counterpart Q, by

780
Qy =683ImwW! J Q.AV(A)dA (2.27)
380
for photopic vision and
780
Qy =1754ImW! J QeAV'(A)dA (2.28)

380
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for scotopic vision, respectively. From this definition it can be con-
cluded that photometric quantities can be derived only from known
spectral distributions of the corresponding radiometric quantities. For
invisible sources emitting radiation below 380 nm or above 780 nm all
photometric quantities are null.

Table 2.2 summarizes all basic photometric quantities together with
their definition and units.

Luminous energy and luminous flux. The luminous energy can be
thought of as the portion of radiant energy causing a visual sensation
at the human retina. Radiant energy beyond the visible portion of the
spectrum can also be absorbed by the retina, maybe causing severe
damage to the tissue, but without being visible to the human eye.

The Iuminous flux defines the total luminous energy per unit time
interval (“luminous power”) emitted from a source or received by a de-
tector. The units for luminous flux and luminous energy are Im (lumen)
and Im s, respectively.

Luminous exitance and illuminance. Corresponding to radiant exi-
tance and irradiance, the photometric quantities luminous exitance and
illuminance define the luminous flux per unit surface area leaving a
surface or incident on a surface, respectively. As with the radiometric
quantities, they are integrated over the angular distribution of light.
The units of both luminous exitance and illuminance are Im m~2 or lux.

Luminous intensity. Luminous intensity defines the total luminous
flux emitted into unit solid angle under a specified direction. As with its
radiometric counterpart, radiant intensity, it is used mainly to describe
point sources and rays of light. Luminous intensity has the unit Im
sr~! or candela (cd). For a monochromatic radiation source with I =
IpS5(A = 555nm) and Ip = 1/683W sr!, Eq. (2.27) yields I, = 1cd in
correspondence to the definition of candela.

Luminance. Luminance describes the subjective perception of “bright-
ness” because the output of a photometer is proportional to the lumi-
nance of the measured radiation (Chapter 4). It is defined as luminant
flux per unit solid angle per unit projected surface area perpendicular
to the specified direction, corresponding to radiance, its radiometric
equivalent.

Luminance is the most versatile photometric quantity, as all other
quantities can be derived by integrating the luminance over solid angles
or surface areas. Luminance has the unit cd m2.
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2.4.3 Luminous efficacy

Luminous efficacy is used to determine the effectiveness of radiative
or electrical power in producing visible light. The term “efficacy” must
not be confused with “efficiency.” Efficiency is a dimensionless constant
describing the ratio of some energy input to energy output. Luminous
efficacy is not dimensionless and defines the fraction of luminous en-
ergy output able to stimulate the human visual system with respect to
incoming radiation or electrical power. It is an important quantity for
the design of illumination systems.

Radiation luminous efficacy. Radiation luminous efficacy K, is amea-
sure of the effectiveness of incident radiation in stimulating the percep-
tion of light in the human eye. It is defined as the ratio of any photo-
metric quantity Q, to the radiometric counterpart Q, integrated over
the entire spectrum of electromagnetic radiation:
Ky = % [(ImW-'], where Q.= JQQ,A da (2.29)
¢ 0
Itis important to note that Eq. (2.29) can be evaluated for any radiomet-
ric quantity with the same result for K,. Substituting Q. in Eq. (2.29)
by Eq. (2.27) and replacing Q. by monochromatic radiation at 555 nm,
that is, Qe = Qo 6(A — 555nm), K, reaches the value 683ImW-1!. It
can be easily verified that this is the theoretical maximum luminous

efficacy a beam can have. Any invisible radiation, such as infrared or
ultraviolet radiation, has zero luminous efficacy.

Lighting system luminous efficacy. The lighting system luminous ef-
ficacy K of alight source is defined as the ratio of perceptible luminous
flux @, to the total power P, supplied to the light source:

Ki= Y [ImW] (2.30)

With the radiant efficiency i} = ®, /P, defining the ratio of total radiative
flux output of an illumination source to the supply power, Eq. (2.30) can
be expressed by the radiation luminous efficacy, K, :

Ko=2v®e g i 2.31)

Because the radiant efficiency of an illumination source is always smaller
than 1, the lighting system luminous efficacy is always smaller than the
radiation luminous efficacy. An extreme example is monochromatic
laser light at a wavelength of 555nm. Although K, reaches the max-
imum value of 6831mW-!, K; might be as low as 1ImW~! due to the
low efficiency of laser radiation.
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Figure 2.10: Illustration of the radiometric chain of image formation. (By C.
Garbe, University of Heidelberg.)

2.5 Interaction of radiation with matter

Quantitative visualization in computer vision requires knowledge of
both the physical properties of the objects of interest in terms of in-
teraction with radiation as well as the optical properties of the imaging
system. In addition to the performance of the detector, the perfor-
mance and availability of optical components are essential factors for
quality and computer vision system costs.

Physical quantities such as penetration depth or surface reflectivity
are essential to probe the internal structures of objects, scene geom-
etry, and surface-related properties. Physical object properties, there-
fore, not only can be encoded in the geometrical distribution of emitted
radiation but also in the portion of radiation being emitted, scattered,
absorbed, or reflected and finally reaching the imaging system.

Most of these processes are sensitive to certain wavelengths and
additional information might be hidden in the spectral distribution of
radiation. Using different types of radiation allows images from differ-
ent depths or object properties to be attained.

Standard scenes usually contain more than one single object in a
uniform enclosure. Radiation has to pass a series of events, called the
radiometric chain, before it reaches the imaging system. Figure 2.10 il-
lustrates how incident radiation is influenced by all objects and matter
along the optical path. In this section, the basic mechanisms influ-
encing the emission of radiation and its propagation in matter will be
detailed.



32 2 Radiation and Illlumination

incident

Qo
S
radiation absorg®™

transmission

Figure 2.11: Radiative flux, ®; incident on an object is partially reflected (frac-
tion p) and absorbed (fraction &). For nonopaque objects a fraction T is passing
the body. The radiative flux é®, is emitted to maintain or reach thermodynamic
equilibrium.

2.5.1 Basic definitions and terminology

Definition of optical properties. Radiation incident on or passing
through objects is subject to various processes changing the direction
of propagation, attenuating or amplifying the radiant intensity, and
changing the spectral distribution or polarization of radiation. With-
out going into the details of the complex physical processes governing
the interaction of radiation with the molecular structure of objects, the
macroscopic optical properties of objects are quantified by the follow-
ing dimensionless quantities (Fig. 2.11):

Reflectivity Reflectivity or reflectance p defines the ratio of the re-
flected radiative flux ®, to the incident radiative flux ®;,

5O

®; (2.32)

Absorptivity Absorptivity or absorptance & defines the ratio of the
absorbed radiative flux ®, to the incident radiative flux ®;,
. D,
&=-2 2.33
Y (2.33)
Transmissivity Transmissivity or transmittance T defines the ratio of
the radiative flux ®; transmitting the object to the incident radiative
flux ®;,

T=_— (2.34)
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Emissivity The forementioned quantities p, &, and T define the prop-
erty of passive receivers in modifying incident radiative flux. The
emissivity or emittance € quantifies the performance of an actively
radiating object compared to a blackbody, which provides the upper
limit of the spectral exitance of a source. It is defined by the ratio
of the exitances,

M (T)
My (T)

€= (2.35)
where M; and M, denote the exitance of the emitting source, and
the exitance of the blackbody at the temperature T, respectively. A
blackbody is defined as an ideal body absorbing all radiation inci-
dent on it regardless of wavelength or angle of incidence. No radia-
tion is reflected from the surface or passing through the blackbody.
Such a body is a perfect absorber. Kirchhoff demonstrated in 1860
that a good absorber is a good emitter and, consequently, a perfect
absorber is a perfect emitter. A blackbody, therefore, would emit
the maximum possible radiative flux that any body can radiate at a
given kinetic temperature, unless it contains fluorescent or radioac-
tive materials. As a blackbody has the maximum possible exitance
of an object at the given temperature, € is always smaller than 1.

Spectral and directional dependencies. All of the foregoing intro-
duced quantities can have strong variations with direction, wavelength,
and polarization state that have to be specified in order to measure the
optical properties of an object. The emissivity of surfaces usually only
slightly decreases for angles of up to 50° and rapidly falls off for angles
larger than 60° it approaches zero for 90° [8]. The reflectivity shows
the inverse behavior.

To account for these dependencies, we define the spectral direc-
tional emissivity €(A, 6, ¢) as ratio of the source spectral radiance L ¢
to the spectral radiance of a blackbody L, ; at the same temperature T:

Las(0,9,T)

€0, ) =10, 6,T)

(2.36)

The spectral hemispherical emissivity €(A) is similarly given by the ra-
diant exitance of the source and a blackbody at the same temperature,
T:

M/\,S(T)

€)= My p(T)

(2.37)

Correspondingly, we can define the spectral directional reflectivity,
the spectral directional absorptivity, and the spectral directional trans-
missivity as functions of direction and wavelength. In order to simplify
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notation, the symbols are restricted to p, &, T and € without further in-
dices. Spectral and/or directional dependencies will be indicated by
the variables and are mentioned in the text.

Terminology conventions. Emission, transmission, reflection, and
absorption of radiation either refer to surfaces and interfaces between
objects or to the net effect of extended objects of finite thickness. In
accordance with Siegel and Howell [9] and McCluney [3] we assign the
suffix -ivity to surface-related (intrinsic) material properties and the suf-
fix -ance to volume-related (extrinsic) object properties. To reduce the
number of equations we exclusively use the symbols €, &, p and T for
both types. If not further specified, surface- and volume-related prop-
erties can be differentiated by the suffixes -ivity and -ance, respectively.
More detailed definitions can be found in the CIE International Lighting
Vocabulary [10].

Spectral selectivity. For most applications the spectral optical prop-
erties have to be related to the spectral sensitivity of the detector sys-
tem or the spectral distribution of the radiation source. Let p(A) be any
of the following material properties: &, g, T, or €. The spectral selective
optical properties ps can be defined by integrating the corresponding
spectral optical property p(A) over the entire spectrum, weighted by a
spectral window function w(A):

Jw()\)ﬁ()\) dA
po=t— (2.38)
Jw()\) dA
0

Examples of spectral selective quantities include the photopic luminous
transmittance or reflectance for w(A) = V(A) (Section 2.4.1), the so-
lar transmittance, reflectance, or absorptance for w(A) = Eps (so-
lar irradiance), and the emittance of an object at temperature T for
w(A) = Exp(T) (blackbody irradiance). The total quantities p can be
obtained by integrating p(A) over all wavelengths without weighting.

Kirchhoff’s law. Consider a body that is in thermodynamic equilib-
rium with its surrounding environment. Conservation of energy re-
quires ®; = &, + &, + &; and, therefore,

&+p+T=1 (2.39)

In order to maintain equilibrium, the emitted flux must equal the ab-
sorbed flux at each wavelength and in each direction. Thus

&(A,0,¢p) =€(A,0,9) (2.40)
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Table 2.3: Basic (idealized) object and surface types

Object Properties Description
Opaque €(A) + p(A) =1, Cannot be penetrated by radiation. All exi-
body T(A) =0 tant radiation is either reflected or emitted.
AR coating €(A) + T(A) =1, No radiation is reflected at the surface. All
p(A)=0 exitant radiation is transmitted or emitted.
Ideal €(A) =p(Ad) =0, All radiation passes without attenuation.
window T(A) =1 The temperature is not accessible by IR
thermography because no thermal emission
takes place.
Mirror €(A) =T(A) =0, Allincident radiation is reflected. The tem-
p(A) =1 perature is not accessible by IR thermo-
graphy because no thermal emission takes
place.
Blackbody T(A) =p(A) =0, Allincident radiation is absorbed. It has the
EA)=€=1 maximum possible exitance of all objects.
Graybody €é(A)=€é<1, Opaque object with wavelength independent
p(A) =1-¢, emissivity. Same spectral radiance as a
T(A) =0 blackbody but reduced by the factor €.

This relation is known as Kirchhoff’s law |

]. It also holds for the in-

tegrated quantities €(A) and €. Kirchoff’s law does not hold for active
optical effects shifting energy between wavelengths, such as fluores-
cence, or if thermodynamic equilibrium is not reached. Kirchhoff’s law
also does not apply generally for two different components of polar-
ization [6, 12].

Table 2.3 summarizes basic idealized object and surface types in
terms of the optical properties defined in this section. Real objects
and surfaces can be considered a mixture of these types. Although
the ideal cases usually do not exist for the entire spectrum, they can
be realized for selective wavelengths. Surface coatings, such as, for
example, antireflection (AR) coatings, can be technically produced with
high precision for a narrow spectral region.

Figure 2.12 shows how radiometric measurements are influenced by
the optical properties of objects. In order to measure the emitted flux
®; (e.g., to estimate the temperature of the object), the remaining seven
quantities €1, €», €3, p1, T1, 2, and ®3 have to be known. Only for a
blackbody is the total received flux the flux emitted from the object of
interest.
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Figure 2.12: Radiometric measurements of object 1 are biased by the radiation
of the environment emitted from objects 2 and 3.

Index of refraction. Solving the Maxwell equations for electromag-
netic radiation in matter yields the complex index of refraction, N

N(A) =n(A) +1ik(A) (2.41)

with the real part n and the imaginary part k.

The real part n constitutes the well-known index of refraction of
geometric optics (Section 2.5.2; Chapter 3). From the complex part k
other important optical properties of materials, such as reflection, and
absorption can be derived (Sections 2.5.2 and 2.5.3).

2.5.2 Properties related to interfaces and surfaces

In this section properties of interfaces between two different materials
are detailed. In this context an interface is defined as a discontinu-
ity in optical properties over a distance that is much smaller than the
wavelength of the radiation.

Refraction. The real part n(A) of the complex index of refraction N
Eq. (2.41) constitutes the index of refraction of geometric optics, that
is, the ratio of the speed of light in a vacuum to the speed of light in a
medium under consideration. It determines the change in the direction
of propagation of radiation passing the interface of two materials with
different dielectric properties. According to Snell’s law, the angles of
incidence 6, and refraction 0, are related by (Fig. 2.13)

sinf; np
sin@, mny

(2.42)

where n; and n; are the indices of refraction of the two materials. It is
the basis for transparent optical elements, such as lenses and prisms
(Chapter 3). While prisms make use of the wavelength dependence of
refraction to separate radiation of different wavelengths, lenses suffer
from this effect (chromatic aberration).
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Figure 2.13: Refraction and specular reflection at interfaces.
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Figure 2.14: a Specular; b diffuse; and c subsurface reflection at interfaces.

Specular reflection. At smooth interfaces between two materials with
different dielectric properties specular reflection occurs. The direction
of incident ray, reflected ray, and the surface normal vector span the
plane of incidence perpendicular to the surface of reflection (Fig. 2.13).
The angles of incidence and reflection are equal (Fig. 2.14a).

The reflectivity p of a surface is defined as the ratio between incident
and reflected flux. It depends on the indices of refraction of the two
materials, the angle of incidence, and the polarization of the radiation.
The specular reflectivities of the polarization components parallel (])
and perpendicular (1) to the plane of incidence are given by Fresnel’s
equations [13]:

. tan®(01-0,) . _ sin®(61 - 02)

5 _Pi+P.
i = O2) 5 SO =02 ond 5= PP (043
A= 0,50, T sin0, 10, W4 P @4

where the total reflectivity for unpolarized radiation p is the average
(arithmetic mean) of the two polarization components. The angles 6;
and 0 are the angles of incidence and refraction in the medium, which
are related by Snell’s law, Eq. (2.42). Figure 2.15 shows the angular
dependence of Eq. (2.43) for the transition from BK7 glass to air and
vice versa.

From Fresnel’s equations three important properties of specular re-
flection at object interfaces can be inferred (Fig. 2.15):
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Figure 2.15: Reflectivities and transmissivities vs angle of incidence for parallel
() and perpendicular (1) polarized light at the interface between air (n; = 1.0)
and BK7 glass (n, = 1.517). a Transition air to glass. b Transition glass to
air. The shaded area shows angles beyond the critical angle of total internal
reflection.

1. Parallel polarized light is not reflected at all at a certain angle, called
the polarizing or Brewster angle 0. At this angle the reflected and
refracted rays are perpendicular to each other [13]:

__
\1+n?/n3

2. At the transition from the medium with higher refractive index to
the medium with lower refractive index, there is a critical angle 0.

0p = arcsin (2.44)

0. = arcsin %, with n; <np (2.45)
2

beyond which all light is reflected back into the medium of origin.
At this angle Snell’s law would produce an angle of refraction of 90°.
The reflectivity is unity for all angles of incidence greater than 0.,
which is known as total internal reflection and used in light conduc-
tors and fiber optics.

3. At large (grazing) angles, object surfaces have a high reflectivity,
independent from n. Therefore, objects usually deviate from an
ideal Lambertian reflector for large angles of incidence.

At normal incidence (6 = 0) there is no difference between perpen-
dicular and parallel polarization and

. (m-np)? (m-1)2
S (i +n2)2 (n+1)2°

with n = L (2.46)
n»

Note that Eqgs. (2.43) and (2.46) are only exact solutions for transpar-
ent dielectric objects (Section 2.5.3) with small imaginary parts k of
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dQ,

Figure 2.16: Illustration of the angles used in the definition of the bidirectional
reflectivity distribution function (BRDF).

the complex refractive index N, Eq. (2.41): k < 1. For nonnegligible
imaginary parts the normal reflectivity Eq. (2.46) has to be modified:

. (m—np)?+k?

T (np+mn2)2+ k2 (2.47)

The wavelength dependence of the refractive index can change the
spectral composition of radiation by reflection. Silver (Ag) has a high
reflectivity above 0.9 over the entire visible spectrum. The reflectivity
of Gold (Au) also lies above 0.9 for wavelengths beyond 600 nm, but
shows a sudden decrease to 0.4 for wavelengths below 500 nm. This
increased absorption of blue light compared to red light is responsible
for the reddish appearance of gold surfaces in contrast to the white
metallic glare of silver surfaces.

Diffuse reflection. Very few materials have pure specular surface re-
flectivity. Most surfaces show a mixture of matte and specular reflec-
tion. As soon as surface microroughness has the same scale as the
wavelength of radiation, diffraction at the microstructures occurs. At
larger scales, microfacets with randomly distributed slopes relative to
the surface normal are reflecting incident light in various directions
(Fig. 2.14b). Depending on the size and slope distribution of the micro-
roughness, these surfaces have a great variety of reflectivity distribu-
tions ranging from isotropic (Lambertian) to strong forward reflection,
where the main direction is still the angle of specular reflection. An
excellent introduction into light scattering and surface roughness is
provided by Bennet and Mattsson [14].

A mixture of specular and diffuse reflection can also be caused by
subsurface scattering of radiation, which is no longer a pure surface-
related property. Radiation penetrating a partially transparent object
can be scattered at optical inhomogeneities (Section 2.5.3) and leave
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the object to cause diffuse reflection (Fig. 2.14c). Reflected light from
below the surface is subject to bulk-related interactions of radiation
with matter that can change the spectral composition of radiation be-
fore it is reemitted. For this reason, diffusely scattered light shows the
colors of objects while highlights of specular reflections usually show
the color of the incident light, which is white for ambient daylight.

In order to describe quantitatively the angular reflectivity distribu-
tion of arbitrary objects, the bidirectional reflectivity distribution func-
tion (BRDF), f,is used (Fig. 2.16). It is a function of the spherical angles
of incidence (0;, ¢;) and reflection (0,, ¢, ), and defines the ratio of re-
flected radiance L, to the incident irradiance E; of the reflecting surface

[6]:

Ei(0i, i)

This definition accounts for the fact that an optical system measures
the radiance leaving a surface while distribution of incident radiation
is quantified by the surface irradiance. The two extreme cases are spec-
ular and Lambertian surfaces. A purely specular surface has a nonzero
value only for 6; = 6, and ¢; = ¢, so that f = p6(6; — 0,)5(p; — Py).
A Lambertian surface has no dependence on angle, and a flat surface
therefore has f = prr~—!. The hemispherical reflectivity in each case is

p.

f(giyd)i!ng(l)T) = (248)

2.5.3 Bulk-related properties of objects

This section deals with the various processes influencing the propa-
gation of radiation within optical materials. The basic processes are
attenuation by absorption or scattering, changes in polarization, and
frequency shifts. For active emitters, radiation emitted from partially
transparent sources can originate from subsurface volumes, which
changes the radiance compared to plain surface emission. The most
important processes for practical applications are attenuation of radi-
ation by absorption or scattering and luminescence. A more detailed
treatment of bulk-related properties can be found in CVA1 [Chapter 3].

Attenuation of radiation. Only a few optical materials have a trans-
missivity of unity, which allows radiation to penetrate without atten-
uation. The best example is ideal crystals with homogeneous regular
grid structure. Most materials are either opaque or attenuate transmit-
ted radiation to a certain degree. Let z be the direction of propagation
along the optical path. Consider the medium being made up from a
number of infinitesimal layers of thickness dz (Fig. 2.17). The fraction
of radiance dL, = Ly(z) — Lx(z + dz) removed within the layer will be
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Figure 2.17: Depth dependence of the volumetric absorption and emission of
radiation.

proportional to both the thickness dz and the radiance L, (z) incident
on the layer at z:

dL)(z) = —k(A,z)Lp(2)dz (2.49)

with the extinction coefficient or attenuation coefficient k of the material
(in environmental sciences, k is sometimes referred to as turbidity).
The unit of « is a reciprocal length, such as m~!. Solving Eq. (2.49) for
L and integrating over z yields:

La(z) = L)(0) exp —JK(?\,Z’)dz’ (2.50)
0

If the medium shows homogeneous attenuation, that is, k(A,z) = k(A),
Eq. (2.50) reduces to

La(z) = Lx(0) exp (=K (A)2) (2.51)

which is known as Lambert Beer’s or Bouguer’s law of attenuation. It
has to be pointed out that Bouguer’s law holds only for first-order (lin-
ear) processes, Eq. (2.49), where dL is proportional to L. This is true for
a wide range of practical applications, but breaks down for very high
intensities, such as laser radiation, or if multiscatter processes play a
dominant role.

So far there has not been a discussion as to which processes are
responsible for attenuation of radiation. The two basic processes are
absorption and scattering. Separating the total amount dL of radia-
tion that is lost into the parts dL, (absorption) and dL; (scattering),
dL = dL,; + dLs, the attenuation coefficient k splits into the absorption
coefficient « and the scattering coefficient f:

1dL  1dL, 1dLs _
"Ldz L dz L dz —x+p (2.52)
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Both coefficients have the dimension of a reciprocal length (m~1) and
are intrinsic material properties.

In order to separate the effect of absorption and scattering on at-
tenuation, both the transmitted as well as the scattered radiation in all
directions has to be measured. For the transmitted beam, only the net
effect of both processes can be measured if no further knowledge on
the material properties is available.

The transmittance? of a layer of thickness z can be computed from
Eq. (2.51) as

Ly(z)

T =770

=exp (—-k(A)z) (2.53)

Therefore, a layer of thickness k~1(A) has a transmittance of e~!. This
distance is called penetration depth of the radiation at the specific wave-
length. A variety of materials do not exhibit scattering. In these cases
K= «&.

Another frequently used term (mainly in spectroscopy) is the optical
depth T(z1,z2) of a medium. It is defined as integral over the attenu-
ation coefficient:

Z2

T(z1,22) = Jx(z)dz (2.54)

Z1

Taking the logarithm of the radiance, Lambert Beer’s law (see Eq. (2.50))
reduces to a sum over the optical depths of all M layers of material:

M
InLy(2) = InLA(0) = > T(Zm,Zm+1) (2.55)

m=0
Again, for nonscattering media k has to be replaced by «.

Absorption. The absorption coefficient « of a material can be com-
puted from the imaginary part k of the complex index of refraction
(Eq. (2.41)):

41Tk (A)

x(A) = 3

(2.56)
Tabulated values of absorption coefficients for a variety of optical ma-
terials can be found in [6, 15, 16, 17].

The absorption coefficient of a medium is the basis for quantita-
tive spectroscopy. With an imaging spectrometer, the distribution of

2As mentioned in Section 2.5.1, the transmittance of a layer of finite thickness must
not be confused with the transmissivity of an interface.
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Figure 2.18: Single and multiple scatter of radiation in materials with local
inhomogeneities.

a substance can be quantitatively measured, provided there is appro-
priate illumination (Section A23). The measured spectral absorption
coefficient of a substance depends on the amount of material along the
optical path and, therefore, is proportional to the concentration of the
substance:

X = €cC (2.57)

where c is the concentration in units mol 1-! and € denotes the molar
absorption coefficient with unit 1 mol-! m1).

Scattering. Scatter of radiation is caused by variations of the refrac-
tive index as light passes through a material [16]. Causes include for-
eign particles or voids, gradual changes of composition, second phases
at grain boundaries, and strains in the material. If radiation traverses
a perfectly homogeneous medium, it is not scattered. Although any
material medium has inhomogeneities as it consists of molecules, each
of which can act as a scattering center, whether the scattering will be
effective depends on the size and arrangement of these molecules. In
a perfect crystal at zero temperature the molecules are arranged in a
very regular way and the waves scattered by each molecule interfere
in such a way as to cause no scattering at all but just a change in the
velocity of propagation, given by the index of refraction (Section 2.5.2).

The net effect of scattering on incident radiation can be described in
analogy to absorption Eq. (2.49) with the scattering coefficient B(A,z)
defining the proportionality between incident radiance Ly(z) and the
amount dL, removed by scattering along the layer of thickness dz
(Fig. 2.18).

The basic assumption for applying Eq. (2.49) to scattering is that the
effect of a volume containing M scattering particles is M times that scat-
tered by a single particle. This simple proportionality to the number of
particles holds only if the radiation to which each particle is exposed
is essentially radiation of the initial beam. For high particle densities
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Figure 2.19: Geometry for the definition of the volume scattering function fys.

and, correspondingly, high scattering coefficients, multiple scattering
occurs (Fig. 2.18) and the simple proportionality does not exist. In this
case the theory becomes very complex. A means of testing the propor-
tionality is to measure the optical depth T (Eq. (2.54)) of the sample. As
arule of thumb, single scattering prevails for T < 0.1. For 0.1 < T < 0.3
a correction for double scatter may become necessary. For values of
T > 0.3 the full complexity of multiple scattering becomes a factor
[18]. Examples of multiple scatter media are white clouds. Although
each droplet may be considered an independent scatterer, no direct
solar radiation can penetrate the cloud. All droplets only diffuse light
that has been scattered by other drops.

So far only the net attenuation of the transmitted beam due to scat-
tering has been considered. A quantity accounting for the angular dis-
tribution of scattered radiation is the spectral volume scattering func-
tion, fysr:

d20,(0)  d2Ls(0)

frsr(0) = E;dQdV ~ L;dQdz

(2.58)

where dV = dS dz defines a volume element with a cross section of dS
and an extension of dz along the optical path (Fig. 2.19). The indices
i and s denote incident and scattered quantities, respectively. The vol-
ume scattering function considers scatter to depend only on the angle
0 with axial symmetry and defines the fraction of incident radiance
being scattered into a ring-shaped element of solid angle (Fig. 2.19).
From the volume scattering function, the total scattering coefficient
B can be obtained by integrating fysr over a full spherical solid angle:

21T ™

B(A) = ”fVSF(A, 0) do do = ZWJsin 0fvsr(A,0)d0 (259
00 0
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Calculations of fysr require explicit solutions of Maxwell’s equations
in matter. A detailed theoretical derivation of scattering is given in [18].

Luminescence. Luminescence describes the emission of radiation from
materials by radiative transition between an excited state and a lower
state. In a complex molecule, a variety of possible transitions between
states exist and not all are optically active. Some have longer lifetimes
than others, leading to a delayed energy transfer. Two main cases of
luminescence are classified by the time constant of the process:

1. Fluorescence, by definition, constitutes the emission of electromag-
netic radiation, especially of visible light, stimulated in a substance
by the absorption of incident radiation and persisting only as long
as the stimulating radiation is continued. It has short lifetimes, that
is, the radiative emission occurs within 1-200 ns after the excitation.

2. Phosphorescence defines a delayed luminescence, occurring millisec-
onds to minutes after the excitation. Prominent examples of such
materials are watch displays or light switches that glow in the dark.
The intensity decreases as the time from the last exposure to light
increases.

There are a variety of physical and chemical processes leading to a
transition between molecular states. A further classification of lumi-
nescence accounts for the processes that lead to excitation:

e Photoluminescence: Excitation by absorption of radiation (photons);

o Electroluminescence: Excitation by electric current (in solids and so-
lutions) or electrical discharge (in gases);

o Thermoluminescence: Thermal stimulation of the emission of al-
ready excited states;

e Radioluminescence: Excitation by absorption of ionizing radiation
or particle radiation;

o Chemoluminescence: Excitation by chemical reactions; and

¢ Bioluminescence: Chemoluminescence in living organisms; promi-
nent examples include fireflies and marine organisms.

For practical usage in computer vision applications, we have to con-
sider how luminescence can be used to visualize the processes or ob-
jects of interest. It is important to note that fluorescent intensity de-
pends on both the concentration of the fluorescent material as well as
on the mechanism that leads to excitation. Thus, fluorescence allows
us to visualize concentrations and processes quantitatively.

The most straightforward application can be found in biology. Many
biological processes are subject to low-level bioluminescence. Using
appropriate cameras, such as amplified intensity cameras (Section 4),
these processes can be directly visualized (Chapter A25, [CVA1, Chap-
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ter 12]). An application example is the imaging of Ca?* concentration
in muscle fibers, as will be outlined in CVA3 [Chapter 34].

Other biochemical applications make use of fluorescent markers.
They use different types of fluorescent dyes to mark individual parts
of chromosomes or gene sequences. The resulting image data are mul-
tispectral confocal microscopic images (Section A26, [CVA2, Chapter
41]) encoding different territories within the chromosomes).

Fluorescent dyes can also be used as tracers in fluid dynamics to
visualize flow patterns. In combination with appropriate chemical trac-
ers, the fluorescence intensity can be changed according to the relative
concentration of the tracer. Some types of molecules, such as oxygen,
are very efficient in deactivating excited states during collision with-
out radiative transfer—a process referred to as fluorescence quench-
ing. Thus, fluorescence is reduced proportional to the concentration
of the quenching molecules. In addition to the flow field, a quantitative
analysis of the fluorescence intensity within such images allows direct
measurement of trace gas concentrations (Section A18).

2.6 lllumination techniques

In this chapter we turn to the question: How can radiation sources be
used to visualize physical properties of objects? In order to set up an
appropriate illumination system we have to consider the radiometric
properties of the illumination sources, such as spectral characteristics,
intensity distribution, radiant efficiency (Section 2.4.3), and luminous
efficacy (Section 2.4.3). For practical applications we also have to care-
fully choose electrical properties, temporal characteristics, and pack-
age dimensions of the sources. A detailed overview of illumination
sources including the relevant properties can be found in CVA1 [Chap-
ter 6].

Single illumination sources alone are not the only way to illuminate
a scene. There is a wealth of possibilities to arrange various sources
geometrically, and eventually combine them with optical components
to form an illumination setup that is suitable for different computer
vision applications. In the following section we will show how this can
be accomplished for some sample setups (Fig. 2.20). They are, how-
ever, only a small fraction of the almost unlimited possibilities to create
problem-specific illumination setups. The importance of appropriate il-
lumination setups cannot be overemphasized. In many cases, features
of interest can be made visible by a certain geometrical arrangement
or spectral characteristics of the illumination, rather than by trying
to use expensive computer vision algorithms to solve the same task,
sometimes in vain. Good image quality increases the performance and
reliability of any computer vision algorithm.
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2.6.1 Directional illumination

Directional illumination or specular illumination denotes a setup in
which parallel light or light from a point light source is used to illu-
minate the object (Fig. 2.20a). This is the most simple type of illumina-
tion, as the setup basically consists of a single light source at a certain
distance.

For matte (Lambertian) surfaces, directional illumination produces
an irradiance, which depends on the angle of incidence of the light
upon the surface. Thus, it can be used to determine the inclination
of surfaces with respect to the illumination direction. At the edges of
objects, directional illumination casts shadows, and does not illuminate
occluded parts of objects. If the camera is observing the scene under
a different angle, these shadows are visible in the image and might be
confused with object borders.
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Figure 2.21: Illustration of the difference between directed and rear illumina-
tion for a plant leaf. a Directed illumination. b Rear illumination.

For specular reflecting surfaces, directional illumination is not the
appropriate illumination. These surfaces will appear black for all points
where the reflection condition is not met and show specular reflexes for
the remaining points.

Most surfaces are mixtures of Lambertian surfaces with additional
specular reflection. Thus, object surfaces show highlights that might be
confused with surface structures or object edges. Furthermore, these
regions might be overexposed and do not contain structural informa-
tion. On the other hand, the position of specular highlights allows
determination of the direction of the surface normal in these areas, as
the exact reflection condition is fulfilled. This might be important in-
formation for 3-D reconstruction of the scene. Figure 2.21a shows an
example of a plant leaf illuminated with directional illumination. The
leaf shows highlights and a shadow is cast at the lower edge.

2.6.2 Diffuse illumination

A second type of front illumination is diffuse illumination (Fig. 2.20b).
This illumination setup consists of an extended illumination source,
which emits light under all directions. An optimal diffuse illumina-
tion creates an illuminance that is independent of the direction and
impinges uniformly from the entire enclosing hemisphere. A good ex-
ample of diffuse illumination is a completely overcast sky or heavy fog.
Such an illumination is hard to realize in technical applications. Exam-
ples include extended diffusing plates or ring illuminations using LEDs
or fiber optical illumination.

This type of illumination is well suited for both matte as well as
specular surfaces. Although a diffuse illumination does not cast sharp
shadows, thick edges of objects still partially block incident light. They
appear as extended partially darkened regions, commonly referred to
as penumbra.
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2.6.3 Rear illumination

If only the geometrical outline of an opaque flat object is of interest,
rear illumination is the common choice of illumination (Fig. 2.20c).
Opaque objects appear as black objects without any structure. More
interesting features can be obtained using rear illumination for semi-
transparent objects. For these types of objects, the transmitted ra-
diation exhibits the entire spectrum of bulk-related interaction of ra-
diation with matter, such as refraction, absorption, and scatter. Local
inhomogeneities in the absorptivity show up as brightness patterns, in-
tegrated over the optical path of the radiation. Prominent examples of
such images are x-ray images of medical applications. If the absorption
is spectrally selective, the spectral content of the transmitted radiation
carries additional information on the internal structure of objects.

Rear illumination can be set up with both directional as well as dif-
fuse illumination. Figure 2.21b shows an example of a plant leaf illu-
minated by a diffuser screen behind the leaf. The background and the
leaf show a well separated gray value distribution. The edge of the leaf
is clearly visible. As the leaf is not totally opaque, it still shows fine
structures, related to the more transparent water vessels.

2.6.4 Light and dark field illumination

Rear illumination can be considered to be a special case of light field illu-
mination. Here a direct path exists from the light source to the camera,
that is, the light source directly illuminates the sensor chip (Fig. 2.20d).
As long as no object is present, the image appears bright. Any object
in the light path diminishes the image irradiance by refraction, absorp-
tion, and scatter of light out of the illumination path. Thus, objects
appear dark in front of a bright background. This type of illumina-
tion is commonly used to detect whether small objects (particles) are
present in the volume between the illumination source and the camera
(Section A13).

As opposed to light field illumination, dark field illumination inhibits
a direct path between the light source and the camera (Fig. 2.20e). As
long as no objects are present in the illumination path, the image ap-
pears dark. Objects in the illumination path become visible by scatter-
ing, reflecting, or refracting light into the camera. Thus, objects appear
bright in front of a dark background. This type of illumination is as
well used to detect small particles in the illumination path.

2.6.5 Telecentric illumination

Figure 2.20f illustrates the principal setup of a telecentric illumination
system. It is used to convert the spatial radiance distribution of a light
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source into bundles of parallel rays that reflect the radiance (and spec-
tral distribution) of a single point of the light source.

It principally consists of a large lens (often Fresnel lenses are used)
which is placed at a distance of one focal length in front of an illumina-
tion source. A single point on the illumination source creates a bundle
of parallel rays, leaving the lens into the direction of the line connecting
the point and the center of the lens. The angle of the light bundle with
the optical axis of the lens is given by the position on the focal plane
using

tanx = % (2.60)

where x is the distance between the intersection of the optical axis and
the focal plane and f denotes the focal length of the lens. If the radi-
ance of the light source is isotropic within the solid angle subtended by
the lens, the intensity emitted by the lens is constant over the lens aper-
ture. For a nonisotropic radiance distribution (non-Lambertian source),
the spatial distribution of the intensity of the emitted bundle of rays
reflects the angular distribution of the radiance.

Thus, a telecentric illumination converts the spatial radiance dis-
tribution of an extended illumination source into an angular radiance
distribution and the angular radiance distribution of a single point into
a spatial distribution over the cross section of the bundle of rays. It is
the basic part of various types of illumination systems.

2.6.6 Pulsed and modulated illumination

Pulsed illumination can be used for a variety of purposes, such as in-
creasing the performance of the illumination system, reducing blurring
effects, and measuring time constants and distances, to mention only
a few of them.

Some illumination sources (e. g., special lasers) can only be fired for
a short time with a certain repetition rate. Others, such as LEDs, have a
much higher light output if operated in pulsed mode. The pulsed-mode
operation is especially useful for imaging applications. If LEDs are trig-
gered on the frame sync of the camera signal, they can be pulsed with
the frame rate of the camera. As the integration time of the camera
only subtends a fraction of the time between two images, the LED out-
put can be optimized by pulsed-mode operation. In order to operate
the LED in pulsed mode, logical TTL-electronics can be used to gen-
erate an LED-pulse from the trigger signal of the camera. This signal
can be used to switch the LED via transistors, as the TTL signal cannot
be directly used for power switching of the LED. More detailed infor-
mation about TTL electronics and interfaces driving optoelectronical
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components with TTL signals can be found in an excellent handbook
on practical electronics by Horowitz and Hill [19].

Instead of synchronizing the pulsed illumination with the camera
integration both can be intentionally separated. Using a grated cam-
era, with an adjustable delay after the illumination pulse, radiation is
received only from a certain depth range, corresponding to the run time
of the backscattered signal.

Pulsed illumination can also be used to image fast processes that
are either blurred by the integration time of the camera or need to be
imaged twice during the time between two consecutive frames. In the
first case, a short pulse within the integration time restricts the accu-
mulated irradiance to this time interval, independent from the integra-
tion time of the camera. The second case is commonly used in high-
speed particle imaging velocimetry. Here the momentary distribution
of the particle concentration in a liquid is imaged twice per frame by a
fast double pulse. From the autocorrelation function of the image, the
displacement of the particle pattern within the time between the two
pulses can be computed.

Another important application of pulsed signals is time-of-flight
measurements to estimate the distance of the scattering surface (see
Section 7.4). Such measurements are demanding with electromagnetic
waves, as the signal travels with the speed of light and time delays are
in the order of nanoseconds. For acoustic waves, however, it is much
easier to apply. These waves need about 3ms to travel the distance
of 1m in air, as opposed to 3 ns for electromagnetic waves. Many liv-
ing species, such as bats and marine mammals, use acoustic signals to
sense their 3-D environment in absolute darkness.

Instead of pulsing the illumination signal, it can also be modulated
with a certain frequency. Examples can be found in scientific applica-
tions. Some processes that are visualized correspond with a certain
time constant upon illumination with specific radiation. For example,
active thermography uses infrared radiation to heat object surfaces and
to observe temporal changes. Using a modulated thermal irradiance,
the time constant of the processes related to the absorption and the
internal transport of heat can be measured.

2.7 References

[1] Kaufman, J. E. (ed.), (1984). IES Lighting Handbook—Reference Volume.
New York: Illuminating Engineering Society of North America.

[2] CIE, (1983). The Basis of Physical Photometry. Technical Report.

[3] McCluney, W. R., (1994). Introduction to Radiometry and Photometry.
Boston: Artech House.



52

[4]

[5]

(6]

[7]

8]

(91

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

2 Radiation and Illlumination

Laurin Publishing, (1998). The Photonics Design and Applications Hand-
book, 44th edition. Pittsfield, MA: Laurin Publishing CO.

Oriel Corporation, (1994). Light Sources, Monochromators & Spectro-
graphs, Detectors & Detection Systems, Fiber Optics, Vol. II. Stratford,
CT: Oriel Corporation.

Wolfe, W. L. and Zissis, G. J. (eds.), (1989). The Infrared Handbook, 3rd
edition. Michigan: The Infrared Information Analysis (IRIA) Center, Envi-
ronmental Research Institute of Michigan.

Walsh, J. W. T. (ed.), (1965). Photometry, 3rd edition. New York: Dover.
Gaussorgues, G., (1994). Infrared Thermography. London: Chapmann &
Hall.

Siegel, R. and Howell, J. R. (eds.), (1981). Thermal Radiation Heat Transfer,
2nd edition. New York: McGraw-Hill Book, Co.

CIE, (1987). CIE International Lighting Vocabulary. Technical Report.
Kirchhoff, G., (1860). Philosophical Magazine and Journal of Science,
20(130).

Nicodemus, F. E., (1965). Directional reflectance and emissivity of an
opaque surface. Applied Optics, 4:767.

Hecht, E. and Zajac, A., (1977). Optics, 2nd edition. Addison-Wesley World
Student Series. Reading, MA: Addison-Wesley Publishing.

Bennet, J. M. and Mattsson, L. (eds.), (1989). Introduction to Surface Rough-
ness and Scattering. Washington, DC: Optical Society of America.
Dereniak, E. L. and Boreman, G. D., (1996). Infrared Detectors and Systems.
New York: John Wiley & Sons, Inc.

Harris, D. C., (1994). Infrared Window and Dome Materials. Bellingham,
WA: SPIE Optical Engineering Press.

Bass, M., Van Stryland, E. W., Williams, D. R., and Wolfe, W. L. (eds.), (1995).
Handbook of Optics. Fundamentals, Techniques, and Design, 2nd edition,
Vol. 1. New York: McGraw-Hill.

van de Hulst, H. C., (1981). Light Scattering by Small Particles. New York:
Dover Publications.

Horowitz, P. and Hill, W., (1998). The Art of Electronics. New York: Cam-
bridge University Press.



3 Imaging Optics

Peter GeiRler!

Interdisziplindres Zentrum fiir Wissenschaftliches Rechnen (IWR)
Universitat Heidelberg, Germany
INow with ARRI, Miinchen, Germany

3.1 Introduction . ........... ...t 54
3.2 Basic concepts of geometric optics . ................ 54
3.2.1 Reflection and refraction. .................. 54

3.2.2 Multimediarefraction. .................... 55

3.2.3 Paraxialoptics . .......... ... . ... 56

3.3 LensSesS . .. e e e e e e e 56
3.3.1 Definitions . ... ... ... . ... . . e 57

3.3.2 Sphericallenses .............. .. .. .. ..., 58

3.3.3 Asphericallenses . .......... .. ... .. . ..., 59

3.3.4 Paraxiallenses ............... .. ... . ..., 60

3.3.5 Thicklenses . ... ......... .. .. .. .. ... .. 61

3.3.6 Systemsoflenses ....................... 62

3.3.7 Matrix opticS . . . . v i it e e e 62

3.4 Optical properties of glasses . .. .................. 66
3.4.1 Dispersion . ... ... e 66

3.4.2 Technical characterization of dispersion ........ 67

3.5 Aberrations . ... ... ... e e 67
3.5.1 Spherical aberrations . .................... 68

3.5.2 COmMa ...t e e e e e 70

3.5.3 Astigmatism . . ... ... .. ... 71

3.54 Fieldcurvature ........ ... ... 71

3.5.5 Distortions. . .. ... ... e 72

3.5.6 Chromatic aberrations .. .................. 73

3.5.7 Reducing aberrations . .................... 74

3.6  Optical image formation . ....................... 75
3.6.1 Geometry of image formation ............... 75

3.6.2 Depth-of-field and focus . . ................. 78

3.6.3 TelecentricoptiCS . .. ...t i it e e 79

3.7 Wave and Fourier optics .. ... . ... ... ... 80
3.7.1 Linear optical systems . ................... 80

3.7.2 Optical Fourier transform . ................. 84

3.8 References .. ... .. ... ... 84

53
Computer Vision and Applications Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.
ISBN 0-12-379777-2/$30.00



54 3 Imaging Optics

3.1 Introduction

Computer vision and image processing always start with image acqui-
sition, mostly done by illuminating the scene with natural or artificial
light in the visible range and capturing images with a photographic
lens. The importance of proper image acquisition is ignored in many
applications, at the expense of an increased effort in the processing
of the images. In addition to the fact that appropriate visualization
can enhance image quality in such a manner that image processing re-
quires fewer processing steps, becomes much faster, or is even for the
first time possible, image degradations caused by unsuitable imaging
may seriously complicate image analysis or even be uncorrectable af-
terwards. Although most of today’s camera lenses are of very good
quality, they are always optimized for a particular purpose and may
fail if used in other setups. In addition, in some applications an optics
setup from one or two simple lenses may provide better image qual-
ity than stock lenses because the setup can be optimized exactly for
that imaging problem. For these reasons, this chapter will provide the
reader with the essential concepts of optical imaging, focusing on the
geometric ray approximation, which will be sufficient for most appli-
cations other than microscopic imaging. Special emphasis is placed
on the description of nonparaxial optics (the main reason for image
distortions).

3.2 Basic concepts of geometric optics

Basic to geometric optics are light rays, which can be seen as an approx-
imation of a parallel wavefront of zero cross section. Therefore, rays
are always perpendicular to the wavefront. In a homogeneous dielec-
tric medium, a ray travels with the local speed of light c/n; c denotes
the vacuum light speed, and 7 is the refractive index of the dielectric
medium and depends on the medium and the wavelength. Of course,
rays represent an abstraction from wave optics that neglects diffraction
effects.

3.2.1 Reflection and refraction

Within a medium of constant index of refraction, a ray travels as a
straight line without any changes in its direction. A ray passing through
the boundary surface of two media that have different indices of refrac-
tion is bent by an angle described by the law of Snellius (Eq. (3.1)). It
relates the ratio of the incoming and outgoing deviation angles to the
ratio of the refractive indices.

M1 Sin &y = Mo Sin & (3.1)
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Figure 3.1: a Snellius’ law of refraction; b refraction at a three-media transition.

Besides refraction into the adjacent medium, reflection of the incoming
ray occurs. In this case the simple relation «; = «» applies.

It is useful in many cases to express both refraction and reflection
as vector equations. We specify the direction of the incoming ray by
the unit vector #, the direction of the outgoing ray again by the unit
vector #', and the vector normal to the surface dividing the two media
by the unit vector 7i. Then reflection can be written as

¥ =7 -2(nr)n (3.2)

whereas refraction reads

1| ar J_(“WV) A (33

v = v - +
Na/Ne Na/Ne (Na/Ne)?

3.2.2 Multimedia refraction

Often not only does a single change of the refractive index have to be
taken into account, but also a sequence of consecutive phase transi-
tions. This is the case, for example, in any underwater optics, where a
glass plate protects the optics from the aqueous medium. This situa-
tion is illustrated in Fig. 3.1b. Fortunately, Snellius’ law remains valid
between the media n; and nj

sinoy  sinog sinoe . mpng Ny

- = — p = =— (3.4)
sinxg sinaxsinx3 nimny M

Because of the optical path length within the medium n», the ray is
shifted in parallel by

d =Dtan o (3.5)
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Figure 3.2: Relative angular error of the paraxial approximation for various
values of the ratio of refractive indices n = ni /ns.

3.2.3 Paraxial optics

From the Taylor series of the trigonometric functions, their correspond-
ing small angle approximation is found to be

sin(«x) ~ « cos(x) =~ 1 tan(x) = (3.6)

These rays form the paraxial domain, where the approximations in
Eqg. (3.6) can be applied with acceptable deviations. It is important to
notice that there is no clear definition of the paraxial domain as its
boundaries depend on the maximum error that is tolerated. Figure 3.2
shows the relative angular error of the paraxial approximation.

In paraxial approximation, Snellius simplifies to n; x; = noxz. Un-
less indicated otherwise, all calculations of geometric optics in this
chapter are done using the paraxial approximation. Its power will be
shown first in the description of lenses, from spherical lenses to the ap-
proximation of thin, paraxial lenses, which is sufficient in most cases.
Deviations from the paraxial domain will be discussed with the lens
aberrations in Section 3.5.

3.3 Lenses

All imaging optics use lenses as central imaging elements. Therefore
it is important to examine the optical properties of these fundamental
elements. We start with spherical lenses, which have only one kind of
glass. Despite the fact that spherical lenses do not best approximate
the ideal paraxial lens, they are the most common kind of lenses used.
This is due to the fact that it is easier to manufacture spherical surfaces
than it is to polish aspherical surfaces. Therefore, it is more econom-
ical in most cases to use systems of spherical surfaces and lenses in
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order to correct lens aberrations than to use aspherical lenses. Never-
theless, new technologies in the pressing of plastic lenses have made
the production of aspherical lenses inexpensive.

3.3.1 Definitions

Lenses can be described by means of a set of cardinal points and sur-
faces. This method also works for systems of lenses and other refract-
ing surfaces, thatis, it is commonly used to describe any optical system.
The basic terms and definitions are as follows:

Optical Axis. The optical axis is the main axis of the optics, usually
denoted as z-direction. For a typical system of centered and axial sym-
metric elements, it is the axis of symmetry of the optics. Usually it
coincides with the main direction of light propagation. Points located
on the optical axis and elements centered around it are called on-axis,
otherwise denoted as off-axis. Mirrors can fold the linear axis into a set
of piecewise linear sections.

Cardinal Planes. Refraction on the lens surfaces can be described by
the concept of the principal planes, without having to take into account
the exact radius of curvature. Extended towards the lens interior, the
incoming and the outgoing rays intersect at a point on the principal
surface. The projection of the intersection point onto the optical axis
is called the corresponding principal point. In paraxial approximation
the generally bent principal surface becomes flat, forming the principal
plane. It is important to note that the principal planes are not necessar-
ily located within the lens itself (Fig. 3.3b). This is often used to extend
the optical length of compact telephoto lenses.

Focal Length. Within the paraxial domain, all incident rays entering
parallel to the optical axis intersect at an on-axis point behind the lens,
the back focal point (BFP) F’. Due to the reversibility of the ray paths,
rays emerging from the front focal point (FFP) F run parallel to the axis
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Figure 3.4: Path of rays at a single spherical surface.

after passing the lens. Rays emerging from off-axis points on the focal
plane still form a parallel ray bundle, but are now nonparallel to the
optical axis. The distance from the FFP to the front principal plane
gives the effective focal length (EFL) of the lens. A change in refractive
index from n; in front of the lens to 7y behind the lens changes the
back EFL f’ to np/nf. Therefore, the EFL in air is often referred to
as the focal length of the lens. Additionally, the distances between the
focal points and the lens vertices are called the front focal length (FFL)
and back focal length (BFL), respectively; they equal each other only for
symmetric lenses.

3.3.2 Spherical lenses

A spherical lens can be seen as two spherical surfaces with a medium
of a constant index of refraction between them. To understand the be-
havior of these lenses, it is sufficient to analyze one of the surfaces. As
illustrated in Fig. 3.4, a ray emerging from an on-axis object point O,
intersects the optical axis at a point O, behind the spherical surface.
Within the paraxial domain, all rays emerging from an object point in-
tersect in one point in the image space. Thus, we say the object point
is imaged onto its optical conjugate image point. The distances d; and
d» of object and image points are correlated with the radius of curva-
ture R of the surface and the indices of refraction n; and n, by Abbe’s
invariant Eq. (3.7).

n» ny Nn» — Ny 1 1 1 1
ia e a)om(r-g) 67

A single surface separating regions of different refractive index is
therefore sufficient to form an imaging optics, and can therefore be
seen as the simplest possible lens. For every lens, focal length and
principal planes can be used in order to describe paraxial properties.
Setting either of the distances d; or d» to infinity yields both focal
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Both principal planes coincide at the location of the vertex V.

At present, a lens consists of two spherical surfaces, thereby enclos-
ing the lens material. Using ray calculations similar to those for a single
surface, without giving details of the calculations, the paraxial proper-
ties of the lens are obtained. We restrict ourselves to the commonly
used case of alens in air, thus the refractive indices of the surrounding
medium become n; = npy = 1. With D = V; V> denoting the thickness
of the lens, n; its refractive index, and R; and R» the radii of curvature
of its surfaces, the lens data calculates to

1 MR1R?

o= n —1(m;-1)d+n;(Ry +Rz2) (3.9)
_ R>D

vios (n; - 1)d + ny(R1 + R2) (3.10)
R1D

& - (n;-1)d +ny(R; +Ry) (3.11)

hooopis i ) (3.12)

(n;-1)d +ny(Ry + R2)

where h = P1 P> denotes the distance between the principal planes, and
v; = V;P; is the distance to the corresponding vertices. Because of the
assumption of an identical refractive index on both sides of the lens, the
front and back focal lengths of the lens coincide with the focal length

f.

3.3.3 Aspherical lenses

Although they are the most popular lens type, spherical lenses are sub-
ject to certain limitations. For example, focusing of parallel ray bun-
dles onto the focal point only works within the narrow paraxial do-
main. Nonspherically shaped surfaces allow lenses to be customized
for specific purposes, for example, for optimal focusing, without the
restriction to the paraxial domain. Typically, there are three types of
aspherical surfaces:

Rotational symmetric surface. This type of surface is still rotation-
ally symmetric to an axis, which usually coincides with the optical axis.
Aspherical lenses are the most common type used for the correction of
ray aberrations, which cannot be avoided. This type of surface can be
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Table 3.1: Conic surfaces

Conic constant  Surface type

K<-1 Hyperboloid
K=-1 Paraboloid
-1<K<0 Ellipsoid
K=0 Sphere
K>0 Ellipsoid

described in terms of a curvature C = 1/R and the conic constant K

z= Cox? + i opix 2t (3.13)
1+VI-(K+1)Cx2 &7 '

wherein the first term describes conic sections, and the second term
higher-order deformations. As illustrated in Table 3.1, the conic con-
stant controls the shape of the surface.

Aspherical lenses with conic surfaces are often used to extend ideal
ray paths beyond the paraxial domain. These lenses do not satisfy the
paraxial equations in any case, but have to be designed for the exact
purpose for which they are intended. As an example, hyperbolic lenses
can be designed for perfect focusing (Fig. 3.5a). If used for imaging
with noninfinite distances, strong aberrations occur.

Toroidal lenses. Toroidal surfaces are spherical in two principal sec-
tions, which are perpendicular to each other. The radii of curvature
differ between the two sections. The particular case of one of the cur-
vatures is infinity, which results in cylindrical lenses. As an example of
the use of toroidal lenses, two crossed cylindrical lenses of different
focal length can be used to achieve different magnifications in sagit-
tal and meridional sections. This anamorphic imaging is illustrated in
Fig. 3.5b.

Freeform surfaces. Arbitrarily formed surfaces are used only for spe-
cial applications and shall not be discussed herein.

3.3.4 Paraxial lenses

If the distance between the lens vertices (the lens thickness) can be
neglected, the principal planes and the nodal planes converge onto a
single plane, located at the lens position. Further restricting the rays to
the paraxial domain, the lens can be described by a single parameter,
its focal length. This is called the thin paraxial lens, which is used
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a

Figure 3.5: a Perfect focusing outside the paraxial domain by an aspheric con-
densor lens. b Principle of anamorphic imaging.

s

Figure 3.6: Optical conjugates of a paraxial lens.

widely in order to gain first-order approximations of the behavior of
the optics. Above all, paraxial lens equations are most powerful in
the first step of optics design, where its constraints can be established
without the details of physical lenses. With a thin paraxial lens, all
rays emerging from a point P intersect at its conjugate point P’ behind
the lens. Because all rays meet at exactly the same point, the lens is
aberration-free (Fig. 3.6). Furthermore, because of the restriction to
the paraxial domain, a plane S perpendicular to the optical axis is also
imaged into a plane S’. In most optical systems several lenses are used
to improve image quality. First, we introduce the extension of the thin
paraxial lens toward the thick paraxial lens, where the lens thickness
is taken into account. It can be shown that this lens can equivalently
be seen as the combination of two thin paraxial lenses. This will lead
to a general method to describe arbitrary paraxial systems by a single
paraxial lens.

3.3.5 Thick lenses

If the thickness of a lens cannot be neglected, the concept of the parax-
ial lens has to be extended towards thick paraxial lenses. In this case,
the two principal planes no longer converge to a single plane, but are
separated by an equivalent distance, the nodal space. As a general rule,
for lenses in air the nodal space is approximately one-third of the lens
thickness [1]. As illustrated in Fig. 3.7a, rays can be constructed by
elongation of the unrefracted ray towards the first principal plane P,
traversing the ray parallel to the optical axis to the second principal
plane, and continuing to the conjugate point P’. For geometric con-
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Figure 3.7: a Ray paths for a thick paraxial lens. Dashed lines show the physical
ray paths, solid lines show the virtual rays used for construction of ray paths;
b a system of thick lenses and its equivalent thick lens.

struction of ray paths, rays in between the principal planes are always
parallel to the axis. As a consequence the nodal points coincide with
the principal points.

3.3.6 Systems of lenses

A complex optical system consists of several thick lenses. A pair of
thick lenses, described by the set of four principal planes and two focal
points, can be converted into a new equivalent lens, with two principal
planes and one focal length. Applying this recursively to the lens sys-
tem, the complete setup can be condensed into one thick lens. Within
the paraxial domain, this powerful approach facilitates dealing with op-
tics of high complexity. Figure 3.7b illustrates the equivalent principal
planes of the two-lens system; P17 and P;» are the principal planes of
the first lens, and P>; and Py, are the principal planes of the second
lens. The position p; of the principal planes and the effective focal
length of the equivalent system, provided the lenses are used in air
(n=1), are given by

11 1 4 o S
F TR hR AR PohReTmp G
p1 = PP = % p2 = PP = —% (3.15)

The cardinal planes can occur in any order, for example, it is com-
mon that the order of the principal planes P; and P> becomes reversed
with lenses located closely together. Table 3.2 gives an overview of the
order of the cardinal planes of a system of two lenses of positive focal
length.

3.3.7 Matrix optics

Tracing rays through an optical system allows for in-depth analysis
of the optics, taking into account all surfaces and materials. An ele-
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Table 3.2: Overview of the most important parameters of the combined lens
and the order of the cardinal planes in case of d, f1, f> > 0; L; indicates the
position of lens i

Focal length ad< fi+fo ad>fi+fe
f>0 f<0
p1 p1>0 p1<0
p2 p2 < 0 p2 > 0
Vil + [val > d il + vl <d
Relative position Py is behind P» P; is in front of P»
Order f1 < d,fz <d - P2L1L2P1
of f1 < d,fz >d — P>L1PL>» Py Ly L P>
cardinal f1 > d,fz <d - LiP>L,P,
planes fizd,fo=d— LiPPL»
surface (k) surface (k+1)
alen= g R
a‘(kﬂ)
o,
a®
y[“ y[kﬂ]
V(K V/(k+1)
G >
ni[k) m(k) = nilkﬂ) ni(k+])
gw

Figure 3.8: Notation used for the matrix optic calculations.

gant method to describe ray propagation between the surfaces of the
system has been introduced by T. Smith [2]. Within the paraxial do-
main, it is possible to describe both refraction and ray propagation by
simple matrix operations. The ray tracing can be achieved by matrix
multiplication of the matrices describing the optical elements and their
distances. In order to describe this method, all surfaces are numbered
consecutively from left to right and are denoted by superscripts. Rays
incoming to a surface are denoted by i; outgoing rays are denoted by
t. The notation is illustrated in Fig. 3.8.
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Vector notation for rays. Aray of angle & and distance y with respect
to the optical axis is denoted by the vector

no
= 3.16
r ( y ) ( )

Refraction at a single surface. Refraction of a ray of incident angle
n; and distance y; to the optical axis can be written using the power D
of a single surface

nMa® = nlal _plh,y® (3.17)
yt(k> = yi(k) (3.18)
(k) (k)
n® —n!
& _ M i
ph - T (3.19)

Equation (3.20) can be rewritten as a matrix equation

(k) (k) (k) (k)

oo (Moo ) (1 DI (et gt (30

to= (k) “lo 1 (k) = i :
Yt Yi

whereas the matrix R%*) denotes the refraction matrix of the surface

(k).

Ray propagation. The propagation of a ray between two consecutive
surfaces (k) and (k + 1) is linear due to the fact that no change in the
refractive index can occur. Therefore replacing the true distance §*)
by its paraxial approximation d®) yields ¥ *** = d® «® + y* and
thus ray propagation towards the next surface can be expressed by the
transfer matrix T O

(k+1) ., (k+1) (k) (k)
(k+l) _ [ Ty ot _ 10 Ny & (k). (K)
vy o= (k+1) ={ a® 4 (k) =T%r,
yi (k) Vi
(3.21)

ny

System matrix. Now refraction at single surfaces (Eq. (3.20)) is com-
bined with ray propagation between two surfaces (Eq. (3.21)) to grasp
the behavior of a lens consisting of two surfaces. A ray emerging from
the second lens surface can be calculated from the incident ray by ap-
plying the refraction matrix of the first surface, the transfer matrix
between the surfaces, and finally the refraction matrix of the second
surface. This is done by simple matrix multiplication:

ik R(k+1)T(k)R(k)rEk) _: gkt Lk) _ g (k+1) (k) g (K) (3.22)

with system matrix S*+1.5) of the optical element. It transforms an in-
cident ray at the first surface (k) to an emerging ray at the next surface
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Table 3.3: System matrices for various optical elements

Optics System matrix Optics System matrix

Straight 1 0 Dielectric 1 0

section % 1 interface 0 1

Plate in 1 0 Spherical 1 -D

air 4 interface 0 1

Thin lens ( 1 -1/f ) Thick lens 1- pT *}
in air 0 1 in air P2 4pr—p2 1+ 5
Spherical 1 -2 Two thin 1-4d/f> 1/f
mirror 0 1 lenses in air d 1-d/fi
Spherical 1- %fD(Z) %D(I)D(Z) — (D + D)

lens % 1-— %CD(Z)

(k + 1). In general, any optical element with an arbitrary number of
surfaces is described by a single system matrix. Assuming N surfaces,
the system matrix is denoted S™V:1) in order to indicate the number of
surfaces. It is given by

N-1
SWD — RNFN-DRIN-D 7 HRD _ gMN [T TOR®  (3.23)
k=1

Equation (3.23) can be split at any surface (k) between the first and the
last and rewritten as

SN = gVl k=D gk=L1)  with 1<k<N (3.24)

Equation (3.24) makes it easy to combine optical elements into more
and more complex optical systems by reusing the known system ma-
trices of the simpler elements.

Table of system matrices. The system matrix is the fundamental
description of optical elements, and therefore is the basis of matrix op-
tics calculation. Table 3.3 provides an overview of the most important
system matrices of simple optical elements consisting of two surfaces.
Elements of higher complexity can be calculated according to Eq. (3.24).
To simplify notation, the index of refraction of the lens material is de-
noted by n, and the thickness of the lens is denoted by d.
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Table 3.4: Most important Fraunhofer spectral lines

Symbol Wavelength [nm] Color Element
[ 365.0 uv Hg
h 404.7 violet Hg
g 435.8 blue Hg
F’ 480.0 blue Cd
F 486.1 blue/green H
e 546.1 yellow/green Hg
d or D3 587.6 orange He
D> 589.0 orange Na
D 589.3 orange Na
D, 589.6 orange Na
(o8 643.8 orange Cd
C 656.3 red H
r 706.5 red He
A’ 768.2 red K

3.4 Optical properties of glasses

3.4.1 Dispersion

Glasses and other material are characterized mainly by two properties:
refractive index and dispersion. Dispersion means that the refractive
index depends on the wavelength of the light. Therefore, in order to
describe the refractive properties of any material, the dispersion curve
n(A) has to be given. In practice, the refractive index is given only for a
number of standardized wavelengths. These wavelengths correspond
to spectral lines of specific chemical elements in which wavelengths
are known with great precision. A table of the widely used wavelengths,
together with their international symbol and the chemical element from
which they arise, are given in Table 3.4.

For any other wavelengths in the visible, near UV and in the near IR
range, the refractive index can be calculated by several common inter-
polation formulas. The most widely used are summarized in Table 3.5.
The coefficients needed for the formulas are available in the glass cata-
logs of all major glass manufacturers, such as Schott [3]. It is often rec-
ommended to check the exact definitions of the formulas used before
inserting coefficients from glass catalogs. This is because the formulas
are often slightly modified by the manufacturers.
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Table 3.5: Dispersion formulas for glasses

Name Formula
Schott! NnA) =ag+aiA2 +aA 2 +azA 4 + asAd 6% + asA-8
. Ki1A? K>A? K3A3
2 _ C
Sellmeier 1 n(/\)_1+2\2—L1+2\2—L2+2\3—L3
2 2
Sellmeier 2 n2A)=1+A+ B, A ByA

AN A2
Herzberger? n(A) = A+BL(A) + CL2(A) + DA2 + EA* + FA4

. 1
with L(A) = A 0.028)
Conrady3 nA) =ng + % + %

ISchott no longer uses this formula, but it is still widely used.
2Mainly used in the infrared.
3Mainly used for fitting of sparse data.

3.4.2 Technical characterization of dispersion

In many cases, it is not necessary to know the complete dispersion re-
lation n(A). Instead, a usable and short characterization of the glass
is more useful. Usually, the main refractive index is employed as a
characterization of the glass. It is defined as the refractive index at the
wavelength A; or A, according to Table 3.5. As a code for the disper-
sion, Abbe number is widely used. Two definitions according to the
use of either n, or n, as the main refractive index are common:

L S == (3.25)
Nng—Nnc Nng —Nner

Main refractive index and the Abbe number are combined in order to
form a 6-digit number, the so-called MIL number. The first three digits
of the MIL number are the d-light refractive index minus one, without
the decimal place. The last three digits are the Abbe number V,; times
10; for example, the MIL-number of BK7 glas is 517642.

3.5 Aberrations

So far, lenses have been described by the paraxial approximation. With-
in their limits perfect image quality is achieved. In practice, an optics
never reaches this ideal behavior, but shows degradations of image
quality caused by aberrations. These are divided into two main classes
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aberrations

monochromatic aberrations polychromatic
aberrations

3rd-order aberrations higher-order
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Figure 3.9: Classification of aberrations.
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Figure 3.10: Spherical aberration of a convex lens. To obtain the best image
quality, the image plane has to be moved from the paraxial focal plane F to the
optimal position F,. The caustic is the envelope of the outgoing ray bundle.

according to their cause. The change of refractive index with wave-
length causes polychromatic aberrations that even exist in paraxial op-
tics. Nonparaxial rays, which appear in any real optics, are the cause
of monochromatic aberrations. The latter can be described by taking
into account the higher-order terms in the series expansion equation
(Eqg. (3.6)). The third-order aberrations are divided into the five primary
aberrations (see Fig. 3.9), also known as Seidel aberrations. Three of
them, namely, spherical aberration, coma and astigmatism, cause im-
age degradations by blurring, while field curvature and distortion de-
form the image. Understanding aberrations helps to achieve the best
possible image quality, and leads to the suppression of aberrations by
corrected optics.

3.5.1 Spherical aberrations

Outside the paraxial domain, a spherical surface no longer focuses par-
allel ray bundles onto a single point. On the contrary, rays hitting the
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Figure 3.11: Longitudinal and transversal spherical aberration for the lens
from Fig. 3.10. Only TSA can be reduced by relocating the image plane.

surface at a greater distance to the axis are focused on a point closer to
the surface than rays nearer to the axis. The focal length then depends
on the radial distance y of the ray to the optical axis.

To describe the strength of a spherical aberration, the axial distance
from the true focal point to the paraxial focal point is used; this is called
the longitudinal spherical aberration (LSA). The sign of the LSA equals
the sign of the focal length of the lens. Thus a convex lens with positive
focal length bends nonparaxial rays too much, so they intersect the
axis in front of the paraxial focus. Diverging lenses with negative focal
length focus tend to focus behind the paraxial focus.

To represent the influence of spherical aberrations on image quality,
the transversal spherical aberration (TSA) can be used. It is defined as
the radial distance of the intersection of the outgoing ray with the rear
paraxial focal plane, as illustrated in Fig. 3.10. Due to the aberration,
exact focusing become impossible.

For practical purposes, it is necessary to minimize the influence of
the aberration. This can be done by several methods:

o Low aperture. Choosing a larger f-number reduces SA, but causes
an unavoidable loss of brightness. Nevertheless, because LSA ~ 1?2
and TSA ~ 3, this is a very effective way to suppress SA.

« Image plane shift. To minimize blur while maintaining the aperture
setting, it is optimal to move the image plane to the position I, where
the diameter of the caustic is minimal. The minimal but unavoidable
blur circle is called the circle of least confusion. The suppression
of spherical aberration is illustrated in Fig. 3.10. It is important to
note that the location of the image plane I, depends on the imaging
conditions, in particular on object distance and f-number.

¢ Optimal lens arranging. Reducing spherical aberration can also be
achieved by arranging the surfaces of the system in such a manner
that the angles of the rays to the surfaces are as small as possi-
ble. This is because SA is caused by the violation of the small angle
approximation. The refraction should be evenly distributed among
the various surfaces.
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Figure 3.12: The SA of a planoconvex lens (left: correct lens orientation; right:
incorrect lens orientation). Turning the lens to the correct orientation strongly
reduces SA.

b

object plane
= i
] \\ comay

Figure 3.13: a Illustration of negative coma. The transversal magnification
decreases with ray height h. b Positive coma of a single point source.

comag

image plane

As a general rule, a single lens should always be used with its flat
side pointing towards the rays with the higher angles of incidence.
When imaging distant objects, a planoconvex lens with an almost
flat rear side will produce the best results. For close range imaging
a more symmetric lens is more preferable. The reduction of SA by
simply turning the lens is illustrated in Fig. 3.12.

3.5.2 Coma

Coma is an aberration associated with off-axis object points. Even a
small distance from the axis can cause visible coma in the image. Be-
cause of its asymmetric shape, coma is often considered the worst of all
aberrations. It is caused by the dependence of the transversal magnifi-
cation M7 on the ray height. Even in the absence of spherical aberration,
this inhibits a focusing of the object point onto a single image point
(Fig. 3.13a). Coma is considered positive if the magnification increases
with increasing ray height h. The image of a point source formed by a
lens flawed with coma only shows a comet tail-like shape. The pattern
can be seen as a series of nonconcentric circles, whereby each circle
is formed from the rays passing the lens at the same radial distance
h (Fig. 3.13b). The centers of the circles are shifted according to the
change of M7 with h. Notice that as the rays go around the aperture
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Figure 3.14: a Astigmatism. The focal length differs for the sagittal and the
meridional plane. b Effect of field curvature. Instead of the planes P and P’
being conjugated, the spheres S and S' are conjugated. Thus, the parabolic
Petzval surface S” is conjugated to the object plane P.

circle on the lens once, they go around the circle in the coma patch
twice. This is why both the tangential as well as the sagittal ray fan
form a radial line in the patch. Consequently, the length of both lines
is used in order to describe the amount of coma, denoted as sagittal
and tangential coma (see Fig. 3.13b).

3.5.3 Astigmatism

Astimatism is associated with nonskew ray bundles emerging from
nonaxial source points. It is convenient to look at two planar ray bun-
dles in the meridional and in the sagittal planes. The meridional plane
is defined as the plane containing the optical axis and the chief ray,
while the sagittal plane contains the chief ray and is perpendicular to
the meridional plane. Both planes change with the source point of the
rays. In addition, the sagittal plane changes with each surface, while the
meridional plane remains the same within the optical system. Assum-
ing an optical element of axial symmetry, for an on-axis point there is
no difference between the sagittal and the meridional plane. An off-axis
point will show the lens under different angles, causing the effective fo-
cal lengths in the two planes to be different. The difference of the focal
length increases with the paraxial focal length of the lens and the skew
angle of the rays. The shape of the caustic of the outgoing ray bundle
changes from circular shape near the lens to a line in the meridional
plane at the meridional image distance. The shape changes further to
a perpendicular line at the sagittal image (see Fig. 3.14a and Fig. 3.15).
Of course, astigmatism is present for on-axis object points in systems
without axial symmetry such as optics containing cylindrical lenses.

3.5.4 Field curvature

With an optical system otherwise free of aberrations, the fact that the
cardinal planes are not truly plane causes a primary aberration called
the Petzval field curvature. Because of the absence of other aberrations
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Figure 3.15: Spot diagrams showing the change of the cross section of the
caustic with increasing distance from the lens. The circle of least confusion is
located between the two foci.

the image of a point source is again a point. Within the paraxial do-
main, all points on the object plane would be imaged exactly to points
on the image plane. Because the cardinal planes are spheres outside
the paraxial domain, the conjugate planes turn into conjugate spheres
(Fig. 3.14b). Consequently, forcing the source points on a plane surface
deforms the image surface to a parabolic surface, the Petzval surface.
A lens with positive focal length bends the Petzval surface towards
the lens while a negative lens bends the Petzval surface away from it.
Combining lenses with positive and negative focal length can therefore
eliminate field curvature by flattening the Petzval surface to a plane. A
system of two thin lenses of focal lengths f; and f> fulfilling the Petzval
condition

nifi+nafo=0 (3.26)

is therefore free of any field curvature. Field curvature can also be
corrected by moving the stop. Such methods are often combined by
using an additional meniscus lens according to Eq. (3.26) and a stop
near that lens.

3.5.5 Distortions

Displacement of image points with respect to their paraxial locations
causes distortions of the image geometry without degrading sharpness.
Usually, the displacement increases with the object height as the rays
become more inclined. For an optical system of rotational symmetry,
the shift of the image points is purely radial and distortion can also be
seen as a dependence of the transversal magnification of the distance
of the object to the axis. Figure 3.16 illustrates this by imaging a rectan-
gular grid with a complex wide angle lens. As always typical for a wide
angle lens, it is flawed with heavy radial distortion. It is important to
note that reversing the lens elements causes the distortion change from
barrel to pincushion or vice versa. This can be used to eliminate dis-
tortion in slides by using the same lens for imaging and for projection.
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Figure 3.16: Distortion illustrated by imaging a rectangular grid. Positive
distortion causes a pincushion-like shape (right), negative distortion a barrel-
shaped image (left).

Table 3.6: Distortion caused by stop position

Focal length Stop in front of lens Stop behind lens
Positive Negative distortion (barrel)  Positive distortion (pincush-
ion)
Negative Positive distortion (pincush-  Negative distortion (barrel)
ion)

Distortion is influenced by the thickness of the lens and the position
of the aperture stop. However, stopping down the aperture does not
reduce distortion but it reduces the other aberrations. Therefore, posi-
tioning the stop at an appropriate position is often done to correct for
distortion.

A complex lens system consisting of several lenses or lens groups
tends to show distortions because the front lens group acts as an aper-
ture stop in front of the rear lens group. Telephoto lenses typically
consist of a positive front group and a negative rear group that can be
moved against each other in order to focus or change focal length. Dis-
tortion can therefore change with the focal length, even from positive
to negative distortion.

3.5.6 Chromatic aberrations

So far, we have only considered monochromatic aberrations caused by
the nonlinearity of the law of refraction. The dependence of the re-
fractive index of almost all materials on the wavelength of the light
introduces a new type of aberration, because rays of different colors
travel on different paths through the optics. Therefore, the images of
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Figure 3.17: Axial, transverse and longitudinal chromatic aberrations. Differ-
ent rays correspond to different wavelengths.

a point source are different for light of different wavelengths. In par-
ticular, the focal length of a lens varies with wavelength.

The effects of chromatic aberration are similar to those of spheri-
cal aberration (SA) and in analogy to SA described as axial (ACA) and
transverse (TCA) chromatic aberration. As shown in Fig. 3.17, ACA
is defined as the axial distance of the focal points corresponding to
two different wavelengths. ACA is called positive if the focal length in-
creases with wavelength, otherwise it is denoted as negative. A positive
lens generally shows positive ACA because of the positive Abbe number
of all glasses. As then expected, negative lenses cause negative ACA.
The radius of the blur circle caused by the different focal lengths is
called the transverse chromatic aberration TCA. In addition, CA causes
the transversal magnification to become wavelength dependent. This
is described by the lateral chromatic aberration (LCA), defined as the
axial distance of the different image points.

3.5.7 Reducing aberrations

In the previous sections the primary aberrations have been explained
in detail. It is obvious that the image degradation caused by the aber-
rations has to be suppressed as much as possible in order to achieve a
good image quality. This in normally done during the design process
of an optics, where ray tracing techniques are used in order to calculate
the aberrations and to optimize the system for its desired purpose. Be-
sides these inner parameters of the optics, the strength of aberration is
influenced by outer parameters such as f-number or field angle. Image
quality can therefore be improved by paying attention to some basic
design rules. First of all, aberrations can be influenced by the aperture
size h, which is the radial height of the ray hitting the aperture stop,
and the radial distance of the object source point from the axis, the
field height . Table 3.7 summarizes the dependence of the Seidel and
chromatic aberration from these two parameters. Thus it can be seen
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Table 3.7: Summary of the strength of primary aberrations by field height h
and aperture 'y, according to [4]

Aberration Radial (blur) Axial (focal shift)
Spherical aberration y3 y?2

Coma y2h

Astigmatism yh? h?

Field curvature yh? h?
Distortion h3

Axial chromatic aberration y

Lateral chromatic aberration h

that distortion is the only primary aberration that cannot be suppressed
by stopping down the aperture. Spherical aberration does not depend
on the field height and is therefore the only monochromatic aberration
that occurs for on-axis points. In order to estimate the strength of im-
age blur, the radial column of Table 3.7 can be used. For example, if
the f-number is increased one step, the aperture size is decreased by a
factor of /2, meaning that blur circle according to SA is decreased by
nearly a factor of three.

3.6 Optical image formation

3.6.1 Geometry of image formation

This section summarizes the most important lens equations used in
order to calculate image position and size for imaging optics using the
paraxial approximation. The terms used in the following formulas are
illustrated in Fig. 3.18a. The distance d of the object point P from the
front principal plane and its conjugate distance d’ of the image point P’
from the back principal plane both have positive sign in the particular
direction away from the lens. The radial distance of image and source
point are denoted by y’ and Yy, respectively. As the refractive index
of the medium can change from n to n’ at the lens, its vacuum focal
length f changes to f' = n'f or f = nf. Because rays can be thought
of as being axis-parallel between the two principal planes, these have
been collapsed into a single one for simplicity in the drawing.

The lens equations are commonly expressed either in terms of dis-
tances related to the principal planes (d, d’) or related to the focal points
(z,2'), defined as z = d — f and z’ = d’ — f’. The basic lens equation
relates the object and source distances with the focal length:
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Figure 3.18: a Terms used for the lens equations. b Geometry of image forma-
tion for depth-of-field calculations.

Distances related to principal planes Distances related to focal planes
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Besides the distances, the image and source heights are related by the
transversal magnification Mt, defined as the ratio of image to source
height; M7 is therefore given by

Distances related to principal planes Distances related to focal planes

vy’ dn zZn
Mp =2 = - My = —
'~y an’ g zn’'

It is sometimes convenient to express image space quantities only
in object space terms and vice versa.
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Figure 3.19: Dependence of the image distance and the transversal magnifi-
cation with object location. Note that all axes are drawn in units of the focal
length of the lens. Their signs will be reversed if a negative lens is considered.
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Imaging an object extended in all three dimensions results in a 3-D im-
age filling the image space. In addition to the transversal magnification
therefore, the axial extent of the image has to be related to the axial
extent of the object. This is done by the longitudinal magnification

od
M= 34

- M2 (3.27)

which is the square of the transversal magnification.

Figure 3.19 gives an overview of the image distance and the magnifi-
cation with respect to the object distance. It can be seen that depending
on the object distance, the image distance can have positive or negative
values. A positive image distance corresponds to a real image at which
position the rays are focused to form an image.

A virtual image, associated with negative image distances, means
that the rays in the image space behave as if they would emerge from
a point in the object space. There is no point where the rays physically
intersect each other, meaning that a virtual image cannot be recorded
directly. This is summarized in Table 3.8.
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Table 3.8:
Object Image Image Image
location location type orientation My

Convex lens (f > 0)

o >d>2f f<d<2f real inverted -1<Mr<0
d=2f a=2f real inverted Mr=-1
f<d<2f o>d >2f real inverted Mr < -1
d=f d =
a<f a>d virtual erected My >1

Concave lens (f < 0)

0<d<o |d'| <min(|f|,d) virtual erected O0<Mr<l1

3.6.2 Depth-of-field and focus

A paraxial lens of focal length f focuses all rays emerging from a point
P onto its corresponding point P’ in image space according to the basic
lens equation

1 1 1

Therefore only objects located at a given distance d are well focused
onto the image plane at the fixed position d’, whereas objects at other
distances d appear blurred (see Fig. 3.18b). The distance range in which
the blur does not exceed a certain value is called the depth-of-field. A
good value to characterize the depth-of-field is f-number f/2R, which
gives the ratio of the focal length to the diameter of the lens. At a zero
order approximation, blurring is described by the radius € of the blur
circle for an object point at d = d + Ad, which is controlled by the ratio
of the image distances

e 4 ,Ad

R™ 7 1=d 2d (3.29)
The depth-of-field is now determined by the choice of a maximal ra-
dius of the blur circle, the so-called circle of confusion. If €, denotes
the circle of confusion, the depth-of-field can be expressed in terms of
the magnification M = b/g, the f-number O = f/2R, and the object
distances:

20 - d 20 - d
Ad = ——dé; = ——F+— & |Ad|=-———=dle;.| = ——+ (3.30)
Mrf ¢ éVIOTe{ -1 Mrf" 1+ %TE{
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In Eq. (3.29) we combined the two distinct cases of Ad being positive or
negative by understanding € having the same sign as Ad. Distinguish-
ing between positive and negative signs now shows the inherent asym-
metry for the depth-of-field, caused by the nonlinearity of Eq. (3.28).
Therefore it is a common practice to assume MR > €, leading to the
approximation of d =~ d in Eq. (3.30) and removing the asymmetry.

Moving the image plane instead of moving the object plane also
causes a defocused image. Equivalent to the depth-of-field in object
space the term depth of focus in image space denotes the maximal dis-
location of the image plane with respect to a given circle of confusion.
Again, with the approximation of the circle of confusion being small
compared to the lens radius, the depth of focus is given by

_20
- f

The relation between depth of focus and depth-of-field is given by the
longitudinal magnification M2.

Ad' dec (3.31)

Ad = M2Ad' = M Ad’ (3.32)

For far-field imaging, Mt is small and therefore a small depth-of-field
causes a small depth of focus. In contrast, both close-up and micro-
scopic imaging with large magnifications show a large depth of focus
and a small depth-of-field at the same time. Finding the position of
best focus may be difficult in this particular situation.

3.6.3 Telecentric optics

With this setup, the aperture stop is located at the rear focal point of
the respective optics. The effect is that all principal rays in object space
are parallel to the optical axis (Fig. 3.20). Only narrow and axis-parallel
ray bundles contribute to image formation. This is often used in pre-
cision measuring, where an object is viewed by a screen or camera at
a fixed position. If the object is moved slightly away from the optimal
position, its image becomes blurred, but also the transversal magnifi-
cation changes so that a different object size is obtained. A telecentric
setup corrects this by making the principal ray independent of the ob-
ject position, therefore preserving magnification. Obviously only an
object smaller than the lens diameter can be viewed. Therefore the
use of telecentric optics is normally restricted to close-range imaging.
To achieve the best results, the illumination system should be telecen-
tric as well, and the aperture of both the illumination and the imaging
system should be the same.
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Figure 3.20: a As the principal ray is independent of the object position blur
does not cause size changes; b independence of the radius of the blur circle from
the location.

3.7 Wave and Fourier optics

Pure geometric optics, as we have considered so far, is limited to the
calculation of the paths of bundles of light rays through an optical sys-
tem and the parameters that can be extracted from these. Intensity
of these bundles is especially important for imaging optics but is not
readily quantified with geometric optics. The depth-of-field calcula-
tions explained in Section 3.6 clearly demonstrate this drawback, and
while it is possible to obtain the size of the blur circle, the intensity dis-
tribution of the image of a blurred spot cannot be calculated exactly.
Fourier optics provide a better means of understanding the behavior of
an optical system without the need to delve deeply into the details of
wave optics.

3.7.1 Linear optical systems

Point spread function. The point spread function is one of the cen-
tral concepts used in Fourier optics because it allows the description of
a complex optical system as a linear superposition of images of single
spot sources. This concept allows the handling of different imaging
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Figure 3.21: Focused and defocused imaging of an object point onto the image
plane.

problems such as quantitative description of image blurring, depth-
from-focus reconstruction, and 3-D imaging of nonopaque volume ob-
jects as they occur with light or confocal microscopy, using the same
mathematical description. The image of an object is the superposition
of the images of all object points. Figure 3.21 illustrates the situation
for both a well-focused and an ill-focused setup. An ideal aberration-
free optics would image every object point onto its conjugate point in
the image plane. In the case of defocus the rays emerging from the
object point no longer intersect at the image plane but at the plane
conjugate to the actual object plane. The image of the object point is
therefore an intensity distribution at the image plane, which is is called
the point spread function (PSF) of the lens.

Assuming that the PSF does not change for various object points, the
effect of blurring can be described as a convolution of the well-focused
image, as it would be achieved by a pinhole camera, with the PSF:

g(x') = Jf(x(f’))PSF(E’ _X)d2E = f(x(x) * PSF(x')  (3.33)

It is important to note that the description by a convolution is only
valid in case of a linear, shift-invariant system.

Shape of the PSF. In many cases the shape of the PSF remains un-
changed for every object point, independent of its distance from the
plane of best focus. Then, the PSF can be described by a shape func-
tion S and a scaling factor o that varies with the distance g’:

S(x/o(Z2))

PSFZ(X) = 75 % 70(2)) d2x

(3.34)

The denominator normalizes the PSF to [PSFz(x)d’x = 1, forcing
gray-value preservation. In many cases it is sufficient to replace o
by the radius of the blur circle e. The shape function can be com-
pletely different for different optical setups. Nevertheless, only a few
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Table 3.9: Standard functions for point spread functions of optical systems

Function PSF

Used for

()
Box 1TO'2H (20

Noncircular Box
|x|

o2 20

Gaussian

1 (X
21O P 202

21(lxl/o)

Airy X/

Optical systems with circular
aperture stop that are not dom-
inated by wave optics.

Optics with the same properties
as above, but with a noncir-
cular aperture stop, as with
adjustable iris diaphragms.
The shape function reflects the
shape of the aperture stop.

Widley used in order to describe
the PSF. It can be shown that
the Gaussian results from the
superposition of Airy functions
for a wavelength range in the
case of polychromatic illumina-
tion.

Optical systems that are domi-
nated by wave optics, with co-
herent and monochromatic il-
lumination, mainly microscopic
systems; o depends on the
wavelength.

shape functions are sufficient in order to describe the main properties
of standard optics as summarized in Table 3.9.

Optical transfer function. In Fourier space, convolution turns into
a multiplication of the Fourier transform of the object function with
the Fourier transform of the PSF (Section 8.6.3). The latter is called the
optical transfer function (OTF). Its values give the transfer coefficient for
spatial structures of different wavelength through the optical system.
A value of zero indicates that this particular wavelength cannot be seen

by the optics

spatial domain G(x)

Fourier domain G (k)

PSF(x) ® O(x)

o o

I | (3.35)

PSE(k) - O(k)
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Figure 3.22: Effect of defocus on images and their Fourier transforms. The
cutoff of the higher wavelength is clearly observed with increasing defocus.

Figure 3.23: Setup for optical Fourier transformation.

A typical OTF will act as a low-pass filter, eliminating higher spa-
tial frequencies, that is, high resolution details. This is illustrated in
Fig. 3.22 showing a series of images of fabric, taken with different fo-
cus settings, together with the corresponding Fourier transforms. A
telecentric optics has been used in order to avoid scaling of the Fourier
space due to change in image magnification. Clearly, the suppression
of the higher spatial frequencies with defocus can be seen.
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3.7.2 Optical Fourier transform

One of the most useful properties of a convex lens is its ability to per-
form a 2-D Fourier transformation [5]. The input image to be trans-
formed has to modulate the amplitude of the incoming light. The sim-
plest possible input would therefore be a monochromatic slide placed
in front of the lens (Fig. 3.23). Of course, it is also possible to work with
modulation by reflection instead of transmission.

For an infinite lens the intensity distribution in the rear focal plane
is given by

[ee) 0 2
J J T (x,y)e 2MxEym/IAf) dx dy (3.36)

—00 —00

I(E! r’) = )\21302

which is proportional to the power spectrum of the transmission func-
tion T (x, ), that is, the input image. Changing the distance d between
the input image and the lens only causes a phase shift and therefore
has no influence on the intensity distribution.

To take into account the finite dimensions of the lens, a pupil func-
tion P is used that is 1 inside the lens and 0 outside the aperture. Thus
arbitrarily shaped aperture stops can be described.

The amplitude and phase distribution in the rear focal plane cor-
respond to the Fourier spectrum of the input image, and the intensity
distribution to the power spectrum.
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4.1 Introduction

Radiometry is the measurement of some radiometric quantity, such as
radiance L, irradiance E, or intensity I. In terms of computer vision,
it relates quantitatively the image brightness to radiometric properties
of the observed objects. Thus, a radiometric analysis of images can
be used to obtain important information about the underlying physical
processes and object properties. In Chapter 2 we defined the relevant
radiometric and photometric quantities and detailed the basics of ra-
diation. We also showed how the radiation emitted from objects inter-
acts with all materials that are encountered before it finally reaches the
imaging system. In Chapter 3 the fundamentals of optical imaging were
introduced. This chapter concludes the radiometric considerations by
combining the fundamental radiometric properties with the process
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Figure 4.1: Source-receiver geometry.

of image formation and shows how quantitative radiometric measure-
ments can be carried out with the imaging detector systems used in
computer vision. Starting at the object surface, we follow the radiation
on its way through the camera system and analyze how it is changed
by the optical imaging, converted into irradiance at the detector plane,
and finally detected, thereby contributing to a digital image.

4.2 Observing surfaces

Most applications of computer vision have to deal with images of opaque
objects, which corresponds to images of object surfaces moving within
the 3-D scenes. The “brightness” of these surfaces is usually taken for
granted with the inherent assumption that they are Lambertian. This
assumption is frequently confused with constant brightness, although
even Lambertian surfaces are subject to brightness changes under gen-
eral conditions in terms of 3-D motion and illumination setups. But
what do surfaces look like, and which radiometric quantity can be re-
motely measured by an optical detector? In this section, we will address
the following fundamental question: Which radiometric property of a
surface is measured when it is observed by an optical detector system?
We will conclude that an imaging detector acts as a radiance meter,
with an output proportional to the radiance of the imaged surface.

4.2.1 Source-detector flux calculations

In order to measure radiation quantitatively, we need to know which
portion of the radiation leaving the surface of an object finally reaches
the detector. To derive the basic relations, we consider the geometric
setup where the radiative flux of a source is directly transferred (radi-
ated) onto the detector without any imaging device (Fig. 4.1).
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Let dS and dR be infinitesimal surface elements of the source and
the receiver (detector), respectively, separated by a distance v. The ra-
diance L leaving the source element dS in the direction of the receiving
surface dR can be computed from its initial definition Eq. (2.12) as

dze

L= dQdS cos @

4.1)
where 0 is the angle between the surface normal on dS, and the direc-
tion of the line connecting dS and dR. With dQ we denote the element
of solid angle subtended by the area dR as observed from the source
dS. If dR is further inclined under an angle 0’ with respect to the
direction connecting the two surface elements, dQ is given by

_ dRcos @’

= =3

4.2)
Combining Egs. (4.1) and (4.2), we get the infinitesimal element of
radiative flux transferred between dS and dR:

dS dR cos O cos O’

d?® =L >
-

4.3)

From this equation we can immediately infer the following basic
properties of radiative transfer: The transfer of radiative flux is:

1. directly proportional to the radiance L of the emitting surface dS;

2. directly proportional to the areas of the emitting and receiving sur-
faces dS, and dR, respectively;

3. inversely proportional to the square of the distance » between emit-
ting and receiving surface (inverse square law); and

4. finally, it depends upon the orientation of the surface normals of dS
and dR with respect to the direction connecting the two surfaces.

The most important fact is that the received flux is directly propor-
tional to the radiance of the emitting surface. We will further show that
this proportionality remains for an imaging detector. Thus, the basic
property to be measured by radiometry is the radiance of the objects!

For finite size sources and detectors, we need to integrate Eq. (4.3)
over the surface areas S and R of source and detector, respectively,

® =J J 080COs O g qp (4.4)
s JR ¥

The average irradiance E of the receiving detector element is given by:

do cos 0 cos 0’

E=ar =)L

ds 4.5)
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Figure 4.2: Illustration of the radiance invariance.

The integrals Eqgs. (4.4) and (4.5) are the fundamental equations de-
scribing the transfer of radiation from a source surface to a detector
surface [1]. These integrals, however, can only be solved analytically
for simple geometrical setups.

If we just place a detector into a scene, all surface areas within the
3-D enclosure contribute to detector irradiance. Thus, we have to in-
tegrate Eq. (4.5) over the entire surface of all surrounding—arbitrarily
shaped—objects. Apart from the mathematical difficulties, this inte-
gration yields the average irradiance of the detector surface element,
rather than an “image” of the individual object surfaces. In order to
resolve spatial variations of emitting surfaces, we need to restrict the
allowed angles of incidence. Section 4.4 outlines the basic radiometric
properties of imaging systems.

4.3 Propagating radiance

In Section 4.2 we learned that a radiometer serves as a radiance meter,
which produces an output proportional to the radiance of the observed
surfaces. Before we turn towards the question of how the radiance dis-
tribution of an object surface is converted into irradiance of the sensor
plane by the optical image formation process, we need to consider ex-
actly what happens to radiance when propagating through space and
passing the camera lens system. We will derive a fundamental law of
radiometry—referred to as radiance invariance—which constitutes the
basis for all radiometric measurements. The derivation of this law fol-
lows McCluney [1] and Nicodemus [2].

4.3.1 Radiance invariance

The concept of radiance is sometimes hard to grasp, as we intuitively
think about radiation as either absolutely parallel—in that case, we do
not have a geometrical spreading and, hence, no radiance—or diverg-
ing in space. As radiance is defined as flux emitted into a unit solid
angle, we always tend to think that it is diverging and, hence, becoming
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smaller, the farther it travels. An important question in the context of
imaging systems is whether the measured brightness is decreasing with
increasing object distance or, in general, how the radiance is distributed
over the lens system at all.

In order to derive the law of radiance invariance, we consider two
“virtual” infinitesimal surface elements dS; and dS, placed along the
propagation direction of the measured radiation (Fig. 4.2) at distance 7.
The surface normals of the two elements with respect to the direction
of the connecting line are inclined under the angles 6, and 6>, respec-
tively. The incident flux on either of the two elements is considered
to leave the element in exactly the same direction at the opposite side,
without attenuation.

The flux leaving surface element dS; is given by Eq. (4.3)

dS; cos 01 dS» cos 0>
1

2 -
d?e; =L e

(4.6)

where L; denotes the incident radiance on the surface element dS;.
Similarly, the incident flux on surface element dsS» is given by

dS» cos 0> dS; cos 01
2

2 —
d?d, =L =

4.7)
Conservation of energy requires that both fluxes must be the same if no
losses occur within the medium between dS; and dS», thatis, ®; = ®».
Using Eqgs. (4.6) and (4.7) we get

Li=1L; (4.8)

As we have made no restrictions on the locations, orientations, or sizes
of the surface elements, nor on the origin of the radiance, Eq. (4.8)
constitutes a fundamental law, called radiance invariance.

Although this solution seems to be trivial, it is of major importance,
as it proves that the quantity of radiance is not changed along the ray
of propagation in space. Thus, it makes absolutely no difference where
we measure the emitted radiance of objects.

4.3.2 Radiance invariance at interfaces

In this section, we consider the question as to how radiance is changed
at the interface between objects with different refractive indices. This
extension of the radiance invariance constitutes the basis for radiomet-
ric measurements with optical systems.

At the interface between two media with different indices of refrac-
tion, not only the direction of propagation changes but also the radi-
ance because the geometric spreading of the beam is altered. Figure 4.3
illustrates the geometric quantities at the transition from n; to n,, for
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normal

n, > n,

Figure 4.3: Geometry for definition of radiance invariance at interfaces.

My > ny. As refraction is not linear in angle, the two bounding rays are
refracted under different angles due to the slightly different angles of
incidence.

The element of incident flux d®, is given by

de)l = L1 dS cos 91 dQl = L] dS cos 91 sin 91 d91 d(l) (49)

where dS denotes an infinitesimal surface area, and the element of
solid angle d€; is replaced by spherical coordinates. Correspondingly,
the element of refracted flux d®; is given by

d®, = L dS cos 02 dQ» = Ly dS cos 02 sin 0> dO> dg (4.10)
Conservation of energy requires
d®; = (1 -p) dd, (4.11)
accounting for reflection at the interface. Thus

_(1-p)dd _ (1-p)Licos6:sinb doy (4.12)

1 dq)z Lz COoS 92 sin 92 d@z

The relation between the angles of incidence and refraction is given by
Snell’s law (Eq. (2.42), see Chapter 2.5)

Ny sin@; = np sin > (4.13)

Differentiating both sides of this expression with respect to the angle
yields
n; cosf;do; sin6;

no ~ cos 0, do, ~ sin 0> (4.14)




4.4 Radiance of imaging 91

p'
_ P, 0, L)  ‘
/v P!
A g 7

Lr d dl=l’0

Figure 4.4: Illustration of image formation by a perfect lens.

Combining Eq. (4.14) with Eq. (4.12) yields

% = % (4.15)
ni n;
Ignoring reflection losses, the radiance is changed at the transition
between two interfaces, but the quantity L/n? stays constant in any
medium!.

This leads to the conclusion that the radiance is not altered by op-
tical components such as lenses and windows. Although the radiance
within a lens is changed, the initial radiance is restored after exiting
the lens at the second face. However, if the lens system is not loss-less
due to reflections at all faces and internal absorption, only the fraction
T of the incident radiance is transmitted:

Ly =TL (4.16)

4.4 Radiance of imaging

Now that we know that the radiance is conserved by passing through
the optical system of a camera (with the exception of absorption and
reflection losses), we need to know how the optical system changes the
direction of propagation and the geometric spreading and how it turns
the radiance distribution into an image.

4.4.1 Radiance and irradiance of images

Consider the imaging system to consist of a single circular lens, as
illustrated in Fig. 4.4. We assume the lens to be perfect in terms of

1This fundamental law of radiometry can be compared to the invariance of the optical
path nd in geometrical optics (see Chapter 3).
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accurately focusing all radiation emerging from a point P at the object
surface and collected by the lens aperture A, onto a single point P’ on
the sensor plane.

Let P/ be the center point on the optical axis of the lens, that is, in
the center of the image, and P, the corresponding point at the object
surface. The solid angles subtended by the lens aperture A, as observed
from the point P,, and from its image P/, are denoted by Q and ',
respectively.

The irradiance E’ of the image point P, is simply given by integrating
the radiance impinging onto this point from all angles within the solid
angle Q’:

E'(P,) = L), L'(6',¢') cos 0 dQ’ (4.17)

where the primed letters refer to the quantities at the sensor side of
the lens, that is, after passing the lens (Fig. 4.4).

Using the radiance invariance Eq. (4.16), we can replace L’ by L’ =
TL, if we assume the lens to have a transmittance ¥, and L denotes
the object radiance before reaching the lens. As the lens focuses all
radiation, which is emitted by the point P, into the solid angle Q, we
can replace the integration over the primed quantities in the image
domain by an integration over the solid angle Q in the object domain:

E(P,) = fng(@,(l))COSGdQ (4.18)

where L(0, ¢) denotes the excitant radiance at the object point P,.
For Lambertian surfaces, L is independent of the direction and can
be removed from the integral. Thus,

E'(Py) = 'T'LJ cos 0dQ = L sin’ 0, (4.19)
Q

with 84 denoting the half angle of the lens aperture, as viewed from
point P, (Fig. 4.4). The larger the lens aperture, the more radiance is
collected by the lens and the more irradiance is produced at the sen-
sor. Hence, an optical imaging system allows the amount of collected
radiative flux to be increased without reducing the spatial resolution.
The maximum possible irradiance is collected for sin94 = 1, that is,
for an infinite sized lens:

rréaxE’ (Py)) =mTL (4.20)
A

which equals the radiant excitance of the surface at the point P, (see
Chapter 2, Eq. (2.14)), reduced by the transmittance of the lens.
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Using the f-number n; of the lens (Chapter 3), Eq. (4.19) can be
rewritten as

E'(P)) =mTL (12) 4.21)
1 + Ny

4.4.2 Field darkening

So far, we have considered only the central point P, in the image, lo-
cated on the optical axis of the lens. This section shows how the sen-
sitivity of an extended detector decreases towards the edges of the
Sensor.

Off-axis irradiance. Let P’ be an arbitrary image point located off-
axis in the sensor plane. The corresponding point in object domain is
denoted by P. Further, let P have the same radiance as the center point
P,, that is, we assume the object to have a constant radiance over the
imaged area.
Now, the distance » from the center of the lens to the point P’ will
depend on the angle Op,
Yo
"= Cos Op

(4.22)

where O0p denotes the angle between the line connecting P and P’ (pass-
ing through the center of the lens) and the optical axis, and 7, is the
distance between the center of the lens and P, (Fig. 4.4).

According to the inverse square law Eq. (4.2), the irradiance is pro-
portional to 1/72, which reduces the off-axis irradiance E’(P’) by the
factor cos? 0p, compared to E’(P)).

Another factor further reducing the irradiance E’(P’) is given by
the fact that the solid angle Q, subtended by the lens, decreases pro-
portional to cos 0p (Eq. (2.5), see Chapter 2). Thus, the effective lens
aperture is reduced by the projection onto the viewing direction.

Finally, the irradiance E’ (P’) at the detector plane is proportional to
the angle of incidence, which is also given by cos Op.

Combining all influences decreasing the irradiance E’, we get the
following result for off-axis points:

E'(P') = E'(P}) cos* 0p (4.23)

This cos*-dependence is known as field darkening, reducing the irradi-
ance towards the edge of the sensor plane.

Typical values of the relative decrease of irradiance at the edge of
the image compared to the center point are in the order of 10% and
0.5% for f = 25mm and 100 mm, respectively. With increasing focal
length, the field darkening is expressed less. For wide-angle lenses,
however, this effect can not be neglected.
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Vignetting. Inaddition to the cos*-dependence of the irradiance across
the sensor plane, other optical effects contribute to the resulting field
darkening of an image. The term vignetting is used for effects block-
ing off-axis rays by internal aperture stops of the lens system or other
beam-delimiting components [1]. Such effects produce an additional
decline of the image irradiance towards the edge of the image.

4.5 Detecting radiance

The final step in the chain of radiometric imaging is the detection of ra-
diation at the imaging sensor. Here, the irradiance of the sensor plane
is converted into an electronic signal. Without going into details of
solid state physics, this section outlines the basic properties of imag-
ing detectors relevant for a quantitative radiometric interpretation of
images. More detailed overviews of detectors for electromagnetic radi-
ation can be found in the following excellent textbooks [1, 3, 4], as well
as in standard handbooks on radiometry, such as [5].

4.5.1 Detector performance: figures of merit

Before we turn towards a classification of optical detectors in terms of
their operational principle, we will summarize commonly used figures
of merit, which allow us to compare the relative performance between
detectors. These quantities also constitute the link between the radio-
metric quantities of radiation impinging on the detector material and
the final electrical detector output.

Quantum efficiency. Quantum efficiency n(A) relates the number of
photons incident on the detector to the number of independent elec-
trons generated. It counts only primary charge carriers directly related
to the initial absorption process and does not count electrical amplifi-
cation. Quantum efficiency takes into account all processes related to
photon losses, such as absorptance of the detector material, scattering,
reflectance and electron recombination.

In a more general sense, the CIE vocabulary defines quantum effi-
ciency as the ratio of elementary events contributing to the detector
output to the number of incident photons. This also accounts for de-
tectors in which no charge carriers are directly released by photon ab-
sorption. The quantum efficiency can be expressed as

No
n(A) = . (4.24)

p
where 1, is the number of incident photons; n, defines the number
of output events, such as photoelectrons in photodiodes, and electron-
hole pairs in semiconductors (Section 4.5.2).
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Figure 4.5: Response of an ideal photodetector. a Quantum efficiency; and b
responsivity. Solid lines correspond to ideal detectors and dashed lines to typical
departures from ideal curves (After [3]).

The quantum efficiency is always smaller than one and is commonly
expressed in per cent. Figure 4.5a shows the spectral quantum effi-
ciency for an ideal photodetector. The ideal quantum efficiency is a
binary function of wavelength. Above a certain cutoff wavelength A,
photons have insufficient energy to produce photogenerated charge
carriers (Section 4.5.2). All photons with higher energy (smaller wave-
lengths) should produce the same output. Real photodetectors show
a slightly different behavior. Near A, the thermal excitation of the de-
tector material can affect the production of charge carriers by photon
absorption. Thus, the sharp transition is rounded, as illustrated by the
dashed line. Another typical behavior of photodetectors is the decreas-
ing quantum efficiency at short wavelengths.

Responsivity. An important quantity relating the final detector out-
put to the irradiance is the responsivity R of the detector. It is defined
as the electrical output signal divided by the input radiative flux ¢:

VA, f)
Pa(f)

where V denotes the output voltage and f is the temporal frequency at
which the input signal is chopped. The frequency dependency accounts
for the finite response time of detectors and shows the detector’s re-
sponse to fast changing signals. If the detector output is current, rather
than voltage, V has to be replaced by current I. Depending on the type
of detector output, the units are given as VW1 (volts per watt) or AW-1
(amperes per watt).

For a photon detector (Section 4.5.2), the responsivity can be ex-
pressed by the quantum efficiency n and the photon energy e, = hc/A

R, f) = (4.25)
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as

niAqG

R(A) = hc

(4.26)
where g denotes the electron charge, g = 1.602 x 10-19 C. The photo-
conductive gain G depends on the geometrical setup of the detector
element and material properties. The frequency dependent responsiv-
ity is given by

nAqG
he 2t ft

where T denotes the time constant of the detector.

The ideal spectral responsivity of a photodetector is illustrated in
Fig. 4.5b. As R is proportional to the product of the quantum efficiency
n and the wavelength A, an ideal photodetector shows a linear increase
in the responsivity with wavelength up to the cutoff wavelength A.,
where it drops to zero. Real detectors show typical deviations from
the ideal relationship as illustrated by the dashed line (compare to
Fig. 4.5a).

R, f) = 4.27)

Noise equivalent power. Another important figure of merit quanti-
fies the detector noise output in the absence of incident flux. The signal
output produced by the detector must be above the noise level of the
detector output to be detected. Solving Eq. (4.25) for the incident ra-
diative flux yields

1%
¢A::E' (4.28)

where R is the responsivity of the detector. The noise equivalent power
NEP is defined as the signal power, that is, radiative flux, which cor-
responds to an output voltage V given by the root-mean-square (rms)
noise output, oy,:

NEP =1 (4.29)
R

In other words, NEP defines the incident radiant power that yields a
signal-to-noise ratio (SNR) of unity. It indicates the lower limit on the
flux level that can be measured. It depends on the wavelength of the
radiation, the modulation frequency, the optically active detector area,
the noise-equivalent electrical bandwidth Af, and the detector oper-
ating temperature. Thus, it depends on a large number of situation-
dependent quantities.
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Detectivity. The detectivity D of a detector is the reciprocal of the
NEP:

1

D= NEp

(4.30)
A more useful property can be obtained by incorporating the detec-
tor area and the noise-equivalent bandwidth Af. The corresponding
quantity, called normalized detectivity D* or D-star is defined as:

JAA
D* adf 4.31)

- NEP

where A; denotes the optically active detector area. It normalizes the
detectivity to a 1-Hz bandwidth and a unit detector area. The units of
D* are cmHz1/2 W-1, which is defined as the unit “Jones.” The normal-
ized detectivity can be interpreted as the SNR of a detector when 1 W
of radiative power is incident on a detector with an area of 1 cm?.

Again, the normalized detectivity depends on the remaining quan-
tities, the wavelength of the radiation, the modulation frequency, and
the detector operating temperature.

4.5.2 Classification of optical detectors

Over the last decades a variety of detectors for electromagnetic radi-
ation have been developed. Recent developments in semiconductor
technology have led to an increasing integration of large sensor arrays
to produce high-quality focal-plane arrays suitable for computer vision
applications. Other types of detectors are used as single-point measur-
ing sensors, which scan the image area to produce higher-dimensional
image data sets. Independent from the geometrical setup, they all rely
on inherent changes of a physical property of the detector material by
absorption of radiation, which can be quantitatively measured.

According to the underlying physical process of converting radiative
energy into an electrical signal, all detectors can be classified into three
major types:

1. Photon detectors. These types of detectors respond directly to in-
dividual photons. Any absorbed photon releases charge carriers in
the detector that produce an electric signal. Photon detectors are
among the most important sensor types for computer vision appli-
cations. They cover the entire range of electromagnetic radiation
from x-rays, to ultraviolet and visible light, up to the infrared re-
gion. The most prominent examples are photographic films and
CCD arrays. Other important applications include light-amplifying
cameras, such as microchannel plate detectors and modern infrared
focal plane array cameras.



98 4 Radiometry of Imaging

a b c
‘ <—o—> conduction band ‘ ‘ conduction band ‘ ‘ <—©9—> conduction band ‘

G

—®—0—0—0—0-Y-0—0—

Q, Q ﬁéj Q
% b —0—0—0—0——0—0—
2 R

‘ < o—> valence band ‘ ‘ DI N valence band ‘ ‘ valence band ‘

intrinsic (pure) acceptor, p-type impurity donor, n-type impurity

Figure 4.6: Energy-band diagrams for a intrinsic photoconductors; b extrinsic
p-type photoconductors; and c extrinsic n-type photoconductors.

2. Thermal detectors. Optical radiation incident on a thermal detector
causes the detector temperature to increase due to the absorbed en-
ergy. The increased temperature changes some electrical property
of the detector material. The output signal of thermal detectors is
proportional to the total energy stored in the detector as opposed
to the number of absorbed photons in photon detectors. The wave-
length of the radiation is irrelevant, as the same output signal can be
produced by photons at different wavelengths if the photon number
compensates for the different photon energies. Thus, the respon-
sivity of thermal detectors exhibits a broad wavelength dependency,
dominated by the spectral absorptance of the photon-absorbing ma-
terial.

3. Coherent detectors. The third class of detectors directly respond
to the electric field strength of the electromagnetic radiation by in-
terference of the electric field of the incident photon with the elec-
tric field of a reference oscillator. Coherent detectors can be used
only for “low-frequency” radiation, primarily for detection of radio
and submillimeter radiation down to the infrared region. Promi-
nent examples of detector systems are radar satellites operating at
microwave frequencies and radio telescopes used in astronomy.

In the remainder of this section we will give an overview of the most
common detector types, relevant for computer vision, with regard to
the principal physical mechanisms and radiometric properties.

4.5.3 Photon detectors

The class of photon detectors contains the most important detector
types for computer vision. Apart from a few exceptions, such as pho-
tographic films, most photon detectors are solid state detectors, which
make use of the fact that electrical properties of semiconductors are



4.5 Detecting radiance 99

dramatically altered by the absorption of ultraviolet, visible and in-
frared photons.

Intrinsic photoconductors. Photoconductors respond to light by ei-
ther changing resistance or conductance of the detector material. In-
trinsic photoconductors are the most straightforward way to design a
solid state electronic detector. They make use of the inherent electrical
property of pure semiconductor materials without additional manipu-
lations. At normal temperatures, relatively few electrons will be in the
conduction band of a semiconductor, which results in a low electric
conductivity of the material. Figure 4.6a illustrates the energy-band
diagram for an intrinsic photoconductor.

In order to move from the valence band into the conduction band,
an electron must have sufficient energy. By absorbing a photon whose
energy is greater than that of the bandgap energy Qg , an electronic
bond can be broken and the electron can be lifted into the conduction
band, creating an electron/hole pair (Fig. 4.6a). Both the electron and
the corresponding hole can migrate through the detector material and
contribute to the conductivity. If an electric field is maintained across
the detector, any absorbed photon results in a small electric current,
which can be measured by a high-impedance amplifier.

As thermal excitation contributes to the conductivity in the same
way as absorbed radiation, thermal noise will corrupt the signal, espe-
cially at high temperatures and low illumination levels. The number of
thermally excited electrons follows the Boltzmann distribution:

Nt o< exp (—53—{}) (4.32)
where Qg, kg, and T are the bandgap energy, the Boltzmann constant,
and the absolute temperature, respectively. As Q4 becomes smaller,
the number of thermally excited charge carriers increases. One way
to overcome this problem is to cool the detector down to cryogenic
temperatures below 77K (liquid nitrogen temperature), where thermal
excitation is negligible.

The minimum photon energy that can be detected is given be the
bandgap energy Q4 of the detector material. With the photon energy
(Eq. (2.2))

_ he
T A

the maximum detectable wavelength A., commonly referred to as cutoff
wavelength, is given by

ep = hv (4.33)

_ hc

A, = —
c Qg

(4.34)
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Substituting for the constants, and correcting for units such that wave-
lengths are in microns and energy gap in electron volts yields the fol-
lowing rule of thumb:

1.238
Qg[ev]

Intrinsic photoconductor detectors can be made in large arrays and
they have good uniformity and high quantum efficiency, typically in the
order of 60%. They are the basic components of CCD-arrays (charge
coupled devices), which are the most widely used 2-D detectors in the
visible, the near infrared, and—to some extent—in the x-ray and ultravi-
olet region using special semiconductor compounds. In the infrared re-
gion, semiconductors with a small bandgap have to be used. For highly
energetic radiation, such as x-rays, the energy exceeds the bandgap of
any semiconductor. However, the absorption coefficient of most mate-
rials is extremely low at these wavelengths, which makes most sensors
almost transparent to shortwave radiation. In order to deposit the en-
ergy in the detector, the semiconductor material must contain heavy
atoms, which have a higher absorptivity in the x-ray region.

Ac[pm] = (4.35)

Extrinsic photoconductors. For longer wavelengths toward the in-
frared region, it is hard to find suitable intrinsic semiconductor mate-
rials with sufficiently small bandgaps. For wavelengths beyond 15 pm,
materials tend to become unstable and difficulties occur in achieving
high uniformity and making good electrical contacts. A solution to this
problem is to use extrinsic photoconductors, that is, semiconductors
doped with either p-type or n-type impurities.

The addition of impurities places available electron states in the pre-
viously forbidden gap and allows conductivity to be induced by freeing
impurity-based charge carriers. Thus, smaller energy increments are
required. As illustrated in Fig. 4.6b and c, only the gap between the va-
lence band and the impurity level (p-type semiconductors) or the gap
between the impurity level and the conduction band (n-type semicon-
ductors) has to be overcome by absorption of a photon. In the former
case, the conductivity is carried by holes and in the latter case free
electrons in the conduction band contribute to the conductivity. The
basic operation of extrinsic photoconductors is similar to that of in-
trinsic photoconductors, except that the bandgap energy Q4 has to be
replaced by the excitation energy Q; (Fig. 4.6b and c).

Although extrinsic photoconductors are an elegant way to get long
wavelength response, they have some less desirable characteristics:

e Due to the smaller bandgap, extrinsic semiconductors are much
more sensitive to thermal noise, which can be inferred from Eq. (4.32),
and, therefore, require a much lower operating temperature than do
intrinsic photoconductors.
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Figure 4.7: Band diagram of the p-n junction in a photovoltaic detector (photo-
diode). In the p-type material, photogenerated electrons diffuse into the deple-
tion region and are swept into the n-type region by the electric field. The same
process occurs in the n-type material, except the roles of the holes and electrons
are reversed.

¢ Extrinsic photoconductors have a quantum efficiency that is sub-
stantially smaller than that of intrinsic materials (30 % compared to
60% in average). This results from the fact that the impurities are
necessarily more sparse than the host material, which leads to a
smaller optical absorption cross section.

¢ The electrical conductivity of extrinsic materials differs fundamen-
tally from that of intrinsic materials. In intrinsic photoconductors,
electron/hole pairs are generated by the excitation process, both
contributing to the charge transport (Fig. 4.6a). In extrinsic photo-
conductors, individual charge carriers are generated whose comple-
mentary charge resides in an ionized atom, which remains immobile
in the crystal structure and cannot carry current (Fig. 4.6a and b).

As the number of semiconductor atoms always outnumbers the im-
purity atoms, the intrinsic effect dominates in both types of extrinsic
material at high temperatures (where all impurity charge carriers are
thermally excited) and for wavelengths smaller than the cutoff wave-
length of the intrinsic material. To reduce the response from intrinsic
conduction, all wavelengths below the anticipated long-wave radiation
have to be blocked by spectral filters.

Photodiodes (photovoltaic detectors). A photovoltaic detector ac-
tively generates a voltage or current from incident electromagnetic ra-
diation. The most common realization is based on a junction between
two oppositely doped zones (p-n junction) in a semiconductor mate-
rial. As this setup acts as a diode, this type of detector is also called
photodiode.

Photodiodes allow large resistance and simultaneously high pho-
toconductive gain within a small volume to be obtained. The n-type
material has a surplus (and the p-type material has a deficiency) of elec-
trons compared to the crystal bond of the semiconductor material. In
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the adjacent region of both oppositely doped zones, electrons migrate
from the n- to the p-region acceptor atoms and holes migrate from
the p- to the n-region donors, if thermal excitation frees them. Within
the contact region all bonds are complete and the material is depleted
of potential charge carriers. This results in a high resistance of this re-
gion, as opposed to the relatively high conductivity of the p- and n-type
material. As the charge carriers diffuse, a voltage is established across
the depletion region, called the contact potential, which opposes the
diffusion of additional electrons. The net result is a permanent equi-
librium voltage across the p-n junction. The resulting bandstructure
across the contact zone is shown in Fig. 4.7.

When photons of energies greater than the forbidden gap energy are
absorbed in, or close to a p-n junction of a photodiode, the resulting
electron/hole pairs are pulled by the electric field of the contact poten-
tial across the p-n junction. Electrons are swept from the p-region into
the n-region, and holes in the opposite direction (Fig. 4.7). As the charge
carriers are spatially separated across the detector, a resulting voltage
can be measured. If the n- and the p-type region are connected, a small
current will flow between both regions. This phenomenon is called the
photovoltaic effect.

Because photodiodes operate through intrinsic rather than extrin-
sic absorption, they can achieve a high quantum efficiency in small vol-
umes. Photodiodes can be constructed in large arrays of many thou-
sands of pixels. They are the most commonly used detectors in 1-6-um
region [3] (e.g., InSb infrared focal plane arrays) and are also used in
the visible and near ultraviolet.

Photoemissive detectors. Photoemissive detectors operate with ex-
ternal photoelectric emission. The excited electron physically leaves
the detector material and moves to the detecting anode. Figure 4.8a il-
lustrates the principal setup. A conduction electron is produced in the
photocathode by absorption of a photon with an energy greater than
the intrinsic bandgap of the detector material. This electron diffuses
through the detector material until it reaches the surface. At the sur-
face of the photocathode it might escape into the vacuum. Using an
electric field between the photocathode and the anode helps to acceler-
ate the electron into the vacuum, where it is driven towards the anode
and counted as current. Suitable photocathode materials must have
the following properties:

¢ high-absorption coefficient for photons

¢ long mean-free path for the electron in the cathode material (low
transport losses of electrons migrating to the surface of the cathode)

¢ low electron affinity, that is, low barrier inhibiting the electron emis-
sion
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Figure 4.8: Photoemissive detectors. a Detection process for a vacuum photo-
diode; b light amplification by a microchannel (top) and a photomultiplier tube
(bottom).

The simple vacuum photodiode (Fig. 4.8a) can be improved by elec-
tron multipliers, increasing the number of electrons contributing to the
output current for each detected photon. A commonly used photoemis-
sive detector is the photomultiplier, illustrated in Fig. 4.8b. It consists
of a vacuum tube including several intermediate anodes. Each anode,
called a dynode, is given a voltage higher than the previous one. The
geometrical arrangement is such that emitted electrons are accelerated
towards the next adjacent dynode. If the voltage difference is high
enough, each photoelectron leaving a dynode gets fast enough to eject
multiple electrons from the next dynode upon impact. This process
is repeated until the avalanche of electrons finally reaches the anode.
The voltages required for operation are provided by a single supply,
divided by a chain of resistors. The photocathode is held at a large
negative voltage in the order of several thousand volts relative to the
anode.

Photomultipliers are large devices, restricted mainly to single de-
tectors. A different form of electron multipliers, which is of practi-
cal relevance for computer vision, are made from thin tubes of lead-
oxide glass. These microchannels have diameters of 8-45 um and a
length-to-diameter ratio of about 40 [3], and are suitable for integra-
tion into small-scale detector arrays. Microchannel plates are arrays
of approximately one million channel electron multipliers, fused into
solid wafers [0]. Figure 4.8b illustrates the principal mechanism of a
single microchannel. The microchannel wall consists of three layers:
an emitting layer; a conducting layer; and bulk glass. The conductive
layer has a high resistance and allows a large voltage to be maintained
across the ends of the tube. Electrons that enter the tube are acceler-
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ated along the tube until they collide with the wall. The inner surface
layer, called the emitting layer, is made from PbO, which acts as an elec-
tron multiplier. Upon impact, the accelerated electrons create multiple
secondary electrons that are accelerated by the voltage along the tube
until they strike the walls again and produce more free electrons. This
operation is comparable to a continuous dynode chain and the gains
are nearly as large as those of photomultipliers.

Microchannel plates are used in modern light intensifying cameras,
suitable for low-illumination applications, such as fluorescence imaging
and night vision devices.

4.5.4 Thermal detectors

The first detectors discovered were thermal detectors, which showed
a response to the heating effect of radiation. Unlike photon detectors,
they do not respond to charge carriers, directly excited by absorbed
photons. Instead, the thermal energy of absorbed photons is detected
by temperature-dependent physical processes. A thermal detector can
be thought of as two essential parts: the absorber and the temperature
Sensor.

It is important to note that the net energy stored by absorption is
given by the photon energy times the number of absorbed photons.
Thus, low-energy photons can create the same detector output as high-
energy photons, if the photon flux is higher and compensates for the
lower energy. For this reason, the spectral response of thermal detec-
tors is flat and determined by the spectral dependence of the surface
absorptance.

Thermal detectors are either bulk devices or metal junction devices.
The junction devices, such as the thermocouple and thermopile, rely
upon the Seebeck effect or thermoelectric effect. Two separate junc-
tions of two dissimilar metals generate a voltage proportional to the
difference in temperature between them [1]. If one junction is kept
at reference temperature, the series output will be proportional to the
temperature of the other junction. In practical realizations of thermo-
couples, one junction is embedded into an absorbing material, while
the other junction is thermally connected to the radiometer housing
with a high thermal mass. Thermopiles are series of individual thermo-
couples, which substantially increase the sensitivity.

While thermopiles are mostly used as single detectors, another type
of thermal detector, called a bolometer, is a bulk-type detector and can
be easily integrated into large detector arrays. Bolometers take advan-
tage of the high-temperature coefficient of resistance in semiconduc-
tors, which is similar to the principle of photoconductors. A detailed
treatment of recent developments in the fabrication of microbolometer
arrays is given in [7].
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Figure 4.9: Mixing of two periodic signals S;, and Sy, with slightly different
wavelengths, A; = 1.1 Ay,. The bold line shows the resulting signal S = S; + Sy,.
The amplitude of the mixed signal is modulated by the difference, or beat fre-
quency.

Recent developments in high-temperature (about 77 K) supercon-
ductivity made another type of thermal detector available, which relies
on the sharp resistance change with temperature in the superconduct-
ing transition region. These superconducting bolometers can also be
operated in two other modes that involve the breaking of Cooper pairs
by the incident photons, thus destroying superconductivity [4].

Coherent detectors. Coherent receivers directly measure the electro-
magnetic field of the incident radiation. They mix the electromagnetic
field of the incoming photons with an internal reference field of simi-
lar frequency, produced by a high-frequency oscillator. The resulting
signal shows a strong modulation of the amplitude, which is given by
the difference frequency of both signals—a physical effect commonly
referred to as beating.

Let S; and S;, be the incident, and the mixing signal (electric field),
respectively, given in complex notation by

Sm=Anmexpliwt], and S;=A;expli(w +€)t] (4.36)

where € is a small frequency shift compared to the main frequency w.
Linear superposition yields the following mixed signal:

S = Snu+S; Apexpliwt] + Ajexpli(w + €)t]

(4.37)
expliwt] (A, + Ajexpliet])

which can be interpreted as an oscillation at the frequency w, with an
amplitude modulation at the difference (beat) frequency €. This effect
is illustrated in Fig. 4.9.
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Figure 4.10: Schematic illustration of the fill factor and microlens arrays on
detector arrays. a Detector without a microlens array; b Detector with a micro-
lens array.

From the mixed field, the exact frequency can be extracted, as well
as the amplitude and phase of the incident signal. In order to measure
the electric field, the mixed field has to be passed through a nonlinear
electrical element, called mixer, that converts power from the original
frequency to the beat frequency.

Unlike all other types of (incoherent) receivers, these coherent re-
ceivers obtain additional information about the wave number and phase
of the signal. As the phase information is given, they can correlate mea-
surements of different receivers to reconstruct the incoming wavefront
by interferometry. Intercontinental baseline radio telescopes use this
ability to combine several telescopes spread over the entire globe to
enhance the resolution up to milliarc-seconds for astronomical appli-
cations.

A more detailed treatment of the theory of coherent receivers can
be found in References [8] and [3].

4.5.5 Characteristics of detector arrays

Fill factor. Most detector arrays used in computer vision are not pho-
tosensitive over the entire detector area. As all electrical contacts and
microelectronic components have to be integrated into the chip sur-
face, only a small portion is retained for the actual photosensitive de-
tector area. Exceptions are 1-D detector arrays, where all electronic
components and bonds can be arranged alongside the detector, or back-
illuminated detector arrays.

The basic quantities defining the fill factor of the sensor are the pixel
pitch d,, which describes the center distance of two neighboring pixels,
and the pixel size d;, which is the extension of the photosensitive area.
For nonsquare pixels, the dimensions on both directions have to be
known.

Given a local irradiance E;(x) on the sensor, only the portion

ds

E(x) = Ei(x) %5 (4.38)
dl’
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actually contributes to the signal at the point x (Fig. 4.10a). For non-
square pixels/arrays, the squared quantities have to be replaced by the
products of the corresponding quantities in the x- and y-direction,
respectively.

Microlens arrays. A common technique to overcome the problem of
reduced fill factor is to place microlens arrays over the detector area.
An optimal microlens array covers the entire sensor surface, such that
incident radiation is focused onto the individual photosensitive areas,
asillustrated in Fig. 4.10b. In that way, the maximum possible radiative
flux can be collected with low fill factors.

There are, however, two basic problems that have to be acknowl-
edged, even for perfectly transparent lens-arrays:

¢ The incident radiation is focused onto a spot smaller than the pho-
tosensitive area, with the exact position depending on the angle of
incidence (Fig. 4.10b). If the photosensitive area exhibits local inho-
mogeneities in the sensitivity, the detector output shows an angular
dependence, given by the sensitivity distribution of the photosensi-
tive area.

o For large angles of incidence, it might happen that the incident ra-
diation is focused onto a point in between two photosensitive areas
(Fig. 4.10b). Thus, the angular response suddenly drops to zero for
a certain cutoff angle. This effect can be avoided if the geometric
setup is such that no radiation beyond the critical angle can enter
the optical system. The larger the focal lens of the optical system
is, the smaller the maximum inclination angle.

Static noise pattern. It is impossible to manufacture large detector
arrays in such a way that all individual sensor elements will be abso-
lutely identical. Each pixel usually exhibits slightly different sensitiv-
ities, offsets, and gains. Thus, even absolutely uniform surfaces are
imaged according to the intrinsic structure of the sensor array inho-
mogeneities. These patterns overlay all images and constitute some
kind of “noise.” Unlike other types of noise, this fixed pattern noise is
static and remains stable over a certain time span.

In principle, the fixed pattern noise can be corrected for by radio-
metric calibration of the sensor. This procedure is commonly referred
to as flat fielding, as a surface with uniform radiance is used to compute
the local inhomogeneities.

If the fixed pattern noise remains stable over the expected lifetime of
the camera, it can be calibrated once by the manufacturer, and all pixel
readouts can be automatically corrected for local offsets and gains. If
the static noise pattern changes over longer periods, it might be neces-
sary to repeat the calibration procedure more frequently.
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Figure 4.11: The chain of radiometric imaging.

4.6 Concluding summary

This chapter concludes with a summary of the basic results of the pre-
vious considerations about quantitative radiometry of imaging. Fig-
ure 4.11 summarizes the chain of events leading from emission of ra-
diation to the final image formation. The basic steps and results can
be summarized as follows:

1. The detected flux is proportional to the radiance of the emitting
surface with a proportionality constant given by the geometry of
the optical setup.

2. The radiance stays invariant as it propagates through space. Thus,
the radiometric measurement can be carried out at any position
along the direction of propagation. This result, however, assumes
that no losses occur along the propagation path. For effects such
as scattering, absorption, refraction, etc., the radiance is decreased
according to the interaction of radiation with matter (this was pre-
sented in Chapter 2).

3. The radiance is changed at the transition of interfaces separating
two media with different refractive indices. In case the radiation
penetrates a second interface (into a medium with the same refrac-
tive index as the initial one), this process is reversed. Thus, the ini-
tial radiance is restored after passing a lens system, but attenuated
by the transmittance of the optical system.

4. By optical imaging, the radiance entering a camera lens is converted
into irradiance of the detector. The irradiance distribution on the
detector plane shows a natural field darkening with decreasing irra-
diance towards the edges of the detector. This field darkening can
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be further amplified by having vignetting and other optical effects
block parts of the radiation.

. The final output of the imaging detector depends on a variety of

detector properties. If the conversion from incident flux to an elec-
trical signal is linear, the output remains proportional to the object
irradiance.
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5.1 Introduction

As the name indicates, the field of computer vision has long been viewed
as an essentially computational science, concerned only with the mathe-
matical treatment of images whose origins are effectively ignored. This
conventional view of computer vision (or machine vision), as perceived,
for example, in the textbook by Gonzalez and Wintz [1], has slowly
given way to a different, holistic comprehension of machine vision as
the science of systems that extract information from wave fields (see
also Chapters 2-4). This systems approach, sometimes also called elec-
tronic imaging [2], has two immediate consequences: first, in a well-
designed system, different components can compensate for the defi-
ciencies in other components; practical examples of this capability in-
clude the digital correction of imaging lens distortions in photogram-
metric applications (Chapter 6 or [3]), the significant increase of a sys-
tem’s dynamic range by nonlinear compression of the photosignal in
the image sensor [4], and the digital compensation of offset and gain
nonuniformities in the image sensor [5]. Second, the image acquisition
process can become dynamic and adaptive, reacting to changes in the
outside world by adapting the properties of the image capture and pro-
cessing components in an optimal fashion. This powerful concept of
active vision has already been proposed previously [6] but only now,
with the recent development of custom solid-state image sensors, is it
possible for active vision to reach its full potential. At the same time,
new research opportunities are occurring in machine vision because
new types of image processing algorithms are required that not only
influence the image acquisition process but are also capable of exploit-
ing novel imaging modalities [7].

This contribution should represent a comprehensive introduction to
solid-state image sensing for machine vision and for optical microsys-
tems, with an emphasis on custom image sensors that can be tailored
to the requirements of individual imaging applications in research and
industrial use.

The material presented here is organized in the form of a system-
atic exploration of the photosensing chain in Sections 5.2-5.5: Incident
photons are followed on their paths into the interior of a semiconductor
where most of the photons interact by producing electron-hole pairs.
These photocharge pairs need to be separated in an electric field before
they recombine again, leading to the flow of a photocurrent, which is
proportional to the incident light intensity over many orders of magni-
tude (Section 5.2). The photocurrent can be manipulated and processed
in many different ways before it is converted into a storable quantity
at each pixel site. It is actually this large variety of processing capabili-
ties that represents the true value of custom solid-state image sensing:
By selecting and combining the required functionality for an imaging
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problem at hand, drawing from an extended “toolbox” of functional
modules, the properties and the performance of an image sensor can
be optimized for the given problem (Section 5.3). Finally, the prepro-
cessed image information is stored at each pixel, often in the form of a
voltage signal. During readout the individual pixels are interrogated ei-
ther sequentially or several of them in parallel (Section 5.4). The stored
pixel information is transmitted off-chip to the outside world, or ad-
ditional processing steps (for example analog-to-digital conversion or
even digital image processing) can be performed on the image sensor
chip itself. An important part of the presented fundamentals of solid-
state photosensing is the analysis of noise sources, noise reduction
schemes, and the achievable signal-to-noise ratios (SNR) (Section 5.5).
This leads us naturally to the basic reason for the development of mod-
ern charge-coupled device (CCD) technology and to the discussion of in
which applications CCD image sensors might be replaced by CMOS-
compatible image sensors in the near future.

Section 5.6 is devoted to an introduction of image sensor architec-
tures. It covers the various types of CCDs employed today, the tra-
ditional photodiode array image sensor, and the active pixel sensor
(APS) architecture. After an introduction to the basics of color vision
Section 5.7 outlines the technical realization of color chips and color
cameras.

Often ignored in the design of machine vision systems, the practical
limitations of today’s solid-state image sensors require special consid-
erations for optimum system solutions. As described in Section 5.8,
most of the shortcomings of the image sensors can be compensated
by suitable calibration or correction procedures in an accompanying
digital processor.

The concluding Section 5.9 reviews the most important aspects of
custom image sensors, leading to the prediction that the large degree
of freedom offered by the wide choice of image sensing functionality
will result in many more applications where smart machine vision sys-
tems will be inexpensive, reliable, and yet provide high-performance
solutions to optical measurement and visual inspection problems.

For the interested reader, more detailed information on camera and
video standards, semiconductor technology for image sensing, and the
future of sensor technology can be found in the full edition of this
handbook [CVAL, Chapter 7].

5.2 Fundamentals of solid-state photosensing

A generic machine vision or optical measurement system consists of
the elements illustrated in Fig. 5.1. A suitable source of radiation, for
example a light bulb, creates a wave field that can interact with the
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Figure 5.1: Illustration of the photosensing (“electronic imaging”) chain. It
consists of a source of radiation, an interaction mechanism of the object under
study with this radiation, shaping of the radiation field, conversion of radiation
into electronic charge, the processing of this information, and the display for a
human observer or the automatic extraction of pictorial information content.

object under study. The part of the radiation that interacted with the
object now carries information about it, which can be contained, for ex-
ample, in the spatial, temporal, spectral, or polarization modulation of
the radiation. The returning information-carrying radiation is partially
collected, often by making use of an imaging (lens) subsystem. A sensor
converts the collected radiation into an electronic charge, which can be
preprocessed using analog or digital electronics. The preprocessed in-
formation is converted into digital form for treatment in a specialized
or general-purpose computer. The purpose of this image processing
step is either to enhance certain aspects of the image information and
display the modified image for inspection by a human observer, or to
extract automatically certain types of pictorial content. This informa-
tion can then be used to react to the perceived information content:
for example, by interacting with the environment employing suitable
actuators.

This chapter concentrates on the sensor and electronic preprocess-
ing part of the whole electronic imaging chain using solid-state image
sensors. The radiation that can be captured with these types of image
sensors is restricted to electromagnetic waves extending from the x-ray
region to the near infrared. This large spectral range covers most wave-
length regions of practical importance, notably the visible spectrum.

Although any type of high-quality semiconductor can be employed
for the conversion of electromagnetic radiation into photocharge and
its electronic processing, the presentation in this work will be con-
cerned mainly with silicon, due to its almost exclusive use in the semi-
conductor industry. As we will see, in most aspects this is not a real
restriction, and the use of silicon for photoconversion and electronic
processing is really an excellent choice.

In the following, a systematic exploration of the photosensing chain
is presented (“from photons to bits”), as illustrated in Fig. 5.2. Incident
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Figure 5.2: Simplified sequence of events in semiconductor photodetection. In-
coming radiation is converted into charge pairs in the bulk of the semiconductor,
the charge pairs are separated in an electric field, and they are either stored
in the pixel or the photocurrent is processed locally. The photosignal is subse-
quently transported to an electronic amplification circuit for detection.
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Figure 5.3: Schematic representation of the optical losses encountered in semi-
conductor photosensors: (1) surface reflection; (2) thin-film interference; (3) ab-
sorption in the cover; (4) photocharge loss in inactive regions; (5) interaction
deep in the semiconductor bulk; and (6) transmission through the semiconduc-
tor.

photons are converted into charge pairs, leading finally to preprocessed
image information at the output of the semiconductor chip.

5.2.1 Propagation of photons in the image sensor

Two types of interactions of photons with solid-state materials have to
be considered for an understanding of an image sensor’s properties:
absorption and reflection (see also Sections 2.5.2 and 2.5.3). Before an
incident photon can interact measurably in the bulk of a piece of semi-
conductor, it has to arrive there safely, crossing the interface between
air and semiconductor surface. What can happen to an incident pho-
ton is illustrated schematically in Fig. 5.3, depicting the cross section
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Figure 5.4: Absolute quantum efficiency measurement of a silicon p-n junction
realized with a standard CMOS process. This example illustrates the decay to-
wards the blue (surface absorption) and red spectral region (interaction too deep
in the semiconductor), as well as the oscillations due to thin-film interference.

through an image sensor. On top of the image sensor, we find scratch-
resistant transparent covering and protective materials, often in the
form of dielectric layers such as silicon dioxide or silicon nitride, with
a typical thickness of a few pym. At the interface between cover and
actual semiconductor, there is a thin, essentially inactive zone. In the
bulk of the semiconductor one encounters first a region that has been
swept clean of mobile electronic charges. In this so-called space-charge
region, usually a few microns deep, an electric field is present. Below
this, the field-free bulk of the semiconductor follows, which can be as
thin as a few um or as thick as many 100 ym. The following identifies
six different effects that prevent photons from being detected by the
image sensor:

1. Due to the mismatch between the refractive index of top surface
and ambient (often air), the incident photon is reflected and does
not enter the image sensor. A typical value for this reflection loss
is obtained in the following way: using an index of refraction of
n=1.5 for silicon dioxide, 4 % of the photons are reflected at normal
incidence from air [8].

2. Multiple reflections in the covering thin layer lead to a strong spec-
tral oscillation of the transmittance, as is apparent in the measure-
ment shown in Fig. 5.4.

Depending on the wavelength of the incident photon it is either
transmitted well or it is preferentially reflected back. In good image
sensors, this disturbing effect is virtually eliminated by the deposi-
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Figure 5.5: Optical absorption coefficient and light penetration depth as a func-
tion of wavelength for various semiconductor materials. Data taken from Sze

[10].

tion of additional dielectric antireflection layers on top of the image
sensor [8].

. The covering layers are not perfectly transparent, leading to absorp-
tion of part of the incident photons already at this stage. The re-
duced blue response of CCD image sensors is a good example of
this effect, caused by the low transmission of the covering polysili-
con electrodes on the pixels.

. Inactive regions near the surface of the semiconductor consist of
semiconductor material with a very short lifetime of charge pairs.
This is either caused by defects right at the interface (less than 1 nm),
or by very high doping concentration near contacts [9]. Photogen-
erated charge pairs recombine so fast that their collection and elec-
tronic detection is improbable.

. Photons that are absorbed very deeply in the bulk of the semicon-
ductor result in photocharge that does not have a chance to reach
the surface of the image sensor for collection in a pixel. As will be
described in what follows, the critical distance is the so-called diffu-
sion length L, which can be many times 10 um deep for low-doped
semiconductors [9].

. Finally, photons might travel through the image sensor without in-
teraction, leaving it again at the back end.

5.2.2 Generation of photocharge pairs

Because of the sequential process of photocharge generation, virtually
all photons that are absorbed in the semiconductor material are con-
verted into an electronic charge [8]. There is a strong spectral depen-
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dence, however, of the mean absorption depth at which this photocon-
version takes place, as illustrated in Fig. 5.5. Short-wavelength light
is predominantly absorbed at the surface, while red light penetrates
deeply into the bulk of the semiconductor. A major consequence of this
effect is that the achievable spatial resolution degrades significantly
with wavelength [11]: images taken in the red or infrared spectral re-
gion show much less contrast compared to images taken in green or
blue light. For this reason, image sensors are often covered with an
optical filter, cutting off the infrared portion of the incident light.

In the absorption process, a photon loses its energy by creating one
or more charge pairs. In a photodetection event, no net charge is cre-
ated and neutrality is always maintained. For this reason, charge pairs
are created, consisting of an electron and a (positively charged) quasi-
particle called hole [8]. The overall charge conversion efficiency of this
process is usually measured with the quantum efficiency n, describing
how many charge pairs are created and electronically detected per inci-
dent photon. Alternatively, this conversion efficiency can be described
with the responsivity R in units A/W, measuring how much current is
flowing out of a photosensor per incident light power. The relationship
between R and n is given by

Aq
R=n he (5.1)
using Planck’s constant h, the speed of light ¢, the unit charge g, and
the photons’ wavelength A. As an example, consider a photodetector
with an n of 0.9, illuminated with red light (A =633 nm) from a HeNe
laser. The corresponding responsivity is R =0.46 A/W.

In the visible and infrared portion of the spectrum, n is less than
unity. This is illustrated in Fig. 5.4 with the actual measurement of an
n~ p- photodiode, manufactured with a standard CMOS process using
silicon. The n decreases towards both the blue (incident light is al-
ready absorbed in the covering layers) and the infrared portion of the
spectrum (light penetrates and interacts so deeply in the semiconduc-
tor that the created charge pairs recombine and disappear before they
reach the surface where they could have been collected and measured).
In the visible part of the spectrum, a rather high n of close to 100% is
observed. As no special antireflection coating is used in this photodi-
ode, spectral oscillations can be seen in the n curve, caused by multiple
reflections of the incident light within the covering layers [8], so-called
thin-film interference. For improved performance, antireflection coat-
ings are employed, reducing this effect significantly.

If a photon has a sufficiently high energy such as in x-rays, one pho-
ton can create many charge pairs. In silicon a mean energy of 3.8 eV is
required for the creation of one electron-hole pair [12]. As an example,
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consider a soft x-ray photon with an energy of 1000 eV, correspond-
ing to a wavelength of 1.24nm. The absorption of this x-ray photon
results in the creation of 263 charge pairs. Because silicon starts to be-
come transparent for x-ray photons with an energy of more than a few
1000 eV, silicon is not an efficient solid state detector for such energies.
Other semiconductors, consisting of high-density materials with atoms
of high atomic numbers, are more appropriate for x-ray detection [13].

5.2.3 Separation of photogenerated charge pairs: photocurrents

Once a charge (electron-hole) pair has been created, it must be sep-
arated within a certain time before it recombines again and loses all
information about the previous presence of the photon that generated
the charge pair. This recombination lifetime T depends critically on
the quality and purity of the semiconductor [9]. In high-quality low-
doped silicon used in CMOS processes, for example, the lifetime can be
as large as several tens of microseconds. This is the time available for
separating the photocharge and moving the different charge types to
suitable storage areas.

Two physical effects dominate the motion of electronic charge in
semiconductors: drift in an electric field and diffusion caused by the
random thermal motion of the charge carriers. The presence of an
electric field E causes charge carriers to move with the velocity v

v =uE (5.2)

with the mobility u. As an example, the mobility of electrons in low-
doped silicon at room temperature is about 1350 cm?/Vs. Above a
certain field strength, the velocity saturates, taking on a constant value
Vsat. For silicon, this saturation velocity is about 10> m/s [10].

Even in the absence of an electric field, charge can move: the thermal
random motion causes diffusion, a tendency of charge carriers to equi-
librate their distribution. The thermally induced velocity vgis of the
charge carriers can be very high: an electron at room temperature has
an average velocity of vgir = 10° m/s. This random motion causes an
average [root-mean-square] (rms)] displacement L of a single electron,
depending on the time t given for the diffusion process

L =+/Dt (5.3)

with the diffusion constant D. Silicon exhibits a typical electron dif-
fusion constant of about 45 cm?/s at room temperature. For the re-
combination lifetime T already mentioned, the corresponding average
displacement L is called diffusion length. This is the average distance
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over which a charge carrier can move without the influence of an elec-
tric field and without recombining. As an example, consider T = 10 us
and D =45 cm?/s, resulting in L =212 ym. This implies that the diffu-
sion process can be extremely important for the collection of charge
carriers over significant distances. This also means that charge carri-
ers photogenerated deeply in the semiconductor have a high chance
of reaching the surface, where they can be collected and where they
contribute to a severe reduction of the contrast, especially for small
pixel periods. As mentioned in the preceding, this can be counteracted
only by filtering out the long-wavelength photons that would penetrate
deeply into the semiconductor.

Photogenerated charge carriers moving under the influence of an
electric field represent a current, the so-called photocurrent. This pho-
tocurrent is proportional to the incident light intensity over 10 orders
of magnitude and more [14]. It is this strict linearity of photocurrent
with incident light over a wide dynamic range that makes semiconduc-
tor photosensors so attractive for many applications in image sensors
and optical measurement systems.

5.3 Photocurrent processing

All the information a photosensor can extract from the light distribu-
tion in a scene is contained in the spatial and temporal modulation of
the photocurrent in the individual pixels. For this reason, it is of much
interest to process the pixels’ photocurrents accordingly, in order to ob-
tain the relevant modulation parameters in the most efficient manner
[7]. Traditionally, only the integrated photocurrent could be extracted;
today a large variety of photocurrent preprocessing is available, mak-
ing it possible to optimize the photosensor acquisition parameters to a
given problem. In the following, a few examples of such photocurrent
preprocessing are presented.

5.3.1 Photocharge integration in photodiodes CCDs

The simplest type of photocurrent processing is the integration of the
photocurrent during a certain time, the exposure time. In this way
an integrated charge is obtained that is proportional to the number of
photons incident on the pixel’s sensitive area during the exposure time.
This functionality is very easy to implement by employing the capaci-
tance of the device used for generating the electric field for photocharge
separation. Figure 5.6 illustrates this principle for the two most impor-
tant photosensitive structures, the photodiode (PD) and the metal-oxide-
semiconductor (MOS) capacitor as used in the charge-coupled device



5.3 Photocurrent processing 121

a b

conductor conductor

T éﬁéﬁﬁé|| |
S
space-charge region SR
p-type silicon substrate p-type silicon substrate

T

Figure 5.6: Cross sections through the two major types of electrical field gener-
ating and charge storing devices in semiconductors: a photodiode, consisting of
a reverse-biased p-n junction; b MOS capacitance, consisting of a (transparent)
electrode on the semiconductor material, separated by a dielectric insulation.

(CCD) image sensors. Both devices are easily fabricated with standard
semiconductor processes.

A photodiode consists of a combination of two different conductiv-
ity types of semiconductor, as illustrated in Fig. 5.6a. In the junction be-
tween the two types of semiconductor, an electric field in the so-called
space-charge region exists, as required for the separation of photogen-
erated charge carriers. At the same time, this space-charge region has a
certain capacitance, varying with the inverse of the space-charge region
width. Photodiodes are typically operated by biasing (“resetting”) them
to a certain potential and exposing them to light. Photocharge pairs en-
tering the space-charge region are separated in the PD’s electric field,
a photocurrent is produced, and the photocharge is accumulated on
the PD’s capacitance, lowering the voltage across it. After the exposure
time, the residual voltage is measured, and the voltage difference com-
pared with the reset voltage level is a measure of the amount of light
incident on the pixel during the exposure time.

The MOS-capacitance illustrated in Fig. 5.6b consists of a thin layer
of oxide on top of a piece of semiconductor. The oxide is covered with
a conductive material, often a metal or highly doped polycrystalline
silicon (polysilicon). As in the case of the PD, the MOS structure is
biased to a suitable voltage, leading to a space-charge region of a certain
extent in the semiconductor. Again, photocharge is separated in the
electric field and it is integrated on the MOS capacitance, collected at
the interface between semiconductor and oxide.

A typical value for the PD and MOS area capacitance is 0.1 fF/um?.
Assuming a maximum voltage swing of a few volts, this implies a stor-
age capacity of a few thousand photoelectrons per um?. Once this stor-
age capacity is exceeded, additional photocharge in the corresponding



122 5 Solid-State Image Sensing

\Y reset \Y

M C
program_{ "1M

Figure 5.7: Schematic diagram of the offset pixel with current source transistor
My, reset transistor M,, row-select transistor Ms.;, and sense transistor M;.
The value of the offset current is stored on the switched offset memory capacitor
Cym with the programming switch My, [16].

pixel starts to spill over to neighboring pixels. This effect is called
blooming, and well-designed image sensors provide special collecting
(“antiblooming”) structures for a reduction of this effect [15].

5.3.2 Programmable offset subtraction

Several machine vision and optical metrology problems suffer from
small spatial contrast [7]. In such cases in which the spatial signal
modulation is small compared to the background light level, one would
profit from an offset subtraction mechanism in each pixel. This can be
realized, even programmable in each pixel, with the offset subtraction
mechanism proposed by Vietze and Seitz [16]. Each pixel contains a
photodiode in series with a programmable current source, as illustrated
in Fig. 5.7. This current source is easily realized with a MOSFET, whose
gate voltage can be preset to a certain voltage level with a second MOS-
FET, and by using a capacitance for the storage of this gate voltage. The
MOSFET is operated in the so-called weak-inversion regime, where the
drain current depends exponentially on the gate voltage; the current
typically doubles with each increase of gate voltage by about 30 mV. In
this way, the offset current can be varied easily between 1 fA up to sev-
eral tens of pA [17]. The same integration mechanism as presented in
Section 5.3.2 is employed for the collection of signal photocharge, rep-
resenting the difference between total photocharge minus offset pho-
tocharge. Using this method, a dynamic range exceeding 150 dB can be
reached, and several interesting applications can be realized very eas-
ily. An example of this is a simple change detector, implemented as a
two-stage process. In a first stage, the offset current in each pixel is pro-
grammed such that the net result is zero; the offset currents effectively
cancel the local photocurrents. In a second stage, the image is simply
observed for nonzero pixels, indicating that there was a change in the
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Figure 5.8: Application example of the offset pixel—motion detector realized
with a 26 x 28 pixel CMOS image sensor [17]: a sensor image of a simple scene
(black letters “PSI” on white paper) after adjusting the pixels’ individual offset
current to a medium gray level; b sensor image after moving the scene slightly
downwards and to the right. Pixels with changed values appear either black or
white.

present scene compared to the original “reference” scene: a change in
the scene has occurred!

The realization of such a change detector is illustrated with an ex-
perimental offset pixel image sensor with 28 x 26 pixels, fabricated with
standard CMOS technology [17]. In Fig. 5.8a the result of offset can-
cellation for a stationary scene containing the letters PSI is shown: a
uniform gray picture. Once the object is moved (the letters are shifted
downwards), the resulting pixels appear as bright where the dark object
was, or as dark where the bright background was, see Fig. 5.8b.

5.3.3 Programmable gain pixels

Another local operation desirable in an image sensor is the individual
multiplication of the photocurrent with a programmable factor. This
can be achieved with a modification of a simple electronic circuit called
current-mirror, consisting of two transistors. In the standard configu-
ration, the gate terminals of the two transistors are connected. In the
modification proposed in Vietze [17], a voltage difference between the
two gates is applied, as illustrated in Fig. 5.9. This voltage difference is
either fixed (e.g., by semiconductor process parameters), or it can be im-
plemented as individually programmable potential differences across a
storage capacitor. The photocurrent produced by a photodiode in the
first branch of the modified current mirror results in current in the sec-
ond branch that is given by the photocurrent times a factor. By using a
similar physical mechanism as in the offset pixel, the gain pixel shows a
current doubling (or halving) for each increase (decrease) of the voltage
difference by about 30 mV. In this way, current multiplication (division)
by several orders of magnitude can easily be obtained. As before, the
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Figure 5.9: Schematic diagram of the gain pixel, consisting of a modified cur-
rent mirror [1 7], with which a photocurrent multiplication with a factor ranging
between 10~4 up to more than 10* can be realized.

multiplied photocurrent is integrated on a storage capacitor and read
out using conventional circuitry.

An application of this is a high-sensitivity image sensor as described
in Reference [17], in which each pixel has a fixed gain of about 8500.
In this way, a sensitivity (see Section 5.5.1 for the definition) of 43 mV
per photoelectron has been obtained, and an input-referred rms charge
noise of better than 0.1 electrons at room temperature. As will be
discussed in Section 5.5, this impressive performance must come at
a price. In this case it is the reduced bandwidth of the pixel, reflected
in the low-pass filter characteristics at low photocurrents with response
times of several milliseconds.

5.3.4 Avalanche photocurrent multiplication

The multiplication mechanism described in the foregoing is based strict-
ly on the use of electronic circuitry to achieve gain. In semiconductors
there is a physical mechanism that can be exploited to multiply charge
carriers before they are detected. This effect is called avalanche multi-
plication, and it is used in so-called avalanche photodiodes (APDs) [18].
If the electric field is increased to a few times 10° V/cm, charge carriers
are multiplied with a strongly field-dependent factor. Depending on the
specific doping conditions in the semiconductor, the necessary electric
fields correspond to breakdown voltages of between a few volts and a
few hundred volts. The strong dependency of the multiplication fac-
tor on voltage is illustrated with a model calculation for a breakdown
voltage of 40 V, shown in Fig. 5.10 [19].

The APDs are commercially available and, because of high achiev-
able gains, they are even suitable for single-photon light detection [20].
Due to the unusual voltages, the complex voltage stabilization/homoge-
nization circuits, and the nontrivial readout electronics in each pixel,
most APDs are only of the single-pixel type. The development of APD
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Figure 5.10: Empirical relationship between applied voltage and obtained cur-
rent gain in an avalanche photodiode, for which a breakdown voltage of Vg = 40
V and an exponent of n =4 have been assumed.

line and image sensor arrays has only just started. Nevertheless, the
fabrication of reliable APD image sensors with CMOS processes is an
active topic of research, and promising results have already been ob-
tained (see, for example, Mathewson [21].

5.3.5 Nonlinear photocurrent to signal voltage conversion

Image processing algorithms are often motivated by solutions found
in biological vision systems. The same is true for different types of
photodetection strategies, especially for the realization of image sen-
sors offering a similarly large dynamic range already inherent in animal
vision. The fact that the human eye shows a nonlinear, close to logarith-
mic sensitivity has been exploited, for example, in the artificial retina
described in Mahowald [22].

The realization of CMOS pixels offering a logarithmic sensitivity is
particularly easy to achieve: One can use the logarithmic relationship
between gate voltage and drain current in a MOSFET operated in weak
inversion, already described in Section 5.3.2. The resulting pixel ar-
chitecture, shown in Fig. 5.11 and exploited in CVA1l [Chapter 8], is
particularly easy to implement in a CMOS process because a pixel con-
sists of just a photodiode and three MOS transistors [23]. A typical
photoresponse of about 40 mV per decade of optical input power is
obtained with such logarithmic pixels, and their useful dynamic range
exceeds 120 dB. Practical examples of scenes requiring such a high dy-
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Figure 5.11: Schematic diagram of a pixel with logarithmic response, consist-
ing of just one photodiode and three MOSFETs. Implemented with a standard
CMOS process, such a pixel shows an output voltage increase of about 40 mV
per decade of incident light power.

Figure 5.12: Pictures taken with a small-area logarithmic image sensor with
64 x 64 pixels: a Electric light bulb where the glowing filament and the back-
ground are visible simultaneously; b Back-illuminated scene of a portrait in front
of a window; ¢ Parking garage application with its notoriously high dynamic
range (headlights compared to dark corners) and low average light levels; d
Welding application in which the object and the welding arc can be observed at
the same time without blooming.

namic range are illustrated in Fig. 5.12, with the actual measurements
taken with a logarithmic image sensor exhibiting 64 x 64 pixels. In the
image of a light bulb, the glowing filament as well as the background are
clearly visible at the same time. Back-illuminated scenes, such as a por-
trait in front of a window, are dreaded by photographers, but they are
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easily handled by logarithmic pixels. In a parking garage, it is difficult
to image dark corners and the interior of cars without being blinded
by car headlights. Welding applications profit from the simultaneous
imaging of the welding arc and its environment.

In contrast to other pixel types in which photocharge is integrated
as discussed in Section 5.3.1, the logarithmic pixel measures the volt-
age at the drain of the MOSFET in series with the photodiode. For this
reason, the dynamic behavior of such a logarithmic pixel depends on
the photocurrent: the darker a scene (the lower a diode’s photocurrent),
the longer it takes until this MOSFET is in equilibrium again. Therefore,
logarithmic pixels react much more slowly at low than at high illumi-
nation levels.

Besides their high dynamic range, logarithmic pixels have a property
that should make them extremely interesting for image processing ap-
plications: An object with a given local contrast, which is imaged with a
logarithmic sensor, results in an image with local pixel differences that
are independent of the scene illumination level. This property is easily
explained with the observation that a (local) light intensity ratio I /I»
results in a signal given by log (1) —log(I>), and a proportional intensity
change of ¢ x I results in a signal given by log(c) + log(I). The same
object under brighter illumination looks the same in the logarithmic
image, except for an additive shift of the background level.

5.4 Transportation of photosignals

The different types of image sensors described in the preceding pro-
duce an electrical quantity as a measure for a certain property of the
incident light. The electrical quantity can be an amount of charge (e. g.,
the integrated photocharge), a current (e. g., the photocurrent) or a volt-
age level (e. g., the voltage difference of a discharged photodiode). This
signal has to be transported as efficiently as possible to an output am-
plifier, responsible for making this signal available to the off-chip elec-
tronics.

5.4.1 Charge-coupled-device photocharge transportation

In the case of CCDs, the photocharge is stored under a precharged MOS
capacitance. The basic CCD idea is to combine a linear array of such
MOS capacitances, so that a stored photocharge can be moved later-
ally under the influence of appropriate MOS electrode voltage patterns.
This principle is illustrated in Fig. 5.13, showing a surface-channel CCD
(S-CCD). In the semiconductor, photocharge pairs are created under the
influence of light. Moving by diffusion and by drift, the photoelectrons
can find their way to positively biased MOS electrodes, also called gates,
where they are stored at the interface between semiconductor and thin
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Figure 5.13: Illustration of the charge transport principle in CCDs. Different
stages of the electrode clocking and charge shifting sequence are shown in a,
b, and c.

oxide. The photogenerated holes are repelled by the positive gate volt-
age, and they move around by diffusion until they finally combine in
the silicon substrate.

It is important to note that a CCD pixel is not represented only by
the positively biased gate because this electrode can receive diffusing
and drifting photoelectrons from its environment. A pixel’s geometry
is therefore rather defined in terms of “effective photocharge collection
area,” extending about halfway to the next positively biased electrode.
This also shows that a pixel does not have sharply defined edges; the
extent of the charge collection area representing a pixel depends on
the wavelength, the electric field distribution, and the diffusion prop-
erties of the semiconductor. Generally, longer wavelength light results
in a lower contrast and offers reduced resolution, as discussed in Sec-
tion 5.2.2.

In Fig. 5.13, the potential distribution under the electrodes right at
the surface is indicated. Photocharge accumulates in the shown “po-
tential wells.” By changing the gate voltage patterns, the potential wells
can be widened, leading to a broadened distribution of photoelectrons.
Using a suitable gate voltage pattern, one can also reduce the extent of
the potential wells, and photoelectrons move again to regions with the
lowest potential. As illustrated in Fig. 5.13, it is physically possible to
transport photocharge. This transport mechanism works rather well up
to frequencies of a few MHz. In good S-CCDs, only about 0.01 % of the
photocharge is lost on average in transporting a photoelectron packet
from one gate to another, neighboring gate. Instead of this charge
transport loss, one often uses the charge transfer efficiency (CTE) con-
cept, defined as the complement to 100 %. The CTE amounts to 99.99 %
in the case of a good S-CCD.

In long CCD lines, a CTE of 99.99 % is still not good enough. Charge
is trapped at the surface, making it hard to improve the CTE. For this
reason, another type of CCD has been invented, the buried-channel CCD
(B-CCD), in which the transport takes place in the bulk of the semicon-
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ductor, a few 100 nm away from the surface. In this way CTEs of up to
99.99995 % can be obtained in B-CCDs, and all commercially available
CCD line- and image sensors are of this type.

Above a limiting clock frequency a CCD’s CTE starts to degrade
rapidly. Nevertheless, CCDs have been operated successfully at very
high clock frequencies. For silicon, 1 GHz has been achieved [24], while
GaAs CCDs have reached 18 GHz clocking frequency [25]. Such high
clock rates require special precautions in the CCD fabrication process,
usually not available for standard video sensors. Today’s technology
limits the analog bandwidth of CCDs to about 40 MHz. This is suffi-
cient for standard video imagers according to the European CCIR or the
American RS-170 black-and-white video standard. For HDTV sensors,
however, the required pixel rate is around 75 MHz, making it necessary
to operate two outputs in parallel in HDTV CCD imagers.

5.4.2 Photodiode photocharge signal transmission

The CCD technology provides a clean separation of the acquisition of
photocharge and its electronic detection. This is achieved by transport-
ing the photocharge with the almost perfect CCD transportation prin-
ciple. Traditional photodiode arrays operate differently, by supplying
each PD with its individual switch (see also Fig. 5.17 and Section 5.6.4),
and by connecting many switches to a common signal (“video”) line.
This video line is most often realized using a well-conducting metal
strip, leading to a common output amplifier structure. In a PD array,
the image acquisition process proceeds in the following way: Assume
that all PDs are initially precharged to a certain reverse bias, typically a
few volts and that all switches are closed. Incident light generates pho-
tocharge pairs in each pixel, leading to the flow of a photocurrent due
to the separation of photocharge pairs in the electrical field region of
the PDs. As a PD also represents a capacitance, this capacitance is dis-
charged by the photocurrent. After a certain time (the exposure time),
a pixel can be interrogated by connecting the PD via the appropriate
switch to the video line. The output amplifier resets the photodiode
to its initial voltage value through the conducting line, while measur-
ing how much charge is necessary to do so. This charge is (apart from
noise effects) the same as the accumulated photocharge in this pixel.
This means that—in contrast to CCDs where the actual photocharge
is transmitted and detected—a PD array works by charge equilibration
in a usually long conducting line. As we will see in Section 5.5.2, this
charge equilibration process introduces noise in the signal detection
process, which is proportional to the video line’s total capacitance: the
larger the number of pixels, the larger the video line capacitance and
the larger the image noise. It is this physical effect that made PD image
sensors so unattractive compared to CCDs in the early 1980s and which
led to their almost complete replacement by CCD image sensors.
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5.4.3 Voltage signal transmission

Not all pixel types depend on the transmission of charge signals, as
indicated by several examples of pixel functionality discussed in Sec-
tion 5.3. Voltage signals are sometimes generated in the individual pix-
els and these voltage signals must be transmitted to an output amplifier
structure. A similar architecture as described in the preceding is used
for this, consisting of individual switches in each pixel that connect the
local voltages to a common amplifier structure. In such an architecture
the voltage signal transmission task is much easier to accomplish than
the charge signal transmission just discussed here: Johnson noise in
the conducting video line, filtered with the video line’s RC low-pass fil-
ter characteristics results in voltage noise that is proportional to one
over the square root of the video line’s capacitance [26]. The larger this
capacitance, the lower the voltage noise. For this reason, voltage signals
can be transmitted with much less noise and higher measurement pre-
cision than (small) charge signals. This implies that image sensor types
offering voltage transmission architectures, such as that provided by
the logarithmic pixel described in Section 5.3.5, have an inherent noise
advantage over conventional PD architectures. This will be discussed
in more detail in Section 5.5.3.

5.5 Electronic signal detection

The basic task of electronic signal detection is the precise measure-
ment of voltage signals offering low noise levels and a wide dynamic
range. These input voltage signals have either been produced by the
conversion of photocharge into a voltage, for example by employing
a capacitance, or they are the result of more elaborate photocharge
preprocessing as was already described here. The output of signal de-
tection electronics is usually a voltage that should be proportional to
the input voltage over a large dynamic range. An important property
of the signal detection electronics is that its output should have very
low impedance, that is, the output voltage should be stable and must
not depend on the amount of current drawn. As we will see in what
follows, the electronic signal detection noise is today’s limiting factor
in increasing an image sensor’s sensitivity and its dynamic range.

5.5.1 Signal-to-noise (SNR) and dynamic range

For a numerical description of the voltage or charge-noise performance
of an electronic circuit, two values are often used, the signal-to-noise
ratio SNR and the dynamic range DR. The SNR is defined by comparing
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Figure 5.14: Schematic diagram of the source follower circuit realized with a
resistor (left) or with a so-called active load MOSFET (right). This is the most
often used electronic circuit for photocharge detection in semiconductor image
sensors. Photocharge deposited on the gate capacitance leads to a gate voltage
Vg, which in turn produces a linear change in output voltage V.

an actual signal level V with its rms noise AV, according to:
_ o010 v
SNR = 20" log AV (5.4)

The DR compares the maximum signal level Vi« with the minimum
rms noise level (AVpin), in an image sensor typically obtained in the
dark

_ 10 Vimax
DR =20 ""log AVorr (5.5)

As an example, consider a CCD image sensor whose maximum charge
(“full well charge”) is 50,000 electrons, and for which a dark noise of
50 electrons rms is observed. This image sensor has a dynamic range
of 60 dB.

It should be mentioned that the preceding definitions of SNR and
DR in image sensors are not consistent with usage elsewhere in optical
physics: As the measured voltage at the image sensor’s output is usu-
ally proportional to the incident optical power, a factor of 10 in front
of the logarithm should be used instead of the employed factor 20.
However, because electrical engineers are used to associating power
only with the square of voltage levels, the definitions given here are the
ones employed almost exclusively for all image sensor specifications.

5.5.2 The basic MOSFET source follower

Although elaborate circuits exist for the desired conversion of volt-
age signals into other voltage signals, most image sensors employ the
simplest type of voltage measurement circuits, the MOSFET source fol-
lower. As shown in Fig. 5.14, this circuit consists of just one transis-
tor and one resistor, which is often implemented as another transistor
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called active load [27]. The output voltage of this source follower circuit
is essentially given by

Vout = fvin - VO (5-6)

with a transistor-dependent multiplication factor f of 0.6-0.8 and an
offset voltage Vi of several hundred millivolts. In practice, one or
a few such source follower stages are employed in series, to obtain
low enough output impedance while maintaining the required read-out
speed. At first sight it is surprising that such a simple circuit with a
gain of less than unity is used in high-sensitivity image sensors. The
reason for this is that the photocharge conversion gain is provided by
the effective input capacitance, which is kept as small as possible. To-
day’s best image sensors have an effective input capacitance of around
15 fF, corresponding to a voltage increase of around 10 uV per electron.
Taking the circuits’ overall gain of less than unity into account, one ar-
rives at the so-called sensitivity of the image sensor, expressed in uV
per electrons. Typical sensitivities of state-of-the-art CCD and CMOS
image sensors are between 5 and 10 uV per electron.

5.5.3 Noise sources in MOSFETs

Based on a source follower circuit, a typical output stage of an image
sensor consists of the components shown in Fig. 5.15. The photocharge
is transported to a diffusion (either the output diffusion of a CCD or the
photodiode itself) that is connected to the gate of the source-follower
MOSFET. Before measurement of each individual photocharge packet,
the diffusion and the connected gate are biased to a reference voltage
using a so-called reset MOSFET. Three main noise sources can be iden-
tified in such a circuit [26], whose influences are referenced back to the
input of the source-follower MOSFET, contributing to an effective rms
charge measurement uncertainty AQ.

Reset or KTC noise. The channel of the reset transistor exhibits John-
son noise similar to an ordinary resistor. This causes statistical fluc-
tuations in the observed reset voltage levels, which result in effective
charge noise AQreset given by

AQreset = \/kTC (5.7)

for the effective input capacitance C, at temperature T, and using Boltz-
mann’s constant k.

Flicker or 1/f noise. Statistical fluctuations in the mobility and charge
carrier concentration of the source follower transistor’s channel cause
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Figure 5.15: Complete single-stage output circuit of a typical image sensor,
consisting of a floating diffusion, a reset transistor, and a single-stage source
follower as shown in Fig. 5.14.

an effective charge noise AQficker described by

IAB
IinfCoxWL

at frequency f, for current I, bandwidth B, transistor length L, and
width W, oxide capacitance C,, process-dependent flicker noise con-
stant A, which is typically between 0.5 and 2, and the transistor’s trans-
conductance gy,.

AQfiicker &< C (5.8)

Thermal noise. Johnsonnoise in the source follower transistor’s chan-
nel can also be referred back to the input, resulting in thermally gener-
ated charge noise AQthermal given by

4kTB«x

AQ‘[hermal =C Im

(5.9

using the same parameters as in the preceding.

In practice, the first two noise sources can be essentially eliminated
by a signal-processing technique called correlated double sampling (CDS)
[28]: Reset noise is canceled by a two-stage process, in which the diffu-
sion is preset to a reference voltage and a first measurement is made of
this voltage level. In a second step, the photocharge is transferred to
the diffusion, and a second measurement is made. The difference be-
tween these two measurements is free of reset noise and contains only
information about the photocharge of interest. Because CDS is a tem-
poral high-pass filter, flicker noise with its low-frequency dominance is
effectively canceled at the same time.

The thermal noise contribution cannot be reduced using signal proc-
essing techniques, and it is obvious from Eq. (5.9) what can be done to
minimize thermal noise. Reduction of temperature (in astronomical
applications down to -120 °C) not only lowers charge noise levels [29]
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but the dark current contribution can be reduced to values as low as
one electron per day per pixel. As a rule of thumb, dark current in
silicon doubles for each increase in temperature of around 8-9 °C.

Often the reduction in temperature is combined with a reduction of
the readout bandwidth to 50-100kHz, leading to a charge noise level of
around one electron [30]. Another technique of bandwidth reduction is
the repetitive, nondestructive measurement of photocharge with out-
put signal averaging, as carried out in the Skipper CCD [31]. Charge
noise levels of 0.3 electrons rms have been obtained in this way. As
can be seen in Eq. (5.9) the dominant factor in noise performance is
the effective input capacitance. This has been lowered to values of less
than 1fF using the so-called double-gate MOSFET [32], corresponding
to a sensitivity of more than 200 uV per electron and an effective charge
noise level of less than one electron at room temperature and at video
frequencies. The maximum photocharge such an output stage can han-
dle is about 10,000 electrons, the DR is limited to about 80 dB.

5.6 Architectures of image sensors

For the acquisition of 1-D and 2-D distributions of incident light, arrays
of pixel are required. Such arrays can be realized as an arrangement
of CCD columns or as suitably placed and interconnected individual
photodiodes as described in Section 5.3.1. Depending on the choice
of arrangement and interconnection, different types of image sensors
result.

5.6.1 Frame-transfer charge-coupled-devices

The simplest type of CCD image sensor is the frame-transfer (FT) CCD.
As illustrated in Fig. 5.16, it consists of three CCD sections. One CCD
area (A register) is used for the conversion of photons into photocharge
during the exposure time and for the storage of this photocharge in the
pixels. This 2-D photocharge distribution is subsequently shifted down
into another CCD area (B register), which is covered with an opaque
metal shield. From the B register, an image row at a time is shifted
down into a CCD line (C register), with which the photocharges are
transported laterally to the output amplifier, so that the content of this
image row can be accessed sequentially.

The disadvantage of the FT-CCD principle is the afterexposure of
bright areas that can occur when the photocharge pattern is trans-
ported from the A register into the light-shielded B register. This oc-
curs because the A register remains light-sensitive during the vertical
photocharge transportation time. The afterexposure effect in FT-CCDs
can create saturated (“bright”) columns without any contrast informa-



5.6 Architectures of image sensors 135
a b_

A register <|:| <|:| <|:|

B register <|:| <|:| <|:|
v A 4 <|:| v <|:|
> H>— >

<
[

C register

output amplifier C register output amplifier
c _ - d
0 [0 [0 e
o |[l9|]c Bk
< D ) D b D % i — i — i —
< I:l < I:l < |:| % {L zﬁ_" {L
< D ) D < D é - - L - —
V v v column Iine\ -I[: .I[I .I[I
> | lect~” II:
> I- o EEES | output amplifier
- column addressing circuit
C register output amplifier

Figure 5.16: The four most important architectures of solid-state image sensors:
a frame-transfer (FT) CCD with its three registers; b interline-transfer (IT) CCD
with column light shields for vertical charge transfer; c field-interline-transfer
(FIT) CCD, combining FT-CCD and IT-CCD principles for studio and broadcast
applications; d traditional photodiode array image sensor with one photodiode
and one selection transistor per pixel.

tion. For this reason, high-quality FT-CCD cameras employ a mechani-
cal shutter, shielding the A register from incident light during the ver-
tical photocharge transportation time.

The big advantage of the FT-CCD is that the whole A register area
is photosensitive; one speaks of an optical fill factor of 100 %. Because
the A register is covered with polysilicon CCD electrodes that tend to
absorb in the blue and UV, an FT-CCD is not very sensitive in the blue
spectral region. For special applications this can be remedied by thin-
ning down an FT-CCD to about 10 um thickness and by illuminating
it from the back. Such back-side illuminated FT-CCDs offer 100 % fill
factor, an excellent response over the whole visible spectrum, and they
are the image sensors of choice for scientific and astronomical appli-
cations.



136 5 Solid-State Image Sensing

5.6.2 Interline-transfer charge-coupled-devices

In consumer applications, a mechanical shutter is impractical to use,
and for this reason FT-CCDs are rarely used in video and surveillance
cameras. Rather, the interline-transfer (IT) CCD principle is employed,
as illustrated in Fig. 5.16b. Photocharge is collected in the individual
pixels, and after the exposure time the photocharge is transferred via
the pixels’ transfer register into a corresponding vertical CCD column.
These CCD columns are shielded from light with an opaque metal layer.
A 2-D photocharge distribution can therefore be shifted downwards,
one row at a time, into the horizontal output register, from where the
photocharge packets are read out sequentially. As the vertical CCD
columns are shielded, the afterexposure problem is much less severe
than in FT-CCDs. One pays for this with a reduced fill factor, because
the column light shields reduce the available photosensitive area on
the image sensor’s surface. The typical fill factor of an IT-CCD is about
30 %, reducing the total sensitivity to about a third of that observed in
FT-CCDs.

With the IT-CCD principle a very useful functionality becomes avail-
able: Because there is essentially no time-constraint in exposing the pix-
els and transferring their accumulated photocharge under the shielded
columns, one can implement an electronic shutter. The exposure time
can be as short as a few 10 us, extending up to several seconds in cam-
eras not conforming to a video standard. The exposure time is essen-
tially bounded by the dark current, which depends strongly on tem-
perature, as described in Section 5.5.2. The desirable properties of the
IT-CCD make it the image sensor of choice for most of today’s video
and surveillance cameras, especially for consumer applications. In or-
der to increase the optical fill factor of IT-CCDs, some manufacturers
supply each pixel with its own microlens, so that more light can be di-
rected to the IT-CCD’s photosensitive surface. An even more efficient,
albeit more expensive improvement is the coverage of an IT-CCD with
amorphous silicon, with which the optical fill factor can be increased
further, close to 100 %.

5.6.3 Field-interline-transfer charged-coupled-devices

Although the column light shield in the IT-CCD is an efficient light
blocker, there is always some residual photocharge seeping into the
columns from the sides. For this reason, an IT-CCD can still show
some afterexposure effects. For professional applications such as video
broadcasting, this is considered not acceptable, and a combination FT-
and IT-CCD principle has been invented to overcome this problem, the
field-interline-transfer (FIT) CCD, illustrated in Fig. 5.16c. The upper
part of a FIT-CCD really consists of an IT-CCD. The lower part, however,
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is realized like the B and C registers of an FT-CCD. The FIT-CCD is oper-
ated by acquiring an image conventionally, making use of the IT-CCD’s
variable exposure time functionality. The resulting 2-D photocharge
distribution is then shifted quickly under the shielded vertical columns,
from where it is transported very fast under the completely shielded in-
termediate storage register. The sequential row-by-row readout is then
effectuated from the B and C registers, exactly as in FT-CCDs.

5.6.4 Conventional photodiode (MOS) arrays

A photodiode or MOS array image sensor consists of a 1-D or 2-D ar-
rangement of PDs, each provided with its own selection transistor, as
illustrated in Fig. 5.16d. For a description of the PD image sensor’s
operation, assume that all PDs are precharged to a certain reverse bias
voltage, typically 5V. Under the influence of the incident light, each
pixel is discharged to a certain level. A pixel is read out by addressing
the corresponding row and column transistors, providing a conducting
line from the pixel to the output amplifier. Using this line the pixel is
charged up again to the same reverse bias voltage as before. The am-
plifier measures how much charge is required to do so, and this charge
is identical to the photocharge (plus dark current charge) accumulated
at the pixel site. In this way, each pixel can be read out individually, at
random, and the exposure time is completely under the control of the
external addressing electronics.

The random addressing freedom, however, comes at the price of
a large capacitance of the conducting line between pixel and output
amplifier of several pF. As is obvious from the inspection of Eq. (5.9),
this leads to noise levels one or two orders of magnitude larger than in
corresponding CCDs image sensors. For this reason, the usage of such
traditional PD image sensors has been restricted to applications where
the random pixel access is an absolute must. In video applications,
CCD technology is used almost exclusively.

5.6.5 Active pixel sensor technology

As just discussed, the noise performance of PD array image sensors is
much worse than that of a CCD because of the large effective capaci-
tance the first MOSFET in the output amplifier sees. The logical conclu-
sion is that it should be possible to realize CMOS-compatible PD array
image sensors with a noise performance comparable to CCD imagers
when this first MOSFET is placed in each pixel. It took surprisingly long
until this seemingly trivial observation was made. As a consequence, it
led directly to what is called today “active pixel sensor” (APS) imaging
technology [33]. It is apparently not sufficient just to move the first
MOSEFET into the pixel, because its input requires a reset mechanism.
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out

Figure 5.17: Schematic diagram of an APS pixel, consisting of a photodiode, a
reset transistor, a sense transistor, and a row-select transistor. The active load
transistor that completes the source-follower circuit is shared by all pixels in a
column, and it is therefore needed only once per column.

For this reason, the simplest APS image sensor pixel consists of one
photodiode and three MOSFETSs as illustrated in Fig. 5.17.

With the reset MOSFET the photodiode and the gate of the source
follower MOSFET are precharged to a voltage of typically 3-5V. The
photocurrent produced by the photodiode (plus the dark current) dis-
charges the capacitance of the reverse-biased PD. The resulting voltage
can then be sensed efficiently with the source-follower MOSFET with
a sensitivity that is comparable to that of CCD image sensors. As in
the PD array, the third MOSFET is employed as a selection switch with
which arow is selected. The active load MOSFET of this APS pixel can be
shared by all the pixels in a column, and it does not need to be included
in the pixel itself.

The APS technology is very attractive for several reasons: (1) APS
image sensors can be produced in standard CMOS technology, opening
the way to image sensors with integrated electronic functionality and
even complete digital processors; (2) The pixels offer random access
similar to PD arrays; (3) The pixel readout is nondestructive, and it can
be carried out repeatedly for different exposure times; (4) The exposure
times can be programmed electronically; (5) APS image sensors dissi-
pate one or two magnitudes less electrical power than CCDs; (6) APS
imagers show less blooming (spilling of electronic charge to adjacent
pixels); And (7) APS pixels are more robust under x-ray radiation.

Disadvantages of APS image sensors include the reduced optical fill
factor (comparable to that of IT-CCDs), the increased offset noise due
to MOSFET threshold variations (see Section 5.8), and the impossibility
of performing correlated double sampling for noise reduction as dis-
cussed in Section 5.5.3. Fortunately, a combination of APS and CCD
technology has been proposed, and the resulting photogate APS pixels
offer this functionality [34].
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Figure 5.18: Estimates of the relative cone sensitivities of the human eye after
DeMarco et al. [35].

Active pixel image sensors with up to 4k x 4k pixels have been re-
alized, with speeds of several thousand frames per second, with an
input-referred charge noise of about 10 electrons at room temperature
and video speed, and with a DR of up to 84 dB. Many experts do not
doubt, therefore, that CMOS imagers using APS techniques can replace
CCD image sensors in many practical applications, and several con-
sumer products in the electronic still and video camera market already
contain CMOS imagers.

5.7 Color vision and color imaging

5.7.1 Human color vision

Human color vision can be regarded as a parameter-based sampling. It
does not measure the spectral radiant flux directly but rather proper-
ties of the spectral distribution such as the total radiant flux (intensity),
the mean wavelength (color), and the width of the spectral distribution
(saturation of the color). If the width of the spectral distribution is
narrow we have a pure color with high saturation. If the spectral distri-
bution is wide, the color has low saturation. If the spectral distribution
is flat, we sense no color. With respect to this discussion, it appears
that a 3-sensor system appears to be an ideal intensity-color-saturation
sensor. Itisideal in the sense that it has a linear response and the wave-
length (color) and width (saturation) resolution are independent of the
wavelength. Thus it is interesting to compare this 3-sensor system with
the color-sensing system of the human eye.

For color sensing, the human eye also has three types of photopig-
ments in the photoreceptors known as cones with different spectral
sensitivities (Fig. 5.18). The sensitivities cover different bands with
maximal sensitivities at 445 nm, 535 nm, and 575 nm, respectively (band
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sampling), but overlap each other significantly (parameter-based sam-
pling). The three sensor channels are unequally spaced and cannot
simply be linearly related. Indeed, the color sensitivity of the human
eye is uneven and all the nonlinearities involved make the science of
color vision rather difficult. Here, only some basic facts are given—in
as much as they are useful to handle color imagery.

Three-dimensional color space. With three color sensors, it is obvi-
ous that color signals cover a 3-D space. Each point in this space repre-
sents one color. From spectral sampling, it is clear that many spectral
distributions called metameric color stimuli or short metameres map
onto one point in this space. Generally, we can write the signal s; re-
ceived by a sensor with a spectral responsivity R;(A) as

Si= JRi(A)d)(A)d)\ (5.10)

With three primary color sensors, a triple of values is received, often
called tristimulus and represented by the 3-D vector s = [s1, S2, s3]t

Primary colors. One of the most important questions in colorimetry
is how to represent colors as linear combinations of some basic or pri-
mary colors. A set of three linearly independent spectral distributions
®;(A) represents a set of primary colors and results in an array of re-
sponses that can be described by the matrix P with

P = JRi(A)tbj(A)dA (5.11)

Each vector p; = [pl j»P2j, P3 j]T represents the tristimulus of the
primary colors in the 3-D color space. Then, it is obvious that any color
can be represented by the primary colors that are a linear combination
of the base vectors p; in the following form:

s=Rp, +Gp, +Bps with 0<R,G,B<1 (5.12)

where the coefficients are denoted by R, G, and B, indicating the three
primary colors red, green, and blue. Note that these coefficients must
be positive and smaller than one. Because of this condition, all colors
can be presented as a linear combination of a set of primary colors only
if the three base vectors are orthogonal to each other. This cannot be
the case as soon as more than one of the color sensors responds to one
primary color. Given the significant overlap in the spectral response of
the three types of cones (Fig. 5.18), it is obvious that none of the color
systems based on any type of real primary colors will be orthogonal.
The colors that can be represented lie within the parallelepiped formed
by the three base vectors of the primary colors. The more the primary
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Table 5.1: Most often used primary color systems. The second column gives
also the conversion matrix of the corresponding color system to the XY Z color
system (values taken from Wendland [36, Section 5.7.4] and Pratt [37, Table
3.5-1]).

Name Description

Monochromatic Primaries Adapted by C.LLE. in 1931
R, G¢, B, AR =700nm, Ag = 546.1 nm, Ag = 435.8nm
0.490 0.310 0.200
0.177 0.812 0.011 ]
| 0.000 0.010 0.990
NTSC Primary Receiver FCC Standard, 1954, to match phosphors of
Standard Ry, Gy, By RGB color monitors
[ 0.6070 0.1734 0.2006
0.2990 0.5864 0.1146 ]
| 0.0000 0.0661 1.1175
S.M.P.T.E. Primary Receiver Better adapted to modern screen phosphors
Standard Rg, Gs, Bs [ 0.393 0.365 0.192
0.212 0.701 0.087 ]
| 0.019 0.112 0.985
EBU Primary Receiver Stan- Adopted by EBU 1974
dard R,, G, B, [ 0.4303 0.3416 0.1780
0.2219 0.7068 0.0713 ]
| 0.0202 0.1296 0.9387

colors are correlated with each other (i. e., the smaller the angle between
two of them is), the smaller is the color space that can be represented
by them. Mathematically, colors that cannot be represented by a set of
primary colors have at least one negative coefficient in Eq. (5.12). The
most often used primary color systems are summarized in Table 5.1.

Chromaticity. One component in the 3-D color space is intensity. If
a color vector is multiplied by a scalar, only its intensity is changed
but not its color. Thus, all colors could be normalized by the inten-
sity. This operation reduces the 3-D color space to a 2-D color plane or
chromaticity diagram:

R G B

"R+G+B’ g:R+G+B’ b:R+G+B (5.13)

-
with
r+g+b=1 (5.14)

It is sufficient to use only the two components r and g. The third
component is then given by b = 1 — v — g, according to Eq. (5.14).
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Figure 5.19: Chromaticity diagram shown in the xy color space. The u-shaped
curve of monochromatic colors with wavelengths in nm as indicated and the
purple line includes all possible colors. Shown are also range of colors (trian-
gles) that can be represented with monochromatic primaries R., G, B. and the
SMPTE primary receiver standard Rs, Gs, Bs.

Thus, all colors that can be represented by the three primary colors
R, G, and B are confined within a triangle. As already mentioned, some
colors cannot be represented by the primary colors. The boundary of all
possible colors is given by all visible monochromatic colors from deep
red to blue. The line of monochromatic colors form a u-shaped curve
(Fig. 5.19). Thus, most monochromatic colors cannot be represented
by the monochromatic primaries. As all colors that lie on a straight
line between two colors can be generated as a mixture of these colors,
the space of all possible colors covers the area filled by the u-shaped
spectral curve and the straight mixing line between its two end points
for blue and red color (purple line).

In order to avoid negative color coordinate values, often a new co-
ordinate system is chosen with virtual primary colors, that is, primary
colors that cannot be realized by any physical colors. This color system
is known as the XYZ color system and constructed in such a way that
it includes just the curve of monochromatic colors with only positive
coefficients (Fig. 5.19).

Hue and saturation. The color systems discussed so far do not di-
rectly relate to the human color sensing. From the rg or xy values,
we cannot directly infer colors such as green, blue, etc. In addition
to luminance (intensity), a description of colors would also include the
type of color such as green or blue (hue) and the purity of the color
(saturation). From a pure color, we can obtain any degree of saturation
by mixing it with white.
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Figure 5.20: Chromaticity diagram shown in the uv color difference system
centered at the white point w. The color saturation is proportional to the dis-
tance from the center and the color hue is given by the angle to the x axis.
Shown are also the axes of the v g color system marked with v and b.

Hue and saturation can be extracted from chromaticity diagrams
by simple coordinate transformations. The essential point is the white
point in the middle of the chromaticity diagram (Fig. 5.20). If we draw
a line from this point to a pure (monochromatic) color, it constitutes
a mixing line for a pure color with white and is thus a line of constant
hue. From the white point to the pure color, the saturation increases
linearly. The white point is given in the rg chromaticity diagram by
w = (1/3,1/3). A color system that has its center at the white point is
called a color difference system. From a color difference system, we can
infer a hue-saturation color system by simply using polar coordinate
systems. Then, the radius coordinate is proportional to the saturation
and the hue to the angle coordinate (Fig. 5.20).

Color science is, in the abstract, relatively simple. However, real
difficulties arise from what is required to adapt the color system in an
optimum way to display and print devices, for transmission by televi-
sion signals, or to correct for the uneven color resolution of the human
visual system that is apparent in the chromaticity diagrams of simple
color spaces (Figs. 5.19 and 5.20). The result to date is a confusing
manifold of different color systems. For a detailed treatment of color
vision, the reader is referred to the monograph written by the Commit-
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tee on Colorimetry of the Optical Society of America [38]. An excellent
treatment of color with respect to digital image processing is given by
Pratt [37] and with respect to video engineering by Inglis [39].

Intensity-hue-saturation color coordinate system. Here, we discuss
only one further color coordinate system that is optimally suited to
present vectorial image information as colors on monitors. With a gray
scale image, only one parameter can be represented. In color, it is,
however, possible to represent three parameters simultaneously, for
instance as intensity, hue, and saturation (IHS). This representation is
known as the IHS color coordinate system. The transformation is given

by
1 1/3 1/3 1/3 R
U = 2/3 -1/3 -1/3 G
\% -1/3 2/3 -1/3 B
v (5.15)
H = arctan(U)
S = (U2 +V?)Lz2

This transformation essentially means that the zero point in the
chromaticity diagram has been shifted to the white point. The pairs
[U,V]T and [S,H]T are the Cartesian and polar coordinates in this new
coordinate system, respectively.

5.7.2 Color chips and color cameras

The task of most camera systems is accurately to capture the percep-
tible contents of a scene for subsequent faithful reproduction, viewed
by a human observer. The black-and-white image sensors and cameras
discussed so far can do this only for the brightness sensation; the very
rich perception of color requires additional information, as described
in Section 5.7.1: According to Grassman'’s Laws [40], a 3-D spectral rep-
resentation of a scene is sufficient for the complete reproduction of
a color scene as it can be perceived by a human observer. It is suffi-
cient, therefore, to acquire a color scene through three different types
of spectral filters, behind each of which a black-and-white camera sys-
tem is placed. As described in Section 5.7.1 these filters correspond to
the primary colors or a linear combination of them [41].

For the best performance, a color camera is built by providing spe-
cial beam-splitting optics and by arranging three black-and-white image
sensors so that they see an identical portion of a scene. Each image sen-
sor is covered with its own color filter, as just described, and together
the three image sensors acquire the complete colorimetric information
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Figure 5.21: Illustration of different color filter types for single-chip color sen-
sors. The unit cell (basic arrangement of color filter patches that is periodically
repeated on the image sensor) is shown as shaded rectangle: a primary color
(RGB) stripe filter with 3 x 1 unit cell; b complementary color (CGY) stripe filter
with 3 x 1 unit cell; ¢ primary color (RGB) stripe filter with 4 x 1 unit cell; d Bayer
color mosaic filter with 2 x 2 unit cell; e Bayer color mosaic filter with 4 x 4 unit
cell; f shift-8 color mosaic filter using complementary colors in an 8 x 4 unit cell.

about a scene. Such three-chip color cameras are employed in profes-
sional and studio cameras. They are quite expensive, unfortunately,
because they have to employ costly beam-splitting objects, the three
image sensors have to be aligned according to close tolerances (reg-
istration to sub-pixel accuracy), and three high-quality image sensors
must be used, each requiring its proper driving electronics.

For these reasons, it is highly desirable to realize a color camera with
just one single black-and-white image sensor and a suitable pattern of
pixel-individual color filters on top. Several techniques have been used
for the implementation of such a single-chip color camera. They are
either based on 1-D color stripe filters (Fig. 5.21a-c) or on 2-D color
mosaics (Fig. 5.21d-f).

The simplest arrangement is the RGB color stripe pattern shown in
Fig. 5.21a. Its obvious drawback is its sensitivity to periodic objects,
producing so-called moiré and color-aliasing effects [15]. Instead of
the primary RGB filters, one can also use the complementary colors
cyan (C=G+B), yellow (Y=R+G), and magenta (M=R+B), or even transpar-
ent white (W=R+G+B). An example of such a complementary stripe filter
pattern is shown in Fig. 5.21b. Compared to the primary color stripe
filter in Fig. 5.21a, this filter can be simpler to fabricate, and because it
accepts more light, it might offer an improved SNR performance. An-
other example of a stripe filter is shown in Fig. 5.21¢, illustrating the use
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of more green than red or blue information and the larger filter period
of four pixels. This reflects the property of the human eye that spa-
tial resolution is largest in the green, less pronounced in the red, and
least developed in the blue spectral band. Much better performance
is achieved with 2-D mosaic color filters. A popular color filter is the
Bayer pattern with its 2 x 2 pixel unit cell shown in Fig. 5.21d [42]. An
improved form makes even better use of the different spatial resolution
for the three filter curves, resulting in the 4 x 4 pixel unit cell shown in
Fig. 5.21e [42]. In this filter pattern, half of the color filters are green,
3/8 are red and only 1/8 are blue. The larger the unit cell period, the
better a color filter’s ability to prevent aliasing and moiré effect. A very
effective color pattern making use of complementary colors is shown
in Fig. 5.21f [43]. It uses a 4 x 8 pixel unit cell in such a way that the
required signal processing is relatively simple to realize using conven-
tional electronics [44]. The least amount of aliasing is produced by
a color mosaic with an aperiodic color pattern. Although this is well
known in theory, no commercial product has been offered yet with such
a random color pattern, which would also require precise knowledge of
the image sensor’s complete color pattern for the accurate extraction
of color information.

5.8 Practical limitations of semiconductor photosensors

Due to the analog nature of the pixels in a semiconductor photosensor,
it is not possible to fabricate all pixels with identical properties, and
often some pixels on an imager will be defective. It is therefore impor-
tant for a machine vision system architect to have an idea about typical
limitations and shortcomings of practical image sensors.

5.8.1 Pixel nonuniformity and dead pixels

Because of slightly varying geometries of CCD and APS pixels, their
effective area and therefore their gain are not identical. These gain
variations are of the order of 1-5 %, and for precision measurements, a
multiplicative correction of this effect is required.

In APS pixels, where the individual source-follower transistors in
the pixels show offset voltage fluctuations, an offset uncertainty of the
order of 10 mV is observed. This results in APS pixel offset variations
of around 1-2 %. These offset variations have to be corrected additively
for precision measurements. Because the CCD principle is based on
the virtually complete transfer of photogenerated charge packets from
pixel site to pixel site, CCD pixels do not show this type of offset vari-
ation.
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In applications where dark currents become significant, offset varia-
tions are obtained in APS as well as in CCD image sensors because dark
current densities can vary from pixel to pixel in any type of semicon-
ductor image sensor. It might even be possible that the dark current is
so high in a few so-called “hot pixels” that these pixels are completely
filled with thermally generated charge during the exposure time. This
effect can only be reduced by lowering the temperature or by shorten-
ing the exposure time.

Digital memories do not suffer from most localized defects on the
semiconductor surface because there are redundant memory cells on
the integrated circuit that can replace defective storage cells. In an
image sensor, this is of course not possible. For this reason, it is rather
difficult to produce a perfect image sensor without any defects. It is
not uncommon, therefore, that a few defective (“dead”) pixels can be
encountered on an image sensor. Usually, the position of these dead
pixels is stored, and the image content at this place is computed as a
function of neighboring values. Such pixel defect densities occur quite
infrequently with a percentage of typically less than 0.001-0.01 %.

In CCDs, another type of defect is more consequential, when com-
plete dead columns are encountered; the required correction computa-
tion is much more expensive than with single dead pixels. Fortunately,
dead columns usually are only encountered in megapixel CCDs of lower
grade, while smaller area CCDs for video applications are free of this
type of defect.

5.8.2 Sensor nonlinearity

The conversion of light into photocharge is a highly linear process.
In silicon, this has been verified for a large dynamic range of at least
10 orders of magnitude [14]. Unfortunately, much of this linearity is
lost in the photocharge detection principle that is mainly used in image
sensors. Photocharge is stored as the state of discharge of a precharged
capacitance, either an MOS capacitance or a photodiode. As the width
of the space-charge region depends on the discharge level, the spectral
sensitivity and the photometric linearity are a function of the amount
of photocharge already stored.

The same problem is encountered in the electronic charge detection
circuits that are implemented as source followers after a floating diffu-
sion (see Fig. 5.15). The capacitance of the floating diffusion depends
on the voltage on it and therefore on the charge state. This causes
nonlinearities in charge sensing.

The degree of the nonlinearity depends very much on the charge de-
tection (or voltage) range that is used. For differential measurements
of over a few hundred mV in the middle region of the analog sensor
output, nonlinearities can be below 0.1% [45]. Over the full sensing
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Figure 5.22: Schematic diagram of a charge detection circuit, providing a high
photodetection linearity by keeping the photodiode voltage constant. If the feed-
back capacitance is replaced by a resistor, a so-called transimpedance amplifier
results, converting photocurrent in a proportional voltage with very high linear-
ity.

range, nonlinearities may be as large as a few percent. If the mea-
surement should be highly linear, a proper electronic charge detector
circuit must be used in which the voltage at the input is kept constant.
Such a charge detector circuit, illustrated in Fig. 5.22, requires a cer-
tain amount of silicon floorspace. With state-of-the-art semiconductor
technology, pixels become so large that only 1-D arrays have been real-
ized with this technique [46]; in image sensors it is not yet realistic to
implement such charge detectors in each pixel. For this reason, image
sensing applications for optical metrology in which sub-percent lin-
earity is demanded have to resort to accurate calibration and off-chip
digital correction techniques [5].

5.9 Conclusions

It was only about a decade ago that a few researchers started to exploit
one of the most exciting capabilities offered by modern silicon-based
semiconductor technology, the monolithic integration of photosensi-
tive, analog and digital circuits. Some of the results of these efforts are
described in this work, representing just a small fraction of the many
applications already demonstrated. They all support the main asser-
tion of this chapter, that today’s image sensors are no longer restricted
to the acquisition of optical scenes. Image sensors can be supplied
with custom integrated functionality, making them key components,
application-specific for many types of optical measurement problems.
It was argued that it is not always optimal to add the desired custom
functionality in the form of highly-complex smart pixels, because an in-
crease in functionality is often coupled with a larger fraction of a pixel’s
area being used for electronic circuit, at the cost of reduced light sen-
sitivity. For this reason, each new optical measurement problem has
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to be inspected carefully, taking into account technical and economical
issues. For optimum system solutions, not only smart pixels have to be
considered. Functionality could also be provided by separate on-chip
or off-chip circuits, perhaps by using commercially available electronic
components.

Machine vision system architects can no longer ignore the freedom
and functionality offered by smart image sensors, while being well
aware of the shortcomings of semiconductor photosensing. It may be
true that the seeing chips continue to be elusive for quite some time.
The smart photosensor toolbox for custom imagers is a reality today,
and a multitude of applications in optical metrology, machine vision,
and electronic photography can profit from the exciting developments
in this area. “Active vision,” “integrated machine vision,” “electronic
eyes,” and “artificial retinae” are quickly becoming more than concepts:
the technology for their realization is finally here now!
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6.1 Introduction

The use of digital imaging systems for metrology purposes implies the
necessity to calibrate or check these systems. While simultaneous cali-
bration of cameras during the measurement is possible for many types
of photogrammetric work, separate calibration is particularly useful in

the following cases:
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« when information is desired about the attainable accuracy of the
measurement system and thus about the measurement accuracy at
the object;

o when simultaneous calibration of the measurement system is im-
possible during the measurement for systemic reasons so that some
or all other system parameters have to be predetermined;

« when complete imaging systems or components are to be tested by
the manufacturer for quality-control purposes; and

o when digital images free from the effects of the imaging system are
to be generated in preparation of further processing steps (such as
rectification).

In addition, when setting up measurement systems it will be neces-
sary to determine the positions of cameras or other sensors in relation
to a higher-order world coordinate system to allow 3-D determination
of objects within these systems.

The following chapters describe methods of calibration and orienta-
tion of imaging systems, focusing primarily on photogrammetric tech-
niques as these permit homologous and highly accurate determination
of the parameters required.

6.2 Calibration terminology

6.2.1 Camera calibration

Camera calibration in photogrammetric terminology refers to the de-
termination of the parameters of interior orientation of individual cam-
eras. When dealing with digital images, it is advisable to analyze the
complete imaging system, including camera, transfer units and possi-
bly frame grabbers. The parameters to be found by calibration depend
on the type of camera used. Once the imaging system has been cali-
brated, measurements can be made after the cameras have been care-
fully oriented.

6.2.2 Camera orientation

Camera orientation usually includes determination of the parameters
of exterior orientation to define the camera station and camera axis in
the higher-order object-coordinate system, frequently called the world
coordinate system. This requires the determination of three rotational
and three translational parameters, that is, a total of six parameters for
each camera.
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Resolution-enhancing
elements

Piezoadjustment
Mechanical system
Réseau

Image storage

Signal transfer

Internal synchronization
External synchronization
Pixel-synchronous

Digital transfer

Figure 6.1: Components of digital imaging systems.

6.2.3 System calibration

In many applications, fixed setups of various sensors are used for mea-
surement. Examples are online measurement systems in which, for
example, several cameras, laser pointers, pattern projectors, rotary
stages, etc., may be used. If the entire system is used as an integrated
measuring tool, then the simultaneous calibration and orientation of
all components involved maybe defined as system calibration.

6.3 Parameters influencing geometrical performance

6.3.1 Interior effects

All components of a digital imaging system leave their marks on the im-
age of an object and thus on the measurement results obtained from
processing this image. The following is a brief description of the rele-
vant components (Fig. 6.1).

Optical system. Practically all lenses exhibit typical radial-symmetri-
cal distortion that may vary greatly in magnitude. On the one hand, the
lenses used in optical measurement systems are nearly distortion-free
[1]. On the other hand, wide-angle lenses, above all, frequently exhibit
distortion of several 100 um at the edges of the field. Fisheye lenses are
in a class of their own,; they frequently have extreme distortion at the
edges. Because radial-symmetrical distortion is a function of design,
it cannot be considered an aberration. By contrast, centering errors
often unavoidable in lens making cause aberrations reflected in radial-
asymmetrical and tangential distortion components [2].

Additional optical elements in the light path, such as the IR bar-
rier filter and protective filter of the sensor, also leave their mark on
the image and have to be considered in the calibration of a system.
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A more detailed treatment of optical systems and the corresponding
distortions can be found in Chapter 3.

Resolution-enhancing elements. The image size and the possible
resolution of CCD sensors are limited. Currently on the market are
digital cameras with up to 4000 x 4000 sensor elements. Regarding
the stability of the camera-body and the quality of the lenses, some
of them are designed especially for measuring purposes, for example,
the Rollei Q16 MetricCamera [3]. Other, less frequent approaches use
techniques designed to attain higher resolution by shifting commercial
sensors in parallel to the image plane. Essentially, there are two differ-
ent techniques. In the case of “microscanning,” the interline transfer
CCD sensors are shifted by minute amounts by means of piezoadjust-
ment so that the light-sensitive sensor elements fall within the gaps
between elements typical of this type of system, where they acquire
additional image information [4, 5]. Alternatively, in “macroscanning,”
the sensors may be shifted by a multiple of their own size, resulting
in a larger image format. Individual images are then oriented with re-
spect to the overall image either by a highly precise mechanical sys-
tem [6, 7] or opto-numerically as in the RolleiMetric Réseau Scanning
Camera by measuring a glass-based reference grid in the image plane
(“réseau scanning”) [8].

All resolution-enhancing elements affect the overall accuracy of the
imaging system. In scanner systems with purely mechanical correlation
of individual images, the accuracy of the stepping mechanism has a
direct effect on the geometry of the high-resolution imagery. In the
case of réseau scanning, the accuracy of the réseau is decisive for the
attainable image-measuring accuracy [9].

Sensor and signal transfer. Due to their design, charge-coupled de-
vice (CCD) sensors usually offer high geometrical accuracy [10]. When
judging an imaging system, its sensor should be assessed in conjunc-
tion with the frame grabber used. Geometrical errors of different mag-
nitude may occur during A/D conversion of the video signal, depend-
ing on the type of synchronization, above all if pixel-synchronous signal
transfer from camera to image storage is not guaranteed [9, 11]. How-
ever, in the case of pixel-synchronous readout of data, the additional
transfer of the pixel clock pulse ensures that each sensor element will
precisely match a picture element in the image storage. Very high ac-
curacy has been proved for these types of cameras [1]. However, even
with this type of transfer the square shape of individual pixels can-
not be taken for granted. As with any kind of synchronization, most
sensor-storage combinations make it necessary to account for an affin-
ity factor; in other words, the pixels may have different extension in
the direction of lines and columns.
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Figure 6.2: Principle of central perspective [12].

6.3.2 Exterior effects

If several cameras are used in an online metrology system, both the pa-
rameters of interior orientation and those of exterior orientation may
vary, the former, for example, caused by refocusing and changes of
temperature, the latter caused by mechanical effects or fluctuations of
temperature. The resulting effects range from scale errors during ob-
ject measurement all the way up to complex model deformation. This
is why all systems of this kind should make it possible to check or
redetermine all relevant parameters.

6.4 Optical systems model of image formation

Image formation by an optical system can, in principle, be described
by the mathematical rules of central perspective. According to these
rules, an object is imaged in a plane so that the object points P; and
the corresponding image points P; are located on straight lines through
the perspective center O; (Fig. 6.2). The following holds under idealized
conditions for the formation of a point image in the image plane:

Xij —c | X5 ] (
- ¢ 6.1)
[ Yij ] Z; [ Y
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with
X Xi — Xoj
Yi | =D(w,@,K)j| Yi- Yo, (6.2)
Zi*j Zi — Zoj

where X;, Y;, Z; are the coordinates of an object point P; in the object-
coordinate system K; X,j, Y,j, Z,; are the coordinates of the perspec-
tive center O; in the object-coordinate system K; X{“j, Y{;, Zi*j are the
coordinates of the object point P; in the coordinate system KJ*; Xij, Vij
are the coordinates of the image point in the image-coordinate system
Kp; and D(w, @, k) is the rotation matrix between K and K7; and c is
the distance between perspective center and image plane, tJhe system
K}'f being parallel to the system Kp with the origin in the perspective
center O;j [13].

The representation of the central perspective as described in Eq. (6.1)
and Eq. (6.2) splits up the process of computation from image-space to
object space in two steps:

o Within Eq. (6.1) mainly the parameters of image-space like camera
parameters (interior orientation) and measured image coordinates
are used.

e In Eq. (6.2) the transformation to the world coordinate system is
done by using three parameters of translation and three parameters
of rotation (exterior orientation).

This ideal concept is not attained in reality where many influences
are encountered due to the different components of the imaging sys-
tem. These can be modeled as departures from rigorous central per-
spective. The following section describes various approaches to math-
ematical camera models.

6.5 Camera models

When optical systems are used for measurement, modeling the entire
process of image formation is decisive in obtaining accuracy. Basically,
the same ideas apply, for example, to projection systems for which
models can be set up similarly to imaging systems.

Before we continue, we have to define an image-coordinate system
Kp in the image plane of the camera. In most electro-optical cameras,
this image plane is defined by the sensor plane; only in special designs
(e.g., in réseau scanning cameras [8]), is this plane defined differently.
While in the majority of analog cameras used for metrology purposes
the image-coordinate system is defined by projected fiducial marks or
réseau crosses, this definition is not required for digital cameras. Here
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Figure 6.3: Definition of image-coordinate system.

it is entirely sufficient to place the origin of image-coordinate system
in the center of the digital images in the storage (Fig. 6.3). Because
the pixel interval in column direction in the storage is equal to the in-
terval of the corresponding sensor elements, the unit “pixel in column
direction” may serve as a unit of measure in the image space. All pa-
rameters of interior orientation can be directly computed in this unit,
without conversion to metric values.

6.5.1 Calibrated focal length and principal-point location

The reference axis for the camera model is not the optical axis in its
physical sense, but a principal ray, which on the object side is perpen-
dicular to the image plane defined in the foregoing and intersects the
latter at the principal point Py(xy, yn). The perspective center O; is
located at distance cx (also known as calibrated focal length) perpen-
dicularly in front of the principal point [14].

The original formulation of Eq. (6.1) is thus expanded as follows:

Xij —Ck XI*J :| |: XH :|
=k T (6.3)
{ Yij } Z; { Y Vi

6.5.2 Distortion and affinity

The following additional correction function can be applied to Eq. (6.3)
for radial symmetrical, radial asymmetrical and tangential distortion:

Xl'j —Ck Xi*j XH dX(V,A)
= + + 6.4
[ Yij } Z} [ Yy YH dy(V,A) (6-4)
Here, dx and dy may now be defined differently, depending on the
type of camera used, and are made up of the following different com-
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ponents:

dx = dxsym + dXasy + dxag

6.5
dy = dysym + AVasy + dYair (6.5)

Radial-symmetrical distortion. The radial-symmetrical distortion typ-
ical of a lens can generally be expressed with sufficient accuracy by a
polynomial of odd powers of the image radius (x;; and y;; are hence-
forth called x and y for the sake of simplicity):

drsym = AL (13 —187) + Ao (r® —rir) + As(r” —78r) (6.6)

where drsym is the radial-symmetrical distortion correction; 7 is the
image radius from 72 = x2 + y2; A;, A, A3 are the polynomial coef-
ficients; and 7y is the second zero crossing of the distortion curve, so
that we obtain

d7sym d7¥sym

dxsym = r

x and dysym =

(6.7)

A polynomial with two coefficients is generally sufficient to describe
radial symmetrical distortion. Expanding this distortion model, it is
possible to describe even lenses with pronounced departure from per-
spective projection (e.g., fisheye lenses) with sufficient accuracy. In
the case of very pronounced distortion it is advisable to introduce an
additional point of symmetry Ps(xs, ys). Figure 6.4 shows a typical
distortion curve.

For numerical stabilization and far-reaching avoidance of correla-
tions between the coefficients of the distortion function and the cali-
brated focal lengths, a linear component of the distortion curve is split
off by specifying a second zero crossing [15].

Lenz [16] proposes a different formulation for determining radial-
symmetrical distortion, which includes only one coefficient. We thus
obtain the following equation:

1-+1-4Kr?
d¥sym =¥ —————— (6.8)
1++1-4Kr?

where K is the distortion coefficient to be determined.

Radial-asymmetrical and tangential distortion. To handle radial-
asymmetrical and tangential distortion, various different formulations
are possible. Based on Conrady [1 7], these distortion components may
be formulated as follows [2]:

dxasy = B1(r?+2x?)+2Byxy

dyasy = Bo(r?+2y2) +2B1xy (6.9)
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Figure 6.4: Typical distortion curve of a lens.

In other words, these effects are always described with the two ad-
ditional parameters B; and B>.

This formulation is expanded by Brown [18], who adds parameters
to describe overall image deformation or the lack of image-plane flat-
ness:

dxasy = (D1(x?—?)+Dax?y? +D3(x* — y4))x/ck

+ Eixy +Exy?+E3x?y + Esxy? + Esx?y? 6.10)
Nl
dyasy = (D1(x?—y2) + Dax?y? + D3(x* - y*))y/ck

+ Egxy + E7x?% + Egx?y + Egxy? + E;0x2y?

In view of the large number of coefficients, however, this formula-
tion implies a certain risk of too many parameters. Moreover, because
this model was primarily developed for large-format analog imaging
systems, some of the parameters cannot be directly interpreted for ap-
plications using digital imaging systems. Equation (6.7) is generally
sufficient to describe asymmetrical effects. Figure 6.5 shows typical
effects for radial-symmetrical and tangential distortion.

Affinity and nonorthogonality. The differences inlength and width of
the pixels in the image storage caused by synchronization can be taken
into account by an affinity factor. In addition, an affinity direction may
be determined, which primarily describes the orthogonality of the axes
of the image-coordinate system Kg. An example may be a line scanner
that does not move perpendicularly to the line direction. Allowance for
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Figure 6.5: Radial symmetrical and tangential distortion.
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Figure 6.6: Effects of affinity.

these two effects can be made as follows:
dxae = Cix + Cox and dya.g =0 (6.11)
Figure 6.6 gives an example of the effect of affinity.

Additional parameters. The introduction of additional parameters
may be of interest for special applications. Fryer [19] and Fraser and
Shortis [20] describe formulations that also make allowance for distance-
related components of distortion. However, these are primarily ef-
fective with medium- and large-image formats and the corresponding
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lenses and are of only minor importance for the wide field of digital
uses.

Gerdes et al. [2 1] use a different camera model in which an additional
two parameters have to be determined for the oblique position of the
Sensor.

6.6 Calibration and orientation techniques

6.6.1 In the laboratory

Distortion parameters can be determined in the laboratory under clearly
defined conditions.

In the goniometer method, a highly precise grid plate is positioned
in the image plane of a camera. Then, the goniometer is used to sight
the grid intersections from the object side and to determine the corre-
sponding angles. Distortion values can then be obtained by a compar-
ison between nominal and actual values.

In the collimator technique, test patterns are projected onto the
image plane by several collimators set up at defined angles to each
other. Here also, the parameters of interior orientation can be obtained
by a comparison between nominal and actual values, though only for
cameras focused at infinity [14].

Apart from this restriction, there are more reasons weighing against
the use of the aforementioned laboratory techniques for calibrating
digital imaging systems, including the following:

e The equipment layout is high;

¢ The interior orientation of the cameras used normally is not stable,
requiring regular recalibration by the user; and

« Interior orientation including distortion varies at different focus and
aperture settings so that calibration under practical conditions ap-
pears more appropriate.

6.6.2 Bundle adjustment

All the parameters required for calibration and orientation may be ob-
tained by means of photogrammetric bundle adjustment. In bundle
adjustment, two so-called observation equations are set up for each
point measured in an image, based on Egs. (6.2) and (6.4). The total of
all equations for the image points of all corresponding object points
results in a system that makes it possible to determine the unknown
parameters [22]. Because this is a nonlinear system of equations, no
linearization is initially necessary. The computation is made iteratively
by the method of least squares, the unknowns being determined in
such a way that the squares of deviations are minimized at the image
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Figure 6.7: Test array for camera calibration.

coordinates observed. Newer approaches are working with modern al-
gorithms such as balanced parameter estimation [23]. Bundle adjust-
ment thus allows simultaneous determination of the unknown object
coordinates, exterior orientation and interior orientation with all rele-
vant system parameters of the imaging system. In addition, standard
deviations are computed for all parameters, which give a measure of
the quality of the imaging system.

Calibration based exclusively on image information. This method
is particularly well suited for calibrating individual imaging systems.
It requires a survey of a field of points in a geometrically stable pho-
togrammetric assembly. The points need not include any points with
known object coordinates (control points); the coordinates of all points
need only be known approximately [22]. It is, however, necessary that
the point field be stable for the duration of image acquisition. The scale
of the point field likewise has no effect on the determination of the de-
sired image-space parameters. Figure 6.7 shows a point field suitable
for calibration.
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Figure 6.8: Residual mismatches after bundle adjustment.

The accuracy of the system studied can be judged from the residual
mismatches of the image coordinates as well as the standard deviation
of the unit of weight after adjustment (Fig. 6.8). The effect of syn-
chronization errors, for example, becomes immediately apparent, for
instance, by larger residual mismatches of different magnitude in line
and column direction.

Figure 6.9 gives a diagrammatic view of the minimum setup for sur-
veying a point array with which the aforementioned system parameters
can be determined. The array may be a 3-D test field with a sufficient
number of properly distributed, circular, retroreflecting targets. This
test field is first recorded in three frontal images, with camera and field
at an angle of 90° for determining affinity and 180° for determining the
location of the principal point. In addition, four convergent images of
the test field are used to give the assembly the necessary geometric
stability for determination of the object coordinates and to minimize
correlation with exterior orientation.

Optimum use of the image format is a precondition for the determi-
nation of distortion parameters. However, this requirement need not
be satisfied for all individual images. It is sufficient if the image points
of all images cover the format uniformly and completely.

If this setup is followed, seven images will be obtained roughly as
shown in Fig. 6.10; their outer frame stands for the image format, the
inner frame for the image of the square test field, and the arrowhead for
the position of the test field. It is generally preferable to rotate the test
field with the aid of a suitable suspension in front of the camera instead
of moving the camera for image acquisition. The use of retroreflecting
targets and a ring light guarantee proper, high-contrast reproduction
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Figure 6.9: Imaging setup for calibration [1].

1. 7

DB 9]

Figure 6.10: Test field.

5

of the object points, which is indispensable for precise and reliable
measurement. A complete, commercially available software package
offering far-reaching automation of the process is described in Godding

[11.

Additional object information for calibration and orientation. Once
the imaging system has been calibrated, its orientation can be found by
resection in space. The latter may be seen as a special bundle adjust-
ment in which the parameters of interior orientation and the object co-
ordinates are known. This requires a minimum of three control points
in space whose object coordinates in the world coordinate system are
known and whose image points have been measured with the imaging
system to be oriented.

In addition to orientation, calibration of an imaging system is also
possible with a single image. However, as a single image does not allow
the object coordinates to be determined, suitable information within
the object has to be available in the form of a 3-D control-point ar-
ray [24]. But constructing, maintaining and regularly checking such an
array is rather costly, all the more so as it should be mobile so that
it may be used for different applications. The control pattern should
completely fill the measurement range of the cameras to be calibrated
and oriented to ensure good agreement between calibration and mea-
surement volumes.
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a b

Figure 6.11: Scale setup for calibrating a one camera and b two cameras.

The expense is considerably less if several images are available. For
a two-image assembly and one camera, a spatial array of points that
need to be known only approximately plus, as additional information,
several known distances (scales) distributed in the object space will be
sufficient; this is similar to the previous paragraph. In an ideal case,
one scale on the camera axis, another one perpendicular to it, and two
oblique scales in two perpendicular planes parallel to the camera axis
are required (Fig. 6.11a). This will considerably reduce the object-side
expense, because the creation and checking of scales is much simpler
than that of an extensive 3-D array of control points.

A similar setup is possible if the double-image assembly is recorded
with several cameras instead of just one. This is, in principle, the case
with online measurement systems. An additional scale is then required
in the foreground of the object space, bringing the total number of
scales to five (Fig. 6.11b).

If at least one of the two cameras can be rolled, the oblique scales can
be dispensed with, provided that the rolled image is used for calibration
[24].

The setups described in Fig. 6.11 are, of course, applicable to more
than two cameras as well. In other words, all the cameras of a mea-
surement system can be calibrated if the aforementioned conditions
are created for each of the cameras. At least two cameras have to be
calibrated in common, with the scales set up as described. Simulta-
neous calibration of all cameras is also possible, but then the scale
information must also be simultaneously available to all the cameras.
If all cameras also are to be calibrated in common, this will have to be
done via common points.
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X'

Figure 6.12: Principle of the plumbline method.

System calibration. As we have seen from the previous two para-
graphs, joint calibration and orientation of all cameras involved and
thus calibration of the entire system are possible if certain conditions
are met. With the aid of bundle adjustment, the two problems can, in
principle, be solved jointly with a suitable array of control points or a
spatial point array of unknown coordinates plus additional scales. The
cameras then already are in measurement position during calibration.
Possible correlations between the exterior and interior orientations re-
quired are thus neutralized because the calibration setup is identical
to the measurement setup.

Apart from the imaging systems, other components can be cali-
brated and oriented within the framework of system calibration. God-
ding and Luhmann [25] describe a technique in which a suitable pro-
cedure in an online measurement system allows both the interior and
exterior orientation of the cameras involved as well as the orientation
of a rotary stage to be determined with the aid of a spatial point array
and additional scales. The calibration of a line projector within a mea-
surement system using photogrammetric techniques was, for example,
presented by Strutz [26].

6.6.3 Other techniques

Based on the fact that straight lines in the object space have to be re-
produced as straight lines in the image, the so-called plumbline method
serves to determine distortion. The technique is predicated on the fact
that the calibrated focal length and principal-point location are known
[27].

According to Fig. 6.12, each of the straight-line points imaged are
governed by the relationship

x'sinx+y'cosx=a (6.12)
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where x’ and ' can be expressed as follows:

7

X Xij + dXsym + dXasy
y Yij + dYsym + AVasy

where dxXgym, dsym, dXasy, and dyasy correspond to the formulations
in Eq. (6.7), (6.9), and (6.10). It is an advantage of this method that,
assuming suitable selection of the straight lines in the object, a large
number of observations is available for determining distortion, and
measurement of the straight lines in the image lends itself to automa-
tion. A disadvantage of the technique is the fact that simultaneous
determination of all relevant parameters of interior orientation is im-
possible.

Lenz [16] presented a technique in which an imaging system was
similarly calibrated and oriented in several steps. The technique re-
quires a plane test field with known coordinates, which generally should
not be oriented parallel to the image plane. Modeling radial symmet-
rical distortion with only one coefficient (see also Section 6.5.2) and
neglecting asymmetrical effects allows the calibration to be based en-
tirely on linear models. Because these do not need to be resolved in-
teractively, the technique is very fast. It is a disadvantage, however,
that here also it is impossible to determine all the parameters simulta-
neously and that, for example, the location of the principal point and
pixel affinity have to be determined externally.

Gerdes et al. [21] describe a method in which cameras are permit-
ted to be calibrated and oriented with the aid of parallel straight lines
projected onto the image. A cube of known dimensions is required for
the purpose as a calibrating medium. Vanishing points and vanishing
lines can be computed from the cube edges projected onto the image
and used to determine the unknown parameters.

A frequently used formulation for the determination of the param-
eters of exterior and interior orientation is the method of direct lin-
ear transformation (DLT) first proposed by Abdel-Aziz and Karara [28].
This establishes a linear relationship between image and object points.
The original imaging equation is converted to a transformation with
11 parameters that initially have no physical importance. By introduc-
ing additional relations between these coefficients it is then possible
to derive the parameters of interior and exterior orientation, including
the introduction of distortion models [29]. Because the linear formu-
lation of DLT can be solved directly, without approximations for the
unknowns, the technique is frequently used to determine approxima-
tions for bundle adjustment. The method requires a spatial test field
with a minimum of six known control points, a sufficient number of
additional points necessary to determine distortion. However, if more
images are to be used to determine interior orientation or object coor-
dinates, nonlinear models will have to be used here also.

(6.13)

’
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Figure 6.13: Measurement of a fender.

Figure 6.14: Rollei Q16 MetricCamera.

6.7 Photogrammetric applications

6.7.1 Applications with simultaneous calibration

The imaging setup for many photogrammetric applications allows si-
multaneous calibration of cameras. It is an advantage of this solution
that no additional effort is required for external calibration of the cam-
eras and that current camera data for the instant of exposure can be
determined by bundle adjustment. This procedure, however, is possi-
ble only if the evaluation software offers the option of simultaneous
calibration. As an example, let us look at measurement of an automo-
bile part (Fig. 6.13).

A total of nine photos were taken with a Rollei Q16 MetricCamera
(Fig. 6.14) with aresolution of 4096 x 4096 sensor elements. RolleiMet-
ric Close-Range Digital Workstation software was used for evaluation.
This allows fully automatic determination of 3-D coordinates, starting
with measurement of image points right up to computation of all un-
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Figure 6.15: a Measurement of a car; b 3-D view of measured points.

known parameters. In addition to target sizes and the 3-D coordinates
of all measured points in the world coordinate system, these include
the camera parameters and all camera stations. For this example the
coordinates have an accuracy of approximately 1/100 mm in each of
the three coordinate axes. Figure 6.15a, b illustrates another exam-
ple from the automotive industry. Here, torsion tests were made in
the course of deformation measurements. The data were obtained by
photogrammetric means. A total of 3000 points all around the vehicle
were recorded in a total of 170 images with the aid of a digital cam-
era with a resolution of 3000 x 2000 sensor elements. Here also, the
camera was simultaneously calibrated during image acquisition. The
points measured were accurate to within about 5/100 mm. Most pho-
togrammetric applications for high-precision 3-D industrial metrology
work are based on simultaneous calibration. Numerous other uses can
be found in the aviation industry (measuring aircraft components and
fixtures), in the aeronautical industry (measuring satellites and anten-
nas), and in civil engineering (measuring finished components). Some
of these applications are discussed in Sections A2 and A7.

6.7.2 Applications with precalibrated camera

Robot calibration. At KUKA Robotertechnik of Augsburg industrial
robots have been reliably measured, adjusted and calibrated on the
assembly line at two specially installed workplaces during the past
two years [30]. To measure the required positions and orientations, a
photogrammetric metrology system consisting of one or two RolleiMet-
ric Réseau Scanning Cameras (RSCs) are mounted on a rugged tripod
(Fig. 6.16). Using a shiftable standard CCD sensor, these cameras reach
aresolution of 4200 x 4200 picture elements at an image format of 50
x 50 mm? with an accuracy of better than 1 um in image space. The
orientation of the single images in relation to the entire image is done
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Figure 6.16: Robot adjustment.

in an optical-numerical way by a réseau measurement. Besides, this
principle, which is described in Riechmann [8], allows the focusing of
the camera without changing the interior orientation.

The cameras are controlled by a commercial PC with a standard
frame grabber, running under Windows NT. The PC serves for operator
prompting, for processing and outputting results and for connection to
the robot control. The measurement system is basically independent
of the robot control.

The interior orientation of the cameras is determined once in a spe-
cial calibration measurement. With this known interior orientation, it
is possible to determine the orientation of the cameras. Various target
plates 450 mm x 450 mm in size are used, with reflective targets as
control points, which are also identified as tools for the robot. A sec-
ond target plate of 600 mm x 600 mm with an adapter serves for prior
determination of the robot base and external orientation of the cam-
era. To transfer the different coordinate systems, highly precise bores
in the target plates are used with special adapters. A mechanical pre-
cision measuring machine serves as a higher-order metrology system
for measuring the bores.

After orientation the online measurement of the robots is possible.
The quality of the system orientation is verified by special measure-
ments. A recalibration of the system normally is necessary only in time
periods of some months.
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Other applications. Other photogrammetric applications for the 3-D
capture of objects can be found, for example, in accident photography
and in architecture. In these fields, it is primarily scale drawings or
rectified scale photos (orthophotos) that are obtained from the pho-
tograms. The cameras employed are generally calibrated for different
focus settings using the methods described in the foregoing. An ex-
ample is the RolleiMetric ChipPack with a resolution of 2000 x 2000
sensor elements. Special metric lenses, which guarantee reproducible
focus setting by mechanical click stops of the focusing ring, keep in-
terior orientation constant for prolonged periods. The data of inte-
rior orientation are entered in the software and thus used for plotting
and all computations. This guarantees high-precision 3-D plotting with
minimum expense in the phase of image acquisition.

6.8 Summary

The use of digital cameras for measurement purposes requires the
knowledge about different parameters, describing the interior camera
model and the exterior camera positions and orientations. The deter-
mination of the interior and exterior camera parameters is defined as
calibration and orientation of the measuring system. It has been shown,
that—depending on the application—different strategies for the cali-
bration and orientation exist. Different mathematical models for the
description of optical measuring systems are usable. A focal point has
been the description of an integrated model, which defines the trans-
formation from image-space to object-space by six parameters of the
exterior orientation and different parameters for the camera geometry.
Effects from electronical, mechanical or optical influences (e.g., lens dis-
tortion) are corrected by the model. The described models have been
used for many applications and are sufficient for a wide range of cam-
eras. Current developments of digital cameras for measuring purposes
are using large image-sensors with higher resolution. On the other
hand, accuracy requirements are increasing for many applications. For
this reason future improvements and extensions of the mathematical
camera model can be necessary and helpful, taking into account spe-
cial problems of large sensors, such as sensor flatness or patching of
smaller sensor parts to complete sensors.
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7.1 Introduction

Electronic imaging using charge coupled devices (CCD) cameras and
digital image processing found widespread application in research, in-
dustrial production, communications, and consumer goods. Nowa-
days, 3-D image acquisition and processing appears to be on the verge
of a comparably stormy and far-reaching development. Fast and non-
contact optical shape measurements are of significant importance in
industrial inspection, robot vision in automatic assembly, and reverse
engineering. They are equally important for the surveillance of secured
areas, 3-D object recognition and navigation. Another application re-
quiring data about the geometrical shape of objects in 3-D space is
virtual reality.

Three-dimensional optical shape measurements deliver the abso-
lute 3-D geometry of objects that should be independent from the ob-
ject’s surface reflectivity, its distance from the sensor, and from illu-
mination conditions. Thus, 3-D optical sensors deliver the shape and
physical dimensions of an object, which are rotation-, translation-, and
illumination-invariant.

From the knowledge of the underlying physical principles that de-
fine the limitations of measuring uncertainty, one can design optimal
sensors that work just at those limits, as well as judge available sen-
sors. We will show that the vast number of known 3-D sensors are
based on only three different principles: triangulation, time-of-flight
measurement (TOF) including broad-band interferometry, and classi-
cal interferometry.

The three principles are different in terms of how the measuring un-
certainty scales with the object distance [1]. The measuring uncertainty
ranges from about one nanometer to a few millimeters, depending on
the principle and the measuring range.

It is the goal of this chapter to provide an overview of the techniques
for optical shape measurements by means of CCD cameras in a well-
organized and comparable hierarchical scheme. An insightis given into
the basic problems, and new developments are pointed out. The reader
will further learn that with only two or three different sensors a great
majority of problems from automatic inspection or virtual reality can be
solved. This chapter focuses on the applicability to real problems and
addresses the interests of potential users of 3-D surface measurement
sensors. It discusses the potentials and limitations of the major sensor
principles and gives examples of sensor realizations. Other overviews
of 3-D imaging techniques have previously been given [2, 3, 4, 5], and
in extended versions of parts of this chapter in CVA1 [Chapter 18-20].
A scientific review was given in [6].
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Contactless 3-D Shape Measurements

I + I

Microwave Light wave Ultrasonic wave
A=3-30mm A=0,5-1um A=0,1-1mm
(10 - 100 GHz) (300 - 600 THz) (0,3 - 3 MHz)
| + |
) ) Interferometry Time-of-flight (TOF)
Triangulation depth detection depth detection
depth detection by means of by means of
by means of optical coherent optical modulation time-
geometrical angle time-of-flight of-flight measurement
measurement measurement (in gen. opt. incoherent)

Figure 7.1: Principles of noncontact 3-D shape measurements.

7.2 Characteristics of 3-D sensors

7.2.1 Basic principles of depth sensing

As shown in Fig. 7.1, optical shape measurements are based on three
different principles: (I) triangulation, (II) time-of-flight measurements
and interferometry on rough surfaces, and (III) classical interferometry
at smooth surfaces. The classification is based on the fact that the
physically achievable measuring uncertainty 6z of the three principles
scales differently with the distance z:

type I: 6z o< 2%, typell: 6z < z°, typelll: 6z oc z7!
In Fig. 7.1, interferometry of type II and type III are put together into
one box because in practice we get a measuring uncertainty of less than
1 um, while time-of-flight measurements are less accuarte by more than
one or two orders of magnitude.

Triangulation normally determines an unknown visual point within a
triangle by means of a known optical basis and the related side an-
gles pointing to the unknown point.

Continuous wave (CW) and pulse time-of-flight techniques measure
the time of flight of the envelope of a modulated optical signal
(group velocity). Figure 7.17 shows the hierarchical partitioning of
this technique.

Interferometry measures depth also by means of the time-of-flight.

Now, however, coherent mixing and correlation of the wavefront
reflected from the 3-D object with a reference wavefront is required.
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Figure 7.2: Relative resolution of methods for optical shape measurements.

7.2.2 Depth map

The depth information measured by a 3-D sensor constitutes a spatial
point cloud. It can be given on a regular grid either in Cartesian coordi-
nates z(x, y), or in polar coordinates R(0, ¢). This type of information
is called a depth map or depth image. For many applications, this in-
formation is sufficient. Together with the depth map, most 3-D sensors
also deliver a signal amplitude. Thus, we obtain a standard intensity or
gray-scale 3-D surface image G(x, y, z).

Given the tremendous advances in computer graphics, itis no longer
a problem to compute realistic visualizations from 3-D object surfaces
even in real time. The true problem remains the fast and precise acqui-
sition of the depth map within a large volume and in a natural environ-
ment. Today, we are still far away from such a complete and video-rate
depth image acquisition.

7.2.3 Measuring range and uncertainty

The most critical parameters of such systems are the depth-measuring
range Az and the depth resolution 6. Figure 7.2 illustrates the mea-
suring and resolution ranges that are covered by the existing industrial
measuring systems. The figure shows the relative uncertainty 6./z as
a function of the object distance z. Due to electronic time drifts or
mechanical instabilities, the systematic measuring error (accuracy) can
be much larger than the measuring uncertainty (precision) 6,. The in-
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creasing use of imaging systems for all three techniques reduces the
measuring times significantly.

The lowest absolute measuring uncertainty 6. is achieved by inter-
ferometry, which achieves values better than A/100. Multiwavelength
techniques increase the depth range Az from micrometers to meters.

Triangulation techniques can be used with high accuracy from the
millimeter range (depth of focus techniques, Chapter 11.3) to the 100 km
range (classical photogrammetry), or even up to distances of light years
with the earth orbit diameter as the optical baseline (astronomy).

So-called active triangulation systems with a projected fringe pat-
terns work almost like a 3-D camera (see Section 7.3.2). Online pho-
togrammetry with digital cameras enables fast 3-D measurements of
special targets attached to the 3-D object (see Section 7.3.3). A complete
surface 3-D reconstruction outside the targets, however, still requires
several minutes if at all possible by naturally existing points appropri-
ate for correspondence.

With only 6.7 ps time-of-flight per millimeter, time-of flight depth
estimation is an extreme challenge for time measurements. The mea-
suring uncertainty 6, due to electronic time drifts are practically in-
dependent of the distance and are in the millimeter range. Significant
improvements are possible if the time-consuming and error prone cor-
relation process is transferred as much as possible from electronic com-
ponents to optical components and done in parallel. This is realized
in a new inherently mixing and correlating photodetector, the photonic
mixer device (PMD), which makes possible a high-integral 3-D imaging
sensor [7].

7.2.4 Types of radiation used in depth sensing

Microwaves are particularly suitable for large-scale 3-D measurements
either by triangulation (e.g., global positioning system (GPS), determi-
nation of an unknown point of a triangle by three sides) or directly
by time-of-flight measurements (e. g., conventional radar and synthetic
aperture interferometry) (see [8, 9, 10]). For industrial production au-
tomation, these techniques, in general, do not reach the required angu-
lar resolution due to diffraction. A circular antenna with a diameter d
generates a radiation cone (Airy pattern, see Chapter 3) with an angle
2, where
. A w

sinx = 1'2201 =27 (7.1)
If we use, for example, an antenna with d = 122 mm diameter and an
extremely short microwave (A = 3mm, v = 100 GHz), the opening angle
2« of the radiation cone is 60 mrad and the minimum spot size or waist
w is already 60 mm at 1 m distance, respectively, at the focal length f.
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For ultrasound we get the same relations for the same wavelength of,
for example, A = 3mm (v = 110kHz in normal atmosphere). Additional
difficulties with ultrasound are the significant sensitivity of the propa-
gation speed of sound from pressure and temperature (with a relative
change of about 2.2 x 1073 per °C and only —0.93 x 10~ per °C for light)
and, moreover, the increasing attenuation at higher frequencies and a
high reflectivity that is similar to a mirror of technical surfaces.

In contrast to microwave and ultrasound, optical 3-D sensors pos-
sess a 103 to 10* times higher lateral and angular resolution due to
the shorter wavelength in the range of 300 nm (ultraviolet) to 3 ym (in-
frared) (Section 2.2.1).

7.2.5 Scanning versus staring image acquisition

Point-measuring sensor principles (laser triangulation, time-of-flight,
laser heterodyne interferometers as shown in Figs. 7.4 and 7.16) can be
used in scanning mode for surface measurements. As a major advan-
tage compared to area-based sensors, parameter optimization is possi-
ble for every measured point. Dynamic control of lens focus, aperture,
and signal amplification can, in principle, be used to overcome the phys-
ical limitations of fixed focus sensors, which need small apertures for
a large depth of focus (Section 7.3.6, [11]).

7.3 Triangulation

Triangulation is the most widely used technique for optical shape mea-
surements. Figure 7.3 shows the hierarchy of the most important vari-
ants, which, despite the same basic principle, partly appear extremely
different. At the highest level, we distinguish the following: (1) fo-
cus techniques; (2) active triangulation with structured illumination; (3)
passive triangulation techniques on the basis of digital photogramme-
try and stereoscopy; (4) theodolite-measuring systems; and (5) shape-
from-shading techniques. The rapid progress of optical triangulation,
specifically active with structured light and passive with digital pho-
togrammetry and with combinations of both, is already a big step to-
wards the goal of a 3-D triangulation camera and real-time stereovision.
In the following subsections, a survey of the five basic variants of tri-
angulation techniques is given.

7.3.1 Focus techniques
The critical parameters of focus techniques are the diameter of the
diffraction-limited spot or waist w in the focal plane

w = 2.44% =2fsin«x (7.2)
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Figure 7.3: Hierarchy of the most important principles of triangulation tech-
niques.

and the Rayleigh depth of focus

A
sin® «

AZR = (73)
where sin «, f, and d are the numerical aperture, the focal length, and
the free diameter of the optical system, respectively.

The technique of confocal microscopy (1.1 in Fig. 7.3) utilizes the
double spatial filtering at the focal plane by both illumination and de-
tection of the object using a pinhole. The detector “sees” only illumi-
nated points at the focal plane. Because only one single point is mea-
sured at a time, the acquisition of a true 3-D image requires scanning
in all three spatial directions x, v, and z. Confocal microscopy with a
microlens array and a CCD matrix sensor acquires one image at a time
and thus needs only a depth scan. Area-extended measurements are
also achieved by the systems reported by Engelhardt and Hausler [12]
and Engelhardt [13]. A detailed account on 3-D confocal microscopy is
given in CVA1 [Chapter 21].

Controlled focusing (1.2 in Fig. 7.3) delivers a height profile of a
surface z(x,y) by scanning the xy plane with a fast Z control using,
for example, a differential photodiode for high angular resolution [14,

]. With the defocusing method (1.3 in Fig. 7.3), the distance can either
be determined by the diameter or the intensity of the spot. A depth
scan can be avoided by spectral analysis provided that the focal length
f depends approximately linearly on the wavelength [16].
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Figure 7.4: Triangulation-based point and line sensors for surface measure-
ment: a point triangulation sensor; b light sectioning with a single light plane;
c active-optical sensors with a calibrated camera-projector pair perform high-
est sampling rate and lateral resolution. Every camera pixel can, in principle,
produce a separate coordinate.

7.3.2 Active triangulation

Active triangulation needs structured illumination (Fig. 7.4). Either a
small light spot is projected onto the object (we call this a “point sensor”
because it measures the distance of just one single point). Or we project
a narrow line (“line sensor”; this method is known as light sectioning
[17]). Or we project a grating (phase-measuring triangulation [18, 19]).

With light point or 1-D laser triangulation (2.1 in Fig. 7.3), the light
source emitting a collimated beam (pencil beam), the detector, and the
illuminated object point form the so-called triangulation triangle. On
the side of the sender, the angle to the triangulation basis is fixed while
on the side of the detector it is determined either by a CCD line sensor
or a position-sensitive photodetector (PSD). From this angle, the depth
can be determined. The principally achievable minimum distance un-
certainty ¢ for laser illumination is given by

A

6 = A __ - A -
2~ 21 sin0sin o4

(7.4)

and the measuring range Az (two times the depth of focus [20]) by

Az = 227}\ (7.5)
sin“ oy

where sin o¢; and 0 are the aperture of the detector optics and the tri-
angulation angle, respectively. The acquisition of a depth image with

this technique requires an xy scan [14, p. 6], [21, p. 1].
With the lightsheet technique (2.2 in Fig. 7.3) or 2-D laser triangu-
lation, generally a laser beam is expanded via cylindrical lenses or by
a scanning device to a light sheet. The cross section of the lightsheet
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and of a 3-D object form a light line (the height profile) that is imaged
onto a 2-D detector. Thus, only a 1-D scan perpendicular to the light
plane is required for 3-D imaging [14, 22, p. 8], Section A5.

Figure 7.5 shows schematically such a lightsheet triangulation in-
strument. The height profile generates the charge image on the CCD
detector shown in Fig. 7.5b. In order to obtain maximum depth resolu-
tion, the detector plane, the plane of the image-forming optics (perpen-
dicular to the optical axis), and the plane of the object to be measured,
have a common axis and, thus, meet the Scheimpflug condition.

The light-volume triangulation (2.3 in Fig. 7.3) illuminates the whole
3-D object to be measured with structured light. Thus, no scanning
is required. For materials that scatter light from the surface (and not
from subsurface regions), light projection can be used to produce tex-
tures on the surface. For example, the projection of pseudo-noise is
often used in digital photogrammetry with two or more views. Other
projection patterns include line grids, crossed lines and sine grids. Ac-
tive triangulation by projected textures works quite well on smooth
and nonspecular surfaces. The lateral continuity of the surface is im-
portant, because the image processing needs neighboring pixel values
to find the center of the spot, the center line(s) or the absolute phase
of the sine grid [23].

With the Moiré technique (see 2.3.1 in Fig. 7.3), the projected texture
is observed through an adapted reference structure. The superposition
of these two patterns produces spatial beat frequencies, respectively,
and a beat pattern with much lower wave numbers that can be observed
by a detector with a correspondingly lower spatial resolution. In this
way, the depth resolution can be increased by one order of magnitude
over conventional stripe projector systems [22, 24, p. 16].
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All single pattern-based measuring principles use the intensity dis-
tribution in small image areas. This lateral image processing assumes
lateral continuity of light remission and of the topology. Also, the lat-
eral resolution of 3-D information will be reduced. This is not accept-
able in industrial applications with nondiffuse and nonsmooth object
surfaces. Only sensors that are based on local encoding/decoding prin-
ciples instead of image correlation, can get results under such critical
circumstances. The sequentially coded light-volume technique (2.3.2 in
Fig. 7.3) illuminates the 3-D object with a sequence of binary patterns
with increasing wavenumber in such a way that each pixel can be asso-
ciated with a code, for example, a 10-digit Gray code, from which the
absolute distance can be inferred [14, 25, p. 10].

Another variant of the fringe projection technique, which has also
found widespread application, is the phase-shift or projected fringe
technique (2.3.3 in Fig. 7.3). A programmable LCD projector illuminates
the scene with sinusoidal patterns with different phase positions. In
order to evaluate the phase information, at least 3 or 4 (120° or 90°
phase shift) independent measurements are required [14, p. 12]. This
technique also results in a significant depth resolution. In conjunction
with an additional sequential binary coding (so-called Gray-code phase-
shift technique), absolute depth can be measured with high resolution.

The color-coded light-volume technique (2.3.4 in Fig. 7.3) requires
only one single image as three color channels are acquired simultane-
ously. The phase and thus the depth can, for example, be computed
from red, blue, and green stripe patterns that are phase shifted from
each other by 120° [26, 27].

In the following sections, we show how appropriate sequentially
coded light can be realized in order to encode the depth of individual
pixels by sequential illumination.

MZX-code. The first example uses all six permutations of the three
patterns—black, white, and wedge (Fig. 7.6a). By using all combinations
of three projector levels it fulfills the constraint that at least one value
must be white and one must be black. A second property is that the
spatial gradient of decoder output is constant and maximal. This code
was named MZX for Maximum level, Zero level, Crossover [28]).

Phase shifting with a single-frequency sine pattern. A great vari-
ety of interferometrical phase-shifting techniques has been developed
since the 1970s. Phase-calculating and phase-unwrapping algorithms
can also be used in triangulation-based sensors where periodic patterns
are projected [29, 30, 31, 32, 33].

The advantage of a set of phase-shifted patterns compared to a sin-
gle pattern is the same as described for MZX code: from three gray
values that are measured at the same pixel position, a local phase can
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Figure 7.6: a The permutation of a normalized wedge produces the MZX code
with a six-times higher spatial resolution compared to a wedge. b The periodical
repetition shows a pattern that is close to the phase-shift principle with sine
functions (0°, 120°, and 240°)

be evaluated that is independent from the lateral distribution of gray
values.

This local phase value, which is always in the range (0, 277), can be
seen as an absolute phase @ modulo 27r, where @ corresponds to the
projector coordinate Cp. If the object surface is continuous, the abso-
lute phase can be calculated by an incremental phase-unwrapping algo-
rithm, which allows no phase increments between neighboring pixels
larger than /2.

Phase shifting with two or more frequencies. To produce absolute
and local phase information @ (x,y) at noncontinuous surfaces, mul-
tifrequency (heterodyne) principles have been used in interferometry
[32]. Independent phase-shift measurements at slightly different light
frequencies or wavelengths (Fig. 7.7) lead to an absolute distance mea-
surement.

Gray codes. Binary Gray codes (Fig. 7.8) [34, 35] as well as multi-
frequency phase-shift techniques with periodical and continuous pat-
terns [29] have been widely used to acquire dense (that is, in principle,
for each camera pixel) and unique 3-D point data from objects in short
range. To binarize the digitized images, it is necessary to know the lo-
cal threshold (which may be different for each pixel). There are several
ways of using additional images to calculate this threshold:
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Figure 7.7: Projected patterns with 0°, 120°, 240°phase shift) and 3 groups of
slightly different frequencies, each with phase steps of 0°, 90°, 180°, and 270".

Figure 7.8: Binary gray code (additional images for threshold generation are
not shown).

1. project unstructured gray with 50% intensity and use the acquired
image as threshold; or

2. project unstructured white and black and use the averaged images
as threshold; or

3. project both normal and inverse patterns, and use the sign (1,0) of
the difference as bit.

Hybrid codes. As developed by Malz [28], hybrid codes combine the
advantages of digital and analogue principles and yield results close to
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Figure 7.9: a Hybrid code (binary Gray code, MZX code); b decoder function.

the theoretical limits, which can be achieved with temporally encoded
light structures.

The trapezoid light distribution of the MZX subcode is continuous in
space and intensity. Hybrid codes can be used with variable numbers of
images (w > 3) and also with variable digital code bases (binary, ternary,
quarternary gray codes). It has the highest resolution compared to all
other temporal principles (under equal conditions, namely, the number
of images used, and the lowest acceptable number of separable gray
levels. See also Fig. 7.9).

Light fringe projectors. An important factor in the signal chain is
the programmable light projector. The decoder result can only be linear
and noiseless, if the spatial projector modulation is exact. Hybrid codes
need analog projecting devices for best results. At least, the decoder
function has to be strictly monotone with no steps.

Some technical light projectors, however, are not able to produce
continuous sine or MZX-modulation. For example, a rectangular pro-
jection pattern used for a phase-shifting with 90° produces a step-by-
step decoder function. This causes systematic errors of the detector
signal in the range of +1r/4 (Fig. 7.10). A projection device for accurate
sinusoidal fringes was realized by Hausler et al. [36].

7.3.3 Passive triangulation

Passive triangulation techniques (3 in Fig. 7.3) basically include the dif-
ferent forms of digital photogrammetry and (as a special subclass stere-
ovision). Passive in this context means that the geometrical arrange-
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Figure 7.10: Binary light modulators produce systematic errors in the detector
signal.

ment of the illumination is not considered (Fig. 7.11). In the area of in-
dustrial inspection, the classical photogrammetric techniques for eval-
uation of aerial photographs have been optimized for close distances.
These techniques have formed the new field of close-range photogram-
metry (Chapter 6). For photogrammetric techniques, at least three dif-
ferent views of a point are required to determine its 3-D position. For
dynamic processes, often multiple cameras with known relative posi-
tions (3.1 in Fig. 7.3) or self-calibrating methods (3.2 in Fig. 7.3) are
used. For static scenes, a single camera that takes images from three
or more different unknown views is sufficient (3.3 in Fig. 7.3) [37]. The
numerical problem is solved by bundle adjustment, which calculates
all unknown parameters for camera(s) position(s), and object points
simultaneously.

If a 3-D object is imaged from different perspectives with a high-
resolution digital camera, relative standard deviations in the positions
ox/X, oy/Y,and oz/Z of better than 10~> come close to time-consum-
ing classical photographic techniques of photogrammetry. High com-
puting power and optimized algorithms make online inspection with
about 50 targets and a period of 4 s possible. Photogrammetric camera
calibration and orientation estimation is dealt with in Chapter 6.

Feature-based target points. A fundamental concept in photogram-
metry is the intersection of rays in object space. The quality of inter-
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Figure 7.12: a Different target types for point coordinate measurement with
subpixel precision. b Subpixeling with circular targets needs extended image
regions of interest (e.g., 16 x 16 pixels for the central blob).

section “points” determines the quality of measurement. In fact, these
points can be represented by any spatial physical features or optical
phenomena, provided that there are models that fit precisely indepen-
dent from viewing angle. Temporal invariance is also required, if se-
quential imaging is used. Good physical representations of points can
be characteristic coordinates of geometrical primitives (like spheres,
circles, etc.) or radiometric primitives (as edges between areas of dif-
ferent diffuse scattering materials). It is important that the borders
between regions in the image are borders between different diffuse ma-
terials only.

Artificial targets. Well-designed artificial targets are used to estab-
lish stable intersection points in the scene or on the object. With retro-
reflecting targets or diffuse white flat or spherical targets of good opti-
cal quality (homogeneous and symmetrical intensity distribution) and
sufficient size (5-10 pixels diameter) standard deviations of 1/20-1/50
pixels in the image plane can be achieved [38] (Fig. 7.12).

The advantages of close-range photogrammetry with targets are
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¢ high accuracy of target measurement, and
¢ short measuring time.

However, some disadvantages have to be accepted:
o the object has to be prepared and cleaned,

o the measured coordinate points are target coordinates, but not co-
ordinates of the object itself,

o interesting object features like edges, corners or holes are disconti-
nuities and cannot be prepared with standard targets,

¢ high densities of coordinates cannot be achieved with targets, be-
cause there is always a need for extended image regions of interest
for each point.

Simple errors on targets, illumination, optics, sensor chips, sensor
electronics reduce the accuracy substantially. For example, mechanical
and optical errors on targets can be:

o variable thickness of attached retroreflective targets,

¢ enclosed particles and bubbles,

o dirty target surface and frayed target edges,

o virtual dislocations from inhomogeneous illumination.

Texture-based matching. Obviously, target-based measurement is
good for a limited number of selected points. But how can we measure
surfaces and produce point clouds with thousands of points? Higher
spatial sampling rates can be achieved using textures on the object
surface. To define and find homologue points from different views,
these textures should be dense, high frequency and aperiodic to get
unique and narrow correlation peaks for different scales. Texture anal-
ysis needs correlation windows of sufficient sizes (typically 10-25 pix-
els diameter) to get stable and unique results with high precision. This
reduces the lateral resolution and the available number of independent
coordinate points.

Remote sensing applications need and use natural textures on the
surface. Parts in industrial production processes, however, are often
made from one material with low texture contrast. Such surfaces can-
not be measured directly with passive photogrammetric techniques.
Painted or printed diffuse textures would be optimal, but this kind of
object manipulation would not be acceptable in most applications.

7.3.4 Theodolites

So far, theodolites are still the most accurate triangulation systems
available with a relative distance error of about 5 x 1076, However,
they require long measuring times. A target is focused with at least
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two theodolites. The horizontal and vertical angles are measured elec-
tronically, and the 3-D coordinates of the target are computed from the
measured angle and the known positions of the theodolites [14, p. 14].
Theodolites are used for accurate measurements of large-scale objects.
In modern systems, sometimes a 1-D laser radar distance is integrated.

7.3.5 Shape from shading

The shape-from-shading techniques delivers 3-D information as sur-
face normals of the surface elements from the image irradiance and
the known position of the camera and the light sources. From this in-
formation, the 3-D shape can be computed [39, p. 39]. The various types
of shape-from-shading techniques including extensions using multiple
images with different illuminations or image sequences with moving
light sources (photometric stereo) are discussed in detail in CVA2 [Chap-
ter 19].

7.3.6 Limits and drawbacks of triangulation

Random localization errors. The object surface can be either opti-
cally smooth like a mirror, or it can be optically rough like a ground
glass. It is important to note that the attribute smooth or rough de-
pends on the lateral resolution of the observation optics: If we resolve
the lateral structure of a ground glass, for example, by a high-aperture
microscope, the surface is smooth for our purpose. “Smooth” means
for us that the elementary waves that are collected from the object to
form a diffraction-limited image spot contribute only with minor phase
variations of less than +A/4. If there are larger phase variations within
the elementary waves, then we have diffuse reflection, or scattering
(Chapter 2).

The weakness of point triangulation is obvious: it is not robust
against shape variation of the spot image. And just such a variation is
introduced by speckle, as shown in Fig. 7.13. As the shape of the spot
image depends on the unknown microtopology of the surface, there will
be a principal random localization error, theoretically and experimen-
tally determined in Dorsch et al. [40]. Its standard deviation 6z, will
be given by

CA

= 7.
27T SiN Ughg SIN O (7.6)

0Zm

where 0 is the angle of triangulation, sinyys is the aperture of ob-
servation, A is the wavelength of light, and C is the speckle contrast.
The speckle contrast is unity for laser illumination. We have to em-
phasize that it is not the monochromaticity that causes speckle. It is
the spatial coherence. And strong spatial coherence is always present,
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Figure 7.13: a Spot image after reflection at a smooth surface; b spot image
after reflection at a rough surface. The localization of the spot image is possible
only with some uncertainty, introduced by the surface microtopology to which
we have no access.

if the aperture of the illumination uy; is smaller than the aperture of
observation. With a small light source we can achieve high contrast
speckles, even if the source emits white light! Hence, Eq. (7.6) is valid
for phase-measuring triangulation as well; we just have to use the cor-
rect speckle contrast, which is smaller than unity for properly designed
PMT systems [41].

Equation (7.6) introduces a physical lower limit of the measuring
uncertainty of triangulation sensors (type I). For a macroscopically pla-
nar ground glass with a surface roughness of 1 ym, using a sensor with
an aperture of observation of 1/100, an angle of triangulation of 20°,
and a wavelength of 0.8 u, from laser illumination, we will find a stan-
dard deviation of the measured distance of about 37 u, which is much
larger than the surface roughness. Such a large statistical error is not
acceptable for many applications.

In order to overcome this problem, we have to destroy spatial co-
herence! For a point sensor this can be done only at the object sur-
face. Figure 7.14 displays the result of an experiment that proves the
importance of spatial coherence for distance uncertainty by using a flu-
orescent coating producing perfectly incoherent reflection. A different
method of destroying spatial coherence is to heat up the surface and
make it thermally radiant. This happens in laser material processing.
We make use of the thermal radiation from the laser-induced plasma,
to measure the material wear on line, with very low aperture, through
the laser beam, with an uncertainty of less than 5 ym [41].
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Figure 7.14: a Observed image spot from a rough surface, measured with spa-
tially coherent triangulation (laser illumination). b The same object measured
in fluorescent light: the surfaces were covered with a very thin fluorescent film.
Because fluorescence is perfectly incoherent, the noise is dramatically reduced.
This experiment proves the large role of spatial coherence as a limiting factor
in triangulation.

As the two preceding possibilities are not generally applicable, the
question arises as to whether we can reduce spatial coherence by illu-
mination with a large source. This can be done principally for phase-
measuring triangulation. However, for practical reasons, the size of the
illumination aperture can not be much larger than that of the observa-
tion aperture. Hence, there will always be a residual speckle contrast
of ¢ = 0.1 or more. Introducing this into Eq. (7.6),we will get a reduced
measuring uncertainty [41].

Shape alterations of the spot image. Triangulation usually does not
even reach the physical limit on real technical surfaces, because the mi-
crotopology of the milling or turning process causes errors much larger
than that of good ground surfaces. The reason is again the sensitivity
of triangulation against shape alterations of the spot image. For real tri-
angulation sensors that can measure macroscopic objects, it turns out
that, in practice, we cannot get a better uncertainty than about 5 ym.

Inhomogeneous spatial resolution and shading. A further draw-
back is that in triangulation, illumination and observation are not coax-
ial. Hence, we cannot avoid shading: some parts of the object are
either not illuminated or cannot be seen by the observation system.
From Fig. 7.15, we see that in close-range applications, object-camera
and object-projector distances can vary greatly, and this affects the lat-
eral image and the longitudinal range resolution in a more geometrical
sense. Throughout the measurement space there is a variety of voxel
sizes and shapes. Voxels are more square near N, more rhomboid near
F, and more rectangular near L and R. Diffraction and defocusing, as
well as the variation of surface orientation relative to camera and pro-
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jector axes lead to additional problems. The apertures of camera and
projector lenses are rather poor compromises: they should be open for
higher contrast and signal-to-noise ratios at limited projector intensi-
ties. On the other hand, they should be reduced for a wide depth of
focus reaching from N to F.

Another critical effect is the variable frequency transfer from pro-
jector to camera. Figure 7.15b shows the variation in the projector-to-
camera frequency transfer function for a cylindrical object. Only the
regions Ia and b fulfill the Nyquist criteria (e. g., the sampling frequency
must be at least twice the upper limit of the object spectrum). The in-
creasing spatial frequency seen by the camera in region I, leads to a
strong undersampling and crosstalk between neighboring pixels and
finally results in decoding errors. Regions II, IIl and IV are not measur-
able with this sensor position and have to be measured from different
views.

In addition to optical resolution effects, the variation of surface ori-
entation relative to camera and projector causes extreme intensity vari-
ations on nondiffuse surfaces. Even on a perfect lambertian surface,
the camera sees lower intensities in region I;. Finally, there remains a
small measurable region I, on the cylinder. In the center of the sensor
workspace, we find the best conditions for the measurement.

7.4 Time-of-flight (TOF) of modulated light

The distance of an object or the depth z can easily be determined by
the echo time-of-flight (TOF) T of a light signal sent by the sensor and
reflected back from the object to the sensor via

z=cT/2 (7.7)
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Figure 7.16: Principle of a time-of-flight sensor.

This basic relation is valid for both time-of-flight and interferometric
distance measurements of type II (Fig. 7.16). In the first case, the time-
of-flight of a modulated optical signal, that is, the group velocity, is
measured. Generally, this is done by correlation with a suitable refer-
ence signal. Therefore, the partitioning in Fig. 7.17 distinguishes be-
tween the different types of signals: (1) pulse modulation; (2) contin-
uous wave (CW) modulation; (3) and pseudo-random modulation. The
basic problem of all TOF techniques is the extremely high speed of
light of 300 m/us or 300 um/ps, which requires correspondingly high
temporal resolutions for the measuring techniques.

7.4.1 Pulse modulation

With pulse modulation, the time of flight is measured directly by cor-
relating a start-and-stop signal with a parallel running counter. Pulse-
modulating techniques can distinguish multiple targets. A disadvan-
tage is the temperature-sensitive time delay and the nonlinearity of the
transients of pulsed laser diodes in addition to the high demands in
bandwidth and dynamics for the amplifiers.

7.4.2 Continuous wave (CW) modulation

This principle of TOF measurement can be understood as a sort of ra-
dio wave (RF) interferometry based on an optical carrier modulation
and in that way as “Optical RF Interferometry” (ORFI). All imaginable
variations are similar to that of structured illumination interferometry
in triangulation as well as to that in rear optical interferometry. The
echo-TOF T of sine wave modulation can be determined either by het-
erodyne mixing (different frequencies are mixed, resulting in the beat
frequency and phase difference @ = 2mTvT) or by homodyne mixing
(same frequencies are mixed, resulting in a baseband signal propor-
tional to cos ). The frequency-modulated chirp modulation is used
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Figure 7.17: Hierarchy of the most important principles of modulation-based
optical depth measurements [42, 43]; [14, p. 26].

for higher resolution or to determine the TOF-dependent frequency
shift or to expect pulse compression for multitarget detection. The
low range of a unique depth determination of only Az = A, /2 can be
extended by rectangular 0° to 180° switching of the phase of the rect-
angular frequency. A definite distance measurement is then possible
using several measurements with different switching frequencies ac-
cording to a Gray code in the same way as with the sequentially coded
structured light-projection technique (Section 7.3.2). Because of the
variety of modulation techniques, Fig. 7.17 further partitions only the
sinusoidal modulation techniques.

Three-dimensional optical shape measurements with TOF techniques
is (in contrast to 1-D geodetic distance measurements) not frequently
used in industrial applications. This is due to the principal technical
problems discussed at the beginning of this section. The block (2.1)
in Fig. 7.17, labeled “Lightbeam,” describes 1-D TOF instruments that
require a 2-D scanning system for the acquisition of depth images. If
a modulated lightsheet or plane is used (2.2 in Fig. 7.17), we get 2-D
information as a light stripe in space. In this case, a 1-D scanner is
sufficient. With a modulated light volume, no scanning is required at
all. In this case, the receiver requires a 2-D mixer for CW demodulation.
It produces a radio-frequency modulation interferogram in which the
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Figure 7.18: Hierarchy of the most important measuring principles for depth
measurements on the basis of optical interferometry.

depth information is encoded and can be detected by a CCD camera
[44]. This field of ORFI is of growing importance [45].

7.5 Optical Interferometry (OF)

Classical interferometry is a technique to measure smooth (polished)
surfaces. A coherent wavefront is split into a measuring (or object)
and a reference wavefront. These are superimposed (correlated) again
in a detector as illustrated in Fig. 7.23. If a 2-D detector is used, an
interferogram or correlogram is generated, indicating the phase shift
over the detector area. With at least three measurements with differ-
ent phase positions of the reference, the phase shift between the ref-
erence and the signal wavefronts can be determined according to the
phase-shift principle. Unfortunately, this technique cannot determine
absolute depth. Because of the ambiguity of the signal in multiples
of A/2, a unique depth determination is only possible in this narrow
depth range. With homodyne and heterodyne interferometry, a res-
olution better than A/100 and A/1000, respectively, can be reached.
The high depth accuracy of interferometric measurements requires a
mechanically very stable instrument.

A large number of different interferometric depth-measuring sys-
tems with different measuring properties is currently available [46,
p.- 23], [47, p. 66]. For practical applications in 3-D shape measure-
ments, several types of instruments are predominantly used and con-
tinuously improved (Fig. 7.18).

7.5.1 Multiwavelength interferometry

Multiwavelength interferometry (1 in Fig. 7.18) offers exceptional fea-
tures for industrial applications. It is possible to perform absolute dis-
tance measurements over up to several ten meters with resolutions in
the nanometer range under ideal conditions. A basic characteristic of
multiwavelength interferometry is the generation of beat frequencies in
the gigahertz and megahertz range by the superposition of two closely
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Figure 7.19: Speckle interferometry: a Schematic illustration of the instrument
setup; b Difference interferogram showing a form change; c 3-D reconstruction.

spaced wavelengths. The “synthetic” wavelengths of these beat fre-
quencies determine (instead of the wavelength of the light itself) the
range in which distances can be measured without ambiguity [47, 48].

7.5.2 Holographic interferometry

Holographic interferometry (2 in Fig. 7.18) enables deformation of 3-
D objects caused, for example, by thermal or mechanical stress to be
measured in the nanometer range. A hologram of the original object
is coherently superimposed by the one under deformation. The result-
ing interferogram describes the deformation and can be captured or
observed online, for example, by a video camera [14, p. 32].

7.5.3 Speckle interferometry

Speckle interferometry (3 in Fig. 7.18) utilizes an otherwise disturb-
ing effect in optical metrology for exact deformation measurements.
Speckles are generated when coherent light is reflected from a rough
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surface. The reflected wavefronts interfere with each other on the de-
tector surface and generate a speckle pattern that is characteristic for
the surface roughness elements. If an additional reference beam gener-
ates a second speckle pattern, this is coherently superimposed on the
first one and produces a speckle interferogram.

Figure 7.19a shows the typical setup of a so-called electronic speckle
interferometer (ESPI). After the object is deformed, a second speckle in-
terferogram is captured. If this interferogram is subtracted from the
previous interferogram of the original object, a difference interfero-
gram is obtained as shown in Fig. 7.19b. The distance between the
stripes corresponds to a height difference of A/2. At least three ex-
posures are required to obtain a difference height image AZ(x,y) as
shown in Fig. 7.19c [2 S.34][31].

7.5.4 White-light interferometry

White-light interferometry or the has a unique properties, as time-of-
flight measurements: the achievable measuring uncertainty does not
depend on the distance z nor the aperature of illumination. Hence this
method, called coherency radar (4 in Fig. 7.18) can measure with high
accuracy the depth of narrow boreholes. The setup equals a Michel-
son interferometer. In one arm of the interferometer the object to be
measured is located, and in the other arm a CCD camera is located.

Until recently, rough surface interferometry was not possible be-
cause the speckles in the image plane of the interferometer display an
arbitrary phase, with the phase within each speckle independent from
the phase in other speckles [49]. Therefore, we cannot see fringes if
we replace one mirror in a Michelson interferometer by the rough ob-
ject. And itis useless to evaluate the phase of the interference contrast
within each speckle. There is no useful information within that phase.

However, there is a way to measure rough surfaces with an uncer-
tainty in the 1 ym regime [50]:

1. The phase is constant within one speckle, allowing us to generate
interference contrast in each speckle separately if only speckles are
generated. This can be accomplished by using a sufficiently small
aperture of illumination (as explained in preceding material)—even
in the case of a white, extended light source.

2. Broadband illuminationis used to exploit the limited coherence length
of the light. It turns out that interference contrast can be observed
only within those speckles that satisfy the equal path length con-
dition: The path length in the object arm of the interferometer has
to be approximately the same as that in the reference arm. For a
certain object position on the z-axis, we will see interference con-
trast at one certain contour line of equal distance (or “height”). To
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o

acquire the shape of the object, we have to scan the distance (along
the z-axis; see Fig. 7.20).

While scanning through the z-axis, each pixel of our observation
system displays a modulated periodic time signal, which is called “cor-
relogram.” It is displayed in Fig. 7.20b. The length of this correlogram
signal is about coherence length, and the time of occurrence, or the
position zy (x, ) of the scanning device at that time, is individual for
each pixel: The correlogram has its maximum modulation, if the equal
path-length condition is satisfied. We store z, for each pixel separately
and find the shape of the surface.

White light interferometry on rough surfaces, as it is realized in the
coherence radar, is extremely powerful. There are unique features that
will be summarized and illustrated by measuring examples:

e The coherence radar is a coaxial method: illumination and observa-
tion can be on the same axis. No shading occurs.

e The coherence radar is inherently telecentric, independently from
the size of the object. All depths are imaged with the same scale.

¢ The distance measuring uncertainty on rough surfaces is not given
by the apparatus or limited by the observation aperture. It is given
only by the roughness of the surface itself.

Because the measuring uncertainty is independent of the aperture,
it is independent of distance from objects (standoff), as well. Hence,
we can measure distant objects with the same longitudinal accuracy
as close objects. In particular, we can measure within deep boreholes
without loss of accuracy (see Fig. 7.22).
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Figure 7.21: Depth map of a drill, seen from the top, and cross section.

One more feature that cannot be achieved by triangulation is the
ability of the coherence radar to measure translucent objects such as
ceramics, paint or even skin. The reason is that we measure essentially
the time of flight (with the reference wave as a clock). Thus, we can
distinguish light scattered from the surface from light scattered from
the bulk of the object. Further examples and modifications of white-
light interferometry are shown in CVA1 [Chapter 19] and Ammon et al.
[51].

7.5.5 Comparison of TOF and interferometry

Because the modulation-based and interferometric depth measurements
are based on the same TOF principles, the question arises of why modu-
lation-based techniques already encounter significant measuring prob-
lems at resolutions in the centimeter range, while interferometric tech-
niques can easily reach resolutions in the nanometer range.

The answer to this question is illustrated in Fig. 7.23. A conventional
TOF measurement according to Fig. 7.23a includes (besides the optical
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Figure 7.22: As the measuring uncertainty of the coherence radar does not
depend on the observation aperture, we can measure within deep boreholes,
with about 1 um accuracy.

Modulated Oscillator
Transmitter
/ Reference
- | —]
- Phase
2VANIS) :
] A Amplitude
Measurement ﬁ
Signal
> BP |— —| TP }—»]
::j i Signal
WMWMWMWMW — D [D‘ ® ‘1‘ Processing|
—_— — e — e
Photodiode /‘ Electrical \
0..1..(2-D) Bandpass Filter ~ Mixer Lowpass Filter
Phase
&
Measurement  Photodiode or CCD-Receiver Amplitude

Signal O / 0..1..2D

o~ Signal
MWMWWMMW % Processing|

Reference (1177

Figure 7.23: Principle of optical depth measurements by: a incoherent (modu-
lation); and b coherent (interferometry) time-of-flight measurements.

path) a considerable time delay in the high-frequency electronics before
the signal is mixed and correlated. Especially the entrance amplifier
and the electronic mixer give rise to such high errors in the temporal
delay that either a continuous time-consuming mechanical calibration
or a compensation by a costly second reference channel (not shown
in the figure) is required [52]. In practice, the latter reference channel
eliminates the unsatisfying time drifts mentioned in the foregoing.
With an interferometric TOF measurement, the mixing and correla-
tion of the signal and reference channel take place directly within the
photodetector by coherent field superposition, practically without any
errors or temporal delay. As a direct consequence, this means that
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good TOF measurements require the high-frequency mixing process to
take place not in the RF electronics but either in an optical component
or in the detector itself. In this way, not only can the significant errors
due to the time delays in the wideband amplifier, the electronic mixer,
and cross-talk be avoided, but also the high costs associated with these
components.

7.6 Conclusion

The measuring technologies for 3-D optical shape measurements have
been in a phase of rapid development for a number of years. It is ex-
pected that this development will continue for some time to come. Bet-
ter and new components, higher computing power, and faster and more
accurate algorithms are on the horizon as well as the fusion of various
depth-measuring principles.

Designing good optical sensors requires an understanding of phys-
ical limits. Properly designed, optical 3-D sensors supply accurate
data about the geometrical shape of objects that are as accurate as
physics allows. The dynamic range allows researchers to distinguish
1000-10,000 different depths. Two main sensor principles, active trian-
gulation and White-light interferometry at rough surfaces (“coherence
radar”) can measure a majority of objects with different surface struc-
tures. Once acquired, the geometrical shape complements intelligent
algorithms very well in solving inspection problems, because the algo-
rithms do not have to be concerned with the variable appearance of
objects, as is the case in 2-D image processing.
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8.1 Introduction

Images are signals with two spatial dimensions. This chapter deals
with signals of arbitrary dimensions. This generalization is very useful
because computer vision is not restricted solely to 2-D signals. On the
one hand, higher-dimensional signals are encountered. Dynamic scenes
require the analysis of image sequences; the exploration of 3-D space
requires the acquisition of volumetric images. Scientific exploration of
complex phenomena is significantly enhanced if images not only of a
single parameter but of many parameters are acquired. On the other
hand, signals of lower dimensionality are also of importance when a
computer vision system is integrated into a larger system and image
data are fused with time series from point-measuring sensors.

8.2 Continuous signals

8.2.1 Types of signals

An important characteristic of a signal is its dimension. A zero-dimen-
sional signal results from the measurement of a single quantity at a
single point in space and time. Such a single value can also be averaged
over a certain time period and area. There are several ways to extend
a zero-dimensional signal into a 1-D signal (Table 8.1). A time series
records the temporal course of a signal in time, while a profile does the
same in a spatial direction or along a certain path.

A 1-D signal is also obtained if certain experimental parameters of
the measurement are continuously changed and the measured parame-
ter is recorded as a function of some control parameters. With respect
to optics, the most obvious parameter is the wavelength of the electro-
magnetic radiation received by a radiation detector. When radiation is
recorded as a function of the wavelength, a spectrum is obtained. The
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Table 8.1: Some types of signals g depending on D parameters

D Type of signal Function

0 Measurement at a single point in space and time g

1 Time series g(t)

1 Profile g(x)

1 Spectrum gd)

2 Image g(x,y)

2 Time series of profiles g(x,t)

2 Time series of spectra gt

3 Volumetric image 9g(x,y,2)

3 Image sequence gx,y,t)

3 Hyperspectral image g(x,y,A)
4 Volumetric image sequence g(x,y,z,t)
4 Hyperspectral image sequence g(x,y,At)
5 Hyperspectral volumetric image sequence glx,y,z,At)

wavelength is only one of the many parameters that could be consid-
ered. Others could be temperature, pressure, humidity, concentration
of a chemical species, and any other properties that may influence the
measured quantity.

With this general approach to multidimensional signal processing,
it is obvious that an image is only one of the many possibilities of a
2-D signal. Other 2-D signals are, for example, time series of profiles or
spectra. With increasing dimension, more types of signals are possible
as summarized in Table 8.1. A 5-D signal is constituted by a hyperspec-
tral volumetric image sequence.

8.2.2 Unified description

Mathematically, all these different types of multidimensional signals
can be described in a unified way as continuous scalar functions of
multiple parameters or generalized coordinates g4 as

9@ =g, az,....ap) with q=1[q1,42...,ap]" (8.1)

that can be summarized in a D-dimensional parameter vector or gen-
eralized coordinate vector g. An element of the vector can be a spatial
direction, the time, or any other parameter.

As the signal g represents physical quantities, we can generally as-
sume some properties that make the mathematical handling of the sig-
nals much easier.
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Continuity. Real signals do not show any abrupt changes or discon-
tinuities. Mathematically, this means that signals can generally be re-
garded as arbitrarily often differentiable.

Finite range. The physical nature of both the signal and the imaging
sensor ensures that a signal is limited to a finite range. Some signals
are restricted to positive values.

Finite energy. Normally a signal corresponds to the amplitude or the
energy of a physical process. As the energy of any physical system is
limited, any signal must be square integrable:

J lg(@)|® dPq < o 8.2)

With these general properties of physical signals, it is obvious that
the continuous representation provides a powerful mathematical ap-
proach. The properties imply, for example, that the Fourier transform
(Section 8.6) of the signals always exist.

Depending on the underlying physical process the observed signal
can be regarded as a stochastic signal. More often, however, a signal
is a mixture of a deterministic and a stochastic signal. In the simplest
case, the measured signal of a deterministic process g, is corrupted by
additive zero-mean homogeneous noise. This leads to the simple signal
model

9q) =gaq) +n (8.3)

where n has the variance o3 = (n?). In most practical situations, the
noise is not homogeneous but rather depends on the level of the signal.
Thus in a more general way

9(@) = ga@) +n(g) with (n(g))=0, (n*(@)=0i(g) 84)

A detailed treatment of noise in various types of imaging sensors can
be found in Section 5.5; see also CVA1 [Chapter 9 and 10].

8.2.3 Multichannel signals

So far, only scalar signals have been considered. If more than one signal
is taken simultaneously, a multichannel signal is obtained. In some
cases, for example, taking time series at different spatial positions, the
multichannel signal can be considered as just a sampled version of a
higher-dimensional signal. In other cases, the individual signals cannot
be regarded as samples. This is the case when they are parameters with
different units and/or meaning.
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a b

Figure 8.1: Representation of 2-D digital images by meshes of regular polygons:
a triangles; b squares; ¢ hexagons.

Table 8.2: Properties of tessellations of the 2-D space with regular triangular,
square, and hexagonal meshes; N,: number of neighbors with common edge;
N.: number of neighbors with common edge and/or corner; L: basis length L of
regular polygon; d: distance d to nearest neighbor; and A: area of cell

Triangular Square Hexagonal
Ne 3 4 6
N 12 8 6
l 1=3d =+16/3A l=d=+vA 1=1J3d=+4/27A
d d =13l =4/16/27A d=1=vA d=-31=44/3A
A A=3/342 =130 A=d?=12 A=1/3d42=3/32

A multichannel signal provides a vector at each point and is there-
fore sometimes denoted as a vectorial signal and written as

9@ =[a1@),a2(q),...,apq)]1" (8.5)

A multichannel signal is not necessarily a vectorial signal. Depend-
ing on the mathematical relation between its components, it could also
be a higher-order signal, for example, a tensorial signal. Such types of
multichannel images are encountered when complex features are ex-
tracted from images. One example is the tensorial description of local
structure discussed in Section 9.8.

8.3 Discrete signals

8.3.1 Regular two-dimensional lattices

Computers cannot handle continuous signals but only arrays of digi-
tal numbers. Thus it is required to represent signals as D-dimensional
arrays of points. We first consider images as 2-D arrays of points. A
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Figure 8.2: Elementary cells of regular grids for 2-D digital images: a triangle
grid; b square grid; ¢ hexagonal grid.

point on the 2-D grid is called a pixel or pel. Both words are abbre-
viations of picture element. A pixel represents the irradiance at the
corresponding grid position. There are two ways to derive 2-D lattices
from continuous signals.

First, the continuous 2-D space can be partitioned into space-filling
cells. For symmetry reasons, only regular polygons are considered.
Then there are only three possible tesselations with regular polygons:
triangles, squares, and hexagons as illustrated in Fig. 8.1 (see also Ta-
ble 8.2). All other regular polygons do not lead to a space-filling ge-
ometrical arrangement. There are either overlaps or gaps. From the
mesh of regular polygons a 2-D array of points is then formed by the
symmetry centers of the polygons. In case of the square mesh, these
points lay again on a square grid. For the hexagonal mesh, the sym-
metry centers of the hexagons form a triangular grid. In contrast, the
symmetry centers of the triangular grid form a more complex pattern,
where two triangular meshes are interleaved. The second mesh is offset
by a third of the base length [ of the triangular mesh.

A second approach to regular lattices starts with a primitive cell. A
primitive cell in 2-D is spanned by two not necessarily orthogonal base
vectors b; and b». Thus, the primitive cell is always a parallelogram ex-
cept for square and rectangular lattices (Fig. 8.2). Only in the latter case
are the base vectors b; and b; orthogonal. Translating the primitive
cell by multiples of the base vectors of the primitive cell then forms the
lattice. Such a translation vector or lattice vector v is therefore given
by

r=n1b; +n2by niy,nreZ (8.6)

The primitive cells of the square and hexagonal lattices (Fig. 8.2b
and c) contains only one grid located at the origin of the primitive cell.
This is not possible for a triangular grid, as the lattice points are not
arranged in regular distances along two directions (Fig. 8.1a). Thus,
the construction of the triangular lattice requires a primitive cell with
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a b

Figure 8.3: Construction of the cells of a regular lattice from the lattice points:
a triangle lattice; b square lattice; and ¢ hexagonal lattice.

two grid points. One grid point is located at the origin of the cell, the
other is offset by a third of the length of each base vector (Fig. 8.2a)

The construction scheme to generate the elementary cells of regular
shape from the lattice points is illustrated in Fig. 8.3. From one lattice
point straight lines are drawn to all other lattice points starting with
the nearest neighbors (dashed lines). Then the smallest cell formed
by the lines perpendicular to these lines and dividing them into two
halves results in the primitive cell. For all three lattices, only the nearest
neighbors must be considered for this construction scheme.

The mathematics behind the formation of regular lattices in two
dimensions is the 2-D analog to 3-D lattices used to describe crystals
in solid state physics and mineralogy. The primitive cell constructed
from the lattice points is, for example, known in solid state physics as
the Wigner-Seitz cell.

Although there is a choice of three lattices with regular polygons—
and many more if irregular polygons are considered—almost exclu-
sively square or rectangular lattices are used for 2-D digital images.

The position of the pixel is given in the common notation for matri-
ces. The first index m denotes the position of the row, the second, n,
the position of the column (Fig. 8.4a); M gives the number of rows, and
N the number of columns. In accordance with the matrix notation, the
vertical axis (y axis) runs from top to bottom and not vice versa as is
common in graphs. The horizontal axis (x axis) runs as usual from left
to right.

8.3.2 Regular higher-dimensional lattices

The considerations in the previous section can be extended to higher di-
mensions. In 3-D space, lattices are identical to those used in solidstate
physics to describe crystalline solids. In higher dimensions, we have
serious difficulty in grasping the structure of discrete lattices because
we can visualize only projections onto 2-D space. Given the fact that
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Figure 8.4: Representation of digital images by orthogonal lattices: a square
lattice for a 2-D image; and b cubic lattice for a volumetric or 3-D image.

already 2-D discrete images are almost exclusively represented by rect-
angular lattices (Section 8.3.1), we may ask what we lose if we consider
only hypercubic lattices in higher dimensions. Surprisingly, it turns out
that this lattice has significant advantages. Thus it is hardly necessary
to consider any other lattice.

Orthogonal lattice. The base vectors of the hypercubic primitive cell
are orthogonal to each other. As discussed in CVA1 [Chapter 6], this is
a significant advantage for the design of filters. If separable filters are
used, they can easily be extended to arbitrary dimensions.

Valid for all dimensions. The hypercubic lattice is the most general
solution for digital data as it is the only geometry that exists in ar-
bitrary dimensions. In practice this means that it is generally quite
easy to extend image processing algorithms to higher dimensions. We
will see this, for example, with the discrete Fourier transform in Sec-
tion 8.7, with multigrid data structures in Section 8.10, with averaging
in Section 9.5, and with the analysis of local structure in Section 9.8.

Only lattice with regular polyhedron. While in 2-D three lattices with
regular polyhedrons exist (Section 8.3.1), the cubic lattice is the only
lattice with a regular polyhedron (the hexahedron) in 3-D. None of the
other four regular polyhedra (tetrahedron, octahedron, dodecahedron,
and icosahedron) is space filling.

These significant advantages of the hypercubic lattice are not out-
weighed by the single disadvantage that the neighborhood relations,
discussed in Section 8.3.4, are more complex on these lattices than, for
example, the 2-D hexagonal lattice.
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In 3-D or volumetric images the elementary cell is known as a voxel,
an abbreviation of volume element. On a rectangular grid, each voxel
represents the mean gray value of a cuboid. The position of a voxel is
given by three indices. The first, [, denotes the depth, m the row, and
n the column (Fig. 8.4b). In higher dimensions, the elementary cell is
denoted as a hyperpixel.

8.3.3 Metric in digital images

Based on the discussion in the previous two sections, we will focus in
the following on hypercubic or orthogonal lattices and discuss in this
section the metric of discrete images. This constitutes the base for all
length, size, volume, and distance measurements in digital images. It
is useful to generalize the lattice vector introduced in Eq. (8.6) that rep-
resents all points of a D-dimensional digital image and can be written
as

Yn= [1’11AX1,1’12AX2,... ,’HDAXD]T (87)

In the preceding equation, the lattice constants Ax,; need not be equal
in all directions. For the special cases of 2-D images, 3-D volumetric
images, and 4-D spatiotemporal images the lattice vectors are

nAx
nAx nax mAy

Ymmn = |: mAy :| yYimmn = Y’Z/LAA;V Yk lmn = IAZ (8.8)
kAt

To measure distances, the Euclidean distance can be computed on
an orthogonal lattice by

D 1/2
de(x,x') = |x - x'|| = [z(nd—n;imxg] (8.9)
d=1

On a square lattice, that is, a lattice with the same grid constant in all
directions, the Euclidean distance can be computed more efficiently by

D 1/2
de(x,x") =[x —x'|| = [Z (ng —n;i)z] Ax (8.10)
da=1

The Euclidean distance on discrete lattices is somewhat awkward.
Although it is a discrete quantity, its values are not integers. Moreover,
it cannot be computed very efficiently.
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Therefore, two other metrics are sometimes considered in image
processing. The city-block distance

D
dp(x,x') = > Ing —nj| (8.11)
d=1

simply adds up the magnitude of the component differences of two
lattice vectors and not the squares as with the Euclidean distance in
Eq. (8.10). Geometrically, the city block distance gives the length of a
path between the two lattice vectors if we can only walk in directions
parallel to axes. The chessboard distance is defined as the maximum of
the absolute difference between two components of the corresponding
lattice vectors:

de(x,x') = max_[ng —nj| (8.12)
d=1,..,.D

yeur

These two metrics have gained some importance for morphological op-
erations (Section 14.2.4). Despite their simplicity they are not of much
use as soon as lengths and distances are to be measured. The Euclidean
distance is the only metric on digital images that preserves the isotropy
of the continuous space. With the city block and chessboard distance,
distances in the direction of the diagonals are longer and shorter than
the Euclidean distance, respectively.

8.3.4 Neighborhood relations

The term neighborhood has no meaning for a continuous signal. How
far two points are from each other is simply measured by an adequate
metric such as the Euclidean distance function and this distance can
take any value. With the cells of a discrete signal, however, a ranking
of the distance between cells is possible. The set of cells with the small-
est distance to a given cell are called the nearest neighbors. The trian-
gular, square, and hexagonal lattices have three, four, and six nearest
neighbors, respectively (Fig. 8.5). The figure indicates also the ranking
in distance from the central cell.

Directly related to the question of neighbors is the term adjacency.
A digital object is defined as a connected region. This means that we
can reach any cell in the region from any other by walking from one
neighboring cell to the next. Such a walk is called a path.

On a square lattice there are two possible ways to define neighboring
cells (Fig. 8.5b). We can regard pixels as neighbors either when they
have a joint edge or when they have at least one joint corner. Thus a
pixel has four or eight neighbors and we speak of a 4-neighborhood or
an 8-neighborhood. The definition of the 8-neighborhood is somewhat
awkward, as there are neighboring cells with different distances.
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Figure 8.5: Classification of the cells according to the distance from a given
cell for the a triangular, b square, and c hexagonal lattices. The central cell is
shaded in light gray, the nearest neighbors in darker gray. The numbers give
the ranking in distance from the central cell.

a b c

Figure 8.6: Digital objects on a triangular, b square, and c hexagonal lattice; a
and b show either two objects or one object (connected regions) depending on
the neighborhood definition.

The triangular lattice shows an equivalent ambivalence with the 3-
and 12-neighborhoods with cells that have either only a joint edge
or at least a joint corner with the central cell (Fig. 8.5a). In the 12-
neighborhood there are three different types of neighboring cells, each
with a different distance (Fig. 8.5a).

Only the hexagonal lattice gives a unique definition of neighbors.
Each cell has six neighboring cells at the same distance joining one
edge and two corners with the central cell.

A closer look shows that unfortunately both types of neighborhood
definitions are required on triangular and square grids for a proper
definition of connected regions. A region or an object is called con-
nected when we can reach any pixel in the region by walking from one
neighboring pixel to the next. The black object shown in Fig. 8.6b is
one object in the 8-neighborhood, but constitutes two objects in the 4-
neighborhood. The white background, however, shows the same prop-
erty. Thus we have either two connected regions in the 8-neighborhood
crossing each other or four separated regions in the 4-neighborhood.
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This inconsistency between objects and background can be overcome
if we declare the objects as 4-neighboring and the background as 8-
neighboring, or vice versa.

These complications occur also on a triangular lattice (Fig. 8.6b) but
not on a hexagonal lattice (Fig. 8.6¢). The photosensors on the retina
in the human eye, however, have a more hexagonal shape, see Wandell
[1, Fig. 3.4, p. 49].

8.3.5 Errors in object position and geometry

The tessellation of space in discrete images limits the accuracy of the
estimation of the position of an object and thus all other geometri-
cal quantities such as distance, area, circumference, and orientation of
lines. It is obvious that the accuracy of the position of a single point
is only in the order of the lattice constant. The interesting question
is, however, how this error propagates into position errors for larger
objects and other relations. This question is of significant importance
because of the relatively low spatial resolution of images as compared
to other measuring instruments. Without much effort many physical
quantities such as frequency, voltage, and distance can be measured
with an accuracy better than 1 ppm, that is, 1 in 1,000,000, while im-
ages have a spatial resolution in the order of 1 in 1000 due to the limited
number of pixels. Thus only highly accurate position estimates in the
order of 1/100 of the pixel size result in an accuracy of about 1 in
100,000.

The discussion of position errors in this section will be limited to or-
thogonal lattices. These lattices have the significant advantage that the
errors in the different directions can be discussed independently. Thus
the following discussion is not only valid for 2-D images but any type of
multidimensional signals and we must consider only one component.

In order to estimate the accuracy of the position estimate of a sin-
gle point it is assumed that all positions are equally probable. This
means a constant probability density function in the interval Ax. Then
the variance o2 introduced by the position discretization is given by
Papoulis [2, p. 106]

1 Xn+Ax/2 A »
X
o= Ax J (x —xp)?dx = ( 12) (8.13)
Xn—-Ax/2

Thus the standard deviation o is about 1/+/12 = 0.3 times the lattice
constant Ax. The maximum error is, of course, 0.5Ax.

All other errors for geometrical measurements of segmented objects
can be related to this basic position error by statistical error propa-
gation. We will illustrate this with a simple example computing the
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area and center of gravity of an object. For the sake of simplicity, we
start with the unrealistic assumption that any cell that contains even
the smallest fraction of the object is regarded as a cell of the object.
We further assume that this segmentation is exact, that is, the signal
itself does not contain noise and separates without errors from the
background. In this way we separate all other errors from the errors
introduced by the discrete lattice.

The area of the object is simply given as the product of the number
N of cells and the area A. of a cell. This simple estimate is, however,
biased towards a larger area because the cells at the border of the object
are only partly covered by the object. In the mean, half of the border
cells are covered. Hence an unbiased estimate of the area is given by

A=A:(N-0.5Np) (8.14)

where N}, is the number of border cells. With this equation, the variance
of the estimate can be determined. Only the statistical error in the area
of the border cells must be considered. According to the laws of error
propagation with independent random variables, the variance of the
area estimate O'E‘ is given by

03 =0.25A2N,02 (8.15)

If we assume a compact object, for example, a square, with a length
of D pixels, it has D? pixels and 4D border pixels. Using ox ~ 0.3
(Eq. (8.13)), the absolute and relative standard deviation of the area
estimate are given by

aga N 0.3
A T DI

04 ~0.3A/D and if D> 1 (8.16)
Thus the standard deviation of the area error for an object with a length
of 10 pixels is just about the area of the pixel and the relative error
is about 1%. Equations (8.14) and (8.15) are also valid for volumetric
images if the area of the elementary cell is replaced by the volume of
the cell. Only the number of border cells is now different. If we again
assume a compact object, for example, a cube, with a length of D, we
now have D3 cells in the object and 6D? border cells. Then the absolute
and relative standard deviations are approximately given by

oy N 0.45

oy ~ 0.45V.D and v~ Dz ifD>1 (8.17)
Now the standard deviation of the volume for an object with a diameter
of 10 pixels is about 5 times the volume of the cells but the relative
error is about 0.5%. Note that the absolute/relative error for volume
measurements in/decreases faster with the size of the object than for
area measurements.
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The computations for the error of the center of gravity are quite
similar. With the same assumptions about the segmentation process,
an unbiased estimate of the center of gravity is given by

1 (NN 1 N
Xg =+ E Xn+ 5 E X (8.18)
N 2
n=1 n'=1

Again the border pixels are counted only half. As the first part of the
estimate with the nonborder pixels is exact, errors are caused only by
the variation in the area of the border pixels. Therefore the variance of
the estimate for each component of the center of gravity is given by

(8.19)

where o is again the variance in the position of the fractional cells at
the border of the object. Thus the standard deviation of the center of
gravity for a compact object with the diameter of D pixels is

0.3

~ W ifD>1 (8.20)

Og
Thus the standard deviation for the center of gravity of an object with
10 pixel diameter is only about 0.01 pixel. For a volumetric object with
a diameter of D pixel, the standard deviation becomes

0.45 .

(Tgy =~ ﬁ ifD>1 (821)
This result clearly shows that the position of objects and all related
geometrical quantities such as the distances can be performed even
with binary images (segmented objects) well into the range of 1/100
pixel. It is interesting that the relative errors for the area and volume
estimates of Egs. (8.16) and (8.17) are equal to the standard deviation
of the center of gravity Equations (8.20) and (8.21). Note that only the
statistical error has been discussed. A bias in the segmentation might
easily result in much higher systematic errors.

8.4 Relation between continuous and discrete signals

A continuous function g(q) is a useful mathematical description of a
signal as discussed in Section 8.2. Real-world signals, however, can only
be represented and processed as discrete or digital signals. Therefore
a detailed knowledge of the relation between these two types of signals
is required. It is not only necessary to understand the whole chain of
the image-formation process from a continuous spatial radiance distri-
bution to a digital image but also to perform subpixel-accurate image
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Figure 8.7: Steps from a continuous to a discrete signal.

interpolation (Section 9.6) and warping of images [CVA2, Chapter 9]
as it is, for example, required for multiscale image operations [CVAZ2,
Chapter 14].

The chain of processes that lead from the “true” signal to the digital
signal include all the steps of the image-formation process as illustrated
in Fig. 8.7. First, the signal of interest s(x), such as reflectivity, tem-
perature, etc., of an object, is somehow related to the radiance L(x)
emitted by the object in a generally nonlinear function (Section 2.5).
In some cases this relation is linear (e.g., reflectivity), in others it is
highly nonlinear (e.g., temperature). Often other parameters that are
not controlled or not even known influence the signal as well. As an
example, the radiance of an object is the product of its reflectivity and
the irradiance. Moreover, the radiance of the beam from the object
to the camera may be attenuated by absorption or scattering of radi-
ation (Section 2.5.3). Thus the radiance of the object may vary with
many other unknown parameters until it finally reaches the radiation-
collecting system (optics).

The optical system generates an irradiance E(x) at the image plane
that is proportional to the object radiance (Chapter 4). There is, how-
ever, not a point-to-point correspondence. Because of the limited res-
olution of the optical systems due to physical limitation (e. g., diffrac-
tion) or imperfections of the optical systems (various aberrations; Sec-
tion 3.5). This blurring of the signal is known as the point spread func-
tion (PSF) of the optical system and described in the Fourier domain by
the optical transfer function. The nonzero area of the individual sensor
elements of the sensor array (or the scanning mechanism) results in
a further spatial and temporal blurring of the irradiance at the image
plane.

The conversion to electrical signal U adds noise and possibly fur-
ther nonlinearities to the signal g(x,t) that is finally measured. In a
last step, the analog electrical signal is converted by an analog-to-digital
converter (ADC) into digital numbers. The basic relation between con-
tinuous and digital signals is established by the sampling theorem. It
describes the effects of spatial and temporal sampling on continuous
signals and thus also tells us how to reconstruct a continuous signal
from its samples.

The image-formation process itself thus includes two essential steps.
First, the whole image-formation process blurs the signal. Second, the
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continuous signal at the image plane is sampled. Although both pro-
cesses often occur together, they can be separated for an easier math-
ematical treatment.

8.4.1 Image formation

If we denote the undistorted original signal projected onto the im-
age plane by g’(x,t), then the signal g(x,t) modified by the image-
formation process is given by

gx,t) = Jg'(x’,t’)h(x,x’,t,t’) d?x’ dt’ (8.22)

The function h is the PSF. The signal g’ (x,t) can be considered as the
image that would be obtained by a perfect system, that is, an optical
system whose PSF is a d-distribution. Equation (8.22) indicates that the
signal at the point [x, t17 in space and time is composed of the radi-
ance of a whole range of points [x’, £’ nearby, which linearly add up
weighted with the signal h at [x/, t’]T. The integral can significantly
be simplified if the point-spread function is the same at all points (ho-
mogeneous system or shift-invariant system). Then the point-spread
function h depends only on the distance of [x’, t’]T to [x, t]T and the
integral in Eq. (8.22) reduces to the convolution integral

gx,t) = Jg’(x’,t’)h(x —-x,t—t)d’x'dt' = (g’ * h)(x,t) (8.23)

For most optical systems the PSF is not strictly shift-invariant because
the degree of blurring is increasing with the distance from the optical
axis (Chapter 3). However, as long as the variation is continuous and
does not change significantly over the width of the PSF, the convolution
integral in Eq. (8.23) still describes the image formation correctly. The
PSF and the system transfer function just become weakly dependent
on x.

8.4.2 Sampling theorem

Sampling means that all information is lost except at the grid points.
Mathematically, this constitutes a multiplication of the continuous func-
tion with a function that is zero everywhere except for the grid points.
This operation can be performed by multiplying the image function
g(x) with the sum of 6 distributions located at all lattice vectors ¥, n
as in Eq. (8.7). This function is called the two-dimensional 6 comb, or
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“nail-board function.” Then sampling can be expressed as

M=o MN=0

gs(x)=g(x) > D 5(x—Fmn) (8.24)

M=—0 N=—0

This equation is only valid as long as the elementary cell of the lattice
contains only one point. This is the case for the square and hexagonal
grids (Fig. 8.2b and c). The elementary cell of the triangular grid, how-
ever, includes two points (Fig. 8.2a). Thus for general regular lattices,
p points per elementary cell must be considered. In this case, a sum
of P 6 combs must be considered, each shifted by the offsets s, of the
points of the elementary cells:

[Me
I\‘MS

O(X —¥mn—Sp) (8.25)

m o

P
gs(x) =g(x) >
p=1

—co Nn

Itis easy to extend this equation for sampling into higher-dimensional
spaces and into the time domain:

gs(x) =g(x)> > 8(x —¥n—Sp) (8.26)

p n

In this equation, the summation ranges have been omitted. One of the
coordinates of the D-dimensional space and thus the vector x and the
lattice vector

¥n=[nibi,noby,... ,nDbD]T with nz ez (8.27)

is the time coordinate. The set of fundamental translation vectors
{b1,b>,...,bp} form a not necessarily orthogonal base spanning the
D-dimensional space.

The sampling theorem directly results from the Fourier transform
of Eq. (8.26). In this equation the continuous signal g (x) is multiplied
by the sum of delta distributions. According to the convolution theo-
rem of the Fourier transform (Section 8.6), this results in a convolution
of the Fourier transforms of the signal and the sum of delta combs in
Fourier space. The Fourier transform of a delta comb is again a delta
comb (see Table 8.5). As the convolution of a signal with a delta dis-
tribution simply replicates the function value at the zero point of the
delta functions, the Fourier transform of the sampled signal is simply
a sum of shifted copies of the Fourier transform of the signal:

Gs(k,v) = 3> Gk —#y) exp (-2mik’s,) (8.28)
p v

The phase factor eXp(—ZnikTsp) results from the shift of the points in
the elementary cell by s, according to the shift theorem of the Fourier
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transform (see Table 8.4). The vectors #,
tu =’Uli11 +U2i)2 +...+UDBD with vz €7 (8.29)

are the points of the so-called reciprocal lattice. The fundamental trans-
lation vectors in the space and Fourier domain are related to each other
by e

b,by =64_a (8.30)

This basically means that the fundamental translation vector in the
Fourier domain is perpendicular to all translation vectors in the spatial
domain except for the corresponding one. Furthermore, the distances
are reciprocally related to each other. In 3-D space, the fundamental
translations of the reciprocial lattice can therefore be computed by

_ hd+1 X bd+2

b; = 8.31

“ 7 bl by x bs) (83D
The indices in the preceding equation are computed modulo 3, blT(bz X
b3) is the volume of the primitive elementary cell in the spatial domain.
All these equations are familiar to solid state physicists or cristallogra-
phers [3]. Mathematicians know the lattice in the Fourier domain as the
dual base or reciprocal base of a vector space spanned by a nonorthogo-
nal base. For an orthogonal base, all vectors of the dual base show into

the same direction as the corresponding vectors and the magnitude is
given by ‘ b, ( =1/ |b4|. Then often the length of the base vectors is de-
noted by Ax,, and the length of the reciprocal vectors by Ak; = 1/Ax,.
Thus an orthonormal base is dual to itself.

For further illustration, Fig. 8.8 shows the lattices in both domains
for a triangular, square, and hexagonal grid. The figure also includes
the primitive cell known as the Wigner-Seitz cell (Section 8.3.1 and
Fig. 8.3) and first Brillouin zone in the spatial and Fourier domain, re-
spectively.

Now we can formulate the condition where we get no distortion of
the signal by sampling, known as the sampling theorem. If the image
spectrum g (k) contains such high wave numbers that parts of it overlap
with the periodically repeated copies, we cannot distinguish whether
the spectral amplitudes come from the original spectrum at the center
or from one of the copies. In other words, a low wave number can be
an alias of a high wave number and assume an incorrect amplitude of
the corresponding wave number. In order to obtain no distortions, we
must avoid overlapping. A safe condition to avoid overlapping is as
follows: the spectrum must be zero outside of the primitive cell of the
reciprocal lattice, that is, the first Brillouin zone.

On a rectangular grid, this results in the simple condition that the
maximum wave number (or frequency) at which the image spectrum
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Rexd

Figure 8.8: Lattices with the fundamental translation vectors and primitive cell
in the spatial and Fourier domain for a triangular (left), square (middle), and
hexagonal (right) 2-D lattice.

is not equal to zero must be restricted to less than half of the grid
constants of the reciprocal grid. Therefore the sampling theorem is as
follows:

Theorem 8.1 (Sampling Theorem) If the spectrum g(k) of a continu-
ous function g(x) is band-limited, that is,

gk) =0V lkgl = Aky/2 (8.32)
then it can be reconstructed exactly from samples with a distance
Axg =1/Aky (8.33)

In other words, we will obtain a periodic structure correctly only if
we take at least two samples per wavelength (or period). The maximum
wave number that can be sampled without errors is called the Nyquist
or limiting wave number (or frequency). In the following, we will often
use dimensionless wave numbers (frequencies), which are scaled to the
limiting wave number (frequency). We denote this scaling with a tilde:

s kd
ka = Aky/2

~ v
= 2deXd and v = m =2VAT (8.34)

In this scaling all the components of the wave number k, fall into the
interval -1, 1].
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8.4.3 Aliasing

If the conditions of the sampling theorem are not met, it is not only
impossible to reconstruct the original signal exactly but also distortions
are introduced into the signal. This effect is known in signal theory as
aliasing or in imaging as the Moiré effect.

The basic problem with aliasing is that the band limitation intro-
duced by the blurring of the image formation and the nonzero area of
the sensor is generally not sufficient to avoid aliasing. This is illustrated
in the following example with an “ideal” sensor.

Example 8.1: Standard sampling

An “ideal” imaging sensor will have a nonblurring optics (the PSF is the
delta distribution) and a sensor array that has a 100 % fill factor, that
is, the sensor elements show a constant sensitivity over the whole area
without gaps inbetween. The PSF of such an imaging sensor is a box
function with the width Ax of the sensor elements and the transfer
function (TF) is a sinc function:

1 1
TF sin(1rk; Axy) sin(1k, Axo) '
7Tk1AX1 'ITszXz

The sinc function has its first zero crossings when the argument is
+71r. This is when k; = +Ax,4 or at twice the Nyquist wave number,
see Eq. (8.34). At the Nyquist wave number the value of the transfer
function is still 1/+/2. Thus standard sampling is not sufficient to
avoid aliasing. The only safe way to avoid aliasing is to ensure that the
imaged objects do not contain wave numbers and frequencies beyond
the Nyquist limit.

8.4.4 Reconstruction from samples

The sampling theorem ensures the conditions under which we can re-
construct a continuous function from sampled points, but we still do
not know how to perform the reconstruction of the continuous image
from its samples, that is, the inverse operation to sampling.
Reconstruction is performed by a suitable interpolation of the sam-
pled points. Again we use the most general case: a nonorthogonal
primitive cell with P points. Generally, the interpolated points g, (x)
are calculated from the values sampled at ¥, + s, weighted with suitable
factors that depend on the distance from the interpolated point:

9r(x) =2 > gGs(rn+sp)h(x —¥n —Sp) (8.36)
p n

Using the integral property of the ¢ distributions, we can substitute
the sampled points on the right-hand side by the continuous values
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and then interchange summation and integration:

ZZJ g(XVh(x —x)6(Fn +sp — x')dPx’

pon_

gr(x)

J h(x-x)>>8(rn+sp—x)g(x')dPx’
o pn

The latter integral is a convolution of the weighting function h with a
function that is the sum of the product of the image function g with
shifted 6 combs. In Fourier space, convolution is replaced by complex
multiplication and vice versa. If we further consider the shift theorem
and that the Fourier transform of a 6 comb is again a 6 comb, we finally
obtain

Gr(k) = (k)Y > §(k - ) exp (-2mik’s, ) (8.37)
p v

The interpolated function can only be equal to the original image if
the periodically repeated image spectra are not overlapping. This is
nothing new; it is exactly what the sampling theorem states. The interp-
olated image function is only equal to the original image function if
the weighting function is one within the first Brillouin zone and zero
outside, eliminating all replicated spectra and leaving the original band-
limited spectrum unchanged. On a D-dimensional orthogonal lattice
Eq. (8.37) becomes
D
gr(k) = (k) [ [T(kaAx,) (8.38)
d=1

and the ideal interpolation function h is the sinc function

D

B sin(1rxg/Axg)
h(x) = ﬂ—nxdmxd (8.39)

Unfortunately, this function decreases only with 1/x towards zero.
Therefore, a correct interpolation requires a large image area; mathe-
matically, it must be infinitely large. This condition can be weakened if
we “overfill” the sampling theorem, that is, ensure that g (k) is already
zero before we reach the Nyquist limit. According to Eq. (8.37), we can
then choose h(k) arbitrarily in the region where § vanishes. We can
use this freedom to construct an interpolation function that decreases
more quickly in the spatial domain, that is, has a minimum-length in-
terpolation mask. We can also start from a given interpolation formula.
Then the deviation of its Fourier transform from a box function tells
us to what extent structures will be distorted as a function of the wave
number. Suitable interpolation functions will be discussed in detail in
Section 9.6.
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8.5 Vector spaces and unitary transforms

8.5.1 Introduction

An N x M digital image has NM individual pixels that can take arbitrary
values. Thus it has NM degrees of freedom. Without mentioning it
explicitly, we thought of an image as being composed of individual
pixels. Thus, we can compose each image of basis images ™" P where
just one pixel has a value of one while all other pixels are zero:

1 if m=m"Arn=n'
m'an’,n’ = 5m—m’ 5n—n’ = . (8.40)
0 otherwise

Any arbitrary image can then be composed of all basis images in Eq. (8.40)
by

M-1 N-1
G=> > Gmn™"P (8.41)

m=0 n=0

where Gy, » denotes the gray value at the position [m,n]. The inner
product (also known as scalar product) of two “vectors” in this space
can be defined similarly to the scalar product for vectors and is given
by

M-1 N-1
(GH)= > > GmnHmn (8.42)

m=0 n=0

where the parenthesis notation (-, -) is used for the inner product in
order to distinguish it from matrix multiplication. The basis images
mnp form an orthonormal base for an N x M-dimensional vector space.
From Eq. (8.42), we can immediately derive the orthonormality relation
for the basis images ™" P:

M-1 N-1
Z Z men Pm,nm n Pm,n = Om—m On—n~ (8.43)

m=0 n=0

This states that the inner product between two base images is zero if
two different basis images are taken. The scalar product of a basis
image with itself is one. The MN basis images thus span an M x N-
dimensional vector space RN*M gver the set of real numbers.

An M x N image represents a point in the M x N vector space. If
we change the coordinate system, the image remains the same but its
coordinates change. This means that we just observe the same piece of
information from a different point of view. All these representations
are equivalent to each other and each gives a complete representation
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of the image. A coordinate transformation leads us from one represen-
tation to the other and back again. An important property of such a
transform is that the length or (magnitude) of a vector

IGll> = (G,G)"? (8.44)

is not changed and that orthogonal vectors remain orthogonal. Both
requirements are met if the coordinate transform preserves the inner
product. A transform with this property is known as a unitary trans-
form.

Physicists will be reminded of the theoretical foundations of quan-
tum mechanics, which are formulated in an inner product vector space
of infinite dimension, the Hilbert space.

8.5.2 Basic properties of unitary transforms
The two most important properties of a unitary transform are [4]:

Theorem 8.2 (Unitary transform) Let V be a finite-dimensional inner
product vector space. Let U be a one-one linear transformation of V
onto itself. Then

1. U preserves the inner product, that is, (G,H) = (UG, UH), VG,H €
V.

2. The inverse of U, U™}, is the adjoin U* of U:UU* =1.

Rotation in R? or R3 is an example of a transform where the preser-
vation of the length of vectors is obvious.

The product of two unitary transforms U; U is unitary. Because
the identity operator I is unitary, as is the inverse of a unitary operator,
the set of all unitary transforms on an inner product space is a group
under the operation of composition. In practice, this means that we
can compose/decompose complex unitary transforms of/into simpler
or elementary transforms.

8.5.3 Significance of the Fourier transform (FT)

A number of unitary transforms have gained importance for digital
signal processing including the cosine, sine, Hartley, slant, Haar, and
Walsh transforms [5, 6, 7]. But none of these transforms matches the
Fourier transform in importance.

The uniqueness of the Fourier transform is related to a property
expressed by the shift theorem. If a signal is shifted in space, its Fourier
transform does not change in amplitude but only in phase, that is, it
is multiplied with a complex phase factor. Mathematically, this means
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that all base functions of the Fourier transform are eigenvectors of the
shift operator S(s):

S(s) exp(—2mikx) = exp(—2mriks) exp(—271rikx) (8.45)

The phase factor exp(—27riks) is the eigenvalue and the complex ex-
ponentials exp(—271rikx) are the base functions of the Fourier trans-
form spanning the infinite-dimensional vector space of the square in-
tegrable complex-valued functions over R. For all other transforms,
various base functions are mixed with each other if one base function
is shifted. Therefore, the base functions of all these transforms are not
an eigenvector of the shift operator.

The base functions of the Fourier space are the eigenfunctions of
all linear shift-invariant operators or convolution operators. If an op-
erator is shift-invariant, the result is the same at whichever point in
space it is applied. Therefore, a periodic function such as the complex
exponential is not changed in period and does not become an aperiodic
function. If a convolution operator is applied to a periodic signal, only
its phase and amplitude change, which can be expressed by a complex
factor. This complex factor is the (wave-number dependent) eigenvalue
or transfer function of the convolution operator.

At this point, it is also obvious why the Fourier transform is com-
plex valued. For a real periodic function, that is, a pure sine or co-
sine function, it is not possible to formulate a shift theorem, as both
functions are required to express a shift. The complex exponential
exp(ikx) = cos kx +isin kx contains both functions and a shift by a dis-
tance s can simply be expressed by the complex phase factor exp(iks).

Each base function and thus each point in the Fourier domain con-
tains two pieces of information: the amplitude and the phase, that is,
relative position, of a periodic structure. Given this composition, we
ask whether the phase or the amplitude contains the more significant
information on the structure in the image, or whether both are of equal
importance.

In order to answer this question, we perform a simple experiment.
Figure 8.9 shows two images of a street close to Heidelberg University
taken at different times. Both images are Fourier transformed and then
the phase and amplitude are interchanged as illustrated in Fig. 8.9¢, d.
The result of this interchange is surprising. It is the phase that deter-
mines the content of an image. Both images look somewhat patchy but
the significant information is preserved.

From this experiment, we can conclude that the phase of the Fourier
transform carries essential information about the image structure. The
amplitude alone implies only that such a periodic structure is contained
in the image but not where.
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a b

Figure 8.9: Importance of phase and amplitude in Fourier space for the image
content: a, b two images of a traffic scene taken at different times; ¢ compos-
ite image using the phase from image b and the amplitude from image a; d
composite image using the phase from image a and the amplitude from image
b.

8.5.4 Dynamical range and resolution of the FT

While in most cases it is sufficient to represent an image with rather few
quantization levels, for example, 256 values or one byte per pixel, the
Fourier transform of an image needs a much larger dynamical range.
Typically, we observe a strong decrease of the Fourier components with
the magnitude of the wave number, so that a dynamical range of at least
3-4 decades is required. Consequently, at least 16-bit integers or 32-
bit floating-point numbers are necessary to represent an image in the
Fourier domain without significant rounding errors.
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Figure 8.10: Tessellation of the 2-D Fourier domain into: a Cartesian; and b
logarithmic-polar lattices.

The reason for this behavior is not the insignificance of high wave
numbers in images. If we simply omitted them, we would blur the
image. The decrease is caused by the fact that the relative resolution is
increasing with the wave number. With the discrete Fourier transform
(see Section 8.7), the Fourier transform contains only wave numbers
that fit exactly integer times into the image:

v
whered = [d;,... ,dD]T is the size of the D-dimensional signal. There-

fore, the absolute wave number resolution Ak = 1/Ax is constant,
equivalent to a Cartesian tessellation of the Fourier space (Fig. 8.10a).
Thus the smallest wave number (v = 1) has a wavelength of the size
of the image, and the next coarse wave number has a wavelength of
half the size of the image. This is a very low resolution for large wave-
lengths. The smaller the wavelength, the better the resolution.

This ever increasing relative resolution is not natural. We can, for
example, easily see the difference of 10cm in 1m, but not in 1km. It
is more natural to think of relative resolutions, because we are better
able to distinguish relative distance differences than absolute ones. If
we apply this concept to the Fourier domain, it seems to be more nat-
ural to tessellate the Fourier domain in intervals increasing with the
wave number, a log-polar coordinate system, as illustrated in Fig. 8.10b.
Such a lattice partitions the space into angular and Ink intervals. Thus,
the cell area is proportional to k2. In order to preserve the norm, or—
physically speaking—the energy, of the signal in this representation,



8.6 Continuous Fourier transform (FT) 237

the increase in the area of the cells proportional to k2 must be consid-
ered:

J (k)12 dky dko = szlg(k)lzdlnkdqo (8.47)

Thus, the power spectrum |g(k)|? in the log-polar representation is
multiplied by k2 and falls off much less steep than in the Cartesian
representation. The representation in a log-polar coordinate system al-
lows a much better evaluation of the directions of the spatial structures
and of the smaller scales. Moreover, a change in scale or orientation just
causes a shift of the signal in the log-polar representation. Therefore,
it has gained importance in representation object for shape analysis
([CVA3, Chapter 8]).

8.6 Continuous Fourier transform (FT)

In this section, we give a brief survey of the continuous Fourier trans-
form and we point out the properties that are most important for signal
processing. Extensive and excellent reviews of the Fourier transform
are given by Bracewell [8], Poularikas [/, Chapter 2], or Madisetti and
Williams [9, Chapter 1]

8.6.1 One-dimensional FT

Definition 8.1 (1-D FT) If g(x) : R — C is a square integrable function,
that is,

[ 1900 ax < 8.48)
then the Fourier transform of g(x), g(k) is given by

gk) = Jg(x)exp (=2mikx) dx (8.49)

The Fourier transform maps the vector space of absolutely integrable
functions onto itself. The inverse Fourier transform of g (k) results in
the original function g(x):

g(x) = Jg(k) exp (2mikx) dk (8.50)
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It is convenient to use an operator notation for the Fourier trans-
form. With this notation, the Fourier transform and its inverse are
simply written as

gk) = Fg(x) and g(x)=F1g(k) (8.51)

A function and its transform, a Fourier transform pair is simply de-
noted by g(x) < g(k).

In Egs. (8.49) and (8.50) a definition of the wave number without the
factor 271 is used, that is k = 1/A, in contrast to the notation often
used in physics with k’ = 27t/A. For signal processing, the first notion
is more useful, because k directly gives the number of periods per unit
length.

With the notation that includes the factor 27 in the wave number,
two forms of the Fourier transform are common: the asymmetric form

gk = Jg(x)exp(—ik'x)dx

- (8.52)
glx) = €L Jg(k) exp(ik’x) dk

21T

and the symmetric form
gk = L Tg(x)exp(—ik’x)dx
V21T
o (8.53)

g(x) = \/;?_J J(k') exp(ik'x) dk’

As the definition of the Fourier transform takes the simplest form
in Egs. (8.49) and (8.50), most other relations and equations also be-
come simpler than with the definitions in Egs. (8.52) and (8.53). In
addition, the relation of the continuous Fourier transform with the dis-
crete Fourier transform (Section 8.7) and the Fourier series (Table 8.3)
becomes more straightforward.

Because all three versions of the Fourier transform are in common
use, it is likely that wrong factors in Fourier transform pairs will be
obtained. The rules for conversion of Fourier transform pairs between
the three versions can directly be inferred from the definitions and are
summarized here:

k without 27, Eq. (8.49) Jdx) <= gk
k' with 21T, Eq. (8.52) gx) <= gk'/2m) (8.54)
k’ with 277, Eq. (8.53) g(x/J2m) <= gk'/J@2m))



8.6 Continuous Fourier transform (FT) 239

Table 8.3: Comparison of the continuous Fourier transform (FT), the Fourier
series (FS), the infinite discrete Fourier transform (IDFT), and the discrete Fourier
transform (DFT) in one dimension

Type Forward transform Backward transform
FT: R =R Jg(x) exp (—2mikx) dx Jg"(k) exp (2mrikx) dk
Fs w1 T i
: LUX R LUX

(0.Ax] <7 Ax Jg(x) exp (72#15) dx v;wgv exp (2111@)

o:) 1/Ax
IDFT > gnexp (-2minAxk) ij j(k) exp (2mrinAxk) dk
Z=0,1/Ax] & ISP gL exp

= 0

N-1 N-1
DFT: 1 .un A .un
Ny = Ny Ngogn exp (fZTFIW) gogv exp (ZTHW>

8.6.2 Multidimensional FT

The Fourier transform can easily be extended to multidimensional sig-
nals.

Definition 8.2 (Multidimensional FT) If g(x) : RP — C is a square in-
tegrable function, that is,
T lg(x)| dPx < o (8.55)
then the Fourier transform of g(x), g(k) is given by
g(k) = Tg(x) exp (-2mik’x) dPx (8.56)
and the inverse Fourier transform by

g(x) = Jg(k)exp (2mik"x) dPk (8.57)

The scalar product in the exponent of the kernel x”Tk makes the
kernel of the Fourier transform separable, that is, it can be written as

D
exp <72Trika) = [ [ exp(-ikaxa) (8.58)
-1
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Table 8.4: Summary of the properties of the continuous D -dimensional Fourier
transform; g(x) and h(x) are complex-valued functions, the Fourier trans-
forms of which, g(k) and h(k), do exist; s is a real and a and b are complex con-
stants; A and U are D x D matrices, U is unitary (U’1 = UT, see Section 8.5.2)

Property Spatial domain Fourier domain
Linearity ag(x) + bh(x) ag(k) + bﬁ(k)
Similarity g(sx) g(k/s)/|s|
Similarity g(Ax) J((aHTk) /1Al
Rotation g(Ux) g (Uk)
D D
Separability [Ta(xa) [Taka)
d=1 d=1
Shift g(x - xo) exp(-2mikxo)g (k)
in x space
Shift exp(2mikox)g(x) gk — ko)
in k space
Differentiation 99(x) 2mrik, g (k)
. 0xp
in x space
Differentiation —2mixpg(x) 09 (k)
. okp
in k space
Definite Jg(x’) dPx’ g(0)
integral Zeo
r 1 \™" (omg(k) ang(k)
M AN D
Moments pr xpg(x)dPx (_2m) ( ok ok} .
Convolution J h(x)g(x —x')dPx’ fl(k)g(k)
Multiplication h(x)g(x) Jfl(k')g(k - k') dPk
Finite differ- g(x + Vxo) — g(x — Vxp) 2isin(2mrxok)
ence
Modulation cos(2mkox)g(x) (Gk—ko) + gk +kp))/?2
Spatial Jg(x’)h(x’ +x)dPx’ g(k)ﬁ* (k)
correlation oo
Inner Jg(x)h* (x) dPx Jg(k)fl*(k) APk
product oo Zeo
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8.6.3 Basic properties

For reference, the basic properties of the Fourier transform are summa-
rized in Table 8.4. An excellent review of the Fourier transform and its
applications are given by [8]. Here we will point out some of the prop-
erties of the FT that are most significant for multidimensional signal
processing.

Symmetries. Four types of symmetries are important for the Fourier
transform:

even g(-x) = g(x),
odd g(=x) = -g(x),
Hermitian g(—x) = g*(x), (8.59)
anti-Hermitian g(-x) = —g*(x)
Any function g(x) can be split into its even and odd parts by
eg(x) = M and %9 (x) = M (8.60)

With this partition, the Fourier transform can be parted into a cosine
and a sine transform:

§(k) = ZJeg(x) cos(21tk"x) dPx + ZiJ"g(x) sin(2mk’x) dPx  (8.61)
0 0

It follows that if a function is even or odd, its transform is also even or
odd. The full symmetry results are:

Hermitian

real and even
imaginary and odd
anti-Hermitian
imaginary and even

real

real and even

real and odd
imaginary
imaginary and even

proegoeeny

imaginary and odd real and odd (8.62)
Hermitian real

anti-Hermitian imaginary

even even

odd odd

Separability. As the kernel of the Fourier transform (Eq. (8.58)) is sep-
arable, the transform of a separable function is also separable:

D D
[Toxa) = []aka) (8.63)
d=1 d=1
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This property is essential to compute transforms of multidimensional
functions efficiently from 1-D transforms because many of them are
separable.

Convolution. Convolution is one of the most important operations
for signal processing. It is defined by

(h % g)(x) = jg(x')h(x—x'me' (8.64)

In signal processing, the function h(x) is normally zero except for a
small area around zero and is often denoted as the convolution mask.
Thus, the convolution with h(x) results in a new function g’ (x) whose
values are a kind of weighted average of g(x) in a small neighborhood
around x. It changes the signal in a defined way, that is, makes it
smoother, etc. Therefore it is also called a filter operation. The convo-
lution theorem states:

Theorem 8.3 (Convolution) Ifg(x) has the Fourier transform g (k) and
h(x) has the Fourier transform h(k) and if the convolution integral
(Eq. (8.64)) exists, then it has the Fourier transform h(k)g (k).

Thus, convolution of two functions means multiplication of their
transforms. Likewise, convolution of two functions in the Fourier do-
main means multiplication in the space domain. The simplicity of con-
volution in the Fourier space stems from the fact that the base func-
tions of the Fourier domain, the complex exponentials exp <2Tl'ika),
are joint eigenfunctions of all convolution operators. This means that
these functions are not changed by a convolution operator except for
the multiplication by a factor.

From the convolution theorem, the following properties are imme-
diately evident. Convolution is

commutative hxg=g=x*h,
associative hi * (ho * g) = (h1 * h2) * g, (8.65)
distributive over addition (hy+h2)*xg=h1*xg+h2x*xg

In order to grasp the importance of these properties of convolu-
tion, we note that two operations that do not look so at first glance,
are also convolution operations: the shift operation and all derivative
operators. This can immediately be seen from the shift and derivative
theorems (Table 8.4; [8, Chapter