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Preface

The International Council on Systems Engineering (INCOSE) defines Systems
Engineering as an interdisciplinary approach and means to develop successful
systems. It focuses on defining the customers needs and requirements early in
the development cycle. It then documents the requirements. It then proceeds with the
design synthesis and system validation and develops an overview of the complete
problem which involves Manufacturing, Operations, Cost & Scheduling. The
Performance, Training & Support, Testing, and Disposal are then developed. Systems
Engineering integrates all of the disciplines and specialty groups into a joint team
effort to form a structured development process which proceeds from the concept
stage of production to full final operation. The full Systems Engineering operation
considers both the business and the technical needs of all customers. The goal is to
provide a quality product that meets the user needs and hopefully without unwanted
surprises in the completed item.

In the present time, these activities and processes are increasingly supported by
means of Information Technology (IT). Support using IT always leads to the question
of how much such processes can be either automated or semi-automated. In other
words: is it possible to increase the quality of systems by using intelligence-based
systems engineering. The intention of this book is to answer the questions such as
what emerging methods and solutions are able to use intelligence-based systems
engineering, what current solutions already exist, what theoretic constraints are
known, and other questions ranging between theory and practice. The chapters
contain contributions from conferences, research, PhD theses, and the experience of
the experts in this area. In this book, we establish a research agenda and begin to fill
the gaps in this body of knowledge.

We hope to gain the support of practitioners and scholars by this volume. It is also
hoped to help researchers identify domains of interest and to develop systems
engineering to an even higher level.

Andreas Tolk
USA

Lakhmi C. Jain
Australia
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Abstract. This introductory chapter defines intelligence-based systems with
focus on semantic systems, simulation systems, and intelligent agents. Semantic
systems define the foundation to communicate systems engineering challenges
using logic, simulation systems introduce the dynamic component, and intelli-
gent agents can introduce alternatives roles. It then gives an overview of tradi-
tional systems engineering as well as system of systems engineering showing
the need to emphasize the system of systems perspective in modern engineering
approaches. Finally, both views are aligned, providing a scope for intelligence-
based systems engineering and the contributions of the following book chapters
are summarized in relationship to this scope.

Keywords: intelligent agents, ontology, semantic system, simulation system,
system of systems engineering, systems engineering.

1 Introduction

The definition of insanity as “doing the same thing over and over again and expecting
different results” is attributed to Albert Einstein. In contrast, a collective definition for
intelligence is the ability to comprehend, to understand and profit from experience, or
to make sense out of the environment and react appropriately. In the light of these two
extremes, this introductory chapter defines what intelligence-based systems are, and
what this means for systems engineering and systems of systems engineering.

Starting with a summary of the state of the art, as among others identified by
Buede [1], it can be observed that most of our current systems have been designed
starting with a set of well defined requirements. These requirements are often based
on operational concepts that identify context and external systems and that are used
to derive (a) input and output requirements that identify what a system shall accept
and produce, (b) system-wide and technology requirements that are building a set of
operational constraints, (c) trade-off requirements that allow optimizing system de-
sign decisions within these constraints, and (d) qualification requirements that allow
validation and verification to be conducted. These requirements lead to building a
functional architecture describing the capabilities of the system, a physical architec-
ture that describes the resources that comprise the system, and finally an allocated
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architecture that merges the functional and the physical view, including interface
design, integration and qualification. The result is a well-defined system that has a
well defined behavior for all identified input constellation in the form of expected
output produced. As a rule, the capabilities defined in the functional architecture
are fixed. The system will do the same thing over and over again. Under many cir-
cumstances, this is exactly what we would want. Nobody wants to push down the brake
pedal of a car expecting anything else but that the car stops. We expect the same
results. However, what if the environment changes? What if the world in which a
system was originally defined no longer exists?, like we currently see it in so many
military systems that were defined at the time of the Cold War, but still have to be
used today? Simply expecting the system to change its behavior qualifies as insanity,
so we need intelligent systems that are able to comprehend, understand and profit
from experience.

The next section will define intelligence-based systems. Following these defini-
tions and examples, the third section will evaluate the relation of such systems with
systems engineering. The fourth section will do the same for the new and emerging
field of system of systems engineering that adds at least one additional layer of com-
plexity to the challenges to be addressed. Finally, the last section will describe the
contributions comprised in this book in the light of these findings.

2 Intelligence-Based Systems

Intelligence-based systems should not be confused with the often narrowly used term
intelligence system, which refer to a variety of Artificial Intelligence (AI) methods,
such as neural networks, evolutionary algorithms, expert systems, diagnostic systems,
symbolic Al, and other related topical areas. These systems are limited to Al applica-
tions, and intelligent systems engineering describes the engineering of such intelligent
systems, not the use of intelligence to support systems engineering. The scope we take
in this chapter — and in this book in general — includes the design and engineering of
such intelligent systems, but is not limited to this view. We are interested in merging
the state of the art of intelligence as it can be provided via Al methods to support
systems engineering and system of systems engineering. How can these three aspects
be of mutual support, resulting in better systems that are able to comprehend, under-
stand and profit from experience. This is the objective of intelligence-based systems
engineering: to base systems and their design on Al methods to build better systems.

2.1 Characteristics of Intelligence-Based Systems

In order to support this objective of intelligence-based systems engineering, it is first
important to better understand the characteristic properties of intelligence-based sys-
tems. The following list is neither complete nor exclusive, but it reflects the collective
definition of various views on Al, intelligence-based solutions, model-based predic-
tion and control, and similar contributions. Figure 1 depicts these characteristics that
are used in the collective definition, which are self-explaining, robust, fault tolerant,
adaptive, self-optimizing, deductive, learning, cooperative, autonomous, and agile. As
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we will see, these terms have partly overlapping definitions and have to be understood
in the context of the collective definition, which means that not all definitions use all
terms.

Fault
Y tolerant
intelligence § \

-based
Systems

organiz-
ing

Fig. 1. Characteristic Properties of Intelligence-based Systems

Self-explaining doesn’t mean that the system is obvious without any explanation
necessary, but that the system can explain how it came to a certain decision. In tradi-
tional systems, the system behavior does not change. If a system is able to modify its
behavior, it is often needed to understand how and why a decision has been made by
the system. The explanation component of expert systems used for diagnosis, which
traditionally could be generated by tracing the line of reasoning used by the underly-
ing inference engine to answer the questions: “Why is your answer to the question the
one you recommend?” For systems that are able to modify themselves being able to
explain their reason is mandatory to ensure credibility.

Robust as a characteristic property of a system means that the system behaves well
and adequate not only under ordinary conditions, but also under unusual conditions
that stress the original requirements and derived assumptions. In other words, robust
systems do not break easily, but are able to continue to behave well even under vari-
ant circumstances that could lead to failure of system.

Fault tolerant systems behave well and continue to adequately perform even if one
or more of its internal system components fail or break. It may be important to differ-
entiate between a fault, which is a defect in the system that can cause an error, which
is a subset of the system status that may lead to system failure, which is a deviation in
actual system behavior and its desired behavior according to the requirements.

Adaptive systems in general react to changes, in particular to changes in the envi-
ronment or the context of the system. Whenever the environment or context of the
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system changes the system itself changes as well in order to accommodate these
changes. As a consequence, adaptive systems behave well and adequate even in
changing environments.

Self-organizing systems organize their internal components and capabilities in new
structures without a central or an external authority in place. These new structures can
be temporal and spatial. In some cases, instead of self-organizing the term self-
optimizing is used synonymously, although not all self-organizing structures represent
the optimal structure, but the assumption is that self-organizing systems are organiz-
ing themselves to become better.

Deductive systems are well known from mathematics: based on a set of axioms and
rules, they can deduct new insights by applying the rules to the axioms as well as to
the resulting new facts. This is done using an underlying inference engine. Applying
these ideas, deductive systems can discover new facts that they can use for their deci-
sion process on how to modify themselves to behave well and adequate.

Learning systems generally observe the achieved results and compare them with
the desired outcome. Using methods such as reinforcement learning, decisions that led
to positive results are enforced while those with negative results are avoided. Learn-
ing can also occur by observing other systems and the results of their activities. In
every case, learning is connected with the observation of cause and effects.

Cooperative systems expose social capabilities. This means that cooperative sys-
tems interact with other systems — and potentially humans as well — via some kind of
communication language. This interaction is not limited to pure observation, but such
a system can exchange plans, distribute tasks, etc. Whiteboard technologies are as often
used as direct communication. An interesting side effect is that such cooperative sys-
tems can themselves then become a self-organizing system of systems.

An autonomous system performs the desired tasks and behaves well and adequate
even in unstructured environments without continuous human guidance. In the do-
main of robotics, autonomy is described as a collection of additional characteristics,
in particular sensor capabilities to observe chaotic, unpredicted variables and to react
to keep the system on track utilizing the available degrees of freedom.

In general, agile systems are able to manage and apply knowledge effectively so
that they behave well and adequate in continuously changing and unpredicted envi-
ronments. In systems engineering, agility is often in particular connected with the
development phase of systems and reflects the ability to immediately react on changes
in the requirements.

Without doubt, additional characteristic properties can be identified that are desir-
able for such systems, such as self-healing. However, if a system is adaptive, elf-
optimizing, and fault-tolerant, self-healing is a result. Similar arguments can be made
for the quest to reduce risk and vulnerability and other desirable characteristics.

2.2 How to Capture Intelligence

There are many methods applied in Al to capture intelligence. This chapter deliberately
focuses on a limited subset that is of particular interest to systems engineering and for
which examples are given in other chapters of this books. Using the well known cate-
gories of Ackoff [2], we distinguish between data, information, knowledge, under-
standing, and wisdom. We understand data as a collection of facts. Information is data
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in a context allowing answering questions like who, what, where, and when. Knowl-
edge is applied information answering the question how. Understanding introduces an
answer to the question why, and wisdom finally evaluates understanding and general-
izes the findings, allowing application of understanding in other domains than the
original source of gaining understanding.

In this chapter and this book, we apply semantic systems or use general ontological
means to capture and model data and information. Applying these pieces of informa-
tion on who, what, where, and when in the context of simulation introduces the as-
pects addressed by knowledge: how. Adding agents allows running not only one but
many simulations and comparing alternative courses of action. To communicate be-
tween agents, ontology is needed to provide the basis for the communication language
supporting the exchange of information. Figure 2 shows the three elements applied in
this book.

Software
Agents

Ontology

Simulation

Fig. 2. Components to Capture Intelligence

A recent book edited by Yilmaz and Oren [3] copes with the various aspects of
agent-directed simulation and systems engineering. They also show the increasing
importance modeling and simulation methods in general and agent-directed simula-
tions in particular play for intelligence-based systems. Software agents expose many
of the characteristic properties described earlier in this chapter.

Agents help designing communication and coordination protocols in the system
and may even become a surrogate for a human user. Simulation helps answering
questions about the achieved behavior, performance and robustness, giving first feed-
back about the quality of the design. In addition, simulation can be used for decision
support by providing “what if” scenarios as well as for training and education pur-
poses. In addition, agents are likely to replace, to a certain degree, objects that have
traditionally been exploited in systems engineering. An interesting aspect evaluated is
to replace the functions traditionally developed within the functional architecture of a
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system as defined in [1] with agents. As this agent already possesses many character-
istics of intelligence-based systems, the result is likely to be close to our objective.
However, all three aspects shown in figure 2 are important.

Another example of interest described in [3] is autonomic computing, as it also
shares many characteristic properties. Autonomic computing is a potential strategy
and philosophy in systems design and management that aims to cope with increasing
complexity in the presence of constant change addressing the area of systems of sys-
tems engineering which involves: (a) large scope and great complexity of integration
efforts; (b) collaborative and dynamic engineering; (c) engineering under the condi-
tion of uncertainty; (d) continuing architectural reconfiguration; (e) simultaneous
modeling and simulation of emergent behavior; and (f) stakeholders with competing
goals and objectives.

Utilizing the characteristics of software agents, autonomic systems are based on ar-
chitectures and mechanisms that facilitate self-configuration and adaptation through
learning, anticipation, and robust designs to be able to adjust and fine tune system
parameters to emerging situations in this environment. The main characteristics are
self-configuration, self-healing, and self-optimization. The autonomic computing
control loop moves from gathering data from resources in the system’s environment
(sensor) to registering to be notified as the sensors observe changes in the environ-
ment (monitor). Next, the status of the environment and operational components’
ability to react to change is perceived, interpreted, and understood (analyze) while
necessary information about the managed resources, data, and policies are being pro-
vided to the system (knowledge). If the analysis and knowledge cannot identify a
proper reaction to unforeseen environmental conditions, the reasoning and planning
components take control to generate a new plan and identify a sequence of actions to
act on the system configurations. Then, those actions are translated into executable
commands (execute). These key tenets of autonomic systems (sensor, monitor, ana-
lyze, knowledge, reason/plan, execute) provide a roadmap for building intelligence-
based systems using all three components mentioned above.

However, the title of this book is not “systems engineering of intelligence-based
systems,” but “intelligence-based systems engineering,” which also includes the ap-
plication of these methods and technologies to improve the traditional systems engi-
neering process and the emerging new field of system of systems engineering. The
next section will describe the principles of systems engineering and identify where
intelligence-based methods can be applied.

3 Systems Engineering

The genesis for systems engineering in particular in the United States has been attrib-
uted to complexity. Early pioneers in the systems engineering field emphasize in-
creasing system complexity as the principal causative factor, although they recognize
that this is far from a complete explanation [4] [5]. To explain this, some historical
background is warranted.

In the late 1930s the fledgling radio, television, and telephone industries in the
United States recognized the need for a systems approach in the development of mod-
ern telecommunications services. The Radio Corporation of America (RCA) and its
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subsidiary, the National Broadcasting Company (NBC) were interested in the expan-
sion of their television broadcast domain. At the same time, the Bell Telephone Com-
pany was interested in the expansion of their long-distance telephone network. Both
companies initiated technical studies aimed at increasing their markets through the
use of new broadband technologies that were beginning to emerge in the early 1940s.
However, these exploratory studies and experimentation were interrupted by the Sec-
ond World War.

During the Second World War, the American military used large numbers of scien-
tists and engineers to help solve complex logistical and strategic bombing problems
related to the war effort. Many of these efforts made significant contributions to the
philosophy and techniques of what was then called Operations Research. At the same
time, the need for many novel types of electronic gear for airborne use gave rise to a
wide variety of component devices, popularly known as black boxes. These were
ingenious devices, but their application in terms of the entire system of which they
were merely parts was a matter of improvisation [4]. Inevitably, many of the engi-
neers and scientists working on these black boxes were required, by necessity, to look
ahead to the ultimate goal — the system. When the war ended a number of corpora-
tions (most notably the RAND Corporation, the Bell Telephone Laboratories and
RCA) hired much of this pool of talented scientists and engineers to provide services
to both the government and the telecommunications industry. These seasoned practi-
tioners were able to capitalize upon the lessons from their war-time experiences in the
development and implementation of the modern telecommunications and electrical
power systems. The telecommunications system development efforts provide for
much of the early literature on systems engineering. Schlager [6], in a nationwide
survey found that the Bell Telephone Laboratories was probably the first organization
to use the term systems engineering. If true, this places the start of what we call sys-
tems engineering, in the early 1940s.

3.1 Traditional Systems Engineering

The emergence of systems engineering in the 1940s was an outgrowth of the need to
deal with large, expensive systems. The early textbooks [5] [7] [8] on systems engi-
neering had an emphasis on topics such as decision making, problem solving, and
analysis of alternatives. The texts relied heavily on the techniques and analytical
methods from Operations Research [9] [10] [11]. A 1957 definition of systems engi-
neering characterizes its early role [12].

“The design of systems in which the output is a set of specifications
suitable for constructing a real system out of hardware.” (p. 1-4)

Over the next 30 years systems engineering assumed responsibility for not only the
technical elements surrounding systems, but the life cycle management responsibili-
ties as well. Systems engineering was, in-part, responsible for the delivery of large
complicated projects of national importance that included the Polaris submarine, and
the Mercury and Gemini space programs. By 1998 the definition of systems engineer-
ing had evolved to [13].
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“An interdisciplinary collaborative approach to derive, evolve, and
verify a life-cycle balanced system solution which satisfies customer
expectations and meets public acceptability.” (p. 11)

In 30 years, systems engineering had evolved to include life-cycle management
responsibilities, customers, and the public in its definition. Traditional Systems Engi-
neering (TSE) has developed the frameworks and methodologies [13] [14] to success-
fully conceive, design, acquire, and field large multi-purpose systems. Three often
used models developed in support of TSE most readers will recognize are (a) the
waterfall model [15], (b) the Vee-model [16], and (c) the spiral model [17].

The waterfall model is characterized by the sequential evolution of phases in which
as a rule only the two consecutive phases are connected with each other and the feed-
back is seen as the exception, not the rule. It starts with a set of requirements that are
refined for the system and its component, followed by an analysis. The analysis is
followed by the detailed design and the implementation of this design. Once the sys-
tem is implemented, it is tested and afterwards operationally used. Some newer ver-
sions include maintenance and retirement as well. All versions of the waterfall model
have the philosophy in common that if the engineer is doing a good job in all phases,
he can successfully reach the project end. The Vee-model follows a slightly different
philosophy by integrating the user into the engineering process. It starts with user
requirements and ends with user acceptance. The two parts of the Vee are built by the
phases comprised in the decomposition and definition of system components in the
downward steps, and the integration and verification phases building the upward
steps. On all levels, phases of the decomposition and definition are connected to re-
spective integration and verification phases, such as verifying that the correct parts are
built, verifying that configuration items are assembled correctly, verifying that the
system performs as requested, and validating that the system fulfills all requirements.
Overall, the feedback between the different phases and the possibility of corrections
of earlier phases that are not necessarily mistakes of the systems engineer build the
philosophy. The last model, the spiral model, is based on waterfall and Vee model
ideas. It assumes that several iterations through the phases of these models will
be needed resulting in a spiral in which each iteration leads to the next iterations ob-
jectives. Feedback is the rule and no longer the exception. The spiral model is an
iterative model that combines elements of the classic waterfall model with the charac-
teristic of prototyping and produces an evolutionary approach to engineering. The
four major phases are (1) management planning, (2) engineering, (3) customer evalua-
tion, and (4) risk analysis. The major distinguishing feature of the spiral is that by
including a formal risk analysis phases, it introduced a risk-driven approach to the
development process.

Systems Engineering therefore evolved well. However, the 21* century presented a
new problem for systems engineering: the system of systems. The next section will
exemplify that the traditional methods are insufficient to address these new challenges
so that a new theory is needed that allows to derive methods and implement solutions.

3.2 System of Systems

Most 20th century systems were designed and implemented to satisfy specific func-
tional objectives. The objectives were typically focused on the requirements in a single
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functional area (i.e. accounting, inventory control, manufacturing, railroads, highways,
etc.), resulting in a number of vertically independent, or stove-piped, systems within an
organization or society. Few were designed to satisfy all of the functions required by
the organization or society they were serving and as such are classified as monolithic
in structure.

Today, large numbers of 20th century systems operate within these functional
stovepipes, providing functionality inside but not across the stovepipes. Initial efforts
to bridge the functional stovepipes have focused on integrating 20th century systems
through a series of system-to-system interfaces. However, 21st century managers are
no longer satisfied with disparate systems lashed together with complex interfaces and
data validation routines. Enterprise Resource Planning (ERP) systems were supposed
to be the panacea for the business world, replacing stove-piped legacy systems with a
single system encompassing all of a company’s functional requirements. In 1998 it
was estimated that businesses around the world were spending $10 billion per year
[18] on enterprise systems and that figure probably doubles when you add in associ-
ated consulting expenses.

By the turn of the century, a new type of system, beyond that envisioned by the late
Russell Ackoff in his paper The Systems Revolution [19], began to emerge. It is the
super-system, the metasystem, the system-of-systems which is made up of compo-
nents which are large-scale systems themselves. If we are to understand system-of-
systems we must be able to differentiate them from the more common monolithic
systems.

Although the term system-of-systems has no widely accepted definition, Maier
notes that the notion is widespread and generally recognized [20]. The following
distinguishing characteristics have been proposed [20] [21].

1. Operational Independence of the Individual Systems: A system-of-systems is
composed of systems that are independent and useful in their own right. If a system-
of-systems is disassembled into the component systems, these component systems are
capable of independently performing useful operations independently of one another.

2. Managerial Independence of the Systems: The component systems not only can
operate independently, they generally do operate independently to achieve an in-
tended purpose. The component systems are generally individually acquired and inte-
grated and they maintain a continuing operational existence that is independent of the
system of systems.

3. Geographic Distribution: Geographic dispersion of component systems is often
large. Often, these systems can readily exchange only information and knowledge
with one another, and not substantial quantities of physical mass or energy.

4. Emergent Behavior: The system-of-systems performs functions and carries out
purposes that do not reside in any component system. These behaviors are emergent
properties of the entire system-of-systems and not the behavior of any component
system. The principal purposes supporting engineering of these systems are fulfilled
by these emergent behaviors.

5. Evolutionary Development: A system-of-systems is never fully formed or com-
plete. Development of these systems is evolutionary over time and with structure,
function and purpose added, removed, and modified as experience with the system
grows and evolves over time.
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These distinguishing characteristics begin to place some degree of formality on the
notion of system-of-systems, but something is missing. In order to go beyond the tradi-
tional perspective of a fully integrated system-of-systems which perfectly shares data
in what we call hard interoperability, we must invoke a more systemic view. The ideal
state for a system-of-systems requires what we will call systemic interoperability. Sys-
temic interoperability is a holistic view of interoperability and requires compatibility in
worldview and conceptual, contextual, and cultural interoperability, allowing the sys-
tem-of-systems to act consistently with regard to purpose, function, and form. In other
words, it is not sufficient to align the implementation details of the participating sys-
tems, but the underlying conceptualization and the assumptions and constraints need to
be aligned as well. This is where System of Systems Engineering comes into play.

3.3 System of Systems Engineering

During the evolution of TSE, the educational texts [22] [23] [24] and curricula elimi-
nated topics on the fundamental concepts and properties associated with systems and
include few soft topics to encompass the rich context and human situations that real-
world systems of systems engineering problems present.

Man-made systems of systems require a holistic, systemic understanding of both
the technical problem and the contextual framework present in order to arrive at satis-
factory solutions. A new set of methodologies and frameworks based upon formal
systems principles are required. The new methodologies will also require new sup-
porting methods, techniques, and tools.

The emerging discipline of System of Systems Engineering (SoSE) is attempting to
address the problems associated with systems-of-systems. Because these problems are
messy traditional methodologies of systems engineering are excluded from considera-
tion in this context. Russell Ackoff coined the concept of a “mess” and “messes” [25]:

“Because messes are systems of problems, the sum of the optimal
solutions to each component problem taken separately is not an
optimal solution to the mess. The behavior of the mess depends more
on how the solutions to its parts interact than on how they interact
independently of each other. But the unit in OR is a problem, not a
mess. Managers do not solve problems, they manage messes.” (p.
100)

Keating et al. [26] cite three important problems that TSE is not prepared to address
when facing a complex metasystem problem:

1. Has not been developed to address high levels of ambiguity and uncertainty
in complex systems problems . . . it strains to adequately respond to ill-
structured problems with constantly shifting requirements.

2. Does not completely ignore contextual influences on system problem formu-
lation, analysis, and resolution, but places context in the background.

3. Isnot prepared to deliver incomplete or partial solutions that include iterative
design and implementation after deployment.



Towards Intelligence-Based Systems Engineering and System of Systems Engineering 11

Keating et al [26] provisionally define SoSE as:

“The design, deployment, operation, and transformation of
metasystems that must function as an integrated complex system to
produce desirable results. These metasystems are themselves
comprised of multiple autonomous embedded complex systems that
can be diverse in technology, context, operation, geography, and
conceptual frame.” (p. 23)

Multiple, autonomous, embedded, complex systems function as a single meta-system,
or system-of-systems. This is possibly the most daunting task ever presented to sys-
tems engineers. It exists within a unique new context and will require an entirely new
methodological problem solving approach.

From a programmatic and enterprise viewpoint, TSE emphasized a system-centric
view with individually designed, developed, implemented and optimized solutions,
which necessarily incorporated the danger of stovepipes and fragmentation. What is
envisioned, however, is an integrated system approach in which each system provides
capabilities in an easy and composable way to support the rapid reconfiguration. To
support this vision, a methodology is needed that guides systems engineers in the new
system of systems problem domain.

3.4 System of Systems Engineering Methodology

Currently, there is no widely accepted approach to conducting System of Systems
Engineering (SoSE) efforts. However, there is recognition that approaches must
address challenges of increasingly complex systems that must be conceived, built,
operated, and evolved in a changed landscape marked by: (1) an exponential rise in
the demand, accessibility, and proliferation of information, (2) increasing interde-
pendence and demands for interoperability between systems that have previously
been developed, tested, operated, and maintained in isolation, (3) missions and flow
down requirements that are subject to rapid and potentially radical shifts due to pol-
icy, organizational, funding, or other factors beyond the technical aspects of the sys-
tem, and (4) demands for the accelerated fielding of systems that are technically
incomplete, but offer an improved alternative to what is presently available [27].

The SoSE Methodology [28] is a rigorous engineering analysis that invests heavily
in the understanding and framing of the problem under study. By conducting a rigor-
ous engineering analysis of the problem and its associated context, the SoSE Method-
ology minimizes the chance that a Type III error or solving the wrong problem
precisely and efficiently [29] [30] may be committed early on in a SoSE analysis. It is
important that the SoSE Methodology is not taken as a prescriptive approach to ad-
dressing complex SoSE problems. Instead, the SoOSE Methodology must be taken as a
guide, to be adapted to the particular circumstances that define its application. Other-
wise, it will not serve its intended purpose: to provide a high level adaptable structure
to guide rigorous exploration of complex systems problem situations.

The SoSE Methodology is intended to provoke rigorous analysis — resulting in the
potential for alternative decision, action, and interpretations for evolving complex
system of systems solutions. The SoSE Methodology is based in facilitating inquiry
that is as much about thinking and framing of problems, their context, and managing
emergent conditions as it is about taking decisive action. The SoSE Methodology was
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purposefully built and seeks to provoke higher levels of inquiry, systemic analysis,
and advance understanding of seemingly intractable problems enroute to more robust
solutions.

We position the SoSE Methodology to be consistent with Checkland’s [31] per-
spective of a methodology, which suggests that a methodology provides a framework,
more specific than philosophy, but more general than a detailed method or tool.
Therefore, a systems-based methodology must provide a framework that can be
elaborated to effectively guide action. There are several critical attributes for a meth-
odology and these are consistent with the current state of evolution for the SoSE
Methodology. These critical attributes are discussed in the next section.

There are several critical attributes in the SoSE Methodology that are consistent
with the current state of evolution for SoSE. Although the listing is certainly not in-
tended to be exhaustive, we offer these as insight to our thinking with respect to the
characteristics that make the SoSE Methodology sustainable. The nine (9) critical
attributes and how the SoSE Methodology satisfies these are presented in Table 1.

Table 1. Critical Attributes of the SOSE Methodology

Attribute Explanation
Transportable Must be capable of application across a spectrum of complex systems engineering
problems and contexts. The appropriateness (applicability) of the methodology to a
range of circumstances and system problem types must be clearly established as the
central characteristic of transportability.
Theoretically and | Must have a linkage to a theoretical body of knowledge as well as philosophical
Philosophically underpinnings that form the basis for the methodology and its application. The
Grounded theoretical body of knowledge for the SoOSE Methodology is systems theory.
Guide to Action Must provide sufficient detail to frame appropriate actions and guide direction of
efforts to implement the methodology. While not prescriptively defining how
execution must be accomplished, the methodology must establish the high level
what’s that must be performed.
Significance Must exhibit the holistic capacity to address multiple problem system domains,
minimally including contextual, human, organizational, managerial, policy,
technical, and political aspects of a SOSE problem.
Consistency Must be capable of providing replicability of approach and results interpretation
based on deployment of the methodology in similar contexts. The methodology is
transparent, clearly delineating the details of the approach for design, analysis, and
transformation of the SOS.
Adaptable Must be capable of flexing and modifying the approach, configuration, execution, or
expectations based on changing conditions or circumstances — remaining within the
framework of the guidance provided by the methodology, but adapting as necessary
to facilitate systemic inquiry.
Neutrality Attempts to minimize and account for external influences in application and
interpretation. A methodology must provide sufficient transparency in approach,
execution, and interpretation such that biases, assumptions, and limitations are
capable of being made explicit and challenged within the methodology application.
Multiple Utility Supports a variety of applications with respect to complex SOS, including, new
system design, existing system transformation, and assessment of existing complex
SOS initiatives.
Rigorous Must be capable of withstanding scrutiny with respect to: (1) identified linkage/basis
in a body of theory and knowledge, (2) sufficient depth to demonstrate detailed
grounding in relationship to systemic underpinnings, including the systems
engineering discipline, and (3) capable of providing transparent results that are
replicable with respect to results achieved and accountability for explicit logic used
to draw conclusions/interpretations.
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The foundations of the SoSE Methodology are found in two primary aspects,
namely (a) the theoretical and philosophical foundations for systems and (b) the seven
perspectives of an enabling methodology shown in figure 3.

Perspective VI Perspective |
Assessing the Impact Framing the System
of the SoSE Study Under Study

i Foundation )
Perspective VI .. Perspective Il
Reporting the Results Systems PrInCIpleS Designing the Unique
of the SoSE Study Methodology

Perspective V Perspective Il
Transforming the Designing the SoSE

Perspective IV Team

Analysis into Action i .
SoSE Exploration and Analysis

Fig. 3. The SoSE Methodology

First, the underlying theoretical and philosophical grounding are derived from sys-
tems theory. The principles, laws, and concepts central to the SoSE Methodology are
from systems theory [32]. These principles, laws, and concepts are central to every-
thing that follows in application of the SOSE Methodology to a specific problem do-
main. In effect, they define the thinking that supports following decision, action, and
interpretation essential to effective SoSE. This sets the stage for a consistent approach
to deployment of the SoSE Methodology by participants.

The second aspect of the SoOSE Methodology is found in the seven perspectives
that exist throughout a SoSE effort. Each perspective is:

* Essential to a holistic SoSE treatment of a problem area,
e Applied in iterative fashion throughout a SoSE project effort,

e Exists in relationship to all other perspectives, informing and informed by
other perspectives,

e Can have a different priority at different times during an effort,

* Flexible in application, requiring tailoring depending on the context and
problem domain, and

e Consists of detailed elements (that will vary in application) that serve to
structure the application of the perspectives.
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Each of the seven perspectives is briefly presented in the following paragraphs.

Perspective I: Framing the System under Study. This perspective is designed to rigor-
ously structure the system problem, the contextual setting and environment within

which the problem system exists. Key execution elements in this perspective include:

Generalize the Wide Context for the System under Study — establish the cir-
cumstances, factors, conditions, and patterns that are characteristic of the
situation surrounding the system of systems (SoS).

Characterize the System under Study — understand the basic structure and
characteristics of the system of systems under study, including the SoS’s ob-
jectives, functions, environment, resources, components, and management.
Characterize the Complex Nature of the System Domain under Study —
establish the complex nature of the SoS and problem domain.

Present the System Domain as Characteristically Complex - present the SoS
under study as a complex systems problem.

Frame the SoSE Problem - depict the problem situation by expressing the
structure, elements of processes and the situation.

Define Study Purpose, Reformulated Problem Statements and Objectives -
clearly explain the nature, purpose, high-level approach, and objectives for
the effort.

Conduct Stakeholder Analysis - explicitly account for and address the multi-
ple interests (rational and irrational, inside & outside) which can impact
achievement of system objectives.

Conduct Contextual Analysis - account for the set of circumstances, factors,
conditions, values and/or patterns that are influential in constraining and
enabling the SoS engineering process, the SoS solution/recommendation
design, SoS solution/recommendation deployment considerations, and inter-
pretation of outputs/outcomes stemming from the effort.

Perspective II: Designing the Unique Methodology. This perspective designs a unique
methodology based on the problem and the problem context.

Construct High-Level Design for the Study - construct a unique high-level
methodology that will adequately support the study objectives and the SoS
context. This must be compatible with the problem and problem context.
Develop the Analytic Strategy - create the design for quantitative and quali-
tative exploration (data collection and analysis) necessary to understand and
make decisions concerning the SoS under study.

Develop Assessment Criteria and Plan - construct a set of measurable per-
formance criteria that can be used during and after the problem study to en-
sure continued fit of problem, context, methodology and capability to meet
study objectives.

Perspective III: Designing the SoSE Team. This perspective designs the team to
undertake the SoSE study, taking into account the nature of the SoS problem and the

team resources, skills, and knowledge that can be brought to bear for the problem.
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e Assess Team Knowledge, Skills, and Abilities (KSA) - develop an inventory
of team knowledge, skills, and abilities (KSA) that may be used in the study.

e  Match Team KSA to the Analytic Strategy and Unique Methodology - based
on the KSAs; establish assignments, roles, and expectations for the team in
performing the study. Team expectations and selection of task leaders estab-
lished.

e Establish Team Expectation Performance Assessment - construct a set of
measurable performance criteria that can be used during and after the SoS
problem study to evaluate the performance of the team.

Perspective IV: SoSE Exploration and Analysis. This perspective is designed to
explore and conduct the emergent analysis by executing the analytic strategy and
SoSE Management Plan (SOSEMP).

e  Build the SoSE Management Plan (SOSEMP) - The SoSEMP defines how
the SoS study will be organized, the structure of the team, and how the SoSE
process will be designed to provide products that directly support the study
goals and objectives requirements.

e  SoSE Exploration and Analysis - conduct exploration and analysis for each
of the study objectives by executing elements of the analytic strategy.

Perspective V: Transforming the Analysis into Action. This perspective is designed to
transform the results of the emergent analysis by guiding implementation of the

analysis recommendations.

e Define Implementation Goals, Objectives and Activities - clearly explain the
nature of the implementation, purpose, high-level approach, and objectives
necessary to support the desired SoS outputs and outcomes.

e Modify the SOSE Management Plan (SoOSEMP) - add activities to the inte-
grated schedule that ensures that the tasks from the implementation
objectives tree are properly resourced to support the implementation goals,
objectives, and activities.

e Implementation of the Exploration and Analysis Recommendations - change,
modify, or construct processes for the SoS under study to implement recom-
mendations.

Perspective VI: Reporting the Results of the SOSE Study. This perspective reports the
results of the SoSE effort to capture the transformation of the analysis into action.

e Developing the Engineering Report - develop a coherent set of artifacts (data,
analyses, correlations, etc) that can provide specific findings and recommen-
dations that directly impact the SoS problem under study.

e Internal Evaluation of the Engineering Report - evaluate the study report
using the set of measurable performance criteria previously developed.

Perspective VII: Assessing the Impact of the SoSE Study. This perspective is de-
signed to assess the impact of the report on the real-world SoS problem under study.
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Evaluating the Initial Impact of the Engineering Report - evaluate the impact
that the SoSE study report had on the real world system problem and its
environment.

Plan for Follow-up and Follow-through - evaluate the impact analysis and
develop a set of actions to follow-up and follow-through on the analysis.

The SoSE Methodology provides a high level framework, philosophically based in sys-
tems theory, which offers a systemic, non-prescriptive guide to practitioners in SoSE. It
is important to note three particular aspects concerning the SoSE Methodology.

1.

The core of the methodology resides in the underlying foundation system
principles. This establishes the systemic worldview that permits execution
and interpretation of everything else that follows in the SoSE analysis. If this
worldview is not correct, it is doubtful that the ensuing analysis will have the
appropriate emphasis or effectiveness in execution.

The perspectives in the methodology are not intended to be approached as a
linear stepwise set of perspectives to be accomplished independent or mutu-
ally exclusive of one another. On the contrary, there should be continual re-
framing and revisiting of perspectives and their execution elements as the
SoSE analysis progresses. In fact, emphasis on particular perspectives or se-
quencing may, and probably will vary depending on: (1) the nature of the
problem, (2) the sophistication of the participants in systemic SoSE experi-
ence/expertise, and (3) the nature of the context within which the problem is
embedded.

It would be naive to think that the methodology will have effective results if
it is applied by those without sufficient grounding in the system fundamen-
tals and/or approached as a prescriptive sequential set of steps that, if per-
formed in a rote fashion, will generate successful SoSE outcomes. Only
through appreciation of these limitations and considerations will the
approach be capable of deployment as it has been intended.

In summary, the SoOSE Methodology is a holistic framework that contains the theo-
retical foundation in systems theory that substantiates the use of perspectives and
execution elements for addressing complex systems problems. It addresses not only
the system internal challenges, but it addresses the context and external systems as
well and changes the introspective processes into processes that take extrospective
viewpoints into account as well.

3.5 Intelligence-Based Systems Engineering

How can intelligence-based systems help to realize intelligence-based systems engi-
neering? Based on current research, the following aspects can help migrating TSE
towards SoSE and ultimately intelligence-based systems engineering:

Increased used of semantic systems technology and ontological means within
systems engineering: In order to capture requirements in an unambiguous

way and to better communicate them within teams, the increased use of
semantic systems technology is needed. An example is transforming
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requirements into logical expressions of a system’s ontology. This allows not
only to check their consistency, it also allows to directly communicate them
with intelligent software components, as they understand logic, and also fa-
cilitates the validation and verification, as logical expressions are easier to
evaluate than volumes of prosaic text. Controlled vocabularies that are dis-
tributed within the enterprise by Enterprise Lexical Services as described in
[33] can be the first step. Such efforts need to be followed by defining
thesauri and taxonomies that will support the lexical analysis between sys-
tems to detect redundancies and gaps regarding required versus available
system capability. As shown in [34], for a full support of interoperable and
composable system of systems higher levels of ontological support are nec-
essary in support of data, process, and constraint engineering.

e Increased use of simulation technology in support of systems engineering: As
stated by van Dam during his lecture at Stanford [35]: “If a picture is worth
a 1000 words, a moving picture is worth a 1000 static ones, and a truly in-
teractive, user-controlled dynamic picture is worth 1000 ones that you watch
passively.” That makes simulation very interesting not only for managers
and decision makers, it also encourages the use of decision support simula-
tion systems for systems engineering. While traditional decision support sys-
tems are used to compile useful information from raw data and documents
that are distributed within the potentially very heterogeneous enterprise
infrastructure, decision support simulation systems can be used to obtain,
display and evaluate operationally relevant data in agile contexts by execut-
ing models using operational data exploiting the full potential of M&S and
producing numerical insight into the behavior of complex systems. The idea
of executable system architecture is already exploited. If simulation is inte-
grated appropriately into the TSE and SoSE processes, communication will
be increased and mistakes in the design can be identified earlier.

e Increased use of intelligent agent technology in support of systems engineer-
ing: As mentioned earlier, Yilmaz and Oren [3] dedicated a whole book to
the synergisms of agent-directed simulation and systems engineering. With
their ability to support the development of robust, fault tolerant, adaptive,
self-optimizing, learning, social capable, autonomous, and agile solutions,
they are a good match to support intelligence-based systems engineering.
Replacing functions delivering the system capability by intelligent software
agents delivering the system capability opens interesting new opportunities.
Furthermore, in particular if combined with the rigorous use of ontological
means to capture requirements and results within all phases, agents can sup-
port or even take over many routine jobs, freeing system engineers to focus
on the more challenging phases of the process.

Although already powerful when applied stand alone, the support can be significantly
increased when all methods are applied orchestrated in a distributed enterprise infrastruc-
ture. New information integration methods, based on semantic systems and derived
standards, allow homogeneous support even in heterogeneous environments. Further-
more, new paradigms are exploited, like contribution of agents to the theoretical
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and philosophical foundations for systems, validation of systems based on semantic
means, and more. A research agenda for this domain is still an open requirement within
the community that must comprise system engineers, computer scientists, modeling and
simulation experts, and engineering managers. Contributions of all these domains are
necessary to address the new challenges and enable new options. This discussion needs
to be completed by integrating all project management challenges as well, such as ex-
tending the Body of Knowledge for Project Management [36] for intelligent-based sys-
tems engineering with special focus on applicability for risk management, value and cost
management, and related tool support for a new generation of system architecture
frameworks. Finally, these new insights need to be integrated into the education of future
experts at colleges and universities. We are only at the beginning of this set of challenges.

However, the contributions to this book are a good start into this endeavor and rep-
resent a variety of common approaches towards intelligence-based systems engineer-
ing. They all have in common that the systems engineering community in general and
the contributing authors in particular understand the need for the application of se-
mantic systems, simulation technology and intelligent agents to overcome the intro-
spective blocks and move towards agile and robust SoSE to enable intelligence-based
systems engineering.

4 Contributions to These Topics within This Volume

This volume comprises a selection of state-of-the-art contributions to the topics dis-
cussed above, focusing on but not limited to semantic systems, simulation technology,
and intelligent agents. The common theme is systems engineering and its relation to
intelligence-based solutions. All authors were invited by the editors to submit their
work based on their recognition in the field and the applicability of their findings to
improve intelligence-based systems engineering, complex systems development,
knowledge-based engineering, etc.

The work on Semantic Systems for Intelligence-based Systems Engineering by
John Sowa describes the foundations for the use of ontology-based solutions. This
chapter describes the foundations for expressing, sharing, and using knowledge and as
such describing the essence of intelligence-based communication needs.

As one of the focal points of intelligence-based systems engineering is the support
by intelligent machines, understanding within such machines is absolutely essential to
be effective and efficient and to avoid significant errors by misinterpretations. The
work on Defining and Validating Semantic Machine to Machine Interoperability by
Claudia Szabo and Saikou Diallo is based on awarded academic research in this do-
main helps to better understand the challenges and provides first solutions of interest
to the scholars and practitioners in the field.

An even more practical approach using a particular problem domain is given by
Maria Vargas-Vera, Miklos Nagy, and Dietmar Jannach. They describe An Approach
to Knowledge Integration applied to a Configuration Problem in which several of the
theoretic results of the earlier chapters are applied.

With the chapter on Multiple Worlds, a Framework for Modeling and Simulation
Based Design by Michele Fumarola, Mamadou Seck, and Alexander Verbraeck the
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domain of simulation and the support of systems engineering is entered. Many engi-
neering applications are philosophically dominated by a positivistic world view of
physics-driven independent entities that interact under Newton’s laws. The work on
SoSE should that such a limited view is no longer sufficient, but multiple views need
to be aligned, and simulations can help to do so.

A more technical aspects, namely that of how to integrate such simulation knowl-
edge into the potentially heterogeneous enterprise infrastructure, is dealt with in the
chapter Distributed Simulation Using RESTful Interoperability Simulation Environ-
ment (RISE) Middleware by Khaldoon Al-Zoubi and Gabriel Wainer. Web services
have been identified in may papers as a potential universal integration tool, but the
overhead is often the negative characteristic speaking against them. RESTful services
avoid the overhead, allowing the integration of simulation capability.

The Discrete Event System Specification (DEVS) formalism for simulation sys-
tems emerged from systems engineering efforts two decades ago. Using the results of
the simulation community to improve DEVS and merging various trends into the
DEVS Unified Process (DUNIP) allows now the development of Agile Net-centric
Systems using DUNIP-Based Event Driven Architectures described by Saurabh Mit-
tal. As intelligent agents can be part of this simulation-based systems engineering
approach, this chapter connects both worlds.

Starting with a practical view on Systems Engineering and Conversational Agents,
James D. O'Shea introduced the intelligent agent topic explicitly. Conversational
agents are known for their contributions to improving man-machine interfaces, in-
cluding allowing for multiple representations in multiple modalities. The chapter also
gives practical application examples for the semantic means introduced in the earlier
chapter by Sowa.

The use of agents to enable innovative internal capabilities is demonstrated in Lev-
ent Yilmaz and C. Anthony Hunt’s chapter Toward Advanced Concepts and Genera-
tive Simulation Formalisms for Creative and Robust Discovery Systems. This chapter
shows how many of the characteristic properties identified above are implemented by
agent-like structures and support intelligence-based systems engineering in new ways.

Jose J. Padilla, Saikou Y. Diallo, and Andres A. Sousa-Poza even go one step be-
yond. In their chapter Establishing a Theoretical Baseline: Using Agent-Based Mod-
eling to Create Knowledge the idea to use intelligent agents as “research partners” is
not only motivated, they report on successful applications of this idea to drive simula-
tion beyond the scope of being pure computational activity, but becoming a knowl-
edge generating activity.

Bringing agents out of the laboratory and to users of systems is described in Artifi-
cial Intelligence Support for “The User around the Marketplace”: Automatic Engi-
neering of Interactive E-commerce Applications by Martin Lopez-Nores, Yolanda
Blanco-Fernandez, and Jose J. Pazos-Arias. This is an e-commerce application that
can be used as an example who to embed systems into a broader, agile, and highly
complex environment.

Another application example is given in the chapter on Wireless Sensor Network
Anomalies: Diagnosis and Detection Strategies by Raja Jurdak, X. Rosalind Wang,
Oliver Obst, and Philip Valencia. As wireless sensor networks are tightly coupled
regarding their development and operational environment. Each development phase has
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immediate reactions in the use of the networks, making them emerging systems within a
system of systems. Without the application of intelligence-based methods, the systems
engineer could easily become overwhelmed.

The book ends with the chapter on Enterprise Ontologies — Better Models of Busi-
ness by lan Bailey, which is a critical review of claims, success, and perception
thereof from a practitioner in the field of ontological systems and their application.
With several years of experience from conducting projects, this chapter provides
insights of interest to enthusiasts and critics in this field. He also applies a unique
style and practical criticism of a domain that is often perceived wrongly as too
academic and with no practical relevance.

In summary, this book should provide interesting material for scholars and practi-
tioners. It comprises theoretic contributions as well as practical applications. It shows
how the main contributing domains can and need to be combined in order to support
intelligent-based systems engineering.

Moreover, the book in general and the chapters in particular also show that many
niches are still open and gaps in the body of knowledge are waiting to be filled. In par-
ticular doctoral students should be able to use this book in search of valuable topics that
need to be evaluated in detail and closed to promote the discipline of intelligence-based
systems engineering.

By combining papers from industry experts with those of leading scholars and pre-
senting them side by side, this book should be a valuable contribution to everyone
being interested in the field of intelligence-based systems engineering and contribute
to fruitful discussions on research agendas as well as applications in the field.
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Chapter 2
Future Directions for Semantic Systems

John F. Sowa

Abstract. For over thirty years, the complexity of knowledge acquisition has
been the greatest obstacle to widespread use of semantic systems. The task of
translating information from a textbook to a computable semantic form requires
the combined skills of a linguist, logician, computer scientist, and subject-
matter expert. Any system that requires its users to have all those skills will
have few, if any, users. The challenge is to design automated tools that can
combine the contributions from multiple experts with different kinds of skills.
This article surveys systems with different levels of semantics: lightweight,
middleweight, and heavyweight. Linked data systems with lightweight
semantics are easy to develop, but they can’t interpret the data they link. The
heavyweight systems of traditional Al can perform deep reasoning, but they
place too many demands on the knowledge engineers. No one can predict what
innovations will be discovered in the future, but commercially successful
systems must satisfy two criteria: first, they must solve problems for which a
large number of people need solutions; second, they must have automated and
semi-automated methods for acquiring, analyzing, and organizing the required
knowledge.

1 The Knowledge Acquisition Bottleneck

Computers can process numbers, data structures, and even axioms in logic much faster
than people can. But people take advantage of background knowledge that computers
don’t have. Hao Wang (1960), for example, wrote a program that proved all 378
theorems in propositional and first-order logic from the Principia Mathematica. On a
slow vacuum-tube computer, Wang’s program took an average of 1.1 seconds per
theorem — far less time than Whitehead and Russell, the two brilliant logicians who
wrote the book. But the theorems in the Principia require a negligible amount of built-in
knowledge — just five axioms and a few rules of inference. The computer Wang used
had only 144K bytes of RAM, but that was sufficient to store the rules and axioms and
manipulate them faster than professional logicians.

During the 1970s and ’80s, rule-based expert systems and programs for processing
natural languages became quite sophisticated. But most applications required an
enormous amount of background knowledge to produce useful results. Knowledge
engineers and subject-matter experts (SMEs) had to encode that knowledge in formal
logic or some informal rules, frames, or diagrams. The experts were usually highly
paid professionals, such as physicians or geologists, and the knowledge engineers
required long years of training in logic, ontology, conceptual analysis, systems design,
and methods for interviewing the experts. For critical applications, the investment in
knowledge acquisition produced significant results. For other applications, the cost of
defining the knowledge might be justified, but the Al tools were not integrated with

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 23
springerlink.com © Springer-Verlag Berlin Heidelberg 2011



24 J.F. Sowa

commercial software. Furthermore, most programmers did not know how to use Al
languages and tools, and the cost of training people and adapting tools was too high
for mainstream commercial applications.

During the 1990s, vast amounts of data on the World Wide Web provided raw data
for statistical methods. Machine learning, data mining, and knowledge discovery
found patterns more cheaply and often more accurately than rules written by experts.
The more challenging goal of language understanding was largely abandoned in favor
of statistical methods for information retrieval and information extraction. Although
statistical methods are useful, they don’t generate a semantic representation suitable
for further reasoning or for explanations in ordinary language.

At the beginning of the 21st century, the Semantic Web adapted the Al technologies
of the 1980s to the vast resources of the World Wide Web. But the mainstream
commercial software, which had never been integrated with Al technology, was just as
isolated from the Semantic Web. For most programmers and web masters, the languages
and tools of the Semantic Web were unfamiliar, there was no migration path from
conventional software to the new technology, and the task of knowledge acquisition was
just as difficult as ever.

The complexity of knowledge acquisition increases with the complexity of the
semantics, the amount of detail that must be specified, and the interdependencies
among different aspects of the knowledge base. To relate different methods, this
article uses a three-way distinction: heavyweight semantics is represented in a formal
logic with detailed axioms that can support extended reasoning; middleweight
semantics is based on formal or informal notations that support a modest amount of
reasoning, but with less complexity than heavyweight semantics; lightweight
semantics uses tags to classify information, to check simple constraints on types and
connections, but not to perform extended reasoning.

Many systems use variations of these three kinds of semantics. Section 2 of this
article uses the distinction to compare systems for natural language processing (NLP).
Section 3 applies it to systems for reasoning and problem solving. Section 4 analyzes
the Semantic Web technologies in these terms. Section 5 shows how the VivoMind
Language Processor (VLP) uses all three kinds of semantics for language analysis and
reasoning. The concluding Section 6 discusses the requirements for commercially
successful systems and the ways of using Al technology to design and implement
them.

2 Natural Language Processing

Documents that people write to communicate with other people are rarely as precise
as logic. Yet people can read those documents and relate them to formal notations for
science, mathematics, and computer programs. They can derive whatever information
they need, reason about it, and apply it at an appropriate level of precision. That
flexibility is essential for a system of knowledge acquisition — automated, semi-
automated, or at least computer assisted. For the past half century, Al researchers and
computational linguists have tried to achieve that goal.

Some of the most successful NLP systems use lightweight semantics. One of the first
was the Georgetown Automatic Translator (GAT), for which research was terminated in
1963. Under the name Systran, it became the most widely used machine-translation
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system in the 20th century. A version is still available on the web under the name
Babelfish. For each pair of languages to be translated, Systran uses a large dictionary of
equivalent words and phrases. The computer processing consists of a limited amount of
movement and adjustment to accommodate the syntactic differences between each
language pair (Hutchins 1995). Constructing those dictionaries by hand requires many
person-years of effort. With the large volumes of documents available on the web,
statistical methods for detecting and aligning equivalent pairs have become more widely
used. Although these techniques are useful for MT, they don’t produce a semantic
representation that can be used for reasoning. Hybrid systems that combine statistics with
shallow parsing and templates are widely used for information extraction, but Hobbs and
Riloff (2010) noted that such systems have reached a barrier of about 60% accuracy in
recall and precision.

The most sophisticated NLP systems use heavyweight semantics based on some
version of logic. Typical systems have two distinct levels: syntactic analysis to
generate a parse tree and semantic interpretation to map the parse tree to a logical
form. But after forty years of research, no system based on that approach can read one
page of a high-school textbook and use the results to solve the problems as well as a B
student. Even pioneers in logic-based methods have begun to doubt their adequacy.
Kamp (2001), for example, admitted that “the basic concepts of linguistics — and
especially those of semantics — have to be thought through anew” and “many more
distinctions have to be drawn than are dreamt of in current semantic theory.”

To understand the issues, consider the combination of syntax, semantics, and
database structure necessary to analyze a question and answer it. As an example, the
Transformational Question Answering system (Petrick 1981) analyzed English
questions and used middleweight semantics about the subject matter to map English
to and from logic. TQA also used heavyweight semantics to map logic to and from
the SQL query language, which has the expressive power of first-order logic. The
parser evolved from a research project that Petrick (1965) designed for his PhD
dissertation under Chomsky’s supervision. After joining IBM, Petrick collaborated
with other researchers to develop TQA as an English front-end to a relational
database.

To evaluate TQA’s potential, IBM management wanted to test it on actual users.
The nearby city of White Plains served as a test case. During the 1974 gasoline
shortage, city officials had to search land-use records by hand to find the locations of
all gas stations so that police could go there to direct traffic. Later, the records were
stored on a computer, but somebody had to write a new program and print a new
report for every question. Every follow-on question required another program. In
1978, the IBM researchers loaded the land-use files on a relational database at
Yorktown, customized TQA to access the database, and connected it to a dedicated
terminal in the city hall.

For a full year, the White Plains officials and land-use planners could type English
questions to TQA and get immediate answers. Of 788 questions typed during the year,
TQA answered 65% correctly and failed to parse 35%. For most parsing failures, the
users rephrased the sentence in a way that TQA could answer. Occasionally, they
called the IBM developers for help. Overall, the users loved it. They were unhappy
when the trial period ended, and IBM unplugged the terminal (Damerau 1981).
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Following are some questions that TQA answered correctly:

What is the total area of the parcels in ward 6 block 72?
How many two family houses are there in the Oak Ridge
Residents Assn?

Where are the apartment dwellings which have more than

50 units

which are more than 6 stories high on Lake St?

The TQA test showed that subject-matter experts, who had no training in
programming or database software, could effectively use an English front-end to
conventional software. It also showed the kind of syntax and semantics that was
needed to customize a language processor for each application. The syntax of the
phrase ward 6 block 72 is familiar to the SMEs, but it is rare in ordinary English. The
TQA developers added grammar rules for many such phrases before the test period.
During the test, they analyzed the questions that TQA failed to parse correctly and
revised the grammar to accommodate them. The TQA users also learned to adjust
their grammar to accommodate the parser.

The test version of TQA also generated a rudimentary echo that showed how each
question was parsed. Unfortunately, some echos used syntax that the parser failed to
recognize when the users typed them back. Mueckstein (1983) later designed Q-
TRANS to generate an echo that TQA could always parse. Following is a question
processed by TQA:

What parcels in the R5 zone on Stevens St. have
greater than 5000 sqg. ft.?

TQA translated that question to the following SQL:

SELECT UNIQUE A.JACCN, B.PARAREA
FROM ZONEF A, PARCFL B

WHERE A.JACCN = B.JACCN

AND B.STN = 'STEVENS ST'

AND B.PARAREA > 5000

AND A.ZONE = R5;

Q-TRANS translated that SQL to the following echo:

Find the account numbers and parcel areas for lots that have
the street name STEVENS ST, a parcel area of greater than
5000 sq. ft., and zoning code R5.

These examples show the kind of customization required by any processor that maps
natural language queries to and from a computer system: first, an ontology of the
entities, relations, and constraints in the subject matter; second, a lexicon that maps
words and phrases to and from the ontology; third, specialized syntax for patterns that
are rare in ordinary language; and finally, mappings of the ontology to computer
formats and interfaces. To simplify the task, Damerau (1988) designed a tool to
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enable “database administrators to generate robust English interfaces to particular
databases without help from linguistic experts.” IBM management, however, decided
that it was too complex for most customers and the potential market was too small to
be profitable. Therefore, they canceled the TQA project.

TQA was one of many NLP systems that demonstrated usefulness for some
applications, but were not commercially successful. Systems with lightweight
semantics, such as Systran, have been more successful. Some of the most successful
are search engines that index documents by the words they contain without using any
explicit semantics. Google improved the search with statistical methods for deriving
some implicit semantics from the patterns of cross references. In general, systems
based on lightweight semantics depend on the readers to use their background
knowledge to fill in the gaps, but no human army could process the huge volumes of
data on the web. For some applications, statistical methods can filter out much of the
irrelevant data, but even a thousand-to-one reduction in petabytes still leaves
terabytes. NLP systems with heavyweight semantics are necessary to interpret the
details.

3 Reasoning and Problem Solving

Since the 1950s, research in Al explored a wide range of techniques from neural
networks to formal logic. But the classical Al paradigm combines some knowledge
representation language with some formal or informal methods of reasoning. Two
classical system of radically different sizes illustrate the problems and the range of
possible solutions: the very large Cyc system, which shows the power of a general-
purpose, heavyweight semantics; and a simpler system designed for online sales, which
shows the ease of use of middleweight semantics combined with semi-automated
methods for knowledge acquisition.

The expert systems of the 1980s showed that the level of expertise increased as
more rules and facts were added. Some Al experts estimated that a human level of
intelligence could be achieved with less than a million concepts encoded in some
computable form. Lenat and Feigenbaum (1987) summarized the arguments:

e Lenat estimated that encyclopedic coverage of the common knowledge of
typical high-school graduates would require 30,000 articles with about 30
concepts per article. That justified the Cyc Project, whose name comes from
the stressed syllable of encyclopedia.

e The Japanese Electronic Dictionary Research Project (EDR) estimated that
the knowledge of an educated speaker of several languages would require
about 200K concepts represented in each language.

e Marvin Minsky noted that less than 200,000 hours elapses between birth and
age 21. If each person adds four new concepts per hour, the total would be
less than a million.

For the Cyc Project, they concluded that a knowledge base “of under a million
frames” could be constructed in one decade with $50 million and less than two
person-centuries of work.
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The original version of Cyc was an informal system of frames with heuristic
procedures for processing them (Lenat & Guha 1990). But as the knowledge base grew,
the dangers of contradictions, spurious inferences, and incompatibilities became critical.
As aresult, the frames had to be more highly structured, and the procedures became more
systematic and tightly controlled. Eventually, the CycL language and its inference
engines were rewritten as a superset of first-order logic with extensions to support
defaults, modality, metalanguage, and higher-order logic. The most significant
innovation was a context mechanism for partitioning the knowledge base into a basic
core and an open-ended collection of independently developed microtheories (Guha
1991).

After the first 25 years, Cyc grew far beyond its original goals: 100 million dollars
had been invested in 10 person-centuries of work to define 600,000 concepts by 5
million axioms organized in 6,000 microtheories. Cyc can also access relational
databases and the Semantic Web to supplement its own knowledge base. For some
kinds of reasoning, Cyc is faster and more thorough than most humans. Yet Cyc is not
as flexible as a child, and it can’t read, write, or speak as well as a child. It has not yet
achieved the goals of the “sweeping three-stage research programme” outlined by
Lenat and Feigenbaum in 1987:

1. “Slowly hand-code a large, broad knowledge base.”

2. “When enough knowledge is present, it will be faster to acquire more
through reading, assimilating data bases, etc.”

3. “To go beyond the frontier of human knowledge, the system will have to rely
on learning by discovery, carrying out research and development projects to
expand its KB.”

The first goal has been achieved. The second goal was far more difficult than
expected. Cyc cannot yet read a textbook and map the knowledge to CycL, and it can
only access external databases whose metadata or ontology has been mapped to CycL
concepts. The third goal is still a dream.

Even though Cyc did not achieve all the original goals, it remains the world’s
largest body of knowledge represented in logic and suitable for detailed deduction.
For any given problem, Cyc automatically selects the required axioms and an
inference method that is suitable for that problem. The Cyc tools can also be used as a
development platform for defining axioms that can drive other inference engines. As
an example, Peterson et al. (1998) designed a knowledge compiler to translate a
subset of axioms from CycL to more restricted logics that drive a deductive database:
Horn-clause rules for the inference engine, and database constraints stated in SQL
WHERE-clauses. For a sample problem, they extracted 5532 axioms (about 1% of the
five million axioms in the Cyc knowledge base). Of those axioms, 84% could be
translated directly to Horn-clause rules for performing inferences. The remaining
16%, which required full first-order logic, were translated to update constraints in
SQL to ensure that the database is always consistent with the axioms.

For the first dozen years, the Cyc Project focused on research, but the academic
research was not easy to commercialize. Later, they gradually increased the time
devoted to applications. As a result, Cyc earned more money from applications in the
years 2008 to 2010 than in the previous 24 years. Some of the fastest growing
applications are in medical informatics. At the Cleveland Clinic, about 1700 axioms
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from the general Cyc ontology are used to understand and respond to a typical query.
The applications show considerable promise, but most application programmers find
it difficult to adapt their software and databases to the Cyc knowledge base. Although
Cyc is primarily a reasoning system, it also supports an English interface, which
requires customization similar to TQA.

In contrast with Cyc, which has been in continuous development for over 25 years,
smaller Al systems can be implemented much faster. As an example, Tesco, a large
UK retailer, sells a variety of goods, ranging from groceries to electronic equipment.
For their online branch, Tesco.com, they wanted a flexible system that employees
could update dynamically. One software vendor designed a system based on RDF and
OWL, but Tesco employees could not modify it. Calling an OWL expert for every
update would be too slow, and hiring one for every store would cost too much. They
needed a simpler system that current employees could modify without lengthy and
costly training.

As an alternative, Gerard Ellis, an employee of the vendor, designed and
implemented a prototype of a more flexible system in just a few weeks. Tesco liked it,
and the complete system was delivered to them in a few months (Sarraf & Ellis 20006).
Unlike the heavyweight semantics of Cyc, which requires professional knowledge
engineers to update and modify, the Tesco system had middleweight semantics that
could be updated by Tesco employees who had no training in Al, logic, or ontology.
Automated tools could also check that the knowledge base is consistent and help
Tesco employees correct any errors. The reason why Ellis could implement the new
system so quickly is that he had spent a dozen years in developing a toolkit of Al
software and related technologies (Ellis et al. 1994). To replace the system that used
RDF+OWL, he put together the following components:

e Conceptual graphs (CGs) as the internal knowledge representation with basic
tools for storing, retrieving, and manipulating CGs. Communication with
other components was based on the Conceptual Graph Interchange Format
(CGIF).

e A version of controlled English (CE) as the notation for subject-matter
experts (SMEs) with tools to map CE to and from CGIF.

e Ripple-down rules (RDR) as the technology for learning, reasoning, and
maintaining the knowledge base with a mapping to and from CGIF.

The SMEs were Tesco employees, who used controlled English to edit the rules, get
an explanation of how a conclusion was derived, and correct any errors by typing the
conclusion that should have been derived. This application was designed for selling
groceries and later adapted for the electrical and wine departments.

Ripple-down rules are derived from a decision tree that is compiled to a nest of if-
then-else statements (Quinlan 1993; Compton et al. 2006). The raw data for deriving a
decision tree is a set of cases, each of which is described by one or more conditions
and one or more conclusions. Each link of the tree is labeled with one condition, and
each leaf (end point) shows one or more conclusions implied by the conjunction of all
the conditions leading to that leaf. To derive a complete and consistent tree, the
algorithms detect possible conflicts, show the conflicting cases, and request additional
information to resolve the conflicts. For major updates, the algorithms can derive a
new tree from the raw data, but for minor editing, they can make local changes to the
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tree. For the Tesco application, SMEs describe the cases by CE statements, and the
system generates the rules. Following are some rules derived for the grocery
application:

e If a television product description contains "28-
inch screen", add a screen_size attribute_inches
with a value of 28.

e If a recipe ingredient contains butter, suggest
"Gold Butter" as an ingredient to add to the
basket.

e If a customer buys 2 boxes of biscuits, the
customer gets one free.

e If the basket value is over £100, delivery is free.

e If the customer is a family with children, suggest
"Buy one family sized pizza and get one free".

The RDR rule format has proved to be convenient for SMEs from a wide range of
backgrounds, especially medical informatics. Compton et al. (2006) describe an
application developed by pathologists who used RDR tools to derive a knowledge
base of 16,000 rules from a set of 6 million cases. But RDR is just one of a large class
of tools for case-based reasoning, which overlap methods of machine learning. Some
of them, like RDR, draw sharp distinctions that can be expressed in a subset of logic.
Others use statistics, clustering algorithms, neural networks, and fuzzy logic for
learning and reasoning from cases without sharp boundaries. Still others use
analogies, which can derive sharp or fuzzy distinctions under varying conditions.

In summary, a large ontology such as Cyc does not, by itself, lead to successful
commercial applications. A great deal of work on customization and knowledge
acquisition is necessary to adapt Cyc to more conventional software. The Tesco.com
application shows how systems with middleweight semantics can often simplify the
task of knowledge acquisition. But the people who develop systems that SMEs find
easy to use require advanced education and a toolkit of sophisticated software. With
appropriate tools and methodologies, a convenient front-end could make any system
easier to use. A challenging research goal is to develop an integrated knowledge
acquisition system that could support both Al and conventional software.

4 Semantic Web

The Semantic Web was inspired by Tim Berners-Lee, but it was designed by a
committee. It evolved from a keynote speech at the First World Wide Web
Conference (Berners-Lee 1994):

Adding semantics to the Web involves two things: allowing documents
which have information in machine readable forms, and allowing links
to be created with relationship values.

At this level of detail, nobody could object. But the speech didn’t describe the
machine readable formats, the kinds of relationship values, the logical operations on
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those values, or any influence from the 40 years of research on semantics in artificial
intelligence, computational linguistics, and software engineering. The W3
Consortium, which met for the first time at that conference, took charge of the design.
Although every branch and nearly every aspect of computer science was represented
by one or more members of the W3C, a design by committee is a compromise of good
people pulling in different directions for good, but often conflicting reasons. By 2001,
some components of the Semantic Web had been specified by W3C
recommendations, but the only consensus on the overall architecture was the so-called
“layer cake” at the left of Figure 1.
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Fig. 1. The architectural layer cakes for the Semantic Web

The new layer cake on the right of Figure 1 developed toward the end of the
decade. The differences between the two cakes show significant changes in the
evolution of the Semantic Web:

1. The original cake had clear layers that built on one another. The new cake
adds more boxes, as one might expect, but it also lets some layers dip
beneath their earlier foundations.

2. The Resource Description Framework (RDF), which was defined by XML
Schema, now extends below XML. One extension allows RDFa, which
consists of single attribute tags, to be placed in any XML area. But other
variations have been used or proposed.

3. The digital signature pipe, which was supposed to be based on XML, is
replaced by a cryptography pipe that goes beneath all layers, since XML and
the browsers that process it cannot guarantee security.

4. The ontology vocabulary layer has been replaced by four loosely related
boxes. The Web Ontology Language (OWL) could be used with the other
boxes, but applications that use them are more likely to avoid OWL.

5. The logic layer has shrunk to a smaller box for a unifying logic, since the
components beneath it use some sort of logic, but each of them has its own
independently defined semantics.
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6. Proof rests on top of the unifying logic, but it also dips beneath it to the Rule
Interface Format (RIF).

7. Trust is the only layer that has not changed, primarily because nobody really
knows how to achieve it.

The evolution of these components can clarify their interrelationships and suggest
future directions. RDF began with a diagram by Tim Berners-Lee that showed how
the links between documents formed a Giant Global Graph. The detailed specification
evolved from an internal dispute in the Cyc Project. The director, Doug Lenat, wanted
a single unified CycL language, but the associate director, R. V. Guha, considered
CycL too complex for most users. Guha wanted a simpler subset of logic that would
allow SME:s to read, write, and edit at least some of the knowledge base. Whatever
the issues may be, Guha left Cyc to join Apple, where he designed a language called
the Meta Content Framework (MCF). He later collaborated with Tim Bray to
represent MCF in XML terms (Guha & Bray 1997). MCF was renamed RDF when it
became a W3C recommendation, and Bray promoted it enthusiastically. But he later
expressed serious concerns about the way it had developed (Bray 2003):

Conceptually, nothing could be simpler than RDF. You have
Resources, which by definition are identified by URIs. The resources
have Properties, which by convention are identified by URIs. The
properties have Values, which can be strings or numbers or Resources.
Everything’s a triple: (Resource, Property, Value)...

Speaking only for myself, I have never actually managed to write down
a chunk of RDF/XML correctly, even when I had the triples laid out
quite clearly in my head. Furthermore — once again speaking for
myself — I find most existing RDF/XML entirely unreadable. I think
the Semantic Web people have taken on a job that’s already tough, and
are adding difficulty, and increasing the probability of failure, by
sticking to the currently broken RDF/XML syntax.

Various tools provide more readable notations for triples, which are translated to and
from the XML format. A popular alternative is the JavaScript Object Notation
(JSON), which can represent an RDF triple as [R, P, VI. A collection of property-
value pairs for the same resource could be written more compactly as {P1:V1,
P2:V2, ..., Pn:Vvn}. JSON is a humanly readable notation that is directly
processed by JavaScript.

Although MCF had only a modest amount of logic, Guha and Bray noted that it
could be used to describe its own structure and datatypes: “This self-description
allows MCEF to be its own schema definition language. This in turn allows MCF to be
dynamically extended by an author or application.” That principle was carried over to
RDF: the base RDF notation has no built-in ontology, and RDF Schema (RDFS)
contains a metalevel ontology for stating constraints on types and relations. The logic
base (LBase) of RDF is simple, but quirky (Guha & Hayes 2002; Hayes 2003). A
triple with three names (URIs or literals) represents a relation R applied to two
arguments A and B: R(A,B). A collection of triples represents a conjunction:

RI(A1,B1) A R2(A2,B2) A R3(A3,B3).



Future Directions for Semantic Systems 33

But any argument slot could contain a URI that specifies a relation. In fact, a relation
could even be applied to itself:

RI(A1,R2) A R2(R1,B2) A R3(R2,R3).

Furthermore, RDF allows “blank nodes” that represent anonymous entities: a triple of
the form R(A,_) would say that something A is related by the relation R to some
unspecified resource. In effect, a blank node represents an existentially quantified
variable: (3x)R(A,x). If a blank node happens to occur in the relation slot, then the
quantifier ranges over relations: (3 r)r(A,B). That triple would say that there exists
an unspecified relation r between A and B. The LBase semantics shows that this logic
is consistent, but it allows combinations that go beyond the usual first-order logic.

To support reasoning, some version of logic with suitable rules of inference is
required. For 2400 years, the most widely used version for representing and reasoning
about ontology has been Aristotle’s syllogisms. Description logics (DLs) are a family
of formalisms that extend Aristotle’s logic with features such as cardinality
constraints and Boolean combinations of categories. McGuinness et al. (2002)
showed how two description logics, DAML and OIL, could be adapted to the RDF
notation to form OWL. But the combination of DLs with RDF exacerbated old
controversies and created new ones.

For thirty years, the DL community has been divided between practitioners who
use highly expressive languages to implement applications and theoreticians who
prove theorems about computational complexity. The Loom and PowerLoom
systems, for example, have been widely used for practical applications (MacGregor
1991; Chalupsky et al. 2006). But the theoreticians ignored PowerLoom because it’s
too expressive: it’s possible to state undecidable problems. Yet every major
programming language is undecidable, and programmers want more expressiveness,
not less. For any language, reducing the expressive power does not make the easy
problems easier to define or faster to solve. It just makes the hard problems
impossible to express. The PowerLoom language became undecidable because the
users asked for more expressive power; none of them asked for decidability.

CycL is an extremely expressive language, but undecidability has never been an
obstacle. On the contrary, OWL has created more obstacles by its draconian measures
to enforce decidability: the constraints on OWL cause all models to be tree structured.
A benzene molecule, for example, has a ring of six carbon atoms. In OWL, it’s not
possible to state or imply that they form a ring, because a ring is not a tree. In Cyc, a
knowledge engineer can choose tree models when appropriate and thereby guarantee
decidability. Chemists, architects, and airplane designers, however, require graphs
with cycles. They have developed highly efficient ways of representing them in both
procedural and logic-based languages. They can represent them in Cyc, but not in
OWL.

Computational complexity is a critical issue, and software engineers have
developed ways of addressing it. Structured programming, design patterns, and their
associated methodologies help programmers in several ways: provide a toolkit of
useful, repeatable techniques; guide a design toward structures that are known to be
safe, decidable, and efficient; and support tests for detecting problematical aspects.
Yet all these methods are optional. They don’t stop creative programmers from
exploring innovative ways of using their highly expressive languages to invent new
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patterns. Software engineers also observe a time-honored principle: “Premature
optimization is the root of all evil.” Fine tuning one component is irrelevant and even
counterproductive before its relationships to all other components are thoroughly
understood.

The fragmentation of the ontology layer in Figure 1 is the result of developing the
components independently without considering their roles in an integrated system. In
the 1980s, description logics were used as one part of a hybrid system: a DL would
define concept types in the terminology component (T-Box) while a more general
logic used those types in the assertional component (A-Box). By giving priority to
definitions in the T-Box, the hybrid had a modal effect of making T=box statements
necessarily true with respect to the statements in the A-Box. The hybrid structure also
allowed tradeoffs that improved efficiency while simplifying the task of knowledge
acquisition. Some systems had three levels: a T-Box for defining concept and relation
types, and an A-Box that was split between a rule-based reasoning system and a
database for storing ground-level facts. Cyc has similar levels internally, but all levels
use different subsets of the very expressive CycL notation.

That point about databases raises another issue: commercial web sites usually
include relational DBs, which are as important as any component in the layer cakes.
Some people claim that RDBs are obsolescent, but they still run the world economy.
Furthermore, vendors of RDBs provide SPARQL interfaces to the tables, and vendors
of triplestores provide SQL interfaces to theirs. Back in the 1980s, query systems like
TQA might have been successful if their semantics could be derived as a byproduct of
the database design methodology. In fact, Figure 2 shows a proposal from that era that
could have and should have supported such systems (Tsichritzis & Klug 1978).

User Interface

Fig. 2. The ANSI/SPARC conceptual schema
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The conceptual schema at the center of Figure 2 represents semantics, which
includes logic and ontology. Unlike the layer cakes, Figure 2 makes semantics the
foundation and relegates syntactic formats to the periphery. The same conceptual
schema could represent the semantics of data organized in tables, networks, or
hierarchies. And the meaning would remain constant under mappings to different
application programs or user interfaces. Instead of leaving semantics for the
comments, tools based on Figure 2 could begin with words and phrases the SMEs
understand and create lexicons for systems like TQA. Unfortunately, the final C of
SPARC represented a committee with conflicting experts pulling in different
directions. The conceptual schema remained a technical report, and not a standard.

In summary, the goals of the Semantic Web were good, but the emphasis on syntax
was a distraction. The strategy must begin with semantics: knowledge representation,
reasoning methods, and knowledge acquisition. Guha had hoped to design a simpler
notation than CycL, but the syntactic details of the components — RDF, RDFS,
OWL, RIF, and SPARQL — dwarf the CycL manual in size and complexity. For
special purposes, the semantics of a notation like SKOS (Simple Knowledge
Organization System) is defined by a mapping to a larger component like OWL. That
mapping enables OWL applications to use knowledge entered through SKOS. But
there is no unified semantics that can define, relate, and share knowledge among all
the components. Cyc, for example, allows each item of knowledge to be entered once
and be reused in as many different ways as necessary. But the components of the
layer cake have overlapping semantics, they tend to compete with one another, and
any sharing that might occur is on an ad hoc basis. A coherent strategy should build
on a unified semantic foundation, simplify knowledge acquisition, and promote the
original goals of sharing and reusing knowledge among all systems connected through
the WWW.

5 Language Analysis and Reasoning

The Holy Grail of knowledge acquisition is to design computer systems that can read
a textbook and map it to logic. But that task is difficult, even for logicians. Hans
Kamp, for example, was a graduate student at UCLA when he got a summer job at the
RAND Corporation to translate an article from the Scientific American to logic. His
thesis advisor, Richard Montague (1970), had claimed that

There is in my opinion no important theoretical difference between
natural languages and the artificial languages of logicians; indeed, I
consider it possible to comprehend the syntax and semantics of both
kinds of languages within a single natural and mathematically precise
theory.

But when Kamp tried to translate the article from English to logic, he found that the
mapping was far more difficult than anyone had thought. Some factual statements were
fairly straightforward. But most sentences required new ontological assumptions, new
translation rules, and sometimes ad hoc decisions about word senses and anaphoric
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references. That experience led him to develop discourse representation theory (DRT) on
formal principles that went beyond Montague’s (Kamp & Reyle 1993). Other linguists
and logicians added more details and variations. But by the early 21st century, most of
them agreed with Kamp that the basic principles “have to be thought through anew.”

Even though a direct translation from language to logic or other computable form
is not always possible, the opposite mapping from a formal language to a natural
language is much easier and more systematic. It is also possible to relate formal
programs to the documents that describe them, but the task requires a looser kind of
analogy rather than a direct translation. The VivoMind Analogy Engine (VAE), for
example, was used in legacy re-engineering: analyze and compare the programs and
documentation of software in daily use that was up to forty years old (LeClerc &
Majumdar 2002; Sowa & Majumdar 2003). Although the documents specified how
the programs were supposed to work, nobody knew what errors, discrepancies, and
obsolete business procedures might be buried in the code. Following is an excerpt
from one of them:

The input file that is used to create this piece of the Billing Interface for
the General Ledger is an extract from the 61 byte file that is created by
the COBOL program BILLCRUA in the Billing History production
run. This file is used instead of the history file for time efficiency. This
file contains the billing transaction codes (types of records) that are to
be interfaced to General Ledger for the given month.

For this process the following transaction codes are used: 32 — loss on
unbilled, 72 — gain on uncollected, and 85 — loss on uncollected. Any
of these records that are actually taxes are bypassed. Only client types
01 — Mar, 05 — Internal Non/Billable, 06 — Internal Billable, and 08
— BAS are selected. This is determined by a GETBDATA call to the
client file.

No computer program could translate that text to an executable program, and even
professional programmers would need much more analysis before deciding how to
design the system. The problem of comparing previously written programs to the
documents that describe them is much easier, but not trivial. Note that the text
contains a large amount of jargon, and it mixes English words with the names of
programs, files, and variables. Instead of references by name, some files are
mentioned by descriptions such as “the 61 byte file that is created by the COBOL
program BILLCRUA.” The text also uses ad hoc syntax, such as “32 — loss on
unbilled.”

The project required an analysis of 100 megabytes of English, 1.5 million lines of
COBOL programs, and several hundred JCL scripts, which called the programs and
specified the data files and formats. Over time, the English terminology, computer
formats, and file names had changed. Some of the format changes were caused by new
computer systems and business practices, and others were mandated by different versions
of federal regulations. The goal was to generate an English glossary of all processes and
data, to note and generate cross references for all changes of terminology and definitions
over time, to define the specifications for a data dictionary, to create dataflow diagrams
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of all processes, and to detect inconsistencies between the documentation and the
implementation. Off-the-shelf software was available for analyzing COBOL programs,
but not for analyzing the documentation and relating it to the programs. A major
consulting firm estimated that the project would require 40 people for two years to read
all the documentation, relate it to the software, create all the cross references, and
produce the desired results.

For this project, Arun Majumdar and André LeClerc produced those results in 15
person weeks instead of 80 person years. To do that, they used VAE combined with a
language analyzer called Intellitex, which translated English to conceptual graphs.
The elapsed time was 8 weeks: 4 weeks for design, ontology, and additional
programming for I/O formats; 3 weeks to run Intellitex, VAE, and the new programs
on all the data; and 1 week to produce a CD-ROM with the results, which were
exactly what the company had asked the consulting firm to produce.

During the computation, the combination of VAE and Intellitex analyzed the English
documentation in terms of the semantic patterns specified by the COBOL programs and
JCL scripts. Key to that analysis was a common knowledge representation in conceptual
graphs (Sowa 2008). Even more important were the strategy and tools for using CGs:

e The first step is to use off-the-shelf grammars to analyze COBOL and JCL
and add a back-end for generating conceptual graphs instead of executable
instructions. That analysis also generates a lexicon of all the names of
programs, files, and variables with cross references to the text sources and
the CG translations.

e The next step uses VAE to index the CGs from COBOL and JCL to make
them accessible while Intellitex is analyzing English. For N graphs, the
indexing time is proportional to (N log N), but the time for VAE to find all
graphs within a given semantic distance of a particular graph is proportional
to (log N).

e Since English sentences are frequently ambiguous, many different CGs can
be derived from the same sentence. During the analysis, VAE checks each
option against the previously generated CGs to determine which ones are the
most likely. Any CGs that match something derived from the programs are
saved and indexed. The others are discarded as irrelevant.

e Pronouns and other anaphoric references are resolved by matching the newly
generated CGs to other CGs derived from the same document. Names and
vague references like “the 61 byte file” can be matched to any CGs derived
from the entire corpus. Context surrounding the coreferent nodes can also be
used to resolve ambiguities.

When VAE compares a CG derived from the current sentence to CGs derived from the
programs or other documents, an exact match confirms the accuracy. If one CG has more
or less detail than the others, there is no contradiction. Perhaps some program didn’t need
all the detail, or some document didn’t mention it. But sometimes two CGs might
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represent different pathways through the background knowledge. Figure 3 shows
different paths through the company’s database from market to location.

Location «<—— Employee

7N\ /7

Client HQ Business Unit

N /7

Market

Fig. 3. Different paths for relating market to location

VAE discovered that the CG derived from the documentation showed that the
company’s market regions are determined by the location of its business units. Sony
Pictures, for example, would be in the California market, where the company has a
business unit. But the CG derived from the COBOL programs shows that the market
region is computed from the location of the client headquarters. Sony Pictures would
therefore be in the Japan market. Some programmer had made a mistake, and
management was making decisions based on incorrect assumptions. Nobody noticed
the discrepancy until VAE discovered it.

As another example, the ontology implied that every employee is a human being
and no human being is a computer. But CGs derived from COBOL showed that some
employees were computers. The trail of pointers from those CGs led to a comment
buried in a COBOL program that described an ad hoc patch. Back in 1979, two
computers were used to assist human consultants. The company had standard
procedures to bill customers for time spent by their employees, but there was no
provision to bill for computer time. Therefore, the programmer named the computers
Bob and Sally and assigned employee IDs to them. This was a “temporary” patch that
would be removed when the project was finished. But few people clean up after
finished projects. As a result, Bob and Sally remained employees for over 20 years
before VAE discovered them.

Intellitex has a simple grammar, but it always produces some CG for any sentence.
If a word is not in its lexicon, Intellitex capitalizes the word as a starting hypothesis
about the associated concept type. If no parse is found for some string of words, it
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uses the completely unspecified relation (Link) to connect adjacent words. As an
example, Intellitex would translate the phrase “32 — loss on unbilled.” to a
conceptual graph of the following form:

[Integer: 32]-(Link)-[Punctuation: "—"]-(Link)-

The first line contains a concept of the integer 32 linked to some punctuation linked to
a CG for the phrase loss on unbilled. The concept [Entity] in the second line is
derived from a canonical graph for the participle unbilled, which by default would
have some unspecified entity as its theme (Thme). Then VAE would compare this
graph to the previously generated graphs to find anything similar. For this example,
VAE found comments in the data division of a COBOL program that mentioned
“transaction code” and other comments that related 32 to the phrase “loss on
unbilled.” Similar phrases, such as “72 — loss on uncollected,” used the same
punctuation for the same semantics. But VAE also found that the syntactically similar
phrase “06 — Internal Billable” was related to client types rather than transaction
codes. To derive generalizations, detect exceptions, and refine hypotheses, some
learning algorithms were later combined with VAE.

More recently, a new VivoMind Language Processor (VLP) has replaced the old
Intellitex (Majumdar et al. 2008, 2009). One of the first applications was for analyzing
documents about oil and gas fields, and answering extended queries by geologists who
wanted to evaluate the potential for exploring new regions. Two geologists visited the
VivoMind offices on a Monday morning and brought a collection of 79 documents in
the geosciences domain. They ranged in size from 1 to 50 pages, some described sites of
interest for oil and gas exploration, and others were chapters from a textbook on
geology that VLP could use to extract background knowledge. The documents were not
tagged or annotated in any way, except for the usual formatting tags intended for human
readability.

The first test was to run the documents through VLP without adding any domain
ontology and let the geologists ask questions. The answers were not bad, but they
weren’t much better than a typical search engine applied to the same documents. As a
result of the analysis, VLP also produced a list of all terms that were not found in its
lexicon. For the next four days, the geologists worked with the VivoMind staff to
generate a domain ontology with lightweight and middleweight semantics. The first
task was to classify the unknown words in several categories, such as Rock,
RockFormation, Hydrocarbon, and GeologicalAge. Another task was to add domain-
dependent word senses for common words, such as basin, cap, corridor, fan, feeder,
field, and reservoir. The third task was to add a modest amount of background
knowledge for resolving some of the ambiguities. The first task, which used
lightweight semantics, was completed in about two days. It made a major
improvement in the quality of the answers.

The next two tasks used Common Logic Controlled English (CLCE) to state some
middleweight semantics. Instead of formal definitions, new word senses for the
common words were introduced by stating simple CLCE sentences that use them in
the new sense:
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A cap on a well is a barrier.

A field that contains a hydrocarbon is under
ground.

A reservoir that contains a hydrocarbon is under
ground.

The background knowledge was also stated in CLCE:

Some ground is under water.

No city is under water.

Every reservoir that contains a hydrocarbon is
in a field that contains a hydrocarbon.

The geologists learned to write such statements during their visit, and they continued
to add more background knowledge after they left. CLCE is general enough to
represent full first-order logic (Sowa 2004), but this level of detail was sufficient for
the task. Following is a sample sentence:

The Diana field is situated in the western Gulf of Mexico
260 km (160 mi) south of Galveston
in approximately 1430 m (4700 ft) of water.

If the sentence had ended with the word Mexico, the syntax would be unambiguous.
But the measures in the next two lines, the parenthetical expressions, and the points
for attaching prepositional phrases create ambiguities. Is Diana field or the Gulf of
Mexico south of Galveston? What is in the water? Diana field, the Gulf of Mexico, or
Galveston? After a devastating hurricane, Galveston was under water, but background
knowledge should imply that cities are usually not under water. Majumdar et al.
(2008) describe the VLP organization and how it uses background knowledge to
resolve such ambiguities.

After they had added sufficient semantics to the domain ontology, the geologists
who developed it invited another geologist from an oil company to test the system. He
brought a small file that described a prospective site. He wanted VLP to compare all
the sites it had analyzed to the following description, rank the sites that were most
similar, and determine both the similarities and the differences for each site:

Turbiditic sandstones and mudstones deposited as a passive margin
lowstand fan in an intraslope basin setting. Hydrocarbons are trapped
by a combination of structural and stratigraphic onlap with a large gas
cap. Low relief basin consists of two narrow feeder corridors that open
into a large low-relief basin approximately 32 km wide and 32 km long.

From the 79 documents it had analyzed, VLP found 17 sites that had some similarity.
The most similar was in the Vautreuil region of France. It based that evaluation on
three of the 79 documents. The report that described the Vautreuil site was essential,
but VLP also extracted information from two chapters of the geology textbook in
order to relate the geologist’s query to that report. The screen shot in Figure 4 shows
how those documents are related to the query.
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Fig. 4. Relating documents to a query

The oval at the center of Figure 4 represents the query. At the right is a short
description of the Vautreuil region. That summary was extracted from a site report
about the Vautreuil region written by McCaffrey and Kneller, represented by the box
at the top. The six ovals surrounding the query oval contain English phrases, whose
translations to conceptual graphs led to the documents used to answer the query.
Three of those phrases were not found in the site report, but they led to the box for
Chapter 45, from which VLP extracted CGs with background information that it used
to interpret the site report. The three phrases above the query oval occurred in both
the site report and Chapter 44 of the textbook. The result is a network of conceptual
graphs that connect the geologist’s query to the Vautreuil report via background
graphs derived from chapters 44 and 45. The little red triangles in Figure 4 are links to
windows that display relevant paragraphs from the source documents. Clicking on
detail leads to a side-by-side comparison of the similarities and differences between
the Vautreuil site and the site described by the geologist’s query.

The VLP analysis goes into greater depth and precision than current systems for
information retrieval (IR) and information extraction (IE). For each of the 17 sites
related to the query, VLP found multiple documents that contained CGs derived from
the query, CGs from the site report, and CGs from the textbook or other reports that
contained background information. In a sense, VLP “learns” new information by
reading a book. But for each query, it focuses only on those parts of the book that are
useful for relating the query to the answer. This method is very different from current
IR, IE, and DB systems:
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e IR systems typically use a “bag of words” method to measure the similarity
of a query to a document that might contain an answer to that query. But they
don’t extract the information and summarize it in a table or paragraph. It’s
possible to apply IR methods to individual paragraphs, but that technique
would miss documents in which the significant words are scattered in
different paragraphs. And no IR systems connect partial information from
multiple documents.

e [E systems extract particular pieces of information, and some can link
multiple pieces from different documents. Typical IE systems use predefined
templates that specify expected syntactic and semantic patterns, but they
have stagnated at about 60% accuracy. Hobbs and Riloff (2010) noted “it is
not clear what we can do to overcome [that barrier], short of solving the
general natural language problem in a way that exploits the implicit relations
among the elements of a text.” As Figure 4 shows, VLP doesn’t need
predefined templates. CGs derived from the query enable it to find implicit
relations in a textbook and exploit them to generate precise answers.

e DB systems can relate and combine information from multiple sources, but
they use query languages like SQL and SPARQL. Some support English-like
front ends, but they face the same customization problems as TQA and Cyc.
Furthermore, all the information they access must be predigested and
translated to whatever format the database system requires.

Although conceptual graphs are defined as a formal logic, precise logic cannot be
derived from a vague sentence. The CG that represents a sentence is actually derived
by combining CGs from previously acquired knowledge. The precision of the result is
determined by the precision of the original CGs. This method violates Frege’s
principle of compositionality, which says that the meaning of a sentence is derived
from the meaning of the words it contains and the grammar rules for combining
words. Montague was a strict adherent: each word is defined by one or more logical
expressions, and each grammar rule has an associated semantic rule for combining
those expressions. Montague allowed some words to have multiple meanings, but the
grammar rules check semantic constraints to determine the correct option in each
case. To support context-dependent references, Kamp’s DRT uses information outside
the sentence to determine interconnections. Both neat and scruffy systems make
tradeoffs between the amount of meaning stored in the lexicon and the amount
derived from context or general background knowledge. The high-speed analogy
engine enables VLP to find and use much more background knowledge than most
NLP systems.

In summary, VLP uses a combination of lightweight, middleweight, and
heavyweight semantics. For any text, the broad outline of meaning comes from
lightweight resources such as WordNet combined with middleweight ontologies with
few axioms and definitions. The detail comes from background knowledge
represented in conceptual graphs. At the heavyweight extreme, those CGs may be
derived from formal logics, programming languages, and highly structured databases.
The Common Logic standard (ISO/IEC 2007) specifies a model-theoretic semantics
for CGs. But CGs have extensions beyond the CL standard (Sowa 2006, 2008), and
they can also be used with “scruffy” heuristic methods.
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6 Integrating Semantic Systems

Semantic systems have different interfaces for people with different requirements and
skills. People with no training in programming or artificial intelligence, either casual
users or subject-matter experts, should have interfaces that take advantage of their
knowledge of the subject and their knowledge of their native language. Conventional
programming tools and Al languages require different kinds of skills, and developers
with experience in either or both should be able to collaborate. Automated and semi-
automated tools should assist all developers in the stages of design, implementation,
testing, and integration with other systems. The examples of Systran, TQA, Tesco,
Cyc, and VLP illustrate the issues:

Systran required highly trained linguists to design the dictionaries, but the
resulting translations could be read by large numbers of people with no
special training. TQA required DB administrators with special skills to
customize the system for every application, even though the number of users
of an application might be small. The cost of customization per TQA user
was much higher than the cost per Systran user.

Tesco wanted a more flexible system that could provide helpful suggestions
to customers who visited their website. The software vendor designed a
reasoning system based on OWL, but Tesco employees could not modify it.
Ellis designed a new system with the same kind of interface for Tesco
customers, but with a simpler interface for Tesco employees. Ellis’s design
reduced the cost for updates by Tesco, but many software vendors don’t have
employees with PhDs in computer science.

Cyc was developed by 10 person-centuries of programmers and PhDs in
several different fields. The cost of customizing Cyc is similar to the cost of
customizing TQA, and success depends on the number of users per
application. Each client must pay Cyc experts to customize the Al
technology. That is a source of revenue for Cycorp, but it limits their market
to large clients that can afford to pay.

The Tesco system used a version of controlled English to enable employees
with no Al training to read and update the knowledge base. The language for
TQA users was called English, and it had greater expressive power than
Tesco English, but it was just as tightly controlled. VLP was designed to
process unrestricted natural languages, but it also supports controlled English
for SMEs who update, supplement, and correct its knowledge base. All three
systems show that users who know the subject matter can adapt to controlled
NLs and use them effectively.

People with every level of skills find diagrams helpful as a supplement to
both natural and artificial languages. For the legacy re-engineering project,
the VivoMind system translated the internal conceptual graphs to the more
conventional dataflow diagrams and system structure diagrams used by
programmers and systems analysts. The screen shot in Figure 4 is one of
several kinds of diagrams that VLP generates from the internal CGs. They
enable a geologist or other SMEs to explore the network of inferences and
associations at different levels of detail. At each step, the system can follow
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the pointers from any CG to display the paragraph or paragraphs from which
it was derived.

All five systems connect Al technology with conventional software, but the esoteric
theories, languages, and methodologies of Al limit their use by most programmers
and webmasters. With relational databases, Codd (1970, 1979) introduced first-order
logic as the semantic foundation for database query languages. The conceptual
schema illustrated in Figure 2 was an attempt to introduce even more semantics into
database systems. It stimulated thirty years of research and collaboration between the
Al and database communities, but most of that technology remains isolated from
mainstream IT. To be successful, Al developers must find ways to simplify their
development tools and integrate them with commercial software.

In contrast with the slow transfer of Al research to applications, the original World
Wide Web addressed a specific problem with a well-defined goal: combine hypertext
with the Internet, and let physicists get any report by clicking on a citation. It worked
so well that everybody wanted to use it. The Semantic Web, however, began with the
vague idea of adding semantics to the links. Al researchers, who were eager to
promote their tools and theories, proposed them to the W3C. Those proposals led to
the boxes in the layer cakes of Figure 1. Meanwhile, skeptics like Shirky (2005)
claimed that “ontology is overrated.” Like the conceptual schema, ontology is a fertile
field for research, but most programmers who use XML for data interchange ignore
OWL.

Yet the Semantic Web has been developing a valuable set of tools, and they should
be better integrated with both Al technology and more conventional software. One
way to begin is to fill the box for “unifying logic” in Figure 1 with Common Logic
(ISO/IEC 2007). The semantic foundation for Common Logic is based on a proposal
by Hayes and Menzel (2001). Guha and Hayes (2002) adopted that semantics
for RDF, and it is compatible with every logic in the layer cakes. Common Logic
has also been adopted as the unifying logic for the UML diagrams, which are widely
used to specify conventional software (OMG 2010). A unifying logic can support
development tools with precisely defined mappings between components from
different communities with different notations and methodologies.

A promising opportunity for semantic applications is the movement toward Linked
Open Data (LOD), and the largest single collection of data is held by the US
Government. Vivek Kundra, the chief information officer, summarized the issues:

Just consider the huge experience gap that Americans have when they
go online to make a hotel reservation or buy a book through Amazon
versus how they interact with the public sector — whether it’s paying
taxes, applying for student aid or applying for Social Security benefits.
(Quoted by Moyer 2010)

Yet Kendra’s examples are far more complex than buying a book or reserving a hotel
room. Commercial websites handle those routine transactions very well, just by using
conventional programs and databases. For complex reservations, travelers prefer to
talk with a human agent, even if they have to pay a service charge. For most
commercial sites, the help facilities are notoriously poor, and it’s unlikely that they
could answer the kinds of questions people would ask about taxes, student aid, or
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social security. Search engines are popular because they’re easy to use for finding
documents, but some knowledgeable person or computer would have to read and
understand them to answer such questions.

In the interview, Kendra used the term data sets, not documents, and most of those
data sets are stored in databases. The initial goals are to make the data accessible by
interfaces to the web, but those interfaces need not use Al technology. For many of
them, tags that mark the datatypes are the only semantics. Such tags are useful for
both conventional software and Al technology, but detailed reasoning requires more
semantics. Fortunately, Al technology can also derive the semantics. The US
Government is the world’s largest publisher, and every data set is described or
mentioned in many documents. A user-friendly interface should relate that data to the
documents and answer questions by extracting related paragraphs. But most LOD
projects aren’t using NLP methods to process the documents and relate them to the
data sets.

The VivoMind examples in Section 5 show how an integrated system of semantic
tools can process both structured data and unstructured texts. The legacy re-
engineering project shows that formal semantics derived from a subject can be used to
interpret reports and manuals about the subject. The method of answering a
geologist’s query shows how NLP systems can integrate semantics derived from
multiple sources to analyze documents and answer questions. These methods are at
the cutting edge of applied research, but they are likely to evolve rapidly during the
coming decade. That evolution is inevitable, and better tools can facilitate the
transition.
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Abstract. Current approaches to interoperability focus on the technical aspects
related to connecting systems through the development of technical standards and
frameworks and the semantic aspects of exchanging data through the development
of common reference models (CRM), ontology or federated schemas. This chapter
will show that those approaches are computationally equivalent and will formally
define what pure machine to machine semantic interoperability is as opposed to
human in the loop interoperability where a human is needed to assess semantic
equivalence. A formal method for validating federations under certain conditions is
also provided. The validation process looks at general model properties of the
composed artifact, such as ensuring that the federations execute correctly without
hanging. Next, the aggregated execution of the federation is formally compared
with the execution of a reference federation. Comparisons consider time-based
orderings and semantic closeness according to an ontology that describes
federations and exchanged data.

Keywords: Modeling, Simulation, Interoperability, Composability, Validation.

1 Introduction

The term interoperability’ is used to mean different but closely related things
depending on the application area. Nations and companies are ready and willing to
invest in “interoperable solutions” even though it is not clear what that really means
or what an interoperable solution represents. It is however clear that just like
composition, and validation’, interoperability is more a practice than a science. As a
result it is difficult to come to a consensus on what the problems inherent to
interoperability are, how they are categorized and whether they can be solved. Issues
such as multi resolution, multi scope and multi structure that are not central in
software interoperation take on a new dimension in model based interoperation
because each system is a purposeful abstraction of reality [1]. Consequently solutions

! The work on the formal aspects of interoperability is drawn from [38].
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dealing with technical issues such as connectivity or syntactical alignment while
sufficient for software and hardware interoperability fall short when it comes to
model based systems [2].

One of the main roadblocks to interoperability for model based system is the issue
of semantic inaccessibility. As stated in [3]:

“The semantic rules of the component simulation tools and the semantic intentions of
the component designers are not advertised or in any way accessible to other
components in the federation. This makes it difficult, even impossible, for a given
simulation tool to determine the semantic content of the other tools and databases in
the federation, termed the problem of semantic inaccessibility. This problem manifests
itself superficially in the forms of unresolved ambiguity and unidentified redundancy.
But, these are just symptoms; the real problem is how to determine the presence of
ambiguity, redundancy, and their type in the first place. That is, more generally, how
is it possible to access the semantics of simulation data across different contexts?
How is it possible to fix their semantics objectively in a way that permits the accurate
interpretation by agents outside the immediate context of this data? Without this
ability—semantic information flow and interoperability—an integrated simulation is
impossible”.

The challenge is therefore to make data in systems semantically accessible to other
systems so that they make use of it. The idea that systems can access the semantics of
data produced by other systems without a human in the loop making decisions about
semantic equivalence is interesting but is it possible? In this chapter, we will attempt
to answer this question by presenting what semantic interoperability means for a
machine and how to validate a federation of interoperating machines. The first part of
the chapter will focus on defining interoperability and examining how it is currently
understood. We will also formally define what interoperability is for machines at the
data level. The second part will focus on validating a federation of interoperating
machines and ascertaining that the federation is behaving in accordance with the
desired expectations. We will conclude with a series of observations and
recommendations for agent supported machine to machine interoperability at the
semantic level.

2 State of the Art in Interoperability

In this section, we examine definitions of interoperability in order to derive a shared
understanding of the basic expectations when we use the term “interoperability”.
Webster’s online dictionary defines interoperability as

“the ability to exchange and use information (usually in a large heterogeneous
network made up of several local area networks)” [4]
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The Department of Defense (DoD) defines interoperability as

“the condition achieved among communications-electronics systems or items of
communications-electronics equipment when information or services can be
exchanged directly and satisfactorily between them and/or their users. The degree of
interoperability should be defined when referring to specific cases.”[5]

The Institute of Electrical and Electronics Engineers (IEEE) defines interoperability as

“the ability of two or more systems or components to exchange information and to
use the information that has been exchanged”|[6].

Another definition of interoperability is proposed by the International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC) as

“The capability to communicate, execute programs, or transfer data among various
functional units in a manner that requires the user to have little or no knowledge of
the unique characteristics of those units.”[7]

While these definitions are not formal, they emphasize two points that are recurrent in
all of the working definitions of interoperability found in the literature:

Information Exchange: Interoperable systems are characterized by their ability to
exchange information. It is also clear from these definitions that interoperability is at
the system level and more precisely systems that are implemented on a computer.
This definition also takes the position that interoperability is a condition that must be
achieved which implies that systems are interoperable when they are interoperable.
The IEEE definition defines interoperability as inherent to a system (its ability to
exchange information) which implies that systems are interoperable if they are
interoperable. These two definitions are both tautological and contradict one another
which show that the understanding of what interoperability is at the basic level is not
consensual. The ISO definition focuses solely on the technical side of interoperability
and ignores the semantics and pragmatic aspects of data i.e. its usefulness. However,
it is still an applicable definition because it talks about data instead of information.

Usability of Information: The other aspect stressed in these definitions is the notion of
usability or usefulness of the information exchanged. The natural question that arises
immediately is who determines what is useful and is this determination done before,
during or after the information exchange. In the case of the IEEE, the use of
information is determined by the receiving system as the wording indicates, which
implies that not only the receiving system is able to process information it can also
determine which information it can use and which it should throw out. It also points
to the fact that there is a direction of information flow and it is important to identify it
during interoperation. The difficulty for machine to machine interoperability is in this
second part because machines do not have the ability to ascertain meaning as humans
do and typically treat data as bits and bytes. Meaning has to be imposed from outside
the machine through the use of models (in this case a protocol or standard is
considered a model).
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The distinction between data and information is important because all information is
data but the converse is not true. According to [8], data are simply a set of symbols, facts
or figures, while information is data that are processed to be useful and provides answers
to questions such as “who”, “what” etc.... The differentiation between data and
information is essential because typically computers deal with data while humans deal
with higher levels of abstraction such as information, knowledge and wisdom [9].
Nonetheless, it is possible to represent information in a computer by relating data in a
structure. The term interoperability as described in the earlier definitions point to not only
information but useful information. In Ackoff’s categorization, useful information is
knowledge and gaining understanding through knowledge is the ultimate goal of
interoperability. However, there must be a transition between data, information and
knowledge that allows a formulation of a useful formal definition of interoperability.

The next important question is the determination of what is useful. In the current
state of the art, the determination of what is useful is completely dependent on the
system receiving the data and the sending system is not able to determine whether
what is exchanged is useful. The current approach is to introduce an interface that will
ensure usefulness by codifying all relevant transactions and translations between
machines. The interface qualifies as a model whose role is to broker information
between models. If we want a machine to determine what is useful such a model is
required and the machine must be able to generate it. However, the introduction of an
interface does not answer the question as to what is useful and actually leads to a
paradox if we were to use a machine (read software agent) to generate the interface:

Paradox 1: Let’s consider two models A and B which are interoperable through an
interface 1. If I is a model then A and I are also interoperable and therefore an
interface I is required between A and 1. 1, is also a model and therefore and interface
I, is required. To generalize, interface I, and A are interoperable requires and
interface I,,; which leads to an infinite sequence.

The same logic can be applied to I and B. Consequently, the introduction of an
interface is an outcome of interoperability not interoperability itself. For machines,
this paradox resolves itself at the bit and bytes level as there is usually an agreement
on hardware protocols to directly connect machines. However, the problem remains
intact in that we still do not know what interoperability means for a machine let alone
what semantic interoperability means. From the definitions above, we do know that
interoperability involves the exchange of data and the use of data once it is
exchanged. Consequently, it is safe to conclude that understanding what the semantics
of data are for a machine is a good starting point for understating what semantic
interoperability means for a machine.

The next section examines data models and Data Modeling Theory (DMT) in order
to explain the semantics of data. DMT has focused on defining data models and
conveying meaning between machines over the past forty years. Current approaches
to data modeling and databases such as the Entity-Relationship (ER) model [10] and
the Relational Model (RM) [11] are some of two of the well known models of DMT.
In the case of machine to machine interoperability, each machine has an internal
representation of data, and in this part of the chapter, we focus on data solely without
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any direct concerns for the functions that produce or consume data. These functions
are examined when we discuss federation validation as they capture part of the
behavior of the federation.

2.1 Semantics of Data for a Machine

A data model in Data Modeling Theory is usually a means to store data that is
relevant to an activity. Typically, this model is caputred as a database which is
different from a model that is developped to answer a modeling question. In this
chapter, we are interested in models in the Modeling and Simulation (M&S) sense of
the term i.e. a purposeful abstraction of a referent (real or imagined things).
Consequently, semanctic machine to machine interoperability is similat to M&S
interoperability and the problem we are addressing can be reduced to identfying how
agents can help enable semantic machine to machine interoperability. The model in
DMT is an abstraction of reality but not a purposeful one in the M&S sense. The
model of data represented in machine must be a purposeful one because it captures
the meaning intended by the designer of the model. In [12] the author argued the need
to differentiate between the real world and the model of the real world and showed
that if a question that is relevant to the real world is posed to a model of this world
that did not consider the question in the first place, it leads to the problem of
incomplete information. This problem simply does not exist in M&S because of the
purposeful nature of the model. Further, different modelers might model the same
thing differently, one as an object the other as an attibute. Objects, attributes and
value domains are possible representations of a referent. The selection of objects,
attibutes and value domains depends on the purpose of the model or the modeling
question one is trying to answer.

DMT has focused on capturing and communicating more semantics through two
main forms. The first is the introduction of hierarchical structures to represent how
things are related and the second is the reliance on terms to carry the meaning of what
is represented. While the reliance on structure is adequate for machines as they can
easily represent and capture structures, the reliance on terms to carry meaning
presents a central problem. Aside from the issue that machines cannot understand the
meaning of terms, the problem is that a term is a model because just like any model it
is an abstraction of reality. This observation leads to another paradox that is stated as
follows:

Paradox 2: Given a term that has some meaning, it takes a least one term to describe
it. The describing term needs at least one term describe it, etc..., which leads to an
infinite recursion.

This paradox is similar to the “symbol-grounding problem” found in Artificial
Intelligence [13]. In order to avoid this paradox, a starting point must be provided in
the form of either an initial set of terms that all agree upon or a description of terms
that all can refer to. This description of terms can be in a dictionary, a taxonomy or an
ontology. The problem in agreeing to an initital set of terms is that each machine can
have an internal representation of data using its own set of terms. Therefore, Paradox
2 is avoided not by agreing on a common set of terms to be used universally but by
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establishing equivalence between sets of terms. The first condition for establishing
equivalence is to guarantee that each term corresponds to a unique string within a
model and that the term has one and only one meaning (imposed from the outside).
This notion is formally captured in the next section as a domain.

The structure of models as reviewed in this section are assumed to be unique for a
given referent. For machine to machine interoperability, there exist multile possibly
equivalent structures. Further the structure addresses how things are related and not
how they change with respect to one another. DMT needs the strucure for the purpose
of data integrity meaning data that belongs together is always provided as whole or
not at all. However, in the current understanding of interoperability, the idea of
integrity is not explicitely supported due to the independence assumption which is
described as follows:

Independence assumption: For a given model, each element within the model exists
independently from any other element.

The independence assumption is the driving force behind the definition of
interoperability and the inteoprability approaches reviewed in the previous section.
However, this assumption leads to multiple versions of the truth in a federation of
models, that is to say that if two identical elements participate in different structures
they might change differently for the same input. As a simple example, let’s consider
model one where a tank has a crew (tank and crew are objects that are related ) and
model two where a crew is part of a tank (crew is an attribute of the tank). If the
models interoperate over tank or exchange information about the tank, the destruction
of a tank results in the destruction of the crew in model two while the crew might still
be alive in model one if they were not in the tank at the time it was destroyed. In this
federation, it is possible for the crew to be both dead and alive at the same time.
Consequently in defining machine to machine interoperability, it is essential to avoid
the independence assumption and treat it as a special case.

This section motivates the need to separate the structure of models from the
meaming of terms. The structure of models in Data Modeling Theory is applicable to
M&S and brings the additional element of data integrity to avoid the independence
assumption at work in the approaches to interoperability. The reliance on terms to
carry meaning leads to an infinite recursion which can be avoided by creating a
domain of validity for the terms used in a model in the form of a set and allowing
equivalence relations to be established between sets. The section shows that the
definition of a data model in M&S should take into account the modeling question
and allow all possible representations of the referent to be captured. The separation
between the referent and the model of the referent are shown to be essential in
interoperability. The next section introduces a formal specification of data in
machines based on the discussion presented in this section. This formal specification
takes into account the aspects of data from Data Modeling Theory and conceptual
modeling as well as additional aspects essential to M&S.
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2.2 Formal Representation of Data for a Machine

A formal definition of a model has to take into account not only the model but also its
relation to the referent on one hand, and its relation to the simulation on the other
hand. In order for a machine to account for the semantics of the model, it is important
to decouple the description of the model from its representation and its representation
from its implementation. The three terms-entities, properties, value domains-
constitute the core of a data model in Data Modeling Theory. For agents, this chapter
adds the notion of a domain which is similar to the traditional view of the value
domain (a collection of values that an attribute can take) but is generalized to
encompass the domain of discourse. Finally, the term element is used to mean
anything real or imagined that can be described and/or observed. The five terms are
defined as follows:

Elements are real or imaginary things.

Entities are abstractions of elements. It is worth noting that by this definition any
abstraction including processes and relationships are considered entities.

Properties are the characteristics of an element.

Symbols are the representations of elements. Symbols can be numbers, strings,
images, text or a combination of symbols.

A domain is a collection of unique symbols. The domain is the set of elements that
belong to a context. Every element is uniquely identifiable within a given domain.

It is important to note that elements are used to separate the notions of entities and
properties and how they are related. Elements can be modeled as entities or properties
and then related to form the entity-property relationship. This separation of elements
and how they are represented reflects the general case and therefore subsumes the
entity-property-value triple introduced by the ER and RM.

Given these definitions, let us first formally capture a conceptualization of the
referent:

Definition 1. Let S be the set of elements, Q the set of entities, I1 the set of properties,
V the set of symbols. A conceptualization S is formally captured by the categorization
of elements into entities, properties or symbols. Formally a conceptualization S is a
partial function F defined such that:

Qif Sis an entity
F(S) =<1 if Sis aproperty
Vif Sis asymbol

A function is a binary relation between sets in which every ordered pair has a
different first member. A partial function is a function for which not every member
participates in the relation [14]. The definition of a conceptualization as a partial
function accounts for the complexity of elements and the fact that it is impossible to
capture them completely for non-trivial cases. Staying with functions, a bijection,
surjection and injection are defined as follows [14]:
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Injection: For every element in S, x, x = F(S).
Bijection: A function is bijective if it is injective and surjective.

There is no requirement that reality be injective (distinct elements of S map to
entities, properties or symbols) or surjective (every entity, property and symbol in
their respective set must refer to an element) during the conceptualization process.
However, once a commitment is made, a representation (capture) of F(S) must be
bijective and consequently always have an inverse. An inverse is a function G such
that for an element s and an entity, property, or symbol x, G(x) = s if F(s) = x.

Definition 2 captures the need to express the conceptualization process as a
bijective function.

Definition 2. An element within S is an entity, a property or a symbol, otherwise
stated the three sets are mutually disjoint.

The introduction of the domain as a collection of symbol provides one way to avoid
paradox 2. To illustrate, let’s consider the following problem absent the notion of a
domain:

Given two conceptualizations, is it possible to determine whether they are equal?

This question is central in interoperability as it determines whether the information
exchange is meaningful. Since conceptualizations are partial functions and two
functions F and G are said to be equal if Fs=Gs for every element s, this question
can be reduced to a problem known as the Equivalence Problem and has been
shown to be unsolvable in the general case (Hein, 2002). For machine to machine
interoperability it means that, in general, given two representations we cannot
determine whether they refer to the same referent. This finding is not surprising
considering that even for humans this is a difficult endeavor. Consequently, semantic
interoperability for machines is limited to comparing sets of terms and structures
without regard to what it is they represent in the real (or imaginary) world.

Having established that fact, let’s now consider the domain and the following
definition:

Definition 3. Given a set S of elements and a non-empty set of domains A, every
element in S is associated with a domain.

Mathematically, we define the tuples:
e o isa subset of Q XA, the Cartesian product of entities and domains
o fisasubset of I1 X A, the Cartesian product of properties and domains
e yisasubset of VX A, the Cartesian product of symbols and domains

For every element s belonging to S, s belongs to a, B or y. In addition a, B and y are
disjoint as a consequence of definition 2. The domain reduces terms to their assigned
symbol. Terms have the meaning assigned to it its domain which might or might not be
the same as other meanings it has in other domains. Assigning meaning to a term is a
modeling decision captured by definition 3. Determining equality between
conceptualizations is reduced to determining equality between domains by definition 3.
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A direct consequence of the introduction of the domain is the shift in the role of a referent
which is now undistinguishable from the conceptualization at least in terms of its
description. The distinction while existing in reality disappears once conceptualizations
are captured.

Having captured a model description, we need to capture the structure of a model as a
means to carry semantics. A model of a conceptualization is one of the many possibly
equivalent representations of the conceptualization which itself is one of the many
possibly equivalent conceptualizations of a referent. Conceptualizations might or might
not be related through a relationship relation. The following definition is a generalization
of all possible relationships including relationships between relationships that are
expressible within this formalism:

Definition 4. Given A the set of domains, we define the relation p as the subset of A X
A the Cartesian product of domains.

The relation p captures the relationship between entities and entities, entities and
properties, entities and symbols, properties, properties and symbols and symbols and
symbols. In addition p captures relationships between relationships if one considers
that all the relationships in definition 1.3 are elements that have as domain a subset of
A X A and therefore abide by the previous definitions. The relation p is a graph with
vertices A.

Having defined the conceptualization, let us now define a model of the
conceptualization:

Definition 5. A model M of a conceptualization S denoted Myis the relation (a, B, vy, p).

By definition 5 a model is also a representation of a conceptualization. If M is
countable, M is computable and further if M is finite and countable it can
implemented on a digital computer. However, results derived from these definitions
are not limited to computable functions but should apply in general. The model avoids
the paradoxes by separating the referent, a conceptualization of the referent and a
model of the conceptualization. The semantics are captured by a collection of
groupings of symbols and how they are related. Several additional observations
should be pointed out with these definitions. The first observation is that the referent
and a model of the referent are not required to be finite and/or countable and therefore
are not required to be computable. The second observation is that the definitions do
not make any assertions about inherent semantic relationship between the sets. In this
sense any model of the referent is captured under these definitions.

Definition 1 does not take a position on which set to capture first and in fact does
not require any set to be non-empty except for the domain. It is perfectly acceptable to
view the world in terms of properties and symbols or entities and domains.
Consequently, the definition does not espouse any predetermined description of the
referent. Most importantly, the semantics of the referent and the model are explicitly
captured by the quadruple. The introduction of the domain as part of the specification
in definition 3 plays the same role as the use of labels to carry meaning but in a
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formal way. Definition 4 accounts for the semantic relationships between entities. The
existence of a relationship between entities implies a relationship between the
domains of these entities. Definition 4 implies that a new domain is created by
relating entities and the domain thus created is the context of the relationship.
Definition 5 is a generalization of the traditional view of a model in which entities
have properties which have values and those values can in turn be grouped into a
value domain. The traditional view does not cover a model in which entities interact
and are affected by their environment. In this case, entities might or might not have
properties explicitly modeled; nonetheless there are properties of the environment that
are affecting their interactions and properties of their behavior (the exchange of
Protocol Data Unit between entities is a simple example). This is the case for example
in multi-agent models. Another simple example is a grouping of properties of several
entities to form a context or the occurrence of events in event-based simulations or the
modeling of structures in System Dynamics. Definition 5 covers all these models
within its specification and additionally allows relationships to be related within its
specification.

Having defined a model and shown that interoperability for machines reduces to
comparing domains and relationships between domains in this section, the section
will define and discuss machine to machine interoperability.

2.3 Semantic Machine to Machine Interoperability

In general, while there are guidelines and best practices for modeling, a normalization
process as practiced in Data Modeling Theory might result in a model that does not fit
the scope and resolution originally intended. At this juncture, it is more important for
the model to be separated from the business rules that dictate the interactions with it.
This separation is also very useful in augmenting the ability of models to interoperate
as it distinguishes between the semantics of the data model and the semantics of the
interactions with the data model. As a reminder from the previous section, a model of
a referent Mg is the relation (€, I1, V, p) which is a composition of the subset of the
Cartesian product of entities and domains, properties and domains, symbols and
domains, and domains with themselves. We distinguish between existential
dependency and transformational dependency.

Definition 6. Let X, Y be sets of entities, properties or symbols with respective
domains Ax and Ay, Y is existential dependant on X denoted X®Y or ®(X, Y) if the
existence of Y implies the existence of X.

Every element is existentially dependent on itself and it is worth noting that the set
thus defined is a subset of p the Cartesian product of domains which is nonempty
implying that @ is also nonempty. By this definition, multi valued dependency is the
particular case where @ is a function and X, Y are sets of properties where Y has
cardinality one. Existential dependency is a generalization of traditional conceptual
modeling relationships (is-a, part-of, has-a, etc...) that is able to capture the idea that
a designated grouping of elements (entities, properties, symbols) has some meaning
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[15]. Traditionally the meaning of these groupings is carried by a semantic label
assigned to @ (is-a, parent-of, child-of), but in this case the meaning is carried by the
grouping of the two domains. In practical terms, semantic labels are meaningful to
human consumers, but for computers it translates into an association between
elements in one namespace with others in the same or a different namespace. The
label is then another term used to capture existential dependency. As a simple
example, let’s take the statement “son-of (parents, child)” to mean “a child is the son
of its parents”. It can be easily verified that the existence of a child depends on the
existence of its parents. This statement allows the identification of the entities that are
members of son-of but it falls short of capturing all the characteristics of the relation
i.e. what does it mean to be the son-of an entity and how to automatically identify
those entities. Let’s assume that this is an inheritance relationship as the label
suggests, then son-of means that a child has at least all of the properties of the parent
in addition to its own. This is another existential dependency but this time between
the properties of the entities. We write son-of > (ITyE Ilx) to capture this relationship.
Let us now assume, that son-of also means that a son has to have certain properties
assigned a constant value. The easiest example is to require that all sons be male. We
write son-of 2 (Ily = Sex—>Sex=Male) to capture that relationship. It is worth noting
that because this is an existential dependency between symbols, we use equivalent
instead of equal to capture the requirement that a function translating the symbol of Y
into “Male” must exist for the property “Sex”. This example illustrates the need to
express the meaning of a label in terms of dependencies between entities, properties
and symbols. It also shows that dependencies exists between domains for humans but
must be expressed between terms to have meaning for machines.

Existential dependencies capture the fact that a set of elements (entities, properties,
symbols) cannot exist without another. Transformational dependencies exist when in
the process of interacting with the model; an update to an element (entity, property,
symbol) implies an update to another which often will be the case when users or other
systems are interacting with the system.

Definition 7. Let X, Y be sets of entities, properties or symbols with respective
domains Ay and Ay, Y is transformational dependant on X denoted XOY or O(X, Y) if
a change to Y implies a change to X.

It is trivial to show that every element is transformational dependent on itself and ©® is
a subset of p which means that ® is nonempty. Change could be the creation, deletion
or update of an element similar to the specification presented in [16]. The nature of
the change can be captured similarly to existential dependency. As a simple example,
a symbol y of Y is transformational dependant on a symbol x of X thusly
0X,Y)oy=x+3.

Similar to existential dependency, a transformational dependency between domains
can translate into dependencies at the entity, property and symbol level. Continuing
with the previous example, in son-of, child is not transformational dependant
(transformational independent) of parents because a change in parents does not imply
a change in child. It is important to note that contrary to intuition, existential
dependency does not imply transformational dependency.
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Interoperability and current approaches to interoperability have been reviewed in the
previous section. While the focus is on interoperability, it is obvious that interoperation is
subsumed within that concept. Interoperation is perceived to be necessary but not
sufficient for interoperability. The definitions and models of interoperability as well as
industry standards for interoperability are evidence of this common understanding with
an accent on semantic interoperability. The review also shows that semantic
interoperability can be enhanced by agreeing on the meaning of labels and models either
through standardization or a CRM. Interactions with the model are subsumed within this
agreement whatever form it takes. Based on the formalism developed in this chapter, it
has been shown that instead of interoperability, current approaches address
interoperation. Without using any particular definition, the review done in section two
shows that key characteristics of interoperability are the exchange of information and the
use of the information thus exchanged. The exchange of information is interoperation and
the evaluation of its usefulness determines the degree of interoperability between the
systems. Using the formalism defined previously we can formally examine
interoperability and interoperation.

Interoperation informally captures information exchange between systems.
Interoperation is formally defined along with its characteristics and requirements as
follows:

Definition 8. (Interoperation): Let Mg be an arbitrary model of a referent S, @ the set
of existential dependencies within M and O the set of transformational dependencies
within M, a model A is said to interoperate with M if there is a subset of @ in A or A
and M interoperate, denoted A ® M if ®(A)ND (M) + @.

A and M are said to interoperate over the subset of @ which represents the
intersection of the sets of existence dependencies between the models. The subset of
@ over which A and M interoperate is the set of elements that A can produce and M
can process. By definition this subset is the Common Reference Model (CRM) of A
and M. The degree of interoperation between A and M is the cardinality of the CRM.

Definition 9. (Existence condition): Given two models A and M, A and M interoperate
implies the existence of a CRM.

Interoperability informally captures the notion of the use of information once it is
exchanged. The fact that A and M interoperate does not mean does that they are
interoperable. Interoperability requires the ability of M to use what it receives from A
or conversely the ability of A to interact with M following the rules of interaction of
M. To illustrate, the following proposition is stated:

Definition 10. (Interoperability): Let Mg be an arbitrary model of a referent S, @ the
set of existential dependencies within M and © the set of transformational
dependencies within M, a model A and M are interoperable denoted AOM, if A and M
can interoperate and O(A)NOM) @ .

Having defined interoperation (the exchange of information) and interoperability (the
exchange and use of information), we can now use Graph Theory to study the
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implications of these definitions for machine to machine interoperability. Graph
theory is an area of mathematics focused on the study of connections between pairs of
objects or collections of objects [14]. This area of mathematics is relevant to a theory
of interoperability because as discussed in the previous section, a model is a
composition of relations between elements which results in a structure. The
representation of a model as graph is equivalent to its representation as a relation. The
representation of models as graphs allows us to inherit all the findings of Graph
Theory and apply them to interoperation and interoperability. The determination of a
CRM is similar to finding the similarity between two or more graphs. We will
examine the complexity of finding a CRM and formally show that current approaches
to interoperability are equivalent. This finding motivates the need for heuristics that
enables interoperation and interoperability.

There are different types of graphs but in this chapter the term graph is used to
mean multigraph. A multigraph is formally defined as the triple G = (V, E, A) where

e V/ is the finite set of vertices or nodes
e FE is the finite set of edges
e A:E — E, the identity map

From the definitions of a model provided earlier, many graphs can be specified.
However, the most general case is to define a finite set of elements as the set of
vertices V, E = (aU BU y Up) the union of all possible relationships between
elements and A: E — E the function that relates entities and their relationships.

A model is simply the graph G = (V, E,A) as formulated above. The formulation
of G subsumes the existence condition; that is to say that a formulation of a model as
a graph contains the formulation of all of its existential dependencies.

Two graphs G and H isomorphic if there is an edge preserving morphism between
G and H. Formally, two graphs are isomorphic if there exist a function:

f:G - H and f is bijective.
The definition of isomorphism leads to the following definition:
Definition 11. Two models G and H interoperate if and only if they are isomorphic.

This definition is consistent with previous conditions of interoperation as the
existence of an isomorphic between the two models is equivalent to stating that they
intersect. Interoperation between N models is defined as follows:

Definition 12. A collection of models G, G,...,G, interoperate if and only if they are
isomorphic.

Definition 4.2 is also consistent with the notion that interoperation is bounded. Simply
stated, the degree of interoperation is the cardinality of the isomorphic class which is
finite and bounded by the smallest and largest isomorphic set. Previously in this
chapter, interoperability has been defined as the intersection of the transformational
dependencies between models. In term of a graph, if the set V of vertices is defined as
the set of elements and the set E' of edges as the set of transformation dependencies,
definition 4.2 can be reformulated as follows:
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Definition 13. A collection of models G;, G,,...,G, are interoperable if and only if
they are isomorphic.

Interoperability and interoperation are similar (intersection of dependencies) with the
difference that interoperation is a necessary condition for interoperability. Interoperation
and interoperability are simply the specification of a CRM and a set of rules governing
interactions with the CRM. Based on these findings, the fundamental question of interest
in studying interoperation and interoperability is:

The fundamental question of interoperability: Given a modeling question and a set
of models can a CRM be identified?

This question is important because of the implications carried by the answer. If the
answer is yes it means there is potentially an algorithm that could take the modeling
question and models as inputs and provide the corresponding CRM. If this algorithm
is efficient is terms of time and/or memory space, it would mean that interoperability
can be solved in general at a reasonable cost. Conversely, if the answer is no and a
CRM cannot be identified it would mean that the best that can be done is to engineer a
solution that would be the closest to answering the modeling question. The degree of
closeness is determined by the modeler by inspection or by a metric such as time,
space or correctness. Current approaches to interoperability (common framework and
common standard) assume that the fundamental question of interoperability is
decidable and solutions can be constructed.

The questions as posed can be mapped to decision problems that are well known
and have been studied in Computational complexity theory. Complexity theory is an
area of mathematics and computer science that is focused on studying and classifying
computational problems based on criteria such as time and resources required to
provide a solution (Hein, 2002). A decision problem is a type of computational
problem in which a yes-no answer is provided based on a given input (Hein, 2002). In
terms of classifications a problem is said to be:

Polynomial(P) if the answer to the question can be provided in polynomial time by a
deterministic Turing Machine (computer).

Non deterministic polynomial (NP) if the answer to the question can be verified in
polynomial time.

NP-Complete if the problem is in NP but there is no known efficient algorithm to
solve it.

NP-Hard if the problem is at least as hard as NP-Complete problems.

The question of determining whether a CRM exist can be formulated as a decision
problem in which the inputs are two or more models and the answer is yes they are
isomorphic or no they are not. The determination of the existence of a CRM can be
formulated as follows:

The fundamental question of interoperability reformulated: Are two or more graphs
isomorphic?

This problem is known as the graph isomorphism problem for which it is not known
whether it is in P or NP. A generalization of this problem known as the subgraph
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isomorphism problem in which the input is two graphs and the question is whether a
subgraph in one is isomorphic to a subgraph in the other. The subgraph isomorphic
problem is NP-Complete. As a result, for the general case, there is no known efficient
algorithm to find the answer to the first question. That is to say, regardless of the
approach taken to generate or identify a CRM, there is no known way to efficiently
find the CRM. Consequently with respect to a computer, all current approaches are
equivalent in that they are providing heuristics to obtain a CRM. In terms of
interoperation and interoperability, it is worth noting that the decision problems
addressed so far only focus on structure and as such are a subset of the general
problem of interoperability. The question as to whether two or more elements are
identical still needs to be answered. This question as discussed in the previous section
is reduced to comparing two or more sets of strings as there is no algorithm that can
determine whether two conceptualizations are the same. As a result, interoperation
and interoperability are at least as complex as NP-Complex problems, which lead to
the formulation of the following observations:

Observation 1: The determination of whether models interoperate is at least NP-
Complete.

Observation 2: The determination of whether models are interoperable is at least
NP-Complete.

The overall complexity of interoperation and interoperability is possibly NP-Hard if
one assumes an oracle that can identify equivalent elements instantaneously and an
algorithm that resolves redundancies in polynomial time.

From this observation, all approaches to interoperability are equivalent in that they
represent heuristics that approximate the CRM. In this section, we have shown that it is
important to distinguish interoperation (the exchange of information) and interoperability
(the ability to use the information once it is exchanged). Interoperation is a necessary
condition for interoperability and both are only possible over the intersection of the
existential and transformational dependencies. This observation means that the
interoperability space diminishes as more models join a federation, contrary to the state
of the art that points to an increase in the interoperability space as more models join a
federation. The observations on the complexity of interoperability do not mean that
interoperability is not possible, and in fact federations are developed constantly in
practice. It just means that only a semi-automated approach will work and in the next
section we show how to validate a federation of interoperating models assuming they can
be composed (interoperable at the model level).

3 Formal Validation of Interoperable Federations

The previous sections presented what semantic interoperability means for machines
and showed that it can only be accomplished through heuristics. This section focuses
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on the validation of composed models as another way® to determine whether
interoperating models are indeed representative of the modeling question one wants to
have answered. In this chapter we talk about composition of models and
interoperability of simulations in keeping with [17].

The validation of the composed artifact is of paramount importance to increase model
credibility and user confidence in adopting composable models [18],[19]. A recent
finding of the World Technology Evaluation Center states that “without validation,
computational data are not credible, and hence, are useless” [20]. This is because
simulation models are widely used to support critical decision-making [21], [22].
However, the validation process is often a lengthy, manual process that mandates the
presence of at least one system expert. For example, the process of Verification,
Validation, and Accreditation (VV&A) for modeling and simulation in the US
Department of the Navy defines seven user roles and thirteen important steps grouped in
five categories, namely, conceptual model validation, design verification, implementation
verification, and results validation [23]. Furthermore, the costs of VV&A constitute a
large part of the model development cost [21]. The benefits of an automated validation
process of a composed model are significant.

The validation of interoperable federations is a non-trivial problem [19], [24]. This
is because composition is not a closed operation with respect to validation since
semantically valid components do not necessary form valid compositions [18].
Moreover, reused components are developed for different purposes and when
composed may result in emergent properties [25]. Similarly, the context in which a
reused component was developed and validated might differ from the new context of
the composed model [24],[26]. Next, different validation perspectives must be
considered, such as logical aspects of deadlock, safety, and liveness, temporal aspects
such as the behavior of components and compositions over time, and formal aspects
such as the need to provide a formal measure of the validity of compositions, also
called “figure of merit”[27].

We define semantic validity as follows:
A composition of federations is semantically valid and its federations are said to be
semantically composable if and only if:

(a) federations to be integrated behave correctly to form a valid composition
both externally, with respect to their neighbors, and internally when safety
and liveness properties are preserved over time, and

(b) the resulting composition produces valid output.

Studies of semantic composability validation show that the validity of a model is not a
fixed point and there are many valid models but with different degrees of validity
[28]. Current approaches to validate composed models are theoretically elegant but
are not practical to implement [19] or are computationally expensive and thus do not

2 The work on semantic composability validation is drawn from [39].
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scale well [29]. Other approaches focus on the experimental model validation at the
cost of reasoning about composition at conceptual levels [40].

We propose a dual-step elimination strategy for the validation of semantic
composability, as shown in Figure 1.
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Fig. 1. Population of Composable Models

Our validation approach first discards invalid models through the validation of
general model properties, such as safety and liveness for instantaneous and timed
transitions [28][34]. We cover various perspectives on the definition of model
properties, such as formal, practical, timeless, and timed, among others. Moreover, we
propose a composability index as a measure of the degree of data alignment in the
composition. Models that have passed the first validation step might still be invalid.
Furthermore, to increase model credibility, formal guarantees and measures are
required. Towards a formal guarantee of the composed model validity, we perform
formal validation with respect to a reference model using a novel time-based
formalism [28]. As a certificate of quality of the validity of the composed model, we
introduce the semantic metric relation V., which quantifies state similarities based on
semantically-sugared components defined in our component-based ontology.
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Our dual-step semantic validation process is shown in Figure 2.
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Fig. 2. Layered Validation Process

This section discussed formal validation of interoperable federations in the context of
the CRM discussed above. The formal validation process calculates the closeness of the
composed federation’s execution to that of a reference model. The main assumption in
the formal validation of semantic composability is that there exists interoperability
between components, which is guaranteed by the CRM discussed above and in parts by
the first layer, e.g 1.1. and 1.2., in the validation process presented above.

The proposed validation process employs semantic knowledge about the federation
and its application domain, which is captured using a component-based ontology
described in the next section.

3.1 Knowledge Representation

An important issue in addressing composability, in particular semantic composability,
is expressing domain or component knowledge in an unambiguous, standardized
format. An ontology is an organized knowledge representation to capture object
information in a particular domain [30] in formats readable by humans and computers
alike. Ontologies are conceptual models that capture and explain the vocabulary used
in semantic applications guaranteeing communication free of ambiguities [31]. When



Defining and Validating Semantic Machine to Machine Interoperability 67

applied to the modeling and simulation domain, ontologies facilitate model discovery
and integration and the development of formal methods for simulation and modeling
[32]. Ontologies can be used to express syntax and semantics to facilitate
communication and allow for automated semantic checking. Furthermore, they are
employed to express the resource discovery request and determine whether the
discovered model is reusable. An ontology should ideally focus on the description of
a simulation component to facilitate semantic validation of compositions, as well as to
support component discovery and reuse.

COSMO (COmponent Simulation and Modeling Ontology) [33] is an ontology for
describing component-oriented simulation within and across application domains.
COSMO semantically enriches the description of model components to support model
discovery, model reuse as well as semantic composability validation of the discovered
models. The ontology consists of sets of classes to describe simulation components
and their compositions. The hierarchies in the COSMO ontology span two main
directions, as shown in Figure 3. To achieve generality across application domains
and at the same time support specific application domain requirements, we include
first a simulation oriented component hierarchy, followed by an application domain
oriented component hierarchy. The second set of classes describes components with
respect to their attributes and behavior expressed as a state machine. We assume that
irrespective of the simulation component's implementation and worldview, its
behavior can be represented as a finite state machine initially provided by the
component creator. Transitions in the state machine from an initial to a final state are
triggered by an arrival event or an elapse in a time interval. The final state can be
determined by some conditions on the component's attributes and the transition may
produce output. The classes for attribute, behavior, worldview, transition, state, data,
condition as well as simulation concepts such as time, distributions, etc. are defined in
the ontology.
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Fig. 3. Ontology for Component-based Simulation Development

In the construction of COSMO, we assume that the problem space is divided into
several application domains. For each application domain, we further assume that
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there exist several base components or base federations, which represent fundamental
entities specific to the application domain. The base components form the atomic
building blocks for each simulator in the application domain. For example, for the
Queueing Networks application domain, we can assume the base components Source,
which creates jobs, Server, which services the jobs created by the Source, and Sink,
which collects all jobs from the Server components. Similarly, for a Military Training
Simulation application domain, base components could be Tank and SoldierTroop.
This separation into application domains facilitates reasoning about composition
because application domain specific knowledge can be captured using ontologies (as
shown in Figure 3) and using compositional grammars to describe syntactic
composability. Furthermore, the validation process is meaningful and more accurate
as we will see in the following.

3.2 Formal Validation of Model Execution

Assuming that a composed federation interoperates correctly, we validate the
execution of the composed federation by comparing it to the execution of a reference
model [28]. For this, we first propose a time-based formalism to represent federations
as functions of states over time. Next, the formalism representing the composed
federation is executed and compared with the execution of a reference model,
considering semantic knowledge captured in the ontology described above.

We first present a discussion about the reference model and how it is obtained. An
overview of our formal definitions of components, simulation, and validity in the
context of the proposed five-step validation process follows.

3.3 Reference Model

The proposed validation process aims to provide a formal measure of composition
validity by comparing the composed model with a reference composition made up of
reference components or federations. We consider that for each type of base
component or base federation there exist a reference model in the repository, initially
provided by domain experts. The reference base component models describe what the
domain experts consider to be the ideal component behavior. The generic descriptions
lack specific attributes (e.g. sampling distributions for time attributes) and are without
an implementation. We assume that for each base component type (e.g. Source in
Queueing Networks Application domain) there exist different base component
implementations in the repository (e.g. SourceOpen - a Source component for open
queueing network systems). A reference component is a generic, desirable
representation of a base component ideally provided by domain experts when the new
application domain is added to the framework. Ideally, the reference components
should describe what the system experts consider to be the desirable base component
behavior. It should be generic in the sense that their description lacks any real data
values. It follows that the reference model composed from the generic reference
components is only a description of the desired simulation, without an attached
implementation. Throughout the validation process, the generic reference components
attributes will be instantiated using the same attribute values used by the
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corresponding components in the composed model. The base component
implementations may differ widely from the reference base component models.

3.4 Formal Validation Process

Figure 4 presents our five-step validation process [28].
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Fig. 4. Formal Validation Process

The first four steps of the validation process, namely Formal Component
Representation, Unfolding and Sampling, Composition, and Simulation are applied
separately to the components and reference components. Components and reference
components (annotated with a star symbol (*)) from the composition and reference
composition respectively, are formally represented as functions of their states over
time. The formal component representations are input to the Unfolding and Sampling
step, in which the component representation is adjusted to fit our validation process.
Based on the composed model topology, the unfolded representations obtained from
the Unfolding and Sampling step are composed as mathematical functions in the
Composition step. The Simulation step applied to the composition and reference
composition results in a composition simulation, L(M), and reference composition
simulation, L(M). The Composition step formally composes the functional
representations based on our mathematical composability definition, which considers
the time moments when the functions are activated. As such, L(M) and L(M") consist
of time-ordered simulation schedules of the function executions. Lastly, in the
Validation step, we first attempt to determine whether L(M) and L(M") are exact
matches. This is done by determining strong equivalence between L(M) and L(M"). If
strong equivalence is not possible, we introduce the semantic relation V, to determine
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weak equivalence only between related states, i.e. the parts in the two executions that
are semantically related. If V, is not a weak bisimulation relation between L(M) and
L(M"), then the model is invalid. Figure 5 illustrates the approach using a single-
server queue example.
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Fig. 5. Formal Model Execution Validation

The five steps in our validation process are as follows:

a) Formal Component Representation — In this step, federations are formally

b)

represented as mathematical functions of states over time as below.
The formal representation of a simulation component F; is a function
fi:Xi =Y, where X; =1; X S§; X T;, and Y; = 0; X §; X T;. I; and O; are the

set of input/output messages, S; is the set of states and T; is the set of
simulation time intervals at which the component changes state.

Unfolding and Sampling — This step unfolds the function definition from
above over the simulation time using sampled values. Normally, the function
definition in Step a) is a cyclic expression which gets executed many times
through the simulation execution time 7. For example, for a Source
component, the formal representation would be: f(9,s;t)—= (0;,s;,t+

At) , where At is sampled from an exponential distribution. This expression
is not useful because f will get called many times throughout the simulation
execution time 7. As such, sampling for values of At is performed and the
function execution is unfolded. We perform this operation for an unfolding
degree T number of times. Details are presented in [28] and [34]. Step a) and
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b) are applied for the reference components in a similar manner, using the
same sampled values used for the composed federations.

Composition — The Composition step validates that the functions are
mathematically composable. We obtain constraints on the time variables
obtained in the unfolding step considering a simple observation derived from
the connection of the federations, namely, that if F; is connected with F; with
F;requiring input from F;, then F; cannot execute its transitions that require
input until has F; produced output. For federations that require input to
proceed, we also consider the average time spent by messages from the
senders to the receiver. The equations obtained for the time attributes are
solved using an open source constraint solver such as Choco [35]. The
equations are solved both for the composed federations and the composed
reference model. The function calls are then ordered based on the solutions
for the time attributes.

Simulation — Based on the time values obtained in the Composition step, an
interleaved simulation run is obtained for the composed federation
simulation and for the reference model. The simulation runs are represented
as Labeled Transition Systems (LTS) [36], L(M) and L(M"), as follows.
Given a composed model M and its simulation S(M). The simulation run S is
represented as a LTS where nodes represent the entire composition state as a
reunion of the individual component states, and edges are labeled to facilitate
the validation process. To facilitate accurate comparison between L(M) and
the reference LTS L(M), the edge labels contain the name of the function
called to exit the node, its duration, and its output: <function_name(f,,,),
duration(fout), output(f,.)>. We consider the duration rather than the time
moment when f,,, begins to execute, because the time moments at which the
functions f,,, start to execute are already ordered through the directed nature
of simulation S.

Validation — This step validates the composed federation against the
composed reference model. We consider two possible relations between the
simulation of the composed model and the simulation of the reference model,
L(M) and L(M") respectively: strong equivalence relation [37] and our
proposed semantic parametric metric relation, V.. Informally, strong
equivalence between L(M) and L(M *) validates that L(M) is exactly the same
or included in L(M"), including the sequence of the function calls and the
edge labels. If this is not possible, we propose the semantic parametric
relation V. as a weak bisimulation relation. V, considers only parts of L(M)
and L(M") that are semantically close and validates that they appear in the
same sequence in L(M) and L(M"). Semantic closeness considers attributes
that are close or similar in COSMO ontology. For such attributes, we assign
a higher weight to those that have the same value in the model and the
reference model or have been showing the same modification trend.
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4 Summary and Recommendations

In this chapter, we presented and defined semantic interoperability and discussed
what it means for machines. Interoperability based on the definitions provided cannot
be fully automated so heuristics are required to fully support federations. Another
approach to interoperability and composability is to assume the existence of a perfect
model, develop a federation and validate it against the perfect model. The chapter
shows how to define and validate a federation of models using ontology and semantic
similarity metrics. The authors identify two main directions for future research. The
first area focuses on the development of formal theory of interoperability that includes
not only data interoperability but also an algebra that captures the existential and
transformational dependencies. Such algebra will move the community a step closer
to understanding interoperability beyond data. One of the main observations is that
interoperability being the intersection of models is a limiting factors and therefore it is
better to have models (and machines) collaborate to answer a given question rather
than have them interoperate and produce the least common denominator. This algebra
will help define criteria for collaboration and orchestration of models.

The other area of research is how to develop and validate the next generation of
models. So far, the community assumes that a model is necessarily a model of reality
and models derived from the same referent are equivalent. However, this is not true in
the general case, especially in a post-positivist world in which we are interested in
more than physical objects. The idea of validation for instance rests on the existence
of a perfect model usually a physical one. What if we do not have access to that
model? Further, what if the goal is to define the main characteristics of the perfect
model in order to generate sub models of interest (this is particularly true when one
uses simulation to develop theory). The authors encourage the reader to reflect on the
use of agents and M&S in support of training and experimentation which is prevalent
today and to also help prepare a paradigm shift towards the use of agents and M&S as
a mean to gain new insights into physical and non-physical entities (Human Social
Cultural Behavior for instance). The authors, as many others believe that this new
paradigm is the way of the future and it is one that presents the most challenges for
the scientific community.
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Abstract. This chapter presents a framework for knowledge integration
based on mappings between similar concepts in constraint graphs asso-
ciated to a configuration problem. In particular, the chapter is devoted
to one of the problems which could arise when performing collaborative
knowledge integration, namely detecting knowledge overlaps. The solu-
tion to the overlapping problem relies on the use of matching algorithms.
To illustrate our approach we present as a case study a computer con-
figuration problem. This problem is important as it has the promise to
become an alternative approach for the current knowledge integration so-
lutions. Through our approach the real cost of integration can be reduced
as it is not necessary to invest a great amount of resources beforehand a
truly integrated system can be operational.

Keywords: Knowledge integration, Semantic Web, Constraint program-
ming.

1 Introduction

An important challenge in several fields ranging from design of expert systems to
collaborative design construction in engineering is to integrate several sources of
knowledge created by different stakeholders. This is not a new problem as it has
been around for several decades i.e. CAD (Computer-Assisted Design) systems.
In our proposal, we attempt to design a new solution approach, which amal-
gamates research outputs from Ontology Alignment (in particular distributed
solutions) and Fuzzy Logic in order to provide an alternative solution to the
problem of knowledge integration.

There exists no unique definition of knowledge integration. Therefore, we need
to first clarify the different meanings of the term Knowledge Integration. The def-
initions found in the fields of Artificial Intelligence, Ontologies, Databases and
Knowledge Management vary strongly. For example, in the Artificial Intelligence

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 75
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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community, Knowledge Integration is seen as the process of integrating knowl-
edge into an existent body of knowledge [24]. Knowledge integration refers to
the identification of how new and prior knowledge interact while incorporat-
ing new information into a knowledge base. In contrast, the view taken from
Knowledge Management is that knowledge integration is a fundamental man-
agement practice. According to Grant [15], the organization’s primary concern
is the integration of its dispersed knowledge resources in order to apply them
to a “production of a new artifact” as a mean of creating new knowledge out of
novel combinations of existing knowledge [15].

In the context of Artificial Intelligence, the problem of knowledge integration
can also be seen as a scenario of building distributed knowledge bases in a collab-
orative way. These knowledge models need to be integrated into a single model.
However, while integrating knowledge several problems could arise. One of them
is the problem of overlaps and conflicts in the knowledge as subtle and unexpected
interactions of knowledge could appear with the newly added knowledge [24]. How-
ever, in our opinion knowledge integration is the process of creating an unified
knowledge model by means of integrating individual models made by different
knowledge engineers. This integration is basically a reconciliation of the terms and
relations used by each knowledge engineer while building their own model.

Furthermore, the basic argument is that knowledge cannot be viewed as a
simple conceptualization of the world, but it has to represent some degree of in-
terpretation. Such interpretation depends on the context of the entities involved
in the process. This idea is rooted in the fact the different entities’ interpreta-
tions are always subjective, since they occur according to an individual schema,
which is than communicated to other individuals by a particular language. These
schemas called mental spaces, contexts, or mental models have been investigated
in the past [10] [14] [20].

The motivating scenario of our work is that we assume that large knowledge
bases are typically constructed by different knowledge engineers or domain experts
in an incremental and collaborative way. However, as the individual parts of the
knowledge bases may also be developed independently by different teams or orga-
nizational units, one or more knowledge integration phase are required in the over-
all process in order to detect and resolve conflicts and overlaps. The development
of a knowledge base for a product configuration system [30] is a typical example
as different organizational units contribute technical and process- or marketing-
related constraints on legal product constellations. The problem is even harder,
when the configurable product is delivered by multiple providers in a supply-chain
[4], and requires the cross-company integration of knowledge bases and interfaces.
Another example, the creation of a 3D-virtual campus where several departments
of the Open University (OU) collaborated in the whole design of the campus i.e.
Library, Research School, Computing Department, among others [29].

Our suggested approach to knowledge integration deals, in a first instance,
with the overlapping problem. The detection of the overlapping problem is per-
formed by mappings between the knowledge models. Therefore, the main con-
tribution of this chapter is to propose as a solution to the overlapping problem
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based on matching algorithms which use Dempster-Shafer and Fuzzy Voting
Model. An scenario to illustrate the knowledge integration using DSSim best
methods is outlined in our case of study.

The chapter is organized as follows. Section 2 provides an overview of related
work. Section 3 presents a case scenario that illustrates the overlapping problem
when performing knowledge integration. Section 4 describe details of the map-
ping process. Section 5 shows our framework to knowledge integration. Section
6 presents an evaluation of our methodology to knowledge integration. Finally,
in Section 7 we present our conclusions and describe our future work.

2 Related Work

Several research communities have investigated the information integration prob-
lem. This lead to numerous different approaches in a way in which different
information sources can be integrated. After an analysis of the literature we
have identified four perspectives on our literature review. These perspectives are
Knowledge Based Systems, Ontologies, Databases and Knowledge Management.
The first perspective deals with problems in knowledge modeling in particular
in expert systems. The second perspective is the work in the Ontologies field
ranging from ontology merging to alignment. The third perspective, Databases,
is more related to data integration which consists of providing an unified view
on the data stored in different databases with different models. The Knowledge
Management perspective is not explored in too much detail as is not the main
focus of this chapter.

2.1 Expert Systems - Knowledge Bases

Murray [23] presents an approach to knowledge integration as a machine learn-
ing task. He implemented a system called REACT which is a computational
model that identifies three activities. (1) “Elaboration”: describes, how new and
prior knowledge interact, although this feature is restricted to focus only on
selected segments of prior knowledge. (2) “Recognition”, which identifies the
consequences of new information for relevant prior knowledge and (3) “Adapta-
tion”, which exploits the learning opportunities by modifying the new and prior
knowledge. A learning opportunity occurs when a property of a particular object
in the learning context can be generalized into a property for every instance of a
class of objects. Empirical evidence indicates that indeed knowledge integration
helps knowledge engineers to integrate new information into a large knowledge
base.

Knowledge Integration has became an essential element in the Semantic Web
Community. For example, knowledge integrations allows to access services which
offer knowledge contained in various distributed databases associated with se-
mantically described web portals. In this context Zygmunt et al., propose a
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framework for knowledge integration supported by using an agent-based archi-
tecture [35]. The approach relies very much on the integration of ontologies by
the gradeAgent which estimates the similarity between classes and properties in
the ontology. The approach uses algorithms of lexical and structural comparison.
The checking of similarity between larger parts of a graph is performed with the
use of Similarity Flooding algorithm. The approach also applied additional tech-
niques based on a thesaurus when looking for synonyms and on the use of high
level ontology to adjust concepts from the ontology to a given set of concepts
which identify important notions. The framework does not handle uncertainty
in the similarity metrics. In principle, it seemed as a good solution but in real
scenarios the notion of uncertainty limited to a crisp mappings 0 or 1 made a
strong limitation in a proper identification of matching concepts and properties.

2.2 Ontologies View

The knowledge engineering community uses ontologies as the main approach
for resolving semantic differences in heterogeneous data sources. Based on this
approach several categories can be identified to Data Integration. One of them
is to create a global ontology. In this way all the different sources share the same
ontology in order to make the information integration possible. These solutions
fit well when the number of sources is limited and a consensus can be achieved
between partners. However, for real life scenarios, this solution is inflexible in
nature and is not considered as a viable alternative in the context of knowledge
integration.

Ontology merging aims to achieve semantic integration through merging dif-
ferent source ontologies into a consistent union of the source ontologies. These
systems make use of the fact that different ontologies have overlapping frag-
ments that is the basis of the merging process. FCAMERGE [13] offers a global
structural approach to the merging process. It takes the source ontologies and
extracts instances from a given set of domain-specific text documents by apply-
ing natural language processing techniques. Based on the extracted instances the
system apply formal concept analysis techniques to derive a lattice of concepts
as a structural result of merge process. The produced result is explored and
transformed to the merged ontology by the ontology engineer. PROMPT [I1]
is a semi-automatic ontology merging tool that makes initial suggestions based
on linguistic similarity between class names then performs automatic updates,
finds new conflicts and makes new suggestions.

Ontology mapping aims to achieve semantic integration through the creation
of mappings between concepts, attributes etc. between two ontology entities.
Based on database schema integration solutions a wide range of techniques has
been proposed from manually defined rules to semi automatic approaches that
make use of machine learning, heuristics, natural language processing and graph
matching algorithms. MAFRA [I], a mapping framework for distributed ontolo-
gies supports in interactive, incremental and dynamic ontology mapping process
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in the Semantic Web context. The main contribution of this approach is that
it creates a true distributed ontology mapping framework that is different from
mediator based approach. GLUE [2] evolved from a mediator based LSD [9]
data source schema matching, applies machine learning techniques and similarity
measures based on joint probabilistic distributions.

Since ontology mapping problem is one of the first steps in the direction of
Semantic Web based data and information integration it has become an active
research topic recently. As a consequence numerous ontology mapping systems
have been proposed but only a handful of them have participated in the Ontol-
ogy Alignment Initiative (OAEI, which serves as a comparison benchmark for
such systems. ASMOV) [19] is an automatic ontology mapping approach, which
carries out the mapping in two phases. In the first phase different similarity
measures are calculated and combined in order to establish preliminary map-
ping pairs. In the second phase the system carries out a semantic verification, in
order to detect semantically inconsistent mappings and their causes. RIMOM [34]
is an ontology mapping approach that uses the combination of different strate-
gies in order to achieve the good results. The different strategies are selected
based on the characteristics of the source ontologies and the pre-defined rules.
Anchor-Flood [31] is an ontology mapping system, which has been developed
in the context of International Patent Classification (IPC) in order to exploit
the available taxonomy of related terms in an abstract and align it with the
taxonomy of IPC ontology. The mapping is done in two phases. First part is the
ontology mapping, where the concepts and properties in the different ontolo-
gies are aligned. The second part of the mapping process is the mapping of the
instances of the ontologies. Anchor-Flood approach assumes that neither ontol-
ogy concepts nor an instance comprises the full specification in its name or URI
alone. TaxoMap [17] is an ontology mapping tool, which was designed to support
information integration between different sources. The mapping process is ori-
ented from ontologies that describe external resources (named source ontology)
to the ontology (named target ontology) of different web portals. However the
system design assumes that target ontology is supposed to be well-structured,
whereas source ontology can be a flat list of concepts. Therefore TaxoMap heav-
ily relies on the labels it uses a moropho-syntactic analysis for tagging text with
part-of-speech and lemma information and a similarity measure which compares
the trigraph of the concept labels. Lily [33] is an ontology mapping system for
integrating information described by heterogeneous ontologies. The system em-
ploys hybrid matching strategies to create the mappings for both normal and
large scale ontologies.

Summing up the suggested solutions ranges from creation of global views of
ontologies, mapping or combining. However we believe that the creation of a
global view (or global ontology) is a limited solution as it seems to work when
the number of models is limited. The mapping solution is more appealing as the
combining solution seems to be not scalable.

! http://oaci.ontologymatching.org/
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2.3 Databases

In the database community several solutions have been proposed. However not
all approaches [6] have been implemented in real life applications. The charac-
teristics of these approaches are that they all have inputs and outputs, which is
supplied or processed by a human designer. The inputs are usually the domain
models including entity relationships, views and sometimes queries whereas the
outputs are conceptual models, global schemas, mapping rules or conflicts. The
majority of approaches based on a mediator architecture that involve logical
database schemas, which are used as shared mediated views over the queried
schemas. A number of systems have been proposed e.g. TSIMMIS [12], Informa-
tion Manifold[21], InfoSleuth [7], MOMIS [§] , LSD [3] that shows the flexibility
and the scalability of these approaches. In particular, MOMIS is focused a data
integration from scientific data sources but it also been applied to other domains
like building a tourism information provider [8]. The problem, however, is that
these solutions rely on the initial idea of database schema integrations namely
to create a global view, which will be used as a mediator between the different
sources. According to Halevy [16] the major bottleneck in setting up a data in-
tegration framework in databases community is the effort required to create the
source description and more specifically writing the semantic mappings between
the sources and the mediated schema. Of course, we share the same opinion and
this can be understood as we expand more in this issue.

The database integration schema’s solution requires that an integrated global
schema is designed from the local schemas, which refers to existing databases.
This global schema is a virtual view of all databases taken together in a dis-
tributed database environment. The conceptual modelling of a database (DB)
schema is mainly based on Entity-Relationship (ER) model or Unified Modelling
Language (UML) class diagrams. There are two design approaches namely direct
and gradual. In the direct approach, user requests are processed all at once and
the whole DB schema is created directly. This approach is appropriate in the
cases of designing small DB schemas, but it is inappropriate in cases when a
complex DB schema should be integrated. The gradual approach is used when
the number and complexity of user requests are beyond the designer’s power of
perception. Design of a complex DB schema is based on a gradual integration of
external schemas. An external schema is a structure that, at the conceptual level,
formally specifies the user’s view on a DB schema. Each transaction program
that supports a user request is based on an external schema, which is associated
to it. After being created, external schemas are integrated into a conceptual DB
schema. Nevertheless this idea has been developed further once the ontologies
have been proposed as described in section 2.2.

2.4 Knowledge Management

Hung [I8] present an empirical study that investigates the patterns of knowl-
edge integration in the collaborative development of system on a chip (SoC)
by semiconductor firms. The study focused on the central interactive process
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for engineering applications and experimental practice to enhance knowledge in-
tegration and technology innovation for rapid product development. A process
model for knowledge integration via experimental practice is presented; further
explanation can be found in [I8]. The process of knowledge integration is trig-
gered by new requirements i.e. new product features or testing methods, which
cannot be resolved based on the current knowledge. This integration process
depends upon knowledge already existing in the organization as well as new
external knowledge. The outcome of the process is a technological innovation
and the fact that the knowledge of the organization is enhanced by means of
knowledge integration. The Knowledge Management perspective which appears
related to our work is the one based on the Distributed Knowledge Management
(DKM) approach explored in the Knowledge Management community [22], in
which subjective and social aspects of the real world are taken into account.
However, this perspective is not going to be explored as is out of the scope of
this chapter.

Summing up we could say that there are some commonalities between the
four perspectives namely Knowledge Based Systems, Ontologies, Databases and
Knowledge Management. The work on knowledge based systems community is
concerned with interaction of knowledge when a new piece of knowledge is found
and added to the knowledge base. The work on knowledge integration found in
the ontology merging community appears to be suitable for detecting overlapping
between different knowledge bases. The work in the Database community is more
concerned with data integration. Finally, the fourth one is however more related
to a processes/products specifications and organizational aspects, which need
to be modified when adding new knowledge as the solution relies in adapting a
known case to the new situation.

3 Scenario

The scenario presented in this chapter illustrates the problem of different views
of knowledge modeled by different departments within an organization. Let us
imagine the scenario where we have a Computer manufacturing firm formed
with three departments, for example, Sales, Technical Design Manufacturing and
Software Department. Each of these departments have already pre-established
functions within the organization. These functions are not shown explicitly in
Figure[llbut they are part of the box Enterprise Resource Planning (ERP). The
Configuration Logic stores the CSP (Constraint Satisfaction Problem) applied
to Computer Configuration.

Customers request a computer with certain specification using the interface
provided by the “configuration system” then as, a second step, the “configuration
system” returns “Quotes” and then the customer could make an order using the
on-line system.
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3.1 Constraint Satisfaction Problem (CSP)

This section gives firstly a brief descriptions of Constraint Satisfaction Problem
(CSP) and related terminology and secondly our Case Study namely computer
configuration problem using the definition given in section 3.1.

Definition 1. A CSP is a triple P = {V,D,C}, where V. = {vl,v2,...,un} is
the set of variables called the domain variables;

D = {D1,D2,...,Dn} is the set of domains. The domain is a finite set con-
taining possible values for the corresponding variables;

C = {cl,e2,...,cn} is the set of constraints. A constraint ci is a relation
defined on a subset of {vi,...,vk} of all the variables; that is, {Di, ..., Dk} 2 ci.

The structure of a CSP may be represented by a constraint graph, which is
defined as follows: variables are represented with nodes, and the constraints
between them are represented with edges. The labels of the edges represent the
constraints and the labels of the nodes represent the domain of the variables.

Definition 2. Assignment: It is a mapping from a set of variables to their cor-
responding domains. Let v; be a variable and D; its domain. The process that v;

takes a value, say d; from the domain D; is called assignment. Such an assign-
ment is denoted (v;,d;).
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For a CSP problem which has a set of variables, say vi,vo, ..., vy, the assign-
ment for all the variables is denoted {(vi,d1), (v2,d2), .., (Vm,dm)}. When all
the variables are assigned a value, the assignment is called complete, otherwise
partial.

3.2 Case Study: Computer Configuration Problem

The case of study proposed in this chapter is a restricted version of a computer
configuration problem. The problem of configuration is defined as a CSP (Con-
straint Satisfaction Problem) problem where we define our model using Vari-
ables, Domain for the variables and Constraints over the variables. The main
goal is to obtain an assignment (i.e. a value for all the variables). The CSP is
defined formally as follows:

Variables:
Table 1. Variables

Vi oS

V2 Memory

V3 Hard_disk_size

V4 CPU

V5 Monitor

V6 Mouse

V7 Video_card

A\ Graphics_card

V9 Gaming_ PC

V10 Keyboard

V11|Monitor_resolution

Table 2. Domain

D1 OS Vista, XP, MAC-OS, Windows_7,Linux
D2 Memory 512_MB, 1024_MB, 2048_MB, 3072_MB
D3 Hard_disk_size 160_-GB, 180_-GB, 320_-GB
D4 CPU Pentium_4, Intel_Centrino
D5 Monitor 14_inches,18_inches,19_inches,20_inches
D6 Mouse Logitech, Magic_mouse
D7 Video-card NVIDIA _600series, NVIDIA_700series, NVIDIA _800series
D8 Graphics_card GeForce_7600series, GeForce_7800series, GeForce_T900series
D9 Gaming_PC yes,no
D10 Keyboard Win_keyboard,Mac_Keyboard
D11|Monitor_resolution low,medium,high
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Constraints:
Table 3. Constraints
C1 IF OS = “XP” THEN Memory < 2048_M B
C2 |IF Monitor = “20_inches” THEN Graphics_card = “GeForce_7800_series’
C3 IF OS = “XP” THEN CPU = “Pentium_4""
C4 IF OS = “Vista” THEN CPU = “Pentium_4"
C5 IF OS = “XP” THEN Hard_disk_size > “500_M B"’
C6 | IF Gaming-PC = “yes’”’ THEN Graphics_card = “NV IDIA_8000series”
C7 IF Gaming_PC = “yes’” THEN Memory > “2048"
C8 IF Gaming_PC = “yes’" THEN Hard_disk_size > “160GB"’
c9 IF Monitor > 20inches THEN Monitorgesolution = “high’’
C10 IF OS = “MAC — OS”" THEN Keyword = “Mac_Keyboard"

3.3 Constraint Graph
In order to represent the problem we use graphs, which can be defined as follows:

Definition 3. Constraints are represented in a graph called constraint graph.
Each node in this graph is labelled by a variable name together with a set of
possible values for that variable. A directed constraint connected(i,j) connects a
pair of nodes i and j if the value of the variable labeling i is constrained by the
value of the variable labeling j.

To illustrate our approach to mapping, we have taken the initial constraints
graphs built by different engineers using different knowledge models. These orig-
inal graphs hold by our individual departments are depicted in Figure 2 and 3.
These graphs use standard computer jargon although, they have discrepancies on
the name of variables used. The term Video_card and Graphics_card (variable
names) were used by different knowledge engineers to refer to the same concept.
The latest problem suggested that in order to perform knowledge integration
we have to perform mappings between nodes in the constraints graphs. For the
sake of clarity, we only presents overlaps in one node of the graph but this is
not always the case. Figure 2 uses as variable name called Video_card whilst in
Figure 3 the variable name is Graphics_card.

A unified view of two constraints graphs was produced (manually) by joining
two initial constraints graphs. This unified view is depicted in Figure 4. In one
hand, Figure 4 partially shows a constraint graph with nine variables namely OS,
Memory, Hard_disk_size, CPU, Monitor, Gaming_PC, Video_card, Graphics_card
and Monitor_Resolution.

4 Mapping Process

The main objective of the mapping is to identify that nodes in the constraint
graphs are equivalent e.g. the “Video card” node (shown in Figure 3) is equivalent
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Fig.2. A Constraint graph for the computer configuration problem using variable
Graphics_card

with the “Graphics card” node presented in Figure 2. In order to proceed with the
comparisons, we need to compare all possible node combinations of the graphs
shown in Figure 2 and Figure 3 and select the ones, which are the most similar
or nothing if there is no similarity between the nodes.

Once the constraint graphs have been established the system need to establish
mappings between the hardware items represented as nodes in the graph. The
problem can be represented as the ontology-mapping problem in order to find
correspondences between the items. The objective of the ontology mapping is
to use different similarity measures in order to establish the mappings. However
in practice one similarity measure or some technique can perform particularly
well for one pair of concepts or properties and particularly badly for another
pair of concepts or properties, which has to be considered in any mapping algo-
rithm. In our ontology-mapping approach we use different software agents where
each agent carries only partial knowledge of the domain and can observe it from
its own perspective where available prior knowledge is generally uncertain. Our
main argument is that knowledge cannot be viewed as a simple conceptualiza-
tion of the world, but it has to represent some degree of interpretation. Such
interpretation depends on the context of the entities involved in the process.
In order to represent these subjective probabilities in our system we use the
Dempster-Shafer theory of evidence [32], which provides a mechanism for mod-
elling and reasoning uncertain information in a numerical way, particularly when
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Fig. 3. A Constraint graph using variable Video_card

it is not possible to assign belief to a single element of a set of variables. Further
our proposed solution involves consultation of background knowledge, assess-
ment of similarities, resolving conflicts between the assessments and finally the
selection of possible mappings i.e. items that are named differently but are the
same in practice. As an example consider that we need to determine that the
“Video_card” is equivalent to the “Graphics_card”. In this case our hypothesis
(H) is that these items are equivalent but we need to find evidences that support
or contradict our initial hypothesis. In our case we create several hypothesises
comparing each element of the constraint graph to each other. As an example
consider that the following three hypothesises were selected from all available
ones:

H, (equivalent) = {video_card} < {graphics_card}
Hj(equivalent) = {video_card} < {mouse}
H, (equivalent) = {video_card} < {term,}

Further it is advisable that during the similarity assessment we use different
similarity algorithms i.e. use different agents that are specialised in a particular
similarity assessment. Since the hierarchy of the constraint graph cannot be
exploited for similarity assessment the only way is to utilise the nodes in order
to detect the mappings. As such consider that we use three agents using different
string similarity measures. The steps to produce the mappings are as follows:
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Fig. 4. A Constraint graph for the computer configuration problem with 9 variables

Step 1 consult background knowledge: In this step using general background
knowledge e.g. WordNet we try to determine the meaning of the terms. Our
case is specialised as the computer shop only sells electronics therefore other
meanings e.g. art context of graphics can be excluded from the process. After
consulting background knowledge we can extend our initial terms using sister
terms and direct hypernyms with the following computer science related terms:

Video-card = {videodisplay, graphics, picture, graph}
Graphics_card = {picture, movie, video, image, visual representation}

Mouse = {trackball, rotatableball, cursor control device}

Step 2 similarity assessments: Using different string similarities e.g. Jaccard,
Jaro-Winkler, Monge-Elkan we have found that

Agentl : Hy(mapping) = 0.80; Ha(mapping) = 0.3

Agent2 : Hi(mapping) = 0.72; Hy(mapping) = 0.2

Agent3 : Hi(mapping) = 0.64; Hy(mapping) = 0.2
After the belief assessments we can establish that H1 is the preferred choice
between the available hypothesises and that H2 does not contain contradictory

beliefs. However H1 contains contradictions because Agent 2 belief does not
support sufficiently that H1 can be selected. The different strategies for selecting
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the contradicting belief is out of the scope of this paper but for our scenario we
use the rule of thumb that in an ordered list of beliefs at least 2 agents should
have the same belief otherwise there is a contradiction. In our framework all the
numerical values represent the belief mass function that each agent can deduce
from the similarity calculations. The represented beliefs are the interpretation
of each agent and such they are subjective. Once the beliefs in similarities have
been established agents need to select the hypothesis with the highest belief.
In our example this corresponds to the H1 namely that the “Video_card” and
“Graphics_ card” could be similar. Before the mapping is selected we need to
verify that the original beliefs are not contradicting.

Step 3 verification and resolution of contradictions: It is important to point
out that our proposed approach does not utilise thresholds for defining what
is contradicting or not. e.g. if the difference is greater than 0.5 then there is
a contradiction. Our solution makes use of comparisons between each agent’s
belief and eliminates the one that can be contradictory with the majority of the
beliefs. The strategies for selecting, which agent should start evaluating trust is
a complex issue and is out of the scope of this paper. However in our scenario we
consider a basic rule that tries to establish similar beliefs of at least two agents.
Therefore the beliefs in similarities need to be ordered and the agent whose
belief function value is the smallest (smaller then the highest and greater than
the smaller) will start to the trust evaluation process. In our example Agent 2 is
in the position of detecting such contradiction as both Agent 1 and Agent 3 has
different belief on the similarity. The question in this case is to trust Agent 1 and
support that “Video_card” and “Graphics_card” is equivalent or trust Agent 3
whose belief is lower and probably discharge the mapping.

In order to resolve the contradiction we use the fuzzy voting model [5] be-
cause the different beliefs in similarity can be resolved if the mapping algorithm
can produce an agreed solution, even though the individual opinions about the
available alternatives may vary. We propose a solution for reaching this agree-
ment by evaluating trust between established beliefs through voting, which is
a general method of reconciling differences. Voting is a mechanism where the
opinions from a set of votes are evaluated in order to select the alternatives that
best represent the collective preferences. Unfortunately deriving binary trust like
trustful or not trustful from the difference of belief functions is not so straight-
forward since the different voters express their opinion as subjective probability
over the similarities.

For a particular mapping this always involves a certain degree of vagueness
hence the threshold between the trust and distrust cannot be set definitely for
all cases that can occur during the process. Additionally there is no clear transi-
tion between characterising a particular belief highly or less trustful. Therefore
our argument is that the trust membership or belief difference values, which
are expressed by different voters can be modelled properly by using fuzzy rep-
resentation. Before each agent evaluates the trust in other agent’s belief over
the correctness of the mapping it calculates the difference between its own and
the other agent’s belief. Depending on the difference it can choose the available
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trust levels e.g. if the difference in beliefs is 0.08 (belief of Agent 2 - Agent 3
and belief of Agent 3 - Agent 2) then the available trust level can be high and
medium. We model these trust levels as fuzzy membership functions. In fuzzy
logic the membership function (x) is defined on the universe of discourse U and
represents a particular input value as a member of the fuzzy set i.e. u(x) is a
curve that defines how each point in the U is mapped to a membership value
(or degree of membership) between 0 and 1. Our membership functions are as
follows:

Definition 4. Similarity is an input variable and is the result of some syntactic
or semantic similarity measure between two terms/nodes in the ontology. These
similarity measures can be obtained using a wide variety of standard techniques
like Jaccard distance or node distance in source and target graphs that represent
the ontology fragments. In terms of fuzzy representation we propose three values
for the fuzzy membership value x(z) = {low, average, high}.

Definition 5. Belief is an input variable, which describes the amount of justified
support to A that is the lower probability function of Dempster, which accounts
for all evidence Ey that supports the given proposition A. Consequently the belief
value is equivalent to the normalised sum of similarity values that is calculated
based on the evidences that support the hypothesis. We propose two values for
the fuzzy membership value B(x) = {weak, strong}.

Definition 6. Belief difference is an input variable, which represents the agents
own belief compared to the other agents’ belief over the correctness of a mapping
in order to establish mappings between concepts and properties in the ontology.
Therefore during conflict resolution we calculate the level of difference by com-
paring agent x belief to agents x-1, x+1 beliefs over the similarity. We apply three
values for the fuzzy membership value p(z) = {small, average, large}.

Definition 7. Trust is the output variable and represent the level of trust we can
assign to the combination of our input variables. The trust is therefore calculated
by applying the fuzzy rules on the fuzzy input variables. We propose three values
for the fuzzy membership value 7(x) = {low, medium, high}.

Once each input and output variables have been initialised we run the fuzzy
systeIrE that defuzzifies the result defined by our output variable i.e. trust. Dur-
ing fuzzy reasoning we have the linguistic output variables, which need to be
translated into a crisp (i.e. real numbers, not fuzzy sets) value. The objective is to
derive a single crisp numeric value that best represents the inferred fuzzy values
of the linguistic output variable. Defuzzification is such inverse transformation,
which maps the output from the fuzzy domain back into the crisp domain. In our
ontology mapping system we have selected the Center-of-Area (C-0-A) defuzzi-
fication method. The C-o-A method is often referred to as the Center-of-Gravity
method because it computes the centroid of the composite area representing the
output fuzzy term. In our system the trust levels are proportional with the area

2 http://jfuzzylogic.sourceforge.net/
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of the membership functions therefore other defuzzification methods like Center-
of-Maximum (C-0-M) or Mean-of-Maximum (M-0-M) does not correspond well
to our requirements.
Consider the set of words

{Low_trust(L_t), Medium_trust(M _t), High_trust(H_t)} as labels of a linguis-
tic variable trust with values in U=[0,1]. Given a set “m” of voters where each
voter is asked to provide the subset of words from the finite set T(L), which are
appropriate as labels for the value u. The membership value xu(w)(u) is taking
the proportion of voters who include u in their set of labels, which is represented
by w. The main objective when resolving conflict is to have sufficient number of
independent opinions that can be consolidated. To achieve our objective we need
to introduce more opinions into the system i.e. we need to add the opinion of the
other agents in order to vote for the best possible outcome. Therefore we assume

for the purpose of our example that we have 10 voters (agents). Formally, let us
define

V = {Al, A2, A3, A4, A5, A6, AT, A8, A9, A10} (1)
T(L) = {L¢, My, Hy}

The number of voters can differ however assuming 10 voters can ensure that

1. The overlap between the membership functions can proportionally be dis-
tributed on the possible scale of the belief difference [0..1]
2. The work load of the voters does not slow the mapping process down

Let us start illustrating the previous ideas with a small example. By definition
consider three linguistic output variables L representing trust levels and T(L)
the set of linguistic values as T'(L) = {Low_trust, M edium_trust, High_trust}.
The universe of discourse is U, which is defined as U=[0,1]. Then, we define the
fuzzy sets per output variables {(Low_trust),(Medium_trust), (High_trust)}
for the voters where each voter has different overlapping trapezoidal, triangular
or Gauss membership functions as depicted in Figure [l

The difference in the membership functions represented by different vertices
depicted in Figure[dl ensures that voters can introduce different opinions as they
pick the possible trust levels for the same difference in belief. The possible set of
trust levels L=TRUST is defined by the Table 4l Note that in the table we use
a short notation L; stands for Low_trust, M; stands for Medium_trust and H;
stands for High_trust. Once the input fuzzy sets (membership functions) have
been defined the system is ready to assess the output trust memberships for the
input values. Both input and output variables are real numbers on the range
between [0..1]. Based on the difference of beliefs, own belief and similarity of the
different voters the system evaluates the scenario.

The evaluation includes the fuzzification which converts the crisp inputs to
fuzzy sets, the inference mechanism which uses the fuzzy rules in the rule-base to
produce fuzzy conclusions (e.g., the implied fuzzy sets), and the defuzzification
block which converts these fuzzy conclusions into the crisp outputs. Therefore
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Fig. 5. Possible membership functions

each input (belief difference, belief and similarity) produces a possible defuzzi-
fied output (low, medium or high trust) for the possible output variables. Each
defuzzified value can be interpreted as a possible trust level where the linguistic
variable with the highest defuzzified value is retained in case more than one
output variable is selected. As an example consider a case where the defuzzified
output has resulted in the situation described in Table [dl Note that each voter
has its own membership function where the level of overlap is different for each
voter. Based on a concrete input voting agent nr 1 could map the defuzzified
variables into high, medium and low trust whereas voting agent 10 to only low
trust.

Table 4. Possible values for the voting

[a1]a2][a3]Aa4]as]A6]Aa7]As[A9]A10]

Ly |L¢|L¢|L¢|L¢ |L¢ |Lye|Le| Ly | Lyt
My | My | My | My | My | My
H:|H: | H:

Note that behind each trust lever there is a real number, which represents
the defuzzified value. These values are used to reduce the number of possible
linguistic variables in order to obtain the vote for each voting agent. Each agent
retains the linguistic variable that represents the highest value and is depicted
in table
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Table 5. Voting

|a1]A2]Aa3]A4]Aas]A6]A7][As][A0]A10]
[ el P e 2]

Taken as a function of x these probabilities form probability functions. They
should therefore satisfy:

ZPT =wlz) =1 (2)
w e T(L)

which gives a probability distribution on words:

Z Pr(L = Low_trust|x) = 0.6 (3)
Z Pr(L = Medium_trust|z) = 0.3 (4)
ZPT(L = High_trust|z) = 0.1 (5)

Therefore applying the appropriate input variables and the basic fuzzy rules
the system will determine that as a result of voting and given the difference in
belief x = 0.08 (belief of Agent2 - Agent 3 and belief of Agent 3 - Agent 2) the
combination should not consider the belief of the third agent since based on its
difference compared to another beliefs it turns out to be a distrustful assessment.
The before mentioned process is then repeated as many times as many different
beliefs we have for the similarity i.e. as many as different similarity measures
exist in the ontology mapping system.

Step 4 belief combination: Once the conflicts have been resolved and the
distrustful beliefs have been eliminated the individual beliefs can be combined
to a more coherent belief. This belief combination is done using the Dempster’s
combination rule:

mij(A) =mi ©m; = > mi(Ey) xm;(Ep) (6)
EvE,

where we have two individual belief mass functions mi(Ek) and mj(EE’) and i
and j represent two different agents. After the belief combination the belief in
H1 equals 0.79 and for H2 equals 0.25. As a consequence we can deduce that the
“Video_card” and “Graphics_card” are the same component.

5 Knowledge Integration Framework

Ontologies offer interoperability and the possibility of a real integration of het-
erogenous sources. The vision of the Semantic Web predicts that existing
resources i.e. databases, data on web pages will be described using ontologies.
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These ontologies would either be created by individuals, organisations or as a
result of converting existing thesaurus like WordNet. These resources will be
user by software applications in order to determine the meaning of concepts,
properties and to exchange these meanings in a certain context. Therefore in
our Knowledge Integration framework we have included two ontologies contain-
ing the background knowledge for the Computer Configuration Problem. We
assess similarities in the provided ontologies in order to find similar structures
and terms. This background knowledge is used later at the level of the CSP
solver so overlapping knowledge can be detected effectively using DSSim created
background knowledge from domain ontologies.

The integration framework used in this work is depicted in Figure 6 where
the flow of control between modules is shown. The picture shows the knowledge
models used in the framework. In our particular case, we are using as knowl-
edge models ontologies from PC online shops. These ontologies were built by
ourselves and they are written in OWL the standard ontologies language. Then,
we populate our ontologies using the values of two on-line shops. The suggested
framework is generic as a first instance (for testing our ideas) the two models
are OWL ontologies however, other formalisms could be used for building the
models, for example, the formalisms which could be easily converted into the
OWL ontology language.

We assume in our Knowledge Integration framework that each model has been
built by different knowledge engineers and therefore, overlapping and contradic-
tions of knowledge might occur. Our solution to the overlapping knowledge is
performed by using DSSim. Although, for the purpose of this chapter, DSSim
is presented as a black box as it has been described elsewhere [25] [26] [28] [27].
DSSim is an ontology alignment system based on Dempster Shafer and a fuzzy
voting model. Besides DSSim uses background knowledge and WordNet to assess
similarity between classes an properties in ontologies. The models are the input
to our DSSim system which produces the mappings detected between the mod-
els. Currently, for the purpose of the experiment shown in the next section we are
dealing only with two ontologies (i.e. two models). However, the framework can
be extended to deal with multiple knowledge models. Preliminary results suggest
that one problem addressed in our knowledge integration framework namely the
detection of overlapping knowledge can be solved using the mappings obtained
by DSSim.

The integrator module uses DSSim outputs and makes requests for approval
of mappings to the knowledge engineer or human expert. The “mapping informa-
tion” obtained by DSSim is passed to the Integrator module which then modifies
the constraints graphs using the approval information provided by the knowl-
edge engineer. Finally, the modified Constraint Satisfaction Problem (modified
constraint graph) is passed to the choco solver which solves the Constraint Sat-
isfaction Problem and returns results to the final user. In our research we used
choco as it is a standard constraint solver which can be integrated with Java.
Therefore, it fits very well with our overall knowledge integration framework.
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The “Configuration System Interface” is the front-end to our users. Cur-
rently is not an elaborated interface as our priority was to test our ideas on the
knowledge integration framework. Next section presents an experiment using two
knowledge models on our case of study (a restricted version of a configuration
problem).

5.1 Algorithms for Detecting and Correcting Overlappings

Two different algorithms play a key role in our framework as they deal with
detection and correction of overlaps i.e. mappings and the resolution of the con-
straint satisfaction program (CSP). Our strategy of combining these algotithms
is to create a clear split between the steps considering performance reasons.
Knowledge integration on real domains is a challenging and complex task, in-
volving two computationally expensive operations:

1. Mapping terms between different sources: In order to detect overlapping in
the configurations we need to create mappings between all possible items
in the inventory (all instances in both ontology 1 and ontology 2). This
operation typically involve comparisons on a state space that is the cartesian
product of the different inventory items.

INV,XINV,, = {(itemy, itemy,)|item,, € INV,, and item,,, € INV,,} (7)

Consequently the possible comparisons increases as the number of inventory
items increases therefore a real time comparison can easily become unfea-
sible. Further in real life scenarios the inventory cannot change between
proposing two configurations to the user therefore the mapping can be and
should be done only when the inventory in the sources are changing. As a
result we create the mappings between the inventory items first and we run
the mapping algorithm when necessary during the knowledge integration.

2. CSP search strategy and model solving: A key ingredient of any constraint
solving approach is the appropriate construction of the search tree and the
definition of the search algorithm. A common approach is by assigning vari-
ables to certain values however the size of the search tree is proportional to
the number of variables and domain values we use in the model. Therefore
finding a solution for a certain problem can easily become unfeasible in real
time if the number of components for the configuration is increasing. Un-
fortunately contrary to the mapping generation the constraint satisfaction
problem need to be resolved in the real time every time the user asks for a
certain quote from the system. Therefore in our approach we need to put an
upper limit on the time the algorithm can run in order to provide answer to
the user’ query.

The ontology mapping process that includes the fuzzy voting is described in
Algorithm[Il The input of the algorithms are the similarity matrixes that contain
various similarity measures. The output of this algorithm is the mapping file
in the OAEI format. This mapping file describes, which items are equivalent
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in the different inventories e.g. “Video_card and Graphics_card”. As we have
described before the algorithms iterates through the similarity matrixes and
tries to establish and combine the Dempster belief functions using scenario and
evidences (line 1-7). In case the evidences are contradictory a number of voters
are created in order to determine, which belief can be trusted (line 8-14). Once
the trusted beliefs have been selected the algorithm combines the beliefs and
creates the mapping file based on these beliefs (line 16-17). This iterative process
finishes once all items from inventory 1 have been compared with all the items
in inventory 2. In our scenario these inventories contain all the instances in the
ontologies.

Input: Similarity belief matrixes Sy xm = {S1, .., Sk}
Output: Mapping candidates
1 for i=1 to n do
2 BeliefVectors BeliefVectors «— GetBeliefVectors(S[i, 1 —m]) ;
3 Concepts < GetBestBeliefs (BeliefVectors BeliefVectors) ;
4 Scenario < CreateScenario(Concepts) ;
5 for j=1 to size(Concepts) do
6 | Scenario «— AddEvidences (Concepts) ;
7 end
8 if Evidences are contradictory then
9 for count=1 to numberOf(Experts) do
10 Voters < CreateVoters(10) ;
11 TrustValues < VoteTrustMembership (Evidences) ;
12 ProbabilityDistribution «
CalculateTrustProbability(TrustValues) ;
13 Evidences <+ SelectTrustedEvidences (ProbabilityDistribution)
14 end
15 end
16 Scenario < CombineBeliefs (Evidences) ;
17 MappingList < GetMappings (Scenario) ;
18 end

Algorithm 1. Creating mapping for component overlap detection

On the other side the configuration selection based on CSP solution is not an
iterative process, however solving the problem itself can pose challenges in terms
of computational complexity. The algorithm is described on Algorithm [2l The
inputs of the algorithm are the inventory items in different sources, the mapping
file and the requested items from the user if any.

The first step is to create a sample configuration using information from the
requested items that has been specified by the user e.g. user wants Intel pro-
cessors only. The sample configuration will contain items from both inventory
1 and 2 therefore it may contain similar items. These similar items are eliminated
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from the configuration (line 2) using the mapping file that was generated by the
ontology mapping algorithm. The next step is to create the CSP model that we
wish to solve using the sample configuration (line 3). After we iterate through on
each item in the configuration and transform it to a CSP variable together with
its possible domain (line 4-6). Then we assign the constraints for the problem
(line 7) and solve the CSP problem using our established model(line 8). Finally
we can read out the suggested configuration from the model, which will be used
as a quote to send back to the user.

Input: Inventory,, Inventory.,,, Mapping file, Requesteditems
Output: Suggested configuration
1 SampleConfiguration < GetSampleConfiguration (Inventoryltems,
Requestedltems) ;
SampleConfiguration < EliminateSimilarNodes (Mappings) ;
CPMModel « CreateCPMModel ( SampleConfiguration) ;
for i=1 to NumOfComponents do
CPMVariable; = CreateVariables ( GetComponentDomain
(SuggestedConfiguration ;) ) ;
end
Constraints < CreateConstraints () ;
CPMModel «— SolveCPMProblen () ;
SuggestedConfiguration < GetSuggestedConfiguration (CPMModel) ;

S\ VI V)

© w N o

Algorithm 2. Resolving the configuration problem
6 Evaluation

In order to evaluate our approach we have carried out experiments (process is
depicted in Figure[7) using two ontologies that were created from two on line PC
(Personal Computers) store. Both ontologies contain categories and instances of
items that are sold in the on-line shop. The main objective of our experiment
was to evaluate how accurate our knowledge integration approach is. During
the experiments we have generated 100 random configurations that simulates
a customer choice and we have evaluated the correctness of the configurations
after the two ontologies were mapped into each other.

The main idea of our experiment was to show the integration of our sample
ontologies and then to use the integrated model for solving a computers config-
uration problem. The evaluation was performed in two phases. In the first phase
we integrated two knowledge models (i.e. ontologies) from two online PC shops.
The evaluation comprises to perform mapping between classes and properties
of the two ontologies. In this task we had used our DSSim system [26] which
is a mapping system based on Dempster-Shafer Theory described in detail in
[25] [26] [27]. Although, the ontologies used in the experiment (presented in this
chapter) are rather small our DSSim is equipped to deal with large ontologies
[28]. In fact, DSSim has been tested with very large ontologies from the Ontology
Alignment Evaluation Initiative (OAEI).
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Fig. 7. Experimental process

The second part of the experiment is the solution of the CSP problem using
the mappings generated in the first phase. To illustrate our solution we started
by selecting just one PC configuration (basic configuration). Once the solution
to the basic configuration of computers was obtained. Then, we carried out
the experiments using the two remaining configurations namely medium and
expensive configuration which were solved in a similar fashion. Therefore, in a
first instance, we focussed our attention to the constraints associated to the basic
configuration. These constraints are C1...C'10 defined in section 3.2} Our solution
used a constraint solver choco which is widely used in the CSP community. The
notion basic, medium and expensive configurations have been represented with
the number of components assuming that the more expensive a configuration is
the more components the configuration will contain. In our experiment the basic
configuration has 30, the medium has 50 and the expensive has 70 components.

We have carried out experiments based on the computer configuration prob-
lem described in the section In order to make it as close to real situation as
possible we have created 2 ontologies based on two online computer shops that
sell a wide variety of PC Components and Accessories. One shop is the Micro
Direct Ltd B from the UK and the second is Newegg@ from the US. For the
experiments we have created ontologies that contain only partial component list
from both sites. The number of classes, properties and instances included in the
ontologies are described on Table [6l

3 http://www.microdirect.co.uk
4 http://www.newegg.com/
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Table 6. Example ontology complexities

|Microdirect.c0.uk|Newegg.com|

Classes 102 121
Properties 47 46
Individuals 197 242
Subclass axioms 96 118
Equivalent classes axioms 19 5

6.1 Mapping Quality

The first step of or experiment is to create a mapping file using DSSim in or-
der to detect overlapping elements from the two ontologies. The idea behind
our scenario and experiments is to integrate two data sources through ontol-
ogy mapping. In practice this means that our solution should make it possible
to create configurations from two different shops without physically integrating
the databases. The mapping file generated by our algorithm contains 93 map-
pings. These mappings range from the very obvious to hidden correspondences
between concepts and properties e.g. Memory - Memory, ATi_Graphics_Card
Video- card. In addition we have created manually a mapping file between the
ontologies in order to compare with the one that is generated by the system. This
evaluation was measured with recall and precision, which are useful measures
that have a fixed range and meaningful from the mapping point of view.
There are two typical measures for assessing the performance:

Definition 8. Precision: A measure of the usefulness of a hit list, where hit list
1s an ordered list of hits in decreasing order of relevance to the query.

Definition 9. Recall: A measure of the completeness of the hit list and shows
how well the engine performs in finding relevant entities.

Recall is 100% when every relevant entity is retrieved. However it is possible to
achieve 100% by simply returning every entity in the collection for every query.
Therefore, recall by itself is not a good measure of the quality of a search engine.
Precision is a measure of how well the engine performs in not returning non
relevant documents. Precision is 100% when every entity returned to the user
is relevant to the query. There is no easy way to achieve 100% precision other
than in the trivial case where no document is ever returned for any query. Both
precision and recall has a fixed range: 0.0 to 1.0 (or 0% to 100%). A good map-
ping algorithm must have a high recall to be acceptable for most applications.
The most important factor in building better mapping algorithms is to increase
precision without worsening the recall.

Before we present our evaluation let us discuss what improvements one can
expect considering the mapping precision or recall. Most people would expect
that if the results can be doubled i.e. increased by 100% then this is a remark-
able achievement. This might be the case for anything but ontology mapping.
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In reality researchers are trying to push the limits of the existing matching algo-
rithms and anything between 10% and 30% is considered a good improvement.
The objective is always to make improvement in preferably both in precision
and recall.

Table 7. Mapping quality

[ Ve
Precision| 0.66
Recall | 1.0

Based on the result (depicted on Table[7]) we can conclude that the recall rate
is 100% therefore all the possible mappings have been found by the system. How-
ever the precision is 66 %, which indicates that some additional mapping were
found and they are incorrect. The precision rate is high and indeed the man-
ual mapping has resulted in the mapping file that contain only the equivalence
relationships e.g. CPU - CPU between items. Our algorithm also identified not
equivalence relations e.g. Motherboards - Server _Motherboard and this decreases
the precision of the system.

6.2 Configuration Quality

In the second experiment we create random configurations using components
from both shops i.e. ontologies. For example we take the memory from Microdi-
rect and select the Monitor from Neweggs. The number of components can range
between 30 and 70 depending on the configuration type.

In step three using the mapping file created in step 1 we eliminate the overlap-
ping components from the configuration. For example if Video_card was selected
from ontology 1 and Graphics_card was also selected to the configuration we
leave only one of them in the configuration.

During step four we take the available prices for each component in the con-
figuration. In practice we take all instances of each component and add them
as variables for the CSP problem. For example for the Video card we take Sap-
phire_Radeon_HD_5850_1GB or XFX_ATI_RADEON_4650. All these variables
will feed into our CSP solver engine as textual variables.

In step 5 we run the CSP solver in order to get what are the process we can
spend on each component in order to produce the suggested configuration. Given
the fact that there is no guarantee that the CSP problem can be resolved in a
timely manner we put a 10 second constraint on the choco solver in order to
limit the available time for each experiment. In case the solver cannot find an
optimal solution the random configuration will be returned.

In Step 6 we select the concrete components that fit into our maximum amount
we can spend on each component.
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The process from step 2 to 6 is repeated 100 times in order to obtain reason-
able amount of data that can be analysed. We are interested in measuring how
well our proposed approach can perform in order to integrate knowledge from
different sources. We measure how often overlapping elements are removed from
random configurations and how often overlapping items have to be evaluated
from the random configurations.

The experimental results are depicted in Figure

Overlap in configurations

T T T
Basic configurations

“wr Medium configurations ------- -
Expensive configurations -------

&

g

6

Experiments
Fig. 8. Overlapping components
Table 8. Ovelapping component statistics
| |Min 0ver1ap|Max 0ver1ap|Average overlap|No overlap|
Basic configuration 0 5 1.45 21

Medium configuration 0 10 3.83 1

Expensive configuration 2 13 7 0

As depicted in Figure 8l and Table [8 the number of overlapping elements per
configuration varies from 0-13. According to the experiments 79 % of the basic
configuration, 99 % of the medium configuration 100 % for the expensive con-
figuration represents cases where the overlapping elements have to be removed.
In practice it means the knowledge integration occurs between 79-100 % per-
cent of the cases. This is remarkable and in operational systems where users are
involved this represents a considerable percentage. Based on our experiments
we can establish that knowledge integration can improve the PC configuration
precision in the majority of the cases.
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Our experiments have showed that the result of constraint satisfaction prob-
lem for the PC configuration improves if the number of components for the
configuration increases. This can be explained with the fact that with the more
complex a configuration is the more overlapping in the CSP graph can occur.
This is encouraging as our main objective is to establish a solution for the knowl-
edge integration problem.

7 Conclusions

This chapter presented an approach to knowledge integration of several knowl-
edge models. These knowledge models were created by different stakeholders. As
a case of study to demonstrate our approach we introduced a restricted version
of the computer configuration problem. Our case of study was modeled as a
Constraint Satisfaction Problem and the constraints graphs were produced. The
detection of overlapping pieces of knowledge and its solution was performed by
means of DSSim, a agent-based system which uses similarity algorithms coupled
with a fuzzy voting model.

The experiment shown was performed using two knowledge models and it was
divided in two phases. The first phase was detection of overlapping knowledge
and correction using our DSSim system. The second phase is the Constraint
Satisfaction Problem using choco (the constraint solver). Our preliminary find-
ings are encouraging and they are the baseline for assessing the usefulness of our
Knowledge Integration. Of course, more work needs to be done in order to fulfill
our expectations of a generic framework for Knowledge Integration. Future work
comprise to carry out experiments using more knowledge models.

We have established a set of initial experiments and measures that combines
ontology mapping and constraint satisfaction in a real word scenario. Our pro-
posed experimental context for knowledge integration is the logical federation
of two on-line PC stores, without physically creating a unified database. The
federation is carried out only the overlapping elements of the two different data
sources in order to being able to eliminate the number of equivalent components
for the proposed configuration. Our ontologies used during the experiment con-
tain only a fraction of the information that can be extracted from the two on
line stores. Nevertheless our results are encouraging since even these relatively
small ontologies produce 79-100 % of overlaps in the configurations. The more
elements we include in our ontologies the higher overlapping components will
emerge in these configurations. Therefore based on our current experiments we
can conclude that the knowledge integration can occur in the majority of the
cases and such approach can improve the overall situation of the system. How-
ever in the future we intend to investigate further what influences the number of
overlapping elements that occur in random configurations. In terms of constraint
satisfaction our experiments have showed that only the expensive configuration
performs well as the medium and basic contains far too much configuration that
do not match the users criteria. One explanation is the limited number of in-
stances in the two ontologies. We expect that the more instances we will include
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into our ontologies i.e. more PC components the better our constraint can be
met for the basic and medium configuration. In general our experiments have
showed that our approach is promising however it requires more experiments
with larger ontologies in order to further assess the strengths and weaknesses of
our approach.
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Simulation-Based Systems Design in Multi-actor
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Abstract. Much of the performance of a logistic system is determined
by the quality of its design. A rich body of knowledge has been developed
during the last decades that supports the product as well as the process of
designing. Design methods for systems have initially defined the product
by providing a framework to construct models to analyze the constructed
artifact. This approach, which would later be coined the hard systems
approach, would turn out to contain flaws in assumptions concerning of
the existence of an (quasi-) optimal solution and by neglecting humans
involved in the process. However, the techniques developed to support the
approach, most notably simulation, have matured and are now commonly
used to analyze designs. A major shift in approach took place to redeem
for the perceived failures in systems design processes. This resulted in
a tendency to focus on the diverging views of actors involved in the
process, which was termed as the soft systems approaches. To profit
from both sides, multimethodological approaches have been presented,
assuming that a combination is feasible to take the best of both worlds.
Participative simulation sessions have the potential to support the design
processes: (1) in a multi-actor environment with diverging stakes, and (2)
without ignoring the fact that human decision making relies on implicit
knowledge that is insufficient and unreliable to evaluate decisions, thus
requiring simulation for support. In this chapter, we present the rationale
for requiring a multimethodological approach and discuss which aspects
should be covered based on existing research literature.

Keywords: container terminal, system design method, simulation.

1 Introduction

Today’s supply chains rely heavily on advanced logistics systems to transport
goods. Efficiency is ever so important, leading to a preference for faster and
more precise automated equipment. The technical challenges, high investments,
and the societal and environmental impact depend upon multiple actors, or
stakeholders, to lead the decision making process for designing these logistics
systems. This imposes challenges that become increasingly difficult to address.

Logistics systems are typically designed and analyzed from a systems engi-
neering perspective. Simulation, optimization methods, linear programming, and

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 107
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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other mathematical techniques are used to analyze and optimize logistics sys-
tems. One of the prominent examples of logistics systems that require this kind
of methods, are container terminals [61][8]. The analysis and optimization is
performed using a pre-defined utility function that is usually expressed in key
performance indicators. The decision making process involves multiple actors
which have varying stakes in the process. These stakes can often be contradic-
tory, which can hinder the decision making process.

A case study that we performed at a large container terminal operator exposed
the great complexity in the decision making process from both the system’s as
actor’s perspective. De Bruijn and Herder [I7] discuss how important it is to an-
alyze both perspectives to achieve a complete analysis. The system’s perspective
of the design process of container terminals has been discussed often and thor-
oughly in literature: overviews are given by Steenken et al. [61], Stahlbock and
Voss [60] and Vis and de Koster [66]. In Hu [32] and Derksen [19], whose work
resulted from the case study, an analysis of the actors involved in the decision
making process was carried out. The major identified actors are involved with

— innovation as a way to deploy novel equipment to increase productivity;
— business as to keep costs and revenues in balance;

— engineering as to design a technically feasible terminal;

— and, finally, environment and safety.

In previous research [24], we discussed the challenging design process in light
of the complexity from both the system as the actor perspective. We concluded
that the design process needs to be supported in order to face these challenges.
In this chapter, we will explore existing literature and provide the constructs to
support a design process.

1.1 Outline of the Chapter

Following the introduction on the relevance of our research, we will continue by
exploring existing literature on the subject at hand. In Section 2 we will provide
an extensive overview on the multiple discipline involved to design (logistics)
systems. In Section @] we will provide the constructs found in literature that
are needed to support a design process from the system as well as the actor
perspective. We will provide a discussion and conclusions in Section [l

2 Designing Systems

In the early sixties of the previous century, Alexander [3] presented his seminal
work that introduced the notion of methods in design studies. Up to that point,
a design effort was considered a craft that relied solely on intuition and skills.
Alexander postulated that design methods could aid the designer in fitting the
form (the design artifact) to its environment: “every design problem begins with
an effort to achieve fitness between two entities: the form in question and its
context”. To fit the form to its environment, formal methods and techniques
should be required for both design products and design processes. Although the
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method he presented turned out to be unsuccessful for numerous reasons, the
prior misconception of rejecting formal procedures in design was abandoned.
This led to an abundance of novel design methods from 1962 onwards [16].

During the same period as the design method movement, a modern under-
standing of systems thinking gained traction in science and engineering. Holistic
thinking was put next to reductionism, which dominated science for a long pe-
riod of time. Von Bertalanffy’s general systems theory [68] was readily translated
to new fields like operations research and systems engineering [I]. Hall [27] clar-
ified the distinction between the two by pointing out that operations research is
concerned with optimizing existing systems, and systems engineering’s concern
is focused on the design of new systems. Jenkins [36] sharpened the difference by
suggesting that system engineering looks at the total system whereas operations
research tinkers at the level of the more mechanical sub-systems. It is important
to note that the recognition of systems engineering as focused on design binds
system’s thinking to Alexander’s idea on formal procedures for design studies.

At the crossroad of system’s thinking and design lies Simon’s [58] contribution.
He observed that a design process must follow a specific path of first structuring
the problem, followed by a formulation of alternative solutions based upon se-
lected criteria and finally by a selection of the best alternative. Human’s bounded
rationality limits the designer’s capabilities in exploring the solution space, and
thus precludes from finding an optimal solution. This limit is due to various
factors such as incomplete information, cognitive limitation of the designer and
time pressure. The designer cannot and should not aim for optimizing while de-
signing, but should compromise between satisfying and optimizing, which Simon
denotes as satisficing. Based on these premises, future system engineers would
go about accepting the paradigm as follows: : “There is a desired state, S(1), and
a present state S(0), and alternative ways of getting from S(0) to S(1). ‘Problem
solving,” according to this view, consists of defining S(1) and S(0) and selecting
the best means of reducing the difference between them” [I1]. More specifically,
the idea ruled supreme that the problem task to tackle would be about selecting
the efficient means.

Design studies are carried out in different fields, most notably architecture and
engineering. Design is considered the essence of engineering [69]. Hubka [34][49]
suggested to design technical artifacts as systems that are connected to their
environment by means of input and outputs. The system can be divided into
subsystems taking into consideration their boundaries. Hubka argued this would
be fundamental to define appropriate systems at any stage of abstraction, analy-
sis or classification. Pahl and Beitz [49] pinpoint that from this notion onwards,
it was a short steps towards using system’s theory in design processes and specify
that “systems approach reflects the general appreciation that complex problems
are best tackled in fixed steps, each involving analysis and synthesis”. Similarly,
van Gigch [64] discusses the systems approach as a methodology of design. In
his work, he presents modeling as the fundamental aspect of the system design
process. Modeling implies that “the modeler abstracts properties from things in
order to obtain a representation of the physical world”. The abstraction process
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plays an important role in design as designers go through it to refine images of
reality through different levels of conceptualization. The importance of models
and emphasis on abstraction is further given by Hoover and Renderle [3I]. They
discuss that abstract models can be defined at different stages in the design
process to test design decisions and to provide a framework for making design
refinements.

In engineering design, the aforementioned notions on design space exploration,
abstraction and modeling have found considerable impact in methods and sup-
port systems. Engineering design denotes a “systematic, intelligent process in
which designers generate, evaluate, and specify concepts for devices, systems,
or processes whose form and function achieve clients’ objectives or users’ needs
while satisfying a specified set of constraints” [22]. Choosing among design al-
ternatives is a common underlying concept for many methods. Hazelrigg [28][29]
goes as far as framing a truly rational process to produce the best possible result
using ‘a mathematics for design’. Many others have proposed constructs to struc-
ture and choose among alternatives: such constructs include trees [7], matrices
[20], rankings, and charts [48]. Methods focusing on modeling on different level
of abstraction also exist, most prominently in the work presented by Paredis
et al.. [50].

System’s thinking as originally understood in operations research and sys-
tems engineering did not fulfill its promises. This induced Ackoff [2] to call for
a new paradigm that would break away from the ever-increasing “mathemati-
zation” of the field. Operations research and systems engineering did not pay
attention on the actors involved in the decision making process. Particularly with
regards to management problems, this was recognized as an important shortcom-
ing. Mingers [45] discusses that traditional systems engineering designs systems
starting from the purpose of the envisioned systems and working backwards with
mathematical techniques to find ways to achieve their objectives. This is based
on the flawed assumption that the objectives are clearly stated at the beginning
of the design process.

An important step forwards was taken with the introduction of the soft sys-
tems methodology by Checkland [13]. Acknowledging changing requirements,
different actors with different stakes and opinions, and the importance of a learn-
ing process, proved to be fundamental to develop the soft systems methodology.
The methodology stood the test of time and, after some revisions, is still suc-
cessfully used today [T4][I5]. The so called hard systems methods in operations
research and systems engineering had to face competition with a number of new
soft systems methods. A taxonomy for system’s approaches, called the system
of systems methodology, presented by Jackson [35], was developed to help select
a suitable system’s approach for a given problem task. Subsequently, Mingers
[43] argued that the whole set of methods could be classified according to ontol-
ogy, epistemology and axiology, that is what they model, how they model and
why the model. According to this classification, the hard systems method lays
the importance on the artifact. Conversely, soft systems methods tend to focus
on the users, whether they can understand and discuss the problem situation.
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Because of the different foci of both types of methods, the question arises whether
multimethodology can exist: why choose one or the other when we can exploit
both to best tackle a problem (situation)?

3 Systems Approaches

Robinson [55] talks about a continuum between soft and hard instead of bipolar
extremes. This is motivated by novel interactive simulation environments de-
veloped in the nineties that can deal with uncertainty (changing requirement
and lack of knowledge about the system) by allowing incomplete or estimated
data. These environments can lead to discussions, which can be framed as a soft
systems approach. Soft system methods emerged due to unsatisfactory appli-
cations of hard system methods to wicked or ill defined problems. This led to
an abandonment of formal methods developed with the hard systems mentality
and favored the loose frameworks known as soft systems methods. However, this
choice is unfortunate, as both types of methods have their disadvantages that
can be overcome by seeking an appropriate combination.

A tendency towards combining hard and soft systems methods is reflected
in the results of surveys conducted among practitioners and in the amount of
papers reported using a multimethodological approach that are published in
prominent journals of the field. A major survey reported by Munro and Mingers
[46], show that in situations where a combination of hard and soft systems is
considered useful there is a slight preference towards discrete event simulation.
Unfortunately, no clear reasons are given for this preference. To understand
what justifies a successful implementation of discrete event simulation with a
soft systems method, we have to rely on other case studies.

Mingers and Rosenhead [44] report case studies where a multimethodology
was used in problematic situations. Among these case studies, several instances
of simulation studies were conducted using a soft systems approach, more specif-
ically studies by Lehaney and Paul [42], Lehaney and Hlupic [40], and Bennett
and Worthington [10]. In these cases, soft systems methodology is used to sup-
port the model building phase of the simulation studies. This participative action
brings the model closer to the problem owner and allows discussion on the model
to explore the problem. A brief list of recent contributions that explore this pos-
sibility further show that this is a viable approach:

— Kotiadis [38] discusses how soft systems methodology can be used to de-
termine the conceptual model’s most important component, the simulation
study objectives. The case study was conducted to improve a health care
system.

— Lehaney et al. [41] present a case study that was initially meant as a conven-
tional resource allocation simulation study, but that ended up as a simulation
based discussion to reveal issues of misunderstanding within the studied or-
ganization and poor communication that led to misallocation of resources.
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— den Hengst et al. [I8] Explore how soft OR principles can be used for col-
laborative simulation. They conducted a case study in the Dutch airline in-
dustry and concluded that the combination is promising, but more research
is needed to tackle a number of issues encountered in their research.

— Pidd [51] advocates the use of ‘soft” approaches to make sure analysts tackle
the right problem in a situation study. He provides a general guideline on
how such a study can be carried out.

— Baldwin [6] states that classical simulation studies cannot be conducted in
health care or other fast-changing businesses. According to the authors, this
is due to the vague problem formulation phase present in simulation studies.
They argue this phase is crucial and present their approach that puts more
attention on defining the problem.

— Robinson [53] discusses how discrete event simulation can facilitate a discus-
sion among stakeholders to identify problems in a user support helpline.

Although this is most probably not a complete list of studies showing this type
of approach, we can treat it as a list of prominent examples from which we can
draw conclusions. These studies show that in designing socio-technical systems,
multimethodology is used for in framing the problem, learning about the problem
and finding viable solutions. In each study, strong points are identified in both
types of approaches, and exploited in the overarching approach. In the next
sections, we will analyze both the hard side and the soft side of these studies, to
identify their weak and strong points.

3.1 Systems Simulation in Design

Many definitions of systems exist, which generally include the idea of parts
interacting with one another to form a coherent whole realizing a certain purpose.
In a mathematical sense, a system has been defined as a set of variables and a
set, of relations between them. This mathematical object is often used as a model
of a system in nature or as a model of an envisioned system to be engineered.
An evaluation of the natural or envisioned system’s performance can be done
through the computational analysis of this model.

As we saw in the previous sections, design is a goal seeking activity which
tries to reduce a gap between a current state and a desired state with the help
of an engineered artifact. In this activity, system models have been used to eval-
uate whether an alternative solution takes us close enough to the desired state.
The complexity of the design problem generally forbids the use of optimization
techniques alone. Thus, the goal seeking behavior is assumed by the designer,
and not by the model itself, which is neutral and structurally static. The com-
putational model - used as a replacement of reality- is altered until its output
variables give satisfactory results.

In the classical systems engineering lifecycle, the modeling and simulation
methodology is used for analysis. Other tools, such as CAD, are used for design.
Modeling and simulation is only used to evaluate the design choices that have
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been reached using other tools. This is because designers are not generally com-
fortable in modeling using simulation languages which still require specialized
knowledge. Furthermore, model building is generally a costly and time consum-
ing activity which is externalized to analysts or consultants. Integrating design
and evaluation activities could improve the quality of the designed artifacts and
make the design process smoother.

To achieve this goal of facilitating modeling for a better integration in the de-
sign cycle, component based approaches look promising. Modular system frame-
works are key enablers. The discrete event systems specification [70] and similar
formalisms are particularly well adapted to help achieving that goal. Well tested
simulation model components with well defined interfaces can be made available
to the designer. The design activity then means to couple the different compo-
nents in order to achieve a certain function. With the predefined components,
the user does not have to worry about the underlying complexities. The focus
can be completely put on the design itself.

Computational models and components are mathematical objects, made of
variables and operators. They are obtained after a process of abstraction which
gets rid of most of the complexity in the real system. The modeler - to make
the task feasible - chooses a certain theoretical or pragmatic perspective, draws
a boundary as tight as possible around the system of interest, selects a set of
relevant variables, and chooses to exclude other variables. After this process of
abstraction, the model reflects the system of interest, but it also strongly reflects
the intentions and preconceived ideas of the modeler. If this model has to be used
in a multi-actor design activity, all stakeholders are implicitly asked to adhere
to the paradigm of the conceptual designer, otherwise, all questions and ideas
they may have based on the model can be out of scope or meaningless.

Using simulation in design also raises the question of model validity. The
system being designed does not exist in real life, or at least not in its desired state.
Replicative validation techniques, which are based on a statistical comparison
between the model and the real system, are not applicable. To be of any use,
the model used in a design activity should at least have predictive validity. To
support fruitful discussion on the real envisioned system, the model should be
structurally valid as well. Of course, the fact that the components are valid does
not guarantee that the aggregated model is equally valid.

A final note on simulation based design concerns the static structure of most
simulation languages. A framework for simulation based designed should allow
models to see their structure altered dynamically during runtime. Formalisms
with such capabilities have been introduced recently [9][33].

3.2 Soft Systems Methodology

Checkland’s soft systems methodology (SSM) plays a prominent role in mul-
timethodological approaches. The approaches presented in each study at the
beginning of this section differ in how much they adhere to the methodology:
some prefer to call their approach ‘softer’ whereas others explicitly state using
SSM. We will briefly present SSM.
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SSM differs from hard systems approaches in the way it perceives systems.
Whereas hard systems approaches provide an ontological perspective on systems
(Which entities are present? What are their relationships?), soft systems take an
epistemological stance and discuss systems as a human’s view on reality, hence a
human construct used for understanding. In contrast with hard systems thinking,
SSM does not focus on the solution, rather on a learning process actors go
through while dealing with the problem situation. Hirschheim et al. [30] describe
SSM as “a framework which does not force or lead the systems analysts to a
particular ‘solution’, rather to an understanding”. Throughout the many years
of development, SSM has matured and has gone through many versions: the
most widely used version is known for its seven stages.

The Seven Stage Soft Systems Methodology

The seven stages of classic SSM are about (1) defining the problem, (2) ex-
pressing the problem, (3) finding the root definitions of relevant systems, (4)
developing conceptual models, (5) compare the conceptual model with reality,
(6) define interventions, and (7) undertake action to improve the situation.

During the first stage, the problem situation is assessed. By collecting all sorts
of data, one tries to gather a broad set of information available on the problem
situation. No restrictions are given as to how much information is needed: this
phase’s sole purpose is to explore. In the next phase, expressing the problem,
the information is structured to achieve a coherent expressive picture of the
situation. The result of the second phase is composed of rich pictures, named to
pinpoint the need of expressing the problem situation in all its richness. The rich
pictures, which are preferably literally pictures (i.e. drawings or diagrams), could
take into consideration structures, processes, climate, people issues expressed by
people, and conflicts.

The third stage is about finding the so called root definitions: the perspectives
or motivations of each actor in the rich picture. This phase commences by explor-
ing the different perspectives of actors, in a rather unstructured form. After all
perspectives have been identified, a structured analysis is carried out on the key
perspective using the CATWOE model development process. CATWOE stands
for customers, actors, transformation, welthanschauung (worldview), owner, and
environment.

In the fourth stage, a conceptual model is constructed using the root defini-
tions. The conceptual models would ideally be diagrams that demonstrate how
each actor envisions a system that can fulfill the root definitions. The fifth stage
is to compare the conceptual models with reality, to find incongruence but also
to understand how the real world can be improved to meet the conceptual mod-
els. How these improvements can be achieved, is explored in the sixth phase by
developing specific ideas. The last stage, contains the action to actually carry
out these improvements in the real world.

It is important to note that all these stages do not serve as a strict framework
to follow but are open to interpretations, variations, and iterations. The process
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serves as base to achieve understanding among actors and identify objectives.
The flexibility offered by this process, results in different adaptations that fit the
best to the given problem, something we will discuss in the following section.

Simulation Studies from a Soft Systems Perspective

Pidd [51] explains why and how SSM can be useful in a simulation study. Mod-
eling and simulation revolves often around implementing code, whether it is in
general purpose languages such as Java or in simulation environments such as
Arena (where the logic is constructed using building blocks). It is however impor-
tant that a conceptual model is build first, to avoid implementing a simulation
model that does not fully address the problem or that shows discrepancies with
reality. The conceptual model that is developed in the fourth stage of SSM is
ideal for developing a simulation model: it covers the different perspectives of
the actors and, ideally, it went through much iteration.

Kotiadis [38] follows a similar approach as Pidd and uses the conceptual model
gathered from SSM sessions. The focus lies mainly on the simulation study ob-
jectives that can be determined based on the definitions of efficacy, efficiency,
and effectiveness. This extension of SSM [12] is used to specify the Performance
Measurement Model (PMM): this model is constructed similarly to the concep-
tual model of the classic SSM. Using the PMM, one can go about finding out
performance criteria, breaking the performance criteria into specific monitor-
ing activities, decide what action might be taken based on these activities, and
decide which activities might be evaluated in a simulation model.

Baldwin et al. [6] argue that Lehaney and Paul’s [42] approach, and later
also used by Lehaney et al. [41], is merely a first step towards combining SSM
with simulation. Lehaney and Paul use simulation in the fourth phase of SSM
to speed up the process by using quick-and-dirty simulation modeling. Model-
ing and simulation, in their view, can be used to enhance understanding and
interpersonal communication of the stakeholders. However, contrarily to what is
stated in other studies, the modeling effort should be present to understand the
problem and should therefore not happen after the problem has been identified.
Modeling becomes a way of communicating between stakeholders and the stake-
holders should be involved into the modeling effort from the very beginning.
They underline the need for an iterative process where stakeholders provide re-
quirements for the modeling effort and the model produces new information for
the stakeholder, something that is shown in Figure [l

A looser approach to soft methods is taken by Robinson [53] who states that
his “study involved a facilitated discussion around a simulation model about
possible improvements to a problem situation”. Instead of following a strict
SSM process, he prefers to adapt the classic simulation process such as the one
presented by Law and Kelton [39]. The methodology has different steps: (1)
defining the objectives, (2) conceptual modeling, (3) model development, (4)
verification, (5) validation, and (6) facilitation. In contrast to classic simulation
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Fig. 1. The iterative modeling process presented by Balwin et al. [6]

studies, the data used for this study was neither complete nor reliable. Because
of this, a facilitated discussion was organized instead of performing experiments
with the simulation model. The simulation model was not used “as a tool that
could accurately evaluate alternative options, but rather as a focus of debate, a
means for learning about the problem situation and for reaching an agreement
to act”. This multimethodological approach is presented in a diagram, shown in
Figure2] that highlights the different aspects that can be considered “hard” and
the one that can be considered “soft”.
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Fig. 2. The multimethodological approach presented by Robinson [53]

Den Hengst et al. [I§] follow Robinson’s approach in using simulation models
to facilitate a discussion. Their approach follows five steps: (1) conceptualize
problem, (2) create and validate empirical model, (3) construct alternative mod-
els and conduct experiments, (4) choose most preferred solution, and (5) imple-
ment solution. They discuss a case study that provides some valuable insights in
the use of simulation models for this kind of interactive purposes. They present
the following problems or difficulties:
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— Building the simulation models required a lot of time and expertise: ‘building
the simulation model both conceptually and empirically took an average of
two working days per week over a period of five months for two modellers
who had significant simulation modelling experience’ [I8].

— Due to the complex code to build the simulation model, verification and vali-
dation was extremely difficult. In retrospect, they argue this could have been
avoided because the validation did not add anything useful to the process.

— Lack of knowledge in simulation modeling resulted in a hard to accept model.
The chosen simplifications and animation did not provide enough trust in
the simulation model.

— Running the experiments took a long period of time. The chosen simulation
environment required several hours to run full simulation experiments, which
was unacceptable in an interactive session.

Discussion

It is clear that using simulation models as a base for discussion is useful and
provides fruitful results. Aughenbaugh and Paredis [4] provide a very thorough
and to-the-point explanation as to what simulation can bring to design and
decision making:

Without modeling and simulation, design relies on implicit knowl-
edge. Implicit knowledge is unreliable in that designers do not know the
assumptions and uncertainty in the knowledge explicitly. When decisions
are coupled and require input from several experts, there is no way to
make tradeoffs using only implicit knowledge about uncertainties.

Whereas traditional simulation studies focus on finding the optimal solution,
soft systems approaches aim at achieving shared understanding in a group to
support decision making. This is achieved by applying an iterative process that
continues until all actors are satisfied with the model. However, as the studies
have shown, using the simulation models does not go without any hurdles. The
presence of various actors with diverging worldviews provides challenges to the
simulation environment.

Robinson [54] identifies three modes of simulation practice: (1) simulation as
software engineering, (2) simulation as a process of organizational change, and
(3) simulation as facilitation. The predominant part of simulation practice takes
place in the first mode (the construction of large and complex simulation models)
whereas there is little to be found in the third mode. This implies that most
simulation environments are constructed following a hard systems paradigm.
According to Rosenhead [56] this means that

problem formulation is in terms of a single objective;

— there are overwhelming data demands;

people are treated as passive objects;

— there is a single decision-maker with abstract objectives from which concrete
actions can be deduced;
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— and there is an attempt to abolish future uncertainty, pre-taking future
decisions.

This paradigm is implemented in modern simulation environments where users
create one single detailed model per project (instead of various models for diverg-
ing opinions), users need to input a large amount of data, and there is a single
optimal solution. If we were to use these simulation environments in a soft sys-
tems approach, a couple of issues would arise. A major issue is the construction
the simulation model: simulation models take considerable time and expertise
to develop. Although modern simulation packages relief developers from a lot
of work, they are still not appropriate for interactive modeling sessions. Once
build, the simulation environment requires some time to run full simulation ex-
periments. Finally, the focus on a single model would restrict the exploration of
the solution space.

4 Designing a Multimethodological Approach

In the previous section, we have introduced relevant literature on design meth-
ods from a systems engineering perspective. This led us to identify the main
constructs needed for a design method, but also various shortcomings of the
discussed approaches. The combination of these construct would entail a mul-
timethodological approach. The constructs which will be discussed throughout
this section are:

— Modularity and component based simulation: as proposed by den Hengst et
al. [18], simulation models require a lot of effort and time to develop. Simula-
tion models that are constructed of pre-defined components can be malleable
to support an iterative design process, without requiring an intervention by
simulation experts.

— Different levels of abstraction: in conceptually challenging domains such as
engineering design, abstraction becomes a powerful tool to cope with large
amount of data and complexity.

— Structing alternatives: as fundamental part of design methods, the definition
and evaluation of alternatives

— Participatory design: a engineering design process is seldom performed by a
actor or even a single person. Many actors are involved and all of them try
to achieve their own objectives. A design process should support a certain
convergence of interests of all actors.

In the following sections, we will discuss how these constructs can be imple-
mented in a design method. We will formulate them in terms of our application
domain, container terminals, to come to an instantiation of the design method.

4.1 Component Based Modeling

Den Hengst et al. argued that simulation models take much time and effort
to construct. Pre-defined simulation components let users build new simulation
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models by focusing on the structure without requiring knowledge about the inner
behavior of the components. Another important feature of component-based
modeling is modularity, which can be facilitated by port-based communication:
such an approach has been adopted by Paredis et al. [50]. Once this approach is
adopted, reusability of components becomes highly enhanced.

The notion of components has its origins in software engineering, which by
now has become common practice for software development [59]. Component-
based simulation has been adopted recently (compared to pure software engi-
neering applications) but has quickly become a popular research topic [47]. A
comprehensive overview on components in modeling and simulation is given by
Verbraeck [65] who advocates the construction of a library of easy to use compo-
nents to quickly create alternatives throughout a design process. Indeed, compo-
nents provide the major advantage of being self-contained, reusable, replaceable
and customizable. The use of simulation model components for design is also
strongly advised in various other research for the same reasons [5][37][52][62].

In Section Bl we discussed the DEVS formalism that supports hierarchy,
modularity, and composability. These are the exact features to be exploited to
support simulation-based design [33][72][73]. To model a container terminal, an
ontology can be determined to identify every single component that is needed
to design a terminal. This would mainly boil down to identifying equipment
present at a terminal and, as we will see in the following section, identifying the
components for higher abstraction levels. Each component is modeled in DEVS
and the ontology is presented in Figure [ which is based on the System Entity
Structure formalization [71].

4.2 Different Levels of Abstraction

Abstraction is powerful mechanism and is required to deal with uncertainty,
problem complexity, and cognitive limitations of designers [26][31][63]. A typical
design process starts with an incomplete picture of the design problem, which
makes is not feasible to directly start with a detailed solution. From a cognitive
perspective, Visser [67] notes that designing is an iterative process of generating
designs, transform them and evaluate them. The difference between the first and
last artifact is a question of degree of specification, completeness, and abstrac-
tion. A similar view is proposed by Goel [26], who writes “Design, at some very
abstract level, is the process of transforming one set of representations (the de-
sign brief) into another set of representations (the constract documents)”. Yet
another similar formulation is put forward by Ullman et al. [63] as “a design
problem typically begins with a set of functional constraints expressed very ab-
stractly; during the design process, the level of abstraction of the design state is
progressively reduced until is detailed enough to be manufactured”.

During a design process, models can be constructed that are specific to pre-
defined abstraction levels. Ullman et al. [63] do this by selecting three levels of
abstractions: ‘abstract’, ‘intermediate’, and ‘concrete’. For each level, they define
a conceptual model. Similarly, Schimdt and Cagan [57] define an abstraction
grammar which makes it possible to model components at different abstraction
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nents needed for simulation-based design. The container terminal is mainly decomposed

into a subset of the equipment used at a terminal. Other decompositions are due to

different abstraction levels, which are explained in Section (This ontology was
originally presented in Fumarola et al.[23]).
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levels. Paredis et al. [50] go a step further by constructing simulation models
at different levels of abstraction. This solution lets designers analyze simulation
results throughout the design process, even in the initial phases characterized
by rough and incomplete designs. Further down the process, abstract simulation
models are replaced by more concrete implementations, up until the end, where
highly detailed simulation models are used to gather precise simulation results.

Abstraction in container terminal design processes can be enacted through
spatial aggregation, as pictured in Figure [4 Looking at a container terminal
at the whole, we achieve a typical black-box situation: we gather information
about the behavior of the complete system but lack knowledge about the struc-
tural composition (noted as situation (A) in Figure ). At a lower abstraction
level, we can take the various zones of a container terminal into consideration
such as yard and quay. The initial black-box container terminal is decomposed
into interconnected zone-models (noted as situation (B) in Figure H)). At the
lowest abstraction level, zones are decomposed into the contained equipment
that operate in that zones (noted as situation (C) in Figure [). The reversed
function of the described decomposition is the aggregation of equipment: e.g.
a set of quay cranes becomes the quay-zone, and the set of all equipment be-
comes the black-box container terminal. This decomposition is also sketched in
Figure Bl

4.3 Structing Alternatives

Defining alternatives is one of the fundamental steps in most design methods,
which we discussed extensively in Section 2l Human’s bounded rationality im-
pedes a large exploration of the design space: design studies are mostly limited
to a few competitive alternatives. The large amount of alternatives that could
be generated in a multi-actor environment is usually kept to a bare minimum
by scrapping (supposedly) unfeasible designs in the early stages of the design
process. The need for structuring and comparing alternatives has induced re-
searchers in proposing solutions such as trees, matrices, rankings and charts.

Controlled experiments described by Dwarakanath and Wallace [21I] bring
more insights into the way designers think. Designers tend to follow paths along
conceptual tree-like structures to assess alternative designs. Branches are made
when different alternatives are being considered. Whenever a solution seems un-
desirable, pruning takes place to remove unwanted paths. The experiments led
to a number of observations that stress the fact that designers go through an
iterative process of finding alternatives, evaluate them (either formal or on intu-
ition) and eliminate alternatives that perform less than the others. Although this
experiment mainly studied informal methods, another experiment, documented
by Girod et al. [25], discusses that using formal approaches tend to spawn bet-
ter results. The formal approach forces designers to structurally evaluate their
design and document the design process.

The results from these experiments lead us to propose a conceptual tree as a
way to structure a design process. The tree elegantly embodies the generation
of alternatives with branches. In light of the aforementioned constructs, the
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Fig. 4. Different levels of spatial abstractions that can be constructed of a container
terminal. Each abstraction has a specific simulation model, specified in DEVS [70].
Situation (A) specifies a simulation model at the highest abstraction level: the model
is characterized by the use of stochastic distributions to output performance measures.
In situation (B), a container terminal is decomposed in different zones, each zone having
a specific simulation model. Finally, situation (C) shows a highly structured container
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nodes of the tree contain alternative models (each model representing a design)
that are constructed using pre-defined components. The breadth of the tree is
defined by the number of alternative designs. The abstraction levels changes by
constructing the tree in depth: the upper nodes of the tree contain the initial
rough (highly abstract) models whereas deeper into the tree, we can find more
detailed (concrete) models.

4.4 Participatory Design

The aforementioned constructs support a design process in a multi-actor envi-
ronment: simulation components help to quickly generate solutions, abstraction
levels lead the design process from rough artifacts to detailed solutions, and
structuring the solutions supports designers in assessing too many alternatives.

A multi-actor design process is an iterative process where different actors try
to achieve their own, sometimes conflicting, goals. A simulation environment sup-
ports analyzing decisions which are otherwise assessed based on the designer’s
implicit knowledge. By having a means to compare different alternative (per-
taining to the different goals of the actors) analytically, grounded decisions can
be made and insight can be provided into unforeseen failures or unexpected suc-
cesses of certain decisions. The collaborative exploration of the solution space
entails the learning process which is sought after by traditional soft systems
approaches.

In the introduction given in Section [, we discussed the different actors that
are involved in the design process of container terminals. These actors are char-
acterized by their goals: innovative solutions, reducing costs, feasible solutions,
and adhering to environmental and labor regulations. In traditional simulation
studies, conceptual designs are developed that are the results of negotiations be-
tween the actors. Major decisions are made before the actual simulation study
has been performed and are based on informal assessments. By bringing formal
techniques closer to the conceptual design process, discussions can be grounded
and shared understanding can be achieved. This leads to an approach that is
‘soft with a hard centre’ [53].

5 Conclusion

Designing systems in a multi-actor environment is complex from the system as
well as the actor perspective. Although classic operations research and systems
engineering did not fully accomplish to provide successful approaches, they did
provide valuable techniques to analyze systems. Due to an increased interest in
facilitating the design process from an actor perspective, we do have insights
in how actors behave and how we can support them. Multimethodological ap-
proaches are being developed and researchers commit themselves in covering
both perspectives of complexity in design methods.

Starting from existing literature, we have presented the constructs that are
needed in a multi-actor design method. The totality of constructs presents an
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approach that is formal in describing the design artifact (using simulation com-
ponents) and informal for the design process (actors have to explore the design
space, without being restricted by an inflexible design method). Therefore, it is
not a matter of “picking sides”: to fully cover the complexity present in a design
process, constructs from both approaches can be used.

We have shown how an approach that combines constructs from both the hard
as well as the soft system’s perspective that can be used in the design process of
container terminals. To operationalize a design method using these constructs, a
design environment has been implemented that visualizes and simulates designs
that have been defined in AutoCAD. It can be concluded that to better support
decision makers in a multi-actor environment, a multimethodological approach
can be used wherein simulation is used as a tool for conceptual design and
discussion.
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Abstract. Distributed simulation practice outside the military sector is still limited.
Having plug-and-play or automatic middleware interoperability is one of the main
challenges is needed to advance distributed simulation, as indicated by several
surveys; hence, interoperability must be achieved effortlessly with rational cost.
They further indicate the need of having general pluggable container where
lightweight commercial-off-the-shelf (COTS) simulation components can be
plugged into the container with minimal development time. However, existing
middleware solutions have been complex so far to overcome these distributed
simulation issues. The RESTful Interoperability Simulation Environment (RISE) is
the first existing middleware to be based on RESTful Web-services. RISE uses the
Web plug-and-play interoperability style to overcome distributed simulation issues.
Our focus here on plugging simulation components into RISE and on
interoperating independent-developed simulation engines to perform the same
distributed simulation session.

Keywords: Distributed Simulation, REST, Web-service, SOA, Interoperability,
DEVS, CD++.

1 Introduction

Distributed simulation technologies were created to execute simulations on distributed
computer systems (i.e., on multiple processors connected via communication
networks) [15]. Distributed Simulation is a computer program that models real or
imagined systems over time. On the other hand, distributed computer systems
interconnect various computers (e.g. personal computers) across a communication
network. Distributed simulation offers many benefits such as: (1) allowing across-
organization simulation collaboration in order to participate in same simulation run
without the need of physically being in the same location, hence enabling simulation
assets reuse, (2) Allowing complex simulation incremental development. In this case,
a complex model can be divided into smaller models so they can be developed and
verified individually. Afterward, these smaller models can be integrated together to
form the overall complex simulation model. Other benefits also include reducing
execution time, interoperating different vendor simulation toolkits, providing fault
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tolerance and information hiding — including the protection of intellectual property
rights [6][15].

Distributed Simulation middleware is responsible of connecting and synchronizing
several simulation components across geographical regions, allowing simulation
assets reuse without being physically at the same location. Interoperating scattered
simulation assets is the main challenge of a distributed simulation middleware. In
practice, making independently developed applications interact with each other is not
a trivial task, since this interaction involves not only passing remote messages, but
also synchronizing them (i.e. interpreting messages and reacting to them correctly).
Particularly, simulation packages can be based on different formalism, implemented
independently by different teams, or support different synchronization algorithms. In
general, modelers use the simulation tools that they are familiar with, and can be
experts within a simulation tool environment, but unable to use others.

The defense sector is currently one of the largest users of distributed simulation
technology, mainly to provide virtual distributed training environment between
remote parties, relying on the High Level Architecture (HLA) [21] middleware to
provide a general architecture for simulation interoperability and reuse. On the other
hand, the current adoption of distributed simulation in the industry is still limited in
spite of HLA introduction in 1996. Other technologies such as CORBA and SOAP-
based Web-services (WS) were used outside the military sectors to overcome HLA
interoperability and scalability issues. However, existing distributed simulation
middlewares still lack of plug-and-play interoperability, dynamicity, and composition
scalability. Those approaches are described in the background section.

Lack of plug-and-play and dynamic interoperability to interface independent-
developed simulation components, and the ability to reuse commercial-off-the-shelf
(COTS) simulation components effortlessly are documented needed features in future
distributed simulation middleware, as indicated by a number of surveys of experts from
different simulation backgrounds such as [6][28]. Those surveys pointed out that having
plug-and-play or automatic middleware interoperability is one of the main challenges to
advance distributed simulation use in the industry; hence, interoperability must be
achieved effortlessly with rational cost. They further indicate the need of having general
pluggable container where lightweight commercial-off-the-shelf (COTS) simulation
components can be plugged into the container with minimal development time. COTS
concept reduces the cost of distributed simulation with the “Try-before-buy” mentality.
This concludes that plug-and-play can mean two things. The first one is that any
component in the overall system structure can be replaced with another one easily
without affecting the entire system. The second one is that independent-developed
simulation components can interoperate (synchronize) with each other for the same
distributed simulation run. To achieve plug-and-play or Automated/semi-automatic
interoperability between independent-developed simulation packages, not only semantics
must be standardized but also flexible to adapt to future changes. Further, simulation
functionalities should be self-contained components (black boxes) that: (1) Hide their
internal software design and implementation, hence interact with other components with
self-contained messages (e.g. XML messages) that are not tied to software
implementation, uncomplicated to standardize and easy to adapt to future changes.
Further, this point becomes more important since already existing simulation packages
should be expected to have no or minimal software implementation changes to comply
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with any new proposed standards, (2) Connect with other components via universal
standardized interface (i.e. uniform connectors). In this case, components can be plugged
into a complex structure easily, since they already know how they will be connected to
other existing components in the structure, (3) Reached via unique universal standardized
addressing scheme from anywhere, and (4) Support dynamic interoperability at runtime.
Simulation components should be able to join/disjoin the overall structure without other
components pre-knowledge. In other words, no new code or compilation should be
required to achieve components interoperability. This point goes beyond simulation
components to any device. In this case, real devices may be introduced into the
simulation loop without stopping (and perhaps recompiling code) and restarting the
current simulation-run in progress. We show here that RESTful Web-services
interoperability contains the ingredients to advance distributed simulation on those fronts.

RESTful Web-services [26] imitates the Web interoperability style. The major
RESTful Web-services (i.e. Web style) interoperability principles are universal
accepted standards, resource-oriented, uniform channels, message-oriented, and
implementation hiding. These principles are the Web interoperability characteristics;
hence, REST is a reverse engineering of the Web interoperability style. Thus, REST
has been in used in many products since the 1990’s, but without its official name
“REST”. On the other hand, the Representational State Transfer (REST) is first used
in [13] to describe the Web architecture principles. The name is derived because of
the fact that on the Web a resource transfers its representation (state) in a form of a
message to another resource. For example, a Web browser transfers a URI
representation (e.g. as HTML document) using HTTP GET channel. REST exposes
all services as resources with uniform connectors (channels) where messages are
transferred between those resources through those uniform channels (i.e. called
methods in HTTP standards). Because those characteristics conform to universally
accepted standards, REST subsequently contains the recipe of plug-and-play and
dynamic interoperability with infinite composition scalability. REST is a style,
analogy with object-oriented, therefore, system designers must conform to those
principles to obtain those benefits [26].

REST is usually implemented using HTTP, URIs, and usually XML because these
are the main pillars of the Web today. In this case, resources (services) are named and
addressed by URIs, resources connectors are HTTP channels, and connectivity
semantics are usually described in XML messages. RESTful Web Services has been
gaining increased attention with the advent of Web 2.0 [25] and the concept of
mashup. Mashup applications deliver new functions and services on the Web by
combining different information or capabilities from more than one existing source,
allowing reusability and rapid development. Nowadays, RESTful Web-service is
supported in conjunction with SOAP-based Web-services in tools developed by
leading companies such as IBM [19] and Sun Microsystems (e.g. NetBeans IDE
[24]).

Based on these ideas, we designed RESTful Interoperability Simulation
Environment (RISE) middleware (formally called RESTful-CD++ [1][2][35]). RISE
strictly follows the Web standards and interoperability style, hence, to avoid losing
the main provided benefits such as plug-and-play and dynamic capabilities. Our main
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motivations behind proposing such plug-and-play middleware with dynamic
capabilities is to provide practical solutions for distributed simulation identified
needed capabilities to overcome its limited use in the industry while maintaining
rational cost. Having dynamic plug-and-play/automatic interoperability is recognized
needed capabilities in a distributed simulation middleware [6][28][35].

Thanks to RESTful Web-services principles, RISE, which is the first existing
RESTful WS middleware, is designed as a multipurpose online plug-and-play
simulation interoperability middleware. First, the middleware provides a pluggable
container to support different simulation components (e.g. CD++ [34]); hence,
components become online Web services with minimal development time. Plugging
commercial-off-the-shelf (COTS) simulation components quickly reduces cost and
increases reusability. We plugged the distributed CD++ (DCD++) into RISE,
allowing conservative-based distributed simulation between different CD++
instances. RISE-based DCD++ is described here along with its synchronization
algorithms. Second, RISE forms the foundation for developing distributed simulation
standards [3][30][31][32][33]. From our DEVS standardization [30][31][32][33]
experience and the rationale behind CORBA declining [17], having practical
standards indicates certain features that standards must be have such as simple to
support, avoid software changes to legacy systems, allow legacy systems to use their
existing resources (e.g. modeling methods), and allow different teams to evolve
independently. The RISE-based standard is described here, aiming in interoperating
independent-developed simulation packages.

In addition, RISE provides different functionalities that are not covered here such as
making simulation assets part of workflows, Web 2.0 mashup, and Data fusion (DF).
Workflows enable simulation experiments automation, repeatability and reusability, as
described in [4]. Mashup concept groups various services from different providers and
presents them as a bundle in order to provide single integrated service. IBM enterprise
mashup solutions [19] [20] argue that integrating different RESTful plugging functions
(called widgets) enable self-designed service Aggregation and information, rapid
application development, unlock legacy systems via Web 2.0 [25] without major
software upgrade. Thus, one of RISE objectives is to mashup applications/devices into
simulation loop, allowing better-obtained results and analysis. DF is defined as
collecting information from different sources to achieve inferences, which potentially
leads to better accuracy from relaying on a single source of information. DF is applied by
the military to build integrated images from various information sources in battlefields
[27]. DF is similar to mashup in a sense of putting information into simulation loop. DF
is highly dynamic, which makes it easier to achieve using RESTful WS plug-and-play
interoperability.

2 Background on Distributed Simulation

At present, most works in distributed simulation are invested in optimizing simulation
algorithms and in achieving efficient interoperability between different independent-
developed simulation entities. These two areas define the current challenges of
distributed simulation and future trends [28]. For further thorough details, we discuss
distributed simulation current state-of-the-art in [35].
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Parallel/distributed simulations are typically composed of a number of sequential
simulations where each is responsible of part of the entire model. Each of these
subparts is a sequential simulation, which is usually referred to as a logical process
(LP). The main purpose of synchronization algorithms is to produce the same results
as if the simulation were preformed sequentially in a single processor. The second
purpose is to optimize the simulation speed by executing the simulation as fast as
possible. They fall in two categories: Conservative and optimistic. Conservative
algorithms were introduced in late 1970s by Chandy-Misra [9] and Bryant [8]. This
approach always satisfies local causality constraint via ensuring safe timestamp-
ordered processing of simulation events within each LP. In current systems, the
common implementation of conservative-based distributed simulation cycle to
advance simulation time (e.g. [9][10][39]) is summarized as follows: (1) Time-
coordinator requests minimum time from all LPs. (2) Time-coordinator calculates
global minimum time, broadcasts it to all LPs, and waits for their replies. (3) Time-
coordinator instructs all LPs to execute events with the minimum global time, waits
for all LPs replies, and starts again with step #1. In optimistic algorithms, each LP
maintains its Local Virtual time (LVT) and advances “optimistically” without explicit
synchronization with other processors. On the other hand, a causality error is detected
if a LP receives a message from another processor with a timestamp in the past (i.e.
with a time-stamp less than the LVT); such messages are called straggler messages.
To fix the detected error, the LP must rollback to the event before the straggler
message timestamp; hence undo all performed computation. Time Warp algorithms
focus on providing efficient rollback by reducing memory and communication
overhead such as the mechanisms presented in [15].

Distributed simulation Middleware main objective is interfacing different
simulation environments, allowing synchronization for the same simulation run across
a distributed network. Those simulation entities are usually heterogeneous. For
example, each simulation environment may differ from other entities in its simulation
engine, algorithms, model representation, and formalism. This comes as no surprise
that a number of surveys placed the middleware of distributed simulation as the most
area of interest to overcome current distributed simulation challenges and to meet
future expectation, as indicated by a number of surveys of experts of different
simulation background [6][28].

The defense sector is currently one of the largest users of distributed simulation
technology, mainly to provide virtual distributed training environment between
remote parties, relying on the High Level Architecture (HLA) [21] middleware to
provide a general architecture for simulation interoperability and reuse. On the other
hand, the current adoption of distributed simulation in the industry is still limited.
Further, HLA could not make a breakthrough in the industry since its adoption in
1996 due to a number of issues such as its complexity, tied to programming languages
and lack of interoperability in interfacing different Run-Time Infrastructure (RTI)
vendors, since RTI-to-RTI interface is not standardized. RTI is the software layer that
connects and synchronizes different HLA simulation entities (called federates)
together where federates are interfaced with local RTIs via callback function interface
(Figure 1). The HLA interoperability and scalability issues have caused the
consideration of using existing Service-oriented architectures (SOA) technologies in
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distributed simulation middleware, mainly CORBA [18], SOAP-based WS [12], and
RESTful WS [26].

Federate Federate Federate

H Callback functions Interface A H

 J
Run Time Infrastructure (RTI) | [<o—————> Run Time Infrastructure (RTI)

Fig. 1. HLA Interaction Overview Model

WSDL and SOAP are the main elements enable SOAP-based Web-services (WS)
interoperability. SOAP-based Web-services provides interoperability in a similar way
as CORBA: WSDL corresponds to IDL role whereas SOAP corresponds to ORB data
marshalling/serialization function. Further, Web-service ports addressed by URIs
whereas CORBA objects addressed by references. Both ports and objects contain a
collection of procedures (i.e. called services by WS) similar to a Java/C++ classes.
Those procedures glue software components across the network, hence providing and
RPC-style type of software interoperability, as shown in Figure 2. The server exposes
a group of services via ports (Figure 2). Each service is actually an RPC where
semantic are described via that procedure parameters. Client programmers need to
construct service stubs with their software at compile time. Clients, at run time,
consume a service by invoking its stub, which is in turn converted into XML SOAP
message (to describe the RPC call), wrapped within HTTP message and sent to the
server port, using the appropriate port URIL. Once the message is received at the server
side, the HTTP server passes the message into the SOAP layer (usually called SOAP
engine like Apache AXIS [36]). SOAP engines are usually running inside HTTP
servers as Java programs, called Servlets. The SOAP layer parses the SOAP message
and converts it into an RPC call, applied to the appropriate procedure of the proper
port. The server returns results into clients in the same way. Thus, the SOAP message
role is to provide a common representation among all parties to the invoked procedure
at runtime. In a distributed simulation environment, different components act as peers
to each other. This means that each acts as client when it needs to send information
while acts as a server via exposing different RPCs (i.e. services), as shown in Figure
2. Service providers need to publish their services, as XML WSDL documents.
Clients programming stubs (Figure 2) are generated via compiling the WSDL
document into programming stubs. Programmers then need to write the body of those
stubs and compiling them with their software. [23][29] are examples of SOAP-based
WS distributed simulation.

In reality, RPCs are heterogeneous interface, since they were invented by different
programmers, and need to be written and compiled before being used. RPCs also
expose internal implementation, leading to impractical and complex interoperability
standards. It is almost impossible to interoperate independent-developed simulation
systems via RPC-style without requesting major software implementation changes.
This makes it impractical to support. Further, existing solutions lack of composition
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scalability, for example, programming stub is needed for every remote service.
However, in case of HLA the scalability is even worst, since the RTI is treated like a
bus where all simulation entities use it for synchronizations. Furthermore, API
complexity makes it difficult for distributed simulation to break outside expert
programmers circle.

Port (Services) Client Stubs
T e e
Procedure S~
Parameters -
Semantics LT T T
T e <
\ RPC API £ rRPC AP
SOAP Laver SOAP Layer
HTTP Server HTTP Client

Fig. 2. SOAP-based WS RPC-based Architecture Model

RESTful WS exposes all services as resources with uniform connectors (channels)
where messages are transferred between those resources through those uniform
channels. REST is usually implemented using HTTP, URIs, and usually XML
because these are the main pillars of the Web today. In this case, resources (services)
are named and addressed by URIs, resources connectors are HTTP channels (usually
called methods), and connectivity semantics are usually described in XML messages
(Figure 3). RESTful applications APIs are expressed as URI templates [16] that can
be created at runtime. Variables in URI templates (written within braces {}) are
assigned at runtime by clients before a request is sent to the server, enabling clients to
name their services URIs at the server side. For example, username in template
<.../users/ {username}> can be substituted with any string to get the actual URI
instance (such as <.../users/user1> or <.../users/user2>). Further, URIs may include
query variables to define the request scope by appending them to a URI after the
question mark “?”. For instance, request via GET channel to URI <http://www.
google.com/search?q=DEVS> would instruct Google search engine to return
information only about keyword “DEVS”. RESTful services can be described
formally using XML either using Application Description Language (WADL) [37] or
WSDL 2.0 [22][38].

Semantic Messages (e.g. XML) Server Side
\
Client Side \
Service URT
.| HTTP Client
\. Service URT  |«-_
T, e
Uniformway of sending messages Uniform Channels Service Resource

Fig. 3. RESTful WS Architecture Model
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From distributed simulation viewpoint, there are some differences between SOAP-
based WS and RESTful WS as follows: (1) SOAP groups all services as procedures
and expose them via a port (i.e. addressed by single URI) whereas REST exposes
each service as a resource (i.e. addressed by single URI). (2) SOAP-based WS
communicates simulation information (i.e. semantics) in form of procedure
parameters whereas REST defines them as XML messages. (3) SOAP-based WS
transmits all SOAP messages (i.e. RPC description) using HTTP POST channel
whereas REST uses all HTTP channels to transfer simulation semantics. (4) SOAP-
based WS clients need to have a stub for each corresponding service while REST
clients communicate in the same uniform way. (5) SOAP-based WS client stubs
skeleton usually built via tools, but they still need to be written, integrated with
existing software and compiled by programmers whereas REST does not usually
require this process, hence follows a dynamic approach.

REST critics usually raise few issues such as REST only uses the four HTTP
channels to transfer all messages so that those methods might not be enough for some
applications: mainly, GET (to read), POST (to append new data), PUT (to
create/update), and DELETE (to remove). This misleading comes from naming those
virtual channels as “methods” in HTTP standards (RFC 2616 [14]), hence being
confused with regular programming methods. Perhaps, it is ample to mention that
SOAP-based WS transfers all SOAP messages using only the HTTP POST channel,
thus, single method is enough in this case. Another issue is that REST heavily
depends on HTTP, on other hand; SOAP-based WS can send SOAP messages using
different protocol from HTTP like TCP/IP. This is because SOAP is a message
describes an RPC via a network so that it can be sent using TCP socket. This is a
misleading issue because: (1) HTTP is the Web protocol, thus sending SOAP
messages using different protocol from HTTP makes it not Web service any more,
hence complicates interoperability with other heterogeneous even further. (2) REST is
message-oriented, thus, those messages are portable to different protocols like
TCP/IP. For example, all simulation synchronization messages presented here
portable to different protocol, similar to SOAP. However, a universal standard is part
of REST principles and makes no sense to use different protocol from HTTP.

3 RISE Middleware API

Each experiment is wrapped up and manipulated via a set of URIs (i.e. an experiment
API), hence allowing their online access from anywhere. Simulation experiment is
various resources (URIs) hold all necessary information for simulation setup such as
model scripts and model partitions where they are simulated in a single simulation
run. These URIs are created and manipulated according to the middleware URI
template (API), shown in Figure 4. The full RISE design and API described in [1][2].
The URI API template can be created at runtime. Variables (written within braces {})
in URI templates are assigned at runtime by clients before a request is sent to the
server. The resource that best matches the request’s URI will receive the request and
it will become its responsibility to respond to the client.

Line #1 (Figure 4) shows a specific user workspace. This allows multiple users to
use the middleware where each owns a single workspace (e.g. .../workspaces/Bob).
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Line #2 holds a specific service supported by RISE such as DCD++ (e.g.
...Iworkspaces/Bob/DCDpp). In this case, for instance, other simulation components
may be supported by RISE similar to adding new links to a Web site. Modelers
(clients) usually interact with a number of resources during the course of a simulation
experiment, as shown in Lines 3-6: (1) the framework resource (Line #3) holds an
experiment input data (such as the model source code, simulation input variables and
sub-models interconnections). The POST channel is used to submit files to a
framework. PUT is used to create a framework or update simulation configuration
settings. DELETE is used to remove a framework. The GET channel is used to
retrieve a framework state. (2) A simulation resource (Line #4) wraps an active
simulation engine (e.g. CD++), which interacts with other remote simulation, if any. It
is worth to note that in case of DCD++, this URI is the modeler single entry to a
simulation experiment. However, it needs to communicates with other URIs (e.g. on
different machines) to perform distributed simulation. This resource exchanges
synchronized messages with other simulation entities (in case of distributed
simulation) via the POST channel, and POST can be used by modelers to input
variables in order to manipulate simulation at runtime dynamically. The PUT channel
is used to create this resource, hence to start simulation. The DELETE channel is used
to abort simulation and remove this resource. (3) The results resource (Line #5) holds
the simulation output files (if the simulation was completed successfully). The GET
channel is used to retrieve results where the DELETE channel is used to remove those
results. The PUT and POST channels are disabled for this resource. (4) The debug
resource (Line #6) holds model-debugging files. For example, a modeler can print
debugging information inside his model source code to be retrieved later via this
resource. The GET channel is used to retrieve model-debugging files where the
DELETE channel is used to remove those files. PUT and POST channels are disabled
for this resource.

E] .../cdpp/sim/workspaces/{userworkspace} I
E] ...lcdpp/sim/workspaces/{userworkspace}/{servicetype} I

E] ...Icdpplsimlworkspacesl{userworkspace}l{servicetype}l{framework}I

E] .../cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/simulation I

E] ...Icdpplsimlworkspacesl{userwurkspace}l{servicetype}l{framework}lresultsI

E] ...Jcdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/debug I

Fig. 4. Simulation Experiment API in RISE

4 RISE-based Distributed CD++ Simulation Algorithms

This section discuss the distributed CD++ (DCD++) simulation session between
different CD++ instances. At this point, a modeler should have already created an
experiment URI (i.e. .../{framework}) where {framework} is the experiment name
created by the modeler. Note that this URI is the parent for all other URIs that are
created or deleted during the simulation process. This section is divided into two
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parts: the first part discusses the distributed simulation architecture while the second
part discusses the simulation synchronization algorithms. The CD++ is plugged into
RISE as shown in Figure 5 where each CD++ instance is reached via a URI and
accessed via HTTP channels.

The purpose of the simulation manager (Figure 5) component is to manage a
distributed CD++ (DCD++) simulation engine instance in the distributed simulation
environment where various DCD++ instances participate to execute single simulation
experiment. A simulation engine instance is usually called Logical processor (LP) in
the distributed simulation environment, CD++ in our case. The simulation manager is
able to synchronize a DCD++ instance with another remote DCD++, using the
presented algorithms and semantics here. It is also capable to synchronize a DCD++
instance with none-CD++ simulation engine using standard protocols semantics,
hence the ability of multiple semantics support. In DCD++, single DEVS or Cell-
DEVS model is partitioned among those DCD++ engines where each instance
simulates its partition.

A
CD++ Engine ’ CD++ Engine

Simulation Manager
Simulation Manager T

£ \ RISE Middleware
RISE \ﬁ“]le\vare \ @

XML Si Gon M (S ics)

Fig. 5. Distributed Simulation between two CD++ instances

DCD++ follows the conservative synchronization approach in which the casualty is
strictly prohibited. On the other hand, it provides a number of improvement
techniques comparing to other existing conservative-based simulation summarized as
follows: (1) it avoids the required steps to loop all simulation entities to calculate the
simulation global minimum time and then broadcasting it to all entities before an
entity being able to proceed. This allows Root coordinator (which manages time) to
start a new simulation phase without asking each logical processor (LP) its minimum
time. (2) It aggregates remote simultaneous events together in single XML message,
hence reducing the cost of several network messages to the cost of one message. (3)
Provides modelers with experimental framework template where they can freely
create as many as they like of different simulation scenarios. (4) It avoids unnecessary
remote message transmission when it can be performed locally. (5) It avoids
involving irrelevant models within current simulation phase (i.e. models that do not
have events to execute or to send/receive at current time). This method can ignore
huge part of the model partitions at certain simulation phases. (6) It uses simultaneous
message transmissions to avoid blocking messages when a number of messages need
to be sent to multiple remote LPs. (7) Exploiting thread-pool concepts to avoid
creating a thread every time a message is sent. (8) Reusing TCP connections to
transmit multiple HTTP messages to avoid establishing a connection with every
message, which is very expensive.
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4.1 Distributed CD++ (DCD++) Architecture

In the RESTful DCD++ grid various machines need to coordinate and exchange
simulation messages (as HTTP messages) to carry out the simulation. Each physical
machine in the grid needs to have at least one instance of the RISE middleware
installed on it, since the DCD++ is plugged into it, as shown in Figure 6. DCD++
instances act as peers to each other. This means that when a simulation message is
sent to an URI, the sender is an HTTP client, delivering an HTTP request using an
HTTP channel where the receiver URI is a server, processing HTTP requests and
responding with HTTP responses according to the HTTP standards.

Figure 6 shows an example of three DCD++ engines in distributed simulation
conference where each DCD++ instance is plugged into RISE middleware. This
conference represents an experiment during active simulation. The modeler
manipulates and interacts with the simulation via the main DCD++ instance URIs,
which resides on the main RISE middleware. The main RISE is the server that the
modeler has on it a user account, selects it to setup experiments, and executes them.
CD++ simulation engines are actually online simulation services that can be reached
via URIs and accessed via HTTP channels. Thus, a main RISE in an experiment is not
necessary the main middleware in another experiment. Further, the main server (e.g.
machine #3 in Figure 6) sets up experiment resources on supportive servers on behalf
of the modeler. In this case, the main RISE owns those resources; hence, it instructs
supportive servers to hide all of its resources from external users. After all, those
resources are URIs on the Web.
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Fig. 6. Conceptual View of a Distributed Simulation Session
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Plugging components (e.g. DCD++) into the middleware provides a separation
between provided services and the middleware. This clearly provides a number of
advantages such as simulation components become independent of underlying
technology, hence moving easily to another technology that might appear in the
future, and applying the concept of pluggable container middleware where
lightweight commercial-off-the-shelf (COTS) simulation components can be plugged
into the middleware with minimal development time. COTS concept reduces the cost
of distributed simulation with the business mentality of “Try-before-buy” attitude
[61[28].

Each active DCD++ simulation component instance is wrapped by URI
(.../{framework }/simulation), as shown in Figure 7. The modeler creates this URI via
PUT channel on the main RISE server to start the simulation, which in turn starts the
simulation on other supportive RISE servers. The request to start a simulation on
RISE creates all necessary Inter-Process Communication (IPC) queues, simulation
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managers and the DCD++ simulation engines. During active simulation, as shown in
Figure 7, simulation managers send messages to remote active-simulation URIs
(where it is then passed to the corresponding simulation manager). Simulation
managers communicate with the actual CD++ simulation engines via operating
system IPC queues, since CD++ runs as a separate process outside RISE middleware.
It is worth to note that the modeler may use URI (.../{framework}/simulation) to
manipulate simulation during runtime such as inserting an external event (i.e.
simulation input variable) to change the course of the simulation. This is helpful
during simulation training session when instructors like to change conditions during
an exercise.

Simulation LPs

DCD++ | ga-m-""77 T T

Simulation Manager Modeler

(o

i
]
4‘———/_/ PUT: Create (Start) Simulation

T 7
Pt DELETE: Abort Simulation
XML Simulation messages POST: Manipulate Simulation

GET: Read information

Fig. 7. DCD++ Simulation Session between Two Machines

The DCD++ virtual network (Figure 7) is constructed and destructed based on the way
a modeler partitions the model under simulation between different machines. Figure 8
shows example of DCD++ XML model partitioning information for both standard DEVS
models (the top figure) and the Cell-DEVS model (the bottom figure). Model partitioning
is a section of a larger XML configuration document for customizing the entire
experiment options. The model-partitioning document describes each atomic model or
cells zone location. Thus, the DCD++ virtual network shown in Figure 7 is reconstructed,
if modeler redistributed models across different machines. Note that the DCD++
simulation session is actually performed among different URIs (within one or more RISE
instances) coordinating among each other. However, those URIs are usually located on
different physical machines. Note further that a RESTful-CD++ is identified via its port
and IP address (Figure 8), relieving modelers of figuring out full URIs path every time a
model is moved to another machine.

(A1 Distribarting Thres Atimic PEVS Madeh Betwosn Twa Machine

B) Spliting = Cell DEVS Meadel Betwess Trwo Machines

Fig. 8. XML Model Partitioning Example
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The modeler (i.e. client GUI software) is expected to check on the active simulation
status  periodically. This is usually done via GET channel to URI
(.../{framework } ?sim=status). In this case, RISE responds with an XML document
similar to the following: <Simulation><Status>RUNNING</Status></Simulation>.
The simulation goes into different states (from the modeler viewpoint), as shown in
Figure 9: IDLE, INIT, RUNNING, ABORTED, ERROR, DONE and STOPPING.
When a framework is created, the status is initialized with the IDLE state, which
indicates that the simulation was never run on this framework. It moves into the INIT
state upon receiving the request to start the simulation. The simulation goes into
RUNNING state, if initialization was successful. The RUNNING state indicates that all
simulation engines everywhere are up and running. In this state, the CD++ simulation
engines can exchange simulation messages. Further, the modeler can manipulate
simulation like inserting external events. Furthermore, dynamic online simulation results
can be retrieved during this state. The simulation goes from RUNNING state to ERROR
because of various possible errors such as failing to transmit a simulation message or a
server failure in the grid. Further, the simulation goes into ABORTED state, if the
modeler chooses to stop the simulation during the RUNNING state (via applying
DELETE method to resource {framework}/simulation). In the normal completion, the
simulation goes into STOPPING state. In this state, the main server collects simulation
results from all supportive servers. The simulation goes into ERROR if it fails to stop
properly such as failing to collect results from supportive servers or failing to stopping
supportive simulations. Upon normal completion, the simulation status goes into DONE
state, which means simulation results can now be retrieved from URI
.../{framework }/results. Note that releasing system resources such as Linux queues,
threads and processes occur in all exiting states: ABORTED, ERROR and STOPPING.
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Fig. 9. Simulation State Diagram

Simulation is automatically aborted (to ensure simulation accuracy) by a simulation
manager, if, for any reason, it fails to transmit a simulation message to a remote
simulation URI during a session. In this case, if the simulation manager is supportive, it
aborts simulation and silently removes itself from the distributed simulation conference.
On the other hand, if it is the main simulation manager, it also aborts simulation on all
other supportive servers, since it is the actual owner of all simulation resources in the
session. To make the matter worse, suppose a supportive server fails while the main
server is waiting for a DONE simulation message from a process on that failed
supportive server (simulation phases are discussed in next section). In this case, the Root
coordinator, which drives the whole simulation, cannot advance the simulation to another
phase because it is waiting for a DONE message from a dead simulation participant. This



142 K. Al-Zoubi and G. Wainer

is a deadlock situation. To overcome this possibility of deadlock, the main simulation
manager starts a watchdog thread at the beginning of the simulation (and stops it at the
end of the simulation) to keep watching all supportive simulation resources, as shown in
Figure 10. The watchdog sends periodic (e.g. every two minutes) messages to every
simulation URI checking if it is alive or dead. The main simulation manger only hears
from the watchdog the bad news, which leads to aborting the simulation everywhere.
Therefore, the session stays in deadlock at most for the watchdog period before the
simulation is aborted. Supportive servers also need to watch the main server (Figure 10).
This allows them to release system resources such as processes, threads, connections, and
IPC queues.
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Fig. 10. Watchdog Periodic Checking in a Simulation Session

HTTP messages are synchronous. This means that when an HTTP message is sent via
TCP connection, the sender is blocked until a response is received. This argument also
applies to the RPC-style SOAP-based web-services because SOAP messages (that
describe RPCs) are enveloped in HTTP messages; hence, it is still an HTTP synchronies
transmission. This fact often goes unnoticed by SOAP-based WS programmers. This is
because SOAP engines handle SOAP messages at a different layer of the software stack.
Further, SOAP engines are often used from a third-party provider through available open
source like Apache AXIS [36]. HTTP synchronies transmission is obviously a
performance concern, particularly when multiple messages need to be sent at the same
time to different destinations. For this reason, simulation messages are transmitted
concurrently where each message lives on its own thread. Figure 11 shows example of
two simulation managers. The top manager is sending two concurrent messages (each
message is actually an HTTP client thread) where the bottom manager is receiving two
messages concurrently (assuming via the same URI). Therefore, receiving messages by a
simulation manager must be thread-safe to avoid message contention, since each request
is handled by a separate thread. Further, in this case only the sender-message thread is
blocked until the HTTP response is received back without blocking the entire application
or other messages transmission. Note that all RISE threads are started from a thread pool,
avoiding a new thread creation every time a thread is started.

Security is always a concern when communicating in cloud computing environment
as in the case of RESTful-Web services. Other based RESTful Web-services such as
Amazon Web-service (AWS) which requires developers to apply for an “Access Key
ID” and a “Secret Access Key” [5]: The “Access Key ID” identifies the developer who is
accessing AWS while the “Secret Access Key” is used to generate a keyed-Hash
Message Authentication Code (HMAC), enabling AWS to authenticate the user. HMAC
is calculated over service (i.e. URI), operation (e.g. user authorized to use POST channel
or not to use), and timestamp (i.e. to prevent replay attacks). To prevent in-flight
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tampering, AWS recommends all requests should be sent over HTTPS [5]. This scenario
is portable for RISE. On the other hand, we chose to encode user name and password into
a single string with base 64 encoding according to HTTP Basic Authentication method,
defined in RFC 2617. This method does not add extra overhead, and it is supported by
Web browsers and Web programming languages. Therefore, all simulation messages
need to be authenticated according to this method. Note that the main server authorizes
all simulation participants to use POST channel on all URIs, allowing them to pass
simulation messages within the simulation conference.

Client message | Simulation Manager
Client message

| Simulation Manager
‘ URI: .../{framework}/simulation
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Fig. 11. Concurrent Message Passing to/from Simulation Managers
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4.2 DCD++ Simulation Synchronization Algorithms

DCD++ executes the model by passing messages among the different processors in the
model hierarchy. Coordinators are the processors responsible for executing coupled
models while Simulators are associated with atomic models and they are responsible for
executing each of the DEVS functions defined by the model depending on the time and
type of the received message. A Root coordinator is in charge of driving the simulation as
a whole and interacting with the environment, since DCD++ is a conservative-based
engine. Because DCD++ is a conservative-based engine, there is a special coordinator
called Root coordinator which is responsible for the following: (1) Starting and stopping
the simulation, (2) Connecting the simulator with the environment in terms of passing
external events/output from/to the environment, and (3) Advancing the simulation clock.
As shown in Figure 12, “coordinator” processors coordinate the simulation of one or
more coupled/atomic models where “simulator” processors simulate atomic models. The
processors are created and initialized at the beginning of the simulation in a hierarchy that
matches the model hierarchy in terms of the parent-child relationship.

-

Fig. 12. Message exchange during a simulation cycle

Coupled NModel

Atomic Model
3 (Bine) (Bext) ()

A number of simulation messages are used to synchronize simulation among
processors hierarchy, shown in Figure 12. Simulation messages can be categorized as
follows: (1) Content messages represent events generated by a model. Content simulation
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messages include External messages (X) and Output messages (Y). Output messages (Y)
are usually converted to external messages for their destinations. (2) Synchronization
messages cause the simulation to move into another simulation phase (those phases
discussed next). Synchronization messages include Initialize message (I), Internal
message (*), Collect message (@), and Done message (D). Initialize message (I) starts
the initialization phase. Internal message (*) starts the transition simulation phase. The
top model Coordinator propagates it downward in the hierarchy. Collect message (@)
starts the collection phase. Done message (D) marks a simulation phase end. It is also
used by Coordinators to identify which children needs to be simulated at the next phase.
It further used to calculate the global minimum simulation time.

The simulation phases for the entire simulation are driven by the Root coordinator
(which is the parent of the highest model’s coordinator). They are divided into three
phases (shown in Figure 13): (1) Initialization phase initializes all models in the
hierarchy; hence, it eventually executes every initialization method of every atomic
model. In response, a DONE message propagates upward in the model hierarchy where
each Coordinator calculates the minimum next change of its children and passes it in a
DONE message to its parent. Eventually, the Root receives DONE message with
smallest time, which updates the simulation clock and starts the Collection phase. (2) In
the Collection phase, some of the output messages are collected to ensure their execution
at the same time with internal events. (3) In the Transition phase, all the collected
external messages are executed along with simultaneous internal events. The Root
coordinator handling of a DONE message arrival is described in Figure 14.

I
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Fig. 14. Root Coordinator Handling DONE Message Algorithm

The head/proxy is originally intended to solve redundant number of messages from
remote CD++ processors back to their parent coordinator. The main motivation behind
Head/Proxy algorithm is that network messages in distributed environment are expensive
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and have direct affect on performance. For example, assume the coordinator in Figure 15
is coordinating three simulators where two of its children (simulator #2 and #3) are
residing on a remote machine. Figure 15 shows a fragment of the collection phase
messages when the coordinator receives a collect (@) message from its parent. As shown
in Figure 15, Simulator 3 sends an output message to the parent coordinator to translate it
to external message for Simulator 2. Obviously, the transmission of those two messages
(in Figure 15) could have been avoided if another coordinator (we call proxy) was placed
in server 2 so that converting the output message (from simulator 3) to an external
message (to simulator 2) is done locally, as shown in Figure 16.
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Fig. 15. Unnecessary remote messages in distributed simulation

The idea of the head/proxy depends on using two kinds of coordinators for each
coupled DEVS/Cell-DEVS model: (1) Head Coordinator: is responsible for
synchronizing the model execution, interacting with upper level coordinators and
message routing among the local and remote model components. (2) Proxy Coordinator:
is responsible for message routing among the local model components dispensing with
the need to send remote messages if the head coordinator is residing on a different
machine than that used to run the sending and receiving processors. The advantage of
using proxy coordinators (as shown Figure 16) is that converting all remote messages
between local processors to local messages. The proxy coordinator forwards one DONE
message to the head coordinator once it receives all DONE messages from its children.
Note that in this collection phase (Figure 16) simulator #2 does not forward the external
message to the Atomic #2 model. In this phase, simulator #2 inserts the external message
in its bag, waiting for the next internal (*), which starts the next transition phase. This
allows simulator #2 to execute any scheduled internal events along with the already
collected external message simultaneously.
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Fig. 16. Proxy Advantage of Preventing Unnecessary remote messages
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Proxy coordinators avoid remote message transmission when it is possible to route
them locally, but still forward all none-local messages to the head coordinator. For
example, suppose the output message from simulator #3 is transmitted to simulator #1
(instead of simulator #2), as shown in Figure 17. In this case, the proxy coordinator
has no choice but to transmit the external message to the head coordinator remotely.
The external message ends up queued at simulator #1, waiting to be executed in the
next transition phase upon receiving internal (*) message from head coordinator. In
fact, simulation events that are exchanged in the same simulation phase are
simultaneous events; hence, they need to be executed in the same virtual time. To
clarify this point, consider how Root coordinator advances simulation Time and
phases, as shown Figure 18, which is a depiction of the model hierarchy partitions
shown in Figure 17. Assume that Simulators #2 and #3 outputs a job to simulator #1
every two seconds where Simulator #1 takes one second to process each regardless of
the number of jobs are being process. In this simple example, shown in Figure 18-A:
(1) as part of simulation initialization, I message is sent to the Head coordinator,
which passes it to Simulator #1 and Proxy coordinator. Consequently, the Proxy
reroutes message I to Simulator #2 and #3. Simulator #2 and #3 reply with D
messages with a scheduled change in two seconds from now. (2) Root advances time
to (t2) and starts Collection phase by sending @ message to Head coordinator, which
only sends it to the proxy. This message is not send Simulator #1 because it did not
schedule a change in previous phase, hence becomes irrelevant in this phase. The
Proxy passes @ message to Simulator #2 and #3, which cause them to send two jobs
(i.e. Y message) to Simulator #1 (via Head and Proxy coordinators). Simulator #1
receives these Y messages as external messages (X) where it holds them to be
executed in the next phase. (3) Root starts transition phase causing Simulator #1 to
schedule a change at one second from now (when it will execute the two received
jobs). In addition, Simulators #2 and #3 schedule a change at two seconds from now
(when they will produce their next jobs).
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Fig. 17. Head/Proxy Remote messages Transmission
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Figure 18 shows two types of messages: Remote and local. All exchanged messages
between the Head and Proxy coordinator are remote messages (shown in red); hence,
they are usually measured in range of milliseconds to seconds. On the other hand, all
other messages are local (shown in blue); hence, they are measured in few microseconds
in DCD++4, since a processor simply sends a message by inserting it in the unprocessed
events queue. To reduce the communication high cost, the DCD++ groups simultaneous
events heading to the same destination in one message. For example, as shown in Figure
18-B, the proxy sends two Y messages and D messages for the cost of one message. This
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shows huge improvement in performance, particularly, for models with intensive
communication overhead. Grouping remote simultaneous events make sense for obvious
performance reasons, but also avoid inaccurate simulation results or deadlock in the
simulation. This is because P-DEVS messages, as previously mentioned, belong into two
categories: (1) Content messages (i.e. Y and X) represent DEVS models communication.
These messages must be exchanged within a simulation phase. (2) Synchronization
Messages (I, @, * and D) synchronize the start or an end of simulation phase; hence, they
mark simulation phases boundaries. Therefore, Content messages must arrive at
destination within the correct simulation phase to be executed at the correct virtual time.
Further, synchronization messages must arrive at the start or end of the correct simulation
phase to ensure correct simulation and to avoid deadlock, since a Coordinator may hang
forever waiting for a synchronization message to be able to start a new phase or end the
current phase. Of course, we can never guarantee message arrival at destination in the
same order of their transmission order. On the other hand, DCD++ guarantees the correct
message-order arrival by grouping messages in one XML document, as shown Figure 19.

Init (10} Collection t2) i Transition (12) ’_gﬂ]

essnsssnnnns

Slm ulator-1
Dﬁ
Proxy

Fig. 18. DCD++ Simulation Phases and Time Advancement

a Events @ Collected X Messages

<Messages>

<MessagesCount>2</MessagesCount>

<Message>

<MessageType>X</MessageType>
<Time>08:50:00:00</Time>
<SrcProcId>2</SrcProcId>
<PortId>5</PortId>
<Value>9.0</Value>
<SenderModelId>3</SenderModelId>
<DestProcId>l</DestProcId>

</Message>

<Message>
<MessageType>D</MessageType>
<Time>08:50:00:00</Time>
<SrcProcId>2</SrcProcId>
<NextChange>00:00:00:00</NextChange>
<SenderModelId>3</SenderModelId>
<Proxy>True</Proxy>
<DestProcId>1</DestProcId>

</Message>

</Messages>

Fig. 19. Multiplexing Simultaneous Simulation Messages Together
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The simulation message contains (at least) the following information (see
Figure 19): Message type, simulation time, source processor Id, destination port Id,
content value, next change time, sender model Id, and destination Processor Id.
DCD++ keeps unique IDs for each model, port and processor (i.e. coupled model
coordinator or atomic model simulator) in the DCD++ grid. In this case, simulation
managers always organize messages in the order they received from the DCD++
engine, allowing them to be handled in the correct order upon arrival at destination.
Simultaneous messages aggregation is accomplished by having message bags in
simulation managers to hold content messages to remote processors where those
messages are sent with the first synchronization message (i.e. indicates the start/end
of a phase) heading to the same processor, according to the shown algorithm in
Figure 20. Message aggregation shows clearly that XML message-oriented semantics
is much flexible to handle than procedure parameters semantics as in the RPC-style
approaches.

SendRemoteMes=age ()} |
If [(Remobe Prooessor de
Start Msg bag for ®

have a message bag) |

Frocessor;

Insert Msg in Message L

5 Message bhag;
to remote URI;

Fig. 20. Dispatching Simulation Messages in Single XML Document

5 Distributed Simulation Interoperability Standards

The need for a widely accepted standardized framework is growing necessity nowadays,
allowing sharing and reusability across organizations, laboratories and research teams.
On the other hand, the specialization of knowledge and fragmentation in the distributed
simulation field has also grown than ever. This caused the DEVS simulation community
to start the interoperability standardization effort to interoperate various DEVS-
based simulation packages together (e.g. CD++ [34]). DEVS standard proposals
[30][31][32][33] categorized the standards into two parts: (1) Standardizing DEVS
model representation allows a platform-independent DEVS model representation so that
it can be executed by a DEVS-based simulator. In this case, a model may be retrieved
and executed locally without the need to perform distributed simulation for obvious
performance reasons. (2) Since, it is not always possible to run simulation locally on
single or multiprocessor machine, the second part deals with Standardizing
Interoperability Middleware protocol for interfacing different simulation environments
allowing synchronization for the same simulation run across a distributed network
regardless of their model representation, as shown in Figure 21. The second part is
handled by the distributed simulation middleware, hence our presented topic here. The
basic requirements of the interoperability standards are to allow legacy systems to run
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their specific model representations, practical software changes (i.e. wrapper to translate
messages from/to standardized protocol, see Figure 21), flexible for improvements,
independent of any formalism or technology.

Heterogeneous DEVS/mone-
DEVS simulation models

\Va .
)
____________ > | Model
[ [ [ [ Model ] Simulation Semantics and

Synchronization protocol

Simulation Engine S NN > Simulation Engme

Simulation Middleware

Y

Simulation Middleware | @

Fig. 21. Concept of Standardized Distributed simulation Middleware

Plugging simulation components into RISE, enabling them to be online, hence
accessed via URIs on the Web is one objective of RISE. Further, those components
may need to synchronize between each other to simulate a single model within the
same simulation model, hence distributed simulation session. In this case, distributed
simulation synchronization is still under one team control. Thus, protocols can be
customized as needed for specific simulation environment similar to DCD++
previously discussed here. On the other hand, having different independent-developed
simulation environment synchronize between each other is another story of
complexity. The main complex issue is to bring different teams agree on an
interoperability standard. In reality, people do not support standards that require
software changes that might affect an existing implementation. The preferred solution
is usually by having a wrapper that translates standards from/to local messages.
Further, programmers, in practice, do not like to read complex standards, particularly
when they are simply evaluating standard proposals without being forced to use it.
The lesson learned of the process of having DEVS interoperability standards is that
standards should be simple and quickly to understand, fast to support, and without
software changes to existing systems. RISE-based standards, presented here, uses the
RESTful Web-services plug-and-play and dynamic interoperability style to overcome
these issues. The RISE-based proposal details are described in [3] where we discussed
all of the submitted proposals by the DEVS community in [30][31][32][33]. The
following summarizes the RISE-based proposals in conjunction with the needed
wrappers for both CD++ [34] and DEVS/SOA [33] that allow both environments to
interoperate.

The RISE-based standards [3][30][31][32][33] divides the entire simulation space
into domains. Each domain wraps a DEVS model and DEVS-based simulation engine
to simulate that model. Each domain is accessed via three URIs (i.e. the wrapper API
in Figure 21) to exchange semantics (i.e. synchronization and configuration) as
standardized XML messages. The wrapper API (i.e. URIs) is created at runtime for
each experiment setup. The standards completely hide interior implementation
domain, avoiding software changes in existing implementation. For example,
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RESTful DCD++ performs distributed simulation while DEVS/SOA uses
DEVSJAVA [11] engine to perform distributed simulation using SOAP-based WS.

Interoperability is achieved at three levels: (1) the interoperability framework
architecture level (API), (2) The model interoperability level, and (3) the simulation
synchronization level. These aspects are summarized next.

The interoperability framework architecture level (API) provides the URI template
that allows modelers to setup experiment resources across the network, as shown in
Figure 22. These resources (URIs) are described as follows: (1) .../{framework}:
represents a simulation environment domain. It is named by the modeler upon creation.
The modeler uses this URI to submit all necessary information, including RISE XML
configuration. (2) .../{framework }/simulation: represents active simulation in a domain,
hence used by other domains to exchange simulation messages to synchronize a
simulation session. The modeler further uses this URI to start/abort simulation, and to
manipulate simulation during runtime or to retrieve online results while simulation is in
progress. (3) .../{framework}/results: is automatically created by a domain upon
completing the simulation successfully, maintaining simulation results and future results
retrieval.

Model Domain
Simulation Ouiput and Log files

URI :.../{framework}/results |

URI:.../{framework} |

Simulation Model and Configuration

URI :.. ./{framework}/simulation

Active Simulation in progress (e.g. Parallel, seguential)

‘ Model Domain Model Domain

Fig. 22. A Domain Wrapper Application Programming Interface (API)

The model interoperability level provides XML rules for binding different models
together. This XML document is provided via PUT channel to URI .../{framework}
as part of its initial configuration before a simulation is conducted. However, any
dynamic changes during runtime are submitted to URI .../{framework}/simulation.
This is mainly when a domain joins/disjoins a simulation session at runtime.

Connecting models across domains is a straightforward step, because of our
assumption that each domain contains an entire model with external ports. For
example, Figure 23 shows two models placed at two different domains. In this case,
the model is wrapped in URI .../{framework}: The first model URI is .../Domainl
and the second model URI is .../Domain2. Each model, in Figure 23, has two external
ports connected to the other model ports. This interconnection is shown in the XML
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document in Figure 24. For example, Lines 7-10 shows the connection link of port
OUT]1 (at .../Domainl) to port IN1 (at .../Domain2). The XML document also shows
other configuration such as “Type” at Line 3 is set to “O”, indicating that the
simulation will be synchronized according RISE conservative based algorithm; hence,
“Type” attribute can be set to “O” to conduct optimistic synchronization. Line #5
selects the main domain, which is mainly needed to manage the conservative-based
simulation. Based on this document Figure 24, each domain needs to build a routing
table to identify each of its output port connections so that messages can be
transmitted to their destination.

IN1 % -------- ouT
URL ...Domainl | URI:.../Domain2

Fig. 23. Models Interconnection across Domains

1 <ConfigFramework>

2

3 <RISE Version="1.0" Type="C">

4 <Domains>

5 <Main><URI>../Domainl</URI></Main>

6 <Links>

7 <Link>

8 <From><Port>0UT1</Port><URI>./Domainl</URI></From>
9 <TO»<Port>IN2</Port>»<URI>../Domain2</URI></TO>

10 </Link>

11 <Link>

12 <From><Port>QUT2</Port><URI>./Domain2</URI></From>
13 <TO><Port>IN1</Port><URI>../Domainl</URI></TO>

14 </Link>

15 </Links>

16 </Domains>

17 </RISE>

18
19 </ConfigFramework>

Fig. 24. Model Interconnection XML Configuration

The simulation synchronization level provides high-level simulation algorithms
(i.e. conservative/optimistic) and synchronization channels in order to carry
simulation among different domains. In the optimistic type, XML synchronization
messages are sent directly to other domains, since domains should be able to detect
errors (e.g. due to straggler messages) and fix them. On the other hand, the
conservative type needs to place a Time-Management component (e.g. called here
RISE-TM) to synchronize all participants to satisfy local causality constraint via
ensuring safe timestamp-ordered processing of simulation events within each domain.
Our focus here is on the conservative-type algorithms, since it involves more work
from the standards perspective.

RISE-TM executes a simulation cycle in the following steps, as shown in
Figure 25: (1) Execute all events in all domains at current time. This starts a new
simulation cycle with current or newly calculated RISE time. RISE-TM always starts
the first phase with time zero. The domains must always execute all events with
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current RISE time, if any, and respond to the RISE-TM with the following
information: all external messages generated for other domains stamped with RISE
time (or larger), and its next time. The next time is the time of next event in a domain
larger than RISE time. (2) Once RISE-TM receives all replies from relevant domains,
it calculates the next RISE time and starts a new simulation cycle.

2. Receive all Replies

v

RISE-TM ]

1. Execute Al (1)

A4

Domain-1 ] > Domain-2

Fig. 25. RISE Conservative-based Simulation Cycle at Time t

1 <RISE Version="1.0"> 1 <RISE Veraion="1.07>
2 <Time>00:00:01:000</Tima> 2 <URI>./Domain2</URI>
3 <XEvents> 3 <XBventa>
4 1</ Count> 4 o M >
5 <XEvent> 5 <XEvent>
& <Tima>00:00:01:000</Tima> & <Tima>00:00:01:000</Tima
kl <Port>INl</Port> 7 <Port>INl</Port>
] <Value>3</Value> ] <Value>$</Value>
9 <URI>./Domainl</URI> 9 <URI>. . /Domainl</URI>
10 </XEvent> 10 </ XEvent>
17 </XEventa> i1 “AEvent>
1B </RISE> 12 e il
13 </XEvent>
14 <Time>00:00:01:000</Tima>
15 </¥Bvanta>
16 <Next>00:00:03:000</ Haxt>
17 </RISE>

(A) RISE-TM to Domains XML Request Message (B} A Domain to RISE TM XML Response Message

Fig. 26. RISE-TM and Domains Exchanged Messages Example

Figure 26-A shows an example of messages sent by RISE-TM to a domain (i.e.
step #1 in Figure 25). Line #2, in Figure 26-A, specifies the current RISE time, hence
every event with this time, in this domain, must be executed in this cycle. Lines 3-17
enclose all collected external messages from all other domains, if any. Figure 26-B
shows an example of a domain reply to RISE-TM (i.e. step #2 in Figure 25).

Line #2, in Figure 26-B, indicates the URI of the source domain. Lines 3-15
enclose all of this domain generated external messages to other domains. Line #4
specifies the count of enclosed messages. Lines 5-10 define the first external message.
Line #6 specifies the execution time of this message. Line #7 specifies the model
destination port (see Figure 23 and Figure 24). Line #8 specifies the message content.
Line #9 indicates the destination domain (see Figure 23 and Figure 24). Line #14
specifies the minimum time of all enclosed external messages. RISE-TM must
include this time when calculating next RISE time. Line #16 specifies the time of the
next event of that domain. RISE-TM must include this time when calculating next
RISE time. Further, it is recommended that RISE-TM does not include domains in the
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next simulation cycle if they have nothing to do. Note that this value must be set to “*-
17, indicating infinity, if there is no more events in that domain. This XML document
guarantees that all of the domain events stamped with RISE time have executed. This
guarantee must be ensured by the RISE-TM by ensuring that the “next” event time
(i.e. Line #16 shown in Figure 26-B) is larger than the current RISE time, since it is
the time of the next event in a domain. Therefore, domains must only respond once
with this XML document.

This method simplifies the synchronization protocol to avoid impractical software
changes for a simulation package implementation. It also intended to handle
synchronization between DEVS to None-DEVS simulation environments, since it
hides all details behind wrappers, including DEVS formalism. The following
discusses the changes require to interoperate DCD++ and DEVS/SOA simulation
environments to conduct single simulation session. We focus here is on the simulation
synchronization level of the standard.

In DCD++, the Simulation manager (see Figure 7) on the main server is the RISE
wrapper (Figure 21) of the entire DCD++ domain. It is worth to note that other
supportive DCD++ machines are not even aware of being part of a session bridged to
another heterogeneous simulation environment. The simulation manager of the main
server is extended to act as RISE-TM (i.e. the coordinator of all heterogeneous
domains), or as a domain wrapper (i.e. it is being coordinated by other heterogeneous
domain), as shown in Figure 25. Therefore, the main simulation manager handles
exchanged messages between DCD++ machines according to its specific algorithms,
while treat RISE messages according to the standards. Thus, the main DCD++
modifications is in adding new synchronization level between the main simulation
manager and its associated CD++ engine. This is done in three parts: (1) having the
CD++ engine forward all Y (i.e. output) messages that is intended to other domains to
the simulation manager. These are the Y messages received by the Root coordinator
(see Figure 18). Regular CD++ considers those messages as output to the
environment. (2) Having simulation-manager forward all X messages, received from
other domains, to its associated CD++ engine. (3) The CD++ needs to ask the
simulation-manager permission before advancing the simulation clock beyond RISE
time upon starting new simulation phase (see Figure 18). These parts are discussed in
the next paragraphs.

First, the CD++ Root coordinator forwards all Y (i.e. output) messages to its
associated simulation manager. This message also includes the simulation timestamp
and the model source port. Note that the CD++ does not know where those messages
need to be sent; hence, it treats them as output messages to the simulation
environment. At this point, the simulation-manager converts those Y messages into X
(i.e. external) messages and stores them so that they can be transmitted altogether in
single XML document. The simulation-manager also needs to add the destination port
and URI. This is easily done based on routing tables constructed based on the
configuration document (Figure 24). For example, Y messages received from port
OUT1 in Domain-1, at Figure 23, need to be routed to port IN2 of domain-2. Once
those messages need to be transmitted, the simulation-manager builds the XML
message, shown in Figure 26-B, and sends them to RISE-TM. However, if this
simulation manager is the acting as the RISE-TM, it merges them with other domains
messages, if any, and sends them back to relevant domains, as shown in Figure 26-A.
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Note that this special treatment is only for RISE messages, but messages belong to the
DCD++ region need to be handled according to its specific algorithms.

Second, the simulation-manger needs to filter its domain X messages upon their
arrival from other domains, and forwards them to the CD++. The simulation manager
receives them as the message shown in Figure 26-B, if it is the acting RISE-TM while
receives as the message shown in Figure 26-A, if it is not the acting RISE-TM.
Subsequently, the CD++ saves them in special queue until the beginning of next
simulation cycle where Root coordinator will insert them in the simulation event list
similar to any other local events.

Third, the CD++ needs to consult the simulation manager before advancing to new
cycle (Figure 18). The entire DCD++ simulation cycles are driven by the Root
coordinator, specifically, upon a DONE message arrival, as described in Figure 14. In
this case, the Root checks DCD++ next event time against last known RISE time, it
then proceeds if they are equal to each other. Otherwise, (1) it requires RISE Time
update from simulation manager, (2) Insert any received external messages from other
domains into the simulation event list, (3) calculate next event time, and (4) report
next time to simulation manager. Based on the next event time and the current RISE
time, the simulation manager knows the end of the current simulation cycle. These
steps are handled in the following algorithm:

While (RISE Time != DCD++ Next Time) {
Get RISE Time from Simulation Manager;
Insert Other Domains Collected X messages;
Calculate new DCD++ Next Time;
Report Next Time to Simulation manager;

}

DEVS/SOA [33] uses DEVSJAVA [11] simulation engine to perform distributed
simulation using SOAP-based WS. As illustrated in Figure 27, the DEVS/SOA
protocol is executed as following (shown in Figure 27): (Step #1 and #2) the highest
coordinator (i.e. Root) requests the next event time of each of its children simulators
and coordinators. Messages nextTN and outTN are performed in a single RPC
invocation. (2) The Root requests each of its children to compute its output messages
to other simulators (i.e. getOut and outTN). (3) Finally, each simulator executes its
ApplyDeltFunc method, which computes the combined effect of the received
messages and internal scheduling on its state.

‘ Coupled Model ‘
I
[ Coordinator l

A
1. nextIN 2. outiN

3. getOut 4. returnOut

3. ApplvDeltFunc

[ Simulator ] [ Simulator ]
1
‘ Atomic Model ‘ ‘ Atomic Model ‘

Fig. 27. DEVS/SOA Distributed Simulation Protocol
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DEVS/SOA needs to have wrapper (see Figure 21) to translate internal
DEVS/SOA commands, shown in Figure 27, into RISE messages. This wrapper,
similar to DCD++ simulation manager, needs to exchange RISE XML messages in
HTTP envelopes. Further, the Root coordinator should not advance beyond current
RISE time. The major requirements of this wrapper is to translate DEVS/SOA RPC
internal commands into RISE XML messages (Figure 26) and vice versa, as follows.

RISE XML message (Figure 27-A) corresponds to DEVS/SOA "nextTN",
"getOut", "ApplyDelta" calls. Upon this message arrival from RISE-TM, all
DEVS/SOA simulators must execute all internal/external events at this cycle time (i.e.
element <Time>). Further, RISE-TM forwards previous output messages from
previous cycles, if any, in this message.

RISE XML message (Figure 27-B) corresponds to DEVS/SOA "returnOut" and
"OutTN" calls: (1) returnOut (i.e. output message) is RISE external message, defined
in element <XEvent>. (2) OutTN (i.e. next time) defined in element <Time>.

References

[1] Al-Zoubi, K., Wainer, G.: Performing Distributed Simulation with RESTful Web-
Services Approach. In: Proceedings of the Winter Simulation Conference (WSC 2009),
Austin, TX, pp. 1323-1334 (2009)

[2] Al-Zoubi, K., Wainer, G.: Using REST Web Services Architecture for Distributed
Simulation. In: Proceedings of Principles of Advanced and Distributed Simulation
(PADS 2009), Lake Placid, New York, USA, pp. 114-121 (2009)

[3] Al-Zoubi, K., Wainer, G.: RISE: REST-ing Heterogeneous Simulation Interoperability.
In: Proceedings of the Winter Simulation Conference (WSC 2010), Baltimore, Maryland,
USA (2010)

[4] Al-Zoubi, K., Wainer, G.: Managing Simulation Workflow Patterns using Dynamic
Service-Oriented. In: Proceedings of the Winter Simulation Conference (WSC 2010),
Baltimore, Maryland, USA (2010)

[5S] Amazon Web-services: Security Best Practices (2010),
http://awsmedia.s3.amazonaws.com/

Whitepaper_Security_ Best_Practices_2010.pdf (accessed June 2010)

[6] Boer, C., Bruin, A., Verbraeck, A.: A survey on distributed simulation in industry.
Journal of Simulation 3(1), 3—-16 (2009)

[7] Boukerche, A., Zhang, M., Xie, H.: An Efficient Time Management Scheme for Large-
Scale Distributed Simulation Based on JXTA Peer-to-Peer Network. In: Proceedings of
the IEEE/ACM Distributed Simulation and Real-Time Applications (DS-RT 2008),
Vancouver, BC, Canada (2008)

[8] Bryant, R.E.: Simulation of packet communication architecture computer systems.
Massachusetts Institute of Technology, Cambridge (1977)

[9] Chandy, K.M., Misra, J.: Distributed Simulation: A Case Study in Design and
Verification of Distributed. Programs. IEEE Transactions on Software Engineering SE-
5(5), 440-452 (1979)

[10] Cheon, S., Seo, C., Park, S., Zeigler, B.P.: Design and Implementation of Distributed
DEVS Simulation in a Peer to Peer Network System. In: Proceedings of the Advanced
Simulation Technologies Conference, Arlington Virginia (2004)



156

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

(27]

K. Al-Zoubi and G. Wainer

DEVSJAVA,
http://www.acims.arizona.edu/SOFTWARE/software.shtml

(accessed June 2010)

Erl, T., Karmarkar, A., Walmsley, P., Haas, H., Yalcinalp, L.U., Liu, K., Orchard, D.,
Tost, A., Pasley, J.: Web Service Contract Design and Versioning for SOA. Prentice-Hall,
Englewood Cliffs (2008)

Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine (2000),
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
(accessed October 2008)

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext Transfer Protocol - HTTP/1.1. RFC 2616,
http://www.w3.org/Protocols/rfc2616/rfc2616.html

(accessed October 2008)

Fujimoto, R.M.: Parallel and distribution simulation systems. John Wiley & Sons, New
York (2000)

Gregorio, J.: URI Templates,
http://bitworking.org/projects/URI-Templates/

(accessed October 2008)

Henning, M.: The Rise and Fall of CORBA. Communications of the ACM 51(8) (August
2008), http://queue.acm.org/detail.cfm?id=1142044

(accessed March 2010)

Henning, M., Vinoski, S.: Advanced CORBA programming with C++. Addison—Wesley,
Reading (1999)

IBM Mashup Center,
http://www-01.ibm.com/software/info/mashup-center/

(accessed June 2009)

IBM Software Group: Why Mashups Matter,
ftp://ftp.software.ibm.com/software/lotus/lotusweb/

portal /why_mashups_matter.pdf (accessed June 2009)

Khul, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems: An
Introduction to High Level Architecture. Prentice-Hall, Englewood Cliffs (1999)

Mandel, L.: Describe REST Web services with WSDL 2.0,
http://www.ibm.com/developerworks/webservices/
library/ws-restwsdl/ (accessed May 2009)

Mittal, S., Risco-Martin, J.L., Zeigler, B.P.: DEVS-based simulation web services for net-
centric T\&E. In: Proceedings of the 2007 Summer Computer Simulation Conference,
San Diego, California, USA (2007)

NetBeans IDE, http: //www.netbeans.org/ (accessed June 2009)

O’Reilly, T.: What Is Web 2.0 (2005),
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html (accessed May 2009)

Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., Sebastopol
(2007)

Shahbazian, E.: Introduction to DF: Models and Processes, Architectures, Techniques and
Applications. In: Multisensor Fusion, pp. 71-97. Kluwer Academic Publishers, Dordrecht
(2000)



(28]

[29]

(30]

[31]

(32]

(33]

[34]
(35]
[36]
[37]
(38]

(39]

Distributed Simulation Using RISE Middleware 157

Strassburger, S., Schulze, T., Fujimoto, R.: Future trends in distributed simulation and
distributed virtual environments: results of a peer study. In: Proceedings of Winter
Simulation Conference (WSC 2008), Miami, FL, pp. 777-785 (2008)

Wainer, G., Madhoun, R., Al-Zoubi, K.: Distributed Simulation of DEVS and Cell-DEVS
Models in CD++ using Web Services. Simulation Modelling Practice and Theory 16(9),
1266-1292 (2008)

Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martin, J.L., Sarjoughian, H., Zeigler, B.P.:
DEVS Standardization: Foundations and Trends. In: Wainer, G., Mosterman, P. (eds.)
Discrete-Event Modeling and Simulation: Theory and Applications, ch. 15. CRC Press,
Taylor and Francis (October 2010) (expected publication)

Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martin, J.L., Sarjoughian, H., Zeigler, B.P.:
An Introduction to DEVS Standardization. In: Wainer, G., Mosterman, P. (eds.) Discrete-
Event Modeling and Simulation: Theory and Applications. CRC Press, Taylor and
Francis (October 2010) (expected publication)

Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martin, J.L., Sarjoughian, H., Zeigler, B.P.:
Standardizing DEVS Model Representation. In: Wainer, G., Mosterman, P. (eds.)
Discrete-Event Modeling and Simulation: Theory and Applications, ch. 17. CRC Press,
Taylor and Francis (October 2010) (expected publication)

Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martin, J.L., Sarjoughian, H., Zeigler, B.P.:
Standardizing DEVS Simulation Middleware. In: Wainer, G., Mosterman, P. (eds.)
Discrete-Event Modeling and Simulation: Theory and Applications, ch. 18. CRC Press,
Taylor and Francis (October 2010) (expected publication)

Wainer, G.: Discrete-Event Modeling and Simulation: A Practitioner’s Approach. CRC
press, Taylor & Francis Group, Boca Raton, Florida (2009)

Wainer, G., Al-Zoubi, K.: An Introduction to Distributed Simulation. In: Banks, C.,
Sokolowski, J. (eds.) Modeling and Simulation Fundamentals: Theoretical Underpinnings
and Practical Domains, ch. X. Wiley, New Jersey (2010)

Web Services AXIS, http://ws.apache.org/axis/ (accessed October 2008)
Web Application Description Language (WADL), https://wadl.dev.java.net/
(accessed October 2008)

WSDL 2.0: Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language, http://www.w3.org/TR/wsd120/ (accessed July 2010)

Zeigler, B.P., Doohwan, K.: Distributed supply chain simulation in a DEVS/CORBA
execution environment. In: Proceedings of Winter Simulation Conference (WSC 1999),
Phoenix, Arizona, USA (December 1999)



Chapter 7
Agile Net-Centric Systems
Using DEVS Unified Process

Saurabh Mittal

DUNIP Technologies
PO Box 26218, Tempe AZ 85285 USA
saurabh.mittal@duniptechnologies.com
http://www.duniptechnologies. com

Abstract. Industry and government are spending extensively to transi-
tion their business processes and governance to Service Oriented
Architecture (SOA) implementations for efficient information reuse, inte-
gration, collaboration and cost-sharing. SOA enables orchestrating web
services to execute such processes using Business Process Execution Lan-
guage (BPEL). Business Process Modeling Notation (BPMN) is another
method that outputs BPEL for deployment. As an example, the Depart-
ment of Defenses (DoD) grand vision is the Global Information Grid that
is founded on SOA infrastructure. The SOA infrastructure is to be based
on a small set of capabilities known as Core Enterprise Services (CES)
whose use is mandated to enable interoperability and increased infor-
mation sharing within and across Mission Areas, such as the Warfighter
domain, Business processes, Defense Intelligence, and so on. Net-Centric
Enterprise Services (NCES) is DoDs implementation of its Data Strat-
egy over the GIG. However, composing/orchestrating web services in a
process workflow (a.k.a Mission thread in the DoD domain) is currently
bounded by the BPMN/BPEL technologies. With so much resting on
SOA, their reliability and analysis must be rigorously considered. The
BPMN/BPEL combination neither has any grounding in system theoret-
ical principles nor can it be used in designing net-centric systems based
on SOA in its current state. In this work we present a system theoret-
ical framework using the DEVS Unified Process (DUNIP) that allows
bifurcated model-continuity based life cycle process for simultaneous de-
velopment of the executable system using web-services (including the
model) and the automated generation of Test-suite for Verification and
Validation. The entire net-centric system, which includes artifacts like
the model, the simulation and the real system, is deployed on SOA. The
simulation system is made possible on a recently developed DEVS-based
service framework called DEVS/SOA. We will show the design of DEVS-
agents based on WSDLs and how they are composed towards the systems
specification. We will demonstrate how agility is an inherent character-
istic of such a system founded on DUNIP. We will also present the case
of Department of Defense Architecture Framework (DoDAF) and how
agility can be applied to the design and evaluation process.

Keywords: DEVS, DUNIP, DoDAF, SOA, WSWF, NCES, GIG.
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1 Introduction

Industry and government are spending extensively to transition their business
processes and governance to Service Oriented Architecture implementations for
efficient information reuse, integration, collaboration and cost-sharing. Service
Oriented Architecture (SOA) enables orchestrating web services to execute such
processes using Business Process Execution Language (BPEL) [4]. Business Pro-
cess Modeling Notation (BPMN) [5] is another method that outputs BPEL for
deployment. As an example, the Department of Defense’s (DoD grand vision
is the Global Information Grid that is founded on SOA infrastructure. As il-
lustrated in Figure [l the SOA infrastructure is to be based on a small set of
capabilities known as Core Enterprise Services (CES) whose use is mandated
to enable interoperability and increased information sharing within and across
Mission Areas, such as the Warfighter domain, Business processes, Defense In-
telligence, and so on) [16]. Net-Centric Enterprise Services (NCES) [30] is DoD’s
implementation of its Data Strategy over the GIG. NCES provide SOA infras-
tructure capabilities such as service and metadata registries, service discovery,
user authentication, machine-to-machine messaging, service management, or-
chestration, and service governance.
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Fig. 1. Core enterprise services in Global Information Grid [16]
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However, composing/orchestrating web services in a process workflow (a.k.a
Mission thread in the DoD domain) is currently bounded by the BPMN/BPEL
technologies. Moreover, there are few methodologies to support such composi-
tion/orchestration. Further, BPMN and BPEL are not integrated in a robust
manner and different proprietary BPMN diagrams from commercial tools fail
to deliver the same BPEL translations. Today, these two technologies are by
far the only viable means whereby executives and managers can devise process
flows without touching the technological aspects. With so much resting on SOA,
their reliability and analysis must be rigorously considered. The BPMN/BPEL
combination neither has any grounding in system theoretical principles nor can
it be used in designing net-centric systems based on SOA in its current state.

In this research work we provide a proof of concept of how Discrete Event
System Specification (DEVS) Formalism can deliver another process work flow
mechanism to compose web services in a SOA. A DEVS System is composed
of events and components/systems that produce and consume those events. An
event is any change in state that merits attention from self/other systems. These
systems can be either a simple atomic black box that perform a single task only
or they may be a complex system of systems that receive the event and delegate
it to one of its sub-components. We will employ DEVS Formalism to a net-
centric system deployed using Web Services. Such an architecture where events
work along with web services is aptly termed as Service Oriented Architecture
(SOA). During this process of designing the net-centric system, we will propose
Web Service Work Flow (WSWF) formalism and show how it is executed on
the recently developed DEVS/SOA [28] distributed modeling and simulation
framework.

In addition to supporting SOA application development, the framework en-
ables verification and validation testing of application. We will also describe
how WSWF can be mapped to high level system descriptive frameworks like
Department of Defense Architecture Framework (DoDAF) [9],[10],[11], and Sys-
tem Entity Structure (SES). We will demonstrate the execution of WSWF in
a complete case-study in which a workflow is composed and executed using
DEVS/SOA framework.

Finally, this paper will establish that the DEVS Unified Process inherently
is agile and that when deployed on SOA makes it a truly interoperable and
testable framework. The paper is organized as follows. Section 2 presents the re-
lated technologies. Section 3 describes the underlying technologies that include
DEVS, DUNIP, Web Services, Abstract DEVS Service Agent, and DEVS/SOA
framework. Section 4 presents layered architecture of Agent-based Test Instru-
mentation System on/using Global Information Grid using SOA (GIG/SOA).
Section 5 deals with Abstract DEVS Service wrapper in detail and also dis-
cusses how statistics gathering is integrated with the wrapper design. Section 6
presents the workflow composition and how high-level specifications, as specified
by frameworks like DoDAF, can be reduced to WSWEF formalism. It is discussed
using ontology based System Entity Structure (SES) framework that is targeted
to modeling, simulation, systems design and engineering. Section 7 presents a



162 S. Mittal

complete case study demonstrating the usage of WSWF. Section 8 presents some
ideas on agility inherent in the DEVS Unified Process. Finally, Section 9 lists
conclusions and future work.

2 Related Technologies

In 2003 there were more than 10 recognized groups defining standards for BPM
related activities. 7 of these bodies were working on modeling definitions so its
no wonder that the whole picture got very confused [3I]. Fortunately there has
been a lot of consolidation, and currently only 3 key standards to really take
notice:

1. BPMN
2. XPDL
3. BPEL

The Business Process Modeling Notation (BPMN) is a standardized graphical
notation for graphically representing business processes workflows in a Business
Process Diagram (BPD). The BPD is based on a flowcharting technique that is
similar to UML Activity diagrams. BPMNSs primary goal is to provide a standard
notation that is readily understandable by all business stakeholders. Stakehold-
ers in this definition include business analysts, technical developers and business
managers. BPMN is primarily constrained to support only the concepts related
to business processes. Consequently, there is no support for modeling organiza-
tional structure, hierarchical functional breakdowns, data schemas and various
other sorts of mapping that are needed for a systems specification. Needless to
say, apart from the BPMN graphical elements that are visually appealing and
easier to communicate among business users, it provides limited tangible sys-
tem requirements that are hard to trace back to the constituent systems. With
the advent of SOA, these business processes have taken the shape of services.
While it shows the orchestration of services, it does not mandate any execution
platform or testing platform to build a system. It works in conjunction with
Business Process Execution Language (BPEL), that is a standard in itself, to
deliver executable code for mockups and concept validation. This is a needed
feature, however plagued with lack of roundtrip engineering, mismatch between
transformations from BPMN to BPEL and vice-versa, ambiguities and confusion
with multiple tool vendors leading to isolated BPMN models.

BPEL is an ”execution language” the goal of which is to enable definition of
web service orchestrations. It’s actually an acronym for Web Services Business
Process Execution Language (WS-BPEL) and has no standard graphical nota-
tion. Ultimately, BPEL is all about bits and bytes being moved from place to
place and manipulated. BPEL code is normally generated from BPMN specifi-
cation as BPMN is the overarching specification that uses BPEL as its execution
platform. The fundamental difference between the BPMN and BPEL specifica-
tions makes it very difficult to generate human-readable BPEL code.
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The XML Process Definition Language (XPDL) is a format to interchange
business process definitions between different workflow products. It defines an
XML Schema for specifying the declarative part of workflow/business processes.
It is described not an executable programming language like BPEL, but specifi-
cally a process design format that literally represents the ”drawing” of the pro-
cess definition, such as the X and Y position of the nodes. XPDL is effectively
the file format or ”serialization” of BPMN. More generally, it can also support
any design method or process model that uses the XPDL meta-model. XPDL
is a proven format for process design interchange, and it is the most practical
standard for establishing a Process Design Ecosystem.

BPEL has largely been promoted by tool vendors and articles like [57], [58]
argue that shortcomings of BPEL outweigh its benefits and simple flash tools
can be made that could render BPMN using XPDL formats and execute the
process model. Summarizing, currently there is no popular means other than
BPMN/BPEL to design a web service workflow orchestration and supposedly
no system theoretical foundation to build a net-centric system.

3 DEVS Unified Process with DEVS/SOA

3.1 Discrete Event Systems Specification

Discrete Event System Specification (DEVS) [39] is a formalism, which provides
a means of specifying the components of a system in a discrete event simulation.
In DEVS formalism, one must specify Basic Models and how these models are
connected together. These basic models are called Atomic Models (Figure[2)) and
larger models which are obtained by connecting these atomic blocks in meaning-
ful fashion are called Coupled Models (Figure []). Each of these atomic models
has inports (to receive external events), outports (to send events), set of state
variables, internal transition, external transition, and time advance functions.
Mathematically it is represented as 8-tuple system:

M =< X,5,Y,0ints Ocat, Ocon, A, ta >

where
X is the set of input values
S is the set of states
Y is the set of output values
dint : S — S is the internal transition function
Oeaxt : @ X Xp — S is the external transition function,
where Xjis a set of bags over elements in X, () is the total state set
Ocon : S X X — S is the confluent transition function,
subject t0 deon (S, ¢) = dint(s)
A: S — Y} is the output function

ta: S — R4 iny) is the time advance function
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Coupled Model Coupled Model

Atomic
Model

Fig. 3. Hierarchical components for multi-level systems

The models description (implementation) uses (or discards) the message in the
event to do the computation and delivers an output message on the outport
and makes a state transition. A DEVS-coupled model designates how atomic
models can be coupled together and how they interact with each other to form a
complex model. The coupled model can be employed as a component in a larger
coupled model and can construct complex models in a hierarchical way. The
specification provides component and coupling information. The coupled DEVS
model is defined as follows.

M =< X,KD,Mij,Ij,Zij >

where
X is a set of inputs
Y is a set of outputs

D is a set of DEVS component names
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for each i € D,

M; is a DEVS component model
I; is the set of influences for I
for each j € I,

Z;j is the i-to-j output translation function.

A Java-based implementation of DEVS formalism, DEVSJAVA [40], can be used
to implement these atomic or coupled models. DEVS formalism consists of mod-
els, the simulator and the Experimental Frame as show in Figure @ We will
focus our attention to these two types of models i.e. atomic and coupled.

Experimental Frame
o
| Source Simulator\
Qrstem
— % -
Modeling . Simulation

Relation Relation

Fig. 4. DEVS separation of the model, the simulation and the Experimental Frame

3.2 Web Services and Interoperability Using XML

The Service oriented Architecture (SOA) framework is a framework consisting of
various W3C standards, in which various computational components are made
available as services that interact in an automated manner achieving machine-
to-machine interoperable interaction over the network. The interface is specified
using Web Service Description language (WSDL) [38] that contains information
about ports, message types, port types, and other relating information for bind-
ing two interactions. It is essentially a client server framework, wherein client
requests a service using a SOAP message that is transmitted via HTTP protocol
in the XML format. A Web service is published by any commercial vendor at a
specific URL is consumed/requested by another commercial application on the
Internet. It is designed specifically for machine-to-machine interaction. Both the
client and the server encapsulate their messages in SOAP wrappers.

The fundamental concept of web services is to integrate software application as
services. Web services allow the applications to communicate with other applica-
tions using open standards. To offer DEVS-based simulators as web services, they
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must have the following standard technologies: communication protocol (Simple
Object Access Protocol, SOAP [35]), service description (Web Service Descrip-
tion Language, WSDL), and service discovery (Universal Description Discovery
and Integration, UDDI).

3.3 An Abstract DEVS Service Agent

As a crucial part of our workflow, we have designed an Abstract DEVS Ser-
vice Agent to link DEVS models with Web Services and to generate statistics
regarding remote method calls and response times.

Figure Al depicts an illustrative example. Our proposed model consists of two
DEVS atomic models. The DEVS Web Service Consumer invokes the remote
operation provided by means of an external transition. When the operation is
processed, this atomic model calculates the round-trip-time (RTT) taken by such
operation and directs both the RTT and the received response from the Web
Service to the DEVS Logger atomic model. At the end of the simulation, the
DEVS Logger provides statistics such as operations executed successfully, the
RTT consumed per operation, etc.

The DEVS Web Service Consumer needs to be configured by means of: (a)
the URL of the Web Service, (b) name of the operations offered by the web
service, and (c) the parameters needed by these operations. This information
is specified in the WSDL document. In order to avoid to the user to extract
this information by hand, we have implemented a wrapper which automatically
generates the DEVS Web Service Consumer for a Web Service. Thus, given
a WSDL address, our framework is able to generate the corresponding DEVS
Service Agent. Details on how this wrapper is built are given in Section 5.

DEVS ABSTRACT SERVICE AGENT

RTT
request DEVS >
IS Web Senice VS >
Consumer > ooger
y response

request [response
) et
S_ Internet 3/
S e
__l//\/\j

Fig. 5. Schematic showing the architecture of DEVS Agent Service Model

3.4 DEVS/SOA Framework for Net-Centric Modeling and
Simulation

DEVS Modeling Language (DEVSML) is a way of representing DEVS mod-
els in the XML language [22]. The DEVSML is built on JAVAML [3], which
is an XML representation of JAVA. DEVSML takes its power from the un-
derlying JAVAML that is needed to specify the behavior logic of atomic and
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coupled models. The DEVSML models are transformable to JAVA in both
forward and reverse directions. It is an attempt to provide interoperability
between various models and create dynamic scenarios. The layered architec-
ture of this capability is shown in Figure[@ At the top is the application layer
that contains model in DEVSJAVA or DEVSML. The second layer is the DE-
VSML layer itself that provides seamless integration, composition and dynamic
scenario construction resulting in portable models in DEVSML that are complete
in every respect. These DEVSML models can be ported to any remote location
using the net-centric infrastructure and be executed at any remote location. An-
other major advantage of such capability is total simulator transparency. The
simulation engine is totally transparent to model execution over the net-centric
infrastructure. The DEVSML model description files in XML contains meta-data
information about its compliance with various simulation builds or versions to
provide true interoperability between various simulator engine implementations.
This has been achieved for at least two independent simulation engines as they
have an underlying DEVS protocol to adhere to. This has been made possible
with the implementation of a single atomic DTD and a single coupled DTD that
validates the DEVSML descriptions generated from these two implementations.
Such run-time interoperability provides great advantage when models from dif-
ferent repositories are used to compose bigger coupled models using DEVSML
seamless integration capabilities. More details about the implementation can be
seen at [22].

The DEVS/SOA framework [2§] is analogous to other DEVS distributed sim-
ulation frameworks like DEVS/HLA, DEVS/RMI and DEVS/CORBA [32],[13],
[36],[7],[17],[41]. The distinguishing mark of DEVS/SOA is that it uses SOA as
the network communication platform and XML as the middleware and thus acts
as a basis of interoperablity using XML [27]. Furthermore, it uses web-services
as the underlying technology to implement the DEVS simulation protocol.

The complete setup requires one or more servers that are capable of running
DEVS Simulation Service, as shown in Figure[d The capability to run the simu-
lation service is provided by the server side design of DEVS Simulation protocol
supported by the latest DEVSJAVA Version 3.1 [1].

The numerous modes of DEVS model generation are beyond the scope of this
paper (the interested reader is referred to [24]. Once a DEVS model package is
developed, the next step is simulation as illustrated in Figure[[l The DEVS/SOA
client (Figure B) takes the DEVS models package and through the dedicated
servers hosting DEVS simulation services, it performs the following operations:

— Upload the models to specific IP locations i.e. partitioning (Figure [)
— Run-time compile at respective sites

— Simulate the coupled-model

— Receive the simulation output at clients end

This section has laid the foundation of net-centric DEVS framework called
DEVS/SOA that allows deployment of DEVS models to specific IP addresses
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Fig. 6. Layered architecture of DEVSML towards transparent simulators in net-centric
domain
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Fig. 7. Execution of DEVS models using DEVS/SOA framework

and allows interoperability between DEVS models using DEVSML. It provides
a layered framework in which the models are transparent to their simulators. In
the next section we will see how the net-centric DEVS is applicable to testing of
Global Information Grid based on Service Oriented Architecture (GIG/SOA).
A sample movie of DEVS/SOA in action is available at [34].
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3.5 DEVS Unified Process a.k.a DUNIP

This section describes the bifurcated Model-Continuity process [24] and how var-
ious elements like automated DEVS model generation, automated test-model
generation (and net-centric simulation over SOA are put together in the pro-
cess, resulting in DEVS Unified Process (DUNIP) [12],[24]. The DEVS Unified
Process (DUNIP) is built on the bifurcated Model-continuity based life-cycle
methodology. The design of simulation-test framework occurs in parallel with
the simulation-model of the system under design. The DUNIP process consists
of the following elements:

1. Automated DEVS Model Generation from various requirement specification
formats

2. Collaborative model development using DEVS Modeling Language (DE-
VSML)
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3. Automated Generation of Test-suite from DEVS simulation model
4. Net-centric execution of model as well as test-suite over SOA

Considerable amount of effort has been spent in analyzing various forms of re-
quirement specifications, viz, state-based, Natural Language based, UML-based,
Rule-based, BPMN/BPEL-based and DoDAF-based, and the automated pro-
cesses which each one should employ to deliver DEVS hierarchical models and
DEVS state machines [15],[24]. Simulation execution today is more than just
model execution on a single machine. With Grid applications and collabora-
tive computing the norm in industry as well as in scientific community, a net-
centric platform using XML as middleware results in an infrastructure that
supports distributed collaboration and model reuse. The infrastructure pro-
vides for a platform-free specification language DEVS Modeling Language (DE-
VSML) [22] and its net-centric execution using Service-Oriented Architecture
called DEVS/SOA [23]. Both the DEVSML and DEVS/SOA provide novel ap-
proaches to integrate, collaborate and remotely execute models on SOA. This
infrastructure supports automated procedures for test-case generation leading
to test models.

Using XML as the system specifications in rule-based format, a tool known
as Automated Test Case Generator (ATC-Gen) was developed which facilitated
the automated development of test models [I8],[19],[42]. DUNIP (Figure[I{) can
be summarized as the sequence of the following steps:

1. Develop the requirement specifications in one of the chosen formats such as
BPMN, DoDAF, Natural Language Processing (NLP) based, UML based or
simply DEVS-based for those who understand the DEVS formalism.

2. Using the DEVS-based automated model generation process, generate the
DEVS atomic and coupled models from the requirement specifications using
XML

3. Validate the generated models using DEVS W3C atomic and coupled
schemas to make them net-ready capable for collaborative development, if
needed. This step is optional but must be executed if distributed model de-
velopment is needed. The validated models which are Platform Independent
Models (PIMs) in XML can participate in collaborative development using
DEVSML.

4. From step 2, either the coupled model can be simulated using DEVS/SOA
or a test-suite can be generated based on the DEVS models.

5. The simulation can be executed on an isolated machine or in distributed
manner (using SOA middleware if the focus is net-centric execution). The
simulation can be executed in real-time as well as in logical time.

6. The test-suite generated from DEVS models can be executed in the same
manner as laid out in Step 5.

7. The results from Step 5 and Step 6 can be compared for verification and
validation process.
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4 Multi-layered Agent-Based Test Instrumentation
System Using GIG/SOA

A DEVS distributed federation is a DEVS coupled model whose components
reside on different network nodes and whose coupling is implemented through
middleware connectivity characteristic of the environment, e.g., SOAP for
GIG/SOA, The federation models are executed by DEVS simulator nodes that
provide the time and data exchange coordination as specified in the DEVS ab-
stract simulator protocol. The DEVS Agent Monitoring System or Test Instru-
mentation System (TIS) is a DEVS coupled system that observes and evaluates
the operation of the DEVS coupled system model. The DEVS models used to
observe other participants are the DEVS test-agents. The TIS should provide a
minimally intrusive test capability to support rigorous, ongoing, repeatable and
consistent testing and evaluation (T&E). Requirements for such a test imple-
mentation system include ability to

1. deploy agents to interface with SoS component systems in specified assign-
ments

2. enable agents to exchange information and coordinate their behaviors to

achieve specified experimental frame data processing

respond in real-time to queries for test results while testing is still in progress

4. provide real-time alerts when conditions are detected that would invalidate
results or otherwise indicate that intervention is required

w
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5. centrally collect and process test results on demand, periodically, and/or at
termination of testing.

6. support consistent transfer and reuse of test cases/configurations from past
test events to future test events, enabling life-cycle tracking of SoS perfor-
mance.

7. enable rapid development of new test cases and configurations to keep up
with the reduced SoS development times expected to characterize the
reusable web

8. service-based development supported on the GIG/SOA.

Many of these requirements are not achievable with current manually-based
data collection and testing. Instrumentation and automation are needed to meet
these requirements. Net-centric Service Oriented Architecture (SOA) provides a
currently relevant technologically feasible realization of the concept. As discussed
earlier, the DEVS/SOA infrastructure enables DEVS models, and test agents in
particular, to be deployed to the network nodes of interest. [26],[43] provides
complete detail on how such observers can be autogenerated and be executed
using DEVS/SOA.

4.1 Deploying Test Agents over the GIG/SOA

Figure [Tl depicts a logical formulation test federation that can observe a System
Under Test (SUT) to verify the message flow among components as derived from
information exchange requirements. In this context, a mission thread is a series
of activities executed by operational nodes. In playing out this thread, DEVS
test models are informed of the current activities (or see to detect their onset)
as well as the operational nodes that execute these messages. These test models
watch messages sent and received by the components that host the participating
operational nodes. The test models check whether such messages are the ones
that should be sent or received under the current function.

DEVS Application
Layer Interface + DEVS AGENT MONITORING SYSTEM

Experimental Frame

DEVS SOA MIDDLEWARE SERVICES

Third Party SOA MIDDLEWARE SERVICES

Fig. 11. Multi-layered Agent-based Test Instrumentation Framework
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The test-agents are contained in DEVS Experimental Frames (EF) are im-
plemented as DEVS models, and distributed EFs are implemented as DEVS
models, or agents as we have called them, reside on network nodes. Such a fed-
eration, illustrated in Figure [[2] consists of DEVS simulators executing on web
servers on the nodes exchanging messages and obeying time relationships un-
der the rules contained within their hosted DEVS models. This DEVS Agent
Monitoring System that contains DEVS models interacts with real world web
services, as we shall in Section 7 case study.

4.2 Implementation of Test Federations

A test federation observes an orchestration of web-services to verify the message
flow among participants adheres to information exchange requirements. A good
way to specify these requirements is through Department of Defense Architecture
Framework (DoDAF) that have specific documents (OV-3 and SV-6) to localize
these information exchanges [9]. These documents very well define the input
and output messages for the constituent system and operational components. As
derived from DoDAF inputs, a mission thread is a series of activities executed by
operational nodes and employing the information processing functions of web-
services. As discussed in [26],[43], test agents watch messages sent and received
by the services that host the participating operational nodes. Depending on
the mode of testing, the test architecture may, or may not, have knowledge of
the driving mission thread under test. If thread knowledge is available, DEVS
test agents can be aware of the current activity of the operational nodes it is
observing. This enables it to focus more efficiently on a smaller set of messages
that are likely to provide test opportunities. A DEVS distributed federation is a
DEVS coupled model whose components reside on different network nodes and
whose coupling is implemented through middleware connectivity characteristic of
the environment, e.g., SOAP for GIG/SOA, The federation models are executed
by DEVS simulator nodes that provide the time and data exchange coordination
as specified in the DEVS abstract simulator protocol.

To help automate set-up of the test we use a capability to inter-covert be-
tween DEVS and XML. DEVSML allows distributing DEVS models in the form
of XML documents to remote nodes where they can be coupled with local ser-
vice components to compose a federation [23],[24]. The layered middleware ar-
chitecture capability is shown earlier in Figure[6l Such run-time interoperability
provides great advantage when models from different repositories are used to
compose models using DEVSML seamless integration capabilities. Finally, the
test federation is illustrated in Figure [[2] where different models (federates) in
DEVSML collaborate for a simulation exercise over GIG/SOA.

This section has laid out the framework on the creation and execution of a
DEVS-based test instrumentation system. More details on the TIS design aspects
can be seen in [26]. In the next section we will demonstrate how it can be applied
to web services framework.
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Fig. 12. Protypical DEVS Test Federation

5 Abstract DEVS Service Wrapper

This section will provide details about the role of DEVS interface with a live
web service. This is the most crucial step as it links a live web service with a
modeling and simulation framework. It is the seat of model-continuity [52] where
a DEVS atomic model performs the dual role of a model as well as a wrapper
for a real software application utilizing web services.

Web services are utilized using web service clients that are created by vari-
ous open source and commercially available tools such as Eclipse Web Service
Toolkit (WST), Netbeans IDE, Websphere etc.. All of them use the WSDL as
the input to generate the web service client. In our implementation we utilize
the Axis2 framework to generate clients. Our choice of Axis2 plugin is driven by
the implementation platform of DEVS/framework which is Axis/Java. However,
it doesnt matter which method is used to generate the client.

A DEVS model has two modes of operation: an internal behavior representa-
tion and an external behavior representation. In developing a DEVS wrapper,
which would be effectively a DEVS web service client, we will implement the
external behavior. The concept is shown in the top half of Figure The detail
is shown in the lower half of the same Figure It shows the mapping between
the Axis layers, specifically the Axis binding layer and the DEVS elements. It
describes the external event that is triggered whenever there is message exchange
through the Axis client. This triggered event informs the DEVS atomic model
that wraps this Axis client. Such an arrangement does not create any bottle-
neck or any pipe between the actual Axis client and the network. The DEVS
wrapper is informed of the round-trip-time (RTT) when the actual service has
been executed its completion. Consequently, it is a passive observer and offers
no interference to the true communication between the client and the live web
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Fig. 13. DEVS Wrapper implementation over an Axis Web Service client

service. By inserting a specific set of code in any Axis generated client, we can
create a DEVS wrapper that is ready to become a part of a test-agent federation
coupled system, as described in the previous section.

Having described the basic DEVS Web service wrapper, the next task in line
is the creation of a coupled model, a web service workflow to be more specific to
actually utilize the DEVS modeling and simulation capabilities.

6 Workflow Composition and DoDAF-Based Mission
Threads

Web service workflows and orchestration is generally done using BPEL or BPMN
or hard-coded in a language specific platform implementation such as Java or
.NET. However, to create a DEVS coupled model there are numerous ways [24].
For example the most recent XML-Based Finite Deterministic DEVS (XFD-
DEVS) [25] uses XML as the preferred means to develop a Platform Indepen-
dent Model for both atomic and coupled models. Providing another method to
create a web service workflow is beneficial for both the communities. Not only
does it provide modeling and simulation capabilities to the existing Web Service
architecture, it also establishes DEVS as a production environment that can
effectively create application level code using system theoretical concepts.
Another mode of system level design is made possible by System Entity Struc-
ture (SES) [44]. The SES is a high level ontology framework targeted to mod-
eling, simulation, systems design and engineering. Its expressive power, both in
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strength and limitation, derive from that domain of discourse. An SES is a for-
mal structure governed by a small number of axioms that provide clarity and
rigor to its models. The structure supports hierarchical and modular compo-
sitions allowing large complex structures to be built in stepwise fashion from
smaller, simpler ones. Tools have been developed to transform SESs back and
forth to XML allowing many operations to be specified in either SES directly
or in its XML guise. The axioms and functionality based semantics of the SES
promote pragmatic design and are easily understandable by data modelers. To-
gether with the availability of appropriate tool support, it makes development of
XML Schema transparent to the modeler. Finally, SES structures are compact
relative to equivalent Schema and automatically generate associated executable
simulation models.

The most recent Department of Defense Architecture Framework (DoDAF)
application to GIG/SOA is another contender to compose web service work-
flows for mission-thread design and evaluation. DoDAF, as applicable to mission-
thread testing, consists of three views: Operational View (OV), Systems View
(SV) and Technical View (TV). It comprises of 26 documents to describe a mis-
sion thread. Wrapping head around such documents require sufficient level of
understanding and experience with C4ISR frameworks. The main documents
are listed in Table [Tl

For more detailed analysis of DoDAF, refer [20],[21]. Figure [4 shows the
various DoDAF views map into the SES framework.

Operational and System perspectives are considered two different decompo-
sitions of the system under consideration. They are represented by correspond-
ing nodes called aspects labeled by the names, Operational View and System
View, respectively. The Operational View aspect has entities labeled opNodes
(operational nodes) and activities. The various operational views of DoDAF

Table 1. Relevant DoDAF products

Description DoDAF Type
Overview and Summary Information AV-1
High-Level Operational Concept Description OV-1
Operational Node Connectivity Description OV-2
Operational Information Exchange Matrix OV-3
Organizational Relationships Oov-4
Operational Activity Model OV-5
Operational Event Trace Description OV-6b,c
Systems Interface Description SV-1
Communication Description SV-2
Systems to Systems Matrix SV-3
Functionality Description SV-4
Operational Activity to Function Traceability SV-5
Matrix

Data Exchange Matrix SV-6

Technical Standards Profile TV-1
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Fig. 14. Mapping of DoDAF documents to System Entity Structure (SES)

(other than OV-4) are easily interpreted as describing the entities and their
interactions. Likewise, the System View aspect has entities labeled functions with
DoDAF views that are associated with the functions and their interactions. The
one exception is SV-5 which is a relation between the functions of the System
View and the activities of the Operational View. This view describes how the
activities are implemented via executable functions supplied by the system.

Although the current DoDAF specification provides an extensive methodology
for system architectural development, it is deficient in several related dimensions
absence of integrated modeling and simulation support, especially for model-
continuity throughout the development process, and lack of associated testing
support [20]. To overcome these deficiencies, we described an approach to support
specification of DoDAF architectures within a development environment based
on DEVS-based modeling and simulation. The authors [20],[45] enhanced the
DoDAF specification to incorporate M&S as a means to develop executable
architecture [2] from DoDAF specifications and provided detailed DoDAF to
DEVS mapping leading to simulation, and feasibility analysis.

6.1 Web Service Work Flow Formalism

So, after providing an overview of various frameworks that can compose a web
service workflow, or simply a process workflow based on certain goals, objectives
or requirements, we can deduce the information we need to compose a workflow
and develop an automated procedure towards DEVS based design and analysis.



178 S. Mittal

The information set for a Web Service workflow formalism can be described in
a four element tuple as:

WSWFE :< W,M,F,X >

where,
W: Set of Web service definitions (WSDLs) or Agents each with a valid URL
M : Set of web service methods
F : defined as < C, L, D >
where,
C is a set of W-M pairs with each pair as a source or destination
L is a set of partner links with each link containing a
src and dest pair defined in C
D is a type of workflow mode which can either be a
sequence, while, holdSend or concurrent type which are
corresponding to the BPEL specifications
X is a Set of messages,
where,
each Message contains Data and is defined by time of entry in system,
rate, whether it is periodic or stochastic and can be either an Input

message or an Output message

The WSWF is expressed in SES as shown in Figure [[5 and Figure

Web Service Work Flow

System Definitions Service Methods Waorkflow Messages
System Component Service Method ‘ Message
~methodName
~ parameters

URL ~ messageCount Data ~timeOfStart
Messages peridd

WSDL User/Agent ~isPeriodic
~isRandom

InputMsg QutputMsg
~System
Component

| Aspect/decomposition (consists of}
H Specialization (is type of)
H| Multi-aspect {is made of many such)

Fig. 15. SES representation of Web Service Work Flow Formalism
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Fig. 16. SES representation of Workflow entity from Figure 15

The WSWF is represented using natural language as shown below:

From FORMALISM perspective, WSWF is made of SystemDefinitioms,
ServiceMethods, and Workflow!

From INFO perspective, WSWF is made of messages!

From SystemContainter perspective, SystemDefinitions is made
of more than one SystemComponent!

From MethodContainer perspective, ServiceMethods is made of
more than one ServiceMethod!

From MessageContainer perspective, Messages is made of more
than one Message!

From SystemStructure perspective, SystemComponent is made of URL!

From MessageStructure perspective, Message is made of DATA!

From WorkflowStructure perspective, Workflow is made of
WorkflowMode, ComponentServiceMethodPairs, and PartnerLinks!

From InfoStructure perspective, ServiceMethod is made of
InfoExchanges!

From INFO perspective, InfoStructure is like MessageContainer!
SystemComponent can be WSDL, or USERAGENT in SystemType!
Message can be InputMsg, or OutputMsg in MessageType!

Message has timeOfStart, period, is_Periodic, and is_Random!
InputMsg has SystemComponent!

ServiceMethod has methodName, parameters, and messageCount!

WorkflowMode can be Sequence, While, HoldSend, or Concurrent in
WorkflowType!



180 S. Mittal

From WhileStructure perspective, While is made of Condition!
Sequence has order, and count!

HoldSend has holdTime!

Concurrent has List!

From ComponentSMPairContainer perspective, ComponentService-
-MethodPairs is made of more than one ComponentServiceMethodPair!

From PartnerLinkContainer perspective, PartnerLinks is made of
more than one PartnerLink!

PartnerLinks has ComponentCount and PortCount!

the range of PartnerLink’s ComponentCount is RANGE with
values(2,2)!

the range of partnerLink’s PortCount is RANGE with value(2,2)!

From PartnerLinkStructure perspective PartnerLink is made of
ComponentServiceMethodPair, and Ports!
ComponentServiceMethodPairs can be Src, or Dest in ComponentType!

From PortContainer perspective, Ports is made of more than one
Port!

Port can be Inport, or Outport in PortType!

By expressing the SES for WSWF formalism in restricted natural language, it is
made executable using SES-DEVS methodology as elaborated in Zeiglers recent
book [43]. Using the SES builder [33], we can very well extract the DTD and/or
schema for WSWEF. The generated DTD for WSWF is available at [59].

6.2 Mapping of DEVS, BPEL and DoDAF Artifacts with WSWF
Formalism

The WSWF information set can very well be extracted from the DoDAF in-
formation set. WSWF formalism has also been mapped to XML-Based Finite
Deterministic DEVS (XFDDEVS) [25],[46] atomic and coupled models. XFD-
DEVS is defined by the following tuple:
Atomic XFDDEVS = < incomingMessageSet,
outgoingMessageSet,
StateSet,
TimeAdvanceT able,
InternalTransitionT able,
EaxternalTransitionT able,
OutputTable >

Coupled XFDDEVS = < ModelSet,
CouplingSet >
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The table below shows the mapping with BPEL as well. Although mapping to
WSWF to BPEL is in early stages, WSWF does have the information set that
is required to generate a BPEL file and the associated WSDL file as well. The
code to DEVS models has been autogenerated using technologies like JAXB
and XSLT. The autogenerated code provides us the DEVS skeleton in platform
independent implementation in XML which could be transformed to platform
specific implementation in Java, C++ or C#. More information on platform
independent DEVS model generation can be seen at [25]. This skeleton can be
easily augmented for any run-time capabilities. Providing detailed code imple-
mentations have been retained for brevity.

Table 2. WSWF Mapping with DoDAF, XFDDEVS, and BPEL

WSWF DoDAF XFDDEVS BPEL
Ay OV-2, OV-4, ModelSet Process
SV-4
M OV-5, OV-6 StateSet, ExternalTransi- Basic Activities,
tionTable PartnerLink-PortType
definitions
F
C W, M, OV-2, ExternalTransitionTable PartnerLink params, source
OV-8 paramss, InternalTransi- and target specs in both ba-
tionTable params sic and structured activities
L SVv-2 CouplingSet PartnerLinks
D SV-5, OV-5, ExternalTransitionTable, Structured Activities
OV-6 InternalTransitionTable
X SV-6, OV-3  ExternalTransitionTable, = Messages in accompanying
OutputTable WSDL

The WSWF formalism is a new way to compose web service workflows that
is expressed in SES-XML methodology. Since it is expressed in XML, it can be
mapped easily to XPDL and possibly BPEL too. Since it is largely textual, it
can retrieve information from static DoDAF documents as per Table Il This
detailed mapping, however, is not the focus of the current research and will be
reported in our forthcoming publication. Going further in our development and
execution of this workflow, the following sequential process provide the needed
steps in order to do performance evaluation using DEVS test models [26],[24]
or execution using DEVS/SOA framework as a real application. In terms of
net-ready capability testing, what is required is the communication of live web
services with those of test-models designed specifically for them. The approach
is:

1. Specify the scenario using WSWF

2. Develop the DEVS model (or generate DEVS workflow)

3. Auto-generate the test-models from DEVS models (using DUNIP as de-
scribed in [26])
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4. Run the model and test-model over SOA (as per DUNIP)

5. Execute as a real-time simulation with live web services embedded in DEVS
6. Execute the test-models with real-world web services (live)

7. Compare the results of steps 5 and 6 to perform verification and validation.

7 Case Study

This case study is divided into two parts:

1. The first study demonstrates the execution of a web service encapsulated in
a DEVS wrapper Agent and the associated obtained statistics.

2. The second study extends the first study by developing a workflow that
utilizes more than one web services in a workflow manner. It demonstrates
the following:

— Observe user activity with DEVS Agent via WSDL-based access to col-
laborative service

— Deploy DEVS virtual user models to simulate humans in collaboration
scenario with human user in the loop

— Show how DEVS agent observers communicate with other DEVS agent
via DEVS/SOA infrastructure.

7.1 DEVS Wrapper Agent

In this most basic demonstration, we use only one web service. This web service
executes a chat session between two users. The schematic is shown in Figure 17.
In our example, we execute the session with a live person and a DEVS agent.
The live person here is Jim Client that connects to the CHAT service via an
Internet browser at [6]. The chat session is executed using the GUT as shown in
Figure 18.

‘WSDL
Based
Wrapper
Chat || DEVS
- Client Agent
h rowser coetion |— |
b g DEVSJAVA
Chat service —_—
Jim 2 Saurabh | |
Client i oo s i) Client | | DEVS/SOA

‘ Internet

Fig. 17. Schematic showing basic execution of DEVS Wrapper Agent



Agile Net-centric Systems Using DUNIP 183

Chat Service SOA Client

Login Session Registar

Messages Registered Users

jim registered... st Thu Jan 10 14:04:55 MST | [jim
zo08

Mary registersd... st Thu Jam 10 14:05:14 MST
z008

Thu Jan 10 14:05:19 HET 2000 Marys Helle

Thu Jan 10 14:05:25 MST 2008 Mary» Hello

Thu Jan 10 14:05:25 MST 2008 Mary» Hellao

Thu Jan 10 14:05:33 MST 2008 Mary» Hella

H Send Message

Fig. 18. Chat service client engaged with another chat particpant

The DEVS agent is defined according to the WSWEF formalism as follows:

<W>: CHAT:
<W1:CHAT>:http://150.135.220.240:8080/ChatServiceCollaboration
/services/ChatService?wsdl
<A1:Jim>: Jim:localhost:8080
<M>: Methods:

<M1> postMessage ()

<M2> getAllMessages()

<M3> getLastMessageId()

<M4> registerAuthor ()

<M5> getUsers()

<M6> getAllMessagesForAuthor ()
<F>:"Flow specifications"
<C>

<C1:8rc>A1-M1

<C2:Src>A1-M2

<C3:Src>A1-M4

<C4:Src>A1-M5

<C5:Dest>W1-M1
<C6:Dest>W1-M2
<C7:Dest>W1-M4
<C8:Dest>W1-Mb

<L>

<L1>C1-C5

<L2>C2-C6

<L3>C3-C7

<L4>C4-C8

<D>

<D1>M1-HoldSend
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<D2>M2-While-infinity
<D3>M4-HoldSend
<D4>M5-While-infinity

<X>: Set of Messages

<InputMsg>
<I1>W1-Mi{string:T1:0:false:false}
<I2>W1-M4{string:T0:0.1:true:false}
<OutputMsg>
<01>M2{string:T2:1:true:false}
<02>M5{string:T2:1:true:false}

<W> tag contains description of the Chat Web Service as W1 and the agent de-
scription as Al along with their URL. <M> contains the list of service methods
that may be used in the process flow. <F> contains the flow description cat-
egorized into <C,L,D> as per the WSWF. <C> provides the source and des-
tination specification for a W/A defined in <W> with <M>. <L> specifies the
coupling between the sources and destinations as defined in <C>. <D> con-
tains the execution of methods in <M> in logic implementation. For example,
<D1>M1-HoldSend implies that the method M1 is to executed in HoldSend man-
ner. Similarly, <D2>M2-While- infinity implies that M2 will be executed in-
definitely when invoked or bounded by any condition. <X> specifies the input
and output message structures in <InputMsg, OutputMsg> tags. The structure
of <InputMsg> as specified in WSWF SES is <SystemComponent-Method{Data:
time of Start: R+: isPeriodic: isRandom>. For example, the specification
<I1>W1-Milstring:T1:0:false:false implies that the message I1 is an in-
put to Wi, method M1 with data as string. It starts at T1 with period
0. Any non-zero value means that the message will be incoming at a pe-
riodic rate. The next boolean variable false implies that it is not peri-
odic. The last variable false implies that it is not random either. Similary,
<I2>W1-M4string:T0:0.1:true:false implies that M4 at W1 is to be invoked
by string data message with a periodic rate of 0.1. The <OutputMsg> has a
similar structure except the fact that it does not contain any information about
the system component. It only contains information about the method in <M> as
it is just an output message. Whenever method <Mx> is invoked, it returns with
the parametric details as in <01>M2string:T2:1:true:false.

It is worth stressing here that the messages flow through the linkages as
specified in <L>. This acts as a coupling for the DEVS models. There are
two DEVS models in the WSWF instance described above, viz. W1 and Al.
Based on the coupling information for ex. <L4>C4-C8 implies that the source
is Agent <C4:Src>A1-M5 and the destination is Web service <C8:Dest>W1-M5.
The source sends a message invoking method M5 at the destination. If there
is a specification on how M5 should be invoked in <InputMsg> listing, then
the source has to ensure that it conforms to that specification. In this exam-
ple there is no specification for M5. This implies that there are no parame-
ters to be passed, but just the invocation. At the destination side, M5 has a
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specification <02>M5string:T2:1:true:false, which implies that whenever M5
returns a value, it will according to this <OutputMsg> specification.

The statistics for each of the methods in <M> is gathered according to the
autogenerated agent GUI monitor at the agents end. The statistics are largely
the round trip time (RTT) for each of <M>. The GUI in Figure [I9 also shows
the SOAP messages that are exchanged between the pairs as specified in <w>.

n Service Statistics
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postazsans 0.0 0.0 0.0 a
gt AlMessa0es -3 2922.0 2768.0 Il
Qetissers 250.0 234.0 ]
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registerAuthor 7340 7.0 7340 [z
gt AlMessagecl. .. 0.0 0.0 0.0 0
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Fig. 19. Associated statistics GUI for an encapsulated Web Service in DEVS Atomic
Model

7.2 Workflow Design, Analysis and Execution

The previous demonstration has established that we can encapsulate a live web
service within a DEVS atomic model using an XML based formalism such as
WSWF. It also establishes that we can create virtual users as DEVS agents
that input and communicate with live users. Having such capability allows us to
build upon the advances of DEVS hierarchical component based modeling and
simulation. In the next demonstration, we will build a workflow with two live
web services and all the clients as virtual users.

DEVSJAVA Execution on a Single Machine The first service is the same
CHAT service and the second service is a weather service [37]. In this demon-
stration, we will show that virtual users are engaged in chat session and one
user requests weather from another user. The second user (Jim Client) shown in
Figure RO requests the weather from the Weather web service and reports it back
to the first user using the CHAT service. We will then also execute the entire
scenario as a self-contained coupled model on DEVS/SOA with these virtual
agents deployed at different IP addresses. The schematic is shown in Figure
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Fig. 20. Schematic of Workflow scenario with two virtual DEVS agents

The workflow according to WSWF formalism is defined as follows:

<W>: CHAT-and-WEATHER:
<W1:CHAT>:<http://150.135.220.240:8080/ChatService Collaboration/
services/ChatService?wsdl>

<W2:WEATHER>: http://www.webservicex.net/WeatherForecast.asmx.
<A1:JIM>: Jim:localhost:8080

<A2:USER>: User:localhost:8080

<M>: Methods:

<M1> postMessage ()

<M2> getAllMessages()

<M3> getLastMessageId()

<M4> registerAuthor()

<M5> getUsers()

<M6> getWeather()

<F>:"Flow specifications"

<C>

<C1:Src>{A1,A2}-M1

<C2:8rc>A1-M2

<C3:Src>{A1,A2}-M4

<C4:Src>A1-M5

<C5:Src>A2-M6

<C6:Dest>W1-M1

<C7:Dest>W1-M2

<C8:Dest>W1-M4

<C9:Dest>W1-M5

<C10:Dest>W2-M6

<L>

<L1>C1-C6 //notice that both Al and A2 are coupled to W1-Ml
<L2>C2-C7

<L3>C3-C8 //notice that both Al and A2 are coupled to Wi-M4
<L4>C4-C9

<L5>C5-C10

<D>
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<D1>M1-HoldSend:5

<D2>M2-While-infinity

<D3>M4-HoldSend

<D4>M5-While-infinity

<D5>M6-HoldSend
<X>:
<InputMsg>
<I1>W1-Mi{string:
<I2>Wi-M4{string:
<I3>W2-M6{string:
<I4>A2-M1(string:
<OutputMsg>
<01>M2{string:T2:
<02>M5{string:T2:
<03>M6{string:T3:

Set of Messages

T1:5:true:false}
TO0:0.1:true:false}
T3:0:false:false}
T4:0:false:false)

1:true:false}
1:true:false}
0:false:false}

where, TO > 0, T1&T2 > 0, and T3,T4>T1,T2.

The description of WSWF instance above is on the same lines as of previous
example. However, instead of just one, there are two services in this instance
as specified by <W1> and <W2>. The two services are: the Chat Service and
the publically available Weather service. There is an addition method <M6>
that invokes the Weather service. There are two agents viz., Jim and USER.
The USER is a virtual user and is modeled as a DEVS Agent and Jim is a live
person. A DEVS agent is a computer program implemented as a DEVS model.

Fig. 21. Snapshot of execution of workflow
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case study as depicted in Figure 21
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It is engaged in chat session with Jim and reports back the results of Weather
service when the request to invoke comes from Jim, the real user.

The demonstration has been structured in a manner that it be executed in a
single machine. To execute it on remote machines we will be using DEVS/SOA
which is described in the next sub-section. To execute it on a single machine,
DEVSJAVA platform is sufficient. Figure 21l shows the virtual user USER in
black console and the Jim real user in the Chat window. Notice that the Jim client
also has the monitor running that invokes method <M4> and <M5> at the Chat
Web service. The GUI also shows the DEVSJAVA simulation viewer which
shows that DEVSJAVA is being used to run the scenario. The Jim client requests
weather from USER client. The USER invokes <W2> web service, and reports back
the result by method <M1> to the Chat Service.

To provide complete performance analysis of the workflow as per the GUI in
Figure 21 is outside the scope of the paper and has been retained.

Execution on DEVS/SOA Framework. The scenario remains the same as
in preview sub-section. However, the execution is made on DEVS/SOA platform
(Figure 22)). The real user Jim has now been replaced by another virtual client.
The only modification in the WSWF instance is the following:

<W>: CHAT-and-WEATHER:
<W1:CHAT>:<http://150.135.220.240:8080/ChatService Collaboration/
services/ChatService?wsdl>

<W2:WEATHER>: http://www.webservicex.net/WeatherForecast.asmx.
<A1:USER1>: User1:150.135.218.205:8080

<A2:USER2>: User2:150.135.220.240:8080

DEVS DEVS
Virlual Virtual
User User

USER 1 USER 2

Chat service
Hosted at ACIMS Server
150.135,220.240

Weather
Service

DEVSISOAIDEVSJAVA DEVS!SGAIDEVSJA\J’A

Internet

Fig. 22. Execution of Workflow scenario with DEVS/SOA framework

The generated Java code is fed to the DEVS/SOA client GUI as reproduced again
in Figure USER2 in the generated code is given the Class name PerfMonitor
for differentiation. The Class VirtualUser is USER1. The USER1 is assigned an IP
address 150.135.218.205:8080 and USER2 at 150.135.220.240: 8080. These
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[— - - - =

DEVS Distributed Modeling and Simulation over S0A

Selact Packags Follr conssining devsiavs macsl fles fasvs] |

PerMoritor java

I Select available Servers

-

|
Sonicolsorjava |
SimUserDemo.java =
VirtualUser java |
WeatherData.java |
\WeatherDataServerjava -|

Seect Top-level Coupled Model from il o r Il Compile |

Fig. 23. Models package being executed using DEVS/SOA client

= —— 3
| £ Assign IP addresses to Models o f@.’

2

Components 1P Address Assigned
| smserbema 1150,135.218.205:8080 .v‘
Perfivianitor ;50.135.220.240:9080 1 - ‘
VirtualUser [150.135.218.205:8080 | w \
WeatherDataServer 7150-135.220.210“80 v"
Cancel || Done

Fig. 24. TP assignment of models for Workflow scenario

virtual users are then sent to these respective IP addresses. These IP addresses
provide the DEVS Simulation service and Apache Tomcat servers are used as
containers at these IPs. The other dependent files are also uploaded at corre-
sponding IPs. The assignment can be done manually as shown in
Figure Once uploaded, the files are compiled at run-time at the servers end
and a distributed simulation is executed between these remote machines. Once
the simulation is over, the result is communicated back into the console win-
dow as shown in Figure 23l The detailed output of the simulation run is shown
below. As can be seen from the output below, VirtualUser sent three requests
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and got responses with different delays. The responses are communicated by the
other USER2 after invoking the Weather service. The result is also sent back
to VirtualUser, as,

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5.

Models assigned specifically to respective Server IP:
—--Component Model: SimUserDemo --> 150.135.218.205:8080
—--Component Model: VirtualUser --> 150.135.218.205:8080
—-—-Component Model: PerfMonitor --> 150.135.220.240:8080
—--Component Model: WeatherDataServer --> 150.135.220.240:8080
Uploading in progress... please wait...

Initiating UPLOAD...

Uploading files to server 150.135.220.240:8080

Files uploaded.

Uploading files to server 150.135.218.205:8080

Files uploaded.

Compilation in progress....please wait....

Starting compilation at remote servers.....

Compiling project at 150.135.220.240:8080...

Success: true

Project compiled.

Compiling project at 150.135.218.205:8080. ..
Success: true

Project compiled.

Waiting to start SIMULATION....

Simulation in Progress....please wait...
Running simulation ...

21 iteratioms.

Simulators output:

150.135.220.240 output:

VirtualUser: sent a request

Avg. delay = 375.0 milliseconds

Spurious response count = 0

Outstanding requests = 0

VirtualUser: response length 48

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5
VirtualUser: sent a request

Avg. delay = 355.25 milliseconds

Spurious response count = 0

Outstanding requests = 0

VirtualUser: response length 48

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5
SIMULATION over!
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Hybrid Execution Using DEVS/SOA and DEVSJAVA. Once we have
such DEVS coupled workflow system, we can extend this system by replacing any
virtual user with a live user. Figure 25 below shows the schematic of such opera-
tion and a demonstration is made available as an .avi file at [8]. In the schematic
below the DEVS coupled system is augmented with other DEVS agents for re-
porting statistics etc, basically the idea being, such DEVS enabled workflows
can now participate in live modeling and simulation exercises in real-time.

DEVS ||oevs DEVS
User | A9ent Chat Sy Agent
Client

Jim Spain Client
Client -

Service Chat service Saurabh

|oEvsisonDEvsuava|  Tesled st ACKS Server Client DEVS/SOA

[ Internet |

Fig. 25. WSWF formalism based workflow using DEVS as middleware for live modeling
and simulation exercises

8 Agility in DEVS Unified Process

Agile software methodologies have taken quite a notice these recent years pri-
marily due to the factors such as volatile ever-changing requirements, dynamic
technological landscape, high employee turnover, and most importantly, satisfy-
ing the business needs. [50] summarizes it as:

Agile development is not defined by a small set of pratices and techniques
but defines a strategic capability, a capability to create and respond to
change, a capability to balance flexibility and structure, a capability
to draw creativity and innovation out of a development team, and a
capability to lead organizations through turbulence and certainty.

There is a fundamental shift in the approach of delivering the product by hard-
line requirements specifications supported by methodologies like Capability Ma-
turity Model (CMM) and CMM Integration (CMMI) and the Agile practices.
While the former delineates defined repeatable processes so that the performance
can be measured within very close tolerances, the latter is more geared towards
employing the latest advancement in technologies, to explore, and to deliver the
product as soon as possible. The key point of agile practices is the inclusion
of software engineering life cycle in each iteration so that the features deliv-
ered are production ready at the end of each iteration. While the vision of most
projects are clear, what remains fuzzy are the exact requirement specifications
that the developers are faced with. With agile practices, a constant dialogue
with the customer, repeatable testing procedures, incremental development and
using the latest technology, the requested feature can be delivered in the next
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Table 3. Agile Methodology and DEVS Unified Process

Phase

Agile Methodology DEVS Unified Process (DUNIP)

Model

Implementation

Test

Deployment

Configuration
Management

Project Manage-
ment

Environment

Identify the domain DUNIP begins by taking requirements
and business use-case in different formats like DoDAF, UML,
requirements and spec- State-based, NLP and transform them
ify in domain specific into platform independent XML mod-
languages such as UML, els
etc.
Transform your mod- From PIMs, the DUNIP engine gen-
els into executable code erates code in platfrom specific mod-
with running unit-tests els (PSMs) such as Java, C++, C#
etc. With strong DEVS theory un-
derlying each of the atomic models,
the models can be verified mathemati-
cally, as well as graphical with various
DEVS toolsets such as DEVSJAVA.
Unit-testing for each transition or an
event is inherent in DEVS.
Identify defects, ensure With DUNIP, the development of test
quality and verify re- suite is done in parallel with that of the
quirements model. Test models are generated from
the XML-based PIMs. The test models
verify the atomic model’s operation at
various levels of system specifications,
such as I/O pair, I/O function, etc. The
Experimental Frames are also designed
at this stage that ensure the require-
ments are met through the test models.
Plan the delivery and With ready deployment capabilities per
make it available to end model-continuity principles to SOA in-
users frastructure, and zero transition times,
the model is the actual software and is
readily moved to the production servers
Managed  access to DUNIP is very well positioned to
project artifacts reuse and contribute to Model repos-
itory. PIMs are a strong contender for
such tracking and version management.
PSMs can very well be source versioned
using tools like Subversion etc.
Manage people, project, These qualities are universal and due to
iterations and budget = the component nature of DEVS tech-
nology, the project plan can very well
be partitioned into iterative cycles and
milestones
Ensure that proper pro- DEVS has been in existence for over
cess, guidance, and tools 30 years and there is a large commu-
are available for the team nity that is available for support in ba-
sic theory and toolsets.
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iteration without changing the entire project vision. The DEVS Unified Process,
similarly is based on agile methodology. Table [3 lists the similarities with each
phase of agile development methodology [51].

Table 3 establishes that DEVS Unified Process has all the needed phases
of being agile and the model continuity [52] enables any DEVS artifiact to be
a real software. With DUNIP’s SOA edge, we have any DEVS model that is
available as a web service. Modeling and Simulation in today’s world is more
than just a software. It is an enabling technology that has far reaching impact
on any nations’ progress and advance the forefront of various technologies in
many domains such as biology, chemistry, phyiscs, space science, etc. While there
are customized M&S software for different problem sets and different domains,
an agile methodology is another ace that when employed could incorporate the
latest advancements in software engineering discipline and apply it to the M&S
solution at hand.

9 Conclusions and Future Work

Service Oriented Architecture (SOA) have come a long way and many of the
businesses are seriously considering migration of their IT systems towards SOAs.
DoDs initiative towards migration of GIG/SOA and NCES requires reliability
and robustness, not only in the execution but in the design and analysis phase as
well. Web service orchestration is not just a research issue but a more practical
issue for which there is dire need. Further, Service Oriented Architecture must
be taken as another instance of system engineering for which there must be
a laid out engineering process. Modeling and Simulation provides the needed
edge. Lack of methodologies to support design and analysis of such orchestration
(except BPEL related efforts) cost millions in failure. This research has proposed
that Discrete Event Formalism can be used to compose and analyze Web service
workflows. The DEVS theory, which is based on system theoretic concepts, gives
solid grounding in the modeling and simulation domain.

The prime motivation of applying DEVS system theoretical principles to these
emerging net-centric systems comes from an editorial by Carstairs [53] that de-
mands a M&S framework at higher levels of system specifications where System
of systems interact together using net-centric platform. At this level, model in-
teroperability is one of the major concerns. The motivation for this work stems
from this need of model interoperability and the characterists of net-centric sys-
tems that are easier to simulate, test and deploy with an underlying foundation
of systems engineering principles. DEVS, which is known to be component-based
system, based on formal systems theoretical framework is the preferred means.
Table @ outlines how it could provide solutions to the challenges in net-centric
design and evaluation.

The net-centric DEVS framework as laid out in this chapter required en-
hancement to these basic DEVS capabilities. Furthermore, this work describes
distributed simulation using the web service technology. After the development
of World Wide Web, many efforts in the distributed simulation field have been
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Table 4. Solutions provided with DEVS Technology in support of M&S for T&E

Desired M&S capability for Solutions provided by DEVS M&S technology

Test and Evaluation (T&E)

Support for DoDAF need for DEVS Unified Process [24],[29] provides methodology

executable architectures using and SOA infrastructure for integrated development

M&S such as mission based test- and testing, extending DoDAF views [20].

ing for GIGSOA

Interoperability —and  cross- Simulation architecture is layered to accomplish the

platform M&S using GIG/SOA technology migration or run different technological
scenarios [54]. Provide net-centric composition and
integration of DEVS ’validated’ models using Simu-
lation Web services [22].

Automated test generation and Separate a model from the act of simulation itself,

deployment in distributed simu- which can be executed on single or multiple dis-

lation tributed platforms [39]. With its bifurcated test and
development process, automated test generation is in-
tegral to this methodology [42].

Test artifact continuity and Provide rapid means of deployment using model-

traceability through phases of continuity principles and concepts like ’simulation be-

system development comes reality’ [52].
Real-time observation and con- Provide dynamic variable structure component mod-
trol of test environment eling to enable control and reconfiguratin of simula-

tion on the fly [55],[56]. Provide dynamic simulation
tuning, interoperability testing and benchmarking

made for modeling, executing simulation and creating model libraries that can
be assembled and executed over WWW. By means of XML and web services
technology these efforts have entered upon a new phase. The proposed DEVS
Modeling Language (DEVSML) is built on eXtensible Markup Language (XML)
as the preferred means to provide such transparent simulator implementation. A
prototype simulation framework called DEVS/SOA has been implemented us-
ing web services technology. It is currently at the forefront of DEVS net-centric
research platform [47]. The central point resides in executing the simulator as
a web service. The development of these kind of frameworks will help solve
large-scale problems and guarantees interoperability among different networked
systems and specifically DEVS-validated models. This chapter focused on the
overall approach, and the symmetrical SOA-Based architecture that allows for
DEVS execution as a Simulation SOA.

We have shown how a web service can be encapsulated into a DEVS atomic
model and can be put towards a coupled DEVS system with other live web
services as well as other DEVS models. We also have demonstrated the proposed
use of Web Service Work Flow (WSWF) formalism in composing SOA, much like
the same functionalities of BPEL. We have also described how WSWF can be
mapped to DoDAF elements using the System Entity Structure (SES) and could
achieve creation of DEVS net-centric coupled systems based on SOA. We have
also shown how the developed DEVS coupled system can be simulated using
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the basic DEVSJAVA framework as well as distributed DEVS/SOA framework.
Further, on the basis of our earlier work on DEVS/SOA we have basis for:

— Agent-Implemented Test Instrumentation
— Net-centric Execution using Simulation Services
— Distributed Multi-level Test Federations
Analysis that can help optimally tune the instrumentation to provide confi-
dent scalability predictions.
— Mission Thread testing and data gathering:
e definition and implementation of military-relevant mission threads to
enable constructing and/or validating models of user activity.
e Comparison with current commercial testing tools shows that by repli-
cating such models in large numbers it will be possible to produce more
reliable load models than offered by conventional use of scripts.

We have taken the challenge of constructing net-centric systems as one of de-
signing an infrastructure to integrate existing Web services as components, each
with its own structure and behavior with DEVS components and agents. The
net-centric system is analogous to a System of System (SoS) where in hierar-
chical coupled models could be created. Various workflows can be integrated
together using component based design. The net-centric system can be specified
in many available frameworks such as DoDAF, SES, BPMN/BPEL, UML, or by
using an integrative systems engineering-based framework such as DEVS. The
proposed Web Service Work Flow formalism binds various frameworks like SES,
BPEL, DoDAF and DEVS.

In this research, we have discussed the advantages of employing an M&S-
integrated framework such as DEVS Unified Process (DUNIP) and its supporting
DEVS/SOA infrastructure. We illustrated how M&S can be used strategically to
provide early feasibility studies and aid the design process. We have established
the capability to develop a live workflow example with complete DEVS interface.
In this role, DEVS acts as a full net-centric production environment. Being
DEVS enabled, it is also executable as a system under test (SUT) model towards
various verification and validation analysis that can be performed by coupling
this SUT with other DEVS test models. Last but not the least, the developed
DEVS system can be executed by both real and virtual users to the advantage
of various performance and evaluation studies. We also summarized how DUNIP
is agile and each of its modules fit to the agile practices.

As components comprising SoS are designed and analyzed, their integration
and communication is the most critical part that must be addressed by the
employed System of System (SoS) M&S framework. We discussed DoDs Global
Information Grid (GIG) as providing an integration infrastructure for SoS in the
context of constructing collaborations of web services using the Service Oriented
Architecture (SOA). The DEVS Unified Process (DUNIP), in analogy to the
Rational Unified Process based on UML, offers a process for integrated develop-
ment and testing of systems that rests on the SOA infrastructure. The DUNIP
perspective led us to formulate a methodology for testing any proposed SOA-
based integration infrastructure, such as DISAs Net-Centric Enterprise Services.
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The present research is being considered and refined for standardization with the
DEVS Standardization group [47],[48],[49]. Clearly, the theory and methodology
for such net-centric SoS development and testing are at their early stages.

10 Acronyms

ATC-Gen Automated Test Case Generator

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

C4ISR Command, Control, Communications, Computers, Intelligence, Surveil-
lance and Reconnaissance

CES Core Enterprise Services

CMMI Capability Maturity Model Integration

CORBA Common Object Request Broker Architecture

DEVS Discrete Event System Specification

DEVSML DEVS Modeling Language

DoD Department of Defense (US)

DoDAF Department of Defense Architecture Framework

DTD Document Type Definition

DUNIP DEVS Unified Process

GIG Global Information Grid

HLA High Level Architecture

HTTP Hyper Text Transfer Protocol

JAXB Java Advanced XML Binding

NCES Net-Centric Enterprise Services

NLP Natural Language Processing

OV Operational View (in DoDAF)

PIM Platform Independent Model

PSM Platform Specific Model

RMI Remote Method Invocation

RTT Round Trip Time

SES System Entity Structure

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SUT System Under Test

SV System View (in DoDAF)

T&E Test and Evaluation

TIS Test Instrumentation System

TV Technical View (in DoDAF)

WSDL Web Service Description Language

WSWEF Web Service Workflow Formalism

XFDDEVS XML-Based Finite Deterministic DEVS

XML eXtensible Markup Language

XPDL XML Process Definition Language

XSLT Extensible Stylesheet Language Transformations

UDDI Universal Description Discover and Integration

UML Unified Modeling Language
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Abstract. This chapter describes Conversational Agents (CAs) in the context of
Systems Engineering. A CA is a computer program which interacts with a user
through natural language dialogue and provides some form of service. CA
technology has two points of interest to systems engineers: the use of systems
engineering techniques in CA research and the application of CAs in project
development. CAs offer the opportunity to automate more complex applications
than are feasible with conventional web interfaces. Currently such applications
require a human expert in the domain to mediate between the user and the
application. The CA effectively replaces the human expert. This chapter
reviews the current capabilities of various CA technologies, outlines a
development methodology for systems engineering practitioners interested in
developing real world applications and suggests a number of directions for
systems engineers who wish to participate in CA research.

Keywords: Conversational agent, systems engineering, dialogue, evaluation,
methodology, semantic similarity, short text.

1 Introduction

In the early decades of computing ordinary people did not have any interaction with
computers at all, any information that was needed for an application was entered by
specialised clerks. This was followed by a period (largely driven by the internet) in
which users could drive simple applications by entering simple facts and figures
directly. Recently an explosion of internet use has demanded that ordinary people
interact with complex applications, and the trend is for these to be of increasing
complexity. Such applications would normally require a domain expert to interview
the user to obtain the necessary information.

Automating such processes represents a serious challenge to computing
practitioners. This chapter describes a possible way forward, Conversational Agents
(CAs). CA technology has two points of interest to systems engineers: the use of
systems engineering techniques in CA research and the application of CAs in project
development.

A CA is a computer program which interacts with a user through natural language
dialogue and provides some form of service.

Typically this dialogue system serves a business goal such as providing information,
advice or selling. A suitably-designed CA plays the role of the human expert and is
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generally in charge of the conversation; such CAs are fundamentally intelligence-based
systems.

The idea of a computer taking the role of a human in conversation was first proposed
by Alan Turing [1], as a test of machine thought. Although there has been substantial
philosophical debate about the Turing Test [2-4], it has no impact on the validity of CAs.
Practical CAs aspire to provide the user with the kind of advice or services that would
come from a knowledgeable or experienced human, but in a purely behavioural sense.
This form of CA presents with "Intentionality”, that is it displays beliefs, desires and
intentions concerning objects, events and states of affairs in the real world [5] — but it is
not required to have a “mind.”

The applications that have been proposed for practical CAs include health care
dialogue systems [6], real estate sales [7], phone call routing [8], intelligent tutoring [9]
and natural language interfaces to databases [10, 11].

Probably the most effort has been expended on CAs for online customer self-service,
which provide the user with the kind of services that would come from a knowledgeable
or experienced human. In 2005 there were at least 10 major companies operating in this
area, including IBM and strategic partners of Microsoft [12]. At least 28 patents have
been registered concerning CAs and closely related technologies. Despite this effort,
success has been mixed and more research will be required to achieve the goal of a
functional CA which can fill the role of a human [6].

2 The Scope of CAs

The term “CA” can have a very broad scope including:

Spoken Dialogue Systems

Chatterbots

NLP-based Dialogue Management Systems
Goal-Oriented CAs

Embodied CAs

2.1 Spoken Dialogue Systems

Spoken Dialogue Systems (SDSs) are concerned with the conversion of speech into text.
The average user might expect to interact with a CA by speaking to it directly and having
the speech interpreted by SDS algorithms. In fact the field is insufficiently developed for
this to be practical for anything but trivial applications. This is due to the relatively high
error rates involved in converting the audio input into text. The performance of SDSs is
usually measured as the Word Error Rate (WER) which takes account of the numbers of
insertions, deletions and substitutions needed to correct a transcribed segment of speech
[13].

Consequently, work on SDS systems falls into two categories.

The first covers systems which can convert speech from members of the general
population and the second covers systems which are trained to recognise speech from a
particular speaker.

Systems which cover the population split into two further categories, small vocabulary
and large vocabulary.
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Small vocabulary systems, in use since the 1990s for applications like paying bills,
need to recognise the digits plus a few other words such as “account”. These systems
are capable of recognising tens of words and can achieve WERs of less than 1% under
ideal conditions [14].

Large vocabulary systems contain tens of thousands of words [15] and represent
the ideal interface for a CA. Unfortunately such systems have high word error rates,
examples being a range of 18.4% -35.5% [16] and a particular WER of 25% [17].

Although small vocabulary systems are in routine use the individual words are
simply matched as symbols and no real conversation takes place. More research is
needed to improve the WER of larger vocabulary systems to make SDSs truly useful
for CAs.

2.2 Chatterbots

Chatterbots are the direct outcome of attempts to create a system that would pass the
Turing Test and are also stimulated by the Loebner prize which offers a substantial
cash prize for passing a version of the test. The objective is to pass as a human for a
limited period of time. Consequently chatterbots are programs that engage a human in
social conversation and attempt to prolong the conversation for as long as possible.

Chatterbot development is driven by a “cat and mouse” game between developers
and judges. The chatterbot is considered successful if it can prolong a conversation,
no matter how banal or purposeless, for the time period without being detected as a
machine by a judge.

The dominant technology in chatterbots is Pattern Matching. This approach
requires scripts that define the conversation to be executed by a pattern-matching
engine. The scripts contain rules which in turn contain patterns. The chatterbot
responds to a user utterance based on the best match to one of its patterns.

Chatterbot developers program tricks into their systems to convince the user (as a
substitute for real thought) and when users are in a judging mode they indulge in
unnatural antisocial behaviour to “out” the chatterbot [18].

Although the technology behind chatterbots may be useful as a component of CAs,
the chatterbot in itself is too limited to have use as a practical CA.

2.3 Natural Language Processing Based Dialogue Management Systems

Natural Language Processing (NLP) is largely concerned with document retrieval,
information extraction, and text categorisation [19].

There is an established interest [20] in applying established NLP procedures such
as using parsing, keyword extraction and formation of a structured lexicon to systems
which engage in dialogue.

In initial work there was a lack of substance when it came to reasoning about the
meaning of user utterances and the production of relevant responses. Modularisation
(or compartmentalisation) of NLP based systems leads to these problems being
lumped together as Natural Language Understanding (NLU).

The dominant approach to NLU is the frame-based system [21-23]. This is
effective for simple applications such as making bookings for journeys or theatre
seats. A related approach is the use of state-based systems, popular in healthcare [6].
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These undergo state transitions triggered by the content of user utterances. Some
success has been achieved with limited systems in which tight constraints are placed
on the utterances that the users can produce. This can be done with forced choice
questions (e.g. yes or no answers) or the detection of a very restricted set of highly
salient speech fragments; however the dialogue may be unnatural. More flexible
dialogue is possible, using more powerful grammars and probabilistic/empirical
techniques, but is not trusted when high accuracy of understanding of the user intent
is required [6].

The most promising NLP-based approach (used within a CA) currently being
investigated, at the University of Cambridge, uses phrasal grammar rules to extract
the dialogue act type and a list of attribute/value pairs from each utterance and a
template-based response generator [24, 25]. However, this approach has only been
evaluated in the laboratory, with a simple domain, Towninfo, which recommends
restaurants, museums and similar destinations of interest to tourists.

Despite the considerable effort put into NLP, it has a number of problems for use
in real-time CAs. The first is whether the chains of computationally intensive
processes involved will scale up to real-word applications deployed on the web,
especially when large numbers of users are involved. Secondly, each process has a
particular error rate and the cumulative effect of these may affect the classification of
user utterances. Thirdly, NLP relies on grammatically correct sentences, yet most user
utterances are not properly-formed. Repair processes to remedy this incur a further
computational overhead. Fourthly, research into NLP is fragmentary in nature. For
example recent work has focussed on monitoring the human’s engagement [26, 27],
interaction control [28, 29] or determining if a party is being addressed [30]. What is
really required is a concerted effort to produce a less sophisticated, but functional,
system.

2.4 Goal-Oriented CAs

A Goal-Oriented CA has a deep strategic purpose in holding the conversation and its
design incorporates mechanisms that enable it to focus the conversation on achieving
a goal. This is what distinguishes it from a Chatterbot.

The original design objective of chatterbots was to prolong social chit-chat, thus
they are easily de-railed by human users when used for practical applications.

A Goal-Oriented CA (GO-CA), on the other hand, is specifically designed to
interact with a human, using natural language dialogue, to achieve a particular
business goal - such as providing information, advice or selling. It plays the role of an
empowered human in a productive application or task. Thus the GO-CA [31] may
spend more time leading the conversation and asking questions than the human.

In general terms the human approaches the GO-CA with a problem or need. In
current implementations [31] a pattern matching dialogue front end is combined with
a rule-based system, which contains a model of the problem domain that is expressed
in terms of a set of attributes. Through the process of dialogue, appropriate attributes
are captured to model the particular problem experienced by the user and identify the
appropriate solution.

The GO-CA is a mixed-initiative system (from time to time either the human or the
agent may take control of the conversation). Due to the goal-oriented nature of the
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agent it will take the initiative in the first instance and will always return to the goal
after the human has diverted the conversation (for example to ask for a clarification of
something said by the agent).

Figure 1 shows the generic architecture for a typical GO-CA [31]. This is intended
to take on challenging real-world applications in which the human user may present
adversarial, disruptive or deceptive behaviour at times during the conversation.

Databasze(s)

Expert Systam

Interface

Discourse A I .
<11:|l> Manager & — Dialogue Agent

N[z

Processing
Engine

Fig. 1. Goal-Oriented CA architecture

Modularisation is an important element of the architecture. New modules can be
added for extended functionality or existing ones omitted if not required. In this
particular CA the rule-based system takes the form of an expert system. In another the
application required an interface that allowed the agent and the users to communicate
by SMS text messaging.

The architecture is best described by considering a dialogue transaction between
the agent and a user.

1. The first step in a dialogue transaction is for the expert system to identify the
attribute (or next attribute) whose value is to be captured.

2. The expert system passes this requirement to the Discourse Manager (DM).

3. The DM invokes the dialogue agent (DA) which produces a suitable
utterance for the agent and returns this to the DM.

4. The DM passes the agent’s utterance to the web interface which sends it to

the user.

5. The user replies to the agent and the web interface passes the user utterance
to the DM.

6. The DM invokes the DA to determine if it contains the required attribute.

7. If the attribute has not been captured, go to step 3.

8. When the attribute has been captured, the discourse agent passes the attribute
to the expert system, which updates its model.
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9. If further attributes are required by the expert system, go to step 1.

10. The solution to the problem is communicated to the user.

11. At this stage the user may end the conversation or continue by asking
clarification questions.

The interface can consist of a text-based, instant messaging-style system which is
very familiar to users of social networking applications. It is also possible to use a
speech recognition system (currently this would need to be trained for a specific user;
large vocabulary word recognition may be feasible in the future).

The database is used for long-term storage of user attributes (e.g. start date with
employer) and the logic processing engine provides domain-specific computational
tasks (e.g. date calculations).

The common feature between GO-CAs and chatterbots is the prevalence of the
technique of pattern matching. However a GO-CA will engage in extended dialogue,
during the course of which it will appear to have mental states that are directed at
states of affairs in the world e.g. beliefs, desires, hopes, perception, intention etc.
Whereas chatterbot-based systems typically present a business’s FAQ list with a
human face, GO-CAs are intended to give sophisticated advice on topics such as
bullying and harassment in the workplace [31].

2.5 Embodied CAs

An Embodied CA (ECA) is characterised by a multimodal interface which includes a
facial display, hand gestures, posture etc., interaction with a human (or representation
of a human in a computer environment) and a dialogue system where both verbal and
nonverbal devices advance and regulate the dialogue between the user and the
computer [32].

The degree of embodiment can vary considerably. At its simplest it involves a
graphic representation of the agent capable of facial expressions, where the intention
is to provide a generally heightened sense of realism. One example of this approach is
a virtual museum guide used to investigate the kind of dialogue that embodied agents
provoke from humans [33]. The most advanced view of embodiment encompasses
facial expressions and gestures by the agent coupled with the reading of gestures from
the user [32, 34, 35]. This extends to the modelling of emotions on the part of the
agent [35].

Whilst there is clear potential for embodiment to improve GO-CAs, for example
through disambiguating pronouns such as this and that using pointing gestures and
shared visual space [32, 36], the dialogue tasks attempted remain relatively simple.

The REA agent [37] uses chatterbot-style social engagement combined with a
linear attempt to collect a very small number of attributes in order to make a property
recommendation. ECAs are generally used with very low-stakes applications, where
there is little to lose if the agen