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Preface

What this book is about

This book offers a fresh approach to computer vision. The whole vision
process from image formation to measuring, recognition, or reacting
is regarded as an integral process. Computer vision is understood as
the host of techniques to acquire, process, analyze, and understand
complex higher-dimensional data from our environment for scientific
and technical exploration.

In this sense this book takes into account the interdisciplinary na-
ture of computer vision with its links to virtually all natural sciences
and attempts to bridge two important gaps. The first is between mod-
ern physical sciences and the many novel techniques to acquire images.
The second is between basic research and applications. When a reader
with a background in one of the fields related to computer vision feels
he has learned something from one of the many other facets of com-
puter vision, the book will have fulfilled its purpose.

This book comprises three parts. The first part, Sensors and Imag-
ing, covers image formation and acquisition. The second part, Signal
Processing and Pattern Recognition, focuses on processing of the spatial
and spatiotemporal signals acquired by imaging sensors. The third part
consists of an Application Gallery, which shows in a concise overview
a wide range of application examples from both industry and science.
This part illustrates how computer vision is integrated into a variety of
systems and applications.
Computer Vision and Applications was designed as a concise edition

of the three-volume handbook:

Handbook of Computer Vision and Applications
edited by B. Jähne, H. Haußecker, and P. Geißler
Vol 1: Sensors and Imaging;
Vol 2: Signal Processing and Pattern Recognition;
Vol 3: Systems and Applications
Academic Press, 1999

xi



xii Preface

It condenses the content of the handbook into one single volume
and contains a selection of shortened versions of the most important
contributions of the full edition. Although it cannot detail every single
technique, this book still covers the entire spectrum of computer vision
ranging from the imaging process to high-end algorithms and applica-
tions. Students in particular can benefit from the concise overview of
the field of computer vision. It is perfectly suited for sequential reading
into the subject and it is complemented by the more detailed Handbook
of Computer Vision and Applications. The reader will find references
to the full edition of the handbook whenever applicable. In order to
simplify notation we refer to supplementary information in the hand-
book by the abbreviations [CVA1, Chapter N], [CVA2, Chapter N], and
[CVA3, Chapter N] for the Nth chapter in the first, second and third
volume, respectively. Similarly, direct references to individual sections
in the handbook are given by [CVA1, Section N], [CVA2, Section N], and
[CVA3, Section N] for section number N .

Prerequisites

It is assumed that the reader is familiar with elementary mathematical
concepts commonly used in computer vision and in many other areas
of natural sciences and technical disciplines. This includes the basics
of set theory, matrix algebra, differential and integral equations, com-
plex numbers, Fourier transform, probability, random variables, and
graph theory. Wherever possible, mathematical topics are described
intuitively. In this respect it is very helpful that complex mathematical
relations can often be visualized intuitively by images. For a more for-
mal treatment of the corresponding subject including proofs, suitable
references are given.

How to use this book

The book has been designed to cover the different needs of its reader-
ship. First, it is suitable for sequential reading. In this way the reader
gets an up-to-date account of the state of computer vision. It is pre-
sented in a way that makes it accessible for readers with different back-
grounds. Second, the reader can look up specific topics of interest.
The individual chapters are written in a self-consistent way with ex-
tensive cross-referencing to other chapters of the book and external
references. Additionally, a detailed glossary allows to easily access the
most important topics independently of individual chapters. The CD
that accompanies this book contains the complete text of the book in
the Adobe Acrobat portable document file format (PDF). This format
can be read on all major platforms. Free Acrobat™ Reader version 4.0
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for all major computing platforms is included on the CDs. The texts are
hyperlinked in multiple ways. Thus the reader can collect the informa-
tion of interest with ease. Third, the reader can delve more deeply into
a subject with the material on the CDs. They contain additional refer-
ence material, interactive software components, code examples, image
material, and references to sources on the Internet. For more details
see the readme file on the CDs.

Acknowledgments

Writing a book on computer vision with this breadth of topics is a major
undertaking that can succeed only in a coordinated effort that involves
many co-workers. Thus the editors would like to thank first all contrib-
utors who were willing to participate in this effort. Their cooperation
with the constrained time schedule made it possible that this concise
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1.1 Components of a vision system

Computer vision is a complex subject. As such it is helpful to divide
it into its various components or function modules. On this level, it
is also much easier to compare a technical system with a biological
system. In this sense, the basic common functionality of biological and
machine vision includes the following components (see also Table 1.1):

Radiation source. If no radiation is emitted from the scene or the ob-
ject of interest, nothing can be observed or processed. Thus appro-
priate illumination is necessary for objects that are themselves not
radiant.

Camera. The “camera” collects the radiation received from the object
in such a way that the radiation’s origins can be pinpointed. In
the simplest case this is just an optical lens. But it could also be a
completely different system, for example, an imaging optical spec-
trometer, an x-ray tomograph, or a microwave dish.

Sensor. The sensor converts the received radiative flux density into a
suitable signal for further processing. For an imaging system nor-
mally a 2-D array of sensors is required to capture the spatial dis-
tribution of the radiation. With an appropriate scanning system in
some cases a single sensor or a row of sensors could be sufficient.

1
Computer Vision and Applications Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.
ISBN 0–12–379777-2/$30.00



2 1 Introduction

Table 1.1: Function modules of human and machine vision

Task Human vision Machine vision

Visualization Passive, mainly by re-
flection of light from
opaque surfaces

Passive and active (controlled il-
lumination) using electromagnetic,
particulate, and acoustic radiation

Image
formation

Refractive optical sys-
tem

Various systems

Control of
irradiance

Muscle-controlled pupil Motorized apertures, filter wheels,
tunable filters

Focusing Muscle-controlled
change of focal length

Autofocus systems based on vari-
ous principles of distance measure-
ments

Irradiance
resolution

Logarithmic sensitivity Linear sensitivity, quantization be-
tween 8- and 16-bits; logarithmic
sensitivity

Tracking Highly mobile eyeball Scanner and robot-mounted cam-
eras

Processing
and analysis

Hierarchically
organized massively
parallel processing

Serial processing still dominant;
parallel processing not in general
use

Processing unit. It processes the incoming, generally higher-dimen-
sional data, extracting suitable features that can be used to measure
object properties and categorize them into classes. Another impor-
tant component is a memory system to collect and store knowl-
edge about the scene, including mechanisms to delete unimportant
things.

Actors. Actors react to the result of the visual observation. They be-
come an integral part of the vision system when the vision system
is actively responding to the observation by, for example, tracking
an object of interest or by using a vision-guided navigation (active
vision, perception action cycle).

1.2 Imaging systems

Imaging systems cover all processes involved in the formation of an
image from objects and the sensors that convert radiation into elec-
tric signals, and further into digital signals that can be processed by
a computer. Generally the goal is to attain a signal from an object in
such a form that we know where it is (geometry), and what it is or what
properties it has.
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Property

s(x)

Object
radiation

interaction

Radiance

l(x)

Imaging
system

Irradiance

E(x)

Photo-
sensor

Electric
signal

g(x)

ADC
sampling Gmn

Digital
image

Figure 1.1: Chain of steps linking an object property to the signal measured by
an imaging system.

It is important to note that the type of answer we receive from these
two implicit questions depends on the purpose of the vision system.
The answer could be of either a qualitative or a quantitative nature.
For some applications it could be sufficient to obtain a qualitative an-
swer like “there is a car on the left coming towards you.” The “what”
and “where” questions can thus cover the entire range from “there is
something,” a specification of the object in the form of a class, to a de-
tailed quantitative description of various properties of the objects of
interest.

The relation that links the object property to the signal measured by
an imaging system is a complex chain of processes (Fig. 1.1). Interaction
of the radiation with the object (possibly using an appropriate illumi-
nation system) causes the object to emit radiation. A portion (usually
only a very small part) of the emitted radiative energy is collected by the
optical system and perceived as an irradiance (radiative energy/area).
A sensor (or rather an array of sensors) converts the received radiation
into an electrical signal that is subsequently sampled and digitized to
form a digital image as an array of digital numbers.

Only direct imaging systems provide a direct point-to-point corre-
spondence between points of the objects in the 3-D world and at the
image plane. Indirect imaging systems also give a spatially distributed
irradiance but with no such one-to-one relation. Generation of an im-
age requires reconstruction of the object from the perceived irradiance.
Examples of such imaging techniques include radar imaging, various
techniques for spectral imaging, acoustic imaging, tomographic imag-
ing, and magnetic resonance imaging.

1.3 Signal processing for computer vision

One-dimensional linear signal processing and system theory is a stan-
dard topic in electrical engineering and is covered by many standard
textbooks (e.g., [1, 2]). There is a clear trend that the classical signal
processing community is moving into multidimensional signals, as in-
dicated, for example, by the new annual international IEEE conference
on image processing (ICIP). This can also be seen from some recently
published handbooks on this subject. The digital signal processing
handbook by Madisetti and Williams [3] includes several chapters that
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deal with image processing. Likewise the transforms and applications
handbook by Poularikas [4] is not restricted to 1-D transforms.

There are, however, only a few monographs that treat signal pro-
cessing specifically for computer vision and image processing. The
monograph by Lim [5] deals with 2-D signal and image processing and
tries to transfer the classical techniques for the analysis of time series
to 2-D spatial data. Granlund and Knutsson [6] were the first to publish
amonograph on signal processing for computer vision and elaborate on
a number of novel ideas such as tensorial image processing and nor-
malized convolution that did not have their origin in classical signal
processing.

Time series are 1-D, signals in computer vision are of higher di-
mension. They are not restricted to digital images, that is, 2-D spatial
signals (Chapter 8). Volumetric sampling, image sequences, and hyper-
spectral imaging all result in 3-D signals, a combination of any of these
techniques in even higher-dimensional signals.

How much more complex does signal processing become with in-
creasing dimension? First, there is the explosion in the number of data
points. Already a medium resolution volumetric image with 5123 vox-
els requires 128 MB if one voxel carries just one byte. Storage of even
higher-dimensional data at comparable resolution is thus beyond the
capabilities of today’s computers.

Higher dimensional signals pose another problem. While we do not
have difficulty in grasping 2-D data, it is already significantly more de-
manding to visualize 3-D data because the human visual system is built
only to see surfaces in 3-D but not volumetric 3-D data. The more di-
mensions are processed, the more important it is that computer graph-
ics and computer vision move closer together.

The elementary framework for lowlevel signal processing for com-
puter vision is worked out in Chapters 8 and 9. Of central importance
are neighborhood operations (Chapter 9), including fast algorithms for
local averaging (Section 9.5), and accurate interpolation (Section 9.6).

1.4 Pattern recognition for computer vision

The basic goal of signal processing in computer vision is the extraction
of “suitable features” for subsequent processing to recognize and clas-
sify objects. But what is a suitable feature? This is still less well defined
than in other applications of signal processing. Certainly a mathemat-
ically well-defined description of local structure as discussed in Sec-
tion 9.8 is an important basis. As signals processed in computer vision
come from dynamical 3-D scenes, important features also include mo-
tion (Chapter 10) and various techniques to infer the depth in scenes
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including stereo (Section 11.2), shape from shading and photometric
stereo, and depth from focus (Section 11.3).

There is little doubt that nonlinear techniques are crucial for fea-
ture extraction in computer vision. However, compared to linear filter
techniques, these techniques are still in their infancy. There is also
no single nonlinear technique but there are a host of such techniques
often specifically adapted to a certain purpose [7]. In this volume, we
give an overview of the various classes of nonlinear filter techniques
(Section 9.4) and focus on a first-order tensor representation of of non-
linear filters by combination of linear convolution and nonlinear point
operations (Chapter 9.8) and nonlinear diffusion filtering (Chapter 12).

In principle, pattern classification is nothing complex. Take some
appropriate features and partition the feature space into classes. Why
is it then so difficult for a computer vision system to recognize objects?
The basic trouble is related to the fact that the dimensionality of the in-
put space is so large. In principle, it would be possible to use the image
itself as the input for a classification task, but no real-world classifi-
cation technique—be it statistical, neuronal, or fuzzy—would be able
to handle such high-dimensional feature spaces. Therefore, the need
arises to extract features and to use them for classification.

Unfortunately, techniques for feature selection have very often been
neglected in computer vision. They have not been developed to the
same degree of sophistication as classification, where it is meanwhile
well understood that the different techniques, especially statistical and
neural techniques, can been considered under a unified view [8].

This book focuses in part on somemore advanced feature-extraction
techniques. An important role in this aspect is played bymorphological
operators (Chapter 14) because they manipulate the shape of objects
in images. Fuzzy image processing (Chapter 16) contributes a tool to
handle vague data and information.

Object recognition can be performed only if it is possible to repre-
sent the knowledge in an appropriate way. In simple cases the knowl-
edge can just rest in simple models. Probabilistic modeling in com-
puter vision is discussed in Chapter 15. In more complex cases this is
not sufficient.

1.5 Performance evaluation of algorithms

A systematic evaluation of the algorithms for computer vision has been
widely neglected. For a newcomer to computer vision with an engi-
neering background or a general education in natural sciences this is a
strange experience. It appears to him/her as if one would present re-
sults of measurements without giving error bars or even thinking about
possible statistical and systematic errors.
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What is the cause of this situation? On the one side, it is certainly
true that some problems in computer vision are very hard and that it
is even harder to perform a sophisticated error analysis. On the other
hand, the computer vision community has ignored the fact to a large
extent that any algorithm is only as good as its objective and solid
evaluation and verification.

Fortunately, this misconception has been recognized in the mean-
time and there are serious efforts underway to establish generally ac-
cepted rules for the performance analysis of computer vision algorithms
[9]. The three major criteria for the performance of computer vision al-
gorithms are:

Successful solution of task. Any practitioner gives this a top priority.
But also the designer of an algorithm should define precisely for
which task it is suitable and what the limits are.

Accuracy. This includes an analysis of the statistical and systematic
errors under carefully defined conditions (such as given signal-to-
noise ratio (SNR), etc.).

Speed. Again this is an important criterion for the applicability of an
algorithm.

There are different ways to evaluate algorithms according to the fore-
mentioned criteria. Ideally this should include three classes of studies:

Analytical studies. This is the mathematically most rigorous way to
verify algorithms, check error propagation, and predict catastrophic
failures.

Performance tests with computer generated images. These tests are
useful as they can be carried out under carefully controlled condi-
tions.

Performance tests with real-world images. This is the final test for
practical applications.

Much of the material presented in this volume is written in the spirit
of a careful and mathematically well-founded analysis of the methods
that are described although the performance evaluation techniques are
certainly more advanced in some areas than in others.

1.6 Classes of tasks

Applications of computer vision can be found today in almost every
technical and scientific area. Thus it is not very helpful to list applica-
tions according to their field. In order to transfer experience from one
application to another it is most useful to specify the problems that
have to be solved and to categorize them into different classes.



1.6 Classes of tasks 7

Table 1.2: Classification of tasks for computer vision systems

Task References

2-D & 3-D geometry, 6

Position, distance A26

Size, area A12

Depth, 3-D optical metrology 11.2, A2, A4, A5, A6, A26

2-D form & 2-D shape 14, A13

3-D object shape 6, 7, A2, A4, A5, A6, A7

Radiometry-related, 2

Reflectivity 2.5

Color A2

Temperature A15, A14

Fluorescence A17, A18, A25, A26

Hyperspectral imaging A22, A23, A24, A26

Motion, 10

2-D motion field 10, A16, A17, A19, A20

3-D motion field A19, A21

Spatial structure and texture

Edges & lines 9.7

Local wave number; scale 8.9, 10.4, 12, 13

Local orientation 9.8, 13

Texture 9.8

High-level tasks

Segmentation 13, 14, A12, A13

Object identification A1, A12

Object classification A1, A22, ??

Model- and knowledge-based
recognition and retrieval A1, A11, A12

3-D modeling

3-D object recognition A6, A10, A7

3-D object synthesis A7

Tracking A8, A9, A10, A19, A20
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An attempt at such a classification is made in Table 1.2. The table
categorizes both the tasks with respect to 2-D imaging and the analysis
of dynamical 3-D scenes. The second column contains references to
chapters dealing with the corresponding task.
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2.1 Introduction

Visual perception of scenes depends on appropriate illumination to vi-
sualize objects. The human visual system is limited to a very narrow
portion of the spectrum of electromagnetic radiation, called light . In
some cases natural sources, such as solar radiation, moonlight, light-
ning flashes, or bioluminescence, provide sufficient ambient light to
navigate our environment. Because humankind was mainly restricted
to daylight, one of the first attempts was to invent an artificial light
source—fire (not only as a food preparation method).

Computer vision is not dependent upon visual radiation, fire, or
glowing objects to illuminate scenes. As soon as imaging detector sys-
tems became available other types of radiation were used to probe
scenes and objects of interest. Recent developments in imaging sen-
sors cover almost the whole electromagnetic spectrum from x-rays to
radiowaves (Chapter 5). In standard computer vision applications illu-
mination is frequently taken as given and optimized to illuminate ob-
jects evenly with high contrast. Such setups are appropriate for object
identification and geometric measurements. Radiation, however, can
also be used to visualize quantitatively physical properties of objects
by analyzing their interaction with radiation (Section 2.5).

Physical quantities such as penetration depth or surface reflectivity
are essential to probe the internal structures of objects, scene geome-
try, and surface-related properties. The properties of physical objects
therefore can be encoded not only in the geometrical distribution of
emitted radiation but also in the portion of radiation that is emitted,
scattered, absorbed or reflected, and finally reaches the imaging sys-
tem. Most of these processes are sensitive to certain wavelengths and
additional information might be hidden in the spectral distribution of
radiation. Using different types of radiation allows taking images from
different depths or different object properties. As an example, infrared
radiation of between 3 and 5µm is absorbed by human skin to a depth
of < 1 mm, while x-rays penetrate an entire body without major attenu-
ation. Therefore, totally different properties of the human body (such
as skin temperature as well as skeletal structures) can be revealed for
medical diagnosis.

This chapter provides the fundamentals for a quantitative descrip-
tion of radiation emitted from sources, as well as the interaction of ra-
diation with objects and matter. We will also show using a few selected
examples, how this knowledge can be used to design illumination se-
tups for practical applications such that different physical properties
of objects are visualized. Radiometry , the measurement of radiation
properties by imaging systems, will be detailed in Chapter 4.
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2.2 Fundamentals of electromagnetic radiation

2.2.1 Electromagnetic waves

Electromagnetic radiation consists of electromagnetic waves carrying
energy and propagating through space. Electrical and magnetic fields
are alternating with a temporal frequency ν and a spatialwavelength λ.
The metric units of ν and λ are cycles per second (s−1), and meter (m),
respectively. The unit 1 s−1 is also called one hertz (1 Hz). Wavelength
and frequency of waves are related by the speed of light c:

c = νλ (2.1)

The speed of light depends on the medium through which the electro-
magnetic wave is propagating. In vacuum, the speed of light has the
value 2.9979 × 108ms−1, which is one of the fundamental physical
constants and constitutes the maximum possible speed of any object.
The speed of light decreases as it penetrates matter, with slowdown
being dependent upon the electromagnetic properties of the medium
(see Section 2.5.2).

Photon energy. In addition to electromagnetic theory, radiation can
be treated as a flow of particles, discrete packets of energy called pho-
tons. One photon travels at the speed of light c and carries the energy

ep = hν = hc
λ

(2.2)

where h = 6.626 × 10−34 J s is Planck’s constant. Therefore the energy
content of radiation is quantized and can only be a multiple of hν for a
certain frequency ν . While the energy per photon is given by Eq. (2.2),
the total energy of radiation is given by the number of photons. It was
this quantization of radiation that gave birth to the theory of quantum
mechanics at the beginning of the twentieth century.

The energy of a single photon is usually given in electron volts (1 eV
= 1.602 × 10−19). One eV constitutes the energy of an electron being
accelerated in an electrical field with a potential difference of one volt.
Although photons do not carry electrical charge this unit is useful in
radiometry, as electromagnetic radiation is usually detected by inter-
action of radiation with electrical charges in sensors (Chapter 5). In
solid-state sensors, for example, the energy of absorbed photons is
used to lift electrons from the valence band into the conduction band
of a semiconductor. The bandgap energy Eg defines the minimum pho-
ton energy required for this process. As a rule of thumb the detector
material is sensitive to radiation with energies Ev > Eg . As an example,
indium antimonide (InSb) is a doped semiconductor with a bandgap of
only 0.18 eV. It is sensitive to wavelengths below 6.9µm (which can be
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Figure 2.1: Spectrum of electromagnetic radiation. (By Sven Mann, University
of Heidelberg.)

derived from Eq. (2.2)). Silicon (Si) has a bandgap of 1.1 eV and requires
wavelengths below 1.1µm to be detected. This shows why InSb can
be used as detector material for infrared cameras in the 3-5µm wave-
length region, while silicon sensors are used for visible radiation. It
also shows, however, that the sensitivity of standard silicon sensors
extends beyond the visible range up to approximately 1µm, which is
often neglected in applications (Chapter 5).

Electromagnetic spectrum. Monochromatic radiation consists of only
one frequency and wavelength. The distribution of radiation over the
range of possible wavelengths is called spectrum or spectral distribu-
tion. Figure 2.1 shows the spectrum of electromagnetic radiation to-



2.2 Fundamentals of electromagnetic radiation 15

gether with the standardized terminology1 separating different parts.
Electromagnetic radiation covers the whole range from very high energy
cosmic rays with wavelengths in the order of 10−16 m (ν = 1024 Hz) to
sound frequencies above wavelengths of 106 m (ν = 102 Hz). Only a
very narrow band of radiation between 380 and 780nm is visible to the
human eye.

Each portion of the electromagnetic spectrum obeys the same prin-
cipal physical laws. Radiation of different wavelengths, however, ap-
pears to have different properties in terms of interaction with matter
and detectability that can be used for wavelength selective detectors.
For the last one hundred years detectors have been developed for ra-
diation of almost any region of the electromagnetic spectrum. Recent
developments in detector technology incorporate point sensors into in-
tegrated detector arrays, which allows setting up imaging radiometers
instead of point measuring devices. Quantitative measurements of the
spatial distribution of radiometric properties are now available for re-
mote sensing at almost any wavelength.

2.2.2 Dispersion and attenuation

A mixture of radiation consisting of different wavelengths is subject to
different speeds of light within the medium it is propagating. This fact
is the basic reason for optical phenomena such as refraction and disper-
sion. While refraction changes the propagation direction of a beam of
radiation passing the interface between two media with different opti-
cal properties, dispersion separates radiation of different wavelengths
(Section 2.5.2).

2.2.3 Polarization of radiation

In electromagnetic theory, radiation is described as oscillating electric
and magnetic fields, denoted by the electric field strength E and the
magnetic field strength B, respectively. Both vector fields are given by
the solution of a set of differential equations, referred to as Maxwell’s
equations.

In free space, that is, without electric sources and currents, a special
solution is a harmonic planar wave, propagating linearly in space and
time. As Maxwell’s equations are linear equations, the superposition of
two solutions also yields a solution. This fact is commonly referred to
as the superposition principle. The superposition principle allows us to
explain the phenomenon of polarization, another important property
of electromagnetic radiation. In general, the 3-D orientation of vec-
tor E changes over time and mixtures of electromagnetic waves show

1International Commission on Illumination (Commission Internationale de
l’Eclairage, CIE); http://www.cie.co.at/cie

http://www.cie.co.at/cie
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Figure 2.2: Illustration of a linear and b circular polarization of electromag-
netic radiation. (By C. Garbe, University of Heidelberg.)

randomly distributed orientation directions of E. If, however, the elec-
tromagnetic field vector E is confined to a plane, the radiation is called
linearly polarized (Fig. 2.2a).

If two linearly polarized electromagnetic waves are traveling in the
same direction, the resulting electric field vector is given by E = E1+E2.
Depending on the phase shift Φ in the oscillations of E1 and E2, the net
electric field vector E remains linearly polarized (Φ = 0), or rotates
around the propagation direction of the wave. For a phase shift of
Φ = 90◦, the wave is called circularly polarized (Fig. 2.2b). The general
case consists of elliptical polarization, that is, mixtures between both
cases.

Due to polarization, radiation exhibits different properties in differ-
ent directions, such as, for example, directional reflectivity or polariza-
tion dependent transmissivity.

2.2.4 Coherence of radiation

Mixtures of electromagnetic waves, which are emitted from conven-
tional light sources, do not show any spatial and temporal relation. The
phase shifts between the electric field vectors E and the corresponding
orientations are randomly distributed. Such radiation is called incoher-
ent .

Special types of light sources, mainly those operating by stimulated
emission of radiation (e. g., lasers), emit radiation with a fixed system-
atic relationship between the phases of the electromagnetic field vec-
tors, a property called coherence. Such radiation can be subject to con-
structive and destructive interference if it is superposed. As the electric
field vectors can add up to high amplitudes, the local energy impact of
coherent radiation is much more severe and can cause damage to deli-
cate body tissue.
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2.3 Radiometric quantities

2.3.1 Solid angle

In order to quantify the geometric spreading of radiation leaving a
source, it is useful to recall the definition of solid angle. It extends
the concept of plane angle into 3-D space. A plane angle θ is defined
as the ratio of the arc length s on a circle to the radius r centered at
the point of definition:

θ = s
r

(2.3)

The arc length s can be considered as projection of an arbitrary line
in the plane onto the circle (Fig. 2.3). Plane angles are measured in
rad (radians). A plane angle θ quantifies the angular subtense of a line
segment in the plane viewed from the point of definition. A circle has a
circumference of 2πr and, therefore, subtends a plane angle of 2π rad.

A solid angle Ω is similarly defined as the ratio of an area A on the
surface of a sphere to the square radius, as shown in Fig. 2.4:

Ω = A
r 2 (2.4)

The area segmentA can be considered as the projection of an arbitrarily
shaped area in 3-D space onto the surface of a sphere. Solid angles are
measured in sr (steradian). They quantify the areal subtense of a 2-D
surface area in 3-D space viewed from the point of definition. A sphere
subtends a surface area of 4πr 2, which corresponds to a solid angle of
4π sr. Given a surface area A that is tilted under some angle θ between
the surface normal and the line of sight the solid angle is reduced by a
factor of cosθ:

Ω = A
r 2 cosθ (2.5)
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Figure 2.4: Definition of solid angle. (By C. Garbe, University of Heidelberg.)

Table 2.1: Definitions of radiometric quantities (corresponding photometric
quantities are defined in Table 2.2)

Quantity Symbol Units Definition

Radiant energy Q Ws
Total energy emitted by a source
or received by a detector

Radiant flux Φ W
Total power emitted by a source
or received by a detector

Radiant exitance M W m−2 Power emitted per unit surface
area

Irradiance E W m−2 Power received at unit surface
element

Radiant intensity I W sr−1
Power leaving a point on a sur-
face into unit solid angle

Radiance L W m−2 sr−1
Power leaving unit projected sur-
face area into unit solid angle

From the definition of angles as ratios of lengths or areas it follows
that they have no physical unit. However, it is advisable always to use
the artificial units rad and sr when referring to quantities related to
angles to avoid confusion. Radiometric and photometric quantities also
have to be defined carefully as their meaning cannot be inferred from
physical units (Tables 2.1 and 2.2).

2.3.2 Conventions and overview

Measurements of radiometric and photometric quantities very often
are subject to confusion related to terminology and units. Due to di-
verse historical developments and often inaccurate usage of names,
radiometry is one of the least understood subjects in the field of op-
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Table 2.2: Definitions of photometric quantities (corresponding radiometric
quantities are defined in Table 2.1)

Quantity Symbol Units Definition

Luminous energy Qν lm s
Total luminous energy
emitted by a source or
received by a detector

Luminous flux Φν lm (lumen)
Total luminous power
emitted by a source or
received by a detector

Luminous exitance Mν lm m−2 Luminous power emitted
per unit surface area

Illuminance Eν
lm m−2

= lx (lux)
Luminous power received
at unit surface element

Luminous intensity Iν
lumen sr−1

= cd (candela)

Luminous power leaving
a point on a surface into
unit solid angle

Luminance Lν
lumen m−2 sr−1

= cd m−2

Luminous power leaving
unit projected surface
area into unit solid angle

tics. However, it is not very difficult if some care is taken with regard
to definitions of quantities related to angles and areas.

Despite confusion in the literature, there seems to be a trend to-
wards standardization of units. (In pursuit of standardization we will
use only SI units, in agreement with the International Commission on
Illumination CIE. The CIE is the international authority defining termi-
nology, standards, and basic concepts in radiometry and photometry.
The radiometric and photometric terms and definitions are in com-
pliance with the American National Standards Institute (ANSI) report
RP-16, published in 1986. Further information on standards can be
found at the web sites of CIE (http://www.cie.co.at/cie/) and ANSI
(http://www.ansi.org), respectively.)

In this section, the fundamental quantities of radiometry will be
defined. The transition to photometric quantities will be introduced by
a generic Equation (2.27), which can be used to convert each of these
radiometric quantities to its corresponding photometric counterpart.

We will start from the concept of radiative flux and derive the most
important quantities necessary to define the geometric distribution of
radiation emitted from or irradiated on surfaces. The six fundamen-
tal concepts relating the spatial distribution of energy in electromag-
netic radiation are summarized in Table 2.1. The term “radiant” is only
added to the names of those quantities that could be confused with the
corresponding photometric quantity (see Table 2.2).

http://www.cie.co.at/cie/
http://www.ansi.org
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2.3.3 Definition of radiometric quantities

Radiant energy and radiant flux. Radiation carries energy that can be
absorbed inmatter heating up the absorber or interactingwith electrical
charges. Radiant energy Q is measured in units of Joule (1 J = 1Ws). It
quantifies the total energy emitted by a source or received by a detector.
Radiant flux Φ is defined as radiant energy per unit time interval

Φ = dQ
dt

(2.6)

passing through or emitted from a surface. Radiant flux has the unit
watts (W) and is also frequently called radiant power , which corre-
sponds to its physical unit. Quantities describing the spatial and ge-
ometric distributions of radiative flux are introduced in the following
sections.

The units for radiative energy, radiative flux, and all derived quan-
tities listed in Table 2.1 are based on Joule as the fundamental unit.
Instead of these energy-derived quantities an analogous set of photon-
derived quantities can be defined based on the number of photons.
Photon-derived quantities are denoted by the subscript p, while the
energy-based quantities are written with a subscript e if necessary to
distinguish between them. Without a subscript, all radiometric quanti-
ties are considered energy-derived. Given the radiant energy the num-
ber of photons can be computed from Eq. (2.2)

Np = Qe
ep

= λ
hc

Qe (2.7)

With photon-based quantities the number of photons replaces the ra-
diative energy. The set of photon-related quantities is useful if radia-
tion is measured by detectors that correspond linearly to the number
of absorbed photons (photon detectors) rather than to thermal energy
stored in the detector material (thermal detector ).

Photon flux Φp is defined as the number of photons per unit time
interval

Φp = dNp

dt
= λ

hc
dQe
dt

= λ
hc
Φe (2.8)

Similarly, all other photon-related quantities can be computed from the
corresponding energy-based quantities by dividing them by the energy
of a single photon.

Because of the conversion from energy-derived to photon-derived
quantities Eq. (2.7) depends on the wavelength of radiation. Spectral
distributions of radiometric quantities will have different shapes for
both sets of units.
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Figure 2.5: Illustration of the radiometric quantities: a radiant exitance; and b
irradiance. (By C. Garbe, University of Heidelberg.)

Radiant exitance and irradiance. Radiant exitance M defines the ra-
diative flux emitted per unit surface area

M = dΦ
dS

(2.9)

of a specified surface. The flux leaving the surface is radiated into the
whole hemisphere enclosing the surface element dS and has to be inte-
grated over all angles to obtain M (Fig. 2.5a). The flux is, however, not
radiated uniformly in angle. Radiant exitance is a function of position
on the emitting surface, M = M(x). Specification of the position on the
surface can be omitted if the emitted flux Φ is equally distributed over
an extended area S. In this case M = Φ/S.
Irradiance E similarly defines the radiative flux incident on a certain

point of a surface per unit surface element

E = dΦ
dS

(2.10)

Again, incident radiation is integrated over all angles of the enclosing
hemisphere (Fig. 2.5b). Radiant exitance characterizes an actively radi-
ating source while irradiance characterizes a passive receiver surface.
Both are measured in Wm−2 and cannot be distinguished by their units
if not further specified.

Radiant intensity. Radiant intensity I describes the angular distribu-
tion of radiation emerging from a point in space. It is defined as radiant
flux per unit solid angle

I = dΦ
dΩ

(2.11)

and measured in units of Wsr−1. Radiant intensity is a function of the
direction of the beam of radiation, defined by the spherical coordinates
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Figure 2.6: Illustration of radiometric quantities: a radiant intensity; and b
radiance. (By C. Garbe, University of Heidelberg.)

θ and φ (Fig. 2.6). Intensity is usually used to specify radiation emitted
from point sources, such as stars or sources that are much smaller than
their distance from the detector, that is, dxdy � r 2. In order to use it
for extended sources those sources have to be made up of an infinite
number of infinitesimal areas. The radiant intensity in a given direc-
tion is the sum of the radiant flux contained in all rays emitted in that
direction under a given solid angle by the entire source (see Eq. (2.18)).

The term intensity is frequently confused with irradiance or illumi-
nance. It is, however, a precisely defined quantity in radiometric termi-
nology and should only be used in this context to avoid confusion.

Radiance. Radiance L defines the amount of radiant flux per unit solid
angle per unit projected area of the emitting source

L = d2Φ
dΩ dS⊥

= d2Φ
dΩ dS cosθ

(2.12)

where dS⊥ = dS cosθ defines a surface element that is perpendicular
to the direction of the radiated beam (Fig. 2.6b). The unit of radiance is
Wm−2 sr−1. Radiance combines the concepts of exitance and intensity,
relating intensity in a certain direction to the area of the emitting sur-
face. And conversely, it can be thought of as exitance of the projected
area per unit solid angle.

Radiance is used to characterize an extended source that has an
area comparable to the squared viewing distance. As radiance is a
function of both position on the radiating surface as well as direction
L = L(x, θ, φ), it is important always to specify the point in the surface
and the emitting angles. It is the most versatile quantity in radiometry
as all other radiometric quantities can be derived from the radiance
integrating over solid angles or surface areas (Section 2.3.4).
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Figure 2.7: Illustration of spherical coordinates.

2.3.4 Relationship of radiometric quantities

Spatial distribution of exitance and irradiance. Solving Eq. (2.12)
for dΦ/dS yields the fraction of exitance radiated under the specified
direction into the solid angle dΩ

dM(x) = d
(
dΦ
dS

)
= L(x, θ, φ) cosθ dΩ (2.13)

Given the radiance L of an emitting surface, the radiant exitance M
can be derived by integrating over all solid angles of the hemispheric
enclosure H :

M(x) =
∫
H

L(x, θ, φ) cosθ dΩ =
2π∫
0

π/2∫
0

L(x, θ, φ) cosθ sinθ dθ dφ

(2.14)

In order to carry out the angular integration spherical coordinates have
been used (Fig. 2.7), replacing the differential solid angle element dΩ
by the two plane angle elements dθ and dφ:

dΩ = sinθ dθ dφ (2.15)

Correspondingly, the irradiance E of a surface S can be derived from a
given radiance by integrating over all solid angles of incident radiation:

E(x) =
∫
H

L(x, θ, φ) cosθ dΩ =
2π∫
0

π/2∫
0

L(x, θ, φ) cosθ sinθ dθ dφ (2.16)

Angular distribution of intensity. Solving Eq. (2.12) for dΦ/dΩ yields
the fraction of intensity emitted from an infinitesimal surface element
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dS

dI = d
(
dΦ
dΩ

)
= L(x, θ, φ) cosθ dS (2.17)

Extending the point source concept of radiant intensity to extended
sources, the intensity of a surface of finite area can be derived by inte-
grating the radiance over the emitting surface area S:

I(θ, φ) =
∫
S

L(x, θ, φ) cosθ dS (2.18)

The infinitesimal surface area dS is given by dS = ds1 ds2, with the gen-
eralized coordinates s = [s1, s2]T defining the position on the surface.
For planar surfaces these coordinates can be replaced by Cartesian co-
ordinates x = [x, y]T in the plane of the surface.

Total radiant flux. Solving Eq. (2.12) for d2Φ yields the fraction of
radiant flux emitted from an infinitesimal surface element dS under
the specified direction into the solid angle dΩ

d2Φ = L(x, θ, φ) cosθ dS dΩ (2.19)

The total flux emitted from the entire surface area S into the hemispher-
ical enclosure H can be derived by integrating over both the surface
area and the solid angle of the hemisphere

Φ =
∫
S

∫
H

L(x, θ, φ) cosθ dΩdS =
∫
S

2π∫
0

π/2∫
0

L(x, θ, φ) cosθ sinθ dθ dφ dS

(2.20)

Again, spherical coordinates have been used for dΩ and the surface
element dS is given by dS = ds1 ds2, with the generalized coordinates
s = [s1, s2]T . The flux emitted into a detector occupying only a fraction
of the surrounding hemisphere can be derived from Eq. (2.20) by inte-
grating over the solid angle ΩD subtended by the detector area instead
of the whole hemispheric enclosure H .

Inverse square law. A common rule of thumb for the decrease of ir-
radiance of a surface with distance of the emitting source is the inverse
square law . Solving Eq. (2.11) for dΦ and dividing both sides by the
area dS of the receiving surface, the irradiance of the surface is given
by

E = dΦ
dS

= I dΩ
dS

(2.21)
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Figure 2.8: Illustration of angular distribution of radiant intensity emitted from
a Lambertian surface.

For small surface elements dS perpendicular to the line between the
point source and the surface at a distance r from the point source, the
subtended solid angle dΩ can be written as dΩ = dS/r 2. This yields
the expression

E = I dS
dSr 2 = I

r 2 (2.22)

for the irradiance E at a distance r from a point source with radiant
intensity I. This relation is an accurate and simple means of verifying
the linearity of a detector. It is, however, only true for point sources.
For extended sources the irradiance on the detector depends on the
geometry of the emitting surface (Section 2.5).

Lambert’s cosine law. Radiant intensity emitted from extended sur-
faces is usually not evenly distributed in angle. A very important rela-
tion for perfect emitters, or perfect receivers, is Lambert’s cosine law .
A surface is called Lambertian if its radiance is independent of view
angle, that is, L(x, θ, φ) = L(x). The angular distribution of radiant
intensity can be computed directly from Eq. (2.18):

I(θ) = cosθ
∫
S

L(x) dS = I0 cosθ (2.23)

It is independent of angle φ and shows a cosine dependence on the
angle of incidence θ as illustrated in Fig. 2.8. The exitance of a planar
Lambertian surface is derived from Eq. (2.14), pulling L outside of the
angular integrals

M(x) = L(x)
2π∫
0

π/2∫
0

cosθ sinθ dθ dφ = πL(x) (2.24)
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The proportionality factor of π shows that the effect of Lambert’s law
is to yield only one-half the exitance, which might be expected for a sur-
face radiating into 2π steradians. For point sources, radiating evenly
into all directions with an intensity I, the proportionality factor would
be 2π . Non-Lambertian surfaces would have proportionality constants
smaller than π .

Another important consequence of Lambert’s cosine law is the fact
that Lambertian surfaces appear to have the same brightness under all
view angles. This seems to be inconsistent with the cosine dependence
of emitted intensity. To resolve this apparent contradiction, radiant
power transfer from an extended source to a detector element with
an area of finite size has to be investigated. This is the basic topic of
radiometry and will be presented in detail in Chapter 4.

It is important to note that Lambert’s cosine law only describes per-
fect radiators or perfect diffusers. It is not valid for real radiators in
general. For small angles of incidence, however, Lambert’s law holds
for most surfaces. With increasing angles of incidence, deviations from
the cosine relationship increase (Section 2.5.2).

2.3.5 Spectral distribution of radiation

So far spectral distribution of radiation has been neglected. Radiative
flux is made up of radiation at a certain wavelength λ or mixtures of
wavelengths, covering fractions of the electromagnetic spectrum with
a certain wavelength distribution. Correspondingly, all derived radio-
metric quantities have certain spectral distributions. A prominent ex-
ample for a spectral distribution is the spectral exitance of a blackbody
given by Planck’s distribution [CVA1, Chapter 2].

Let Q be any radiometric quantity. The subscript λ denotes the cor-
responding spectral quantity Qλ concentrated at a specific wavelength
within an infinitesimal wavelength interval dλ. Mathematically, Qλ is
defined as the derivative of Q with respect to wavelength λ:

Qλ = dQ
dλ

= lim
∆λ→0

∆Q
∆λ

(2.25)

The unit of Qλ is given by [·/m] with [·] denoting the unit of the quan-
tity Q. Depending on the spectral range of radiation it sometimes is
more convenient to express the wavelength dependence in units of
[·/µm] (1µm = 10−6 m) or [·/nm] (1 nm = 10−9 m). Integrated quan-
tities over a specific wavelength range [λ1, λ2] can be derived from
spectral distributions by

Qλ2
λ1

=
λ2∫
λ1

Qλ dλ (2.26)
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Figure 2.9: Spectral luminous efficiency function of the “standard” light-
adapted eye for photopic vision V(λ) and scotopic vision V ′(λ), respectively.

with λ1 = 0 and λ2 = ∞ as a special case. All definitions and relations
derived in Sections 2.3.3 and 2.3.4 can be used for both spectral distri-
butions of radiometric quantities and total quantities, integrated over
the spectral distribution.

2.4 Fundamental concepts of photometry

Photometry relates radiometric quantities to the brightness sensation
of the human eye. Historically, the naked eye was the first device to
measure light, and visual perception remains important for design-
ing illumination systems and computing the apparent brightness of
sources and illuminated surfaces.

While radiometry deals with electromagnetic radiation of all wave-
lengths, photometry deals only with the visible portion of the electro-
magnetic spectrum. The human eye is sensitive to radiation between
380 and 780nm and only radiation within this visible portion of the
spectrum is called “light.”

2.4.1 Spectral response of the human eye

Light is perceived by stimulating the retina after passing the preretinal
optics of the eye. The retina consists of two different types of receptors:
rods and cones. At high levels of irradiance the cones are used to detect
light and to produce the sensation of colors (photopic vision). Rods are
used mainly for night vision at low illumination levels (scotopic vision).
Both types of receptors have different sensitivities to light at different
wavelengths.

The response of the “standard” light-adapted eye is defined by the
normalized photopic spectral luminous efficiency function V(λ) (Fig. 2.9).
It accounts for eye response variation as related to wavelength and
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shows the effectiveness of each wavelength in evoking a brightness sen-
sation. Correspondingly, the scotopic luminous efficiency function V ′(λ)
defines the spectral response of a dark-adapted human eye (Fig. 2.9).
These curves were formally adopted as standards by the International
Lighting Commission (CIE) in 1924 and 1951, respectively. Tabulated
values can be found in [1, 2, 3, 4, 5]. Both curves are similar in shape.
The peak of the relative spectral luminous efficiency curve for scotopic
vision is shifted to 507nm compared to the peak at 555nm for photopic
vision. The two efficiency functions can be thought of as the transfer
function of a filter, which approximates the behavior of the human eye
under good and bad lighting conditions, respectively.

As the response of the human eye to radiation depends on a variety
of physiological parameters, differing for individual human observers,
the spectral luminous efficiency function can correspond only to an
average normalized observer. Additional uncertainty arises from the
fact that at intermediate illumination levels both photopic and scotopic
vision are involved. This range is called mesopic vision.

2.4.2 Definition of photometric quantities

In order to convert radiometric quantities to their photometric counter-
parts, absolute values of the spectral luminous efficiency function are
needed instead of relative functions. The relative spectral luminous
efficiency functions for photopic and scotopic vision are normalized
to their peak values, which constitute the quantitative conversion fac-
tors. These values have been repeatedly revised and currently (since
1980) are assigned the values 683 lm W−1 (lumen/watt) at 555nm for
photopic vision, and 1754 lm W−1 at 507nm for scotopic vision, re-
spectively. The absolute values of the conversion factors are arbitrary
numbers based on the definition of the unit candela (or international
standard candle) as one of the seven base units of the metric system
(SI) [6, 7].

The conversion from photometric to radiometric quantities reduces
to one simple equation. Given the conversion factors for photopic and
scotopic vision, any (energy-derived) radiometric quantity Qe,λ can be
converted into its photometric counterpart Qν by

Qν = 683 lmW−1
780∫
380

Qe,λV(λ)dλ (2.27)

for photopic vision and

Qν = 1754 lmW−1
780∫
380

Qe,λV ′(λ)dλ (2.28)
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for scotopic vision, respectively. From this definition it can be con-
cluded that photometric quantities can be derived only from known
spectral distributions of the corresponding radiometric quantities. For
invisible sources emitting radiation below 380nm or above 780nm all
photometric quantities are null.

Table 2.2 summarizes all basic photometric quantities together with
their definition and units.

Luminous energy and luminous flux. The luminous energy can be
thought of as the portion of radiant energy causing a visual sensation
at the human retina. Radiant energy beyond the visible portion of the
spectrum can also be absorbed by the retina, maybe causing severe
damage to the tissue, but without being visible to the human eye.

The luminous flux defines the total luminous energy per unit time
interval (“luminous power”) emitted from a source or received by a de-
tector. The units for luminous flux and luminous energy are lm (lumen)
and lms, respectively.

Luminous exitance and illuminance. Corresponding to radiant exi-
tance and irradiance, the photometric quantities luminous exitance and
illuminance define the luminous flux per unit surface area leaving a
surface or incident on a surface, respectively. As with the radiometric
quantities, they are integrated over the angular distribution of light.
The units of both luminous exitance and illuminance are lm m−2 or lux.

Luminous intensity. Luminous intensity defines the total luminous
flux emitted into unit solid angle under a specified direction. As with its
radiometric counterpart, radiant intensity, it is used mainly to describe
point sources and rays of light. Luminous intensity has the unit lm
sr−1 or candela (cd). For a monochromatic radiation source with Iλ =
I0 δ(λ − 555nm) and I0 = 1/683W sr−1, Eq. (2.27) yields Iν = 1cd in
correspondence to the definition of candela.

Luminance. Luminance describes the subjective perception of “bright-
ness” because the output of a photometer is proportional to the lumi-
nance of the measured radiation (Chapter 4). It is defined as luminant
flux per unit solid angle per unit projected surface area perpendicular
to the specified direction, corresponding to radiance, its radiometric
equivalent.

Luminance is the most versatile photometric quantity, as all other
quantities can be derived by integrating the luminance over solid angles
or surface areas. Luminance has the unit cd m−2.
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2.4.3 Luminous efficacy

Luminous efficacy is used to determine the effectiveness of radiative
or electrical power in producing visible light. The term “efficacy” must
not be confusedwith “efficiency.” Efficiency is a dimensionless constant
describing the ratio of some energy input to energy output. Luminous
efficacy is not dimensionless and defines the fraction of luminous en-
ergy output able to stimulate the human visual system with respect to
incoming radiation or electrical power. It is an important quantity for
the design of illumination systems.

Radiation luminous efficacy. Radiation luminous efficacy Kr is a mea-
sure of the effectiveness of incident radiation in stimulating the percep-
tion of light in the human eye. It is defined as the ratio of any photo-
metric quantity Qν to the radiometric counterpart Qe integrated over
the entire spectrum of electromagnetic radiation:

Kr = Qν
Qe

[lmW−1], where Qe =
∞∫
0

Qe,λ dλ (2.29)

It is important to note that Eq. (2.29) can be evaluated for any radiomet-
ric quantity with the same result for Kr . Substituting Qν in Eq. (2.29)
by Eq. (2.27) and replacing Qe,λ by monochromatic radiation at 555nm,
that is, Qe,λ = Q0 δ(λ − 555nm), Kr reaches the value 683 lmW−1. It
can be easily verified that this is the theoretical maximum luminous
efficacy a beam can have. Any invisible radiation, such as infrared or
ultraviolet radiation, has zero luminous efficacy.

Lighting system luminous efficacy. The lighting system luminous ef-
ficacy Ks of a light source is defined as the ratio of perceptible luminous
flux Φν to the total power Pe supplied to the light source:

Ks = Φν
Pe

[lmW−1] (2.30)

With the radiant efficiency η̃ = Φe/Pe defining the ratio of total radiative
flux output of an illumination source to the supply power, Eq. (2.30) can
be expressed by the radiation luminous efficacy, Kr :

Ks = Φν
Φe

Φe
Pe

= Kr η̃ (2.31)

Because the radiant efficiency of an illumination source is always smaller
than 1, the lighting system luminous efficacy is always smaller than the
radiation luminous efficacy. An extreme example is monochromatic
laser light at a wavelength of 555nm. Although Kr reaches the max-
imum value of 683 lmW−1, Ks might be as low as 1 lmW−1 due to the
low efficiency of laser radiation.
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Figure 2.10: Illustration of the radiometric chain of image formation. (By C.
Garbe, University of Heidelberg.)

2.5 Interaction of radiation with matter

Quantitative visualization in computer vision requires knowledge of
both the physical properties of the objects of interest in terms of in-
teraction with radiation as well as the optical properties of the imaging
system. In addition to the performance of the detector, the perfor-
mance and availability of optical components are essential factors for
quality and computer vision system costs.

Physical quantities such as penetration depth or surface reflectivity
are essential to probe the internal structures of objects, scene geom-
etry, and surface-related properties. Physical object properties, there-
fore, not only can be encoded in the geometrical distribution of emitted
radiation but also in the portion of radiation being emitted, scattered,
absorbed, or reflected and finally reaching the imaging system.

Most of these processes are sensitive to certain wavelengths and
additional information might be hidden in the spectral distribution of
radiation. Using different types of radiation allows images from differ-
ent depths or object properties to be attained.

Standard scenes usually contain more than one single object in a
uniform enclosure. Radiation has to pass a series of events, called the
radiometric chain, before it reaches the imaging system. Figure 2.10 il-
lustrates how incident radiation is influenced by all objects and matter
along the optical path. In this section, the basic mechanisms influ-
encing the emission of radiation and its propagation in matter will be
detailed.
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Figure 2.11: Radiative flux, Φi incident on an object is partially reflected (frac-
tion ρ̃) and absorbed (fraction α̃). For nonopaque objects a fraction τ̃ is passing
the body. The radiative flux ε̃Φe is emitted to maintain or reach thermodynamic
equilibrium.

2.5.1 Basic definitions and terminology

Definition of optical properties. Radiation incident on or passing
through objects is subject to various processes changing the direction
of propagation, attenuating or amplifying the radiant intensity, and
changing the spectral distribution or polarization of radiation. With-
out going into the details of the complex physical processes governing
the interaction of radiation with the molecular structure of objects, the
macroscopic optical properties of objects are quantified by the follow-
ing dimensionless quantities (Fig. 2.11):

Reflectivity Reflectivity or reflectance ρ̃ defines the ratio of the re-
flected radiative flux Φr to the incident radiative flux Φi,

ρ̃ = Φr
Φi

(2.32)

Absorptivity Absorptivity or absorptance α̃ defines the ratio of the
absorbed radiative flux Φa to the incident radiative flux Φi,

α̃ = Φa
Φi

(2.33)

Transmissivity Transmissivity or transmittance τ̃ defines the ratio of
the radiative flux Φt transmitting the object to the incident radiative
flux Φi,

τ̃ = Φt
Φi

(2.34)
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Emissivity The forementioned quantities ρ̃, α̃, and τ̃ define the prop-
erty of passive receivers in modifying incident radiative flux. The
emissivity or emittance ε̃ quantifies the performance of an actively
radiating object compared to a blackbody, which provides the upper
limit of the spectral exitance of a source. It is defined by the ratio
of the exitances,

ε̃ = Ms(T)
Mb(T)

(2.35)

where Ms and Mb denote the exitance of the emitting source, and
the exitance of the blackbody at the temperature T , respectively. A
blackbody is defined as an ideal body absorbing all radiation inci-
dent on it regardless of wavelength or angle of incidence. No radia-
tion is reflected from the surface or passing through the blackbody.
Such a body is a perfect absorber. Kirchhoff demonstrated in 1860
that a good absorber is a good emitter and, consequently, a perfect
absorber is a perfect emitter. A blackbody, therefore, would emit
the maximum possible radiative flux that any body can radiate at a
given kinetic temperature, unless it contains fluorescent or radioac-
tive materials. As a blackbody has the maximum possible exitance
of an object at the given temperature, ε̃ is always smaller than 1.

Spectral and directional dependencies. All of the foregoing intro-
duced quantities can have strong variations with direction, wavelength,
and polarization state that have to be specified in order to measure the
optical properties of an object. The emissivity of surfaces usually only
slightly decreases for angles of up to 50° and rapidly falls off for angles
larger than 60°; it approaches zero for 90° [8]. The reflectivity shows
the inverse behavior.

To account for these dependencies, we define the spectral direc-
tional emissivity ε̃(λ, θ, φ) as ratio of the source spectral radiance Lλ,s
to the spectral radiance of a blackbody Lλ,b at the same temperature T :

ε̃(λ, θ, φ) = Lλ,s(θ, φ, T)
Lλ,b(θ, φ, T)

(2.36)

The spectral hemispherical emissivity ε̃(λ) is similarly given by the ra-
diant exitance of the source and a blackbody at the same temperature,
T :

ε̃(λ) = Mλ,s(T)
Mλ,b(T)

(2.37)

Correspondingly, we can define the spectral directional reflectivity,
the spectral directional absorptivity, and the spectral directional trans-
missivity as functions of direction and wavelength. In order to simplify
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notation, the symbols are restricted to ρ̃, α̃, τ̃ and ε̃ without further in-
dices. Spectral and/or directional dependencies will be indicated by
the variables and are mentioned in the text.

Terminology conventions. Emission, transmission, reflection, and
absorption of radiation either refer to surfaces and interfaces between
objects or to the net effect of extended objects of finite thickness. In
accordance with Siegel and Howell [9] and McCluney [3] we assign the
suffix -ivity to surface-related (intrinsic) material properties and the suf-
fix -ance to volume-related (extrinsic) object properties. To reduce the
number of equations we exclusively use the symbols ε̃, α̃, ρ̃ and τ̃ for
both types. If not further specified, surface- and volume-related prop-
erties can be differentiated by the suffixes -ivity and -ance, respectively.
More detailed definitions can be found in the CIE International Lighting
Vocabulary [10].

Spectral selectivity. For most applications the spectral optical prop-
erties have to be related to the spectral sensitivity of the detector sys-
tem or the spectral distribution of the radiation source. Let p̃(λ) be any
of the following material properties: α̃, ρ̃, τ̃ , or ε̃. The spectral selective
optical properties p̃s can be defined by integrating the corresponding
spectral optical property p̃(λ) over the entire spectrum, weighted by a
spectral window function w(λ):

p̃s =

∞∫
0

w(λ)p̃(λ)dλ

∞∫
0

w(λ) dλ

(2.38)

Examples of spectral selective quantities include the photopic luminous
transmittance or reflectance for w(λ) = V(λ) (Section 2.4.1), the so-
lar transmittance, reflectance, or absorptance for w(λ) = Eλ,s (so-
lar irradiance), and the emittance of an object at temperature T for
w(λ) = Eλ,b(T) (blackbody irradiance). The total quantities p̃ can be
obtained by integrating p̃(λ) over all wavelengths without weighting.

Kirchhoff’s law. Consider a body that is in thermodynamic equilib-
rium with its surrounding environment. Conservation of energy re-
quires Φi = Φa +Φr +Φt and, therefore,

α̃ + ρ̃ + τ̃ = 1 (2.39)

In order to maintain equilibrium, the emitted flux must equal the ab-
sorbed flux at each wavelength and in each direction. Thus

α̃(λ, θ, φ) = ε̃(λ, θ, φ) (2.40)
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Table 2.3: Basic (idealized) object and surface types

Object Properties Description

Opaque
body

ε̃(λ) + ρ̃(λ) = 1,
τ̃(λ) = 0

Cannot be penetrated by radiation. All exi-
tant radiation is either reflected or emitted.

AR coating ε̃(λ) + τ̃(λ) = 1,
ρ̃(λ) = 0

No radiation is reflected at the surface. All
exitant radiation is transmitted or emitted.

Ideal
window

ε̃(λ) = ρ̃(λ) = 0,
τ̃(λ) = 1

All radiation passes without attenuation.
The temperature is not accessible by IR
thermography because no thermal emission
takes place.

Mirror ε̃(λ) = τ̃(λ) = 0,
ρ̃(λ) = 1

All incident radiation is reflected. The tem-
perature is not accessible by IR thermo-
graphy because no thermal emission takes
place.

Blackbody τ̃(λ) = ρ̃(λ) = 0,
ε̃(λ) = ε̃ = 1

All incident radiation is absorbed. It has the
maximum possible exitance of all objects.

Graybody ε̃(λ) = ε̃ < 1,
ρ̃(λ) = 1− ε̃,
τ̃(λ) = 0

Opaque object with wavelength independent
emissivity. Same spectral radiance as a
blackbody but reduced by the factor ε̃.

This relation is known as Kirchhoff’s law [11]. It also holds for the in-
tegrated quantities ε̃(λ) and ε̃. Kirchoff’s law does not hold for active
optical effects shifting energy between wavelengths, such as fluores-
cence, or if thermodynamic equilibrium is not reached. Kirchhoff’s law
also does not apply generally for two different components of polar-
ization [6, 12].

Table 2.3 summarizes basic idealized object and surface types in
terms of the optical properties defined in this section. Real objects
and surfaces can be considered a mixture of these types. Although
the ideal cases usually do not exist for the entire spectrum, they can
be realized for selective wavelengths. Surface coatings, such as, for
example, antireflection (AR) coatings, can be technically produced with
high precision for a narrow spectral region.

Figure 2.12 shows how radiometric measurements are influenced by
the optical properties of objects. In order to measure the emitted flux
Φ1 (e. g., to estimate the temperature of the object), the remaining seven
quantities ε̃1, ε̃2, ε̃3, ρ̃1, τ̃1, Φ2, and Φ3 have to be known. Only for a
blackbody is the total received flux the flux emitted from the object of
interest.
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Figure 2.12: Radiometric measurements of object 1 are biased by the radiation
of the environment emitted from objects 2 and 3.

Index of refraction. Solving the Maxwell equations for electromag-
netic radiation in matter yields the complex index of refraction, N :

N(λ) = n(λ) + ik(λ) (2.41)

with the real part n and the imaginary part k.
The real part n constitutes the well-known index of refraction of

geometric optics (Section 2.5.2; Chapter 3). From the complex part k
other important optical properties of materials, such as reflection, and
absorption can be derived (Sections 2.5.2 and 2.5.3).

2.5.2 Properties related to interfaces and surfaces

In this section properties of interfaces between two different materials
are detailed. In this context an interface is defined as a discontinu-
ity in optical properties over a distance that is much smaller than the
wavelength of the radiation.

Refraction. The real part n(λ) of the complex index of refraction N
Eq. (2.41) constitutes the index of refraction of geometric optics, that
is, the ratio of the speed of light in a vacuum to the speed of light in a
medium under consideration. It determines the change in the direction
of propagation of radiation passing the interface of two materials with
different dielectric properties. According to Snell’s law , the angles of
incidence θ1 and refraction θ2 are related by (Fig. 2.13)

sinθ1

sinθ2
= n2

n1
(2.42)

where n1 and n2 are the indices of refraction of the two materials. It is
the basis for transparent optical elements, such as lenses and prisms
(Chapter 3). While prisms make use of the wavelength dependence of
refraction to separate radiation of different wavelengths, lenses suffer
from this effect (chromatic aberration).
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Figure 2.13: Refraction and specular reflection at interfaces.
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Figure 2.14: a Specular; b diffuse; and c subsurface reflection at interfaces.

Specular reflection. At smooth interfaces between two materials with
different dielectric properties specular reflection occurs. The direction
of incident ray, reflected ray, and the surface normal vector span the
plane of incidence perpendicular to the surface of reflection (Fig. 2.13).
The angles of incidence and reflection are equal (Fig. 2.14a).

The reflectivity ρ̃ of a surface is defined as the ratio between incident
and reflected flux. It depends on the indices of refraction of the two
materials, the angle of incidence, and the polarization of the radiation.
The specular reflectivities of the polarization components parallel (‖)
and perpendicular (⊥) to the plane of incidence are given by Fresnel’s
equations [13]:

ρ̃‖ = tan2(θ1 − θ2)
tan2(θ1 + θ2)

, ρ̃⊥ = sin2(θ1 − θ2)
sin2(θ1 + θ2)

, and ρ̃ = ρ̃‖ + ρ̃⊥
2

(2.43)

where the total reflectivity for unpolarized radiation ρ̃ is the average
(arithmetic mean) of the two polarization components. The angles θ1

and θ2 are the angles of incidence and refraction in the medium, which
are related by Snell’s law, Eq. (2.42). Figure 2.15 shows the angular
dependence of Eq. (2.43) for the transition from BK7 glass to air and
vice versa.

From Fresnel’s equations three important properties of specular re-
flection at object interfaces can be inferred (Fig. 2.15):
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Figure 2.15: Reflectivities and transmissivities vs angle of incidence for parallel
(‖) and perpendicular (⊥) polarized light at the interface between air (n1 = 1.0)
and BK7 glass (n2 = 1.517). a Transition air to glass. b Transition glass to
air. The shaded area shows angles beyond the critical angle of total internal
reflection.

1. Parallel polarized light is not reflected at all at a certain angle, called
the polarizing or Brewster angle θb. At this angle the reflected and
refracted rays are perpendicular to each other [13]:

θb = arcsin
1√

1+ n2
1/n2

2

(2.44)

2. At the transition from the medium with higher refractive index to
the medium with lower refractive index, there is a critical angle θc

θc = arcsin
n1

n2
, with n1 < n2 (2.45)

beyond which all light is reflected back into the medium of origin.
At this angle Snell’s law would produce an angle of refraction of 90°.
The reflectivity is unity for all angles of incidence greater than θc ,
which is known as total internal reflection and used in light conduc-
tors and fiber optics.

3. At large (grazing) angles, object surfaces have a high reflectivity,
independent from n. Therefore, objects usually deviate from an
ideal Lambertian reflector for large angles of incidence.

At normal incidence (θ = 0) there is no difference between perpen-
dicular and parallel polarization and

ρ̃ = (n1 − n2)2

(n1 + n2)2
= (n − 1)2

(n + 1)2
, with n = n1

n2
(2.46)

Note that Eqs. (2.43) and (2.46) are only exact solutions for transpar-
ent dielectric objects (Section 2.5.3) with small imaginary parts k of
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Figure 2.16: Illustration of the angles used in the definition of the bidirectional
reflectivity distribution function (BRDF).

the complex refractive index N , Eq. (2.41): k � 1. For nonnegligible
imaginary parts the normal reflectivity Eq. (2.46) has to be modified:

ρ̃ = (n1 − n2)2 + k2

(n1 + n2)2 + k2 (2.47)

The wavelength dependence of the refractive index can change the
spectral composition of radiation by reflection. Silver (Ag) has a high
reflectivity above 0.9 over the entire visible spectrum. The reflectivity
of Gold (Au) also lies above 0.9 for wavelengths beyond 600nm, but
shows a sudden decrease to 0.4 for wavelengths below 500nm. This
increased absorption of blue light compared to red light is responsible
for the reddish appearance of gold surfaces in contrast to the white
metallic glare of silver surfaces.

Diffuse reflection. Very few materials have pure specular surface re-
flectivity. Most surfaces show a mixture of matte and specular reflec-
tion. As soon as surface microroughness has the same scale as the
wavelength of radiation, diffraction at the microstructures occurs. At
larger scales, microfacets with randomly distributed slopes relative to
the surface normal are reflecting incident light in various directions
(Fig. 2.14b). Depending on the size and slope distribution of the micro-
roughness, these surfaces have a great variety of reflectivity distribu-
tions ranging from isotropic (Lambertian) to strong forward reflection,
where the main direction is still the angle of specular reflection. An
excellent introduction into light scattering and surface roughness is
provided by Bennet and Mattsson [14].

A mixture of specular and diffuse reflection can also be caused by
subsurface scattering of radiation, which is no longer a pure surface-
related property. Radiation penetrating a partially transparent object
can be scattered at optical inhomogeneities (Section 2.5.3) and leave
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the object to cause diffuse reflection (Fig. 2.14c). Reflected light from
below the surface is subject to bulk-related interactions of radiation
with matter that can change the spectral composition of radiation be-
fore it is reemitted. For this reason, diffusely scattered light shows the
colors of objects while highlights of specular reflections usually show
the color of the incident light, which is white for ambient daylight.

In order to describe quantitatively the angular reflectivity distribu-
tion of arbitrary objects, the bidirectional reflectivity distribution func-
tion (BRDF), f , is used (Fig. 2.16). It is a function of the spherical angles
of incidence (θi, φi) and reflection (θr , φr ), and defines the ratio of re-
flected radiance Lr to the incident irradiance Ei of the reflecting surface
[6]:

f (θi, φi, θr , φr ) = Lr (θr , φr )
Ei(θi, φi)

(2.48)

This definition accounts for the fact that an optical system measures
the radiance leaving a surface while distribution of incident radiation
is quantified by the surface irradiance. The two extreme cases are spec-
ular and Lambertian surfaces. A purely specular surface has a nonzero
value only for θi = θr and φi = φr so that f = ρ̃δ(θi − θr )δ(φi − φr ).
A Lambertian surface has no dependence on angle, and a flat surface
therefore has f = ρ̃π−1. The hemispherical reflectivity in each case is
ρ̃.

2.5.3 Bulk-related properties of objects

This section deals with the various processes influencing the propa-
gation of radiation within optical materials. The basic processes are
attenuation by absorption or scattering, changes in polarization, and
frequency shifts. For active emitters, radiation emitted from partially
transparent sources can originate from subsurface volumes, which
changes the radiance compared to plain surface emission. The most
important processes for practical applications are attenuation of radi-
ation by absorption or scattering and luminescence. A more detailed
treatment of bulk-related properties can be found in CVA1 [Chapter 3].

Attenuation of radiation. Only a few optical materials have a trans-
missivity of unity, which allows radiation to penetrate without atten-
uation. The best example is ideal crystals with homogeneous regular
grid structure. Most materials are either opaque or attenuate transmit-
ted radiation to a certain degree. Let z be the direction of propagation
along the optical path. Consider the medium being made up from a
number of infinitesimal layers of thickness dz (Fig. 2.17). The fraction
of radiance dLλ = Lλ(z) − Lλ(z + dz) removed within the layer will be
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Figure 2.17: Depth dependence of the volumetric absorption and emission of
radiation.

proportional to both the thickness dz and the radiance Lλ(z) incident
on the layer at z:

dLλ(z) = −κ(λ, z)Lλ(z)dz (2.49)

with the extinction coefficient or attenuation coefficient κ of thematerial
(in environmental sciences, κ is sometimes referred to as turbidity).
The unit of κ is a reciprocal length, such as m−1. Solving Eq. (2.49) for
L and integrating over z yields:

Lλ(z) = Lλ(0)exp

−
z∫
0

κ(λ, z′)dz′

 (2.50)

If the medium shows homogeneous attenuation, that is, κ(λ, z) = κ(λ),
Eq. (2.50) reduces to

Lλ(z) = Lλ(0)exp (−κ(λ)z) (2.51)

which is known as Lambert Beer’s or Bouguer’s law of attenuation. It
has to be pointed out that Bouguer’s law holds only for first-order (lin-
ear) processes, Eq. (2.49), where dL is proportional to L. This is true for
a wide range of practical applications, but breaks down for very high
intensities, such as laser radiation, or if multiscatter processes play a
dominant role.

So far there has not been a discussion as to which processes are
responsible for attenuation of radiation. The two basic processes are
absorption and scattering. Separating the total amount dL of radia-
tion that is lost into the parts dLa (absorption) and dLs (scattering),
dL = dLa + dLs , the attenuation coefficient κ splits into the absorption
coefficient α and the scattering coefficient β:

κ = −1
L
dL
dz

= −1
L
dLa
dz

− 1
L
dLs
dz

= α + β (2.52)
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Both coefficients have the dimension of a reciprocal length (m−1) and
are intrinsic material properties.

In order to separate the effect of absorption and scattering on at-
tenuation, both the transmitted as well as the scattered radiation in all
directions has to be measured. For the transmitted beam, only the net
effect of both processes can be measured if no further knowledge on
the material properties is available.

The transmittance2 of a layer of thickness z can be computed from
Eq. (2.51) as

τ̃(λ) = Lλ(z)
Lλ(0)

= exp (−κ(λ)z) (2.53)

Therefore, a layer of thickness κ−1(λ) has a transmittance of e−1. This
distance is called penetration depth of the radiation at the specific wave-
length. A variety of materials do not exhibit scattering. In these cases
κ = α.

Another frequently used term (mainly in spectroscopy) is the optical
depth τ(z1, z2) of a medium. It is defined as integral over the attenu-
ation coefficient:

τ(z1, z2) =
z2∫
z1

κ(z)dz (2.54)

Taking the logarithm of the radiance, Lambert Beer’s law (see Eq. (2.50))
reduces to a sum over the optical depths of all M layers of material:

lnLλ(z) − lnLλ(0) =
M∑

m=0
τ(zm, zm+1) (2.55)

Again, for nonscattering media κ has to be replaced by α.

Absorption. The absorption coefficient α of a material can be com-
puted from the imaginary part k of the complex index of refraction
(Eq. (2.41)):

α(λ) = 4πk(λ)
λ

(2.56)

Tabulated values of absorption coefficients for a variety of optical ma-
terials can be found in [6, 15, 16, 17].

The absorption coefficient of a medium is the basis for quantita-
tive spectroscopy. With an imaging spectrometer, the distribution of

2As mentioned in Section 2.5.1, the transmittance of a layer of finite thickness must
not be confused with the transmissivity of an interface.
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Figure 2.18: Single and multiple scatter of radiation in materials with local
inhomogeneities.

a substance can be quantitatively measured, provided there is appro-
priate illumination (Section A23). The measured spectral absorption
coefficient of a substance depends on the amount of material along the
optical path and, therefore, is proportional to the concentration of the
substance:

α = εc (2.57)

where c is the concentration in units mol l−1 and ε denotes the molar
absorption coefficient with unit l mol−1 m−1).

Scattering. Scatter of radiation is caused by variations of the refrac-
tive index as light passes through a material [16]. Causes include for-
eign particles or voids, gradual changes of composition, second phases
at grain boundaries, and strains in the material. If radiation traverses
a perfectly homogeneous medium, it is not scattered. Although any
material medium has inhomogeneities as it consists of molecules, each
of which can act as a scattering center, whether the scattering will be
effective depends on the size and arrangement of these molecules. In
a perfect crystal at zero temperature the molecules are arranged in a
very regular way and the waves scattered by each molecule interfere
in such a way as to cause no scattering at all but just a change in the
velocity of propagation, given by the index of refraction (Section 2.5.2).

The net effect of scattering on incident radiation can be described in
analogy to absorption Eq. (2.49) with the scattering coefficient β(λ, z)
defining the proportionality between incident radiance Lλ(z) and the
amount dLλ removed by scattering along the layer of thickness dz
(Fig. 2.18).

The basic assumption for applying Eq. (2.49) to scattering is that the
effect of a volume containingM scattering particles isM times that scat-
tered by a single particle. This simple proportionality to the number of
particles holds only if the radiation to which each particle is exposed
is essentially radiation of the initial beam. For high particle densities
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Figure 2.19: Geometry for the definition of the volume scattering function fVSF .

and, correspondingly, high scattering coefficients, multiple scattering
occurs (Fig. 2.18) and the simple proportionality does not exist. In this
case the theory becomes very complex. A means of testing the propor-
tionality is to measure the optical depth τ (Eq. (2.54)) of the sample. As
a rule of thumb, single scattering prevails for τ < 0.1. For 0.1 < τ < 0.3
a correction for double scatter may become necessary. For values of
τ > 0.3 the full complexity of multiple scattering becomes a factor
[18]. Examples of multiple scatter media are white clouds. Although
each droplet may be considered an independent scatterer, no direct
solar radiation can penetrate the cloud. All droplets only diffuse light
that has been scattered by other drops.

So far only the net attenuation of the transmitted beam due to scat-
tering has been considered. A quantity accounting for the angular dis-
tribution of scattered radiation is the spectral volume scattering func-
tion, fVSF :

fVSF (θ) = d2Φs(θ)
Ei dΩdV

= d2Ls(θ)
Li dΩdz

(2.58)

where dV = dS dz defines a volume element with a cross section of dS
and an extension of dz along the optical path (Fig. 2.19). The indices
i and s denote incident and scattered quantities, respectively. The vol-
ume scattering function considers scatter to depend only on the angle
θ with axial symmetry and defines the fraction of incident radiance
being scattered into a ring-shaped element of solid angle (Fig. 2.19).

From the volume scattering function, the total scattering coefficient
β can be obtained by integrating fVSF over a full spherical solid angle:

β(λ) =
2π∫
0

π∫
0

fVSF (λ, θ) dθ dΦ = 2π
π∫
0

sinθfVSF (λ, θ)dθ (2.59)
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Calculations of fVSF require explicit solutions of Maxwell’s equations
in matter. A detailed theoretical derivation of scattering is given in [18].

Luminescence. Luminescence describes the emission of radiation from
materials by radiative transition between an excited state and a lower
state. In a complex molecule, a variety of possible transitions between
states exist and not all are optically active. Some have longer lifetimes
than others, leading to a delayed energy transfer. Two main cases of
luminescence are classified by the time constant of the process:

1. Fluorescence, by definition, constitutes the emission of electromag-
netic radiation, especially of visible light, stimulated in a substance
by the absorption of incident radiation and persisting only as long
as the stimulating radiation is continued. It has short lifetimes, that
is, the radiative emission occurs within 1–200ns after the excitation.

2. Phosphorescence defines a delayed luminescence, occurringmillisec-
onds to minutes after the excitation. Prominent examples of such
materials are watch displays or light switches that glow in the dark.
The intensity decreases as the time from the last exposure to light
increases.

There are a variety of physical and chemical processes leading to a
transition between molecular states. A further classification of lumi-
nescence accounts for the processes that lead to excitation:

• Photoluminescence: Excitation by absorption of radiation (photons);
• Electroluminescence: Excitation by electric current (in solids and so-
lutions) or electrical discharge (in gases);

• Thermoluminescence: Thermal stimulation of the emission of al-
ready excited states;

• Radioluminescence: Excitation by absorption of ionizing radiation
or particle radiation;

• Chemoluminescence: Excitation by chemical reactions; and

• Bioluminescence: Chemoluminescence in living organisms; promi-
nent examples include fireflies and marine organisms.

For practical usage in computer vision applications, we have to con-
sider how luminescence can be used to visualize the processes or ob-
jects of interest. It is important to note that fluorescent intensity de-
pends on both the concentration of the fluorescent material as well as
on the mechanism that leads to excitation. Thus, fluorescence allows
us to visualize concentrations and processes quantitatively.

Themost straightforward application can be found in biology. Many
biological processes are subject to low-level bioluminescence. Using
appropriate cameras, such as amplified intensity cameras (Section 4),
these processes can be directly visualized (Chapter A25, [CVA1, Chap-
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ter 12]). An application example is the imaging of Ca2+ concentration
in muscle fibers, as will be outlined in CVA3 [Chapter 34].

Other biochemical applications make use of fluorescent markers.
They use different types of fluorescent dyes to mark individual parts
of chromosomes or gene sequences. The resulting image data are mul-
tispectral confocal microscopic images (Section A26, [CVA2, Chapter
41]) encoding different territories within the chromosomes).

Fluorescent dyes can also be used as tracers in fluid dynamics to
visualize flow patterns. In combination with appropriate chemical trac-
ers, the fluorescence intensity can be changed according to the relative
concentration of the tracer. Some types of molecules, such as oxygen,
are very efficient in deactivating excited states during collision with-
out radiative transfer—a process referred to as fluorescence quench-
ing. Thus, fluorescence is reduced proportional to the concentration
of the quenching molecules. In addition to the flow field, a quantitative
analysis of the fluorescence intensity within such images allows direct
measurement of trace gas concentrations (Section A18).

2.6 Illumination techniques

In this chapter we turn to the question: How can radiation sources be
used to visualize physical properties of objects? In order to set up an
appropriate illumination system we have to consider the radiometric
properties of the illumination sources, such as spectral characteristics,
intensity distribution, radiant efficiency (Section 2.4.3), and luminous
efficacy (Section 2.4.3). For practical applications we also have to care-
fully choose electrical properties, temporal characteristics, and pack-
age dimensions of the sources. A detailed overview of illumination
sources including the relevant properties can be found in CVA1 [Chap-
ter 6].

Single illumination sources alone are not the only way to illuminate
a scene. There is a wealth of possibilities to arrange various sources
geometrically, and eventually combine them with optical components
to form an illumination setup that is suitable for different computer
vision applications. In the following section we will show how this can
be accomplished for some sample setups (Fig. 2.20). They are, how-
ever, only a small fraction of the almost unlimited possibilities to create
problem-specific illumination setups. The importance of appropriate il-
lumination setups cannot be overemphasized. In many cases, features
of interest can be made visible by a certain geometrical arrangement
or spectral characteristics of the illumination, rather than by trying
to use expensive computer vision algorithms to solve the same task,
sometimes in vain. Good image quality increases the performance and
reliability of any computer vision algorithm.



2.6 Illumination techniques 47

a b

c
d

CCD

e

CCD

f

f

α
x

Figure 2.20: Illustration of different illumination setups: a directed illumina-
tion; b diffuse illumination; c rear illumination; d light field illumination; e dark
field illumination; f telecentric illumination.

2.6.1 Directional illumination

Directional illumination or specular illumination denotes a setup in
which parallel light or light from a point light source is used to illu-
minate the object (Fig. 2.20a). This is the most simple type of illumina-
tion, as the setup basically consists of a single light source at a certain
distance.

For matte (Lambertian) surfaces, directional illumination produces
an irradiance, which depends on the angle of incidence of the light
upon the surface. Thus, it can be used to determine the inclination
of surfaces with respect to the illumination direction. At the edges of
objects, directional illumination casts shadows, and does not illuminate
occluded parts of objects. If the camera is observing the scene under
a different angle, these shadows are visible in the image and might be
confused with object borders.
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a b

Figure 2.21: Illustration of the difference between directed and rear illumina-
tion for a plant leaf. a Directed illumination. b Rear illumination.

For specular reflecting surfaces, directional illumination is not the
appropriate illumination. These surfaces will appear black for all points
where the reflection condition is not met and show specular reflexes for
the remaining points.

Most surfaces are mixtures of Lambertian surfaces with additional
specular reflection. Thus, object surfaces show highlights thatmight be
confused with surface structures or object edges. Furthermore, these
regions might be overexposed and do not contain structural informa-
tion. On the other hand, the position of specular highlights allows
determination of the direction of the surface normal in these areas, as
the exact reflection condition is fulfilled. This might be important in-
formation for 3-D reconstruction of the scene. Figure 2.21a shows an
example of a plant leaf illuminated with directional illumination. The
leaf shows highlights and a shadow is cast at the lower edge.

2.6.2 Diffuse illumination

A second type of front illumination is diffuse illumination (Fig. 2.20b).
This illumination setup consists of an extended illumination source,
which emits light under all directions. An optimal diffuse illumina-
tion creates an illuminance that is independent of the direction and
impinges uniformly from the entire enclosing hemisphere. A good ex-
ample of diffuse illumination is a completely overcast sky or heavy fog.
Such an illumination is hard to realize in technical applications. Exam-
ples include extended diffusing plates or ring illuminations using LEDs
or fiber optical illumination.

This type of illumination is well suited for both matte as well as
specular surfaces. Although a diffuse illumination does not cast sharp
shadows, thick edges of objects still partially block incident light. They
appear as extended partially darkened regions, commonly referred to
as penumbra.
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2.6.3 Rear illumination

If only the geometrical outline of an opaque flat object is of interest,
rear illumination is the common choice of illumination (Fig. 2.20c).
Opaque objects appear as black objects without any structure. More
interesting features can be obtained using rear illumination for semi-
transparent objects. For these types of objects, the transmitted ra-
diation exhibits the entire spectrum of bulk-related interaction of ra-
diation with matter, such as refraction, absorption, and scatter. Local
inhomogeneities in the absorptivity show up as brightness patterns, in-
tegrated over the optical path of the radiation. Prominent examples of
such images are x-ray images of medical applications. If the absorption
is spectrally selective, the spectral content of the transmitted radiation
carries additional information on the internal structure of objects.

Rear illumination can be set up with both directional as well as dif-
fuse illumination. Figure 2.21b shows an example of a plant leaf illu-
minated by a diffuser screen behind the leaf. The background and the
leaf show a well separated gray value distribution. The edge of the leaf
is clearly visible. As the leaf is not totally opaque, it still shows fine
structures, related to the more transparent water vessels.

2.6.4 Light and dark field illumination

Rear illumination can be considered to be a special case of light field illu-
mination. Here a direct path exists from the light source to the camera,
that is, the light source directly illuminates the sensor chip (Fig. 2.20d).
As long as no object is present, the image appears bright. Any object
in the light path diminishes the image irradiance by refraction, absorp-
tion, and scatter of light out of the illumination path. Thus, objects
appear dark in front of a bright background. This type of illumina-
tion is commonly used to detect whether small objects (particles) are
present in the volume between the illumination source and the camera
(Section A13).

As opposed to light field illumination, dark field illumination inhibits
a direct path between the light source and the camera (Fig. 2.20e). As
long as no objects are present in the illumination path, the image ap-
pears dark. Objects in the illumination path become visible by scatter-
ing, reflecting, or refracting light into the camera. Thus, objects appear
bright in front of a dark background. This type of illumination is as
well used to detect small particles in the illumination path.

2.6.5 Telecentric illumination

Figure 2.20f illustrates the principal setup of a telecentric illumination
system. It is used to convert the spatial radiance distribution of a light
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source into bundles of parallel rays that reflect the radiance (and spec-
tral distribution) of a single point of the light source.

It principally consists of a large lens (often Fresnel lenses are used)
which is placed at a distance of one focal length in front of an illumina-
tion source. A single point on the illumination source creates a bundle
of parallel rays, leaving the lens into the direction of the line connecting
the point and the center of the lens. The angle of the light bundle with
the optical axis of the lens is given by the position on the focal plane
using

tanα = x
f

(2.60)

where x is the distance between the intersection of the optical axis and
the focal plane and f denotes the focal length of the lens. If the radi-
ance of the light source is isotropic within the solid angle subtended by
the lens, the intensity emitted by the lens is constant over the lens aper-
ture. For a nonisotropic radiance distribution (non-Lambertian source),
the spatial distribution of the intensity of the emitted bundle of rays
reflects the angular distribution of the radiance.

Thus, a telecentric illumination converts the spatial radiance dis-
tribution of an extended illumination source into an angular radiance
distribution and the angular radiance distribution of a single point into
a spatial distribution over the cross section of the bundle of rays. It is
the basic part of various types of illumination systems.

2.6.6 Pulsed and modulated illumination

Pulsed illumination can be used for a variety of purposes, such as in-
creasing the performance of the illumination system, reducing blurring
effects, and measuring time constants and distances, to mention only
a few of them.

Some illumination sources (e. g., special lasers) can only be fired for
a short time with a certain repetition rate. Others, such as LEDs, have a
much higher light output if operated in pulsed mode. The pulsed-mode
operation is especially useful for imaging applications. If LEDs are trig-
gered on the frame sync of the camera signal, they can be pulsed with
the frame rate of the camera. As the integration time of the camera
only subtends a fraction of the time between two images, the LED out-
put can be optimized by pulsed-mode operation. In order to operate
the LED in pulsed mode, logical TTL-electronics can be used to gen-
erate an LED-pulse from the trigger signal of the camera. This signal
can be used to switch the LED via transistors, as the TTL signal cannot
be directly used for power switching of the LED. More detailed infor-
mation about TTL electronics and interfaces driving optoelectronical
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components with TTL signals can be found in an excellent handbook
on practical electronics by Horowitz and Hill [19].

Instead of synchronizing the pulsed illumination with the camera
integration both can be intentionally separated. Using a grated cam-
era, with an adjustable delay after the illumination pulse, radiation is
received only from a certain depth range, corresponding to the run time
of the backscattered signal.

Pulsed illumination can also be used to image fast processes that
are either blurred by the integration time of the camera or need to be
imaged twice during the time between two consecutive frames. In the
first case, a short pulse within the integration time restricts the accu-
mulated irradiance to this time interval, independent from the integra-
tion time of the camera. The second case is commonly used in high-
speed particle imaging velocimetry. Here the momentary distribution
of the particle concentration in a liquid is imaged twice per frame by a
fast double pulse. From the autocorrelation function of the image, the
displacement of the particle pattern within the time between the two
pulses can be computed.

Another important application of pulsed signals is time-of-flight
measurements to estimate the distance of the scattering surface (see
Section 7.4). Such measurements are demanding with electromagnetic
waves, as the signal travels with the speed of light and time delays are
in the order of nanoseconds. For acoustic waves, however, it is much
easier to apply. These waves need about 3ms to travel the distance
of 1m in air, as opposed to 3ns for electromagnetic waves. Many liv-
ing species, such as bats and marine mammals, use acoustic signals to
sense their 3-D environment in absolute darkness.

Instead of pulsing the illumination signal, it can also be modulated
with a certain frequency. Examples can be found in scientific applica-
tions. Some processes that are visualized correspond with a certain
time constant upon illumination with specific radiation. For example,
active thermography uses infrared radiation to heat object surfaces and
to observe temporal changes. Using a modulated thermal irradiance,
the time constant of the processes related to the absorption and the
internal transport of heat can be measured.
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3.1 Introduction

Computer vision and image processing always start with image acqui-
sition, mostly done by illuminating the scene with natural or artificial
light in the visible range and capturing images with a photographic
lens. The importance of proper image acquisition is ignored in many
applications, at the expense of an increased effort in the processing
of the images. In addition to the fact that appropriate visualization
can enhance image quality in such a manner that image processing re-
quires fewer processing steps, becomes much faster, or is even for the
first time possible, image degradations caused by unsuitable imaging
may seriously complicate image analysis or even be uncorrectable af-
terwards. Although most of today’s camera lenses are of very good
quality, they are always optimized for a particular purpose and may
fail if used in other setups. In addition, in some applications an optics
setup from one or two simple lenses may provide better image qual-
ity than stock lenses because the setup can be optimized exactly for
that imaging problem. For these reasons, this chapter will provide the
reader with the essential concepts of optical imaging, focusing on the
geometric ray approximation, which will be sufficient for most appli-
cations other than microscopic imaging. Special emphasis is placed
on the description of nonparaxial optics (the main reason for image
distortions).

3.2 Basic concepts of geometric optics

Basic to geometric optics are light rays, which can be seen as an approx-
imation of a parallel wavefront of zero cross section. Therefore, rays
are always perpendicular to the wavefront. In a homogeneous dielec-
tric medium, a ray travels with the local speed of light c/n; c denotes
the vacuum light speed, and n is the refractive index of the dielectric
medium and depends on the medium and the wavelength. Of course,
rays represent an abstraction fromwave optics that neglects diffraction
effects.

3.2.1 Reflection and refraction

Within a medium of constant index of refraction, a ray travels as a
straight line without any changes in its direction. A ray passing through
the boundary surface of twomedia that have different indices of refrac-
tion is bent by an angle described by the law of Snellius (Eq. (3.1)). It
relates the ratio of the incoming and outgoing deviation angles to the
ratio of the refractive indices.

n1 sinα1 = n2 sinα2 (3.1)
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Figure 3.1: a Snellius’ law of refraction; b refraction at a three-media transition.

Besides refraction into the adjacent medium, reflection of the incoming
ray occurs. In this case the simple relation α1 = α2 applies.

It is useful in many cases to express both refraction and reflection
as vector equations. We specify the direction of the incoming ray by
the unit vector r̄, the direction of the outgoing ray again by the unit
vector r̄′, and the vector normal to the surface dividing the two media
by the unit vector n̄. Then reflection can be written as

r̄′ = r̄ − 2(n̄r̄)n̄ (3.2)

whereas refraction reads

r̄′ = 1
na/ne

r̄ −
 n̄r̄

na/ne
+

√√√√
1−

(
1+ (n̄r̄)2

)
(na/ne)2

 n̄ (3.3)

3.2.2 Multimedia refraction

Often not only does a single change of the refractive index have to be
taken into account, but also a sequence of consecutive phase transi-
tions. This is the case, for example, in any underwater optics, where a
glass plate protects the optics from the aqueous medium. This situa-
tion is illustrated in Fig. 3.1b. Fortunately, Snellius’ law remains valid
between the media n1 and n3

sinα1

sinα3
= sinα1

sinα2

sinα2

sinα3
= n2

n1

n3

n1
= n3

n1
(3.4)

Because of the optical path length within the medium n2, the ray is
shifted in parallel by

d = D tanα2 (3.5)
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Figure 3.2: Relative angular error of the paraxial approximation for various
values of the ratio of refractive indices n = n1/n2.

3.2.3 Paraxial optics

From the Taylor series of the trigonometric functions, their correspond-
ing small angle approximation is found to be

sin(α) ≈ α cos(α) ≈ 1 tan(α) ≈ α (3.6)

These rays form the paraxial domain, where the approximations in
Eq. (3.6) can be applied with acceptable deviations. It is important to
notice that there is no clear definition of the paraxial domain as its
boundaries depend on the maximum error that is tolerated. Figure 3.2
shows the relative angular error of the paraxial approximation.

In paraxial approximation, Snellius simplifies to n1α1 = n2α2. Un-
less indicated otherwise, all calculations of geometric optics in this
chapter are done using the paraxial approximation. Its power will be
shown first in the description of lenses, from spherical lenses to the ap-
proximation of thin, paraxial lenses, which is sufficient in most cases.
Deviations from the paraxial domain will be discussed with the lens
aberrations in Section 3.5.

3.3 Lenses

All imaging optics use lenses as central imaging elements. Therefore
it is important to examine the optical properties of these fundamental
elements. We start with spherical lenses, which have only one kind of
glass. Despite the fact that spherical lenses do not best approximate
the ideal paraxial lens, they are the most common kind of lenses used.
This is due to the fact that it is easier to manufacture spherical surfaces
than it is to polish aspherical surfaces. Therefore, it is more econom-
ical in most cases to use systems of spherical surfaces and lenses in
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Figure 3.3: a Fundamental terms of the paraxial description of lenses. b Posi-
tion of principal planes for different lens types.

order to correct lens aberrations than to use aspherical lenses. Never-
theless, new technologies in the pressing of plastic lenses have made
the production of aspherical lenses inexpensive.

3.3.1 Definitions

Lenses can be described by means of a set of cardinal points and sur-
faces. This method also works for systems of lenses and other refract-
ing surfaces, that is, it is commonly used to describe any optical system.
The basic terms and definitions are as follows:

Optical Axis. The optical axis is the main axis of the optics, usually
denoted as z-direction. For a typical system of centered and axial sym-
metric elements, it is the axis of symmetry of the optics. Usually it
coincides with the main direction of light propagation. Points located
on the optical axis and elements centered around it are called on-axis,
otherwise denoted as off-axis. Mirrors can fold the linear axis into a set
of piecewise linear sections.

Cardinal Planes. Refraction on the lens surfaces can be described by
the concept of the principal planes, without having to take into account
the exact radius of curvature. Extended towards the lens interior, the
incoming and the outgoing rays intersect at a point on the principal
surface. The projection of the intersection point onto the optical axis
is called the corresponding principal point . In paraxial approximation
the generally bent principal surface becomes flat, forming the principal
plane. It is important to note that the principal planes are not necessar-
ily located within the lens itself (Fig. 3.3b). This is often used to extend
the optical length of compact telephoto lenses.

Focal Length. Within the paraxial domain, all incident rays entering
parallel to the optical axis intersect at an on-axis point behind the lens,
the back focal point (BFP) F ′. Due to the reversibility of the ray paths,
rays emerging from the front focal point (FFP) F run parallel to the axis
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Figure 3.4: Path of rays at a single spherical surface.

after passing the lens. Rays emerging from off-axis points on the focal
plane still form a parallel ray bundle, but are now nonparallel to the
optical axis. The distance from the FFP to the front principal plane
gives the effective focal length (EFL) of the lens. A change in refractive
index from n1 in front of the lens to n2 behind the lens changes the
back EFL f’ to n2/n1f . Therefore, the EFL in air is often referred to
as the focal length of the lens. Additionally, the distances between the
focal points and the lens vertices are called the front focal length (FFL)
and back focal length (BFL), respectively; they equal each other only for
symmetric lenses.

3.3.2 Spherical lenses

A spherical lens can be seen as two spherical surfaces with a medium
of a constant index of refraction between them. To understand the be-
havior of these lenses, it is sufficient to analyze one of the surfaces. As
illustrated in Fig. 3.4, a ray emerging from an on-axis object point O1

intersects the optical axis at a point O2 behind the spherical surface.
Within the paraxial domain, all rays emerging from an object point in-
tersect in one point in the image space. Thus, we say the object point
is imaged onto its optical conjugate image point. The distances d1 and
d2 of object and image points are correlated with the radius of curva-
ture R of the surface and the indices of refraction n1 and n2 by Abbe’s
invariant Eq. (3.7).

n2

d2
− n1

d1
= n2 − n1

R
⇒ n1

(
1
R

− 1
d1

)
= n2

(
1
R

− 1
d2

)
(3.7)

A single surface separating regions of different refractive index is
therefore sufficient to form an imaging optics, and can therefore be
seen as the simplest possible lens. For every lens, focal length and
principal planes can be used in order to describe paraxial properties.
Setting either of the distances d1 or d2 to infinity yields both focal
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lengths

f1 = R n2

n2 − n1
f2 = −R n1

n2 − n1

f1 + f2 = R n1f1 = −n2f2
(3.8)

Both principal planes coincide at the location of the vertex V .
At present, a lens consists of two spherical surfaces, thereby enclos-

ing the lens material. Using ray calculations similar to those for a single
surface, without giving details of the calculations, the paraxial proper-
ties of the lens are obtained. We restrict ourselves to the commonly
used case of a lens in air, thus the refractive indices of the surrounding
medium become n1 = n2 = 1. With D = V1V2 denoting the thickness
of the lens, nl its refractive index, and R1 and R2 the radii of curvature
of its surfaces, the lens data calculates to

f = 1
nl − 1

nlR1R2

(nl − 1)d + nl(R1 + R2)
(3.9)

ν1 = − R2D
(nl − 1)d + nl(R1 + R2)

(3.10)

ν2 = − R1D
(nl − 1)d + nl(R1 + R2)

(3.11)

h = D(1− R2 − R1

(nl − 1)d + nl(R1 + R2)
) (3.12)

where h = P1P2 denotes the distance between the principal planes, and
νi = ViPi is the distance to the corresponding vertices. Because of the
assumption of an identical refractive index on both sides of the lens, the
front and back focal lengths of the lens coincide with the focal length
f .

3.3.3 Aspherical lenses

Although they are the most popular lens type, spherical lenses are sub-
ject to certain limitations. For example, focusing of parallel ray bun-
dles onto the focal point only works within the narrow paraxial do-
main. Nonspherically shaped surfaces allow lenses to be customized
for specific purposes, for example, for optimal focusing, without the
restriction to the paraxial domain. Typically, there are three types of
aspherical surfaces:

Rotational symmetric surface. This type of surface is still rotation-
ally symmetric to an axis, which usually coincides with the optical axis.
Aspherical lenses are the most common type used for the correction of
ray aberrations, which cannot be avoided. This type of surface can be
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Table 3.1: Conic surfaces

Conic constant Surface type

K < −1 Hyperboloid

K = −1 Paraboloid

−1 < K < 0 Ellipsoid

K = 0 Sphere

K > 0 Ellipsoid

described in terms of a curvature C = 1/R and the conic constant K

z = Cx2

1+
√
1− (K + 1)C2x2

+
∞∑

i=1
α2ix2i (3.13)

wherein the first term describes conic sections, and the second term
higher-order deformations. As illustrated in Table 3.1, the conic con-
stant controls the shape of the surface.

Aspherical lenses with conic surfaces are often used to extend ideal
ray paths beyond the paraxial domain. These lenses do not satisfy the
paraxial equations in any case, but have to be designed for the exact
purpose for which they are intended. As an example, hyperbolic lenses
can be designed for perfect focusing (Fig. 3.5a). If used for imaging
with noninfinite distances, strong aberrations occur.

Toroidal lenses. Toroidal surfaces are spherical in two principal sec-
tions, which are perpendicular to each other. The radii of curvature
differ between the two sections. The particular case of one of the cur-
vatures is infinity, which results in cylindrical lenses. As an example of
the use of toroidal lenses, two crossed cylindrical lenses of different
focal length can be used to achieve different magnifications in sagit-
tal and meridional sections. This anamorphic imaging is illustrated in
Fig. 3.5b.

Freeform surfaces. Arbitrarily formed surfaces are used only for spe-
cial applications and shall not be discussed herein.

3.3.4 Paraxial lenses

If the distance between the lens vertices (the lens thickness) can be
neglected, the principal planes and the nodal planes converge onto a
single plane, located at the lens position. Further restricting the rays to
the paraxial domain, the lens can be described by a single parameter,
its focal length. This is called the thin paraxial lens, which is used
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Figure 3.5: a Perfect focusing outside the paraxial domain by an aspheric con-
densor lens. b Principle of anamorphic imaging.
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Figure 3.6: Optical conjugates of a paraxial lens.

widely in order to gain first-order approximations of the behavior of
the optics. Above all, paraxial lens equations are most powerful in
the first step of optics design, where its constraints can be established
without the details of physical lenses. With a thin paraxial lens, all
rays emerging from a point P intersect at its conjugate point P ′ behind
the lens. Because all rays meet at exactly the same point, the lens is
aberration-free (Fig. 3.6). Furthermore, because of the restriction to
the paraxial domain, a plane S perpendicular to the optical axis is also
imaged into a plane S′. In most optical systems several lenses are used
to improve image quality. First, we introduce the extension of the thin
paraxial lens toward the thick paraxial lens, where the lens thickness
is taken into account. It can be shown that this lens can equivalently
be seen as the combination of two thin paraxial lenses. This will lead
to a general method to describe arbitrary paraxial systems by a single
paraxial lens.

3.3.5 Thick lenses

If the thickness of a lens cannot be neglected, the concept of the parax-
ial lens has to be extended towards thick paraxial lenses. In this case,
the two principal planes no longer converge to a single plane, but are
separated by an equivalent distance, the nodal space. As a general rule,
for lenses in air the nodal space is approximately one-third of the lens
thickness [1]. As illustrated in Fig. 3.7a, rays can be constructed by
elongation of the unrefracted ray towards the first principal plane P ,
traversing the ray parallel to the optical axis to the second principal
plane, and continuing to the conjugate point P ′. For geometric con-
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Figure 3.7: a Ray paths for a thick paraxial lens. Dashed lines show the physical
ray paths, solid lines show the virtual rays used for construction of ray paths;
b a system of thick lenses and its equivalent thick lens.

struction of ray paths, rays in between the principal planes are always
parallel to the axis. As a consequence the nodal points coincide with
the principal points.

3.3.6 Systems of lenses

A complex optical system consists of several thick lenses. A pair of
thick lenses, described by the set of four principal planes and two focal
points, can be converted into a new equivalent lens, with two principal
planes and one focal length. Applying this recursively to the lens sys-
tem, the complete setup can be condensed into one thick lens. Within
the paraxial domain, this powerful approach facilitates dealing with op-
tics of high complexity. Figure 3.7b illustrates the equivalent principal
planes of the two-lens system; P11 and P12 are the principal planes of
the first lens, and P21 and P22 are the principal planes of the second
lens. The position pi of the principal planes and the effective focal
length of the equivalent system, provided the lenses are used in air
(n=1), are given by

1
f

= 1
f1

+ 1
f2

− d
f1f2

p = P1P2 = − f d2

f1f2
(3.14)

p1 = P11P1 = f d
f2

p2 = P22P2 = −f d
f1

(3.15)

The cardinal planes can occur in any order, for example, it is com-
mon that the order of the principal planes P1 and P2 becomes reversed
with lenses located closely together. Table 3.2 gives an overview of the
order of the cardinal planes of a system of two lenses of positive focal
length.

3.3.7 Matrix optics

Tracing rays through an optical system allows for in-depth analysis
of the optics, taking into account all surfaces and materials. An ele-
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Table 3.2: Overview of the most important parameters of the combined lens
and the order of the cardinal planes in case of d, f1, f2 > 0; Li indicates the
position of lens i

Focal length d < f1 + f2 d > f1 + f2

f > 0 f < 0

p1 p1 > 0 p1 < 0

p2 p2 < 0 p2 > 0

|ν1| + |ν2| > d |ν1| + |ν2| < d
Relative position P1 is behind P2 P1 is in front of P2

Order f1 ≤ d, f2 ≤ d → P2L1L2P1
of f1 ≤ d, f2 ≥ d → P2L1P1L2 P1 L1 L2 P2

cardinal f1 ≥ d, f2 ≤ d → L1P2L2P1
planes f1 ≥ d, f2 ≥ d → L1P2P1L2

α i
(k)

α t
(k)

α i
(k+1)= α t

(k)

α t
(k+1)
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V (k ) V (k +1)
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(k +1)

δ(k)
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Figure 3.8: Notation used for the matrix optic calculations.

gant method to describe ray propagation between the surfaces of the
system has been introduced by T. Smith [2]. Within the paraxial do-
main, it is possible to describe both refraction and ray propagation by
simple matrix operations. The ray tracing can be achieved by matrix
multiplication of the matrices describing the optical elements and their
distances. In order to describe this method, all surfaces are numbered
consecutively from left to right and are denoted by superscripts. Rays
incoming to a surface are denoted by i; outgoing rays are denoted by
t. The notation is illustrated in Fig. 3.8.
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Vector notation for rays. A ray of angleα and distancey with respect
to the optical axis is denoted by the vector

r =
(

nα
y

)
(3.16)

Refraction at a single surface. Refraction of a ray of incident angle
ni and distance yi to the optical axis can be written using the power D
of a single surface

n(k)
t α(k)

t = n(k)
i α(k)

i −D(k)y(k)
i (3.17)

y(k)
t = y(k)

i (3.18)

D(k) = n(k)
t − n(k)

i
R(k) (3.19)

Equation (3.20) can be rewritten as a matrix equation

r(k)
t =

(
n(k)

t α(k)
t

y(k)
t

)
=
(

1 −D(k)

0 1

)(
n(k)

i α(k)
i

y(k)
i

)
=: R(k)r(k)

i (3.20)

whereas the matrix R(k) denotes the refraction matrix of the surface
(k).

Ray propagation. The propagation of a ray between two consecutive
surfaces (k) and (k + 1) is linear due to the fact that no change in the
refractive index can occur. Therefore replacing the true distance δ(k)

by its paraxial approximation d(k) yields y(k+1)
i = d(k)α(k)

t + y(k)
t , and

thus ray propagation towards the next surface can be expressed by the
transfer matrix T ()

r(k+1)
i =

(
n(k+1)

i α(k+1)
i

y(k+1)
i

)
=
 1 0

d(k)

n(k)
t

1

(
n(k)

t α(k)
t

y(k)
t

)
=: T (k)r(k)

t

(3.21)

System matrix. Now refraction at single surfaces (Eq. (3.20)) is com-
bined with ray propagation between two surfaces (Eq. (3.21)) to grasp
the behavior of a lens consisting of two surfaces. A ray emerging from
the second lens surface can be calculated from the incident ray by ap-
plying the refraction matrix of the first surface, the transfer matrix
between the surfaces, and finally the refraction matrix of the second
surface. This is done by simple matrix multiplication:

r(k+1)
t = R(k+1)T (k)R(k)r(k)

i =: S(k+1,k) = R(k+1)T (k)R(k) (3.22)

with system matrix S(k+1,k) of the optical element. It transforms an in-
cident ray at the first surface (k) to an emerging ray at the next surface
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Table 3.3: System matrices for various optical elements

Optics System matrix Optics System matrix

Straight
section

(
1 0
d
n 1

)
Dielectric
interface

(
1 0
0 1

)

Plate in
air

(
1 0
d
n 1

)
Spherical
interface

(
1 −D
0 1

)

Thin lens
in air

(
1 −1/f
0 1

)
Thick lens
in air

(
1− p1

f − 1
f

p1p2
f + p1 − p2 1+ p2

f

)

Spherical
mirror

(
1 − 2

R
0 1

)
Two thin
lenses in air

(
1− d/f2 1/f

d 1− d/f1

)

Spherical
lens

(
1− d

nD(2) d
nD(1)D(2) − (D(1) +D(2))

d
n 1− d

nD(2)

)

(k + 1). In general, any optical element with an arbitrary number of
surfaces is described by a single system matrix. Assuming N surfaces,
the system matrix is denoted S(N,1) in order to indicate the number of
surfaces. It is given by

S(N,1) = R(N)T (N−1)R(N−1)...T (1)R(1) = R(N)
N−1∏
k=1

T (k)R(k) (3.23)

Equation (3.23) can be split at any surface (k) between the first and the
last and rewritten as

S(N,1) = S(N,k)T (k−1)S(k−1,1) with 1 < k < N (3.24)

Equation (3.24) makes it easy to combine optical elements into more
and more complex optical systems by reusing the known system ma-
trices of the simpler elements.

Table of system matrices. The system matrix is the fundamental
description of optical elements, and therefore is the basis of matrix op-
tics calculation. Table 3.3 provides an overview of the most important
system matrices of simple optical elements consisting of two surfaces.
Elements of higher complexity can be calculated according to Eq. (3.24).
To simplify notation, the index of refraction of the lens material is de-
noted by n, and the thickness of the lens is denoted by d.
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Table 3.4: Most important Fraunhofer spectral lines

Symbol Wavelength [nm] Color Element

i 365.0 UV Hg

h 404.7 violet Hg

g 435.8 blue Hg

F’ 480.0 blue Cd

F 486.1 blue/green H

e 546.1 yellow/green Hg

d or D3 587.6 orange He

D2 589.0 orange Na

D 589.3 orange Na

D1 589.6 orange Na

C’ 643.8 orange Cd

C 656.3 red H

r 706.5 red He

A’ 768.2 red K

3.4 Optical properties of glasses

3.4.1 Dispersion

Glasses and other material are characterized mainly by two properties:
refractive index and dispersion. Dispersion means that the refractive
index depends on the wavelength of the light. Therefore, in order to
describe the refractive properties of any material, the dispersion curve
n(λ) has to be given. In practice, the refractive index is given only for a
number of standardized wavelengths. These wavelengths correspond
to spectral lines of specific chemical elements in which wavelengths
are known with great precision. A table of the widely used wavelengths,
together with their international symbol and the chemical element from
which they arise, are given in Table 3.4.

For any other wavelengths in the visible, near UV and in the near IR
range, the refractive index can be calculated by several common inter-
polation formulas. The most widely used are summarized in Table 3.5.
The coefficients needed for the formulas are available in the glass cata-
logs of all major glass manufacturers, such as Schott [3]. It is often rec-
ommended to check the exact definitions of the formulas used before
inserting coefficients from glass catalogs. This is because the formulas
are often slightly modified by the manufacturers.
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Table 3.5: Dispersion formulas for glasses

Name Formula

Schott1 n(λ) = a0 + a1λ2 + a2λ−2 + a3λ−4 + a4λ−6 + a5λ−8

Sellmeier 1 n2(λ) = 1+ K1λ2

λ2 − L1
+ K2λ2

λ2 − L2
+ K3λ3

λ3 − L3

Sellmeier 2 n2(λ) = 1+ A + B1λ2

λ2 − λ2
1

+ B2λ2

λ2 − λ2
2

Herzberger2 n(λ) = A + BL(λ) + CL2(λ) + Dλ2 + Eλ4 + Fλ4

with L(λ) = 1
λ2 − 0.028)

Conrady3 n(λ) = n0 + A
λ

+ B
λ3.5

1Schott no longer uses this formula, but it is still widely used.
2Mainly used in the infrared.
3Mainly used for fitting of sparse data.

3.4.2 Technical characterization of dispersion

In many cases, it is not necessary to know the complete dispersion re-
lation n(λ). Instead, a usable and short characterization of the glass
is more useful. Usually, the main refractive index is employed as a
characterization of the glass. It is defined as the refractive index at the
wavelength λd or λe according to Table 3.5. As a code for the disper-
sion, Abbe number is widely used. Two definitions according to the
use of either ne or nd as the main refractive index are common:

Vd = nd − 1
nF − nC

Ve = ne − 1
nF ′ − nC ′

(3.25)

Main refractive index and the Abbe number are combined in order to
form a 6-digit number, the so-called MIL number . The first three digits
of the MIL number are the d-light refractive index minus one, without
the decimal place. The last three digits are the Abbe number Vd times
10; for example, the MIL-number of BK7 glas is 517642.

3.5 Aberrations

So far, lenses have been described by the paraxial approximation. With-
in their limits perfect image quality is achieved. In practice, an optics
never reaches this ideal behavior, but shows degradations of image
quality caused by aberrations. These are divided into two main classes
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Figure 3.9: Classification of aberrations.

Figure 3.10: Spherical aberration of a convex lens. To obtain the best image
quality, the image plane has to be moved from the paraxial focal plane F to the
optimal position Fo. The caustic is the envelope of the outgoing ray bundle.

according to their cause. The change of refractive index with wave-
length causes polychromatic aberrations that even exist in paraxial op-
tics. Nonparaxial rays, which appear in any real optics, are the cause
of monochromatic aberrations. The latter can be described by taking
into account the higher-order terms in the series expansion equation
(Eq. (3.6)). The third-order aberrations are divided into the five primary
aberrations (see Fig. 3.9), also known as Seidel aberrations. Three of
them, namely, spherical aberration, coma and astigmatism, cause im-
age degradations by blurring, while field curvature and distortion de-
form the image. Understanding aberrations helps to achieve the best
possible image quality, and leads to the suppression of aberrations by
corrected optics.

3.5.1 Spherical aberrations

Outside the paraxial domain, a spherical surface no longer focuses par-
allel ray bundles onto a single point. On the contrary, rays hitting the
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Figure 3.11: Longitudinal and transversal spherical aberration for the lens
from Fig. 3.10. Only TSA can be reduced by relocating the image plane.

surface at a greater distance to the axis are focused on a point closer to
the surface than rays nearer to the axis. The focal length then depends
on the radial distance y of the ray to the optical axis.

To describe the strength of a spherical aberration, the axial distance
from the true focal point to the paraxial focal point is used; this is called
the longitudinal spherical aberration (LSA). The sign of the LSA equals
the sign of the focal length of the lens. Thus a convex lens with positive
focal length bends nonparaxial rays too much, so they intersect the
axis in front of the paraxial focus. Diverging lenses with negative focal
length focus tend to focus behind the paraxial focus.

To represent the influence of spherical aberrations on image quality,
the transversal spherical aberration (TSA) can be used. It is defined as
the radial distance of the intersection of the outgoing ray with the rear
paraxial focal plane, as illustrated in Fig. 3.10. Due to the aberration,
exact focusing become impossible.

For practical purposes, it is necessary to minimize the influence of
the aberration. This can be done by several methods:

• Low aperture. Choosing a larger f-number reduces SA, but causes
an unavoidable loss of brightness. Nevertheless, because LSA ∼ y2

and TSA ∼ y3, this is a very effective way to suppress SA.

• Image plane shift. Tominimize blur while maintaining the aperture
setting, it is optimal tomove the image plane to the position Io where
the diameter of the caustic is minimal. Theminimal but unavoidable
blur circle is called the circle of least confusion. The suppression
of spherical aberration is illustrated in Fig. 3.10. It is important to
note that the location of the image plane Io depends on the imaging
conditions, in particular on object distance and f-number.

• Optimal lens arranging. Reducing spherical aberration can also be
achieved by arranging the surfaces of the system in such a manner
that the angles of the rays to the surfaces are as small as possi-
ble. This is because SA is caused by the violation of the small angle
approximation. The refraction should be evenly distributed among
the various surfaces.
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Figure 3.12: The SA of a planoconvex lens (left: correct lens orientation; right:
incorrect lens orientation). Turning the lens to the correct orientation strongly
reduces SA.
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Figure 3.13: a Illustration of negative coma. The transversal magnification
decreases with ray height h. b Positive coma of a single point source.

As a general rule, a single lens should always be used with its flat
side pointing towards the rays with the higher angles of incidence.
When imaging distant objects, a planoconvex lens with an almost
flat rear side will produce the best results. For close range imaging
a more symmetric lens is more preferable. The reduction of SA by
simply turning the lens is illustrated in Fig. 3.12.

3.5.2 Coma

Coma is an aberration associated with off-axis object points. Even a
small distance from the axis can cause visible coma in the image. Be-
cause of its asymmetric shape, coma is often considered the worst of all
aberrations. It is caused by the dependence of the transversal magnifi-
cationMT on the ray height. Even in the absence of spherical aberration,
this inhibits a focusing of the object point onto a single image point
(Fig. 3.13a). Coma is considered positive if the magnification increases
with increasing ray height h. The image of a point source formed by a
lens flawed with coma only shows a comet tail-like shape. The pattern
can be seen as a series of nonconcentric circles, whereby each circle
is formed from the rays passing the lens at the same radial distance
h (Fig. 3.13b). The centers of the circles are shifted according to the
change of MT with h. Notice that as the rays go around the aperture



3.5 Aberrations 71

a

� � � � 
 
 � 

� � � � 	

� 	 � � � � � � � 

� � � � � 	


 	 � � 

� � � � � � � � �

� � � 	 � 

� � � � 


b

f

∆

Ps’s’’P s

Figure 3.14: a Astigmatism. The focal length differs for the sagittal and the
meridional plane. b Effect of field curvature. Instead of the planes P and P ′

being conjugated, the spheres S and S′ are conjugated. Thus, the parabolic
Petzval surface S′′ is conjugated to the object plane P .

circle on the lens once, they go around the circle in the coma patch
twice. This is why both the tangential as well as the sagittal ray fan
form a radial line in the patch. Consequently, the length of both lines
is used in order to describe the amount of coma, denoted as sagittal
and tangential coma (see Fig. 3.13b).

3.5.3 Astigmatism

Astimatism is associated with nonskew ray bundles emerging from
nonaxial source points. It is convenient to look at two planar ray bun-
dles in the meridional and in the sagittal planes. The meridional plane
is defined as the plane containing the optical axis and the chief ray,
while the sagittal plane contains the chief ray and is perpendicular to
the meridional plane. Both planes change with the source point of the
rays. In addition, the sagittal plane changes with each surface, while the
meridional plane remains the same within the optical system. Assum-
ing an optical element of axial symmetry, for an on-axis point there is
no difference between the sagittal and themeridional plane. An off-axis
point will show the lens under different angles, causing the effective fo-
cal lengths in the two planes to be different. The difference of the focal
length increases with the paraxial focal length of the lens and the skew
angle of the rays. The shape of the caustic of the outgoing ray bundle
changes from circular shape near the lens to a line in the meridional
plane at the meridional image distance. The shape changes further to
a perpendicular line at the sagittal image (see Fig. 3.14a and Fig. 3.15).
Of course, astigmatism is present for on-axis object points in systems
without axial symmetry such as optics containing cylindrical lenses.

3.5.4 Field curvature

With an optical system otherwise free of aberrations, the fact that the
cardinal planes are not truly plane causes a primary aberration called
the Petzval field curvature. Because of the absence of other aberrations
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Figure 3.15: Spot diagrams showing the change of the cross section of the
caustic with increasing distance from the lens. The circle of least confusion is
located between the two foci.

the image of a point source is again a point. Within the paraxial do-
main, all points on the object plane would be imaged exactly to points
on the image plane. Because the cardinal planes are spheres outside
the paraxial domain, the conjugate planes turn into conjugate spheres
(Fig. 3.14b). Consequently, forcing the source points on a plane surface
deforms the image surface to a parabolic surface, the Petzval surface.
A lens with positive focal length bends the Petzval surface towards
the lens while a negative lens bends the Petzval surface away from it.
Combining lenses with positive and negative focal length can therefore
eliminate field curvature by flattening the Petzval surface to a plane. A
system of two thin lenses of focal lengths f1 and f2 fulfilling the Petzval
condition

n1f1 + n2f2 = 0 (3.26)

is therefore free of any field curvature. Field curvature can also be
corrected by moving the stop. Such methods are often combined by
using an additional meniscus lens according to Eq. (3.26) and a stop
near that lens.

3.5.5 Distortions

Displacement of image points with respect to their paraxial locations
causes distortions of the image geometry without degrading sharpness.
Usually, the displacement increases with the object height as the rays
become more inclined. For an optical system of rotational symmetry,
the shift of the image points is purely radial and distortion can also be
seen as a dependence of the transversal magnification of the distance
of the object to the axis. Figure 3.16 illustrates this by imaging a rectan-
gular grid with a complex wide angle lens. As always typical for a wide
angle lens, it is flawed with heavy radial distortion. It is important to
note that reversing the lens elements causes the distortion change from
barrel to pincushion or vice versa. This can be used to eliminate dis-
tortion in slides by using the same lens for imaging and for projection.
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Figure 3.16: Distortion illustrated by imaging a rectangular grid. Positive
distortion causes a pincushion-like shape (right), negative distortion a barrel-
shaped image (left).

Table 3.6: Distortion caused by stop position

Focal length Stop in front of lens Stop behind lens

Positive Negative distortion (barrel) Positive distortion (pincush-
ion)

Negative Positive distortion (pincush-
ion)

Negative distortion (barrel)

Distortion is influenced by the thickness of the lens and the position
of the aperture stop. However, stopping down the aperture does not
reduce distortion but it reduces the other aberrations. Therefore, posi-
tioning the stop at an appropriate position is often done to correct for
distortion.

A complex lens system consisting of several lenses or lens groups
tends to show distortions because the front lens group acts as an aper-
ture stop in front of the rear lens group. Telephoto lenses typically
consist of a positive front group and a negative rear group that can be
moved against each other in order to focus or change focal length. Dis-
tortion can therefore change with the focal length, even from positive
to negative distortion.

3.5.6 Chromatic aberrations

So far, we have only considered monochromatic aberrations caused by
the nonlinearity of the law of refraction. The dependence of the re-
fractive index of almost all materials on the wavelength of the light
introduces a new type of aberration, because rays of different colors
travel on different paths through the optics. Therefore, the images of
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Figure 3.17: Axial, transverse and longitudinal chromatic aberrations. Differ-
ent rays correspond to different wavelengths.

a point source are different for light of different wavelengths. In par-
ticular, the focal length of a lens varies with wavelength.

The effects of chromatic aberration are similar to those of spheri-
cal aberration (SA) and in analogy to SA described as axial (ACA) and
transverse (TCA) chromatic aberration. As shown in Fig. 3.17, ACA
is defined as the axial distance of the focal points corresponding to
two different wavelengths. ACA is called positive if the focal length in-
creases with wavelength, otherwise it is denoted as negative. A positive
lens generally shows positive ACA because of the positive Abbe number
of all glasses. As then expected, negative lenses cause negative ACA.
The radius of the blur circle caused by the different focal lengths is
called the transverse chromatic aberration TCA. In addition, CA causes
the transversal magnification to become wavelength dependent. This
is described by the lateral chromatic aberration (LCA), defined as the
axial distance of the different image points.

3.5.7 Reducing aberrations

In the previous sections the primary aberrations have been explained
in detail. It is obvious that the image degradation caused by the aber-
rations has to be suppressed as much as possible in order to achieve a
good image quality. This in normally done during the design process
of an optics, where ray tracing techniques are used in order to calculate
the aberrations and to optimize the system for its desired purpose. Be-
sides these inner parameters of the optics, the strength of aberration is
influenced by outer parameters such as f-number or field angle. Image
quality can therefore be improved by paying attention to some basic
design rules. First of all, aberrations can be influenced by the aperture
size h, which is the radial height of the ray hitting the aperture stop,
and the radial distance of the object source point from the axis, the
field height y . Table 3.7 summarizes the dependence of the Seidel and
chromatic aberration from these two parameters. Thus it can be seen
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Table 3.7: Summary of the strength of primary aberrations by field height h
and aperture y , according to [4]

Aberration Radial (blur) Axial (focal shift)

Spherical aberration y3 y2

Coma y2h
Astigmatism yh2 h2

Field curvature yh2 h2

Distortion h3

Axial chromatic aberration y
Lateral chromatic aberration h

that distortion is the only primary aberration that cannot be suppressed
by stopping down the aperture. Spherical aberration does not depend
on the field height and is therefore the only monochromatic aberration
that occurs for on-axis points. In order to estimate the strength of im-
age blur, the radial column of Table 3.7 can be used. For example, if
the f-number is increased one step, the aperture size is decreased by a
factor of

√
2, meaning that blur circle according to SA is decreased by

nearly a factor of three.

3.6 Optical image formation

3.6.1 Geometry of image formation

This section summarizes the most important lens equations used in
order to calculate image position and size for imaging optics using the
paraxial approximation. The terms used in the following formulas are
illustrated in Fig. 3.18a. The distance d of the object point P from the
front principal plane and its conjugate distance d′ of the image point P ′

from the back principal plane both have positive sign in the particular
direction away from the lens. The radial distance of image and source
point are denoted by y ′ and y , respectively. As the refractive index
of the medium can change from n to n′ at the lens, its vacuum focal
length f changes to f ′ = n′f or f̃ = nf . Because rays can be thought
of as being axis-parallel between the two principal planes, these have
been collapsed into a single one for simplicity in the drawing.

The lens equations are commonly expressed either in terms of dis-
tances related to the principal planes (d, d′) or related to the focal points
(z, z′), defined as z = d − f̃ and z′ = d′ − f ′. The basic lens equation
relates the object and source distances with the focal length:
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Figure 3.18: a Terms used for the lens equations. b Geometry of image forma-
tion for depth-of-field calculations.

Distances related to principal planes Distances related to focal planes

f ′

d′ + f̃
d

= 1 or
1
f

= n
d

+ n′

d′ zz′ = f̃ f ′

Besides the distances, the image and source heights are related by the
transversal magnification MT , defined as the ratio of image to source
height; MT is therefore given by

Distances related to principal planes Distances related to focal planes

MT = y ′

y
= −d′n

dn′ MT = −
√

z′n
zn′

It is sometimes convenient to express image space quantities only
in object space terms and vice versa.
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Figure 3.19: Dependence of the image distance and the transversal magnifi-
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d′ = n′f d
d − nf

d = nf d′

d′ − n′f

d′ = f ′(1− MT ) d = f̃
(
1− 1

MT

)
z′ = −f ′MT z = − f̃

MT

MT = n′f
d − nf

MT = −d′ − n′f
nf

Imaging an object extended in all three dimensions results in a 3-D im-
age filling the image space. In addition to the transversal magnification
therefore, the axial extent of the image has to be related to the axial
extent of the object. This is done by the longitudinal magnification

ML := ∂d′

∂d
= M2

T (3.27)

which is the square of the transversal magnification.
Figure 3.19 gives an overview of the image distance and the magnifi-

cation with respect to the object distance. It can be seen that depending
on the object distance, the image distance can have positive or negative
values. A positive image distance corresponds to a real image at which
position the rays are focused to form an image.

A virtual image, associated with negative image distances, means
that the rays in the image space behave as if they would emerge from
a point in the object space. There is no point where the rays physically
intersect each other, meaning that a virtual image cannot be recorded
directly. This is summarized in Table 3.8.



78 3 Imaging Optics

Table 3.8:

Object Image Image Image

location location type orientation MT

Convex lens (f > 0)

∞ > d > 2f f < d′ < 2f real inverted −1 < MT < 0

d = 2f d′ = 2f real inverted MT = −1
f < d < 2f ∞ > d′ > 2f real inverted MT < −1

d = f d′ = ∞
d < f d′ > d virtual erected MT > 1

Concave lens (f < 0)

0 < d ≤ ∞ |d′| < min(|f |, d) virtual erected 0 < MT < 1

3.6.2 Depth-of-field and focus

A paraxial lens of focal length f focuses all rays emerging from a point
P onto its corresponding point P ′ in image space according to the basic
lens equation

1
f

= 1
d

+ 1
d′ (3.28)

Therefore only objects located at a given distance d are well focused
onto the image plane at the fixed position d′, whereas objects at other
distances d̃ appear blurred (see Fig. 3.18b). The distance range in which
the blur does not exceed a certain value is called the depth-of-field. A
good value to characterize the depth-of-field is f-number f /2R, which
gives the ratio of the focal length to the diameter of the lens. At a zero
order approximation, blurring is described by the radius ε of the blur
circle for an object point at d̃ = d+∆d, which is controlled by the ratio
of the image distances

ε
R

= d′

d̃′ − 1 = d′∆d
dd̃

(3.29)

The depth-of-field is now determined by the choice of a maximal ra-
dius of the blur circle, the so-called circle of confusion. If εc denotes
the circle of confusion, the depth-of-field can be expressed in terms of
the magnification M = b/g, the f-number O = f /2R, and the object
distances:

∆d = 2O
MT f

d̃εc = d
MT f
2Oεc

− 1
� |∆d| = 2O

MT f
d̃|εc| = d

1∓ MT f
2Oεc

(3.30)
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In Eq. (3.29) we combined the two distinct cases of ∆d being positive or
negative by understanding ε having the same sign as ∆d. Distinguish-
ing between positive and negative signs now shows the inherent asym-
metry for the depth-of-field, caused by the nonlinearity of Eq. (3.28).
Therefore it is a common practice to assume MT R � εc , leading to the
approximation of d̃ ≈ d in Eq. (3.30) and removing the asymmetry.

Moving the image plane instead of moving the object plane also
causes a defocused image. Equivalent to the depth-of-field in object
space the term depth of focus in image space denotes the maximal dis-
location of the image plane with respect to a given circle of confusion.
Again, with the approximation of the circle of confusion being small
compared to the lens radius, the depth of focus is given by

∆d′ = 2O
f

d′εc (3.31)

The relation between depth of focus and depth-of-field is given by the
longitudinal magnification M2

T .

∆d = M2
T∆d′ = ML∆d′ (3.32)

For far-field imaging, MT is small and therefore a small depth-of-field
causes a small depth of focus. In contrast, both close-up and micro-
scopic imaging with large magnifications show a large depth of focus
and a small depth-of-field at the same time. Finding the position of
best focus may be difficult in this particular situation.

3.6.3 Telecentric optics

With this setup, the aperture stop is located at the rear focal point of
the respective optics. The effect is that all principal rays in object space
are parallel to the optical axis (Fig. 3.20). Only narrow and axis-parallel
ray bundles contribute to image formation. This is often used in pre-
cision measuring, where an object is viewed by a screen or camera at
a fixed position. If the object is moved slightly away from the optimal
position, its image becomes blurred, but also the transversal magnifi-
cation changes so that a different object size is obtained. A telecentric
setup corrects this by making the principal ray independent of the ob-
ject position, therefore preserving magnification. Obviously only an
object smaller than the lens diameter can be viewed. Therefore the
use of telecentric optics is normally restricted to close-range imaging.
To achieve the best results, the illumination system should be telecen-
tric as well, and the aperture of both the illumination and the imaging
system should be the same.
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a

optical axis
principal ray for telecentric stop
marginal rays for telecentric stop
principal rays for stop at lens

lens telecentric stop CCD

b

optical axis
rays for focused object point

rays for defocused object point
lens telecentric stop CCD

Figure 3.20: a As the principal ray is independent of the object position blur
does not cause size changes; b independence of the radius of the blur circle from
the location.

3.7 Wave and Fourier optics

Pure geometric optics, as we have considered so far, is limited to the
calculation of the paths of bundles of light rays through an optical sys-
tem and the parameters that can be extracted from these. Intensity
of these bundles is especially important for imaging optics but is not
readily quantified with geometric optics. The depth-of-field calcula-
tions explained in Section 3.6 clearly demonstrate this drawback, and
while it is possible to obtain the size of the blur circle, the intensity dis-
tribution of the image of a blurred spot cannot be calculated exactly.
Fourier optics provide a better means of understanding the behavior of
an optical system without the need to delve deeply into the details of
wave optics.

3.7.1 Linear optical systems

Point spread function. The point spread function is one of the cen-
tral concepts used in Fourier optics because it allows the description of
a complex optical system as a linear superposition of images of single
spot sources. This concept allows the handling of different imaging
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Figure 3.21: Focused and defocused imaging of an object point onto the image
plane.

problems such as quantitative description of image blurring, depth-
from-focus reconstruction, and 3-D imaging of nonopaque volume ob-
jects as they occur with light or confocal microscopy, using the same
mathematical description. The image of an object is the superposition
of the images of all object points. Figure 3.21 illustrates the situation
for both a well-focused and an ill-focused setup. An ideal aberration-
free optics would image every object point onto its conjugate point in
the image plane. In the case of defocus the rays emerging from the
object point no longer intersect at the image plane but at the plane
conjugate to the actual object plane. The image of the object point is
therefore an intensity distribution at the image plane, which is is called
the point spread function (PSF) of the lens.

Assuming that the PSF does not change for various object points, the
effect of blurring can be described as a convolution of the well-focused
image, as it would be achieved by a pinhole camera, with the PSF:

g(x′) =
∫

f (x(Bξ′))PSF(Bξ′ −x)d2ξ′ = f (x(x′)) ∗ PSF(x′) (3.33)

It is important to note that the description by a convolution is only
valid in case of a linear, shift-invariant system.

Shape of the PSF. In many cases the shape of the PSF remains un-
changed for every object point, independent of its distance from the
plane of best focus. Then, the PSF can be described by a shape func-
tion S and a scaling factor σ that varies with the distance g′:

PSFZ(x) = S (x/σ(Z))∫ S (x/σ(Z)) d2x
(3.34)

The denominator normalizes the PSF to
∫

PSFZ(x)d2x = 1, forcing
gray-value preservation. In many cases it is sufficient to replace σ
by the radius of the blur circle ε. The shape function can be com-
pletely different for different optical setups. Nevertheless, only a few
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Table 3.9: Standard functions for point spread functions of optical systems

Function PSF Used for

Box
1

πσ 2Π
( |x|
2σ

) Optical systems with circular
aperture stop that are not dom-
inated by wave optics.

Noncircular Box
1

πσ 2Π
( |x|
2σ

)
Optics with the same properties
as above, but with a noncir-
cular aperture stop, as with
adjustable iris diaphragms.
The shape function reflects the
shape of the aperture stop.

Gaussian
1

2πσ
exp

(
− x2

2σ 2

)
Widley used in order to describe
the PSF. It can be shown that
the Gaussian results from the
superposition of Airy functions
for a wavelength range in the
case of polychromatic illumina-
tion.

Airy
2J1(|x|/σ)

x/σ

Optical systems that are domi-
nated by wave optics, with co-
herent and monochromatic il-
lumination, mainly microscopic
systems; σ depends on the
wavelength.

shape functions are sufficient in order to describe the main properties
of standard optics as summarized in Table 3.9.

Optical transfer function. In Fourier space, convolution turns into
a multiplication of the Fourier transform of the object function with
the Fourier transform of the PSF (Section 8.6.3). The latter is called the
optical transfer function (OTF). Its values give the transfer coefficient for
spatial structures of different wavelength through the optical system.
A value of zero indicates that this particular wavelength cannot be seen
by the optics

spatial domain G(x) = PSF(x) ⊗ O(x)
◦|•

◦|•
◦|•

Fourier domain Ĝ(k) = �PSF(k) · Ô(k)

(3.35)
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Figure 3.22: Effect of defocus on images and their Fourier transforms. The
cutoff of the higher wavelength is clearly observed with increasing defocus.

fd

Figure 3.23: Setup for optical Fourier transformation.

A typical OTF will act as a low-pass filter, eliminating higher spa-
tial frequencies, that is, high resolution details. This is illustrated in
Fig. 3.22 showing a series of images of fabric, taken with different fo-
cus settings, together with the corresponding Fourier transforms. A
telecentric optics has been used in order to avoid scaling of the Fourier
space due to change in image magnification. Clearly, the suppression
of the higher spatial frequencies with defocus can be seen.
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3.7.2 Optical Fourier transform

One of the most useful properties of a convex lens is its ability to per-
form a 2-D Fourier transformation [5]. The input image to be trans-
formed has to modulate the amplitude of the incoming light. The sim-
plest possible input would therefore be a monochromatic slide placed
in front of the lens (Fig. 3.23). Of course, it is also possible to work with
modulation by reflection instead of transmission.

For an infinite lens the intensity distribution in the rear focal plane
is given by

I(ξ, η) = Io
λ2f 2

∣∣∣∣∣∣
∞∫

−∞

∞∫
−∞

T(x, y)e−2π i(xξ+yη)/(λf ) dx dy

∣∣∣∣∣∣
2

(3.36)

which is proportional to the power spectrum of the transmission func-
tion T(x, y), that is, the input image. Changing the distance d between
the input image and the lens only causes a phase shift and therefore
has no influence on the intensity distribution.

To take into account the finite dimensions of the lens, a pupil func-
tion P is used that is 1 inside the lens and 0 outside the aperture. Thus
arbitrarily shaped aperture stops can be described.

The amplitude and phase distribution in the rear focal plane cor-
respond to the Fourier spectrum of the input image, and the intensity
distribution to the power spectrum.
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4.1 Introduction

Radiometry is the measurement of some radiometric quantity, such as
radiance L, irradiance E, or intensity I. In terms of computer vision,
it relates quantitatively the image brightness to radiometric properties
of the observed objects. Thus, a radiometric analysis of images can
be used to obtain important information about the underlying physical
processes and object properties. In Chapter 2 we defined the relevant
radiometric and photometric quantities and detailed the basics of ra-
diation. We also showed how the radiation emitted from objects inter-
acts with all materials that are encountered before it finally reaches the
imaging system. In Chapter 3 the fundamentals of optical imaging were
introduced. This chapter concludes the radiometric considerations by
combining the fundamental radiometric properties with the process
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Figure 4.1: Source-receiver geometry.

of image formation and shows how quantitative radiometric measure-
ments can be carried out with the imaging detector systems used in
computer vision. Starting at the object surface, we follow the radiation
on its way through the camera system and analyze how it is changed
by the optical imaging, converted into irradiance at the detector plane,
and finally detected, thereby contributing to a digital image.

4.2 Observing surfaces

Most applications of computer vision have to deal with images of opaque
objects, which corresponds to images of object surfaces moving within
the 3-D scenes. The “brightness” of these surfaces is usually taken for
granted with the inherent assumption that they are Lambertian. This
assumption is frequently confused with constant brightness, although
even Lambertian surfaces are subject to brightness changes under gen-
eral conditions in terms of 3-D motion and illumination setups. But
what do surfaces look like, and which radiometric quantity can be re-
motelymeasured by an optical detector? In this section, we will address
the following fundamental question: Which radiometric property of a
surface is measured when it is observed by an optical detector system?
We will conclude that an imaging detector acts as a radiance meter ,
with an output proportional to the radiance of the imaged surface.

4.2.1 Source-detector flux calculations

In order to measure radiation quantitatively, we need to know which
portion of the radiation leaving the surface of an object finally reaches
the detector. To derive the basic relations, we consider the geometric
setup where the radiative flux of a source is directly transferred (radi-
ated) onto the detector without any imaging device (Fig. 4.1).
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Let dS and dR be infinitesimal surface elements of the source and
the receiver (detector), respectively, separated by a distance r . The ra-
diance L leaving the source element dS in the direction of the receiving
surface dR can be computed from its initial definition Eq. (2.12) as

L = d2Φ
dΩdS cosθ

(4.1)

where θ is the angle between the surface normal on dS, and the direc-
tion of the line connecting dS and dR. With dΩ we denote the element
of solid angle subtended by the area dR as observed from the source
dS. If dR is further inclined under an angle θ′ with respect to the
direction connecting the two surface elements, dΩ is given by

dΩ = dR cosθ′

r 2 (4.2)

Combining Eqs. (4.1) and (4.2), we get the infinitesimal element of
radiative flux transferred between dS and dR:

d2Φ = L dS dR cosθ cosθ′

r 2 (4.3)

From this equation we can immediately infer the following basic
properties of radiative transfer: The transfer of radiative flux is:

1. directly proportional to the radiance L of the emitting surface dS;
2. directly proportional to the areas of the emitting and receiving sur-

faces dS, and dR, respectively;
3. inversely proportional to the square of the distance r between emit-

ting and receiving surface (inverse square law); and

4. finally, it depends upon the orientation of the surface normals of dS
and dR with respect to the direction connecting the two surfaces.

The most important fact is that the received flux is directly propor-
tional to the radiance of the emitting surface. We will further show that
this proportionality remains for an imaging detector. Thus, the basic
property to be measured by radiometry is the radiance of the objects!

For finite size sources and detectors, we need to integrate Eq. (4.3)
over the surface areas S and R of source and detector, respectively,

Φ =
∫

S

∫
R

Lcosθ cosθ′

r 2 dS dR (4.4)

The average irradiance E of the receiving detector element is given by:

E = dΦ
dR

=
∫

S
Lcosθ cosθ′

r 2 dS (4.5)
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Figure 4.2: Illustration of the radiance invariance.

The integrals Eqs. (4.4) and (4.5) are the fundamental equations de-
scribing the transfer of radiation from a source surface to a detector
surface [1]. These integrals, however, can only be solved analytically
for simple geometrical setups.

If we just place a detector into a scene, all surface areas within the
3-D enclosure contribute to detector irradiance. Thus, we have to in-
tegrate Eq. (4.5) over the entire surface of all surrounding—arbitrarily
shaped—objects. Apart from the mathematical difficulties, this inte-
gration yields the average irradiance of the detector surface element,
rather than an “image” of the individual object surfaces. In order to
resolve spatial variations of emitting surfaces, we need to restrict the
allowed angles of incidence. Section 4.4 outlines the basic radiometric
properties of imaging systems.

4.3 Propagating radiance

In Section 4.2 we learned that a radiometer serves as a radiance meter ,
which produces an output proportional to the radiance of the observed
surfaces. Before we turn towards the question of how the radiance dis-
tribution of an object surface is converted into irradiance of the sensor
plane by the optical image formation process, we need to consider ex-
actly what happens to radiance when propagating through space and
passing the camera lens system. We will derive a fundamental law of
radiometry—referred to as radiance invariance—which constitutes the
basis for all radiometric measurements. The derivation of this law fol-
lows McCluney [1] and Nicodemus [2].

4.3.1 Radiance invariance

The concept of radiance is sometimes hard to grasp, as we intuitively
think about radiation as either absolutely parallel—in that case, we do
not have a geometrical spreading and, hence, no radiance—or diverg-
ing in space. As radiance is defined as flux emitted into a unit solid
angle, we always tend to think that it is diverging and, hence, becoming
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smaller, the farther it travels. An important question in the context of
imaging systems is whether themeasured brightness is decreasing with
increasing object distance or, in general, how the radiance is distributed
over the lens system at all.

In order to derive the law of radiance invariance, we consider two
“virtual” infinitesimal surface elements dS1 and dS2 placed along the
propagation direction of the measured radiation (Fig. 4.2) at distance r .
The surface normals of the two elements with respect to the direction
of the connecting line are inclined under the angles θ1 and θ2, respec-
tively. The incident flux on either of the two elements is considered
to leave the element in exactly the same direction at the opposite side,
without attenuation.

The flux leaving surface element dS1 is given by Eq. (4.3)

d2Φ1 = L1
dS1 cosθ1 dS2 cosθ2

r 2 (4.6)

where L1 denotes the incident radiance on the surface element dS1.
Similarly, the incident flux on surface element dS2 is given by

d2Φ2 = L2
dS2 cosθ2 dS1 cosθ1

r 2 (4.7)

Conservation of energy requires that both fluxes must be the same if no
losses occur within the medium between dS1 and dS2, that is, Φ1 = Φ2.
Using Eqs. (4.6) and (4.7) we get

L1 = L2 (4.8)

As we have made no restrictions on the locations, orientations, or sizes
of the surface elements, nor on the origin of the radiance, Eq. (4.8)
constitutes a fundamental law, called radiance invariance.

Although this solution seems to be trivial, it is of major importance,
as it proves that the quantity of radiance is not changed along the ray
of propagation in space. Thus, it makes absolutely no difference where
we measure the emitted radiance of objects.

4.3.2 Radiance invariance at interfaces

In this section, we consider the question as to how radiance is changed
at the interface between objects with different refractive indices. This
extension of the radiance invariance constitutes the basis for radiomet-
ric measurements with optical systems.

At the interface between two media with different indices of refrac-
tion, not only the direction of propagation changes but also the radi-
ance because the geometric spreading of the beam is altered. Figure 4.3
illustrates the geometric quantities at the transition from n1 to n2, for
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Figure 4.3: Geometry for definition of radiance invariance at interfaces.

n2 > n1. As refraction is not linear in angle, the two bounding rays are
refracted under different angles due to the slightly different angles of
incidence.

The element of incident flux dΦ1 is given by

dΦ1 = L1 dS cosθ1 dΩ1 = L1 dS cosθ1 sinθ1 dθ1 dφ (4.9)

where dS denotes an infinitesimal surface area, and the element of
solid angle dΩ1 is replaced by spherical coordinates. Correspondingly,
the element of refracted flux dΦ2 is given by

dΦ2 = L2 dS cosθ2 dΩ2 = L2 dS cosθ2 sinθ2 dθ2 dφ (4.10)

Conservation of energy requires

dΦ2 = (1− ρ̃) dΦ1 (4.11)

accounting for reflection at the interface. Thus

1 = (1− ρ̃) dΦ1
dΦ2

= (1− ρ̃) L1 cosθ1 sinθ1 dθ1

L2 cosθ2 sinθ2 dθ2
(4.12)

The relation between the angles of incidence and refraction is given by
Snell’s law (Eq. (2.42), see Chapter 2.5)

n1 sinθ1 = n2 sinθ2 (4.13)

Differentiating both sides of this expression with respect to the angle
yields

n1

n2
= cosθ1 dθ1

cosθ2 dθ2
= sinθ1

sinθ2
(4.14)
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Figure 4.4: Illustration of image formation by a perfect lens.

Combining Eq. (4.14) with Eq. (4.12) yields

(1− ρ̃) L1

n2
1

= L2

n2
2

(4.15)

Ignoring reflection losses, the radiance is changed at the transition
between two interfaces, but the quantity L/n2 stays constant in any
medium1.

This leads to the conclusion that the radiance is not altered by op-
tical components such as lenses and windows. Although the radiance
within a lens is changed, the initial radiance is restored after exiting
the lens at the second face. However, if the lens system is not loss-less
due to reflections at all faces and internal absorption, only the fraction
τ̃ of the incident radiance is transmitted:

L2 = τ̃L1 (4.16)

4.4 Radiance of imaging

Now that we know that the radiance is conserved by passing through
the optical system of a camera (with the exception of absorption and
reflection losses), we need to know how the optical system changes the
direction of propagation and the geometric spreading and how it turns
the radiance distribution into an image.

4.4.1 Radiance and irradiance of images

Consider the imaging system to consist of a single circular lens, as
illustrated in Fig. 4.4. We assume the lens to be perfect in terms of

1This fundamental law of radiometry can be compared to the invariance of the optical
path nd in geometrical optics (see Chapter 3).
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accurately focusing all radiation emerging from a point P at the object
surface and collected by the lens aperture A, onto a single point P ′ on
the sensor plane.

Let P ′
o be the center point on the optical axis of the lens, that is, in

the center of the image, and Po the corresponding point at the object
surface. The solid angles subtended by the lens apertureA, as observed
from the point Po, and from its image P ′

o, are denoted by Ω and Ω′,
respectively.

The irradiance E′ of the image point P ′
o is simply given by integrating

the radiance impinging onto this point from all angles within the solid
angle Ω′:

E′(P ′
o) =

∫
Ω′

L′(θ′, φ′) cosθ′ dΩ′ (4.17)

where the primed letters refer to the quantities at the sensor side of
the lens, that is, after passing the lens (Fig. 4.4).

Using the radiance invariance Eq. (4.16), we can replace L′ by L′ =
τ̃L, if we assume the lens to have a transmittance τ̃ , and L denotes
the object radiance before reaching the lens. As the lens focuses all
radiation, which is emitted by the point Po into the solid angle Ω, we
can replace the integration over the primed quantities in the image
domain by an integration over the solid angle Ω in the object domain:

E′(P ′
o) = τ̃

∫
Ω

L(θ, φ) cosθ dΩ (4.18)

where L(θ, φ) denotes the excitant radiance at the object point Po.
For Lambertian surfaces, L is independent of the direction and can

be removed from the integral. Thus,

E′(P ′
o) = τ̃L

∫
Ω
cosθ dΩ = πτ̃L sin2 θA (4.19)

with θA denoting the half angle of the lens aperture, as viewed from
point Po (Fig. 4.4). The larger the lens aperture, the more radiance is
collected by the lens and the more irradiance is produced at the sen-
sor. Hence, an optical imaging system allows the amount of collected
radiative flux to be increased without reducing the spatial resolution.
The maximum possible irradiance is collected for sinθA = 1, that is,
for an infinite sized lens:

max
θA

E′(P ′
o) = πτ̃L (4.20)

which equals the radiant excitance of the surface at the point Po (see
Chapter 2, Eq. (2.14)), reduced by the transmittance of the lens.
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Using the f -number nf of the lens (Chapter 3), Eq. (4.19) can be
rewritten as

E′(P ′
o) = πτ̃L

 1
1+ n2

f

 (4.21)

4.4.2 Field darkening

So far, we have considered only the central point Po in the image, lo-
cated on the optical axis of the lens. This section shows how the sen-
sitivity of an extended detector decreases towards the edges of the
sensor.

Off-axis irradiance. Let P ′ be an arbitrary image point located off-
axis in the sensor plane. The corresponding point in object domain is
denoted by P . Further, let P have the same radiance as the center point
Po, that is, we assume the object to have a constant radiance over the
imaged area.

Now, the distance r from the center of the lens to the point P ′ will
depend on the angle θP ,

r = ro
cosθP

(4.22)

where θP denotes the angle between the line connecting P and P ′ (pass-
ing through the center of the lens) and the optical axis, and ro is the
distance between the center of the lens and P ′

o (Fig. 4.4).
According to the inverse square law Eq. (4.2), the irradiance is pro-

portional to 1/r 2, which reduces the off-axis irradiance E′(P ′) by the
factor cos2 θP , compared to E′(P ′

o).
Another factor further reducing the irradiance E′(P ′) is given by

the fact that the solid angle Ω, subtended by the lens, decreases pro-
portional to cosθP (Eq. (2.5), see Chapter 2). Thus, the effective lens
aperture is reduced by the projection onto the viewing direction.

Finally, the irradiance E′(P ′) at the detector plane is proportional to
the angle of incidence, which is also given by cosθP .

Combining all influences decreasing the irradiance E′, we get the
following result for off-axis points:

E′(P ′) = E′(P ′
o) cos4 θP (4.23)

This cos4-dependence is known as field darkening, reducing the irradi-
ance towards the edge of the sensor plane.

Typical values of the relative decrease of irradiance at the edge of
the image compared to the center point are in the order of 10% and
0.5% for f = 25mm and 100mm, respectively. With increasing focal
length, the field darkening is expressed less. For wide-angle lenses,
however, this effect can not be neglected.



94 4 Radiometry of Imaging

Vignetting. In addition to the cos4-dependence of the irradiance across
the sensor plane, other optical effects contribute to the resulting field
darkening of an image. The term vignetting is used for effects block-
ing off-axis rays by internal aperture stops of the lens system or other
beam-delimiting components [1]. Such effects produce an additional
decline of the image irradiance towards the edge of the image.

4.5 Detecting radiance

The final step in the chain of radiometric imaging is the detection of ra-
diation at the imaging sensor. Here, the irradiance of the sensor plane
is converted into an electronic signal. Without going into details of
solid state physics, this section outlines the basic properties of imag-
ing detectors relevant for a quantitative radiometric interpretation of
images. More detailed overviews of detectors for electromagnetic radi-
ation can be found in the following excellent textbooks [1, 3, 4], as well
as in standard handbooks on radiometry, such as [5].

4.5.1 Detector performance: figures of merit

Before we turn towards a classification of optical detectors in terms of
their operational principle, we will summarize commonly used figures
of merit, which allow us to compare the relative performance between
detectors. These quantities also constitute the link between the radio-
metric quantities of radiation impinging on the detector material and
the final electrical detector output.

Quantum efficiency. Quantum efficiency η(λ) relates the number of
photons incident on the detector to the number of independent elec-
trons generated. It counts only primary charge carriers directly related
to the initial absorption process and does not count electrical amplifi-
cation. Quantum efficiency takes into account all processes related to
photon losses, such as absorptance of the detector material, scattering,
reflectance and electron recombination.

In a more general sense, the CIE vocabulary defines quantum effi-
ciency as the ratio of elementary events contributing to the detector
output to the number of incident photons. This also accounts for de-
tectors in which no charge carriers are directly released by photon ab-
sorption. The quantum efficiency can be expressed as

η(λ) = no
np

(4.24)

where np is the number of incident photons; no defines the number
of output events, such as photoelectrons in photodiodes, and electron-
hole pairs in semiconductors (Section 4.5.2).
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Figure 4.5: Response of an ideal photodetector. a Quantum efficiency; and b
responsivity. Solid lines correspond to ideal detectors and dashed lines to typical
departures from ideal curves (After [3]).

The quantum efficiency is always smaller than one and is commonly
expressed in per cent. Figure 4.5a shows the spectral quantum effi-
ciency for an ideal photodetector. The ideal quantum efficiency is a
binary function of wavelength. Above a certain cutoff wavelength λc ,
photons have insufficient energy to produce photogenerated charge
carriers (Section 4.5.2). All photons with higher energy (smaller wave-
lengths) should produce the same output. Real photodetectors show
a slightly different behavior. Near λc the thermal excitation of the de-
tector material can affect the production of charge carriers by photon
absorption. Thus, the sharp transition is rounded, as illustrated by the
dashed line. Another typical behavior of photodetectors is the decreas-
ing quantum efficiency at short wavelengths.

Responsivity. An important quantity relating the final detector out-
put to the irradiance is the responsivity R of the detector. It is defined
as the electrical output signal divided by the input radiative flux φ:

R(λ, f ) = V(λ, f )
φλ(f )

(4.25)

where V denotes the output voltage and f is the temporal frequency at
which the input signal is chopped. The frequency dependency accounts
for the finite response time of detectors and shows the detector’s re-
sponse to fast changing signals. If the detector output is current, rather
than voltage, V has to be replaced by current I. Depending on the type
of detector output, the units are given as VW−1 (volts per watt) or AW−1

(amperes per watt).
For a photon detector (Section 4.5.2), the responsivity can be ex-

pressed by the quantum efficiency η and the photon energy ep = hc/λ
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as

R(λ) = ηλqG
hc

(4.26)

where q denotes the electron charge, q = 1.602 × 10−19 C. The photo-
conductive gain G depends on the geometrical setup of the detector
element and material properties. The frequency dependent responsiv-
ity is given by

R(λ, f ) = ηλqG

hc
√
2πf τ

(4.27)

where τ denotes the time constant of the detector.
The ideal spectral responsivity of a photodetector is illustrated in

Fig. 4.5b. As R is proportional to the product of the quantum efficiency
η and the wavelength λ, an ideal photodetector shows a linear increase
in the responsivity with wavelength up to the cutoff wavelength λc ,
where it drops to zero. Real detectors show typical deviations from
the ideal relationship as illustrated by the dashed line (compare to
Fig. 4.5a).

Noise equivalent power. Another important figure of merit quanti-
fies the detector noise output in the absence of incident flux. The signal
output produced by the detector must be above the noise level of the
detector output to be detected. Solving Eq. (4.25) for the incident ra-
diative flux yields

φλ = V
R

(4.28)

where R is the responsivity of the detector. The noise equivalent power
NEP is defined as the signal power, that is, radiative flux, which cor-
responds to an output voltage V given by the root-mean-square (rms)
noise output, σn:

NEP = σn
R

(4.29)

In other words, NEP defines the incident radiant power that yields a
signal-to-noise ratio (SNR) of unity. It indicates the lower limit on the
flux level that can be measured. It depends on the wavelength of the
radiation, the modulation frequency, the optically active detector area,
the noise-equivalent electrical bandwidth ∆f , and the detector oper-
ating temperature. Thus, it depends on a large number of situation-
dependent quantities.
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Detectivity. The detectivity D of a detector is the reciprocal of the
NEP :

D = 1
NEP

(4.30)

A more useful property can be obtained by incorporating the detec-
tor area and the noise-equivalent bandwidth ∆f . The corresponding
quantity, called normalized detectivity D∗ or D-star is defined as:

D∗ =
√

Ad∆f
NEP

(4.31)

where Ad denotes the optically active detector area. It normalizes the
detectivity to a 1-Hz bandwidth and a unit detector area. The units of
D∗ are cmHz1/2 W−1, which is defined as the unit “Jones.” The normal-
ized detectivity can be interpreted as the SNR of a detector when 1W
of radiative power is incident on a detector with an area of 1 cm2.

Again, the normalized detectivity depends on the remaining quan-
tities, the wavelength of the radiation, the modulation frequency, and
the detector operating temperature.

4.5.2 Classification of optical detectors

Over the last decades a variety of detectors for electromagnetic radi-
ation have been developed. Recent developments in semiconductor
technology have led to an increasing integration of large sensor arrays
to produce high-quality focal-plane arrays suitable for computer vision
applications. Other types of detectors are used as single-point measur-
ing sensors, which scan the image area to produce higher-dimensional
image data sets. Independent from the geometrical setup, they all rely
on inherent changes of a physical property of the detector material by
absorption of radiation, which can be quantitatively measured.

According to the underlying physical process of converting radiative
energy into an electrical signal, all detectors can be classified into three
major types:

1. Photon detectors. These types of detectors respond directly to in-
dividual photons. Any absorbed photon releases charge carriers in
the detector that produce an electric signal. Photon detectors are
among the most important sensor types for computer vision appli-
cations. They cover the entire range of electromagnetic radiation
from x-rays, to ultraviolet and visible light, up to the infrared re-
gion. The most prominent examples are photographic films and
CCD arrays. Other important applications include light-amplifying
cameras, such as microchannel plate detectors andmodern infrared
focal plane array cameras.
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Figure 4.6: Energy-band diagrams for a intrinsic photoconductors; b extrinsic
p-type photoconductors; and c extrinsic n-type photoconductors.

2. Thermal detectors. Optical radiation incident on a thermal detector
causes the detector temperature to increase due to the absorbed en-
ergy. The increased temperature changes some electrical property
of the detector material. The output signal of thermal detectors is
proportional to the total energy stored in the detector as opposed
to the number of absorbed photons in photon detectors. The wave-
length of the radiation is irrelevant, as the same output signal can be
produced by photons at different wavelengths if the photon number
compensates for the different photon energies. Thus, the respon-
sivity of thermal detectors exhibits a broad wavelength dependency,
dominated by the spectral absorptance of the photon-absorbingma-
terial.

3. Coherent detectors. The third class of detectors directly respond
to the electric field strength of the electromagnetic radiation by in-
terference of the electric field of the incident photon with the elec-
tric field of a reference oscillator. Coherent detectors can be used
only for “low-frequency” radiation, primarily for detection of radio
and submillimeter radiation down to the infrared region. Promi-
nent examples of detector systems are radar satellites operating at
microwave frequencies and radio telescopes used in astronomy.

In the remainder of this section we will give an overview of the most
common detector types, relevant for computer vision, with regard to
the principal physical mechanisms and radiometric properties.

4.5.3 Photon detectors

The class of photon detectors contains the most important detector
types for computer vision. Apart from a few exceptions, such as pho-
tographic films, most photon detectors are solid state detectors, which
make use of the fact that electrical properties of semiconductors are
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dramatically altered by the absorption of ultraviolet, visible and in-
frared photons.

Intrinsic photoconductors. Photoconductors respond to light by ei-
ther changing resistance or conductance of the detector material. In-
trinsic photoconductors are the most straightforward way to design a
solid state electronic detector. They make use of the inherent electrical
property of pure semiconductor materials without additional manipu-
lations. At normal temperatures, relatively few electrons will be in the
conduction band of a semiconductor, which results in a low electric
conductivity of the material. Figure 4.6a illustrates the energy-band
diagram for an intrinsic photoconductor.

In order to move from the valence band into the conduction band,
an electron must have sufficient energy. By absorbing a photon whose
energy is greater than that of the bandgap energy Qg , an electronic
bond can be broken and the electron can be lifted into the conduction
band, creating an electron/hole pair (Fig. 4.6a). Both the electron and
the corresponding hole can migrate through the detector material and
contribute to the conductivity. If an electric field is maintained across
the detector, any absorbed photon results in a small electric current,
which can be measured by a high-impedance amplifier.

As thermal excitation contributes to the conductivity in the same
way as absorbed radiation, thermal noise will corrupt the signal, espe-
cially at high temperatures and low illumination levels. The number of
thermally excited electrons follows the Boltzmann distribution:

nt ∝ exp
(
− Qg

kBT

)
(4.32)

where Qg , kB , and T are the bandgap energy, the Boltzmann constant,
and the absolute temperature, respectively. As Qg becomes smaller,
the number of thermally excited charge carriers increases. One way
to overcome this problem is to cool the detector down to cryogenic
temperatures below 77K (liquid nitrogen temperature), where thermal
excitation is negligible.

The minimum photon energy that can be detected is given be the
bandgap energy Qg of the detector material. With the photon energy
(Eq. (2.2))

ep = hν = hc
λ

(4.33)

themaximum detectable wavelength λc , commonly referred to as cutoff
wavelength, is given by

λc = hc
Qg

(4.34)
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Substituting for the constants, and correcting for units such that wave-
lengths are in microns and energy gap in electron volts yields the fol-
lowing rule of thumb:

λc[µm] = 1.238
Qg[eV]

(4.35)

Intrinsic photoconductor detectors can be made in large arrays and
they have good uniformity and high quantum efficiency, typically in the
order of 60%. They are the basic components of CCD-arrays (charge
coupled devices), which are the most widely used 2-D detectors in the
visible, the near infrared, and—to some extent—in the x-ray and ultravi-
olet region using special semiconductor compounds. In the infrared re-
gion, semiconductors with a small bandgap have to be used. For highly
energetic radiation, such as x-rays, the energy exceeds the bandgap of
any semiconductor. However, the absorption coefficient of most mate-
rials is extremely low at these wavelengths, which makes most sensors
almost transparent to shortwave radiation. In order to deposit the en-
ergy in the detector, the semiconductor material must contain heavy
atoms, which have a higher absorptivity in the x-ray region.

Extrinsic photoconductors. For longer wavelengths toward the in-
frared region, it is hard to find suitable intrinsic semiconductor mate-
rials with sufficiently small bandgaps. For wavelengths beyond 15µm,
materials tend to become unstable and difficulties occur in achieving
high uniformity and making good electrical contacts. A solution to this
problem is to use extrinsic photoconductors, that is, semiconductors
doped with either p-type or n-type impurities.

The addition of impurities places available electron states in the pre-
viously forbidden gap and allows conductivity to be induced by freeing
impurity-based charge carriers. Thus, smaller energy increments are
required. As illustrated in Fig. 4.6b and c, only the gap between the va-
lence band and the impurity level (p-type semiconductors) or the gap
between the impurity level and the conduction band (n-type semicon-
ductors) has to be overcome by absorption of a photon. In the former
case, the conductivity is carried by holes and in the latter case free
electrons in the conduction band contribute to the conductivity. The
basic operation of extrinsic photoconductors is similar to that of in-
trinsic photoconductors, except that the bandgap energy Qg has to be
replaced by the excitation energy Qi (Fig. 4.6b and c).

Although extrinsic photoconductors are an elegant way to get long
wavelength response, they have some less desirable characteristics:

• Due to the smaller bandgap, extrinsic semiconductors are much
more sensitive to thermal noise, which can be inferred fromEq. (4.32),
and, therefore, require a much lower operating temperature than do
intrinsic photoconductors.
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tion region and are swept into the n-type region by the electric field. The same
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• Extrinsic photoconductors have a quantum efficiency that is sub-
stantially smaller than that of intrinsic materials (30% compared to
60% in average). This results from the fact that the impurities are
necessarily more sparse than the host material, which leads to a
smaller optical absorption cross section.

• The electrical conductivity of extrinsic materials differs fundamen-
tally from that of intrinsic materials. In intrinsic photoconductors,
electron/hole pairs are generated by the excitation process, both
contributing to the charge transport (Fig. 4.6a). In extrinsic photo-
conductors, individual charge carriers are generated whose comple-
mentary charge resides in an ionized atom, which remains immobile
in the crystal structure and cannot carry current (Fig. 4.6a and b).

As the number of semiconductor atoms always outnumbers the im-
purity atoms, the intrinsic effect dominates in both types of extrinsic
material at high temperatures (where all impurity charge carriers are
thermally excited) and for wavelengths smaller than the cutoff wave-
length of the intrinsic material. To reduce the response from intrinsic
conduction, all wavelengths below the anticipated long-wave radiation
have to be blocked by spectral filters.

Photodiodes (photovoltaic detectors). A photovoltaic detector ac-
tively generates a voltage or current from incident electromagnetic ra-
diation. The most common realization is based on a junction between
two oppositely doped zones (p-n junction) in a semiconductor mate-
rial. As this setup acts as a diode, this type of detector is also called
photodiode.

Photodiodes allow large resistance and simultaneously high pho-
toconductive gain within a small volume to be obtained. The n-type
material has a surplus (and the p-type material has a deficiency) of elec-
trons compared to the crystal bond of the semiconductor material. In
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the adjacent region of both oppositely doped zones, electrons migrate
from the n- to the p-region acceptor atoms and holes migrate from
the p- to the n-region donors, if thermal excitation frees them. Within
the contact region all bonds are complete and the material is depleted
of potential charge carriers. This results in a high resistance of this re-
gion, as opposed to the relatively high conductivity of the p- andn-type
material. As the charge carriers diffuse, a voltage is established across
the depletion region, called the contact potential , which opposes the
diffusion of additional electrons. The net result is a permanent equi-
librium voltage across the p-n junction. The resulting bandstructure
across the contact zone is shown in Fig. 4.7.

When photons of energies greater than the forbidden gap energy are
absorbed in, or close to a p-n junction of a photodiode, the resulting
electron/hole pairs are pulled by the electric field of the contact poten-
tial across the p-n junction. Electrons are swept from the p-region into
then-region, and holes in the opposite direction (Fig. 4.7). As the charge
carriers are spatially separated across the detector, a resulting voltage
can be measured. If the n- and the p-type region are connected, a small
current will flow between both regions. This phenomenon is called the
photovoltaic effect .

Because photodiodes operate through intrinsic rather than extrin-
sic absorption, they can achieve a high quantum efficiency in small vol-
umes. Photodiodes can be constructed in large arrays of many thou-
sands of pixels. They are the most commonly used detectors in 1-6-µm
region [3] (e. g., InSb infrared focal plane arrays) and are also used in
the visible and near ultraviolet.

Photoemissive detectors. Photoemissive detectors operate with ex-
ternal photoelectric emission. The excited electron physically leaves
the detector material and moves to the detecting anode. Figure 4.8a il-
lustrates the principal setup. A conduction electron is produced in the
photocathode by absorption of a photon with an energy greater than
the intrinsic bandgap of the detector material. This electron diffuses
through the detector material until it reaches the surface. At the sur-
face of the photocathode it might escape into the vacuum. Using an
electric field between the photocathode and the anode helps to acceler-
ate the electron into the vacuum, where it is driven towards the anode
and counted as current. Suitable photocathode materials must have
the following properties:

• high-absorption coefficient for photons

• long mean-free path for the electron in the cathode material (low
transport losses of electronsmigrating to the surface of the cathode)

• low electron affinity, that is, low barrier inhibiting the electron emis-
sion
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Figure 4.8: Photoemissive detectors. a Detection process for a vacuum photo-
diode; b light amplification by a microchannel (top) and a photomultiplier tube
(bottom).

The simple vacuum photodiode (Fig. 4.8a) can be improved by elec-
tron multipliers, increasing the number of electrons contributing to the
output current for each detected photon. A commonly used photoemis-
sive detector is the photomultiplier , illustrated in Fig. 4.8b. It consists
of a vacuum tube including several intermediate anodes. Each anode,
called a dynode, is given a voltage higher than the previous one. The
geometrical arrangement is such that emitted electrons are accelerated
towards the next adjacent dynode. If the voltage difference is high
enough, each photoelectron leaving a dynode gets fast enough to eject
multiple electrons from the next dynode upon impact. This process
is repeated until the avalanche of electrons finally reaches the anode.
The voltages required for operation are provided by a single supply,
divided by a chain of resistors. The photocathode is held at a large
negative voltage in the order of several thousand volts relative to the
anode.

Photomultipliers are large devices, restricted mainly to single de-
tectors. A different form of electron multipliers, which is of practi-
cal relevance for computer vision, are made from thin tubes of lead-
oxide glass. These microchannels have diameters of 8-45µm and a
length-to-diameter ratio of about 40 [3], and are suitable for integra-
tion into small-scale detector arrays. Microchannel plates are arrays
of approximately one million channel electron multipliers, fused into
solid wafers [6]. Figure 4.8b illustrates the principal mechanism of a
single microchannel. The microchannel wall consists of three layers:
an emitting layer; a conducting layer; and bulk glass. The conductive
layer has a high resistance and allows a large voltage to be maintained
across the ends of the tube. Electrons that enter the tube are acceler-
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ated along the tube until they collide with the wall. The inner surface
layer, called the emitting layer, is made from PbO, which acts as an elec-
tron multiplier. Upon impact, the accelerated electrons create multiple
secondary electrons that are accelerated by the voltage along the tube
until they strike the walls again and produce more free electrons. This
operation is comparable to a continuous dynode chain and the gains
are nearly as large as those of photomultipliers.

Microchannel plates are used in modern light intensifying cameras,
suitable for low-illumination applications, such as fluorescence imaging
and night vision devices.

4.5.4 Thermal detectors

The first detectors discovered were thermal detectors, which showed
a response to the heating effect of radiation. Unlike photon detectors,
they do not respond to charge carriers, directly excited by absorbed
photons. Instead, the thermal energy of absorbed photons is detected
by temperature-dependent physical processes. A thermal detector can
be thought of as two essential parts: the absorber and the temperature
sensor.

It is important to note that the net energy stored by absorption is
given by the photon energy times the number of absorbed photons.
Thus, low-energy photons can create the same detector output as high-
energy photons, if the photon flux is higher and compensates for the
lower energy. For this reason, the spectral response of thermal detec-
tors is flat and determined by the spectral dependence of the surface
absorptance.

Thermal detectors are either bulk devices or metal junction devices.
The junction devices, such as the thermocouple and thermopile, rely
upon the Seebeck effect or thermoelectric effect . Two separate junc-
tions of two dissimilar metals generate a voltage proportional to the
difference in temperature between them [1]. If one junction is kept
at reference temperature, the series output will be proportional to the
temperature of the other junction. In practical realizations of thermo-
couples, one junction is embedded into an absorbing material, while
the other junction is thermally connected to the radiometer housing
with a high thermal mass. Thermopiles are series of individual thermo-
couples, which substantially increase the sensitivity.

While thermopiles are mostly used as single detectors, another type
of thermal detector, called a bolometer , is a bulk-type detector and can
be easily integrated into large detector arrays. Bolometers take advan-
tage of the high-temperature coefficient of resistance in semiconduc-
tors, which is similar to the principle of photoconductors. A detailed
treatment of recent developments in the fabrication of microbolometer
arrays is given in [7].
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Figure 4.9: Mixing of two periodic signals Si, and Sm with slightly different
wavelengths, λi = 1.1λm. The bold line shows the resulting signal S = Si + Sm.
The amplitude of the mixed signal is modulated by the difference, or beat fre-
quency.

Recent developments in high-temperature (about 77K) supercon-
ductivity made another type of thermal detector available, which relies
on the sharp resistance change with temperature in the superconduct-
ing transition region. These superconducting bolometers can also be
operated in two other modes that involve the breaking of Cooper pairs
by the incident photons, thus destroying superconductivity [4].

Coherent detectors. Coherent receivers directly measure the electro-
magnetic field of the incident radiation. They mix the electromagnetic
field of the incoming photons with an internal reference field of simi-
lar frequency, produced by a high-frequency oscillator. The resulting
signal shows a strong modulation of the amplitude, which is given by
the difference frequency of both signals—a physical effect commonly
referred to as beating.

Let Si and Sm be the incident, and the mixing signal (electric field),
respectively, given in complex notation by

Sm = Am exp[iωt], and Si = Ai exp[i(ω + ε)t] (4.36)

where ε is a small frequency shift compared to the main frequency ω.
Linear superposition yields the following mixed signal:

S = Sm + Si = Am exp[iωt] + Ai exp[i(ω + ε)t]

= exp[iωt] (Am + Ai exp[iεt])
(4.37)

which can be interpreted as an oscillation at the frequency ω, with an
amplitude modulation at the difference (beat) frequency ε. This effect
is illustrated in Fig. 4.9.
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Figure 4.10: Schematic illustration of the fill factor and microlens arrays on
detector arrays. a Detector without a microlens array; b Detector with a micro-
lens array.

From the mixed field, the exact frequency can be extracted, as well
as the amplitude and phase of the incident signal. In order to measure
the electric field, the mixed field has to be passed through a nonlinear
electrical element, called mixer , that converts power from the original
frequency to the beat frequency.

Unlike all other types of (incoherent) receivers, these coherent re-
ceivers obtain additional information about thewave number and phase
of the signal. As the phase information is given, they can correlate mea-
surements of different receivers to reconstruct the incoming wavefront
by interferometry. Intercontinental baseline radio telescopes use this
ability to combine several telescopes spread over the entire globe to
enhance the resolution up to milliarc-seconds for astronomical appli-
cations.

A more detailed treatment of the theory of coherent receivers can
be found in References [8] and [3].

4.5.5 Characteristics of detector arrays

Fill factor. Most detector arrays used in computer vision are not pho-
tosensitive over the entire detector area. As all electrical contacts and
microelectronic components have to be integrated into the chip sur-
face, only a small portion is retained for the actual photosensitive de-
tector area. Exceptions are 1-D detector arrays, where all electronic
components and bonds can be arranged alongside the detector, or back-
illuminated detector arrays.

The basic quantities defining the fill factor of the sensor are the pixel
pitch dp, which describes the center distance of two neighboring pixels,
and the pixel size ds , which is the extension of the photosensitive area.
For nonsquare pixels, the dimensions on both directions have to be
known.

Given a local irradiance Ei(x) on the sensor, only the portion

E(x) = Ei(x)
d2

s

d2
p

(4.38)
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actually contributes to the signal at the point x (Fig. 4.10a). For non-
square pixels/arrays, the squared quantities have to be replaced by the
products of the corresponding quantities in the x- and y-direction,
respectively.

Microlens arrays. A common technique to overcome the problem of
reduced fill factor is to place microlens arrays over the detector area.
An optimal microlens array covers the entire sensor surface, such that
incident radiation is focused onto the individual photosensitive areas,
as illustrated in Fig. 4.10b. In that way, the maximum possible radiative
flux can be collected with low fill factors.

There are, however, two basic problems that have to be acknowl-
edged, even for perfectly transparent lens-arrays:

• The incident radiation is focused onto a spot smaller than the pho-
tosensitive area, with the exact position depending on the angle of
incidence (Fig. 4.10b). If the photosensitive area exhibits local inho-
mogeneities in the sensitivity, the detector output shows an angular
dependence, given by the sensitivity distribution of the photosensi-
tive area.

• For large angles of incidence, it might happen that the incident ra-
diation is focused onto a point in between two photosensitive areas
(Fig. 4.10b). Thus, the angular response suddenly drops to zero for
a certain cutoff angle. This effect can be avoided if the geometric
setup is such that no radiation beyond the critical angle can enter
the optical system. The larger the focal lens of the optical system
is, the smaller the maximum inclination angle.

Static noise pattern. It is impossible to manufacture large detector
arrays in such a way that all individual sensor elements will be abso-
lutely identical. Each pixel usually exhibits slightly different sensitiv-
ities, offsets, and gains. Thus, even absolutely uniform surfaces are
imaged according to the intrinsic structure of the sensor array inho-
mogeneities. These patterns overlay all images and constitute some
kind of “noise.” Unlike other types of noise, this fixed pattern noise is
static and remains stable over a certain time span.

In principle, the fixed pattern noise can be corrected for by radio-
metric calibration of the sensor. This procedure is commonly referred
to as flat fielding, as a surface with uniform radiance is used to compute
the local inhomogeneities.

If the fixed pattern noise remains stable over the expected lifetime of
the camera, it can be calibrated once by the manufacturer, and all pixel
readouts can be automatically corrected for local offsets and gains. If
the static noise pattern changes over longer periods, it might be neces-
sary to repeat the calibration procedure more frequently.



108 4 Radiometry of Imaging

θ
L(θ)

Surface
properties

Propagation of radiance
and interaction with matter

Image
formation

Spectral filters and
sensor properties

τ θ)L(

Figure 4.11: The chain of radiometric imaging.

4.6 Concluding summary

This chapter concludes with a summary of the basic results of the pre-
vious considerations about quantitative radiometry of imaging. Fig-
ure 4.11 summarizes the chain of events leading from emission of ra-
diation to the final image formation. The basic steps and results can
be summarized as follows:

1. The detected flux is proportional to the radiance of the emitting
surface with a proportionality constant given by the geometry of
the optical setup.

2. The radiance stays invariant as it propagates through space. Thus,
the radiometric measurement can be carried out at any position
along the direction of propagation. This result, however, assumes
that no losses occur along the propagation path. For effects such
as scattering, absorption, refraction, etc., the radiance is decreased
according to the interaction of radiation with matter (this was pre-
sented in Chapter 2).

3. The radiance is changed at the transition of interfaces separating
two media with different refractive indices. In case the radiation
penetrates a second interface (into a medium with the same refrac-
tive index as the initial one), this process is reversed. Thus, the ini-
tial radiance is restored after passing a lens system, but attenuated
by the transmittance of the optical system.

4. By optical imaging, the radiance entering a camera lens is converted
into irradiance of the detector. The irradiance distribution on the
detector plane shows a natural field darkening with decreasing irra-
diance towards the edges of the detector. This field darkening can
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be further amplified by having vignetting and other optical effects
block parts of the radiation.

5. The final output of the imaging detector depends on a variety of
detector properties. If the conversion from incident flux to an elec-
trical signal is linear, the output remains proportional to the object
irradiance.
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5.1 Introduction

As the name indicates, the field of computer vision has long been viewed
as an essentially computational science, concerned onlywith themathe-
matical treatment of images whose origins are effectively ignored. This
conventional view of computer vision (or machine vision), as perceived,
for example, in the textbook by Gonzalez and Wintz [1], has slowly
given way to a different, holistic comprehension of machine vision as
the science of systems that extract information from wave fields (see
also Chapters 2–4). This systems approach, sometimes also called elec-
tronic imaging [2], has two immediate consequences: first, in a well-
designed system, different components can compensate for the defi-
ciencies in other components; practical examples of this capability in-
clude the digital correction of imaging lens distortions in photogram-
metric applications (Chapter 6 or [3]), the significant increase of a sys-
tem’s dynamic range by nonlinear compression of the photosignal in
the image sensor [4], and the digital compensation of offset and gain
nonuniformities in the image sensor [5]. Second, the image acquisition
process can become dynamic and adaptive, reacting to changes in the
outside world by adapting the properties of the image capture and pro-
cessing components in an optimal fashion. This powerful concept of
active vision has already been proposed previously [6] but only now,
with the recent development of custom solid-state image sensors, is it
possible for active vision to reach its full potential. At the same time,
new research opportunities are occurring in machine vision because
new types of image processing algorithms are required that not only
influence the image acquisition process but are also capable of exploit-
ing novel imaging modalities [7].

This contribution should represent a comprehensive introduction to
solid-state image sensing for machine vision and for optical microsys-
tems, with an emphasis on custom image sensors that can be tailored
to the requirements of individual imaging applications in research and
industrial use.

The material presented here is organized in the form of a system-
atic exploration of the photosensing chain in Sections 5.2–5.5: Incident
photons are followed on their paths into the interior of a semiconductor
where most of the photons interact by producing electron-hole pairs.
These photocharge pairs need to be separated in an electric field before
they recombine again, leading to the flow of a photocurrent, which is
proportional to the incident light intensity over many orders of magni-
tude (Section 5.2). The photocurrent can bemanipulated and processed
in many different ways before it is converted into a storable quantity
at each pixel site. It is actually this large variety of processing capabili-
ties that represents the true value of custom solid-state image sensing:
By selecting and combining the required functionality for an imaging
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problem at hand, drawing from an extended “toolbox” of functional
modules, the properties and the performance of an image sensor can
be optimized for the given problem (Section 5.3). Finally, the prepro-
cessed image information is stored at each pixel, often in the form of a
voltage signal. During readout the individual pixels are interrogated ei-
ther sequentially or several of them in parallel (Section 5.4). The stored
pixel information is transmitted off-chip to the outside world, or ad-
ditional processing steps (for example analog-to-digital conversion or
even digital image processing) can be performed on the image sensor
chip itself. An important part of the presented fundamentals of solid-
state photosensing is the analysis of noise sources, noise reduction
schemes, and the achievable signal-to-noise ratios (SNR) (Section 5.5).
This leads us naturally to the basic reason for the development of mod-
ern charge-coupled device (CCD) technology and to the discussion of in
which applications CCD image sensors might be replaced by CMOS-
compatible image sensors in the near future.

Section 5.6 is devoted to an introduction of image sensor architec-
tures. It covers the various types of CCDs employed today, the tra-
ditional photodiode array image sensor, and the active pixel sensor
(APS) architecture. After an introduction to the basics of color vision
Section 5.7 outlines the technical realization of color chips and color
cameras.

Often ignored in the design of machine vision systems, the practical
limitations of today’s solid-state image sensors require special consid-
erations for optimum system solutions. As described in Section 5.8,
most of the shortcomings of the image sensors can be compensated
by suitable calibration or correction procedures in an accompanying
digital processor.

The concluding Section 5.9 reviews the most important aspects of
custom image sensors, leading to the prediction that the large degree
of freedom offered by the wide choice of image sensing functionality
will result in many more applications where smart machine vision sys-
tems will be inexpensive, reliable, and yet provide high-performance
solutions to optical measurement and visual inspection problems.

For the interested reader, more detailed information on camera and
video standards, semiconductor technology for image sensing, and the
future of sensor technology can be found in the full edition of this
handbook [CVA1, Chapter 7].

5.2 Fundamentals of solid-state photosensing

A generic machine vision or optical measurement system consists of
the elements illustrated in Fig. 5.1. A suitable source of radiation, for
example a light bulb, creates a wave field that can interact with the
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Figure 5.1: Illustration of the photosensing (“electronic imaging”) chain. It
consists of a source of radiation, an interaction mechanism of the object under
study with this radiation, shaping of the radiation field, conversion of radiation
into electronic charge, the processing of this information, and the display for a
human observer or the automatic extraction of pictorial information content.

object under study. The part of the radiation that interacted with the
object now carries information about it, which can be contained, for ex-
ample, in the spatial, temporal, spectral, or polarization modulation of
the radiation. The returning information-carrying radiation is partially
collected, often bymaking use of an imaging (lens) subsystem. A sensor
converts the collected radiation into an electronic charge, which can be
preprocessed using analog or digital electronics. The preprocessed in-
formation is converted into digital form for treatment in a specialized
or general-purpose computer. The purpose of this image processing
step is either to enhance certain aspects of the image information and
display the modified image for inspection by a human observer, or to
extract automatically certain types of pictorial content. This informa-
tion can then be used to react to the perceived information content:
for example, by interacting with the environment employing suitable
actuators.

This chapter concentrates on the sensor and electronic preprocess-
ing part of the whole electronic imaging chain using solid-state image
sensors. The radiation that can be captured with these types of image
sensors is restricted to electromagnetic waves extending from the x-ray
region to the near infrared. This large spectral range covers most wave-
length regions of practical importance, notably the visible spectrum.

Although any type of high-quality semiconductor can be employed
for the conversion of electromagnetic radiation into photocharge and
its electronic processing, the presentation in this work will be con-
cerned mainly with silicon, due to its almost exclusive use in the semi-
conductor industry. As we will see, in most aspects this is not a real
restriction, and the use of silicon for photoconversion and electronic
processing is really an excellent choice.

In the following, a systematic exploration of the photosensing chain
is presented (“from photons to bits”), as illustrated in Fig. 5.2. Incident
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Figure 5.2: Simplified sequence of events in semiconductor photodetection. In-
coming radiation is converted into charge pairs in the bulk of the semiconductor,
the charge pairs are separated in an electric field, and they are either stored
in the pixel or the photocurrent is processed locally. The photosignal is subse-
quently transported to an electronic amplification circuit for detection.
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Figure 5.3: Schematic representation of the optical losses encountered in semi-
conductor photosensors: (1) surface reflection; (2) thin-film interference; (3) ab-
sorption in the cover; (4) photocharge loss in inactive regions; (5) interaction
deep in the semiconductor bulk; and (6) transmission through the semiconduc-
tor.

photons are converted into charge pairs, leading finally to preprocessed
image information at the output of the semiconductor chip.

5.2.1 Propagation of photons in the image sensor

Two types of interactions of photons with solid-state materials have to
be considered for an understanding of an image sensor’s properties:
absorption and reflection (see also Sections 2.5.2 and 2.5.3). Before an
incident photon can interact measurably in the bulk of a piece of semi-
conductor, it has to arrive there safely, crossing the interface between
air and semiconductor surface. What can happen to an incident pho-
ton is illustrated schematically in Fig. 5.3, depicting the cross section
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Figure 5.4: Absolute quantum efficiency measurement of a silicon p-n junction
realized with a standard CMOS process. This example illustrates the decay to-
wards the blue (surface absorption) and red spectral region (interaction too deep
in the semiconductor), as well as the oscillations due to thin-film interference.

through an image sensor. On top of the image sensor, we find scratch-
resistant transparent covering and protective materials, often in the
form of dielectric layers such as silicon dioxide or silicon nitride, with
a typical thickness of a few µm. At the interface between cover and
actual semiconductor, there is a thin, essentially inactive zone. In the
bulk of the semiconductor one encounters first a region that has been
swept clean of mobile electronic charges. In this so-called space-charge
region, usually a few microns deep, an electric field is present. Below
this, the field-free bulk of the semiconductor follows, which can be as
thin as a few µm or as thick as many 100 µm. The following identifies
six different effects that prevent photons from being detected by the
image sensor:

1. Due to the mismatch between the refractive index of top surface
and ambient (often air), the incident photon is reflected and does
not enter the image sensor. A typical value for this reflection loss
is obtained in the following way: using an index of refraction of
n=1.5 for silicon dioxide, 4% of the photons are reflected at normal
incidence from air [8].

2. Multiple reflections in the covering thin layer lead to a strong spec-
tral oscillation of the transmittance, as is apparent in the measure-
ment shown in Fig. 5.4.
Depending on the wavelength of the incident photon it is either
transmitted well or it is preferentially reflected back. In good image
sensors, this disturbing effect is virtually eliminated by the deposi-
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Figure 5.5: Optical absorption coefficient and light penetration depth as a func-
tion of wavelength for various semiconductor materials. Data taken from Sze
[10].

tion of additional dielectric antireflection layers on top of the image
sensor [8].

3. The covering layers are not perfectly transparent, leading to absorp-
tion of part of the incident photons already at this stage. The re-
duced blue response of CCD image sensors is a good example of
this effect, caused by the low transmission of the covering polysili-
con electrodes on the pixels.

4. Inactive regions near the surface of the semiconductor consist of
semiconductor material with a very short lifetime of charge pairs.
This is either caused by defects right at the interface (less than 1nm),
or by very high doping concentration near contacts [9]. Photogen-
erated charge pairs recombine so fast that their collection and elec-
tronic detection is improbable.

5. Photons that are absorbed very deeply in the bulk of the semicon-
ductor result in photocharge that does not have a chance to reach
the surface of the image sensor for collection in a pixel. As will be
described in what follows, the critical distance is the so-called diffu-
sion length L, which can be many times 10µm deep for low-doped
semiconductors [9].

6. Finally, photons might travel through the image sensor without in-
teraction, leaving it again at the back end.

5.2.2 Generation of photocharge pairs

Because of the sequential process of photocharge generation, virtually
all photons that are absorbed in the semiconductor material are con-
verted into an electronic charge [8]. There is a strong spectral depen-
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dence, however, of the mean absorption depth at which this photocon-
version takes place, as illustrated in Fig. 5.5. Short-wavelength light
is predominantly absorbed at the surface, while red light penetrates
deeply into the bulk of the semiconductor. Amajor consequence of this
effect is that the achievable spatial resolution degrades significantly
with wavelength [11]: images taken in the red or infrared spectral re-
gion show much less contrast compared to images taken in green or
blue light. For this reason, image sensors are often covered with an
optical filter, cutting off the infrared portion of the incident light.

In the absorption process, a photon loses its energy by creating one
or more charge pairs. In a photodetection event, no net charge is cre-
ated and neutrality is always maintained. For this reason, charge pairs
are created, consisting of an electron and a (positively charged) quasi-
particle called hole [8]. The overall charge conversion efficiency of this
process is usually measured with the quantum efficiency η, describing
how many charge pairs are created and electronically detected per inci-
dent photon. Alternatively, this conversion efficiency can be described
with the responsivity R in units A/W, measuring how much current is
flowing out of a photosensor per incident light power. The relationship
between R and η is given by

R = ηλq
hc

(5.1)

using Planck’s constant h, the speed of light c, the unit charge q, and
the photons’ wavelength λ. As an example, consider a photodetector
with an η of 0.9, illuminated with red light (λ =633 nm) from a HeNe
laser. The corresponding responsivity is R =0.46 A/W.

In the visible and infrared portion of the spectrum, η is less than
unity. This is illustrated in Fig. 5.4 with the actual measurement of an
n− p− photodiode, manufactured with a standard CMOS process using
silicon. The η decreases towards both the blue (incident light is al-
ready absorbed in the covering layers) and the infrared portion of the
spectrum (light penetrates and interacts so deeply in the semiconduc-
tor that the created charge pairs recombine and disappear before they
reach the surface where they could have been collected and measured).
In the visible part of the spectrum, a rather high η of close to 100% is
observed. As no special antireflection coating is used in this photodi-
ode, spectral oscillations can be seen in the η curve, caused by multiple
reflections of the incident light within the covering layers [8], so-called
thin-film interference. For improved performance, antireflection coat-
ings are employed, reducing this effect significantly.

If a photon has a sufficiently high energy such as in x-rays, one pho-
ton can create many charge pairs. In silicon a mean energy of 3.8 eV is
required for the creation of one electron-hole pair [12]. As an example,
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consider a soft x-ray photon with an energy of 1000eV, correspond-
ing to a wavelength of 1.24nm. The absorption of this x-ray photon
results in the creation of 263 charge pairs. Because silicon starts to be-
come transparent for x-ray photons with an energy of more than a few
1000 eV, silicon is not an efficient solid state detector for such energies.
Other semiconductors, consisting of high-density materials with atoms
of high atomic numbers, are more appropriate for x-ray detection [13].

5.2.3 Separation of photogenerated charge pairs: photocurrents

Once a charge (electron-hole) pair has been created, it must be sep-
arated within a certain time before it recombines again and loses all
information about the previous presence of the photon that generated
the charge pair. This recombination lifetime τ depends critically on
the quality and purity of the semiconductor [9]. In high-quality low-
doped silicon used in CMOS processes, for example, the lifetime can be
as large as several tens of microseconds. This is the time available for
separating the photocharge and moving the different charge types to
suitable storage areas.

Two physical effects dominate the motion of electronic charge in
semiconductors: drift in an electric field and diffusion caused by the
random thermal motion of the charge carriers. The presence of an
electric field E causes charge carriers to move with the velocity v

v = µE (5.2)

with the mobility µ. As an example, the mobility of electrons in low-
doped silicon at room temperature is about 1350 cm2/Vs. Above a
certain field strength, the velocity saturates, taking on a constant value
vsat . For silicon, this saturation velocity is about 105 m/s [10].

Even in the absence of an electric field, charge canmove: the thermal
random motion causes diffusion, a tendency of charge carriers to equi-
librate their distribution. The thermally induced velocity vdiff of the
charge carriers can be very high: an electron at room temperature has
an average velocity of vdiff = 105m/s. This random motion causes an
average [root-mean-square] (rms)] displacement L of a single electron,
depending on the time t given for the diffusion process

L =
√

Dt (5.3)

with the diffusion constant D. Silicon exhibits a typical electron dif-
fusion constant of about 45 cm2/s at room temperature. For the re-
combination lifetime τ already mentioned, the corresponding average
displacement L is called diffusion length. This is the average distance
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over which a charge carrier can move without the influence of an elec-
tric field and without recombining. As an example, consider τ = 10µs
and D =45cm2/s, resulting in L =212µm. This implies that the diffu-
sion process can be extremely important for the collection of charge
carriers over significant distances. This also means that charge carri-
ers photogenerated deeply in the semiconductor have a high chance
of reaching the surface, where they can be collected and where they
contribute to a severe reduction of the contrast, especially for small
pixel periods. As mentioned in the preceding, this can be counteracted
only by filtering out the long-wavelength photons that would penetrate
deeply into the semiconductor.

Photogenerated charge carriers moving under the influence of an
electric field represent a current, the so-called photocurrent . This pho-
tocurrent is proportional to the incident light intensity over 10 orders
of magnitude and more [14]. It is this strict linearity of photocurrent
with incident light over a wide dynamic range that makes semiconduc-
tor photosensors so attractive for many applications in image sensors
and optical measurement systems.

5.3 Photocurrent processing

All the information a photosensor can extract from the light distribu-
tion in a scene is contained in the spatial and temporal modulation of
the photocurrent in the individual pixels. For this reason, it is of much
interest to process the pixels’ photocurrents accordingly, in order to ob-
tain the relevant modulation parameters in the most efficient manner
[7]. Traditionally, only the integrated photocurrent could be extracted;
today a large variety of photocurrent preprocessing is available, mak-
ing it possible to optimize the photosensor acquisition parameters to a
given problem. In the following, a few examples of such photocurrent
preprocessing are presented.

5.3.1 Photocharge integration in photodiodes CCDs

The simplest type of photocurrent processing is the integration of the
photocurrent during a certain time, the exposure time. In this way
an integrated charge is obtained that is proportional to the number of
photons incident on the pixel’s sensitive area during the exposure time.
This functionality is very easy to implement by employing the capaci-
tance of the device used for generating the electric field for photocharge
separation. Figure 5.6 illustrates this principle for the two most impor-
tant photosensitive structures, the photodiode (PD) and themetal-oxide-
semiconductor (MOS) capacitor as used in the charge-coupled device
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Figure 5.6: Cross sections through the two major types of electrical field gener-
ating and charge storing devices in semiconductors: a photodiode, consisting of
a reverse-biased p-n junction; b MOS capacitance, consisting of a (transparent)
electrode on the semiconductor material, separated by a dielectric insulation.

(CCD) image sensors. Both devices are easily fabricated with standard
semiconductor processes.

A photodiode consists of a combination of two different conductiv-
ity types of semiconductor, as illustrated in Fig. 5.6a. In the junction be-
tween the two types of semiconductor, an electric field in the so-called
space-charge region exists, as required for the separation of photogen-
erated charge carriers. At the same time, this space-charge region has a
certain capacitance, varying with the inverse of the space-charge region
width. Photodiodes are typically operated by biasing (“resetting”) them
to a certain potential and exposing them to light. Photocharge pairs en-
tering the space-charge region are separated in the PD’s electric field,
a photocurrent is produced, and the photocharge is accumulated on
the PD’s capacitance, lowering the voltage across it. After the exposure
time, the residual voltage is measured, and the voltage difference com-
pared with the reset voltage level is a measure of the amount of light
incident on the pixel during the exposure time.

The MOS-capacitance illustrated in Fig. 5.6b consists of a thin layer
of oxide on top of a piece of semiconductor. The oxide is covered with
a conductive material, often a metal or highly doped polycrystalline
silicon (polysilicon). As in the case of the PD, the MOS structure is
biased to a suitable voltage, leading to a space-charge region of a certain
extent in the semiconductor. Again, photocharge is separated in the
electric field and it is integrated on the MOS capacitance, collected at
the interface between semiconductor and oxide.

A typical value for the PD and MOS area capacitance is 0.1 fF/µm2.
Assuming a maximum voltage swing of a few volts, this implies a stor-
age capacity of a few thousand photoelectrons per µm2. Once this stor-
age capacity is exceeded, additional photocharge in the corresponding
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Figure 5.7: Schematic diagram of the offset pixel with current source transistor
Mcur , reset transistor Mr , row-select transistor Msel, and sense transistor Ms .
The value of the offset current is stored on the switched offset memory capacitor
CM with the programming switch Mp [16].

pixel starts to spill over to neighboring pixels. This effect is called
blooming, and well-designed image sensors provide special collecting
(“antiblooming”) structures for a reduction of this effect [15].

5.3.2 Programmable offset subtraction

Several machine vision and optical metrology problems suffer from
small spatial contrast [7]. In such cases in which the spatial signal
modulation is small compared to the background light level, one would
profit from an offset subtraction mechanism in each pixel. This can be
realized, even programmable in each pixel, with the offset subtraction
mechanism proposed by Vietze and Seitz [16]. Each pixel contains a
photodiode in series with a programmable current source, as illustrated
in Fig. 5.7. This current source is easily realized with a MOSFET, whose
gate voltage can be preset to a certain voltage level with a second MOS-
FET, and by using a capacitance for the storage of this gate voltage. The
MOSFET is operated in the so-called weak-inversion regime, where the
drain current depends exponentially on the gate voltage; the current
typically doubles with each increase of gate voltage by about 30mV. In
this way, the offset current can be varied easily between 1 fA up to sev-
eral tens of µA [17]. The same integration mechanism as presented in
Section 5.3.2 is employed for the collection of signal photocharge, rep-
resenting the difference between total photocharge minus offset pho-
tocharge. Using this method, a dynamic range exceeding 150dB can be
reached, and several interesting applications can be realized very eas-
ily. An example of this is a simple change detector , implemented as a
two-stage process. In a first stage, the offset current in each pixel is pro-
grammed such that the net result is zero; the offset currents effectively
cancel the local photocurrents. In a second stage, the image is simply
observed for nonzero pixels, indicating that there was a change in the
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a b

Figure 5.8: Application example of the offset pixel—motion detector realized
with a 26×28 pixel CMOS image sensor [17]: a sensor image of a simple scene
(black letters “PSI” on white paper) after adjusting the pixels’ individual offset
current to a medium gray level; b sensor image after moving the scene slightly
downwards and to the right. Pixels with changed values appear either black or
white.

present scene compared to the original “reference” scene: a change in
the scene has occurred!

The realization of such a change detector is illustrated with an ex-
perimental offset pixel image sensor with 28×26 pixels, fabricatedwith
standard CMOS technology [17]. In Fig. 5.8a the result of offset can-
cellation for a stationary scene containing the letters PSI is shown: a
uniform gray picture. Once the object is moved (the letters are shifted
downwards), the resulting pixels appear as bright where the dark object
was, or as dark where the bright background was, see Fig. 5.8b.

5.3.3 Programmable gain pixels

Another local operation desirable in an image sensor is the individual
multiplication of the photocurrent with a programmable factor. This
can be achieved with a modification of a simple electronic circuit called
current-mirror , consisting of two transistors. In the standard configu-
ration, the gate terminals of the two transistors are connected. In the
modification proposed in Vietze [17], a voltage difference between the
two gates is applied, as illustrated in Fig. 5.9. This voltage difference is
either fixed (e.g., by semiconductor process parameters), or it can be im-
plemented as individually programmable potential differences across a
storage capacitor. The photocurrent produced by a photodiode in the
first branch of the modified current mirror results in current in the sec-
ond branch that is given by the photocurrent times a factor. By using a
similar physical mechanism as in the offset pixel, the gain pixel shows a
current doubling (or halving) for each increase (decrease) of the voltage
difference by about 30mV. In this way, current multiplication (division)
by several orders of magnitude can easily be obtained. As before, the
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Figure 5.9: Schematic diagram of the gain pixel, consisting of a modified cur-
rent mirror [17], with which a photocurrent multiplication with a factor ranging
between 10−4 up to more than 104 can be realized.

multiplied photocurrent is integrated on a storage capacitor and read
out using conventional circuitry.

An application of this is a high-sensitivity image sensor as described
in Reference [17], in which each pixel has a fixed gain of about 8500.
In this way, a sensitivity (see Section 5.5.1 for the definition) of 43mV
per photoelectron has been obtained, and an input-referred rms charge
noise of better than 0.1 electrons at room temperature. As will be
discussed in Section 5.5, this impressive performance must come at
a price. In this case it is the reduced bandwidth of the pixel, reflected
in the low-pass filter characteristics at low photocurrents with response
times of several milliseconds.

5.3.4 Avalanche photocurrent multiplication

Themultiplicationmechanismdescribed in the foregoing is based strict-
ly on the use of electronic circuitry to achieve gain. In semiconductors
there is a physical mechanism that can be exploited to multiply charge
carriers before they are detected. This effect is called avalanche multi-
plication, and it is used in so-called avalanche photodiodes (APDs) [18].
If the electric field is increased to a few times 105 V/cm, charge carriers
aremultiplied with a strongly field-dependent factor. Depending on the
specific doping conditions in the semiconductor, the necessary electric
fields correspond to breakdown voltages of between a few volts and a
few hundred volts. The strong dependency of the multiplication fac-
tor on voltage is illustrated with a model calculation for a breakdown
voltage of 40 V, shown in Fig. 5.10 [19].

The APDs are commercially available and, because of high achiev-
able gains, they are even suitable for single-photon light detection [20].
Due to the unusual voltages, the complex voltage stabilization/homoge-
nization circuits, and the nontrivial readout electronics in each pixel,
most APDs are only of the single-pixel type. The development of APD
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Figure 5.10: Empirical relationship between applied voltage and obtained cur-
rent gain in an avalanche photodiode, for which a breakdown voltage ofVB = 40
V and an exponent of n =4 have been assumed.

line and image sensor arrays has only just started. Nevertheless, the
fabrication of reliable APD image sensors with CMOS processes is an
active topic of research, and promising results have already been ob-
tained (see, for example, Mathewson [21].

5.3.5 Nonlinear photocurrent to signal voltage conversion

Image processing algorithms are often motivated by solutions found
in biological vision systems. The same is true for different types of
photodetection strategies, especially for the realization of image sen-
sors offering a similarly large dynamic range already inherent in animal
vision. The fact that the human eye shows a nonlinear, close to logarith-
mic sensitivity has been exploited, for example, in the artificial retina
described in Mahowald [22].

The realization of CMOS pixels offering a logarithmic sensitivity is
particularly easy to achieve: One can use the logarithmic relationship
between gate voltage and drain current in a MOSFET operated in weak
inversion, already described in Section 5.3.2. The resulting pixel ar-
chitecture, shown in Fig. 5.11 and exploited in CVA1 [Chapter 8], is
particularly easy to implement in a CMOS process because a pixel con-
sists of just a photodiode and three MOS transistors [23]. A typical
photoresponse of about 40mV per decade of optical input power is
obtained with such logarithmic pixels, and their useful dynamic range
exceeds 120dB. Practical examples of scenes requiring such a high dy-
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Figure 5.11: Schematic diagram of a pixel with logarithmic response, consist-
ing of just one photodiode and three MOSFETs. Implemented with a standard
CMOS process, such a pixel shows an output voltage increase of about 40mV
per decade of incident light power.
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c d

Figure 5.12: Pictures taken with a small-area logarithmic image sensor with
64×64 pixels: a Electric light bulb where the glowing filament and the back-
ground are visible simultaneously; b Back-illuminated scene of a portrait in front
of a window; c Parking garage application with its notoriously high dynamic
range (headlights compared to dark corners) and low average light levels; d
Welding application in which the object and the welding arc can be observed at
the same time without blooming.

namic range are illustrated in Fig. 5.12, with the actual measurements
taken with a logarithmic image sensor exhibiting 64×64 pixels. In the
image of a light bulb, the glowing filament as well as the background are
clearly visible at the same time. Back-illuminated scenes, such as a por-
trait in front of a window, are dreaded by photographers, but they are



5.4 Transportation of photosignals 127

easily handled by logarithmic pixels. In a parking garage, it is difficult
to image dark corners and the interior of cars without being blinded
by car headlights. Welding applications profit from the simultaneous
imaging of the welding arc and its environment.

In contrast to other pixel types in which photocharge is integrated
as discussed in Section 5.3.1, the logarithmic pixel measures the volt-
age at the drain of the MOSFET in series with the photodiode. For this
reason, the dynamic behavior of such a logarithmic pixel depends on
the photocurrent: the darker a scene (the lower a diode’s photocurrent),
the longer it takes until this MOSFET is in equilibrium again. Therefore,
logarithmic pixels react much more slowly at low than at high illumi-
nation levels.

Besides their high dynamic range, logarithmic pixels have a property
that should make them extremely interesting for image processing ap-
plications: An object with a given local contrast, which is imaged with a
logarithmic sensor, results in an image with local pixel differences that
are independent of the scene illumination level. This property is easily
explained with the observation that a (local) light intensity ratio I1/I2
results in a signal given by log(I1)−log(I2), and a proportional intensity
change of c × I results in a signal given by log(c) + log(I). The same
object under brighter illumination looks the same in the logarithmic
image, except for an additive shift of the background level.

5.4 Transportation of photosignals

The different types of image sensors described in the preceding pro-
duce an electrical quantity as a measure for a certain property of the
incident light. The electrical quantity can be an amount of charge (e. g.,
the integrated photocharge), a current (e. g., the photocurrent) or a volt-
age level (e. g., the voltage difference of a discharged photodiode). This
signal has to be transported as efficiently as possible to an output am-
plifier, responsible for making this signal available to the off-chip elec-
tronics.

5.4.1 Charge-coupled-device photocharge transportation

In the case of CCDs, the photocharge is stored under a precharged MOS
capacitance. The basic CCD idea is to combine a linear array of such
MOS capacitances, so that a stored photocharge can be moved later-
ally under the influence of appropriate MOS electrode voltage patterns.
This principle is illustrated in Fig. 5.13, showing a surface-channel CCD
(S-CCD). In the semiconductor, photocharge pairs are created under the
influence of light. Moving by diffusion and by drift, the photoelectrons
can find their way to positively biased MOS electrodes, also called gates,
where they are stored at the interface between semiconductor and thin
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Figure 5.13: Illustration of the charge transport principle in CCDs. Different
stages of the electrode clocking and charge shifting sequence are shown in a,
b, and c.

oxide. The photogenerated holes are repelled by the positive gate volt-
age, and they move around by diffusion until they finally combine in
the silicon substrate.

It is important to note that a CCD pixel is not represented only by
the positively biased gate because this electrode can receive diffusing
and drifting photoelectrons from its environment. A pixel’s geometry
is therefore rather defined in terms of “effective photocharge collection
area,” extending about halfway to the next positively biased electrode.
This also shows that a pixel does not have sharply defined edges; the
extent of the charge collection area representing a pixel depends on
the wavelength, the electric field distribution, and the diffusion prop-
erties of the semiconductor. Generally, longer wavelength light results
in a lower contrast and offers reduced resolution, as discussed in Sec-
tion 5.2.2.

In Fig. 5.13, the potential distribution under the electrodes right at
the surface is indicated. Photocharge accumulates in the shown “po-
tential wells.” By changing the gate voltage patterns, the potential wells
can be widened, leading to a broadened distribution of photoelectrons.
Using a suitable gate voltage pattern, one can also reduce the extent of
the potential wells, and photoelectrons move again to regions with the
lowest potential. As illustrated in Fig. 5.13, it is physically possible to
transport photocharge. This transportmechanismworks rather well up
to frequencies of a few MHz. In good S-CCDs, only about 0.01% of the
photocharge is lost on average in transporting a photoelectron packet
from one gate to another, neighboring gate. Instead of this charge
transport loss, one often uses the charge transfer efficiency (CTE) con-
cept, defined as the complement to 100%. The CTE amounts to 99.99%
in the case of a good S-CCD.

In long CCD lines, a CTE of 99.99% is still not good enough. Charge
is trapped at the surface, making it hard to improve the CTE. For this
reason, another type of CCD has been invented, the buried-channel CCD
(B-CCD), in which the transport takes place in the bulk of the semicon-
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ductor, a few 100 nm away from the surface. In this way CTEs of up to
99.99995% can be obtained in B-CCDs, and all commercially available
CCD line- and image sensors are of this type.

Above a limiting clock frequency a CCD’s CTE starts to degrade
rapidly. Nevertheless, CCDs have been operated successfully at very
high clock frequencies. For silicon, 1GHz has been achieved [24], while
GaAs CCDs have reached 18GHz clocking frequency [25]. Such high
clock rates require special precautions in the CCD fabrication process,
usually not available for standard video sensors. Today’s technology
limits the analog bandwidth of CCDs to about 40MHz. This is suffi-
cient for standard video imagers according to the European CCIR or the
American RS-170 black-and-white video standard. For HDTV sensors,
however, the required pixel rate is around 75MHz, making it necessary
to operate two outputs in parallel in HDTV CCD imagers.

5.4.2 Photodiode photocharge signal transmission

The CCD technology provides a clean separation of the acquisition of
photocharge and its electronic detection. This is achieved by transport-
ing the photocharge with the almost perfect CCD transportation prin-
ciple. Traditional photodiode arrays operate differently, by supplying
each PD with its individual switch (see also Fig. 5.17 and Section 5.6.4),
and by connecting many switches to a common signal (“video”) line.
This video line is most often realized using a well-conducting metal
strip, leading to a common output amplifier structure. In a PD array,
the image acquisition process proceeds in the following way: Assume
that all PDs are initially precharged to a certain reverse bias, typically a
few volts and that all switches are closed. Incident light generates pho-
tocharge pairs in each pixel, leading to the flow of a photocurrent due
to the separation of photocharge pairs in the electrical field region of
the PDs. As a PD also represents a capacitance, this capacitance is dis-
charged by the photocurrent. After a certain time (the exposure time),
a pixel can be interrogated by connecting the PD via the appropriate
switch to the video line. The output amplifier resets the photodiode
to its initial voltage value through the conducting line, while measur-
ing how much charge is necessary to do so. This charge is (apart from
noise effects) the same as the accumulated photocharge in this pixel.
This means that—in contrast to CCDs where the actual photocharge
is transmitted and detected—a PD array works by charge equilibration
in a usually long conducting line. As we will see in Section 5.5.2, this
charge equilibration process introduces noise in the signal detection
process, which is proportional to the video line’s total capacitance: the
larger the number of pixels, the larger the video line capacitance and
the larger the image noise. It is this physical effect that made PD image
sensors so unattractive compared to CCDs in the early 1980s and which
led to their almost complete replacement by CCD image sensors.
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5.4.3 Voltage signal transmission

Not all pixel types depend on the transmission of charge signals, as
indicated by several examples of pixel functionality discussed in Sec-
tion 5.3. Voltage signals are sometimes generated in the individual pix-
els and these voltage signals must be transmitted to an output amplifier
structure. A similar architecture as described in the preceding is used
for this, consisting of individual switches in each pixel that connect the
local voltages to a common amplifier structure. In such an architecture
the voltage signal transmission task is much easier to accomplish than
the charge signal transmission just discussed here: Johnson noise in
the conducting video line, filtered with the video line’s RC low-pass fil-
ter characteristics results in voltage noise that is proportional to one
over the square root of the video line’s capacitance [26]. The larger this
capacitance, the lower the voltage noise. For this reason, voltage signals
can be transmitted with much less noise and higher measurement pre-
cision than (small) charge signals. This implies that image sensor types
offering voltage transmission architectures, such as that provided by
the logarithmic pixel described in Section 5.3.5, have an inherent noise
advantage over conventional PD architectures. This will be discussed
in more detail in Section 5.5.3.

5.5 Electronic signal detection

The basic task of electronic signal detection is the precise measure-
ment of voltage signals offering low noise levels and a wide dynamic
range. These input voltage signals have either been produced by the
conversion of photocharge into a voltage, for example by employing
a capacitance, or they are the result of more elaborate photocharge
preprocessing as was already described here. The output of signal de-
tection electronics is usually a voltage that should be proportional to
the input voltage over a large dynamic range. An important property
of the signal detection electronics is that its output should have very
low impedance, that is, the output voltage should be stable and must
not depend on the amount of current drawn. As we will see in what
follows, the electronic signal detection noise is today’s limiting factor
in increasing an image sensor’s sensitivity and its dynamic range.

5.5.1 Signal-to-noise (SNR) and dynamic range

For a numerical description of the voltage or charge-noise performance
of an electronic circuit, two values are often used, the signal-to-noise
ratio SNR and the dynamic range DR. The SNR is defined by comparing



5.5 Electronic signal detection 131

VD

Msense

Mload

Vf

Vbias

Vg

VD

Msense

Vf

Vg

Rload

C C

Figure 5.14: Schematic diagram of the source follower circuit realized with a
resistor (left) or with a so-called active load MOSFET (right). This is the most
often used electronic circuit for photocharge detection in semiconductor image
sensors. Photocharge deposited on the gate capacitance leads to a gate voltage
Vg , which in turn produces a linear change in output voltage Vf .

an actual signal level V with its rms noise ∆V , according to:

SNR = 20 10 log
V
∆V

(5.4)

The DR compares the maximum signal level Vmax with the minimum
rms noise level (∆Vmin), in an image sensor typically obtained in the
dark

DR = 20 10 log
Vmax

∆Vmin
(5.5)

As an example, consider a CCD image sensorwhosemaximumcharge
(“full well charge”) is 50,000 electrons, and for which a dark noise of
50 electrons rms is observed. This image sensor has a dynamic range
of 60dB.

It should be mentioned that the preceding definitions of SNR and
DR in image sensors are not consistent with usage elsewhere in optical
physics: As the measured voltage at the image sensor’s output is usu-
ally proportional to the incident optical power, a factor of 10 in front
of the logarithm should be used instead of the employed factor 20.
However, because electrical engineers are used to associating power
only with the square of voltage levels, the definitions given here are the
ones employed almost exclusively for all image sensor specifications.

5.5.2 The basic MOSFET source follower

Although elaborate circuits exist for the desired conversion of volt-
age signals into other voltage signals, most image sensors employ the
simplest type of voltage measurement circuits, the MOSFET source fol-
lower . As shown in Fig. 5.14, this circuit consists of just one transis-
tor and one resistor, which is often implemented as another transistor
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called active load [27]. The output voltage of this source follower circuit
is essentially given by

Vout = f Vin − V0 (5.6)

with a transistor-dependent multiplication factor f of 0.6-0.8 and an
offset voltage V0 of several hundred millivolts. In practice, one or
a few such source follower stages are employed in series, to obtain
low enough output impedance while maintaining the required read-out
speed. At first sight it is surprising that such a simple circuit with a
gain of less than unity is used in high-sensitivity image sensors. The
reason for this is that the photocharge conversion gain is provided by
the effective input capacitance, which is kept as small as possible. To-
day’s best image sensors have an effective input capacitance of around
15 fF, corresponding to a voltage increase of around 10µV per electron.
Taking the circuits’ overall gain of less than unity into account, one ar-
rives at the so-called sensitivity of the image sensor, expressed in µV
per electrons. Typical sensitivities of state-of-the-art CCD and CMOS
image sensors are between 5 and 10µV per electron.

5.5.3 Noise sources in MOSFETs

Based on a source follower circuit, a typical output stage of an image
sensor consists of the components shown in Fig. 5.15. The photocharge
is transported to a diffusion (either the output diffusion of a CCD or the
photodiode itself) that is connected to the gate of the source-follower
MOSFET. Before measurement of each individual photocharge packet,
the diffusion and the connected gate are biased to a reference voltage
using a so-called reset MOSFET. Three main noise sources can be iden-
tified in such a circuit [26], whose influences are referenced back to the
input of the source-follower MOSFET, contributing to an effective rms
charge measurement uncertainty ∆Q.

Reset or kTC noise. The channel of the reset transistor exhibits John-
son noise similar to an ordinary resistor. This causes statistical fluc-
tuations in the observed reset voltage levels, which result in effective
charge noise ∆Qreset given by

∆Qreset =
√

kTC (5.7)

for the effective input capacitance C , at temperature T , and using Boltz-
mann’s constant k.

Flicker or 1/f noise. Statistical fluctuations in themobility and charge
carrier concentration of the source follower transistor’s channel cause
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Figure 5.15: Complete single-stage output circuit of a typical image sensor,
consisting of a floating diffusion, a reset transistor, and a single-stage source
follower as shown in Fig. 5.14.

an effective charge noise ∆Qflicker described by

∆Qflicker ∝ C

√
IAB

g2
mf CoxWL

(5.8)

at frequency f , for current I, bandwidth B, transistor length L, and
width W , oxide capacitance Cox , process-dependent flicker noise con-
stant A, which is typically between 0.5 and 2, and the transistor’s trans-
conductance gm.

Thermal noise. Johnson noise in the source follower transistor’s chan-
nel can also be referred back to the input, resulting in thermally gener-
ated charge noise ∆Qthermal given by

∆Qthermal = C

√
4kTBα

gm
(5.9)

using the same parameters as in the preceding.
In practice, the first two noise sources can be essentially eliminated

by a signal-processing technique called correlated double sampling (CDS)
[28]: Reset noise is canceled by a two-stage process, in which the diffu-
sion is preset to a reference voltage and a first measurement is made of
this voltage level. In a second step, the photocharge is transferred to
the diffusion, and a second measurement is made. The difference be-
tween these two measurements is free of reset noise and contains only
information about the photocharge of interest. Because CDS is a tem-
poral high-pass filter, flicker noise with its low-frequency dominance is
effectively canceled at the same time.

The thermal noise contribution cannot be reduced using signal proc-
essing techniques, and it is obvious from Eq. (5.9) what can be done to
minimize thermal noise. Reduction of temperature (in astronomical
applications down to -120 °C) not only lowers charge noise levels [29]
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but the dark current contribution can be reduced to values as low as
one electron per day per pixel. As a rule of thumb, dark current in
silicon doubles for each increase in temperature of around 8–9 °C.

Often the reduction in temperature is combined with a reduction of
the readout bandwidth to 50–100kHz, leading to a charge noise level of
around one electron [30]. Another technique of bandwidth reduction is
the repetitive, nondestructive measurement of photocharge with out-
put signal averaging, as carried out in the Skipper CCD [31]. Charge
noise levels of 0.3 electrons rms have been obtained in this way. As
can be seen in Eq. (5.9) the dominant factor in noise performance is
the effective input capacitance. This has been lowered to values of less
than 1 fF using the so-called double-gate MOSFET [32], corresponding
to a sensitivity of more than 200µV per electron and an effective charge
noise level of less than one electron at room temperature and at video
frequencies. The maximum photocharge such an output stage can han-
dle is about 10,000 electrons, the DR is limited to about 80dB.

5.6 Architectures of image sensors

For the acquisition of 1-D and 2-D distributions of incident light, arrays
of pixel are required. Such arrays can be realized as an arrangement
of CCD columns or as suitably placed and interconnected individual
photodiodes as described in Section 5.3.1. Depending on the choice
of arrangement and interconnection, different types of image sensors
result.

5.6.1 Frame-transfer charge-coupled-devices

The simplest type of CCD image sensor is the frame-transfer (FT) CCD.
As illustrated in Fig. 5.16, it consists of three CCD sections. One CCD
area (A register) is used for the conversion of photons into photocharge
during the exposure time and for the storage of this photocharge in the
pixels. This 2-D photocharge distribution is subsequently shifted down
into another CCD area (B register), which is covered with an opaque
metal shield. From the B register, an image row at a time is shifted
down into a CCD line (C register), with which the photocharges are
transported laterally to the output amplifier, so that the content of this
image row can be accessed sequentially.

The disadvantage of the FT-CCD principle is the afterexposure of
bright areas that can occur when the photocharge pattern is trans-
ported from the A register into the light-shielded B register. This oc-
curs because the A register remains light-sensitive during the vertical
photocharge transportation time. The afterexposure effect in FT-CCDs
can create saturated (“bright”) columns without any contrast informa-
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Figure 5.16: The fourmost important architectures of solid-state image sensors:
a frame-transfer (FT) CCD with its three registers; b interline-transfer (IT) CCD
with column light shields for vertical charge transfer; c field-interline-transfer
(FIT) CCD, combining FT-CCD and IT-CCD principles for studio and broadcast
applications; d traditional photodiode array image sensor with one photodiode
and one selection transistor per pixel.

tion. For this reason, high-quality FT-CCD cameras employ a mechani-
cal shutter, shielding the A register from incident light during the ver-
tical photocharge transportation time.

The big advantage of the FT-CCD is that the whole A register area
is photosensitive; one speaks of an optical fill factor of 100%. Because
the A register is covered with polysilicon CCD electrodes that tend to
absorb in the blue and UV, an FT-CCD is not very sensitive in the blue
spectral region. For special applications this can be remedied by thin-
ning down an FT-CCD to about 10µm thickness and by illuminating
it from the back. Such back-side illuminated FT-CCDs offer 100% fill
factor, an excellent response over the whole visible spectrum, and they
are the image sensors of choice for scientific and astronomical appli-
cations.
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5.6.2 Interline-transfer charge-coupled-devices

In consumer applications, a mechanical shutter is impractical to use,
and for this reason FT-CCDs are rarely used in video and surveillance
cameras. Rather, the interline-transfer (IT) CCD principle is employed,
as illustrated in Fig. 5.16b. Photocharge is collected in the individual
pixels, and after the exposure time the photocharge is transferred via
the pixels’ transfer register into a corresponding vertical CCD column.
These CCD columns are shielded from light with an opaque metal layer.
A 2-D photocharge distribution can therefore be shifted downwards,
one row at a time, into the horizontal output register, from where the
photocharge packets are read out sequentially. As the vertical CCD
columns are shielded, the afterexposure problem is much less severe
than in FT-CCDs. One pays for this with a reduced fill factor, because
the column light shields reduce the available photosensitive area on
the image sensor’s surface. The typical fill factor of an IT-CCD is about
30%, reducing the total sensitivity to about a third of that observed in
FT-CCDs.

With the IT-CCD principle a very useful functionality becomes avail-
able: Because there is essentially no time-constraint in exposing the pix-
els and transferring their accumulated photocharge under the shielded
columns, one can implement an electronic shutter . The exposure time
can be as short as a few 10µs, extending up to several seconds in cam-
eras not conforming to a video standard. The exposure time is essen-
tially bounded by the dark current, which depends strongly on tem-
perature, as described in Section 5.5.2. The desirable properties of the
IT-CCD make it the image sensor of choice for most of today’s video
and surveillance cameras, especially for consumer applications. In or-
der to increase the optical fill factor of IT-CCDs, some manufacturers
supply each pixel with its own microlens, so that more light can be di-
rected to the IT-CCD’s photosensitive surface. An even more efficient,
albeit more expensive improvement is the coverage of an IT-CCD with
amorphous silicon, with which the optical fill factor can be increased
further, close to 100%.

5.6.3 Field-interline-transfer charged-coupled-devices

Although the column light shield in the IT-CCD is an efficient light
blocker, there is always some residual photocharge seeping into the
columns from the sides. For this reason, an IT-CCD can still show
some afterexposure effects. For professional applications such as video
broadcasting, this is considered not acceptable, and a combination FT-
and IT-CCD principle has been invented to overcome this problem, the
field-interline-transfer (FIT) CCD, illustrated in Fig. 5.16c. The upper
part of a FIT-CCD really consists of an IT-CCD. The lower part, however,
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is realized like the B and C registers of an FT-CCD. The FIT-CCD is oper-
ated by acquiring an image conventionally, making use of the IT-CCD’s
variable exposure time functionality. The resulting 2-D photocharge
distribution is then shifted quickly under the shielded vertical columns,
from where it is transported very fast under the completely shielded in-
termediate storage register. The sequential row-by-row readout is then
effectuated from the B and C registers, exactly as in FT-CCDs.

5.6.4 Conventional photodiode (MOS) arrays

A photodiode or MOS array image sensor consists of a 1-D or 2-D ar-
rangement of PDs, each provided with its own selection transistor, as
illustrated in Fig. 5.16d. For a description of the PD image sensor’s
operation, assume that all PDs are precharged to a certain reverse bias
voltage, typically 5V. Under the influence of the incident light, each
pixel is discharged to a certain level. A pixel is read out by addressing
the corresponding row and column transistors, providing a conducting
line from the pixel to the output amplifier. Using this line the pixel is
charged up again to the same reverse bias voltage as before. The am-
plifier measures how much charge is required to do so, and this charge
is identical to the photocharge (plus dark current charge) accumulated
at the pixel site. In this way, each pixel can be read out individually, at
random, and the exposure time is completely under the control of the
external addressing electronics.

The random addressing freedom, however, comes at the price of
a large capacitance of the conducting line between pixel and output
amplifier of several pF. As is obvious from the inspection of Eq. (5.9),
this leads to noise levels one or two orders of magnitude larger than in
corresponding CCDs image sensors. For this reason, the usage of such
traditional PD image sensors has been restricted to applications where
the random pixel access is an absolute must. In video applications,
CCD technology is used almost exclusively.

5.6.5 Active pixel sensor technology

As just discussed, the noise performance of PD array image sensors is
much worse than that of a CCD because of the large effective capaci-
tance the first MOSFET in the output amplifier sees. The logical conclu-
sion is that it should be possible to realize CMOS-compatible PD array
image sensors with a noise performance comparable to CCD imagers
when this first MOSFET is placed in each pixel. It took surprisingly long
until this seemingly trivial observation was made. As a consequence, it
led directly to what is called today “active pixel sensor” (APS) imaging
technology [33]. It is apparently not sufficient just to move the first
MOSFET into the pixel, because its input requires a reset mechanism.
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Figure 5.17: Schematic diagram of an APS pixel, consisting of a photodiode, a
reset transistor, a sense transistor, and a row-select transistor. The active load
transistor that completes the source-follower circuit is shared by all pixels in a
column, and it is therefore needed only once per column.

For this reason, the simplest APS image sensor pixel consists of one
photodiode and three MOSFETs as illustrated in Fig. 5.17.

With the reset MOSFET the photodiode and the gate of the source
follower MOSFET are precharged to a voltage of typically 3-5V. The
photocurrent produced by the photodiode (plus the dark current) dis-
charges the capacitance of the reverse-biased PD. The resulting voltage
can then be sensed efficiently with the source-follower MOSFET with
a sensitivity that is comparable to that of CCD image sensors. As in
the PD array, the third MOSFET is employed as a selection switch with
which a row is selected. The active load MOSFET of this APS pixel can be
shared by all the pixels in a column, and it does not need to be included
in the pixel itself.

The APS technology is very attractive for several reasons: (1) APS
image sensors can be produced in standard CMOS technology, opening
the way to image sensors with integrated electronic functionality and
even complete digital processors; (2) The pixels offer random access
similar to PD arrays; (3) The pixel readout is nondestructive, and it can
be carried out repeatedly for different exposure times; (4) The exposure
times can be programmed electronically; (5) APS image sensors dissi-
pate one or two magnitudes less electrical power than CCDs; (6) APS
imagers show less blooming (spilling of electronic charge to adjacent
pixels); And (7) APS pixels are more robust under x-ray radiation.

Disadvantages of APS image sensors include the reduced optical fill
factor (comparable to that of IT-CCDs), the increased offset noise due
to MOSFET threshold variations (see Section 5.8), and the impossibility
of performing correlated double sampling for noise reduction as dis-
cussed in Section 5.5.3. Fortunately, a combination of APS and CCD
technology has been proposed, and the resulting photogate APS pixels
offer this functionality [34].
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Figure 5.18: Estimates of the relative cone sensitivities of the human eye after
DeMarco et al. [35].

Active pixel image sensors with up to 4k×4k pixels have been re-
alized, with speeds of several thousand frames per second, with an
input-referred charge noise of about 10 electrons at room temperature
and video speed, and with a DR of up to 84dB. Many experts do not
doubt, therefore, that CMOS imagers using APS techniques can replace
CCD image sensors in many practical applications, and several con-
sumer products in the electronic still and video camera market already
contain CMOS imagers.

5.7 Color vision and color imaging

5.7.1 Human color vision

Human color vision can be regarded as a parameter-based sampling. It
does not measure the spectral radiant flux directly but rather proper-
ties of the spectral distribution such as the total radiant flux (intensity),
the mean wavelength (color ), and the width of the spectral distribution
(saturation of the color). If the width of the spectral distribution is
narrow we have a pure color with high saturation. If the spectral distri-
bution is wide, the color has low saturation. If the spectral distribution
is flat, we sense no color. With respect to this discussion, it appears
that a 3-sensor system appears to be an ideal intensity-color-saturation
sensor. It is ideal in the sense that it has a linear response and the wave-
length (color) and width (saturation) resolution are independent of the
wavelength. Thus it is interesting to compare this 3-sensor system with
the color-sensing system of the human eye.

For color sensing, the human eye also has three types of photopig-
ments in the photoreceptors known as cones with different spectral
sensitivities (Fig. 5.18). The sensitivities cover different bands with
maximal sensitivities at 445nm, 535nm, and 575nm, respectively (band
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sampling), but overlap each other significantly (parameter-based sam-
pling). The three sensor channels are unequally spaced and cannot
simply be linearly related. Indeed, the color sensitivity of the human
eye is uneven and all the nonlinearities involved make the science of
color vision rather difficult. Here, only some basic facts are given—in
as much as they are useful to handle color imagery.

Three-dimensional color space. With three color sensors, it is obvi-
ous that color signals cover a 3-D space. Each point in this space repre-
sents one color. From spectral sampling, it is clear that many spectral
distributions called metameric color stimuli or short metameres map
onto one point in this space. Generally, we can write the signal si re-
ceived by a sensor with a spectral responsivity Ri(λ) as

si =
∫

Ri(λ)Φ(λ)dλ (5.10)

With three primary color sensors, a triple of values is received, often
called tristimulus and represented by the 3-D vector s = [s1, s2, s3]T .

Primary colors. One of the most important questions in colorimetry
is how to represent colors as linear combinations of some basic or pri-
mary colors. A set of three linearly independent spectral distributions
Φj(λ) represents a set of primary colors and results in an array of re-
sponses that can be described by the matrix P with

Pij =
∫

Ri(λ)Φj(λ)dλ (5.11)

Each vector pj =
[
p1j, p2j, p3j

]T
represents the tristimulus of the

primary colors in the 3-D color space. Then, it is obvious that any color
can be represented by the primary colors that are a linear combination
of the base vectors pj in the following form:

s = Rp1 + Gp2 + Bp3 with 0 ≤ R, G, B ≤ 1 (5.12)

where the coefficients are denoted by R, G, and B, indicating the three
primary colors red, green, and blue. Note that these coefficients must
be positive and smaller than one. Because of this condition, all colors
can be presented as a linear combination of a set of primary colors only
if the three base vectors are orthogonal to each other. This cannot be
the case as soon as more than one of the color sensors responds to one
primary color. Given the significant overlap in the spectral response of
the three types of cones (Fig. 5.18), it is obvious that none of the color
systems based on any type of real primary colors will be orthogonal.
The colors that can be represented lie within the parallelepiped formed
by the three base vectors of the primary colors. The more the primary
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Table 5.1: Most often used primary color systems. The second column gives
also the conversion matrix of the corresponding color system to the XY Z color
system (values taken from Wendland [36, Section 5.7.4] and Pratt [37, Table
3.5-1]).

Name Description

Monochromatic Primaries
Rc , Gc , Bc

Adapted by C.I.E. in 1931
λR = 700 nm, λG = 546.1 nm, λB = 435.8 nm 0.490 0.310 0.200

0.177 0.812 0.011
0.000 0.010 0.990


NTSC Primary Receiver
Standard RN , GN , BN

FCC Standard, 1954, to match phosphors of
RGB color monitors 0.6070 0.1734 0.2006

0.2990 0.5864 0.1146
0.0000 0.0661 1.1175


S.M.P.T.E. Primary Receiver
Standard RS , GS , BS

Better adapted to modern screen phosphors 0.393 0.365 0.192
0.212 0.701 0.087
0.019 0.112 0.985


EBU Primary Receiver Stan-
dard Re, Ge, Be

Adopted by EBU 1974 0.4303 0.3416 0.1780
0.2219 0.7068 0.0713
0.0202 0.1296 0.9387



colors are correlated with each other (i. e., the smaller the angle between
two of them is), the smaller is the color space that can be represented
by them. Mathematically, colors that cannot be represented by a set of
primary colors have at least one negative coefficient in Eq. (5.12). The
most often used primary color systems are summarized in Table 5.1.

Chromaticity. One component in the 3-D color space is intensity. If
a color vector is multiplied by a scalar, only its intensity is changed
but not its color. Thus, all colors could be normalized by the inten-
sity. This operation reduces the 3-D color space to a 2-D color plane or
chromaticity diagram:

r = R
R + G + B

, g = G
R + G + B

, b = B
R + G + B

(5.13)

with

r + g + b = 1 (5.14)

It is sufficient to use only the two components r and g. The third
component is then given by b = 1 − r − g, according to Eq. (5.14).
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Figure 5.19: Chromaticity diagram shown in the xy color space. The u-shaped
curve of monochromatic colors with wavelengths in nm as indicated and the
purple line includes all possible colors. Shown are also range of colors (trian-
gles) that can be represented with monochromatic primaries Rc , Gc , Bc and the
SMPTE primary receiver standard RS , GS , BS .

Thus, all colors that can be represented by the three primary colors
R, G, and B are confined within a triangle. As already mentioned, some
colors cannot be represented by the primary colors. The boundary of all
possible colors is given by all visible monochromatic colors from deep
red to blue. The line of monochromatic colors form a u-shaped curve
(Fig. 5.19). Thus, most monochromatic colors cannot be represented
by the monochromatic primaries. As all colors that lie on a straight
line between two colors can be generated as a mixture of these colors,
the space of all possible colors covers the area filled by the u-shaped
spectral curve and the straight mixing line between its two end points
for blue and red color (purple line).

In order to avoid negative color coordinate values, often a new co-
ordinate system is chosen with virtual primary colors, that is, primary
colors that cannot be realized by any physical colors. This color system
is known as the XYZ color system and constructed in such a way that
it includes just the curve of monochromatic colors with only positive
coefficients (Fig. 5.19).

Hue and saturation. The color systems discussed so far do not di-
rectly relate to the human color sensing. From the rg or xy values,
we cannot directly infer colors such as green, blue, etc. In addition
to luminance (intensity), a description of colors would also include the
type of color such as green or blue (hue) and the purity of the color
(saturation). From a pure color, we can obtain any degree of saturation
by mixing it with white.
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Figure 5.20: Chromaticity diagram shown in the uv color difference system
centered at the white point w. The color saturation is proportional to the dis-
tance from the center and the color hue is given by the angle to the x axis.
Shown are also the axes of the rg color system marked with r and b.

Hue and saturation can be extracted from chromaticity diagrams
by simple coordinate transformations. The essential point is the white
point in the middle of the chromaticity diagram (Fig. 5.20). If we draw
a line from this point to a pure (monochromatic) color, it constitutes
a mixing line for a pure color with white and is thus a line of constant
hue. From the white point to the pure color, the saturation increases
linearly. The white point is given in the rg chromaticity diagram by
w = (1/3,1/3). A color system that has its center at the white point is
called a color difference system. From a color difference system, we can
infer a hue-saturation color system by simply using polar coordinate
systems. Then, the radius coordinate is proportional to the saturation
and the hue to the angle coordinate (Fig. 5.20).

Color science is, in the abstract, relatively simple. However, real
difficulties arise from what is required to adapt the color system in an
optimum way to display and print devices, for transmission by televi-
sion signals, or to correct for the uneven color resolution of the human
visual system that is apparent in the chromaticity diagrams of simple
color spaces (Figs. 5.19 and 5.20). The result to date is a confusing
manifold of different color systems. For a detailed treatment of color
vision, the reader is referred to the monograph written by the Commit-
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tee on Colorimetry of the Optical Society of America [38]. An excellent
treatment of color with respect to digital image processing is given by
Pratt [37] and with respect to video engineering by Inglis [39].

Intensity-hue-saturation color coordinate system. Here, we discuss
only one further color coordinate system that is optimally suited to
present vectorial image information as colors on monitors. With a gray
scale image, only one parameter can be represented. In color, it is,
however, possible to represent three parameters simultaneously, for
instance as intensity, hue, and saturation (IHS). This representation is
known as the IHS color coordinate system. The transformation is given
by  I

U
V

 =
 1/3 1/3 1/3

2/3 −1/3 −1/3
−1/3 2/3 −1/3


 R

G
B


H = arctan

(
V
U

)
S = (U2 + V2)1/2

(5.15)

This transformation essentially means that the zero point in the
chromaticity diagram has been shifted to the white point. The pairs
[U, V]T and [S, H]T are the Cartesian and polar coordinates in this new
coordinate system, respectively.

5.7.2 Color chips and color cameras

The task of most camera systems is accurately to capture the percep-
tible contents of a scene for subsequent faithful reproduction, viewed
by a human observer. The black-and-white image sensors and cameras
discussed so far can do this only for the brightness sensation; the very
rich perception of color requires additional information, as described
in Section 5.7.1: According to Grassman’s Laws [40], a 3-D spectral rep-
resentation of a scene is sufficient for the complete reproduction of
a color scene as it can be perceived by a human observer. It is suffi-
cient, therefore, to acquire a color scene through three different types
of spectral filters, behind each of which a black-and-white camera sys-
tem is placed. As described in Section 5.7.1 these filters correspond to
the primary colors or a linear combination of them [41].

For the best performance, a color camera is built by providing spe-
cial beam-splitting optics and by arranging three black-and-white image
sensors so that they see an identical portion of a scene. Each image sen-
sor is covered with its own color filter, as just described, and together
the three image sensors acquire the complete colorimetric information
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Figure 5.21: Illustration of different color filter types for single-chip color sen-
sors. The unit cell (basic arrangement of color filter patches that is periodically
repeated on the image sensor) is shown as shaded rectangle: a primary color
(RGB) stripe filter with 3×1 unit cell; b complementary color (CGY) stripe filter
with 3×1 unit cell; c primary color (RGB) stripe filter with 4×1 unit cell; d Bayer
color mosaic filter with 2×2 unit cell; e Bayer color mosaic filter with 4×4 unit
cell; f shift-8 color mosaic filter using complementary colors in an 8×4 unit cell.

about a scene. Such three-chip color cameras are employed in profes-
sional and studio cameras. They are quite expensive, unfortunately,
because they have to employ costly beam-splitting objects, the three
image sensors have to be aligned according to close tolerances (reg-
istration to sub-pixel accuracy), and three high-quality image sensors
must be used, each requiring its proper driving electronics.

For these reasons, it is highly desirable to realize a color camera with
just one single black-and-white image sensor and a suitable pattern of
pixel-individual color filters on top. Several techniques have been used
for the implementation of such a single-chip color camera. They are
either based on 1-D color stripe filters (Fig. 5.21a-c) or on 2-D color
mosaics (Fig. 5.21d-f).

The simplest arrangement is the RGB color stripe pattern shown in
Fig. 5.21a. Its obvious drawback is its sensitivity to periodic objects,
producing so-called moiré and color-aliasing effects [15]. Instead of
the primary RGB filters, one can also use the complementary colors
cyan (C=G+B), yellow (Y=R+G), and magenta (M=R+B), or even transpar-
ent white (W=R+G+B). An example of such a complementary stripe filter
pattern is shown in Fig. 5.21b. Compared to the primary color stripe
filter in Fig. 5.21a, this filter can be simpler to fabricate, and because it
accepts more light, it might offer an improved SNR performance. An-
other example of a stripe filter is shown in Fig. 5.21c, illustrating the use
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of more green than red or blue information and the larger filter period
of four pixels. This reflects the property of the human eye that spa-
tial resolution is largest in the green, less pronounced in the red, and
least developed in the blue spectral band. Much better performance
is achieved with 2-D mosaic color filters. A popular color filter is the
Bayer pattern with its 2×2 pixel unit cell shown in Fig. 5.21d [42]. An
improved formmakes even better use of the different spatial resolution
for the three filter curves, resulting in the 4×4 pixel unit cell shown in
Fig. 5.21e [42]. In this filter pattern, half of the color filters are green,
3/8 are red and only 1/8 are blue. The larger the unit cell period, the
better a color filter’s ability to prevent aliasing and moiré effect. A very
effective color pattern making use of complementary colors is shown
in Fig. 5.21f [43]. It uses a 4×8 pixel unit cell in such a way that the
required signal processing is relatively simple to realize using conven-
tional electronics [44]. The least amount of aliasing is produced by
a color mosaic with an aperiodic color pattern. Although this is well
known in theory, no commercial product has been offered yet with such
a random color pattern, which would also require precise knowledge of
the image sensor’s complete color pattern for the accurate extraction
of color information.

5.8 Practical limitations of semiconductor photosensors

Due to the analog nature of the pixels in a semiconductor photosensor,
it is not possible to fabricate all pixels with identical properties, and
often some pixels on an imager will be defective. It is therefore impor-
tant for a machine vision system architect to have an idea about typical
limitations and shortcomings of practical image sensors.

5.8.1 Pixel nonuniformity and dead pixels

Because of slightly varying geometries of CCD and APS pixels, their
effective area and therefore their gain are not identical. These gain
variations are of the order of 1-5%, and for precision measurements, a
multiplicative correction of this effect is required.

In APS pixels, where the individual source-follower transistors in
the pixels show offset voltage fluctuations, an offset uncertainty of the
order of 10 mV is observed. This results in APS pixel offset variations
of around 1-2%. These offset variations have to be corrected additively
for precision measurements. Because the CCD principle is based on
the virtually complete transfer of photogenerated charge packets from
pixel site to pixel site, CCD pixels do not show this type of offset vari-
ation.
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In applications where dark currents become significant, offset varia-
tions are obtained in APS as well as in CCD image sensors because dark
current densities can vary from pixel to pixel in any type of semicon-
ductor image sensor. It might even be possible that the dark current is
so high in a few so-called “hot pixels” that these pixels are completely
filled with thermally generated charge during the exposure time. This
effect can only be reduced by lowering the temperature or by shorten-
ing the exposure time.

Digital memories do not suffer from most localized defects on the
semiconductor surface because there are redundant memory cells on
the integrated circuit that can replace defective storage cells. In an
image sensor, this is of course not possible. For this reason, it is rather
difficult to produce a perfect image sensor without any defects. It is
not uncommon, therefore, that a few defective (“dead”) pixels can be
encountered on an image sensor. Usually, the position of these dead
pixels is stored, and the image content at this place is computed as a
function of neighboring values. Such pixel defect densities occur quite
infrequently with a percentage of typically less than 0.001-0.01%.

In CCDs, another type of defect is more consequential, when com-
plete dead columns are encountered; the required correction computa-
tion is much more expensive than with single dead pixels. Fortunately,
dead columns usually are only encountered in megapixel CCDs of lower
grade, while smaller area CCDs for video applications are free of this
type of defect.

5.8.2 Sensor nonlinearity

The conversion of light into photocharge is a highly linear process.
In silicon, this has been verified for a large dynamic range of at least
10 orders of magnitude [14]. Unfortunately, much of this linearity is
lost in the photocharge detection principle that is mainly used in image
sensors. Photocharge is stored as the state of discharge of a precharged
capacitance, either an MOS capacitance or a photodiode. As the width
of the space-charge region depends on the discharge level, the spectral
sensitivity and the photometric linearity are a function of the amount
of photocharge already stored.

The same problem is encountered in the electronic charge detection
circuits that are implemented as source followers after a floating diffu-
sion (see Fig. 5.15). The capacitance of the floating diffusion depends
on the voltage on it and therefore on the charge state. This causes
nonlinearities in charge sensing.

The degree of the nonlinearity depends very much on the charge de-
tection (or voltage) range that is used. For differential measurements
of over a few hundred mV in the middle region of the analog sensor
output, nonlinearities can be below 0.1% [45]. Over the full sensing
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Figure 5.22: Schematic diagram of a charge detection circuit, providing a high
photodetection linearity by keeping the photodiode voltage constant. If the feed-
back capacitance is replaced by a resistor, a so-called transimpedance amplifier
results, converting photocurrent in a proportional voltage with very high linear-
ity.

range, nonlinearities may be as large as a few percent. If the mea-
surement should be highly linear, a proper electronic charge detector
circuit must be used in which the voltage at the input is kept constant.
Such a charge detector circuit, illustrated in Fig. 5.22, requires a cer-
tain amount of silicon floorspace. With state-of-the-art semiconductor
technology, pixels become so large that only 1-D arrays have been real-
ized with this technique [46]; in image sensors it is not yet realistic to
implement such charge detectors in each pixel. For this reason, image
sensing applications for optical metrology in which sub-percent lin-
earity is demanded have to resort to accurate calibration and off-chip
digital correction techniques [5].

5.9 Conclusions

It was only about a decade ago that a few researchers started to exploit
one of the most exciting capabilities offered by modern silicon-based
semiconductor technology, the monolithic integration of photosensi-
tive, analog and digital circuits. Some of the results of these efforts are
described in this work, representing just a small fraction of the many
applications already demonstrated. They all support the main asser-
tion of this chapter, that today’s image sensors are no longer restricted
to the acquisition of optical scenes. Image sensors can be supplied
with custom integrated functionality, making them key components,
application-specific for many types of optical measurement problems.
It was argued that it is not always optimal to add the desired custom
functionality in the form of highly-complex smart pixels, because an in-
crease in functionality is often coupled with a larger fraction of a pixel’s
area being used for electronic circuit, at the cost of reduced light sen-
sitivity. For this reason, each new optical measurement problem has
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to be inspected carefully, taking into account technical and economical
issues. For optimum system solutions, not only smart pixels have to be
considered. Functionality could also be provided by separate on-chip
or off-chip circuits, perhaps by using commercially available electronic
components.

Machine vision system architects can no longer ignore the freedom
and functionality offered by smart image sensors, while being well
aware of the shortcomings of semiconductor photosensing. It may be
true that the seeing chips continue to be elusive for quite some time.
The smart photosensor toolbox for custom imagers is a reality today,
and a multitude of applications in optical metrology, machine vision,
and electronic photography can profit from the exciting developments
in this area. “Active vision,” “integrated machine vision,” “electronic
eyes,” and “artificial retinae” are quickly becoming more than concepts:
the technology for their realization is finally here now!
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6.1 Introduction

The use of digital imaging systems for metrology purposes implies the
necessity to calibrate or check these systems. While simultaneous cali-
bration of cameras during the measurement is possible for many types
of photogrammetric work, separate calibration is particularly useful in
the following cases:
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• when information is desired about the attainable accuracy of the
measurement system and thus about the measurement accuracy at
the object;

• when simultaneous calibration of the measurement system is im-
possible during the measurement for systemic reasons so that some
or all other system parameters have to be predetermined;

• when complete imaging systems or components are to be tested by
the manufacturer for quality-control purposes; and

• when digital images free from the effects of the imaging system are
to be generated in preparation of further processing steps (such as
rectification).

In addition, when setting up measurement systems it will be neces-
sary to determine the positions of cameras or other sensors in relation
to a higher-order world coordinate system to allow 3-D determination
of objects within these systems.

The following chapters describe methods of calibration and orienta-
tion of imaging systems, focusing primarily on photogrammetric tech-
niques as these permit homologous and highly accurate determination
of the parameters required.

6.2 Calibration terminology

6.2.1 Camera calibration

Camera calibration in photogrammetric terminology refers to the de-
termination of the parameters of interior orientation of individual cam-
eras. When dealing with digital images, it is advisable to analyze the
complete imaging system, including camera, transfer units and possi-
bly frame grabbers. The parameters to be found by calibration depend
on the type of camera used. Once the imaging system has been cali-
brated, measurements can be made after the cameras have been care-
fully oriented.

6.2.2 Camera orientation

Camera orientation usually includes determination of the parameters
of exterior orientation to define the camera station and camera axis in
the higher-order object-coordinate system, frequently called the world
coordinate system. This requires the determination of three rotational
and three translational parameters, that is, a total of six parameters for
each camera.
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Figure 6.1: Components of digital imaging systems.

6.2.3 System calibration

In many applications, fixed setups of various sensors are used for mea-
surement. Examples are online measurement systems in which, for
example, several cameras, laser pointers, pattern projectors, rotary
stages, etc., may be used. If the entire system is used as an integrated
measuring tool, then the simultaneous calibration and orientation of
all components involved maybe defined as system calibration.

6.3 Parameters influencing geometrical performance

6.3.1 Interior effects

All components of a digital imaging system leave their marks on the im-
age of an object and thus on the measurement results obtained from
processing this image. The following is a brief description of the rele-
vant components (Fig. 6.1).

Optical system. Practically all lenses exhibit typical radial-symmetri-
cal distortion that may vary greatly in magnitude. On the one hand, the
lenses used in optical measurement systems are nearly distortion-free
[1]. On the other hand, wide-angle lenses, above all, frequently exhibit
distortion of several 100µm at the edges of the field. Fisheye lenses are
in a class of their own; they frequently have extreme distortion at the
edges. Because radial-symmetrical distortion is a function of design,
it cannot be considered an aberration. By contrast, centering errors
often unavoidable in lens making cause aberrations reflected in radial-
asymmetrical and tangential distortion components [2].

Additional optical elements in the light path, such as the IR bar-
rier filter and protective filter of the sensor, also leave their mark on
the image and have to be considered in the calibration of a system.
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A more detailed treatment of optical systems and the corresponding
distortions can be found in Chapter 3.

Resolution-enhancing elements. The image size and the possible
resolution of CCD sensors are limited. Currently on the market are
digital cameras with up to 4000×4000 sensor elements. Regarding
the stability of the camera-body and the quality of the lenses, some
of them are designed especially for measuring purposes, for example,
the Rollei Q16 MetricCamera [3]. Other, less frequent approaches use
techniques designed to attain higher resolution by shifting commercial
sensors in parallel to the image plane. Essentially, there are two differ-
ent techniques. In the case of “microscanning,” the interline transfer
CCD sensors are shifted by minute amounts by means of piezoadjust-
ment so that the light-sensitive sensor elements fall within the gaps
between elements typical of this type of system, where they acquire
additional image information [4, 5]. Alternatively, in “macroscanning,”
the sensors may be shifted by a multiple of their own size, resulting
in a larger image format. Individual images are then oriented with re-
spect to the overall image either by a highly precise mechanical sys-
tem [6, 7] or opto-numerically as in the RolleiMetric Réseau Scanning
Camera by measuring a glass-based reference grid in the image plane
(“réseau scanning”) [8].

All resolution-enhancing elements affect the overall accuracy of the
imaging system. In scanner systems with purelymechanical correlation
of individual images, the accuracy of the stepping mechanism has a
direct effect on the geometry of the high-resolution imagery. In the
case of réseau scanning, the accuracy of the réseau is decisive for the
attainable image-measuring accuracy [9].

Sensor and signal transfer. Due to their design, charge-coupled de-
vice (CCD) sensors usually offer high geometrical accuracy [10]. When
judging an imaging system, its sensor should be assessed in conjunc-
tion with the frame grabber used. Geometrical errors of different mag-
nitude may occur during A/D conversion of the video signal, depend-
ing on the type of synchronization, above all if pixel-synchronous signal
transfer from camera to image storage is not guaranteed [9, 11]. How-
ever, in the case of pixel-synchronous readout of data, the additional
transfer of the pixel clock pulse ensures that each sensor element will
precisely match a picture element in the image storage. Very high ac-
curacy has been proved for these types of cameras [1]. However, even
with this type of transfer the square shape of individual pixels can-
not be taken for granted. As with any kind of synchronization, most
sensor-storage combinations make it necessary to account for an affin-
ity factor; in other words, the pixels may have different extension in
the direction of lines and columns.
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Figure 6.2: Principle of central perspective [12].

6.3.2 Exterior effects

If several cameras are used in an online metrology system, both the pa-
rameters of interior orientation and those of exterior orientation may
vary, the former, for example, caused by refocusing and changes of
temperature, the latter caused by mechanical effects or fluctuations of
temperature. The resulting effects range from scale errors during ob-
ject measurement all the way up to complex model deformation. This
is why all systems of this kind should make it possible to check or
redetermine all relevant parameters.

6.4 Optical systems model of image formation

Image formation by an optical system can, in principle, be described
by the mathematical rules of central perspective. According to these
rules, an object is imaged in a plane so that the object points Pi and
the corresponding image points P ′

i are located on straight lines through
the perspective centerOj (Fig. 6.2). The following holds under idealized
conditions for the formation of a point image in the image plane:[

xij
yij

]
= −c

Z∗
ij

[
X∗

ij
Y∗

ij

]
(6.1)
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with 
X∗

ij
Y∗

ij
Z∗

ij

 = D(ω, ϕ, κ)j

 Xi − Xoj
Yi − Yoj
Zi − Zoj

 (6.2)

where Xi, Yi, Zi are the coordinates of an object point Pi in the object-
coordinate system K; Xoj , Yoj , Zoj are the coordinates of the perspec-
tive center Oj in the object-coordinate system K; X∗

ij , Y∗
ij , Z∗

ij are the
coordinates of the object point Pi in the coordinate system K∗

j ; xij , yij
are the coordinates of the image point in the image-coordinate system
KB ; and D(ω, ϕ, κ)j is the rotation matrix between K and K∗

j ; and c is
the distance between perspective center and image plane, the system
K∗

j being parallel to the system KB with the origin in the perspective
center Oj [13].

The representation of the central perspective as described in Eq. (6.1)
and Eq. (6.2) splits up the process of computation from image-space to
object space in two steps:

• Within Eq. (6.1) mainly the parameters of image-space like camera
parameters (interior orientation) and measured image coordinates
are used.

• In Eq. (6.2) the transformation to the world coordinate system is
done by using three parameters of translation and three parameters
of rotation (exterior orientation).

This ideal concept is not attained in reality where many influences
are encountered due to the different components of the imaging sys-
tem. These can be modeled as departures from rigorous central per-
spective. The following section describes various approaches to math-
ematical camera models.

6.5 Camera models

When optical systems are used for measurement, modeling the entire
process of image formation is decisive in obtaining accuracy. Basically,
the same ideas apply, for example, to projection systems for which
models can be set up similarly to imaging systems.

Before we continue, we have to define an image-coordinate system
KB in the image plane of the camera. In most electro-optical cameras,
this image plane is defined by the sensor plane; only in special designs
(e. g., in réseau scanning cameras [8]), is this plane defined differently.
While in the majority of analog cameras used for metrology purposes
the image-coordinate system is defined by projected fiducial marks or
réseau crosses, this definition is not required for digital cameras. Here
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Figure 6.3: Definition of image-coordinate system.

it is entirely sufficient to place the origin of image-coordinate system
in the center of the digital images in the storage (Fig. 6.3). Because
the pixel interval in column direction in the storage is equal to the in-
terval of the corresponding sensor elements, the unit “pixel in column
direction” may serve as a unit of measure in the image space. All pa-
rameters of interior orientation can be directly computed in this unit,
without conversion to metric values.

6.5.1 Calibrated focal length and principal-point location

The reference axis for the camera model is not the optical axis in its
physical sense, but a principal ray, which on the object side is perpen-
dicular to the image plane defined in the foregoing and intersects the
latter at the principal point PH(xH, yH). The perspective center Oj is
located at distance cK (also known as calibrated focal length) perpen-
dicularly in front of the principal point [14].

The original formulation of Eq. (6.1) is thus expanded as follows:[
xij
yij

]
= −ck

Z∗
ij

[
X∗

ij
Y∗

ij

]
+
[

xH

yH

]
(6.3)

6.5.2 Distortion and affinity

The following additional correction function can be applied to Eq. (6.3)
for radial symmetrical, radial asymmetrical and tangential distortion:[

xij
yij

]
= −ck

Z∗
ij

[
X∗

ij
Y∗

ij

]
+
[

xH

yH

]
+
[

dx(V, A)
dy(V, A)

]
(6.4)

Here, dx and dy may now be defined differently, depending on the
type of camera used, and are made up of the following different com-
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ponents:

dx = dxsym + dxasy + dxaff

dy = dysym + dyasy + dyaff
(6.5)

Radial-symmetrical distortion. The radial-symmetrical distortion typ-
ical of a lens can generally be expressed with sufficient accuracy by a
polynomial of odd powers of the image radius (xij and yij are hence-
forth called x and y for the sake of simplicity):

drsym = A1(r 3 − r 2
0 r) + A2(r 5 − r 4

0 r) + A3(r 7 − r 6
0 r) (6.6)

where drsym is the radial-symmetrical distortion correction; r is the
image radius from r 2 = x2 + y2; A1, A2, A3 are the polynomial coef-
ficients; and r0 is the second zero crossing of the distortion curve, so
that we obtain

dxsym = drsym
r

x and dysym = drsym
r

y (6.7)

A polynomial with two coefficients is generally sufficient to describe
radial symmetrical distortion. Expanding this distortion model, it is
possible to describe even lenses with pronounced departure from per-
spective projection (e. g., fisheye lenses) with sufficient accuracy. In
the case of very pronounced distortion it is advisable to introduce an
additional point of symmetry PS(xS, yS). Figure 6.4 shows a typical
distortion curve.

For numerical stabilization and far-reaching avoidance of correla-
tions between the coefficients of the distortion function and the cali-
brated focal lengths, a linear component of the distortion curve is split
off by specifying a second zero crossing [15].

Lenz [16] proposes a different formulation for determining radial-
symmetrical distortion, which includes only one coefficient. We thus
obtain the following equation:

drsym = r 1−
√
1− 4Kr 2

1+
√
1− 4Kr 2

(6.8)

where K is the distortion coefficient to be determined.

Radial-asymmetrical and tangential distortion. To handle radial-
asymmetrical and tangential distortion, various different formulations
are possible. Based on Conrady [17], these distortion components may
be formulated as follows [2]:

dxasy = B1(r 2 + 2x2) + 2B2xy
dyasy = B2(r 2 + 2y2) + 2B1xy

(6.9)
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Figure 6.4: Typical distortion curve of a lens.

In other words, these effects are always described with the two ad-
ditional parameters B1 and B2.

This formulation is expanded by Brown [18], who adds parameters
to describe overall image deformation or the lack of image-plane flat-
ness:

dxasy = (D1(x2 − y2) + D2x2y2 + D3(x4 − y4))x/cK

+ E1xy + E2y2 + E3x2y + E4xy2 + E5x2y2

dyasy = (D1(x2 − y2) + D2x2y2 + D3(x4 − y4))y/cK

+ E6xy + E7x2 + E8x2y + E9xy2 + E10x2y2

(6.10)

In view of the large number of coefficients, however, this formula-
tion implies a certain risk of too many parameters. Moreover, because
this model was primarily developed for large-format analog imaging
systems, some of the parameters cannot be directly interpreted for ap-
plications using digital imaging systems. Equation (6.7) is generally
sufficient to describe asymmetrical effects. Figure 6.5 shows typical
effects for radial-symmetrical and tangential distortion.

Affinity and nonorthogonality. The differences in length andwidth of
the pixels in the image storage caused by synchronization can be taken
into account by an affinity factor . In addition, an affinity direction may
be determined, which primarily describes the orthogonality of the axes
of the image-coordinate system KB . An example may be a line scanner
that does not move perpendicularly to the line direction. Allowance for
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DCWS RolleiMetric
ASYMMETRIC EFFECTS

Recording system: Grundig FA85 / Schneider Xenoplan 1.8/6.5
Unit of vectors: [µm] 0.8050

Figure 6.5: Radial symmetrical and tangential distortion.

DCWS RolleiMetric
EFFECTS OF AFFINITY

Recording system: Grundig FA85 / Schneider Xenoplan 1.8/6.5
Unit of vectors: [µm] 100.72

Figure 6.6: Effects of affinity.

these two effects can be made as follows:

dxaff = C1x + C2x and dyaff = 0 (6.11)

Figure 6.6 gives an example of the effect of affinity.

Additional parameters. The introduction of additional parameters
may be of interest for special applications. Fryer [19] and Fraser and
Shortis [20] describe formulations that alsomake allowance for distance-
related components of distortion. However, these are primarily ef-
fective with medium- and large-image formats and the corresponding
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lenses and are of only minor importance for the wide field of digital
uses.

Gerdes et al. [21] use a different cameramodel in which an additional
two parameters have to be determined for the oblique position of the
sensor.

6.6 Calibration and orientation techniques

6.6.1 In the laboratory

Distortion parameters can be determined in the laboratory under clearly
defined conditions.

In the goniometer method, a highly precise grid plate is positioned
in the image plane of a camera. Then, the goniometer is used to sight
the grid intersections from the object side and to determine the corre-
sponding angles. Distortion values can then be obtained by a compar-
ison between nominal and actual values.

In the collimator technique, test patterns are projected onto the
image plane by several collimators set up at defined angles to each
other. Here also, the parameters of interior orientation can be obtained
by a comparison between nominal and actual values, though only for
cameras focused at infinity [14].

Apart from this restriction, there are more reasons weighing against
the use of the aforementioned laboratory techniques for calibrating
digital imaging systems, including the following:

• The equipment layout is high;

• The interior orientation of the cameras used normally is not stable,
requiring regular recalibration by the user; and

• Interior orientation including distortion varies at different focus and
aperture settings so that calibration under practical conditions ap-
pears more appropriate.

6.6.2 Bundle adjustment

All the parameters required for calibration and orientation may be ob-
tained by means of photogrammetric bundle adjustment. In bundle
adjustment , two so-called observation equations are set up for each
point measured in an image, based on Eqs. (6.2) and (6.4). The total of
all equations for the image points of all corresponding object points
results in a system that makes it possible to determine the unknown
parameters [22]. Because this is a nonlinear system of equations, no
linearization is initially necessary. The computation is made iteratively
by the method of least squares, the unknowns being determined in
such a way that the squares of deviations are minimized at the image
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Figure 6.7: Test array for camera calibration.

coordinates observed. Newer approaches are working with modern al-
gorithms such as balanced parameter estimation [23]. Bundle adjust-
ment thus allows simultaneous determination of the unknown object
coordinates, exterior orientation and interior orientation with all rele-
vant system parameters of the imaging system. In addition, standard
deviations are computed for all parameters, which give a measure of
the quality of the imaging system.

Calibration based exclusively on image information. This method
is particularly well suited for calibrating individual imaging systems.
It requires a survey of a field of points in a geometrically stable pho-
togrammetric assembly. The points need not include any points with
known object coordinates (control points); the coordinates of all points
need only be known approximately [22]. It is, however, necessary that
the point field be stable for the duration of image acquisition. The scale
of the point field likewise has no effect on the determination of the de-
sired image-space parameters. Figure 6.7 shows a point field suitable
for calibration.
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Unit of vectors: [µm] 0.7320

Figure 6.8: Residual mismatches after bundle adjustment.

The accuracy of the system studied can be judged from the residual
mismatches of the image coordinates as well as the standard deviation
of the unit of weight after adjustment (Fig. 6.8). The effect of syn-
chronization errors, for example, becomes immediately apparent, for
instance, by larger residual mismatches of different magnitude in line
and column direction.

Figure 6.9 gives a diagrammatic view of the minimum setup for sur-
veying a point array with which the aforementioned system parameters
can be determined. The array may be a 3-D test field with a sufficient
number of properly distributed, circular, retroreflecting targets. This
test field is first recorded in three frontal images, with camera and field
at an angle of 90° for determining affinity and 180° for determining the
location of the principal point. In addition, four convergent images of
the test field are used to give the assembly the necessary geometric
stability for determination of the object coordinates and to minimize
correlation with exterior orientation.

Optimum use of the image format is a precondition for the determi-
nation of distortion parameters. However, this requirement need not
be satisfied for all individual images. It is sufficient if the image points
of all images cover the format uniformly and completely.

If this setup is followed, seven images will be obtained roughly as
shown in Fig. 6.10; their outer frame stands for the image format, the
inner frame for the image of the square test field, and the arrowhead for
the position of the test field. It is generally preferable to rotate the test
field with the aid of a suitable suspension in front of the camera instead
of moving the camera for image acquisition. The use of retroreflecting
targets and a ring light guarantee proper, high-contrast reproduction
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Figure 6.9: Imaging setup for calibration [1].

Figure 6.10: Test field.

of the object points, which is indispensable for precise and reliable
measurement. A complete, commercially available software package
offering far-reaching automation of the process is described in Godding
[1].

Additional object information for calibration and orientation. Once
the imaging system has been calibrated, its orientation can be found by
resection in space. The latter may be seen as a special bundle adjust-
ment in which the parameters of interior orientation and the object co-
ordinates are known. This requires a minimum of three control points
in space whose object coordinates in the world coordinate system are
known and whose image points have been measured with the imaging
system to be oriented.

In addition to orientation, calibration of an imaging system is also
possible with a single image. However, as a single image does not allow
the object coordinates to be determined, suitable information within
the object has to be available in the form of a 3-D control-point ar-
ray [24]. But constructing, maintaining and regularly checking such an
array is rather costly, all the more so as it should be mobile so that
it may be used for different applications. The control pattern should
completely fill the measurement range of the cameras to be calibrated
and oriented to ensure good agreement between calibration and mea-
surement volumes.
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Figure 6.11: Scale setup for calibrating a one camera and b two cameras.

The expense is considerably less if several images are available. For
a two-image assembly and one camera, a spatial array of points that
need to be known only approximately plus, as additional information,
several known distances (scales) distributed in the object space will be
sufficient; this is similar to the previous paragraph. In an ideal case,
one scale on the camera axis, another one perpendicular to it, and two
oblique scales in two perpendicular planes parallel to the camera axis
are required (Fig. 6.11a). This will considerably reduce the object-side
expense, because the creation and checking of scales is much simpler
than that of an extensive 3-D array of control points.

A similar setup is possible if the double-image assembly is recorded
with several cameras instead of just one. This is, in principle, the case
with online measurement systems. An additional scale is then required
in the foreground of the object space, bringing the total number of
scales to five (Fig. 6.11b).

If at least one of the two cameras can be rolled, the oblique scales can
be dispensed with, provided that the rolled image is used for calibration
[24].

The setups described in Fig. 6.11 are, of course, applicable to more
than two cameras as well. In other words, all the cameras of a mea-
surement system can be calibrated if the aforementioned conditions
are created for each of the cameras. At least two cameras have to be
calibrated in common, with the scales set up as described. Simulta-
neous calibration of all cameras is also possible, but then the scale
information must also be simultaneously available to all the cameras.
If all cameras also are to be calibrated in common, this will have to be
done via common points.
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Figure 6.12: Principle of the plumbline method.

System calibration. As we have seen from the previous two para-
graphs, joint calibration and orientation of all cameras involved and
thus calibration of the entire system are possible if certain conditions
are met. With the aid of bundle adjustment, the two problems can, in
principle, be solved jointly with a suitable array of control points or a
spatial point array of unknown coordinates plus additional scales. The
cameras then already are in measurement position during calibration.
Possible correlations between the exterior and interior orientations re-
quired are thus neutralized because the calibration setup is identical
to the measurement setup.

Apart from the imaging systems, other components can be cali-
brated and oriented within the framework of system calibration. God-
ding and Luhmann [25] describe a technique in which a suitable pro-
cedure in an online measurement system allows both the interior and
exterior orientation of the cameras involved as well as the orientation
of a rotary stage to be determined with the aid of a spatial point array
and additional scales. The calibration of a line projector within a mea-
surement system using photogrammetric techniques was, for example,
presented by Strutz [26].

6.6.3 Other techniques

Based on the fact that straight lines in the object space have to be re-
produced as straight lines in the image, the so-called plumbline method
serves to determine distortion. The technique is predicated on the fact
that the calibrated focal length and principal-point location are known
[27].

According to Fig. 6.12, each of the straight-line points imaged are
governed by the relationship

x′ sinα + y ′ cosα = a (6.12)
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where x′ and y ′ can be expressed as follows:

x′ = xij + dxsym + dxasy

y ′ = yij + dysym + dyasy
(6.13)

where dxsym, dysym, dxasy, and dyasy correspond to the formulations
in Eq. (6.7), (6.9), and (6.10). It is an advantage of this method that,
assuming suitable selection of the straight lines in the object, a large
number of observations is available for determining distortion, and
measurement of the straight lines in the image lends itself to automa-
tion. A disadvantage of the technique is the fact that simultaneous
determination of all relevant parameters of interior orientation is im-
possible.

Lenz [16] presented a technique in which an imaging system was
similarly calibrated and oriented in several steps. The technique re-
quires a plane test fieldwith known coordinates, which generally should
not be oriented parallel to the image plane. Modeling radial symmet-
rical distortion with only one coefficient (see also Section 6.5.2) and
neglecting asymmetrical effects allows the calibration to be based en-
tirely on linear models. Because these do not need to be resolved in-
teractively, the technique is very fast. It is a disadvantage, however,
that here also it is impossible to determine all the parameters simulta-
neously and that, for example, the location of the principal point and
pixel affinity have to be determined externally.

Gerdes et al. [21] describe a method in which cameras are permit-
ted to be calibrated and oriented with the aid of parallel straight lines
projected onto the image. A cube of known dimensions is required for
the purpose as a calibrating medium. Vanishing points and vanishing
lines can be computed from the cube edges projected onto the image
and used to determine the unknown parameters.

A frequently used formulation for the determination of the param-
eters of exterior and interior orientation is the method of direct lin-
ear transformation (DLT) first proposed by Abdel-Aziz and Karara [28].
This establishes a linear relationship between image and object points.
The original imaging equation is converted to a transformation with
11 parameters that initially have no physical importance. By introduc-
ing additional relations between these coefficients it is then possible
to derive the parameters of interior and exterior orientation, including
the introduction of distortion models [29]. Because the linear formu-
lation of DLT can be solved directly, without approximations for the
unknowns, the technique is frequently used to determine approxima-
tions for bundle adjustment. The method requires a spatial test field
with a minimum of six known control points, a sufficient number of
additional points necessary to determine distortion. However, if more
images are to be used to determine interior orientation or object coor-
dinates, nonlinear models will have to be used here also.
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Figure 6.13: Measurement of a fender.

Figure 6.14: Rollei Q16 MetricCamera.

6.7 Photogrammetric applications

6.7.1 Applications with simultaneous calibration

The imaging setup for many photogrammetric applications allows si-
multaneous calibration of cameras. It is an advantage of this solution
that no additional effort is required for external calibration of the cam-
eras and that current camera data for the instant of exposure can be
determined by bundle adjustment. This procedure, however, is possi-
ble only if the evaluation software offers the option of simultaneous
calibration. As an example, let us look at measurement of an automo-
bile part (Fig. 6.13).

A total of nine photos were taken with a Rollei Q16 MetricCamera
(Fig. 6.14) with a resolution of 4096 × 4096 sensor elements. RolleiMet-
ric Close-Range Digital Workstation software was used for evaluation.
This allows fully automatic determination of 3-D coordinates, starting
with measurement of image points right up to computation of all un-
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a b

Figure 6.15: a Measurement of a car; b 3-D view of measured points.

known parameters. In addition to target sizes and the 3-D coordinates
of all measured points in the world coordinate system, these include
the camera parameters and all camera stations. For this example the
coordinates have an accuracy of approximately 1/100 mm in each of
the three coordinate axes. Figure 6.15a, b illustrates another exam-
ple from the automotive industry. Here, torsion tests were made in
the course of deformation measurements. The data were obtained by
photogrammetric means. A total of 3000 points all around the vehicle
were recorded in a total of 170 images with the aid of a digital cam-
era with a resolution of 3000 × 2000 sensor elements. Here also, the
camera was simultaneously calibrated during image acquisition. The
points measured were accurate to within about 5/100 mm. Most pho-
togrammetric applications for high-precision 3-D industrial metrology
work are based on simultaneous calibration. Numerous other uses can
be found in the aviation industry (measuring aircraft components and
fixtures), in the aeronautical industry (measuring satellites and anten-
nas), and in civil engineering (measuring finished components). Some
of these applications are discussed in Sections A2 and A7.

6.7.2 Applications with precalibrated camera

Robot calibration. At KUKA Robotertechnik of Augsburg industrial
robots have been reliably measured, adjusted and calibrated on the
assembly line at two specially installed workplaces during the past
two years [30]. To measure the required positions and orientations, a
photogrammetric metrology system consisting of one or two RolleiMet-
ric Réseau Scanning Cameras (RSCs) are mounted on a rugged tripod
(Fig. 6.16). Using a shiftable standard CCD sensor, these cameras reach
a resolution of 4200 × 4200 picture elements at an image format of 50
× 50 mm2 with an accuracy of better than 1µm in image space. The
orientation of the single images in relation to the entire image is done
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Figure 6.16: Robot adjustment.

in an optical-numerical way by a réseau measurement. Besides, this
principle, which is described in Riechmann [8], allows the focusing of
the camera without changing the interior orientation.

The cameras are controlled by a commercial PC with a standard
frame grabber, running under Windows NT. The PC serves for operator
prompting, for processing and outputting results and for connection to
the robot control. The measurement system is basically independent
of the robot control.

The interior orientation of the cameras is determined once in a spe-
cial calibration measurement. With this known interior orientation, it
is possible to determine the orientation of the cameras. Various target
plates 450 mm × 450 mm in size are used, with reflective targets as
control points, which are also identified as tools for the robot. A sec-
ond target plate of 600 mm × 600 mm with an adapter serves for prior
determination of the robot base and external orientation of the cam-
era. To transfer the different coordinate systems, highly precise bores
in the target plates are used with special adapters. A mechanical pre-
cision measuring machine serves as a higher-order metrology system
for measuring the bores.

After orientation the online measurement of the robots is possible.
The quality of the system orientation is verified by special measure-
ments. A recalibration of the system normally is necessary only in time
periods of some months.
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Other applications. Other photogrammetric applications for the 3-D
capture of objects can be found, for example, in accident photography
and in architecture. In these fields, it is primarily scale drawings or
rectified scale photos (orthophotos) that are obtained from the pho-
tograms. The cameras employed are generally calibrated for different
focus settings using the methods described in the foregoing. An ex-
ample is the RolleiMetric ChipPack with a resolution of 2000 × 2000
sensor elements. Special metric lenses, which guarantee reproducible
focus setting by mechanical click stops of the focusing ring, keep in-
terior orientation constant for prolonged periods. The data of inte-
rior orientation are entered in the software and thus used for plotting
and all computations. This guarantees high-precision 3-D plotting with
minimum expense in the phase of image acquisition.

6.8 Summary

The use of digital cameras for measurement purposes requires the
knowledge about different parameters, describing the interior camera
model and the exterior camera positions and orientations. The deter-
mination of the interior and exterior camera parameters is defined as
calibration and orientation of themeasuring system. It has been shown,
that—depending on the application—different strategies for the cali-
bration and orientation exist. Different mathematical models for the
description of optical measuring systems are usable. A focal point has
been the description of an integrated model, which defines the trans-
formation from image-space to object-space by six parameters of the
exterior orientation and different parameters for the camera geometry.
Effects from electronical, mechanical or optical influences (e.g., lens dis-
tortion) are corrected by the model. The described models have been
used for many applications and are sufficient for a wide range of cam-
eras. Current developments of digital cameras for measuring purposes
are using large image-sensors with higher resolution. On the other
hand, accuracy requirements are increasing for many applications. For
this reason future improvements and extensions of the mathematical
camera model can be necessary and helpful, taking into account spe-
cial problems of large sensors, such as sensor flatness or patching of
smaller sensor parts to complete sensors.
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7.1 Introduction

Electronic imaging using charge coupled devices (CCD) cameras and
digital image processing found widespread application in research, in-
dustrial production, communications, and consumer goods. Nowa-
days, 3-D image acquisition and processing appears to be on the verge
of a comparably stormy and far-reaching development. Fast and non-
contact optical shape measurements are of significant importance in
industrial inspection, robot vision in automatic assembly, and reverse
engineering. They are equally important for the surveillance of secured
areas, 3-D object recognition and navigation. Another application re-
quiring data about the geometrical shape of objects in 3-D space is
virtual reality .

Three-dimensional optical shape measurements deliver the abso-
lute 3-D geometry of objects that should be independent from the ob-
ject’s surface reflectivity, its distance from the sensor, and from illu-
mination conditions. Thus, 3-D optical sensors deliver the shape and
physical dimensions of an object, which are rotation-, translation-, and
illumination-invariant.

From the knowledge of the underlying physical principles that de-
fine the limitations of measuring uncertainty, one can design optimal
sensors that work just at those limits, as well as judge available sen-
sors. We will show that the vast number of known 3-D sensors are
based on only three different principles: triangulation, time-of-flight
measurement (TOF) including broad-band interferometry, and classi-
cal interferometry .

The three principles are different in terms of how the measuring un-
certainty scales with the object distance [1]. The measuring uncertainty
ranges from about one nanometer to a few millimeters, depending on
the principle and the measuring range.

It is the goal of this chapter to provide an overview of the techniques
for optical shape measurements by means of CCD cameras in a well-
organized and comparable hierarchical scheme. An insight is given into
the basic problems, and new developments are pointed out. The reader
will further learn that with only two or three different sensors a great
majority of problems from automatic inspection or virtual reality can be
solved. This chapter focuses on the applicability to real problems and
addresses the interests of potential users of 3-D surface measurement
sensors. It discusses the potentials and limitations of the major sensor
principles and gives examples of sensor realizations. Other overviews
of 3-D imaging techniques have previously been given [2, 3, 4, 5], and
in extended versions of parts of this chapter in CVA1 [Chapter 18–20].
A scientific review was given in [6].
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Figure 7.1: Principles of noncontact 3-D shape measurements.

7.2 Characteristics of 3-D sensors

7.2.1 Basic principles of depth sensing

As shown in Fig. 7.1, optical shape measurements are based on three
different principles: (I) triangulation, (II) time-of-flight measurements
and interferometry on rough surfaces, and (III) classical interferometry
at smooth surfaces. The classification is based on the fact that the
physically achievable measuring uncertainty δz of the three principles
scales differently with the distance z:

type I: δz ∝ z2, type II: δz ∝ z0, type III: δz ∝ z−1

In Fig. 7.1, interferometry of type II and type III are put together into
one box because in practice we get a measuring uncertainty of less than
1µm, while time-of-flight measurements are less accuarte bymore than
one or two orders of magnitude.

Triangulation normally determines an unknown visual point within a
triangle by means of a known optical basis and the related side an-
gles pointing to the unknown point.

Continuous wave (CW) and pulse time-of-flight techniques measure
the time of flight of the envelope of a modulated optical signal
(group velocity). Figure 7.17 shows the hierarchical partitioning of
this technique.

Interferometry measures depth also by means of the time-of-flight.
Now, however, coherent mixing and correlation of the wavefront
reflected from the 3-D object with a reference wavefront is required.
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Figure 7.2: Relative resolution of methods for optical shape measurements.

7.2.2 Depth map

The depth information measured by a 3-D sensor constitutes a spatial
point cloud. It can be given on a regular grid either in Cartesian coordi-
nates z(x, y), or in polar coordinates R(θ, φ). This type of information
is called a depth map or depth image. For many applications, this in-
formation is sufficient. Together with the depth map, most 3-D sensors
also deliver a signal amplitude. Thus, we obtain a standard intensity or
gray-scale 3-D surface image G(x, y, z).

Given the tremendous advances in computer graphics, it is no longer
a problem to compute realistic visualizations from 3-D object surfaces
even in real time. The true problem remains the fast and precise acqui-
sition of the depth map within a large volume and in a natural environ-
ment. Today, we are still far away from such a complete and video-rate
depth image acquisition.

7.2.3 Measuring range and uncertainty

The most critical parameters of such systems are the depth-measuring
range ∆z and the depth resolution δz. Figure 7.2 illustrates the mea-
suring and resolution ranges that are covered by the existing industrial
measuring systems. The figure shows the relative uncertainty δz/z as
a function of the object distance z. Due to electronic time drifts or
mechanical instabilities, the systematic measuring error (accuracy) can
be much larger than the measuring uncertainty (precision) δz. The in-
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creasing use of imaging systems for all three techniques reduces the
measuring times significantly.

The lowest absolute measuring uncertainty δz is achieved by inter-
ferometry, which achieves values better than λ/100. Multiwavelength
techniques increase the depth range ∆z from micrometers to meters.

Triangulation techniques can be used with high accuracy from the
millimeter range (depth of focus techniques, Chapter 11.3) to the 100km
range (classical photogrammetry), or even up to distances of light years
with the earth orbit diameter as the optical baseline (astronomy).

So-called active triangulation systems with a projected fringe pat-
terns work almost like a 3-D camera (see Section 7.3.2). Online pho-
togrammetry with digital cameras enables fast 3-D measurements of
special targets attached to the 3-D object (see Section 7.3.3). A complete
surface 3-D reconstruction outside the targets, however, still requires
several minutes if at all possible by naturally existing points appropri-
ate for correspondence.

With only 6.7ps time-of-flight per millimeter, time-of flight depth
estimation is an extreme challenge for time measurements. The mea-
suring uncertainty δz due to electronic time drifts are practically in-
dependent of the distance and are in the millimeter range. Significant
improvements are possible if the time-consuming and error prone cor-
relation process is transferred asmuch as possible from electronic com-
ponents to optical components and done in parallel. This is realized
in a new inherently mixing and correlating photodetector, the photonic
mixer device (PMD), which makes possible a high-integral 3-D imaging
sensor [7].

7.2.4 Types of radiation used in depth sensing

Microwaves are particularly suitable for large-scale 3-D measurements
either by triangulation (e. g., global positioning system (GPS), determi-
nation of an unknown point of a triangle by three sides) or directly
by time-of-flight measurements (e. g., conventional radar and synthetic
aperture interferometry) (see [8, 9, 10]). For industrial production au-
tomation, these techniques, in general, do not reach the required angu-
lar resolution due to diffraction. A circular antenna with a diameter d
generates a radiation cone (Airy pattern, see Chapter 3) with an angle
2α, where

sinα = 1.22λ
d

= w
2f

(7.1)

If we use, for example, an antenna with d = 122mm diameter and an
extremely short microwave (λ = 3mm, ν = 100GHz), the opening angle
2α of the radiation cone is 60mrad and the minimum spot size or waist
w is already 60mm at 1m distance, respectively, at the focal length f .
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For ultrasound we get the same relations for the same wavelength of,
for example, λ = 3mm (ν = 110kHz in normal atmosphere). Additional
difficulties with ultrasound are the significant sensitivity of the propa-
gation speed of sound from pressure and temperature (with a relative
change of about 2.2×10−3 per °C and only −0.93×10−6 per °C for light)
and, moreover, the increasing attenuation at higher frequencies and a
high reflectivity that is similar to a mirror of technical surfaces.

In contrast to microwave and ultrasound, optical 3-D sensors pos-
sess a 103 to 104 times higher lateral and angular resolution due to
the shorter wavelength in the range of 300nm (ultraviolet) to 3µm (in-
frared) (Section 2.2.1).

7.2.5 Scanning versus staring image acquisition

Point-measuring sensor principles (laser triangulation, time-of-flight,
laser heterodyne interferometers as shown in Figs. 7.4 and 7.16) can be
used in scanning mode for surface measurements. As a major advan-
tage compared to area-based sensors, parameter optimization is possi-
ble for every measured point. Dynamic control of lens focus, aperture,
and signal amplification can, in principle, be used to overcome the phys-
ical limitations of fixed focus sensors, which need small apertures for
a large depth of focus (Section 7.3.6, [11]).

7.3 Triangulation

Triangulation is the most widely used technique for optical shape mea-
surements. Figure 7.3 shows the hierarchy of the most important vari-
ants, which, despite the same basic principle, partly appear extremely
different. At the highest level, we distinguish the following: (1) fo-
cus techniques; (2) active triangulation with structured illumination; (3)
passive triangulation techniques on the basis of digital photogramme-
try and stereoscopy; (4) theodolite-measuring systems; and (5) shape-
from-shading techniques. The rapid progress of optical triangulation,
specifically active with structured light and passive with digital pho-
togrammetry and with combinations of both, is already a big step to-
wards the goal of a 3-D triangulation camera and real-time stereovision.
In the following subsections, a survey of the five basic variants of tri-
angulation techniques is given.

7.3.1 Focus techniques

The critical parameters of focus techniques are the diameter of the
diffraction-limited spot or waist w in the focal plane

w = 2.44λf
d

= 2f sinα (7.2)
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Figure 7.3: Hierarchy of the most important principles of triangulation tech-
niques.

and the Rayleigh depth of focus

∆zR = λ
sin2 α

(7.3)

where sinα, f , and d are the numerical aperture, the focal length, and
the free diameter of the optical system, respectively.

The technique of confocal microscopy (1.1 in Fig. 7.3) utilizes the
double spatial filtering at the focal plane by both illumination and de-
tection of the object using a pinhole. The detector “sees” only illumi-
nated points at the focal plane. Because only one single point is mea-
sured at a time, the acquisition of a true 3-D image requires scanning
in all three spatial directions x, y , and z. Confocal microscopy with a
microlens array and a CCD matrix sensor acquires one image at a time
and thus needs only a depth scan. Area-extended measurements are
also achieved by the systems reported by Engelhardt and Häusler [12]
and Engelhardt [13]. A detailed account on 3-D confocal microscopy is
given in CVA1 [Chapter 21].

Controlled focusing (1.2 in Fig. 7.3) delivers a height profile of a
surface z(x, y) by scanning the xy plane with a fast Z control using,
for example, a differential photodiode for high angular resolution [14,
15]. With the defocusingmethod (1.3 in Fig. 7.3), the distance can either
be determined by the diameter or the intensity of the spot. A depth
scan can be avoided by spectral analysis provided that the focal length
f depends approximately linearly on the wavelength [16].
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Figure 7.4: Triangulation-based point and line sensors for surface measure-
ment: a point triangulation sensor; b light sectioning with a single light plane;
c active-optical sensors with a calibrated camera-projector pair perform high-
est sampling rate and lateral resolution. Every camera pixel can, in principle,
produce a separate coordinate.

7.3.2 Active triangulation

Active triangulation needs structured illumination (Fig. 7.4). Either a
small light spot is projected onto the object (we call this a “point sensor”
because it measures the distance of just one single point). Or we project
a narrow line (“line sensor”; this method is known as light sectioning
[17]). Or we project a grating (phase-measuring triangulation [18, 19]).

With light point or 1-D laser triangulation (2.1 in Fig. 7.3), the light
source emitting a collimated beam (pencil beam), the detector, and the
illuminated object point form the so-called triangulation triangle. On
the side of the sender, the angle to the triangulation basis is fixed while
on the side of the detector it is determined either by a CCD line sensor
or a position-sensitive photodetector (PSD). From this angle, the depth
can be determined. The principally achievable minimum distance un-
certainty δZ for laser illumination is given by

δZ = λ
2π sinθ sinαd

(7.4)

and the measuring range ∆z (two times the depth of focus [20]) by

∆z = 2λ
sin2 αd

(7.5)

where sinαd and θ are the aperture of the detector optics and the tri-
angulation angle, respectively. The acquisition of a depth image with
this technique requires an xy scan [14, p. 6], [21, p. 1].

With the lightsheet technique (2.2 in Fig. 7.3) or 2-D laser triangu-
lation, generally a laser beam is expanded via cylindrical lenses or by
a scanning device to a light sheet. The cross section of the lightsheet
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Figure 7.5: Lightsheet triangulation: a instrument; b detector image.

and of a 3-D object form a light line (the height profile) that is imaged
onto a 2-D detector. Thus, only a 1-D scan perpendicular to the light
plane is required for 3-D imaging [14, 22, p. 8], Section A5.

Figure 7.5 shows schematically such a lightsheet triangulation in-
strument. The height profile generates the charge image on the CCD
detector shown in Fig. 7.5b. In order to obtain maximum depth resolu-
tion, the detector plane, the plane of the image-forming optics (perpen-
dicular to the optical axis), and the plane of the object to be measured,
have a common axis and, thus, meet the Scheimpflug condition.

The light-volume triangulation (2.3 in Fig. 7.3) illuminates the whole
3-D object to be measured with structured light. Thus, no scanning
is required. For materials that scatter light from the surface (and not
from subsurface regions), light projection can be used to produce tex-
tures on the surface. For example, the projection of pseudo-noise is
often used in digital photogrammetry with two or more views. Other
projection patterns include line grids, crossed lines and sine grids. Ac-
tive triangulation by projected textures works quite well on smooth
and nonspecular surfaces. The lateral continuity of the surface is im-
portant, because the image processing needs neighboring pixel values
to find the center of the spot, the center line(s) or the absolute phase
of the sine grid [23].

With the Moiré technique (see 2.3.1 in Fig. 7.3), the projected texture
is observed through an adapted reference structure. The superposition
of these two patterns produces spatial beat frequencies, respectively,
and a beat pattern with much lower wave numbers that can be observed
by a detector with a correspondingly lower spatial resolution. In this
way, the depth resolution can be increased by one order of magnitude
over conventional stripe projector systems [22, 24, p. 16].
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All single pattern-based measuring principles use the intensity dis-
tribution in small image areas. This lateral image processing assumes
lateral continuity of light remission and of the topology. Also, the lat-
eral resolution of 3-D information will be reduced. This is not accept-
able in industrial applications with nondiffuse and nonsmooth object
surfaces. Only sensors that are based on local encoding/decoding prin-
ciples instead of image correlation, can get results under such critical
circumstances. The sequentially coded light-volume technique (2.3.2 in
Fig. 7.3) illuminates the 3-D object with a sequence of binary patterns
with increasing wavenumber in such a way that each pixel can be asso-
ciated with a code, for example, a 10-digit Gray code, from which the
absolute distance can be inferred [14, 25, p. 10].

Another variant of the fringe projection technique, which has also
found widespread application, is the phase-shift or projected fringe
technique (2.3.3 in Fig. 7.3). A programmable LCD projector illuminates
the scene with sinusoidal patterns with different phase positions. In
order to evaluate the phase information, at least 3 or 4 (120° or 90°
phase shift) independent measurements are required [14, p. 12]. This
technique also results in a significant depth resolution. In conjunction
with an additional sequential binary coding (so-called Gray-code phase-
shift technique), absolute depth can be measured with high resolution.

The color-coded light-volume technique (2.3.4 in Fig. 7.3) requires
only one single image as three color channels are acquired simultane-
ously. The phase and thus the depth can, for example, be computed
from red, blue, and green stripe patterns that are phase shifted from
each other by 120° [26, 27].

In the following sections, we show how appropriate sequentially
coded light can be realized in order to encode the depth of individual
pixels by sequential illumination.

MZX-code. The first example uses all six permutations of the three
patterns—black, white, and wedge (Fig. 7.6a). By using all combinations
of three projector levels it fulfills the constraint that at least one value
must be white and one must be black. A second property is that the
spatial gradient of decoder output is constant and maximal. This code
was named MZX for Maximum level, Zero level, Crossover [28]).

Phase shifting with a single-frequency sine pattern. A great vari-
ety of interferometrical phase-shifting techniques has been developed
since the 1970s. Phase-calculating and phase-unwrapping algorithms
can also be used in triangulation-based sensors where periodic patterns
are projected [29, 30, 31, 32, 33].

The advantage of a set of phase-shifted patterns compared to a sin-
gle pattern is the same as described for MZX code: from three gray
values that are measured at the same pixel position, a local phase can
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Figure 7.6: a The permutation of a normalized wedge produces the MZX code
with a six-times higher spatial resolution compared to a wedge. b The periodical
repetition shows a pattern that is close to the phase-shift principle with sine
functions (0°, 120°, and 240°)

be evaluated that is independent from the lateral distribution of gray
values.

This local phase value, which is always in the range (0,2π ), can be
seen as an absolute phase ϕ modulo 2π , where ϕ corresponds to the
projector coordinate ζp. If the object surface is continuous, the abso-
lute phase can be calculated by an incremental phase-unwrapping algo-
rithm, which allows no phase increments between neighboring pixels
larger than π/2.

Phase shifting with two or more frequencies. To produce absolute
and local phase information ϕ(x, y) at noncontinuous surfaces, mul-
tifrequency (heterodyne) principles have been used in interferometry
[32]. Independent phase-shift measurements at slightly different light
frequencies or wavelengths (Fig. 7.7) lead to an absolute distance mea-
surement.

Gray codes. Binary Gray codes (Fig. 7.8) [34, 35] as well as multi-
frequency phase-shift techniques with periodical and continuous pat-
terns [29] have been widely used to acquire dense (that is, in principle,
for each camera pixel) and unique 3-D point data from objects in short
range. To binarize the digitized images, it is necessary to know the lo-
cal threshold (which may be different for each pixel). There are several
ways of using additional images to calculate this threshold:



188 7 Three-Dimensional Imaging Techniques

Figure 7.7: Projected patterns with 0°, 120°, 240°phase shift) and 3 groups of
slightly different frequencies, each with phase steps of 0°, 90°, 180°, and 270°.

Figure 7.8: Binary gray code (additional images for threshold generation are
not shown).

1. project unstructured gray with 50% intensity and use the acquired
image as threshold; or

2. project unstructured white and black and use the averaged images
as threshold; or

3. project both normal and inverse patterns, and use the sign (1,0) of
the difference as bit.

Hybrid codes. As developed by Malz [28], hybrid codes combine the
advantages of digital and analogue principles and yield results close to
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Figure 7.9: a Hybrid code (binary Gray code, MZX code); b decoder function.

the theoretical limits, which can be achieved with temporally encoded
light structures.

The trapezoid light distribution of the MZX subcode is continuous in
space and intensity. Hybrid codes can be used with variable numbers of
images (w≥ 3) and also with variable digital code bases (binary, ternary,
quarternary gray codes). It has the highest resolution compared to all
other temporal principles (under equal conditions, namely, the number
of images used, and the lowest acceptable number of separable gray
levels. See also Fig. 7.9).

Light fringe projectors. An important factor in the signal chain is
the programmable light projector. The decoder result can only be linear
and noiseless, if the spatial projectormodulation is exact. Hybrid codes
need analog projecting devices for best results. At least, the decoder
function has to be strictly monotone with no steps.

Some technical light projectors, however, are not able to produce
continuous sine or MZX-modulation. For example, a rectangular pro-
jection pattern used for a phase-shifting with 90° produces a step-by-
step decoder function. This causes systematic errors of the detector
signal in the range of ±π/4 (Fig. 7.10). A projection device for accurate
sinusoidal fringes was realized by Häusler et al. [36].

7.3.3 Passive triangulation

Passive triangulation techniques (3 in Fig. 7.3) basically include the dif-
ferent forms of digital photogrammetry and (as a special subclass stere-
ovision). Passive in this context means that the geometrical arrange-
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Figure 7.10: Binary light modulators produce systematic errors in the detector
signal.

ment of the illumination is not considered (Fig. 7.11). In the area of in-
dustrial inspection, the classical photogrammetric techniques for eval-
uation of aerial photographs have been optimized for close distances.
These techniques have formed the new field of close-range photogram-
metry (Chapter 6). For photogrammetric techniques, at least three dif-
ferent views of a point are required to determine its 3-D position. For
dynamic processes, often multiple cameras with known relative posi-
tions (3.1 in Fig. 7.3) or self-calibrating methods (3.2 in Fig. 7.3) are
used. For static scenes, a single camera that takes images from three
or more different unknown views is sufficient (3.3 in Fig. 7.3) [37]. The
numerical problem is solved by bundle adjustment , which calculates
all unknown parameters for camera(s) position(s), and object points
simultaneously.

If a 3-D object is imaged from different perspectives with a high-
resolution digital camera, relative standard deviations in the positions
σX/X, σY /Y , and σZ/Z of better than 10−5 come close to time-consum-
ing classical photographic techniques of photogrammetry. High com-
puting power and optimized algorithms make online inspection with
about 50 targets and a period of 4 s possible. Photogrammetric camera
calibration and orientation estimation is dealt with in Chapter 6.

Feature-based target points. A fundamental concept in photogram-
metry is the intersection of rays in object space. The quality of inter-
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Figure 7.12: a Different target types for point coordinate measurement with
subpixel precision. b Subpixeling with circular targets needs extended image
regions of interest (e. g., 16×16 pixels for the central blob).

section “points” determines the quality of measurement. In fact, these
points can be represented by any spatial physical features or optical
phenomena, provided that there are models that fit precisely indepen-
dent from viewing angle. Temporal invariance is also required, if se-
quential imaging is used. Good physical representations of points can
be characteristic coordinates of geometrical primitives (like spheres,
circles, etc.) or radiometric primitives (as edges between areas of dif-
ferent diffuse scattering materials). It is important that the borders
between regions in the image are borders between different diffuse ma-
terials only.

Artificial targets. Well-designed artificial targets are used to estab-
lish stable intersection points in the scene or on the object. With retro-
reflecting targets or diffuse white flat or spherical targets of good opti-
cal quality (homogeneous and symmetrical intensity distribution) and
sufficient size (5–10 pixels diameter) standard deviations of 1/20–1/50
pixels in the image plane can be achieved [38] (Fig. 7.12).

The advantages of close-range photogrammetry with targets are
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• high accuracy of target measurement, and

• short measuring time.

However, some disadvantages have to be accepted:

• the object has to be prepared and cleaned,

• the measured coordinate points are target coordinates, but not co-
ordinates of the object itself,

• interesting object features like edges, corners or holes are disconti-
nuities and cannot be prepared with standard targets,

• high densities of coordinates cannot be achieved with targets, be-
cause there is always a need for extended image regions of interest
for each point.

Simple errors on targets, illumination, optics, sensor chips, sensor
electronics reduce the accuracy substantially. For example, mechanical
and optical errors on targets can be:

• variable thickness of attached retroreflective targets,

• enclosed particles and bubbles,

• dirty target surface and frayed target edges,

• virtual dislocations from inhomogeneous illumination.

Texture-based matching. Obviously, target-based measurement is
good for a limited number of selected points. But how can we measure
surfaces and produce point clouds with thousands of points? Higher
spatial sampling rates can be achieved using textures on the object
surface. To define and find homologue points from different views,
these textures should be dense, high frequency and aperiodic to get
unique and narrow correlation peaks for different scales. Texture anal-
ysis needs correlation windows of sufficient sizes (typically 10–25 pix-
els diameter) to get stable and unique results with high precision. This
reduces the lateral resolution and the available number of independent
coordinate points.

Remote sensing applications need and use natural textures on the
surface. Parts in industrial production processes, however, are often
made from one material with low texture contrast. Such surfaces can-
not be measured directly with passive photogrammetric techniques.
Painted or printed diffuse textures would be optimal, but this kind of
object manipulation would not be acceptable in most applications.

7.3.4 Theodolites

So far, theodolites are still the most accurate triangulation systems
available with a relative distance error of about 5 × 10−6. However,
they require long measuring times. A target is focused with at least



7.3 Triangulation 193

two theodolites. The horizontal and vertical angles are measured elec-
tronically, and the 3-D coordinates of the target are computed from the
measured angle and the known positions of the theodolites [14, p. 14].
Theodolites are used for accurate measurements of large-scale objects.
In modern systems, sometimes a 1-D laser radar distance is integrated.

7.3.5 Shape from shading

The shape-from-shading techniques delivers 3-D information as sur-
face normals of the surface elements from the image irradiance and
the known position of the camera and the light sources. From this in-
formation, the 3-D shape can be computed [39, p. 39]. The various types
of shape-from-shading techniques including extensions using multiple
images with different illuminations or image sequences with moving
light sources (photometric stereo) are discussed in detail in CVA2 [Chap-
ter 19].

7.3.6 Limits and drawbacks of triangulation

Random localization errors. The object surface can be either opti-
cally smooth like a mirror, or it can be optically rough like a ground
glass. It is important to note that the attribute smooth or rough de-
pends on the lateral resolution of the observation optics: If we resolve
the lateral structure of a ground glass, for example, by a high-aperture
microscope, the surface is smooth for our purpose. “Smooth” means
for us that the elementary waves that are collected from the object to
form a diffraction-limited image spot contribute only with minor phase
variations of less than ±λ/4. If there are larger phase variations within
the elementary waves, then we have diffuse reflection, or scattering
(Chapter 2).

The weakness of point triangulation is obvious: it is not robust
against shape variation of the spot image. And just such a variation is
introduced by speckle, as shown in Fig. 7.13. As the shape of the spot
image depends on the unknownmicrotopology of the surface, there will
be a principal random localization error, theoretically and experimen-
tally determined in Dorsch et al. [40]. Its standard deviation δzm will
be given by

δzm = Cλ
2π sinuobs sinΘ

(7.6)

where θ is the angle of triangulation, sinuobs is the aperture of ob-
servation, λ is the wavelength of light, and C is the speckle contrast.
The speckle contrast is unity for laser illumination. We have to em-
phasize that it is not the monochromaticity that causes speckle. It is
the spatial coherence. And strong spatial coherence is always present,
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Figure 7.13: a Spot image after reflection at a smooth surface; b spot image
after reflection at a rough surface. The localization of the spot image is possible
only with some uncertainty, introduced by the surface microtopology to which
we have no access.

if the aperture of the illumination uill is smaller than the aperture of
observation. With a small light source we can achieve high contrast
speckles, even if the source emits white light! Hence, Eq. (7.6) is valid
for phase-measuring triangulation as well; we just have to use the cor-
rect speckle contrast, which is smaller than unity for properly designed
PMT systems [41].

Equation (7.6) introduces a physical lower limit of the measuring
uncertainty of triangulation sensors (type I). For a macroscopically pla-
nar ground glass with a surface roughness of 1 µm, using a sensor with
an aperture of observation of 1/100, an angle of triangulation of 20°,
and a wavelength of 0.8 µ, from laser illumination, we will find a stan-
dard deviation of the measured distance of about 37 µ, which is much
larger than the surface roughness. Such a large statistical error is not
acceptable for many applications.

In order to overcome this problem, we have to destroy spatial co-
herence! For a point sensor this can be done only at the object sur-
face. Figure 7.14 displays the result of an experiment that proves the
importance of spatial coherence for distance uncertainty by using a flu-
orescent coating producing perfectly incoherent reflection. A different
method of destroying spatial coherence is to heat up the surface and
make it thermally radiant. This happens in laser material processing.
We make use of the thermal radiation from the laser-induced plasma,
to measure the material wear on line, with very low aperture, through
the laser beam, with an uncertainty of less than 5 µm [41].
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a b

Figure 7.14: a Observed image spot from a rough surface, measured with spa-
tially coherent triangulation (laser illumination). b The same object measured
in fluorescent light: the surfaces were covered with a very thin fluorescent film.
Because fluorescence is perfectly incoherent, the noise is dramatically reduced.
This experiment proves the large role of spatial coherence as a limiting factor
in triangulation.

As the two preceding possibilities are not generally applicable, the
question arises as to whether we can reduce spatial coherence by illu-
mination with a large source. This can be done principally for phase-
measuring triangulation. However, for practical reasons, the size of the
illumination aperture can not be much larger than that of the observa-
tion aperture. Hence, there will always be a residual speckle contrast
of c = 0.1 or more. Introducing this into Eq. (7.6),we will get a reduced
measuring uncertainty [41].

Shape alterations of the spot image. Triangulation usually does not
even reach the physical limit on real technical surfaces, because the mi-
crotopology of the milling or turning process causes errors much larger
than that of good ground surfaces. The reason is again the sensitivity
of triangulation against shape alterations of the spot image. For real tri-
angulation sensors that can measure macroscopic objects, it turns out
that, in practice, we cannot get a better uncertainty than about 5µm.

Inhomogeneous spatial resolution and shading. A further draw-
back is that in triangulation, illumination and observation are not coax-
ial. Hence, we cannot avoid shading: some parts of the object are
either not illuminated or cannot be seen by the observation system.
From Fig. 7.15, we see that in close-range applications, object-camera
and object-projector distances can vary greatly, and this affects the lat-
eral image and the longitudinal range resolution in a more geometrical
sense. Throughout the measurement space there is a variety of voxel
sizes and shapes. Voxels are more square near N , more rhomboid near
F , and more rectangular near L and R. Diffraction and defocusing, as
well as the variation of surface orientation relative to camera and pro-
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jector axes lead to additional problems. The apertures of camera and
projector lenses are rather poor compromises: they should be open for
higher contrast and signal-to-noise ratios at limited projector intensi-
ties. On the other hand, they should be reduced for a wide depth of
focus reaching from N to F .

Another critical effect is the variable frequency transfer from pro-
jector to camera. Figure 7.15b shows the variation in the projector-to-
camera frequency transfer function for a cylindrical object. Only the
regions Ia and b fulfill the Nyquist criteria (e. g., the sampling frequency
must be at least twice the upper limit of the object spectrum). The in-
creasing spatial frequency seen by the camera in region Ic leads to a
strong undersampling and crosstalk between neighboring pixels and
finally results in decoding errors. Regions II, III and IV are not measur-
able with this sensor position and have to be measured from different
views.

In addition to optical resolution effects, the variation of surface ori-
entation relative to camera and projector causes extreme intensity vari-
ations on nondiffuse surfaces. Even on a perfect lambertian surface,
the camera sees lower intensities in region Ia. Finally, there remains a
small measurable region Ib on the cylinder. In the center of the sensor
workspace, we find the best conditions for the measurement.

7.4 Time-of-flight (TOF) of modulated light

The distance of an object or the depth z can easily be determined by
the echo time-of-flight (TOF) τ of a light signal sent by the sensor and
reflected back from the object to the sensor via

z = cτ/2 (7.7)



7.4 Time-of-flight (TOF) of modulated light 197

a

laser range sensor

(pulse, phase, chirp

measurement)

cylindrical

object

distance

Figure 7.16: Principle of a time-of-flight sensor.

This basic relation is valid for both time-of-flight and interferometric
distance measurements of type II (Fig. 7.16). In the first case, the time-
of-flight of a modulated optical signal, that is, the group velocity , is
measured. Generally, this is done by correlation with a suitable refer-
ence signal. Therefore, the partitioning in Fig. 7.17 distinguishes be-
tween the different types of signals: (1) pulse modulation; (2) contin-
uous wave (CW) modulation; (3) and pseudo-random modulation. The
basic problem of all TOF techniques is the extremely high speed of
light of 300m/µs or 300µm/ps, which requires correspondingly high
temporal resolutions for the measuring techniques.

7.4.1 Pulse modulation

With pulse modulation, the time of flight is measured directly by cor-
relating a start-and-stop signal with a parallel running counter. Pulse-
modulating techniques can distinguish multiple targets. A disadvan-
tage is the temperature-sensitive time delay and the nonlinearity of the
transients of pulsed laser diodes in addition to the high demands in
bandwidth and dynamics for the amplifiers.

7.4.2 Continuous wave (CW) modulation

This principle of TOF measurement can be understood as a sort of ra-
dio wave (RF) interferometry based on an optical carrier modulation
and in that way as “Optical RF Interferometry” (ORFI). All imaginable
variations are similar to that of structured illumination interferometry
in triangulation as well as to that in rear optical interferometry. The
echo-TOF τ of sine wave modulation can be determined either by het-
erodyne mixing (different frequencies are mixed, resulting in the beat
frequency and phase difference ϕ = 2πντ) or by homodyne mixing
(same frequencies are mixed, resulting in a baseband signal propor-
tional to cosϕ). The frequency-modulated chirp modulation is used
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Figure 7.17: Hierarchy of the most important principles of modulation-based
optical depth measurements [42, 43]; [14, p. 26].

for higher resolution or to determine the TOF-dependent frequency
shift or to expect pulse compression for multitarget detection. The
low range of a unique depth determination of only ∆z = λm/2 can be
extended by rectangular 0° to 180° switching of the phase of the rect-
angular frequency. A definite distance measurement is then possible
using several measurements with different switching frequencies ac-
cording to a Gray code in the same way as with the sequentially coded
structured light-projection technique (Section 7.3.2). Because of the
variety of modulation techniques, Fig. 7.17 further partitions only the
sinusoidal modulation techniques.

Three-dimensional optical shapemeasurementswith TOF techniques
is (in contrast to 1-D geodetic distance measurements) not frequently
used in industrial applications. This is due to the principal technical
problems discussed at the beginning of this section. The block (2.1)
in Fig. 7.17, labeled “Lightbeam,” describes 1-D TOF instruments that
require a 2-D scanning system for the acquisition of depth images. If
a modulated lightsheet or plane is used (2.2 in Fig. 7.17), we get 2-D
information as a light stripe in space. In this case, a 1-D scanner is
sufficient. With a modulated light volume, no scanning is required at
all. In this case, the receiver requires a 2-D mixer for CW demodulation.
It produces a radio-frequency modulation interferogram in which the
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Figure 7.18: Hierarchy of the most important measuring principles for depth
measurements on the basis of optical interferometry.

depth information is encoded and can be detected by a CCD camera
[44]. This field of ORFI is of growing importance [45].

7.5 Optical Interferometry (OF)

Classical interferometry is a technique to measure smooth (polished)
surfaces. A coherent wavefront is split into a measuring (or object)
and a reference wavefront. These are superimposed (correlated) again
in a detector as illustrated in Fig. 7.23. If a 2-D detector is used, an
interferogram or correlogram is generated, indicating the phase shift
over the detector area. With at least three measurements with differ-
ent phase positions of the reference, the phase shift between the ref-
erence and the signal wavefronts can be determined according to the
phase-shift principle. Unfortunately, this technique cannot determine
absolute depth. Because of the ambiguity of the signal in multiples
of λ/2, a unique depth determination is only possible in this narrow
depth range. With homodyne and heterodyne interferometry, a res-
olution better than λ/100 and λ/1000, respectively, can be reached.
The high depth accuracy of interferometric measurements requires a
mechanically very stable instrument.

A large number of different interferometric depth-measuring sys-
tems with different measuring properties is currently available [46,
p. 23], [47, p. 66]. For practical applications in 3-D shape measure-
ments, several types of instruments are predominantly used and con-
tinuously improved (Fig. 7.18).

7.5.1 Multiwavelength interferometry

Multiwavelength interferometry (1 in Fig. 7.18) offers exceptional fea-
tures for industrial applications. It is possible to perform absolute dis-
tance measurements over up to several ten meters with resolutions in
the nanometer range under ideal conditions. A basic characteristic of
multiwavelength interferometry is the generation of beat frequencies in
the gigahertz and megahertz range by the superposition of two closely
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a

b c

Figure 7.19: Speckle interferometry: a Schematic illustration of the instrument
setup; bDifference interferogram showing a form change; c 3-D reconstruction.

spaced wavelengths. The “synthetic” wavelengths of these beat fre-
quencies determine (instead of the wavelength of the light itself) the
range in which distances can be measured without ambiguity [47, 48].

7.5.2 Holographic interferometry

Holographic interferometry (2 in Fig. 7.18) enables deformation of 3-
D objects caused, for example, by thermal or mechanical stress to be
measured in the nanometer range. A hologram of the original object
is coherently superimposed by the one under deformation. The result-
ing interferogram describes the deformation and can be captured or
observed online, for example, by a video camera [14, p. 32].

7.5.3 Speckle interferometry

Speckle interferometry (3 in Fig. 7.18) utilizes an otherwise disturb-
ing effect in optical metrology for exact deformation measurements.
Speckles are generated when coherent light is reflected from a rough
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surface. The reflected wavefronts interfere with each other on the de-
tector surface and generate a speckle pattern that is characteristic for
the surface roughness elements. If an additional reference beam gener-
ates a second speckle pattern, this is coherently superimposed on the
first one and produces a speckle interferogram.

Figure 7.19a shows the typical setup of a so-called electronic speckle
interferometer (ESPI). After the object is deformed, a second speckle in-
terferogram is captured. If this interferogram is subtracted from the
previous interferogram of the original object, a difference interfero-
gram is obtained as shown in Fig. 7.19b. The distance between the
stripes corresponds to a height difference of λ/2. At least three ex-
posures are required to obtain a difference height image ∆Z(x, y) as
shown in Fig. 7.19c [2 S.34][31].

7.5.4 White-light interferometry

White-light interferometry or the has a unique properties, as time-of-
flight measurements: the achievable measuring uncertainty does not
depend on the distance z nor the aperature of illumination. Hence this
method, called coherency radar (4 in Fig. 7.18) can measure with high
accuracy the depth of narrow boreholes. The setup equals a Michel-
son interferometer. In one arm of the interferometer the object to be
measured is located, and in the other arm a CCD camera is located.

Until recently, rough surface interferometry was not possible be-
cause the speckles in the image plane of the interferometer display an
arbitrary phase, with the phase within each speckle independent from
the phase in other speckles [49]. Therefore, we cannot see fringes if
we replace one mirror in a Michelson interferometer by the rough ob-
ject. And it is useless to evaluate the phase of the interference contrast
within each speckle. There is no useful information within that phase.

However, there is a way to measure rough surfaces with an uncer-
tainty in the 1µm regime [50]:

1. The phase is constant within one speckle, allowing us to generate
interference contrast in each speckle separately if only speckles are
generated. This can be accomplished by using a sufficiently small
aperture of illumination (as explained in preceding material)—even
in the case of a white, extended light source.

2. Broadband illumination is used to exploit the limited coherence length
of the light. It turns out that interference contrast can be observed
only within those speckles that satisfy the equal path length con-
dition: The path length in the object arm of the interferometer has
to be approximately the same as that in the reference arm. For a
certain object position on the z-axis, we will see interference con-
trast at one certain contour line of equal distance (or “height”). To
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a b

Figure 7.20: a Principle of the “coherence radar.” b The correlogram shows the
(temporal) interference pattern in one single speckle while scanning the object
along the z-axis.

acquire the shape of the object, we have to scan the distance (along
the z-axis; see Fig. 7.20).

While scanning through the z-axis, each pixel of our observation
system displays a modulated periodic time signal, which is called “cor-
relogram.” It is displayed in Fig. 7.20b. The length of this correlogram
signal is about coherence length, and the time of occurrence, or the
position zm(x, y) of the scanning device at that time, is individual for
each pixel: The correlogram has its maximum modulation, if the equal
path-length condition is satisfied. We store zm for each pixel separately
and find the shape of the surface.

White light interferometry on rough surfaces, as it is realized in the
coherence radar, is extremely powerful. There are unique features that
will be summarized and illustrated by measuring examples:

• The coherence radar is a coaxial method: illumination and observa-
tion can be on the same axis. No shading occurs.

• The coherence radar is inherently telecentric, independently from
the size of the object. All depths are imaged with the same scale.

• The distance measuring uncertainty on rough surfaces is not given
by the apparatus or limited by the observation aperture. It is given
only by the roughness of the surface itself.

Because the measuring uncertainty is independent of the aperture,
it is independent of distance from objects (standoff), as well. Hence,
we can measure distant objects with the same longitudinal accuracy
as close objects. In particular, we can measure within deep boreholes
without loss of accuracy (see Fig. 7.22).
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Figure 7.21: Depth map of a drill, seen from the top, and cross section.

One more feature that cannot be achieved by triangulation is the
ability of the coherence radar to measure translucent objects such as
ceramics, paint or even skin. The reason is that we measure essentially
the time of flight (with the reference wave as a clock). Thus, we can
distinguish light scattered from the surface from light scattered from
the bulk of the object. Further examples and modifications of white-
light interferometry are shown in CVA1 [Chapter 19] and Ammon et al.
[51].

7.5.5 Comparison of TOF and interferometry

Because themodulation-based and interferometric depthmeasurements
are based on the same TOF principles, the question arises of whymodu-
lation-based techniques already encounter significant measuring prob-
lems at resolutions in the centimeter range, while interferometric tech-
niques can easily reach resolutions in the nanometer range.

The answer to this question is illustrated in Fig. 7.23. A conventional
TOF measurement according to Fig. 7.23a includes (besides the optical
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Figure 7.22: As the measuring uncertainty of the coherence radar does not
depend on the observation aperture, we can measure within deep boreholes,
with about 1µm accuracy.
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Figure 7.23: Principle of optical depth measurements by: a incoherent (modu-
lation); and b coherent (interferometry) time-of-flight measurements.

path) a considerable time delay in the high-frequency electronics before
the signal is mixed and correlated. Especially the entrance amplifier
and the electronic mixer give rise to such high errors in the temporal
delay that either a continuous time-consuming mechanical calibration
or a compensation by a costly second reference channel (not shown
in the figure) is required [52]. In practice, the latter reference channel
eliminates the unsatisfying time drifts mentioned in the foregoing.

With an interferometric TOF measurement, the mixing and correla-
tion of the signal and reference channel take place directly within the
photodetector by coherent field superposition, practically without any
errors or temporal delay. As a direct consequence, this means that
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good TOF measurements require the high-frequency mixing process to
take place not in the RF electronics but either in an optical component
or in the detector itself. In this way, not only can the significant errors
due to the time delays in the wideband amplifier, the electronic mixer,
and cross-talk be avoided, but also the high costs associated with these
components.

7.6 Conclusion

The measuring technologies for 3-D optical shape measurements have
been in a phase of rapid development for a number of years. It is ex-
pected that this development will continue for some time to come. Bet-
ter and new components, higher computing power, and faster andmore
accurate algorithms are on the horizon as well as the fusion of various
depth-measuring principles.

Designing good optical sensors requires an understanding of phys-
ical limits. Properly designed, optical 3-D sensors supply accurate
data about the geometrical shape of objects that are as accurate as
physics allows. The dynamic range allows researchers to distinguish
1000-10,000 different depths. Twomain sensor principles, active trian-
gulation and White-light interferometry at rough surfaces (“coherence
radar”) can measure a majority of objects with different surface struc-
tures. Once acquired, the geometrical shape complements intelligent
algorithms very well in solving inspection problems, because the algo-
rithms do not have to be concerned with the variable appearance of
objects, as is the case in 2-D image processing.
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8.1 Introduction

Images are signals with two spatial dimensions. This chapter deals
with signals of arbitrary dimensions. This generalization is very useful
because computer vision is not restricted solely to 2-D signals. On the
one hand, higher-dimensional signals are encountered. Dynamic scenes
require the analysis of image sequences; the exploration of 3-D space
requires the acquisition of volumetric images. Scientific exploration of
complex phenomena is significantly enhanced if images not only of a
single parameter but of many parameters are acquired. On the other
hand, signals of lower dimensionality are also of importance when a
computer vision system is integrated into a larger system and image
data are fused with time series from point-measuring sensors.

8.2 Continuous signals

8.2.1 Types of signals

An important characteristic of a signal is its dimension. A zero-dimen-
sional signal results from the measurement of a single quantity at a
single point in space and time. Such a single value can also be averaged
over a certain time period and area. There are several ways to extend
a zero-dimensional signal into a 1-D signal (Table 8.1). A time series
records the temporal course of a signal in time, while a profile does the
same in a spatial direction or along a certain path.

A 1-D signal is also obtained if certain experimental parameters of
the measurement are continuously changed and the measured parame-
ter is recorded as a function of some control parameters. With respect
to optics, the most obvious parameter is the wavelength of the electro-
magnetic radiation received by a radiation detector. When radiation is
recorded as a function of the wavelength, a spectrum is obtained. The
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Table 8.1: Some types of signals g depending on D parameters

D Type of signal Function

0 Measurement at a single point in space and time g
1 Time series g(t)
1 Profile g(x)
1 Spectrum g(λ)
2 Image g(x, y)
2 Time series of profiles g(x, t)
2 Time series of spectra g(λ, t)
3 Volumetric image g(x, y, z)
3 Image sequence g(x, y, t)
3 Hyperspectral image g(x, y, λ)
4 Volumetric image sequence g(x, y, z, t)
4 Hyperspectral image sequence g(x, y, λ, t)
5 Hyperspectral volumetric image sequence g(x, y, z, λ, t)

wavelength is only one of the many parameters that could be consid-
ered. Others could be temperature, pressure, humidity, concentration
of a chemical species, and any other properties that may influence the
measured quantity.

With this general approach to multidimensional signal processing,
it is obvious that an image is only one of the many possibilities of a
2-D signal. Other 2-D signals are, for example, time series of profiles or
spectra. With increasing dimension, more types of signals are possible
as summarized in Table 8.1. A 5-D signal is constituted by a hyperspec-
tral volumetric image sequence.

8.2.2 Unified description

Mathematically, all these different types of multidimensional signals
can be described in a unified way as continuous scalar functions of
multiple parameters or generalized coordinates qd as

g(q) = g(q1, q2, . . . , qD) with q = [q1, q2, . . . , qD]T (8.1)

that can be summarized in a D-dimensional parameter vector or gen-
eralized coordinate vector q. An element of the vector can be a spatial
direction, the time, or any other parameter.

As the signal g represents physical quantities, we can generally as-
sume some properties that make the mathematical handling of the sig-
nals much easier.
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Continuity. Real signals do not show any abrupt changes or discon-
tinuities. Mathematically, this means that signals can generally be re-
garded as arbitrarily often differentiable.

Finite range. The physical nature of both the signal and the imaging
sensor ensures that a signal is limited to a finite range. Some signals
are restricted to positive values.

Finite energy. Normally a signal corresponds to the amplitude or the
energy of a physical process. As the energy of any physical system is
limited, any signal must be square integrable:

∞∫
−∞

∣∣g(q)
∣∣2 dDq < ∞ (8.2)

With these general properties of physical signals, it is obvious that
the continuous representation provides a powerful mathematical ap-
proach. The properties imply, for example, that the Fourier transform
(Section 8.6) of the signals always exist.

Depending on the underlying physical process the observed signal
can be regarded as a stochastic signal. More often, however, a signal
is a mixture of a deterministic and a stochastic signal. In the simplest
case, the measured signal of a deterministic process gd is corrupted by
additive zero-mean homogeneous noise. This leads to the simple signal
model

g(q) = gd(q) + n (8.3)

where n has the variance σ 2
n = 〈n2〉. In most practical situations, the

noise is not homogeneous but rather depends on the level of the signal.
Thus in a more general way

g(q) = gd(q) + n(g) with
〈
n(g)

〉 = 0,
〈

n2(g)
〉

= σ 2
n(g) (8.4)

A detailed treatment of noise in various types of imaging sensors can
be found in Section 5.5; see also CVA1 [Chapter 9 and 10].

8.2.3 Multichannel signals

So far, only scalar signals have been considered. If more than one signal
is taken simultaneously, a multichannel signal is obtained. In some
cases, for example, taking time series at different spatial positions, the
multichannel signal can be considered as just a sampled version of a
higher-dimensional signal. In other cases, the individual signals cannot
be regarded as samples. This is the case when they are parameters with
different units and/or meaning.
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a b c

Figure 8.1: Representation of 2-D digital images bymeshes of regular polygons:
a triangles; b squares; c hexagons.

Table 8.2: Properties of tessellations of the 2-D space with regular triangular,
square, and hexagonal meshes; Ne: number of neighbors with common edge;
Nc : number of neighbors with common edge and/or corner; l: basis length l of
regular polygon; d: distance d to nearest neighbor; and A: area of cell

Triangular Square Hexagonal

Ne 3 4 6

Nc 12 8 6

l l = √
3d =

√√
16/3A l = d = √

A l = 1
3

√
3d =

√√
4/27A

d d = 1
3

√
3l =

√√
16/27A d = l = √

A d = √
3l =

√√
4/3A

A A = 3
4

√
3d2 = 1

4

√
3l2 A = d2 = l2 A = 1

2

√
3d2 = 3

2

√
3l2

A multichannel signal provides a vector at each point and is there-
fore sometimes denoted as a vectorial signal and written as

g(q) = [q1(q), q2(q), . . . , qD(q)]T (8.5)

A multichannel signal is not necessarily a vectorial signal. Depend-
ing on the mathematical relation between its components, it could also
be a higher-order signal, for example, a tensorial signal . Such types of
multichannel images are encountered when complex features are ex-
tracted from images. One example is the tensorial description of local
structure discussed in Section 9.8.

8.3 Discrete signals

8.3.1 Regular two-dimensional lattices

Computers cannot handle continuous signals but only arrays of digi-
tal numbers. Thus it is required to represent signals as D-dimensional
arrays of points. We first consider images as 2-D arrays of points. A
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a
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Figure 8.2: Elementary cells of regular grids for 2-D digital images: a triangle
grid; b square grid; c hexagonal grid.

point on the 2-D grid is called a pixel or pel . Both words are abbre-
viations of picture element . A pixel represents the irradiance at the
corresponding grid position. There are two ways to derive 2-D lattices
from continuous signals.

First, the continuous 2-D space can be partitioned into space-filling
cells. For symmetry reasons, only regular polygons are considered.
Then there are only three possible tesselations with regular polygons:
triangles, squares, and hexagons as illustrated in Fig. 8.1 (see also Ta-
ble 8.2). All other regular polygons do not lead to a space-filling ge-
ometrical arrangement. There are either overlaps or gaps. From the
mesh of regular polygons a 2-D array of points is then formed by the
symmetry centers of the polygons. In case of the square mesh, these
points lay again on a square grid. For the hexagonal mesh, the sym-
metry centers of the hexagons form a triangular grid. In contrast, the
symmetry centers of the triangular grid form a more complex pattern,
where two triangular meshes are interleaved. The secondmesh is offset
by a third of the base length l of the triangular mesh.

A second approach to regular lattices starts with a primitive cell . A
primitive cell in 2-D is spanned by two not necessarily orthogonal base
vectors b1 and b2. Thus, the primitive cell is always a parallelogram ex-
cept for square and rectangular lattices (Fig. 8.2). Only in the latter case
are the base vectors b1 and b2 orthogonal. Translating the primitive
cell by multiples of the base vectors of the primitive cell then forms the
lattice. Such a translation vector or lattice vector r is therefore given
by

r = n1b1 + n2b2 n1, n2 ∈ Z (8.6)

The primitive cells of the square and hexagonal lattices (Fig. 8.2b
and c) contains only one grid located at the origin of the primitive cell.
This is not possible for a triangular grid, as the lattice points are not
arranged in regular distances along two directions (Fig. 8.1a). Thus,
the construction of the triangular lattice requires a primitive cell with
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a b
c

Figure 8.3: Construction of the cells of a regular lattice from the lattice points:
a triangle lattice; b square lattice; and c hexagonal lattice.

two grid points. One grid point is located at the origin of the cell, the
other is offset by a third of the length of each base vector (Fig. 8.2a)

The construction scheme to generate the elementary cells of regular
shape from the lattice points is illustrated in Fig. 8.3. From one lattice
point straight lines are drawn to all other lattice points starting with
the nearest neighbors (dashed lines). Then the smallest cell formed
by the lines perpendicular to these lines and dividing them into two
halves results in the primitive cell. For all three lattices, only the nearest
neighbors must be considered for this construction scheme.

The mathematics behind the formation of regular lattices in two
dimensions is the 2-D analog to 3-D lattices used to describe crystals
in solid state physics and mineralogy. The primitive cell constructed
from the lattice points is, for example, known in solid state physics as
the Wigner-Seitz cell .

Although there is a choice of three lattices with regular polygons—
and many more if irregular polygons are considered—almost exclu-
sively square or rectangular lattices are used for 2-D digital images.

The position of the pixel is given in the common notation for matri-
ces. The first index m denotes the position of the row, the second, n,
the position of the column (Fig. 8.4a); M gives the number of rows, and
N the number of columns. In accordance with the matrix notation, the
vertical axis (y axis) runs from top to bottom and not vice versa as is
common in graphs. The horizontal axis (x axis) runs as usual from left
to right.

8.3.2 Regular higher-dimensional lattices

The considerations in the previous section can be extended to higher di-
mensions. In 3-D space, lattices are identical to those used in solidstate
physics to describe crystalline solids. In higher dimensions, we have
serious difficulty in grasping the structure of discrete lattices because
we can visualize only projections onto 2-D space. Given the fact that
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Figure 8.4: Representation of digital images by orthogonal lattices: a square
lattice for a 2-D image; and b cubic lattice for a volumetric or 3-D image.

already 2-D discrete images are almost exclusively represented by rect-
angular lattices (Section 8.3.1), we may ask what we lose if we consider
only hypercubic lattices in higher dimensions. Surprisingly, it turns out
that this lattice has significant advantages. Thus it is hardly necessary
to consider any other lattice.

Orthogonal lattice. The base vectors of the hypercubic primitive cell
are orthogonal to each other. As discussed in CVA1 [Chapter 6], this is
a significant advantage for the design of filters. If separable filters are
used, they can easily be extended to arbitrary dimensions.

Valid for all dimensions. The hypercubic lattice is the most general
solution for digital data as it is the only geometry that exists in ar-
bitrary dimensions. In practice this means that it is generally quite
easy to extend image processing algorithms to higher dimensions. We
will see this, for example, with the discrete Fourier transform in Sec-
tion 8.7, with multigrid data structures in Section 8.10, with averaging
in Section 9.5, and with the analysis of local structure in Section 9.8.

Only lattice with regular polyhedron. While in 2-D three lattices with
regular polyhedrons exist (Section 8.3.1), the cubic lattice is the only
lattice with a regular polyhedron (the hexahedron) in 3-D. None of the
other four regular polyhedra (tetrahedron, octahedron, dodecahedron,
and icosahedron) is space filling.

These significant advantages of the hypercubic lattice are not out-
weighed by the single disadvantage that the neighborhood relations,
discussed in Section 8.3.4, are more complex on these lattices than, for
example, the 2-D hexagonal lattice.



8.3 Discrete signals 219

In 3-D or volumetric images the elementary cell is known as a voxel ,
an abbreviation of volume element . On a rectangular grid, each voxel
represents the mean gray value of a cuboid. The position of a voxel is
given by three indices. The first, l, denotes the depth, m the row, and
n the column (Fig. 8.4b). In higher dimensions, the elementary cell is
denoted as a hyperpixel .

8.3.3 Metric in digital images

Based on the discussion in the previous two sections, we will focus in
the following on hypercubic or orthogonal lattices and discuss in this
section the metric of discrete images. This constitutes the base for all
length, size, volume, and distance measurements in digital images. It
is useful to generalize the lattice vector introduced in Eq. (8.6) that rep-
resents all points of a D-dimensional digital image and can be written
as

rn = [n1∆x1, n2∆x2, . . . , nD∆xD]T (8.7)

In the preceding equation, the lattice constants ∆xd need not be equal
in all directions. For the special cases of 2-D images, 3-D volumetric
images, and 4-D spatiotemporal images the lattice vectors are

rm,n =
[

n∆x
m∆y

]
,rl,m,n =

 n∆x
m∆y
l∆z

 ,rk,l,m,n =


n∆x
m∆y
l∆z
k∆t

 (8.8)

To measure distances, the Euclidean distance can be computed on
an orthogonal lattice by

de(x,x′) = ‖x −x′‖ =
 D∑

d=1
(nd − n′

d)2∆x2
d

1/2

(8.9)

On a square lattice, that is, a lattice with the same grid constant in all
directions, the Euclidean distance can be computed more efficiently by

de(x,x′) = ‖x −x′‖ =
 D∑

d=1
(nd − n′

d)2
1/2

∆x (8.10)

The Euclidean distance on discrete lattices is somewhat awkward.
Although it is a discrete quantity, its values are not integers. Moreover,
it cannot be computed very efficiently.
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Therefore, two other metrics are sometimes considered in image
processing. The city-block distance

db(x,x′) =
D∑

d=1
|nd − n′

d| (8.11)

simply adds up the magnitude of the component differences of two
lattice vectors and not the squares as with the Euclidean distance in
Eq. (8.10). Geometrically, the city block distance gives the length of a
path between the two lattice vectors if we can only walk in directions
parallel to axes. The chessboard distance is defined as the maximum of
the absolute difference between two components of the corresponding
lattice vectors:

dc(x,x′) = max
d=1,... ,D

|nd − n′
d| (8.12)

These two metrics have gained some importance for morphological op-
erations (Section 14.2.4). Despite their simplicity they are not of much
use as soon as lengths and distances are to be measured. The Euclidean
distance is the only metric on digital images that preserves the isotropy
of the continuous space. With the city block and chessboard distance,
distances in the direction of the diagonals are longer and shorter than
the Euclidean distance, respectively.

8.3.4 Neighborhood relations

The term neighborhood has no meaning for a continuous signal. How
far two points are from each other is simply measured by an adequate
metric such as the Euclidean distance function and this distance can
take any value. With the cells of a discrete signal, however, a ranking
of the distance between cells is possible. The set of cells with the small-
est distance to a given cell are called the nearest neighbors. The trian-
gular, square, and hexagonal lattices have three, four, and six nearest
neighbors, respectively (Fig. 8.5). The figure indicates also the ranking
in distance from the central cell.

Directly related to the question of neighbors is the term adjacency .
A digital object is defined as a connected region. This means that we
can reach any cell in the region from any other by walking from one
neighboring cell to the next. Such a walk is called a path.

On a square lattice there are two possible ways to define neighboring
cells (Fig. 8.5b). We can regard pixels as neighbors either when they
have a joint edge or when they have at least one joint corner. Thus a
pixel has four or eight neighbors and we speak of a 4-neighborhood or
an 8-neighborhood . The definition of the 8-neighborhood is somewhat
awkward, as there are neighboring cells with different distances.
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Figure 8.5: Classification of the cells according to the distance from a given
cell for the a triangular, b square, and c hexagonal lattices. The central cell is
shaded in light gray, the nearest neighbors in darker gray. The numbers give
the ranking in distance from the central cell.

a b c

Figure 8.6: Digital objects on a triangular, b square, and c hexagonal lattice; a
and b show either two objects or one object (connected regions) depending on
the neighborhood definition.

The triangular lattice shows an equivalent ambivalence with the 3-
and 12-neighborhoods with cells that have either only a joint edge
or at least a joint corner with the central cell (Fig. 8.5a). In the 12-
neighborhood there are three different types of neighboring cells, each
with a different distance (Fig. 8.5a).

Only the hexagonal lattice gives a unique definition of neighbors.
Each cell has six neighboring cells at the same distance joining one
edge and two corners with the central cell.

A closer look shows that unfortunately both types of neighborhood
definitions are required on triangular and square grids for a proper
definition of connected regions. A region or an object is called con-
nected when we can reach any pixel in the region by walking from one
neighboring pixel to the next. The black object shown in Fig. 8.6b is
one object in the 8-neighborhood, but constitutes two objects in the 4-
neighborhood. The white background, however, shows the same prop-
erty. Thus we have either two connected regions in the 8-neighborhood
crossing each other or four separated regions in the 4-neighborhood.
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This inconsistency between objects and background can be overcome
if we declare the objects as 4-neighboring and the background as 8-
neighboring, or vice versa.

These complications occur also on a triangular lattice (Fig. 8.6b) but
not on a hexagonal lattice (Fig. 8.6c). The photosensors on the retina
in the human eye, however, have a more hexagonal shape, see Wandell
[1, Fig. 3.4, p. 49].

8.3.5 Errors in object position and geometry

The tessellation of space in discrete images limits the accuracy of the
estimation of the position of an object and thus all other geometri-
cal quantities such as distance, area, circumference, and orientation of
lines. It is obvious that the accuracy of the position of a single point
is only in the order of the lattice constant. The interesting question
is, however, how this error propagates into position errors for larger
objects and other relations. This question is of significant importance
because of the relatively low spatial resolution of images as compared
to other measuring instruments. Without much effort many physical
quantities such as frequency, voltage, and distance can be measured
with an accuracy better than 1ppm, that is, 1 in 1,000,000, while im-
ages have a spatial resolution in the order of 1 in 1000 due to the limited
number of pixels. Thus only highly accurate position estimates in the
order of 1/100 of the pixel size result in an accuracy of about 1 in
100,000.

The discussion of position errors in this section will be limited to or-
thogonal lattices. These lattices have the significant advantage that the
errors in the different directions can be discussed independently. Thus
the following discussion is not only valid for 2-D images but any type of
multidimensional signals and we must consider only one component.

In order to estimate the accuracy of the position estimate of a sin-
gle point it is assumed that all positions are equally probable. This
means a constant probability density function in the interval ∆x. Then
the variance σ 2

x introduced by the position discretization is given by
Papoulis [2, p. 106]

σ 2
x = 1

∆x

xn+∆x/2∫
xn−∆x/2

(x − xn)2 dx = (∆x)2

12
(8.13)

Thus the standard deviation σx is about 1/
√
12 ≈ 0.3 times the lattice

constant ∆x. The maximum error is, of course, 0.5∆x.
All other errors for geometricalmeasurements of segmented objects

can be related to this basic position error by statistical error propa-
gation. We will illustrate this with a simple example computing the
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area and center of gravity of an object. For the sake of simplicity, we
start with the unrealistic assumption that any cell that contains even
the smallest fraction of the object is regarded as a cell of the object.
We further assume that this segmentation is exact, that is, the signal
itself does not contain noise and separates without errors from the
background. In this way we separate all other errors from the errors
introduced by the discrete lattice.

The area of the object is simply given as the product of the number
N of cells and the area Ac of a cell. This simple estimate is, however,
biased towards a larger area because the cells at the border of the object
are only partly covered by the object. In the mean, half of the border
cells are covered. Hence an unbiased estimate of the area is given by

A = Ac(N − 0.5Nb) (8.14)

whereNb is the number of border cells. With this equation, the variance
of the estimate can be determined. Only the statistical error in the area
of the border cells must be considered. According to the laws of error
propagation with independent random variables, the variance of the
area estimate σ 2

A is given by

σ 2
A = 0.25A2

cNbσ 2
x (8.15)

If we assume a compact object, for example, a square, with a length
of D pixels, it has D2 pixels and 4D border pixels. Using σx ≈ 0.3
(Eq. (8.13)), the absolute and relative standard deviation of the area
estimate are given by

σA ≈ 0.3Ac
√

D and
σA
A

≈ 0.3
D3/2 if D � 1 (8.16)

Thus the standard deviation of the area error for an object with a length
of 10 pixels is just about the area of the pixel and the relative error
is about 1%. Equations (8.14) and (8.15) are also valid for volumetric
images if the area of the elementary cell is replaced by the volume of
the cell. Only the number of border cells is now different. If we again
assume a compact object, for example, a cube, with a length of D, we
now have D3 cells in the object and 6D2 border cells. Then the absolute
and relative standard deviations are approximately given by

σV ≈ 0.45VcD and
σV
V

≈ 0.45
D2 if D � 1 (8.17)

Now the standard deviation of the volume for an object with a diameter
of 10 pixels is about 5 times the volume of the cells but the relative
error is about 0.5%. Note that the absolute/relative error for volume
measurements in/decreases faster with the size of the object than for
area measurements.



224 8 Representation of Multidimensional Signals

The computations for the error of the center of gravity are quite
similar. With the same assumptions about the segmentation process,
an unbiased estimate of the center of gravity is given by

xg = 1
N

N−Nb∑
n=1

xn + 1
2

Nb∑
n′=1

xn′

 (8.18)

Again the border pixels are counted only half. As the first part of the
estimate with the nonborder pixels is exact, errors are caused only by
the variation in the area of the border pixels. Therefore the variance of
the estimate for each component of the center of gravity is given by

σ 2
g = Nb

4N2σ 2 (8.19)

where σ is again the variance in the position of the fractional cells at
the border of the object. Thus the standard deviation of the center of
gravity for a compact object with the diameter of D pixels is

σg ≈ 0.3
D3/2 if D � 1 (8.20)

Thus the standard deviation for the center of gravity of an object with
10 pixel diameter is only about 0.01 pixel. For a volumetric object with
a diameter of D pixel, the standard deviation becomes

σgv ≈ 0.45
D2 if D � 1 (8.21)

This result clearly shows that the position of objects and all related
geometrical quantities such as the distances can be performed even
with binary images (segmented objects) well into the range of 1/100
pixel. It is interesting that the relative errors for the area and volume
estimates of Eqs. (8.16) and (8.17) are equal to the standard deviation
of the center of gravity Equations (8.20) and (8.21). Note that only the
statistical error has been discussed. A bias in the segmentation might
easily result in much higher systematic errors.

8.4 Relation between continuous and discrete signals

A continuous function g(q) is a useful mathematical description of a
signal as discussed in Section 8.2. Real-world signals, however, can only
be represented and processed as discrete or digital signals. Therefore
a detailed knowledge of the relation between these two types of signals
is required. It is not only necessary to understand the whole chain of
the image-formation process from a continuous spatial radiance distri-
bution to a digital image but also to perform subpixel-accurate image
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Figure 8.7: Steps from a continuous to a discrete signal.

interpolation (Section 9.6) and warping of images [CVA2, Chapter 9]
as it is, for example, required for multiscale image operations [CVA2,
Chapter 14].

The chain of processes that lead from the “true” signal to the digital
signal include all the steps of the image-formation process as illustrated
in Fig. 8.7. First, the signal of interest s(x), such as reflectivity, tem-
perature, etc., of an object, is somehow related to the radiance L(x)
emitted by the object in a generally nonlinear function (Section 2.5).
In some cases this relation is linear (e. g., reflectivity), in others it is
highly nonlinear (e. g., temperature). Often other parameters that are
not controlled or not even known influence the signal as well. As an
example, the radiance of an object is the product of its reflectivity and
the irradiance. Moreover, the radiance of the beam from the object
to the camera may be attenuated by absorption or scattering of radi-
ation (Section 2.5.3). Thus the radiance of the object may vary with
many other unknown parameters until it finally reaches the radiation-
collecting system (optics).

The optical system generates an irradiance E(x) at the image plane
that is proportional to the object radiance (Chapter 4). There is, how-
ever, not a point-to-point correspondence. Because of the limited res-
olution of the optical systems due to physical limitation (e. g., diffrac-
tion) or imperfections of the optical systems (various aberrations; Sec-
tion 3.5). This blurring of the signal is known as the point spread func-
tion (PSF ) of the optical system and described in the Fourier domain by
the optical transfer function. The nonzero area of the individual sensor
elements of the sensor array (or the scanning mechanism) results in
a further spatial and temporal blurring of the irradiance at the image
plane.

The conversion to electrical signal U adds noise and possibly fur-
ther nonlinearities to the signal g(x, t) that is finally measured. In a
last step, the analog electrical signal is converted by an analog-to-digital
converter (ADC) into digital numbers. The basic relation between con-
tinuous and digital signals is established by the sampling theorem. It
describes the effects of spatial and temporal sampling on continuous
signals and thus also tells us how to reconstruct a continuous signal
from its samples.

The image-formation process itself thus includes two essential steps.
First, the whole image-formation process blurs the signal. Second, the
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continuous signal at the image plane is sampled. Although both pro-
cesses often occur together, they can be separated for an easier math-
ematical treatment.

8.4.1 Image formation

If we denote the undistorted original signal projected onto the im-
age plane by g′(x, t), then the signal g(x, t) modified by the image-
formation process is given by

g(x, t) =
∞∫

−∞
g′(x′, t′)h(x,x′, t, t′) d2x′ dt′ (8.22)

The function h is the PSF. The signal g′(x, t) can be considered as the
image that would be obtained by a perfect system, that is, an optical
system whose PSF is a δ-distribution. Equation (8.22) indicates that the
signal at the point [x, t]T in space and time is composed of the radi-
ance of a whole range of points [x′, t′]T nearby, which linearly add up
weighted with the signal h at [x′, t′]T . The integral can significantly
be simplified if the point-spread function is the same at all points (ho-
mogeneous system or shift-invariant system). Then the point-spread
function h depends only on the distance of [x′, t′]T to [x, t]T and the
integral in Eq. (8.22) reduces to the convolution integral

g(x, t) =
∞∫

−∞
g′(x′, t′)h(x −x′, t − t′) d2x′ dt′ = (g′ ∗ h)(x, t) (8.23)

For most optical systems the PSF is not strictly shift-invariant because
the degree of blurring is increasing with the distance from the optical
axis (Chapter 3). However, as long as the variation is continuous and
does not change significantly over the width of the PSF, the convolution
integral in Eq. (8.23) still describes the image formation correctly. The
PSF and the system transfer function just become weakly dependent
on x.

8.4.2 Sampling theorem

Sampling means that all information is lost except at the grid points.
Mathematically, this constitutes amultiplication of the continuous func-
tion with a function that is zero everywhere except for the grid points.
This operation can be performed by multiplying the image function
g(x) with the sum of δ distributions located at all lattice vectors rm,n
as in Eq. (8.7). This function is called the two-dimensional δ comb, or
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“nail-board function.” Then sampling can be expressed as

gs(x) = g(x)
m=∞∑

m=−∞

n=∞∑
n=−∞

δ(x − rm,n) (8.24)

This equation is only valid as long as the elementary cell of the lattice
contains only one point. This is the case for the square and hexagonal
grids (Fig. 8.2b and c). The elementary cell of the triangular grid, how-
ever, includes two points (Fig. 8.2a). Thus for general regular lattices,
p points per elementary cell must be considered. In this case, a sum
of P δ combs must be considered, each shifted by the offsets sp of the
points of the elementary cells:

gs(x) = g(x)
P∑

p=1

∞∑
m=−∞

∞∑
n=−∞

δ(x − rm,n − sp) (8.25)

It is easy to extend this equation for sampling into higher-dimensional
spaces and into the time domain:

gs(x) = g(x)
∑
p

∑
n

δ(x − rn − sp) (8.26)

In this equation, the summation ranges have been omitted. One of the
coordinates of the D-dimensional space and thus the vector x and the
lattice vector rn

rn = [n1b1, n2b2, . . . , nDbD]T with nd ∈ Z (8.27)

is the time coordinate. The set of fundamental translation vectors
{b1,b2, . . . ,bD} form a not necessarily orthogonal base spanning the
D-dimensional space.

The sampling theorem directly results from the Fourier transform
of Eq. (8.26). In this equation the continuous signal g(x) is multiplied
by the sum of delta distributions. According to the convolution theo-
rem of the Fourier transform (Section 8.6), this results in a convolution
of the Fourier transforms of the signal and the sum of delta combs in
Fourier space. The Fourier transform of a delta comb is again a delta
comb (see Table 8.5). As the convolution of a signal with a delta dis-
tribution simply replicates the function value at the zero point of the
delta functions, the Fourier transform of the sampled signal is simply
a sum of shifted copies of the Fourier transform of the signal:

ĝs(k, ν) =
∑
p

∑
v

ĝ(k− r̂v)exp
(
−2π ikTsp

)
(8.28)

The phase factor exp(−2π ikTsp) results from the shift of the points in
the elementary cell by sp according to the shift theorem of the Fourier
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transform (see Table 8.4). The vectors r̂v

r̂v = v1b̂1 + v2b̂2 + . . . + vDb̂D with vd ∈ Z (8.29)

are the points of the so-called reciprocal lattice. The fundamental trans-
lation vectors in the space and Fourier domain are related to each other
by

bT
db̂d′ = δd−d′ (8.30)

This basically means that the fundamental translation vector in the
Fourier domain is perpendicular to all translation vectors in the spatial
domain except for the corresponding one. Furthermore, the distances
are reciprocally related to each other. In 3-D space, the fundamental
translations of the reciprocial lattice can therefore be computed by

b̂d = bd+1 ×bd+2
bT
1 (b2 ×b3)

(8.31)

The indices in the preceding equation are computed modulo 3, bT
1 (b2×

b3) is the volume of the primitive elementary cell in the spatial domain.
All these equations are familiar to solid state physicists or cristallogra-
phers [3]. Mathematicians know the lattice in the Fourier domain as the
dual base or reciprocal base of a vector space spanned by a nonorthogo-
nal base. For an orthogonal base, all vectors of the dual base show into
the same direction as the corresponding vectors and the magnitude is
given by

∣∣∣b̂d

∣∣∣ = 1/ |bd|. Then often the length of the base vectors is de-
noted by ∆xd, and the length of the reciprocal vectors by ∆kd = 1/∆xd.
Thus an orthonormal base is dual to itself.

For further illustration, Fig. 8.8 shows the lattices in both domains
for a triangular, square, and hexagonal grid. The figure also includes
the primitive cell known as the Wigner-Seitz cell (Section 8.3.1 and
Fig. 8.3) and first Brillouin zone in the spatial and Fourier domain, re-
spectively.

Now we can formulate the condition where we get no distortion of
the signal by sampling, known as the sampling theorem. If the image
spectrum ĝ(k) contains such highwave numbers that parts of it overlap
with the periodically repeated copies, we cannot distinguish whether
the spectral amplitudes come from the original spectrum at the center
or from one of the copies. In other words, a low wave number can be
an alias of a high wave number and assume an incorrect amplitude of
the corresponding wave number. In order to obtain no distortions, we
must avoid overlapping. A safe condition to avoid overlapping is as
follows: the spectrum must be zero outside of the primitive cell of the
reciprocal lattice, that is, the first Brillouin zone.

On a rectangular grid, this results in the simple condition that the
maximum wave number (or frequency) at which the image spectrum
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Figure 8.8: Lattices with the fundamental translation vectors and primitive cell
in the spatial and Fourier domain for a triangular (left), square (middle), and
hexagonal (right) 2-D lattice.

is not equal to zero must be restricted to less than half of the grid
constants of the reciprocal grid. Therefore the sampling theorem is as
follows:

Theorem 8.1 (Sampling Theorem) If the spectrum ĝ(k) of a continu-
ous function g(x) is band-limited, that is,

ĝ(k) = 0 ∀|kd| ≥ ∆kd/2 (8.32)

then it can be reconstructed exactly from samples with a distance

∆xd = 1/∆kd (8.33)

In other words, we will obtain a periodic structure correctly only if
we take at least two samples per wavelength (or period). The maximum
wave number that can be sampled without errors is called the Nyquist
or limiting wave number (or frequency). In the following, we will often
use dimensionless wave numbers (frequencies), which are scaled to the
limiting wave number (frequency). We denote this scaling with a tilde:

k̃d = kd
∆kd/2

= 2kd∆xd and ν̃ = ν
∆ν/2

= 2ν∆T (8.34)

In this scaling all the components of the wave number k̃d fall into the
interval ]−1, 1[.
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8.4.3 Aliasing

If the conditions of the sampling theorem are not met, it is not only
impossible to reconstruct the original signal exactly but also distortions
are introduced into the signal. This effect is known in signal theory as
aliasing or in imaging as the Moiré effect .

The basic problem with aliasing is that the band limitation intro-
duced by the blurring of the image formation and the nonzero area of
the sensor is generally not sufficient to avoid aliasing. This is illustrated
in the following example with an “ideal” sensor.

Example 8.1: Standard sampling

An “ideal” imaging sensor will have a nonblurring optics (the PSF is the
delta distribution) and a sensor array that has a 100% fill factor, that
is, the sensor elements show a constant sensitivity over the whole area
without gaps inbetween. The PSF of such an imaging sensor is a box
function with the width ∆x of the sensor elements and the transfer
function (TF) is a sinc function:

PSF
1
∆x1

Π(x1/∆x1) 1
∆x2

Π(x2/∆x2)

TF
sin(πk1∆x1)

πk1∆x1

sin(πk2∆x2)
πk2∆x2

(8.35)

The sinc function has its first zero crossings when the argument is
±π . This is when kd = ±∆xd or at twice the Nyquist wave number,
see Eq. (8.34). At the Nyquist wave number the value of the transfer
function is still 1/

√
2. Thus standard sampling is not sufficient to

avoid aliasing. The only safe way to avoid aliasing is to ensure that the
imaged objects do not contain wave numbers and frequencies beyond
the Nyquist limit.

8.4.4 Reconstruction from samples

The sampling theorem ensures the conditions under which we can re-
construct a continuous function from sampled points, but we still do
not know how to perform the reconstruction of the continuous image
from its samples, that is, the inverse operation to sampling.

Reconstruction is performed by a suitable interpolation of the sam-
pled points. Again we use the most general case: a nonorthogonal
primitive cell with P points. Generally, the interpolated points gr (x)
are calculated from the values sampled at rn+sp weighted with suitable
factors that depend on the distance from the interpolated point:

gr (x) =
∑
p

∑
n

gs(rn + sp)h(x − rn − sp) (8.36)

Using the integral property of the δ distributions, we can substitute
the sampled points on the right-hand side by the continuous values
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and then interchange summation and integration:

gr (x) =
∑
p

∑
n

∞∫
−∞

g(x′)h(x −x′)δ(rn + sp −x′)dDx′

=
∞∫

−∞
h(x −x′)

∑
p

∑
n

δ(rn + sp −x′)g(x′)dDx′

The latter integral is a convolution of the weighting function h with a
function that is the sum of the product of the image function g with
shifted δ combs. In Fourier space, convolution is replaced by complex
multiplication and vice versa. If we further consider the shift theorem
and that the Fourier transform of a δ comb is again a δ comb, we finally
obtain

ĝr (k) = ĥ(k)
∑
p

∑
v

ĝ(k− r̂v)exp
(
−2π ikTsp

)
(8.37)

The interpolated function can only be equal to the original image if
the periodically repeated image spectra are not overlapping. This is
nothing new; it is exactly what the sampling theorem states. The interp-
olated image function is only equal to the original image function if
the weighting function is one within the first Brillouin zone and zero
outside, eliminating all replicated spectra and leaving the original band-
limited spectrum unchanged. On a D-dimensional orthogonal lattice
Eq. (8.37) becomes

ĝr (k) = ĝ(k)
D∏

d=1
Π(kd∆xd) (8.38)

and the ideal interpolation function h is the sinc function

h(x) =
D∏

d=1

sin(πxd/∆xd)
πxd/∆xd

(8.39)

Unfortunately, this function decreases only with 1/x towards zero.
Therefore, a correct interpolation requires a large image area; mathe-
matically, it must be infinitely large. This condition can be weakened if
we “overfill” the sampling theorem, that is, ensure that ĝ(k) is already
zero before we reach the Nyquist limit. According to Eq. (8.37), we can
then choose ĥ(k) arbitrarily in the region where ĝ vanishes. We can
use this freedom to construct an interpolation function that decreases
more quickly in the spatial domain, that is, has a minimum-length in-
terpolation mask. We can also start from a given interpolation formula.
Then the deviation of its Fourier transform from a box function tells
us to what extent structures will be distorted as a function of the wave
number. Suitable interpolation functions will be discussed in detail in
Section 9.6.
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8.5 Vector spaces and unitary transforms

8.5.1 Introduction

An N ×M digital image has NM individual pixels that can take arbitrary
values. Thus it has NM degrees of freedom. Without mentioning it
explicitly, we thought of an image as being composed of individual
pixels. Thus, we can compose each image of basis images m,nP where
just one pixel has a value of one while all other pixels are zero:

m,nPm′,n′ = δm−m′δn−n′ =
{
1 if m = m′ ∧ n = n′

0 otherwise
(8.40)

Any arbitrary image can then be composed of all basis images in Eq. (8.40)
by

G =
M−1∑
m=0

N−1∑
n=0

Gm,n
m,nP (8.41)

where Gm,n denotes the gray value at the position [m, n]. The inner
product (also known as scalar product ) of two “vectors” in this space
can be defined similarly to the scalar product for vectors and is given
by

(G,H) =
M−1∑
m=0

N−1∑
n=0

Gm,nHm,n (8.42)

where the parenthesis notation (·, ·) is used for the inner product in
order to distinguish it from matrix multiplication. The basis images
m,nP form an orthonormal base for an N ×M-dimensional vector space.
From Eq. (8.42), we can immediately derive the orthonormality relation
for the basis images m,nP:

M−1∑
m=0

N−1∑
n=0

m′,n′Pm,n
m′′,n′′Pm,n = δm′−m′′δn′−n′′ (8.43)

This states that the inner product between two base images is zero if
two different basis images are taken. The scalar product of a basis
image with itself is one. The MN basis images thus span an M ×N-
dimensional vector space RN×M over the set of real numbers.

An M ×N image represents a point in the M ×N vector space. If
we change the coordinate system, the image remains the same but its
coordinates change. This means that we just observe the same piece of
information from a different point of view. All these representations
are equivalent to each other and each gives a complete representation
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of the image. A coordinate transformation leads us from one represen-
tation to the other and back again. An important property of such a
transform is that the length or (magnitude) of a vector

‖G‖2 = (G,G)1/2 (8.44)

is not changed and that orthogonal vectors remain orthogonal. Both
requirements are met if the coordinate transform preserves the inner
product. A transform with this property is known as a unitary trans-
form.

Physicists will be reminded of the theoretical foundations of quan-
tum mechanics, which are formulated in an inner product vector space
of infinite dimension, the Hilbert space.

8.5.2 Basic properties of unitary transforms

The two most important properties of a unitary transform are [4]:

Theorem 8.2 (Unitary transform) Let V be a finite-dimensional inner
product vector space. Let U be a one-one linear transformation of V
onto itself. Then

1. U preserves the inner product, that is, (G,H) = (UG,UH), ∀G,H ∈
V .

2. The inverse of U , U−1, is the adjoin U∗T
of U : UU∗T = I.

Rotation in R2 or R3 is an example of a transform where the preser-
vation of the length of vectors is obvious.

The product of two unitary transforms U1U2 is unitary. Because
the identity operator I is unitary, as is the inverse of a unitary operator,
the set of all unitary transforms on an inner product space is a group
under the operation of composition. In practice, this means that we
can compose/decompose complex unitary transforms of/into simpler
or elementary transforms.

8.5.3 Significance of the Fourier transform (FT)

A number of unitary transforms have gained importance for digital
signal processing including the cosine, sine, Hartley, slant, Haar, and
Walsh transforms [5, 6, 7]. But none of these transforms matches the
Fourier transform in importance.

The uniqueness of the Fourier transform is related to a property
expressed by the shift theorem. If a signal is shifted in space, its Fourier
transform does not change in amplitude but only in phase, that is, it
is multiplied with a complex phase factor. Mathematically, this means
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that all base functions of the Fourier transform are eigenvectors of the
shift operator S(s):

S(s)exp(−2π ikx) = exp(−2π iks)exp(−2π ikx) (8.45)

The phase factor exp(−2π iks) is the eigenvalue and the complex ex-
ponentials exp(−2π ikx) are the base functions of the Fourier trans-
form spanning the infinite-dimensional vector space of the square in-
tegrable complex-valued functions over R. For all other transforms,
various base functions are mixed with each other if one base function
is shifted. Therefore, the base functions of all these transforms are not
an eigenvector of the shift operator.

The base functions of the Fourier space are the eigenfunctions of
all linear shift-invariant operators or convolution operators. If an op-
erator is shift-invariant, the result is the same at whichever point in
space it is applied. Therefore, a periodic function such as the complex
exponential is not changed in period and does not become an aperiodic
function. If a convolution operator is applied to a periodic signal, only
its phase and amplitude change, which can be expressed by a complex
factor. This complex factor is the (wave-number dependent) eigenvalue
or transfer function of the convolution operator.

At this point, it is also obvious why the Fourier transform is com-
plex valued. For a real periodic function, that is, a pure sine or co-
sine function, it is not possible to formulate a shift theorem, as both
functions are required to express a shift. The complex exponential
exp(ikx) = coskx+i sinkx contains both functions and a shift by a dis-
tance s can simply be expressed by the complex phase factor exp(iks).

Each base function and thus each point in the Fourier domain con-
tains two pieces of information: the amplitude and the phase, that is,
relative position, of a periodic structure. Given this composition, we
ask whether the phase or the amplitude contains the more significant
information on the structure in the image, or whether both are of equal
importance.

In order to answer this question, we perform a simple experiment.
Figure 8.9 shows two images of a street close to Heidelberg University
taken at different times. Both images are Fourier transformed and then
the phase and amplitude are interchanged as illustrated in Fig. 8.9c, d.
The result of this interchange is surprising. It is the phase that deter-
mines the content of an image. Both images look somewhat patchy but
the significant information is preserved.

From this experiment, we can conclude that the phase of the Fourier
transform carries essential information about the image structure. The
amplitude alone implies only that such a periodic structure is contained
in the image but not where.
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a b

c d

Figure 8.9: Importance of phase and amplitude in Fourier space for the image
content: a, b two images of a traffic scene taken at different times; c compos-
ite image using the phase from image b and the amplitude from image a; d
composite image using the phase from image a and the amplitude from image
b.

8.5.4 Dynamical range and resolution of the FT

While in most cases it is sufficient to represent an image with rather few
quantization levels, for example, 256 values or one byte per pixel, the
Fourier transform of an image needs a much larger dynamical range.
Typically, we observe a strong decrease of the Fourier components with
themagnitude of the wave number, so that a dynamical range of at least
3–4 decades is required. Consequently, at least 16-bit integers or 32-
bit floating-point numbers are necessary to represent an image in the
Fourier domain without significant rounding errors.
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Figure 8.10: Tessellation of the 2-D Fourier domain into: a Cartesian; and b
logarithmic-polar lattices.

The reason for this behavior is not the insignificance of high wave
numbers in images. If we simply omitted them, we would blur the
image. The decrease is caused by the fact that the relative resolution is
increasing with the wave number. With the discrete Fourier transform
(see Section 8.7), the Fourier transform contains only wave numbers
that fit exactly integer times into the image:

kvp = v
dp

(8.46)

where d = [d1, . . . , dD]T is the size of the D-dimensional signal. There-
fore, the absolute wave number resolution ∆k = 1/∆x is constant,
equivalent to a Cartesian tessellation of the Fourier space (Fig. 8.10a).
Thus the smallest wave number (v = 1) has a wavelength of the size
of the image, and the next coarse wave number has a wavelength of
half the size of the image. This is a very low resolution for large wave-
lengths. The smaller the wavelength, the better the resolution.

This ever increasing relative resolution is not natural. We can, for
example, easily see the difference of 10 cm in 1m, but not in 1km. It
is more natural to think of relative resolutions, because we are better
able to distinguish relative distance differences than absolute ones. If
we apply this concept to the Fourier domain, it seems to be more nat-
ural to tessellate the Fourier domain in intervals increasing with the
wave number, a log-polar coordinate system, as illustrated in Fig. 8.10b.
Such a lattice partitions the space into angular and lnk intervals. Thus,
the cell area is proportional to k2. In order to preserve the norm, or—
physically speaking—the energy, of the signal in this representation,
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the increase in the area of the cells proportional to k2 must be consid-
ered:

∞∫
−∞

|ĝ(k)|2 dk1 dk2 =
∞∫

−∞
k2|ĝ(k)|2 d lnkdϕ (8.47)

Thus, the power spectrum |ĝ(k)|2 in the log-polar representation is
multiplied by k2 and falls off much less steep than in the Cartesian
representation. The representation in a log-polar coordinate system al-
lows a much better evaluation of the directions of the spatial structures
and of the smaller scales. Moreover, a change in scale or orientation just
causes a shift of the signal in the log-polar representation. Therefore,
it has gained importance in representation object for shape analysis
([CVA3, Chapter 8]).

8.6 Continuous Fourier transform (FT)

In this section, we give a brief survey of the continuous Fourier trans-
form and we point out the properties that are most important for signal
processing. Extensive and excellent reviews of the Fourier transform
are given by Bracewell [8], Poularikas [7, Chapter 2], or Madisetti and
Williams [9, Chapter 1]

8.6.1 One-dimensional FT

Definition 8.1 (1-D FT) If g(x) : R � C is a square integrable function,
that is,

∞∫
−∞

∣∣g(x)
∣∣ dx < ∞ (8.48)

then the Fourier transform of g(x), ĝ(k) is given by

ĝ(k) =
∞∫

−∞
g(x)exp (−2π ikx) dx (8.49)

The Fourier transform maps the vector space of absolutely integrable
functions onto itself. The inverse Fourier transform of ĝ(k) results in
the original function g(x):

g(x) =
∞∫

−∞
ĝ(k)exp (2π ikx) dk (8.50)
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It is convenient to use an operator notation for the Fourier trans-
form. With this notation, the Fourier transform and its inverse are
simply written as

ĝ(k) = Fg(x) and g(x) = F−1ĝ(k) (8.51)

A function and its transform, a Fourier transform pair is simply de-
noted by g(x) ⇐⇒ ĝ(k).

In Eqs. (8.49) and (8.50) a definition of the wave number without the
factor 2π is used, that is k = 1/λ, in contrast to the notation often
used in physics with k′ = 2π/λ. For signal processing, the first notion
is more useful, because k directly gives the number of periods per unit
length.

With the notation that includes the factor 2π in the wave number,
two forms of the Fourier transform are common: the asymmetric form

ĝ(k′) =
∞∫

−∞
g(x)exp(−ik′x)dx

g(x) = 1
2π

∞∫
−∞

ĝ(k)exp(ik′x)dk

(8.52)

and the symmetric form

ĝ(k′) = 1√
2π

∞∫
−∞

g(x)exp(−ik′x)dx

g(x) = 1√
2π

∞∫
−∞

ĝ(k′)exp(ik′x)dk′
(8.53)

As the definition of the Fourier transform takes the simplest form
in Eqs. (8.49) and (8.50), most other relations and equations also be-
come simpler than with the definitions in Eqs. (8.52) and (8.53). In
addition, the relation of the continuous Fourier transform with the dis-
crete Fourier transform (Section 8.7) and the Fourier series (Table 8.3)
becomes more straightforward.

Because all three versions of the Fourier transform are in common
use, it is likely that wrong factors in Fourier transform pairs will be
obtained. The rules for conversion of Fourier transform pairs between
the three versions can directly be inferred from the definitions and are
summarized here:

k without 2π , Eq. (8.49) g(x) ⇐⇒ ĝ(k)
k′ with 2π , Eq. (8.52) g(x) ⇐⇒ ĝ(k′/2π)
k′ with 2π , Eq. (8.53) g(x/

√
(2π)) ⇐⇒ ĝ(k′/

√
(2π))

(8.54)
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Table 8.3: Comparison of the continuous Fourier transform (FT), the Fourier
series (FS), the infinite discrete Fourier transform (IDFT), and the discrete Fourier
transform (DFT) in one dimension

Type Forward transform Backward transform

FT: R⇐⇒ R

∞∫
−∞

g(x)exp (−2π ikx) dx
∞∫

−∞
ĝ(k)exp (2π ikx) dk

FS:
[0,∆x] ⇐⇒ Z

1
∆x

∆x∫
0

g(x)exp
(
−2π i

vx
∆x

)
dx

∞∑
v=−∞

ĝv exp
(
2π i

vx
∆x

)

IDFT:
Z⇐⇒ [0,1/∆x]

∞∑
n=−∞

gn exp (−2π in∆xk) ∆x
1/∆x∫
0

ĝ(k)exp (2π in∆xk) dk

DFT:
NN ⇐⇒ NN

1
N

N−1∑
n=0

gn exp
(
−2π i

vn
N

) N−1∑
v=0

ĝv exp
(
2π i

vn
N

)

8.6.2 Multidimensional FT

The Fourier transform can easily be extended to multidimensional sig-
nals.

Definition 8.2 (Multidimensional FT) If g(x) : RD � C is a square in-
tegrable function, that is,

∞∫
−∞

∣∣g(x)
∣∣ dDx < ∞ (8.55)

then the Fourier transform of g(x), ĝ(k) is given by

ĝ(k) =
∞∫

−∞
g(x)exp

(
−2π ikTx

)
dDx (8.56)

and the inverse Fourier transform by

g(x) =
∞∫

−∞
ĝ(k)exp

(
2π ikTx

)
dDk (8.57)

The scalar product in the exponent of the kernel xTk makes the
kernel of the Fourier transform separable, that is, it can be written as

exp
(
−2π ikTx

)
=

D∏
d=1

exp(−ikdxd) (8.58)
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Table 8.4: Summary of the properties of the continuous D-dimensional Fourier
transform; g(x) and h(x) are complex-valued functions, the Fourier trans-
forms of which, ĝ(k) and ĥ(k), do exist; s is a real and a and b are complex con-
stants; A and U are D ×D matrices, U is unitary (U−1 = UT , see Section 8.5.2)

Property Spatial domain Fourier domain

Linearity ag(x) + bh(x) aĝ(k) + bĥ(k)

Similarity g(sx) ĝ(k/s)/|s|
Similarity g(Ax) ĝ

(
(A−1)Tk

)
/|A|

Rotation g(Ux) ĝ (Uk)

Separability
D∏

d=1
g(xd)

D∏
d=1

ĝ(kd)

Shift
in x space

g(x −x0) exp(−2π ikx0)ĝ(k)

Shift
in k space

exp(2π ik0x)g(x) ĝ(k− k0)

Differentiation
in x space

∂g(x)
∂xp

2π ikpĝ(k)

Differentiation
in k space

−2π ixpg(x) ∂ĝ(k)
∂kp

Definite
integral

∞∫
−∞

g(x′)dDx′ ĝ(0)

Moments

∞∫
−∞

xm
p xn

q g(x)dDx
(

1
−2π i

)m+n
(

∂mĝ(k)
∂km

p

∂nĝ(k)
∂kn

q

)∣∣∣∣∣
0

Convolution

∞∫
−∞

h(x′)g(x −x′)dDx′ ĥ(k)ĝ(k)

Multiplication h(x)g(x)
∞∫

−∞
ĥ(k′)ĝ(k− k′)dDk′

Finite differ-
ence

g(x + Vx0) − g(x − Vx0) 2i sin(2πx0k)

Modulation cos(2πk0x)g(x) (ĝ(k− k0) + ĝ(k+ k0))
/
2

Spatial
correlation

∞∫
−∞

g(x′)h(x′ +x)dDx′ ĝ(k)ĥ∗(k)

Inner
product

∞∫
−∞

g(x)h∗(x)dDx
∞∫

−∞
ĝ(k)ĥ∗(k)dDk
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8.6.3 Basic properties

For reference, the basic properties of the Fourier transform are summa-
rized in Table 8.4. An excellent review of the Fourier transform and its
applications are given by [8]. Here we will point out some of the prop-
erties of the FT that are most significant for multidimensional signal
processing.

Symmetries. Four types of symmetries are important for the Fourier
transform:

even g(−x) = g(x),
odd g(−x) = −g(x),
Hermitian g(−x) = g∗(x),
anti-Hermitian g(−x) = −g∗(x)

(8.59)

Any function g(x) can be split into its even and odd parts by

eg(x) = g(x) + g(−x)
2

and og(x) = g(x) − g(−x)
2

(8.60)

With this partition, the Fourier transform can be parted into a cosine
and a sine transform:

ĝ(k) = 2

∞∫
0

eg(x) cos(2πkTx)dDx + 2i

∞∫
0

og(x) sin(2πkTx)dDx (8.61)

It follows that if a function is even or odd, its transform is also even or
odd. The full symmetry results are:

real ⇐⇒ Hermitian
real and even ⇐⇒ real and even
real and odd ⇐⇒ imaginary and odd
imaginary ⇐⇒ anti-Hermitian
imaginary and even ⇐⇒ imaginary and even
imaginary and odd ⇐⇒ real and odd
Hermitian ⇐⇒ real
anti-Hermitian ⇐⇒ imaginary
even ⇐⇒ even
odd ⇐⇒ odd

(8.62)

Separability. As the kernel of the Fourier transform (Eq. (8.58)) is sep-
arable, the transform of a separable function is also separable:

D∏
d=1

g(xd) ⇐⇒
D∏

d=1
ĝ(kd) (8.63)
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This property is essential to compute transforms of multidimensional
functions efficiently from 1-D transforms because many of them are
separable.

Convolution. Convolution is one of the most important operations
for signal processing. It is defined by

(h ∗ g)(x) =
∞∫

−∞
g(x′)h(x −x′)dDx′ (8.64)

In signal processing, the function h(x) is normally zero except for a
small area around zero and is often denoted as the convolution mask.
Thus, the convolution with h(x) results in a new function g′(x) whose
values are a kind of weighted average of g(x) in a small neighborhood
around x. It changes the signal in a defined way, that is, makes it
smoother, etc. Therefore it is also called a filter operation. The convo-
lution theorem states:

Theorem 8.3 (Convolution) Ifg(x) has the Fourier transform ĝ(k) and
h(x) has the Fourier transform ĥ(k) and if the convolution integral
(Eq. (8.64)) exists, then it has the Fourier transform ĥ(k)ĝ(k).

Thus, convolution of two functions means multiplication of their
transforms. Likewise, convolution of two functions in the Fourier do-
main means multiplication in the space domain. The simplicity of con-
volution in the Fourier space stems from the fact that the base func-
tions of the Fourier domain, the complex exponentials exp

(
2π ikTx

)
,

are joint eigenfunctions of all convolution operators. This means that
these functions are not changed by a convolution operator except for
the multiplication by a factor.

From the convolution theorem, the following properties are imme-
diately evident. Convolution is

commutative h ∗ g = g ∗ h,
associative h1 ∗ (h2 ∗ g) = (h1 ∗ h2) ∗ g,
distributive over addition (h1 + h2) ∗ g = h1 ∗ g + h2 ∗ g

(8.65)

In order to grasp the importance of these properties of convolu-
tion, we note that two operations that do not look so at first glance,
are also convolution operations: the shift operation and all derivative
operators. This can immediately be seen from the shift and derivative
theorems (Table 8.4; [8, Chapters 5 and 6]).

In both cases the Fourier transform is just multiplied by a complex
factor. The convolution mask for a shift operation S is a shifted δ
distribution:

S(s)g(x) = δ(x − s) ∗ g(x) (8.66)
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The transform of the first derivative operator in x1 direction is
2π ik1. The corresponding inverse Fourier transform of 2π ik1, that
is, the convolution mask, is no longer an ordinary function (2π ik1 is
not absolutely integrable) but the derivative of the δ distribution:

2π ik1 ⇐⇒ δ′(x) = dδ(x)
dx

= lim
a→0

d
dx

(
exp(−πx2/a2)

a

)
(8.67)

Of course, the derivation of the δ distribution exists—as all properties
of distributions—only in the sense as a limit of a sequence of functions
as shown in the preceding equation.

With the knowledge of derivative and shift operators being convo-
lution operators, we can use the properties summarized in Eq. (8.65) to
draw some important conclusions. As any convolution operator com-
mutes with the shift operator, convolution is a shift-invariant opera-
tion. Furthermore, we can first differentiate a signal and then perform
a convolution operation or vice versa and obtain the same result.

The properties in Eq. (8.65) are essential for an effective compu-
tation of convolution operations [CVA2, Section 5.6]. As we already
discussed qualitatively in Section 8.5.3, the convolution operation is
a linear shift-invariant operator. As the base functions of the Fourier
domain are the common eigenvectors of all linear and shift-invariant
operators, the convolution simplifies to a complex multiplication of the
transforms.

Central-limit theorem. The central-limit theorem is mostly known for
its importance in the theory of probability [2]. It also plays, however, an
important role for signal processing as it is a rigorous statement of the
tendency that cascaded convolution tends to approach Gaussian form
(∝ exp(−ax2)). Because the Fourier transform of the Gaussian is also
a Gaussian (Table 8.5), this means that both the Fourier transform (the
transfer function) and the mask of a convolution approach Gaussian
shape. Thus the central-limit theorem is central to the unique role of
the Gaussian function for signal processing. The sufficient conditions
under which the central-limit theorem is valid can be formulated in
different ways. We use here the conditions from [2] and express the
theorem with respect to convolution.

Theorem 8.4 (Central-limit theorem) Given N functions hn(x) with
zero mean

∫∞
−∞ hn(x)dx and the variance σ 2

n = ∫∞
−∞ x2hn(x)dx with

z = x/σ , σ 2 = ∑N
n=1 σ 2

n then

h = lim
N→∞

h1 ∗ h2 ∗ . . . ∗ hN ∝ exp(−z2/2) (8.68)
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provided that

lim
N→∞

N∑
n=1

σ 2
n → ∞ (8.69)

and there exists a number α > 2 and a finite constant c such that
∞∫

−∞
xαhn(x)dx < c < ∞ ∀n (8.70)

The theorem is of much practical importance because—especially if
h is smooth—the Gaussian shape is approximated sufficiently accurate
already for values of n as low as 5.

Smoothness and compactness. The smoother a function is, the more
compact is its Fourier transform. This general rule can be formulated
more quantitatively if we express the smoothness by the number of
derivatives that are continuous and the compactness by the asymptotic
behavior for large values of k. Then we can state: If a function g(x) and
its firstn−1 derivatives are continuous, its Fourier transform decreases
at least as rapidly as

∣∣k
∣∣−(n+1) for large k, that is, lim|k|→∞ |k|ng(k) = 0.

As simple examples we can take the box and triangle functions (see
next section). The box function is discontinuous (n = 0), its Fourier
transform, the sinc function, decays with |k|−1. In contrast, the tri-
angle function is continuous, but its first derivative is discontinuous.
Therefore, its Fourier transform, the sinc2 function, decays steeper with
|k|−2. In order to include also impulsive functions (δ distributions) in
this relation, we note that the derivative of a discontinous function be-
comes impulsive. Therefore, we can state: If the nth derivative of a
function becomes impulsive, the function’s Fourier transform decays
with |k|−n.

The relation between smoothness and compactness is an extension
of reciprocity between the spatial and Fourier domain. What is strongly
localized in one domain is widely extended in the other and vice versa.

Uncertainty relation. This general law of reciprocity finds another
quantitative expression in the classical uncertainty relation or the band-
width-duration product . This theorem relates the mean square width
of a function and its Fourier transform. The mean square width (∆x)2
is defined as

(∆x)2 =

∞∫
−∞

x2
∣∣g(x)

∣∣2
∞∫

−∞

∣∣g(x)
∣∣2 −



∞∫
−∞

x
∣∣g(x)

∣∣2
∞∫

−∞

∣∣g(x)
∣∣2



2

(8.71)
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Table 8.5: Functions and distributions that are invariant under the Fourier
transform; the table contains 1-D and multidimensional functions with the di-
mension D

Space domain Fourier domain

Gauss, exp
(
−πxTx

)
Gauss, exp

(
−πkTk

)
sech(πx) = 1

exp(πx) + exp(−πx)
sech(πk) = 1

exp(πk) + exp(−πk)

Pole, |x|−D/2 Pole, |k|−D/2

δ comb, III(x/∆x) =
∞∑

n=−∞
δ(x−n∆x) δ comb, III(k∆x) =

∞∑
v=−∞

δ(k − v/∆x)

It is essentially the variance of
∣∣g(x)

∣∣2, a measure of the width of
the distribution of the “energy” of the signal. The uncertainty relation
states:

Theorem 8.5 (Uncertainty relation) The product of the variance of∣∣g(x)
∣∣2, (∆x)2, and of the variance of

∣∣ĝ(k)
∣∣2, (∆k)2, cannot be smaller

than 1/4π :

∆x∆k ≥ 1
4π

(8.72)

The relations between compactness and smoothness and the uncer-
tainty relation give some basic guidance for the design of linear filter
(convolution) operators [CVA2, Chapter 6].

Invariant functions. It is well known that the Fourier transform of a
Gaussian function is again a Gaussian function with reciprocal variance:

exp

(
−πx2

a2

)
⇐⇒ exp

(
−πk2

a−2

)
(8.73)

But it is less well known that there are other functions that are invari-
ant under the Fourier transform (Table 8.5). Each of these functions
has a special meaning for the Fourier transform. The δ-comb function
III is the basis for the sampling theorem and establishes the relation
between the lattice in the spatial domain and the reciprocal lattice in
the Fourier domain. The functions with a pole at the origin, |x|D/2 in a
D-dimensional space, are the limiting signal form for which the integral
over the square of the function diverges (physically speaking, the total
energy of a signal just becomes infinite). Tables with Fourier transform
pairs can be found in Bracewell [8].
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8.7 The discrete Fourier transform (DFT)

8.7.1 One-dimensional DFT

Definition 8.3 (1-D DFT) If g is an N-dimensional complex-valued vec-
tor,

g = [g0, g1, . . . , gN−1]T (8.74)

then the discrete Fourier transform of g, ĝ is defined as

ĝv = 1√
N

N−1∑
n=0

gn exp
(
−2π inv

N

)
, 0 ≤ v < N (8.75)

The DFT maps the vector space of N-dimensional complex-valued
vectors onto itself. The index v denotes how often the wavelength
of the corresponding discrete exponential exp(−2π inv/N) with the
amplitude ĝv fits into the interval [0, N].

The back transformation is given by

gn = 1√
N

N−1∑
v=0

ĝv exp
(
2π inv

N

)
, 0 ≤ n < N (8.76)

We can consider the DFT as the inner product of the vector g with a set
of M orthonormal basis vectors, the kernel of the DFT:

bv = 1√
N

[
1, W v

N , W 2v
N , . . . , W (N−1)v

N

]T
with WN = exp

(
2π i
N

)
(8.77)

Using the base vectors bv , the DFT reduces to

ĝv = b∗Tg or ĝ = Fg with F =


b∗T
0

b∗T
1

. . .
b∗T

N−1

 (8.78)

This means that the coefficient ĝv in the Fourier space is obtained by
projecting the vector g onto the basis vector bv . The N basis vectors
bv form an orthonormal base of the vector space:

b∗T
v b′

v = δv−v ′ =
{
1 if v = v ′

0 otherwise
(8.79)

The real and imaginary parts of the basis vectors are sampled sine
and cosine functions of different wavelengths with a characteristic pe-
riodicity:

exp
(
2π in + pN

N

)
= exp

(
2π in

N

)
, ∀p ∈ Z (8.80)
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The basis vector b0 is a constant real vector.
With this relation and Eqs. (8.75) and (8.76) the DFT and the in-

verse DFT extend the vectors ĝ and g, respectively, periodically over
the whole space:

Fourier domain ĝv+pN = ĝv , ∀p ∈ Z
space domain gn+pN = gn ∀p ∈ Z (8.81)

This periodicity of the DFT gives rise to an interesting geometric inter-
pretation. According to Eq. (8.81) the border points gM−1 and gM = g0

are neighboring points. Thus it is natural to draw the points of the
vector not on a finite line but on a unit circle, or Fourier ring.

With the double periodicity of the DFT, it does not matter which
range of N indices we chose. The most natural choice of wave numbers
is v ∈ [−N/2, N/2−1], N even. With this index range the 1-D DFT and
its inverse are defined as

ĝv = 1√
N

N−1∑
n=0

gnW−nv
N ⇐⇒ gn = 1√

N

N/2−1∑
v=−N/2

ĝvW nv
N (8.82)

Then the wave numbers are restricted to values that meet the sam-
pling theorem (Section 8.4.2), that is, are sampled at least two times
per period. Note that the exponentials bN−v = b−v = b∗

v according to
Eqs. (8.77) and (8.80).

As in the continuous case further variants for the definition of the
DFT exist that differ by the factors applied to the forward and back-
ward transform. Here again a symmetric definition was chosen that
has the benefit that the base vectors become unit vectors. Other vari-
ants use the factor 1/N either with the forward or backward transform
and not, as we did 1/

√
N with both transforms. The definition with

the factor 1/N has the advantage that the zero coefficient of the DFT,
ĝ0 = (1/N)

∑N−1
n=0 gn, directly gives the mean value of the sequence. The

various definitions in use are problematic because they cause consid-
erable confusion with factors in DFT pairs and DFT theorems.

8.7.2 Multidimensional DFT

As with the continuous FT (Section 8.6.2), it is easy to extend the DFT
to higher dimensions. In order to simplify the equations, we use the
abbreviation for the complex exponentials already used in Eq. (8.77)

WN = exp
(
2π i
N

)
with W n+pN

N = W n
N , W−n

N = W∗n
N (8.83)

In two dimensions the DFT operates on M ×N matrices.
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Definition 8.4 (2-D DFT) The 2-D DFT: CM×N � CM×N is defined as

Ĝu,v = 1√
MN

M−1∑
m=0

N−1∑
n=0

Gm,nW−nv
N

W−mu
M (8.84)

and the inverse DFT as

Gmn = 1√
MN

M−1∑
u=0

N−1∑
v=0

Ĝu,vW mu
M W nv

N (8.85)

As in the 1-D case, the DFT expands a matrix into a set of NM or-
thonormal basis matrices Bu,v , which span the N ×M-dimensional vec-
tor space over the field of complex numbers:

Bu,v = 1√
MN

W−nv
N W−mu

M = 1√
MN

bubT
v (8.86)

In this equation, the basis matrices are expressed as an outer product
of the column and the row vector that form the basis vectors of the 1-D
DFT. Thus as in the continuous case, the kernel of themultidimensional
DFTs are separable.

As in the 1-D case (Section 8.7.1), the definition of the 2-D DFT im-
plies a periodic extension in both domains beyond the original matrices
into the whole 2-D space.

8.7.3 Basic properties

The theorems of the 2-D DFT are summarized in Table 8.6. They are
very similar to the corresponding theorems of the continuous Fourier
transform, which are listed in Table 8.4 for a D-dimensional FT. As in
Section 8.6.3, we discuss some properties that are of importance for
signal processing in more detail.

Symmetry. The DFT shows the same symmetries as the FT (Eq. (8.59)).
In the definition for even and odd functions g(−x) = ±g(x) only the
continuous functions must be replaced by the corresponding vectors
g−n = ±gn or matrices G−m,−n = ±Gm,n. Note that because of the
periodicity of the DFT, these symmetry relations can also be written as

G−m,−n = ±Gm,n ≡ GM−m,N−n = ±Gm,n (8.87)

for even (+ sign) and odd (− sign) functions. This is equivalent to shift-
ing the symmetry center from the origin to the point [M/2, N/2]T .

The study of symmetries is important for practical purposes. Care-
ful consideration of symmetry allows storage space to be saved and
algorithms to speed up. Such a case is real-valued images. Real-valued
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Table 8.6: Summary of the properties of the 2-D DFT; G and H are complex-
valuedM ×N matrices, Ĝ and Ĥ their Fourier transforms, anda and b complex-
valued constants; for proofs see Poularikas [7], Cooley and Tukey [10]

Property Space domain Wave-number domain

Mean
1

MN

M−1∑
m=0

N−1∑
n=0

Gmn Ĝ0,0/
√

MN

Linearity aG+ bH aĜ+ bĤ

Shifting Gm−m′,n−n′ W−m′u
M W−n′v

N Ĝuv

Modulation W u′m
M W v′n

N Gm,n Ĝu−u′,v−v′

Finite differences
(Gm+1,n − Gm−1,n)/2

(Gm,n+1 − Gm,n−1)/2

i sin(2πu/M)Ĝuv

i sin(2πv/N)Ĝuv

Spatial
stretching

GPm,Qn Ĝuv/(
√

PQ)

Frequency
stretching

Gm,n/(
√

PQ) ĜPu,Qv

Spatial sampling Gm/P,n/Q
1√
PQ

P−1∑
p=0

Q−1∑
q=0

Ĝu+pM/P,v+qN/Q

Frequency
sampling

1√
PQ

P−1∑
p=0

Q−1∑
q=0

Gm+pM/P,n+qN/Q Ĝpu,qv

Convolution
M−1∑
m′=0

N−1∑
n′=0

Hm′n′Gm−m′,n−n′
√

MNĤuvĜuv

Multiplication
√

MNGmnHmn

M−1∑
u′=0

N−1∑
v′=0

Hu′v′Gu−u′,v−v′

Spatial
correlation

M−1∑
m′=0

N−1∑
n′=0

Hm′n′Gm+m′,n+n′
√

NĤuvĜ∗
uv

Inner product
M−1∑
m=0

N−1∑
n=0

GmnH∗
mn

M−1∑
u=0

N−1∑
v=0

ĜuvĤ∗
uv

Norm
M−1∑
m=0

N−1∑
n=0

|Gmn|2
M−1∑
u=0

N−1∑
v=0

|Ĝuv |2
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Figure 8.11: a Half-space as computed by an in-place Fourier transform algo-
rithm; the wave number zero is in the upper left corner; b FT with the missing
half appended and remapped so that the wave number zero is in the center.

images can be stored in half of the space as complex-valued images.
From the symmetry relations Eq. (8.62) we can conclude that real-valued
functions exhibit a Hermitian DFT:

Gmn = G∗
mn ⇐⇒ ĜM−u,N−v = Ĝ∗

uv (8.88)

The complex-valued DFT of real-valued matrices is, therefore, com-
pletely determined by the values in one half-space. The other half-space
is obtained by mirroring at the symmetry center (M/2, N/2). Conse-
quently, we need the same amount of storage space for the DFT of a
real image as for the image itself, as only half of the complex spectrum
needs to be stored.

In two and higher dimensions, matters are slightly more complex.
The spectrum of a real-valued image is determined completely by the
values in one half-space, but there are many ways to select the half-
space. This means that all except for one component of the wave num-
ber can be negative, but that we cannot distinguish between k and −k,
that is, between wave numbers that differ only in sign. Therefore, we
can again represent the Fourier transform of real-valued images in a
half-space where only one component of the wave number includes
negative values. For proper representation of the spectra with zero
values of this component in the middle of the image, it is necessary to
interchange the upper (positive) and lower (negative) parts of the image
as illustrated in Fig. 8.11.

For real-valued image sequences, again we need only a half-space to
represent the spectrum. Physically, it makes the most sense to choose
the half-space that contains positive frequencies. In contrast to a single
image, we obtain the full wave-number space. Now we can identify the
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spatially identical wave numbers k and −k as structures propagating
in opposite directions.

Convolution. One- and two-dimensional discrete convolution are de-
fined by

g′
n =

N−1∑
n′=0

hn′gn−n′ , G′
m,n =

M−1∑
m′=0

N−1∑
n′=0

Hm′n′Gm−m′,n−n′ (8.89)

The convolution theorem states:

Theorem 8.6 (Discrete convolution) If g (G) has the Fourier transform
ĝ (Ĝ) and h (H) has the Fourier transform ĥ (Ĥ), then h∗g (H ∗G) has
the Fourier transform

√
Nĥĝ (

√
MNĤĜ).

Thus, also in the discrete case convolution of two functions means
multiplication of their transforms. This is true because the shift theo-
rem is still valid, which ensures that the eigenfunctions of all convolu-
tion operators are the basis functions bv of the Fourier transform.

Convolution for arbitrary dimensional signals is also

commutative h∗ g = g ∗h,
associative h1 ∗ (h2 ∗ g) = (h1 ∗h2) ∗ g,
distributive over addition (h1 +h2) ∗ g = h1 ∗ g +h2 ∗ g

(8.90)

These equations show only the 1-D case.

8.7.4 Fast Fourier transform algorithms (FFT)

Without an effective algorithm to calculate the discrete Fourier trans-
form, it would not be possible to apply the FT to images and other
higher-dimensional signals. Computed directly after Eq. (8.84), the FT
is prohibitively expensive. Not counting the calculations of the cosine
and sine functions in the kernel, which can be precalculated and stored
in a lookup table, the FT of an N ×N image needs in total N4 complex
multiplications and N2(N2 − 1) complex additions. Thus it is an op-
eration of O(N4) and the urgent need arises to minimize the number
of computations by finding a suitable fast algorithm. Indeed, the fast
Fourier transform (FFT) algorithm first published by Cooley and Tukey
[10] is the classical example of a fast algorithm. A detailed discus-
sion on FFT-algorithms can be found in Bracewell [8], Blahut [11], and
Besslich and Lu [6].
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8.8 Scale of signals

8.8.1 Basics

In Sections 8.5 and 8.7 the representation of images in the spatial and
wave-number domain were discussed. If an image is represented in the
spatial domain, we do not have any information at all about the wave
numbers contained at a point in the image. We know the position with
an accuracy of the lattice constant∆x, but the local wave number at this
position may be anywhere in the range of the possible wave numbers
from −1/(2∆x) to 1/(2∆x) (Fig. 8.12).

In the wave-number domain we have the reverse case. Each pixel
in this domain represents one wave number with the highest wave-
number resolution possible for the given image size, which is−1/(N∆x)
for an image with N pixels in each coordinate. But any positional in-
formation is lost, as one point in the wave-number space represents a
periodic structure that is spread over the whole image (Fig. 8.12). Thus,
the position uncertainty is the linear dimension of the image N∆x. In
this section we will revisit both representations under the perspective
of how to generate a multiscale representation of an image.

The foregoing discussion shows that the representations of an im-
age in either the spatial or wave-number domain constitute two oppo-
site extremes. Although the understanding of both domains is essential
for any type of signal processing, the representation in either of these
domains is inadequate to analyze objects in images.

In the wave-number representation the spatial structures from var-
ious independent objects are mixed up because the extracted periodic



8.8 Scale of signals 253

structures cover the whole image. In the spatial representation we have
no information about the spatial structures contained in an object, we
just know the local pixel gray values.

What we thus really need is a type of joint representation that allows
for a separation into different wave-number ranges (scales) but still
preserves as much spatial resolution as possible. Such a representation
is called a multiscale or multiresolution representation.

The limits of the joint spatial/wave-number resolution are given by
the uncertainty relation discussed in Section 8.6.3. It states that the
product of the resolutions in the spatial and wave-number domain can-
not be beyond a certain threshold. This is exactly what we observed
already in the spatial and wave-number domains. However, besides
these two domains any other combination of resolutions that meets
the uncertainty relation can be chosen. Thus the resolution in wave
numbers, that is, the distinction of various scales in an image, can be
set to any value with a corresponding spatial resolution (Fig. 8.12). As
the uncertainty relation gives only the lower limit of the joint resolu-
tion, it is important to devise efficient data structures that approach
this limit.

In the last two decades a number of various concepts have been
developed for multiresolution signal processing. Some trace back to
the early roots of signal processing. This includes various techniques
to filter signals for certain scale ranges such as the windowed Fourier
transform, Gabor filters, polar separable quadrature filters, and filters
steerable in scale (Section 8.8).

Some of these techniques are directly suitable to compute a local
wave number that reflects the dominant scale in a local neighborhood.
Multigrid image structures in the form of pyramids are another early
and efficient multiresolution [12]. More recent developments are the
scale space (Section 8.8) and wavelets [13, 14].

Although all of these techniques seem to be quite different at first
glance, this it not the case. They have much in common; they merely
look at the question of multiresolutional signal representation from a
different point of view. Thus an important issue in this chapter is to
work out the relations between the various approaches.

An early account onmultiresolution imaging was given by Rosenfeld
[15]. The standard work on linear scale space theory is by Lindeberg
[16] (see also CVA2 [Chapter 11]), and nonlinear scale space theory is
treated by Weickert [17] (see also Chapter 12).

8.8.2 Windowed Fourier transform

One way to a multiresolutional signal representation starts with the
Fourier transform. If the Fourier transform is applied only to a sec-
tion of the image and this section is moved around through the whole
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image, then a joint spatial/wave-number resolution is achieved. The
spatial resolution is given by the size of the window and due to the
uncertainty relation (Section 8.6.3), the wave-number resolution is re-
duced by the ratio of the image size to the window size. The window
function w(x) must not be a box function. Generally, a useful window
function has a maximum at the origin, is even and isotropic, and de-
creases monotonically with increasing distance from the origin. This
approach to a joint space/wave-number representation is thewindowed
Fourier transform. It is defined by

ĝ(x,k0) =
∞∫

−∞
g(x′)w(x′ −x)exp(−2π ik0x′)dx′2 (8.91)

The integral in Eq. (8.91) looks almost like a convolution integral (Sec-
tion 8.6.3). To convert it into a convolution integral we make use of the
fact that the window function is even (w(−k) = w(k)) and rearrange
the second part of Eq. (8.91):

w(x′ −x)exp(−2π ik0x′) =
w(x −x′)exp(2π ik0(x −x′))exp(−2π ik0x)

Then we can write Eq. (8.91) as a convolution:

ĝ(x,k0) = [g(x) ∗ w(x)exp(2π ik0x)] exp(−2π ik0x) (8.92)

This means that the local Fourier transform corresponds to a convo-
lution with the complex convolution kernel w(x)exp(2π ik0x) except
for a phase factor exp(−2π ik0x). Using the shift theorem (Table 8.4),
the transfer function of the convolution kernel can be computed to be

w(x)exp(2π ik0x) ⇐⇒ ŵ(k− k0) (8.93)

This means that the convolution kernel is a bandpass filter with a peak
wave number ofk0. Thewidth of the bandpass is inversely proportional
to the width of the window function. In this way, the spatial and wave-
number resolutions are interrelated to each other. As an example, we
take a Gaussian window function

w(x) = 1
σ D exp

(
−π |x|2

σ 2

)
⇐⇒ ŵ(k) = exp

(
−π |k|2

σ−2

)
(8.94)

The Gaussian window function reaches the theoretical limit set by
the uncertainty relation and is thus an optimal choice; a better wave-
number resolution cannot be achieved with a given spatial resolution.

The windowed Fourier transform Equation (8.91) delivers a complex
filter response. This has the advantage that both the phase and the
amplitude of a bandpass-filtered signal are retrieved.
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Figure 8.13: a Transfer function (Eq. (8.95)); b even; and c odd part of the filter
mask (Eq. (8.97)) of a Gabor filter.

8.8.3 Gabor filter

Definition. A Gabor filter is a bandpass filter that selects a certain
wavelength range around the center wavelength k0 using the Gaussian
function. The Gabor filter is very similar to the windowed Fourier trans-
form if the latter is used with a Gaussian window function. The transfer
function of the Gabor filter is real but asymmetric and defined as

Ĝ(k) = exp
(
−π|k− k0)|2σ 2

x

)
(8.95)

From this equation it is obvious that a Gabor filter is only a useful
bandpass filter if it does not include the origin, that is, it is Ĝ(0) = 0.
This condition is met in good approximation if |k0|σx > 3.

The filter mask (point spread function) of these filters can be com-
puted easily with the shift theorem (Table 8.4):

G(x) = 1
σ D exp(2π ik0x)exp

(
−π|x|2

σ 2
x

)
(8.96)



256 8 Representation of Multidimensional Signals

The complex filter mask can be split into an even real and an odd imag-
inary part:

G+(x) = 1
σ D cos(k0x)exp

(
−π|x|2

σ 2
x

)

G−(x) = 1
σ D sin(k0x)exp

(
−π|x|2

σ 2
x

) (8.97)

Quadrature filters and analytic signals. Gabor filters are examples
of quadrature filters. This general class of filters generates a special
type of signal known as the analytic signal from a real-valued signal.

It is the easiest way to introduce the quadrature filter with the com-
plex form of its transfer function. Essentially, the transfer function
of a D-dimensional quadrature filter is zero for one half-space of the
Fourier domain parted by the hyperplane kTn̄ = 0:

q̂(k) =
{
2h(k) kTn̄ > 0

0 otherwise
(8.98)

where h(k) is a real-valued function. Equation (8.98) can be separated
into an even and odd function:

q̂+(k) = (q̂(k) + q̂(−k))/2

q̂−(k) = (q̂(k) − q̂(−k))/2
(8.99)

The relation between the even and odd part of the signal response can
be described by the Hilbert transform:

q̂−(k) = i sgn(kTn̄)q̂+(k) ⇐⇒ q−(x) = i
π

∞∫
−∞

q+(x′)
(x′ −x)Tn̄

dDx′ (8.100)

The even and odd part of a quadrature filter can be combined into
a complex-valued signal by

qA = q+ − iq− (8.101)

From Eq. (8.100) we can then see that this combination is consistent
with the definition of the transfer function of the quadrature filter in
Eq. (8.98).

The basic characteristic of the analytic filter is that its even and odd
part have the same magnitude of the transfer function but that one
is even and real and the other is odd and imaginary. Thus the filter
responses of the even and odd part are shifted in phase by 90°. Thus
the even part is cosine-like and the odd part is sine-like—as can be seen
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Figure 8.14: Representation of a filtered 1-D signal as an analytic signal: Signal
filtered with a the even and b the odd part of a quadrature filter; c amplitude;
and d phase signal.

from the Gabor filter (Fig. 8.13b and c)—and they are shifted in phase
by 90° (Fig. 8.14).

Although the transfer function of the analytic filter is real, it results
in a complex signal because it is asymmetric. For a real signal no in-
formation is lost by suppressing the negative wave numbers. They can
be reconstructed as the Fourier transform of a real signal is Hermitian
(Section 8.6.3).

The analytic signal can be regarded as just another representation
of a real signal with two important properties. The magnitude of the
analytic signal gives the local amplitude (Fig. 8.14c)∣∣qA

∣∣2 = q2
+ + q2

− (8.102)

and the argument the local phase (Fig. 8.14d)

arg(A) = arctan
(−H

I
)

(8.103)

While the concept of the analytic signal works with any type of 1-D
signal, it must be used with much more care in higher-dimensional sig-
nals. These problems are related to the fact that an analytical signal
cannot be defined for all wave numbers that lie on the hyperplane de-
fined by kTn̄ = 0 partitioning the Fourier domain in two half-spaces.
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For these wave numbers the odd part of the quadrature filter is zero.
Thus it is not possible to compute the local amplitude nor the local
phase of the signal. This problem can only be avoided if the transfer
function of the quadrature filter is zero at the hyperplane. For a phase
definition in two dimensions that does not show these restrictions, see
CVA3 [Chapter 10].

8.8.4 Local wave number

The key to determining the local wave number is the phase of the signal.
As an introduction we discuss a simple example and consider the 1-D
periodic signal g(x) = g0 cos(kx). The argument of the cosine function
is known as the phase φ(x) = kx of the periodic signal. This is a linear
function of the position and the wave number. Thus, we obtain the
wave number of the periodic signal by computing the first-order spatial
derivative of the phase signal

∂φ(x)
∂x

= k (8.104)

These simple considerations emphasize the significant role of the
phase in signal processing.

Local wave number from phase gradients. In order to determine the
local wave number, we need to compute just the first spatial derivative
of the phase signal. This derivative has to be applied in the same di-
rection as the Hilbert or quadrature filter. The phase is given by

φ(x) = arctan
(−g+(x)

g−(x)

)
(8.105)

Direct computation of the partial derivatives from Eq. (8.105) is not
advisable, however, because of the inherent discontinuities in the phase
signal. A phase computed with the inverse tangent restricts the phase
to the main interval [−π, π[ and thus inevitably leads to a wrapping of
the phase signal from π to −π with the corresponding discontinuities.

As pointed out by Fleet [18], this problem can be avoided by comput-
ing the phase gradient directly from the gradients of q+(x) and q−(x):

kp = ∂φ(x)
∂xp

= ∂
∂xp

arctan(−q+(x)/q−(x))

= 1
q2+(x) + q2−(x)

(
∂q+(x)

∂xp
q−(x) − ∂q−(x)

∂xp
q+(x)

) (8.106)
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Figure 8.15: a Radial and b angular part of quadrature filter according to
Eq. (8.107) with l = 2 and B = 2 in different directions and with different peak
wave numbers.

This formulation of the phase gradient also eliminates the need for us-
ing trigonometric functions to compute the phase signal and is, there-
fore, significantly faster.

Local wave number from filter ratios. With polar separable quadra-
ture filters (r̂ (k)d̂(φ)) as introduced by Knutsson [19] another scheme
for computation of the local scale is possible. These classes of filters
are defined by

r̂ (k) = exp

[
−(lnk − lnk0)2

(B/2)2 ln2

]

d̂(φ) =
{

cos2l(φ − φk) |φ − φk| < π/2
0 otherwise

(8.107)

In this equation, the complex notation for quadrature filters is used as
introduced at the beginning of this section. The filter is directed into
the angle φk.

The filter is continuous, as the cosine function is zero in the partition
plane for the two half-spaces (|φ−φk| = π/2). The constant k0 denotes
the peak wave number. The constant B determines the half-width of the
wave number in number of octaves and l the angular resolution of the
filter. In a logarithmic wave-number scale, the filter has the shape of
a Gaussian function. Therefore, the radial part has a lognormal shape.
Figure 8.15 shows the radial and angular part of the transfer function.

The lognormal form of the radial part of the quadrature filter sets is
the key for a direct estimate of the local wave number of a narrowband
signal. According to Eq. (8.107), we can write the radial part of the
transfer function as

r̂l(k) = exp

[
−(lnk − lnkl)2

2σ 2 ln2

]
(8.108)
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We examine the ratio of the output of two different radial center
frequencies k1 and k2 and obtain:

r̂2
r̂1

= exp

[
−(lnk − lnk2)2 − (lnk − lnk1)2

2σ 2 ln2

]

= exp

[
2(lnk2 − lnk1) lnk + ln2 k2 − ln2 k1

2σ 2 ln2

]

= exp
[

(lnk2 − lnk1)[lnk − 1/2(lnk2 + lnk1)]
σ 2 ln2

]

= exp

[
ln(k/

√
k2k1) ln(k2/k1)
σ 2 ln2

]

=
(

k√
k1k2

)ln(k2/k1)/(σ2 ln2)

Generally, the ratio of two different radial filters is directly related
to the local wave number. The relation becomes particularly simple if
the exponent in the last expression is one. This is the case, for example,
if the wave-number ratio of the two filters is two (k2/k1 = 2 and σ = 1).
Then

r̂2
r̂1

= k√
k1k2

(8.109)

8.9 Scale space and diffusion

As we have seen with the example of the windowed Fourier transform
in the previous section, the introduction of a characteristic scale adds a
new coordinate to the representation of image data. Besides the spatial
resolution, we have a new parameter that characterizes the current res-
olution level of the image data. The scale parameter is denoted by ξ. A
data structure that consists of a sequence of images with different res-
olutions is known as a scale space; we write g(x, ξ) to indicate the scale
space of the image g(x). Such a sequence of images can be generated
by repeated convolution with an appropriate smoothing filter kernel.

This section is considered a brief introduction into scale spaces. For
an authoritative monograph on scale spaces, see Lindeberg [16].

8.9.1 General properties of a scale space

In this section, we discuss some general conditions that must be met
by a filter kernel generating a scale space. We will discuss two basic
requirements. First, new details must not be added with increasing
scale parameter. From the perspective of information theory, we may
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say that the information content in the signal should continuously de-
crease with the scale parameter.

The second property is related to the general principle of scale in-
variance. This basically means that we can start smoothing the signal
at any scale parameter in the scale space and still obtain the same scale
space.

Minimum-maximum principle. The information-decreasing property
of the scale space with ξ can be formulated mathematically in different
ways. We express it here with theminimum-maximum principle, which
states that local extrema must not be enhanced. This means that the
gray value at a local maximum or minimum must not increase or de-
crease, respectively. For the physical process of diffusion this is an
intuitive property. For example, in a heat transfer problem, a hot spot
must not become hotter or a cool spot cooler.

Semigroup property. The second important property of the scale
space is related to the scale invariance principle. We want to start the
generating process at any scale parameter and still obtain the same
scale space. More quantitatively, we can formulate this property as

B(ξ2)B(ξ1) = B(ξ1 + ξ2) (8.110)

This means that the smoothing of the scale space at the scale ξ1 by an
operator with the scale ξ2 is equivalent to the application of the scale
space operator with the scale ξ1 + ξ2 to the original image. Alterna-
tively, we can state that the representation at the coarser level ξ2 can
be computed from the representation at the finer level ξ1 by applying

B(ξ2) = B(ξ2 − ξ1)B(ξ1) with ξ2 > ξ1 (8.111)

In mathematics the properties Eqs. (8.110) and (8.111) are referred to
as the semigroup property .

Conversely, we can ask what scale space generating kernels exist
that meet both the minimum-maximum principle and the semigroup
property. The answer to this question may be surprising. As shown by
Lindeberg [16, Chapter 2], the Gaussian kernel is the only convolution
kernel that meets both criteria and is in addition isotropic and homo-
geneous. From yet another perspective this feature puts the Gaussian
convolution kernel into a unique position for signal processing. With
respect to the Fourier transform we have already discussed that the
Gaussian function is one of the few functions with a shape that is in-
variant under the Fourier transform (Table 8.5) and optimal in the sense
of the uncertainty relation (Section 8.6.3). In Section 9.5.4 we will see
in addition that the Gaussian function is the only function that is sep-
arable and isotropic.
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8.9.2 Linear scale spaces

Generation by a diffusion process. The generation of a scale space
requires a process that can blur images to a controllable degree. Dif-
fusion is a transport process that tends to level out concentration dif-
ferences. In physics, diffusion processes govern the transport of heat,
matter, and momentum [20] leading to an ever increasing equalization
of spatial concentration differences. If we identify the time with the
scale parameter ξ, the diffusion process thus establishes a scale space.

To apply a diffusion process to an image, we regard the gray value g
as the concentration of a scalar property. The elementary law of diffu-
sion states that the flux density j is directed against the concentration
gradient ∇g and is proportional to it:

j = −D∇g (8.112)

where the constant D is known as the diffusion coefficient . Using the
continuity equation

∂g
∂t

+∇j = 0 (8.113)

the diffusion equation is

∂g
∂t

=∇(D∇g) (8.114)

For the case of a homogeneous diffusion process (D does not depend
on the position), the equation reduces to

∂g
∂t

= D∆g where ∆ =
D∑

d=1

∂2

∂x2
d

(8.115)

It is easy to show that the general solution to this equation is equivalent
to a convolution with a smoothing mask. To this end, we perform a
spatial Fourier transform that results in

∂ĝ(k)
∂t

= −4π2D|k|2ĝ(k) (8.116)

reducing the equation to a linear first-order differential equation with
the general solution

ĝ(k, t) = exp(−4π2Dt|k|2)ĝ(k,0) (8.117)

where ĝ(k,0) is the Fourier-transformed image at time zero.
Multiplication of the image in Fourier space with the Gaussian func-

tion in Eq. (8.117) is equivalent to a convolution with the same function
but of reciprocal width. Using

exp
(
−πa |k|2

)
⇐⇒ 1

ad/2 exp

(
− |x|2

a/π

)
(8.118)
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we obtain with a = 4πDt for a d-dimensional space

g(x, t) = 1
(2π)d/2σ d(t)

exp

(
− |x|2
2σ 2(t)

)
∗ g(x,0) (8.119)

with

σ(t) =
√
2Dt (8.120)

Nowwe can replace the physical time coordinate by the scale parameter
ξ with

ξ = 2Dt = σ 2 (8.121)

and finally obtain

g(x, ξ) = 1
(2πξ)d/2 exp

(
−|x|2

2ξ

)
∗ g(x,0) (8.122)

We have written all equations in such a way that they can be used
for signals of any dimension. Thus, Eqs. (8.117) and (8.119) can also
be applied to scale spaces of image sequences. The scale parameter is
not identical to the time although we used a physical diffusion process
that proceeds with time to derive it. If we compute a scale-space repre-
sentation of an image sequence, it is useful to scale the time coordinate
with a characteristic velocity u0 so that it has the same dimension as
the spatial coordinates: t′ = u0t. For digital signals (Section 8.3), of
course, no such scaling is required. It is automatically fixed by the
spatial and temporal sampling intervals: u0 = ∆x/∆t.

As an illustration, Fig. 8.16 shows some individual images of the
scale space of a 2-D image at values of ξ as indicated. This example
nicely demonstrates a general property of scale spaces. With increas-
ing scale parameter ξ, the signals become increasingly blurred, more
and more details are lost. This feature can be most easily seen by the
transfer function of the scale-space representation in Eq. (8.117). The
transfer function is always positive and monotonically decreasing with
the increasing scale parameter ξ for all wave numbers. This means that
no structure is amplified. All structures are attenuated with increasing
ξ, and smaller structures always faster than coarser structures. In the
limit of ξ → ∞ the scale space converges to a constant image with the
mean gray value. A certain feature exists only over a certain scale range.
We can observe that edges and lines disappear and two objects merge
into one.

Accelerated scale spaces. Despite the mathematical beauty of scale-
space generation with a Gaussian convolution kernel, this approach has
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Figure 8.16: Scale space of a 2-D image: a original image; b, c, and d at scale
parameters σ 1, 2, and 4, respectively.

one significant disadvantage. The standard deviation of the smooth-
ing increases only with the square root of the scale parameter ξ (see
Eq. (8.121)). While smoothing goes fast for fine scales, it becomes in-
creasingly slower for larger scales.

There is a simple cure for this problem. We need a diffusion process
where the diffusion constant increases with time. We first discuss a
diffusion coefficient that increases linearly with time. This approach
results in the differential equation

∂g
∂t

= D0t∆g (8.123)

A spatial Fourier transform results in

∂ĝ(k)
∂t

= −4π2D0t|k|2ĝ(k) (8.124)

This equation has the general solution

ĝ(k, t) = exp(−2π2D0t2|k|2)ĝ(k,0) (8.125)
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which is equivalent to a convolution in the spatial domain as in Eq. (8.121)
with ξ = σ 2 = D0t2. Now the standard deviation for the smoothing is
proportional to time for a diffusion process with a diffusion coefficient
that increases linearly in time. As the scale parameter ξ is proportional
to the time squared, we denote this scale space as the quadratic scale
space. This modified scale space still meets the minimum-maximum
principle and the semigroup property.

For even more accelerated smoothing, we can construct a logarith-
mic scale space, that is, a scale space where the scale parameter in-
creases logarithmically with time. We use a diffusion coefficient that
increases exponentially in time:

∂g
∂t

= D0 exp(t/τ)∆g (8.126)

A spatial Fourier transform results in

∂ĝ(k)
∂t

= −4π2D0 exp(t/τ)|k|2ĝ(k) (8.127)

The general solution of this equation in the Fourier domain is

ĝ(k, t) = exp(−4π2D0(exp(t/τ)/τ)|k|2)ĝ(k,0) (8.128)

Again,the transfer function and thus the convolution kernel have the
same form as in Eqs. (8.117) and (8.125), now with the scale parameter

ξl = σ 2 = 2D0

τ
exp(t/τ) (8.129)

This means that the logarithm of the scale parameter ξ is now propor-
tional to the limiting scales still contained in the scale space. Essen-
tially, we can think of the quadratic and logarithmic scale spaces as a
coordinate transform of the scale parameter that efficiently compresses
the scale space coordinate:

ξq ∝
√

ξ, ξl ∝ ln(ξ) (8.130)

8.9.3 Differential scale spaces

The interest in a differential scale space stems from the fact that we
want to select optimum scales for processing of features in images. In
a differential scale space, the change of the image with scale is empha-
sized. We use the transfer function of the scale-space kernel Equa-
tion (8.117), which is also valid for quadratic and logarithmic scale
spaces. The general solution for the scale space can be written in the
Fourier space as

ĝ(k, ξ) = exp(−2π2 |k|2 ξ)ĝ(k,0) (8.131)
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Differentiating this signal with respect to the scale parameter ξ yields

∂ĝ(k, ξ)
∂ξ

= −2π2 |k|2 exp(−2π2 |k|2 ξ)ĝ(k,0)

= −2π2 |k|2 ĝ(k, ξ)
(8.132)

The multiplication with −4π2|k|2 is equivalent to a second-order spa-
tial derivative (Table 8.4), the Laplacian operator . Thus we can write in
the spatial domain

∂g(x, ξ)
∂ξ

= 1
2
∆g(x, ξ) (8.133)

Equations (8.132) and (8.133) constitute a basic property of the dif-
ferential scale space. The differential scale space is equivalent to a
second-order spatial derivation with the Laplacian operator and thus
leads to an isotropic bandpass decomposition of the image. This is, of
course, not surprising as the diffusion equation in Eq. (8.115) relates
just the first-order temporal derivative with the second-order spatial
derivative. The transfer function at the scale ξ is

−2π2 |k|2 exp(−2π2ξ |k|2) (8.134)

For small wave numbers, the transfer function is proportional to −|k|2.
It reaches a maximum at

kmax = 1√
2π2ξ

(8.135)

and then decays exponentially.

8.9.4 Discrete scale spaces

The construction of a discrete scale space requires a discretization of
the diffusion equation and not of the convolution kernel [16]. We start
with a discretization of the 1-D diffusion equation

∂g(x, ξ)
∂ξ

= ∂2g(x, ξ)
∂x2 (8.136)

The derivatives are replaced by discrete differences in the following
way:

∂g(x, ξ)
∂ξ

≈ g(x, ξ +∆ξ) − g(x, ξ)
∆ξ

∂2g(x, ξ)
∂x2 ≈ g(x +∆x, ξ) − 2g(x, ξ) + g(x −∆x, ξ)

∆x2

(8.137)
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This leads to the following iteration scheme for computing a discrete
scale space:

g(x, ξ +∆ξ) = ∆ξg(x +∆x, ξ) + (1− 2∆ξ)g(x, ξ) +∆ξg(x −∆x, ξ)
(8.138)

or written with discrete coordinates

gn,ξ+1 = ∆ξgn+1,ξ + (1− 2∆ξ)gn,ξ +∆ξgn−1,ξ (8.139)

Lindeberg [16] shows that this iteration results in a discrete scale
space that meets the minimum-maximum principle and the semi-group
property if and only if

∆ξ ≤ 1
4

(8.140)

The limit case of ∆ξ = 1/4 leads to the especially simple iteration

gn,ξ+1 = 1/4gn+1,ξ + 1/2gn,ξ + 1/4gn−1,ξ (8.141)

Each step of the scale-space computation is given by a smoothing of
the signal with the binomial mask B2 = [1/4 1/2 1/4] (Section 9.5.4).
We can also formulate the general scale-space generating operator in
Eq. (8.139) using the convolution operator B. Written in the operator
notation introduced in Section 9.1.3, the operator for one iteration step
to generate the discrete scale space is

(1− ε)I + εB2 with ε ≤ 1 (8.142)

where I denotes the identy operator.
This expression is significant, as it can be extended directly to higher

dimensions by replacing B2 with a correspondingly higher-dimensional
smoothing operator. The convolution mask B2 is the simplest mask in
the class of smoothing binomial filters. These filters will be discussed
in Section 9.5.4. A detailed discussion of discrete linear scale spaces is
given by Lindeberg [16, Chapters 3 and 4].

8.10 Multigrid representations

8.10.1 Basics

The scale space discussed in Section 8.9 has one significant disadvan-
tage. The use of the additional scale parameter adds a new dimension
to the images and thus leads to an explosion of the data storage re-
quirements and, in turn, the computational overhead for generating
the scale space and for analyzing it. Thus, it is not surprising that be-
fore the evolution of the scale space more efficient multiscale storage
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schemes, especially pyramids, found widespread application in image
processing. With data structures of this type, the resolution of the im-
ages decreases to such an extent as the scale increases. In this way
an optimum balance between spatial and wave-number resolution is
achieved in the sense of the uncertainty relation (Section 8.6.3). Data
structures of this type are known as multiresolution representations
[15].

The basic idea is quite simple. While the representation of fine scales
requires the full resolution, coarser scales can be represented at lower
resolution. This leads to a scale space with smaller and smaller im-
ages as the scale parameter increases. In the following two sections we
will discuss the Gaussian pyramid (Section 8.10.2) and the Laplacian
pyramid (Section 8.10.3) as efficient discrete implementations of dis-
crete scale spaces. In addition, while the Gaussian pyramid constitutes
a standard scale space, the Laplacian pyramid is a discrete version of
a differential scale space (Section 8.9.3). The Gaussian and Laplacian
pyramids are examples of multigrid data structures, which were intro-
duced into digital image processing in the early 1980s and since then
have led to a tremendous increase in speed of image-processing algo-
rithms. A new research area, multiresolutional image processing, was
established [15].

8.10.2 Gaussian pyramid

When subsampling an image, for example, by taking every second pixel
in every second line it is important to consider the sampling theorem
(Section 8.4.2). Before subsampling, the image must be smoothed to an
extent that no aliasing occurs in the subsampled image. Consequently,
for subsampling by a factor two, we must ensure that all structures,
which are sampled less than four times per wavelength, are suppressed
by an appropriate smoothing filter. This means that size reduction
must go hand-in-hand with appropriate smoothing.

Generally, the requirement for the smoothing filter can be formu-
lated as

B̂(k̃) = 0 ∀k̃d ≥ 1
rd

(8.143)

where rd is the subsampling rate in the direction of the dth coordinate.
The combined smoothing and size reduction can be expressed in a

single operator by using the following notation to compute the q +1th
level of the Gaussian pyramid from the qth level:

G(q+1) = B↓2G(q) (8.144)

The number behind the ↓ in the index denotes the subsampling rate.
Level 0 of the pyramid is the original image: G(0) = G.
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If we repeat the smoothing and subsampling operations iteratively,
we obtain a series of images, which is called the Gaussian pyramid .
From level to level, the resolution decreases by a factor of two; the size
of the images decreases correspondingly. Consequently, we can think
of the series of images as being arranged in the form of a pyramid.

The pyramid does not require much storage space. Generally, if we
consider the formation of a pyramid from a D-dimensional image with
a subsampling factor of two and N pixels in each coordinate direction,
the total number of pixels is given by

ND
(
1+ 1

2D + 1
22D + . . .

)
< ND 2D

2D − 1
(8.145)

For a 2-D image, the whole pyramid needs just 1/3 more space than
the original image, for a 3-D image only 1/7 more. Likewise, the com-
putation of the pyramid is equally effective. The same smoothing filter
is applied to each level of the pyramid. Thus the computation of the
whole pyramid needs only 4/3 and 8/7 times more operations than for
the first level of a 2-D and 3-D image, respectively.

The pyramid brings large scales into the range of local neighbor-
hood operations with small kernels. Moreover, these operations are
performed efficiently. Once the pyramid has been computed, we can
perform neighborhood operations on large scales in the upper levels
of the pyramid—because of the smaller image sizes—much more effi-
ciently than for finer scales.

The Gaussian pyramid constitutes a series of low-pass filtered im-
ages in which the cutoff wave numbers decrease by a factor of two (an
octave) from level to level. Thus the Gaussian pyramid resembles a
logarithmic scale space. Only a few levels of the pyramid are necessary
to span a wide range of wave numbers. If we stop the pyramid at an
8×8 image, we can usefully compute only a seven-level pyramid from
a 512×512 image.

8.10.3 Laplacian pyramid

From the Gaussian pyramid, another pyramid type can be derived, that
is, the Laplacian pyramid . This type of pyramid is the discrete counter-
part to the differential scale space discussed in Section 8.9.3 and leads
to a sequence of bandpass-filtered images. In contrast to the Fourier
transform, the Laplacian pyramid leads only to a coarse wave-number
decompositionwithout a directional decomposition. All wave numbers,
independently of their direction, within the range of about an octave
(factor of two) are contained in one level of the pyramid.

Because of the coarse wave number resolution, we can preserve a
good spatial resolution. Each level of the pyramid contains only match-
ing scales, which are sampled a few times (two to six) per wavelength.
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Figure 8.17: Construction of the Laplacian pyramid (right column) from the
Gaussian pyramid (left column) by subtracting two consecutive planes of the
Gaussian pyramid.

In this way, the Laplacian pyramid is an efficient data structure well
adapted to the limits of the product of wave number and spatial reso-
lution set by the uncertainty relation (Section 8.6.3).

The differentiation in scale direction in the continuous scale space
is approximated by subtracting two levels of the Gaussian pyramid in
the discrete scale space. In order to do so, first the image at the coarser
level must be expanded. This operation is performed by an expansion
operator E↑2. As with the reducing smoothing operator, the degree of
expansion is denoted by the figure after the ↑ in the index.

The expansion is significantly more difficult than the size reduction
because the missing information must be interpolated. For a size in-
crease of two in all directions, first, every second pixel in each rowmust
be interpolated and then every second row. Interpolation is discussed
in detail in Section 9.6. With the introduced notation, the generation of
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the pth level of the Laplacian pyramid can be written as:

L(p) = G(p) −E↑2G(p+1) (8.146)

The Laplacian pyramid is an effective scheme for a bandpass decom-
position of an image. The center wave number is halved from level to
level. The last image of the Laplacian pyramid is a low-pass-filtered
image containing only the coarsest structures.

The Laplacian pyramid has the significant advantage that the origi-
nal image can be reconstructed quickly from the sequence of images in
the Laplacian pyramid by recursively expanding the images and sum-
ming them up. In a Laplacian pyramid with p + 1 levels, the level p
(counting starts with zero!) is the coarsest level of the Gaussian pyra-
mid. Then the level p−1 of the Gaussian pyramid can be reconstructed
by

G(p−1) = L(p−1) +E↑2Gp (8.147)

Note that this is just the inversion of the construction scheme for the
Laplacian pyramid. This means that even if the interpolation algo-
rithms required to expand the image contain errors, they affect only the
Laplacian pyramid and not the reconstruction of the Gaussian pyramid
from the Laplacian pyramid, because the same algorithm is used. The
recursion in Eq. (8.147) is repeated with lower levels until level 0, that
is, the original image, is reached again. As illustrated in Fig. 8.17, finer
and finer details become visible during the reconstruction process.
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9.1 Basics

The extraction of features from multidimensional signals requires the
analysis of at least a local neighborhood. By analysis of the local neigh-
borhood a rich set of features can already be extracted. We can distin-
guish areas of constant gray values from those that contain an edge, a
texture, or just noise. Thus this chapter gives an important theoretical
basis for low-level signal processing.

9.1.1 Definition of neighborhood operators

A neighborhood operator takes the gray values of the neighborhood
around a point, performs some operations with them, and writes the
result back on the pixel. This operation is repeated for all points of
the signal. Therefore, we can write a neighborhood operation with a
multidimensional continuous signal g(x) as

g′(x) = N({g(x′)},∀(x −x′) ∈ M) (9.1)

whereM is an area, calledmask, region of support , or structure element .
The size and shape of M determines the neighborhood operation by
specifying the input values of g in the area M shifted with its origin to
the point x. The neighborhood operation N itself is not specified here.
It can be of any type; its result determines the value of the output g′

at x. For symmetry reasons the mask is often symmetric and has its
center of gravity in the origin.
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a
M

x

b

Figure 9.1: Mask or structure element with a continuous; and b digital 2-D
signals on a square lattice. The point that receives the result is marked.

a
b

Figure 9.2: Various types of symmetric masks on 2-D lattices: a 2×2 mask;
and b 3×3 mask on a square lattice.

For digital signals a general neighborhood operation can be expressed
as

G′
m,n = N(Gm′−m,n′−n},∀ [m, n]T ∈ M) (9.2)

or by equivalent expressions for dimensions other than two.
Although these equations do not specify in any way the type of

neighborhood operation that is performed, they still reveal the common
structure of all neighborhood operations. Thus very general strategies
can be developed to compute them efficiently [CVA2, Section 5.6].

9.1.2 Shape and symmetry of neighborhoods

As we have seen, any type of neighborhood operator is first determined
by the size of themask. With continuous signals, themaskmay take any
shape. With digital data on orthogonal lattices, the mask is normally of
rectangular shape. In any case, we must also specify the point relative
to the mask that receives the result of the operation (Fig. 9.1).

With regard to symmetry, the most natural choice is to place the
result of the operation at the pixel in the center of the mask. While this
is straightforward for continuous masks, it requires more thought for
digital signals. Natural choices for masks on an orthogonal lattice are
rectangles. Basically, there are two types of symmetric masks: masks
with an even or odd size of pixels in each direction. For odd-sized
masks, the symmetry center coincides with the central pixel and, thus,
seems to be a good choice (Fig. 9.2b). The smallest size of odd-sized
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masks includes only the directly neighboring pixels. In one, two, and
three dimensions, the mask includes 3, 9, and 27 pixels, respectively.

In contrast, even-sized masks seem not to be suitable for neighbor-
hood operations because there is no pixel that lies in the center of the
mask. With adroitness, we can apply them nevertheless, and they turn
out to be useful for certain types of neighborhood operations. The re-
sult of the neighborhood operation is simply written back to pixels that
lay between the original pixels (Fig. 9.2a). Thus, the resulting image is
shifted by half the pixel distance into every direction and the receiving
central pixel lays directly in the center of the neighborhoods. In effect,
the resulting image has one pixel less in every direction. It is very im-
portant to be aware of this shift by half the pixel distance. Therefore,
image features computed by even-sized masks should never be com-
bined with original gray values because this would lead to considerable
errors. Also, a mask must either be even-sided or odd-sized in all di-
rections for multidimensional digital signals. Otherwise, the output
lattices do not coincide.

The number of pixels contained in the masks increases consider-
ably with their size. If R is the linear size of a mask in D dimensions,
the mask has RD elements. The higher the dimension, the faster the
number of elements with the size of the mask increases. Even small
neighborhoods include hundreds or thousands of elements. Therefore,
it will be a challenging task for higher-dimensional signal processing to
develop efficient schemes to compute a neighborhood operation with
as few computations as possible. Otherwise, it would not be possible
to use them at all.

The challenge for efficient computation schemes is to decrease the
number of computations from O(RD) to a lower order. This means
that the number of computations is no longer proportional to RD but
rather to a lower order of the size R of the mask. The ultimate goal
is to achieve computation schemes that increase only linearly with the
size of the mask (O(R1)) or, even better, do not depend at all on the
size of the mask (O(R0)).

9.1.3 Operator notation

In this section, we introduce an operator notation for signal-processing
operations. It helps us tomake complex composite neighbor operations
easily comprehensible. All operators will be written in calligraphic let-
ters, such as B,D,H ,S. We write

G′ = HG (9.3)

for an operator H , which transforms the image G into the image G′.
Note that this notation can be used for any type of signal. It can be
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used for continuous as well as digital signals and for signals of any
dimension.

Consecutive application is denoted by writing the operators one af-
ter the other. The rightmost operator is applied first. Consecutive
application of the same operator is expressed by an exponent

HH . . .H︸ ︷︷ ︸
p times

= Hp (9.4)

If the operator acts on a single image, the operand, which is to the
right in the equations, will be omitted. In this way we can write operator
equations without targets. Furthermore, we will use braces in the usual
way to control the order of execution.

The operator notation leads to a representation-independent nota-
tion of signal-processing operations. A linear shift-invariant operator
(see Section 8.6.3) performs a convolution operation in the spatial do-
main and a complex multiplication in the Fourier domain. With the
operator notation, we can write the basic properties of the linear shift-
invariant operator (Eq. (8.65)) in an easily comprehensible way andwith-
out specifying a target as

commutativity H1H2 = H2H1

associativity H1(H2H3) = (H1H2)H3

distributivity over addition (H1 +H2)H3 = H1H2 +H2H3

(9.5)

As can be seen from these equations, other operations such as ad-
dition can also be used in the operator notation. Care must be taken
with any nonlinear operator. As soon as nonlinear operators are in-
volved, the order in which the operators are executed must strictly be
given. We retain the notation that operators are executed from the left
to the right, provided that braces are not used to change the order of
execution.

The point operation of pixelwise multiplication in the spatial do-
main is a simple example for a nonlinear operator. As this operator
occurs frequently, it is denoted by a special symbol, a centered dot
(·). A special symbol is required in order to distinguish it from succes-
sive application of operators. The operator expression B(D · D), for
instance, means: apply the operator D to the signal, square the result
pixelwise, and then apply the operator B. Without parentheses the ex-
pression BD · D would mean: apply the operator D to the image and
apply the operator BD to the image and then multiply the results point
by point. This notation thus gives precedence to the pointwise mul-
tiplication over consecutive operator execution. As a placeholder for
an object onto which an operator is acting, we will use the symbol “:.”
In this notation, the forementioned operator combination is written as
B(D : ·D :).
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9.2 Linear shift-invariant filters

9.2.1 Linearity

Linear operators are defined by the principle of superposition. If a and
b are two complex-valued scalars, and H is an operator that maps an
image onto another image of the same dimension, then the operator is
linear if and only if

H (a : +b :) = aH : +bH : (9.6)

We can generalize Eq. (9.6) to the superposition of many inputs

H
∑

k
ak :

 =
∑
k

akH : (9.7)

The superposition property makes linear operators very useful. We
can decompose a complex image into simpler components for which
we can easily derive the response of the operator and then compose
the resulting response from that of the components.

It is especially useful to decompose an image into its individual pix-
els as discussed in Section 8.5.1.

9.2.2 Shift invariance and convolution

Another important property of an operator is shift invariance or homo-
geneity. It means that the response of the operator does not explicitly
depend on the position. If we shift a signal, the output image is the
same but for the shift applied. We can formulate this property more
elegantly with a shift operator S. For 2-D images, for example, the shift
operator is defined as

mnSGm′n′ = Gm′−m,n′−n (9.8)

An operator is then shift-invariant if and only if it commutes with the
shift operator, that is,

HS = SH (9.9)

Note that the shift operator S itself is a shift-invariant operator. An
operator that is both linear and shift-invariant is known as a linear
shift-invariant operator or short LSI operator. This important class of
operators is also known as linear time-invariant or LTI operators for
time series.

It can be proven [1] that a linear shift-invariant operator must nec-
essarily be a convolution operation in the space domain. There is no
other operator type that is both linear and shift-invariant. Thus, linear
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shift-invariant neighborhood operators share all the useful features of
convolution that were discussed in Section 8.6.3. They are commuta-
tive, associative, and distribute over addition (see also Eq. (9.5)). These
properties are very useful for an efficient design of filter operations
[CVA2, Chapter 6].

9.2.3 Point spread function

As just discussed in the previous section, an LSI filter can be repre-
sented in the space domain as a convolution operation. In two dimen-
sions the image G is convolved with another image H that represents
the LSI operator:

G′
mn =

M−1∑
m′=0

N−1∑
n′=0

Hm′,n′Gm−m′,n−n′ (9.10)

Because for a neighborhood operation H is zero except for a small
neighborhood, this operation can also be written as

G′
mn =

R∑
m′=−R

R∑
n′=−R

H−m′,−n′Gm+m′,n+n′ (9.11)

In this equation it is assumed that coefficients of H are nonzero only
in a (2R+1)× (2R+1) window. Both representations are equivalent if we
consider the periodicity in the space domain (Section 8.7.1). The latter
representation is much more practical and gives a better comprehen-
sion of the operator. For example, the following M×N matrix and 3×3
filter mask are equivalent:

0• −1 0 . . . 0 1
1 0 0 . . . 0 2
0 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 0

−1 −2 0 . . . 0 0


≡

 0 −1 −2
1 0• −1
2 1 0

 (9.12)

For a D-dimensional signal, the convolution sum can be written with
a simplified vector indexing as also used in Section 8.4.4:

G′
n =

R∑
n′=−R

H−n′Gn+n′ (9.13)

with n = [n1, n2, . . . , nD], R = [R1, R2, . . . , RD], where Gn is an element
of a D-dimensional signal Gn1,n2,... ,nD . The notation for the sums in this
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equation is an abbreviation for

R∑
n′=−R

=
R1∑

n′
1=−R1

R2∑
n′
2=−R2

. . .
RD∑

n′
D=−RD

(9.14)

The vectorial indexing introduced here allows writing most of the rela-
tions for arbitary dimensional signals in a simple way. Moreover, it can
also be used for skewed coordinate systems if n are regarded as the in-
dices of the corresponding lattice vectors (see Eq. (8.27), Section 8.4.2).

The filter mask is identical to another quantity known as the point
spread function, which gives the response of the filter to a point image:

P ′
n =

R∑
n′=−R

Hn′Pn−n′ = Hn (9.15)

where

Pn =
{
1 n = 0
0 otherwise

(9.16)

The central importance of the point spread function is based on the
fact that the convolution operation is linear. If we know the response
to a point image, we can compute the response to any image, as any
image can be composed of point images as discussed in Section 8.5.1.
With respect to the analysis of time series, the point spread function is
known as the impulse response, with respect to the solution of partial
differential equations as the Green’s function [2].

9.2.4 Transfer function

The Fourier transform of the convolution mask is known as the trans-
fer function of a linear filter. The transfer function has an important
practical meaning. For each wave number, it gives the factor by which
a periodic structure is multiplied using the filter operation. This factor
is generally a complex number. Thus, a periodic structure experiences
not only a change in the amplitude but also a phase shift:

Ĝ′
v = ĤvĜv = rH exp(iϕH) rG exp(iϕG)

= rHrG exp[i(ϕH + ϕG)]
(9.17)

where the complex numbers are represented by their magnitude and
phase as complex exponentials.

Using the wave number normalized to the Nyquist limit (Eq. (8.34)
in Section 8.4.2), the transfer function is given by

ĥ(k̃) =
R∑

n′=−R
hn′ exp(−π in′k̃) (9.18)
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for a 1-D signal and by

ĥ(k̃) =
R∑

n′=−R
Hn′ exp(−π in′T k̃) (9.19)

for a multidimensional signal. For a nonorthogonal, that is, skewed
lattice, the vectorial index n′ has to be replaced by the reciprocal lattice
vector (Eq. (8.29)), and Eq. (9.19) becomes

ĥ(k) =
R∑

v=−R
Hr exp(−2π ir̂vTk) (9.20)

9.2.5 Symmetries

Symmetries play a central rule for linear shift-invariant filters in the
processing of higher-dimensional signal processing. This is because
of the simplified transfer function of symmetric masks. According to
Section 8.6.3, filters of even and odd symmetry have a real and purely
imaginary transfer function, respectively. The symmetry of a filter is
most generally expressed by:

HR−r = ±Hr (9.21)

This is a necessary and sufficient condition for a real or imaginary trans-
fer function. Filters normally meet a stronger symmetry condition for
each direction d:

Hr1,... ,Rd−rd,... ,rD = ±Hr1,... ,rd,... ,rD (9.22)

For separable symmetric filters, the symmetry conditions can be
expressed for each 1-D component separately:

hRd−rd = ±hrd (9.23)

As the transfer functions of the 1-D components of separable filters
are combined multiplicatively, an even and odd number of odd compo-
nents results in an even and odd filter according to Eq. (9.21) and thus
into a real and imaginary transfer function, respectively.

Because of the significance of separable filters for effective com-
puting of convolution operations [CVA2, Section 5.6], we focus on the
symmetry of 1-D filters. Besides odd and even symmetry, it is necessary
to distinguish filters with an even and odd number of coefficients.

The situation is straightforward for filters with an odd number of
coefficients. Then the central coefficient is the center of symmetry and
the result of a filter operation is written for the position of this central
coefficient. This symmetry is implicitly considered in Eqs. (9.13) and
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(9.18) where the central coefficient has the index 0. With this indexing
of the filter coefficients, the convolution sum and transfer function of
even 1-D filters with 2R +1 coefficients—also known as type I FIR filter
[3]—can be expressed as

g′
n = h0gn +

R∑
n′=1

h′
n(gn+n′ + gn−n′), ĥ(k̃) = h0 +

R∑
n′=1

2hn′ cos(n′πk̃)

(9.24)

and for odd filters with 2R + 1 coefficients or type III FIR filters as

g′
n =

R∑
n′=1

h′
n(gn−n′ − gn+n′), ĥ(k̃) = i

R∑
n′=1

2hn′ sin(n′πk̃) (9.25)

For filters with an even number of coefficients, there is no central
pixel. The symmetry center rather is inbetween two pixels. This means
that the results of a filter operation with such a filter are to be placed
on a grid that is shifted by half a pixel distance. Because of this shift
between the output pixel and the input pixels, the transfer function of
an even filter with 2R coefficients type II FIR filter is

ĥ(k̃) = h0 +
R∑

n′=1
2hn′ cos((n′ − 1/2)πk̃) (9.26)

The transfer function of an odd filter with 2R coefficients or type IV FIR
filter is

ĥ(k̃) = i
R∑

n′=1
2hn′ sin((n′ − 1/2)πk̃) (9.27)

The equations for symmetric filters for two and more dimensions
are significantly more complex and are discussed in Jähne [4].

9.2.6 LSI operators as least squares estimators

The LSI operators compute a new value at each point in a signal from a
linear combination of neighboring points. Likewise, a least squares es-
timator computes the estimate of a quantity from a linear combination
of the input values. Thus it appears that a close relationship should
exist between LSI operators and least squares estimators.

We assume that we want to fit a certain function with linear param-
eters ap

f (x) =
P−1∑
p=0

apfp(x) (9.28)
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to the local spatial gray-value variation g(x). For 2-D digital signals,
the continuous functions fp(x) have to be replaced by matrices Fp.
All of the following equations are also valid for digital signals but it is
more convenient to stay with the continuous case. In the least squares
sense, the following error measure e2(x) should be minimized:

e2(x) =
∞∫

−∞
w(x′)

P−1∑
p=0

ap(x)fp(x′) − g(x +x′)

2

dDx′ (9.29)

In this integral the window function w(x′) has been introduced to limit
the fit to a local neighborhood around the point x. Therefore, the
fit coefficients ap(x) depend on the position. Normally, the window
function is an isotropic even function with a maximum at the origin
monotonically decreasing with increasing distance from the origin. We
further assume that the window function is normalized, that is,

∞∫
−∞

w(x′)dDx′ = 1 (9.30)

For the sake of simpler equations, the following abbreviations will be
used in this section:

〈
fpgx

〉 =
∞∫

−∞
w(x′)fp(x′)g(x +x′)dDx′

〈
fpfq

〉 =
∞∫

−∞
w(x′)fp(x′)fq(x′)dDx′

(9.31)

Setting all derivatives of Eq. (9.29) with respect to the parameters ap(x)
zero, the following linear equation system is obtained as the standard
least squares solution of the minimization problem:

a(x) =M−1d(x) (9.32)

with

Mp,q = 〈
fpfq

〉
, a = [a0(x), a1(x), . . . , aP−1(x)]T dp = 〈

fpgx
〉

The solution of Eq. (9.32) becomes most simplistic if the functions
fp(x) are orthogonal to each other, that is,

〈
fpfq

〉 = 〈f 2
p〉δp−q. Then

the matrix M is diagonal and

ap(x) = 〈
fpgx

〉/〈
f 2

p

〉
(9.33)
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This expression can also be written as a convolution integral by using
Eq. (9.31) and substituting x′ by −x′:

ap(x) =
∞∫

−∞
w(x′)fp(−x′)g(x −x′)dDx′ (9.34)

This means that the fit coefficient for each point is computed by con-
volving the windowed and mirrored orthonormal function with the sig-
nal.

Example 9.1: Plane fit

As a simple example we discuss the local plane fit, that is, the local
approximation of the gray-scale variation by a plane. The fit function
is

f (x) = a0 + a1x1 + a2x2, f0 = 1, f1 = x1, f2 = x2 (9.35)

It is easy to verify that these three functions are orthogonal to each
other. Therefore,

a0 =
∞∫

−∞
w(x′)g(x −x′)dDx′

a1 = −
∞∫

−∞
w(x′)x′

1g(x −x′)dDx′
/ ∞∫

−∞
w(x′)x′

1
2 dDx′

a2 = −
∞∫

−∞
w(x′)x′

2g(x −x′)dDx′
/ ∞∫

−∞
w(x′)x′

2
2 dDx′

(9.36)

As a special case for 2-D digital signals we take a binomial 3×3 win-
dow and obtain

W = 1
16

 1 2 1
2 4 2
1 2 1

 , F0 =

 1 1 1
1 1 1
1 1 1


F1 = 2

 −1 −1 −1
0 0 0
1 1 1

 , F2 = 2

 −1 0 1
−1 0 1
−1 0 1


(9.37)

The three matrices F0, F1, and F2 are already normalized, that is,

M−1∑
m=0

N−1∑
n=0

Wm,n((Fp)m,n)2 = 1 (9.38)

so that the division in Eq. (9.36) is not required. Then the convolution
masks to obtain the fit coefficients a0, a1, and a2 are

1
16

 1 2 1
2 4 2
1 2 1

 , 1
8

 1 2 1
0 0 0

−1 −2 −1

 , 1
8

 1 0 −1
2 0 −2
1 0 −1

 (9.39)
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and we end up with the well-known binomial smoothing mask and the
Sobel operator for the estimate of the mean and slopes of a local plane
fit, respectively.

Thus, the close relationship between LSI operators and least squares
fits is helpful in determining what kind of properties an LSI operator is
filtering out from a signal.

The case with nonorthogonal fit functions is slightly more complex.
As the matrix M (Eq. (9.32)) depends only on the fit functions and the
chosen window and not on the signal g(x), the matrix M can be in-
verted once for a given fit. Then the fit coefficients are given as a linear
combination of the results from the convolutions with all P fit func-
tions:

ap(x) =
P−1∑
p′=0

M−1
p,p′

∞∫
−∞

w(x′)fp′(−x′)g(x −x′)dDx′ (9.40)

9.3 Recursive filters

9.3.1 Definition

Recursive filters are a special form of the linear convolution filters. This
type of filter includes results from previous convolutions at neighbor-
ing pixels into the convolution sum. In this way, the filter becomes
directional. Recursive filters can most easily be understood if we apply
them first to a 1-D discrete signal, a time series. Then we can write

g′
n = −

S∑
n′′=1

an′′g′
n−n′′ +

R∑
n′=−R

hn′gn−n′ (9.41)

While the neighborhood of the nonrecursive part (coefficients h) is sym-
metric around the central point, the recursive part is asymmetric, using
only previously computed values. A filter that contains only such a re-
cursive part is called a causal filter . If we put the recursive part on
the left hand side of the equation, we observe that the recursive filter
is equivalent to the following difference equation, also known as an
ARMA(S,R) process (autoregressive-moving average process):

S∑
n′′=0

an′′g′
n−n′′ =

R∑
n′=−R

hn′gn−n′ with a0 = 1 (9.42)

9.3.2 Transfer function and z-transform

The transfer function of such a filter with a recursive and a nonrecursive
part can be computed by applying the discrete-space Fourier transform
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(Section 8.5.1, Table 8.3) to Eq. (9.42). In the Fourier space the convolu-
tion of g′ with a and of g with h is replaced by a multiplication of the
corresponding Fourier transforms:

ĝ′(k)
S∑

n′′=0
an′′ exp(−2π in′′k) = ĝ(k)

R∑
n′=−R

hn′ exp(−2π in′k) (9.43)

Thus the transfer function is

ĥ(k) = ĝ′(k)
ĝ(k)

=

R∑
n′=−R

hn′ exp(−2π in′k)

S∑
n′′=0

an′′ exp(−2π in′′k)

(9.44)

The nature of the transfer function of a recursive filter becomes more
evident if we consider that both the numerator and the denominator
can have zeros. Thus the nonrecursive part of the transfer function
may cause zeros and the recursive part poles.

A deeper analysis of the zeros and thus the structure of the trans-
fer function is not possible in the form as Eq. (9.44) is written. It re-
quires an extension similar to the extension from real numbers to com-
plex numbers that was necessary to introduce the Fourier transform
(Section 8.5.3). We observe that the expressions for both the numer-
ator and the denominator are polynomials in the complex exponential
exp(2π ik). The complex exponential has a magnitude of one and thus
covers the unit circle in the complex plane. It covers the whole complex
plane if we add a radius r to the expression: z = r exp(2π ik).

With this extension, the expressions become polynomials in z. As
such we can apply the fundamental law of algebra that any complex
polynomial of degree n can be factorized in n factors containing the
roots or zeros of the polynomial. Thus we can write a new expression
in z, which becomes the transfer function for z = exp(2π ik):

ĥ(z) =

R∏
n′=−R

(1− cn′z−1)

S∏
n′′=0

(1− dn′′z−1)

(9.45)

Each of the factors cn′ and dn′′ is a zero of the corresponding polyno-
mial (z = cn′ or z = dn′′ ).

The inclusion of the factor r in the extended transfer function re-
sults in an extension of the Fourier transform, the z-transform that is
defined as

ĝ(z) =
∞∑

n=−∞
gnz−n (9.46)
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The z-transform of the series gn can be regarded as the Fourier trans-
form of the series gnr−n [5]. The z-transform is the key mathemat-
ical tool to understand recursive filters. Detailed accounts of the z-
transform are given by Oppenheim and Schafer [3] and Poularikas [6];
the 2-D z-transform is discussed by Lim [5].

The factorization of the z-transform of the filter in Eq. (9.45)—and in
turn of the transfer function—is an essential property. Multiplication
of the individual factors of the transfer function means that we can
decompose any filter into elementary filters containing only one factor
because multiplication of transfer functions is equivalent to cascaded
convolution in the spatial domain (Section 8.6.3). The basic filters that
are equivalent to a single factor in Eq. (9.45) will be discussed further
in Section 9.3.6.

Recursive filters can also be defined in higher dimensions with the
same type of equations as in Eq. (9.42); also the transfer function and
z-transform of higher-dimensional recursive filters can be written in
the very same way as in Eq. (9.44). However, it is generally not possi-
ble to factorize the z-transform as in Eq. (9.45) [5]. From Eq. (9.45) we
can immediately conclude that it will be possible to factorize a sepa-
rable recursive filter because then the higher-dimensional polynomials
can be factorized into 1-D polynomials. Given these inherent difficul-
ties of higher-dimensional recursive filters we will restrict the further
discussion on 1-D recursive filters that can be extended by cascaded
convolution into higher-dimensional filters.

9.3.3 Infinite and unstable response

The impulse response or point spread function of a recursive filter is no
longer identical to the filter coefficients as for nonrecursive filters (Sec-
tion 9.2.3). It must rather be computed as the inverse Fourier transform
of the transfer function. The impulse response of nonrecursive filters
has only a finite number of nonzero samples. A filter with this prop-
erty is called a finite-duration impulse response or FIR filter. In contrast,
recursive filters have an infinite-duration impulse response (IIR).

The stability of the filter response is not an issue for nonrecursive
filters but of central importance for recursive filters. A filter is said to
be stable if and only if each bound input sequence generates a bound
output sequence. In terms of the impulse response this means that a fil-
ter is stable if and only if the impulse response is absolutely summable
[3]. For 1-D filters the analysis of the stability is straightforward be-
cause the conditions are well established by the same basic algebraic
theorems. A filter is stable and causal if and only if all poles and zeros
of the z-transform ĥ(z) (Eq. (9.45)) are inside the unit circle [3].
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9.3.4 Relation between recursive and nonrecursive filters

Any stable recursive filter can be replaced by a nonrecursive filter, in
general, with an infinite-sized mask. Its mask is given by the point
spread function of the recursive filter. In practice, the masks cannot
be infinite and also need not be infinite. This is due to the fact that the
envelope of the impulse response of any recursive filter decays expo-
nentially (Section 9.3.6).

Another observation is of importance. From Eq. (9.44) we see that
the transfer function of a recursive filter is the ratio of its nonrecursive
and recursive part. This means that a purely recursive and a nonrecur-
sive filter with the same coefficients are inverse filters to each other.
This general relation is a good base to construct inverse filters from
nonrecursive filters.

9.3.5 Zero-phase recursive filtering

The causal 1-D recursive filters are of not much use for processing of
higher-dimensional spatial data. While a filter that uses only previous
data is natural and useful for real-time processing of time series, it
makes not much sense for spatial data. There is no “before” and “after”
in spatial data. Even worse, the spatial shift (delay) associated with
recursive filters is not acceptable because it causes phase shifts and
thus objects to be shifted depending on the filters applied.

With a single recursive filter it is impossible to construct a zero-
phase filter. Thus it is required to combine multiple recursive filters.
The combination should either result in a zero-phase filter suitable for
smoothing operations or a derivative filter that shifts the phase by 90°.
Thus the transfer function should either be purely real or purely imag-
inary (Section 8.6.3).

We start with a 1-D causal recursive filter that has the transfer func-
tion

+ĥ(k̃) = a(k̃) + ib(k̃) (9.47)

The superscript “+” denotes that the filter runs in positive coordinate
direction. The transfer function of the same filter but running in the
opposite direction has a similar transfer function. We replace k̃ by −k̃
and note that a(−k̃) = a(+k̃) and b(−k̃) = −b(k̃)) because the transfer
function of a real PSF is Hermitian (Section 8.6.3) and thus obtain

−ĥ(k̃) = a(k̃) − ib(k̃) (9.48)

Thus, only the sign of the imaginary part of the transfer function changes
when the filter direction is reversed.
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We now have three possibilities to combine the two transfer func-
tions (Eqs. (9.47) and (9.48)) either into a purely real or imaginary trans-
fer function:

Addition eĥ(k̃) = 1
2

(
+ĥ(k̃) + −ĥ(k̃)

)
= a(k̃)

Subtraction oĥ(k̃) = 1
2

(
+ĥ(k̃) − −ĥ(k̃)

)
= ib(k̃)

Multiplication ĥ(k̃) = +ĥ(k̃) −ĥ(k̃) = a2(k̃) + b2(k̃)

(9.49)

Addition andmultiplication (consecutive application) of the left and
right running filter yields filters of even symmetry, while subtraction
results in a filter of odd symmetry. This way to cascade recursive filters
gives them the same properties as zero- or π/2-phase shift nonrecur-
sive filters with the additional advantage that they can easily be tuned,
and extended point spread functions can be realized with only a few
filter coefficients.

9.3.6 Basic recursive filters

In Section 9.3.2 we found that the factorization of the generalized re-
cursive filter is a key to analyze its transfer function and stability prop-
erties (Eq. (9.45)). The individual factors contain the poles and zeros.
From each factor, we can compute the impulse response so that the
resulting impulse response of the whole filter is given by a cascaded
convolution of all components.

As the factors are all of the form

fn(k̃) = 1− cn exp(−2π ik̃) (9.50)

the analysis becomes quite easy. Still we can distinguish two basic types
of partial factors. They result from the fact that the impulse response
of the filter must be real. Therefore, the transfer function must be Her-
mitian, that is, f ∗(−k) = f (k). This can only be the case when either
the zero cn is real or a pair of factors exists with complex-conjugate
zeros. This condition gives rise to two basic types of recursive filters,
the relaxation filter and the resonance filter that are discussed in detail
in what follows. As these filters are only useful for image processing
if they are applied both in forward and backward direction, we discuss
also the resulting symmetric transfer function and point spread func-
tion.

Relaxation filter. The transfer function of the relaxation filter running
in forward or backward direction is

±r̂ (k̃) = 1− α
1− αexp(∓π ik̃)

with α ∈ R (9.51)
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Figure 9.3: Transfer function of the relaxation filter g′
n = αg′

n∓1 + (1 − α)gn
applied first in forward and then in backward direction for a positive; and b
negative values of α as indicated.

In this equation, the wave number has been replaced by the wave num-
ber normalized with the Nyquist limit (see Section 8.4.2, Eq. (8.34)). It
also has been normalized so that r̂ (0) = 1. Comparing Eqs. (9.42) and
(9.43) it is evident that the transfer function Eq. (9.51) belongs to the
simple recursive filter

g′
n = αg′

n∓1 + (1− α)gn = gn + α(g′
n∓1 − gn) (9.52)

with the point spread function

±r±n =
{

(1− α)αn n ≥ 0

0 else
(9.53)

This filter takes the fraction α from the previously calculated value and
the fraction 1− α from the current pixel.

The transfer function Eq. (9.51) is complex and can be divided into
its real and imaginary parts as

±r̂ (k̃) = 1− α
1− 2α cosπk̃ + α2

[
(1− α cosπk̃) ∓ iα sinπk̃

]
(9.54)

From this transfer function, we can compute the multiplicative (r̂ ) ap-
plication of the filters by running it successively in positive and negative
direction; see Eq. (9.49):

r̂ (k̃) = (1− α)2

1− 2α cosπk̃ + α2
= 1

1+ β − β cosπk̃
(9.55)

with

β = 2α
(1− α)2

and α = 1+ β −√
1+ 2β

β
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From Eq. (9.53) we can conclude that the relaxation filter is stable if
|α| < 1, which corresponds to β ∈] − 1/2,∞[. As already noted, the
transfer function is one for small wave numbers. A Taylor series in k̃
results in

r̂ (k̃) ≈= 1− α
(1− α)2

(πk̃)2 + α((1+ 10α + α2)
12(1− α2)2

(πk̃)4 (9.56)

If α is positive, the filter is a low-pass filter (Fig. 9.3a). It can be tuned by
adjusting α. If α is approaching 1, the averaging distance becomes infi-
nite. For negative α, the filter enhances high wave numbers (Fig. 9.3b).

This filter is the discrete analog to the first-order differential equa-
tion ẏ+τy = 0 describing a relaxation process with the relaxation time
τ = −∆t/ lnα [4].

Resonance filter. The transfer function of a filter with a pair of complex-
conjugate zeros running in forward or backward direction is

±ŝ(k̃) = 1
1−r exp(iπk̃0)exp(∓iπk̃)

· 1
1−r exp(−iπk̃0)exp(∓iπk̃)

= 1
1−2r cos(πk̃0)exp(∓iπk̃)+r2 exp(∓2iπk̃)

(9.57)

The second row of the equation shows that this is the transfer function
of the recursive filter

g′
n = gn + 2r cos(πk̃0)g′

n∓1 − r 2g′
n∓2 (9.58)

The impulse response of this filter is [3]

h±n =


r n

sinπk̃0
sin[(n + 1)πk̃0] n ≥ 0

0 n < 0
(9.59)

If we run the filter back and forth, the resulting transfer function is

ŝ(k̃) = 1(
1−2r cos[π(k̃−k̃0)]+r2

)(
1−2r cos[π(k̃+k̃0)]+r2

) (9.60)

From this equation, it is evident that this filter is a bandpass filter with
a center wave number of k̃0. The parameter r is related to the width of
the bandpass. If r = 1, the transfer function has two poles at k̃ = ±k̃0.
If r > 1, the filter is unstable; even the slightest excitement will cause
infinite amplitudes of the oscillation. The filter is only stable for r ≤ 1.

The response of this filter can be normalized to obtain a bandpass
filter with a unit response at the center wave number. The transfer
function of this normalized filter is

ŝ(k̃) = (1−r2)2 sin2(πk̃0)
(1+r2)2+2r2 cos(2πk̃0)−4r(1+r2)cos(πk̃0)cos(πk̃)+2r2 cos(2πk̃)

(9.61)
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Figure 9.4: Transfer function of the zero-phase recursive resonance filter for
a k̃0 = 1/2 and values of r as indicated; and b r = 7/8 and values of k̃0 as
indicated.

The denominator in Eq. (9.61) is still the same as in Eq. (9.60); it has only
been expanded in terms with cos(nπk̃0). The corresponding recursive
filter coefficients are:

g′
n = (1− r 2) sin(πk̃0)gn + 2r cos(πk̃0)g′

n∓1 − r 2g′
n∓2 (9.62)

Figure 9.4 shows the transfer function of this filter for values of k̃0 and
r as indicated.

For symmetry reasons, the factors become most simple for a reso-
nance wave number of k̃0 = 1/2. Then the recursive filter is

g′
n = (1− r 2)gn − r 2g′

n∓2 = gn − r 2(gn + g′
n∓2) (9.63)

with the transfer function

ŝ(k̃) = (1− r 2)2

1+ r 4 + 2r 2 cos(2πk̃)
(9.64)

Themaximum response of this filter at k̃ = 1/2 is one and theminimum
response at k̃ = 0 and k̃ = 1 is ((1− r 2)/(1+ r 2))2.

This resonance filter is the discrete analog to a linear system gov-
erned by the second-order differential equation ÿ+2τẏ+ω2

0y = 0, the
damped harmonic oscillator. The circular eigenfrequency ω0 and the
time constant τ of a real-world oscillator are related to the parameters
of the discrete oscillator, r and k̃0 by [4]

r = exp(−∆t/τ) and k̃0 = ω0∆t/π (9.65)

9.4 Classes of nonlinear filters

9.4.1 Limitations of linear filters

In the previous sections, the theory of linear shift-invariant filters was
discussed in detail. Although the theory of these filters is well estab-
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lished and they can be applied, they still have some severe limitations.
Basically, linear filters cannot distinguish between a useful feature and
noise. This property can be best demonstrated with a simple example.
We assume a simple signal model with additive noise:

g′(x) = g(x) + n(x) ⇐⇒ ĝ′(k) = ĝ(k) + n̂(k) (9.66)

The signal to noise ratio (SNR) is defined by
∣∣ĝ(k)

∣∣ /
∣∣n̂(k)

∣∣. If we now
apply a linear filter with the transfer function ĥ(k) to this signal, the
filtered signal is

ĥ(k)ĝ′(k) = ĥ(k)(ĝ(k) + n̂(k)) = ĥ(k)ĝ(k) + ĥ(k)n̂(k) (9.67)

It is immediately evident that the noise and the signal are damped by
the same factor. Consequently, the SNR does not increase at all by
linear filtering, it just stays the same.

From the preceding considerations, it is obvious that more complex
approaches are required than linear filtering. Common to all these ap-
proaches is that in one or another way the filters aremade dependent on
the context or are tailored for specific types of signals. Often a control
strategy is an important part of such filters that controls which filter or
in which way a filter has to be applied at a certain point in the image.
Here, we will outline only the general classes for nonlinear filters. Pitas
and Venetsanopoulos [7] give a detailed survey on this topic.

9.4.2 Rank-value filters

Rank-value filters are based on a quite different concept than linear-
shift invariant operators. These operators consider all pixels in the
neighborhood. It is implicitly assumed that each pixel, distorted or
noisy, carries still useful and correct information. Thus, convolution
operators are not equipped to handle situations where the value at a
pixel carries incorrect information. This situation arises, for instance,
when an individual sensor element in a CCD array is defective or a
transmission error occurred.

To handle such cases, operations are required that apply selection
mechanisms and do not use all pixels in the neighborhood to compute
the output of the operator. The simplest class of operators of this
type are rank-value filters. While the convolution operators may be
characterized by “weighting and accumulating,” rank-value filters may
be characterized by “comparing and selecting.”

For this we take all the gray values of the pixels that are within the
filter mask and sort them by ascending gray value. This sorting is com-
mon to all rank-value filters. They only differ by the position in the list
from which the gray value is picked out and written back to the center
pixel. The filter operation that selects the medium value is called the
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median filter . The median filter is an excellent example for a filter that
is adapted to a certain type of signal. It is ideally suited for removing
a single pixel that has a completely incorrect gray value because of a
transmission or data error. It is less well suited, for example, to reduce
white noise.

Other known rank-value filters are theminimum filter and themax-
imum filter . As the names indicate, these filters select out of a local
neighborhood, either the minimum or the maximum gray value form-
ing the base for gray-scale morphological filters (Chapter 14).

As rank-value filters do not perform arithmetic operations but select
pixels, we will never run into rounding problems. These filters map a
discrete set of gray values onto itself. The theory of rank-value filters
has still not been developed to the same extent as convolution filters.
As they are nonlinear filters, it is much more difficult to understand
their general properties. Rank-value filters are discussed in detail by
Pitas and Venetsanopoulos [7].

9.4.3 Pixels with certainty measures

Linear filters as discussed in Section 9.2 treat each pixel equally. Im-
plicitly, it is assumed that the information they are carrying is of equal
significance. While this seems to be a reasonable first approximation,
it is certain that it cannot be generally true. During image acquisition,
the sensor areamay contain bad sensor elements that lead to erroneous
gray values at certain positions in the image. Furthermore, the sensitiv-
ity and noise level may vary from sensor element to sensor element. In
addition, transmission errors may occur so that individual pixels may
carry wrong information. Thus we may attach in one way or another a
certainty measurement to each picture element.

Once a certaintymeasurement has been attached to a pixel, it is obvi-
ous that the normal convolution operators are no longer a good choice.
Instead, the certainty has to be considered when performing any kind of
operation with it. A pixel with suspicious information should only get
a low weighting factor in the convolution sum. This kind of approach
leads us to what is known as normalized convolution [8, 9].

This approach seems to be very natural for a scientist or engineer
who is used to qualifying any measurement with an error. A measure-
ment without a careful error estimate is of no value. The standard de-
viation of a measured value is required for the further analysis of any
quantity that is related to the measurement. In normalized convolution
this common principle is applied to image processing.

The power of this approach is related to the fact that we have quite
different possibilities to define the certainty measurement. It need not
only be related to a direct measurement error of a single pixel. If we
are, for example, interested in computing an estimate of the mean gray



9.4 Classes of nonlinear filters 295

value in an object, we can take the following approach. We devise a kind
of certainty measurement that analyzes neighborhoods and attaches
lowweighting factors wherewemay suspect an edge so that these pixels
do not contribute much to the mean gray value or feature of the object.

In a similar way, we can, for instance, also check how likely the gray
value of a certain pixel is if we suspect some distortion by transmission
errors or defective pixels. If the certainty measurement of a certain
pixel is below a critical threshold, we replace it by a value interpolated
from the surrounding pixels.

9.4.4 Adaptive and steerable filters

Adaptive filters can be regarded as a linear filter operation that is made
dependent on the neighborhood. Adaptive filtering can best be ex-
plained by a classical application, that is, the suppression of noise with-
out significant blurring of image features.

The basic idea of adaptive filtering is that in certain neighborhoods
we could very well apply a smoothing operation. If, for instance, the
neighborhood is flat, we can assume that we are within an object with
constant features and thus apply an isotropic smoothing operation to
this pixel to reduce the noise level. If an edge has been detected in
the neighborhood, we could still apply some smoothing, namely, along
the edge. In this way, some noise is still removed but the edge is not
blurred. With this approach, we need a set of filters for various uni-
directional and directional smoothing operations and choose the most
appropriate smoothing filter for each pixel according to the local struc-
ture around it. Because of the many filters involved, adaptive filtering
may be a very computational-intensive approach. This is the case if
either the coefficients of the filter to be applied have to be computed
for every single pixel or if a large set of filters is used in parallel and
after all filters are computed it is decided at every pixel which filtered
image is chosen for the output image.

With the discovery of steerable filters [10], however, adaptive filter-
ing techniques have become attractive and computationally muchmore
efficient.

9.4.5 Nonlinear combinations of filters

Normalized convolution and adaptive filtering have one strategy in
common. Both use combinations of linear filters and nonlinear point
operations such as pointwise multiplication and division of images.
The combination of linear filter operations with nonlinear point op-
erations makes the whole operation nonlinear.

The combination of these two kinds of elementary operations is a
very powerful instrument for image processing. Operators containing
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combinations of linear filter operators and point operators are very at-
tractive as they can be composed of very simple and elementary opera-
tions that are very well understood and for which analytic expressions
are available. Thus, these operations in contrast to many others can be
the subject of a detailed mathematical analysis. Many advanced signal
and image-processing techniques are of that type. This includes oper-
ators to compute local structure in images and various operations for
texture analysis.

9.5 Local averaging

Averaging is an elementary neighborhood operation for multidimen-
sional signal processing. Averaging results in better feature estimates
by including more data points. It is also an essential tool to regularize
otherwise ill-defined quantities such as derivatives (Chapters 10 and
12). Convolution provides the framework for all elementary averaging
filters. In this chapter averaging filters are considered for continuous
signals and for discrete signals on square, rectangular and hexagonal
lattices. The discussion is not restricted to 2-D signals. Whenever it is
possible, the equations and filters are given for signals with arbitrary
dimension.

The common properties and characteristics of all averaging filters
are discussed in Section 9.5.1. On lattices two types of averaging filters
are possible [3, Section 5.7.3]. Type I filters generate an output on the
same lattice. On a rectangular grid such filters are of odd length in
all directions. Type II filters generate an output on a grid with lattice
points between the original lattice points (intermediate lattice). On a
rectangular grid such filters are of even length in all directions. In this
chapter two elementary averaging filters for digital multidimensional
signals are discussed—box filters (Section 9.5.3) and binomial filters
(Section 9.5.4). Then we will deal with techniques to cascade these
elementary filters to large-scale averaging filters in Section 9.5.5, and
filters with weighted signals (normalized convolution) in Section 9.5.6.

9.5.1 General properties

Transfer function. Any averaging filter operator must preserve the
mean value. This condition means that the transfer function for zero
wave number is 1 or, equivalently, that the sum of all coefficients of the
mask is 1:

ĥ(0) = 1 ⇐⇒
∞∫

−∞
h(x)dDx = 1 or

∑
n∈mask

Hn = 1 (9.68)
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Intuitively, we expect that any smoothing operator attenuates small-
er scalesmore strongly than coarser scales. More specifically, a smooth-
ing operator should not completely annul a certain scale while smaller
scales still remain in the image. Mathematically speaking, this means
that the transfer function decreases monotonically with the wave num-
ber. Then for any direction, represented by a unit vector r̄

ĥ(k2r̄) ≤ ĥ(k1r̄) if k2 > k1 (9.69)

We may impose the more stringent condition that the transfer func-
tion approaches zero in all directions,

lim
k→∞

ĥ(kr̄) = 0 (9.70)

On a discrete lattice the wave numbers are limited by the Nyquist con-
dition, that is, the wave number must lay within the first Brillouin zone
(Section 8.4.2). Then it makes sense to demand that the transfer func-
tion of an averaging filter is zero at the border of the Brillouin zone.
On a rectangular lattice this means

ĥ(k) = 0 if kb̂d = |b̂d|/2 (9.71)

where b̂d is any of the D-basis vectors of the reciprocal lattice (Sec-
tion 8.4.2). Together with the monotonicity condition and the preserva-
tion of the mean value, this means that the transfer function decreases
monotonically from one to zero for each averaging operator.

For a 1-D filter we can easily use Eq. (9.24) to relate the condition in
Eq. (9.71) to a condition for the coefficients of type I filters:

ĥ(1) = 0 ⇐⇒ h0 + 2
∑

r even
hr = 2

∑
r odd

hr (9.72)

One-dimensional type II filters are, according to Eq. (9.24), always zero
for k̃ = 1.

Even filters in continuous space. With respect to object detection,
the most important feature of an averaging operator is that it must not
shift the object position. Any shift introduced by a preprocessing op-
erator would cause errors in the estimates of the position and possibly
other geometric features of an object. In order not to cause a spatial
shift, a filter must not induce any phase shift in the Fourier space. A
filter with this property is known as a zero-phase filter . This implies
that the transfer function is real and this is equivalent with an even
symmetry of the filter mask (Section 8.6.3):

h(−x) = h(x) ⇐⇒ ĥ(k) real (9.73)
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Averaging filters normally meet a stronger symmetry condition in the
sense that each axis is a symmetry axis. Then Eq. (9.73) is valid for each
component of x:

h([x1, . . . ,−xd, . . . , xD]T ) = h([x1, . . . , xd, . . . , xD]T ) (9.74)

Even filters on 1-D lattices. For digital signals we distinguish fil-
ters with odd and even numbers of coefficients in all directions (Sec-
tion 9.2.5). For both cases, we can write the symmetry condition for a
filter with Rd + 1 coefficients in the direction d as

Hr0,r1,... ,Rd−rd,... ,rD = Hr0,r1,... ,rd,... ,rD ∀d ∈ [1, D] (9.75)

when we count the coefficients in each direction from left to right from
0 to Rd. This is not the usual counting but it is convenient as only one
equation is required to express the evenness for filters with even and
odd numbers of coefficients. For a 1-D filter the symmetry conditions
reduce to

HR−r = Hr (9.76)

The symmetry relations significantly ease the computation of the
transfer functions because for real transfer functions only the cosine
term of the complex exponential from the Fourier transform remains
in the equations (Sections 8.6 and 9.2.5). The transfer function for 1-D
even masks with either 2R + 1 (type I filter) or 2R coefficients (type II
filter) is

I ĥ(k̃) = h0 + 2
R∑

r=1
hr cos(rπk̃)

IIĥ(k̃) = 2
R∑

r=1
hr cos((r − 1/2)πk̃)

(9.77)

Note that in these equations only pairs of coefficients are counted from
1 to R. The central coefficient of a filter with an odd number of coeffi-
cients has the index zero. As discussed in Section 9.2.5, filters with an
odd number of coefficients output the filter results to the same lattice
while filters with an even number of coefficients output the filter result
to the intermediate lattice. A further discussion of the properties of
symmetric filters up to three dimensions can be found in Jähne [4].

Isotropic filters. In most applications, the averaging should be the
same in all directions in order not to prefer any direction. Thus, both
the filter mask and the transfer function should be isotropic. Conse-
quently, the filter mask depends only on the magnitude of the distance
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from the center pixel and the transfer function on the magnitude of the
wave number:

H(x) = H(|x|) ⇐⇒ Ĥ(k̃) = Ĥ(|k̃|) (9.78)

This condition can also be met easily in discrete space. It means that
the coefficients at lattice points with an equal distance from the cen-
ter point are the same. However, the major difference now is that a
filter whose coefficients meet this condition does not necessarily have
an isotropic transfer function. The deviations from the isotropy are
stronger the smaller is the filter mask. We will discuss the deviations
from isotropy in detail for specific filters.

9.5.2 Separable averaging filters

The importance of separable filters for higher-dimensional signals is
related to the fact that they can be computed much faster than non-
separable filters [CVA2, Section 5.6]. The symmetry conditions for sep-
arable averaging filters are also quite simple because only the symmetry
condition Equation (9.76) must be considered. Likewise, the equations
for the transfer functions of separable filters are quite simple. If we ap-
ply the same 1-D filter in all directions, the resulting transfer function
of a D-dimensional filter is given after Eq. (9.77) by

I ĥ(k̃) =
D∏

d=1

h0 + 2
R∑

r=1
hr cos(rπk̃d)


II ĥ(k̃) =

D∏
d=1

2 R∑
r=1

hr cos((r − 1/2)πk̃d)

 (9.79)

With respect to isotropy, there exists only a single separable filter
that is also isotropic, that is, the Gaussian function

1
aD exp(−πxTx/a2) = 1

aD

D∏
d=1

exp(−πx2
d/a2) ⇐⇒

exp(−πa2k̃
T
k̃/4) =

D∏
d=1

exp(−πa2k̃2
d/4)

(9.80)

This feature shows the central importance of the Gaussian function for
signal processing from yet another perspective.

To a good approximation, the Gaussian function can be replaced
on orthogonal discrete lattices by the binomial distribution. The coef-
ficients of a 1-D binomal filter with R + 1 coefficients and its transfer
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Figure 9.5: Transfer functions of type I box filters with 3, 7, and 15 coefficients
in a a linear plot; and b a log-log plot of the absolute value.

function are given by

BR = 1
2R

[
b0 = 1, . . . , br =

(
R
r

)
, . . . , bR+1 = 1

]
⇐⇒ B̂R(k̃) = cosR(πk̃/2)

(9.81)

With the comments on the isotropy of discrete filters in mind (Sec-
tion 9.5.1), it is necessary to study the deviation of the transfer function
of binomial filters from an isotropic filter.

9.5.3 Box filters

The simplest method is to average pixels within the filter mask and to
divide the sum by the number of pixels. Such a simple filter is called
a box filter . It is also known under the name running mean. In this
section, only type I box filters are discussed. For type II box filters and
box filters on hexagonal lattices see CVA2 [Section 7.3].

The simplest type I 1-D box filter is

3R = 1
3

[1,1,1] ⇐⇒ 3R̂(k̃) = 1
3

+ 2
3
cos(πk̃) (9.82)

The factor 1/3 scales the result of the convolution sum in order to
preserve the mean value (see Eq. (9.68) in Section 9.5.1). Generally, a
type I 1-D box filter with 2R + 1 coefficients has the transfer function

I R̂(k̃) = 1
2R + 1

+ 2
2R + 1

R∑
r=1

cos(πr k̃)

= 1
2R + 1

cos(πRk̃) − cos(π(R + 1)k̃)
1− cos(πk̃)

(9.83)

For small wave numbers the transfer function can be approximated by

I R̂(k̃) ≈ 1− R(R + 1)
6

(πk̃)2 + R(R + 1)(3R2 + 3R − 1)
360

(πk̃)4 (9.84)
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Figure 9.5 shows that the box filter is a poor averaging filter. The trans-
fer function is not monotonical and the envelope of the transfer func-
tion is only decreasing with k−1 (compare Section 8.6.3). The high-
est wave number is not completely suppressed even with large filter
masks. The box filter also shows significant oscillations in the trans-
fer function. The filter 2R+1R completely eliminates the wave numbers
k̃ = 2r/(2R + 1) for 1 ≤ r ≤ R. In certain wave-number ranges, the
transfer function becomes negative. This corresponds to a 180° phase
shift and thus a contrast inversion.

Despite all their disadvantages, box filters have one significant ad-
vantage. They can be computed very fast with only one addition, sub-
traction, and multiplication independent of the size of the filter, that
is, O(R0). Equation (9.83) indicates that the box filter can also be un-
derstood as a filter operation with a recursive part according to the
following relation:

g′
n = g′

n−1 + 1
2R + 1

(gn+R − gn−R−1) (9.85)

This recursion can easily be understood by comparing the computa-
tions for the convolution at neighboring pixels. When the box mask
is moved one position to the right, it contains the same weighting fac-
tor for all pixels except for the last and the first pixel. Thus, we can
simply take the result of the previous convolution (g′

n−1), subtract the
first pixel that just moved out of the mask (gn−R−1), and add the gray
value at the pixel that just came into the mask (gn+R). In this way, the
computation of a box filter does not depend on its size.

Higher-dimensional box filters can simply be computed by cascad-
ing 1-D box filters running in all directions, as the box filter is separable.
Thus the resulting transfer function for a D-dimensional filter is

2R+1R̂(k̃) = 1
(2R + 1)D

D∏
d=1

cos(πRk̃d) − cos(π(R + 1)k̃d)
1− cos(πk̃d)

(9.86)

For a 2-D filter, we can approximate the transfer function for small
wave numbers and express the result in cylinder coordinates by using
k1 = k cosφ and k2 = k sinφ and obtain

I R̂(k̃) ≈ 1− R(R + 1)
6

(πk̃)2 + R(R + 1)(14R2 + 14R − 1)
1440

(πk̃)4

− R(R + 1)(2R2 + 2R + 1)
1440

cos(4φ)(πk̃)4

(9.87)

This equation indicates that—although the term with k̃2 is isotropic—
the term with k̃4 is significantly anisotropic. The anisotropy does not
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Figure 9.6: Absolute deviation of the 2-D transfer functions of type I 2-D box
filters from the transfer function along the x axis (1-D transfer function shown
in Fig. 9.5) for a a 3×3 and b 7×7 filter. The distance of the contour lines is
0.05. The area between the thick contour lines marks the range around zero.

improve for larger filter masks because the isotropic and anisotropic
terms in k̃4 grow with the same power in R.

A useful measure for the anisotropy is the deviation of the 2-D filter
response from the response in the direction of the x1 axis:

∆R̂(k̃) = R̂(k̃) − R̂(k̃1) (9.88)

For an isotropic filter, this deviation is zero. Again in an approximation
for small wave numbers we obtain by Taylor expansion

∆I R̂(k̃) ≈ 2R4 + 4R3 + 3R2 + R
720

sin2(2φ)(πk̃)4 (9.89)

The anisotropy for various box filters is shown in Fig. 9.6. Clearly, the
anisotropy does not become weaker for larger box filters. The devia-
tions are significant and easily reach 0.25. This figure means that the
attenuation for a certain wave number varies up to 0.25 with the direc-
tion of the wave number.

9.5.4 Binomial filters

In Section 9.5.2 we concluded that only the Gaussian functionmeets the
most desirable features of an averaging filter: separability and isotropy.
In this section we will investigate to which extent the binomial filter,
which is a discrete approximation to the Gaussian filter, still meets
these criteria. The coefficients of the one-dimensional binomial filter
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Figure 9.7: Transfer functions of binomial filters BR in a a linear plot and b a
log-log plot of the absolute value with values of R as indicated.

can be generated by repeatedly convolving the simple 1/2 [1 1] mask:

BR = 1/2 [1 1] ∗ . . . ∗ 1/2 [1 1]︸ ︷︷ ︸
R times

(9.90)

This cascaded convolution is equivalent to the scheme in Pascal’s tri-
angle. The transfer function of the elementary B = 1/2 [1 1] filter is

B̂ = cos(πk̃/2) (9.91)

There is no need to distinguish type I and type II binomial filters in the
equations because they can be generated by cascaded convolution as
in Eq. (9.90). Therefore, the transfer function of the BR binomial filter
is

B̂
R = cosR(πk̃/2) (9.92)

The most important features of binomial averaging filters are:

Monotonic transfer function. The transfer function decreases mono-
tonically from 1 to 0 (Fig. 9.7).

Spatial variance. The coefficients of the binomial filter quickly ap-
proach with increasing mask size a sampled normal distribution.
The spatial variance is

σ 2
x = R/4 (9.93)

A binomial filter effectively averages over a width of 2σx . In contrast
to the box filters, the effective averaging width increases only with
the square root of the filter length.

Variance. Also the transfer function of the binomial filter quickly ap-
proaches the Gaussian function with increasingmask size (Fig. 9.7a).
It is instructive to compare the Taylor expansion of the Gaussian
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Figure 9.8: Absolute deviation of the 2-D transfer functions of binomial filters
from the transfer function along the x axis (1-D transfer function shown in
Fig. 9.7) for a a 3×3 (B2) and b 9×9 (B8) filter. The distance of the contour
lines is 0.005 in a and 0.001 in b. The area between the thick contour lines
marks the range around zero.

function for small wave numbers with those of the transfer func-
tions of binomial filters:

exp(−k̃2/(2σ 2
k )) ≈ 1 − 1

2σ 2
k

k̃2 + 1
8σ 4

k
k̃4

B̂
R

(k̃) ≈ 1 − Rπ2

8
k̃2 +

(
R2π4

128
− Rπ4

192

)
k̃4

(9.94)

For large R both expansions are the same with

σk = 2√
Rπ

(9.95)

Higher-dimensional binomial filters can be composed from 1-D bi-
nomial filters in all directions:

BR =
D∏

d=1
BR

d (9.96)

Thus the transfer function of the multidimensional binomial filter BR

with (R + 1)D coefficients is given by

B̂R =
D∏

d=1
cosR(πk̃d/2) (9.97)
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The isotropy of binomial filters can be studied by expanding Eq. (9.97)
in a Taylor series using cylindrical coordinates k̃ = [k̃, φ]T :

B̂R ≈ 1− R
8

(πk̃)2 + 2R2 − R
256

(πk̃)4 − R cos4φ
768

(πk̃)4 (9.98)

Only the second-order term is isotropic. In contrast, the fourth-order
term contains an anisotropic part, which increases the transfer func-
tion in the direction of the diagonals. A larger filter (larger R) is less
anisotropic as the isotropic term with k̃4 increases quadratically with
R while the anisotropic term with k̃4 cos4θ increases only linearly with
R. The anisotropy deviation according to Eq. (9.88) is given by

∆B̂R ≈ R
384

sin2(2φ)(πk̃)4 + 5R2 − 4R
15360

sin2(2φ)(πk̃)6 (9.99)

and shown in Fig. 9.8.
Three-dimensional binomial filters and binomial filters on hexago-

nal grids are discussed in CVA2 [Section 7.4.3].

9.5.5 Cascaded averaging

The approaches discussed so far for local averaging are no solution if
the averaging should cover large neighborhoods for the following rea-
sons: First, binomial filters are not suitable for large-scale averaging—
despite their efficient implementation by cascaded convolution with
B—because the averaging distance increases only with the square root
of the mask size (see Eq. (9.93) in Section 9.5.4). Second, box filters and
recursive filters are, in principle, suitable for large-scale averaging be-
cause the number of operations does not increase with the size of the
point spread function (operation of the order O(R0)). However, both
types of filters have a nonideal transfer function. The transfer function
of the box filter is not monotonically decreasing with the wave number
(Section 9.5.3) and both filters show overly large deviations from an
isotropic response. In this section, several techniques are discussed
for large-scale averaging that overcome these deficits and limitations.

Multistep averaging. The problem of slow large-scale averaging orig-
inates from the small distance between the pixels averaged by small
masks. In order to overcome this problem, we may use the same ele-
mentary averaging process but with more distant pixels. As the box,
binomial and recursive averaging filters are separable and thus are ap-
plied as cascaded filter operations running one after the other in all co-
ordinate directions through a multidimensional signal, it is sufficient
to discuss increasing the step width for 1-D filter operations. A 1-D
convolution with a mask that operates only with every S-th pixel can
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a b

Figure 9.9: Transfer functions of the binomial filterB4 (B = 1/16[1 4 6 4 1]) and
the same filter stretched by a a factor of two, B4

2 (B2 = 1/16[1 0 4 0 6 0 4 0 1]),
and b a factor of four, B4

4.

be written as a stretched mask

(hS)n =
{

hn′ n = Sn′

0 else
⇐⇒ ĥS(k̃) = ĥ(k̃/S) (9.100)

Because of the reciprocity between the spatial and Fourier domains the
stretching of the filter mask by a factor S results in a corresponding
shrinking of the transfer function. This shrinking goes—because of the
periodicity of the transfer function of discrete samples—along with an
S-fold replication of the transfer function as illustrated in Fig. 9.9.

An averaging filter that is used with a larger step width is no longer
a good averaging filter for the whole wave-number range but only for
wave numbers up to k̃ = 1/S. Used individually, these filters are thus
not of much help. But we can use them in cascade in such a way that
previous smoothing has already removed all wave numbers beyond
k̃ = 1/S. This is the basic principle for the design of cascaded filters.

For practical design there are two degrees of freedom. First, we can
select the basic filter that is used repeatedly with different step widths.
Here, box, binomial and relaxation filters are investigated. Second, we
can choose the way in which the step width is increased. We will con-
sider both a linear and an exponential increase in the step width. Gen-
erally, a cascaded filter operation consists of the following chain of P
operations with the filter operation B:

BaP . . .Bap . . .Ba2Ba1︸ ︷︷ ︸
P times

(9.101)

where ap consists of a sequence of step widths. Whereas in each step
the same operator B with the spatial variance σ 2 is used and only the



9.5 Local averaging 307

a

k
~

b

k
~

c

k
~

d

k
~

Figure 9.10: Transfer functions of cascaded filtering with linear increase in
step width with a B2, b B4, c 3R, and d 5R. Shown are the transfer functions of
the original filters and of the cascaded filtering up to the six-fold step size with
a resulting averaging width

√
91 ≈ 9.54 times larger than the original filter.

step width is changed, the resulting step width can be computed by

σ 2
c = σ 2

P∑
p=1

a2
p (9.102)

From this equation it is also obvious that efficient filter cascading re-
quires an increasing step width. If we keep the step width constant,
the averaging width given by σc increases only with

√
P and not lin-

early with P .

Linearly increasing step width. In the simplest case, the step width
is increased linearly, that is, ap = p. This results in the following se-
quence of P step widths: 1,2,3,4, . . . , P . According to Eq. (9.102), the
resulting series of variances is

σ 2
c = σ 2

P∑
p=1

p2 = P(P + 1)(2P + 1)
6

σ 2 (9.103)

For large P , σc = P3/2σ/
√
3. Thus the averaging width increases even

stronger than linear with the number of steps. With only six steps, the
resulting averaging width is

√
91 ≈ 9.54 times larger than that of the
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c d

Figure 9.11: Transfer functions of cascaded filtering with exponential increase
in step width with a B2, b B4, c 3R, and d 5R. Shown are the transfer func-
tions of the original filters and of four cascaded filters (up to step size 8) with a
resulting averaging width

√
85 ≈ 9.22 times larger than the original filter.

original filter (Fig. 9.10). To achieve this averaging width, the same filter
would have to be applied 91 times.

The quality of the cascaded filtering, that is, the degree of devia-
tion from a monotonic transfer function, is determined by the basic
filter. Figure 9.10 shows the transfer functions for a number of dif-
ferent filters in a double-logarithmic plot. Only the binomial filter B4

shows negligible secondary peaks well beyond 10−4. The other filters
in Fig. 9.10 have significantly more pronounced secondary peaks in the
10−4 to 10−2 range.

Exponentially increasing step width. A linear increase in the step
width is still too slow to achieve averaging over very large scales. It
is also disadvantageous in that the increase in the averaging width is
of the odd order P3/2. This means that filtering does not increase the
width of the averaging linearly. The increase is slightly stronger. Both
difficulties are overcome with an exponential increase in the step width.
The easiest way is to increase the step width by a factor of two from
filtering to filtering. The resulting mask has the standard deviation

σ 2
c = σ 2

P∑
p=1

22p−2 = 22P − 1
3

σ 2 (9.104)
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Figure 9.12: a Sequence of transfer functions of cascaded filtering with expo-
nential increase in step width using the B6 binomial filter. b Shows the same
sequence except that the first filter with step width 1 is B8.

Thus the standard deviation grows exponentially to ≈ (2P /
√
3)σ

with only P filtering steps. In other words, the number of computations
increases only logarithmically with the averaging width.

As for the linear increase of the step width, the basic filter deter-
mines the quality of the resulting transfer function of the cascaded fil-
tering. Figure 9.11 shows that only the binomial filter B4 results in an
acceptable transfer function of the cascaded filtering. All other filters
show too high secondary peaks.

Figure 9.12a shows a sequence of transfer functions for the cascad-
ing of the binomial filter B6. It can be observed that the filters are not
of exactly the same shape but that the secondary peak is higher for the
first steps and only gradually levels off to a constant value. This effect
is caused by the constant term in Eq. (9.104). It can be compensated if
the first filter (p = 1) does not have variance σ 2 but has variance 4/3σ 2.
Indeed, if a B8 filter is used instead of the B6 filter in the first step, the
filters in the different steps of the filter cascade are much more similar
(Fig. 9.12b).

For higher-dimensional signals the isotropy of the averaging is of
significance. As we already know that all filters except for the binomial
filters are significantly anisotropic, only binomial filters are discussed.
While the B2 filter still shows a pronounced anisotropy of several per-
cent (Fig. 9.13a), the anisotropy is already just slightly more than 0.01
for a B4 filter (Fig. 9.13b).

Multigrid averaging. Multistep cascaded averaging can be further en-
hanced by converting it into a multiresolution technique. The idea of
multigrid smoothing is very simple. If a larger step mask is involved,
this operation can be applied on a correspondingly coarser grid. This
means that the last operation before using the larger step mask needs
to compute the convolution only at the grid points used by the follow-
ing coarser grid operator. This sampling procedure is denoted by a
special syntax in the operator index; O↓2 means: Apply the operator in
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a b

Figure 9.13: Anisotropy of cascaded filtering with exponential increase of the
step width in a log-polar plot. Shown is the deviation from the transfer function
in the direction of the x axis for a B2

4B2
2B2

1 and b B4
4B4

2B4
1.

all directions and advance the mask two pixels in all directions. Thus,
the output of the filter operator has only half as many pixels in every
direction as the input.

Multigrid smoothing makes the number of computations essentially
independent of the standard deviation of the smoothing mask. We
again consider a sequence of 1-D averaging filters:

B↓2 · · ·B↓2B↓2︸ ︷︷ ︸
P times

The standard deviation of the filter cascade is the same as for the multi-
step approach with exponential increase of the step width (Eq. (9.104)).
Also, as long as the sampling condition is met, that is, B̂p(k̃) = 0
∀k̃ ≥ 1/2, the transfer functions of the filters are the same as for the
multistep filters.

If B↓2 takes q operations, the operator sequence takes

q
P∑

p=1

1
2p−1 = 2q

(
1− 1

2P−1

)
< 2q (9.105)

Thus, smoothing to any degree takes no more than twice as many op-
erations as smoothing at the first step.

9.5.6 Weighted averaging

Image data, just like any other experimental data, may be characterized
by individual errors that have to be considered in any further process-
ing. As an introduction, we first discuss the averaging of a set of N
data gn with standard deviations σn. From elementary statistics, it is



9.6 Interpolation 311

known that appropriate averaging requires the weighting of each data
point gn with the inverse of the variance wn = 1/σ 2

n. Then, an estimate
of the mean value is given by

〈
g
〉 =

N∑
n=1

gn/σ 2
n

/ N∑
n=1

1/σ 2
n (9.106)

while the standard deviation of the mean is

σ 2
〈g〉 = 1

/ N∑
n=1

1/σ 2
n (9.107)

The application ofweighted averaging to image processing is known
as normalized convolution [9]. The averaging is now extended to a local
neighborhood. Each pixel enters the convolution sum with a weighting
factor associated with it. Thus, normalized convolution requires two
signals. One is the image G to be processed, the other an imageW with
the weighting factors.

By analogy to Eqs. (9.106) and (9.107), normalized convolution with
the mask H is defined as

G′ = H ∗ (W ·G)
H ∗W

(9.108)

A normalized convolution with the mask H essentially transforms the
image G and the weighting image W into a new image G′ and a new
weighting image W ′ =H ∗W , which can undergo further processing.

Normalized convolution is just adequate consideration of pixels
with spatially variable statistical errors. “Standard” convolution can
be regarded as a special case of normalized convolution. Then all pix-
els are assigned the same weighting factor and it is not required to use
a weighting image, because the factor remains a constant.

The flexibility of normalized convolution is given by the choice of
the weighting image. The weighting image is not necessarily associ-
ated with an error. It can be used to select and/or amplify pixels with
certain features. In this way, normalized convolution becomes a ver-
satile nonlinear operator. The application of normalized convolution
is discussed in a number of contributions in the application gallery:
Sections A18, A20, A16, and A23.

9.6 Interpolation

Interpolation of digital signals is required for a wide range of signal-
processing tasks whenever any operation shifts the digital points of the
output signal so that they no longer coincide with the grid points of the
input signal. This occurs, among others, with the following operations:
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Geometric operations. For many applications, the geometrical distor-
tions introduced by optical systems [CVA1, Chapter 4]) are not ac-
ceptable and must be corrected. For satellite images, it is often
required to recompute the image data to a different projective map-
ping.

Signal registration. If data are taken with different sensors, these sen-
sors will almost never be in perfect spatial alignment. Thus it is
required to map them onto common spatial coordinates for further
joint processing.

Multiresolution signal processing. Formultigrid data structures, such
as pyramids (Section 8.10), signals are represented at different res-
olution levels. On such data structures it is necessary to interpolate
missing points from coarser levels to be able to process them at a
finer level.

Coarse-to-fine strategies. Coarse-to-fine strategies are an often used
concept on multigrid data structures if the processing involves im-
ages that are shifted to each other either because of a different sen-
sor (image registration), a different perspective (stereo images) or
motion of objects (Chapter 10). In all these cases it is required to
warp the images with the determined displacement vector field be-
fore processing at the next finer resolution [CVA2, Chapter 14].

Test image generation. In order to evaluate algorithms, it is important
to apply them to known signals. For image-sequence processing,
for example, it is useful to simulate displacement vector fields by
warping images correspondingly.

For a long time there was little effort put into interpolation algo-
rithms for computer vision. Thusmost of the available procedures have
been invented for computer graphics in the framework of photorealistic
rendering. An excellent survey in this respect is provided by Wolberg
[11]. Only with increasing demand for subpixel-accurate computer vi-
sion algorithms have the researchers become aware of the importance
of accurate interpolation algorithms. The demands are quite high. As
a rule of thumb, interpolation should neither change the amplitude of
a signal by more than 1% nor shift any signal by more than 0.01.

The analysis of the structure in small neighborhoods is a key el-
ement in higher-dimensional signal processing. Changes in the gray
values reveal either the edge of an object or the type of texture.

9.6.1 Interpolation as convolution

The basis of interpolation is the sampling theorem (Section 8.4.2). This
theorem states that the digital signal completely represents the contin-
uous signal provided the sampling conditions are met. This basic fact
suggests the following general framework for interpolation:
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Reconstruction of continuous signal. From the sampled signal a con-
tinuous or a higher-resolution representation is reconstructed.

Filtering. Before a resampling can be performed, it is necessary to
check whether a prefiltering of the data is required. Whenever the
data are to be resampled with a coarser resolution, aliasing could oc-
cur because the sampling condition is no longer met (Section 8.4.3).

Resampling. This step finally forms the new digital signal.

Of course, a certain procedure for interpolation can perform two or
even all of these steps in a single operation. However, it is still helpful
for a better understanding of the procedure to separate it into these
steps.

Although these procedures sound simple and straightforward, they
are not. The problem is related to the fact that the reconstruction of the
continuous signal from the sampled signal in practice is quite involved
and can be performed only approximately. Thus, we need to balance the
computational effort with the residual error for a given interpolation
task.

Generally, a continuousmultidimensional signal is interpolated from
values at all points of a lattice by (Section 8.4.4)

gr (x) =
P∑

p=1

∑
n

gs(rn + sp)h(x − (rn + sp)) (9.109)

In this equation rn are the translation vectors of the lattice and sp the
offsets of the P points in the primitive cell of the lattice. If a continuous
signal is required but only the value at a shifted point p (Eq. (9.109))
reduces to

gr (p) =
P∑

p=1

∑
n

gs(rn + sp)h(p − (rn + sp)) (9.110)

This equation reveals that interpolation is nothing else but a general-
ized convolution operation of the points on a discrete lattice with sam-
pled values from the interpolation kernel. The only difference is that
the result of the operation is not written back to the same lattice but to
a shifted lattice. Thus an interpolation operation can be described by
a transfer function. According to the discussion of the sampling theo-
rem in Sections 8.4.2 and 8.4.4, the ideal interpolation function has a
transfer function that is constantly one within the first Brillouin zone
and zero outside.

For the rest of this section, we will restrict all considerations to
orthogonal lattices because interpolation of multidimensional signals
is much easier to handle on these grids. On an orthogonal lattice with
only one point per primitive cell (P = 1), the interpolation in Eq. (9.109)
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reduces to

gr (x̃) =
∑
n

gs(n)h(x̃ −n) (9.111)

In this equation all vectors in the spatial domain are expressed in units
of the lattice constants: x̃d = xd/∆xd. Thus, the components of the
translation vector r are integers and are replaced by n = [n1, . . . , nD]T ,
the vectorial index that counts the translations vectors on a D-dimen-
sional lattice.

The ideal transfer function for interpolation of a D-dimensional sig-
nal is then a D-dimensional box function

ĝr (k̃) = ĝ(k̃)
D∏

d=1
Π(2k̃) (9.112)

where k̃ is the wave number normalized to the Nyquist limit according
to Eq. (8.34). It follows that the ideal interpolation function h is the
Fourier transform of the box function, the sinc function

h(x̃) =
D∏

d=1

sin(πx̃d)
πx̃d

=
D∏

d=1
sinc(x̃d) (9.113)

This ideal interpolation mask cannot be used in practice as it is infi-
nite. Thus an optimal approximation must be found that minimizes
the deviations from the ideal transfer function.

9.6.2 General properties of interpolation kernels

In this section some general properties of interpolation are summarized
that are useful for the design of optimal interpolation masks.

Symmetries. An interpolation mask can have an even or odd number
of coefficients. Because of symmetry reasons, the interpolation inter-
val of these two types of interpolation masks is different. For a mask
with an even number of coefficients (Fig. 9.14a), the symmetry center is
between the two central points of the interpolation mask. Because any
interpolation mask can have an interpolation interval of one distance
between two points of the mask, the interpolation interval is limited
to the interval between the two central points of the mask. For points
outside of this range, the mask is shifted a corresponding number of
points on the lattice, so that the point to be interpolated again is within
this central interval.

For a mask with an odd number of coefficients (Fig. 9.14b), the sym-
metry center coincides with the central point. Thus the interpolation
interval is now half the distance between points on the lattice on both
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Figure 9.14: Interpolation interval for interpolation masks with a an even and
b an odd number of coefficients .

sides of the central point. The symmetry conditions for these two types
of interpolation filters are analogous to type I and type II averaging fil-
ters discussed in Sections 9.2.5 and 9.5.3.

Interpolation condition. There are some general constraints thatmust
be met by any interpolation filter. They result from the simple fact that
the interpolated values in Eq. (9.111) at the lattice points n should re-
produce the lattice points and not depend on any other lattice points.
From this condition, we can infer the interpolation condition:

h(n) =
{
1 n = 0
0 otherwise

(9.114)

Therefore any interpolation mask must have zero crossings at all
grid points except the zero point where it is one. The ideal interpolation
mask in Eq. (9.113) meets this interpolation condition.

More generally, we can state that any discrete interpolation mask
sampled from the continuous interpolation kernel should meet the fol-
lowing condition:

x̃Hn =
∑
n

h(n+ x̃) = 1 ⇐⇒ x̃Ĥ0 = 1 (9.115)

This generalized condition indicates only that a constant signal (k̃ = 0)
is not changed by an interpolation operation.

Separability. The ideal interpolation function in Eq. (9.113) is sepa-
rable. Therefore, interpolation can as easily be formulated for higher-
dimensional images. We can expect that all solutions to the interpola-
tion problem will also be separable. Consequently, we need only dis-
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Figure 9.15: a Ideal 1-D interpolation mask and b its transfer function. The
values for the coefficients of the discrete mask to interpolate intermediate lattice
points (x̃ = 1/2) are marked by dots.

cuss the 1-D interpolation problem

gr (x̃) =
R∑

n=−R
gnh(x̃ − n) (9.116)

where n and R take half-integer values for interpolation masks with an
even number of coefficients and integer values for interpolation masks
with an odd number of coefficients; x is given here in units of the lattice
constant x̃ = x/∆x. The 1-D ideal interpolation mask sinc(x̃) and its
transfer function Π(2k̃) are illustrated in Fig. 9.15.

Once a good interpolation mask is found for 1-D interpolation, we
also have a solution for the D-dimensional interpolation problem.

An important special case is the interpolation to intermediate lat-
tice points half-way between the existing lattice points. This scheme
doubles the resolution and image size in all directions in which it is
applied. The coefficients of the corresponding interpolation mask are
the values of the sinc(x̃) function sampled at all half-integer values:

h =
[

(–1)r−1 2
(2r − 1)π

· · · –
2
3π

2
π

2
π

–
2
3π

· · · (–1)r−1 2
(2r − 1)π

]
(9.117)

The coefficients are of alternating sign.

Interpolation error analysis. The fact that interpolation is a convo-
lution operation and thus can be described by a transfer function in
Fourier space Equation (9.113) gives us a tool to rate the errors asso-
ciated with an interpolation technique. The box-type transfer function
for the ideal interpolation function simplymeans that all wave numbers
within the range of possible wave numbers |kd| ≤ ∆xd/π experience
neither a phase shift nor amplitude damping. Also, no wave number be-
yond the allowed interval is present in the interpolated signal, because
the transfer function is zero there.
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9.6.3 Interpolation in Fourier space

Interpolation reduces to a simple operation in the Fourier domain. The
transfer function of an ideal interpolation kernel is a box function
that is zero outside the wave numbers that can be represented (see
Eq. (9.113)). This basic fact suggests the following interpolation proce-
dure in Fourier space:

1. Enlargement of the Fourier transform of the signal. If the discrete
Fourier transform of an MD multidimensional signal is increased to
an M ′D array, the array in the spatial domain is also increased to
the same size. Because of the reciprocity of the Fourier transform,
the image size remains unchanged. Only the spacing between pix-
els in the spatial domain is decreased, resulting in a higher spatial
resolution:

M∆kd → M ′∆kd ⇐⇒ ∆x = 2π
M∆k

→ ∆x′ = 2π
M ′∆k

(9.118)

The padded area in the Fourier space is filled with zeroes.

2. Inverse Fourier transform. All that needs to be done is the compu-
tation of an inverse Fourier transform to obtain a higher resolution
signal.

The Fourier transform can also be used to shift a signal by any dis-
tance without changing the signal resolution. Then the following three-
step procedure must be applied.

1. Forward Fourier transform.

2. Multiplication with a phase factor. According to the shift theorem
(Table 8.6), a shift in the spatial domain by a distancexs corresponds
to themultiplication of the Fourier transform by the following phase
factor:

g(x) → g(x − s) ⇐⇒ Ĝu → exp(−2π ius)Ĝu (9.119)

where the vectorial shift s is given in units of the lattice constants
∆xd.

3. Inverse Fourier transform.

Theoretically, these simple procedures result in perfectly interpo-
lated signals. A closer look, however, reveals that these techniques
have some serious drawbacks.

First, the Fourier transform of a finite image implies a cyclic repe-
tition of the image both in the spatial and Fourier domain. Thus, the
convolution performed by the Fourier transform is also cyclic. This
means that at the right or left edge of the image, convolution contin-
ues with the image at the opposite side. Because the real world is not
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Figure 9.16: aOne-dimensional linear interpolation: a continuous interpolation
mask and b its transfer function. The values for the coefficients of the discrete
mask to interpolate intermediate lattice points (x̃ = 1/2) are marked by dots.

periodic and interpolation masks are large, this may lead to significant
distortions of the interpolation even at quite large distances from the
edges of the image.

Second, the Fourier transform can be computed efficiently only for
a specified number of values for M ′ [CVA2, Section 3.4]. Therefore, the
Fourier-transform based interpolation is limited to scaling factors of
powers of two.

Third, the Fourier transform is a global transform. Thus it can be
applied only to a global scaling of the signal by an integer factor.

9.6.4 Polynomial interpolation

Linear interpolation. Linear interpolation is the classic approach to
interpolation. The interpolated points are on pieces of straight lines
connecting neighboring grid points. In order to simplify the expres-
sions in the following, we use normalized spatial coordinates x̃ = x/∆x.
We locate the two grid points at −1/2 and 1/2. This yields the interpo-
lation equation

g(x̃) = g1/2 + g−1/2

2
+ (

g1/2 − g−1/2
)

x̃ for |x̃| ≤ 1/2 (9.120)

By comparison of Eq. (9.120) with Eq. (9.116), we can conclude that the
continuous interpolation mask for linear interpolation is the triangle
function

h1(x̃) = Λ(x̃) =
{
1− |x̃| |x̃| ≤ 1

0 otherwise
(9.121)

The transfer function of the interpolation mask for linear interpola-
tion, the triangle functionh1(x) Eq. (9.121), is the squared sinc function

ĥ1(k̃) = sin2(πk̃/2)
(πk̃/2)2

= sinc2(k̃/2) (9.122)
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A comparison with the ideal transfer function for interpolation Equa-
tion (9.112) (see also Fig. 9.15b and Fig. 9.16b), shows that two distor-
tions are introduced by linear interpolation:

1. While low wave numbers (and especially the mean value k̃ = 0) are
interpolated correctly, high wave numbers are reduced in ampli-
tude, resulting in some degree of smoothing. At k̃ = 1, the transfer
function is reduced to about 40%: ĥ1(1) = (2/π)2 ≈ 0.4.

2. As ĥ1(k̃) is not zero at wave numbers k̃ > 1, some spurious high
wave numbers are introduced. If the continuously interpolated im-
age is resampled, this yields moderate aliasing. The first sidelobe
has an amplitude of (2/3π)2 ≈ 0.045.

If we interpolate only the intermediate grid points at x̃ = 0, the con-
tinuous interpolation function Eq. (9.121) reduces to a discrete con-
volution mask with values at x̃ = [. . . − 3/2 − 1/2 1/2 3/2 . . . ]. As
Eq. (9.121) is zero for |x̃| ≥ 1, we obtain the simple interpolation mask
H = 1/2[1 1] with the transfer function

Ĥ1(k̃) = cosπk̃/2 (9.123)

The transfer function is real, so no phase shifts occur. The signifi-
cant amplitude damping at higher wave numbers, however, shows that
structures with high wave numbers are not correctly interpolated.

Higher-order polynomial interpolation. Given the significant limita-
tions of linear interpolation, we ask whether higher-order interpolation
schemes perform better. The basic principle of linear interpolation was
that a straight line was drawn to pass through two neighboring points.
In the same way, we can use a polynomial of degree P with P + 1 un-
known coefficients ap to pass through P + 1 points:

gr (x̃) =
P∑

p=0
apx̃p (9.124)

For symmetry reasons, the lattice points are placed at the positions

k̃p = 2p − P
2

(9.125)

For an even number of points (P is odd), the lattice points are located
at half-integer values.

From the interpolation condition at the grid points gr (k̃p) = gp, we
obtain a linear equation systemwith P+1 equations and P+1 unknowns
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aP of the following form when P is odd:

g0
...

g(P−1)/2
g(P+1)/2

...
gP


=



1 −P/2 P2/4 −P3/8 · · ·
...
1 −1/2 1/4 −1/8 · · ·
1 1/2 1/4 1/8 · · ·
...
1 P/2 P2/4 P3/8 · · ·





a0
...

a(P−1)/2
a(P+1)/2

...
aP


(9.126)

or written as a matrix equation:

g =Ma with Mpq =
(
2q − P

2

)p
, p, q ∈ [0, P] (9.127)

For a cubic polynomial (P = 3), the solution of the equations system
is 

a0

a1

a2

a3

 = 1
48


−3 27 27 −3
2 −54 54 −2
12 −12 −12 12
−8 24 −24 8




g0

g1

g2

g3

 (9.128)

Using Eqs. (9.124) and (9.128) we can express the interpolated values
for the position ε in the interval [−1/2,1/2] as

g(ε) = 9− 4ε2

16
(g1 + g2) − 1− 4ε2

16
(g0 + g3)

+ ε(9− 4ε2)
8

(g2 − g1) − ε(1− 4ε2)
24

(g3 − g0)

(9.129)

Thus the interpolation mask is[−α
16

+ εα
24

, 8+ α
16

+ ε(8+ α)
8

, 8+ α
16

− ε(8+ α)
8

, −α
16

− εα
24

]
(9.130)

with α = 1− 4ε2. For ε = 0 (α = 1), the mask reduces to

1
16

[−1 9 9 − 1] (9.131)

It is not very helpful to go to higher-order polynomial interpolation.
With increasing degree P of the interpolating polynomial, the transfer
function approaches the ideal transfer function better but convergence
is too slow (Fig. 9.17). Less than 1% amplitude error is given only for
a polynomial of degree 7 for k̃ < 0.45. Thus the extra effort of higher-
order polynomial interpolation does not pay off.
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Figure 9.17: Transfer function of polynomial interpolation filters to interpolate
the value between two grid points (ε = 0). The degree of the polynomial (1
= linear, 3 = cubic, etc.) is marked in the graph. The dashed line marks the
transfer function for cubic B-spline interpolation (Section 9.6.5): a Full range; b
sector as marked in a.
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Figure 9.18: a B-spline interpolation kernels of order 0 (nearest neighbor), 1 (lin-
ear interpolation), 2 (quadratic B-spline), and 3 (cubic B-spline); b corresponding
transfer functions.

9.6.5 Spline-based interpolation

Besides the still limited accuracy, polynomial interpolation has another
significant disadvantage. The interpolated curve is not continuous at
the grid points already in its first derivative. This is due to the fact
that for each interval between grid points another polynomial is taken.
Thus, only the interpolated function is continuous at the grid points
but not the derivatives.
Splines avoid this disadvantage by additional constraints for the

continuity of derivatives at the grid points. From the many classes
of splines, we will here discuss only one class, B-splines, and introduce
cubic B-spline interpolation. From the background of signal processing,
the easiest access to B-splines is their convolution property. The kernel
of a P -order B-spline curve is generated by convolving the box function
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P times with itself (Fig. 9.18a):

βP (x̃) = Π(x̃) ∗ . . . ∗Π(x̃)︸ ︷︷ ︸
(P+1) times

(9.132)

The transfer function of the box function is the sinc function (see
Fig. 9.15). Therefore, the transfer function of the P -order B-spline is

β̂P (k̂) =
(
sinπk̃/2
(πk̃/2)

)P+1
(9.133)

Figure 9.18b shows that the B-spline function does not make a suit-
able interpolation function. The transfer function decreases too early,
indicating that B-spline interpolation performs too much averaging.
Moreover, the B-spline kernel does not meet the interpolation condition
Eq. (9.114) for P > 1. Thus, B-splines can be used only for interpola-
tion if the discrete grid points are first transformed in such a way that
a following convolution with the B-spline kernel restores the original
values at the grid points.

This transformation, known as the B-spline transformation, is con-
structed from the following condition:

gp(x) =
∑
n

cnβP (x − xn) with gp(xn) = g(xn) (9.134)

If centered around a grid point, the cubic B-spline interpolation
kernel is unequal to zero for only three grid points. The coefficients
β3(−1) = β−1, β3(0) = β0, and β3(1) = β1 are 1/6, 2/3, and 1/6. The
convolution of this kernel with the unknown B-spline transform values
cn should result in the original values gn at the grid points. Therefore,

g = c ∗ β3 or gn =
1∑

n′=−1
cn+n′βn′ (9.135)

Equation (9.134) constitutes the sparse linear equation system


g0

g1
...

gN−1

 = 1
6



4 1 0
. . . 0 1

1 4 1 0
. . . 0

0 1 4 1 0
. . .

. . .
. . .

. . .
. . .

. . . 1 4 1 0

0
. . . 0 1 4 1

1 0
. . . 0 1 4




c0
c1
...

cN−1

 (9.136)



9.6 Interpolation 323

using cyclic boundary conditions. The determination of the B-spline
transformation thus requires the solution of a linear equation system
with N unknowns. The special form of the equation system as a con-
volution operation, however, allows for a more efficient solution. In
Fourier space, Eq. (9.135) reduces to

ĝ = β̂3ĉ (9.137)

The transfer function of β3 is β̂3(k̃) = 2/3+1/3cos(πk̃). As this func-
tion has no zeroes, we can compute c by inverse filtering, that is, con-
voluting g with a mask that has the transfer function

β̂−1
3 (k̃) = β̂T (k̃) = 1

2/3+ 1/3cos(πk̃)
(9.138)

This is the transfer function of a recursive relaxation filter (Section 9.3.6)
that is applied first in the forward and then in the backward direction
with the following recursion [12]:

g′
n = gn − (2−√

3)(g′
n−1 − gn)

c′
n = g′

n − (2−√
3)(cn+1 − g′

n)
(9.139)

The entire operation takes only two multiplications and four additions.
The B-spline interpolation is applied after the B-spline transforma-

tion. In the continuous cubic case this yields the effective transfer func-
tion using Eqs. (9.133) and (9.138),

β̂I(k̃) = sin4(πk̃/2)/(πk̃/2)4

(2/3+ 1/3cos(πk̃))
(9.140)

Essentially, the B-spline transformation performs an amplification
of high wave numbers (at k̃ = 1 by a factor 3), which compensates the
smoothing of the B-spline interpolation to a large extent.

We investigate this compensation at both the grid points and the in-
termediate points. From the equation of the cubic B-spline interpolat-
ing kernel (Eq. (9.132); see also Fig. 9.18a) the interpolation coefficients
for the grid points and intermediate grid points are

1/6 [1 4 1] and 1/48 [1 23 23 1] (9.141)

respectively. Therefore, the transfer functions are

2/3+ 1/3cos(πk̃) and 23/24cos(πk̃/2) + 1/24cos(3πk̃/2)
(9.142)

respectively. At the grid points, the transfer functions compensate
exactly—as expected—the application of the B-spline transformation
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Equation (9.138). Thus, the interpolation curve goes through the val-
ues at the grid points. At the intermediate points the effective transfer
function for the cubic B-spline interpolation is then

β̂I(1/2, k̃) = 23/24cos(πk̃/2) + 1/24cos(3πk̃/2)
2/3+ 1/3cosπk̃

(9.143)

The interpolation errors are better than even for an interpolation
with a polynomial of order 7 (Fig. 9.17), but still too high for algorithms
that ought to be accurate in the 1/100 pixel range. If no better interpo-
lation technique can be applied, the maximum wave number should be
lower than 0.5. Then, the maximum phase shift is lower than 0.01 and
the amplitude damping is less than 3%.

9.6.6 Optimized interpolation

Filter design for interpolation—like any filter design problem—can be
treated in amathematically more rigorous way as an optimization prob-
lem [CVA2, Chapter 6]. The general idea is to vary the filter coefficients
in such a way that the derivation from a target function reaches a min-
imum.

The target function for an interpolation filter is the box function
Equation (9.112) as depicted in Fig. 9.15b. The ansatz functions for an
interpolation filter include the following constraints. First, the transfer
function is real. Thus only cos terms must be considered. Second, the
mean value should be preserved by the interpolation function. This
implies the condition ĥ(0) = 1. With these two conditions, the ansatz
function for a nonrecursive filter technique is

ĥ(k̃) = cos
(
1
2

πk̃
)
+

R∑
r=2

hr

[
cos

(
2r − 3

2
πk̃

)
− cos

(
1
2

πk̃
)]

(9.144)

The filters (Fig. 9.19a, c) are significantly better than those obtained
by polynomial and cubic B-spline interpolation (Fig. 9.17). Even better
interpolation masks can be obtained by using a combination of non-
recursive and recursive filters, as with the cubic B-spline interpolation:

ĥ(k̃) =
cos

(
1/2 πk̃

)
+

R∑
r=2

hr
[
cos

(
(2r − 3)/2 πk̃

)
− cos

(
1/2 πk̃

)]
1− α + α cos

(
πk̃

)
(9.145)

Figure 9.19b, d shows the transfer functions for R = 1 to 4. A more
detailed discussion of interpolation filters including tables with opti-
mized filters can be found in Jähne [4].
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Figure 9.19: Transfer function of interpolation kernels optimized with the
weighted least squares technique of a Eq. (9.144) withR = 2 to 6 and b Eq. (9.145)
with R = 1 to 4 (solid line). c and d show a narrow sector of the plots in a and
b for a better estimation of small deviations from ideal values.

9.7 Edge detection

Detection of edges is one of themost important tasks of low-level multi-
dimensional signal processing. An edge marks the border of an object
that is characterized by a different feature (gray value, color, or any
other property) than the background. In the context of simple neigh-
borhoods, an edge is a special type of simple neighborhoodwith a sharp
transition. Low-level edge detection thus means to detect the strength
of such a transition and the direction of the edge.

9.7.1 Edge detection by first-order derivatives

First-order derivative filters are one way for low-level edge detection. A
first-order derivative operator corresponds to amultiplication by 2π ikd
in the wave-number space (Section 8.6.3). Thus, a first-order derivative
operator in the direction d is represented by the following operations
in the space and wave-number domain:

∂
∂xd

⇐⇒ 2π ikd (9.146)
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where k̃ is the dimensionless wave number normalized to the Nyquist
limit Equation (8.34). One-dimensional first-order derivative operators
are not sufficient for edge detection in higher-dimensional signals be-
cause they predominantly detect edges that are perpendicular to the
direction of the operator. As shown with Eq. (9.186) in Section 9.8.1,
the gradient vector

∇g =
[

∂g
∂x1

, ∂g
∂x2

, ..., ∂g
∂xD

]T
(9.147)

is parallel to the direction in which the gray values change. Thus it is a
good low-level measure for edges. In the operator notation introduced
in Section 9.1.3, the gradient can be written as a vector operator. In 2-D
and 3-D space this is

D =
[

Dx

Dy

]
or D =

 Dx

Dy

Dz

 (9.148)

The magnitude of the gradient vector

∣∣∇g
∣∣ =

 D∑
d=1

(
∂g
∂xd

)21/2

(9.149)

is rotation-invariant and a measure for the edge strength. Because of
the rotation invariance, this measure is isotropic. The computation of
the magnitude of the gradient can be expressed in operator notation as

|D| =
 D∑

d=1
Dd · Dd

1/2

(9.150)

The principal problem with all types of edge detectors is that a
derivative operator can only be approximated on a discrete grid. This
is one of the reasons why there is such a wide variety of solutions for
edge detectors available.

General properties. With respect to object detection, the most im-
portant feature of a derivative convolution operator is that it must not
shift the object position. For a first-order derivative filter, a real transfer
function makes no sense, because extreme values should be mapped
onto zero crossings and the steepest slopes to extreme values. This
mapping implies a 90° phase shift, a purely imaginary transfer func-
tion and an antisymmetric or odd filter mask. According to the classifi-
cation of linear shift-invariant (LSI) filters established in Section 9.2.5,
first-order derivative filters are either type III or type IV filters. Thus
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the simplified equations, Eqs. (9.25) and (9.27), can be used to compute
the transfer function.

A derivative filter of any order must not show response to constant
values or an offset in a signal. This condition implies that the sum of
the coefficients must be zero and that the transfer function is zero for
a zero wave number: ∑

n
Hn = 0 ⇐⇒ Ĥ(0) = 0 (9.151)

Intuitively, we expect that any derivative operator amplifies smaller
scales more strongly than coarser scales, as the transfer function of a
first-order derivative operator goes with k. However, this condition is
too restrictive. Imagine that we first apply a smoothing operator to an
image before we apply a derivative operator. Then the resulting trans-
fer function would not increase monotonically with the wave number
but decrease for higher wave numbers. We would, however, still rec-
ognize the joint operation as a derivation because the mean gray value
is suppressed and the operator is only sensitive to spatial gray-value
changes.

Thus a more general condition is required. Here we suggest

Ĥ(k̃) = iπk̃dB̂(|k̃|) with B̂(0) = 1 and ∇B̂ = 0 (9.152)

This condition ensures that the transfer function is still zero for the
wave number zero and increases in proportion to k̃d for small wave
numbers. One can regard Eq. (9.152) as a first-order derivative filter
regularized by an isotropic smoothing filter.

For good edge detection, it is important that the response of the
operator does not depend on the direction of the edge. If this is the
case, we speak of an isotropic edge detector. The isotropy of an edge
detector can best be analyzed by its transfer function. Equation (9.152),
which we derived from the condition of nonselective derivation, gives
a general form for an isotropic first-order derivative operator.

First-order difference operators. This is the simplest of all approaches
to compute a gradient vector. For the first partial derivative in the x
direction, one of the following approximations may be used:

∂g(x)
∂xd

≈ g(x) − g(x −∆xdēd)
∆xd

backward

≈ g(x +∆xdēd) − g(x)
∆xd

forward

≈ g(x +∆xdēd) − g(x −∆xdēd)
2∆xd

symmetric

(9.153)
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where ēd is a unit vector in the direction d. These approximations
correspond to the filter masks

−Dd = [1• − 1] , +Dd = [1 − 1•] ,D2d = 1/2 [1 0 − 1] (9.154)

The subscript “•” denotes the pixel of the asymmetric masks to which
the result is written. The symmetric difference operator results in a
type III operator (odd number of coefficients, odd symmetry, see Sec-
tion 9.2.5). The forward and backward difference operators are asym-
metric and thus not of much use in signal processing. They can be
transformed in a type IV LSI operator if the result is not stored at the
position of the right or left pixel but at a position half-way between
the two pixels. This corresponds to a shift of the grid by half a pixel
distance. The transfer function for the backward difference is then

−D̂d = exp(iπk̃d/2)
[
1− exp(−iπk̃d)

]
= i sin(πk̃d/2) (9.155)

where the first term results from the shift by half a lattice point.
According to Eq. (9.25), the transfer function of the symmetric dif-

ference operator is given by

D̂2d = i sin(πk̃d) (9.156)

This operator can also be computed from

D2d = −DdBd = [1• − 1] ∗ 1/2 [1 1•] = 1/2 [1 0 − 1]

Unfortunately, these simple difference filters are only poor approx-
imations for an edge detector. From Eq. (9.156), we infer that the mag-
nitude and direction of the gradient φ′ are given by

|∇g| =
[
sin2(πk̃ cosφ) + sin2(πk̃ sinφ)

]1/2
(9.157)

and

φ′ = arctan
sin(πk̃ sinφ)
sin(πk̃ cosφ)

(9.158)

when the wave number is written in polar coordinates (k, φ). The mag-
nitude of the gradient decreases quickly from the correct value. A
Taylor expansion of Eq. (9.157) in k̃ yields for the anisotropy in the
magnitude

∆|∇g| = |∇g(φ)| − |∇g(0)| ≈ (πk̃)3

12
sin2(2φ) (9.159)

The resulting errors are shown in Fig. 9.20 as a function of the mag-
nitude of the wave number and the angle to the x axis. The decrease
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Figure 9.20: Anisotropy of the a magnitude and b error in the direction of
the gradient based on the symmetrical gradient operator

[D2x,D2y
]T
. The

parameters are the magnitude of the wave number (0 to 0.9) and the angle to
the x axis (0 to π/2). Distance of contour lines: a 0.02 (thick lines 0.1); b 2°.

is also anisotropic; it is slower in the diagonal direction. The errors
in the direction of the gradient are also large (Fig. 9.20b). While in the
direction of the axes and diagonals the error is zero, in the directions
inbetween it reaches values of about ± 10° already at k̃ = 0.5. A Taylor
expansion of Eq. (9.158) in k̃ gives in the approximation of small k̃ the
angle error

∆φ ≈ (πk̃)2

24
sin4φ (9.160)

From this equation, we see that the angle error is zero for φ = nπ/4
with n ∈ Z, that is, for φ = 0°, 45° 90°, . . . .

Regularized difference operators. It is a common practice to regu-
larize derivative operators by presmoothing the signal (see, e. g., Chap-
ter 12). Wewill investigate here towhat extent the direction and isotropy
of the gradient is improved.

One type of regularized derivative filter is the derivate of a Gaussian.
On a discrete lattice this operator is best approximated by the derivative
of a binomial mask (Section 9.5.4) as

(B,R)Dd = D2dBR (9.161)

with the transfer function

(B,R)D̂d(k̃) = i sin(πk̃d)
D∏

d=1
cosR(πk̃d/2) (9.162)
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Figure 9.21: Anisotropy of the a magnitude and b error in the direction of the
gradient based on the Sobel operator Equation (9.166). Distance of contour lines
as in Fig. 9.20.

for even R. This approach leads to nonsquare masks and results in
some improvement of the isotropy of the gradient magnitude. How-
ever, the error in the direction of the gradient is the same as for the sym-
metric difference operator because the smoothing terms in Eq. (9.162)
cancel out in Eq. (9.158).

Slightly better are Sobel-type difference operators

RSd = D2dBR−1
d

∏
d′≠d

BR
d′ (9.163)

with the transfer function

RŜd(k̃) = i tan(πk̃d/2)
D∏

d=1
cosR(πk̃d/2) (9.164)

that lead to square masks by reducing the smoothing in the direction
of the derivation. The smallest operator of this type (R = 1) has in two
dimensions the masks

1Sx = 1
2

[
1 −1
1 −1

]
, 1Sy = 1

2

[
1 1

−1 −1

]
(9.165)

The best known example of this class of filters is the Sobel operator

2Sx =DxBxB2y = 1
8

 1 0 –1
2 0 –2
1 0 –1

 , 2Sy = 1
8

 1 2 1
0 0 0
–1 –2 –1

 (9.166)
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The errors in the magnitude and direction of the gradient based on
Eq. (9.164) are given by

∆|∇g| ≈ −(πk̃)3

24
sin2(2φ) (9.167)

and

∆φ = arctan
tan(π(k̃d/2) sinφ)
tan(π(k̃d/2) cosφ)

− φ ≈ −(πk̃d)2

48
sin4φ (9.168)

and shown in Fig. 9.21. The results are remarkable in two respects.
First, the error in the direction does not depend at all on the degree
of smoothing as for the derivatives of Gaussians and is only about two
times lower than that for the simple symmetric difference operator.
Second, Fig. 9.21b shows that the anisotropy of the magnitude of the
gradient is surprisingly low as compared to the symmetric difference
filter in Fig. 9.20b. This could not be expected from the Taylor expan-
sion because the term with k̃2 is only a factor of two lower than that
for the symmetric difference operator in Eq. (9.160). Thus the extrapo-
lation of the transfer functions from small wave numbers to high wave
numbers is not valid. The example of the Sobel operator shows that
oscillating higher-order terms may cancel each other and lead to much
better results as could be expected from a Taylor expansion.

The disadvantage of all approaches discussed so far is that they give
no clear indication whether the achieved solution is good or whether
any better exists. The filter design problem can be treated in a rigor-
ously mathematical way as an optimization problem [CVA2, Chapter 6].
These techniques not only allow the design of optimal filters but they
make it easier to decide precisely which criterion creates an optimal
solution.

9.7.2 Edge detection by zero crossings

General properties. First-order derivative operators detect edges by
maxima in the magnitude of the gradient. Alternatively, edges can be
detected as zero crossings of second-order derivative operators. This
technique is attractive because only linear operators are required to
perform an isotropic detection of edges by zero crossings. In con-
trast, the magnitude of the gradient is only obtained after squaring
and adding first-order derivative operators in all directions.

For an isotropic zero-crossing detector, only all second-order par-
tial derivatives must be added up. The resulting operator is called the
Laplace operator and denoted by ∆

∆ =
D∑

d=1

∂2

∂x2
w

⇐⇒ −
D∑

d=1
4π2k2

d = −4π2 |k|2 (9.169)
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From this equation it is immediately evident that the Laplace operator
is an isotropic operator.

A second-order derivative filter detects curvature. Extremes in func-
tion values should thus coincide with extremes in curvature. Conse-
quently, a second-order derivative filter should be of even symmetry
similar to a smoothing filter and all the properties for filters of even
symmetry discussed in Sections 9.2.5 and 9.5.1 should also apply to
second-order derivative filters. In addition, the sum of the coefficients
must be zero as for first-order derivative filters:∑

n
Hn = 0 ⇐⇒ Ĥ(0) = 0 (9.170)

Also, a second-order derivative filter should not respond to a con-
stant slope. This condition implies no further constraints as it is equiv-
alent to the conditions that the sum of the coefficients is zero and that
the filter is of even symmetry.

Laplace of Gaussian. The standard implementations for the Laplace
operator are well known and described in many textbooks (see, e. g.,
[1]). Thus, we will discuss here only the question of an optimal im-
plementation of the Laplacian operator. Because of a transfer func-
tion proportional to k̃2 (Eq. (9.169)), Laplace filters tend to enhance the
noise level in images considerably. Thus, a better edge detector may
be found by first smoothing the image and then applying the Laplacian
filter. This leads to a kind of regularized edge detection and to two
classes of filters known as Laplace of Gaussian or LoG filters and dif-
ference of Gaussian or DoG filters. While these filters reduce the noise
level it is not clear to what extent they improve or even optimize the
isotropy of the Laplace operator.

In the discrete case, a LoG filter is approximated by first smoothing
the image with a binomial mask and then applying the discrete Laplace
filter. Thus we have the operator combination LBR with the transfer
function

ˆLoG = L̂B̂R = −4
D∑

d=1
sin2(πk̃d/2)

D∏
d=1

cosR(πk̃d/2) (9.171)

For R = 0 this is the transfer function of the Laplace operator. In this
equation, we used the standard implementation of the Laplace opera-
tor, which has in two dimensions the mask

L =
 0 1 0

1 –4 1
0 1 0

 (9.172)
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and the transfer function

L̂ = sin2(πk̃1/2) + sin2(πk̃2/2) (9.173)

For small wave numbers, the 2-D transfer function in Eq. (9.171) can
be approximated in polar coordinates by

ˆLoG(k̃, φ) ≈ −(πk̃)2 +
[
1
16

+ R
8

+ 1
48

cos(4φ)
]

(πk̃)4 (9.174)

Difference of Gaussian filters. The multidimensional difference of
Gaussian type of Laplace filter, or DoG filter, is defined as

DoG = 4(B2 − I)BR = 4(BR+2 −BR) (9.175)

and has the transfer function

ˆDoG(k̃) = 4
D∏

d=1
cosR+2(πk̃d/2) − 4

D∏
d=1

cosR(πk̃d/2) (9.176)

For small wave numbers it can be approximated by

ˆDoG(k̃, φ) ≈ −(πk̃)2 +
[
3
32

+ R
8

− 1
96

cos(4φ)
]

(πk̃)4 (9.177)

The transfer function of the LoG and DoG filters are quite similar.
Both have a significant anisotropic term. Increased smoothing (larger
R) does not help to decrease the anisotropy. It is obvious that the DoG
filter is significantly more isotropic but neither of them is really optimal
with respect to a minimal anisotropy. That second-order derivative
operators with better isotropy are possible is immediately evident by
comparing Eqs. (9.174) and (9.177). The anisotropic cos4φ terms have
different signs. Thus they can easily be compensated by a mix of LoG
and DoG operators of the form 2/3DoG + 1/3LoG, which corresponds
to the operator (8/3B2 − 8/3I − 1/3L)Bp.

This ad hoc solution is certainly not the best. Examples of optimized
second-order differential operators are discussed in CVA2 [Chapter 6].

9.7.3 Edges in multichannel images

Inmultichannel images, it is significantlymore difficult to analyze edges
than to perform averaging, which simply can be performed channel by
channel. The problem is that the different channels may contain con-
flicting information about edges. In channel A, the gradient can point
to a different direction than in channel B. Thus a simple addition of the
gradients in all channels

P∑
p=1

∇gp(x) (9.178)
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is of no use. It may happen that the sum of the gradients over all
channels is zero although the gradients themselves are not zero. Then
we would be unable to distinguish this case from constant areas in all
channels.

A more suitable measure of the total edge strength is the sum of the
squared magnitudes of gradients in all channels

P∑
p=1

|∇gp|2 =
P∑

p=1

D∑
d=1

(
∂gp

∂xd

)2

(9.179)

While this expression gives a useful estimate of the overall edge strength,
it still does not solve the problem of conflicting edge directions. An
analysis of how edges are distributed in a D-dimensional multichannel
image with P channels is possible with the following symmetric D×D
matrix S (where D is the dimension of the image):

S = JTJ (9.180)

where J is known as the Jacobian matrix. This P×D matrix is defined
as

J =



∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xD

∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xD

...
. . .

...

∂gP
∂x1

∂gP
∂x2

· · · ∂gP
∂xD


(9.181)

Thus the elements of the matrix S are

Skl =
P∑

p=1

∂gp

∂xk

∂gp

∂xl
(9.182)

Because S is a symmetric matrix, we can diagonalize it by a suitable
coordinate transform. Then, the diagonals contain terms of the form

P∑
p=1

(
∂gp

∂x′
d

)2

(9.183)

In the case of an ideal edge, only one of the diagonal terms of the
matrix will be nonzero. This is the direction perpendicular to the dis-
continuity. In all other directions it will be zero. Thus, S is a matrix of
rank one in this case.
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By contrast, if the edges in the different channels point randomly in
all directions, all diagonal terms will be nonzero and equal. In this way,
it is possible to distinguish random changes by noise from coherent
edges. The trace of the matrix S

trace(S) =
D∑

d=1
Sdd =

D∑
d=1

P∑
p=1

(
∂gp

∂xd

)2

(9.184)

gives a measure of the edge strength that we have already defined in
Eq. (9.179). It is independent of the orientation of the edge because the
trace of a symmetric matrix is invariant to a rotation of the coordinate
system.

In conclusion, the matrix S is the key for edge detection in multi-
channel signals. Note that an arbitrary number of channels can be pro-
cessed and that the number of computations increases only linearly
with the number of channels. The analysis is, however, of order O(D2)
in the dimension of the signal.

9.8 Tensor representation of simple neighborhoods

9.8.1 Simple neighborhoods

The mathematical description of a local neighborhood by continuous
functions has two significant advantages. First, it is much easier to for-
mulate the concepts and to study their properties analytically. As long
as the corresponding discrete image satisfies the sampling theorem, all
the results derived from continuous functions remain valid because the
sampled image is an exact representation of the continuous gray-value
function. Second, we can now distinguish between errors inherent to
the chosen approach and those that are only introduced by the dis-
cretization.

A simple local neighborhood is characterized by the fact that the
gray value only changes in one direction. In all other directions it is
constant. Because the gray values are constant along lines and form
oriented structures this property of a neighborhood is denoted as local
orientation [13] or linear symmetry [14]. Only more recently, the term
simple neighborhood has been coined by Granlund and Knutsson [9].

If we orient the coordinate system along the principal directions,
the gray values become a 1-D function of only one coordinate. Gener-
ally, we will denote the direction of local orientation with a unit vector
r̄ perpendicular to the lines of constant gray values. Then, a simple
neighborhood is mathematically represented by

g(x) = g(xT r̄) (9.185)
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Figure 9.22: Illustration of a linear symmetric or simple neighborhood. The
gray values depend only on a coordinate given by a unit vector r̄.

Equation Eq. (9.185) is also valid for image data with more than two
dimensions. The projection of the vectorx onto the unit vector r̄makes
the gray values depend only on a scalar quantity, the coordinate in the
direction of r̄ (Fig. 9.22). The essential relation now is that the gradient
is parallel to the direction r̄ into which the gray values change:

∇g(xT r̄) =


∂g(xT r̄)

∂x1

. . .

∂g(xT r̄)
∂xW

 =


r̄1g′(xT r̄)

. . .

r̄Dg′(xT r̄)

 = r̄g′(xT r̄) (9.186)

The term g′ denotes the derivative of g with respect to the scalar vari-
able xT r̄. In the hyperplane perpendicular to the gradient, the values
remain locally constant.

A simple neighborhood has a special form in Fourier space. Let us
first assume that the whole image is described by Eq. (9.185), that is, r̄
does not depend on the position. Then, from the very fact that a simple
neighborhood is constant in all directions except r̄, we infer that the
Fourier transform must be confined to a line. The direction of the line
is given by r̄:

g(xT r̄) ⇐⇒ ĝ(k)δ(k− r̄(kT r̄)) (9.187)

where k denotes the coordinate in the Fourier domain in the direction
of r̄. The argument in the δ function is only zero when k is parallel to
r̄.

In a second step, a window function w(x − x0) is used to restrict
the area to a local neighborhood around a point x0. Thus g(xT r̄) in
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Eq. (9.187) is multiplied by the window functionw(x−x0) in the spatial
domain. The size and shape of the neighborhood is determined by the
window function. Multiplication in the space domain corresponds to a
convolution in the Fourier domain (Section 8.6.3). Thus,

w(x −x0)g(xT r̄) ⇐⇒ ŵ(k) ∗ ĝ(k)δ(k− r̄(kT r̄)) (9.188)

where ŵ(k) is the Fourier transform of the window function.
The limitation to a local neighborhood thus blurs the line in Fourier

space to a “sausage-like” shape. Because of the reciprocity of scales
between the two domains, its thickness is inversely proportional to
the size of the window. From this elementary relation, we can already
conclude qualitatively that the accuracy of the orientation estimate is
directly related to the ratio of the window size to the wavelength of the
smallest structures in the window.

9.8.2 Direction versus orientation

For an appropriate representation of simple neighborhoods, it is first
important to distinguish orientation from direction. The direction is
defined over the full angle range of 2π (360°). Two vectors that point
in opposite directions, that is, differ by 180°, are different. The gradient
vector, for example, always points into the direction into which the gray
values are increasing. With respect to a bright object on a dark back-
ground, this means that the gradient at the edge is pointing towards the
object. In contrast, to describe the direction of a local neighborhood,
an angle range of 360° makes no sense. We cannot distinguish between
patterns that are rotated by 180°. If a pattern is rotated by 180°, it still
has the same direction. Thus, the direction of a simple neighborhood
is different from the direction of a gradient. While for the edge of an
object gradients pointing in opposite directions are conflicting and in-
consistent, for the direction of a simple neighborhood this is consistent
information.

In order to distinguish the two types of “directions,” we will speak
of orientation in all cases where an angle range of only 180° is required.
Orientation is still, of course, a cyclic quantity. Increasing the orienta-
tion beyond 180° flips it back to 0°. Therefore, an appropriate repre-
sentation of orientation requires an angle doubling.

In his pioneering paper on a general picture processing operator
Granlund [13] introduced a vectorial representation of the local orien-
tation. The magnitude of the orientation vector is set to the certainty
with which the orientation could be determined and its direction to the
doubled orientation angle. This vector representation of orientation
has two significant advantages.

First, it is more suitable for further processing than a separate repre-
sentation of the orientation by two scalar quantities. Take, for example,
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averaging. Vectors are summed up by chaining them together, and the
resulting sum vector is the vector from the starting point of the first
vector to the end point of the last vector. The weight of an individual
vector in the vector sum is given by its length. In this way, the certainty
of the orientation measurement is adequately taken into account.

9.8.3 First-order tensor representation; structure tensor

The vectorial representation discussed in Section 9.8.2 is incomplete.
Although it is suitable for representing the orientation of simple neigh-
borhoods, it cannot distinguish between neighborhoods with constant
values and isotropic orientation distribution (e. g., uncorrelated noise).
Both cases result in an orientation vector with zero magnitude.

Therefore, it is obvious that an adequate representation of gray-
value changes in a local neighborhood must be more complex. Such a
representation should be able to determine a unique orientation and to
distinguish constant neighborhoods from neighborhoods without local
orientation.

A suitable representation can be introduced by a optimization strat-
egy to determine the orientation of a simple neighborhood in a slightly
more general way as performed by Kass and Witkin [15]. The optimum
orientation is defined as the orientation that shows the least deviations
from the directions of the gradient. A suitable measure for the devia-
tion must treat gradients pointing in opposite directions equally. The
squared scalar product between the gradient vector and the unit vector
representing the local orientation r̄ meets this criterion

(∇gT r̄)2 = |∇g|2 cos2 (∠(∇g, r̄)) (9.189)

This quantity is proportional to the cosine squared of the angle between
the gradient vector and the orientation vector and is thusmaximal when
∇g and r̄ are parallel or antiparallel, and zero if they are perpendicular
to each other. Therefore, the following integral is maximized in a D-
dimensional local neighborhood:∫

w(x −x′)
(
∇g(x′)T r̄

)2
dDx′ (9.190)

where the window function w determines the size and shape of the
neighborhood around a point x in which the orientation is averaged.
The maximization problem must be solved for each point x. Equation
Eq. (9.190) can be rewritten in the following way:

r̄TJr̄ → max (9.191)

with

J =
∞∫

−∞
w(x −x′)

(
∇g(x′)∇g(x′)T

)
dDx′
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The components of this symmetric D×D tensor are

Jpq(x) =
∞∫

−∞
w(x −x′)

(
∂g(x′)

∂x′
p

∂g(x′)
∂x′

q

)
dDx′ (9.192)

At this point it is easy to extend the tensor for multichannel signals.
It is only needed to sum the tensor components for all channels. The
weighting function might be different for each channel in order to con-
sider the significance and spatial resolution of a certain channel. With
all this, Eq. (9.192) extends to

Jr,s(x) =
P∑

p=1

∞∫
−∞

wp(x −x′)
(

∂gp(x′)
∂x′

r

∂gp(x′)
∂x′

s

)
dDx′ (9.193)

These equations indicate that a tensor is an adequate first-order rep-
resentation of a local neighborhood. The term first-order has a double
meaning. First, only first-order derivatives are involved. Second, only
simple neighborhoods can be described in the sense that we can analyze
in which direction(s) the gray values change. More complex structures
such as structures with multiple orientations cannot be distinguished.

The complexity of Eqs. (9.191) and (9.192) somewhat obscures their
simple meaning. The tensor is symmetric. By a rotation of the coordi-
nate system, it can be brought into a diagonal form. Then, Eq. (9.191)
reduces to

J = [
r̄ ′
1, r̄ ′

2, . . . , r̄ ′
D
]


J1′1′ 0 . . . 0
0 J2′2′ . . . 0
...

...
. . .

...
0 . . . . . . JD′D′




r̄ ′
1

r̄ ′
2

. . .
r̄ ′

D

 → max

or

J =
D∑

d′=1
Jd′d′(r̄ ′

d′)2

Without loss of generality, we assume that J1′1′ ≥ Jd′d′ ∀d′ ≠ 1.
Then, it is obvious that the unit vector r̄′ = [1 0 . . . 0]T maximizes the
foregoing expression. The maximum value is J1′1′ . In conclusion, this
approach not only yields a tensor representation for the local neighbor-
hood but also shows the way to determine the orientation. Essentially,
we have to solve an eigenvalue problem. The eigenvalues λd and eigen-
vectors kd of a D×D matrix are defined by

Jkd = λdkd (9.194)
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An eigenvector kd of J is thus a vector that is not turned in direc-
tion by multiplication with the matrix J, but is only multiplied by a
scalar factor, the eigenvalue λw . This implies that the structure tensor
becomes diagonal in a coordinate system that is spanned by the eigen-
vectors. For our further discussion it is important to keep in mind that
the eigenvalues are all real and nonnegative and form an orthogonal
basis [16, 17, 18].

9.8.4 Classification of local neighborhoods

The power of the tensor representation becomes apparent if we clas-
sify the eigenvalues of the structure tensor. The classifying criterion is
the number of eigenvalues that are zero. If an eigenvalue is zero, this
means that the gray values in the direction of the corresponding eigen-
vector do not change. The number of zero eigenvalues is also closely
related to the rank of a matrix. The rank of a matrix is defined as
the dimension of the subspace for which Jk ≠ 0. The space for which
Jk = 0 is denoted as the null space. The dimension of the null space
is the dimension of the matrix minus the rank of the matrix and equal
to the number of zero eigenvalues. We will perform an analysis of the
eigenvalues for two and three dimensions. In two dimensions, we can
distinguish the following cases:

λ1 = λ2 = 0, rank 0 tensor. Both eigenvalues are zero. Themean square
magnitude of the gradient (λ1+λ2) is zero. The local neighborhood
has constant values. It belongs to an object with a homogeneous
feature;

λ1 > 0, λ2 = 0, rank 1 tensor. One eigenvalue is zero. The values do
not change in the direction of the corresponding eigenvector. The
local neighborhood is a simple neighborhood with ideal orientation.
This could either be the edge of an object or an oriented texture;

λ1 > 0, λ2 > 0, rank 2 tensor. Both eigenvalues are unequal to zero.
The gray values change in all directions as at the corner of an object
or a texture with a distributed orientation. In the special case of
λ1 = λ2, we speak of an isotropic gray-value structure as it changes
equally in all directions.

The classification of the eigenvalues in three dimensions is similar
to the 2-D case:

λ1 = λ2 = λ3 = 0, rank 0 tensor. The gray values do not change in any
direction; constant neighborhood.

λ1 > 0, λ2 = λ3 = 0, rank 1 tensor. The gray values change only in one
direction. This direction is given by the eigenvector to the nonzero
eigenvalue. The neighborhood includes a boundary between two
objects (surface) or a layered texture. In a space-time image, this
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means a constant motion of a spatially oriented pattern (“planar
wave”);

λ1 > 0, λ2 > 0, λ3 = 0, rank 2 tensor. The gray values change in two
directions and are constant in a third. The eigenvector to the zero
eigenvalue gives the direction of the constant gray values. This hap-
pens at the edge of a three-dimensional object in a volumetric im-
age, or if a pattern with distributed spatial orientation moves with
constant speed; and

λ1 > 0, λ2 > 0, λ3 > 0, rank 3 tensor. The gray values change in all
three directions as at the corner of an object or a region with iso-
tropic noise.

In practice, it will not be checked whether the eigenvalues are zero
but below a critical threshold that is determined by the noise level in
the image.

9.8.5 Computation of the structure tensor

The structure tensor (Section 9.8.3) can be computed straightforwardly
as a combination of linear convolution and nonlinear point operations.
The partial derivatives in Eq. (9.192) are approximated by discrete deriva-
tive operators. The integration weighted with the window function is
replaced by a convolution with a smoothing filter that has the shape
of the window function. If we denote the discrete partial derivative
operator with respect to the coordinate p by the operator Dp and the
(isotropic) smoothing operator by B, the local structure of a gray-value
image can be computed with the structure tensor operator

Jpq = B(Dp · Dq) (9.195)

The equation is written in the operator notation introduced in Sec-
tion 9.1.3. Pixelwise multiplication is denoted by a centered dot “·”
to distinguish it from successive application of convolution operators.
Equation (9.195) expresses in words that the Jpq component of the ten-
sor is computed by convolving the image independently with Dp and
Dq, multiplying the two images pixelwise, and smoothing the resulting
image with B. For the inertia tensor method, a similar tensor operator
can be formulated

J′
pp =

∑
q≠p

B(Dq · Dq), J′
pq = −B(Dp · Dq) (9.196)

These operators are valid in images of any dimension D ≥ 2. In a
D-dimensional image, the structure tensor has D(D+1)/2 independent
components, hence 3 in 2-D and 6 in 3-D images. These components
are best stored in a multichannel image with D(D + 1)/2 channels.
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The smoothing operations consume the largest number of opera-
tions. Therefore, a fast implementation must, in the first place, apply a
fast smoothing algorithm. A fast algorithm can be established based on
the general observation that higher-order features always show a lower
resolution than the features fromwhich they are computed. Thismeans
that the structure tensor can be stored on a coarser grid and thus in a
smaller image. It is convenient and appropriate to reduce the scale by
a factor of two by storing only every second pixel in every second row.

These procedures lead us in a natural way to multigrid data struc-
tures that are discussed in detail in Chapter 8.10. Multistep averaging
is discussed in detail in Section 9.5.5.

Storing higher-order features on coarser scales has another signif-
icant advantage. Any subsequent processing is sped up simply by the
fact that many fewer pixels have to be processed. A linear scale reduc-
tion by a factor of two results in a reduction in the number of pixels
and the number of computations by a factor of 4 in two and 8 in three
dimensions.

The accuracy of the orientation angle strongly depends on the im-
plementation of the derivative filters. It is critical to use a derivative
filter that has been optimized for a minimum error in the direction of
the gradient. Such filters are discussed in Section 9.7.1.

9.8.6 Orientation vector

With the simple convolution and point operations discussed in the pre-
vious section, we computed the components of the structure tensor. In
this section, we solve the eigenvalue problem to determine the orien-
tation vector. In two dimensions, we can readily solve the eigenvalue
problem. The orientation angle can be determined by rotating the in-
ertia tensor into the principal axes coordinate system. As shown, for
example, by Jähne [1], the orientation angle is given by

tan2φ = 2J12
J22 − J11

(9.197)

Without defining any prerequisites, we have obtained the anticipated
angle doubling for orientation as discussed in Section 9.8.2 at the be-
ginning of this chapter. Because tan2φ is gained from a quotient, we
can regard the dividend as the y and the divisor as the x component
of a vector and can form the orientation vector o, as introduced by
Granlund [13]

o =
[

J22 − J11
2J12

]
(9.198)

The argument of this vector gives the orientation angle and the magni-
tude a certainty measure for local orientation.
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The result of Eq. (9.198) is remarkable in that the computation of
the components of the orientation vector from the components of the
orientation tensor requires just one subtraction and one multiplication
by two. As these components of the orientation vector are all we need
for further processing steps, we do not need the orientation angle or the
magnitude of the vector. Thus, the solution of the eigenvalue problem
in two dimensions is trivial.

9.8.7 Coherency

The orientation vector reduces local structure to local orientation. From
three independent components of the symmetric tensor still only two
are used. When we fail to observe an orientated structure in a neighbor-
hood, we do not know whether any gray-value variations or distributed
orientations are encountered. This information is included in the not
yet used component of the tensor J11+J22, which gives themean square
magnitude of the gradient. Consequently, a well-equipped structure
operator needs to include also the third component. A suitable linear
combination is

s =
 J11 + J22

J11 − J22
2J12

 (9.199)

This structure operator contains the two components of the orientation
vector and, as an additional component, the mean square magnitude of
the gradient, which is a rotation-invariant parameter. Comparing the
latter with the magnitude of the orientation vector, a constant gray-
value area and an isotropic gray-value structure without preferred ori-
entation can be distinguished. In the first case, both squared quantities
are zero; in the second, only the magnitude of the orientation vector.
In the case of a perfectly oriented pattern, both quantities are equal.
Thus their ratio seems to be a good coherency measure cc for local
orientation

cc = (J22 − J11)2 + 4J212
(J11 + J22)2

=
(

λ1 − λ2

λ1 + λ2

)2
(9.200)

The coherency cc ranges from 0 to 1. For ideal local orientation (λ2 =
0, λ1 > 0) it is one, for an isotropic gray-value structure (λ1 = λ2 > 0) it
is zero.

9.8.8 Color coding of the two-dimensional structure tensor

A symmetric 2-D tensor has three independent pieces of information
(Eq. (9.199)), which fit well to the three degrees of freedom available to
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represent color, for example, luminance, hue, and saturation. First, the
squared magnitude of the gradient is mapped onto the intensity. Sec-
ond, the coherency measure Equation (9.200) is used as the saturation.
The angle of the orientation vector is represented as the hue.

In practice, a slight modification of this color representation is use-
ful. The squared magnitude of the gradient shows variations too large
to be displayed in the narrow dynamic range of a display screen with
only 256 luminance levels. Therefore, a suitable normalization is re-
quired. The basic idea of this normalization is to compare the squared
magnitude of the gradient with the noise level. Once the gradient is
well above the noise level it is regarded as a significant piece of infor-
mation. This train of thoughts suggests the following normalization
for the intensity I:

I = J11 + J22
(J11 + J22) + γσ 2

n
(9.201)

where σn is an estimate of the standard deviation of the noise level.
This normalization provides a rapid transition of the luminance from
one, when themagnitude of the gradient is larger than σn, to zero when
the gradient is smaller than σn. The factor γ is used to optimize the
display.

A demonstration of the structure tensor technique is given by the
heurisko image processing workspace orient.ws in /software/09.
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10.1 Introduction

Motion is a powerful feature of image sequences, revealing the dynam-
ics of scenes by relating spatial image features to temporal changes.
The task of motion analysis remains a challenging and fundamental
problem of computer vision. From sequences of 2-D images, the only
accessible motion parameter is the optical flow f , an approximation
of the 2-D motion field u, on the image sensor [1]. The motion field is
given as the projection of the 3-Dmotion of points in the scene onto the
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image sensor. The estimated optical flow field can be used as input for
a variety of subsequent processing steps including motion detection,
motion compensation, motion-based data compression, 3-D scene re-
construction, autonomous navigation, and the analysis of dynamical
processes in scientific applications.

The difficulties in motion estimation are manifold and originate in
the inherent differences between the optical flow and the real motion
field. As only the apparent motion in the sequence can be extracted,
further a priori assumptions on brightness changes, object properties,
and the relation between relative 3-D scene motion and the projec-
tion onto the 2-D image sensor are necessary for quantitative scene
analysis. Horn [2] gives an optimistic view of the possibility of 3-D
reconstruction from motion fields. He shows that the motion field
can almost always be unambiguously related to translational and ro-
tational velocities of rigid surfaces. However, the motion field itself is
often inaccessible. This can be nicely demonstrated by a simple exam-
ple illustrated in Fig. 10.1. Consider a rigid sphere with homogeneous
surface reflectance, spinning around an axis through the center of the
sphere. If the surface is not textured and the illumination stays con-
stant, the apparent optical flow field would equal zero over the entire
sphere. If a directional light source moves around the same sphere the
apparent illumination changes would be falsely attributed to motion
of the sphere surface. This rather academic problem shows that even
very simple experimental setups under perfect conditions can render
motion estimation impossible. This and other examples are given by
Horn [3]. Problems frequently encountered in real-world sequences in-
clude transparent overlay of multiple motions, occlusions, illumination
changes, nonrigid motion, stop-and-shoot motion, low signal-to-noise
(SNR) levels, aperture problem, and correspondence problem—to men-
tion only some of them. For this reason, Verri and Poggio [4] conclude
that the true motion field is hardly ever accessible and suggest that
only qualitative properties of the motion field should be computed [5].

These problems, however, are not always present and are usually
not spread over the entire image area. Thus, there exist many appli-
cations where motion analysis becomes feasible. At the same time,
they pose a constraint on optical flow computation that is often disre-
garded: Errors have to be detected and quantified! This is especially
important for quantitative scientific measurement tasks. In contrast to
the more qualitative requirements of standard computer vision appli-
cations, such as motion detection or collision avoidance, quantitative
measurements of dynamic processes require precise and dense optical
flow fields in order to reduce the propagation of errors into subse-
quent processing steps. In addition to the optical flow field, measures
of confidence have to be provided to discard erroneous data points and
quantify measurement precision.
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Figure 10.1: Physical vs visual correspondence: a a spinning sphere with fixed
illumination leads to zero optical flow; b a moving illumination source causes
an apparent optical flow field without motion of the sphere.

This chapter will focus on the algorithmic aspects of low-level mo-
tion estimation. We first discuss the principal differences between op-
tical flow-based techniques and correlation approaches (Section 10.2).
In Section 10.3 optical flow-based techniques will be detailed including
differential and tensor-based techniques. Sections 10.4 and 10.5 deal
with quadrature filter-based and correlation-based techniques, respec-
tively. In Section 10.6 we try to introduce different attempts to improve
accuracy and overcome intrinsic problems of motion estimation by an
appropriate model of the underlying motion field.

10.2 Basics: flow and correspondence

10.2.1 Optical flow

Moving patterns cause temporal variations of the image brightness.
The relationship between brightness changes and the optical flow field
f constitutes the basis for a variety of approaches, such as differen-
tial, spatiotemporal energy-based, tensor-based, and phase-based tech-
niques. Analyzing the relationship between the temporal variations
of image intensity or the spatiotemporal frequency distribution in the
Fourier domain serves as an attempt to estimate the optical flow field.
This section introduces the fundamental relation between motion and
brightness variations and its representation in image sequences and
Fourier domain. All optical flow-based, as well as quadrature filter-
based techniques rely inherently on the coherence of motion. There-
fore, a basic prerequisite relating the scale of patterns to the frame
rate of image acquisition is given by the temporal sampling theorem,
detailed at the end of this section.
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Brightness change constraint. A common assumption on optical
flow is that the image brightness g(x, t) at a point x = [x, y]T at time t
should only change because of motion. Thus, the total time derivative,

dg
dt

= ∂g
∂x

dx
dt

+ ∂g
∂y

dy
dt

+ ∂g
∂t

(10.1)

needs to equal zero. With the definitions f1 = dx/dt and f2 = dy/dt,
this directly yields the well-knownmotion constraint equation or bright-
ness change constraint equation, BCCE [6]:

(∇g)Tf + gt = 0 (10.2)

where f = [
f1, f2

]T is the optical flow, ∇g defines the spatial gradient,
and gt denotes the partial time derivative ∂g/∂t.

This relation poses a single local constraint on the optical flow at a
certain point in the image. It is, however, ill-posed as Eq. (10.2) consti-
tutes only one equation of two unknowns. This problem is commonly
referred to as the aperture problem of motion estimation, illustrated in
Fig. 10.2a. All vectors along the constraint line defined by Eq. (10.2) are
likely to be the real optical flow f . Without further assumptions only
the flow f⊥,

f⊥(x, t) = − gt(x, t)
‖∇g(x, t)‖ n, n = ∇g(x, t)

‖∇g(x, t)‖ (10.3)

perpendicular to the constraint line can be estimated. This vector is
referred to as normal flow as it points normal to lines of constant image
brightness, parallel to the spatial gradient.

Although Eq. (10.2) is formulated for a single point in the image,
any discrete realization of the spatial and temporal derivatives requires
some neighborhood of the image point to be considered. From this fact,
the question arises, should the search for f be extended to a neighbor-
hood of finite size instead of focusing on a single point? If the spatial
gradient changes within this region, additional constraints can be used
to find the 2-D optical flow f . This is the common representation of the
aperture problem as illustrated in Fig. 10.2b and c. If the spatial struc-
ture within an aperture of finite size shows directional variations, the
optical flow f can be estimated unambiguously (Fig. 10.2b). In this case
the constraint lines of several points within the neighborhood have a
joint intersection. If, on the other hand, all gradient vectors within the
aperture are pointing into the same direction, all constraint lines fall
together and the aperture problem persists (Fig. 10.2c). A variety of
approaches have been proposed that directly use Eq. (10.2) by trying to
minimize an objective function pooling constraints over a small finite
area. They can be subdivided into differential techniques, using both
local and global constraints (Section 10.3).
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Figure 10.2: Illustration of the aperture problem: a constraint line defined by
Eq. (10.2). The normal optical flow vector f⊥ is pointing perpendicular to the
line and parallel to the local gradient ∇g(x, t); b no aperture problem for local
neighborhoods with spatially distributed structures (moving corner); c within a
local neighborhood all gradients are parallel (moving edge). The optical flow
cannot be determined unambiguously.

In order to overcome the aperture problem, the size of the region of
interest has to be enlarged, as with the growing size of the local neigh-
borhood the chances for distributed spatial structure increase. At the
same time it becomes more likely that the region extends over motion
boundaries. These two competing obstacles of optical flow computa-
tion are referred to as the generalized aperture problem [7]. Recent
approaches to overcome this problem use robust statistics to avoid av-
eraging independent optical flow fields [8] (Section 10.6.2).

Optical flow in spatiotemporal images. In the previous section we
derived the brightness change constraint Equation (10.2), relating tem-
poral and spatial derivatives of the image brightness to the optical flow.
Another basic relation can be found if we do not restrict the analysis
to two consecutive images but rather assume the brightness pattern
g(x, t) to be extended in both space and time, forming a 3-D spatiotem-
poral image. The displacement of brightness patterns within consec-
utive images of a sequence yields inclined structures with respect to
the temporal axis of spatiotemporal images. Figure 10.3 shows exam-
ples of spatiotemporal images for synthetic test patterns moving with
constant velocity.

Let r = [r1, r2, r3]T = a
[
δx, δy, δt

]T be the vector pointing into the
direction of constant brightness within the 3-D xt-domain. With δx
and δy we denote infinitesimal shifts of the brightness pattern within
the infinitesimal time step δt . The (arbitrary) scaling factor a will be
set to 1 in the remainder of this chapter, as only the fractions, r1/r3
and r2/r3 are relating r to the optical flow f . The relation between the
orientation angles, the spatiotemporal vector r, and the optical flow
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a b

Figure 10.3: Illustration of the spatiotemporal brightness distribution ofmoving
patterns: a moving sinusoidal plaid pattern (no aperture problem); b moving
planar wave pattern (aperture problem). The upper right portions of the 3-D xt-
cubes have been cut off, revealing the internal structure of the spatiotemporal
images.

can be derived from Fig. 10.3a to be

f =
[

r1
r3

, r2
r3

]T
= − [

tanφx, tanφy
]T (10.4)

where φx and φy denote the angles between the t-axis and the projec-
tion of the vector r onto the xt- and yt-plane, respectively. Thus, op-
tical flow computation reduces to an orientation analysis in spatiotem-
poral images, that is, an estimate of the 3-D vector r.

The direction r of constant brightness at a certain point within a
spatiotemporal image is pointing perpendicular to the spatiotemporal
gradient vector ∇xtg = [

gx, gy, gt
]T . Using the relation Eq. (10.4), the

brightness change constraint Eq. (10.2) can be formulated as:

[
gx, gy, gt

] f1
f2
1

 = r−1
3 (∇xtg)Tr = 0 (10.5)

As soon as an aperture persists within a local spatial neighborhood
the direction r of smallest brightness changes is no longer unambigu-
ous and the local spatiotemporal neighborhood consists of layered
structures instead of lines. This can be observed in Fig. 10.3b, which
shows the spatiotemporal structure of a moving planar wave pattern.
Without further constraints only the normal flow f⊥ can be computed.
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It is important to note that Eqs. (10.2) and (10.5) are mathematically
equivalent and no constraint is added by extending the formulation of
the brightness conservation into 3-D space.

Motion constraint in Fourier domain. The concept of image sequences
as spatiotemporal images allows one to analyze motion in the corre-
sponding spatiotemporal frequency domain (Fourier domain).

Let g(x, t) be an image sequence of any pattern moving with con-
stant velocity, causing the optical flow f at any point in the image plane.
The resulting spatiotemporal structure can be described by

g(x, t) = g(x − f t) (10.6)

The spatiotemporal Fourier transform ĝ(k, ω) of Eq. (10.6) is given by
[9]

ĝ(k, ω) = ĝ(k)δ(kTf − ω) (10.7)

where ĝ(k) is the spatial Fourier transform of the pattern, and δ(·)
denotes Dirac’s delta distribution. Equation (10.7) states that the 3-D
Fourier spectrum of a pattern moving with constant velocity condenses
to a plane in Fourier space. The 2-D Fourier spectrum of the pattern is
being projected parallel to the temporal frequency ω onto the plane.
Figure 10.4a shows the spatiotemporal image of a 1-D random pattern
movingwith 1pixel/frame into positivex-direction. The corresponding
Fourier (power) spectrum is shown in Fig. 10.4b.

The equation of the plane in Fourier domain is given by the argument
of the delta distribution in Eq. (10.7):

ω(k,f ) = kTf (10.8)

The normal vector of the plane is pointing parallel to the 3-D vector[
f1, f2,1

]T . The plane constraint relation Equation (10.8) is an equiv-
alent formulation of the brightness change constraint equation, BCCE
Eq. (10.2). It is the basis for all spatiotemporal energy-based techniques
(Section 10.4) that attempt to fit a plane to the Fourier spectrum of an
image sequence. From the inclination of the plane the optical flow can
be estimated. Taking the derivatives of ω(k,f ) Eq. (10.8) with respect
to kx and ky yields both components of the optical flow:

∇kω(k,f ) = f (10.9)

The Fourier transform does not necessarily have to be applied to
the whole image. For local estimates, multiplication with an appropri-
ate window function prior to transformation restricts the spectrum to
a local neighborhood (Fig. 10.4c). It is, however, not possible to per-
form a Fourier transformation for a single pixel. The smaller the win-
dow, the more blurred the spectrum becomes [10] (compare Fig. 10.4b
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Figure 10.4: Translating 1-D random pattern moving at 1pixel/frame: a 2-
D xt-image (256×256); b power spectrum of the xt-image, with kx and ω
ranging from −π to π . The star-shaped patterns are due to the finite size of
the image; c windowed 2-D xt-image; d power spectrum of the windowed xt-
image.

with Fig. 10.4d). With the spatiotemporal window function w(x, t), the
resulting Fourier spectrum is blurred by the Fourier transform of w,
according to

;g · w(k, ω) = ŵ(k, ω) ∗ [ĝ(k)δ(kf − ω)] (10.10)

where ŵ(k, ω) denotes the Fourier transform of the window function
w(x, t), and ∗ defines the convolution

a(k, ω) ∗ b(k, ω) =
∞∫

−∞
a(k− k′, ω − ω′)b(k′, ω′)dk′dω′ (10.11)

Without additional windowing, w(x, t) is given by the size of the im-
age and the number of frames, that is, a box function with the size of
the spatiotemporal image. Its Fourier transform corresponds to a 2-
D sinc function, which can be observed in the star-shaped patterns of
Fig. 10.4b.

Hence, the Fourier domain formulation Eq. (10.8) intrinsically ex-
tends the motion constraint to a local neighborhood of a pixel. In case
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λ

Figure 10.5: Illustration of the temporal sampling theorem for a sinusoidal
pattern of wavelength λ. Without restrictions on the magnitude of the displace-
ment between two consecutive frames, both displacements indicated by arrows
and all multiples of λ are equally likely to be the real displacement.

of an aperture problem, the moving pattern shows spatial orientation
within the local neighborhood. This causes the 3-D Fourier spectrum to
reduce to a line instead of a plane. From the line, only one inclination
angle can be extracted, corresponding to the normal optical flow.

Temporal sampling theorem. In all cases in which spatial and tempo-
ral derivatives are directly related, it is inherently assumed that the shift
between two consecutive frames is small compared to the scale of the
pattern. In other words: the time derivative has to be unambiguously
related to the moving brightness pattern within a small spatiotemporal
neighborhood. This corresponds to the fact that derivatives are always
realized by finite differences in image sequence processing although
they are defined as infinitesimal quantities. For overly large displace-
ments, no coherent structures can be detected in the spatiotemporal
image. How fast are patterns of a certain size allowed to move? The
answer is given by the temporal sampling theorem.

Consider a moving sinusoidal pattern of wavelength λ (Fig. 10.5). If
no restrictions on the magnitude of shifts within consecutive frames
apply, the real shift cannot be unambiguously determined. It is further
undetermined up to multiples of the wavelength λ. The displacement
stays unambiguous if it can be restricted to less than half the wave-
length λ. In this case the correct optical flow can be estimated by the
minimal motion, indicated by the solid arrow in Fig. 10.5.

From the spatial sampling theoremwe know that any periodic signal
has to be sampled at least twice per wavelength (Section 8.4.2). For
temporal periodic signals, the wavelength corresponds to the cycle T
with T = 2π/ω. Using Eq. (10.8) the temporal sampling theorem is
given by

∆t < T
2

= π
ω

= π
kTf

(10.12)

where ∆t denotes the minimum frame rate necessary to estimate the
optical flow f of a periodic signal with wave number k. The smaller the
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scale of a pattern, themore slowly it is allowed tomove if the frame rate
cannot be increased. As all patterns can be decomposed into periodic
signals, Eq. (10.12) applies for any moving object. It is important to
note that it is not the size of the object, but rather the smallest wave
number contained in the Fourier spectrum of the object that is the
limiting factor. A large disk-shaped object can suffer from temporal
aliasing right at its edge, where high wave numbers are located.

If the temporal sampling theorem is violated by too large displace-
ments, temporal aliasing appears. In spatiotemporal images it shows
up as patterns with false inclinations or as distributed structures with-
out any relation at all. A prominent example of temporal aliasing is one
in which the wheels of horse-drawn carriages in movies seem to spin
around in the wrong direction.

Performing a low-pass filtering to remove all small scale spatial fre-
quencies beyond the critical limit is the basic idea of multiscale optical
flow computation techniques [CVA2, Chapter 14]. Starting from coarse
patterns, large displacements can be computed, which can be iteratively
refined from smaller scales. Such an approach, however, assumes that
patterns at all scales are moving with the same velocity. This is not
true for physical processes showing dispersion, such as water surface
waves.

10.2.2 Physical and visual correspondence

From the aperture problem we learned that only normal optical flow
can be computed in the case of linear symmetry of the brightness dis-
tribution within a local neighborhood. Translations parallel to lines of
constant gray values do not contribute to brightness variations and are
thus not detectable. The temporal sampling theorem states that large
displacements cannot be estimated from small-scale patterns. Both
problems of motion estimation can be considered as special cases of
a more general problem, commonly referred to as the correspondence
problem. The motion of patterns does not always allow for relating cor-
responding features in consecutive frames in an unambiguous manner.
The physical correspondence of features can remain undetectable due
to an aperture problem, missing texture (recall the example of the spin-
ning sphere in Fig. 10.1), or overly large displacements. Conversely, the
apparent motion can lead to false correspondence. Variation in scene
intensity may not be due to motion but instead may be caused by vari-
ations in illumination.

If local constraints are violated, correspondence-based techniques
try to estimate a best match of features within consecutive frames
(Chapter 10.5). Depending on the kind of features under considera-
tion, these techniques can be classified into correlation methods and
token tracking techniques [11]. Correlation techniques are computa-
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tionally costly and therefore restricted to short-range displacements.
Token tracking methods extract features, such as corners, straight line
segments, or blobs [12] and track them over time. The search can be
extended to the entire image area, which enables estimates of long-
range displacements. All correspondence-based techniques consider
only two single images. They do not use any information about the
continuous temporal domain.

10.2.3 Flow versus correspondence

There has been much discussion of the pros and cons of optical flow-
based techniques in contrast to correspondence-based techniques. We
do not want to contribute to this dispute but rather recall whichmethod
seems to be best suited under certain circumstances.

In order to solve the aperture problem a variety of optical flow-based
approaches have been proposed that try to minimize an objective func-
tion pooling constraints over a small finite area. An excellent overview
of the current state of the art is given by Barron et al. [13]. They
conclude that differential techniques, such as the local weighted least
squares method proposed by Lucas and Kanade [14] (Section 10.3.1),
perform best in terms of efficiency and accuracy. Phase-based meth-
ods [15] (Section 10.4.3) show slightly better accuracy but are less ef-
ficient in implementation and lack a single useful confidence measure.
Bainbridge-Smith and Lane [16] come to the same conclusion in their
comparison of the performance of differential methods. Performing
analytical studies of various motion estimation techniques, Jähne [17]
and [9] showed that the 3-D structure tensor technique (Section 10.3.2)
yields the best results with respect to systematic errors and noise sen-
sitivity. This could be verified by Jähne et al. [18], in their analysis of
a calibrated image sequence with ground truth data provided by Otte
and Nagel [19].

On the other hand, correspondence-based techniques (Section 10.5)
are less sensitive to illumination changes. They are also capable of es-
timating long-range displacements of distinct features that violate the
temporal sampling theorem. In this case any optical flow-based tech-
nique will fail. However, correlation-based approaches are extremely
sensitive to periodic structures. With nearly periodic inputs (such as
textures or bandpass filtered signals) they tend to find multiple local
minima [13]. Comparative studies show that correlation-based tech-
niques produce unpredictable output for straight edges (aperture prob-
lem), while optical flow-based techniques correctly estimate normal
flow. Correlation techniques also perform less effectively in estimat-
ing subpixel displacements than do optical flow-based techniques [13,
20]. Especially at very small displacements in the order of less than
1/10pixel/frame, optical flow-based techniques yield better results.
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Before we turn towards a detailed description of the various tech-
niques, we want to draw the conclusion that neither correlation nor
optical flow-based techniques are perfect choices in any case. If the
temporal sampling theorem can be assured to be fulfilled, optical flow-
based techniques are generally the better choice. In other cases, when
large displacements of small structures are expected, correlation-based
approaches usually perform better.

For both kind of techniques, it is important to get confidence mea-
sures in addition to the optical flow. No technique is without errors in
any case. Only if errors can be detected and quantified can the result
be reliably interpreted. It also shows that differences in precision, at-
tributable to details of the initial formulation, are in fact, a result of
different minimization procedures and a careful numerical discretiza-
tion of the used filters.

10.3 Optical flow-based motion estimation

In this section we want to focus on common optical flow-based tech-
niques. We can not detail all facets of the spectrum of existing tech-
niques, but rather try to give a concise overview of the basic principles.

10.3.1 Differential techniques

Local weighted least squares. Assuming the optical flow f to be
constant within a small neighborhoodU Lucas and Kanade [14] propose
a local weighted least squares estimate of the constraint Equation (10.2)
on individual pixels within U . Similar approaches are reported in [21,
22, 23, 24]. The estimated optical flow is given by the solution of the
following minimization problem:

f = arg min‖e‖22, ‖e‖22 =
∞∫

−∞
w(x −x′)

[
(∇g)Tf + gt

]2
dx′ (10.13)

with a weighting function w(x) selecting the size of the neighborhood.
In practical implementations the weighting is realized by a Gaussian
smoothing kernel. Additionally, w could weight each pixel according
to some kind of confidence measure, for example, the magnitude of
the gradient. In that way, a priori known errors are not propagated into
the optical flow computation.

In the initial formulation of [14], Eq. (10.13) was given by a discrete
sum of the squared residuals (∇g)Tf+gt , which have to be minimized.
The mathematically equivalent continuous least squares formulation
Eq. (10.13) replaces the weighted sum by a convolution integral [9, 17].
This formulation enables us to use linear filter theory, which allows,
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for example, optimizing the convolution kernels independently from
the minimization procedure. In this way practical implementations of
different approaches can be quantitatively compared without confus-
ing discretization errors with intrinsic errors of the algorithms.

The minimization of Eq. (10.13) is carried out by standard least
squares estimation. Both partial derivatives of ‖e‖22 with respect to
the two components f1 and f2 of the optical flow f have to equal zero
at the minimum of ‖e‖22:

∂‖e‖22
∂f1

= 2

∞∫
−∞

w(x −x′)gx
[
(∇g)Tf + gt

]
dx′ != 0 (10.14)

∂‖e‖22
∂f2

= 2

∞∫
−∞

w(x −x′)gy
[
(∇g)Tf + gt

]
dx′ != 0 (10.15)

If the optical flow f is assumed to be constant within the area of influ-
ence of w, it can be drawn out of the integral. Combining Eqs. (10.14)
and (10.15) yields the following linear equation system[ 〈

gx gx
〉 〈

gx gy
〉〈

gx gy
〉 〈

gy gy
〉 ]

︸ ︷︷ ︸
A

[
f1
f2

]
︸ ︷︷ ︸

f

= −
[ 〈

gx gt
〉〈

gy gt
〉 ]

︸ ︷︷ ︸
b

(10.16)

with the abbreviation

〈a〉 =
∞∫

−∞
w(x −x′) a dx′ (10.17)

In operator notation, the components of Eq. (10.16) are given by〈
gp gq

〉 = B(Dp · Dq), and
〈
gp gt

〉 = B(Dp · Dt) (10.18)

where B is a smoothing operator and Dp, Dq, and Dt are discrete first-
order derivative operators in the spatial directions p and q and in time
direction t, respectively. The solution of Eq. (10.16) is given by

f = A−1b (10.19)

provided the inverse of A exists. If all gradient vectors within U are
pointing into the same direction, A gets singular. Then, the brightness
distribution can be expressed locally as

g(x) = g(dTx) (10.20)
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where d = [d1, d2]T is a vector pointing perpendicular to lines of con-
stant brightness. From Eq. (10.20) the first-order partial derivatives
can be computed as gx = d1g′ and gy = d2g′, where the abbreviation
g′ = ∂g/∂(dTx) is used. The determinant

det (A) = 〈
gx gx

〉 〈
gy gy

〉− 〈
gx gy

〉2 (10.21)

equals zero and A cannot be inverted. Thus, averaging Eq. (10.2) over
a small neighborhood does not yield more information than a single
point if the aperture problem persists within the neighborhood. In this
case, only the normal flow f⊥ is computed according to Eq. (10.3).

Instead of zero determinant, singularity ofA can be identified by an-
alyzing the eigenvalues of the symmetric matrix A prior to inversion.
While Simoncelli [24] suggests using the sum of eigenvalues, Barron
et al. [13] conclude that the smallest eigenvalue constitutes a more re-
liable measure.

Jähne [9] shows that an extension of the integration in Eq. (10.13)
into the temporal domain yields a better local regularization, provided
that the optical flow is modeled constant within the spatiotemporal
neighborhood U . However, this does not change the minimization pro-
cedure and results in the same linear equation system Equation (10.16).
All that needs to be changed are the components 〈a〉

〈a〉 =
∞∫

−∞
w(x −x′, t − t′) a dx′ dt′ (10.22)

where both the integration as well as the window function w have been
extended into the temporal domain.

While the presence of an aperture problem can be identified by the
singularity of the matrix A, the initial assumption of constant optical
flow within U remains to be proved. In any case, an averaged optical
flow will be computed by the solution of Eq. (10.19). This leads to
over-smoothing of the optical flow field at motion discontinuities and
false estimation at the presence of transparent motion overlay. Such
cases lead to nonzero values of the expression

[
(∇g)Tf + gt

]
, which

is called the measurement innovation, or the residual . The residual
reflects the discrepancy between the predicted measurement (∇g)Tf
and the actual measurement gt . A residual of zero means that both are
in complete agreement. Thus, a nonconstant optical flow field can be
detected by analyzing the variance of the data σ 2, given by the squared
magnitude of the residuals [9]

σ 2 = ‖e‖22 =
〈[

(∇g)Tf + gt
]2=

(10.23)

where f is the estimated optical flow. In case of constant f within
U , the residuals in Eq. (10.23) vanish and σ 2 reduces to the variance
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caused by noise in the image. Thus, a variance significantly larger than
the noise variance is a clear indicator of a violation of the assumption
of constant optical flow. In real applications, f will never be constant
over the whole image. If it varies smoothly over the image area, it can be
considered locally constant and the local least squares estimate can be
applied. Othermodels of the spatial distribution of f (x), such as linear
(affine) motion, can be incorporated into the least squares approach as
well. This will be the subject of Section 10.6.1.

From a probabilistic point of view, the minimization of Eq. (10.13)
corresponds to a maximum likelihood estimation of the optical flow,
given Gaussian-distributed errors at individual pixels [25]. Black and
Anandan [8] show that the Gaussian assumption does not hold for mo-
tion discontinuities and transparent motions. By replacing the least
squares estimation with robust statistics they come up with an itera-
tive estimation of multiple motions (Section 10.6.2).

Second-order techniques. Instead of grouping constraints over a lo-
cal neighborhood, it has been proposed to use second-order informa-
tion to solve for both components of f [26, 27, 28]. This can be moti-
vated by extending the brightness constancy assumption to an assump-
tion on the conservation of the gradient ∇g under translation:

d(∇g)
dt

= 0 (10.24)

Evaluating Eq. (10.24) yields the following linear equation system for a
single point: [

gxx gxy

gxy gyy

]
︸ ︷︷ ︸

H

[
f1
f2

]
︸ ︷︷ ︸

f

= −
[

gtx

gty

]
︸ ︷︷ ︸

b

(10.25)

The matrix H is the Hessian of the image brightness function, con-
taining all second-order partial spatial derivatives gpq = ∂2g/∂p∂q.
The second-order spatiotemporal derivatives in b are abbreviated by
gtp = ∂2g/∂t∂p. The linear equation system Eq. (10.25) can be solved
by

f =H−1b (10.26)

if the Hessian matrix is not singular. This happens if the determinant
vanishes,

det (H) = gxxgyy − g2
xy = 0 (10.27)

The trivial solution of Eq. (10.27) is given for vanishing second-order
derivatives, gxx = gyy = gxy = 0, that is, local planar brightness distri-
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bution. Equation (10.27) also holds, if the image brightness shows lin-
ear symmetry within the local area supporting the second-order deriva-
tive operators. In this case, the brightness distribution can be ex-
pressed locally as

g(x) = g(dTx) (10.28)

where d = [d1, d2]T is a vector pointing perpendicular to lines of con-
stant brightness. From Eq. (10.28) the second-order partial derivatives
can be computed as

gxx = d2
1g′′, gyy = d2

2g′′, and gxy = d1d2g′′ (10.29)

where the abbreviation g′′ = ∂2g/∂(dTx)2 is used. With Eq. (10.29) the
condition Eq. (10.27) is satisfied and the Hessian H cannot be inverted.

Thus, second-order techniques, just as first-order techniques, do
not allow for estimating the 2-D optical flow field f in case of an aper-
ture problem within a local neighborhood. Although no local averag-
ing has been performed to obtain the solution Equation (10.25), a local
neighborhood is introduced by the region of support of the second-
order derivative operators. In order to obtain second-order differen-
tial information, first-order properties of the image area need to be
related over an increased area compared to first-order differentiation.
From first-order information the full 2-D optical flow can only be ex-
tracted if the spatial orientation changes within the region of interest.
Bainbridge-Smith and Lane [16] conclude that first-order differential
techniques, such as proposed by Lucas and Kanade [14], are in fact
generalized second-order techniques, because they implicitly require
variation of the gradient within the region of support.

The initial assumption (Eq. (10.24)) requests that first-order (affine)
motions, such as dilation, rotation or shear, are not allowed in the op-
tical flow field. This constraint is much stronger than the brightness
conservation assumption of Eq. (10.2) and is fulfilled only rarely for
real motion fields. Hence, second-order techniques generally lead to
sparser optical flow fields than those of first-order techniques [13]. If
the assumption of conserved gradient is violated, the residual error

‖e‖22 = [Hf −b]2 (10.30)

will increase beyond the noise variance σ 2 (compare to Eq. (10.23)),
which allows one to identify erroneous estimates of f .

Global constraints. Local least squares techniques minimize the
brightness change constraint Equation (10.2) over a localized aperture,
defined by the size of the spatial window function w (Eq. (10.13)).

Global constraintmethods extend the integration to the entire image
area and combine the local gradient constraint Equation (10.2) with a
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spatial coherence assumption. The resulting objective function ‖et‖22 to
be minimized consists of two terms. The first one, ‖ed‖22, contains the
local data (brightness) conservation constraint Equation (10.2) at each
pixel and a second one, ‖es‖22, expresses the spatial relation between
optical flow vectors:

‖et‖22 = ‖ed‖22 + λ2‖es‖22 =
∫
D

[
(∇g)Tf + gt

]2
dx′ + λ2‖es‖22 (10.31)

The integration is carried out over the domainD, which can be extended
to the entire image. The parameter λ controls the influence of the spa-
tial coherence term. The optical flow f is estimated by minimizing
‖et‖22,

f = arg min‖et‖22 (10.32)

The introduction of a regularizing spatial coherence constraint ‖es‖22
restricts the class of admissible solutions and makes the problem well-
posed [8]. A variety of approaches have been proposed in the literature,
dealing with the choice of an appropriate spatial constraint. In general,
it should interpolate optical flow estimates at regions suffering from
the aperture problem or without sufficient brightness variations. At
the same time spatial oversmoothing of motion boundaries should be
prevented. Both are competing requirements.

The most common formulation of ‖es‖22 has been introduced by
Horn and Schunk [6]. They propose a global smoothness constraint of
the form

‖es‖22 =
∫
D

[(
∂f1
∂x

)2
+
(

∂f1
∂y

)2
+
(

∂f2
∂x

)2
+
(

∂f2
∂y

)2]
dx′ (10.33)

Minimizing Eq. (10.32) by means of Gauss-Seidel iteration [29] yields an
iterative solution for the optical flow f (k+1) at time step k + 1 given the
flow f (k) at time k:

f (k+1) =
〈
f (k)

〉
−∇g

∇g
〈
f (k)

〉
+ gt

‖∇g‖22 + λ2
(10.34)

where
〈
f (k)

〉
denotes a local average of f (k). The initial estimate f (0)

is usually set to zero for the entire image. It is important to note that
the gradient ∇g apparently controls the influence of both terms in
Eq. (10.34). If the gradient vanishes, that is, at regions with low spatial
structure, the optical flow is interpolated from adjacent estimates. In
regions with high contrast the local brightness change constraint (nu-
merator of the right term in Eq. (10.34)) becomes dominant.
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The propagation of the flow field into regions with low contrast is
an important feature of Horn and Schunck’s smoothness constraint.
However, as no directional selectivity is included in Eq. (10.33) the re-
sulting flow field is blurred over motion discontinuities. It also has
the drawback that a localized error can have a far-reaching effect if the
surrounding gradients are small [16].

In order to reduce smoothing across edges, Nagel [26, 30, 31] sug-
gests an oriented smoothness constraint:

‖es‖22 =
∫
D

1
‖∇g‖22 + 2δ

[E1 + δE2] dx′ (10.35)

E1 =
[

∂f1
∂x

gy − ∂f1
∂y

gx

]2
+
[

∂f2
∂x

gy − ∂f2
∂y

gx

]2

E2 =
(

∂f1
∂x

)2
+
(

∂f1
∂y

)2
+
(

∂f2
∂x

)2
+
(

∂f2
∂y

)2 (10.36)

The additional parameter δ controls the relative influence of the ori-
ented smoothness term E1 compared to E2, which constitutes Horn and
Schunck’s global smoothness constraint. Again, the solution is given by
an iterative Gauss-Seidel method. As an interesting feature, the rather
complicated solution equations implicitly contain second-order deriva-
tives [13].

In a more restrictive way, Hildreth [32, 33] reduces all computations
to zero crossings of a Laplace-filtered image. Along these contour lines
C , an objective function is defined according to

‖et‖22 =
∫
C

[
(∇g)Tf + gt

]2 + λ2

[(
∂f1
∂s

)2
+
(

∂f2
∂s

)2]
ds′ (10.37)

where the first term in the integral is given by the standard data conser-
vation constraint Equation (10.31) and ∂fp/∂s denotes the directional
derivative of fp into the direction s along the contour C . In contrast to
other approaches, all integrations are carried out along contour lines
instead of by 2-D averaging. Thus, no information is smoothed across
brightness edges. However, the approach inherently assumes that all
edges belong to the same object. If contours of independently mov-
ing objects merge, the resulting optical flow field is blurred along the
contour line as well.

All approaches incorporating global constraints have in common
that they result in systems of differential equations relating spatial vari-
ations of the optical flowwithin the entire domainD. Such a system can
only be solved iteratively using numerical iteration methods, such as
Gauss-Seidel iteration or successive overrelaxation [25, 34]. Although
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Figure 10.6: Illustration of the spatiotemporal brightness distribution ofmoving
patterns. The sequence shows infrared images of the ocean surface moving
mainly in positive x-direction. The upper right portion of the 3-D xt-cube has
been cut off, revealing the internal structure of the spatiotemporal image.

efficient iterative solutions have been developed in numerical mathe-
matics, they are still slower than closed solutions. Another problem of
iterative solutions is the question of convergence, whichmay depend on
image content. Further information on global constraints can be found
in Chapter 13, where a general toolbox for variational approaches is
proposed, together with an efficient numerical iteration scheme.

10.3.2 Tensor-based techniques

In Section 10.2.1 we have shown that optical flow computation can be
formulated as orientation analysis in spatiotemporal images. A prac-
tical example of such a spatiotemporal image and the corresponding
structures is shown in Fig. 10.6. This application example has been
chosen for illustration because it demonstrates nicely how any mov-
ing gray-value structure causes inclined patterns, regardless of certain
object properties.

In order to determine local orientation Bigün and Granlund [35] pro-
posed a tensor representation of the local image brightness distribution.
Starting with a different idea, Kass and Witkin [36] came to a solution
that turned out to be equivalent to the tensor method. Searching for
a general description of local orientation in multidimensional images,
Knutsson [37, 38] concluded that local structure in an n-dimensional
domain can be represented by a symmetric n × n tensor of second-
order. In the analysis of data with a dimensionality higher than two it
turns out that using scalars and vectors is no longer always convenient
[39]. Tensors—a generalization of the vector concept—are perfectly
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suited to describe symmetries within local neighborhoods in multidi-
mensional spatial and spatiotemporal signals.

This section outlines the practical application of tensor representa-
tions to optical flow computation and its relation to other optical flow-
based techniques. We will show how a local least squares estimation
of optical flow, such as the approach of Lucas and Kanade [14], can be
improved by using total least squares estimation instead of standard
least squares. This leads directly to the structure tensor technique for
optical flow computation [40, 41, 42, 43], which constitutes themost di-
rect approach to linear symmetry detection in spatiotemporal images.
Another tensor representation, based on combinations of quadrature
filters, will be outlined in Section 10.4.2.

The structure tensor approach. The optical flow f and the direction
r of constant brightness within a spatiotemporal image are related by
f = r−1

3 [r1, r2]T (Eq. (10.4)). Within a local neighborhood U , the vector
r has to be as perpendicular as possible to the spatiotemporal gradient
∇xtg = [

gx, gy, gt
]T . Thus, the scalar product (∇xtg)T r has to vanish

at any point within U for the optimum estimate of r (Eq. (10.5)). In a
least squares sense, r can be found by minimizing

r = arg min
rT r=1

‖e‖22, ‖e‖22 =
∞∫

−∞
w(x −x′)

[
(∇xtg)Tr

]2
dx′ (10.38)

which is equivalent to Eq. (10.13). In order to avoid the trivial solution
r = 0, the constraint rTr = 1 has to be imposed on r. The information
within a local neighborhood U around the central point x = [x, y, t]T

is weighted by a window-function w(x − x′). In practical applications
the size of the local neighborhood U represents the area over which
the optical flow is averaged. Again, the spatial integration can be ex-
tended into the time domain for local regularization without changing
the results of the following minimization procedure [9].

Using the abbreviation Eq. (10.17), the objective function ‖e‖22 can
be transformed into

‖e‖22 =
〈[

(∇xtg)Tr
]2= =

〈
rT (∇xtg)(∇xtg)Tr

〉
(10.39)

Under the assumption of constant r (that is, constant f ) within U ,
Eq. (10.39) reduces to the following quadratic form:

‖e‖22 = rT
〈

(∇xtg)(∇xtg)T
〉
r = rT J r (10.40)

with the 3-D symmetric structure tensor

J =


〈
gx gx

〉 〈
gx gy

〉 〈
gx gt

〉〈
gx gy

〉 〈
gy gy

〉 〈
gy gt

〉〈
gx gt

〉 〈
gy gt

〉 〈
gt gt

〉
 (10.41)
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The components of J are given by

Jpq = 〈
gp gq

〉 =
∞∫

−∞
w(x −x′) gpgq dx′ (10.42)

where gp, p ∈ {x, y, t}, denotes the partial derivative along the coordi-
nate p. The implementation of the tensor components can be carried
out very efficiently by standard image processing operators. Identi-
fying the convolution in Eq. (10.42) with a smoothing of the product
of partial derivatives, each component of the structure tensor can be
computed as

Jpq = B (Dp · Dq) (10.43)

with the smoothing operator B and the differential operator Dp in the
direction of the coordinate p.

The minimization of Eq. (10.40) subject to the constraint rTr = 1
can be carried out by the method of Lagrange multiplier , minimizing
the combined objective function L(r, λ)

f = argminL(r, λ), L(r, λ) = rT J r + λ
(
1− rTr

)
(10.44)

The Lagrange parameter λ has to be chosen such that the partial deriva-
tives of L(r, λ) with respect to all three components of r equal zero:

∂L(r, λ)
∂ri

= 2
∑
k

Jikrk − 2λri
!= 0, i ∈ {1,2,3} (10.45)

Combining the three equations in Eq. (10.45) yields the following linear
equation system

Jr = λr (10.46)

Thus, the minimization reduces to an eigenvalue problem of the sym-
metric matrix J. Once a minimizing r is found, Eq. (10.40) reduces to

‖e‖22 = rT J r = rT λr = λ (10.47)

which shows that the minimum of Eq. (10.40) is reached if the vector r
is given by the eigenvector of the tensor J to theminimum eigenvalue λ.

Total least squares versus standard least squares. Although the
local least squares technique (Eq. (10.13)) and the structure tensor tech-
nique (Eq. (10.38)) are based on the same initial formulation, the cor-
responding solutions Equations (10.19) and (10.46) are quite different.
Practical implementations of both techniques also show that the struc-
ture tensor technique is more accurate [CVA2, Chapter 13]. Performing
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analytical studies Jähne [9] showed that the local least squares tech-
nique is biased towards lower values of f in the presence of noise,
while the structure tensor technique yields an unbiased estimate for
isotropic noise.

The reason for the differences between both techniques lies in the
numerical minimization procedure. While the local least squares tech-
nique uses standard least squares (LS) the solution of the structure
tensor technique mathematically corresponds to a total least squares
solution (TLS). A detailed comparison of both techniques with respect
to optical flow computation can be found in CVA2 [Chapter 13]. With-
out going into details we want to emphasize two important differences
between LS and TLS in terms of optical flow computation:

• Instead of only the two parameters f1 and f2, the total least squares
technique varies all three parameters of the vector r. This leads to
a robust estimate of the spatiotemporal orientation in contrast to a
fixed temporal component using standard least squares.

• Both techniques yieldmatrices with components of the form
〈
gpgq

〉
,

where gp denotes partial derivatives in x, y , and t. Comparing the
structure tensor Equation (10.41) to the least squares solution Equa-
tion (10.16) shows that the purely temporal component

〈
gtgt

〉
of

Eq. (10.41) is missing in Eq. (10.16). This component, however, al-
lows to separate isotropic noise, occlusions, and fast accelerations
from coherent motion [CVA2, Chapter 13]. Such regions violating
the model assumption of constant f within U are detected by ana-
lyzing the residual errors in the standard least squares estimation.

Eigenvalue analysis. In order to estimate optical flow from the struc-
ture tensor J we need to carry out an eigenvalue analysis of the symmet-
ric 3× 3 tensor in Eq. (10.46). The symmetry of J implies that all three
eigenvalues are real and it further implies that there is an orthonormal
basis of eigenvectors [34]. These vectors are pointing into the directions
of minimal andmaximal brightness changes, respectively, spanning the
principal-axes coordinate system of the local 3-D spatiotemporal neigh-
borhood U . In the principal-axes system, the transformed structure
tensor J′ is diagonal and contains the eigenvalues of J as diagonal ele-
ments. Four different classes of 3-D spatiotemporal structures can be
distinguished and identified by analyzing the rank of the structure ten-
sor (Table 10.1), which is given by the number of nonzero eigenvalues.
The eigenvalues of J constitute the squared partial derivatives of the
spatiotemporal brightness structure along the corresponding principal
axis (averaged over U ). Thus, rank (J) can be identified as the num-
ber of directions (principal axes) with nonzero brightness derivatives,
which is directly related to the optical flow. A detailed analysis of the
structure tensor technique and its practical application to optical flow
computation can be found in CVA2 [Chapter 13].
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Table 10.1: Classification of motion types by the rank of the structure tensor,
rank (J)

Motion type rank (J)

Constant brightness, no apparent motion 0

Spatial orientation and constant motion (aperture problem) 1

Distributed spatial structure and constant motion 2

Distributed spatiotemporal structure (no coherent motion) 3

10.3.3 Multifeature-based techniques

The basic problem of optical flow estimation is to solve the under-
constrained brightness change constrained Equation (10.2) for both
components of f . Two basic approaches to this problem have been in-
troduced in this chapter. Second-order differential techniques extend
the continuity of optical flow to the spatial gradient Equation (10.24) to
obtain two equations in two unknowns Eq. (10.25). Another approach
was to model the optical flow and to group constraints over a local
neighborhood (so far the model assumption was restricted to constant
f , which will be extended in Section 10.6). Both kinds of approaches
fail, however, if the local neighborhood is subject to spatial orientation.
In this case the matrices in the resulting algebraic equations—which
are obtained by any technique—become singular. Thus, the aperture
problem corresponds to a linear dependence of the rows in the cor-
responding solution matrix, that is, to linearly dependent constraint
equations.

Multifeature (or multiconstraint) techniques try to use two or more
features to obtain overconstrained equation systems at the same lo-
cation. These features have to be linearly independent in order to
solve for both components of f . Otherwise the aperture problem re-
mains, leading to singularities in the overconstrained system of equa-
tions. Multiple features can be obtained by using multiple light sources
and/or multispectral cameras; visualizing independent physical prop-
erties of the same object; and using results of (nonlinear) functions of
the image brightness.

Of course, all features have to move with the same velocity. Oth-
erwise the estimated optical flow exhibits the motion of the combined
feature vector rather than the real object motion. This prerequisite can
be violated for features showing different physical properties that are
subject to dispersion.

Within the scope of this book, we can give only a concise overview of
the principal possibilities of multifeature-based techniques, illustrated
by two examples, which relate to the previous results of Section 10.3.
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Augmented second-order solution. The second-order approach of
Tretiak and Pastor [27] and Uras et al. [28] can be interpreted as a two-
feature method, applying the optical flow constraint to the horizontal
and vertical spatial derivative Equation (10.24).

Equation (10.25) can be extended by incorporating the first-order
BCCE Eq. (10.2) to form an overdetermined system of equations, gx gy

gxx gxy

gxy gyy

[
f1
f2

]
= −

 gt

gxt

gyt

 (10.48)

The relative influence of first- and second-order terms in Eq. (10.48) can
be changed by attaching weights to the corresponding equations. In a
least squares sense this entails multiplying each side of Eq. (10.48) with

W =
 gx gy

gxx gxy

gxy gyy


T  w1 0 0

0 w2 0
0 0 w2

 (10.49)

where the diagonal matrix contains the weights w1 and w2 of the first-
and second-order terms, respectively [16]. Using the fractional weight
w = w1/w2 and carrying out the matrix multiplication yields the fol-
lowing system of equations[

wg2
x + g2

xx + g2
xy wgxgy + gxxgxy + gyygxy

wgxgy + gxxgxy + gyygxy wg2
y + g2

yy + g2
xy

][
f1
f2

]

= −
[

wgygt + gxxgxt + gxygyt

wgxgt + gxygxt + gyygyt

]
(10.50)

This approach is referred to as augmented second-order technique by
Bainbridge-Smith and Lane [16]. They demonstrate that the first-order
weighted least squares approach of Lucas and Kanade [14] (Eq. (10.13))
becomes equivalent to Eq. (10.50) if the aperture is restricted to a size
where the brightness distribution can be adequately described by a
second-order Taylor series. For larger apertures, the effect of higher-
order derivatives leads to a more robust performance of the first-order
local weighted least squares technique.

Multifeature structure tensor technique. The effect of linearly de-
pendent constraint equations on the solubility of the corresponding
algebraic equations can be demonstrated by a simple example using
the structure tensor technique.
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Let G(x) = [g(x), h(x)]T be a vector-valued image (e. g., color im-
age) that contains only two components with 1-D horizontal and verti-
cal brightness changes

G(x) =
[

g(x)
h(x)

]
=
[

ax
by

]
(10.51)

moving with the velocity u = [u1, u2]T .
The temporal derivatives of g and h are given by the brightness

change constraint Equation (10.2), that is, gt = −(∇g)Tu = −au1 and
ht = −(∇h)Tu = −bu2, with ∇g = [a,0]T and ∇h = [0, b]T . As all
partial derivatives are constant over the entire image area, the structure
tensor Equation (10.41) of g and h computes directly to

Jg =
 a2 0 −a2u1

0 0 0
−a2u1 0 a2u2

1

 , and Jh =
 0 0 0

0 b2 −b2u2

0 −b2u2 b2u2
2


(10.52)

respectively. As one row equals zero and the two remaining rows are
linearly dependent, rank (Jg) = rank (Jh) = 1. Thus, both components
are subject to the aperture problem over the entire image area due to
the linear brightness variation (Table 10.1). Estimating the optical flow
from g and h independently yields fg = [u1,0]T and fh = [0, u2]T .
Without further assumptions, the connection between fg and fh re-
mains unknown.

The vector-valued image, G, however, allows one to extract the 2-D
optical flow in an unambiguous fashion. How can the information from
both components be adequately combined to accomplish this?

Simply adding up both component images results in a third image
with linear spatial brightness distribution

g(x) + h(x) = ax + by (10.53)

which suffers from the aperture problem as well. This can be verified
by computing the structure tensor Jg+h

Jg+h =
 a2 ab −a(au1 + bu2)

ab b2 −b(au1 + bu2)
−a(au1 + bu2) −b(au1 + bu2) (au1 + bu2)2


(10.54)

where any two rows are collinear. Hence, rank (Jg+h) = 1, that is, the
sum of both components does not yield additional information.
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By adding up the structure tensors of both components (Eq. (10.52)),
we obtain

Jg + Jh =
 a2 0 −a2u1

0 b2 −b2u2

−a2u1 −b2u2 −(a2u2
1 + b2u2

2)

 (10.55)

In this matrix the third row can be expressed by a linear combination
of the two first rows, which reduces the rank by one. As no other linear
dependency exists, rank (Jg + Jh) = 2, which allows for unambiguously
determining the 2-D optical flow f = u (Table 10.1).

This example demonstrates the importance of the order in which
linear and nonlinear operations are carried out. Adding features with
linear brightness variations retains the linear relationship. Adding up
the structure tensors of individual components (which consists of non-
linear operations), regularizes the combined structure tensor of linearly
independent (uncorrelated) features. This technique can be easily ex-
tended to multiple features.

10.4 Quadrature filter techniques

This section deals with different approaches based on the motion con-
straint in Fourier domain, detailed in Section 10.2.1. As the Fourier
spectrum of moving patterns falls onto a plane (Eq. (10.7)), quadrature
filter techniques try to estimate the orientation of this plane by using
velocity-tuned filters in the Fourier domain. A variety of approaches
have been proposed that differ in both the design of frequency-selective
filters and the combination of the filter outputs. All approaches have
in common that the 3-D frequency distribution is interpolated from
the response of a finite number of smoothly varying window functions,
subsampling the 3-D spectrum.

A certain wave number/frequency band can be extracted by mul-
tiplying the Fourier spectrum with an appropriate window function
ŵ(k, ω). The result of this operation, however, would be an oscillat-
ing signal with the selected wave numbers and frequencies, rather than
quantification of the “presence” of the selected frequency band. In or-
der to reduce these oscillations and omit zero crossings, we need to find
a second signal with the same amplitude but a phase shift of ±π/2 for
every wave number and frequency. At zero crossings of the bandpass
filtered signal, the phase-shifted signal shows extremes. A filter that
performs such a phase shift is known as the Hilbert filter . It has an
imaginary transfer function with odd symmetry, while the bandpass
filter has a real-valued transfer function with even symmetry.

A frequency selective filter and its Hilbert transform is called a
quadrature filter (Section 8.8.3). The output q of the quadrature fil-
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ter G is a complex valued number,

q = G ∗ g = q+ − iq− (10.56)

where g denotes the spatiotemporal image, q+ the bandpass filtered
signal and q− its Hilbert transform, with the indices ‘+’ and ‘-’ refer-
ring to the even and odd symmetry of the corresponding filters. The
magnitude

‖q‖ = q2
+ + q2

− (10.57)

minimizes the sensitivity to phase changes in the signal and provides
an estimate of the spectral density or energy of the corresponding
periodic image structure. For this reason, quadrature filter-based ap-
proaches are commonly referred to as spatiotemporal energy-based ap-
proaches in the literature. For the simple case of a sinusoidal signal
a sin(kTx + ωt) (corresponding to a delta peak in the Fourier spec-
trum), the magnitude of q will be completely phase invariant:

q = ŵ(k, ω)a sin(kTx + ωt) − i ŵ(k, ω)a cos(kTx + ωt) (10.58)

‖q‖ = ŵ2(k, ω)a2
[
sin2(kTx + ωt) + cos2(kTx + ωt)

]
= ŵ2(k, ω)a2

The most common quadrature filter pair is the Gabor filter . It se-
lects a certain spatiotemporal frequency regionwith a Gaussian window
function centered at (k0, ω0) (Fig. 8.13, Section 8.8.3). The correspond-
ing complex filter mask is given by

G(x, t) = exp [i(k0x + ω0t)]exp
[
−
(

x2

2σ 2
x

+ y2

2σ 2
y

+ t2

2σ 2
t

)]
(10.59)

More detailed information about the basic concept of quadrature filters
can be found in [9, 39]. In the following sections we will outline how
these filters can be used for optical flow estimation.

10.4.1 Spatiotemporal energy models

A quadrature filter technique for the computation of 2-D optical flow
was developed by Heeger [44, 45]. At each of several spatial scales,
he used 12 Gabor filters tuned to different spatial orientation at three
different temporal frequencies. The filters are arranged in three layers
with cylindrical symmetry about the temporal frequency axis (Fig. 10.7a).

The expected response of a Gabor filter (Eq. (10.59)) tuned to fre-
quency (kx, ky, ω) for translating white noise, as a function of the ve-
locity f = [f1, f2]T , is given by:

Rk,ω(f1, f2) = exp

− 4π2σ 2
xσ 2

yσ 2
t (f1kx + f2ky + ω)(

f1σxσt
)2 + (

f2σyσt
)2 + (

σxσy
)2

 (10.60)
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a
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Figure 10.7: Illustration of 3-D spatiotemporal filters in Fourier domain. Shown
are level surfaces of the power spectra of the filters. Surfaces are rendered as-
suming a fixed point light source and a Lambertian surface: a arrangement
of the twelve Gabor filters used in the approach of Heeger [44]. The ω axis
is pointing along the cylindrical axis of symmetry; b spatiotemporal frequency
spectra of the directional derivative filters used in the local least squares ap-
proach of Lucas and Kanade [14]. (Images courtesy of E. P. Simoncelli, New
York University, [24].)

In order to find the optical flow f that best fits the measured filter
energy responses, Heeger [44] performed a least squares plane fit of
the 12 different Rk,ω, using a numerical optimization procedure.

The Gabor filters used in this approach are, however, not symmetri-
cally arranged about the origin. This leads to systematic errors in veloc-
ity estimates if the wave number of the moving pattern does not match
the center response of the filters [24]. The choice of Gabor filters has
been motivated by the fact that they minimize a joint space-frequency
localization criterion and have been suggested for use in biological vi-
sion modeling [24, 46, 47].

The 2-D first-order least squares solution can be interpreted as a
spatiotemporal energy-based approach. Simoncelli [24] showed that
the components of Eq. (10.16) can be reformulated as local averages of
squares of directional filters and differences of two such squares. This
corresponds to eight different spatiotemporally oriented bandpass fil-
ters. The local average of squared bandpass filters approximates the
magnitude of quadrature filters. Level contours of the eight transfer
functions are symmetrically arranged about the origin (Fig. 10.7b), in
contrast to the Gabor filters of Heeger [44] (Fig. 10.7a). Thus, the veloc-
ity estimate computed with the first-order least squares solution will
be invariant to scaling of the spatial frequency of the input signal.

10.4.2 Tensor from quadrature filter sets

In Section 10.3.2 we pointed out that tensors are perfectly suited to de-
scribe symmetries within local neighborhoods of spatiotemporal sig-
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nals. In this section we discuss how to design optimal quadrature fil-
ters that detect both spatiotemporal orientation and wave number. We
further show how these filters can be combined to compute the struc-
ture tensor introduced in Section 10.3.2. This section is based on the
work of Knutsson [37, 38], summarized in an excellent monograph by
Granlund and Knutsson [39] that details the theory of tensors for local
structure analysis.

Spherically separable filters. In order to interpolate the spatiotem-
poral frequency distribution optimally from the frequency responses of
directionally selective filters, they are required to have particular inter-
polation properties. Directional filters having the necessary properties
were first suggested by Knutsson [37] for the 2-D case and further ex-
tended by Knutsson [38] for the 3-D case. He found that an optimal
filter should be polar separable, that is, the transfer function should
separate into a function of radius R and a function of direction D

Q̂(k) = R(k)D(k̄) with k = [k1, k2, ω]T (10.61)

Here k denotes the 3-D spatiotemporal frequency vector. The argu-
ments k = ‖k‖ and k̄ = k/k are the magnitude of k and the unit direc-
tional vector, respectively.

The radial function R(k) can be chosen arbitrarily without violating
the basic requirements. Typically, R(k) is a bandpass function with a
certain center frequency and bandwidth. Knutsson et al. [48] suggested
the following radial function:

R(k) = exp

[
−(lnk − lnk0)2

(B/2)2 ln2

]
(10.62)

which is a lognormal function, that is, a Gaussian function on a loga-
rithmic scale. The constant B is the relative bandwidth of the filter and
k0 the peak frequency.

The following directional functionD(k̄) incorporating the necessary
interpolation properties was suggested by Knutsson [38]:

D(k̄) =
{

(k̄
T
d̄i)2l if k̄

T
d̄i > 0

0 otherwise
(10.63)

where d̄i is the unit vector pointing into the direction of the filter. The
directional function has a maximum at the filter direction d̄i and varies
as cos2l(φ), where φ is the difference in angle between an arbitrary
direction k and d̄i.
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Figure 10.8: a Radial and b angular part of the 2-D polar separable quadrature
filter according to Eqs. (10.62) and (10.64) with l = 1 and B = 2 with different
peak wave numbers k0 and four directions (0°, 45°, 90°, and 125°)

For the real even and the imaginary odd filter of the quadrature filter,
the radial part R is the same and only the directional part D differs:

D+(k̄) = (k̄
T
d̄i)2l

D−(k̄) = i (k̄
T
d̄i)2l sign(k̄

T
d̄i)

(10.64)

Figure 10.8 illustrates the transfer function of this quadrature filter
with different peak wave number k0 and in four directions.

Number and direction of filters. The filters used to compute local
spatiotemporal structure have to be symmetrically distributed in the
3-D Fourier domain. It is shown in [38] that the minimum number of
filters has to be greater than 4. However, as there is no way of distribut-
ing 5 filters symmetrically in 3-D space, the next possible number is 6.
The orientations of these filters are given by the following 6 normal
vectors:

d̄1 = c [a,0, b]T d̄2 = c [−a,0, b]T

d̄3 = c [b, a,0]T d̄4 = c [b,−a,0]T

d̄5 = c [0, b, a]T d̄6 = c [0, b,−a]T
(10.65)

where
a = 2, b = (1+

√
5), and c = (10+ 2

√
5)−1/2 (10.66)

Tensor construction. From the responses of the 6 directional filters,
the structure tensor J (Section 10.3.2) can be computed. According to
Granlund and Knutsson [39], J can be obtained by linear summation of
the quadrature filter output magnitudes:

J(x) =
5∑

i=0
qiMi, Mi =

(
αd̄id̄

T
i − βI

)
(10.67)
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where qi is the magnitude of the complex-valued output of the quadra-
ture filter in the direction d̄i,Mi is a tensor associated with the quadra-
ture filter i, and I is the identity tensor (matrix). The two constants are
given by α = 5/4 and β = 1/4. As the elementsMi are constant tensors,
they can be precalculated. Thus, the structure tensor can be estimated
by a weighted summation of the tensorsMi, where the weights are the
quadrature filter outputs qi.

Optical flow computation. Given the structure tensor J, the optical
flow can be computed analogously to that shown in Section 10.3.2. Af-
ter an eigenvalue analysis of the structure tensor, the corresponding
eigenvectors are pointing into the directions of minimal and maximal
brightness changes, respectively. They can be used to compute either
the normal flow f⊥ or the 2-D optical flow f depending on the distri-
bution of the eigenvalues.

10.4.3 Phase techniques

Another class of techniques, based on the work of Fleet and Jepson [15],
uses quadrature filters to estimate the local phase of the spatiotempo-
ral image. The use of phase information is motivated by the fact that
the phase component of a bandpass filtered signal is less sensitive to il-
lumination changes than the amplitude component of the filter output
[49]. This corresponds to the fact that the phase of the Fourier trans-
form carries the essential information: An image can still be recognized
when the amplitude information is lost, but not vice versa [50].

Consider a planar spatiotemporal wave with a wave number k and a
temporal frequency ω, corresponding to a delta peak in the 3-D Fourier
domain:

g(x, t) = g0 exp [−iφ(x, t)] = g0 exp
[
−i(kTx − ωt)

]
(10.68)

This spatiotemporal signal corresponds to a planar 2-D wave, traveling
with a phase speed u, with ω = kTu (Eq. (10.8)). The phase of the signal

φ(x, t) = kTx − ωt = kTx − kTut (10.69)

varies linearly in space and time. The projection fc of the 2-D velocity
u onto the wave number unit vector k̄,

fc = k̄
T
u = 1

‖k‖k
Tu (10.70)

is called component velocity . It is the instantaneous motion normal to
level phase contours of a periodic structure (the output of a bandpass
filter), as opposed to normal velocity , which constitutes the velocity
component normal to the local intensity structure.



378 10 Motion

a b

fc
1

fc
2

f f f1 2= +c c

c

Figure 10.9: Illustration of the phase technique: a sinusoidal plaid pattern
composed of two sinusoids moving with the optical flow f ; b the two individual
components allow one to extract the corresponding component velocities f 1

c and
f 2

c , respectively. The 2-D optical flow f is reconstructed from the component
velocities; c phase images of the two sinusoidal patterns.

The component velocity f c is pointing parallel to the phase gradient
and can be computed by

f c = − φt(x, t)
‖∇φ(x, t)‖

∇φ(x, t)
‖∇φ(x, t)‖ (10.71)

which can be directly verified using Eq. (10.69). Comparing Eq. (10.71)
to Eq. (10.3) shows that, in fact, the phase-based technique is a differen-
tial technique applied to phase rather than intensity. The phase-based
technique, however, allows one to estimate multiple component veloc-
ities at a single image location, compared to only one normal velocity
in Eq. (10.3). If the wave-number vectors k of the different components
are linear independent, the full 2-D optical flow can be recovered. Fig-
ure 10.9 illustrates the phase and component velocity for a simple pat-
tern composed of two periodical signals.

The phase φ can be computed using a quadrature filter. As with any
complex number, the argument arg(q) of the filter output represents
the local phase of the signal:

φ(x, t) = arg(q) = arctan
q−(x, t)
q+(x, t)

(10.72)

Unfortunately, a phase computed with the inverse tangent is restricted
to the main interval [−π, π[ and jumps at the transition from −π to π
(Fig. 10.9c). Computing the derivative of such a discontinuous signal
would inevitably lead to errors in the velocity estimate.

Fleet and Jepson [15] found a solution to avoid this problem by di-
rectly computing the phase derivatives from the quadrature filter pair,
without prior computation of the phase. This can be performed using
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the identity

∇xtφ(x, t) = q+(x, t)∇xtq−(x, t) − q−(x, t)∇xtq+(x, t)
q2+(x, t) + q2−(x, t)

(10.73)

where ∇xt denotes the spatiotemporal gradient ∇xtφ = [
φx, φy, φt

]T .
They also proposed decomposing the image into periodic structures by
a set of Gabor filters. From the output of these filters, they use theoreti-
cal results on the stability of band-pass phase signals [49] to determine
which outputs should provide reliable estimates of component veloc-
ity. When a band-pass filtered signal is reliable, the component velocity
is computed by Eq. (10.71) using Eq. (10.73) for the partial derivatives.
The 2-D optical flow is composed from these component velocities. It
is estimated locally by solving a linear system of equations relating the
component velocities to an affine model of optical flow (Section 10.6.1).

10.5 Correlation and matching

Differential and quadrature filter-based approaches are subject to er-
rors, if the temporal sampling theorem is violated, that is, for large
displacements of the moving pattern within two consecutive frames.
In addition, optical flow estimates are biased if the illumination changes
within the temporal region of support. Correspondence-based approaches
are less sensitive to these error sources. They try to find the best
match of a characteristic image feature and the corresponding feature
in the consecutive frame. Correspondence techniques can be classified
into region-based matching and feature-based matching techniques, re-
spectively. Comprehensive overviews of feature-based matching tech-
niques are given by Faugeras [51] and Murray [11]. These techniques
are commonly extended into 3-D spaceto recover 3-D motion, and to
track objects. In this section we focus on region-based matching tech-
niques, such as cross correlation and distance minimization. Region-
based matching techniques approximate the optical flow f by

f (x) = s(x)
t2 − t1

(10.74)

where s = [s1, s2]T is the displacement that yields the best match be-
tween two image regions in consecutive frames g(x, t1) and g(x−s, t2).
A best match is found by eitherminimizing a distance measure, ormax-
imizing a similarity measure, with respect to the displacement s.
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10.5.1 Cross correlation

A suitable similarity measure of two image regions is given by the cross-
correlation function

r(x, s) =
〈
g(x′, t1)g(x′ − s, t2)

〉(〈
g2(x′, t1)

〉 〈
g2(x′ − s, t2)

〉)1/2 (10.75)

which has to be maximized over s. The abbreviation Eq. (10.17) has
been used in Eq. (10.75) to simplify notation. The window function w
in the terms < · > determines the size of the region to be matched. The
cross-correlation function is independent of illumination changes. It is
zero for totally dissimilar patterns and reaches a maximum of one for
similar features.

The cross-correlation function is a 4-D function, depending on both
the position x within the image as well as on the shift s. In order to
restrict the number of admissible matches and to minimize computa-
tional costs, the search range of s is restricted to a finite search window.

To speed up computations, a fast maximum search strategy has
been proposed by Jähne [9]. Assuming the cross-correlation function
r(s) to be appropriately approximated by a second-order polynomial
in s, he shows that the sm maximizing r(s) can be estimated by the
following linear system of equations:[

rs1s1 rs1s2
rs1s2 rs2s2

][
sm
1

sm
2

]
= −

[
rs1
rs2

]
(10.76)

with

rsp = ∂r
∂sp

and rspsq = ∂2r
∂sp∂sq

(10.77)

The first- and second-order partial derivatives of r with respect to the
components s1 and s2 are taken at s = 0. However, the fast maximum
search according to Eq. (10.76) will fail, if r cannot be approximated
by a second-order polynomial within the search region of s. In order
to overcome this problem, an iterative coarse-to-fine strategy can be
applied. Beginning at the coarsest level of a Laplacian pyramid (Sec-
tion 8.10.3), where displacements are assumed to be in the order of
1pixel/frame or less, maxima of r can be located within a small search
space of only 1-3 pixels. Within this region the second-order approx-
imation of r is appropriate. Subpixel displacements are successively
computed from finer levels of the Laplacian pyramid, by a quadratic
approximation of r about sm from coarser levels.

10.5.2 Distance minimization matching

An alternative approach tomaximizing the cross-correlation function is
to minimize a distance measure, quantifying the dissimilarity between
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two image regions. A common distance measure is given by the sum-
of-squared difference (SSD):

d1,2(x, s) =
〈

[g(x′, t1) − g(x′ − s, t2)]2
〉

(10.78)

The indices 1 and 2 refer to times t1 and t2, respectively. Again the
abbreviation Equation (10.17) has been used to simplify notation. In-
terestingly, Eq. (10.78) is closely related to the approach of Lucas and
Kanade [14]. Approximating g(x′ − s, t2) in Eq. (10.78) by a truncated
Taylor expansion about s = 0 and skipping all terms above first-order
yields the gradient-based formulation Equation (10.13).

Approaches using SSD-based matching are reported by Anandan
[52] and Singh [53, 54]. The matching technique of Anandan [52] uses
a coarse-to-fine strategy based on a Laplacian pyramid. Similar to the
maximum search for the cross-correlation function described in the
preceding, the minimization of d is initially carried out on the coarsest
level of the pyramid and then successively refined to subpixel accuracy.

An interesting extension of the two-frame matching techniques is
proposed by Singh [53, 54]. He averages the SSD of two consecutive
pairs of bandpass filtered images, that is, three frames, to average spu-
rious SSD minima due to noise or periodic texture:

d2(x, s) = d1,2(x,−s) + d2,3(x, s) (10.79)

In a second stage, this error measure is converted into a probability
response distribution using

R(x, s) = exp
[
ln(0.95)d2(x, s)
min(d2(x, s))

]
(10.80)

The choice for an exponential function for converting error distri-
bution into response distribution is motivated by the fact that the re-
sponse obtained with an exponential function varies continuously be-
tween zero and unity over the entire range of error. Hence, finding
a minimum of d2 corresponds to maximizing the response function
R(x, s) over s. In order to avoid local maxima, Singh [54] suggests find-
ing a best estimate sm of the displacement s by computing the center
of mass of R with respect to s:

sm(x) =

N−1∑
n=0

R(x, sn)sn

N−1∑
n=0

R(x, sn)

(10.81)

where the summation is carried out over all N integer values sn within
the search window. The center of mass only approximates the maxi-
mum peak value if R is symmetrically centered about the peak. Thus, a
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coarse-to-fine strategy based on a Laplacian pyramid is used to ensure
the surface of R is centered close to the true displacement [13].

10.6 Modeling of flow fields

In all optical flow techniques detailed in this chapter, tight restrictions
have been imposed on the optical flow field f (x). All techniques that
group constraints over a local neighborhood U intrinsically assumed f
to be constant within U . In order to fulfill this prerequisite, the local
neighborhood tends to be chosen as small as possible to get a local
estimate of f . The larger the neighborhood gets, the more likely it is
that f varies within U , or that U contains multiple motions. At the
same time, U has to be chosen sufficiently large as to contain enough
information to constrain the solution, that is, to overcome the aperture
problem. This competition of requirements is commonly referred to as
the generalized aperture problem [55].

A variety of approaches use least-squares estimates (either LS or
TLS) to group Eq. (10.2) or some other relation over a local neighbor-
hood U . By using a quadratic objective function, they inherently as-
sume Gaussian residual errors, locally independent with equal variance
within U . The merit of this assumption is a fairly simple, closed solu-
tion. As soon as multiple motions (e. g., occlusion boundaries or trans-
parent motion) are present within U , the residuals can not longer be
considered Gaussian [8]. If these motions are independent, the error
distribution might even become bimodal.

These considerations show that, in fact, we have already applied a
model to optical flow computation, namely the most simple model of
constant f and independent Gaussian errors withinU . This section out-
lines two principal approaches to the forementioned problems. They
try to model more appropriately the flow field and can be incorporated
into techniques detailed so far. These approaches weaken the simple
model assumptions by modeling both smooth spatial variations in the
optical flow field as well as multiple motions.

10.6.1 Parameterization of flow fields

Parameterized flow field models assume the optical flow f (x) to be
modeled according to some parametric function in the image coordi-
nates. An appropriate optical flow technique has to estimate the model
parameters a, which include the mean optical flow, as well as spatial
derivatives of f . If the model appropriately describes the spatial varia-
tion of f within a certain area, the local neighborhood can be increased
up to this size without violating themodel assumption. In fact, the local
region of support has to be increased (compared to constant f within
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a b
c d

Figure 10.10: Elementary geometric transformations of a planar surface el-
ement undergoing affine transformation: a rotation; b dilation; c shear; d
stretching.

U ) in order to compute the model parameters reliably. The more pa-
rameters have to be estimated, the larger the local neighborhood has
to be in order to regularize the solution. At the same time the compu-
tational complexity increases with the number of parameters.

Affine optical flow field. A more complicated model of the optical
flow field assumes a linear variation of f , that is, an affine transforma-
tion of local image regions:

f (x) =
[

a1 a2

a3 a4

][
x
y

]
+
[

a5

a6

]
= Ax + t (10.82)

with

a1 = ∂f1
∂x

, a2 = ∂f1
∂y

, a3 = ∂f2
∂x

, and a4 = ∂f2
∂y

(10.83)

This model appropriately describes the underlying optical flow field
f (x), if it can be locally expressed by a first-order Taylor expansion,
which is always possible for smoothly varying f (x). The size of the
local neighborhood U must be chosen such that it is small enough for
the first-order condition to hold, and simultaneously large enough to
constrain the solution.

The vector t = [a5, a6]T represents the translation of the center of
the local neighborhood and corresponds to the constant optical flow
vector f used so far. From the four components a1, . . . , a4 the four
elementary geometric transformations of the local neighborhood can
be computed (see also Eq. (13.32) in Chapter 13):

• If the optical flow field has nonzero vorticity , the local neighborhood
is subject to rotation, as illustrated in Fig. 10.10a and Fig. 10.11c.
Rotation (vorticity) can be computed from the nondiagonal elements
of A by

rot(f ) = ∂f1
∂y

− ∂f2
∂x

= a3 − a2 (10.84)
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• If the optical flow field has nonzero divergence, the local neighbor-
hood is subject to dilation (Fig. 10.10b and Fig. 10.11b). Dilation
(divergence) can be computed by

div(f ) = ∂f1
∂x

+ ∂f2
∂y

= a1 + a4 (10.85)

which corresponds to the trace of the matrix A.
• The shear of the local neighborhood (Fig. 10.10c and Fig. 10.11d)
can be computed by

sh(f ) = ∂f1
∂y

+ ∂f2
∂x

= a2 + a3 (10.86)

• The stretching of the local neighborhood (Fig. 10.10d and Fig. 10.11e)
can be computed by

str(f ) = ∂f1
∂x

− ∂f2
∂y

= a1 − a4 (10.87)

In order to incorporate the affinemodel into optical flow estimation,
we need to replace the constant flow vector f in the objective functions
of any technique by the affine flow f (x,a) = Ax + t.

Lie group transformations. Affine flow is only one possible model
of local image transformations. A mathematical generalization of the
theory of transformations can be found by using the formalism of Lie
algebra. In fact, the affine group is a subgroup of the Lie group of
continuous transformations. Without detailing all mathematical pre-
requisites of Lie group theory, we approach this concept in terms of
coordinate transformations fromCartesian image coordinates into gen-
eralized coordinates, and outline the practical application to optical
flow computation. A more detailed treatment of Lie algebra is found in
[56, 57].

In the following, we assume the image brightness pattern to un-
dergo a spatial transformation within a time interval δt, which can be
expressed by

g(x, t) = g(x′, t − δt) = g(S−1(x,a), t − δt) (10.88)

where S = [
Sx, Sy

]T defines a 2-D invertible transformation acting on
the image coordinates x:

x = S(x′,a), and x′ = S−1(x,a) (10.89)

With a = [
a1, . . . , ap

]T we denote the p-dimensional parameter vector
of the transformation, which is assumed to be constant within the time
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a b c

d e f

Figure 10.11: Elementary affine flow fields: a pure translation (t = [1,2]T );
b pure divergence (div(f ) = 1.0); c pure rotation (rot(f ) = 1.0); d pure shear
(sh(f ) = 1.0); e pure stretching (str(f ) = 1.0); and f example of a linear com-
bination of all elementary transformations (t = [1,2]T , div(f ) = -1.0, rot(f ) =
1.0, sh(f ) = 0.3, str(f ) = 0.8).

interval δt. If S is chosen to form a Lie group of transformations it is
infinitely differentiable in x and analytic in a. Applied to the image
g(x, t) at a certain time instant t, it gives a transformed image g(x′, t).
Thus, successive application of the transformation S(x,a(t)) defines
a trajectory through the sequence, along which the brightness of g re-
mains constant (although being treated as constant within δt, we allow
a to slowly vary over longer periods).

As S is analytic with respect to the parameters ai, we can expand
the coordinate transformation in a first-order Taylor series about a = 0,
assuming the transformation to be infinitesimal within the time interval
δt:

x = x′ +
p∑

i=1
ai

∂S(x′,a)
∂ai

, with x′ = S(x′,a = 0) (10.90)

where a = 0 is taken as the identity element of the transformation.
Using Eq. (10.90), we can determine how the spatiotemporal bright-

ness distribution g(x, t) depends on the individual parameters ai by
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taking the partial derivative

∂g(x, t)
∂ai

= ∂g
∂x

∂x
∂ai

+ ∂g
∂y

∂y
∂ai

= ∂g
∂x

∂Sx
∂ai

+ ∂g
∂y

∂Sy

∂ai
(10.91)

In operator notation, this expression can be reformulated for anyg(x, t)
as

∂g(x, t)
∂ai

= Lig(x, t) (10.92)

with Li = ∂Sx
∂ai

∂
∂x

+ ∂Sy

∂ai

∂
∂y

= ξT
i ∇, and ξi =

[
∂Sx
∂ai

,
∂Sy

∂ai

]T

(10.93)

The operator Li, i ∈ {1, . . . , p}, is called an infinitesimal generator of
the Lie group of transformations in ai. As the explicit time dependency
of g in Eq. (10.88) is formulated as 1-D “translation in time” with the
fixed parameter at = 1, we can immediately infer the corresponding
infinitesimal generator to be Lt = ∂/∂t.

An image sequence g(x, t) is called an invariant function under the
group of transformations in the parameter ai, if and only if

Lig(x, t) = ∂g(x, t)
∂ai

= 0 (10.94)

Thus, an invariant function remains constant if it is subject to a trans-
formation with respect to the parameter ai. Examples of such patterns
and the corresponding transformations are the translation of a pattern
with linear symmetry parallel to lines of constant brightness, or a pat-
tern containing concentric circles rotated about the center of circular
symmetry. The set of parameters ai, i ∈ {1, . . . , p}, can be regarded
as generalized coordinates of the transformation, also referred to as
canonical coordinates, spanning a p-dimensional space. Lie groups
of transformations extend an arbitrary spatiotemporal transformation
into a p-dimensional translation in the p canonical coordinates includ-
ing the time t.

In a final step, we expand the spatiotemporal image at g(x, t) with
respect to the parameters ai, that is, we compose the transformation
by the set of infinitesimal transformations:

g(x, t) = g(x′, t − δt) +
p∑

i=1
ai

∂g
∂ai

= g(x′, t − δt) +
p∑

i=1
aiLig (10.95)

With the initial assumption of brightness conservation (Eq. (10.88)), that
is, g(x, t) = g(x′, t − δt), we immediately get the relation between the
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infinitesimal transformations and g:

p∑
i=1

aiLig = 0, ∀x (10.96)

Equation (10.96) has to be solved for the parameter vector a. In or-
der to avoid the trivial solution a = 0, we need to add the constraint
aTa = 1, which is possible, as a scaling of a does not change the group
of transformations.

It is important to note that solution Equation (10.96) constitutes
a generalization of the standard brightness change constraint Equa-
tion (10.2). Due to the presence of noise, Eq. (10.96) is usually not
exactly satisfied. However, if we find an appropriate model for the
optical flow field, which can be expressed by a Lie group of transforma-
tions, minimizing Eq. (10.96) with respect to the parameters a yields
the underlying optical flow field. The minimization can be carried out
by standard techniques of numerical linear algebra, such as LS and TLS
estimation, as already pointed out earlier in this chapter.

An interesting relationship between Eq. (10.96) and previous ap-
proaches can be found, if we identify the sum in Eq. (10.96) by the
scalar product

aT (∇Lg), ∇L = [L1, . . . ,Lp
]T (10.97)

where ∇L denotes the generalized gradient . This notation obviously
constitutes a generalized extension of the spatiotemporal gradient con-
straint Equation (10.5), which has been directly used in the structure
tensor technique (Eq. (10.38)) with a = r.

We will illustrate how the Lie group formalism translates into prac-
tical application with the help of two simple examples.

Example 10.1: Translation

A simple example of a flow field model is a constant translation within
a neighborhoodU . The corresponding coordinate transformation reads

S(x, t) = x + t (10.98)

where t = [t1, t2]T denotes the translation vector, which has to be
estimated. Letting a = [t,1]T , the infinitesimal generators can be
computed by Eq. (10.93) as

L1 = Lx = ∂
∂x

, L2 = Ly = ∂
∂y

, and L3 = Lt = ∂
∂t

(10.99)

Thus, Eq. (10.96) yields nothing but the standard BCCE, Eq. (10.2):

t1
∂g
∂x

+ t2
∂g
∂y

+ ∂g
∂t

= 0 (10.100)
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Example 10.2: Affine flow

In this example we are going to revisit affine flow fields in the context
of Lie group transformations. The affine coordinate transformation is
given by Eq. (10.82)

S(x,a) =
[

a1 a2

a3 a4

][
x
y

]
+
[

a5

a6

]
= Ax + t (10.101)

With a = [a1, . . . , a6,1]T , using Eq. (10.93), the infinitesimal genera-
tors can be derived as

L1 = x ∂
∂x

, L2 = y ∂
∂x

, L3 = x ∂
∂y

, L4 = y ∂
∂y

L5 = ∂
∂x

, L6 = ∂
∂y

, L7 = ∂
∂t

(10.102)

The generators for the more intuitive transformations of divergence,
rotation, shear, and stretching can be obtained as the following linear
combinations of L1, . . . ,L4:

Ld = L1 +L4 = x ∂
∂x

+ y ∂
∂y

, Lr = L3 −L2 = x ∂
∂y

− y ∂
∂x

Lst = L1 −L4 = x ∂
∂x

− y ∂
∂y

, Lsh = L2 +L3 = y ∂
∂x

+ x ∂
∂y
(10.103)

where the indices d, r , sh, st denote the elementary transformations
‘divergence’, ‘rotation’, ‘shear’, and ‘stretching’, respectively. Thus,
the Lie group formalism automatically decomposes the flow field into
the elementary transformations, given the coordinate transformation
Eq. (10.101).

The concept of Lie groups, outlined in this section, has been suc-
cessfully used by Duc [56] for optical flow computation. Althoughmore
general than plain translation or affine flow, Lie groups of transforma-
tions do not account for brightness variations, as the image is only
warped from the original image according to Eq. (10.88). They also
do not model multiple motions and occlusions, a problem which can
be addressed by using a robust estimation framework, which will be
outlined in Section 10.6.2.

10.6.2 Robust techniques

Optical flow estimation is corrupted for all approaches pooling con-
straints over a finite-size spatial neighborhood in case it contains mul-
tiple motions, that is, at motion discontinuities and in the case of trans-
parent motion overlay. Parameterized flow field models fail to handle
these kinds of errors if they assume a smooth spatial transition of the
optical flow field.
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a
least squares regression

b
robust regression

Figure 10.12: Illustration of a least squares regression vs b robust regression
of two independent data sets.

The basic problem results from how the local constraints are com-
bined. Least squares estimation tries to minimize the quadratic objec-
tive function

‖e‖22 =
N−1∑
i=0

[ei]
2 (10.104)

where ei denotes the residual error at point i. The summation is carried
out over all N points within U . The influence of any residual error on
the objective function can be computed as

∂‖e‖22
∂ei

= 2ei (10.105)

which shows that the objective function ‖e‖22 depends linearly on the
individual errors without bound. Hence, a single large error (outlier) is
sufficient to corrupt the entire least squares solution.

In a statistical context, only a fraction of the pixels within U fits to
the model assumptions, while another fraction can be viewed as out-
liers. Thus, we need to recover the model parameters that best fit the
majority of data while outliers have to be detected and rejected. This
is the main goal of robust statistics [58], which has been increasingly
used for a variety of computer vision applications [59]. Figure 10.12 il-
lustrates the difference between standard least squares (LS) and robust
estimation for the example of linear regression. While LS regression fits
a line to the entire cloud of data points, disregarding individual clus-
ters, robust regression techniques separate the clusters. An excellent
introduction into robust estimation that addresses its application to
the problem of optical flow computation, is given by Black and Anan-
dan [8]. They propose a unified framework to account for the different
optical flow techniques outlined in this chapter.
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The basic idea of robust estimation is to replace the quadratic weight-
ing of the residuals by another analytical expression ρ(ei), which is
referred to as an M-estimator in statistics. The ρ-function has to be de-
signed to perform an unequal weighting depending on the magnitude
of the residuals. Thus, we obtain the following minimization problem:

f = argmin‖e‖ρ, ‖e‖ρ =
N−1∑
i=0

ρ(ei, σs) (10.106)

The optional scale parameter σs defines the range of residuals that are
considered to belong to the set of ‘inliers’ (as opposed to ‘outliers’). For
a quadratic ρ, Eq. (10.106) corresponds to the standard least squares
formulation.

In order to reduce the influence of outliers we search to minimize
the influence of large residual errors on ‖eρ‖. The influence of indi-
vidual residuals is characterized by the influence function ψ, which is
proportional to the derivative of the ρ-function [58]:

ψ(ei, σs) = ∂ρ(ei, σs)
∂ei

(10.107)

corresponding to Eq. (10.105) for a quadratic function. In order to
be robust against outliers, ψ needs to be redescending, that is, it has
to approach zero for large residuals after an initial increase for small
values. Thus, the corresponding ρ-functions show an asymptotic be-
havior. One of the most simple ρ-functions is a truncated quadratic
(Fig. 10.13a). The corresponding influence function drops to zero be-
yond a certain threshold (Fig. 10.13b). The truncated quadratic has to
be compared to the standard quadratic with an unbounded ψ-function
(Fig. 10.13a and b). Another commonly used ρ-function, proposed by
Geman and McClure [60], is given by (Fig. 10.13c and d)

ρ(ei, σ) = e2i
σ + e2i

, ψ(ei, σ) = 2σei

(σ + e2i )2
(10.108)

For practical application of the robust estimation framework to op-
tical flow computation we simply need to replace the quadratic norm
of the objective functions by a robust error norm ρ. As one example,
the local least squares technique Eq. (10.13) can be reformulated as

f = argmin‖e‖ρ, ‖e‖ρ =
∞∫

−∞
w(x −x′) ρ

(
(∇g)Tf + gt

)
dx′

(10.109)

where ρ is a robust ρ-function. The discrete summation in Eq. (10.106)
has been replaced by a weighted integration. Likewise, all other ob-
jective functions introduced in this chapter can be transformed into
robust functions. Further details can be found in [8].
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a b

c d

Figure 10.13: Two examples of ρ and ψ functions: a quadratic (l2 norm)
and truncated quadratic (dashed); b derivative of the quadratic and truncated
quadratic function; c Geman and McClure norm; and d derivative of the Geman
and McClure norm [60].

In general, robust formulations do not admit closed solutions and
have to be solved iteratively. Black and Anandan [8] use over-relaxation
techniques, such as the Gauss-Seidel method . This may be regarded as
a disadvantage of robust estimation compared to LS estimation. It also
has to be pointed out that robust techniques usually search for a dom-
inant motion within U and attach a region of support to each motion.
Although multiple motions can be iteratively found, the correspond-
ing regions are disjoint. Thus, the image area is segmented into the
individual motions, even in the case of transparency.

10.6.3 Summary

This chapter provided the general principles of motion estimation from
image sequences and gave a concise overview of different approaches
to optical flow computation. Due to space limitations we were not able
to give a detailed discussion of results from the various techniques. A
comprehensive overview of numerical results of selected optical flow
techniques can be found in Barron et al. [13] and CVA2 [Chapter 13].
Without going into detail we will end this chapter with a brief summary
of the performance of the most important techniques.
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In summary we found that differential techniques give the best over-
all performance with respect to both accuracy and density. If a distinc-
tion between normal and 2-D flow has to be made, the local and total
least squares approaches [14, 41] are clearly favored. It seems that
the theoretical advantages of the total vs local least squares algorithm
only become apparent for low signal-to-noise ratios and small displace-
ments.

The second-order differential method by Uras et al. [28] performs
very well for pure translational motion over all velocities up to the tem-
poral sampling limit and regardless of the movement direction. How-
ever, for other types of motion, such as divergence or rotation, this
method should not be used.

The phase-based method by Fleet and Jepson [15] provides accurate
but rather sparse velocity fields and the computational load for this
method is far higher than for the other compared techniques.

Matching techniques are only useful for larger displacements, in
particular for integer pixel displacements. However, in this case a dif-
ferential multiscale approach as described by CVA2 [Chapter 14] might
still be the better choice. Between the two compared matching tech-
niques the method by Singh [53] was found to give more reliable re-
sults.

In general, good results on realistic data are not to be expected with-
out a means to remove unreliable estimates. Depending on the image
content, some way to distinguish normal from 2-D flow is essential for
accurate motion estimation. Obviously, in cases without an aperture
problem such a distinction is unnecessary. For software demonstra-
tions see lucas.ws, horn.ws, and tensor.ws in /software/10.
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11.1 Introduction

Image acquisition always contracts the 3-D information of the scene to
2-D information of the image due to the projection on the 2-D image
plane. Therefore the reconstruction of the depth information from 2-D
images is a fundamental problem in computer vision applications.

Many different approaches to the problem are known, including
stereo (Dhond and Aggarwal [1], [CVA2, Chapter 17], [CVA2, Chapter
18]) or its generalization tomultiview imaging, shape-from-shading and
photogrammetric stereo [CVA2, Chapter 19], shape from motion, tex-
ture analysis and depth from focus.

Herein, we focus on two important approaches for the recovery of
depth information: stereo reconstruction and depth-from-focus. Al-
though not immediately apparent, these two methods are based on the
same principle. Stereo uses the difference between images taken from
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Computer Vision and Applications Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.
ISBN 0–12–379777-2/$30.00



398 11 Three-Dimensional Imaging Algorithms

different viewpoints, the so-called parallactic difference. The lateral
shift of image points between the two images is directly correlated to
the distance of the object point. Depth-from-focus uses the inherent
blur in the images to correlate it with depth. Because blur cannot be
directly separated from the image, further images that differ only in
the grade of optical blur are required. So both methods gain the 3-D
information from the difference of images taken from the same scene,
but with different camera parameters in a general sense. In this sense
both techniques have to be classified as a triangulation technique (Sec-
tion 7.3). An overview of other triangulationmethods is given in Fig. 7.3.

Concerning depth-from-focus, algorithms that need only a single
image are possible, provided that additional information about the ob-
served scene is present. These methods will be discussed at the end
of this chapter. Whereas it focuses on 3D reconstruction from an algo-
rithmic point of view, Chapter 7 gives an overview of methods suitable
for 3-D image acquisition.

11.2 Stereopsis

Stereopsis is the perception of depth from the parallactic differences
between the images seen by the left and the right eye. Wheatstone [2],
using his mirror-stereoscope, was the first to demonstrate that image
difference, or disparity , is indeed the crucial carrier of information.

Much work in stereovision has been devoted to one particular type
of image differences, namely, the position differences of the images of
individual points in the two cameras or eyes. In order to measure these
point disparities, an image-matching procedure is required as reviewed,
for example, by Dhond and Aggarwal [3], Jenkin et al. [4], Förstner [5].
Image matching and the associated correspondence problem [6, 7] will
not be dealt with in this chapter. The traditional view that correspon-
dence is the central problem in stereopsis has been challenged by recent
psychophysical findings indicating that other types of disparity as well
as global image comparisons play an important part at least in human
vision [8, 9].

The different viewpoints used for recording the two half-images of
a stereogram result in a number of different types of image differences,
some of which are illustrated in Fig. 11.1. A comprehensive discussion
is given in Arndt et al. [10] and Howard and Rogers [11].

1. Horizontal disparity is the horizontal offset of the images of an in-
dividual point projected into the two cameras. It can be measured
as an angle or as a distance on the camera target (Fig. 11.1a).

2. Vertical disparity is the analogous offset in the vertical image direc-
tion. Because the stereo baseline between the two cameras is usually
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a

b

c

d

e

Figure 11.1: Types of image differences or disparities: a point disparities; b
orientation disparities; c intensity disparities; d disparate highlights (photomet-
ric disparities); emonocular occlusion (“amodal stereopsis”). For crossed fusion,
use the left two columns, for uncrossed fusion the right ones. Readers not used
to free stereoscopic fusion should cover up the left column and place a piece of
cardboard vertically between the right two columns. By placing the head sym-
metrically over the cardboard, each eye is allowed to view one column only. In
this situation, fusion is easily obtained.

horizontal, vertical disparities are usually rather small. They van-
ish in nonverging camera systems, that is, systemswith parallel view
axes.

3. Orientation disparities occur if oblique lines are imaged. Gener-
ally, the resulting lines in the two images will have different slope
(Fig. 11.1b). Related higher-order disparities include the projected
movement of a point moving in space or the deformation (size,
shear, rotation) of a planar figure.

4. Disparate shading as shown in Fig. 11.1c,d may result for purely ge-
ometrical reasons. Figure 11.1c shows a Lambertian shaded cylin-
der with horizontal disparities that cannot be pinpointed to feature
points in the image. Still, depth perception is obtained. Figure 11.1d
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shows a more complicated case where disparities are due to specu-
lar reflection, that is, to the fact that the same surface point looks
different when observed from different directions. It is interesting
to note that even though the highlight is the virtual image of the light
source and its disparity therefore corresponds to a point behind the
spherical surface, human observers are able to make correct use of
disparate highlights. That is to say, they perceive a protruding sur-
face when the highlight’s disparity is uncrossed [12].

5. Monocular occlusion, also called amodal or DaVinci stereopsis, is an-
other example of stereopsis without feature correspondence. In the
case shown in Fig. 11.1e, the dot seems to float behind the rectangle
as if it was occluded in the right image. When exchanging the two
half-images, perceived depth is not inverted.

The image differences illustrated in Fig. 11.1a-c can be formalized by
a so-called disparity map, that is, a continuous, one-to-one function
δ(x′, y ′) such that

Ir (x′, y ′) = Il(x′ − δ1(x′, y ′), y ′ − δ2(x′, y ′)) (11.1)

where the components of δ are the horizontal and vertical disparities.
Using first-order derivatives of δ leads to the orientation and defor-
mation disparities. The global disparity map exists only if the imaged
surface is completely visible from both eyes (no monocular occlusion)
and if shading is Lambertian. It does not in general exist at the most
interesting image regions, that is, at depth discontinuities.

11.2.1 Stereo geometry

In this section, we review the geometry of binocular space, as it has
been developed in psychophysics and optometry [13]. We will argue
that the formulation presented here is also advantageous for technical
stereoheads. We will assume throughout this chapter that the view
axes of the two cameras meet at some point in space, called the fixation
point. The case of parallel camera axes is contained as a limiting case.

World coordinateswill be given in a Cartesian system (x, y, z)whose
origin is themidpoint of the camera nodal points. The horizontal x axis
points to the right, the verticaly axis points upward, and the horizontal
z axis marks the depth direction away from the observer. This coordi-
nate system is not the head coordinate system in that it does not rotate
with the head; it is, however, centered at the head. Image coordinates
are denoted by (x′

l, y ′
l ) for the left and (x′

r , y ′
r ) for the right camera.

Hering coordinates. The basic variables describing a binocular head
are illustrated in Fig. 11.2a. The heading direction is normal to the base-
line connecting the camera nodal points and the pan-axis of the head.
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Figure 11.2: Naming conventions for binocular geometry: a view axes and fix-
ation; b image position of peripheral points. f : Fixation point. nl,nr : nodal
points; c: “Cyclopean point” half-way between the nodal points; b: baseline dis-
tance; ϕr , ϕl: azimuth angles of the cameras (viewing directions) in a head-
centered system; α = αf : Vergence; γ: Version; p: arbitrary point viewed while
fixating at f ; αp : target vergence of p; βl, βr : azimuth angles of point p in
camera-centered coordinate system.

We assume for now that the nodal points are located atnl = (−b/2,0,0)
and nr = (+b/2,0,0), respectively; the length of the baseline therefore
is b. We consider first the geometry of the horizontal (epipolar, (x, z))
plane; for amore complete discussion, see Howard and Rogers [11]. The
viewing directions of the camera ϕl and ϕr are defined with respect to
the heading direction and positive turns are to the right. Rather than
using these viewing directions themselves, we introduce the quantities

α = ϕl − ϕr (11.2)

γ = 1
2

(ϕl + ϕr ) (11.3)

These quantities are known as the (Hering)-vergence (α) and (Hering)-
version (γ), respectively.

Vergence takes the value 0 if the camera axes are parallel. Negative
values do not occur as long as the axes converge, that is, as long as there
is an intersection point of the viewing axes. For each vergence α > 0, a
circle can be drawn through the nodal points and the intersection point
of the two camera axes. This circle has the radius

R = b
2sinα

(11.4)

and the center

v =
[
0,0, b

2
cotα

]T
(11.5)
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It is called the Vieth-Müller circle (VMC) of vergenceα. As an application
of the theorem of Thales, it is easy to show that whenever fixating a
point on a fixed VMC, the same vergence angle α will result, that is, the
VMCs are the iso-vergence lines.

Version as defined in Eq. (11.4) is the average, or “cyclopean,” view-
ing direction of the two cameras. More formally, when fixating a point f
with some vergence α, consider the corresponding Vieth-Müller-circle.
The point on the circle half-way between the two nodal points may be
called the “cyclopean point” c; the visual direction from this point to
the fixation point is Hering’s version γ (see Fig. 11.2). To see this, con-
sider the three triangles ∆nlfnr (apical angle α), ∆nlfc (apical angle
αl), ∆cfnr (apical angle αr ), all of which are inscribed into the same
VMC. Therefore, from Eq. (11.4)

b
2sinα

= bl
2sinαl

= br
2sinαr

where bl and br denote the length of the chords nl,c and c,nr , respec-
tively. If bl = br , that is, if c is centered between nl and nr , it follows
that αl = αr . Because, from simple trigonometry, αl = ϕl − γ and
αr = γ − ϕr , this implies γ = 1

2(ϕl + ϕr ).
Note that c depends on the current vergence angle. The lines of

constant version are the so-called hyperbolas of Hillebrand . Simple
trigonometric considerations yield the transformation rule fromHering
vergence and version to Cartesian x, y, z coordinates:

H(α, γ) =
 x

y
z

 = b
2sinα

 sin2γ
0

cosα + cos2γ



= R

 cosϕr sinϕl − cosϕl sinϕr

0
2cosϕr cosϕl

 (11.6)

The iso-curves of this transformation for constant vergence (circles)
and constant version (hyperbolas) are plotted in Fig. 11.3a.

Horizontal disparity. So far, we have considered only the camera axes
and their intersection points. As camera movements are mostly rota-
tions, the angular description seems rather natural. We now turn to
points that are not currently fixated and to their images in the two cam-
eras, and will show that the angular formulation applies here as well.
Let the system fixate a point f and consider a second point p. The
angles between the optical axis of each camera and the ray through
point p will be called βl and βr , respectively (see Fig. 11.2b). They
correspond to the image coordinates of the projection of p, which is
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Figure 11.3: a Curves of iso-vergence (Vieth-Müller circles) and iso-version (hy-
perbolas of Hillebrand). The nodal points are located at n = (±1,0). The bold
lines are spaced at 10° both for version and vergence. The light line spacing
is 2°. b Stereo geometry for collimated imaging devices (complex eyes). Each
quadrangle corresponds to one pair of image points. Points in 3-D space can be
distinguished if they fall into different quadrangles. A Vieth-Müller circle and
an iso-version hyperbola are marked for comparison with Fig. 11.3a. (Redrawn
based on figures from Burkhardt et al. [14])

given by x′
l,r = f tanβl,r where f is the focal length of the camera. The

disparity of the point p is defined by angular difference:

δ = βl − βr (11.7)

Likewise, we define the average eccentricity

η = 1
2

(βl + βr ) (11.8)

It is quite clear that disparity δ depends on the current vergence
angle of the system. If this is changed such as to fixate p, δ is obviously
reduced to zero. To stress this dependence of disparity on vergence,
δ is sometimes called relative disparity. Let us now denote by αp the
vergence angle obtained when fixating p, sometimes also called the
target vergence of p. Let us further denote by δf (p) the disparity of
point p when fixating f . It is then easy to show that

δf (p) = αf − αp (11.9)

Analogously, we have:

ηf (p) = γf − γp (11.10)
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nl

nr

f

Figure 11.4: Epipolar lines and vertical disparities in a verging stereo system.
nl, nr : left and right nodal points; f fixation. The image planes are orthogonal
to the “optical axes” nlf and nrf , respectively. The epipolar lines diverge
towards the midline of the system.

With these relations, we can also use the coordinate system derived for
eye movements for disparities. For example, when fixating a point with
Hering coordinates (αf , γf ), the Cartesian coordinates of a point with
disparity δf (p) and eccentricity ηf (p) are H(αf +δf (p), γf +ηf (p)),
where H is the transformation defined in Eq. 11.6. In Fig. 11.3a dispari-
ties with respect to an arbitrary fixation point are immediately given by
the distance from the fixation point in vergence direction. Hering co-
ordinates thus provide a means for a unified evaluation of disparities
at changing vergence conditions. As a consequence, we have shown
that for each vergence state of the system, the corresponding VMC is
the (theoretical) horopter , that is, the geometrical locus of all points
having disparity zero with respect to the fixation point.

Figure 11.3b shows an alternative account of binocular geometry
in the plane. While this approach applies most clearly to collimated
imaging systems such as the complex eyes of insects [14], it is also
useful for discussions of stereo resolution [15]. Resolution is inversely
proportional to the size of the quadrilaterals in Fig. 11.3b.

Vertical disparity and epipolar lines. So far, we have considered only
the horizontal plane together with camera movements about axes or-
thogonal to this plane. In this case, disparities are completely described
by Eqs. (11.7) to (11.9). Points outside this plane are imaged to posi-
tions that may differ both in their horizontal and vertical coordinates.
As an example, consider a point at height h above the horizontal plane.
Its vertical coordinate in the two image planes will depend on the dis-
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tance of the point from the camera nodal points. Therefore, disparity
will have a vertical component.

Vertical disparities are closely related to the notion of epipolar lines
(see Fig. 11.4). Consider a point pl in the left image plane. The geo-
metrical locus of all points p in 3-D space generating an image at point
pl is a ray from the left nodal point containing pl. When observed
from the right camera, this ray is imaged at a certain line in the im-
age. The plane spanned by all rays from the right nodal point to the
ray of possible positions of p is identical to the plane passing through
the two nodal points and pl or any one of its generators p; it is called
the epipolar plane of p. The intersections of the epipolar plane with
the image planes form a pair of epipolar lines. Any point imaged on
some epipolar line in one image must be imaged on the corresponding
epipolar line in the other image. That is to say, horizontal and vertical
disparity have a constant ratio, which corresponds to the slope of the
epipolar lines. All epipolar lines of one image meet at a common inter-
section point, which is also the intersection of the image plane with the
baseline connecting the two nodal points of the camera system. If the
vergence angle is zero, that is, if the camera axes are parallel to each
other and orthogonal to the baseline, the epipolar lines become parallel
and horizontal and all vertical disparities vanish.

Epipolar lines are important in two respects. First, if the coordinates
of the fixation point are known, epipolar lines can be predicted from
camera geometry. In the stereo-matching process, this information can
be used to simplify the matching process because corresponding image
points must be localized along the respective epipolar lines. One way
to do this is by means of the so-called epipolar transformation [16], a
collineation applied to the images to make epipolar lines horizontal.

A second application of epipolar lines is the calibration of stereo
camera systems. If vergence is symmetric, the vergence angle can be
inferred from a single known stereo correspondence with nonzero ver-
tical disparity. In symmetric vergence, the epipolar lines of the two
half-images are mirror-symmetric with respect to the vertical midline
of the images. The intersection points of all epipolar lines are located
on the x′ axis of the image coordinate system at y ′

r ,l = ±f cotα/2
for the left and right image, respectively (see Fig. 11.5). As before, α
denotes vergence and f is the focal length of the camera. If a pair of
corresponding points is given by (x′

r , y ′
r ) in the right image and (x′

l, y ′
l )

in the left image, the slope of the epipolar line in the right image is

sr = y ′
r − y ′

l
x′

r + x′
l

(11.11)
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✻
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r , y ′
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l, y ′
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✛ ✲f cotα/2

Figure 11.5: Slope of an epipolar line in symmetrical vergence. The figure
shows the two image planes superimposed. If a pair of corresponding points
((x′

l, y ′
l ), (x′

r , y ′
r )) is known, the slope of the right epipolar line can be deter-

mined by mirroring the point from the left image at the vertical image midline
(y ′ axis), which results in a point (−x′

l, y ′
l ), shown by an open dot. The line

through (x′
r , y ′

r ) and (−x′
l, y ′

l ) is the epipolar line. From its intersection with
the horizontal axis, the vergence angle α (Eq. (11.2)) can be inferred.

The epipolar line crosses the horizontal image axis at xr −yr /sr . From
this, we obtain:

α = 2arctan
y ′

r − y ′
l

x′
ly

′
r + x′

r y ′
l

(11.12)

Note that the numerator of the fraction in this equation is the verti-
cal disparity in Cartesian coordinates. Equation (11.12) is undefined
for points on the horizontal or vertical image axes. In conclusion, in
symmetrically verging systems, one pair of corresponding image points
suffices to determine the absolute position of the point in space, even
if the vergence of the camera system is allowed to change.

Binocular camera movements. So far, we have considered caseswhere
the camera rotationwas confined to a pair of axes orthogonal to the hor-
izontal plane. If we now turn to general fixation points, we first have to
discuss the degrees of freedom of the required turns. The possible ar-
rangements and naming conventions are summarized in Fig. 11.6. The
human eye moves according to the Listing system shown in Fig. 11.6c.

We give rotation matrices for the three systems that rotate a space
direction [a, b, c]T with a2 + b2 + c2 = 1 and c ≠ 1 into the straight-on
direction of the camera, [0,0,1]T . Additional roll movement about that
axis of gaze is not included in these matrices.

In the Fick system (Fig. 11.6a), the first rotation is around a vertical
axis, while the second uses a horizontal one. Technically, this is real-



11.2 Stereopsis 407

a

2

1

b

2

1

c

1

2

Figure 11.6: Degrees of freedom of rotation for technical and biological camera
systems. The central square with the pupil marks the camera: a Fick system.
The first turn is about the vertical axis, the second about a horizontal one; b
Helmholtz system. The first turn is about a vertical axis, the second turn about
an axis orthogonal moving axis; c Listing system. The camera is placed in a
bearing. In the first rotation the outside ring is moved, thereby selecting an axis
for the second turn. All systems include a roll movement about the view axis as
a third step. It is not shown here.

ized by two independent pan-tilt camera systems. The equation reads:

F(a,b,c) =

 c/
√

a2 + c2 0 −a/
√

a2 + c2

−ab/
√

a2 + c2
√

a2 + c2 −bc/
√

a2 + c2
a b c

 (11.13)

The Helmholtz system starts with a turn about a fixed horizontal
axis (Fig. 11.6b). Stereo heads using the Helmholtz geometry can thus
be built with a common tilt axis. Additional turns are about an axis
orthogonal to this tilt axis. The matrix is:

H(a,b,c) =


√

b2 + c2 −ab/
√

b2 + c2 −ac/
√

b2 + c2

0 c/
√

b2 + c2 −b/
√

b2 + c2
a b c

 (11.14)

Finally, in the Listing system, movement starts by choosing an axis
of rotation. The second step is a turn about that axis moving the gaze
direction from the start to the goal position on a great circle. All pos-
sible axes lie in what is called Listing’s plane, a plane orthogonal to the
principal (straight-on) direction passing through the center of the eye:

L(a,b,c) =
 (a2c + b2)/(1− c2) −ab/(1+ c) −a

−ab/(1+ c) (a2 + b2c)/(1− c2) −b
a b c

 (11.15)

In human vision, Listing’s law states that the roll position at any one
viewing direction is as if the eye had moved to this direction along a
great circle from the straight-on position. Roll is independent of the
actual way by which the current position is reached.
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Figure 11.7: Space horopter for a stereo camera system with nodal points
(±1,0,0)5 fixating at (2.0,0.3,3.0)5: a Fick system; b Helmholtz system; c List-
ing system.

The space horopter. An important concept for understanding stereo
geometry is the space horopter , that is, the set of points in the 3-D
world whose vertical and horizontal disparity vanish simultaneously.
It is clear that the space horopter passes through the point of fixation.
Because the vanishing of both horizontal and vertical disparity poses
a 2-D constraint on the horopter, one would expect it to be a curve, or
some 1-D manifold. With the rotation matrices given in the foregoing,
the problem can be formulated as follows.

Let f = [
f1, f2, f3

]T denote a fixation point with f3 > 0. Let M
denote one of the forementioned rotation matrices. We write

Ml =Mf−nl ; Mr =Mf−nr (11.16)

where the camera nodal points are denoted by nl and nr , respectively.
Ml(p − nl) thus describes the coordinate transformation of a point p
fromworld coordinates into the coordinate system centered around the
left camera. A point on the horopter must then satisfy the equation

Ml(p −nl) = λMr (p −nr ) (11.17)

where λ is a positive real variable describing the ratio of the distances
of point p to the two nodal points.

Figure 11.7 shows solutions of Eq. (11.17) for the three systems of
camera axes. For the Helmholtz system, the space horopter is com-
posed of a Vieth-Müller circle in a plane tilted away from the horizon-
tal by the common elevation angle, and a medial line perpendicular to
the circle. In the other cases, the space horopter is a space curve that
degenerates to the circle plus line arrangement for fixation points in
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Table 11.1: Examples for stereo camera headswith various degrees of freedom.
In the DoF column, the first number applies to the cameras, the second to the
head, and the third to a further support system (body, vehicle, etc.)

DoF Type Examples

Helmholtz architectures (common tilt axis)

1+ 4+ 0
symmetric vergence + head tilt,
pan, x, y-translation

U Penn; Krotkov [18]

1+ 2+ 0
symmetric vergence + head tilt
and pan (symmetric Helmholtz)

Harvard head; Clark and
Ferrier [19]

2+ 1+ 6
camera pan + yoked tilt + Puma
arm

Rochester head; Coombs
and Brown [20]

Fick architectures (independent tilt and pan)

4+ 2+ 0
camera pan and tilt about nodal
points + eccentric pan and tilt of
neck module

KTH head; Pahlavan and
Eklundh [21]

4+ 0+ 2
camera pan and tilt + turn and z-
translation of vehicle

Seelen et al. [22]

Listing architecture (camera movement on great circles)

6+ 6+ 6 human head

the horizontal or medial plane. For a derivation of the space horopter
in the Listing case, see Solomons [17].

Stereo camera heads. The discussion of stereo geometry presented
so far applies to stereo camera systems with a fair number of degrees
of freedom to move. In human vision, these are the yoked variables,
vergence and version, for the movements within the horizontal plane;
for movements outside the horizontal plane, Listing’s law applies. Me-
chanically, each eye has the full three degrees of freedom of rotation.
Movements of head and body give additional flexibility to the system.

An overview of some technical camera heads is given in Table 11.1;
for a more comprehensive discussion, see Murray et al. [23]. As an
example of the design questions arising in the design of camera heads,
we discuss one simple geometrical property of verging camera systems
that seems to have been overlooked previously.

Consider a simple camera head with two degrees of freedom. These
can be either the two viewing directions (pan) ϕl and ϕr of the indi-
vidual cameras, or the symmetric vergence of the system α and the
heading direction ξ. For simplicity, we assume that the head turns
around a vertical axis through the midpoint between the two camera



410 11 Three-Dimensional Imaging Algorithms

a b c

x
y

h

x

y

h

x
y

h
ξ

Figure 11.8: Comparison of camera heads with two degrees of freedom. The
center of rotation of the camera head is marked by h: a and b head with
independentlymoving camera ((ϕl, ϕr ) system); c headwith symmetric version
and yoked pan movements ((α, ξ) system). In the (ϕl, ϕr ) system, the zero-
disparity circle can be made passing through just one point (x or y) at any one
time. In the (α, ξ) system, the disparity of both points can be compensated
simultaneously. Note that the spatial relation of x, y and h is the same in all
panels.

nodal points and the cameras turn around parallel axes through their
respective nodal points. Note that ξ is not identical to the version angle
γ previously introduced. Two criteria could be the following:

C1 Is it possible to fixate any point in the plane, thereby reducing its
disparity to zero?

C2 Given two points in the plane, is it possible to simultaneously reduce
both disparities to zero? In this case, a smooth surface passing
through the two points would have low disparity values throughout.

With respect to criterion 1, the (ϕl, ϕr ) system has a problem with
points on the baseline. The (α, ξ) system can fixate any point in the
plane without restriction. With respect to criterion 2, it is quite clear
that for the (ϕl, ϕr ) system, simultaneous disparity reduction of two
points is possible only if the two points happen to be on a circle passing
through the two nodal points. In the (α, ξ) system, however, simulta-
neous disparity reduction is always possible as long as the line through
the two points x and y is neither the baseline nor the horizontal mid-
line of the system. The corresponding settings for the camera head
are:

ξ = arctan
(4x2 − b2)y2 − (4y2 − b2)x2

(4y2 − b2)x1 − (4x2 − b2)y1
(11.18)

α = arctan
b(x1 sinξ + x2 cosξ)

x2 − b2/4

= arctan
b(y1 sinξ + y2 cosξ)

y2 − b2/4
(11.19)
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An example of this relationship is shown in Fig. 11.8c.

11.2.2 Global stereopsis

Global disparity. In this section, we will briefly discuss global image
difference as one interesting variable in stereovision. We will assume
that the left and right images are related to each other by a 1-D disparity
map δ(x′, y ′) such that

Ir (x′, y ′) = Il(x′ − δ(x′, y ′), y ′) (11.20)

Vertical disparities will be neglected in this analysis.
We will prove in this section that the global disparity or image shift

minimizing the overall image difference equals the averaged true dis-
parity, weighted by local image contrast. To see this, we introduce the
global image correlation

Φ(D) :=
∫ ∫

[Il(x′, y ′) − Ir (x′ + D, y ′)]2 dx′ dy ′ (11.21)

Setting I(x′, y ′) := Il(x′, y ′) and substituting Eq. (11.20) into Eq. (11.21),
we obtain:

Φ(D) =
∫ ∫

[I(x′, y ′) − I(x′ − δ(x′, y ′) + D, y)]2 dx′ dy ′ (11.22)

Theminimization is now performed by calculating the derivativeΦ′(D).
Application of the chain rule yields:

Φ′(D) = 2
∫ ∫

Ix′(x′ − δ(x′, y ′) + D, y ′) (11.23)

[I(x′, y ′) − I(x′ − δ(x′, y ′) + D, y ′)]dx′ dy ′

SettingΦ′(D∗) = 0 and linearly approximating the term in square brack-
ets, we obtain:

0 ≈
∫ ∫

Ix′(x′, y ′)[(D∗ − δ(x′, y ′))Ix′(x′, y ′)]dx′ dy ′ (11.24)

This yields the final result:

D∗ ≈
∫ ∫

δ(x′, y ′)I2x′(x′, y ′)dx′ dy ′∫ ∫
I2x′(x′, y ′)dx′ dy ′ (11.25)

As stated in the foregoing, Eq. (11.25) shows that the global dispar-
ity, that is, the image shift maximizing overall correlation between the
left and the right image, is equivalent to the average of the local dispar-
ities, weighted by the squared partial derivative of the image intensity
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a b

c d e

Figure 11.9: Obstacle avoidance by inverse perspective mapping: a,b left and
right images of a scene; c predicted right view based on inverse perspective
mapping of the left view; d comparison of actual and predicted right image.
The actual image is shown as gray values, whereas the prediction is shown by
contours. The images coincide in the ground plane, but deviate increasingly
for objects raising above the plane; e difference image of actual and predicted
right image. The obstacle can easily be segmented from the ground plane.

function I2x′(x′, y ′), which may be considered a measure of image con-
trast in the “disparity direction.”

In verging camera systems, global disparities can be used to adjust
the vergence angle and thus the working point of stereopsis to some
point of interest in space. In biological vision, disparities are consid-
ered only in a narrow range around zero, called Panum’s fusional area.
The advantage of this is that high disparity resolution can be deployed
to regions in space where it is actually needed. In terms of stereo-
correspondence algorithms, the ability to verge results in a smaller re-
quired search space for disparities. Global image correlation as defined
in Eq. (11.21) has been used for vergence control, for example, by Ahuja
and Abbott [24]. In human vergence movements, an averaging mecha-
nism as described by Eq. (11.25) has been demonstrated by Mallot et al.
[25]. Phase-based approaches to global disparity estimation have been
discussed by Theimer and Mallot [26].

Inverse perspective mapping. As one example of a technical appli-
cation of global stereopsis, we briefly discuss obstacle avoidance by
inverse perspective mapping [27, 28]. Here, prior to disparity calcu-
lations, the images are transformed in a way that makes global dis-
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parity an even more interesting variable. The basic idea is illustrated
in Fig. 11.9. Consider two stereoscopic views of a scene as depicted
in Fig. 11.9a,b. If no obstacle were around, the right image could be
predicted from the left by a perspective remapping technique. This
remapping is a projective collineation that can be obtained by project-
ing the right image back to the ground plane and imaging the result
with the left camera. Comparing the original and the predicted right
image, one obtains deviations in those image regions where something
is protruding or receding from the horizontal plane, that is, in obstacle
regions. If both images are identical, no obstacle is present. An intu-
itive way to think of this is that inverse perspective mapping creates
a zero-disparity plane (for comparisons of the right and the predicted
right image) that coincides with the ground plane. Whenever a “dispar-
ity” occurs, an obstacle must be present.

The technique is not sensitive to cast shadows and other image
structure as long as it is confined to the plane. Disparity is zero for
points in the ground plane and increases with obstacle elevation. In-
verse perspective mapping has been applied successfully in autono-
mous robots [22, 29] as well as to driver support systems on highways
[30, 31].

Inverse perspective mapping is a projective collineation, most suit-
ably formalized in terms of homogeneous coordinates. Let x̃l and x̃r
denote the homogeneous representations of the left and right image
points xl and xr . Intuitively, x̃l and x̃r are the rays passing through
the respective image points. Inverse perspective mapping is then de-
scribed by a 3× 3 matrix Q with

x̃r =Qx̃l (11.26)

that depends on the rotation between the two cameras MlMT
r , the rel-

ative position of the camera nodal points, nl − nr , the normal of the
assumed ground plane g, and the distance between the ground plane
and the left camera nodal point d. The relation reads:

Q =MlMT
r + (nl −nr )g5

d
(11.27)

For a proof, see Faugeras [32], proposition 6.1. Similar ideas can be
applied to the monocular analysis of optical flow, in which case the
inverse perspective mapping goes from the image plane to the assumed
ground plane [27]. As compared to the stereoscopic case, optical flow
has the disadvantage that it works only when the observer is moving,
requiring faster motions when more reliable obstacle information is
sought.
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11.3 Depth-from-focus

Depth-from-focus addresses the reconstruction of the depth informa-
tion by using the fact that images usually contain blur. A typical situ-
ation is well known from photographs taken with the lens focused to
a close distance. While the foreground is well focused, objects in the
background appear blurred. In general, the blur increases with increas-
ing distance from the location of focus.

The basic idea of depth-from-focus is to correlate the grade of the
blurring with the distance and therefore estimate 3-D positions from
the defocus. Unfortunately, defocus is not the only source of blur,
which can also be disguised by smooth brightness changes in the scene.
Therefore, depth-from-focus either requires multiple views of the same
scene in order to distinguish defocus fromblur, ormaking use of known
properties of the scene and the lens setup. Both approaches lead to
different realizations of depth recovery and will be discussed later in
this section.

11.3.1 Defocused imaging

Depth-of-field and -focus. According to the basic lens equation (3.28)
only objects located at a fixed distance do are imaged well focused onto
the image plane at the fixed position di, whereas objects at other dis-
tances d′

o appear blurred. The distance range in which the blur does not
exceed a certain value is called the depth-of-field. Using the radius ε of
the blur circle in order to describe blur, the depth-of-field is determined
by the choice of a maximal radius of the blur circle, the so-called circle
of confusion εc . Expressed in terms of the magnification M = di/d0,
the f-number O = f /2R, and the object distances, the depth-of-field is
given by

∆d0 = 2O
Mf

d′
0εc = d0

Mf
2Oεc

− 1
⇒ |∆d0| = 2O

Mf
d′
0|εc| = d0

1∓ Mf
2Oεc

(11.28)

In Eq. (11.28) we combined the two distinct cases of ∆d0 being pos-
itive or negative by understanding ε as having the same sign as ∆d0.
Distinguishing between positive and negative signs shows the inher-
ent asymmetry for the depth-of-field, caused by the nonlinearity of
Eq. (3.28). Therefore it is a common practice to assume MR � εc ,
leading to the approximation of d′

0 ≈ d0 in Eq. (11.28) and removing
the asymmetry.

Moving the image plane instead of the object plane also causes a
defocused image. Equivalent to the depth-of-field in object space the
term depth-of-focus in image space denotes the maximal dislocation of
the image plane with respect to a given circle of confusion. The relation



11.3 Depth-from-focus 415

between depth-of-focus and depth-of-field is given by the longitudinal
magnification M2

∆d0 = M2∆di (11.29)

Point spread function. The point spread function is one of the central
terms in depth-from-focus, because it describes the effect of image blur
in a quantitative way. Because the image of a complex object is the
superposition of the images of all object points, and the image of an
object point is the point spread function (PSF) of the lens, the effect of
blurring can be described as a convolution of the well-focused image,
as it would be achieved by a pinhole camera, with the PSF

g(x′) =
∫

f (x(Bξ′))PSF(Bξ′ −x′)d2ξ′ = f (x(x′)) ∗ PSF(x′) (11.30)

This is only true under certain assumptions, which are described in
detail in Section 3.7.

In many cases, we can assume that the shape of the PSF is indepen-
dent of its distance from the plane of best focus. Then, the PSF can be
described by a shape function S and a scaling factor σ , which varies
with the distance g′

PSFZ(x) = 1
s
S
(

x
σ(Z)

)
(11.31)

The denominator s normalizes the PSF to
∫
PSFZ(x)d2x = 1, forc-

ing gray-value preservation. In many cases it is sufficient to replace
σ by the radius of the blur circle ε. The shape function can be com-
pletely different for different optical setups. Nevertheless, only a few
shape functions are sufficient in order to describe the main properties
of standard optics, namely, box functions, Gaussians and Airy disks.
The details of the various point spread functions can be found in Sec-
tion 3.7.1.

Defocus in the Fourier domain. In Fourier space, the convolution
turns into a multiplication of the Fourier transform of the object func-
tion with the Fourier transform of the PSF. The latter is called the optical
transfer function (OTF). Its values give the transfer coefficient for spa-
tial structures of different wavelength through the optical system. A
value of zero indicates that this particular wavelength cannot be seen
by the optics. A typical OTF will act as a low-pass filter, eliminating
higher spatial frequencies, that is, high-resolution details.

11.3.2 Principles of depth-from-focus algorithms

As Eq. (3.35) shows, defocus appears as multiplication in Fourier space.
Because of its commutativity, there is no distinction between the PSF
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and the object function. This has serious implications for depth-from-
focus algorithms, because it means that the gray-value structure de-
pends on both object properties as well as the PSF. A smooth gray-value
transition may arise from either a massive defocus or merely reflects a
nonuniform object surface. On the other hand, depth estimation from
defocus requires the effect of blur caused by the PSF to be separated
from other sources. Two different approaches to solve this problem
are possible:

Multiple-view approaches. Using multiple cameras viewing the same
scene with different focal or aperture settings results in a set of images
with the same object function, but taken with different PSFs. Separa-
tion of the object properties from the PSF effects becomes possible. A
variety of realization of these approaches is possible:

• Focus series A series of images is taken with a single camera while
varying the focusing of the lens. Within the focus series, at each
image point the imagewith themaximum sharpness is selected from
the series, resulting in a depth map. Of course, this is only possible
with static objects that are not moving during the image acquisition.

• Dual focus view Using two cameras with different object planes
results in two images taken with different PSFs for every plane in
between the two object planes. Only at the very center do the two
PSFs become identical, thus leading to the same images at this po-
sition. Using cameras with different optics, for example, different
focal length, eliminates this problem.

• Multiple aperture view Instead of using different focusing, two or
more cameras can be focused at the same object while having dif-
ferent f-numbers, resulting in different blurring. As a special case,
consider a combination of a pinhole camera with a camera of finite
aperture. The image from the pinhole camera shows no blurring,
thus giving the object function. With this information, the influence
of the PSF can be calculated from the other image.

Single-view approaches. Solving the depth-from-focus problem by
using a single image instead of multiple views allows the observation
of fast-moving objects with little effort. To discriminate object function
and PSF, a priori knowledge about the object function and the PSF is
necessary. This class of algorithms therefore requires either the objects
to be restricted to known shapes or the selection of regions, wherein
the object features are known, for example, step edges or point objects.

Ambiguity of depth estimation. It is important to notice that there
may be an ambiguity in depth estimation by depth-from-focus, due to
the fact that the size of the PSF has its minimum at the plane of best
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focus, increasing in both directions: towards and farther away from the
camera position. If no special arrangements are made, this results in an
ambiguity of the depth estimation, because two positions of the object
are possible and cannot be distinguished. This has to be taken into
account especially with single-view methods, but also with multiple-
view methods- because there is only a certain distance range in which
no ambiguity occurs.

11.3.3 Multiple-view depth-from-focus

Multiple-view approaches use sets of views of the same scene, taken
with different camera settings, andmainly with different focusing. Con-
sidering the changing camera parameter as an additional dimension of
the image data, they start with an already 3-D data set. These data are
transformed in order to achieve the desired depth information. These
approaches are used most commonly with focus series.

Introduction to focus series. Focus series are a common approach
for the investigation of motionless objects, and are often used in mi-
croscopy. The focus of a single camera is changed to a number of set-
tings, resulting in a series of images taken with different planes of best
focus (Fig. 11.10). The depth value of each pixel can be found directly
from selecting the image showing the less blur from the series. This is
done be calculating a sharpness measure on each image of the stack,
and then for each pixel or small region of the image, finding the max-
imum of the sharpness measure along the depth axis. Unfortunately,
usually the number of images is limited, resulting in a poor depth res-
olution. Interpolation of the sharpness measure between the images is
therefore required in order to increase depth resolution.

The quality of the depth map is mainly given by the method used to
located the image of best focus within the series, and the interpolation
that is done in between these images.

Sharpness measure. As pointed out in Section 3.7.1, defocus causes
suppression of higher spatial frequencies in the power spectrum of
the image. Any filter sensitive to high spatial frequencies in a local
neighborhood is therefore suitable as a sharpness filter. Obviously,
a large variety of such filters exists, but most of the filters belong to
the two main classes of contrast operators or bandpass filters. In the
following, an example of each filter class is given.

Contrast filters allow a fast implementation of the sharpness mea-
sure. They measure the range of gray values available in a neighbor-
hood N of the pixel. Because the lack of high spatial frequencies re-
sults in slower gray-value changes, the local contrast also decreases
with increasing defocus. As contrast detector, either the local contrast
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Figure 11.10: Focus series of a machine screw used for depth recovery.

operator

Cl(x) = max
x′∈N

g(x′) −min
x′∈N

g(x′) (11.32)

or the normalized contrast

Cn(x) =
max
x′∈N

g(x′) −min
x′∈N

g(x′)

max
x′∈N

g(x′) +min
x′∈N

g(x′)
(11.33)

can be used. These filters are very sensitive to contrast changes, but
also sensitive to isolated noise pixels. They can be improved by replac-
ing the minimum and maximum operator by rank filters, for example,
p-quantile filters. The p-quantile Q(p) value in an neighborhood N is
defined as the gray value at which the pth fraction of all gray values
in N are below Q(p) and the 1 − pth fraction of gray values is above
Q(p). This can be expressed by the local gray-value histogram H(g) of
the neighborhood N as

Q(p) = F−1(p) with F(g) =
g∑

−∞
H(g) (11.34)

F(g) is the cumulative distribution function (CDF) [33] of the gray-value
distribution. As the p-quantile is a generalization of minimum and
maximumoperators, it is used as a contrast filter by replacingmaxg(x)
byQ(1−p, Vx) andming(x) byQ(p, Vx) in Eq. (11.32) and Eq. (11.33),
respectively.

In order to achieve high processing speed, a variance-based method
has been implemented by one of the present authors. The results of
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Figure 11.11: Focus series of a metric screw taken with a telecentric optics with
an object to image ratio of 20.

this method, applied to a focus series of a screw (Fig. 11.11) are shown
in Fig. 11.12a. To give a first estimate of the position, for each region of
16×16 pixel the image with the highest local contrast has been chosen.
In addition, an overall sharp image is calculated by selecting each pixel
from the image previously found to have the highest contrast at this
position (see Fig. 11.12b).

In order to find image regions containing high spatial frequencies,
high-pass and bandpass filters can be used. Although the high-pass
filters seem to be optimal in selecting high frequencies, they tend to
fail due to their noise sensitivity. Therefore, they are combined with
a low-pass filter, which cuts the wavelength above the cut wavelength
of the high-pass filter to form a bandpass. Bandpass filters select a
range of spatial frequencies from the Fourier transform of the image.
The center wave number and width of the filter can be optimized to
meet the requirements of the image material. A bandpass filter can
easily be constructed from the difference of two Gaussian filters, as the
well-known Difference of Gaussian (DoG) filter

DoGσ1,σ2(x) = 1√
2πσ1

e
− x2
2σ12 − 1√

2πσ2
e
− x2
2σ22 (11.35)
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a b

Figure 11.12: a Depth map of a machine screw calculated by the variance
method; b overall sharp image calculated from the original images using the
depth map.

As an effective implementation, pyramid decompositions of the im-
ages can preferably be used. Darell and Wohn [34] report an algorithm
using first a bandpass decomposition of the image by a Laplacian pyra-
mid, adequate for DoG filtering. In order to average the results over
a larger area, a Gaussian pyramid is constructed on each level of the
Laplacian pyramid, resulting in a dual pyramid structure Ik,l

Ik,l = EG(k)L(l)I (11.36)

where I is the image, G(k) is the operator for the kth level of the Gaus-
sian pyramid, L(l) is the operator for the lth level of the Laplacian pyra-
mid, and E is the expansion operator suitable to interpolate the sub-
sampled image back to the original image size. This is used as the final
sharpness measure. Figure 11.13 shows the results of calculating the
depth from the depth series in Fig. 11.11 using different levels for both
the Gaussian as the Laplacian pyramid. For these images, the combina-
tion of the 0-th level of the Laplacian pyramid with the second level of
the Gaussian pyramid selects the optimal wave-number range.

Three-dimensional reconstruction. So far, all methods result in a
depth map, giving a distance value for each pixel in the image, also
called a 2.5-D reconstruction. Therefore, only opaque surfaces can be
surveyed with this method, as they appear in many technical applica-
tions. However, microscopic imaging typically deals with transparent
or semitransparent objects. The question arises whether it is possible
to perform a fully 3-D reconstruction of the object from depth series.
This can be done by deconvolving the image stack with the inverse of
the 3-D point spread function of the microscope.
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Figure 11.13: Depth map calculated from different combinations of levels of
the Laplacian and Gaussian pyramid. The best results are obtained from the
combination of the 0-th level of the Laplacian pyramid with the first and second
level of the Gaussian pyramid.

11.3.4 Dual-view depth-from-focus

The basic idea of dual-view depth-from-focus techniques is to take two
images of the same scene, but with different parameters of the optical
setup to realize different point spread functions. To ensure that the
image pair is taken at the same time, beamsplitters and folding mirrors
are used as illustrated in Fig. 11.14.

Dual aperture. In order to achieve a depth estimate at a position x0, a
region centered at this point is considered. The choice of the size of this
region determines the spatial resolution of the depth map. Pentland
[35] developed a method based on the assumption of a Gaussian point
spread function, which will be summarized here. Denoting the two
images by gi, the object function by Oi, and the variances of the two
Gaussian PSFs by σi, the relation of the two images is given by

g1(x)
g2(x)

= O1(x) ∗ Gσ1(x)
O2(x) ∗ Gσ2(x)

(11.37)
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Figure 11.14: Optical setup for a dual aperture camera system. One beamsplit-
ter and a folding mirror are necessary to simultaneously acquire two images
with different aperture of the same object.

It is important to note that there is no matching problem, because
the two camera setups are identical except for the f-number. Therefore
the object functions are identical. In Fourier space, the convolution
turns into a multiplication. By dividing the Fourier transforms instead
of the images, the result becomes independent of the object functions

ĝ1(k)
ĝ2(k)

= Ô(k)Ĝσ1(k)
Ô(k)Ĝσ1(k)

= σ 2
2 Gσ ′

1
(k)

σ 2
1 Gσ ′

1
(k)

with σ ′
i = 1

σi
(11.38)

or

ĝ1(k)
ĝ2(k)

= σ 2
2

σ 2
1

e− k2
2 (σ2

1−σ2
2 ) ∼ Gσ (k) with σ = 1

σ 2
1 − σ 2

2

(11.39)

The ratio of the Fourier transforms of the two images therefore is a
Gaussian with variance σ , which can be estimated with standard algo-
rithms. From Eq. (3.29) the depth d′

0 is known to be

ε
R

= di
d0

− di
d′
0
⇒ d′

0 = dif
di − f − 2Oε

(11.40)

Pentland [35] uses ε as a direct estimate for σ . If only two cameras
are used, one has to be a pinhole camera in order to fixσ1 to zero. Using
three or more cameras with finite aperture results in a set of estimates
of the differences of the σ -values

Sij = σ 2
i − σ 2

j (11.41)

and therefore allows for the solution of Eq. (11.40).
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Figure 11.15: Illustration of the convolution ratio of the two PSFs h1 and h2.

Dual aperture and focus. In fact, it is possible to reconstruct depth
information from only two cameras without the limitations to pinhole
setups. Assuming again identical optics but for the aperture settings
of the both cameras, two images are taken from the same scene O by
the convolution with two different, now arbitrarily shaped point spread
functions h1 and h2

g1(x) = O(x) ∗ h1(x), g2(x) = O(x) ∗ h2(x) (11.42)

Convolution ratio. As introduced by Ens and Lawrence [36], the con-
volution ratio h3 of two defocus operators is defined as the convolution
kernel that transforms the low aperture (and therefore less blurred) im-
age g1 into the high aperture image g2, as indicated in Fig. 11.15

g2(x) = g1(x) ∗ h3(x) (11.43)

Now, g2 can be expressed either in terms of h2 or h1 and h3

g2(x) = O(x) ∗ h1(x) ∗ h3(x) = O(x) ∗ h2(x) (11.44)

that is equivalent to

h1(x) ∗ h3(x) = h2(x) (11.45)

Depth recovery now requires two separate steps. First, the convolu-
tion ratio has to be computed from the image pair. Second, it has to be
correlated with the true depth information. Ens and Lawrence [37] give
a method based on inverse filtering to compute the convolution ratio.
The windowed Fourier transform of the two images is given by

gi(x)wi(x) = (O(x) ∗ h1(x))wi(x) space domain

ĝi(k) ∗ ŵi(k) = (Ô(k)ĥ1(k)) ∗ ŵi(k) Fourier domain
(11.46)
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with the window functions wi(x). Windowing is necessary in order to
calculate spatial resolved depthmaps instead of a global depth estimate
for the complete scene.

To isolate the convolution ratio, the ratio of the two Fourier trans-
forms is taken

ĝ2(k) ∗ ŵ2(k)
ĝ1(k) ∗ ŵ1(k)

= (Ô(k)ĥ2(k)) ∗ ŵ2(k)
(Ô(k)ĥ1(k)) ∗ ŵ1(k)

(11.47)

The convolution ratio can be computed by means of Fourier trans-
formation

h3(x) = FT −1
[

ŵ2(k) ∗ ĥ2(k)
ŵ1(k) ∗ ĥ1(k)

]
(11.48)

The size of the window function is critical for the quality of the
depth estimation, because larger sizes of thewindow improve the Fourier
transformations, but, on the other hand, decrease the resolution of the
depth maps. In addition, if the size of the window is large, only slow
depth transitions can be detected. In the 1-D case, Ens and Lawrence
[37] compute the correlation of accuracy and window size with a nu-
merical simulation:

Window size 4 8 16 32

Error 66 % 24 % 6 % 1 %

For this calculation, a step edge scene O = {...,0,0,1,1, ....} has been
used with a defocus operator of a pinhole camera h1 = {0,1,0} and a
defocus operator h2 = {1,1,1}. Using a Gaussian window function, it
can be seen that the error decreases as the size of the window function
increases. To achieve smaller error, the window size has to be one order
of magnitude larger than the PSF. If the size of w is small in order
to guarantee a good spatial resolution of the depth map, its Fourier
transform ŵ can assumed to be constant. Thus Eq. (11.48) turns into
the simpler representation

h3(x) = FT −1
[

ĥ2(k)
ĥ1(k)

]
(11.49)

A common problem with inverse filtering are zero crossings of the
Fourier transform, because thesewave numbers cannot be reconstructed.
The image functions gi = O ∗hi have two kinds of zero crossings. The
zero crossings of the object function O occur in both image functions,
while the zero crossings of the defocus operators h1 and h2 differ. Un-
fortunately, the convolution of Ô with the Fourier transforms ĥi can
change the location of the zero crossings. The following sections intro-
duce several algorithms suitable to solve the problems associated with
zero crossing shifts.
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Constraint inverse filtering. By using regularization, the problems
with inverse filtering can be reduced. Therefore, the inverse filtering
can be constrained by least squares fitting ĥ3(k) to a model. In this
approach a quadratic model (ĥ3(k) = ak2 + b) is used, because it has
been shown that the characteristic part of ĥ3(x) is a quadratic-type
shape. Equation (11.49) can be written as

ĥ1(k)ĥ3(k) − ĥ2(k) = 0 (11.50)

With H1 is a matrix with ĥ1(k) stacked along its diagonal and h2,3

stacked vectors formed from ĥ2,3(k); Eq. (11.50) can be denoted in
matrix notation

H1h3 −h2 = 0 (11.51)

The regularized form of Eq. (11.51) minimized the functional

‖H1 ·h3 −h2‖2 + λ‖Ch3‖2 = min (11.52)

where

• λ is a scalar parameter, which adjusts between fitting h3 more to
the data or to the quadratic shape; and

• C is a matrix that minimizes the second term if h3 has quadratic
shape.

To get the solution for this minimization problem and derive the best-
fitted h3, the Euler equation (Bertero and Poggio [38]) for Eq. (11.52) is
solved for H3

HT
1H1h3 −HT

1h2 + λCTCh3 = 0 (11.53)

h3 =
(
HT

1H1 + λCTC
)−1

HT
1h2 (11.54)

From this the parameter to the best-fitted quadratic can be derived.
By comparing the zero crossing of the quadratic and of the theoretically
derived ĥ3, that is, the Airy function mentioned in Section 11.3.1, the
depth can be calculated.

11.3.5 Single-view depth-from-focus

Single-view depth-from-focus requires only one image of the scene to
be taken. Therefore, it is necessary to know properties either of the
object function or of the point spread function. Even if the shape of
the PSF is completely known, restrictions to the object function are
necessary in order to solve the depth-from-focus problem. A common
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region A2 Pe
PSF

line l region A1

Figure 11.16: Geometry at the step edge.

approach is to calculate depth estimates only at image regions, whose
properties can be estimated from the image itself, for example, line
edges. This results in sparse depth maps, where values are given only
at these positions. Often, the point spread function is approximated
by box functions or Gaussians.

Sharp discontinuities. Step edges in the gray value are ideal in order
to separate the defocus from the image. For the implementation of
such depth-from-focus algorithms, first, a detection of step edges has
to be made. The actual depth estimation can only be performed in
the neighborhood of these edges. This section will describe several
approaches for the depth recovery near linear step edges. A step edge
of height γ along a straight line is defined by

O(x) =
{

g0 + γ : x ∈ A2

g0 : x ∈ A1
(11.55)

An important prerequisite of the methods described here is that
the point spread function is of known shape, and, in addition, has ro-
tational symmetry. Furthermore, we assume the point spread function
to be of Gaussian shape with variance σ(z)2, where σ depends on the
distance z of the object to the plane of best focus; σ is often denoted
as the spatial constant. Because of the symmetry, images of objects
located in front or behind this plane are indistinguishable. Therefore,
the object position has to be limited to one side of the focal plane.

As the gray values in the neighborhood of a step edge are deter-
mined by the height of the steps g1 and g2 and the spatial constant σ ,
the analysis of the gray-value changes close to the edge provides a way
to estimate σ . Algorithms of this kind have been introduced first by
Pentland [39] and Grossman [40] who coined the term depth-from-focus
to denote these methods.
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The approach of Pentland [35] focuses on the estimation of σ from
the gray value along a line l perpendicular to the edge, as indicated in
Fig. 11.16.

Without loss of generality, the edge line may be in the y-direction
at the position x0 for the further computations. Therefore, instead of
Eq. (11.55) we use Ox(x) unless otherwise noted:

Ox(x) =
{

g0 + γ : x > x0

g0 : x < x0
(11.56)

We define the sharpness measure C(x) as the Laplacian of the im-
age, which itself is the convolution of the object function O with a
Gaussian Gσ

C(x) = ∆(Gσ ∗ Ox)

=
∫
∆Gσ (

√
x −x′)Ox(x′)d2x′

= δ
[

d
dx

G1
σ (x − x0)

] (11.57)

Herein G1 denotes a 1-D Gaussian. The position of the step edge in
the blurred image is defined as the zero crossing of the Laplacian of
the image. At this very position, we obtain

C(x) = δ
[

d
dx

G1
σ (x)

]
= − δx√

2πσ 3
e− x2

2σ2 (11.58)

From

ln
∣∣∣∣C(x)

x

∣∣∣∣ = ln
δ√

2πσ 3
− x2

2σ 2 (11.59)

we obtain an equation linear in x2 as seen in Fig. 11.17

ax2 + b = c with a = − 1
2σ 2 b = ln

δ√
2πσ 3

c = ln
∣∣∣∣C(x)

x

∣∣∣∣ (11.60)

A standard linear regression then yields an estimate of σ , which is
correlated to the depth.

Analyzing the gray values along lines perpendicular to the edges
require precise edge finders. Especially, errors in the edge direction
introduce deviations in the spatial constant and therefore lead to errors
in the depth estimations. Lai et al. [41] extended Pentland’s algorithms
without requiring an exact determination of the line direction.

We start with a step edge

O(x) =
{

g0 + γ : x < a + by
g0 : x > a + by

(11.61)
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C(x) c(x)

Figure 11.17: Sharpness measures C(x) and c(x) along the line l.
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Figure 11.18: Definitions of the horizontal and vertical edge distances.

in an arbitrary direction, given by the line x = a+by . Again, assuming
a Gaussian PSF, the gray value at a point P can be expressed by its
distance d perpendicular to the edge

g(x) = Gσ ∗ O = g1

∫
x∈A1

Gσ (x)d2x + g2

∫
x∈A2

Gσ (x)d2x

= g1E
(

d(x)
σ

)
+ g2E

(
−d(x)

σ

) (11.62)

with

E(x) =
∫ x

−∞
G1
1(x′)dx′ (11.63)

The main idea of Lai et al. [41] is to decompose the spatial constant σ
into two components σx and σy for the horizontal and vertical axis,
and then derive equations for the horizontal and vertical gray-value
changes. It is convenient to split the 2-D Equation (11.62) into two 1-D
equations, using the horizontal and vertical edge distances δx and δy ,
as defined in Fig. 11.18.
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To simplify matters, the origin of coordinate system shall be located
at the currently investigated point P . Using d = cosα(δx −x) for solely
horizontal movements and d = sinα(δy −y) for vertical ones, the gray
value can be written as

g(x)(x) = g(x, y = 0) = g1E
(

δx − x
σx

)
+ g2E

(
−δx − x

σx

)

g(y)(y) = g(x = 0, y) = g1E
(

δy − y
σy

)
+ geE

(
−δy − y

σy

) (11.64)

with σ = cos(α)σx = sin(α)σy .
Equation (11.64) can be rewritten as

g(x) = g2 +∆gN
(

δx − x
σx

)

g(y) = g2 +∆gN
(

δy − y
σy

) (11.65)

According to Eq. (11.65), σ can be calculated by estimating the 1-D
spatial constants σx and σy and combining them to

σ = σxσy√
σ 2

xσ 2
y

(11.66)

To solve the depth-estimation problem, either the spatial constant
σ or its decompositions σx and σy must be estimated from a suitable
region of the image. First, this region has to be chosen in the neigh-
borhood of step edges. The most general method is to formulate an
optimization problem, either from Eq. (11.62) for direct estimation of
σ or from Eq. (11.65) for the decomposed spatial constants. It can be
formulated as

C(g1, g2, σi) =
∑(

g(x) − g2 −∆gE
(

δx − x
σx

)2)
→ min (11.67)

or, equivalently,

∂C(g1, g2, σi)
∂g1

= 0
∂C(g1, g2, σi)

∂g2
= 0

∂C(g1, g2, σi)
∂σ1

= 0

(11.68)

Lai et al. [41] use a standard Newton method to solve Eqs. (11.67) and
(11.68).

Edge detection is a basic step in image processing for these algo-
rithms (Chapter 9.7). Therefore, its accuracy should be as good as
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possible in order to eliminate errors in the depth estimation. Besides
simple edge filters as first- and second-order derivatives, Lai et al. [41]
prefer the Laplace of Gaussian (LoG) filter first proposed by Marr and
Hildreth [42] and Hildreth [43] (see also Section 9.7.2). According to
Haralick [44], it can be written as

∆g(x) = 1
4πσ 4

(
2− |x|2

σ 2

)
exp

(
−|x|2
2σ 2

)
(11.69)

Estimating depth. Depth estimation is carried out by correlating the
spatial constant σ with the actual distance of the object. This is done
by establishing an analytical relation between the spatial constant and
depth, and by performing a calibration of the image-acquisition system.
As a first-order approximation blurring is described by the blur circle,
for example, a point spread function of uniform value (Subbarao and
Gurumoorthy [45]). The radius of the blur circle is calculated assum-
ing paraxial and aberration-free optics. As known from Eq. (3.29), the
radius εc of the blur circle is given by

εc
R

= di
∆do
dod′

o
(11.70)

Therefore, the depth D is given by

D = d′
o = do +∆do = dif

di − f − 2Oεc
(11.71)

with f being the focal length of the lens, O is its F-number, and di is the
distance from the lens to the image plane. The assumption of a Gaus-
sian point spread function instead of the blur circle can be expressed
by replacing εc by the spatial constant σ and an adaptation factor k as
εc = kσ . According to Subbarao [46], k is in the range of 0 ≤ k ≤ 0.5.
Equation (11.71) can further be simplified to

D = A
B − kσ

with A = kdif
O

and B = kdi − f
O

(11.72)

where A and B can be seen as system constants, which are to be derived
by the calibration procedure. This can be done easily be estimating σ
for several points of known distanceD and performing an optimization
problem on Eq. (11.72).

Object-based depth-from-focus. Object-based algorithms represent
a different approach for single-view depth-from-focus. These algo-
rithms are of special interest when observing fast-moving objects. They
assume that the images contain only a limited number of object classes,
which can be clearly distinguished by image segmentation. Because the
object properties are known, depth reconstruction becomes possible
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with only one image. In fact, provided that an appropriate calibration
has been done, not even the shape of the point spread function has to
be known. Object-based algorithms have to be seen in clear contrast
to the algorithms described so far. These provide a depth map, which
may be dense or spare, on the image, while object-based approaches
first segment the image in order to find and classify objects, and result
in a depth estimate for each single object.

In this section, two different approaches of object-based depth-from-
focus will be discussed. Because of the different nature of the objects
the two methods use different object features in order to solve the
depth-recovery problem.

This algorithm has been developed by Jähne and Geißler [47] for ob-
jects of circular shape, but arbitrary size. In general, the algorithm can
be applied to any objects of given shape, which are distinguished only
in their size, that is, a scaling factor. Besides the depth the algorithm
results in a correct measurement of the size of the objects, even if they
undergo massive blur. The basic idea of the algorithm is to establish a
robust measure of both size and blur, and then correlate these param-
eters by means of a suitable calibration, thus giving correct size and
depth as the result.

As the first step of the algorithm, the shape of the objects has to
be parameterized. An object is represented by its shape function and
a scaling factor. For the application the algorithm has been developed,
and the shape function is a circular box function. Thus, an object of
radius r is described by

I(x) = Π
( |x −x0|

2r ′ )
)
∗ PSF(x)Z with Π(x) =

{
1 : |x| ∈ [0,1/2]
0 : otherwise

(11.73)

By this means, the object is already blurred due to its defocused
position at the depth z 6= 0. As known from Section 11.3.1, the point
spread function can be described by a shape function, which remains
unchanged for every defocus, and a scaling parameter that describes
the amount of blur. In the following, we assume the image gray val-
ues to be normalized in such a manner that a well-focused object has a
minimum gray value of zero and a maximum gray value of 1.0. Further-
more, for the following calculations, we will assume the point spread
function is of rotational symmetry.

Besides the scaling due to the magnification of the imaging optics,
defocus itself changes the size of the objects, because there is no in-
escapable definition of the size of an object with blurred edges. There-
fore, as the preliminary size of a blurred object, Jähne and Geißler [48]
chose the equivalent radius of the 1/q-area of the object. The 1/q-area
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Figure 11.19: a Gray value at the object edge for a Gaussian- and box-shaped
point spread function. b Dependence of the 1/0.5 equivalent radius from the
defocus.

is hereby defined as the area over which the gray value of the object is
larger than 1/q of the peak gray value.

Now, an optimal value of q has to be chosen. For a linear edge, the
value q = 0.5 leads to a constant (normalized) gray value of 0.5 at the
object boundary, as long as the scope of the PSF does not exceed the
size of the object, because

gobject edge =
∫

x≤0
PSF(x, y) dx dy (11.74)

due to the symmetry of the PSF.
Unfortunately, the objects are of circular shape. This leads to a

smaller integration area than in Eq. (11.74), causing a slight decrease
of the gray values at the object edges.

The change of the edge gray value with increasing defocus depends
on the shape function of the PSF. The more the PSF is concentrated to-
wards its center, the less distinct is the effect. Figure 11.19a illustrates
this with a box-shaped and a Gaussian-shaped PSF, where the latter
shows less variation.

Any value for q will therefore cause deviations in the size estimate
of blurred objects. Therefore, there is no optimal value at all. In the
following, we will choose 0.5, but this is for convenience only. This will
cause the size shift as shown in Fig. 11.19b. In the depth-from-focus
correlation of the input parameters, the correct size will be calculated.

As the measure of blur, the mean gray value gm on the 1/q-area
is suitable. Due to the normalization of the gray values, gm is also
normalized and ranges from 0 to 1. Because the integral gray-value sum∫

g(x)d2x is independent of defocus, the mean gray value decreases
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with increasing defocus. Thus, it provides a normalized andmonotonic
measure.

At this point, depth recovery could be done by establishing a cali-
bration matrix, which correlates the 1/q-area, and the mean gray value
on it with the actual depth. However, it is possible to use the uniform
shape of objects and PSF to reduce the calibration matrix to a 1-D cali-
bration vector. This is explained in the next section.

For a better analysis ofgm we use the fact that the depth dependence
of the PSF can be approximated by a scale factor η(Z) and a shape
function P

PSFZ(x) =
P
(

x
η(Z)

)
∫
P
(

x
η(Z)

)
d2x

(11.75)

The x denotes coordinates on the image plane, while Z denotes the
distance of the object point to the plane of focus. As already pointed
out, all objects are of the same shape. Denoting the magnification of
the optics by V(Z), they are described by their shape function O and
their radius R

G(x) = O
(

x
V(Z)R

)
(11.76)

The image of an object, which may be defocused, is therefore given by

n(x) = G(x) ∗ PSFZ(x) ∼ O
(

x
V(Z)R

)
∗P

(
x

η(Z)

)
(11.77)

Images of object with the same ratio between the scale factorsV(Z)R
of the object function and the scale factor η(Z) of the point spread
function are distinguished only in scaling, but not in shape. In particu-
lar, the mean gray value remains unaffected. Therefore, the similarity
condition Equation (11.78) holds as follows:

η(Z)
V(Z)R

= const � gm = const (11.78)

In addition, gm can be expressed as

gm(Z, R) = gm

(
η(Z)

V(Z)R

)
(11.79)

With a telecentric optics, this can be further simplified. With this
setup, explained in Section 3.6.3, the scaling of the PSF then becomes
linear and symmetric in Z , and can be approximated as η(Z) ∼ |Z|. In
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Figure 11.20: Calibration data used for the depth-from-focus approach: left)
calibration of mean gray value vs normalized depth; right) calibration of radius
vs normalized depth.

addition, V(Z) remains constant over Z . Finally, the mean gray value
depends only on the normalized distance |Z|/R

gm(Z, R) = gm

( |Z|
R

)
(11.80)

Similar considerations lead to the similarity condition for the equiv-
alent radius. Images of objects with the same ratio Z/R are distin-
guished by a scale factor only, which has to be given by the object size.
Therefore

R1/2 = Rρ
( |Z|

R

)
�

R1/2

R
= ρ

( |Z|
R

)
(11.81)

With Eqs. (11.79) and (11.81) the depth estimation is carried out by
the following steps:

• Segmentation. The image is segmented in order to find the objects
and to determine their 1/q-area and respective mean gray value;

• Normalized depth. From the defocus measure gm the normalized
depth |Z|/R is calculated according to the inversion of Eq. (11.80);

• True radius. From the 1/q-equivalent radius R1/q and Eq. (11.81)
the true radius R is obtained.

• Depth estimation. From the normalized depth |Z|/R and the radius
R the depth |Z| can be calculated easily.
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The relations between normalized depth, ratio of radii R1/q/R and
mean gray value have to be obtained by a calibration procedure. Fig-
ure 11.20 shows the result of the calibration used for the depth-from-
focus method. The application of the method to particle size and con-
centration measurements is described in detail in CVA3 [Chapter 29].

Pyramid-based depth-from-focus. As already pointed out, defocus
can be measured by analyzing the suppression of high spatial frequen-
cies. This has been used by Scholz et al. [49] and Suhr et al. [50] in order
to solve the depth-from-focus problem for a biotechnological applica-
tion. The application itself is described in detail in CVA3 [Chapter 29].
Here, we focus on the depth-from-focus algorithm.

Because the application deals with the detection of cells in a fluid
medium, it concerns objects of similar shape and size. Due to the prop-
erties of the cells and the imaging technique used, all cells appear as
approximately Gaussian-shaped objects of very similar size, but differ-
ent brightness. The basic idea of the algorithm is to characterize the
blurring of the cells by a feature vector. The feature vector is defined
as the squared filter response on each level of the Laplacian pyramid
(Section 8.10.3)

|L(k)|2 =
M−1∑
i=0

N−1∑
j=0

(L(k)
i,j )2 (11.82)

whereby L(k) denotes the kth level of the Laplacian pyramid. The fea-
ture vector is then

F = (F0, F1, ..) = (|L(0)|2, |L(1)|2, |L(2)|2, ...|L(n)|2) (11.83)

The orientation of F is independent of the brightness of the object,
therefore the ratios of the components of the feature vector

Oi,j = tanφi,j = |L(j)|2
|L(i)|2 i, j ∈ [0,1, ..., n] ∀i 6= j (11.84)

are normalized with respect to the brightness of the object. Each of
the directional components Oi,j is a measure of the defocus, and is
sensitive to a certain wave-number range.
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12.1 Introduction

Starting with Perona and Malik’s work in 1987 [1, 2], nonlinear diffu-
sion filtering has become a popular tool in medical imaging [3, 4, 5,
6, 7, 8, 9] as well as many other areas; it has been used for improved
subsampling algorithms [10], postprocessing of fluctuating numerical
data [11], blind image restoration [12], computer-aided quality control
[13, 14], segmentation of textures [15, 16] and remotely sensed data
[17, 18]. In the meantime it has also entered commercial software pack-
ages such as the medical visualization tool Analyze1.

Nonlinear diffusion filters regard the original image as the initial
state of a diffusion process that adapts itself to the evolving image. Dif-
ferent adaptation strategies provide different ways to include a priori

1Analyze is a registered trademark of Mayo Medical Ventures, 200 First Street SW,
Rochester, MN 55905.
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knowledge into the evolution. The embedding of the original image into
a family of gradually smoother, simplified versions of it allows nonlin-
ear diffusion filtering to be considered as a scale-space technique. The
fact that the nonlinear adaptation may also enhance interesting struc-
tures such as edges relates them to image enhancement and image-
restoration methods.

The goal of the present chapter is to give an introduction to some
selected key aspects of nonlinear diffusion filtering. We shall discuss
some main ideas and study how they can be realized in practice by
choosing adequate filter models and suitable parameters. Questions
of this type are often posed by practitioners, but are hardly addressed
in the literature. This chapter is not intended as a state-of-the art re-
view of the relevant literature in this area because descriptions in this
direction are already available elsewhere [19, 20]. For a unifying theo-
retical framework and algorithmic details we refer the reader to CVA2
[Chapter 15].

The chapter is organized as follows. Section 12.2 presents differ-
ent nonlinear diffusion models. They comprise isotropic filters with
a scalar-valued diffusivity as well as anisotropic ones with a diffusion
matrix (diffusion tensor). The practically important question of how to
select appropriate filter parameters is addressed in Section 12.3. In Sec-
tion 12.4 extensions to higher-dimensional data sets and to multichan-
nel images are sketched. Finally, Section 12.5 shows that variational
image restoration can be regarded as an approximation to diffusion
filtering. The chapter is concluded with a summary in Section 12.6.

12.2 Filter design

12.2.1 The physics behind diffusion

Most people have an intuitive impression of diffusion as a physical pro-
cess that equilibrates concentration differences without creating or de-
stroying mass. This physical observation can be easily cast in a mathe-
matical formulation. The equilibration property is expressed by Fick’s
law

j = −D∇u (12.1)

This equation states that a concentration gradient ∇u causes a flux j
that aims to compensate for this gradient. The relation between ∇u
and j is described by the diffusion tensor D, a positive-definite sym-
metric matrix. The case where j and ∇u are parallel is called isotropic .
Then we may replace the diffusion tensor by a positive scalar-valued
diffusivity D. In the general anisotropic case, j and∇u are not parallel.
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The observation that diffusion only transports mass without de-
stroying it or creating newmass is expressed by the continuity equation

∂tu = −div j (12.2)

where t denotes the time. If we plug in Fick’s law, Eq. (12.1), into the
continuity equation, we end up with the diffusion equation

∂tu = div(D∇u) (12.3)

This equation appears in many physical transport processes [21]. In the
context of heat transfer it is called heat equation.

In image processing wemay identify the concentration with the gray
value at a certain location. If the diffusion tensor is constant over
the whole image domain, one speaks of homogeneous diffusion, and
a space-dependent filtering is called inhomogeneous. Often the diffu-
sion tensor is a function of the differential structure of the evolving
image itself. Such a feedback leads to nonlinear diffusion filters.

Sometimes the computer vision literature deviates from the pre-
ceding notations: It can happen that homogeneous filtering is named
isotropic, and inhomogeneous blurring is named anisotropic, even if it
uses a scalar-valued diffusivity instead of a diffusion tensor.

12.2.2 Limitations of linear diffusion filtering

Let us consider a 2-D (scalar-valued) image that is given by a continuous
bounded mapping g : R2 → R. One of the most widely used methods
for smoothing g is to regard it as the initial state of a homogeneous
linear diffusion process

∂tu = ∂xxu + ∂yyu (12.4)

u(x,0) = g(x) (12.5)

From the literature on partial differential equations it is well known
that its solution is given by the convolution integral

u(x, t) =
{

g(x) (t = 0)
(K√

2t ∗ g)(x) (t > 0)
(12.6)

where Kσ denotes a Gaussian with standard deviation σ

Kσ (x) := 1
2πσ 2 · exp

(
−|x|2
2σ 2

)
(12.7)

Linear diffusion filtering is the oldest and best-studied example of a
scale-space. Usually, Witkin’s 1983 work is regarded as the first refer-
ence to the linear scale-space idea [22], but linear scale-space had al-
ready been axiomatically derived by Iijima in 1962 [23, 24]. A detailed
treatment of linear scale-space theory can be found in [25, 26, 27].
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a b c

Figure 12.1: a Orange, 256× 256 pixels; b linear diffusion, t = 100; c Perona-
Malik diffusion, λ = 3, t = 100.

Figure 12.1a, b shows an example where an image depicting an or-
ange is filtered by linear diffusion. In spite of its excellent smoothing
properties, two disadvantages of linear diffusion filtering become ap-
parent:

(a) Semantically useful information is eliminated in the same way as
noise. Because linear diffusion filtering is designed to be uncom-
mitted, one cannot incorporate image-driven information in order to
bias the scale-space evolution towards a desired task, for instance,
edge detection; and

(b) Linear diffusion filtering dislocates structures when moving from
finer to coarser scales. Hence, structures that are identified at a
coarse scale have to be traced back to the original image in order to
get their correct location [22, 28]. In practice, this may be difficult
to handle and give rise to instabilities.

12.2.3 Isotropic nonlinear diffusion

Basic Idea. In order to avoid the blurring and localization problems
of linear diffusion filtering, Perona and Malik proposed a nonlinear dif-
fusion method [1, 2]. Their nonuniform process (which they called
anisotropic2) reduces the diffusivity at those locations that have a larger
likelihood to be edges, that is, which have larger gradients (see Fig. 12.1c).

Let Ω denote a rectangular image domain and consider an image
g(x) : Ω → R. Perona and Malik obtain a filtered image u(x, t) as the
solution of the diffusion equation3

∂tu = div(D(|∇u|2) ∇u) on Ω × (0,∞) (12.8)

2In our terminology, the Perona–Malik filter is regarded as an isotropic model be-
cause it reveals a scalar-valued diffusivity and not a diffusion tensor.

3For smoothness reasons we write |∇u|2 instead of |∇u|.
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a b

c d

Figure 12.2: aMR image degraded by additive Gaussian noise with zero mean,
256 × 256 pixels, signal-to-noise ratio: 1; b Perona–Malik diffusion, λ = 4, t =
25; c regularized isotropic nonlinear diffusion, λ = 4, σ = 2, t = 25; d edge
enhancing anisotropic diffusion, λ = 4, σ = 2, t = 25.

with the original image as initial condition

u(x,0) = g(x) on Ω (12.9)

and reflecting boundary conditions (∂n denotes the derivative normal
to the image boundary ∂Ω)

∂nu = 0 on ∂Ω × (0,∞) (12.10)

Among the diffusivities they propose is

D(|∇u|2) = 1
1+ |∇u|2/λ2 (λ > 0) (12.11)

The experiments of Perona and Malik were visually impressive in
that edges remained stable over a very long time. Edge detection based
on this process clearly outperformed the linear Canny edge detector.
This is due to the fact that diffusion and edge detection interact in
one single process instead of being treated as two independent pro-
cesses that are to be applied subsequently. However, the Perona-Malik
approach reveals some problems that we shall discuss next.
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a

0
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Figure 12.3: a Diffusivity D(s2) = 1/(1+ s2/λ2); b Flux function Φ(s) = s/(1+
s2/λ2). From Weickert [19].

Forward-backward diffusion. To study the theoretical behavior of the
Perona-Malik filter, let us for simplicity of notation restrict ourselves
to the 1-D case.

For the diffusivity Equation (12.11) it follows that the flux function4

Φ(s) :=sD(s2) satisfies Φ′(s)≥0 for |s|≤λ, and Φ′(s)<0 for |s|>λ (see
Fig. 12.3). As Eq. (12.8) can be rewritten as

∂tu = ∂x(Φ(∂xu)) = Φ′(∂xu) ∂xxu (12.12)

we observe that (in spite of its nonnegative diffusivity) the Perona-Malik
model resembles a forward diffusion

∂tu = ∂xxu (12.13)

for |∂xu|≤λ, and the backward diffusion

∂tu = −∂xxu (12.14)

for |∂xu| > λ. Hence, λ plays the role of a contrast parameter sepa-
rating forward (low contrast) from backward (high contrast) diffusion
areas. In the same way as the forward diffusion smoothes contrasts,
the backward diffusion enhances them. Thus, the Perona–Malik model
may enhance gradients whose absolute value is larger than λ; see Per-
ona and Malik [2] for more details on edge enhancement .

The forward-backward diffusion behavior is explicitly intended in
the Perona-Malik method, as it gives the desirable result of blurring
small fluctuations and sharpening edges. Figure 12.1c shows an ex-
ample. The edge-enhancing potential of the Perona-Malik approach is
clearly visible at the contours of the orange.

4The mathematical flux function Ψ and the physical flux j differ by their sign.
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An obvious practical problem of the Perona-Malik filter is that it
misinterprets large gradients due to noise as semantically important
edges that it should preserve. It is thus unsuited for denoising severely
degraded images. This problem is illustrated in Fig. 12.2b.

Besides this practical problem, there is also a theoretical one. A rea-
sonable requirement for an evolution process in image analysis is that
of well-posedness, that is, the problem should have a unique solution
that depends continuously on the initial image.

Unfortunately, forward-backward diffusion equations of Perona-
Malik type reveal ill-posedness aspects; although there are some con-
jectures [29, 30] that they might have generalized solutions5, until now
no one else has been to prove their existence. If they exist, there is
evidence that their steady states do not depend continuously on the
original image [31].

However, the practical behavior of finite difference approximations
is much better than one would expect from the forementioned theory:
One can easily calculate a discrete solution for all times, and this solu-
tion converges to a flat image for t → ∞. The mainly observable insta-
bility is the so-called staircasing effect , where a sigmoid edge evolves
into piecewise-linear segments that are separated by jumps. A dis-
crete explanation for this so-called Perona-Malik paradox [30] has been
given in Weickert and Benhamouda [32]. They proved that a standard
spatial finite difference discretization is sufficient to turn the Perona-
Malik process into a well-posed system of nonlinear ordinary differen-
tial equations. If a simple explicit time discretization is applied, then
the resulting scheme is monotonicity preserving in the 1-D case [33],
that is, a monotone function remains monotone after filtering. Thus,
oscillations cannot appear and artifacts are restricted to staircasing.
In this sense, a naive implementation of the Perona-Malik filter often
works reasonably well because of the regularizing6 effect of the dis-
cretization. Different discretizations, however, may lead to strongly
differing results. Thus, it seems to be more natural to introduce the
regularization directly into the continuous Perona-Malik equation in
order to become more independent of the numerical implementation
[34, 35]. This shall be done next.

Regularized isotropic nonlinear diffusion. In 1992, Catté, Lions,
Morel and Coll [34] proposed a regularization of the Perona-Malik pro-
cess that has a unique solution, and which is even infinitely times differ-
entiable. Besides this theoretical advantage, their modification is also
more robust under noise.

5A generalized solution satisfies a generalized (integral) formulation of the diffusion
equation. In particular, a generalized solution does not have to be twice differentiable
in x.

6A regularization of an ill-posed problem is a well-posed approximation to it.
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They propose to regularize the gradient within the diffusivity D by
convolving it with a Gaussian Kσ with standard deviation σ > 0. Thus,
their filter uses

∂tu = div(D(|∇uσ |2) ∇u) (12.15)

where uσ := Kσ ∗u. Experiments showed that this regularization leads
to filters that can still enhance edges [33], produce less staircasing [35],
and that are less sensitive to the discretization [36].

The regularizing effect of the modification by Catté et al. [34] is due
to the fact that∇uσ remains bounded. Moreover, the convolution with
a GaussianKσ makes the filter insensitive to structures at scales smaller
than σ . Therefore, when regarding Eq. (12.15) as an image-restoration
equation, it reveals (besides the contrast parameter λ) an additional
noise scale σ . This avoids a shortcoming of the genuine Perona-Malik
process thatmisinterprets strong oscillations due to noise as edges that
should be preserved or even enhanced. This is illustrated in Fig. 12.2c.
Noise within a region can be eliminated very well, but at edges, |∇uσ |
is large and the diffusion is inhibited. Therefore, this regularization is
not optimal in the vicinity of noisy edges.

To overcome this problem, a desirable method should prefer diffu-
sion along edges to diffusion perpendicular to them. This cannot be
done with a scalar-valued diffusivity, one has to use a diffusion matrix
(diffusion tensor) instead. This leads us to anisotropic diffusion filters.

12.2.4 Edge-enhancing anisotropic diffusion

An anisotropic diffusion filter for edge-enhancing diffusion not only
takes into account the contrast of an edge, but also its direction.

This can be achieved by constructing the orthonormal system of
eigenvectors v1, v2 of the diffusion tensor D such that v1 ‖ ∇uσ and
v2 ⊥ ∇uσ . In order to prefer smoothing along the edge to smoothing
across it, one can choose the corresponding eigenvalues λ1 and λ2 as
[11]

λ1 := D(|∇uσ |2) (12.16)

λ2 := 1 (12.17)

In general, ∇u is not parallel to one of the eigenvectors of D as long as
σ >0. Hence, the behavior of this model is really anisotropic. If we let
the regularization parameter σ tend to 0, we end up with the isotropic
Perona–Malik process.

There is an interesting relation between the regularized isotropic
diffusion in Eq. (12.15) and edge-enhancing anisotropic diffusion. While
the former uses a scalar-valued diffusivity

D(|∇uσ |2) = D(∇uT
σ∇uσ ) (12.18)
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one can formally write the diffusion tensor of edge-enhancing diffusion
as

D(∇uσ ) = D(∇uσ∇uT
σ ) (12.19)

This can be seen as follows. If D can be represented as a globally con-
vergent power series

D(s) =
∞∑

k=0
αksk (12.20)

we can regard D(∇uσ∇uT
σ ) as the matrix-valued power series

D(∇uσ∇uT
σ ) =

∞∑
k=0

αk(∇uσ∇uT
σ )k (12.21)

The matrix (∇uσ∇uT
σ )k has eigenvectors ∇uσ and ∇u⊥

σ with corre-
sponding eigenvalues |∇uσ |2k and 0. From this it follows thatD has the
eigenvectors∇uσ and∇u⊥

σ with corresponding eigenvaluesD(|∇uσ |2)
and D(0) = 1.

Figure 12.2d depicts a result of edge-enhancing anisotropic diffu-
sion. We observe that it is capable of reducing noise at edges.

12.2.5 Coherence-enhancing anisotropic diffusion

A second motivation for introducing anisotropy into diffusion process-
es arises from the wish to process 1-D features such as line-like struc-
tures. We shall now investigate a modification of a model by Cottet
and Germain [37], which is specifically designed for the enhancement
of coherent flow-like structures [14].

For this purpose one needs more sophisticated structure descrip-
tors than∇uσ . A good descriptor for local orientation is the structure
tensor (second-moment matrix, scatter matrix, interest operator) [38, 39]
(see Section 9.8)

Jρ(∇uσ ) := Kρ ∗ (∇uσ∇uT
σ ) (12.22)

and its equivalent approaches [40, 41]. The componentwise convolu-
tion with the Gaussian Kρ averages orientation information over an
integration scale ρ. Because Jρ is a symmetric positive-semidefinite
matrix, there exists an orthonormal basis of eigenvectors v1 and v2

with corresponding eigenvalues µ1 ≥ µ2 ≥ 0. The eigenvalues measure
the average contrast (gray-value variation) in the eigendirections within
a scale ρ. Therefore, v1 is the orientation with the highest gray-value
fluctuations, and v2 gives the preferred local orientation, the coherence
direction. The expression (µ1−µ2)2 is a measure of the local coher-
ence. If one wants to enhance coherent structures, one should smooth
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a b

Figure 12.4: a Fingerprint, 256×256 pixels; b coherence-enhancing anisotropic
diffusion c = 1, σ = 0.5, ρ = 4, t = 20. From Weickert [14].

mainly along the coherence direction v2 with a diffusivity λ2 that in-
creases with respect to the coherence (µ1−µ2)2. This can be accom-
plished by designing D such that it possesses the same eigenvectors
v1, v2 as Jρ and choosing its corresponding eigenvalues as

λ1 := α (12.23)

λ2 :=


α if µ1=µ2,

α + (1−α)exp
( −c

(µ1−µ2)2

)
else

(12.24)

where c > 0. The small positive parameter α ∈ (0,1) is mainly intro-
duced for theoretical reasons; see CVA2 [Chapter 15] for more details.

Figure 12.4 shows the restoration properties of coherence-enhancing
anisotropic diffusion when being applied to a fingerprint image. The
diffusion filter encourages smoothing along the coherence orientation
v2 and is therefore well suited for closing interrupted lines. Due to
its reduced diffusivity at noncoherent structures, the locations of the
semantically important singularities in the fingerprint remain the same.

12.3 Parameter selection

Nonlinear diffusion filtering contains several parameters that have to
be specified in practical situations. The goal of this section is to clar-
ify their meaning and to present some empirical guidelines for their
selection.

Because the time t is an inherent parameter in each continuous diffu-
sion process, it has nothing to do with its discretization. The common
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practice in image analysis, however, is to assign unit length to a pixel.
In this case, a different discretization has to be regarded as a rescaling
of the image domain. The scaling behavior of diffusion processes im-
plies that a spatial rescaling that replaces x by βx, has to replace t by
β2t. This means, for instance, that a subsampling in each image direc-
tion by a factor 2 reduces the stopping time from t to t/4. Moreover,
typical finite-difference implementations reveal a computational effort
that is proportional to the pixel number. This gives another speed-up
by a factor 4, such that the whole calculation becomes 16 times faster.

There remains another question to be addressed: what is a suitable
stopping time t of the process? It should be observed that this ques-
tion only appears when regarding the diffusion process as a restoration
method. Considering it as a scale-space means that one is interested
in the entire evolution. In a linear scale-space representation based on
the diffusion process ∂tu = ∆u, the time t corresponds to a convolu-
tion with a Gaussian of standard deviation σ = √

2t. Thus, specifying a
spatial smoothing radius σ immediately determines the stopping time
t.

In the nonlinear diffusion case, the smoothing is nonuniform and
the time t is not directly related to a spatial scale. Other intuitive mea-
sures, such as counting the number of extrema, are also problematic
for diffusion filters, as it is well known that for linear and nonlinear
diffusion filters in dimensions ≥ 2, the number of local extrema does
not necessarily decrease monotonically, that is, creation of extrema is
not an exception but an event that happens generically [42].

However, there are other possibilities to define an average measure
for the simplicity or globality of the representation. For instance, in
[20] it is shown that the variance v(t) of the evolving image u(x, t)
decreases monotonically from v(0) to v(∞) = 0. Prescribing a decay
by a certain percentage provides us with an a posteriori criterion for
the stopping time of the nonlinear diffusion process. Moreover, this
strategy frees the users from any recalculations of the stopping time,
if the image is resampled. Last but not least, the variance can also
be used to synchronize different nonlinear diffusion scale-spaces in
order to ease the comparison of results. Practical applications to the
restoration of medical images have demonstrated the usefulness and
simplicity of this criterion [43, 44].

For the Perona-Malik filter, it is evident that the “optimal” value for
the contrast parameter λ has to depend on the problem. One possibil-
ity to determine a good practical value for λ is to calculate a cumulate
histogram for |∇g|2 and to set λ to a certain quantile of this histogram.
Perona and Malik use the 90% quantile, that is, 90% of all gradients are
smaller than λ. Often one can get better results by staying more in
the backward diffusion region, for example, by choosing a 50 % quan-
tile. The smaller the quantile, however, the slower the diffusion. Other
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proposals for choosing λ use statistical properties of a training set of
regions that are considered as flat [45], or estimate it by means of the
local image geometry [7].

Regularized isotropic nonlinear diffusion and edge-enhancing an-
isotropic diffusion use another parameter besides λ, namely the noise
scale σ . Because these filters are insensitive to scales smaller than σ ,
one should adapt σ to the noise. Useful values range from less than
one pixel size for “noiseless” images to several pixels formore degraded
images.

Coherence-enhancing anisotropic diffusion uses three other param-
eters: α, c, and ρ.

We have already seen that the regularization parameter α was intro-
duced to ensure a small amount of isotropic diffusion. This parameter
is mainly important for theoretical reasons. In practice, it can be fixed
to a small value (e.g., 0.001), and no adaptation to the actual image
material is required.

The parameter c is a threshold parameter playing a role similar to
that of the contrast parameter λ in the other processes. Structures with
coherence measures (µ1 − µ2)2 � c are regarded as almost isotropic,
and the diffusion along the coherence direction v2 tends to α. For
(µ1 −µ2)2 � c, the diffusion along the coherence direction v2 tends to
its maximal value, which is limited by 1. Therefore, c can be estimated
by calculating a cumulate (µ1−µ2)2 histogram for g, and by setting c to
a certain quantile. If one estimates that 95 % of the image locations have
strongly preferred 1-D structures, one may set c to the 95 % quantile of
the process.

The integration scale ρ of the structure tensor should reflect the
texture scale of the problem. For instance, for a fingerprint image, it
should not be smaller than the distance between two neighboring lines.
Because overestimations are by far less critical than underestimations
[20], it is often not very difficult to find parameter estimates that work
well over the whole image domain. For coherence-enhancing diffusion,
it is important that the noise scale σ is significantly smaller than the
integration scale ρ; too large values for σ results in a cancellation of
opposite gradient, and the orientation information in the texture is de-
stroyed.

The suggestions in this section are intended as first guidelines. It is
often reported that people who start using nonlinear diffusion filters
quickly develop a good intuition for selecting appropriate parameters.
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12.4 Extensions

12.4.1 Higher dimensions

It is easily seen that many of the previous results can be generalized
to higher dimensions. This may be useful when considering, for ex-
ample, CT or MR image sequences arising from medical applications
or when applying diffusion filters to the postprocessing of fluctuating
higher-dimensional numerical data. Spatially regularized 3-D nonlin-
ear diffusion filters have been investigated by Gerig et al. [4] in the
isotropic case, and by Rambaux and Garçon [46] in the edge-enhancing
anisotropic case. Experiments with 3-D coherence-enhancing diffusion
are presented in Weickert [47].

12.4.2 Vector-valued models

Vector-valued images can arise either from devices measuring multi-
ple physical properties or from a feature analysis of one single image.
Examples for the first category are color images, multispectral Land-
sat exposures and multispin echo MR images, whereas representatives
of the second class are given by statistical moments or the so-called
jet space that is defined by the image itself combined with its partial
derivatives up to a fixed order. Feature vectors play an important role
for tasks such as texture segmentation.

The simplest idea of how to apply diffusion filtering tomultichannel
images would be to diffuse all channels separately and independently
from each other. This leads to the undesirable effect that edges may be
formed at different locations for each channel. In order to avoid this,
one should use a common diffusivity that combines information from
all channels. Nonlinear isotropic vector-valued diffusion models were
studied by Gerig et al. [4] and Whitaker [15] in the context of medical
imagery. They use filters of type

∂tui = div

D
( m∑

j=1
|∇uj,σ |2

)
∇ui

 (i = 1, ..., m) (12.25)

where the vector [u1(x, t), . . . , um(x, t)]T describes the multichannel
image. It is assumed that all channels are normalized such that they
use a similar intensity range.

A corresponding vector-valued edge-enhancing anisotropic diffusion
Process is given by Weickert [48]

∂tui = div

D
( m∑

j=1
∇uj,σ ∇uT

j,σ

)
∇ui

 (i = 1, ..., m) (12.26)
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Figure 12.5: a Forest scene, 226×323 pixels; b regularized isotropic nonlinear
diffusion σ = 2, λ = 10, t = 25; c coherence-enhancing anisotropic diffusion
c = 1, σ = 0.5, ρ = 5, t = 10. From Weickert [49].

Vector-valued coherence-enhancing diffusion uses a common structure
tensor that results from the sum of the structure tensors in all channels
[49]

∂tui = div

D( m∑
j=1

Jρ(∇uj,σ )
)
∇ui

 (i = 1, ..., m) (12.27)

Figure 12.5 illustrates the effect of Eqs. (12.25) and (12.27) on a color
image.

12.5 Relations to variational image restoration

Besides nonlinear diffusion filters, variational approaches also are pop-
ular techniques for image restoration. Interestingly, there is a close
connection between these two paradigms.

Many variational methods calculate a restoration of some degraded
image g as the minimizer of an energy functional

Ef (u) :=
∫
Ω

(
(u−g)2 + α T(|∇u|2)

)
dx dy

where the potential T is an increasing function that should be convex
in order to guarantee well-posedness. In Chapter 13 Schnörr gives a
detailed analysis of approaches of this type.

The first summand encourages similarity between the restored im-
age and the original one, while the second summand rewards smooth-
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Figure 12.6: a Denoising of Figure 12.2a with the variational approach
Eq. (12.28), λ = 4, α = 25; b the same experiment with the nonlinear diffu-
sion filter Equation (12.29), λ = 4, t = 25.

ness. The smoothness weight α > 0 is called regularization para-
meter7. From variational calculus it follows that the minimizer of
Ef (u) satisfies the so-called Euler equation

u − g
α

= div(T ′(|∇u|2)∇u) (12.28)

This can be regarded as an approximation to the diffusion filter

∂tu = div(T ′(|∇u|2)∇u) (12.29)

with initial image g and stopping time α. This similarity is illustrated
in Fig. 12.6 where the potential

T(|∇u|2) = λ
√
1+ |∇u|2/λ2 (12.30)

has been used. The corresponding diffusivity is given by

D(|∇u|2) = T ′(|∇u|2) = 1√
1+ |∇u|2/λ2

(12.31)

From Fig. 12.6 we observe that the diffusion filter Equation (12.29)
leads to slightly smoother results than the variational approach Equa-
tion (12.28). However, in both cases, edge-enhancement effects such as
in Fig. 12.2d cannot be seen.

It should be noted that convex potentials create diffusivities T ′(|∇u|2)
that correspond to monotonically increasing flux functions. Hence,

7The parameter λ2h in Chapter 13 plays a role similar to that of the regularization
parameter α.
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these approaches do not allow edge enhancement. In this sense they
differ from the regularized forward-backward diffusion processes that
we have studied before. However, they give valuable insights into the
close relations between diffusion filtering and variational image restora-
tion. More details about theoretical analogies can be found in [50], and
numerical analogies are derived in [51].

12.6 Summary

In this chapter we have investigated several models for nonlinear dif-
fusion filtering that serve as examples of how one can incorporate a
priori knowledge in a scale-space evolution. These filters may also
be regarded as enhancement methods for features such as edges or
flow-like structures. They can be extended in a natural way to higher-
dimensional image data as well as to multichannel images. We have
presented guidelines for parameter selection, and we investigated a
connection between diffusion filtering and variational image restora-
tion.

This chapter is intended as an introduction to the topic. The area
is very vivid, and much research is in progress with respect to theo-
retical foundations, highly efficient algorithms, relations between non-
linear diffusion and other image-processing methods such as curve
evolutions, morphology, and snakes. For further studies of this and
related areas, the reader is referred to Weickert [20], Caselles et al.
[52], ter Haar Romeny [53], ter Haar Romeny et al. [54] and the ref-
erences therein.
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13.1 Introduction

This chapter explains variational techniques for the adaptive process-
ing of 2-D and 3-D images, vector-valued images, and image sequences
for the purpose of nonlinear smoothing, segmentation, extraction of lo-
cal image structure (homogeneous regions, edges, characteristic points),
noise suppression and restoration, and computation of optical flow.
For each category of image data, the exposition provides:

• a description of a variational approach,

• a consistent discretization of the approach,

• an iterative scheme to solve the resulting system of nonlinear equa-
tions numerically, and
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Figure 13.1: a Data from a real image; b the data from a adaptively smoothed.

• examples computed to indicate the range of applications.

Thematerial presented introduces the reader to a specific research field
of image processing and computer vision and should enable him or
her to integrate these techniques into solution approaches to diverse
application problems.

13.1.1 Motivation and general problem formulation

Consider the data in Fig. 13.1a and the result of applying a variational
technique in Fig. 13.1b. Obviously, small signal variations have been
smoothed out whereas the coarse signal structure in terms of more
distinct signal variations has been preserved. Thus, the data have been
processed by a smoothing process that is capable of adapting itself
to the local signal structure. The need for this kind of unsupervised
(pre)processing arises in numerous applications involving real data.

In a more general way, the following important issues underlie the
design of variational techniques for adaptive image processing:

• Data reduction by adaptively suppressing image details (local signal
variations), as illustrated in Fig. 13.1.

• Partitioning of the image domain into locations with significant sig-
nal variations and homogeneous regions (image segmentation). Lo-
calization of signal variations is important along with the robust
contrast information of regions.

• Optimality of segmentations in terms of measures of “strength of
local signal variation” and “homogeneity.”

• Discretization and consistency. Many useful concepts and prop-
erties like “level lines of functions” or “rotational invariance” are
meaningful only for continuous problem formulations. Approxi-
mate problem formulations that preserve such concepts and prop-
erties in the limit of increasingly fine discretizations are called con-
sistent .
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• Computational architecture and parallelism. As is obvious from
Fig. 13.1, the result at a certain location cannot be computed by
just taking two neighboring data points into consideration. Rather,
a local context of several data points has to be considered. Never-
theless, all approaches described in this chapter can be realized on
fine-grained parallel architectures with nearest-neighbor communi-
cation.

In general, a variational approach is formulated by considering in-
put data g ∈ S1 and the processed data vg ∈ S2 as elements of some
spaces S1, S2 of functions defined over the given image domain A, and
by defining vg as a solution of a minimization problem:

vg = argmin
v∈S2

J(v) , J(v) =
∫

A
L(g, v)dx (13.1)

where the function L depends on the problem at hand. In most cases,
the right-hand side of Eq. (13.1) can be decomposed as follows:

J(v) =
∫

A
Lg(g, v)dx +

∫
Ar

Lr (v)dx +
∫

At

Lt(v)dx (13.2)

Here, the sets Ar and At define a partition of the image domain A into
regions and transitions and are implicitly defined by local properties of
the functions v , like the magnitude of the gradient, for example. As a
consequence, the optimal segmentation of A is obtained by computing
the minimum vg of the functional J in Eq. (13.1).

13.1.2 Basic references to the literature

In this section, references are given to some important research papers
as well as to other fields related to the contents of this chapter. No
attempt, however, has been made to survey any aspect of variational
modeling in image processing and early computer vision. The general
references given here will be supplemented by more specific references
in subsequent sections.

A clear-cutmathematical definition of the image segmentation prob-
lem has been given by [1]:

JMS(v, K) = α
∫

A
(v − g)2 dx +

∫
A\K

|∇v|2 dx + βL(K) (13.3)

Given some image data g, a piecewise smooth function vg , which may
have jumps along a 1-D discontinuity set K ⊂ A, has to be determined
such that the functional J in Eq. (13.3) attains a local minimum. Accord-
ing to the general form of Eq. (13.2), the functional Eq. (13.3) comprises
three terms: The first term measures the distance between v and the
data g with respect to the L2(A)-norm, the second term measures the
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homogeneity of v in terms of the magnitude of the gradient of v :

|∇v| =
∣∣∣∣∣
[

vx

vy

]∣∣∣∣∣ =
(
v2

x + v2
y

)1/2
, for x =

[
x
y

]
∈ R2

and the third term measures the length of the discontinuity set K. The
relative influence of these terms depends on two global parameters α
and β that can be controlled by the user. The reader should note that
dropping any term in Eq. (13.3) would lead to meaningless minimizers
and segmentations, respectively.

The variational segmentation approach of Mumford and Shah pro-
vides amathematically sound definition of whatmost conventional seg-
mentation approaches (see, e.g., [2, 3]) try to achieve. This has been
demonstrated in a recent review [4]. On the other hand, the approach
of Eq. (13.3) turned out to be mathematically rather involved, and it is
by no means straightforward to specify consistent discrete approxima-
tions of it (see [4, 5], and [6] for a simplified version of the approach
of Eq. (13.3)). For these reasons, we confine ourselves in Section 13.2
to mathematically simpler yet practically useful variational problems
that, in some sense, approximate the approach Eq. (13.3) of Mumford
and Shah.

Rather influential results in the field of image segmentation and
restoration have been presented by Geman and Geman [7]. Their ap-
proach can be seen as a discrete counterpart of the Mumford-Shah
model given here. Furthermore, their seminal paper describes a proba-
bilistic problem/solution formulation in terms ofMarkov randomfields,
Gibbs distributions, and Gibbs sampling, which turned out to be basic
to much subsequent work. Gibbs distributions are nowadays widely
used across several disciplines in order to model spatial context. This
broader probabilistic viewpoint, touched upon in this chapter, is the
subject of Chapter 15. In this chapter we merely point to the fact that
all functionals J considered here induce Gibbs distributions over the
space S2 in Eq. (13.1) in a natural way by means of:

p(v) = 1
Z
exp

(− J(v)
)

with a normalizing constant Z . For a recent reviewwe refer to Li [8], and
for a more mathematically oriented account to Geman [9] and Winkler
[10].

Further important work has been reported by Blake and Zisserman
[11]. In particular, their Graduated-Non-Convexity approach introduced
the idea of homotopy-like deterministic minimization algorithms to the
field of computer vision. The related concept of mean-field anneal-
ing has been presented by Geiger and Girosi [12]. See also Geiger and
Yuille [13] for a review of variational segmentation approaches. An-
ticipating Section 13.2.3, let us mention that we do not pursue these
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concepts, which amount to solving sequences of nonlinear systems of
equations, here. Rather, we explain a minimization algorithm in terms
of sequences of linear systems of equations, which, from our point of
view, is more compatible with current concepts of parallel computing.

Another important current research field is known under the key-
word ‘images and pde’s’ [14] (pde = partial differential equation).
The connection to this field is given by the Euler-Lagrange equation,
which corresponds to the functional Eq. (13.1) (see Section 13.2.1). This
nonlinear diffusion equation may be used to describe how a starting
point approaches a minimizer of the functional J. In the field ‘images
and pde’s’, however, more general types of nonlinear diffusion equa-
tions are investigated. Corresponding research topics include nonlin-
ear smoothing schemes for edge-detection and image enhancement, ex-
tensions of the linear scale-space paradigm and invariance principles,
and equations describing the evolution of active contours (so-called
‘snakes’). For further details and surveys we refer to [15, 16, 17, 18].

Within this field, the nonlinear smoothing schemes described in this
chapter form a special class. The distinguishing feature is that each ap-
proach obeys a global optimality criterion Eq. (13.1) that makes explicit
how different criteria Eq. (13.2) are combined in order to compute an
optimal segmentation of given image data. Note that Euler-Lagrange
equations are not needed for implementing a variational technique.
Furthermore, there are many well-posed variational approaches, like
that of Eq. (13.3) for example, the functionals of which are not smooth
enough to admit an equivalent description in terms of pde’s.

13.2 Processing of two- and three-dimensional images

This section describes variational techniques for the processing of sca-
lar-valued images. In Section 13.2.1, a variational principle is presented
and related mathematical issues are discussed. In particular, we distin-
guish convex from nonconvexminimization approaches. Section 13.2.2
shows how these approaches are converted into nonlinear systems of
equations. An algorithm to numerically compute a solution to these
equations is described in Section 13.2.3. Finally, some representative
numerical examples are presented in Section 13.2.4.

13.2.1 Variational principle

We consider a family of functionals Eq. (13.1) of the following form:

J(v) = 1
2

∫
A

{
(v − g)2 + λ(|∇v|)

}
dx (13.4)
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a

1 2 3 4

20

40

60

80

100

b

1 2 3 4

2.5

5

7.5

10

12.5

15

17.5

Figure 13.2: a Graph of λc , which is a convex combination of a quadratic
and a linear function (λh = 4, cρ = 1, εc = 0.1); b graph of λnc , which
quadratically combines a quadratic function with a linear function of slope
εnc(λh = 4,cρ = 1, δt = 0.01, εnc = 0.5).

This formulation has been introduced by Nordström [19]. Among var-
ious possibilities, we choose two particular definitions of the function
λ (see Fig. 13.2):

λc(t) =
λc,low(t) = λ2

ht2 , 0 ≤ t ≤ cρ

λc,high(t) = ε2ct2 + (λ2
h − ε2c)cρ(2t − cρ) , 0 < cρ ≤ t

(13.5)

and

λnc(t) =
λnc,low(t) = λ2

ht2 , 0 ≤ t ≤ cρ

λnc,high(t) , 0 < cρ ≤ t
(13.6)

where

λnc,high(t) =



1
2δt

[
(εnc − 2λ2

hcρ)t2

+(2λ2
h(cρ + δt) − εnc

)
cρ(2t − cρ)

] , t ≤ cρ + δt

εnc
(
t − cρ − δt

2

)
+ cρλ2

h(cρ + δt) , cρ + δt ≤ t

0 < εc, δt � 1, and εnc < 2λ2
hcρ . These functions are continuously dif-

ferentiable, and the essential parameters to be specified by the user are
λh and cρ . Definitions Eqs. (13.5) and (13.6) lead to representative ex-
amples of convex and nonconvex variational approaches, respectively,
as they exhibit the essential features of other definitions that have been
reported in the literature (see the list in [20], for example),

According to Eq. (13.2), the functional Eq. (13.4) takes the form:

J(v) = 1
2

∫
A

(v − g)2 dx + 1
2

∫
Ar

λlow(|∇v|)dx + 1
2

∫
At

λhigh(|∇v|)dx
(13.7)
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where the region and transition sets Ar and At are defined by low and
high magnitudes of the gradient of v , respectively:

Ar = {x ∈ A : |∇v| ≤ cρ} (13.8)

At = {x ∈ A : |∇v| > cρ} (13.9)

Let us briefly discuss some major differences between the convex
and nonconvex case of Eq. (13.4):

Convex case. In this case the continuous problem formulation
Eq. (13.4) is well-posed for a certain choice of function spaces S1, S2
in Eq. (13.1), and for each given image data g there is a unique func-
tion vg minimizing the functional J in Eq. (13.1) with λ = λc from
Eq. (13.5). With other words, the intrinsic properties of the approach
are well-defined and do not depend on discrete concepts used for mod-
eling sensors and computation. Furthermore, any discrete solutionvh,g
computed as shown in subsequent sections approximates the function
vg in the sense that, as the resolution of the sensor becomes increas-
ingly better, we have:

‖vg − vh,g‖S2 → 0

Convex variational approaches have been advocated by several re-
searchers (e.g., [21, 22, 23]), due mainly to uniqueness of the solution.
Our definition Eq. (13.5) given in the preceding follows Schnörr [22].
We note, however, that in addition to uniqueness of the solution, con-
vex variational approaches exhibit favorable properties like continuous
dependence of the solution on the data and parameters, for example.
Furthermore, a comparison of Eq. (13.7), regarded as an approximation
of the Mumford-Shah model, with Eq. (13.3) reveals that using λc,high
for the transition measure in Eq. (13.7) does not intend to cause a poor
compromise in order to achieve convexity. Rather, the length of the
discontinuity set of v in Eq. (13.3) is replaced by length of level lines of
v , which are summed up over the contrast at locations where v rapidly
varies. This is a meaningful measure for real signals with bounded
gradients [24].

Nonconvex case. In this case, to our knowledge, no continuous and
well-posed problem formulation of Eq. (13.4) has been reported in the
literature. This means that, strictly speaking, the variational approach
of Eq. (13.4) with λnc from Eq. (13.6) makes sense mathematically only
after having discretized the approach. In contrast to the convex case,
the resulting approach depends on the particular discretizationmethod
used. Our definition Eq. (13.6) given here follows closely Blake and
Zisserman [11], who thoroughly investigated a discrete version of the
nonconvex approach of Eq. (13.4).
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In general, there are multiple local minima {vg} for given image
data g, making the approach dependent on the starting point and more
sensitive against perturbations of the input image data and parameter
values. A comparison of the nonconvex version of Eq. (13.4) with the
Mumford-Shah model Eq. (13.3) shows that the 1-D discontinuity mea-
sure in Eq. (13.3) is approximated by the area of regions with a large
gradient of v . In contrast to the convex case discussed here, however,
further properties of v are not “measured” within these regions. A
numerical example in Section 13.2.4 illustrates this point.

For the purpose of discretization in Section 13.2.2, we set the first
variation of the functional Eq. (13.4) at the point vg equal to zero, as a
necessary condition for vg to be a local minimizer of J. ∀v ∈ S2:

d
dτ

J(vg + τv)
∣∣

τ=0 =
∫

A

{
(vg − g)v + ρ(|∇vg|)∇vT

g∇v
}
dx = 0

(13.10)

where we introduced the so-called diffusion coefficient:

ρ(t) = λ′(t)
2t

, t ≥ 0 (13.11)

Note that in the convex case, Eq. (13.10) uniquely determines the global
minimizer vg of J in Eq. (13.4).

For the following it will be convenient to write Eq. (13.10) in a more
compact form. To this end, we use the customary notation for the
linear action of some functional q on a function v :

〈q, v〉 := q(v) (13.12)

Equation (13.10) may then be written as follows:

〈A(vg), v〉 = 〈f , v〉 , ∀v ∈ S2 (13.13)

with a nonlinear operator A mapping vg to the linear functional A(vg):

〈A(vg), v〉 =
∫

A

{
vgv + ρ(|∇vg|)∇vT

g∇v
}
dx (13.14)

and the linear functional f :

〈f , v〉 =
∫

A
gv dx (13.15)

Equation (13.13) is the starting point for the discretization with the
finite element method (FEM) to be described in Section 13.2.2.



13.2 Processing of two- and three-dimensional images 467

13.2.2 Finite element method discretization

In this section we explain the basic scheme that can be applied mechan-
ically to obtain a proper discretization of all variational approaches de-
scribed in this chapter. Detailed application examples of this scheme
for the case of 1-D, 2-D and 3-D cases are illustrated in CVA2 [Chapter
16].

The material presented in this Section is fairly standard. A more
general introduction and further details can be found in numerous text-
books on the finite element method (FEM).

Basic scheme. The first step is to triangulate the underlying domain
A and to choose piecewise linear basis functions φi(x), i = 1, . . . , N .
Examples will be given in the following sections. These basis functions
define a linear subspace:

Sh := span{φ1, . . . , φN} ⊂ S2

and we approximate problem Eq. (13.13) by restricting it to this sub-
space. Let vh,g, vh ∈ Sh denote representatives of the functions vg, v ∈
S2 (h denotes the discretization parameter related to the mesh-width
of the triangulation):

vh,g =
N∑

i=1
vg,iφi(x) , vh =

N∑
i=1

viφi(x) (13.16)

Then our task is to solve the following equation for a minimizing func-
tion vh,g :

〈A(vh,g), vh〉 = 〈f , vh〉 , ∀vh ∈ Sh (13.17)

Inserting Eq. (13.16) yields (recall from Eq. (13.12) that the left-hand
quantities in Eq. (13.17) act linearly on vh):

N∑
i=1

vi〈A(vh,g), φi〉 =
N∑

i=1
vi〈f , φi〉 , ∀vh ∈ Sh

This equation has to be satisfied for arbitrary functionsvh ∈ Sh. Hence,
we conclude that:

〈A(vh,g), φi〉 = 〈f , φi〉 , i = 1, . . . , N (13.18)

Eq. (13.18) is a system of N nonlinear equations that has to be solved
for the N real numbers vg,j, j = 1, . . . , N , that determine a minimizing
function vh,g in Eq. (13.16). Again we note that in the convex case, this
nonlinear vector equation has a unique solution vg . Numerical schemes
to compute vg are the subject of Section 13.2.3.
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13.2.3 Algorithm

This section describes a class of algorithms that can be used to solve
the nonlinear system of Eq. (13.18) numerically. The design of such
an algorithm is based on a technique that replaces the original non-
linear system by a sequence of linear systems of equations, which can
be solved efficiently with various linear solvers. Only the linearization
technique is described here. Algorithms for the solution of the result-
ing sparse linear systems can be found in numerous excellent textbooks
(e.g., [25, 26]). For additional details, an investigation of alternative ap-
proaches and parallel implementations we refer to [27, 28].

In the following, it will be more convenient to specify modifications
of Eq. (13.13) rather than Eq. (13.18). According to the discretization of
Eq. (13.13) described in Section 13.2.2, the correspondingmodifications
of Eq. (13.18) are then immediate.

Minimization of convex functionals. Consider Eq. (13.13). This non-
linear equation becomes linear if we “freeze” its nonlinear part by us-
ing the solution of the previous iteration step as its argument. With
Eqs. (13.14) and (13.15), Eq. (13.13) thus becomes (k counts the itera-
tion steps):∫

A

{
vk+1

g v + ρ(|∇vk
g|)

(∇vk
g
)T∇v

}
dx =

∫
A

gv dx , ∀v ∈ S2

(13.19)

To our knowledge, this approach was introduced as the so-called
Kačanovmethod in the field ofmathematical elasticity 25 yr ago (see [29,
30, 31]). In the case of convex functionals Eq. (13.4) with λ from
Eq. (13.5), it can be shown that the sequence vk

g according to Eq. (13.19)
converges to the global minimizer vg , that is, the unique solution of
Eq. (13.13), irrespective of the starting point v0

g [28, 32].

Minimization of nonconvex functionals. A linearization technique
closely related to that of the previous section has been proposed by
Geman and Reynolds [33] (see also Charbonnier et al. [34]). The idea
is to rewrite the original functional Eq. (13.4) using an auxiliary func-
tion w:

Jaux(v, w) = 1
2

∫
A

{
(v − g)2 + w|∇v|2 + ψ(w)

}
dx (13.20)

and to update, iteratively, vg and w:

vk+1
g = argmin

v
Jaux(v, wk) (13.21)

and
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wk+1 = argmin
w

Jaux(vk+1
g , w) (13.22)

Note that wk is fixed in Eq. (13.21), so that vk+1
g is computed as the

solution of the linear equation:∫
A

{
vk+1

g v + wk(∇vk+1
g

)T∇v
}
dx =

∫
A

gv dx , ∀v ∈ S2 (13.23)

To make step Eq. (13.22) more explicit, we have to explain how the
function ψ in Eq. (13.20) is chosen; ψ is chosen such that:

λ(t) = inf
w

(
wt2 + ψ(w)

)
with λ from the original minimization problems Eqs. (13.4) and (13.6).
If λ is such that ρ in Eq. (13.11) is strictly monotone and decreasing
(as in Eq. (13.6)), then it is not difficult to show that step Eq. (13.22)
reduces to:

wk+1 = ρ(|∇vk+1
g |) (13.24)

that is, ψ is not needed explicitly to carry out Eq. (13.22). As a result,
we have the iteration Eq. (13.19) again, with ρ now defined by some non-
convex function λ. As ρ defined by Eqs. (13.11) and (13.5) illustrates,
it is possible to weaken the assumptions slightly and to consider func-
tions ρ that are (not strictly) monotone decreasing, too.

According to nonconvexity, only a local minimum can be expected
after convergence of the iteration from the preceding. Furthermore,
this minimum generally depends on the starting point v0

g .

13.2.4 Applications

In this section, we demonstrate various aspects of the variational ap-
proach Eq. (13.4) with a few numerical examples. In all experiments we
used the convex case Eq. (13.5), with one exception (Fig. 13.8) to exhibit
some differences to the nonconvex case. As a convergence criterion
the following threshold with respect to the maximum residuum of the
nonlinear Eq. (13.18) was used:

max
i∈{1,...,N}

∣∣〈A(vh,g) − f , φi〉
∣∣ ≤ 0.1

Adaptive smoothing. We first illustrate the adaptive smoothing be-
havior with an academic example. Figure 13.3 shows an isocontour
surface of a real 3-D data set in a, superimposed with noise in b, and
c shows the corresponding isocontour surface of the minimizing func-
tion vg by processing the noisy data g shown in a. Two aspects can
be seen here: First, noise can be eliminated without destroying sig-
nificant signal structure in terms of large gradients. Second, whereas
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a b c

Figure 13.3: a Isocontour surface of 3-D data set; b contaminated with noise; c
after adaptive smoothing of the data shown in b (see text).

a b c

Figure 13.4: a Slice of a 3-D CT image data set; b, c sections with an object of
interest.

smoothing stops locally along the gradient direction (i. e., normal to
the surface), smoothing still occurs along the surface, as can be seen
from the small ripples of the surface in Fig. 13.3b that have been elim-
inated in c. One main advantage of variational approaches is that such
complex, locally adaptive smoothing behavior emerges from a global
optimization principle and does not have to be encoded explicitly.

As a realistic application case, Fig. 13.4 shows a slice through a noisy
3-D CT data set a and sections with some object b and c. Figure 13.5
illustrates how adaptive variational smoothing of the 3-D image data
eliminates noise without destroying the fairly complex signal structure.
As a result, detection of the object by a simple threshold operation
becomes robust.

Segmentation and feature extraction. In this section, we illustrate
the segmentation of images into homogeneous regions Eq. (13.8) and
transition regions Eq. (13.9). Figure 13.6 shows a Lab scene g in a and
the processed image vg in b. According to definitions Eqs. (13.8) and
(13.9), vg implicitly encodes a partition of the image plane as shown in
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Figure 13.5: Left column: Original data. Right column: Adaptively smoothed
data: a,b section of Fig. 13.4; c,d 3-D plot of a and b, respectively; e,f result of
threshold operation.

Fig. 13.6c. By choosing a smaller value for the scale parameter λh in
Eq. (13.5), finer details can be resolved at the cost of less smoothing (i.e.,
noise suppression) within homogeneous regions (Fig. 13.6d). This latter
aspect, that is feature detection through anisotropic locally adaptive
processing while simultaneously smoothing within nonfeature regions,
is amain property of variational approaches. Figure 13.7 illustrates this
aspect in more detail. As a result, local contrast information around
signal transitions becomes robust.

Finally, let us consider some differences between convex Eq. (13.5)
and nonconvex Eq. (13.6) variational processing. Figure 13.8 shows
the corresponding results for the image shown in Fig. 13.8a. Noise
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a b

c d

Figure 13.6: a Lab scene g; b the unique minimizer vg to Eq. (13.4); c the
segmentation encoded by vg according to Eqs. (13.8) and (13.9); d choosing a
smaller scale parameter λh in Eq. (13.5) enables the computation of finer details.

suppression along with region formation can be clearly seen for both
approaches, whereas contrast is better preserved using the nonconvex
version. However, as can be seen in Fig. 13.8d and e, the formation of
transition regions is more susceptible to noise for the nonconvex than
for the convex approach. This is due to the fact that smoothing almost
completely stops in the nonconvex case, whereas in the convex case
smoothing still continues in directions perpendicular to the gradient
direction. From our viewpoint, this fact together with the existence of
multiple localminima and the dependence on the starting point reduces
the attraction of nonconvex approaches, in particular in the context of
image sequence processing where gradual changes of the input image
data may not lead to gradual changes of corresponding image segmen-
tations.

Noise suppression and restoration. For large gradients |∇v|, the
convex smoothness term of the functional Eqs. (13.4) and (13.5) is dom-
inated by the so-called total variation measure, which for admissible
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Figure 13.7: a Section of the Lab scene shown in Fig. 13.6; b detection and local-
ization of signal structure is not affected very much by elimination of smaller
details. As a result, local contrast information around signal transitions be-
comes robust; c, d 3-D plots of a and b, respectively.

functions with respect to problem Eq. (13.4) takes the simple form:∫
At

λ(|∇v|)dx ∼
∫

At

|∇v|dx

As an alternative to restoring signal transitions in the context of image
segmentation, this measure can also be used to restore entire images
by the variational approach [35, 36, 37]. This powerful approach can be
simulated by choosing a small value for the parameter cρ in Eq. (13.5).
Figure 13.9 shows as an example the restoration of a mammogram. We
note, however, that a proper adaptation of the approach Eq. (13.4) to
restoration tasks requires in general the inclusion of a blurring oper-
ator K into the first term of Eq. (13.4), which models the point-spread
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a b c

d e

Figure 13.8: a Real image; b unique minimum of the convex variational ap-
proach; c local minimizer of the nonconvex variational approach. Contrast is
better preserved by the nonconvex approach; d, e segmentations according to
b and c, respectively. Transitions detected by the convex approach are more
robust against noise because smoothing does not stop completely.

function of the imaging device:∫
A

(Kv − g)2 dx

13.3 Processing of vector-valued images

This section extends the variational approach of Eq. (13.4) to vector-
valued images. We describe a straightforward extension appropriate
for the processing of color images, for example. A variation of this
approach that is useful for some image sequence processing tasks is
presented in Section 13.4.

13.3.1 Variational principle

Let

g : x ∈ A ⊂ Rd → Rn (13.25)
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Figure 13.9: a Section of a mammogram; b restored image; c, d 3-D plots of
a, b .

denote a vector-valued image. For example, we have d = 2 and n = 3
for color images. For the gradient of vector-valued functions v we use
the symbol:

Dv :=
[
∇v1, . . . ,∇vn

]
The corresponding inner product and norm are denoted as:

(Du, Dv) = trace(DuT Dv) , ‖Dv‖ = (Dv, Dv)1/2

The variational approach—analog to Eq. (13.4)—then reads ([38]):

J(v) = 1
2

∫
A

{
|v − g|2 + λ(‖Dv‖)

}
dx (13.26)

Computing the first variation, we again obtain a variational equation
of the form Eq. (13.13) that, for λ defined by Eq. (13.5), uniquely de-
termines the global minimizer vg of the functional Eq. (13.26), where
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(see definitions Eqs. (13.14) and (13.15) in the scalar case):

〈A(vg),v〉 =
∫

A

{
vT
gv + ρ(‖Dvg‖)(Dvg, Dv)

}
dx (13.27)

and

〈f ,v〉 =
∫

A
gTv dx (13.28)

Alternatively, one may use definition Eq. (13.6) in order to formulate a
nonconvex variational approach. An alternative meaningful extension
of the standard smoothness term in Eq. (13.4) to the case of vector-
valued images is discussed in Sapiro and Ringach [39].

13.3.2 Numerical example: color images

Figure 13.10 shows a color image g and the minimizer vg to Eq. (13.26)
computed at a small (λh = 2) and a larger scale (λh = 9), respectively.
The preservation of image structure as well as the formation of homo-
geneous regions is clearly visible.

13.4 Processing of image sequences

In this section, we describe a specific alternative to the smoothness
term of the functional Eq. (13.26) adapted to the estimation of motion
fields. A motion field is a vector field that describes the instantaneous
velocity of projected scene points in the image plane. Estimates of the
motion field for a fixed time point are referred to as optical flow fields
f in the literature (see Chapter 10).

13.4.1 Preprocessing

To compute f , local constraints due to the spatiotemporal variation of
the image data g(x, t) may be used:

dg
dt

=∇gTf + ∂g
∂t

= 0 (13.29)

Here, the assumption has been made that g behaves like a “conserved
quantity.” As this assumption is often severely violated under realistic
illumination conditions, g is replaced bymore robust quantities related
to the output of bandpass filters. Furthermore, multiple constraint
equations similar to Eq. (13.29) can be used (see, e.g., [40, 41, 42, 43]).
For more information related to the topic “optical flow” the reader is
referred to Chapter 10. A survey of current problems in the field of
image sequence analysis has been presented by Mitiche and Bouthemy
[44].
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a b

c d

Figure 13.10: a Color image; c,d the minimizer vg computed at a small and a
larger scale, respectively; b the segmentation corresponding to c; topologically
connected regions are marked with the mean color, transitions are marked with
black.

13.4.2 Variational principle

In the following we focus on variational approaches to the computa-
tion of optical flow fields f . The classical approach is due to [45] (see
also Section 10.3.1, Eq. (10.33)):

J(f ) = 1
2

∫
A

{(∇gTf + gt
)2 + λ2(|∇f1|2 + |∇f2|2

)}
dx , λ ∈ R

(13.30)

which has been considerably generalized in the literature (see, e.g., [46]
and references therein). Formally, f may be regarded as a vector-valued
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image, so the nonquadratic smoothness term in Eq. (13.26),

1
2

∫
A

λ
(‖Df‖)dx (13.31)

with λ from Eq. (13.5) or Eq. (13.6), can be used to replace the terms
with derivatives of f1, f2 in Eq. (13.30). With this, the computation of
f by minimizing the functional J becomes adaptive to so-calledmotion
boundaries, that is, significant changes of the structure of the optical
flow f . An alternative to Eq. (13.31) that may be useful in some appli-
cations is given by [47]:

1
4

∫
A

{
λd

(|div(f )|)+ λr
(|rot(f )|)+ λs

(|sh(f )|)}dx (13.32)

where:
div(f ) = f1,x + f2,y ,
rot(f ) = f2,x − f1,y ,

sh(f ) = [
f2,y − f1,x, f1,y + f2,x

]T

denote the component’s divergence, vorticity, and shear of the vector-
gradient Df . The functions λd, λr and λs are defined by Eq. (13.5) (or
Eq. (13.6)). Parameter values may differ for each function. Using defi-
nition Eq. (13.5) makes the functional Eq. (13.32) together with the first
data term in Eq. (13.30) convex so that the minimizing f is unique [48].
For cρ → ∞ in Eq. (13.5) the functional Eq. (13.32) becomes identical to
the smoothness term in Eq. (13.30) due to the identity:

‖Df‖2 = 1
2

(
div2(f ) + rot2(f ) + |sh(f )|2

)
13.4.3 Numerical examples

Because the preprocessing step, that is, the evaluation of constraint
equations like Eq. (13.29) is not the topic of this chapter, we restrict
ourselves to illustrating the effect of using the smoothness term of
Eq. (13.32). To this end, we generated noisy vector fields fd and sup-
plemented Eq. (13.32) with the data term:

1
2

∫
A
|f − fd|2 dx

The main difference between the standard smoothness measure of
Eq. (13.31) and Eq. (13.32) is that the first term favors piecewise con-
stant vector fields whereas the latter term admits vector fields with
richer local structure. This is illustrated in Fig. 13.11, in which vector
fields are nowhere constant.
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Figure 13.11: Left column: Structure-selective smoothing: a computer-
generated vector field; only the shear-term of the gradient is different from zero;
b noisy input data; c reconstructed vector field by filtering divergent and rota-
tional components. Right column: Structure-adaptive smoothing; d computer-
generated vector field comprising a divergent and a rotational component; e
noisy input data; f restored vector field. The smoothness term Eq. (13.32) auto-
matically adapts to the local vector field structure.
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14.1 Introduction

Mathematical morphology (MM ) or simply morphology can be defined
as a theory for the analysis of spatial structures [1]. It is called mor-
phology because it aims at analyzing the shape and form of objects.
Mathematical morphology is not only a theory, but also a powerful im-
age analysis technique. The purpose of this chapter is to introduce the
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morphological operators used in practical applications1. The emphasis
is therefore on the technique rather than the theory.

Morphological operators belong to the class of nonlinear neighbor-
hood operators (Chapter 9). The neighborhood used for a given mor-
phological operator is called structuring element . The operators are
then defined by testing whether the structuring element does or does
not fit the image objects considered as sets of an n-dimensional space.
Set operators such as union and intersection can be directly generalized
to gray-scale images of any dimension by considering the pointwise
maximum and minimum operators.

Morphological operators are best suited to the selective extraction
or suppression of image structures. The selection is based on their
shape, size, and orientation. By combining elementary operators, im-
portant image processing tasks can also be achieved. For example,
there exist combinations leading to the definition of morphological
edge sharpening, contrast enhancement, and gradient operators.

Althoughmost of the examples in this chapter deal with 2-D images,
morphological operations directly apply to n-dimensional binary and
gray-scale images. Their extension to multicomponent images requires
the definition of a total ordering relationship between vectors. Alterna-
tively, they can be handled by processing each component separately.

The chapter2 is organized as follows. Background notions useful
for defining and characterizing morphological operators are discussed
in Section 14.2. A description of the fundamental and advanced mor-
phological transformations including application examples follows in
Section 14.3 and Section 14.4, respectively.

14.2 Preliminaries

14.2.1 Image transforms and cross sections

In mathematical terms, a gray-tone image f is a mapping of a subsetDf
of Zn called the definition domain of f into a finite chain of nonnegative
integers:

f : Df ⊂ Zn �→ {0,1, . . . , tmax}

where tmax is the maximum value of the data type used for storing
the image (i. e., 2n − 1 for pixels coded on n bits). There is no need
to consider negative values because usual morphological operators do
preserve the dynamic range of the input image. Note that a binary
image is nothing but a gray-scale image with only two gray-scale levels
(0 for the background and 1 for the foreground).

1A comprehensive presentation of the principles and applications of morphological
image analysis can be found in the treatise by Soille [2].

2An extended version of this chapter can be found in CVA2 [Chapter 21].
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Morphological image transformations are image-to-image transfor-
mations, that is, the transformed image has the same definition domain
as the input image and it is still a mapping of this definition domain
into the set of nonnegative integers. We use the generic notation Ψ for
such mappings. The identity transform I is a trivial example of image-
to-image transformation.

A widely used image-to-image transformation is the threshold op-
erator T , which sets all pixels x of the input image f whose values lie
in the range [ti, tj] to 1 and the other ones to 0:

[T[ti, tj](f )](x) =
{

1, if ti ≤ f (x) ≤ tj
0, otherwise

It follows that the threshold operator maps any gray-tone image into a
binary image.

14.2.2 Set operators

The basic set operators are union ∪ and intersection ∩. For gray-tone
images, the union becomes the pointwise maximum operator ∨ and the
intersection is replaced by the pointwise minimum operator ∧:

union: (f ∨ g)(x) = max[f (x), g(x)]
intersection: (f ∧ g)(x) = min[f (x), g(x)]

(14.1)

Another basic set operator is complementation. The complement of an
image f , denoted by f c , is defined for each pixel x as the maximum
value of the data type used for storing the image minus the value of
the image f at position x:

f c(x) = tmax − f (x) (14.2)

The complementation operator is denoted by U: U(f ) = f c .
The set difference between two sets X and Y , denoted by X \ Y ,

is defined as the intersection between X and the complement of Y :
X \ Y = X ∩ Y c .

The transposition of a set B corresponds to its symmetric set with
respect to its origin:

B̌ = {−b | b ∈ B}. (14.3)

A set B with an origin O is symmetric if and only if B = B̌.

14.2.3 Order relationships

The set inclusion relationship allows us to determine whether two sets
are ordered, that is, whether the first is included in the second or vice
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versa. Similarly, an image f is less than or equal to an image g if the
value of f is less than or equal to the value of g at all pixels x:

f ≤ g � ∀x, f (x) ≤ g(x)

Order relationships for image transformations are defined by anal-
ogy: a transformation Ψ1 is less than or equal to a transformation Ψ2 if
and only if, for all images f , Ψ1(f ) is less than or equal to Ψ2(f ):

Ψ1 ≤ Ψ2 � ∀f , Ψ1(f ) ≤ Ψ2(f )

14.2.4 Discrete distances and distance functions

Definitions. The concept of distance is widely used in image analysis
and especially in mathematical morphology. There exist many discrete
distances satisfying the three axioms of ametric (compare discussion in
Section 8.3.3). The choice of a givenmetric depends on the application
speed, memory load, and accuracy requirements.

The discrete distance dG between two pixels p and q in a graph or
grid G is the smallest length of the paths P linking p to q:

dG(p, q) = min{L(P) | P path linking p to q in G} (14.4)

The path(s) corresponding to the smallest length is (are) called shortest
path(s) or geodesics. If the underlying graph is 4-connected, the metric
is known as the city-block metric , and denoted by db. The 8-connected
graph defines the chessboard metric dc . An alternative approach is
to consider the points of the digitization network as if they were em-
bedded into the Euclidean space Rn. By doing so, the neighborhood
relationships between points of the image definition domain are not
taken into account and the actual Euclidean distance de is considered.
In practice, Euclidean distances are often rounded to their nearest in-
teger value.

The distance function D on a binary image f associates each pixel
x of the definition domain Df of f with its distance to the nearest
zero-valued pixel:

[D(f )](x) = min{d(x,x′) | f (x′) = 0} (14.5)

The distance function is sometimes referred to as the distance trans-
form. Depending on whether de or dG is used in Eq. (14.5), one defines
a Euclidean or a discrete distance function. A distance function on a
binary image of cells is shown in Fig. 14.1.

14.2.5 Image operator properties

The properties of linear shift-invariant image operators have already
been described in Section 9.2. Morphological operators are nonlinear
shift-invariant filters that may satisfy some other properties:
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a b

Figure 14.1: Distance function on a binary image of cells. Note that the high
values of the distance function correspond to the center of the cells: a binary
image of cells; b rounded Euclidean distance function on (a).

Idempotence. A transformation Ψ is idempotent if applying it twice
to any image is equivalent to applying it only once:

Ψ , idempotent � ΨΨ = Ψ

Extensivity. A transformation Ψ is extensive if it is greater than or
equal to the identity transform I:

Ψ , extensive � I ≤ Ψ

Antiextensivity. A transformation Ψ is antiextensive if it is less than
or equal to the identity transform I:

Ψ , antiextensive � I ≥ Ψ

Increasingness. A transformation Ψ is increasing if it preserves the
order relationships (see Section 14.2.3) between images:

Ψ , increasing � ∀f , g, f ≤ g ⇒ Ψ(f ) ≤ Ψ(g) (14.6)

Duality. Two transformations Ψ and Φ are dual with respect to com-
plementation if applying Ψ to an image is equivalent to applying Φ to
the complement of the image and taking the complement of the result:

Ψ and Φ dual with respect to complementation U � Ψ = UΦU (14.7)

For example, setting to 0 all foreground-connected components whose
surface area is less than a given threshold value λ is the dual trans-
formation of setting to 1 all background-connected components whose
surface area is less than λ.
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Self-duality. A transformation Ψ is self-dual with respect to comple-
mentation if its dual transformation with respect to the complementa-
tion is Ψ itself:

Ψ , self-dual with respect to complementation U� Ψ = UΨU

Linear shift-invariant filters (i.e., convolutions) are all self-dual opera-
tors. When a transformation is not self-dual, a symmetric processing
can only be approximated by applying the transformation and then its
dual (see Section 14.4.7).

14.2.6 Structuring element

An SE is nothing but a small set used to probe the image under study.
An origin must also be defined for each SE so as to allow its positioning
at a given point or pixel: an SE at point xmeans that its origin coincides
with x. The elementary isotropic SE of an image is defined as a point
and its neighbors, the origin being the central point. For instance, it is
a centered 3 × 3 window for a 2-D image defined over an 8-connected
grid. In practice, the shape and size of the SE must be adapted to the
image patterns that are to be processed. Some frequently used SEs are
discussed hereafter.

Digital approximations of line segments. Line segments are often
used to remove or extract elongated image structures. There are two
parameters associated with line SEs: length and orientation.

Digital approximations of the disk. Due to their isotropy, disks and
spheres are very attractive SEs. Unfortunately, they can only be approx-
imated in a digital grid. The larger the neighborhood size is, the better
the approximation is.

Pair of points. In the case of binary images, an erosion with a pair of
points can be used to estimate the probability that points separated by
a vector v are both object pixels, that is, by measuring the number of
object pixels remaining after the erosion. By varying the modulus of
v, it is possible to highlight periodicities in the image. This principle
applies to gray-scale images.

Composite structuring elements. A composite or two-phase SE con-
tains two nonoverlapping SEs sharing the same origin. Composite SEs
are considered for performing hit-or-miss transforms (Section 14.4.5).

Elementary structuring elements. Many morphological transforma-
tions consist in iterating fundamental operators with the elementary
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symmetric SE, that is, a pixel and its neighbors in the considered neigh-
borhood. Elementary triangles are sometimes considered in the hexag-
onal grid and 2×2 squares in the square grid. In fact, the 2×2 square
is the smallest isotropic SE of the square grid but it is not symmetric
in the sense that its center is not a point of the digitization network.

14.3 Basic morphological operators

Morphological operators aim at extracting relevant structures of the
image. This can be achieved by probing the image with another set of
given shape called the structuring element (SE), see Section 14.2.6. Ero-
sions and dilations are the two fundamental morphological operators
because all other operators are based on their combinations.

14.3.1 Erosion and dilation

Erosion. The first question that may arise when we probe a set with
a structuring element is “Does the structuring element fit the set?” The
eroded set is the locus of points where the answer to this question is
affirmative. In mathematical terms, the erosion of a set X by a structur-
ing element B is denoted by εB(X) and is defined as the locus of points
x, such that B is included in X when its origin is placed at x:

εB(X) = {x | Bx ⊆ X} (14.8)

Equation 14.8 can be rewritten in terms of an intersection of set trans-
lations, the translations being determined by the SE:

εB(X) =
⋂
b∈B

X−b

This latter definition itself can be directly extended to binary and gray-
scale images: the erosion of an image f by a structuring element B is
denoted by εB(f ) and is defined as the minimum of the translations of
f by the vectors −b of B:

εB(f ) =
∧
b∈B

f−b (14.9)

Hence, the eroded value at a given pixel x is the minimum value of the
image in the window defined by the structuring element when its origin
is at x:

[εB(f )](x) = min
b∈B

f (x +b) (14.10)

To avoid the erosion of the image structures from the border of the
image, we assume that the image values outside the definition domain
are set to tmax.
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a

b

c d

Figure 14.2: Erosion ε and dilation δ of a set X by a 2× 2 structuring element
whose origin is the upper left pixel. aA binary imageX. bA structuring element
B. c Erosion of X by B. d Dilation of X by B.

Dilation. The dilation is the dual operator of the erosion and is based
on the following question: “Does the structuring element hit the set?”
The dilated set is the locus of points where the answer to this question
is affirmative.

The dilation of a set X by a structuring element B is denoted by
δB(X) and is defined as the locus of points x such that B hits X when
its origin coincides with x:

δB(X) = {x | Bx ∩ X ≠∅} (14.11)

The dilation and erosion of a discrete binary image are illustrated in
Fig. 14.2.

Equation (14.11) can be rewritten in terms of a union of set transla-
tions, the translations being defined by the SE:

δB(X) =
⋃
b∈B

X−b (14.12)

This latter definition can be directly extended to binary and gray-scale
images: the dilation of an image f by a structuring element B is denoted
by δB(f ) and is defined as the maximum of the translation of f by the
vectors −b of B:

δB(f ) =
∨
b∈B

f−b (14.13)

In other words, the dilated value at a given pixel x is the maximum
value of the image in the window defined by the structuring element
when its origin is at x:

[δB(f )](x) = max
b∈B

f (x +b) (14.14)

When dilating an image, border effects are handled by assuming a zero-
extension of the image. Gray-scale erosion and dilation are illustrated
in Fig. 14.3.
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We denote by nB a structuring element of size n, that is, an SE B
that has been dilated n times by its transposed B̌ (see Eq. (14.3)):

nB = δn
B̌ (B). (14.15)

Notice that if B = B̌ then the following relationship holds: δn
B = δnB .

Properties. The dilation and the erosion are dual transformations
with respect to complementation. This means that any erosion of an
image is equivalent to a complementation of the dilation of the comple-
mented image with the same structuring element (and vice versa). This
duality property illustrates the fact that erosions and dilations do not
process the objects and their background symmetrically: the erosion
shrinks the objects but expands their background (and vice versa for
the dilation).

Erosions and dilations are invariant to translations and preserve the
order relationships between images, that is, they are increasing trans-
formations.

The dilation distributes the pointwise maximum operator ∨ and the
erosion distributes the pointwise minimum operator ∧:

δ(
∨
i

fi) =
∨
i

δ(fi)

ε(
∧
i

fi) =
∧
i

ε(fi)

For example, the pointwise maximum of two images dilated with an
identical structuring element can be obtained by a unique dilation of
the pointwise maximum of the images. This results in a gain of speed.

The following two equations concern the composition of dilations
and erosions:

δB2δB1 = δ(δB̌2
B1) (14.16)

εB2εB1 = ε(δB̌2
B1) (14.17)

These two properties are very useful in practice as they allow us to de-
compose a morphological operation with a large SE into a sequence of
operations with smaller SEs. For example, an erosion with a square SE
of side n in pixels is equivalent to an erosion with a horizontal line of
n pixels followed by an erosion with a vertical line of the same size.
It follows that there are 2(n − 1) min comparisons per pixel with de-
composition and n2 − 1 without, that is, O(n) resp. O(n2) algorithm
complexity.

The decomposition property is also important for hardware imple-
mentations where the neighborhood size is fixed (e.g., fast 3×3 neigh-
borhood operations). By cascading elementary operations, larger neigh-
borhood size can be obtained. For example, an erosion by a square of
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width 2n + 1 pixels is equivalent to n successive erosions with a 3×3
square.

14.3.2 Morphological gradients

A common assumption in image analysis consists of considering im-
age objects as regions of rather homogeneous graylevels. It follows
that object boundaries or edges are located where there are high gray-
level variations. Morphological gradients are operators enhancing in-
tensity pixel variations within a neighborhood. The erosion/dilation
outputs for each pixel the minimum/maximum value of the image in
the neighborhood defined by the SE. Variations are therefore enhanced
by combining these elementary operators.

The basic morphological gradient, also called Beucher gradient [3],
is defined as the arithmetic difference between the dilation and the
erosion with the elementary structuring element B of the considered
grid. This morphological gradient is denoted by ρ:

ρB = δB − εB. (14.18)

From this latter equation, it can be seen that themorphological gradient
outputs the maximum variation of the gray-level intensities within the
neighborhood defined by the SE rather than a local slope.

The thickness of a step edge detected by a morphological gradient
equals two pixels: one pixel on each side of the edge. Half-gradients
can be used to detect either the internal or the external boundary of an
edge. These gradients are one-pixel thick for a step edge.

The half-gradient by erosion or internal gradient ρ− is defined as
the difference between the identity transform and the erosion:

ρ−
B = I − εB (14.19)

The internal gradient enhances internal boundaries of objects brighter
than their background and external boundaries of objects darker than
their background. For binary images, the internal gradient will provide
a mask of the internal boundaries of the objects of the image.

The half-gradient by dilation or external gradient ρ+ is defined as
the difference between the dilation and the identity:

ρ+
B = δB − I (14.20)

Note that the following relationships hold: ρ− = ρ+U and ρ+ + ρ− = ρ.
The choice between internal or external gradient depends on the nature
of the objects to be extracted. Morphological, external, and internal
gradients are illustrated in Fig. 14.3.
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a b c

d e f

Figure 14.3: Morphological gradients or how to combine erosion and dilation
for enhancing object boundaries: a original image f ; b dilated image δ(f ); c
eroded image ε(f ). Edge images: d ρ+(f ) = δ(f ) − f ; e ρ−(f ) = f − ε(f ); f
ρ(f ) = δ(f ) − ε(f ). In this figure, the SE B is a 3×3 square.

14.3.3 Opening and closing

Morphological opening. Once an image has been eroded, there exists
in general no inverse transformation to get the original image back. The
idea behind the morphological opening is to dilate the eroded image to
recover as much as possible the original image.

The opening γ by a structuring element B is denoted by γB and is
defined as the erosion by B followed by the dilation with the transposed
SE B̌:

γB = δB̌εB (14.21)

In Eq. (14.21), it is essential to consider the transposed SE for the dila-
tion. Indeed, an erosion corresponds to an intersection of translations.
It follows that a union of translations in the opposite direction (i.e., a
dilation by the transposed SE) must be considered when attempting to
recover the original image. Consequently, the opening of an image is
independent from the origin of the SE.

Although the opening is defined in terms of erosions and dilations in
Eq. (14.21), it possesses a geometric formulation in terms of SE fit using
the question already introduced for the erosions: “Does the structuring
element fit the set?” Each time the answer to this question is affirmative,
the whole SE must be kept (for the erosion, it is the origin of the SE that
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a

b

c d

Figure 14.4: Opening and closing of a 13×10 discrete binary image by a 2× 2
square structuring element (the object pixels are the gray pixels): a a binary
image X; b a structuring element B; c opening of X by B; d closing of X by B.

is kept). Therefore, the opened set is the union of all SEs fitting the set:

γB(X) =
⋃
x
{Bx | Bx ⊆ X} (14.22)

Morphological closing. The idea behind the morphological closing
is to build an operator tending to recover the initial shape of the im-
age structures that have been dilated. This is achieved by eroding the
dilated image.

The closing by a structuring element B is denoted by φB and is de-
fined as the dilation with a structuring element B followed by the ero-
sion with the transposed structuring element B̌:

φB = εB̌δB (14.23)

Contrary to the opening, the closing filters the set from the outside.
The opening and closing of a discrete image by a 2×2 square SE is
shown in Fig. 14.4.

Note that the opening removes all object pixels that cannot be cov-
ered by the structuring element when it fits the object pixels while the
closing fills all background structures that cannot contain the structur-
ing element. In Fig. 14.5, the closing of a gray-scale image is shown
together with its opening.

Properties. Openings and closings are dual transformations with re-
spect to set complementation. The fact that they are not self-dual trans-
formations means that one or the other transformation should be used
depending on the relative brightness of the image objects we would like
to process. The relative brightness of an image region defines whether
it is a background or foreground region. Background regions have a
low intensity value compared to their surrounding regions and vice
versa for the foreground regions. Openings filter the foreground re-
gions from the inside. Closings have the same behavior on the back-
ground regions. For instance, if we want to filter noisy pixels with high
intensity values an opening should be considered.
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Original

Eroded Opened

Dilated Closed

Figure 14.5: Opening and closing of a gray-scale image with a 5×5 square SE.

We have already stated that openings are antiextensive transforma-
tions (some pixels are removed) and closings are extensive transfor-
mations (some pixels are added). Therefore, the following ordering
relationships always hold:

γ ≤ I ≤ φ

Morphological openings γ and closings φ are both increasing trans-
formations. This means that openings and closings preserve order rela-
tionships between images. Moreover, successive applications of open-
ings or closings do not further modify the image. Indeed, they are both
idempotent transformations: γγ = γ and φφ = φ. The idempotence
property is often regarded as an important property for a filter because
it ensures that the image will not be further modified by iterating the
transformation.

14.4 Advanced morphological operators

14.4.1 Top-hats

The choice of a given morphological filter is driven by the available
knowledge about the shape, size, and orientation of the structures we
would like to filter. For example, we may choose an opening by a 2× 2
square SE to remove impulse noise or a larger square to smooth the
object boundaries. Morphological top-hats [4] proceed a contrario. In-
deed, the approach undertaken with top-hats consists in using knowl-
edge about the shape characteristics that are not shared by the relevant
image structures. An opening or closing with an SE that does not fit the
relevant image structures is then used to remove them from the image.
These structures are recovered through the arithmetic difference be-
tween the image and its opening or between the closing and the image.
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The success of this approach is due to the fact that there is not neces-
sarily a one-to-one correspondence between the knowledge about what
an image object is and what it is not. Moreover, it is sometimes easier
to remove relevant image objects than to try to suppress the irrelevant
ones.

The white top-hat or top-hat by opening WTH of an image f is the
difference between the original image f and its opening γ:

WTH = I − γ (14.24)

As the opening is an anti extensive image transformation, the gray-scale
values of the white top-hat are always greater or equal to zero.

The black top-hat or top-hats by closing BTH of an image f is defined
as the difference between the closing φ of the original image and the
original image:

BTH = φ − I (14.25)

It follows that BTH = WTH U. Due to the extensivity property of the
closing operator, the values of the black top-hat images are always
greater or equal to zero.

If the image objects all have the same local contrast, that is, if they
are either all darker or brighter than the background, top-hat trans-
forms can be used for mitigating illumination gradients. Indeed, a top-
hat with a large isotropic structuring element acts as a high-pass filter.
As the illumination gradient lies within the low frequencies of the im-
age, it is removed by the top-hat. White top-hats are used for dark
backgrounds and black top-hats for bright backgrounds.

For example, Fig. 14.6a shows a badly illuminated image of seeds.
A closing with a large structuring element removes the seeds but pre-
serves the illumination function. The black top-hat or subtraction of
the original image from the closing provides us with an evenly illumi-
nated image (Fig. 14.6c). A more contrasted image can be obtained by
dividing the original image with its closing (Fig. 14.6d).

14.4.2 Granulometries

Principle. The concept of a granulometry [5], or size distribution, may
be likened to the sifting of rocks in a gravel heap. The rocks are sifted
through screens of increasing size, leaving only the rocks that are too
big to pass through the sieve. The process of sifting the rocks at a par-
ticular size is analogous to the opening of an image using a particular
size of structuring element. The residue after each opening is often
collated into a granulometric curve, revealing useful information about
the distribution of object sizes in the image.
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a b

c d

Figure 14.6: Use of top-hat for mitigating inhomogeneous illumination: a
Original image f ; b Closing of f with a large square: φ(f ); c Black top-hat:
BTH(f ) = φ(f ) − f ; d Division of f by φ(f ).

In mathematical terms, a granulometry is defined by a transforma-
tion having a size parameter λ and satisfying the following three ax-
ioms:

• Antiextensivity: the rocks that remain in the sieve are a subset of
the initial rocks.

• Increasingness: When sifting a subset of a heap of rocks, the rocks
remaining in the sieve are a subset of those remaining after sifting
the whole heap.

• Absorption: Let us consider a sifting transformation Φ at two differ-
ent sizes λ and ν . Sifting withΦλ and then withΦν will give the same
result as sifting with Φν prior to Φλ. It is only the size of the largest
sieve that determines the result. This property is called absorption:

ΦλΦν = ΦνΦλ = Φmax(λ,ν) (14.26)

Note that for λ = ν the idempotence property is a particular case of
the absorption property.
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a b c

d e f

Figure 14.7: Successive openings of a binary image of blood cells or granulom-
etry (using square SEs of increasing size): a Original image f ; b Opening of size
1: γB(f ); c γ3B(f ); d γ9B(f ); e γ13B(f ); f γ15B(f ).

By definition, all openings satisfy the two first properties. How-
ever, not all openings with SEs of increasing size satisfy the absorption
property. Disk-like SEs or line segments of increasing size are usually
considered (families based on cascades of periodic lines are detailed in
[6]). Figure 14.7 illustrates a granulometry with a family of square SEs
of increasing size. Note that the size distribution does not require the
particles to be disconnected.

Granulometries are interpreted through granulometric curves. Two
kinds of granulometric curves are generally used:

1. Surface area of Φλ vs λ
2. Loss of surface area between Φλ and Φλ+1 vs λ

The latter type of granulometric curve is often referred to as the pattern
spectrum [7] of the image. A large impulse in the pattern spectrum
at a given scale indicates the presence of many image structures at
that scale. The granulometric curve associated with the granulometry
presented in Fig. 14.7 is provided in Fig. 14.8 together with its pattern
spectrum.

Granulometries also apply to gray-tone images. In this latter case,
the surface area measurement should be replaced by the volume3.

3The volume of an image equals the sum of the gray-level intensities of all its pixels.
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Figure 14.8: Granulometric curves corresponding to Fig. 14.7. a Surface area
of the opening vs size of the opening. b Derivative of a. The high peak observed
in the pattern spectrum (b) indicates that most cells of Fig. 14.7a are at this size.

14.4.3 Geodesic operators

All morphological operators discussed so far involved combinations of
one input imagewith specific structuring elements. The approach taken
with geodesic operators is to consider two input images. A morpholog-
ical operator is applied to the first image and it is then forced to remain
either greater or lower than the second image. Authorized morpholog-
ical operators are restricted to elementary erosions and dilations. The
choice of specific structuring elements is therefore eluded. In practice,
geodesic transformations are iterated until stability, making the choice
of a size unnecessary. It is the combination of appropriate pairs of in-
put images that produces new morphological primitives. These prim-
itives are at the basis of formal definitions of many important image
structures for both binary and gray-scale images.

Geodesic dilation. A geodesic dilation involves two images: a marker
image and a mask image. By definition, both images must have the
same domain of definition and the mask image must be larger than or
equal to the marker image. The marker image is first dilated by the
elementary isotropic structuring element. The resulting dilated image
is then forced to remain below the mask image. The mask image acts
therefore as a limit to the propagation of the dilation of the marker
image.

Let us denote by f the marker image and by g the mask image
(f ≤ g). The geodesic dilation of size 1 of the marker image f with
respect to the mask image g is denoted by δ(1)

g (f ) and is defined as
the pointwise minimum between the mask image and the elementary
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a
f

g

b
δ   (f)(1)

g

c
δg (f)(1)

g

Figure 14.9: Geodesic dilation of a 1-D marker signal f with respect to a mask
signal g. Due to the pointwise minimum operator, all pixels of the elementary
dilation of f having values greater than g are set to the value of g: a 1-D
marker signal f and mask signal g, f ≤ g: b Elementary dilation δ(1)(f ); c
Geodesic dilation δ(1)

g (f ).

dilation δ(1) of the marker image, as illustrated in Fig. 14.9:

δ(1)
g (f ) = δ(1)(f ) ∧ g (14.27)

The geodesic dilation of size n of a marker image f with respect
to a mask image g is obtained by performing n successive geodesic
dilations of f with respect to g:

δ(n)
g (f ) = δ(1)

g [δ(n−1)
g (f )]

It is essential to proceed step-by-step and to apply the pointwise mini-
mum operator after each elementary geodesic dilation in order to con-
trol the expansion of the marker image. Indeed, the geodesic dilation
is lower or equal to the corresponding conditional dilation:

δ(n)
g (f ) ≤ δ(n)(f ) ∧ g

Geodesic erosion. The geodesic erosion is the dual transformation of
the geodesic dilation with respect to set complementation:

ε(1)
g (f ) = ε(1)(f ) ∨ g (14.28)

where f ≥ g and ε(1) is the elementary erosion. Hence, the marker
image is first eroded and second the pointwisemaximumwith themask
image is calculated.

The geodesic erosion of size n of a marker image f with respect
to a mask image g is obtained by performing n successive geodesic
erosions of f with respect to g:

ε(n)
g (f ) = ε(1)

g [ε(n−1)
g (f )]

Morphological reconstruction. Geodesic dilations and erosions of a
given size are seldom used in practice. However, when iterated until
stability, they allow the definition of powerful morphological recon-
struction algorithms.
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Figure 14.10: Morphological reconstruction by dilation of a 1-D signal g from
a marker signal f . The geodesic dilation of size 5 of the marker signal with
respect to the mask signal g is equivalent to the reconstruction of g from f
because further geodesic dilations no longer modify the result: a 1-D marker
signal f and mask signal g; b geodesic dilation of size 1 of f with respect to g;
c geodesic dilation of size 2 of f with respect to g; d geodesic dilation of size
3 of f with respect to g; e geodesic dilation of size 4 of f with respect to g; f
geodesic dilation of size 5 of f with respect to g.

Definition. The reconstruction by dilation of a mask image g from a
marker image f (f ≤ g) is defined as the geodesic dilation of f with
respect to g until stability and is denoted by Rg(f ):

Rg(f ) = δ(i)
g (f )

where i is such that δ(i)
g (f ) = δ(i+1)

g (f ).
The reconstruction by dilation on 1-D gray-tone signals is illustrated

in Fig. 14.10. In this figure, stability is reached after the fifth geodesic
dilation.

The reconstruction by erosion of a mask image g from a marker
image f (f ≥ g) is defined as the geodesic erosion of f with respect to
g until stability is reached. It is denoted by RW

g (f ):

RW
g (f ) = ε(i)

g (f ).

where i is such that ε(i)
g (f ) = ε(i+1)

g (f )

On the choice of the mask and marker images. Morphological re-
construction algorithms are at the basis of numerous valuable image
transformations. These algorithms do not require choosing an SE nor
setting its size. The main issue consists of selecting an appropriate
pair of mask/marker images. The image under study is usually used as
a mask image. A suitable marker image is then determined using:
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1. knowledge about the expected result;

2. known facts about the image or the physics of the object it repre-
sents;

3. some transformations of the mask image itself;

4. other image data if available (i. e., multispectral and multitemporal
images); and

5. interaction with the user (i.e., markers are manually determined).

One or usually a combination of these approaches is considered. The
third one is the most utilized in practice but it is also the most criti-
cal: one has to find an adequate transformation or even a sequence of
transformations. As the marker image has to be greater (respectively,
less) than the mask image, extensive (respectively, antiextensive) trans-
formations are best suited for generating them.

14.4.4 Some reconstruction-based operators

Particles connected to the image border. In many applications it
is necessary to remove all particles connected to the image border.
Indeed, they may introduce some bias when performing statistics on
particle measurements. Particles connected to the image border are
extracted using the input image as a mask image and the intersection
between the input image and its border as a marker image. The marker
image contains therefore seeds for each particle connected to the image
border and the reconstruction outputs the image of all these particles.
Note that large blobs have a higher probability of intersecting the im-
age border than small blobs. Statistical methods must be considered
for compensating this bias.

The removal of objects connected to the image border can be ex-
tended to gray-scale images. In this latter case, themarker image equals
zero everywhere except along its border where the values of the input
image are considered.

Minima imposition. The minima imposition technique [8] concerns
the filtering of the image minima4. It assumes that markers of relevant
image features have been determined. The marker image fm is then
defined as follows for each pixel x:

fm(x) =
{

0, if x belongs to a marker
tmax, otherwise

The imposition of the minima of the input image g is performed in two
steps. First, the pointwise minimum between the input image and the

4An image minimum is a connected component of pixels of identical intensity and
whose external boundary pixels all have a greater intensity.
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f

fm

b

(f+1)∧ fm

fm

c

R[(f+1)∧ fm]fm
*

Figure 14.11: Minima imposition technique. The input signal f contains seven
minima. The two minima of the marker signal fm are imposed to the input
signal by using a morphological reconstruction by erosion: a Input signal f and
marker signal fm; b Pointwise minimum between f + 1 and fm: (f + 1) ∧ fm;
c Reconstruction of (f + 1) ∧ fm from the marker function fm.

marker image is computed: f ∧ fm. By doing so, minima are created
at locations corresponding to the markers (if they do not already exist)
and we make sure that the resulting image is lower or equal to the
marker image. Moreover, two minima to impose may already belong to
a minima of f at level 0. It is therefore necessary to consider (f + 1)∧
fm rather than f ∧ fm. The second step consists of a morphological
reconstruction by erosion of (f + 1) ∧ fm from the marker image f :

RW
[(f+1)∧fm](fm)

The imposition of minima is illustrated in Fig. 14.11 on a 1-D signal.
The same developments apply for maxima imposition techniques.

Opening/closing by reconstruction. The opening by reconstruction
of size n of an image f is defined as the reconstruction of f from the
erosion of size n of f :

γ(n)
R (f ) = Rf [ε(n)(f )] (14.29)

Contrary to the morphological opening, the opening by reconstruction
preserves the shape of the components that are not removed by the
erosion: All image features that cannot contain the structuring ele-
ment are removed, the others being unaltered. This is illustrated in
Fig. 14.12 for a binary image. The original image (Fig. 14.12a) is first
eroded (Fig. 14.12b). The eroded sets are then used as seeds for a re-
construction of the original image. This leads to Fig. 14.12c.

Closings by reconstruction are defined by duality:

φ(n)
R (f ) = RW

f [δ(n)(f )] (14.30)

The morphological closing and closing by reconstruction is shown in
Fig. 14.13. The structuring element considered for both closings is a
large square. The dark image structures that have been completely
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a b c

Figure 14.12: Opening by reconstruction of a binary image: c the output image
is the reconstruction of a the original image f using b the erosion as marker
image (erosion of f by a square SE).

a b c

Figure 14.13: Morphological closing and (morphological) closing by reconstruc-
tion of an image of a container plate: a Image of a container plate f ; b Closing
of f by a 15×15 square; c Closing by reconstruction of f with the same square.

filled by the morphological closing remain closed after the reconstruc-
tion. This happens for the 0 and the 2 surrounded by a rectangular
box.

The following order relationships hold:

γ ≤ γR ≤ I ≤ φR ≤ φ.

Opening and closing by reconstruction are used for processing signals
of at least two dimensions. Indeed, the opening (respectively closing) by
reconstruction of 1-D signals is always equivalent to its morphological
opening (respectively closing).

14.4.5 Hit-or-miss

The basic idea behind the hit-or-miss transform consists of extracting
image pixels of a binary image having a given neighboring configura-
tion such as a foreground pixel surrounded by background pixels (i. e.,
an isolated foreground pixel). The neighboring configuration is there-
fore defined by two disjoint sets, the first for the object pixels and the
second for the background pixels. These two sets form what we call a
composite SE that has a unique origin, that is, both sets share the same
origin.

In order to perform a hit-or-miss transform, the SE is set to every
possible position of the image. At each position, the following question
is considered “Does the first set fit the foreground while, simultaneously,
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B1B2

X

B

HMT(X,B)

Figure 14.14: Hit-or-miss transformationHMT of a set X by a composite struc-
turing element B (B1 is the gray disk and B2 the white disk, the origin of both
disks is located at the center of B1).

the second set misses it (i.e., fits the background)?”. If the answer is
affirmative, then the point defined by the origin of the SE is a point of
the hit-or-miss transformation of the image. Let us now formalize this
definition in terms of morphological transformations.

The hit-or-miss transformation HMT of a set X by a composite
structuring element B = (B1, B2) is the set of points x such that when
the origin of B coincides with x, B1 fits X and B2 fits Xc :

HMT B(X) = {x | (B1)x ⊆ X, (B2)x ⊆ Xc} (14.31)

The hit-or-miss transformation of a set X by a composite structuring
element B is sometimes denoted by X @ B. Using the definition of the
erosion Eq. (14.8), the HMT can be written in terms of an intersection
of two erosions:

HMT B(X) = εB1(X) ∩ εB2(Xc) (14.32)

By definition, B1 and B2 have the same origin. They also need to be
disjoint sets (i.e., B1 ∩ B2 = ∅), otherwise the hit-or-miss would output
the empty set whatever X.

An example is provided in Fig. 14.14. Both SEs of the composite SE
B are disks but they have a common origin located at the center of the
gray disk B1.

It follows that B2 does not contain its origin. Points of the hit-or-
miss transform of the set X by the composite SE B (see right-hand side
of the figure) are such that when the origin of B coincides with each
of these points, the disk B1 fits X and, simultaneously, the disk B2 fits
the background of X. Hence, the hit-or-miss transformation extracts
all points of the image having a neighborhood configuration as defined
by the composite SE B.
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14.4.6 Thinning and thickening

Thinnings consist of removing the object pixels having a given config-
uration. In other words, the hit-or-miss transform of the image is sub-
tracted from the original image. Contrary to hit-or-miss transforms,
there exists a definition of thinnings for gray-scale images.

Binary case. The thinning of a set or binary image X by a composite
SE B is denoted5 by X ©B and defined as the set difference between X
and the hit-or-miss transform of X by B:

X © B = X \ HMT B(X) (14.33)

The origin of the SEmust belong to B1 the set of object pixels, otherwise
the operation comes down to the identity transform. By definition,
thinnings are antiextensive and nonincreasing operators.

Gray-scale case. Due to their nonincreasingness, thinnings defined in
Eq. (14.33) cannot be extended to gray-scale images using the threshold
decomposition principle. However, there exists a definition for gray-
scale image that comes down to Eq. (14.33) when applied to binary im-
ages. The principle is the following. The gray-scale value of the image
at position x is set to the largest value of the image within the neigh-
borhood defined by the background pixels of the SE if and only if the
smallest value of the image within the neighborhood defined by the ob-
ject pixels of the SE equals the image value at position x, otherwise the
gray-scale value of the image at position x is not modified (remember
that, for a thinning, the origin of the SE must belong to the set B1 of
object pixels of the SE):

(f © B)(x) =


[δB2(f )](x)

if [δB2(f )](x) < f (x) and
f (x) = [εB1(f )](x)

f (x) otherwise

(14.34)

In this equation, the dilated value can be smaller than the original value
because the SE B2 does not contain its origin. The definition for binary
images is a particular case of this definition. Indeed, the dilation by
B2 equals zero if all points of B2 fit the background of the set and the
erosion by B1 equals one if and only if all points of B1 fit the foreground.

Binary case. The thickening of a binary image or set X by a composite
SE B is denoted by X B B and defined as the union of X and the hit-or-
miss transform of X by B:

X B B = X ∪ HMT B(X)
5Beware that in the literature, the symbol ◦ is sometimes used for the morphological

opening operator (and • for the morphological closing).
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For a thickening, the origin of the SE must belong to the set B2 of back-
ground pixels. Thickenings are extensive and nonincreasing transfor-
mations. Thinnings and thickenings are dual transformations:

X B B = (Xc © Bc)c (14.35)

where B = (B1, B2) and Bc = (B2, B1)

Gray-scale case. The thickening of a gray-scale image by a composite
SE B at a pixel x is defined as the eroded value of the image by B2 if this
value is larger than the original image value at x and if the dilated value
by B1 is equal to this original image value; otherwise the thickening
remains at the original value:

(f B B)(x) ={
[εB2(f )](x), if [δB1(f )](x) = f (x) and f (x) < [εB2(f )](x),
f (x), otherwise

14.4.7 Morphological filtering

Morphological filter definitions. The basic idea behind a morpholog-
ical filter is to suppress image structures selectively. These structures
are either noise or irrelevant image objects. It follows that the struc-
tures that are preserved should not be modified by further applications
of the same filter. This illustrates a key property of a morphological fil-
ter: the idempotence. In this sense, a morphological filtering operation
can be compared with the sifting of materials through a sieve: Once
the materials have been sifted, they will not be further sifted by pass-
ing them through the same sieve. A morphological filter also shares the
increasing property of a sifting process. This property ensures that the
order relationships between images are preserved.

The idempotence and increasing properties are necessary and suf-
ficient conditions for an image transformation to be a morphological
filter:

Ψ , morphological filter� Ψ is increasing and idempotent

Consequently, closings are extensive morphological filters and open-
ings are antiextensive morphological filters. They are the basic mor-
phological filters.

Design of a morphological filter. New filters can be designed by com-
bining elementary filters. However, all combinations are not allowed.
For instance, the composition of two openings is generally not an open-
ing nor a filter. In fact, the composition of two idempotent transfor-
mations is not necessarily an idempotent operation. In this section, we
detail parallel and sequential combinations of existing filters leading to
new filters.
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a b

c d

Figure 14.15: Opening as a union of openings: a The input image represents
a watermark on paper containing laid (horizontal) and chain (vertical) lines.
The union of openings shown in d using b horizontal and c vertical structuring
elements is an opening that can be used to extract laid and chain lines while
suppressing the watermark.

Parallel combinations. Let us consider for example the image of a
watermark shown at the left of Fig. 14.15. Assume that we would like
to design a filter extracting both laid and chain lines while removing
the watermark. This can be simply achieved by calculating the union
of two openings performed in parallel: the first with a horizontal SE
and the second with a vertical SE.

It can be shown that this union of openings is extensive, idempo-
tent, and increasing. It follows that it is still an opening (in the alge-
braic sense). This example illustrates an important way of building new
openings from existing ones because any union of a series of openings
is still an opening. The dual rule applies for closings:

1. Any union (or pointwise maximum) of openings is an opening:
(
∨

i γi) is an opening.

2. Any intersection (or pointwise minimum) of closings is a closing:
(
∧

i φi) is a closing.

Such parallel combinations are often used for filtering elongated
image structures. In this case, openings (for bright objects) or closings
(for dark objects) with line segments in several directions are consid-
ered (the longer the SE, the larger the number of directions).
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Sequential combinations. We have already mentioned that the com-
position of two openings is not necessarily a filter. However, the com-
position of two ordered filters is always a filter. The pair of ordered
filters considered is often an opening γ and the dual closing φ. An
opening filters out bright image structures while a closing has the same
filtering effect but on the dark image structures. If the image is cor-
rupted by a symmetrical noise function, it is therefore interesting to
use a sequential combination such as an opening followed by a closing
or vice versa, the selection depending on the local contrast of the image
objects that should be extracted.

Compositions of ordered filters leading to new filters are given here-
after:

γφ, φγ, γφγ, and φγφ are filters

This rule is called the structural theorem [9]. Moreover, the following
ordering relationships are always satisfied:

γ ≤ γφγ ≤ γφ
φγ

≤ φγφ ≤ φ

The φγ filter is often called an open-close filter as it consists of an
opening followed by a closing. Close-open filters are defined by dual-
ity. Although open-close and close-open filters have almost the same
filtering effect, they are not equivalent. Moreover, there exists no order
relationship between γφ and φγ nor between γφ and I or φγ and I.

Consecutive applications of openings and closings are at the basis
of the alternating sequential filters described in the next section.

Alternating sequential filters. As detailed in the previous section,
the filtering of an image corrupted by dark and bright noisy structures
can be achieved by a sequence of either close-open or open-close fil-
ters. When the level of noise is high in the sense that it contains noisy
structures over a wide range of scales, a unique close-open or open-
close filter with a large SE does not lead to acceptable results. For
example, Fig. 14.16a shows a noisy interferogram that is filtered by
open-close (Fig. 14.16b) and close-open (Fig. 14.16c) filters with 5 × 5
square. Due to the high level of noise, the opening of the open-close
filter removes almost all structures, leading thereby to an almost dark
image (Fig. 14.16b). The dual behavior is obtained with the close-open
filter (Fig. 14.16c).

A solution to this problem is to alternate closings and openings,
beginning with a small structuring element and then proceeding with
ever increasing structuring elements until a given size is reached. This
sequential application of open-close (or close-open) filters is called an
alternating sequential filter [10, 11].



510 14 Morphological Operators

a b c

d e f

g h i

Figure 14.16: Alternating sequential filters: a the original image is a subset of
a noisy interferogram. The first row shows a direct application of b an open-
close or c close-open filter with a 5 × 5 square; d to f display a series of ASFs
of increasing size and starting with a closing; g to i show ASFs starting with an
opening.

Definition. Let γi be an opening and φi be the dual closing of size
i. Following the structural theorem the following combinations are all
morphological filters:

mi = γiφi, ri = φiγiφi
ni = φiγi, si = γiφiγi

An alternating sequential filter of size i is defined as the sequential
combination of one of these filters, starting the sequence with the filter
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of size 1 and terminating it with the filter of size i:

Mi = mi · · ·m2m1, Ri = ri · · · r2r1
Ni = ni · · ·n2n1, Si = si · · · s2s1

It can be proved that alternating sequential filters (ASFs) are all mor-
phological filters. Moreover, they satisfy the following absorption law:

i ≤ j ⇒ ASFjASFi = ASFj and ASFiASFj ≤ ASFj

Note that Mi and Ni constitute a pair of dual filters that are not
ordered. The final result depends therefore on whether an opening or
the dual closing is used as the first filter in the sequence. Although
ASFs are not self-dual, they act in a much more symmetrical way than
closings and openings. The ASFs are particularly suited to noise reduc-
tion before applying other morphological operators like gradients and
top-hats.

Example. Examples of ASFs are given in the last two rows of Fig. 14.16.
The goal is to filter the noisy interferogram shown in Fig. 14.16a. The
used structuring elements are squares of width equal to 2i + 1 pixels
where i denotes the size of the ASF. Figure 14.16d to f show ASF of type
M . The ASF of type N are illustrated in Fig. 14.16g to i. Notice that both
filters suppress noisy structures of the original image. The larger the
size of the ASF, the larger the size of the structures that are removed.

14.4.8 Watershed segmentation

The morphological approach to image segmentation combines region
growing and edge detection techniques: It groups the image pixels
around the regional minima of the image and the boundaries of ad-
jacent regions follow the crest lines dividing the influence zones of
the minima. This is achieved by a transformation called the watershed
transformation.

The watershed transformation. Let us consider the topographic rep-
resentation of a gray-level scale image. Now, let a drop of water fall on
such a topographic surface. According to the law of gravitation, it will
flow down along the steepest slope path until it reaches a minimum.
The whole set of points of the surface whose steepest slope paths reach
a given minimum constitutes the catchment basin associated with this
minimum. The watersheds are the zones dividing adjacent catchment
basins. This is illustrated in Fig. 14.17a.

Definition in terms of flooding simulations. The definition of the
watersheds in terms of water flows is not well-suited to an algorithmic
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a

watersheds

catchment basins

minima

a
water level

dam
dam

minima

Figure 14.17: aMinima, catchment basins, and watersheds on the topographic
representation of a gray-scale image. b Building dams at the places where the
water coming from two different minima would merge.

implementation as there are many cases where the flow direction at a
given point is not determined (e. g., flat regions or pixels having more
than one neighbor pixel with the lowest gray-scale value). However,
a definition in terms of flooding simulations alleviates all these prob-
lems. Consider again the gray tone image as a topographic surface and
assume that holes have been punched in each regional minimum of the
surface. The surface is then slowly immersed into a lake. Starting from
the minima at the lowest altitude, the water will progressively flood
the catchment basins of the image. In addition, dams are erected at
the places where the waters coming from two different minima would
merge (see Fig. 14.17b). At the end of this flooding procedure, each
minimum is completely surrounded by dams, which delineate its as-
sociated catchment basin. The resulting dams correspond to the wa-
tersheds. They provide us with a partition of the input image into its
different catchment basins. An efficient queue-based algorithm is de-
tailed in [12, 13].

Marker-controlled segmentation. The basic idea behind the marker-
controlled segmentation [8] is to transform the input image in such a
way that the watersheds of the transformed image correspond tomean-
ingful object boundaries. The transformed image is called the segmen-
tation function. In practice, a direct computation of the watersheds
of the segmentation function produces an over-segmentation, which is
due to the presence of spurious minima. Consequently, the segmen-
tation function must be filtered before computing its watersheds. Any
filtering techniquemay be considered. However, theminima imposition
technique described in Section 14.4.4 is the best filter in most applica-
tions. This technique requires the determination of a marker function
marking the relevant image objects and their background. The corre-
sponding markers are then used as the set of minima to impose to the
segmentation function. The schematic of this approach is summarized
in Fig. 14.18.
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Figure 14.18: Morphological paradigm for image segmentation. Image under-
standing is done at the very first stages of the process. The ‘intelligent’ part of
the process is when it generates the marker and the segmentation functions.
Then, the rest of the procedure is nonparametric.

The object markers are extracted from the image using some fea-
ture detectors. The choice of appropriate feature detectors relies on
some a priori knowledge or assumptions about the properties of an
image object. Common features include image extrema, flat zones (i. e.,
connected components of pixels of constant gray-level value), zones of
homogeneous texture, etc. In some applications, the markers may be
defined manually. One marker per region is necessary as there will be
a one-to-one correspondence between the markers and the segments
of the final partition. However, if the class of object marked by each
marker is known, several markers of the same class may be considered
for each image object. The size of a marker can range from a unique
pixel to a large connected component of pixels. When processing noisy
images, large markers perform better than small ones.

The determination of the segmentation function is based on amodel
for the definition of an object boundary. For example, if the image
objects are defined as regions of rather constant gray-scale values, a
morphological gradient operator will enhance the object boundaries.
If the image objects are regions of homogeneous texture, operators
highlighting the transition between two textures should be considered.

The object markers are then used as the set of markers to impose to
the segmentation function. Finally, the object boundaries are obtained
by computing the watersheds of the filtered segmentation function.
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a b c

d e f

Figure 14.19: Watershed segmentation of tree rings: a Original image f ; b
Complement of f as segmentation function; c Watersheds of f c ; d Filtered ex-
tended minima of f c as marker function; e Filtered segmentation function; f
Watersheds of filtered segmentation function.

Example. A tree ring is the layer of wood cells produced by a tree
in one year, usually consisting of thin-walled cells formed early in the
growing season (called earlywood) and thicker-walled cells produced
later in the growing season (called latewood). The beginning of early-
wood formation and the end of the latewood formation form one an-
nual ring, which usually extends around the entire circumference of the
tree. Example Fig. 14.19a shows a sample of a cross-section of a tree.
In this image, seven tree rings are visible. A watershed segmentation
for extracting the boundaries of the tree rings requires determining
a segmentation function transforming the input image in such a way
that the tree ring boundaries will appear as crest lines. In this applica-
tion, an appropriate segmentation function can be obtained by simply
complementing the image of the tree rings (see Fig. 14.19b). A direct
computation of the watersheds of this segmentation function leads to
an oversegmentation (see Fig. 14.19c) because each tree ring contains
many image minima. The solution is to a find an appropriate marker
function containing one marker per tree ring. Here, the markers are
defined as the extended minima6 of the segmentation function having

6The extended minima of an image are defined as the minima of the reconstruc-
tion by dilation of the input image from the marker image obtained by adding a given
constant value to the input image.
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a surface area greater than a given threshold value. They are displayed
in Fig. 14.19d. These markers are then used as the set of minima to
impose to the segmentation function. The resulting filtered segmen-
tation function is shown in Fig. 14.19e. The watersheds of the filtered
segmentation function output a correct segmentation of the tree rings
(see Fig. 14.19f).

This example illustrates the basis of the methodology described in
[14]. References to additional applications of the watershed transfor-
mation are given in CVA3 [Chapter 12 and 19].
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15.1 Introduction

The mapping of real world objects to the image plane including the ge-
ometric and the radiometric parts of image formation is basically well
understood [1, 2]. The image data and prior knowledge on the consid-
ered application are themajor sources of information for various vision
issues. Common examples are image restoration, filtering, segmenta-
tion, reconstruction, modeling, detection, recognition or pose estima-
tion algorithms. The hardest problems in computer vision are related
to object recognition [3]. Up to now, there have been no general algo-
rithms that allow the automatic learning of arbitrary 3-D objects and
their recognition and localization in complex scenes. State-of-the-art
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approaches dealing with high-level vision tasks are essentially domi-
nated by model-based object recognition methods [4].

In the past, numerous applications have led to various types of
representations for object models that allow the implementation of
excellent recognition systems [5]. Many image processing and com-
puter vision algorithms are characterized by prevailing ad hoc solu-
tions. Most techniques apply intuitive ideas specified for the given ap-
plication and neglect the exploration of precisely defined mathematical
models. There exists no unified theoretical formalization that provides
the framework for the analytical analysis of designed complete sys-
tems. For the most part, it is left to empirical studies to justify the
usage of the chosen representation scheme.

It is beyond the scope of this chapter to provide an exhaustive
overview and discussion of models successfully applied in computer
vision. We also cannot introduce general models that fit all require-
ments of conceivable applications, but we do present some probabilis-
tic modeling schemes and their basic features, which have been shown
to be proper for a wide range of vision problems. The organization of
the chapter is as follows: The next section summarizes arguments for
a probabilistic formulation of computer vision modules and introduces
the basic requirements for object models. The formal definitions of the
considered vision problems that have to be solved using probabilistic
models are summarized in Section 15.3.

Following the abstract framework, we introduce a family of proba-
bilistic models. We start with a general modeling scheme and specialize
this to various probabilistic models such as histograms (Section 15.4.1),
intensity-basedmodels (Section 15.4.2), mixtures of densities with incor-
porated feature transforms (Section 15.4.5), or Markov random fields
(Section 15.4.6). For all models we give either references to applications
or explicit examples. In Section 15.5 we will give several hints for solv-
ing problems that are usually related to probabilistic models, and how
these can be solved in many cases—either heuristically or by means of
theoretically well-understood techniques. The chapter concludes with
a summary and a brief discussion.

15.2 Why probabilistic models?

An immediate question is why we should prefer a probabilistic setup to
any other recognition algorithms. In fact, both from a pragmatic and a
theoretical point of view, the advantages of a statistical framework are
persuasive:

• Sensor signals and associated features show a probabilistic behavior
due to sensor noise, varying illumination conditions or segmenta-
tion errors.
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• Pattern recognition routines should use all available sources of in-
formation including prior knowledge and empirical data. A uni-
fied mathematical formulation incorporating all modules is given
by probabilistic models.

• Decision theory guarantees the optimality of Bayesian classifiers,
which maximize posterior probabilities (see also Section 15.3).

• The design of learning algorithms can utilize comprehensive results
in statistics and statistical learning theory [6, 7].

• The success of probabilistic models in different areas of applied
pattern recognition, such as speech recognition and handwritten
character recognition, also motivate the use of statistical methods.

In addition to these general advantages, a probabilistic setting intro-
duces some valuable tools for simplification and for the increase of
computational tractability; the incorporation of independency assump-
tions regarding observed features leads to compromise solutions and
paves the way to eliminate the trade-off between computational effi-
ciency and models that are still rich enough to provide the required
discriminating power. Marginalizations, that is the elimination of ran-
dom variables by integration, reduce the complexity, allow the usage
of probabilistic models, if the input data are incomplete, and provide
techniques to define hierarchical modeling schemes.

In practice, the design and usage of probabilistic models should fol-
low the general guideline: as much theory as necessary, and as simple
as possible.

15.3 Object recognition as probabilistic modeling

Most computer vision problems correspond to standard pattern recog-
nition problems such as classification and regression. A digital image
f is mathematically considered as a matrix of discrete intensity values
f = [fm,n]1≤m≤M,1≤n≤N . For further processing, most high-level vision
tasks require the labeling or segmentation of images. Based on these
labels and segmentation results, recognition and the estimation of pose
parameters have to be done. The following subsections will treat the
recognition and pose estimation problems using a probabilistic frame-
work. The important issue related to model generation and learning
from observations is omitted and we refer to CVA2 [Chapter 26] for
further details.

15.3.1 Recognition as classification

In a unified manner the solution of object identification problems can
be considered as a labeling procedure [8]. A given image f (or the
result of any preprocessing and segmentation steps) is assigned to a
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single class Ωκ , which is an element of the set of considered classes
Ω = {Ω1,Ω2, . . . ,ΩK}.1 If more objects are present, the classifier is
expected to compute the set of corresponding classes. An image is
thus mapped to a set of classes. Of course, there are different ways
to associate pattern classes with objects. It usually depends on the
given application and the features used, whether or not types of objects
are considered to represent instances of the same class. For example,
objects can share the same 3-D shape and differ in color. Whether the
shape or the color are discriminating features depends on the given
application. Another problem is caused by objects that are considered
to be elements of different classes but share a common view, that is,
there exist viewing directions where you cannot distinguish between
these objects.

Including image segmentation, the task of object recognition, that is,
the discrete mapping of images to pattern classes, is a composition of
various classification processes. The mapping from the original image
to discrete classes is mostly subdivided into the following stages (with
variations [9]):

1. Preprocessing: in the preprocessing stage images are filtered. Do-
main and range of these image transforms are discrete intensity
values;

2. Segmentation: the segmentation maps the image matrix to a matrix
that defines, for instance, geometric primitives. In the most gen-
eral case, segmentation algorithms transform images to parameters
that define geometric features uniquely, for example, start and end
points of straight-line segments. In this case a single image point
can belong to different geometric primitives. Examples are points
where lines intersect; and

3. Classification: the final classification stage maps segmentation re-
sults to classes.

The discussion so far reveals that the basic problem in object recog-
nition can be stated as follows: We have to define and to provide a mod-
eling scheme that allows one to compute amapping δ from images to la-
bels or classes, dependent on the given application. Without loss of gen-
erality, we restrict the description to classes and omit identical formu-
las for labels. The classification is defined by δ(f ) = κ ∈ {1,2, . . . , K}.
This mapping δ characterizes the so-called decision rule of the classi-
fier. It is not obvious for system design how to choose the decision
rule and how to select an appropriate representation of objects that
allow the comparison of models and observations. Due to our ultimate
goal of implementing reliable object recognition systems, it is a nat-
ural consequence that we seek classifiers with minimum error rates.

1In the text the authors mostly prefer to denote a pattern class by Ωκ instead of
using the integer κ to reveal that classes are categorical variables without any ordering.
Integers would imply the natural ordering, which is indeed not present.
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For that purpose, let us define a loss function L(λ, κ) that penalizes
classification errors. The function L(λ, κ) measures the price we pay
for classifying an observation belonging to class Ωλ to Ωκ . Herein, we
take for granted that correct decisions are cheaper than misclassifica-
tions. Now we choose the decision rule δ∗ that minimizes the expected
classification loss. With respect to this objective, the optimal classifier
results from solving the minimization problem

δ∗(f ) = argminδ(f )

K∑
λ=1

L(λ, δ(f )) p(λ|f ) (15.1)

wherep(λ|f ) is the a posteriori probability for observing classΩλ given
the image f . Having especially a 0-1 loss function, where we charge
classification errors by 1, the objective function in Eq. (15.1) takes its
minimal value if we fade out the highest summand by correct decisions.
Therefore, we determine that class of highest posterior probability, and
the optimal decision rule minimizing the average loss is

δ∗(f ) = argmaxκ p(κ|f ) = argmaxκ p(κ)p(f |κ) (15.2)

Classifiers applying this decision rule are called Bayesian classifiers.
The observation that Bayesian classifiers minimize the expected loss
and therefore the misclassification rate is the major reason for the in-
troduction of probabilistic models in computer vision and other fields
of pattern recognition [10, 11, 12]. We get an excellent classifier if we
are able to characterize the statistical properties of objects appearing in
sensor data. But usually this is a highly nontrivial task and represents
the fundamental problem in probabilistic modeling: the definition and
computation of posteriors based on empirical data. Without appro-
priate probabilistic models and accurate approximations of posteriors,
there is no way to implement an optimal object recognition system.

15.3.2 Pose estimation as regression

Besides classification, the position and orientation of objects with re-
spect to a reference coordinate system also are of potential interest.
For instance, a robot that has to grasp objects requires pose parame-
ters of high accuracy. Let us assume the intrinsic camera parameters
are known. Thus pose estimation of objects is confined to the com-
putation of rotation and translation. These transforms are referred
to the world coordinate system. In the following we denote rotation
by R ∈ IR3×3 and the translation by t ∈ IR3. Details concerning the
representation of the orthogonal rotation matrix are omitted, and we
refer to [13]. For simplicity, the six degrees of freedom determining the
pose are denoted by the vector θ. In contrast to the classification prob-
lem, the input data are no longer mapped to discrete variables such
as class numbers, but to a real-valued vector θ. In terms of statistical
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decision theory, pose estimation thus corresponds to a regression prob-
lem. With regard to optimal regression, we introduce analogously to
classification a penalty function for estimates. Pose parameters have
to be determined such that the mean loss is observed. Here, the loss
function L(θ, ηκ(f )) charges the errors in pose estimates, where the
regression function ηκ maps the observation to pose parameters. This
function depends on the actual class Ωκ of the shown object and is
therefore indexed by κ, that is, ηκ(f ) = θ ∈ IR6. The most commonly
used loss function in regression is the square error, which is defined by
||θ−ηκ(f )||2. The regression problem associated with pose estimation
is generally stated as the minimization task

η∗
κ (f ) = argminηκ(f )

∫
L(θ, ηκ(f )) p(θ|f , κ) dθ (15.3)

where p(θ|f , κ) is the probability density function of θ given the image
f and the class Ωλ. A similar argument to Bayesian classifiers shows
that the optimal estimate regarding the square error loss function is
given by the conditional expectation η∗

κ (f ) = E[θ|f , κ].
In practice, the major problem is the representation of the regres-

sion function, and many applications restrict the forementioned con-
ditional expectation to a parametric family of functions. In these cases,
theminimization Equation (15.3) reduces to parameter estimation prob-
lems. Commonly used parametric functions in statistics are, for exam-
ple, linear functions [14]. In addition to parameterization, further con-
straints to regression functions can (and often should) be incorporated
by regularization. For instance, we can also claim that the average cur-
vature of the regression function in combination with the square error
has to be minimized [6]. If the regression function is not restricted to a
specific parametric family and regularization is not considered, the re-
gression problem is generally ill-posed, and we observe an over-fitting
to training data. Figure 15.1 illustrates the problem of over-fitting; the
filled bullets represent the sample data and the solid and the dashed
line indicate different approximations of the sampled function. In the
case of over-fitting (solid line), the function values between sample data
tend to be inaccurate and rough.

A general rule of thumb is to incorporate all available knowledge
into the model and recognition process. Notably, the relation between
the observation and pose parameters can be defined if the 3-D struc-
ture of objects and the projection properties of the chosen sensor are
known. We suggest the regression of probability density functions for
observations that are parameterized regarding the pose θ. From a the-
oretical point of view, we thus consider a generalization of the earlier-
defined square error loss, and obviously the negative likelihood value of
the parametric density function for given observations acts as the loss
value of the estimated pose. Assuming a uniform distribution of pose
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Figure 15.1: An example of over-fitting (solid line: over-fitting with no errors
regarding training samples; dashed line: smooth approximation with errors).

parameters, the optimal pose parameters θ∗ result from the maximum
likelihood estimate

θ∗ = argmaxθ p(f |κ;θ) (15.4)

In this case, the pose estimation using probabilisticmodels corresponds
to a standard parameter estimation problem.

15.3.3 Guidelines for probabilistic models

The discussion shows that recognition and pose estimation are finally
a combination of two familiar problems in statistical decision theory—
classification and regression. We conclude this section by summarizing
the guidelines for the construction and usage of probabilistic models
in object recognition and localization:

• We have to provide prior distributions p(κ), κ = 1,2, . . . , K, which
include all available knowledge regarding the given classes and their
appearance in images; and

• The probabilities p(f |κ;θ), κ = 1,2, . . . , K, of observed images f
(or features) have to be defined. Especially, if we are also interested
in object localization, the probability density function has to be pa-
rameterized with respect to pose parameters denoted by θ. The
specification of these probability density functions constitutes the
hardest problem within the design of probabilistic models. In the
following sections, the class density p(f |κ;θ) is also referenced by
the term model density .

Related to the abstract mathematical structure of probabilistic models,
there are several related computational aspects of practical importance:

• We have to provide learning algorithms that allow the automatic
training of probability density functions from empirical data. From
scratch, the training includes both the acquisition of the concrete
model structure, for instance, the automatic decision for the re-
quired family of distributions, and the estimation of associatedmod-
el parameters. Both theoretical and empirical results are necessary,
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which give hints on how to select the sample data for model ac-
quisition, and which validation methods are advantageous to judge
generated models; and

• In view of runtime efficiency it is very important to implement so-
phisticated (in terms of low complexity and high efficiency) inference
strategies, which allow the fast evaluation of posteriors p(κ|f ;θ)
for given observations f and usually unknown pose parameters θ.

We begin the discussion of various probabilistic modeling schemes
by a generic definition of model densities.

15.4 Model densities

The discrete image matrix f = [fm,n]1≤m≤M,1≤n≤N is formally consid-
ered as a random matrix. Each entry fm,n of the matrix f is charac-
terized by three components: the position in the image defined by the
2-D grid coordinates [m, n]T and the associated pixel value fm,n. For
some reasons, which will become clear later, we take the image matrix
f by a set of random vectors{

[m, n, fm,n]T | 1 ≤ m ≤ M,1 ≤ n ≤ N
}

(15.5)

and define both 2-D grid points and intensity values as potential ran-
dom measures. Depending on the image type used, the intensity fm,n
can be a color vector, a gray level or more generally a vector including
any other label. Independent of the concrete dimension and interpre-
tation of pixel values, the induced random vectors Equation (15.5) can
be characterized by a conditional probability density function, which
depends on the present pattern class Ωκ . Because the appearance of
objects in the image plane changes with the object pose, the density
will also be parameterized regarding the pose θ.2 Generally, we get for
the whole image the probability density

p
({[

m, n, fm,n
]T
∣∣∣1 ≤ m ≤ M,1 ≤ n ≤ N

}
|κ;θ

)
(15.6)

which depends on the present object belonging toΩκ (or any other type
of labels).

The model density (Eq. (15.6)) is far too general, not computation-
ally feasible, and too abstract for any application. Nevertheless, it is
the source of a broad class of model densities. The introduction of
additional constraints, the consideration of dependencies of bounded
order, the incorporation of specializations, and the usage of continu-
ous instead of discrete random variables are basic tools that will in-
duce reduced parameter sets and simpler models. Examples for well-

2We point out that θ is considered as a parameter and not as a random variable.
This is also indicated in expressions by a separating semicolon.
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studied continuous probability density functions are Gaussian densi-
ties and convex combinations of Gaussians [9]. Evident specializations
are marginals, that is, integrating out random variables, and the intro-
duction of independencies. The right combination of these techniques
pushes the dimension of the final parameter space to mathematical
feasibility and the curse-of-dimensionality can be beaten.

15.4.1 Histograms

An extreme case of marginalization and independency are histograms
of intensity values. Relative frequencies of intensities represent a non-
trivial probabilistic model of images given a pattern class Ωκ . We com-
pute the discrete probabilities of intensity values independently of their
position in the image grid. To derive histograms or more precisely the
product of histogram entries from Eq. (15.6), first, we decompose the
probability density function according to the assumption that all inten-
sity values are mutually independent; thus, we obtain the factorization

p
({[

m, n, fm,n
]T |1 ≤ m ≤ M,1 ≤ n ≤ N

}∣∣∣κ;θ)
)

=
M∏

m=1

N∏
n=1

p
([

m, n, fm,n
]T |κ;θ

) (15.7)

The marginal over the image coordinates leads to the demanded prod-
uct discrete probabilities

p (f |κ;θ) =
M∏

m=1

N∏
n=1

 M∑
m′=1

N∑
n′=1

p
([

m′, n′, fm,n
] |κ;θ)

 (15.8)

Histograms show several obvious advantages: they are generated
easily and these discrete probability mass functions exhibit some use-
ful invariance properties. Assuming that we have normalized images,
planar rotations and translations of objects will not (drastically) change
the distribution of gray levels. Therefore, the pose parameters in the
histogram can be reduced by these three degrees of freedom. The pose
parameters include only out-of-plane rotations, denoted byϕx andϕy ,
and 1-D translations tz along the optical axis. We gather from this ex-
ample the important fact that clever marginals can reduce the dimen-
sion of pose parameters. Marginals provide a powerful technique for
efficient pose estimation algorithms based on probabilistic models [15].

Histograms are accepted as simple and useful probabilistic mod-
els that are widely and successfully applied in computer vision [16].
However, discrete probabilities of intensities are also marginals that
drastically simplify the real probability density function of object ap-
pearances in images. Marginalization is known to reduce the discrim-
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inatory power. Histograms only record the overall intensity composi-
tion of images. As a consequence, there is an increase in the rate of
misclassifications. Histograms show tremendous invariances. Based
on histograms, for instance, all images where we just permute pixels,
lead to identical distributions of gray levels and thus the same classi-
fication results. Many applications defuse this property by restricting
the computation of histograms to local window frames. But even in lo-
cal histograms, the invariance to permutations is present. Remarkably,
despite this extreme kind of invariance histograms have proven to be
useful for a wide range of applications. Applications can be found, for
instance, in [16].

15.4.2 Conditioned intensities

The major disadvantage of histograms for solving classification and
pose estimation issues is due to invariance properties and the assumed
independency of grid positions. A first step to generalize relative fre-
quencies of intensity values is an isolated modeling of intensities de-
pendent on grid points, that is, we do not consider the probability of
observing a special intensity value in the image, but the probability of a
certain intensity at a given grid point. Instead of eliminating grid points
by marginalization, we thus compute the joint probability of the inten-
sity value f at the randomly selected image point [m, n]. This prob-
ability density function is given by p(m, n|κ) p(f |m, n, κ;θ), where θ
denotes the pose parameter. Assuming mutually independent inten-
sity values and image points, the density of the complete image f is
obtained by the product

p(f |κ;θ) =
M∏

m=1

N∏
n=1

p(m, n|κ) p(fm,n|m, n, κ;θ) (15.9)

The priors of grid points are set equal if all image points are consid-
ered. Therefore, the probabilities p(m, n|κ) in Eq. (15.9) include no
additional information and can be omitted. Figure 15.2 illustrates the
basic idea of the chosenmodel: all image points are separately modeled
and mutually independent.

The introduced modeling scheme based on mutually independent
image entries raises several questions:

• The first problem is the incorporation of pose parameters. Varia-
tions in position and orientation of objects have to be incorporated
into this model. Because an object is modeled based on distribu-
tions where the intensities are included as continuous random vari-
ables and the grid points as discrete ones, even the simplest trans-
forms in the image plane cause problems. Generally, planar rota-
tions and translations define no discrete mapping of grid points. To
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Figure 15.2: Explicit modeling of intensity distribution in the image grid.

deal with this problem, obviously resampling is required. In case of
in-plane transforms, in [17] it is suggested to use linear interpola-
tion between intensity values.

• Another fair criticism on this modeling scheme derives from the
independency constraint of neighboring pixel values. Obviously,
this independency assumption does not fit the real-world situation.
Widely used constraints such as the smoothness criterion, which
states that neighboring pixels share similar intensity values, require
the explicit incorporation of dependencies.

An application of the modeling scheme introduced in the foregoing, to
3-D recognition and localization is described and experimentally eval-
uated in [17].

15.4.3 Conditioned image points

An alternative probabilisticmodel, which resolves some of the foremen-
tioned problems, results from a different factorization of the original
probability p([m, n, fm,n]T |κ;θ) and a different interpretation of ran-
dom variables: Now we consider the intensity values as discrete mea-
sures, the coordinates of grid points as continuous random variables.
Instead of

p([m, n, fm,n]T |κ;θ) = p(m, n|κ) p(f |m, n, κ;θ) (15.10)

we use the decomposition

p([m, n, fm,n]T |κ;θ) = p(fm,n|κ) p(m, n|fm,n, κ;θ) (15.11)

Assuming again mutual independency of random vectors, the joint
probability density function of the complete image showing class Ωκ is
now given by

p(f |κ;θ) =
M∏

m=1

N∏
n=1

p(fm,n|κ) p(m, n|fm,n, κ;θ) (15.12)
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Figure 15.3: Probability densities of image points conditioned on three different
intensity values.

Figure 15.3 shows three density functions. Each of these densities cor-
responds to a single intensity value, and visualizes the distribution of
grid points showing a certain intensity value.

In the case of modeling distributions of intensities at image points,
we were able to incorporate explicit knowledge on the sensor noise
model. The density function p(m, n|f , κ;θ), however, is the probabil-
ity measure that the image point [m, n] appears showing the specific
intensity value f . Therefore, this density characterizes the spatial dis-
tribution of a particular intensity in the image plane. For the parametric
representation of grid-point distributions conditioned on an intensity
value, a single Gaussian is obviously not an adequate approximation.
The density associated with grid points is expected to be a multimodal
and thus concave function. Therefore, we suggest the use of mixtures
of densities [18]

p(m, n|f , κ;θ) =
lf∑

i=1
pi p(m, n|Bf ,i,κ ;θ) (15.13)

where lf denotes the order of the mixture density , the coefficients pi
sum up to 1, and the densities p(m, n|Bf ,i,κ ,θ) are parameterized in
Bf ,i,κ and the pose vector θ. If, for instance, the mixture base densi-
ties are Gaussians, these parameters correspond to mean vectors and
covariance matrices. Convex combinations of probability density func-
tions are generally advantageous, because they show good approxima-
tion properties of multimodal functions, and they are not restricted to
discrete values of [m, n]T . This model obviously avoids interpolation
for grid points if the object is rotated and translated in the image plane.

Example 15.1: Spatial distribution of intensities

The basic issue in defining an appropriate model using the repre-
sentation suggested in Eq. (15.12) is the right choice of the density
p(m, n|fm,n, κ;θ) based on convex combinations. At first, we neglect
the pose parameters and consider linear combinations of Gaussians
[18] to model the spatial distribution of single intensity levels. Once
the number lf of mixture components associated with a certain inten-
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Figure 15.4: Toy car, cactus, candy box, block.

sity value f is known, the multimodal density is represented by

p(m, n|f , κ) =
lf∑

i=1
pi,f N ([m, n]T ;µκ,f ,i,Σκ,f ,i) (15.14)

where pi,f ≥ 0,
∑lf

i=1 pi,f = 1, and µκ,f ,i ∈ IR2 and Σκ,f ,i ∈ IR2×2 denote
the mean vector and covariance matrix of the ith mixture component
associated with the gray level f .
The extension of this model based on Gaussian mixtures with respect
to pose parameters is straightforward if pose parameters θ define
an affine mapping denoted by the matrix R and the vector t. If an
arbitrary normally distributed random variable with mean vector µ
and and covariance matrix Σ is transformed by this affine mapping,
the resulting random variable is again Gaussian. The corresponding
mean vector is defined by Rµ+ t and the covariance matrix by RΣRT

[19]. Using this example, at least in-plane transformations are easily
built in Eq. (15.14): For given 2-D rotations and translations we get
the density

p(m, n|f , κ;R, t) =
lf∑

i=1
pi,f N ([m, n]T ;Rµκ,f ,i + t,RΣκ,f ,iR

T )

(15.15)

We have applied this modeling scheme to the recognition and local-
ization of objects shown in Fig. 15.4. The intensity levels are auto-
matically quantized to four different values minimizing the entropy.
The hard problem of estimating the number of mixture components
for each intensity value is solved by using a vector-quantization algo-
rithm [12]; the remaining model parameters are estimated using the
expectation-maximization algorithm [12]. Our experimental evalua-
tion shows that the introducedmodeling scheme allows the estimation
of rotation angles with the variance less than 4◦ if only 64 uniformly
chosen image points of 320×240 images are used for localization,
that is, we use less than 1 % of the available image information and
achieve reasonably good pose estimates. The same holds for recogni-
tion. The classification rate turns out to be 100 % if we use 512 sample
points.
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15.4.4 Appearance-based modeling

The probabilistic models so far are substantially restricted to 2-D im-
ages, and out-of-plane rotations and translations are still an open prob-
lem; the statistical characterization of 3-D objects and their appearance
in the image plane including 6 degrees of freedom is not yet possible.
The simplest way to extend these models is to quantize the pose and
formally consider each 2-D view of an object as a separate class. This
appearance-based strategy, however, shows the disadvantage that for
each discrete set of pose parameters single probabilistic models have
to be computed, and we have to deal with quantization errors in pose
parameters. In [17], the authors suggest interpolating those density
parameters that define the 2-D views and in-plane transformations de-
pendent on pose parameters. Without additional geometric knowledge,
regression (Section 15.3) provides the only way to generalize the given
2-D models to arbitrary pose parameters. The selection of an appropri-
ate regression function, however, is a crucial and nontrivial issue.

The regression based on polynomials or arbitrarily selected para-
metric functions appears incidentally and without any geometric jus-
tification. A more obvious way would be to compute the distribution
of the appearing object using the knowledge of the 3-D structure, the
illumination model, and the mapping from the 3-D world to the image
plane. An incorporation of the overall geometric relationships seems
worthwhile. However, the major problem with respect to this issue is
that the projection from 3-D to 2-D can be computed explicitly, not its
inverse. But there is some hope: There exist first results towards the
incorporation of geometry in probabilistic models if we use geometric
features instead of intensities [15, 20, 21]. The next section consid-
ers segmentation results of images as random measures for pose esti-
mation and summarizes existing probabilistic models using geometric
features instead of intensity values or results of any preprocessing op-
erations.

15.4.5 Model densities using geometric features

Let us assume that preprocessing and segmentation algorithms map
the observed image to a set of 2-D points. The information provided
by the whole image is thus reduced to a comparatively small set of
features. We denote the set of points by O = {ok|k = 1,2, . . . , m},
where ok ∈ IR2. Some examples for the segmentation of gray-level
images into point features are shown in Fig. 15.5. Here the corners
are features attached to the associated 3-D object. If we rotate and
translate the corresponding 3-D points of the object in the 3-D space,
this linear transform, the object geometry, and the projection to the
image plane characterize the resulting 2-D features—apart from noise,
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Figure 15.5: Gray-level images and sparse sets of computed point features.

occlusion, and segmentation errors. If the correspondences of 3-D and
2-D points are known, the transform can be written in a single equation.
We denote the assignment of 2-D features ok in the image to the index
of the corresponding feature of the 3-D object by ζκ . The identifier
ζκ in this context is not incidental. In fact, the assignment of 2-D and
3-D points can formally be considered as a classification or, in other
words, all points get a label indicating the correspondence. If there
are m observed features and nκ 3-D points for class Ωκ , the discrete
mapping ζκ is defined by

ζκ :

{
O → {1,2, . . . , nκ}
ok � ik

(15.16)

We get the probability observing a set of single points with a given
assignment function ζκ by the following substitutions in our generic
density Equation (15.6): The grid coordinates [m, n]T are now repre-
sented by the grid coordinates of segmented point features ok, and
instead of the intensity value fm,n characterizing each image point, we
use ζκ(ok) in the argument triple. Based on this substitution and con-
sidering the assignment as discrete random variables we obtain

p({(ok, ζκ(ok))|k = 1,2, . . . , m}|κ;θ) =
m∏

k=1
p(ζκ(oκ)) p(ok|ζκ, κ;θ)

(15.17)

if independent point features are assumed.
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Unlike the intensity values f in the corresponding density Equa-
tion (15.12), the assignmentζκ(ok) of single-point features is unknown.
We have no information on the correspondence between 3-D points and
2-D observations. Because the assignment is modeled as a random vari-
able, we make use of the power of statistical framework and eliminate
this random measure by marginalization. We sum Eq. (15.17) over all
possible assignments. This yields the model density of the observed
2-D points without knowing the originally required correspondence de-
fined by ζκ

p({ok|k = 1,2, . . . , m}|κ;θ) =
∑
ζκ

m∏
k=1

p(ζκ(ok)) p(ok|ζκ, κ;θ) (15.18)

The probabilistic modeling of geometric modeling of features and
the elimination of assignments by marginalization can be applied to
various 2–D and 3–D object recognition and pose estimation problems.
The interested reader will find more details in [15, 20], and [21].

The probabilistic models introduced so far use intensity images or
segmentation results as input data, and in fact they represent extreme
cases concerning independency assumptions; we have always used mu-
tually independent random variables; either grid points, intensities, as-
signments or point features were independent and the corresponding
densities properly factorized. In the following we will discuss statisti-
cal representations that also incorporate dependencies of higher (i. e.,
arbitrary) order.

15.4.6 Markov random fields

Very popular and widely used probabilistic models in image processing
and computer vision areMarkov random fields (MRFs) [8, 22, 23]; MRFs,
in general, allow the use of locally bounded dependencies. We intro-
duce the basic concepts of MRFs in an abstract manner, and illustrate
these using concrete examples out of the field of computer vision.

Let X = {Xi|i = 1,2, . . . , L} define a set of random variables. We
suppose that for each random variable Xi there exists a well-defined
neighborhood. The set of neighbors of Xi is commonly denoted by [23]

∂(Xi) = {Xj| Xi and Xj are neighbors} (15.19)

In image-processing applications the random measures Xi are usu-
ally intensity values, and local neighborhood is based on the given struc-
ture of the image grid. For instance, we can consider each random
measure associated with a pixel to be a neighbor of a certain random
variable if the Euclidean distance of grid coordinates is one (first-order
neighborhood) or lower or equal to

√
2 (second-order neighborhood).

Figure 15.6 illustrates first- and second-order neighborhoods.
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Figure 15.6: Neighborhoods of first (left) and second (right) order.

Figure 15.7: Cliques corresponding to first-order neighborhoods.

Mathematically, MRFs are defined by two basic properties:

1. Positivity: The probability of observing an arbitrary set of random
variables X is nonzero, that is,

p(X) > 0 (15.20)

2. Markov property: The probability of observing a certain random
variable Xi ∈ X depends only on its neighbors ∂(Xi), that is,

p(Xi|{X1, X2, . . . , Xi−1, Xi+1, . . . , XL}) = p(Xi|∂(Xi)) (15.21)

The Markov property introduces statistical dependencies of bound-
ed order and defines the local characteristics of the MRF. The order of
dependency is herein the cardinality of the set of neighbors. The pre-
ceding used neighborhood system induces a graph structure on the ran-
dom variables, and therefore it enables us to use the language of graph
theory in the context of Markov random fields; the vertices of the graph
are defined by the random variables, and two vertices are connected by
an edge if the corresponding random variables are neighbors. This
analogy between neighborhoods, random variables and graphs also al-
lows the notion of cliques. In graph theory a clique is defined as a set
of vertices in which all pairs are mutual neighbors, that is, a clique de-
fines a complete subgraph. Figure 15.7 shows the cliques to the graph
associated with the first-order neighborhood. Note also that the empty
graph is by definition a clique.
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Equippedwith the neighborhood systems and the concept of cliques,
nowwe are able to compute the joint density of MRFs with themost cur-
rent tools: The equivalence theorem for MRFs [23] states that the joint
density p(X) over all random variables X is proportional to a prod-
uct of real-valued functions associated with cliques of the graph. The
clique functions, however, have to be symmetric in their arguments,
that is, whenever we change the order of input variables, the output is
not affected. If C = {C1, C2, . . . , CP} denotes the set of cliques and XCi

the random variables belonging to clique Ci, then there exists a set of
clique functions φCi(XCi), i = 1,2, . . . , P , such that

p(X) = 1
Z

∏
Ci∈C

φCi(XCi) (15.22)

The denominator Z is a normalization factor, which guarantees that
the integral over the complete domain of the density function turns
out to be unity; Z is constant and due to its definition, is independent
of the actual random variable X. Fortunately, the positivity constraint
Equation (15.20) allows writing this product in Gibbsian form. For the
set of random variables X, the overall density leads to the so-called
Gibbs field

p(X) = 1
Z
exp

−
∑

Ci∈C
VCi(XCi)

 = 1
Z
exp(−U(X)) (15.23)

Gibbs distributions are well studied in statistical physics and according
to physicists we call the function VCi potential function, which maps the
set of random variables belonging to clique Ci to real values; the sum
U(X) of potentials is the energy function. In case of discrete random
variables, here Z is defined by the marginal

Z =
∑
Y
exp(−U(Y )) (15.24)

The computation of conditional densities using Gibbs distributions is
surprisingly simple. If the Markov field is given in Gibbsian form, the
conditional dependency for observing any random variable Xj satisfies

p(Xj|X1, . . . , Xj−1, Xj+1, XL) =
exp

(∑
Ci∈C VCi(XCi)

)
∑

Xj
exp

(∑
Ci∈C VCi(XCi)

)
=

exp
(∑

Ci∈C(Xj) VCi(XCi)
)

∑
Xj
exp

(∑
Ci∈C(Xj) VCi(XCi)

) (15.25)

where C(Xj) is the set of all cliques including random variable Xj . All
factors of the numerator and denominator cancel that do not contain
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an element of the clique Cj to which the random variable Xj belongs.
This shows that the conditional density of random variable Xj depends
on its local neighborhood—as required by the Markov property.

Most computer vision researchers are usually less familiar with sta-
tistical physics, and therefore the use of the Gibbs fields seems inconve-
nient and apparently not necessarily advantageous. However, we have
seen in Eq. (15.25) that this notation is advantageous for the computa-
tion of conditional probabilities.

So far, we have seen that MRFs define a Gibbs field. The equivalence
theorem states that this is also true in reverse order: each Gibbs field
induces a Markov random field. This remarkable correspondence be-
tween Markov random and Gibbs fields was discovered by Hammersley
and Clifford. The rather technical proof of the Gibbs-Markov equiva-
lence is omitted and beyond the scope of this chapter. The interested
reader will find a pretty elegant version in [23].

In practice, the knowledge of the equivalence theorem reveals two
options to define priors and model densities based on MRF:

1. We ignore the result on Gibbs distributions and compute the joint
density for a set of random variables by standard manipulations.

2. According to the given application we define a neighborhood sys-
tem, consider the associated graph, and define the energy function
in terms of clique potentials.

Both strategies—the explicit use of conditional densities and the appli-
cation of Gibbsian densities—are in fact equivalent and useful in prac-
tice. It obviously depends on the concrete problem and the givenmodel
as to which representation is advantageous. Let us consider an exam-
ple based on the Gibbsian form of Markov random fields that defines
prior densities of images.

Example 15.2: The Ising model

One of the most referenced and nontrivial introductory examples of
MRFs is the Ising model, which was invented by the physicist E. Ising.
It is a statistical model to explain empirical observations on ferro-
magnetism theoretically. We state this model in terms of images and
intensity values, as we are more familiar with this terminology. Let us
consider images as a 2-D square lattice. We induce a graph structure
according to neighbors of first order. The range of discrete intensity
values fm,n is restricted to {±1}. In the physical model these intensity
values describe the spin at the considered lattice point. The energy of
the complete random field is supposed to be minimal if all spins are
identical. This is obviously valid for the energy function

U(f ) = −α

M−1∑
m=1

N∑
n=1

fm,nfm+1,n +
M∑

m=1

N−1∑
n=1

fm,nfm,n+1

 (15.26)

where α > 0.
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Figure 15.8: Two images maximizing the prior defined by Eq. (15.27).

Ising’s model, however, does not weight singleton cliques (see also
Fig. 15.6) by zero as suggested in Eq. (15.26), but incorporates these
singleton potentials in the energy function as an additive termweighted
by β

U(f ) = −α

M−1∑
m=1

N∑
n=1

fm,nfm+1,n +
M∑

m=1

N−1∑
n=1

fm,nfm,n+1

+ β
M∑

m=1

N∑
n=1

fm,n

(15.27)

We omit the physical interpretation ofα and β, which basically depend
on the temperature and the chosen material. For different choices of
these parameters we get different binary images that maximize the
density function of this Gibbs field. Figure 15.8 shows some examples.

Up to now we have considered MRFs in general and the given exam-
ple has shown that MRFs can be used to define priors (Example 15.2);
we can define a probability density for a given set of observations. The
Bayesian classifier , however, requires the definition of posterior prob-
abilities including priors and model densities.

Major applications of Markov random field models do not deal with
object recognition and pose estimation, but with image labeling [8, 23].
Based on prior models and observations a labeled image is computed
using Bayesian labeling: this can be a restored image [22], a transfor-
mation into line segments [24], or texture segmentation [25].

15.5 Practical issues

Before we conclude this chapter with a brief summary, we comment
on some practical issues generally related to the usage of probabilistic
models in computer vision.

The most critical decisions in probabilistic modeling are related to
the dependency structure of considered random variables and the num-
ber of parameters in the chosen model. If probabilistic models do
not result in satisfactory recognition rates, the most obvious problem
might be caused by inaccurate independency assumptions and by the
selection of inappropriate parametric distributions. The increase of
dependencies and the related growth of free parameters suggest more
accurate models. In fact, for many applications this is a totally false
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conclusion that is related to a fundamental problem in pattern recog-
nition [26, 27]: the curse-of-dimensionality. Indeed it can be shown
that:

• in high-dimensional spaces it is impossible to get large sample sets,
that is, with increasing dimension an exponentially increasing num-
ber of data points is required to guarantee a densely sampled Eu-
clidean space;

• all interpoint distances are large and rather equal;

• nearest neighborhoods are not local; and

• all data points are close to the boundary of the considered space.

The natural consequence of this principle is that a careless increase of
model complexity will end in insufficient classification results. These
are hard to understand if the engineer is not aware of the curse. The
only way to avoid problems related to the curse-of-dimensionality is
to restrict the considered functions to a special class of parametric
functions. Reasonable high-dimensional models require some locally
restricted structure or reduced parameters enforced by parameter ty-
ing; otherwise parametric models are not practical. But this strategy is
two edged: Often probabilistic models are criticized because of incor-
porated independency assumptions—regardless of convincing experi-
mental results. For a wide range of classification problems, however,
even naive Bayes [11], which approximates class conditional densities
of random vectors by the product of its marginals, is surprisingly suc-
cessful. Theoretically, it is not yet completely solved and clear why
these simple techniques often are superior to more sophisticated ones,
but certainly one reason is the curse-of-dimensionality.

Another matter is based on the bias variance trade-off in parameter
estimation. If a parameter set B has to be estimated using empirical
data, the mean square error between the real value B0 and its estimate
B̂ is a measure for the quality of the estimation procedure

E[(B0 − B̂)2] = (B0 − E[B̂])2 + E[(B̂− E[B̂])2] (15.28)

The first term (B0 − E[B̂]) herein denotes the bias and E[(B̂ − E[B̂])2]
is the variance of the estimator. Typically, bias and variance interact:
low bias induces high variance, low variance high bias. If the para-
metric model is correct, then the estimation is unbiased and even the
variance will be low. However, if the chosen model does not exactly fit,
we observe usually low bias but high variance, and minor changes in
the training samples cause high variations in estimates. For that rea-
son, restricted parametric models of lower variance are often preferred
to more complex and highly parameterized density functions [28]. The
high variance of these estimates also explains the success of the boot-
strap [29], where the training set is sampled by replacement. Instead of
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using the training set as is, we randomly choose a subset of empirical
data, estimate the parameters, and repeat this process several times.
At the end the computed models are averaged and finally show a lower
variance [30].

We assume implicitly that training data are sufficient for estimat-
ing the required parameters. The dimension of the chosen parameter
space, the curse-of-dimensionality, the bootstrap, and the fact that we
observe only samples of a subset of the real set of events are hints that
this basic assumption is possibly wrong. Our models also have to con-
sider and to predict random measures with a probability nonequal to
zero, which are not part of the observation. At first glance, this seems
awkward and most unrealistic. A simple example, however, shows its
necessity: If wemodel objects by histograms it might happen that some
intensity values are never observed. The histogram will include the
probability 0 and whenever we observe this intensity value during run-
time, the complete product of probabilities (Eq. (15.8)) will annihilate.
This example shows that we also have to attend to methods that can
deal with sparse training samples. Statistical models used for speech
recognition have been used widely in this field. In many applications
techniques such as deleted interpolation or Good-Turing estimates pro-
vide reliable estimates [12], and these methods will also support and
improve probabilistic models in computer vision. Good estimates of
parametric models are the crucial prerequisite for the successful use
of probabilistic models.

15.6 Summary, conclusions, and discussion

This chapter provided an overview on probabilistic models in computer
vision and related algorithms. The basic arguments that suggest a pref-
erence for probabilistic modeling schemes over others have been sum-
marized. Bayesian classifiers allow the unified incorporation of prior
knowledge and class-specific densities. However, it is a fundamental
problem to define adequate statistical models that solve the trade-off
between independency assumptions, the dimension of the parameter
space, the curse-of-dimensionality, the size of available sample data,
and the discriminatory power. The generic point of view starting with
a general probabilistic model has proven to be advantageous: inde-
pendencies and marginalization are powerful tools to switch between
different levels of model densities. We have shown that mixture den-
sity models, hidden Markov models, Markov random fields, and others,
have the same roots in the generic model of sensor data.

In the authors’ opinion there is an immense potential for probabilis-
tic models with regard to robust learning techniques, excellent clas-
sifiers, and a systematic and theoretically well-founded approach to
active vision.
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16.1 Introduction

Ourworld is fuzzy , and so are images, projections of the real world onto
the image sensor. Fuzziness quantifies vagueness and ambiguity, as
opposed to crisp memberships. The types of uncertainty in images are
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manifold, ranging over the entire chain of processing levels, from pixel-
based grayness ambiguity over fuzziness in geometrical description up
to uncertain knowledge in the highest processing level.

The human visual system has been perfectly adapted to handle un-
certain information in both data and knowledge. It would be hard to
define quantitatively how an object, such as a car, has to look in terms
of geometrical primitives with exact shapes, dimensions, and colors.
Instead, we are using a descriptive language to define features that
eventually are subject to a wide range of variations. The interrelation
of a few such “fuzzy” properties sufficiently characterizes the object of
interest. Fuzzy image processing is an attempt to translate this ability
of human reasoning into computer vision problems as it provides an
intuitive tool for inference from imperfect data.

Where is the transition between a gray-value slope and an edge?
What is the border of a blurred object? Exactly which gray values belong
to the class of “bright” or “dark” pixels? These questions show that
image features almost naturally have to be considered fuzzy. Usually
these problems are just overruled by assigning thresholds—heuristic or
computed—to the features in order to classify them. Fuzzy logic allows
one to quantify appropriately and handle imperfect data. It also allows
combining them for a final decision, even if we only know heuristic
rules, and no analytic relations.

Fuzzy image processing is special in terms of its relation to other
computer vision techniques. It is not a solution for a special task, but
rather describes a new class of image processing techniques. It pro-
vides a new methodology, augmenting classical logic, a component of
any computer vision tool. A new type of image understanding and
treatment has to be developed. Fuzzy image processing can be a sin-
gle image processing routine, or complement parts of a complex image
processing chain.

During the past few decades, fuzzy logic has gained increasing im-
portance in control theory, as well as in computer vision. At the same
time, it has been continuously attacked for two main reasons: It has
been considered to lack a sound mathematical foundation and to be
nothing but just a clever disguise for probability theory. It was prob-
ably its name that contributed to the low reputation of fuzzy logic.
Meanwhile, fuzzy logic definitely has matured and can be considered
to be amathematically sound extension ofmultivalued logic. Fuzzy log-
ical reasoning and probability theory are closely related without doubt.
They are, however, not the same but complementary, as we will show
in Section 16.1.2.

This chapter gives a concise overview of the basic principles and
potentials of state of the art fuzzy image processing, which can be
applied to a variety of computer vision tasks.
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16.1.1 Basics of fuzzy set theory

The two basic components of fuzzy systems are fuzzy sets and oper-
ations on fuzzy sets. Fuzzy logic defines rules, based on combinations
of fuzzy sets by these operations. This section is based on the basic
works of Zadeh [1, 2, 3, 4, 5].

Crisp sets. Given a universe of discourse X = {x}, a crisp (conven-
tional) set A is defined by enumerating all elements x ∈ X

A = {x1, x2, . . . , xn} (16.1)

that belong to A. The membership can be expressed by a function fA,
mapping X on a binary value:

fA : X �→ {0,1}, fA =
{

1 if x ∈ A
0 if x ∉ A

(16.2)

Thus, an arbitrary x either belongs to A or it does not; partial member-
ship is not allowed.

For two sets A and B, combinations can be defined by the following
operations:

A ∪ B = {x|x ∈ A or x ∈ B}
A ∩ B = {x|x ∈ A and x ∈ B}

Ā = {x|x ∉ A, x ∈ X}
(16.3)

Additionally, the following rules have to be satisfied:

A ∩ Ā = ∅, and A ∪ Ā = X (16.4)

Fuzzy sets. Fuzzy sets are a generalization of classical sets. A fuzzy
set A is characterized by a membership function µA(x), which assigns
each element x ∈ X a real-valued number ranging from zero to unity:

A = {
(x, µA(x))|x ∈ X

}
(16.5)

where µA(x) : X → [0,1]. Themembership function µA(x) indicates to
which extent the elementx has the attributeA, as opposed to the binary
membership value of the mapping function fA for crisp sets Eq. (16.2).
The choice of the shape of membership functions is somewhat arbi-
trary. It has to be adapted to the features of interest and to the final
goal of the fuzzy technique. The most popular membership functions
are given by piecewise-linear functions, second-order polynomials, or
trigonometric functions.

Figure 16.1 illustrates an example of possible membership func-
tions. Here, the distribution of an optical flow vector (Chapter 10),
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Figure 16.1: Possible membership functions for a the magnitude and b the
direction of an optical flow vector f .

is characterized by fuzzy magnitude, f = ‖f‖, and fuzzy orientation
angle, given by two independent sets of membership functions.

Membership functions do not necessarily have to add up to unity:

µA(x) + µB(x) + . . . 6= 1 (16.6)

as opposed to relative probabilities in stochastic processes.
A common notation for fuzzy sets, which is perfectly suited for

fuzzy image processing, has been introduced by Zadeh [4]. Let X be a
finite set X = {x1, . . . , xn}. A fuzzy set A can be represented as follows:

A = µA(x1)
x1

+ . . . + µA(xn)
xn

=
n∑

i=1

µA(xi)
xi

(16.7)

For infinite X we replace the sum in Eq. (16.7) by the following integral:

A =
∫

X

µA(x)
x

dx (16.8)

The individual elements µA(xi)/xi represent fuzzy sets, which consist
of one single element and are called fuzzy singletons. In Section 16.2.1
we will see how this definition is used in order to find a convenient
fuzzy image definition.

Operations on fuzzy sets. In order to manipulate fuzzy sets, we need
to have operations that enable us to combine them. As fuzzy sets are
defined bymembership functions, the classical set theoretic operations
have to be replaced by function theoretic operations. Given two fuzzy
sets A and B, we define the following pointwise operations (∀x ∈ X):

equality A = B � µA(x) = µB(x)
containment A ⊂ B � µA(x) ≤ µB(x)
complement Ā, µĀ(x) = 1− µA(x)
intersection A ∩ B, µA∩B(x) = min{µA(x), µB(x)}
union A ∪ B, µA∪B(x) = max{µA(x), µB(x)}

(16.9)
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Figure 16.2: Operations on fuzzy sets. The boundary of each of the shaded
curves represents, respectively: the a intersection µA∩B of the fuzzy sets µA and
µB ; b the union µA∪B of the fuzzy sets µA and µB ; and c complement µĀ of the
fuzzy set µA.

It can be easily verified that the conditions of Eq. (16.4) are no longer
satisfied

A ∩ Ā = min{µA(x),1− µA(x)} 6= ∅
A ∪ Ā = max{µA(x),1− µA(x)} 6= X

(16.10)

for µ(x) 6≡ 1, due to the partial membership of fuzzy sets.
The results of the complement, intersection, and union operations

on fuzzy sets are illustrated in Fig. 16.2. The operations defined in
Eq. (16.9) can be easily extended for more than two fuzzy sets and
combinations of different operations.

Linguistic variables. An important feature of fuzzy systems is the
concept of linguistic variables, introduced by Zadeh [4]. To reduce the
complexity of precise definitions, they make use of words or sentences
in a natural or artificial language, in order to describe a vague property.

A linguistic variable can be defined by a discrete set of membership
functions {µA1 , . . . , µAN } over the set {x} = U ⊂ X. The membership
functions quantify the variable x by assigning a partial membership of
x with regard to the terms Ai. An example of a linguistic variable could
be the property “velocity,” composed of the terms “slow,” “moderate,”
and “fast.” The individual terms are numerically characterized by the
membership functions µs , µm, and µf . A possible realization is shown
in Fig. 16.1a.

Linguistic hedges. Given a linguistic variablex represented by the set
ofmembership functions {µAi}, we can change themeaning of a linguis-
tic variable by modifying the shape (i. e., the numerical representation)
of the membership functions. The most important linguistic hedges
are intensity modification, µi, concentration, µc , and dilation, µd:

µi(x) =
{

2µ2(x) if 0 ≤ µ(x) ≤ 0.5
1− 2[1− µ(x)]2 otherwise

µc(x) = µ2(x)
µd(x) = √

µ(x)

(16.11)
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An application example using dilation and concentration modifica-
tion is shown later in Fig. 16.15.

Fuzzy logic. The concept of linguistic variables allows the definition
of combinatorial relations between properties in terms of a language.
Fuzzy logic—an extension of classical Boolean logic—is based on lin-
guistic variables, a fact which has assigned fuzzy logic the attribute of
computing with words [6]. Boolean logic uses Boolean operators, such
as AND (∧), OR (∨), NOT (¬), and combinations of them. They are de-
fined for binary values of the input variables and result in a binary
output variable. If we want to extend the binary logic to a combina-
torial logic of linguistic variables, we need to redefine the elementary
logical operators. In fuzzy logic, the Boolean operators are replaced by
the operations on the corresponding membership functions, as defined
in Eq. (16.9).

Let {µAi(x1)} and {µBi(x2)} be two linguistic variables of two sets of
input variables {x1} and {x2}. The set of output variables {x3} is char-
acterized by the linguistic variable {µCi(x3)}. We define the following
basic combinatorial rules:
if (Aj ∧ Bk) then Cl:

µ′
Cl

(x3) =
(
min

{
µAj (x1), µBk(x2)

})
µCl(x3) (16.12)

if (Aj ∨ Bk) then Cl:

µ′
Cl

(x3) =
(
max

{
µAj (x1), µBk(x2)

})
µCl(x3) (16.13)

if (¬Aj) then Cl:
µ′

Cl
(x3) =

(
1− µAj (x1)

)
µCl(x3) (16.14)

Thus, the outputmembership functionµCi(x3) ismodified (weighted)
according to the combination of Ai and Bj at a certain pair (x1, x2).
These rules can easily be extended to more than two input variables. A
fuzzy inference system consists of a number of if-then rules, one for
any membership function µCi of the output linguistic variable {µCi}.

Given the set of modified output membership functions {µ′
Ci

(x3)},
we can derive a single output membership function µC(x3) by accumu-
lating all µ′

Ci
. This can be done by combining the µ′

Ci
by a logical OR,

that is, the maximum operator:

µC(x3) = max
i

{
µ′

Ci
(x3)

}
(16.15)

Defuzzification. The resulting output membership function µC(x3)
can be assigned a numerical value x ∈ {x} by defuzzification, reversing
the process of fuzzification. There are a variety of approaches to get a
single number from a membership function reported in the literature.
The most common techniques are computing the center of area (center
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of mass) or the mean of maxima of the corresponding membership
function. Applications examples are shown in Section 16.3.3.

The step of defuzzification can be omitted if the final result of the
fuzzy inference system is given by a membership function, rather than
a crisp number.

16.1.2 Fuzzy logic versus probability theory

It has been a long-standing misconception that fuzzy logic is nothing
but another representation of probability theory. We do not want to
contribute to this dispute, but rather try to outline the basic difference.

Probability describes the uncertainty in the occurrence of an event.
It allows predicting the event by knowledge about its relative frequency
within a large number of experiments. After the experiment has been
carried out, the event either has occurred or not. There is no uncer-
tainty left. Even if the probability is very small, it might happen that the
unlikely event occurs. To treat stochastic uncertainty, such as random
processes (e. g., noise), probability theory is a powerful tool in com-
puter vision (Chapter 15). There are, however, other uncertainties that
can not be described by random processes. As opposed to probability,
fuzzy logic represents the imperfection in the informational content of
the event. Even after the measurement, it might not be clear whether
the event has happened or not.

For illustration of this difference, consider an image to contain a
single edge, which appears at a certain rate. Given the probability dis-
tribution, we can predict the likelihood of the edge to appear after a
certain number of frames. It might happen, however, that it appears in
every image or does not show up at all. Additionally, the edge may be
corrupted by noise. A noisy edge can appropriately be detected with
probabilistic approaches, computing the likelihood of the noisy mea-
surement to belong to the class of edges. But how do we define the
edge? How do we classify an image that shows a gray-value slope? A
noisy slope stays a slope even if all noise is removed. If the slope is
extended over the entire image we usually do not call it an edge. But
if the slope is “high” enough and only extends over a “narrow” region,
we tend to call it an edge. Immediately the question arises: How large
is “high” and what do we mean by “narrow?”

In order to quantify the shape of an edge, we need to have a model.
Then, the probabilistic approach allows us to extract the model param-
eters, which represent edges in various shapes. But how can we treat
this problem, without having an appropriate model? Many real world
applications are too complex to model all facets necessary to describe
them quantitatively. Fuzzy logic does not need models. It can han-
dle vague information and imperfect knowledge and combine them by
heuristic rules—in a well-defined mathematical framework. This is the
strength of fuzzy logic!
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a

b c

Figure 16.3: Images as an array of fuzzy singletons. a Test image as a fuzzy set
regarding b brightness (bright pixels have higher memberships), and c edginess
(edge pixels have higher memberships).

16.2 Fuzzy image understanding

To use fuzzy logic in image processing applications, we have to de-
velop a new image understanding. A new image definition should be es-
tablished, images and their components (pixels, histograms, segments,
etc.) should be fuzzified (transformed in membership plane), and the
fundamental topological relationships between image parts should be
extended to fuzzy sets (fuzzy digital topology).

16.2.1 A new image definition: Images as fuzzy sets

An image G of size M × N with L gray levels can be defined as an array
of fuzzy singletons (fuzzy sets with only one supporting point) indi-
cating the membership value µmn of each image point xmn regarding
a predefined image property (e.g., brightness, homogeneity, noisiness,
edginess, etc.) [7, 8, 9]:

G =
M⋃

m=1

N⋃
n=1

µmn
xmn

(16.16)
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Figure 16.4: On local neighborhood fuzzification [11].

The definition of the membership values depends on the specific re-
quirements of a particular application and on the corresponding ex-
pert knowledge. Figure 16.3 shows an example where brightness and
edginess are used to define the membership degree of each pixel.

16.2.2 Image fuzzification: From images to memberships

Fuzzy image processing is a kind of nonlinear image processing. The
difference to other well-known methodologies is that fuzzy techniques
operate on membership values. The image fuzzification (generation
of suitable membership values) is, therefore, the first processing step.
Generally, three various types of image fuzzification can be distin-
guished: histogram-based gray-level fuzzification, local neighborhood
fuzzification, and feature fuzzification [9].

As in other application areas of fuzzy set theory, the fuzzification
step sometimes should be optimized. The number, form, and location
of each membership function could/should be adapted to achieve bet-
ter results. For instance, genetic algorithms are performed to optimize
fuzzy rule-based systems [10].

Histogram-based gray-level fuzzification [9]. To develop any point
operation (global histogram-based techniques), each gray level should
be assigned one or more membership values (such as dark, gray, and
bright ) with respect to the corresponding requirements.

Local neighborhood fuzzification [9]. Intermediate techniques (e.g.,
segmentation, noise filtering etc.) operate on a predefined neighbor-
hood of pixels. To use fuzzy approaches to such operations, the fuzzi-
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fication step should also be done within the selected neighborhood
(Fig. 16.4). The local neighborhood fuzzification can be carried out
depending on the task to be done. Of course, local neighborhood fuzzi-
fication requires more computing time compared with the histogram-
based approach. In many situations, we also need more thoroughness
in designing membership functions to execute the local fuzzification
because noise and outliers may falsify membership values.

Example 16.1: Edginess

Within 3×3-neighborhood U we are interested in the degree of mem-
bership of the center point to the fuzzy set edge pixel. Here, the edgi-
ness µe is a matter of grade. If the 9 pixels in U are assigned the
numbers 0, . . . ,8 and G0 denotes the center pixel, a possible member-
ship function can be the following [9]:

µe = 1−
1+ 1

∆

8∑
i=0

‖G0 − Gi‖
−1

(16.17)

with ∆ =maxU (Gi).

Feature fuzzification [9]. For high-level tasks, image features usually
should be extracted (e.g., length of objects, homogeneity of regions,
entropy, mean value, etc.). These features will be used to analyze the
results, recognize the objects, and interpret the scenes. Applying fuzzy
techniques to these tasks, we need to fuzzify the extracted features. It
is necessary not only because fuzzy techniques operate only on mem-
bership values but also because the extracted features are often incom-
plete and/or imprecise.

Example 16.2: Object length

If the length of an object was calculated in a previous processing step,
the fuzzy subsets very short, short, middle-long, long and very long
can be introduced as terms of the linguistic variable length in order
to identify certain types of objects (Fig. 16.5).

16.2.3 Fuzzy topology: Noncrisp definitions of topological rela-
tionships

Image segmentation is a fundamental step in most image processing
systems. However, the image regions can not always be defined crisply.
It is sometimes more appropriate to consider the different image parts,
regions, or objects as fuzzy subsets of the image. The topological rela-
tionships and properties, such as connectedness and surroundedness,
can be extended to fuzzy sets. In image analysis and description, the
digital topology plays an important role. The topological relationships
between parts of an image are conventionally defined for (crisp) sub-
sets of image. These subsets are usually extracted using different types
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0 max. length
0

1

length object feature (linguistic variable)

long very longvery short short middle

Figure 16.5: Feature fuzzification using the concept of linguistic variables [9].

p

q

p

q

thresholding

original image binary image

Figure 16.6: On crisp and fuzzy connectedness. The pixels p and q are fuzzy
connected in original image, and not connected in the binary image.

of segmentation techniques (e. g., thresholding). Segmentation proce-
dures, however, are often a strong commitment accompanied by loss
of information. In many applications, it would be more appropriate to
make soft decisions by considering the image parts as fuzzy subsets. In
these cases, we need the extension of (binary) digital topology to fuzzy
sets. The most important topological relationships are connectedness,
surroundedness and adjacency. In the following, we consider an image
g with a predefined neighborhood U ⊂ g (e.g., 4- or 8-neighborhood).

Fuzzy connectedness [12]. Let p and q ∈ U(⊂ g) and let µ be a mem-
bership function modeling G or some regions of it. Further, let δpq be
paths from p to q containing the points r . The degree of connectedness
of p and q in U with respect to µ can be defined as follows (Fig. 16.6):

connectednessµ(p, q) ≡ max
δpq

[
min

r∈δpq
µ(r)

]
(16.18)
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B

A

Figure 16.7: Example for calculation of fuzzy surroundedness.

Thus, if we are considering the image segments as fuzzy subsets of the
image, the points p and q are connected regarding to the membership
function µ if the following condition holds:

connectednessµ(p, q) ≥ min [µ(p), µ(q)] (16.19)

Fuzzy surroundedness [12, 13, 14]. Let µA, µB , and µC be the mem-
bership functions of fuzzy subsets A, B and C of image G. The fuzzy
subset C separates A from B if, for all points p and r in U ⊂ G and all
paths δ from p to q, there exists a point r ∈ δ such that the following
condition holds:

µ(C)(r) ≥ min [µA(p), µB(q)] (16.20)

In other words, B surrounds A if it separates A from an unbounded
region on which µA = 0. Depending on the particular application,
appropriate membership functions can be found to measure the sur-
roundedness. Two possible definitions are given in Example 16.3, where
µBBA defines the membership function of the linguistic variable ‘B sur-
rounds A’ (Fig. 16.7) [9, 14].

Example 16.3: Surroundedness

µBBA(θ) =


π − θ

π
0 ≤ θ < π

0 otherwise

, µBBA(θ) =


cos2

(
θ
2

)
0 ≤ θ < π

0 otherwise

Fuzzy adjacency [12, 13, 15]. The adjacency of two disjoint (crisp)
sets is defined by the length of their common border. How can this
definition be generalized to fuzzy sets?

Let µ1 and µ2 be piecewise-constant fuzzy sets of G. The image G
can be partitioned in a finite number of bounded regions Gi, meeting
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a
adjacent

b
adjacent / surrounded

c
surrounded

Figure 16.8: Relationship between adjacency and surroundedness.

pairwise along arcs, on each of which µ1(i) and µ2(j) are constant. If
µ1 and µ2 are disjoint then in each region Gi either µ1 = 0 or µ2 = 0.
Let A(i, j, k) be the kth arc along which Gi and Gj meet. Then the
adjacency of µ1 and µ2 can be defined as follows:

adjacency(µ1, µ2) =
∑

i,j,k

‖A(i, j, k)‖
1+ ‖µ1(i)µ2(j)‖ (16.21)

Now, to introduce a definition for degree of adjacency for fuzzy
image subsets, let us consider two segments S1 and S2 of an image G.
Further, let B(S1) be the set of border pixels of S1, and p an arbitrary
member of B. The degree of adjacency can be defined as follows:

degree of adjacency(µ1, µ2) =
∑

p∈B(S1)

1
1+ ‖µ1(i)µ2(j)‖

1
1+ d(p)

(16.22)

where p ∈ S1 and q ∈ S2 are border pixels, and d(p) is the shortest dis-
tance between p and q. Here, it should be noted that there exists a close
relationship between adjacency and surroundedness (Fig. 16.8a,b). De-
pending on the particular requirements, one may consider one or both
of them to describe spatial relationships.

16.3 Fuzzy image processing systems

Fuzzy image processing consists (as all other fuzzy approaches) of
three stages: fuzzification, suitable operations on membership values,
and, if necessary, defuzzification (Fig. 16.9). The main difference to
othermethodologies in image processing is that input data (histograms,
gray levels, features, . . . ) will be processed in the so-called member-
ship plane where one can use the great diversity of fuzzy logic, fuzzy
set theory, and fuzzy measure theory to modify/aggregate the mem-
bership values, classify data, or make decisions using fuzzy inference.
The new membership values are retransformed in the gray-level plane
to generate new histograms, modified gray levels, image segments, or
classes of objects. In the following, we briefly describe each processing
stage.
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fuzzification

de-
fuzzification

modification
inference

aggregation
classification

fuzzy logic, fuzzy sets,
fuzzy measures

histograms,
gray levels,
features

histograms,
gray levels,
segments,
classes

knowledge base

Gray-Level Plane Membership Plane

Figure 16.9: General structure of fuzzy image processing systems [9].

Table 16.1: On relationships between imperfect knowledge and the type of
image fuzzification [9].

Problem Fuzzification Level Examples

Brightness ambiguity/
vagueness

histogram low thresholding

Geometrical fuzziness local intermediate edge detection,
filtering

Complex/ill-defined data feature high recognition,
analysis

16.3.1 Fuzzification (coding of image information)

Fuzzification can be considered as input data coding. It means that
membership values are assigned to each input (Section 16.2.2). Fuzzifi-
cation doesmean that we assign the image (its gray levels, features, seg-
ments, . . . ) one or more membership values with respect to the prop-
erties of interest (e. g., brightness, edginess, homogeneity). Depending
on the problem we have (ambiguity, fuzziness, complexity), the suit-
able fuzzification method should be selected. Examples of properties
and the corresponding type of fuzzification are given in Table 16.1.

16.3.2 Operations in membership plane

The generated membership values are modified by a suitable fuzzy ap-
proach. This can be a modification, aggregation, classification, or pro-
cessing by some kind of if-then rules.

Aggregation. Many fuzzy techniques aggregate the membership val-
ues to produce new memberships. Examples are fuzzy hybrid connec-
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Figure 16.10: Example for modification-based fuzzy image processing [9].

tives, and fuzzy integrals, to mention only some of them. The result
of aggregation is a global value that considers different criteria, such
as features and hypothesis, to deliver a certainty factor for a specific
decision (e. g., pixel classification).

Modification. Another class of fuzzy techniques directly modifies the
membership values. The principal steps are illustrated in Fig. 16.10.
Examples of such modifications are linguistic hedges, and distance-
based modification in prototype-based fuzzy clustering. The result of
the modification is a new membership value for each fuzzified feature
(e. g., gray level, segment, object).

Classification. Fuzzy classification techniques can be used to classify
input data. They can be numerical approaches (e. g., fuzzy clustering
algorithms, fuzzy integrals, etc.) or syntactic approaches (e. g., fuzzy
grammars, fuzzy if-then rules, etc.). Regarding the membership values,
classification can be a kind of modification (e. g., distance-based adap-
tation of memberships in prototype-based clustering) or aggregation
(e. g., evidence combination by fuzzy integrals).

Inference. Fuzzy if-then rules can be used to make soft decisions us-
ing expert knowledge. Indeed, fuzzy inference can also be regarded as
a kind of membership aggregation because different fuzzy connectives
are used to fuse the partial truth in premise and conclusion of if-then
rules.



556 16 Fuzzy Image Processing

16.3.3 Defuzzification (decoding of the results)

In many applications we need a crisp value as output. Fuzzy algo-
rithms, however, always deliver fuzzy answers (a membership function
or a membership value). In order to reverse the process of fuzzifica-
tion, we use defuzzification to produce a crisp answer from a fuzzy
output feature. Depending on the selected fuzzy approach, there are
different ways to defuzzify the results. The well-known defuzzification
methods such as center of area and mean of maxima are used mainly
in inference engines. One can also use the inverse membership func-
tion if point operations are applied. Figure 16.10 illustrates the three
stages of fuzzy image processing for a modification-based approach.

16.4 Theoretical components of fuzzy image processing

Fuzzy image processing is knowledge-based and nonlinear. It is based
on fuzzy logic and uses its logical, set-theoretical, relational and cog-
nitive aspects. The most important theoretical frameworks that can
be used to construct the foundations of fuzzy image processing are:
fuzzy geometry, measures of fuzziness/image information, rule-based
approaches, fuzzy clustering algorithms, fuzzymathematical morphol-
ogy, fuzzy measure theory, and fuzzy grammars. Any of these topics
can be used either to develop new techniques, or to extend the exist-
ing algorithms [9]. Here, we give a brief description of each field. Soft
computing techniques (e. g., neural fuzzy, fuzzy genetic) as well as com-
bined approaches (e. g., neural fuzzy and fuzzy genetic techniques) are
not mentioned due to space limitations.

16.4.1 Fuzzy geometry

Geometrical relationships between the image components play a key
role in intermediate image processing. Many geometrical categories
such as area, perimeter, and diameter, are already extended to fuzzy
sets [12, 13, 15, 16, 17, 18, 19, 20, 21]. The geometrical fuzziness aris-
ing during segmentation tasks can be handled efficiently if we consider
the image or its segments as fuzzy sets. The main application areas
of fuzzy geometry are feature extraction (e. g., in image enhancement),
image segmentation, and image representation ([9, 9, 15, 21, 22, 23],
see also Table 16.2).

Fuzzy topology plays an important role in fuzzy image understand-
ing, as already pointed out earlier in this chapter. In the following, we
describe some fuzzy geometrical measures, such as compactness, in-
dex of area coverage, and elongatedness. A more detailed description
of other aspects of fuzzy geometry can be found in the literature.
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Table 16.2: Theory of fuzzy geometry [9, 12, 13, 15, 16, 17, 18, 19, 20, 21]

Aspects of fuzzy geometry Examples of subjects and features

digital topology connectedness, surroundedness, adjacency

metric area, perimeter, diameter, distance between
fuzzy sets

derived measures compactness index of area coverage, elon-
gatedness

convexity convex/concave fuzzy image subsets

thinning/medial axes shrinking, expanding, skeletonization

elementary shapes fuzzy discs, fuzzy rectangles, fuzzy triangles

Fuzzy compactness [17]. Let G be an image of size MN , containing
one object with the membership values µm,n. The area of the object—
interpreted as a fuzzy subset of the image—can be calculated as:

area(µ) =
M∑

m=0

N∑
n=0

µm,n (16.23)

The perimeter of the object can be determined as

perimeter(µ) =
M∑

m=1

N−1∑
n=1

‖µm,n − µm,n+1‖ +
M−1∑
m=1

N∑
n=1

‖µm,n − µm+1,n‖

(16.24)

The fuzzy compactness, introduced by Rosenfeld [17] can be defined as

compactness(µ) = area(µ)
[perimeter(µ)]2

(16.25)

In the crisp case, the compactness is maximum for a circle. It can be
shown that the compactness of fuzzy sets is always more than a corre-
sponding crisp case. Many fuzzy techniques are, therefore, developed
for image segmentation, which minimizes the fuzzy compactness.

Index of area coverage [15, 21]. The index of area coverage of a fuzzy
image subset µ, introduced by Pal and Ghosh [21], represents the frac-
tion of the maximum image area actually covered by this subset. It is
defined as follows:

ioac(µ) = area(µ)
length(µ)breadth(µ)

(16.26)
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Figure 16.11: Calculation of elongatedness of crisp image subsets is often ac-
companied by loss of information (pixels marked with “x” are lost during the
thresholding task).

Here, the length and breadth of the fuzzy image subset are calculated
as follows:

length(µ) = max
m

{∑
n

µm,n

}
(16.27)

breadth(µ) = max
n

{∑
m

µm,n

}
(16.28)

The definition of the index of area coverage is very similar to com-
pactness. For certain cases, it can be shown that there exists a relation-
ship between the two definitions.

Fuzzy elongatedness [17]. As an example for cases that have no sim-
ple generalization to fuzzy sets, we briefly explain the elongatedness
of an object. The elongatedness can serve as a feature to recognize a
certain class of objects. Making strong commitments to calculate such
geometrical features (e. g., thresholding), it can lead to loss of informa-
tion and falsification of final results (Fig. 16.11).

Let µ be the characteristic function of a crisp image subset. The
elongatedness can be defined as follows:

elongatedness(µ) = area(µ)
[thickness(µ)]2

(16.29)

Now, letting µ be the membership function of a fuzzy image subset,
a closely related definition of fuzzy elongatedness is introduced by
Rosenfeld [12]:

fuzzy elongatedness(µ) = max
δ>0

area(µ − µ−δ)
(2δ)2

(16.30)

Here, µδ denotes the result of a shrinking operation in a given distance
δ, where the local “min” operation can be used as a generalization of
shrinking.
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16.4.2 Measures of fuzziness and image information

Fuzzy sets can be used to represent a variety of image information. A
central question dealing with uncertainty is to quantify the “fuzziness”
or uncertainty of an image feature, given the corresponding member-
ship function. A goal of fuzzy image processing might be to minimize
the uncertainty in the image information.

Index of fuzziness. The intersection of a crisp set with its own com-
plement always equals zero (Eq. (16.4)). This condition no longer holds
for two fuzzy sets. The more fuzzy a fuzzy set is, the more it intersects
with its own complement. This consideration leads to the definition of
the index of fuzziness γ. Given a fuzzy set A with the membership
function µA defined over an image of size M × N , we define the linear
index of fuzziness γl as follows:

γl(G) = 2
MN

∑
m,n

min(µmn,1− µmn) (16.31)

Another possible definition is given by the quadratic index of fuzzi-
ness γq defined by

γq(G) = 1√
MN


∑

m,n
min(µmn,1− µmn)

2

1/2

(16.32)

For binary-valued (crisp sets) both indices equal zero. For maximum
fuzziness, that is, µmn = 0.5, they reach the peak value of 1.

Fuzzy entropy. An information theoretic measure quantifying the in-
formation content of an image is entropy . The counterpart in fuzzy set
theory is given by the fuzzy entropy , quantifying the uncertainty of the
image content. The logarithmic fuzzy entropy Hlog is defined by [24]

Hlog(G) = 1
MN ln2

∑
m,n

Sn(µmn) (16.33)

where

Sn(µmn) = −µmn ln(µmn) − (1− µmn) ln(1− µmn) (16.34)

Another possible definition, called the exponential fuzzy entropy, has
been proposed by Pal and Pal [25]:

Hexp(G) = 1
MN(

√
e − 1)

∑
m,n

{
µmne(1−µmn) + (1− µmn)eµmn − 1

}
(16.35)

The fuzzy entropy also yields a measure of uncertainty ranging from
zero to unity.
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Fuzzy correlation. An important question in classical classification
techniques is the correlation of two different image features. Similarly,
the fuzzy correlation K(µ1, µ2) quantifies the correlation of two fuzzy
features, defined by the membership functions µ1 and µ2, respectively.
It is defined by [7]

K(µ1, µ2) = 1− 4
∆1 +∆2

∑
m,n

(µ1,mn − µ2,mn)2 (16.36)

where

∆1 =
∑

m,n

(
2µ1,mn − 1

)2 , and ∆2 =
∑

m,n

(
2µ2,mn − 1

)2 (16.37)

If ∆1 = ∆2 = 0, K is set to unity. Fuzzy correlation is used either to
quantify the correlation of two features within the same image or, al-
ternatively, the correlation of the same feature in two different images.
Examples of features are brightness, edginess, texturedness, etc.

More detailed information about the theory on common measures
of fuzziness can be found in [7, 25, 26, 27, 28, 29, 30]. A variety of
practical applications are given by [9, 31, 32, 33, 34, 35, 36].

16.4.3 Rule-based systems

Rule-based systems are among themost powerful applications of fuzzy
set theory. They have been of utmost importance in modern develop-
ments of fuzzy-controllers. Fuzzy logic usually implies dealing with
some kind of rule-based inference, in terms of incorporating expert
knowledge or heuristic relations. Whenever we have to deal with com-
bining uncertain knowledge without having an analytical model, we can
use a rule-based fuzzy inference system. Rule-based approaches incor-
porate these techniques into image processing tasks.

Rule-based systems are composed of the following threemajor parts:
fuzzification, fuzzy inference, and defuzzification.

We outlined the components fuzzification and defuzzification ear-
lier in this chapter. They are used to create fuzzy sets from input data
and to compute a crisp number from the resulting output fuzzy set,
respectively.

The main part of rule-based systems is the inference engine. It con-
stitutes the brain of the fuzzy technique, containing the knowledge
about the relations between the individual input fuzzy sets and the
output fuzzy sets. The fuzzy inference system comprises a number of
rules, in terms of if-then conditions, which are used tomodify themem-
bership functions of the corresponding output condition according to
Eqs. (16.12) to (16.14). The individual output membership functions
are accumulated to a single output fuzzy set using Eq. (16.15).
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Figure 16.12: The rules of a fuzzy-inference system create fuzzy patches in
the product space A × B. These regions constitute the support of the function
µC(a, b).

An interesting aspect of rule-based systems is that they can be inter-
preted as a nonlinear interpolation technique approximating arbitrary
functions from partial knowledge about relations between input and
output variables. Consider f (a, b) to be a function of the two variables
a, and b. In case we do not know the analytical shape of f we need
an infinite number of relations between a, b, and f (a, b) in order to
approximate f . If we quantify a and b by fuzzy sets Ai and Bi, it is suf-
ficient to know the relations between the finite number of pairs (Ai, Bj).
The continuous function f over the entire parameter space A × B can
be interpolated, as illustrated in Fig. 16.12. In control theory, the func-
tion f (a, b) is called the control surface. It is, however, necessary to
carefully choose the shape of the membership functions µAi and µBi , as
they determine the exact shape of the interpolation between the sparse
support points, that is, the shape of the control surface.

More detailed information about the theory on rule-based systems
can be found in [2, 3, 4, 5]. A variety of practical applications are given
by [9, 37, 38, 39, 40, 41].

16.4.4 Fuzzy/possibilistic clustering

In many image processing applications, the final step is a classifica-
tion of objects by their features, which have been detected by image
processing tools. Assigning objects to certain classes is not specific to
image processing but a very general type of technique, which has led
to a variety of approaches searching for clusters in an n-dimensional
feature space.

Figure 16.13a illustrates an example of feature points in a 2-D space.
The data seem to belong to two clusters, which have to be separated.



562 16 Fuzzy Image Processing

a

feature 2

fe
at

u
re

 1
b

feature 2

fe
at

u
re

 1 class A

class B

separation ?

c

feature 2

fe
at

u
re

 1

� 	

d

feature 2

fe
at

u
re

 1

� 


Figure 16.13: Crisp vs fuzzy classification. a Set of feature points. b Crisp
classification into two sets A and B. Features close to the separation line are
subject to misclassification. c Fuzzy membership function µA and µB used for
fuzzy clustering.

The main problem of all clustering techniques is to find an appropriate
partitioning of the feature space, whichminimizes misclassifications of
objects. The problem of a crisp clustering is illustrated in Fig. 16.13b.
Due to a long tail of “outliers” it is not possible to unambiguously find
a separation line, which avoids misclassifications. The basic idea of
fuzzy clustering is not to classify the objects, but rather to quantify
the partial membership of the same object to more than one class, as
illustrated in Fig. 16.13. This accounts for the fact that a small tran-
sition in the feature of an object—eventually crossing the separation
line—should only lead to a small change in the membership, rather
than changing the final classification. The membership functions can
be used in subsequent processing steps to combine feature properties
until, eventually, a final classification has to be performed.

Within the scope of this handbook we are not able to detail all exist-
ing clustering techniques. More detailed information about the theory
of fuzzy-clustering and the various algorithms and applications can be
found in the following publications [9, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52].
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16.4.5 Fuzzy morphology

Fuzzy morphology extends the concept of classical morphology (Chap-
ter 14) to fuzzy sets. In the following we assume the image to be rep-
resented by a fuzzy membership function µ. In addition to the mem-
bership function at any pixel of the image of size M × N , we need a
“fuzzy” structuring element ν . The structuring element can be thought
of as the membership function. The shape of the structuring element,
that is, the values of the membership function νmn, determine the spa-
tial area of influence as well as the magnitude of the morphological
operation.

Without going into details regarding theoretical foundations, we
show two possible realizations of the two basic morphological oper-
ations, fuzzy dilation and fuzzy erosion, respectively [9].

Example 16.4: Fuzzy erosion [53, 54]

Eν(x) = infmax [µ(y), (1− ν(y − x))] , x, y ∈ X (16.38)

Example 16.5: Fuzzy dilation [53, 54]

Eν(x) = supmin [µ(y), ν(y − x)] , x, y ∈ X (16.39)

Other realizations and more detailed information about the theory
of morphology can be found in the following publications [9, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64].

16.4.6 Fuzzy measure theory

Fuzzy sets are useful to quantify the inherent vagueness of image data.
Brightness, edginess, homogeneity, and many other categories are a
matter of degree. The class boundaries in these cases are not crisp.
Thus, reasoning should be performed with partial truth and incomplete
knowledge. Fuzzy set theory and fuzzy logic offer the suitable frame-
work to apply heuristic knowledge within complex processing tasks.
Uncertainty arises in many other situations as well, even if we have
crisp relationships. For instance, the problem of thresholding is not
due to the vagueness because we have to extract two classes of pix-
els belonging to object and background, respectively. Here, the main
problem is that the decision itself is uncertain—namely assigning each
gray level with membership 1 for object pixels and membership 0 for
background pixels. This uncertainty, however, is due to the ambiguity,
rather than to vagueness. For this type of problems, one may take into
account fuzzy measures and fuzzy integrals. Fuzzy measure theory—
introduced by Sugeno [65]—can be considered as a generalization of
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classical measure theory [66]. Fuzzy integrals are nonlinear aggrega-
tion operators used to combine different sources of uncertain informa-
tion [9, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]. A detailed overview
of the mathematical framework of fuzzy measures and fuzzy integrals
can be found in CVA2 [Chapter 22].

16.4.7 Fuzzy grammars

Language is a powerful tool to describe patterns. The structural in-
formation can be qualitatively described without a precise numerical
quantification of features. The theory of formal languages was used
for speech recognition before it was considered to be relevant for pat-
tern recognition. Themain reason was that formal languages have been
criticized for not being flexible enough for an application in pattern
recognition, especially for dealing with disturbances such as noise or
unpredictable events. Fuzzy grammars, introduced by Zadeh and Lee
[78], are an extension of classical formal languages that are able to deal
with uncertainties and vague information. Fu [79] uses the theory of
fuzzy grammars for the first time in image processing. Theoretical and
practical aspects of fuzzy languages are detailed in [80, 81, 82, 83].
Practical examples can be found in [84, 85, 86].

16.5 Selected application examples

16.5.1 Image enhancement: contrast adaptation

Image enhancement tries to suppress disturbances, such as noise, blur-
ring, geometrical distortions, and illumination corrections, only tomen-
tion some examples. It may be the final goal of the image processing
operation to produce an image, with a higher contrast or some other
improved property according to a human observer. Whenever these
properties can not be numerically quantified, fuzzy image enhance-
ment techniques can be used. In this section we illustrate the example
of contrast adaptation by three different algorithms.

In recent years, some researchers have applied the concept of fuzzi-
ness to develop new algorithms for contrast enhancement. Here, we
briefly describe the following fuzzy algorithms: minimization of im-
age fuzziness, fuzzy histogram hyperbolization, and a rule-based ap-
proach.

Example 16.6: Minimization of image fuzziness [8, 23, 87]

This method uses the intensification operator to reduce the fuzziness
of the image that results in an increase of image contrast. The algo-
rithm can be formulated as follows:

1. setting the parameters (Fe, Fd, gmax) in Eq. (16.40)
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a b

Figure 16.14: Example of contrast enhancement based on minimization of
fuzziness: a original image; and b contrast enhanced image.

2. fuzzification of the gray levels by the transformation G:

µmn = G(gmn) =
[
1+ gmax − gmn

Fd

]−Fe

(16.40)

3. recursive modification of the memberships (µmn �→ µ′
mn) by fol-

lowing transformation (intensification operator [2]):

µ′
mn =

{
2 [µmn]2 0 ≤ µmn ≤ 0.5
1− 2 [1− µmn]2 0.5 ≤ µmn ≤ 1

(16.41)

4. generation of new gray levels by the inverse transformation G−1:

g′
mn = G−1(µ′

mn) = gmax − Fd

(
(µ′

mn)−1/Fe − 1
)

(16.42)

Figure 16.14 shows an example for this algorithm. The result was
achieved after three iterations.

Example 16.7: Fuzzy histogram hyperbolization [9, 35]

Similar to the nonlinear human brightness perception, this approach
modifies the membership values of an image by a logarithmic func-
tion. The algorithm can be formulated as follows (Fig. 16.15):

1. setting the shape of membership function

2. setting the value of fuzzifier β (Fig. 16.15)

3. calculating of membership values

4. modifying membership values by β
5. generating of new gray levels by following equation:

g′
mn =

(
L − 1

exp(−1) − 1

)(
exp

(
−µβ(gmn)

)
− 1

)
(16.43)

Example 16.8: Fuzzy rule-based approach [9, 35]

The fuzzy rule-based approach is a powerful and universal method
for many tasks in image processing. A simple rule-based approach to
contrast enhancement can be formulated as follows (Fig. 16.16):



566 16 Fuzzy Image Processing

a

A
dilation

concentration

b c

Figure 16.15: a Application of dilation (β = 0.5) and concentration (β = 2)
operators on a fuzzy set. The meaning of fuzzy sets may be modified applying
such operators. To map the linguistic statements of observers in the numerical
framework of image processing systems, linguistic hedges are very helpful. b
and c are examples for contrast enhancement based on hyperbolization (β =
0.9).

1. setting the parameter of inference system (input features, member-
ship functions, ...)

2. fuzzification of the actual pixel (memberships to the dark, gray and
bright sets of pixels, see Fig. 16.16a)

3. inference (if dark then darker, if gray then more gray, if bright then
brighter)

4. defuzzification of the inference result by the use of three singletons

16.5.2 Edge detection

Edges are among the most important features of low-level image pro-
cessing. They can be used for a variety of subsequent processing steps,
such as object recognition and motion analysis. The concept of fuzzi-
ness has been applied to develop new algorithms for edge detection,
which are perfectly suited to quantify the presence of edges in an in-
tuitive way. The different algorithms make use of various aspects of
fuzzy theory and can be classified into the following three principal
approaches:

1. edge detection by optimal fuzzification [88];

2. rule-based edge detection [40, 41];

3. fuzzy-morphological edge detection [9].

Here, we briefly describe the rule-based technique, which is the
most intuitive approach using fuzzy logic for edge detection. Other
approaches to fuzzy-based edge detection can be found in [37, 38].

Example 16.9: Rule-based edge detection [40, 41]

A typical rule for edge extraction can be defined as follows:
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Figure 16.16: a Inputmembership functions for rule-based enhancement based
on the characteristic points of image histogram; b and c examples of contrast
enhancement based on fuzzy if-then rules.

if a pixel belongs to an edge

then it is assigned a dark gray value

else it is assigned a bright gray value

This rule base is special in terms of using the “else” rule. In that way
only one explicit logical relation is used and anything else is assigned
the complement. It would be harder and more costly to specify all
possible cases that can occur.
The input variables are differences between the central point P of a
small 3 × 3 neighborhood U and all neighbors Pi ∈ U . Instead of
computing all possible combinations of neighboring points, only eight
different clusters of three neighboring points are used [9]. Each of the
eight differences is fuzzified according to a membership function µi,
i = {1, . . . ,8}.
The output membership function µe corresponding to “edge” is taken
as a single increasing wedge. The membership function µn of “no
edge” is its complement, that is, µn = 1− µe.
The fuzzy inference reduces to the following simple modification of
the output membership functions:

µe =max{µi; i = 1, . . . ,8}, and µn = 1− µe (16.44)

Figure 16.17 illustrates the result of this simple rule-based approach.
The final mapping of edges onto gray values of an edge image can be
changed by modifying the shape of the individual membership func-
tions. If small differences are given less weight, the noise of the input
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a b

Figure 16.17: Example for rule-based edge detection: a original image; and b
fuzzy edge image.

image will be suppressed. It is also very straightforward to construct
directional selective edge detectors by using different rules according
to the orientation of the neighboring point clusters.

16.5.3 Image segmentation

The different theoretical components of fuzzy image processing pro-
vide us with diverse possibilities for development of new segmentation
techniques. The following description gives a brief overview of differ-
ent fuzzy approaches to image segmentation [9].

Fuzzy rule-based approach. If we interpret the image features as
linguistic variables, then we can use fuzzy if-then rules to segment the
image into different regions. A simple fuzzy segmentation rule may be
as follows: IF the pixel is dark AND its neighborhood is also dark AND
homogeneous, THEN it belongs to the background.

Fuzzy clustering algorithms. Fuzzy clustering is the oldest fuzzy
approach to image segmentation. Algorithms such as fuzzy c-means
(FCM, [43]) and possibilistic c-means (PCM, [50]) can be used to build
clusters (segments). The class membership of pixels can be interpreted
as similarity or compatibility with an ideal object or a certain property.

Measures of fuzziness and image information. Measures of fuzzi-
ness (e. g., fuzzy entropy) and image information (e. g., fuzzy diver-
gence) can also be used in segmentation and thresholding tasks (see
the example that follows).

Fuzzy geometry. Fuzzy geometrical measures such as fuzzy com-
pactness [12] and index of area coverage [21] can be used to measure
the geometrical fuzziness of different regions of an image. Optimiza-
tion of these measures (e. g., minimization of fuzzy compactness re-
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garding the cross-over point of membership function) can be applied
to make fuzzy and/or crisp pixel classifications.

Fuzzy integrals. Fuzzy integrals can be used in different forms:

1. segmentation by weighting the features (fuzzy measures represent
the importance of particular features);

2. fusion of the results of different segmentation algorithms (optimal
use of individual advantages); and

3. segmentation by fusion of different sensors (e. g., multispectral im-
ages, fuzzy measures represent the relevance/importance of each
sensor).

Example 16.10: Fuzzy thresholding

In many image processing applications, we often have to threshold
the gray-level images to generate binary images. In these cases, the
image contains a background and one or more objects. The produc-
tion of binary images serves generally the feature calculation and ob-
ject recognition. Therefore, image thresholding can be regarded as
the simplest form of segmentation, or more generally, as a two-class
clustering procedure. To separate the object gray levels g0 from the
background gray levels gB , we have to determine a threshold T . The
thresholding can be carried out by the following decision:

g =
{

g0 = 0 if 0 ≤ gi ≤ T
gB = 1 if T ≤ gi ≤ L − 1

(16.45)

The basic idea is to find a threshold T that minimizes/maximizes the
amount of image fuzziness. To answer the question of how fuzzy the
image G of size M × N and L gray levels g = 0,1, ..., L−1 is, measures
of fuzziness-like fuzzy entropy [24]:

H = 1
MN ln2

L−1∑
g=0

h(g) [−µ(g) ln(µ(g)) − (1− µ(g)) ln(1− µ(g))]

(16.46)

or index of fuzziness [30]

γ = 2
MN

L−1∑
g=0

h(g)min (µ(g),1− µ(g)) (16.47)

can be used, where h(g) denotes the histogram value and µ(g) the
membership value of the gray level g, respectively.
The general procedure for fuzzy thresholding can be summarized as
follows:

1. Select the type of membership function (Fig. 16.18)

2. Calculate the image histogram
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a b c

d e f g

Figure 16.18: Different membership functions for fuzzy thresholding applied
by: a Pal and Murthy [32]; b Huang and Wang [33]; and c [9]; d original image;
Results of thresholding: e Pal and Murthy [32]; f Huang and Wang [33]; and
g Tizhoosh [36].

3. Initialize the membership function

4. Move the threshold and calculate in each position the amount of
fuzziness using fuzzy entropy or any other measure of fuzziness

5. Find out the position with minimum/maximum fuzziness

6. Threshold the image with the corresponding threshold

The main difference between fuzzy thresholding techniques is that
each of them uses different membership functions and measures of
fuzziness, respectively. Figure 16.18 illustrates three examples of
fuzzy membership functions applied to thresholding together with
the corresponding results on a test image. For the analytical form
of the various membership functions, we would like to refer to the
literature [23, 32, 33, 36].

16.6 Conclusions

Of the publications on fuzzy approaches to image processing, fuzzy
clustering and rule-based approaches have the greatest share. Mea-
sures of fuzziness and fuzzy geometrical measures are usually used
as features within the selected algorithms. Fuzzy measures and fuzzy
integrals are becoming more and more an interesting research subject.
The theoretical research on fuzzymathematical morphology still seems
to be more important than practical reports. Only a few applications of
fuzzy morphology can be found in the literature. Finally, fuzzy gram-
mars still seem to be as unpopular as the classical counterpart.
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The topics detailed in Sections 16.3.1–16.4.7 can also be used to
extend the existing image processing algorithms and improve their
performance. Some examples are: fuzzy Hough transform [89], fuzzy
mean filtering [90], and fuzzy median filtering [91].

Besides numerous publications on new fuzzy techniques, the liter-
ature on introduction to fuzzy image processing can be divided into
overview papers [7, 26, 74, 92], collections of related papers [43], and
textbooks [8, 9, 11, 51, 67].

Fuzzy clustering algorithms and rule-based approaches will certain-
ly play an important role in developing new image processing algo-
rithms. Here, the potential of fuzzy if-then rule techniques seem to
be greater than already estimated. The disadvantage of the rule-based
approach, however, is the costs involved in computation of local opera-
tions. Hardware developments presumably will be a subject of investi-
gations. Fuzzy integrals will find more and more applications in image
data fusion. The theoretical research on fuzzymorphology will be com-
pleted with regard to its fundamental questions, and more practical
reports will be published in this area. Fuzzy geometry will be further
investigated and play an indispensable part of fuzzy image processing.

It is not possible (and also not meaningful) to do everything in image
processing with fuzzy techniques. Fuzzy image processing will play
mostly a supplementary role in computer vision. Its part will probably
be small in many applications; its role, nevertheless, will be pivotal and
decisive.
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17.1 Introduction

Artificial neural networks are an attempt to emulate the processing ca-
pabilities of biological neural systems. The basic idea is to realize sys-
tems capable of performing complex processing tasks by interconnect-
ing a high number of very simple processing elements that might even
work in parallel. They solve cumbersome and intractable problems by
learning directly from data. An artificially neural network usually con-
sists of a large amount of simple processing units, namely, neurons,
via mutual interconnection. It learns to solve problems by adequately
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adjusting the strength of the interconnections according to input data.
Moreover, it can be easily adapted to new environments by learning. At
the same time, it can deal with information that is noisy, inconsistent,
vague, or probabilistic. These features motivate extensive researches
and developments in artificial neural networks.

Themain features of artificial neural networks are their massive par-
allel processing architectures and the capabilities of learning from the
presented inputs. They can be utilized to perform a specific task only
by means of adequately adjusting the connection weights, that is, by
training them with the presented data. For each type of artificial neural
network, there exists a corresponding learning algorithm by which we
can train the network in an iterative updating manner. Those learn-
ing algorithms fit into two main categories: supervised learning and
unsupervised learning.

For supervised learning, not only the input data but also the cor-
responding target answers are presented to the network. Learning is
done in accordance with the direct comparison of the actual output
of the network with known correct answers. It is also referred to as
learning with a teacher . By contrast, if only input data without the
corresponding target answers are presented to the network for unsu-
pervised learning. In fact, the learning goal is not defined at all in terms
of specific correct examples. The available information is in the corre-
lations of the input data. The network is expected to create categories
from these correlations, and to produce output signals corresponding
to the input category.
Neural networks have been successfully employed to solve a vari-

ety of computer vision problems. They are systems of interconnected
simple processing elements. There exist many types of neural net-
works that solve a wide range of problems in the area of image pro-
cessing. There are also many types of neural networks and they are de-
termined by the type of connectivity between the processing elements,
the weights (synapses) of the connecting links, the processing elements
characteristics, and training or learning rules. These rules specify an
initial set of weights and indicate how weights should be modified dur-
ing the learning process to improve network performance.

The theory and representation of the various network types is moti-
vated by the functionality and representation of biological neural net-
works. In this sense, processing units are usually referred to as neu-
rons, while interconnections are called synaptic connections. Although
different neural models are known, all have the following basic compo-
nents in common [1]:

1. A finite set of neurons a(1), a(2), . . . , a(n) with each neuron having
a specific neural value at time t, which will be denoted by at(i).
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Figure 17.1: Two-layer perceptron.

2. A finite set of neural connections W = (wij), where wij denotes the
strength of the connection of neuron a(i) with neuron a(j).

3. A propagation rule τt(i) = ∑n
j=1 at(j)wij .

4. An activation function f , which takes τ as an input and produces
the next state of the neuron at+1(i) = f (τt(i) − θ), where θ is a
threshold and f a hard limiter, threshold logic, or sigmoidal func-
tion, which introduces a nonlinearity into the network.

17.2 Multilayer perceptron (MLP)

Multilayer perceptrons (MLP) are one of the most important types of
neural nets because many applications are successful implementations
of MLPs. Typically the network consists of a set of processing units that
constitute the input layer , one or more hidden layers, and an output
layer . The input signal propagates through the network in a forward
direction, on a layer-by-layer basis. Figure 17.1 illustrates the configu-
ration of the MLP.

A node in a hidden layer is connected to every node in the layer
above and below it. In Fig. 17.1 weight wij connects input node xi to
hidden node hj and weight vjk connects hj to output node ok. Classi-
fication begins by presenting a pattern to the input nodes xi, 1 ≤ i ≤ l.
From there data flow in one direction through the perceptron until the
output nodes ok, 1 ≤ k ≤ n, are reached. Output nodes will have a
value of either 0 or 1. Thus, the perceptron is capable of partitioning
its pattern space into 2n classes.
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Figure 17.2: Propagation rule and activation function for the MLP network.

In a typical pattern-recognition system, the first step is the acquisi-
tion of data. These raw data are preprocessed to suppress noise and
to normalize input. Features are those parts of the signal that carry
information salient to its identity and their extraction is an abstrac-
tion operation where the important is extracted and the irrelevant is
discarded. Classification is the assignment of the input as an element
of one of a set of predefined classes. The rules of classification are
generally not known exactly and thus estimated. Neural networks es-
timate the discriminant functions directly without needing a statistical
model. From a statistical perspective, a multilayer network is a linear
sum of nonlinear basis functions. Those are the hidden units and the
parameter are called connection weights. In a training process, given
a training example, the weights that minimize the difference between
network outputs and required outputs are computed.

The steps that govern the data flow through the perceptron during
classification are [1]:

1. Present the pattern p = [p1, p2, . . . , pl] ∈ Rl to the perceptron, that
is, set xi = pi for 1 ≤ i ≤ l.

2. Compute the values of the hidden-layer nodes as it is illustrated in
Fig. 17.2.

hj = 1

1+ exp
[
−
(
w0j +∑l

i=1 wijxi

)] 1 ≤ j ≤ m (17.1)

The activation function of all units in theMLP is the sigmoid function
f (x) = 1/(1 + exp−x) and it is also the most common form of
activation function in feedforward neural networks. It is defined as a
strictly increasing function that exhibits a graceful balance between
nonlinear and linear behavior.

3. Calculate the values of the output nodes according to

ok = 1

1+ exp
(
v0k +∑m

j=1 vjkhj

) 1 ≤ k ≤ n (17.2)
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a b

Figure 17.3: XOR-problem and solution strategy using the MLP.

4. The class c = [c1, c2, . . . , cn] that the perceptron assigns p must be
a binary vector. So ok must be the threshold of a certain class at
some level τ and depends on the application.

5. Repeat steps 1,2,3, and 4 for each pattern that is to be classified.

Multilayer perceptrons (MLPs) are highly nonlinear interconnected
structures and are, therefore, ideal candidates for both nonlinear func-
tion approximation and nonlinear classification tasks. A classical prob-
lem that can be solved only by the MLP is the XOR-problem. While a
linear classifier is able to partition Rm into regions separated by a hy-
perplane, theMLP is able to construct very complex decision boundaries
as illustrated in Fig. 17.3.

Applied to image processing the MLP has as an input features ex-
tracted from images or from regions from these images. Such features
can be shape, size, and texture measures, and attempt to capture the
key aspects of an image.

Multilayer perceptrons have been applied to a variety of problems in
image processing, including optical character recognition [2] and med-
ical diagnosis [3, 4].

17.2.1 Backpropagation-type neural networks

Multilayer perceptrons (MLPs) have been applied successfully to solve
some difficult and diverse problems by training them in a supervised
manner with a highly popular algorithm known as the error backprop-
agation algorithm. This process consists of two passes through the
different layers of the network: a forward and a backward pass. Dur-
ing the forward pass a training pattern is presented to the perceptron
and classified.

The backward pass recursively, level by level, determines error terms
used to adjust to the perceptron weights. The error terms at the first
level of the recursions are a function of ct and output of the percep-
tron (o1, o2, . . . , on). After all the errors have been computed, weights
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are adjusted using the error terms that correspond to their level. The
algorithmic description of the backpropagation is given here [1]:

1. Initialization: Initialize the weights of the perceptron randomly
with numbers between -0.1 and 0.1; that is,

wij = random([−0.1,0.1]) 0 ≤ i ≤ l,1 ≤ j ≤ m
vjk = random([−0.1,0.1]) 0 ≤ j ≤ m,1 ≤ k ≤ n

(17.3)

2. Presentation of training examples: Present pt =
[
pt
1, pt

2, . . . , pt
l

]
from the training pair (pt,ct) to the perceptron and apply steps
1, 2, and 3 from the perceptron classification algorithm described
earlier.

3. Forward computation: Compute the errors δok,1 ≤ k ≤ n in the
output layer using

δok = ok(1− ok)(ct
k − ok) (17.4)

where ct =
[
ct
1, ct

2, . . . , ct
n

]
represents the correct class of pt . The

vector (o1, o2, . . . , on) represents the output of the perceptron.
4. Forward computation: Compute the errors δhj , 1 ≤ j ≤ m, in the

hidden-layers nodes using

δhj = hj(1− hj)
n∑

k=1
δokvjk (17.5)

5. Backward computation: Let vjk denote the value of weight vjk af-
ter the tth training pattern has been presented to the perceptron.
Adjust the weights between the output layer and the hidden layer
using

vjk(t) = vjk(t − 1) + ηδokhj (17.6)

The parameter 0 ≤ η ≤ 1 represents the learning rate.

6. Backward computation: Adjust the weights between the hidden
layer and the input layer according to

wij(t) = wij(t − 1) + ηδhjpt
i (17.7)

7. Iteration: Repeat steps 2 through 6 for each element of the training
set. One cycle through the training set is called an iteration.

Design considerations. The MLPs construct global approximations
to nonlinear input-output mapping. Consequently, they are capable of
generalization in regions of the input space where little or no data are
available.
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The size of a network is an important consideration from both the
performance and computational points of view. It has been shown [5]
that one hidden layer is sufficient to approximate the mapping of any
continuous function.

The number of neurons in the input layer is equal to the length of
the feature vector. Likewise, the number of nodes in the output layer
is usually the same as the number of classes. The number of subse-
quent hidden layers and the number of neurons in each layer are de-
sign choices. In most applications, the latter number is a small fraction
of the number of neurons in the input layer. It is usually desirable to
keep this number small to reduce the danger of overtraining. On the
other hand, too few neurons in the hidden layer may make it difficult
for the network to converge to a suitable partitioning of a complex fea-
ture space. Once a network has converged, it can be shrunk in size and
retrained, often with an improvement in overall performance.

Data used for trainingmust be representative of the population over
the entire feature space and training patterns should be presented ran-
domly. The network must be able to generalize to the entire training
set as a whole, not to individual classes one at a time.

17.2.2 Convolution neural networks (CNN)

Convolution neural networks (CNN) represent a well-established meth-
od in medical image processing [6, 7]. The difference between a CNN
and an MLP applied to image classification is that a CNN works directly
with images and not with extracted features. The basic structure of a
CNN is shown in Fig. 17.4, which represents a four-layer CNN with two
input images, three image groups in the first hidden layer, two groups
in the second hidden layer, and a real-valued output [6]. The number
of layers and the number of groups in each layer are implementation-
oriented. The image propagates from input to output by means of
convolution with trainable weight kernels.

Forward Propagation. Let Hl,g denote the gth image group at layer
l, and let N(l) be the number of such groups. Image propagation from
the input layer (l = 1) to the output layer (l = L) proceeds as follows
[6]. The image Hl,g(l ≥ 2) is obtained by applying a pointwise sigmoid
nonlinearity to an intermediate image Il,g , that is,

Hl,g(i, j) = 1
1+ exp(−Il,g(i, j))

, g = 1, . . . , N(l) (17.8)

The intermediate image Il,g is equal to the sum of the images obtained
from the convolution of Hl−1,g′ at layer l − 1 with trainable kernel of



584 17 Neural Net Computing for Image Processing

Figure 17.4: Convolution neural network.

weights wl−1,g,g′ . More precisely,

Il,g =
N(l−1)∑
g′=1

Hl−1,g′ ∗ wl−1,g,g′ (17.9)

where ∗ denotes a 2-D convolution with the 2-D kernel wl−1,g,g′ of
weights connecting the g′

th group in the (l−1)th layer of the gth group
in the lth layer.

The spatial width Sw(l−1) of the weight kernel wl−1,g,g′ defines the
receptive field for the layer l. The spatial width SH(l) of an image at
layer l is related to the image width at the layer l − 1 by

SH(l) = SH(l − 1) − Sw(l − 1) + 1 (17.10)

Consequently, the image width becomes smaller as the layer number
increases. The edge effect in convolution is avoided by using this defi-
nition. The width of the receptive field of a given node in the lth layer
is equal to the sum of the kernel widths of the proceeding layers minus
(l − 2). The spatial width of the image at the output layer (l = L) is
one. The output of the CNN, defined as O(g) ≡ HL,g(0,0), is thus a real
number.

Note that an MLP is a special case of a CNN. If for the weight kernels
and image groups in a CNN we substitute real numbers, then we get
ordinary MLP weights for the weight kernels and nodes for the images.
The underlying equations in both networks are the same.
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Backpropagation. Like the MLP the CNN learns through backpropa-
gation. For each training image p (or set p of training images in case
the input layer processes more than one image) we can define the de-
sired output value O(p)

d (g), where g = 1, . . . , N(L) denotes the output
node number. At each training epoch t, training images are applied
to the CNN and the actual CNN outputs O(p)

a [t] are computed using
Eqs. (17.8) and (17.9). The CNN output error for training image p at
training epoch t is defined as

Ep[t] = 1
2

N(L)∑
g=1

(O(p)
d (g) − O(p)

a (g)[t])2 (17.11)

and the cumulative CNN error during training epoch t is defined as

E[t] =
P∑

p=1
E(p)[t] (17.12)

where p is the total number of training samples.
It can be shown that for a CNN, the computation for the weights up-

dating can be carried out as a backpropagation process. The derivation
of the backpropagation algorithm is given in Sahiner et al. [6].

17.3 Self-organizing neural networks

In a self-organizingmap, the neurons are placed at the nodes of a lattice
that is usually 1-D or 2-D. The neurons become selectively tuned to
various input patterns or classes of input patterns in the course of
a competitive learning process. The location of the neurons so tuned
(i. e., the winning neurons) tend to become ordered with respect to each
other in such a way that a meaningful coordinate system for different
input features is created over the lattice [8]. A self-organizing feature
map is therefore characterized by the formation of a topographic map
of the input patterns, in which the spatial locations (i. e., coordinates) of
the neurons in the lattice correspond to intrinsic features of the input
patterns, hence the name “self-organizing feature map” [9].

17.3.1 Kohonen maps

The principal goal of a Kohonen self-organizing map is to transform
an incoming signal pattern of arbitrary dimension into a 1-D or 2-D
discrete map, and to perform this transformation adaptively in a topo-
logical ordered fashion. Many activation patterns are presented to the
network, one at a time. Typically, each input presentation consists sim-
ply of a localized region of activity against a quiet background. Each
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Figure 17.5: a Kohonen neural network; and b neighborhood Λi, of varying
size, around “winning” neuron i, identified as a black circle.

such presentation causes a corresponding localized group of neurons
in the output layer of the network to be active.

The essential components of such a network are [9]:

1. A 1-D or 2-D lattice of neurons that computes simple discriminant
functions of inputs received from an input of arbitrary dimension
as shown in Fig. 17.5a.

2. A procedure that compares these discriminant functions and selects
the neuron with the largest discriminant function value (“winner
neuron”).

3. An interactive network that activates the selected neuron and its
neighbors simultaneously. The neighborhood Λi(x)(n) of the win-
ning neuron is chosen to be a function of the discrete time n. Fig-
ure 17.5b illustrates such a neighborhood, which usually first in-
cludes all neurons in the network and then shrinks gradually with
time. Because it is a symmetric lattice it will shrink to only one
“winning neuron”, which is marked in the figure as a black circle.

4. An adaptive process that enables the activated neurons to increase
their discriminant function values in relation to the input signals.

The learning algorithm of the self-organized map is simple and is
outlined here:

1. Initialization: Choose random values for the initial weight vectors
wj(0) to be different for j = 1,2, . . . , N, where N is the number
of neurons in the lattice. The magnitude of the weights should be
small.

2. Sampling: Draw a sample x from the input distribution with a cer-
tain probability; the vector x represents the activation pattern that
is presented to the lattice.



17.3 Self-organizing neural networks 587

. . . . 

. . . .

. . . .

Continous 

input space X

wi

i(x)i(x)

Discrete

output space A

x

Feature

map map map Φ

Figure 17.6: Mapping between input space X and output space A.

3. Similarity Matching: Find the best matching (winning) neuron i(x)
at time n, using the minimum-distance Euclidean criterion:

i(x) = argmin
j

||x(n) −wj(n)||, j = 1,2, . . . , N (17.13)

4. Updating: Adjust the synaptic weight vectors of all neurons, using
the update formula

wj(n + 1) =
{
wj(n) + η(n)[x(n) −wj(n)], j ∈ Λi(x)(n)
wj(n) otherwise

(17.14)

where η(n) is the learning-rate parameter, andΛi(x)(n) is the neigh-
borhood function centered around the winning neuron i(x); both
η(n) and Λi(x) are varied dynamically during learning for best re-
sults.

5. Continuation: Continue with Step 2 until no noticeable changes in
the feature map are observed.

The presented learning algorithm has some interesting properties,
which are explained based on Fig. 17.6. To begin with, let X denote
a spatially continuous input (sensory) space, the topology of which is
defined by the metric relationship of the vectors x ∈ X. Let A denote
a spatially discrete output space, the topology of which is endowed by
arranging a set of neurons as the computation nodes of a lattice. Let
Φ denote a nonlinear transformation called a feature map, which maps
the input space X onto the output space A, as shown by

Φ : X → A (17.15)

Property 1: Approximation of the input space: The self-organizing fea-
turemapΦ, represented by the set of synaptic weight vectors {wj|j =
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1,2, . . . , N}, in the input space A, provides a good approximation
to the input space X.

Property 2: Topological ordering: The feature map Φ computed by the
learning algorithm is topologically ordered in the sense that the spa-
tial location of a neuron in the lattice corresponds to a particular
domain or feature of input patterns.

Kohonen maps have been applied to a variety of problems in image
processing, including texture segmentation [10] and medical diagnosis
[11].

Design considerations. The success of the map formation is criti-
cally dependent on how the main parameters of the algorithm, namely,
the learning-rate parameter η and the neighborhood function Λi, are
selected. Unfortunately, there is no theoretical basis for the selection
of these parameters. But there are some practical hints [12]:

The learning-rate parameter η(n) used to update the synaptic vector
wj(n) should be time-varying. For the first 100 iterations η(n) should
begin with a value close to unity and decrease thereafter gradually, but
stay above 0.1.

For topological ordering of the weight vectorswj to take place, care-
ful consideration has to be given to the neighborhood function Λi. Λi
can take many geometrical forms but should include always the win-
ning neuron in the middle. The neighborhood function Λi usually be-
gins such that all neurons in the network are included and then it grad-
ually shrinks with time. During the first 1000 iterations the radius of
the neighborhood function Λi shrinks linearly with time n to a small
value of only a couple of neighboring neurons.

17.3.2 Learning vector quantization

Vector quantization [9] is a technique that exploits the underlying struc-
ture of input vectors for the purpose of data compression. Specifically,
an input space is split into a number of distinct regions, and for each
region a reconstruction vector is defined. When the quantizer is pre-
sented a new input vector, the region in which the vector lays is first
determined, and it is represented by the reproduction vector of that re-
gion. Thus, by using an encoded version of this reproduction vector for
storage in place of the original input vector, considerable savings can
be realized. The collection of possible reconstruction vectors is called
a reconstruction codebook and its members are called codewords.

A vector quantizer with minimum encoding distortion is called a
Voronoi quantizer . An input space is divided into four Voronoi cells
with associated Voronoi vectors as shown in Fig. 17.7. Each Voronoi
cell contains those points of the input space that are the closest to the
Voronoi vector among the totality of such points.
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Figure 17.7: Voronoi diagram involving four cells. The small circles indicate
the Voronoi vectors and are the different region (class) representatives.

Learning vector quantization (LVQ) is a supervised learning tech-
nique that uses class information to move the Voronoi vectors slightly,
so as to improve the quality of the classifier decision regions. An input
vector x is picked at random from the input space. If the class labels
of the input vector x and a Voronoi vector w agree, then the Voronoi
vector is moved in the direction of the input vector x. If, on the other
hand, the class labels of the input vector x and the Voronoi vector w
disagree, the Voronoi vectorw is moved away from the input vector x.

Let {wj|j = 1,2, . . . , N} denote the set of Voronoi vectors, and
{xi|1,2, . . . , L} denote the set of input vectors. We assume that there
are more input vectors than Voronoi vectors. The learning vector quan-
tization (LVQ) algorithm proceeds as follows [9]:

1. Suppose that the Voronoi vectorwc is the closest to the input vector
xi. Let Cwc denote the class associated with the Voronoi vector wc ,
and Cxi denote the class label of the input vector xi. The Voronoi
vector wc is adjusted as follows:

wc(n + 1) =
{
wc(n) + αn[xi −wc(n)] Cwc = Cxi

wc(n) − αn[xi −wc(n)] otherwise
(17.16)

where 0 < αn < 1.

2. The other Voronoi vectors are not modified.

The learning constant αn should decrease monotonically with the
number of iterationsn. The relative simplicity of the LVQ, and its ability
to work in unsupervised mode, has made it a useful tool for image-
segmentation problems [11].
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17.4 Radial-basis neural networks (RBNN)

17.4.1 Regularization networks

The design of a supervised network may be accomplished in many dif-
ferent ways. The backpropagation algorithm for the design of a mul-
tilayer perceptron can be viewed as an application of an optimization
method known in statistics as stochastic approximation. In this section
we present a different approach by viewing the design of a neural net-
work as an approximation problem in a high-dimensional space. In the
context of a neural network, the hidden units provide a set of “func-
tions” that constitute an arbitrary “basis” for the input patterns (vec-
tors) when they are expanded into the hidden-unit space; these func-
tions are called radial-basis functions. Major contributions to the the-
ory, design, and application of radial-basis function networks include
papers by Moody and Darken [13] and Poggio and Girosi [14].

The construction of a radial-basis function (RBF) network in its most
basic form involves three different layers. For a network with N hid-
den neurons, the output of the ith output node fi(x) when the n-
dimensional input vector x is presented, is given by

fi(x) =
N∑

j=1
wijΨj(x) (17.17)

whereΨj(x) = Ψ(||x−mj||/σj) is a suitable radially symmetric function
that defines the output of the jth hidden node. Often Ψ(.) is chosen to
be the Gaussian function where the width parameter σj is the standard
deviation; mj is the location of the jth centroid, where each centroid
is represented by a kernel/hidden node, and wij is the weight connect-
ing the jth kernel/hidden node to the ith output node. Figure 17.8a
illustrates the configuration of the network.

The steps that govern the data flow through the radial-basis function
network during classification are:

1. Present the pattern p = [p1, p2, . . . , pn] ∈ Rl to the RBF network,
that is, set xi = pi for 1 ≤ i ≤ n.

2. Compute the values of the hidden-layer nodes as it is illustrated in
Fig. 17.8b.

ψi = exp
(
−d(x,mi,Ki)/2

)
(17.18)

d(x,mi) = (x −mi)TKi(x −mi) is a metric norm and is known as
the Mahalanobis distance. The shape matrix Ki is positive definite



17.4 Radial-basis neural networks (RBNN) 591

and its elements ki
jk

ki
jk =

hi
jk

σ i
j ∗ σ i

k
(17.19)

represent the correlation coefficients hi
jk, and σ i

j the standard de-
viation.
We have for hi

jk: hi
jk = 1 for j = k and |hi

jk| ≤ 1 otherwise.

3. Calculate the values of the output nodes according to

foj = φj =
∑
i

wjiψi (17.20)

4. The class c = [c1, c2, . . . , cn] that the RBF network assigns p must
be a binary vector.

5. Repeat Steps 1,2,3, and 4 for each pattern that is to be classified.

The learning process undertaken by an RBF network may be viewed
as follows. The linear weights associated with the output units of the
network tend to evolve on a different “time scale” compared to the non-
linear activation functions of the hidden units. The weight-adaptation
process is a linear process compared to the nonlinear parameter adap-
tation of the hidden-layer neurons. As the different layers of an RBF
network are performing different tasks, it is reasonable to separate the
optimization of the hidden and output layers by using different tech-
niques. The output layer weights are adjusted according to a simple
delta rule as shown in the MLP case.

There are different strategies we can follow in the design of an RBF
network, depending on how the centers of the RBF network are specified
[9]:

1. Fixed centers selected at random: It is the simplest approach to
assume fixed radial-basis functions defining the activation functions
of the hidden units. Specifically, the locations of the centers may be
chosen randomly from the training set.

2. Self-organized selection of centers: The locations of the centers of
the hidden units are permitted to move in a self-organized fashion,
whereas the linear weights of the output layer are computed using
a supervised learning rule. The self-organized component of the
learning process serves to allocate network resources in a meaning-
ful way by placing the centers of the radial-basis functions in only
those regions of the input space where significant data are present.

3. Supervised selection of centers: The centers and all other free pa-
rameters of the network undergo a supervised learning process; in
other words, the RBF network takes on its most generalized form.
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Figure 17.8: The RBF network: a three-layer model; and b the connection be-
tween input layer and hidden-layer neuron.

A natural candidate for such a process is error-correction learning,
which is most conveniently implemented using a gradient-descent
procedure that represents a generalization of the LMS algorithm.

The RBF networks have been applied to a variety of problems in
image processing, such as image coding and analysis [15], and also in
medical diagnosis [16].

Design considerations. The RBF networks construct local approxi-
mations to nonlinear input-output mapping, with the result that these
networks are capable of fast learning and reduced sensitivity to the
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order of presentation of training data. In many cases, however, we
find that in order to represent a mapping to some desired degree of
smoothness, the number of radial-basis functions required to span the
input space adequately may have to be very large. This fact can be very
inappropriate in many practical applications.

The RBF network has only one hidden layer and the number of basis
functions and their shape is problem-oriented and can be determined
online during the learning process [17, 18]. The number of neurons in
the input layer is equal to the length of the feature vector. Likewise, the
number of nodes in the output layer is usually the same as the number
of classes.

17.5 Transformation radial-basis networks (TRBNN)

The selection of appropriate features is an important precursor to most
statistical pattern recognitionmethods. A good feature-selectionmech-
anism helps to facilitate classification by eliminating noisy or nonrep-
resentative features that can impede recognition. Even features that
provide some useful information can reduce the accuracy of a classi-
fier when the amount of training data is limited. This so-called “curse
of dimensionality,” along with the expense of measuring and includ-
ing features, demonstrates the utility of obtaining a minimum-sized
set of features that allow a classifier to discern pattern classes well.
Well-known methods in literature applied to feature selection are the
floating search methods [19] and genetic algorithms [20].

Radial-basis neural networks are excellent candidates for feature se-
lection. It is necessary to add an additional layer to the traditional ar-
chitecture (see, e. g., Moody and Darken [13]) to obtain a representation
of relevant features. The new paradigm is based on an explicit defini-
tion of the relevance of a feature and realizes a linear transformation
of the feature space.

Figure 17.9 shows the structure of a radial-basis neural network with
the additional layer 2, which transforms the feature space linearly by
multiplying the input vector and the center of the nodes by the matrix
B. The covariance matrices of the input vector remain unmodified:

x′ = Bx, m′ = Bm, C
′ = C (17.21)

The neurons in layer 3 evaluate a kernel function for the incoming in-
put while the neurons in the output layer perform a weighted linear
summation of the kernel functions:

y(x) =
N∑

i=1
wi exp

(
−d(x′ ,m′

i)/2
)

(17.22)
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Figure 17.9: Linear transformation radial basis neural network.

with

d(x′ ,m′
i) = (x′ −m′

i)
TC−1

i (x′ −m′
i) (17.23)

Here, N is the number of neurons in the second hidden layer, x is
the n-dimensional input pattern vector, x′

is the transformed input
pattern vector, m′

i is the center of a node, wi are the output weights,
and y represents the m-dimensional output of the network. The n×n
covariance matrix Ci is of the form

Ci
jk =


1

σ 2
jk

if m = n

0 otherwise
(17.24)

where σ jk is the standard deviation. Because the centers of the Gaus-
sian potential function units (GPFU) are defined in the feature space,
they will be subject to transformation by B as well. Therefore, the ex-
ponent of a GPFU can be rewritten as:

d(x,m′
i) = (x −mi)TBTC−1

i B(x −mi) (17.25)

and is in this form similar to Eq. (17.23).
For the moment, we will regard B as the identity matrix. The net-

work models the distribution of input vectors in the feature space by
the weighted summation of Gaussian normal distributions, which are
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provided by the Gaussian Potential Function Units (GPFU) Ψj . To mea-
sure the difference between these distributions, we define the relevance
ρn for each feature xn:

ρn = 1
PJ

∑
p

∑
j

(xpn − mjn)2

2σ 2
jn

(17.26)

where P is the size of the training set and J is the number of the GPFUs.
If ρn falls below the threshold ρth, we will discard feature xn. This
criterion will not identify every irrelevant feature: If two features are
correlated, one of them will be irrelevant, but this cannot be indicated
by the criterion.

Learning paradigm for the transformation radial-basis neural net-
work. We follow the idea of Lee and Kil [17] for the implementation of
the neuron allocation and learning rules for the TRBNN. The network-
generation process starts initially without any neuron.

The mutual dependency of correlated features can often be approx-
imated by a linear function, which means that a linear transformation
of the input space can render features irrelevant.

First, we assume that layers 3 and 4 have been trained so that they
comprise a model of the pattern-generating process while B is the iden-
tity matrix. Then the coefficients Bnr can be adapted by gradient de-
scent with the relevance ρ′

n of the transformed feature x′
n as the target

function. Modifying Bnr means changing the relevance of xn by adding
xr to it with some weight Bnr . This can be done online, that is, for every
training vector xp without storing the whole training set. The diagonal
elements Bnn are constrained to be constant 1, because a feature must
not be rendered irrelevant by scaling itself. This in turn guarantees that
no information will be lost; Bnr will only be adapted under the condi-
tion that ρn < ρp, so that the relevance of a feature can be decreased
only by some more relevant feature. The coefficients are adapted by
the learning rule:

Bnew
nr = Bold

nr − µ ∂ρn
∂Bnr

(17.27)

with the learning rate µ and the partial derivative:

∂ρn
∂Bnr

= 1
PJ

∑
p

∑
j

(x′
pn − m′

jn)

σ 2
jn

(x′
pr − m′

jr ) (17.28)

In the learning procedure, which is based on, for example, Lee and Kil
[17], we minimize according to the LMS criterion the target function:

E = 1
2

P∑
p=0

|y(x) −Φ(x)|2 (17.29)
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where P is the size of the training set. The neural network has some
useful features as automatic allocation of neurons, discarding of degen-
erated and inactive neurons and variation of the learning rate depend-
ing on the number of allocated neurons.

The relevance of a feature is optimized by gradient descent:

ρnew
i = ρold

i − η ∂E
∂ρi

(17.30)

Based on the new introduced relevance measure and the change in the
architecture we get the following correction equations for the neural
network:

∂E
∂wij

= −(yi −Φi)Ψj

∂E
∂mjn

= − ∑
i (yi −Φi)wijΨj

∑
k (x′

k − m′
jk) Bkn

σ2
jk

∂E
∂σjn

= − ∑
i (yi −Φi)wijΨj

(x′
n − m′

jn)2

σ 3
jn

(17.31)

In the transformed space the hyperellipses have the same orienta-
tion as in the original feature space. Hence they do not represent the
same distribution as before. To overcome this problem, layers 3 and
4 will be adapted at the same time as B. Converge these layers fast
enough and they can be adapted to represent the transformed training
data, providing a model on which the adaptation of B can be based. The
adaptation with two different target functions (E and ρ) may become
unstable if B is adapted too fast, because layers 3 and 4 must follow
the transformation of the input space. Thus µ must be chosen � η. A
large gradient has been observed causing instability when a feature of
extreme high relevance is added to another. This effect can be avoided
by dividing the learning rate by the relevance, that is, µ = µ0/ρr .

17.6 Hopfield neural networks

17.6.1 Basic architecture considerations

A pattern, in parlance of an N node Hopfield neural network, is an N-
dimensional vector p = [p1, p2, . . . , pN] from the space P = {−1,1}N .
A special subset of P is the set of patterns E = {ek : 1 ≤ k ≤ K},
where ek = [ek

1, ek
2, . . . , ek

N]. The Hopfield net associates a vector from
Pwith an exemplar pattern in E. The neural net partitions P into classes
whose members are in some way similar to the exemplar pattern that
represents the class. The Hopfield network finds a broad application
area in image restoration and segmentation.
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As already stated in the Introduction, neural networks have four
common components. For the Hopfield net we have the following:

Neurons: The Hopfield network has a finite set of neurons x(i),1 ≤
i ≤ N, which serve as processing units. Each neuron has a value (or
state) at time t denoted by xt(i). A neuron in the Hopfield net has
one of the two states, either -1 or +1; that is, xt(i) ∈ {−1,+1}.

Synaptic Connections: The cognition of a neural net resides within the
interconnections between its neurons. For each pair of neurons x(i)
and x(j), there is a connection wij called the synapse between x(i)
and x(j). The design of the Hopfield net requires that wij = wji
and wii = 0. Figure 17.10a illustrates a 3-node network.

Propagation Rule: It defines how states and connections influence the
input of a neuron. The propagation rule τt(i) is defined by

τt(i) =
N∑

j=1
xt(j)wij + bi (17.32)

bi is the externally applied bias to the neuron.

Activation Function: The activation function f determines the next
state of the neuron xt+1(i) based on the value τt(i) calculated by
the propagation rule and the current value xt(i). Figure 17.10b il-
lustrates this fact. The activation function for the Hopfield net is
the hard limiter defined here:

xt+1(i) = f (τt(i),xt(i)) =
1, if τt(i) > 0

−1, if τt(i) < 0
(17.33)

The network learns patterns that are N-dimensional vectors from
the space P = {−1,1}N . Let ek = [ek

1, ek
2, . . . , ek

n] denote the kth exem-
plar pattern where 1 ≤ k ≤ K. The dimensionality of the pattern space
determines the number of nodes in the net, such that the net will have
N nodes x(1),x(2), . . . ,x(N).

The training algorithm of the Hopfield neural network.

1. Assign weights wij to the synaptic connections:

wij =

∑K

k=1 ek
i ek

j , if i ≠ j
0, if i = j

(17.34)

Keep in mind that wij = wji, thus it is necessary to perform the
preceding computation only for i < j.

2. Initialize the net with the unknownpattern. The pattern to be learned
is now presented to the net. If p = [p1, p2, . . . , pN] is the unknown
pattern, put
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Figure 17.10: aHopfield neural network; and b propagation rule and activation
function for the Hopfield network.

x0(i) = pi, 1 ≤ i ≤ N (17.35)

3. Iterate until convergence. Using the propagation rule and the acti-
vation function we get for the next state

xt+1(i) = f

 N∑
j=1

xt(j)wij,xt(i)

 (17.36)

This process should be continued until any further iteration will
produce no state change at any node.

4. Continue the classification process. For learning another pattern,
repeat steps 2 and 3.

The convergence property of Hopfield’s network depends on the
structure of W (the matrix with elements wij) and the updating mode.
An important property of the Hopfield model is that if it operates in
a sequential mode and W is symmetric with nonnegative diagonal ele-
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ments, then the energy function

Ehs(t) = 1
2

n∑
i=1

n∑
j=1

wijxi(t)xj(t) −
n∑

i=1
bixi(t)

= −1
2
xT (t)Wx(t) −bTx(t)

(17.37)

is nonincreasing [21]. The network always converges to a fixed point.

17.6.2 Modified Hopfield network

The problem of restoring noisy-blurred images is important for many
applications ([22, 23, 24]; see also Chapter 13). Often, the image degra-
dation can be adequately modeled by a linear blur and an additive white
Gaussian process. Then the degradation model is given by

z =Dx + η (17.38)

where x,z and η represent the ordered original and degraded images
and the additive noise. The matrix D represents the linear spatially
invariant or spatially varying distortion.

The purpose of digital image restoration is to operate on the de-
graded image z to obtain an improved image that is as close to the
original image x as possible, subject to a suitable optimality criterion.
A common optimization problem is:

minimize f (x) = 1
2
xTTx −bTx subject to 0 ≤ xi ≤ 255 (17.39)

where xi denotes the ith element of the vector x, b = DTz and T is a
symmetric, positive semidefinite matrix equal to

T =DTD+ λCTC (17.40)

In Eq. (17.40), C is a high-pass filter and λ, the regularization para-
meter, controls the trade-off between deconvolution and noise smooth-
ing. Comparing Eq. (17.39) and Eq. (17.37) it is clear that the func-
tion f (x) to be minimized for the restoration problem equals Ehs for
W = −T and x = v.

Updating rule. The modified Hopfield network for image restoration
that was proposed in [21] is shown in Fig. 17.11 and is given by the
following equations:

xi(t + 1) = g(xi(t) +∆xi), i = 1, . . . , n (17.41)

where
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Figure 17.11: Block diagram of the modified Hopfield network model applied
to image restoration.

g(v) =


0, v < 0

v, 0 ≤ v ≤ 255

255, v > 255

(17.42)

∆xi = di(ui) =


−1, ui < −θi

0, −θi ≤ ui ≤ θi

1, ui > θi

with

θi = 1
2tii > 0 and ui = bi −

∑n
j=1 tijxj(t)

(17.43)

The degraded image z is used as the initial condition for x; xi are
the states of neuron, which take discrete values between 0 and 255,
instead of binary values. This consideration is possible because the
interconnections are determined in terms of pixel locations and not
gray-level values, as can be seen from Fig. 17.11.

In the following, an algorithm is presented that sequentially updates
each pixel value according to the updating rule. For the analysis to be
followed let l(t) denote a partition of the set {1, . . . , n}. The algorithm
has the following form:

1. x(0) =DTz; t := 0 and i := 1.

2. Check termination.

3. Choose l(t) = {i}.
4. temp = g(x(t) +∆xiei) where ∆xi is given by Eq. (17.43).

5. If temp ≠ x(t) then x(t + 1) := temp and t := t + 1.
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Table 17.1: Recognition rate.

Iterations Number of discarded features Recognition rate

800 – 100%

801 – 1200 13 92.6 – 97%

1201 – 1500 17 93.5 – 99.5%

Table 17.2: Comparison of the proposed method with other techniques.

Feature select. method Min. error Best subset

TRBNN 0.07 110001110110001010110100001000

Seq. backward select. 0.123 011001110010011010100000000110

Genetic algorithm 0.23 110001110011001011010000100110

6. i;= i + 1 (if i > n, i = i − n) and go to step 1.

In step 3 of the preceding algorithm, the function g(.) is used with a
vector as an input. In this case g(x) = [g(x1), . . . , g(xn)], where g(xi)
is defined by Eq. (17.42).

17.7 Application examples of neural networks

17.7.1 Relevant feature selection

The performance of the transformation radial basis network is com-
pared in terms of the best feature subset with very well–knownmethods
such as the floating-search method and genetic algorithms. In the
search for subsets of features each subset can be coded as a d–element
bit string or binary–valued vector (d is the initial number of features),
a = {x1, · · · , xd}, where xi assumes value 0 if the ith feature is ex-
cluded from the subset and 1 if it is present in the subset.

The feature-selection methods were tested on a set from infrared–
image data of two normally distributed classes in a 30-D space and
equal covariance matrix. For the TRBNN we set µ = 0.05 and η = 0.9.

For each class a set of 60 training and 60 test vectors is available.
The proposed network TRBNN is discarding the irrelevant features

during the learning phase, without deteriorating the recognition rate.
This aspect is shown in Table Table 17.1.

A comparison between different feature-selection methods shows
the best feature subset that could be achieved based on each method.
Table 17.2 shows the best subset andminimum error that was obtained
with each method. The TRBNN has the lowest minimum error and the
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Figure 17.12: Classification of a region based upon a feature set.

best recognition rate. The genetic algorithm was implemented similar
to the technique outlined in [20] and we obtained the best subset at
level 15 while the sequential backward selection was implemented as
described in [19] and has the best subset at level 18. The mutation rate
for the GAwas pm = 0.1, the crossover rate pc = 0.6 and the population
size was 40.

17.7.2 Region-based classification

There are two types of classification known in image processing: region–
based and pixel–based classification. An object is classified in region–
based classification based on features that are usually computed to de-
scribe the entire object. Those are mostly geometric features as various
size and shape measurements. Figure 17.12 illustrates this fact. Other
features, such as texture, are computed at pixel level. This means that
in pixel–level classification a feature value is computed for each pixel
and so each pixel is classified individually as shown in Fig. 17.13.

Once an image has been segmented, the individual regions detected
need to be identified in terms of certain structures. This is attempted,
in a bottom–up approach, by extracting a set of features from each
region under consideration, and then classifying the regions based on
the feature vectors generated.

Feature extraction can be very expensive computationally if features
become quite sophisticated. Examples of features measurable from re-
gions are shape, texture, intensity, size, position within the image, con-
textual features, fractal characteristics, and frequency-domain charac-
teristics. This approach can be used to determine the types of tumors
detected, by neural net contextual pixel labeling, from ultrasonic im-
ages of the eye. The first stage detects tumors in ultrasonic images of
the human eye by the use of contextual pixel labeling and neural nets.
The second stage classifies the type of tumor detected as belonging to
one of three types. In the second stage a set of five features were mea-
sured from tumors detected. Two features represented the size of the
tumor, and three measured the characteristics of the normalized power
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Figure 17.13: Classification at pixel-level.

spectra from the Fourier analysis of tumor tissue backscatter. These
five features formed vectors that were used to classify the tumors de-
tected. A comparison was made of the performance of a neural net
classifier and discriminant analysis. On unseen cases the neural net
achieved an accuracy of 91% and the discriminant analysis achieved
84.5%.

17.7.3 Pixel-based classification and image segmentation

This section presents an approach for image segmentation using sub-
octave wavelet representation and a radial-basis neural network. The
algorithm is applied to identify regions of masses in mammographic
images with varied degrees of difficulty. In the process of image seg-
mentation, each mammographic image having a mass is first decom-
posed into wavelet representations of suboctave frequency bands. A
feature vector for each pixel through the scale space is constructed
based on this representation from fine to coarse scales. The feature
vectors are used to drive a radial-basis neural network classifier for
segmentation.

The neural network is used for segmentation of regions in masses
in mammographic images with varied degrees of difficulty. Fig. 17.14
shows four experimental results of mass segmentation within cropped
regions.
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Figure 17.14: Test Images. First row: original images; Second row: smoothed
and enhanced images; Third row: ideal segmentation results.

The network is trained with 25 images and achieves a recognition
rate of 92.7% compared to Bayes classifier that achieves only 91% for
the same data.

17.8 Concluding remarks

In this chapter we have presented the most important architectures of
neural networks and their training algorithms. Several architectures
are specially designed for image-processing tasks and try to emulate
aspects derived from our visual system.

Neural networks can be applied to different topics such as feature
extraction and selection as well as to classification, compression, seg-
mentation and restoration.
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There are two main categories of learning algorithms: supervised
and unsupervised. The supervised methods provide (based on their
powerful training algorithms) a highly efficient model-free method to
design nonlinear mappings between inputs and outputs using a data
base of training samples. Those methods are mostly applied in classi-
fication and segmentation. A limitation of this method is the collecting
of training samples, which is very expensive. On the other hand, unsu-
pervised methods do not require that the target class for each object be
specified. Thosemethods are extremely efficient in image compression.
In summary, the algorithm selection must be tailored to the application
being considered.
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A1 Object Recognition with Intelligent Cameras

Thomas Wagner, and Peter Plankensteiner
Intego GmbH, Erlangen, Germany

Problem statement. Object-recognition problems are widespread on
industrial production floors. In many situations, the customer will de-
cide to use automatic inspection methods only if robust low-cost so-
lutions are available. Today, solutions for object recognition tasks are
either PC-based or they consist of special hardware. An example of
a system that is compact and cost-efficient is a so-called intelligent
camera (Fig. A.1 a, based on the VC-series from Vision Components
www.vision-components.de). The idea behind intelligent cameras is
to develop a stand-alone product containing camera and processor. An
intelligent camera integrates a sensor and a processing unit within the
camera chassis and therefore requires a minimum of space (Fig. A.1b).
Furthermore, due to the direct processing in the camera, potential bot-
tlenecks such as the PC bus are avoided. Intelligent cameras can com-
municate directly with the production line by the use of dedicated in-
terfaces.

Used algorithms. To adapt the Intelli-Cam System to a special image
processing problem, only a few steps have to be performed (Fig. A.2b).
The training is done by a PC-based application providing a graphical
user interface (Fig. A.1b) for a straightforward parameterization of the
system. After marking the relevant regions in an image, the internal
training via the synergetic MELT algorithm [1] is started. This algo-
rithm has shown itself to be very robust in industrial applications. High
recognition rates, short classification times, and especially short train-
ing periods are its most prominent features. Finally, the user has to
define a rejection threshold. From that moment, the camera works in
a stand-alone mode, and the PC may be disconnected.

Results. Two applications for Intelli-Cam are given in Fig. A.3. In
Fig. A.3 a, contacts on relays must be correctly covered in order to pro-
tect users from electric shocks. At the end of the production process,
some of these plastic plates are distorted or completely damaged. To
avoid risks for users, the defect contactors must be detected and re-
moved. The figure gives an example of a correct plate and some typical
defects. The total time for the examination of one contactor is about
320 ms, including time for frame grabbing and positioning. Classifica-
tion alone takes about 60 ms. The training procedure took about 90 s
on a Pentium with 90 MHz. In Fig. A.3b, an intelligent camera is used to
identify different types of empties on a conveyor belt. Further details
on the described application can be found in CVA3 [Chapter 13].

www.vision-components.de
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a b

Figure A.1: The platform: a the interior of an intelligent camera; and b graph-
ical user interface for the parameterization of Intelli-Cam.

a b

Figure A.2: Evaluation concept: a schematic hardware setup of the intelligent
camera; b the training and the inspection process in Intelli-Cam.

a

b

Figure A.3: Example images: a a contactor: one correct plate, two typical minor
faults and two major defects; b different types of empties on a conveyor belt
have to be identified automatically.
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A2 3-D Image Metrology of Wing Roots

Horst A. Beyer
Imetric SA, Technopole, Porrentruy, Switzerland

Problem statement. British Aerospace manufactures wings for the
Airbus line of planes. The interfaces of a wing with the fuselage are
areas where large forces must be transmitted. The positions and an-
gles of interface surfaces between wing and fuselage are geometrically
inspected before the wings are shipped to the integration sites. Tra-
ditional techniques required that each wing be impaired for approxi-
mately 5 h.

Used algorithms. A three-dimensional image metrology system using
special adapters (mechanical constructions with targets where the geo-
metric relation of targets to mechanical references is precisely known,
see Fig. A.5) was selected. The adapters are placed and removed during
production. Figure A.4 shows a wing root with an operator posing with
a camera. The camera has the typical circular flash to illuminate the
targets.

The system uses “coded” targets and fully automated processing.
After reduction of the image data and the computation of the 3-D co-
ordinates, scaling, and transformation into the coordinate system, the
measurement results are compared to the nominal values and proto-
cols are produced.

Results. The system reduces production interruptions to the acquisi-
tion of images, which is in the order of 5 to 10 min. The production
personnel inspect two or more wings per day. The system has a re-
peatability of 0.015 mm in all three coordinate axes on a wing root
spanning 2.8×1.0×0.5 m. The typical measurement accuracy in the
images approaches 0.01 pixel.

The next major improvement will be that of replacing the Kodak
DCS420s with the metrology cameras ICam (see Fig. A.6). These cam-
eras use CCD-sensors with 3000×2000 and 7000×4000 pixels and are
specifically designed for high accuracy 3-D measurements. They have
an integrated computer with Windows NT. Thus all computations and
the analysis can be performed on site. The introduction of these cam-
eras is expected to improve throughput by a factor of two and more.

References. [2, 3], [CVA3, Chapter 16]
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Figure A.4: Operator andwing root showing camera with flash, target adapters
on wing and scale bar to the right (Photograph courtesy of British Aerospace
Airbus).

Figure A.5: Adapters used for the measurement of the wing interfaces.

Figure A.6: Metrology camera ICam with integrated computer showing
3000×2000 and 7000×4000 CCD-sensors.
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A3 Quality Control in a Shipyard

Hans-Gerd Maas
Faculty of Civil Engineering and Geosciences
Delft University of Technology, The Netherlands

Problem statement. Larger ships are usually assembled on a build-
ing dock from sections, which have been built up and equipped as far
as possible in a factory hall. A typical section of a ship may have di-
mensions of 25m × 25m × 12m and a weight of several hundred tons.
Figure A.7 shows the face of a section of a ship in a factory hall; Fig. A.8
shows the face of the ship under construction, where the section has to
be integrated. Obviously, quality control has to assure an accurate fit
of the section. While traditional geodetic techniques such as theodolite
or tape measurements are rather time and cost expensive, image-based
techniques may depict an efficient and accurate measurement tool for
this task.

Data acquisition and processing. Critical points on the section and
the hull were signalized by retroreflective targets, which are clearly vis-
ible in Fig. A.8. A high-resolution digital still-video camera was used
to capture sets of 9 to 12 images of both facades from different view-
points. Imaged using a ring-light flash and suitable exposure settings,
the retroreflective targets reproduce very well in the images (Fig. A.9),
and their image coordinates can be determined with subpixel accu-
racy by centroid operators or least squares template matching. Pro-
cessing the data by photogrammetric bundle adjustment of images
taken from different viewpoints and under different viewing directions,
this subpixel accuracy can be translated into object space. Using self-
calibration techniques [4] in combination with highly redundant infor-
mation obtained frommultiple images, camera parameters such as inte-
rior orientation and lens distortion can be determined simultaneously.

Results. Using proper illumination and exposure settings, a preci-
sion in the order of 1/20 − 1/50 of a pixel can be obtained in image
space. Using a high-resolution still-video camera with an image for-
mat of 3000×2000 pixels and self-calibrating bundle adjustment tech-
niques, this translates into an accuracy potential in the order of a few
tenths of a millimeter in object space. Processing is often performed
semiautomatically with the user pointing to approximate locations in-
teractively. Based on an available CAD-model of the ship or the use of
coded targets [5], a full automation of the measurement procedure can
be obtained.
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Figure A.7: Section of a ship under construction inside factory hall.

Figure A.8: Location on building dock for above section to be integrated.

Figure A.9: Retroreflective target in a digital image.
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A4 Topographical Maps of Microstructures

Torsten Scheuermann1, Georg Wiora2 (née Pfundt), and Matthias Graf3

1Fraunhofer USA Inc., Ann Arbor (MI), USA
2Forschungszentrum DaimlerChrysler AG Ulm, Germany
3Institut für Kunststoffprüfung und Kunststoffkunde (IKP), Stuttgart, Germany

Problem statement. Measuring surface topography in the submicron
range has become increasingly important asmicrosystems have become
more market relevant. Microparts are used, for example, in ink jet
printer or as accelerometers for airbags. The production requires high
geometric accuracy. Quality control includes the shape measurement
ofmicrostructures. The depth-from-focus method provides an efficient
way to measure the topography of microstructures with standard com-
ponents and simple algorithms [CVA3, Chapter 18]; [6].

System setup and algorithm. The system consists of an ordinary re-
flection microscope with a computer-controlled stage and a structured
grating at the location of the bright field aperture (Fig. A.10). During the
measurement process, the object stage ismoved incrementaly along the
z-axis. For each position, an image is acquired by the CCD-camera. For
each pixel in each image a local contrast value is computed (Fig. A.11 a).
This is basically the gray value difference of neighboring pixels. Gen-
erally the local image contrast is low if the object is out of focus and
high if the object is in focus, assuming the object has a visible surface
texture. A lack of texture can be compensated by projecting an optical
texture onto the object. This is done with a grating in the bright field
aperture (Fig. A.11b). Next for a certain pixel the maximum contrast
value in all images is searched. The image containing the maximum is
related to a z-position of the object stage during its acquisition. This
position can be assigned to that pixel as height value. When this is done
for all pixels the result is a topographic map of the object surface. To
avoid keeping all images in memory during evaluation, this task can be
done with a sequential algorithm. If, in addition to the absolute maxi-
mum of contrast the next smaller one is also detected, the thickness of
transparent layers can be measured with this method as well [7].

Results. Thismethod has been applied to a large variety ofmicrostruc-
tures. The lateral resolution is given by the optical theory of a micro-
scope : h = 0.61λ/A. The accuracy in depth depends nearly linearly on
the objective aperture. For high-aperture objectives (A = [0.7..1.0]) an
accuracy of 100 nm is possible under real conditions. For low aper-
tures 1 µm accuracy is typical. Figure A.12 a and b show some re-
sults. For further examples see columns.tif, hole.tif, cross.tif,
and ditches.tif in /images/a04/.

file:../images/a04/columns.tif
file:../images/a04/hole.tif
file:../images/a04/cross.tif
file:../images/a04/ditches.tif
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Figure A.12: a Topographical map of a silicon structure. Total height of the
structure is about 5 µm, lateral size is about 80×60 µm. b Surface of a standard
groove produced by the Physikalisch Technische Bundesanstalt (PTB), Braun-
schweig, Germany.
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A5 Fast 3-D Full Body Scanning for Humans and Other
Objects

Norbert Stein and Bernhard Minge
VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme, Wiesbaden, Germany

Problem statement. To perform fast and complete 3-D scans on hu-
mans or other living objects is a challenge. The development of multi-
sensor systems operating on the basis of the laser light stripe method
has proved to be an effective means to fulfill this task. Within seconds
the 3-D shape of human beings and other objects can be measured.

System realization. Within this process we use a laser in combination
with a cylinder lens . A video camera is positioned at a defined angle
to the light source. The measured data obtained in this way encode the
spatial coordinates x, y , z of the laser’s line of incidence on the object
for a complete profile section over the entire width of the image field.
As the sensor is moved over the object a 3-D image of the outer contour
of the object is produced. To generate the whole measuring volume at a
time several sensors have to be connected in parallel to the evaluation
unit (multisensor system). For this purpose, high-performance pro-
cessors are combined with realtime image processing chips that were
specially designed for VIRO 3D systems. These image processing chips
allow to record the image data from practically any number of sensors
and to evaluate it synchronously in video realtime. They supply 3-D
raw data for each sensor, which is stored in the main memory of the
computer and processed by the processor. The 3-D raw data is then
converted from pixel to a metric unit and undergoes a mathematical
regression analysis of object-dependent order, so that a smooth signal
form can be generated. The measured data from all section planes are
combined to form a 3-D model (Fig. A.13).

Results. For humans the system actually will be used for studies in
the clothing industry and ergonomical products field. These applica-
tions need 3-D information of parts or complete human bodies for cre-
ating made-to-measure products on an actual data basis. Most of the
industrial scanning systems basically follow the same design and mea-
suring principles, but offer a range of different measuring volumes and
resolutions by using different numbers of lasers and cameras with dif-
ferent focal lengths. Depending on the set-up in different industrial
applications the resolutions displayed in Table A.1 are achieved. New
impulses will be given to made-to-measure products, rapid prototyp-
ing processes, quality inspection, film, art, and photography. In movies
actors are already emulated and animated in virtual reality.

References. [8], [CVA3, Chapter 21]
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a
b

c d

Figure A.13: a - b Full-body scanner; c scanning result; d CNC milling result.

Table A.1: Examples for ranges of resolution in applications

Resolution range Application

≥ 1 mm Measurement of complete human beings and
wooden surface profiles

0.1 mm - 1 mm Measurement of parts of human beings and alu-
minum ingots; welding seam inspection of steel
wheels; piston assembly

0.01 mm - 0.1 mm Welding seam Inspection of laser-welded products;
inspection of tubes for the tightening of seat belts;
visual inspection of applied solder paste
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A6 Reverse Engineering Using Optical Range Sensors

Stefan Karbacher and Gerd Häusler
Lehrstuhl für Optik, Universität Erlangen-Nürnberg, Germany

Problem statement. Optical 3-D sensors are used as tools for reverse
engineering to digitize the surface of real 3-D objects. Multiple range
images from different points of view are necessary to capture the whole
surface of an object and to reduce data loss due to reflexes and shad-
owing. The raw data are not directly suitable for import in CAD/CAM
systems. The images usually consist of millions of single points, given
in the sensor coordinate system, and are distorted by outliers, noise,
and aliasing. Thus, three problems need to be solved: the transforma-
tion of the raw data into metrical coordinates (calibration); the regis-
tration of the single range images into one common coordinate system;
and the surface reconstruction from the point cloud data to regain ob-
ject topology, so as to eliminate measurement errors and reduce the
amount of data.

Used Methods. We work on building up a nearly automatic procedure
covering the complex task from gathering data with an optical 3-D sen-
sor to generating meshes of triangles [CVA3, Chapter 17]:
Data acquisition: Usually multiple range images of one object are

taken to acquire the whole object surface [CVA1, Chapter 19].
Calibration: Measuring a standard with an exactly known shape, a

polynomial for transforming the pixel coordinates into metrical coor-
dinates is computed. This method calibrates each measurement indi-
vidually. As a result each view has its own coordinate system.
Registration: The various views are transformed into a common co-

ordinate system and are adjusted to each other. First the surfaces are
coarsely aligned one to another with a feature-based Hough method.
Then a fine-tuning algorithm (ICP) minimizes the deviations between
the surfaces [9].
Surface reconstruction: The views are merged into one single object

model resulting in amesh of curved triangles with curvature dependent
density. Measurement errors, such as sensor noise, aliasing, calibra-
tion, and registration, can be eliminated without damaging the object
edges.

Results. We have tested our reverse engineering method by digitizing
many different objects, technical as well as natural. Calibration, regis-
tration and smoothing errors are usually less than the sensor noise. The
following examples (Figs. A.14–A.16, movies/a06/helmet.mov) were
digitized by our sensors and reconstructed with our SLIM3-D software.
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a b

Figure A.14: a Data acquisition, registration and mesh reconstruction of a
firefighter’s helmet(/movies/17/helmet.mov); b a mesh of Bézier triangles
was used to produce the helmet; mesh reconstruction took 7 min on an Intel
PentiumX II 300 CPU.

a b

Figure A.15: a Distorted mesh of a human tooth, reconstructed from seven
badlymatched range images; b result of our new smoothingmethod for triangle
meshes.

a b

Figure A.16: Console of an altar: a rendered surface; b zoom into wire frame.

file:../movies/17/helmet.mov
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A7 3-D Surface Reconstruction from Uncalibrated Image
Sequences

Reinhard Koch1,2, Marc Pollefeys1, and Luc Van Gool1

1Center for Processing of Speech and Images, K.U. Leuven, Belgium
2now at Institut für Informatik und Praktische Mathematik, Univ. Kiel, Germany

Problem statement. The demand for realistic 3-D modeling of envi-
ronments and objects is increasing steadily. Of specific interest is the
3-D scanning of objects for reverse engineering, documentation, preser-
vation and display. We describe a system to reconstruct 3-D scenes
from a sequence of images taken with a single handheld camera. The
scene is observed from multiple viewpoints by freely moving the cam-
era around the object (Fig. A.17). No restrictions on camera movement
and internal camera parameters like zoom are imposed, as the cam-
era pose and intrinsic parameters are automatically calibrated from
the sequence. The system is easy to use and requires no specialized
equipment other than a standard consumer photo- or video camera.

Approach. The approach is divided into three steps:
Camera calibration: Salient image features such as intensity corner

points are tracked robustly throughout the sequence and a projective
reconstruction of the camera poses and 3-D corner points is obtained
(Fig. A.18 a). The tracking utilizes the concept of the Fundamental ma-
trix, which relates corresponding image points in different images by
the epipolar constraint. The projective ambiguity is then removed by
camera self-calibration, which exploits additional constraints [10].
Depth estimation: The sparse scene structure lacks surface detail

and is updated to dense surface geometry (Fig. A.18b). Pairs of the now
calibrated sequence are treated as stereoscopic image pairs from which
dense and precise depth maps are estimated pairwise by correlation-
based correspondence search. All depth maps from different view-
points are then fused together for highest accuracy [11].
3-D surface modeling: The depth estimates are converted to 3-D

triangulated surface meshes. The surface mesh approximates the 3-D
structure and stores the visible surface texture of the real object by
projecting the image color texture onto the model surface (Fig. A.18 c)
[CVA3, Chapter 20].

Results. The approach was successfully applied to reconstruct out-
door scenes like old buildings (Fig. A.18) and to obtain reconstruc-
tions of an archaeological excavation site (Fig. A.19); movies: bath.mov,
baths.mov, castle.mov, head.mov, site.mov, and temple.mov. Be-
cause it is independent of object scale it can model complete environ-
ments and landscapes as well as small objects. Due to the dense surface
modeling even small geometric details can be reconstructed.
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a b c

Figure A.17: Three of the 22 input images for the reconstruction of a building.

a b c

Figure A.18: Results of the building reconstruction: a calibration of cameras
(little pyramids) and structure of 3-D tracking points; b surface geometry after
dense depth estimation; c view of 3-D surface model with texture mapping.

Figure A.19: Reconstruction examples of parts of the Sagalassos Archaeological
excavation site in Sagalassos, Turkey.



624 A Application Gallery

A8 Motion Tracking

Robert Frischholz
Mikromak GmbH, Erlangen, Germany

Problem statement. The quantitative acquisition of the movement of
certain objects in a video sequence, motion analysis, is required inmany
fields such as sports, medicine, and industry. Conventional motion
analysis systems usually consist of a video camera, a digitizing unit,
and a PC with a certain software to acquire object locations for each
image. Even nowadays, those locations often have to be set manually
by a human operator.

The task of a motion tracking algorithm is the automatic recogni-
tion of certain objects within the image, the determination of their lo-
cations, and the tracking of those objects along the complete sequence
(Fig. A.20). Typical approaches to this task use special markers applied
to the moving objects. In this contribution, an automatic motion ana-
lysis system is presented, which overcomes the restrictions of using
special markers.

Used algorithms. Instead of using markers, the flexible technique of
template matching [12] is used. This procedure is basically as follows:
A small area surrounding the point to be tracked is used as the tem-
plate. This template is then searched for in the next image frame by
use of correlation techniques. The location with the highest correlation
result is the best match between template and image (Fig. A.21 a).

Template matching is a very flexible and powerful method for track-
ing objects with small distortions from one frame to the next. By adapt-
ing the templates along the image sequence, even larger deformations
can be tracked (Fig. A.21b).

A new subpixel precision method was developed for the matching
process, thus enhancing the accuracy of the detected locations [13].
Other enhancements include the use of neural net approximation and
camera calibration [CVA3, Chapter 15].

Results. In the presented system, object detection was automated by
use of adaptive template matching. The user selects the objects of in-
terest in the first image of the sequence, all further images are tracked
automatically. Therefore it is much faster than manual tracking, and,
by use of subpixel precision techniques, even more accurate. The sys-
tem is used in many fields, such as the automotive (Fig. A.22 a) and
sports industries (Fig. A.22b).
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Figure A.20: Example of an image sequence of a tennis ball hitting a racket.
The horizontal position of the marked point on the racket over time defines the
trajectory.

a
b

Figure A.21: Basic algorithms: a original image (left) showing a ball and a
racket; template (middle) used for correlation; correlation surface (right) —
highest value indicates best matching position; b example sequence with the
corresponding adapted templates, showing the ability of tracking objects even
under rotation.

a b

Figure A.22: Results: a Impact of a test dummy onto a steering wheel in a car
crash test. Three images of the overall sequence, the head’s velocity, and the
acceleration along time are shown; b shoe stability test. Two points on the shoe
and two objects on the ground define the angle shown in the diagram.
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A9 Tracking “Fuzzy” Storms in Doppler Radar Images

J. L. Barron1, R. E. Mercer1, D. Cheng1, and P. Joe2

1 Dept. of Computer Science, University of Western Ontario, Canada
2 King City Radar Station, Atmospheric Environmental Services, AES, Canada

Problem statement. Because of the devastation inflicted by severe
storms, the forecasting of storm movement is an important task facing
meteorologists. To help with this task we have developed an auto-
matic storm tracking system for storms in Doppler radar images. Since
1985, the Cloud Physics Research Division of AES, Canada, has been
developing a Doppler radar system to detect severe storms including
thunderstorms and tornadoes. It generates intensity and radial velocity
images, examples of which are shown in Fig. A.23a and b.

The algorithm. The recognition and tracking of storms in these radar
images is currently performedmanually by human experts and the task
is time consuming. To improve the efficiency and quality of weather
forecasting, AES is interested in developing an automatic storm track-
ing system for use in their operations. We have developed a tracking
program with visualization capabilities that uses a hypothesize and ver-
ifymodel to detect storms in radar images and construct storm tracks.
We first hypothesize storm masses in the Doppler radar intensity im-
ages. Then we verify the correctness of these hypothesized storms
by tracking them over time. If an hypothesized storm can be tracked
over a desired number of frames, we conclude that the storm is a valid
storm and we record its track. When all potential storms are verified,
a set of valid storm tracks is given as output. We use a spatiotemporal
relaxation labeling algorithm [CVA3, Chapter 38]; [14] to realize storm
tracking overmultiple consecutive images. To diminish the effect of the
arbitrariness of storm location of the storm tracks, we have modified
the representation of the center of a storm from a Euclidean point to a
fuzzy point [14]. A fuzzy point is a circle whose inner region represents
the uncertainty of the location of a targeted point.

Results. The series-18 Doppler radar sequence has 30 images consist-
ing of complex storm movements: Storms are moving from the north-
east to the southeast and from west to east. In the end both storm
movements merge into one large storm moving southeast. This can be
seen from the verified storm tracks shown in Fig. A.24a-d, which show
the verified storms tracks for storm in images 5, 12, 19 and 30. By
using fuzzy storm centers and relaxation labeling we are able to obtain
storm tracks that are both long and smooth and which closely match
human perception of a “motion picture” of the storm image sequence.
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a b

Figure A.23: Example Doppler radar radial and velocity image.

a b

c d

Figure A.24: The storm tracks for the (a) 5th, (b) 12nd, (c) 19th and (d) 30th

images of the 18-series; Td = 5.0 and Tsc = 0.6. Circles are used to represent
the fuzzy storms.
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A10 3-D Model-Driven Person Detection

Christof Ridder, Olaf Munkelt, and David Hansel
Bayerisches Forschungszentrum für Wissensbasierte Systeme (FORWISS)
München, Germany

Introduction. Automatically obtaining and describing human body
motion and postures in digital video images can be used in several
applications, that is, in the fields that range from motion analysis in
sports or medicine tasks up to man-machine interfaces in virtual reality
tasks. The presented approach is a model-driven system for detecting
and tracking persons and their 3-D posture in image sequences. The
used model is a hierarchical composition of object model parts (OMP); it
enfolds a description of the internal structure (Fig. A.25 a), the geomet-
ric outlook (Fig. A.25b), as well as sets of image operations to extract
relevant features of the OMPs. As the system works in 3-D space, the
setup of the camera(s) has to be calibrated in advance.

Interpretation process. The interpretation process is controlled by
the object model (Fig. A.26). The 2-D image features lead to the 3-D
scene features by using a stereo or a monocular approach. All deter-
mined 3-D scene features have to be matched to the 3-D features of the
object model. The matching process is performed by an interpretation
tree [15]. Constraints are used to restrict the search by using the rigid
bone structure of the human body. The results of the matching proc-
ess are associations of model features to scene features. This can be
seen as the applied inner structure (Fig. A.27 a). Afterwards the angles
between the OMPs have to be determined. The geometric model can be
applied with the calculated angles (Fig. A.27b) and further geometric
restrictions can be used. Hereafter several hypotheses for the detected
objects are generated. These hypotheses have to be evaluated by using
a history based on a prediction of motion.

Applications. Currently there are two main applications of the sys-
tem. One of them uses only one feature: the skin-colored ellipsoid of
the head. By the use of an adaptive color classifier [16], the system de-
termines the appropriate image feature. In this application the system
estimates the 3-D position of monitored persons for surveillance tasks.
This 3-D position of the person can be handed over to further cameras
as well as to a pan/tilt camera for tracking. In the second application
all joints of the human body are marked, so that their positions in the
pair of stereo images can be segmented easily. The determined 3-D
posture of the detected person is used for the configuration of a CAD-
model. These models are used, for example, in the automobile industry
for ergonomic analysis. For more details see CVA3 [Chapter 22].



A10 3-D Model-Driven Person Detection 629

a

z
y

E J

2 3

0

11

E J2
E

J3

J

4
E

x

b

Figure A.25: Object model: a the internal model, which represents the inner
structure of an object and the connection between the object model parts; and b
the geometric model, which extends the internal model by a geometric descrip-
tion.
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Figure A.26: Processing steps: The object model serves all of the processing
steps needed for scene interpretation.

a b

Figure A.27: Results: a matching of the detected image features to the joints
of the object model; and b according to the matching, the geometric model is
superimposed on the image; in this laboratory environment the stereo approach
is used and round plates are used to mark the joints of the human body.
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A11 Knowledge-Based Image Retrieval

Thorsten Hermes1,2 and Otthein Herzog1

1 TZI – Center for Computing Technologies, Universität Bremen, Germany
2 TC TrustCenter for Security in Data Networks GmbH, Hamburg, Germany

Problem statement. In order to retrieve images from an archive, hu-
man beings tend to think of special contents of searched scene, such as
rural land features or a technical drawing. The necessity of a semantics-
based retrieval language leads to content-based analysis and retrieval
of images. We developed in the Image Retrieval for Information Sys-
tems (IRIS) project a new way to automatically generate textual content
descriptions of images, using a combination of computer vision and
knowledge representation [17]. The image retrieval process has two
stages: automatically generating the image annotations and afterwards
retrieving images. An obvious idea for image annotation is a textual de-
scription generated by users, for example, the title and caption of the
images as well as some additional descriptors [18, 19, 20]. This ap-
proach is restricted by the effort needed for manual annotations and
the user-dependent differences in the annotations themselves, which
leads very soon to inconsistencies in the annotations.

Used algorithms. The IRIS system consists of two main modules: the
image analysis module and the retrieval module (Fig. A.28). The image
analysis module consists of four submodules: three modules extract
the low-level features of color, texture, and contour. The fourth mod-
ule implements object recognition. The color module, the texture mod-
ule, and the contour module extract image segments, which are repre-
sented as structured texts. These features are extracted independently
of each other, thus providing three independent information sources.
These descriptions offer a low-level annotation of an analyzed image.
The object recognition module combines these low-level descriptions,
which fit together according to a description in a knowledge base, thus
identifying objects on a symbolic level. The methods used for the three
segmentationmodules and the object recognitionmodule are described
in CVA3 [Chapter 25]. An extension of IRIS to video retrieval can be
found in [21].

Results. The original image (Fig. A.29a) is a RGB model with 728×472
pixels. Figure A.29b gives the result of color segmentation. The corre-
sponding texture segmentation is shown in Fig. A.29c. For the contour-
based shape analysis the contours are extracted as a contour map. To
determine the dominant regions, a region or shape analysis is then
carried out (Fig. A.29d). The result of the object recognition step is
displayed in Fig. A.30.
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Figure A.28: Architecture of the IRIS system.

a b

c d

Figure A.29: a Original landscape image; b result of the color-based segmen-
tation; c result of the texture-based segmentation; d result of the contour-based
segmentation.

Figure A.30: Results of the object recognition step.
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A12 Monitoring Living Biomass with in situ Microscopy

Peter Geißler1,2 and Thomas Scholz1

1Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany
2Now at München, Germany

Problem statement. Bioreactors are widely used in biotechnical in-
dustries to obtain products by the enzymatic activity of microorgan-
isms (Fig. A.31 a). Consequently, the cell concentration and biological
state are of greatest importance. In a cooperation between the research
center of ABB Heidelberg, the University of Hannover, and the Univer-
sity of Heidelberg, an in situ probe (Fig. A.31b) was developed that is
able to monitor the living biomass during a fermentation cycle [22]. Liv-
ing cells can be separated fromdead cells and other objects by using the
fluorescence of the NAD(P)H, an intermediate protein of the metabolic
chain. It is therefore present only in living cells. Fluorescence is excited
by a nitrogen laser pulse of 2 ns duration. The weak fluorescence sig-
natures of the cells are imaged by means of a light amplifying camera.

Used algorithms. The ambient light of extremely defocused cells con-
tributes to an uneven background (Fig. A.32 a). As a first step, images
are normalized using a recursive background tracking filter. Due to the
necessity of using a light amplifying camera, the signal-to-noise ratio
of the images is unacceptable poor. Hence an adaptive filter is applied
that suppresses noise but preserves the edge steepness of the objects
(Fig. A.32 c) by smoothing along contour lines only. These are obtained
from the orientation vector, which is calculated from the local variance
in different directions (Fig. A.32b). Depth estimation is performed by
first separating individual cells from the images and constructing the
Laplacian pyramid on each cell image. This bandpass decomposition
detects the suppression of high spatial frequencies with increasing blur.
To be independent of the brightness of the cell, the ratios of the squared
signal amplitudes on consecutive levels of the pyramid are interpreted
as the components of a feature vector (Fig. A.33 a). As it encodes the
blur of each cell, which increases with its distance from the ISM lens, it
can be correlated with this distance and therefore the measuring vol-
ume is obtained [CVA3, Chapter 29].

Results. Despite bad image quality, segmentation and robust depth-
from-focus could be applied to the images, allowing reliable estimation
of living biomass concentration and the monitoring of the progress
of fermentations. A comparison with standard off-line cell counting
methods shows an excellent agreement within the precision limits of
the off-line method [23]. Figure A.33b and c show the development of
the cell concentration under different environmental conditions.
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Figure A.31: Experimental setup: a sketch of a typical bioreactor; and b com-
ponents of the ISM probe.

a b c

Figure A.32: Intermediate processing steps: a raw image with uneven illumi-
nation and high noise level; b orientation field (color coded) and contour lines
(white) along which the smoothing filter kernel is deformed; c result of segmen-
tation of the image. Cells that border each other and appear as a single cell
cluster will be recognized by the form of their border.
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Figure A.33: Results: a two components of the feature vector, clearly showing
the strong correlation with depth; b cell concentration during a batch fermen-
tation; c cell concentration during a fed-batch fermentation; and comparison
with off-line data.
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A13 Analyzing Size Spectra of Oceanic Air Bubbles

Peter Geißler1,2 and Bernd Jähne1

1Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany
2Now at München, Germany

Problem statement. Counting and measuring size statistics of free-
floating particles is a common problem in technical, biological and
other applications. Close-range imaging used to observe small or even
microscopic particles shows a small depth of field, typicallymuch small-
er than the volume the particles float in. Therefore, the measuring vol-
ume is determined by the optics and the image processing method,
and not a priori known. An instrument has been developed for the
measurement of size distributions of oceanic air bubbles. They are en-
trained by breaking waves, where they contribute to air-sea exchange
processes. In order to monitor bubble populations, an optical sensor
based on controlling the measuring volume by depth-from-focus (DFF)
is used. As natural bubble populations typically range from 10µm up
to more than 1000µm radius, a multicamera setup has been chosen
with each camera having a different magnification factor (Fig. A.34 a).
For measurements in the ocean (Fig. A.34 c), the instrument was inte-
grated into a floating buoy [24] (Fig. A.34b).

Used algorithms. First, the images are normalized with respect to the
possibly uneven background of the back-lit illumination (Fig. A.35 a).
Most of the bubbles are blurred due to defocusing. By quantifying the
defocus, we are able to correlate it with the distance of the bubble from
the plane of best focus. Thus the 3-D world coordinates of all bubbles
observed during the measurement are known. Hence it is possible to
calculate the true measuring volume from the image sequences. This
is done within the DFF step, which first needs the exact boundaries of
the bubbles. A fast region growing algorithm, adopted for the special
needs of images showing heavily blurred object, is used (Fig. A.35 c).
The DFF itself uses a measure of blur and a measure of size, both calcu-
lated on the segmented object area, together with a suitable calibration
(Fig. A.36 a) to reconstruct depth and true size of each individual ob-
ject. Further details of the applied algorithms can be found in [CVA3,
Chapter 29].

Results. Despite the additional constraint to use only a single image,
the DFF technique allows to reliable estimate the 3-D position of the
particles, independently of the point spread function of the particular
optics. Control of a virtualmeasuring volume by an algorithmicmethod
is therefore a proven and robust technique. Comparisons with inde-
pendent methods [25] show an excellent agreement of the size spectra
(Fig. A.36b).
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Figure A.34: Experimental setup: a schematic of the three-camera optics; b
instrument mounted on a floating buoy; and c deployment of the instrument in
the ocean.

a b c

Figure A.35: Intermediate processing steps: a raw image, with the images from
the three cameras packed into a single RGB image; b unpacking, normalization,
and processing of the three data streams; and c combining the results of the
segmentation of an image sequence.
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Figure A.36: Results: a measured calibration data used by the depth-from-
focus method. These fields are used for the decoupling of size and distance
of the images of blurred objects. b Seawater size spectra for air bubbles, and
comparison with acoustic measurements.
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A14 Thermography to Measure Water Relations of Plant
Leaves

Bernd Kümmerlen1,2, Stefan Dauwe1,2, Dominik Schmundt1,2, and
Ulrich Schurr1

1 Botanisches Institut, Universität Heidelberg, Germany
2 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany

Problem statement. Transpiration of water from plant leaves is very
important for a wide range of physiological functions in the plant, such
as photosynthesis and nutrient transport [26]. As it also has a strong
impact on leaf temperature, water relations can be studied using ther-
mographic methods. Thermography matches several requirements for
botanical research: It shows little interference with the plant and its en-
vironment, and has high temporal and spatial resolution. Two different
techniques were evaluated: a passive method to measure transpiration
and an active method to determine local heat capacites on the leaf.

Experiments. A thorough theoretical analysis of the leaf energy bud-
get shows that in equilibrium, the temperature difference between leaf
and nontranspiring object is linearly dependent on transpiration rate.
To verify this relationship, transpiration rates of ricinus leaves were
measured using a standard gas exchange cuvette system (Figure A.37 a).
Simultaneously, infrared (IR) image sequences (Fig. A.38 a) were ac-
quiredwith a thermographic camera. In each image, temperature differ-
ences between the leaf and a reference body were calculated. In another
setup (Fig. A.37b), the leaf was subject to a periodically changing IR ra-
diation flux. The resulting temperature changes of the leaf were again
imaged with the IR camera and recorded together with other param-
eters, such as air temperature and humidity. The periodical changes
of leaf temperature in these experiments were analyzed with a digital
Fourier transform in the time direction. The phase shift of the temper-
ature signal with respect to the input signal is shown in Fig. A.38b and
is directly related to the local heat capacity of the leaf.

Results. The simultaneousmeasurement of leaf temperature and tran-
spiration rate allowed verification of the linear relationship (Fig. A.39),
which is directly related to the heat transfer velocity over the leaf-air
boundary layer. This quantity is very important for further spatially re-
solved determination of heat capacities and mapping of transpiration
rates, which has already been carried out [27]. It has been shown that
IR-imaging techniques have a high potential benefit for the analysis of
dynamic processes in water relations of plants.
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a b

Figure A.37: a Passive thermography setup, the IR camera is in the upper
right corner, the plant in the back has one leaf fixed inside the cuvette. b Active
thermography setup, the IR radiator illuminates the leaf through a set of screens
and filters.
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Figure A.38: a IR image of a transpiring plant leaf, transpiration is high, there-
fore the leaf is cool. The reference body is indicated above the leaf. b Parameter
image depicting the phase shift of the leaf-temperature signal with respect to
the input radiation.

Figure A.39: Transpiration rate plotted against temperature difference. For
the unperturbed phases of the experiment, the linear relationship is obvious.
During fast temperature changes (circles) the relationship is not valid due to
differences in heat capacity.



638 A Application Gallery

A15 Small-Scale Air-Sea Interaction with Thermography

Uwe Schimpf1,2, Horst Haussecker1,3, and Bernd Jähne1,2

1Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany
2Scripps Institution of Oceanography, La Jolla, CA, USA
3Xerox Palo Alto Research Center (PARC)

Problem statement. The development of climatological models re-
quires an understanding of the various parameters that influence the
transfer of heat and gases across the air-sea interface.The knowledge
of the underlying transport processes is quite incomplete because the
transfer across the air-sea interface is very difficult to observe and is
dominated by complex interaction of molecular diffusion andmicrotur-
bulence within the first millimeter of the ocean surface [28]. In recent
years, new technology and image-processing techniques have been de-
veloped to obtain an insight into these processes. (For an example of
an experimental setup, see Fig. A.40.)

Used algorithms. Two different techniques, an active and a passive
method, are used for in situ measurements of the transfer rate for
heat [CVA3, Chapter 35]. Using active thermography, small patches
at the water surface are heated up periodically by an infrared laser
(Fig. A.41 a). In the recorded image sequences the heat spots are tracked
(Fig. A.41b) with a tensor approach for low-level motion estimation.
The obtained decay curves (Fig. A.41 c) of the temperature distribu-
tion yield the time constant t∗ of the heat transfer process. Applying
the passive method, the temperature difference ∆T across the inter-
face is directly estimated from statistical properties of the natural sea
surface temperature (SST) obtained from the infrared image sequences
(Fig. A.41b). An accurate calibration technique is necessary to obtain re-
liable temperature information from the infrared imaging system. Fur-
thermore, a scale analysis by means of pyramids (Fig. A.42 a) reveals
the spatial structure of the microturbulence [29].

Results. By using novel visualization and image-processing techniques,
it is for the first time possible to get an insight into the mechanism of
dynamic transport processes within the microscopic boundary layer
right at the ocean surface. The CFT [30] is the only field technique
available so far that not only measures the transfer rate at high spa-
tial and temporal resolution (Fig. A.41 c) but also gives a direct insight
into the spatiotemporal structure of the microturbulence at the ocean
surface and thus the mechanisms of air-water gas transfer.
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Figure A.40: Experimental setup: a CFT instrument mounted on a 7-m long
boom at the bow of the Research Vessel Oceanus during the cruise in the North
Atlantic, July 1997; and b schematic setup of the CFT. 1: Infrared camera, 2:
CO2-Laser, 3: calibration device, 4: x/y-Scanner, 5: beam splitter, 6: laser optic,
7: PC.
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Figure A.41: Active thermography: a small patches at the water surface are
heated up by an infrared laser; b the displacement vector field is calculated
and the heat spot is tracked; c the obtained decay curves of the temperature
distribution yield the time constant t∗ of the heat transfer.
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Figure A.42: Scale analysis of microturbulence: a Gaussian pyramid of an in-
frared image; b the temperature distribution at different levels of the pyramid is
calculated and compared with the theoretical prediction; c the gas transfer ve-
locity is calculated from the statistical properties of the sea surface temperature
distribution.
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A16 Optical Leaf Growth Analysis

Dominik Schmundt1,2 and Uli Schurr2

1 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR),
Universität Heidelberg, Germany
2 Botanisches Institut, Universität Heidelberg, Germany

Problem statement. Growth is one of the principle characteristics of
living organisms. In plants, growth is organized in a modular fash-
ion that allows the adaptation of the plant´s architecture and function
to the environmental constraints, while meeting the intrinsic require-
ments for coordination of function between the different parts of the
plants—for example, leaves gain carbon and energy, while roots ac-
quire nutrients. Growth studies are thus the basis for evaluation of
plant function and its interaction with the environment. As both envi-
ronmental conditions and growing tissues change dynamically, growth
analysis must consider spatial and temporal aspects simultaneously.

Used algorithms. In a setup of heavy stands (Fig. A.43 a) time lapse
sequences of growing leaves are captured (Fig. A.43b). These are an-
alyzed using the structure tensor technique [CVA2, Chapter 13]. The
obtained displacement vector field (DVF) of the leaf surface (Fig. A.44 a)
is then regularized and interpolated by normalized convolution [31]
(Fig. A.44b). The divergence of the DVF is a map of the leaf growth
(Fig. A.45 a). With an error of the velocity estimation of 0.01 pixel per
frame error propagation provides a temporal resolution of 5min with
a simultaneous spatial resolution of 5×5mm over a field of view of
100×80 mm [32]. The simultaneous high spatial and temporal resolu-
tion provides for the first time an adequate tool to analyze the dynamics
of the regulation of growth.

Results. During the development of this system that included a stan-
dard tool it was possible to obtain relevant botanical results: Specula-
tions that plant leaves only grow at the leaf base for a limited period
of the day could be verified. Maps of the growth distribution reveal
the basipetal gradient (Fig. A.45 a and b)—a gradient from the leaf base
to the leaf tip—of growth also described by Maksymowych [33]. They
can also be used for comparison with other physiological data from
other channels in the future, for example, biomolecular techniques al-
low the expression of certain proteins to be visualized using lumines-
cent markers. And entirely new insights—which could not be obtained
by classical growth analysis—about the behavior in root pressure ex-
periments could be gained. Meanwhile the new technique is currently
used in laboratory experiments for systematic investigations.
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a b

Figure A.43: Setup: a two tobacco plants in a setup for growth analysis. A
cross-beam from heavy stands holds the camera and a panel of IR LED in the
center of the image. b raw image of a ricinus leaf—the grid spacing is 10×10
mm.
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Figure A.44: Intermediate processing steps: a the DVF in a vector representa-
tion as an overlay on the original leaf image; b the interpolated displacement
vector field (DVF, x-component) obtained by normalized convolution.
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Figure A.45: Results: a the divergence of the DVF as an overlay. The high
growth rates at the lower lobe are due to a motion of this lobe out of plane; b
nocturnal longitudinal growth rate of the middle lobe of a ricinus leaf, depicted
as xt-image—the grid spacing is 10×60 min.



642 A Application Gallery

A17 Analysis of Motility Assay Data

Dietmar Uttenweiler and Rainer H. A. Fink
II. Physiologisches Institut, Universität Heidelberg, Germany

Problem statement. The ability of heart and skeletal muscle to con-
tract is based on the fundamental interaction of the two contractile
proteins actin and myosin. This basic interaction can be studied in
the in vitro motility assay originally devised by Kron and Spudich [34].
It consists of a myosin-decorated surface over which fluorescently la-
beled actin filaments move in the presence of adenosine triphosphate
(ATP) (Fig. A.46). The kinetic parameters of this motion, as, for exam-
ple, the filament velocities or the fraction of moving filaments, have
been shown to be an important measure for the molecular interaction
of the two proteins involved. Therefore an accurate automated ana-
lysis of the motion of actin filaments is essential in using this assay as
a quantitative standardized experimental tool.

Methods and materials. The isolated actin filaments in the flow cham-
ber are labeled with the fluorescent indicator rhodamine-phalloidin and
visualized with a very sensitive fluorescence imaging setup. The time
series shown in Fig. A.47 is recorded with a frequency of 25 Hz and 8-
bit resolution. With an image size of 768×576 pixel, a typical 4-s data
set has a size of 43 MB. The fluorescence originates from single actin
molecules with a diameter much less than the microscopic resolution
and therefore the S/N ratio is very weak. Due to this fact and the large
amount of data the analysis of actin filament motion poses very high
demands on automated algorithms. The automated determination of
actin filament motion is achieved with an algorithm using the structure
tensor approach (see Chapter 10). The method is adopted to the noisy
fluorescence images and calculates the displacement vector field on a
higher level of a Gaussian pyramid to reduce the influence of the noise.
The displacement vector field is calculated with subpixel accuracy and
due to the fast pyramidal implementation a 43 MB dataset is processed
in less than 30 s on a standard PC.

Results. With our new approach using the structure tensor method
it is possible to automatically determine the velocity of actin filament
movement in the in vitro motility assay. The displacement vector field
as shown in Fig. A.48a is computed with subpixel accuracy. From the
displacement vector field all other quantities can be derived, as, for ex-
ample, the histogram of filament velocities shown in Fig. A.48b. This
approach is also very valuable for other applications, where fluores-
cence imaging techniques are used to monitor cellular or molecular
processes.
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Figure A.46: Schematic experimental setup for an in vitro motility assay. Iso-
lated fluorescently labeled actin filaments move over a myosin (S1 or HMM)
decorated surface. The flow chamber is mounted on an inverted fluorescence
microscope (see Section A25). The motion of the fluorescently labeled actin fil-
aments is recorded with an intensified CCD-camera.
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Figure A.47: Time series of fluorescence images, where the actin filament
motion is visible as the displacement of fluorescent rod-like structures. The
S/N ratio is very weak in these images, as the fluorescence signal originates
from single actin molecules labeled with the fluorescence indicator rhodamine-
phalloidin.
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Figure A.48: Results: a displacement vector field obtained with the structure
tensor method calculated on the second level of a Gaussian pyramid. b From the
displacement vector field the histogram of velocity distribution can be derived.
The histogram represents a good measure of filament motility and hence of the
underlying molecular interactions.



644 A Application Gallery

A18 Fluorescence Imaging of Air-Water Gas Exchange

Sven Eichkorn1,2, Thomas Münsterer1,3, Ulrike Lode1, and Bernd Jähne1,4

1 Institut für Umweltphysik, Universität Heidelberg, Germany
2 now at Max-Planck-Institut für Kerphysik, Heidelberg, Germany
3 now at Vitronic Bildverarbeitung GmbH, Wiesbaden, Germany
4 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany

Problem statement. The research field air-water gas exchange is ded-
icated to the question, of whether the ocean can act as a reservoir for
CO2 and thus dampen the greenhouse effect caused by increasing CO2

emissions. To quantify the amount of gas absorbed by the ocean, one
has to know the transfer coefficient k. It takes several hours to mea-
sure k in wind-wave tunnels by classical methods. The laser induced
fluorescence (LIF) technique described here makes it possible to mea-
sure k instantaneously. The technique uses an acid-base reaction of a
fluorescence indicator to visualize 2-D concentration profiles of gases
in the aqueous mass boundary layer [CVA3, Chapter 30].

Used algorithms. A scanned laser beam pierces the water surface per-
pendicular from the topside. The resulting light sheet is imaged by a
CCD camera. Each measurement run (each corresponding to a certain
wind speed) provides a sequence of 1800 images. A raw image is shown
at Fig. A.49a. The dark line (highest gas concentration) represents the
water surface. The upper part of the image pictures the reflection of the
light sheet at the water surface and the lower part pictures the 2-D con-
centration profile of invading CO2. The dark dots are the consequence
of dirt on the CCD chip. Those dots were removed by a high-pass filter
[35]. Such a cleaned and smoothed image can be seen in Fig. A.49b. In
the following the water surface was found by a minimum operator and
moved to the top of the image. An averaging over each sequence was
performed with the images processed this way. The absorption of flu-
orescence intensity in the water was corrected and finally the extracted
mean profile allowed for calculating the transfer coefficient k. Image
processing steps are summarized in Fig. A.50.

Results. Figure A.51 shows the gas transfer coefficient k of CO2 plot-
ted vs the wind speed measured by [35] with LIF compared to a theo-
retical curve and to classical gas exchange measurements. They corre-
spond well. The image sequences provide a deep insight into the pro-
cesses that control air-water gas exchange in the aqueous mass bound-
ary layer. The most breathtaking result of the analysis was the first
direct observation of surface renewal events [36]. Those statistically
occurring events are turbulence eddies that reach the water surface.
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Figure A.49: a Raw image; and b clean, smoothed image.

Figure A.50: Image processing steps.
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Figure A.51: Dependence of k (CO2) on the wind speed.
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A19 Particle-Tracking Velocimetry

Dirk Engelmann, Michael Stöhr, Christoph Garbe, and Frank Hering1

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany
1 now at SAP AG, Walldorf, Germany

Problem statement. One important aspect in fluid mechanics is to
study the dynamics of the fluid flow field. The particle-tracking ve-
locimetry (PTV) algorithm was developed and applied to obtain the La-
grangian representation of the flow field. It allows to track the move-
ment of individual seeding particles (or air bubbles Fig. A.52)—which
are added to a liquid—in time and space (2- or 3-D) and to obtain their
trajectories.

Used algorithms. The PTV algorithm has to identify the distinct seed-
ing particles in each image frame and track these identified particles in
the subsequent images of the image sequence. A segmentation pro-
cedure identifies the individual particles from the background.Then
the correspondence problem has to be solved for finding each par-
ticle in the subsequent image frames. In this way the particles are
tracked through the sequence of images [37]. The stereo PTV addition-
ally needs a stereoscopic correspondence search (comparing images
taken from different camera perspectives). Using a geometric camera
model consisting of an extended pinhole camera, which includes lens
distortion and multiple media geometry, the stereoscopic correspon-
dence is solved [38]. To gain quantitative data the calibration proce-
dure is crucial. The calibration for each camera is done with subpixel
precision by using a transparent grid. The stereoscopic calibration is
performed by numerically minimizing the optical path with the usage
of the geometric camera model [39].

Results. The particle-tracking velocimetry is a powerful method for
studying dynamic processes. Investigations in a wind-wave flume and
in a gas-liquid reactor (Fig. A.52) show the strength of the method;
the Lagrangian representation is an important advantage compared
to other methods that obtain a Eulerian representation of the flow
field. The extension to stereo PTV for spatial flow fields allows to ob-
tain the complete physical information of the particle movement with
sub(volume-) pixel precise spatial resolution (Fig. A.53). The method is
also applicable for many other purposes, not only in flow visualization
applications (Fig. A.54). For practical purposes the simple experimental
setup is of advantage. Therefore the described (stereo) PTV is a good
choice to study dynamic processes in the 2- or 3-D space.
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Figure A.52: Experimental setup: a flow visualization in a wind-wave flume;
and b in a gas-liquid reactor.

a b cSequence of camera 1

Sequence of camera 2

Figure A.53: Streak image as imaged by the CCD camera a and the trajecto-
ries gained by PTV b . Out of the two sequences the stereoscopic trajectories
representing the flow are calculated as in c .

Figure A.54: Trajectories of air bubbles in a gas-liquid reactor.
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A20 Analyzing Particle Movements at Soil Interfaces

Hagen Spies1, Hermann Gröning1,2, and Horst Haußecker1

1 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany
2Xerox Palo Alto Research Center (PARC)

Problem statement. The German Federal Waterways Engineering and
Research Institute (BAW), Karlsruhe, seeks to protect river embank-
ments from erosion and destabilization. In a cooperation with Heidel-
berg University, the influence of hydraulic load changes on sediment
instability is investigated [40]. In order to visualize the transport pro-
cesses within the sediment, a large pressure tank was built that allows
for simulation of realistic pressure gradients acting on subsurface soil
layers in a laboratory environment (Fig. A.55 a) [41]. Using endoscopic
optics (Fig. A.55b) with attached CCD cameras, image sequences of ver-
tical cross sections of sediment layers are acquired. The task of image
sequence processing is to reliably detect moving sediment particles and
to get quantitative estimates of the temporal course of particlemotions.

Used Algorithms. Due to vignetting effects in the endoscopic optics
and uneven illumination from the internal fiber glass light conductor,
the images show an extremely uneven brightness (Fig. A.56 a). The first
step is to normalize the images using a highly smoothed image as a
correction factor. Figure A.56b shows the result using the fifth level
of a Gaussian pyramid as illumination correction. Motion analysis is
carried out by the structure tensor technique, that is, a local spatiotem-
poral TLS estimator. The output displacement vector field (DVF) can
only be computed reliably in regions with sufficient image structure
(Fig. A.56 c). In order to get a dense DVF (Fig. A.57 a), the sparse infor-
mation is interpolated using the normalized convolution in conjunction
with the confidence measure of the structure tensor technique. From
the dense DVF, higher-order properties of the motion field, such as di-
vergence (Fig. A.57b) or vorticity can be computed. Further details of
the applied algorithms can be found in CVA3 [Chapter 32].

Results. Despite the bad image quality of endoscopic image sequences,
this technique allows for reliably estimating motion fields of sediment
particles and extracting the relevant physical parameters, such as diver-
gence, rotation, andmixing. A comparison of the theoretically expected
and the measured sediment motion with respect to the temporal pres-
sure changes shows an excellent agreement for stable sediment layers
(Fig. A.57 c). It has been shown that unstable sediment structures ex-
hibit a much higher velocity with irreversible structural changes [41],
[CVA3, Chapter 32].
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Figure A.55: Experimental setup: a pressure tank; and b schematic vertical
cross section through the endoscope.

a b c

Figure A.56: Intermediate processing steps: a raw image with uneven illumi-
nation; b image after illumination correction; c sparse displacement vector field
as output of the structure tensor technique for motion analysis.

a b
c

Figure A.57: Results: a displacement vector field of the sediment right after
the pressure decrease; the sand grains show a net upward motion with local
disturbances; b divergence of the displacement vector field after interpolation
by normalized convolution; c temporal course of measured and theoretically
calculated velocities.
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A21 3-D Velocity Fields from Flow Tomography Data

Hans-Gerd Maas
Faculty of Civil Engineering and Geosciences, Delft University of Technology,

The Netherlands

Problem statement. For the examination of mixing processes in tur-
bulent flows a systembased on a high-speed solid state camera has been
implemented, which allows for the quasi-simultaneous acquisition of
sequences of flow tomography data. Mixing processes can be visualized
by marking one of two fluids to be mixed by fluorescein at a rather low
concentration. The fluorescein becomes clearly visible when animated
by laser light of a certain wavelength (LIF - laser-induced fluorescence).
By scanning an observation volume of typically 15 × 15 × 3mm3 by a
laser light sheet in 50 layers within 1/10s and recording images with a
256×256pixel highspeed camera at an imaging rate of 500 frames per
second, 10 consecutive voxel data sets of 256 × 256 × 50voxels each
can be recorded within one s (Fig. A.58).

Data processing. The 3-D Least-Squares-Matching (3-D LSM, [42]) is
being used for tracking cuboids of typically 15× 15× 15voxels in con-
secutive data sets. It tries to determine the 12 coefficients of a 3-D
affine transformation for a cuboid in one data set to its transformed
counterpart in the next data set by minimizing the sum of the squares
of gray-value differences. Formulated as a least-squares adjustment
problem, the technique converges after a few iterations, provided suf-
ficient contrast and good approximate values. The 3 shift parameters
of the 3-D affine transformation represent the local velocity vector; the
9 remaining parameters represent the deformation of fluid elements.
Additionally, 3-D LSM also delivers the full covariance matrix, allowing
for an analysis of the quality of the results. To improve the conver-
gence behavior in regions with poor contrast, additional constraints
have been implemented: Based on the incompressibility of the fluids,
the volume covered by each cuboid must remain constant; based on
the assumption of a sufficient sampling rate, transformation parame-
ters must show some local and temporal correlation.

Results. Figure A.59 shows a cuboid at one time instant and the con-
vergence of 3-D LSM to the correct solution in the next time instant.
Figure A.60 shows the resulting velocity field overlaid on the concen-
tration data of one data layer, with red and blue tips indicating negative
and positive depth components of the velocity vector. Under good con-
trast conditions, a precision in the order of 1/50voxel can be achieved
for the three components of the velocity vector, corresponding to 1-
2µm in object space.
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a b

Figure A.58: Color-coded display of two consecutive 3-D LIF datasets in an
experiment on mixing of fluids.

a b c

d e f

Figure A.59: a 153 voxel cuboid; b–f corresponding transformed cuboid in next
dataset after 0, 1, 2, 5 and 8 iterations of 3-D LSM.

Figure A.60: Sample velocity field.
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A22 Cloud Classification Analyzing Image Sequences

Mark Wenig1,2, Carsten Leue1,2, and Ulrich Platt1

1 Institut für Umweltphysik, Universität Heidelberg, Germany
2 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany

Problem statement. TheGlobal OzoneMonitoring Experiment (GOME)
aboard the European Space Agency’s Earth Resources Satellite (ERS-2)
measures concentrations of several trace gases using Differential Ab-
sorption Spectroscopy (DOAS) [CVA3, Chapter 37]. For further process-
ing of this data, information about clouds is very important. Therefore,
a cloud-detecting algorithm is needed.

Used algorithms. The cloud-detection algorithm presented here re-
lies on information from the spatially high resolution PMD data coming
from the GOME instrument. These data yield an integral of the light in-
tensity over three wavelength intervals in the UV and visual spectral
range and will thus be regarded as RGB values for further image pro-
cessing. The basic idea for the cloud-detecting algorithms is to con-
centrate on two characteristics of clouds, their degree of whiteness
(see Fig. A.61 a) and the fact that they form a moving layer in front
of a static background. The appropriate color model to measure white-
ness is the HSV (Hue, Saturation and brightness Value) color model.
In this space we can define a subset that characterizes the clouds (see
Fig. A.61b and c). Hence efficient detection can be achieved by apply-
ing a threshold in the S-V color space. The results of the HSV method
can be improved by considering that clouds are moving, forming, and
dissolving. Therefore, those SV values nearly constant with time are
likely to belong to the background whereas those that change should
belong to cloudy pixels. That approach is successful, if the majority
of days are cloud-free. Apparently, that condition is fulfilled through
the HSV-preclassification. The implementation of this idea is realized
in the employed iterative algorithm (see Fig. A.62).

Results. The result of the algorithm is global maps of cloud cover.
The resulting cloud cover for the PMD values shown in Fig. A.61 a can
be seen in Fig. A.63 c. It is also possible to use the background image
to determine the ground albedo, which can be seen in Fig. A.63d. The
algorithm is very robust and can simply be extended. Once reference
images for different seasons are generated, annual changes, such as
variations due to vegetation cycles, are also considered. For a more
detailed description see [43].
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Figure A.61: Visualization of the PMD data: a global map of the PMD values
interpreted as RGB values; b histogram plot of the PMD values transformed
into HSV color space; c histogram plot of PMD images in which the clouds were
classified manually.
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Figure A.62: Flowchart of the cloud-detecting method. In the first step the
clouds are removed with the HSV method. Then each image is compared with
the mean over all images and pixels with high deviation are removed. This step
is iterated until the mean image remains constant.
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Figure A.63: The results of the algorithm: a for comparison the mean image of
the image sequence; b the background image; c global map of the HSV-Cloud
Cover; d Global albedo (vis.) map calculated from the background image.
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A23 NOX Emissions Retrieved from Satellite Images

Carsten Leue1,2, Mark Wenig1,2, and Ulrich Platt1

1 Institut für Umweltphysik, Universität Heidelberg, Germany
2 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)
Universität Heidelberg, Germany

Problem statement. Nitric oxides (NOX) play a very important role
among the anthropogenic trace gases produced globally. Besides af-
fecting human health they also have an impact on ozone chemistry
and influence climatic changes. Since 1995 the Global Ozone Monitor-
ing Experiment (GOME) onboard the ERS-2 satellite has provided the
possibility of monitoring the global NO2 distribution. The GOME spec-
trometer measures the earthshine absorption spectra in the wavelength
range between 240nm and 790nm, which contain the spectral ‘finger-
prints’ of the trace gases in the light path. The goal of this application
is the calculation of the global NOX budget; this requires twomain steps
(Fig. A.64),: spectral retrieval of the trace gases from the GOME spectra
by numerical inversion algorithms (DOAS) [44] and the formation of
global trace gas maps from the spectral results by image processing.

Used algorithms. The spectral retrieval is based on the Differential
Optical Absorption Spectroscopy (DOAS) approach. It relies on a nu-
merical inversion algorithm thatmodels themeasured absorption spec-
tra from the superposition of reference spectra. Using an interpolation
algorithm based on B-splines and an implicit fitting technique, it has
become possible to develop a retrieval algorithm that allows evalua-
tion of the GOME data in realtime [CVA3, Chapter 37]. The GOME in-
strument scans the earth in orbits and achieves global coverage of the
earth’s surface every three days. To compensate for this effect spa-
tiotemporal interpolation by normalized convolution has been applied.
As the spectral retrieval results in vertical column densities (concen-
trations integrated along the vertical light path) the maps contain both
stratospheric and tropospheric contributions. The separation of both
is performed by the combination of a low-pass filtering step and a nor-
malized convolution (Fig. A.65). Further details can be found in CVA3
[Chapter 37].

Results. This applicationmade it possible to calculate the tropospheric
source strengths of NOX from GOME spectra with the combination of
improved spectral retrieval and image processing. The procedure is
totally independent of previous methods and results in a global source
strength of (48±19)TgNyr−1 (Fig. A.66). The accuracy of this method
is at least as good as that of established statistical approaches.
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Figure A.64: Main processing steps: level 0: acquisition of earthshine spectra
by the GOME instrument; level 1: spectral and radiometric calibration; level 2:
retrieval of slant column densities; level 3: calculation of the global NOX budget
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Figure A.65: a Image of the vertical column densities of NO2 containing both
a stratospheric and tropospheric contribution; b estimate of the stratospheric
contribution using normalized convolution; c the tropospheric contribution can
be estimated calculating the difference of a and b .
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A24 Multicolor Classification of Astronomical Objects

Christian Wolf, Klaus Meisenheimer, and Hermann-Josef Roeser
Max-Planck Institut für Astronomie, Heidelberg, Germany

Problem statement. The Max-Planck-Institute for Astronomy (MPIA),
Heidelberg, conducts a sky survey to study the evolution of galaxies in
the universe (Calar Alto Deep Imaging Survey = CADIS). It aims at ob-
taining a complete sample of stars, galaxies and quasars from 10 fields
on the sky of 0°0.17×0°0.17 area each. The object database will contain
brightness, type, and redshift (=distance, age) information of several
10,000 objects [45, 46, 47]. The CCD images taken with 3-m-class tele-
scopes are processed with standard procedures of flat-fielding, remov-
ing cosmic ray hits and co-adding dithered exposures. The following
steps include object detection, morphological analysis, and photom-
etry. Atmospheric conditions cause image sharpness to change and
require blurring to a common PSF for accurate photometry. Usually,
the most decisive analytic tool in astronomy is spectroscopy, but it is
not feasible to collect spectra of many thousand faint objects. On the
other hand, imaging the sky through a sequence of color filters provides
spectral photometry with low resolution for all objects in the field si-
multaneously. This crude color information can replace a slit spectrum
for rough analysis. Important ingredients for the analysis are accurate
color measurements, a library of colors for all expected kinds of ob-
jects, and a suitable classification algorithm.

Used algorithms. The color libraries were taken from the literature
and cover all observable redshifts. The library objects resemble a sta-
tistical ensemble generating the measurement, each with its own prob-
ability being calculated from the measurement errors. We use Parzen’s
kernel estimator to determine the likelihood of an object to be either a
star, a galaxy, or a quasar. For galaxies and quasars we estimate mean
redshifts from the probability distribution of the library objects.

Results. The classification outperforms earlier photometric approach-
es in astronomy due to its many accurately measured colors and the
proper statistical classification method. Among the 200 brightest ob-
jects per field only 2% are misclassified and spectroscopic confirmation
is indeed not required. Especially, quasars are found with much higher
completeness and efficiency than was previously the case. An exciting
new result is that we findmanymore quasars at high redshift (i. e., large
distances and look-back times into the young universe) than in previous
studies. We challenge the established picture of quasar evolution, now
pointing to earlier formation times for these structures in the universe.
These data provide important and accurate input for models of galaxy
formation.
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Figure A.67: Optical filterset used in CADIS to obtain photometric spectra of
astronomical objects ranging from the violett to the near-infrared.

a b

Figure A.68: Classification results: a Based on a color library objects are statis-
tically classified into stars (black dots), galaxies (gray dots) and quasars (aster-
isks). Their location is shown in a color diagramwith the flux ratios blue/red and
red/infrared. Most quasars found show colors quite similar to stars and galax-
ies. Common search techniques use only broadband filters and have to select
quasars from a region of unusual colors (area below dashed line) to avoid strong
contamination by abundant stars and galaxies. b Detected quasars marked by
a circle and annotated with the observed redshift.
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A25 Model-Based Fluorescence Imaging

Dietmar Uttenweiler and Rainer H. A. Fink
II. Physiologisches Institut, Universität Heidelberg, Germany

Problem statement. Fluorescence imaging techniques have evolved
to a central tool in many fields of scientific applications. Especially the
various disciplines in life sciences have profited from these techniques
for studying cellular and molecular processes and medically relevant
pathogenic diseases. In particular the possibility of monitoring intra-
cellular ion concentrations with high spatial and temporal resolution
has led to a much deeper understanding of many basic processes, as,
for example, the function of the brain, or the molecular basis of mus-
cular contraction and its regulation. The accurate interpretation of the
image series obtained by the various techniques has to include a de-
tailed knowledge of the process of image acquisition, the intermediate
steps of digital image processing, and a comprehensive mathematical
analysis as described in detail in CVA1 [Chapter 12] and CVA3 [Chapter
34].

Methods and materials. Figure A.69 summarizes a typical experimen-
tal setup used for intracellular ion concentration measurements using
fluorescent indicators. A monochromator is used for fast changes in
excitation wavelength for ratiometric fluorescence measurements. The
fluorescence signal is detected by an intensified CCD-camera. Confocal
laser scanning microscopy and multiphoton microscopy offer in addi-
tion high axial resolution and the latter also provides a deep penetration
in thick and highly scattering preparations. A N2 UV-laser in the micro-
scope can be used for the very precise microdissection of specimens
(cutting diameter < 500 nm). A typical Ca2+-release in permeable mus-
cle fibers recorded with the ratiometric Ca2+-indicator Fura-2 is shown
in Fig. A.70. The analysis of the image sequence has to be done with so-
phisticated mathematical models as shown in Fig. A.71 (see Uttenweiler
et al. [48]).

Results. Themany fluorescence imaging techniques have significantly
improved the choice of a suitable technique for chemical, biophysi-
cal and physiological investigations in the various life sciences fields.
Although temporal and spatial resolution has dramatically increased,
the unbiased information about the underlying processes can only be
gained with powerful mathematical models that take into account ex-
perimental inaccuracies, fluorescence indicator properties, and the com-
plex nature of molecular and cellular processes.
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Figure A.69: Experimental setup: confocal fluorescence microscope with ad-
ditional epi-fluorescence illumination using a monochromating device and an
ICCD camera for detection. The N2 UV-laser in the microscope is used for mi-
crodissection of specimens.

Figure A.70: Time series of a caffeine-induced Ca2+-transient, recorded with
the Ca2+-sensitive dye Fura-2 using the wavelength pair 340nm/380nm (Utten-
weiler et al. [48]).
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Figure A.71: a Experimentally determined spatiotemporal distribution of Ca2+-
ions; b − d the simulated spatiotemporal ion-distributions as obtained by the
model calculations.
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A26 Analyzing the 3-D Genome Topology

Harald Bornfleth, Peter Edelmann, and Christoph Cremer
Institut für Angewandte Physik, and Interdisziplinäres Zentrum für Wissen-
schaftliches Rechnen (IWR), Universität Heidelberg, Germany

Problem statement. The quantitative analysis of 3-D confocal micro-
scopic images of biological specimens can contribute greatly to the un-
derstanding of genome topology and function. However, the resolution
of a confocal microscope as given by its point spread function (PSF)
is limited mainly in the axial direction to about 750 nm. It is highly
desirable to analyze biological objects below this resolution limit, for
example, replication foci (diameter 400-800 nm). Furthermore, the al-
gorithms and quantitative parameters used should be insensitive to
photon noise.

Used algorithms. For the morphological analysis of whole chromo-
some territories several parameters were computed: volume, surface
area and two shape parameters, the roundness factor and the recently
introduced smoothness factor . For details and definitions see [CVA3,
Chapter 41]. The influence of the number of detected photons on the
result of the image analysis was tested by means of simulated model
images. For the topological analysis of objects with volumes smaller or
comparable to the observation volume of the microscopic PSF amodel-
based algorithm for volume-conserving segmentation was used [49]:
First local intensity maxima were found by a specially adapted top-hat
filter . Starting from these spot centers, an iterative conditional region-
growing process was performed. Comparisons with model-calculations
allowed individually stopping the region-growing process when the true
spot volume was obtained. As intensity signals of closely neighboring
spots overlap after the imaging process, the algorithm was expanded
by a procedure [CVA3, Chapter 41], which transferred each spot into a
subvolume and sequentially eliminated the intensity contributions of
neighboring spots.

Results. The test of the morphology analysis revealed that in contrast
to the parameter’s surface area and (consequently) roundness factor,
the parameter’s volume and smoothness factor did not depend on the
number of detected photons. This allowed significant differences in
the morphology of chromosomes in different stages of the cell cycle
to be analyzed [CVA3, Chapter 41]. The excellent performance of the
volume-conserving algorithm and its capability to reduce signal contri-
butions from neighboring spots is demonstrated in Fig. A.72a-d. For
more details and successful application to the analysis of the cluster-
ing of early and late replicating DNA see [CVA3, Chapter 41] and Zink
et al. [50].
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a b

c

d

Figure A.72: Segmentation of quartz glass microspheres with a total diameter
of 416 nm and fluorescent core of 200 nm. a A central section from a 3-D
confocal data stack is shown. b Result after segmentation; different objects are
denoted by different gray shades. Subtraction of neighboring intensities: Each
spot is transfered into a subvolume, the situation at the beginning c and at the
end (after 7 iterations) d of the subtraction procedure is shown.
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erosion 500

geodesics 486
geometry of binocular space 400
Gibbs distribution 462

Gibbs field 534
global positioning system 181
global smoothness 363
global stereopsis 411
GPFU 594
GPS 181
gradient

external 492
internal 492
morphological 492

gradient vector 326
gradient-descent procedure 592
granulometry 496
grating 616

optical 616
structured 616

Gray code 187
Gray-code phase-shift technique

186
Green’s function 280
group velocity 197

H
harmonic planar wave 15
heat equation 441
Helmholtz system 407
Hering coordinates 400
Hessian 361
heterodyne mixing 197
hidden layer 579
hidden Markov models 538
high-pass filter 644
Hilbert filter 372
Hilbert space 233
Hilbert transform 256
histogram 518
hit-or-miss 504
holographic interferometry 200
homodyne mixing 197
homogeneous diffusion 441
homogeneous system 226
Hopfield neural network 596
horizontal disparity 398, 402
horopter 404, 408
hue 142
hybrid code 188
hyperbolas of Hillebrand 402
hyperpixel 219
hyperspectral 213
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hyperspectral imaging 4

I
idempotence 487
IHS color system 144
IIR 287
ill-posedness 445
illuminance 29
illumination correction 648
image

and pde’s 463
noisy-blurred 599

image analysis 592
image border 502
image coding 592
image enhancement 440
image formation 157
image partitioning 461
image restoration 440, 472
image segmentation 461, 470
image sequence 4
image-coordinate system 158
imperfection 547
impulse response 280, 287
incoherent 16
increasingness 487
index of area coverage 557
index of fuzziness 559
index of refraction

complex 36
indirect imaging 3
indium antimonide 13
inference 524
inference engine 560
infinite-duration impulse

response 287
influence function 390
inhomogeneous diffusion 441
inner product 232
innovation 360
input layer 579
InSb 13
integration scale 447, 450
intensity 139, 142

radiant 21
intensity-based models 518
interest operator 447
interference contrast 201
interferometry 178, 199

interline-transfer CCD 136
interpolation 230, 311

cubic B-spline 321
in Fourier space 317
linear 318
optimized 324
polynomial 319
spline-based 321

interpolation condition 315
intersection 485
intrinsic photoconductor 99
invariant function 386
inverse Fourier transform 237,

239
inverse perspective mapping 412
inverse square law 24
irradiance 3, 21, 87, 88
isotropic 440
isotropic nonlinear diffusion 442
isotropy 220
iterative conditional

region-growing process
660

J
Jacobian matrix 334
jet space 451

K
Kačanov method 468
kernel 246
kernel of weights 584
kernel, separable 248
Kirchhoff 33
Kirchhoff’s law 35
Kohonen map 585
kTC noise 132

L
Lagrange multiplier 367
Lagrange parameter 367
Lambert’s cosine law 25
Lambertian 25
Lambertian surface 47
Laplace of Gaussian 332, 430
Laplace operator 331
Laplacian operator 266
Laplacian pyramid 268, 269
laser triangulation 184
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lattice of neurons 586
lattice vector 216, 219, 280
layer thickness 616
layered texture 340
learning 578

error-correction 592
learning algorithm 578
learning with a teacher 578
learning-rate parameter 588
lens

aberration-free 61
Lie algebra 384
Lie group 384
Lie group of transformations

385
light 12
light field illumination 49
light fringe projector 189
light sectioning 184
light-volume triangulation 185
lighting system luminous efficacy

30
lightsheet triangulation 185
linear diffusion 441
linear interpolation 318
linear shift-invariant filter 326
linear shift-invariant operator

234, 278
linear symmetry 335, 362
linear system theory 3
linear time-invariant operator

278
linearization 468
linearly polarized 16
linguistic variables 545
Listing system 407
LMS algorithm 592
local amplitude 257
local orientation 335
local phase 257
local wave number 253, 259
LoG 332, 430
log-polar coordinate system 236
logarithmic scale space 265
logarithmic sensitivity 125
lognormal 259
lognormal function 375
longitudinal magnification 77

longitudinal spherical aberration
69

loss function 521
LSA 69
LSI 278
LTI 278
luminance 29, 142
Luminescence 45
luminous efficacy

lighting system 30
radiation 30

luminous efficiency function
photopic 27
scotopic 28

luminous energy 29
luminous exitance 29
luminous flux 29
Luminous intensity 29

M
M-estimator 390
Mahalanobis distance 590
main refractive index 67
map

topographic 616
marker function 512
marker image

choice of 501
Markov random field 462, 518,

532
mask 274
mask image

choice of 501
mathematical morphology 483
matte surface 47
maximizing 379
maximum filter 294
Maxwell’s equations 15
mean of maxima 547, 556
measurement

surface topography 616
median filter 294
medical diagnosis 581
membership function 543
mesopic vision 28
metal-oxide-semiconductor 120
metamere 140
metameric color stimuli 140
metric 486
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microchannel 103
microchannel plate 103
microlens 136
micropart 616
microscope 616
microstructure 616
microsystem 616
microtopology 193
microwaves 181
MIL number 67
minimal motion 355
minimization algorithm 468
minimum

imposition 502, 512
regional 512

minimum filter 294
minimum-maximum principle

261
mixer 106
mixture density 528, 538
MLP 579
MM 483
mobility 119
model

vector-valued 451
model density 523
model-based 660
model-driven system 628
modulated illumination 51
Moiré effect 230
monocular occlusion 400
monotonicity preserving 445
morphological filter 294, 507
morphological gradient 513
morphology 483
MOS 120
MOSFET source follower 131
motion 4
motion analysis 648
motion boundary 478
motion constraint equation 350
motion field 347, 476
MRF 532
multichannel images 451
multichannel signal 214
multifeature techniques 369
multilayer perceptron 579
multiresolution representation

253, 268

multiresolutional image
processing 268

multiwavelength interferometry
199

MZX-code 186

N
naive Bayes 537
neighborhood 220, 532
neighborhood function 587, 588
neighborhood, 4- 220
neighborhood, 8- 220
neural connection 579
neural network 577, 578
neuron 578

winning 587
neuron allocation

automatic 596
neuron state 597
neurons 578
nodal space 61
noise

homogeneous 214
zero-mean 214

noise equivalent power 96
noise scale 446, 450
noise suppression 472
noisy-blurred images 599
nonlinear classification 581
nonlinear diffusion 439, 463
nonlinear diffusion filter 441
nonlinear relaxation 468
nonlinear signal processing 5
normal flow 350
normal optical flow 355
normal velocity 377
normalized convolution 294,

311, 648
normalized detectivity 97
null space 340
Nyquist 297

O
object model parts 628
obstacle avoidance 412
offset subtraction 122
online measurement system 168
opening 493, 507

by reconstruction 503
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top-hat by 496
union of 508

operations on fuzzy sets 543
operator notation 276
optical axis 57
optical character recognition 581
optical depth 42
optical fill factor 135
optical flow 347, 476
optical range sensor 620
optical transfer function 82, 225
optimization method 590
optimized interpolation 324
ordering relationships

for image transformations
486

orientation 337
orientation analysis 352
orientation disparity 399
orientation vector 337, 342
oriented smoothness 364
oriented texture 340
orthonormal base 232, 246
orthonormality relation 232
OTF 82
outer product 248
outliers 389
output layer 579
over-fitting 523

P
Panum’s fusional area 412
parameter estimation 522, 523
parameter selection 448
parameter vector 213
paraxial domain 56
Pascal’s triangle 303
path 220

of steepest slope 511
pattern classification 5
pattern spectrum 498
PD 120
pel 216
penetration depth 42
penumbra 48
perception action cycle 2
perceptron 579, 581
performance analysis of computer

vision algorithms 6

performance evaluation 5
perimeter 557
Perona-Malik filter 442

contrast parameter 449
Perona-Malik paradox 445
person

detection 628
tracking 628

Petzval field curvature 71
Petzval surface 72
phase 234, 258, 377
phase, Fourier component 234
phase-shifting 186
phosphorescence 45
photocharge generation 117
photocharge transportation 127
photoconductive gain 96
photoconductor 99
photocurrent 120
photocurrent processing 120
photodiode 101, 120
photoemissive detector 102
photogrammetric stereo 397
photoluminescence 45
photometric stereo 193
photometry 27
photomultiplier 103
photon 13
photon detectors 20
photonic mixer device 181
photons 13
photopic luminous

reflectance 34
transmittance 34

photopic spectral luminous
efficiency function 27

photopic vision 27
photorealistic rendering 312
photovoltaic detector 101
photovoltaic effect 102
picture element 216
pixel 216
pixel nonuniformity 146
pixel-synchronous 156
plumbline method 168
PMD 181
point operation 341
point spread function 81, 225,

280, 287, 415
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pointwise
maximum 485
minimum 485

polar separable 259, 375
polarization 15
pole 291
polygon

regular 216
polynomial interpolation 319
pose estimation 517, 521–523,

525, 526
potential function 534
power

radiant 20
power spectrum 237
preprocessing 520
primary colors 140
primitive cell 216, 313
principal plane 57
principal point 57, 159
principle of superposition 278
prior knowledge 517, 519
probabilistic model 517, 518
probabilistic models 538
profile 212
programmable gain 123
propagation rule 579
PSF 81, 225, 415
pulse modulation 197
pulsed illumination 50
pupil function 84
purple line 142

Q
quadratic scale space 265
quadrature filter 372
quantum efficiency 94, 118
quantum mechanics 13, 233

R
réseau scanning 156
radial basis neural network 590
radial-asymmetrical distortion

160
radial-basis functions 590
radial-symmetrical distortion

160
radially symmetric function 590
radiance 22, 86–88

invariance 88
radiance invariance 88, 89
radiance meter 86, 88
radiant

exitance 21
intensity 21

radiant efficiency 30
radiant energy 20
radiant excitance 92
radiant flux 20
radiant power 20
radiation

electromagnetic 13
radiation luminous efficacy 30
radioluminescence 45
radiometric chain 31
radiometry 12, 26
rank 340
rank-value filter 293
RBF 590
RBNN 590
real-world image 6
rear illumination 49
receptive field 584
reciprocal 245
reciprocal base 228
reciprocal lattice 228
recognition 517, 523
reconstruction 500

by dilation 501
by erosion 501

recursive filter 285
reflectance 32
reflection 36
reflection loss 116
reflectivity 32
refraction 15
refraction matrix 64
region of support 274
region-based matching 379
registration 620
regression 519, 522, 523
regression function 522
regression problem 522
regular polygon 216
regularization 445
regularization parameter 453
relative resolution 236
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representation-independent
notation 277

reset noise 132
residual 358, 360
responsivity 95, 118
restoration 448, 472
retro-reflecting target 191
reverse engineering 178, 620,

622
robot calibration 171
robust estimation 390
robust statistics 389
rotation 383
running mean 300

S
S-CCD 127
sampling theorem 228, 268, 313

temporal 355
saturation 139, 142
scalar product 232
scale 260
scale invariance 261
scale space 253, 260
scale-space 440
scatter matrix 447
scattering 41
scattering coefficient 41, 43
Scheimpflug condition 185
scotopic luminous efficiency

function 28
scotopic vision 27
second-moment matrix 447
Seebeck effect 104
segmentation 470, 520

function 512
marker-controlled 512

Seidel aberrations 68
self-duality 488
self-organizing map 585
semigroup property 261
sensor nonlinearity 147
separable filter 287
separable kernel 248
sequential algorithm 616
set difference 485
shape matrix 590
shape-from-shading 193, 397
shear 384

shift operator 234, 278
shift theorem 233, 251, 254, 317
shift-invariant system 226
Si 14
sifting 507
sigmoid nonlinearity 583
signal processing

linear 3
signal-to-noise ratio 6, 130
silicon 14, 114
similarity measure 379
simple neighborhood 335, 338
simultaneous calibration 170
smoothing filter 341
smoothness factor 660
Snell’s law 36
SNR 130
Sobel operator 330
solar absorptance 34
solar reflectance 34
solar transmittance 34
solid-state photosensing 113
source

extended 22
point 22

spatial domain 252
spatial width 584
spatiotemporal energy-based

approaches 373
spatiotemporal frequency domain

353
spatiotemporal image 351
speckle 193
speckle interferometry 200
spectral

distribution 14
spectral density 373
spectral distribution 26
spectral selective 34
spectral volume scattering

function 44
spectrum 14, 212
specular illumination 47
specular reflecting surface 48
speed of light 13
spherical coordinates 23
spline 321
spline-based interpolation 321
stability 287
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stable filter response 287
staircasing 446
staircasing effect 445
statistical error 5, 224
stereo 5, 397
stereo camera heads 409
stereo heads 407
stereovision 189
stochastic approximation 590
stopping time 449
stretching 384
structural theorem 509
structure element 274
structure tensor 366, 375, 376,

447, 648
structure tensor technique 366,

370
structuring element 484, 488,

489, 563
composite 488, 504
decomposition 491
transposition 485

subsampling 268
successive overrelaxation 364
sum-of-squared difference 381
superposition principle 15, 278
supervised learning 578
supervised network 590
surface 340

reconstruction 620
roughness 202
texture 616

surface-channel CCD 127
surroundedness 550
synapses 578
synaptic vector 588
synchronization 156
system calibration 155, 167
systematic error 5

T
tangential distortion 160
target function 324
target vergence 403
telecentric illumination 49
temporal sampling theorem 355
tensor representation 365
tensorial signal 215
tensors 374

tesselation 216
texture

layered 340
optical 616
oriented 340
surface 616

theodolite 192
thermal detector 20
thermal noise 133
thermoelectric effect 104
thermoluminescence 45
thermopile 104
thick paraxial lenses 61
thickness

transparent layers 616
thin paraxial lens 60
thinning 506
threshold 485
time series 212, 285
time-of-flight (TOF) 196
time-of-flight measurement 178
TOF 178, 196
token tracking 356
top-hat 495, 496

black 496
by closing 496
by opening 496
white 496

top-hat filter 660
topographic 511
topographic map 616
total internal reflection 38
tracking 2, 628
training 578
transfer function 280
transfer matrix 64
transformation radial basis neural

network 593
translation vector 216
transmissivity 32
transmittance 32, 42
transparent layer thickness 616
transport process 441
transposition 485
transversal spherical aberration

69
TRBNN 593
triangulation 178, 182, 398
tristimulus 140
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TSA 69
turbidity 41
type I FIR filter 282
type II FIR filter 282
type III FIR filter 282
type IV FIR filter 282

U
ultrasound 182
uncertainty relation 244, 253,

268, 270
union 485
unitary transform 233
unsupervised learning 578
unsupervised mode 589

V
variance 214
variational approach 461
variational restoration methods

452
vector quantization 588
vector-valued model 451
vectorial signal 215
vergence 401
version 401
vertical disparity 398, 404
Vieth-Müller circle 402
vignetting 94
virtual image 77
virtual reality 178
vision

mesopic 28
photopic 27
scotopic 27

volume element 219
volume-conserving segmentation

660
volumetric image 4, 219
Voronoi quantizer 588
vorticity 383
voxel 219

W
watershed 511
watershed transformation 511
wave-number domain 252
wavefront

coherent mixing 179

wavelength 13, 212
wavelet 253
waves

electromagnetic 13
weight kernel 584
weight vector 586
weighted averaging 311
well-posedness 445
white light interferometry 201
white point 143
Wigner-Seitz cell 217, 228
windowed Fourier transform 254
winning neuron 587
world coordinate system 154

X
XOR-problem 581
XYZ color system 142

Z
z-transform 286
zero-mean homogeneous noise

214
zero-phase filter 297
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