An Introduction
to Programming with

Mathematica

PAUL WELLIN, SAM KAMIN,
AND RICHARD GAYLORD

more information - www.cambridge.org/9780521846783

http://www.cambridge.org/9780521846783

This page intentionally left blank

An Introduction to Programming with Mathematica®

An Introduction to Programming with Mathematica® is de-
signed to introduce the Mathematica programming language
to a wide audience. Since the last edition of this book was
published, significant changes have occurred in Mathemat-
ica and its use worldwide. Keeping pace with these changes,
this substantially larger, updated version includes new and
revised chapters on numerics, procedural, rule-based, and
front end programming, and gives significant coverage to
the latest features up to, and including, version 5.1 of the
software.

Mathematica notebooks, available from www.cambridge.org/
0521846781, contain examples, programs, and solutions to
exercises in the book. Additionally, material to supplement
later versions of the software will be made available. This is
the ideal text for all scientific students, researchers, and pro-
grammers wishing to deepen their understanding of Muath-
ematica, or even those keen to program using an interac-
tive language that contains programming paradigms from
all major programming languages: procedural, functional,
recursive, rule-based, and object-oriented.

An Introduction to

Programming
with
Mathematica®

Third Edition

Paur R. WeLLIN | RicHARD J. GayLorDp | SamueL N. Kamin

%% CAMBRIDGE

@/ UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cB2 2ru, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521846783

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective hcensmg agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2005

ISBN-13 978-0-511-08062-3 eBook (NetLibrary)
ISBN-10 0-511-08062-X eBook (NetLibrary)

ISBN-13 978-0-521-84678-3 hardback
ISBN-I0 0-521-84678-1 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLSs for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Mathematica, Mathlink and Mathsource are registered trademarks of Wolfram
Research, Inc. All other trademarks used herein are the property of their respective
owners. Mathematica is not associated with Mathematica Policy Research, Inc. or

MathTech, Inc.

Wolfram Research is the holder of the copyright to the Mathematica software system
described in this document, including without limitation such aspects of the system as
its code, structure, sequence, organization, “look and feel”, programming language, and
compilation of command names. Use of the system unless pursuant to the terms of a
license granted by Wolfram Research or an otherwise authorized by law is an
infringement of the copyright.

http://www.cambridge.org
http://www.cambridge.org/9780521846783

1 An introduction to Mathematica

Mathematica is a very large and seemingly complex system. It contains hundreds of
functions for performing various tasks in science, mathematics, and engineering,
including computing, programming, data analysis, knowledge representation, and
visualization of information. In this introductory chapter, we introduce the elementary
operations in Mathematica and give a sense of its computational and programming
breadth and depth. In addition, we give some basic information that users of Mathemat-
ica need to know, such as how to start Mathematica, how to get out of it, how to enter
simple inputs and get answers, and finally how to use Mathematica’s documentation to

get answers to questions about the system.

1.1 A brief overview of Mathematica

Numerical computations

Mathematica has been aptly described as a sophisticated calculator. With it you can enter

mathematical expressions and compute their values.

08)
2

12

In[1]= Sin[.86] - Log[x] (1+
Outf1]= -0.481899

You can store values in memory.
Inf2].= rent = 350

Out2]= 350

In[3l:= food =175

ouzl= 175

Inf[4]= heat = 83

Outf4]= 83

2 An Introduction to Programming with Mathematica

In[5]:= rent + food + heat

Outl5]= 608

Yet Mathematica differs from calculators and simple computer programs in its ability to

calculate exact results and to compute to an arbitrary degree of precision.

1 1 1
In[6]:= — 4+ — + —
15 35 63
Out[6]= =
9
Inf7):= 2390

Outf7]= 3273390607896141870013189696827599152216642046043064789483291
368096133796404674554883270092325904157150886684127560071009
217256545885393053328527589376

8= N[, 500]

Outf8]= 3.14159265358979323846264338327950288419716939937510582097494
459230781640628620899862803482534211706798214808651328230664
709384460955058223172535940812848111745028410270193852110555
964462294895493038196442881097566593344612847564823378678316
527120190914564856692346034861045432664821339360726024914127
372458700660631558817488152092096282925409171536436789259036
001133053054882046652138414695194151160943305727036575959195
309218611738193261179310511854807446237996274956735188575272
48912279381830119491

Symbolic computations

One of the more powerful features of Mathematica is its ability to manipulate and compute
with symbolic expressions. For example, you can factor polynomials and simplify trigono-
metric expressions.

Inf9:= Factor[x® - 1]

ou9)= (-1 +x) (1+x+x?+x>+x*%)

In[10]:= TrigReduce[Sin[€]°%]

1

oufto}= -~ (3 Sin[e] - Sin[36])

1 An introduction to Mathematica 3

You can simplify expressions using assumptions about variables contained in those expres-
sions. For example, if & is assumed to be an integer, sin(2 7 k + x) simplifies to sin(x).

Inf11]:= Simplify[Sin[2 vk + x], k € Integers]

Outf11]= Sin[x]
This computes the conditions for which a general quadratic polynomial will have both
roots equal to each other.

In[12]= Reduce[3, .. 2,pxic==0 (Yy, ay2sbysc==0 X ==¥), {2, b, c}]

2
oufiz= (a=0&&b#0) || (a=0&&bc#0) || |az0&&c= %a
You can create functions that are defined piecewise.
In[13]:= Piecewise[{{1, x=0}}, Sin[x] /x]

1 X ==

Out[13}= [Sinfx]
- True

The knowledge base of Mathematica includes algorithms for solving polynomial equations,
and computing integrals.

Inf14:= Solve[x?® -ax+1==0, x]

(2,7 a (-9+ﬁm)m
(—9+ﬁm)m + 2 "
(l+1\/§) a
222313 (L9 +[3v27-4a2)
(1-1+/3) (79)”/?\/2774513)1/3

2 21/3 32/3 }’
(l -1 \/?) a
223313 (L9 +3v27-4a2)

(1+1+/3) (79)”/?\/2774513)1/3

2 21/3 32/3 }}

Out[14]= { {x -

{xe—

{xe—

1
In[15]:= j dx
1+ x4

1
a2
Log[—1+\5x—x2] +Log[1+\5x+x2])

Out[15]= (—2 ArcTan[l - \/? x] + 2 ArcTan[l + \/? x] -

4 An Introduction to Programming with Mathematica

Graphics

The ability to visualize functions or sets of data often allows us greater insight into their
structure and properties. Mathematica provides a wide range of graphing capabilities.
These include two- and three-dimensional plots of functions or data sets, contour and
density plots of functions of two variables, bar charts, histograms and pie charts of data
sets, and many packages designed for specific graphical purposes. In addition, the Mathemat-
ica programming language allows you to construct graphical images “from the ground up”
using primitive elements, as we will see in Chapter 9.

Here is a simple two-dimensional plot of the function sin{x + V2 sin(x?)).

In[16]:= Plot[Sin[x+\/?Sin[x2]], {x, -m, 71'}]

1

0.5

IPNAS
Nk

Out[16]= = Graphics -

You can combine two or more plots in a single graphic by enclosing them inside curly
braces.

Inf17]:= Plot[{Sin[x], Sin[2x]}, {x, 0, 2 7}];

1

0.5

-0.5

1 An introduction to Mathematica 5

Here is a plot of the sinc function, given in the previous section.

In[18]:= Plot[Piecewise[{{1, x==0}}, Sin[x] /x], {x, -2x, 27}];

2 \4\/
-0.2
Here is a surface of constant negative curvature, represented parametrically by the three

functions p, o, and 7. This surface is often referred to as Dini’s surface.

Inf19]:= p = Cos[¢] Sin[@€];
Sin[¢] sin[e];

(o}

T

0.2 ¢ + Cos[0] +Log[Tan[%]];

Inf22]:= ParametricPlot3D[{p, o, T}, {¢, 0, 4 n}, {6, .05, 1}, Axes —» False,
Boxed -» False, PlotPoints -» 30, AspectRatio—» 1.75];

6 An Introduction to Programming with Mathematica

Working with data

The ability to plot and visualize data is extremely important in engineering and all of the
social, natural, and physical sciences. Mathematica can import and export data from other
applications, plot the data in a variety of forms, and be used to perform numerical analysis
on the data.

The file dataset .m contains pairs of data points, in this case representing body
mass vs. heat production for 13 different animals. The data are given as (, »), where m
represents the mass of the animal and 7 the heat production in kca/ per day. First we set up
a platform independent path to the file and then import that file.

In[23]:= datafile = ToFileName[{$BaseDirectory,
"Applications", "IPM3", "DataFiles"}, "dataset.m"]

Out23]= C:\Documents and Settings\All Users\Application Data\
Mathematica\Applications\IPM3\DataFiles\dataset.m

Inf24]:= data = Import[datafile, "Table"]

Outf24)= {{0.06099, 6.95099}, {0.403, 28.189},
{0.62199, 41.1}, {2.50999, 120.799},
{2.95999, 147.9}, {3.33, 182.8}, {8.19999, 368.8},
{28.1999, 981.299}, {57.4, 1303.29}, {72.2999, 1512.5},
{340.199, 7100.29}, {711, 10101.1}, {5000., 29894.9}}

You can immediately plot the data using the ListPlot function.

In25]= ListPlot[data, PlotStyle » PointSize[.02]];
17500
15000
12500
10000 °
7500 .
5000

2500
P

200 400 600 800

1 An introduction to Mathematica 7

This plots the data on log-log axes.
Inf26]:= logplot = ListPlot[Log[data], PlotStyle -» PointSize[.02]];

10 | ®

L J
-2 2 4 6 8

You can then fit a straight line to the log-data by performing a linear least squares fit. In
this example, we are fitting to the model 2 + m2x, where # and = are the parameters to be

determined in the model with variable x.
Inf27]:= £ = FindFit[Log[data], a+mx, {a, m}, x]
outf27l= {a—>4.15437, m—> 0.761465}
Here is a plot of the linear fit function.

Inf28]:= fplot = Plot[a+mx /. £, {x, -3, 9}1:

8 An Introduction to Programming with Mathematica

Finally, you can see how well the fitted function approximates the log plot by combining
these last two graphics.

Inf29]:= Show|[fplot, logplot];

Programming

With a copy of The Mathematica Book (Wolfram 2003) or one of the many tutorial books
(see, for example, Glynn and Gray 1999) describing the vast array of computational tasks
that can be performed with Mathematica, it would seem you can compute just about
anything you might want. But that impression is mistaken. There are simply more kinds of
calculations than could possibly be included in a single program. Whether you are inter-
ested in computing bowling scores or finding the mean square distance of a random walk
on a torus, Mathematica does not have a built-in function to do everything that a user could
possibly want. What it does have — and what really makes it the amazingly useful tool it is —
is the capability for users to define their own functions. This is called programming, and it
is what this book is all about.

Sometimes, the programs you create will be succinct and focused on a very specific
task. Mathematica possesses a rich set of tools that enable you to quickly and naturally
translate the statement of a problem into a program. For example, the following program
defines a test for perfect numbers, numbers that are equal to the sum of their proper
divisors.

In[30]= PerfectQ[n] := Apply[Plus, Divisors[n]] ==2n

We then define another function that selects those numbers from a range of integers that
pass this PerfectQ test.

In[31]:= PerfectSearch[n] := Select[Range[n], PerfectQ]

1 An introduction to Mathematica 9

This then finds all perfect numbers less than 1,000,000.
Inf32]:= PerfectSearch[10°]
oufszl- {6, 28, 496, 8128}
Here are two functions for representing regular polygons. The first defines the

vertices of a regular z-gon, while the second uses those vertices to create a polygon graph-
ics object that can then be displayed with the built-in Show function.

In[33]= vertices[n Integer, r :1] :=

2am . 2amw
], rSJ.n[-]}, {a, O, n—l}]

Table[{r Cos[
n

In[34]= RegularPolygon[n] :=
Graphics[Line[vertices[n] /. {a_, b } - {a, b, a}],
AspectRatio —» Automatic]

In[35]:= Show[RegularPolygon[5]]

Out[35]= = Graphics -

As another example of a succinct program, here is an iterative function that imple-
ments the well-known Newton method for root finding.

f£[#]

In[36]:= NewtonZero[f , xi] := NestWhile[(# - W

) &, xi, Unequal, 2]

In[37]= g[x] := x3-2x%+1

In[38]:= NewtonZero[g, 2.0]

Outf38]= 1.61803

Of course, sometimes the task at hand requires a more involved program, stretching
across several lines (or even pages) of code. For example, here is a slightly longer program

to compute the score of a game of bowling, given a list of the number of pins scored by
each ball.

10 An Introduction to Programming with Mathematica

In[39]:= BowlingScore[pins] :=
Module[{score}, score[{x , ¥y , z }] :=x+y+3;
score[{10,y , z , r }]1 :=10+y + z + score[{y, z, r}];
score[{x , ¥ ,zZ , r }1 :=
X+y+2z+score[{z, r}] /;i x+y==10;
score[{x , ¥y , ¢ }] :=x+y+score[{r}] /; x+y <10;
score[If[pins[-2] + pins[-1] 2 10, pins, Append[pins, 0]]1]1]
Here is the computation for a “perfect” game — 12 strikes in a row.
Inf40]= BowlingScore[{10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10}]
Out{40}= 300

These examples use a variety of programming styles: functional programming,
rule-based programming, the use of anonymous functions, and more. We do not expect
you to understand the examples in this section at this point — that is why we wrote this
book! What you should understand is that in many ways Mathematica is designed to be as
broadly useful as possible and that there are many calculations for which Mathematica does
not have a built-in function, so, to make full use of its many capabilities, you will some-
times need to program. The main purpose of this book is to show you how.

Another purpose is to teach you the basic principles of programming. These princi-
ples — making assignments, defining rules, using conditionals, recursion, and iteration — are

applicable (with great differences in detail, to be sure) to all other programming languages.

Symbolic and interactive documents

In addition to the computational tools that Mathematica provides for what many profession-
als associate with technical computing, it also contains tools for creating and modifying the
user interface to such tasks. These tools include hyperlinks for jumping to other locations
within a document or across files, buttons to perform tasks that you might normally
associate with a command-line interface, and tools to modify and manipulate the appear-
ance and functionality of your Mathematica notebooks directly. In this section we will give
a few short examples of what is possible, waiting until Chapter 10 for a methodical look at
how to program these elements.

The first example takes the code necessary to display a polyhedron and puts it in a
button. The two lines of code that could be evaluated normally in a notebook first load a
package and then display an icosahedron in the notebook.

In[41]:= Needs["Graphics Polyhedra™"]

1 An introduction to Mathematica 11

Inf42]:= Show[Stellate[Polyhedron[Icosahedron]]]

Outf42]= = Graphics3D -

Here is a short program that creates a button containing the above two expressions.

Cell [BoxData [
ButtonBox [
RowBox [{"Stellate", " ", "Icosahedron"}],
ButtonFunction:>CompoundExpression [
Needs ["Graphics Polyhedra™"],
Show [Stellate [Polyhedron [Icosahedron]]]
1,
ButtonEvaluator->Automatic],
"Input",
Active->True]

The formatted version of the above cell can be displayed by choosing Show Expression
from the Format menu. When you do that, it will look like the following:

Stellate Icosahedron

Clicking the button will cause the Marhematica code in the ButtonFunction to be

immediately evaluated and the following graphics will then be displayed in your notebook.
Functions are available to jump around to different parts of a Mathematica notebook

and perform various actions. Here is a short piece of code that creates a button which,

upon being clicked, moves the selection to the next cell and then evaluates that cell.

12 An Introduction to Programming with Mathematica

Cell [TextData [{
Cell [BoxData [
ButtonBox ["EVALUATE",
ButtonFunction:>FrontEndExecute [{
FrontEnd SelectionMove [
ButtonNotebook[], All, ButtonCell],
FrontEnd~SelectionMove [
ButtonNotebook[], Next, Cell],
FrontEnd SelectionEvaluate [
ButtonNotebook[11}1,
Active->Truelll,
StyleBox [" MATHEMATICA INPUT"]
11, "Text"]

The formatted version of the above cell can be displayed by choosing Show Expression
from the Format menu. When you do that, it will look somewhat like the following
(although we have removed some of the text formatting above to improve readability of the
code). Clicking the EVALUATE button will cause the input cell immediately following to
be selected and then evaluated.

MATHEMATICA INPUT

Inf43]:= 3 (4 +5)

outf43)= 27

The following example demonstrates how you can use Mathematica functions to
perform some of the user interface actions that you would normally associate with key-
board and mouse events. By using such techniques, you can create a specific set of actions
that will follow certain evaluations. For example, if you were creating an electronic quiz for
your students, you could include “hint” buttons within your class notebooks that would
open a new notebook with hints and suggestions upon clicking.

This creates a new notebook that contains three cells — a Section cell, a Text cell,
and an Input cell. Upon evaluation, the NotebookPut command below will cause a new
notebook to appear, containing the three specified cells. The screen shots below show

what appears in the user interface after evaluating each of the preceding inputs.

1 An introduction to Mathematica 13

Inf44]:= nb = NotebookPut|[
Notebook][{
Cell["Symbolic and Interactive Documents", "Section"],
Cell["Cells and notebooks are Mathematica expressions.",
"Text"],
Cell["Integrate[Sin[x]/Cos[x],x]", "Input"]
1

Outf44]= NotebookObject[«Untitled-1>>]

-

“% Untitled-1 mEx)

Y

Symbolic and Interactive Documents]

Cells and notebooks ars Mathematica sxpressions.]

Integrate[3in[x] /Cos[x] ,x] :| |
w
100% = [< | ¥

This moves the selection bar past the last cell in the above notebook.

Inf45]:= SelectionMove[nb, Next, Cell, 4]

-

“% Untitled-1 mEx)

Y

Symbolic and Interactive Documents]

Cells and notebooks are hiathematica expressions.]

Integrate[Sin[x] /Cos[x] ,x] :|

100% =€ >

14 An Introduction to Programming with Mathematica

We then select the most previous cell.

In[46]:= SelectionMove[nb, Previous, Cell]

4 Untitled-1 mEx]
S

Symbolic and Interactive Documents]
Cells and notebooks are Mathematica expressions.]

Integrate[Sin[x] /Cos[x] ,x]
w

100% = [€] w | (3]

Finally, we evaluate the selected cell.
Inf47]:= SelectionEvaluate[nb]

4 Untitled-1 * mEx)

)

Symbolic and Interactive Documents]

Cells and notebooks are Mathematica expressions.]

6= Integrate [Sin[x]/Cos[x],X]]}

3

v

Dutf45l= -Log[Cos [x]]
2]

100% = [(] 1T}

In Chapter 10 we will give a detailed discussion of how to modify and manipulate the

user interface through the use of the symbolic programming techniques that are discussed

throughout this book.

1 An introduction to Mathematica 15

1.2 Using Mathematica

Before you can do any serious work, you will need to know how to get a Mathematica
session started, how to stop it, and how to get out of trouble when you get into it. These
procedures depend somewhat on the system you are using. You should read the system-spe-
cific information that came with your copy of Mathematica; and you may need to consult a

local Mathematica guru if our advice here is not applicable to your system.

Getting into and out of Mathematica

The most commonly used interface is often referred to as a notebook interface in which
the user creates and works in interactive documents. Personal computers running Win-
dows, Macintosh operating systems, Linux, and most flavors of Unix all support this
graphical user interface, which normally starts up automatically when you begin your
Mathematica session.

There are some situations where you may want to start up Mathematica from a
command prompt and issue commands directly through that interface, bypassing the
notebook interface entirely. For example, you may have a very long computation that you
need to run in batch mode. Typically, Mathematica is started up on these systems by typing
math at a command prompt. We will not discuss using Mathematica through a command
prompt any further. If you are interested in this mode you should consult the documenta-
tion that came with your copy of Mathematica.

Starting Mathematica and first computations
To start Mathematica you will have to find and then double-click on the Mathematica icon

on your computer, which will look something like this:

*

The computer will then load parts of Mathematica into its memory and soon a blank
window will appear on the screen. This window is the visual interface to a Mathematica
notebook and it has many features that are useful to the user.

Notebooks allow you to write text, perform computations, write and run programs,
and create graphics all in one document. Notebooks also have many of the features of
common word processors, so those familiar with word processing will find the notebook
interface easy to learn. In addition, the notebook provides features for outlining material

which you may find useful for giving talks and demonstrations.

16

An Introduction to Programming with Mathematica

When a blank notebook first appears on the screen (either from just starting Mathe-

matica or from selecting New in the File menu), you can start typing immediately. For
example, if you type N[Pi,200] press [iHEm| (hold down the Shift key while pressing
the Enter key) to evaluate an expression. Mathematica will evaluate the result and print the

200-decimal digit approximation to r on the screen.

2% Untitled-1*

BEX]

Out[1]= 2.1415526525065792230462643308227950288
41571€535937510582057454459230701E40"
E2BE20ESSEE2A034B253421170E€796214808
E51320230€6E€4T053044€0555038223172535"
S40812646111745026410270153852110555"

In[i]:= W[Pi, 200] 71

P

SE44EZZ54855453036820

100% = [< |

Notice that when you evaluate an expression in a notebook, Mathematica adds input

and output prompts. In the example notebook above, these are denoted In[1] := and

out [1] =. These prompts can be thought of as markers (or labels) that you can refer to

during your Mathematica session.

F =
% 01Introduction.nb E]@
P
I An Introduction to Mathematica]
Mabeantia isa ey |.|r_|n. and -a.a.|||i||_|;|5.' comples swtem. It contain
huned redsab functicns bor performing wrions wience, mathe
ics, and engineering. including computing, programming, dam analwsis
knearled e represen i tion and visualizationof information.
1.1 A Briet Overview of Mathenuitici j]
1.2 Using Muthenitica]J_
vl
100% = [| >

1 An introduction to Mathematica 17

You should also note that when you started typing Mathematica placed a bracketr on
the far right side of the window that enclosed the ce// that you were working in. These cel/
brackets are helpful for organizational purposes within the notebook. Double-clicking on
cell brackets will open any collapsed cells, or close any open cells as can be seen in the
previous screen shot.

Double-clicking on the cell bracket containing the 1.1 A Brief Overview of Mathe-

matica cell will open the cell to display its contents:

- —
& r
=% 01Introduction.nb g@.ﬁ
F)
1.1 A Briet Overview of Mathenatica] |
Nirwserical Cow e asions j
Magbesaeica hos been apely ceseribed @ a sophisticaned mlx'u:
With it vou can enwer nochemadcal expressions and compun:
vilues.
I . T
infil= Sir[.86] - Log[m] |‘1. = |
Ouyif -0 481885 EN
Youean seare values inmenery. j
nEi= Ternt = 350 j_
ouie 250 E|
= food =173 j'| v-
100% = £ >

Using cell brackets in this manner allows you to organize your work in an orderly
manner, as well as to outline material. For a complete description of cell brackets and
many other interface features, you should consult the documentation that came with your
version of Mathematica.

For information on other features such as saving, printing, and editing notebooks,
consult the manuals that came with your version of Mathematica.

Entering input

New input can be entered whenever there is a horizontal line that runs across the width of
the notebook. If one is not present where you wish to place an input cell, move the cursor
up and down until it changes to a horizontal bar and then click the mouse once. A horizon-
tal line should now appear across the width of the window. You can immediately start

typing and an input cell will be created.

18 An Introduction to Programming with Mathematica

Input can be entered exactly as it appears in this book. To get Mathematica to evalu-
ate an expression that you have entered, press [s)-{[aer]|; that is, hold down the Shift key
and then press the Enter key.

You can enter mathematical expressions in a traditional looking two-dimensional
format using either palettes for quick entry of template expressions, or keyboard equiva-
lents. For example, the following expression can be entered by using the Basic Input
palette, or through a series of keystrokes. For details of inputting mathematical expres-

sions, read your user documentation or read the section on 2D Expression Input in the

Help Browser.
1
In[1]:= J dx
1-x3
ArcTan[1*2"]

V3 1 1 2
outfl) ——m———— - — L -1 — L 1
ut/ 1] \/? 3 og | +x]+6 og[l+x+x°]

As noted previously, Mathematica enters the In and Out prompts for you. You do
not type these prompts. You will see them after you evaluate your input.

You can refer to the result of the previous calculation using the symbol %.
Inf2).= 254

Outf2]= 18446744073709551616

ngl= %+1

Out[3]= 18446744073709551617

You can also refer to the result of any earlier calculation using its Out [7] label or,
equivalently, %7.

Inf4):= Out[1]

1 1 5
- — Log[-1+x] +ELog[l+x+x]

I T

Inf5l:= %2

Outf5]= 18446744073709551616

Ending a Mathematica session
To end your Mathematica session, choose Exit from the File menu. You will be prompted

to save any unsaved open notebooks.

1 An introduction to Mathematica 19

Getting out of trouble

From time to time, you will type an input which will cause Mathematica to misbehave in
some way, perhaps by just going silent for a long time (if, for example, you have inadvert-
ently asked it to do something very difficult) or perhaps by printing out screen after screen
of not terribly useful information. In this case, you can try to “interrupt” the calculation.
How you do this depends on your computer’s operating system:

* Macintosh: type twf . | (the Command key and the period) and then type a
* Windows 95/98/N'T72000/XP: type [T} . | (the Alt key and the period)

* Unix: type [t . | and then type a and then

These attempts to stop the computation will sometimes fail. If after waiting a reason-
able amount of time (say, a few minutes), Mathematica still seems to be stuck, you will have
to “kill the kernel.” (Before attempting to kill the kernel, try to convince yourself that the
computation is really in a loop from which it will not return and that it is not just an
intensive computation that requires a lot of time.) Killing the kernel is accomplished by
selecting Quit Kernel from the Kernel menu. The kernel can then be restarted without
killing the front end by first selecting Start Kernel » Local under the Kernel menu, or you
can simply evaluate a command in a notebook and a new kernel should start up

automatically.

The syntax of inputs

You can enter mathematical expressions in a linear syntax using arithmetic operators

common to almost all computer languages.
Inf6l:= 39 /13
outfel= 3
Alternately, you can enter this expression in the traditional form by typing 39, mK/|, then
13.
39
7= —
13
Oout[7]= 3
The caret (") is used for exponentiation.
Inf8j= 2°5

Out[8]= 32

20 An Introduction to Programming with Mathematica

You can enter this expression in a more traditional typeset form by typing 2, [mj*], and
then 5.

Inf9:= 25

Out[9]= 32

Mathematica includes several different ways of entering typeset expressions, either
directly from the keyboard as we did above, or via palettes available from the File menu.
Below is a brief table showing some of the more commonly used typeset expressions and
how they are entered through the keyboard. You should read your documentation and
become comfortable using these input interfaces so that you can easily enter the kinds of
expressions in this book.

Expression | FullForm Keyboard shortcut
X2 SuperscriptBox[x, 2] | x [T} 6}, 2

X SubscriptBox[x, i] x[my -], i

% FractionBox[x, v] xmy /),y

Vx SqgrtBox [x] 2], x

xzy GreaterEqual [x, Y] x [>=[se], y

Table 1.1: Entering typeset expressions

You can indicate multiplication by simply putting a space between the two factors, as
in mathematics. You can also use the asterisk (*) for that purpose, as is traditional in most

computer languages.

Inf10]:= 25
out[10}= 10
In[11]:= 2 %5
ouff11}= 10

Mathematica also gives operations the same precedence as in mathematics. In particu-
lar, multiplication and division have a higher precedence than addition and subtraction, so
that3 + 4 * 5 equals23 and not 35.

Inf[12]= 3 +45

outf12)= 23

1 An introduction to Mathematica 21

Functions are also written as they are in mathematics books, except that function
names are capitalized and their arguments are enclosed in square brackets.
Inf13]= Factor[x® - 1]
ouf13l= (-1 +x) (1+x+x%+x>+x%)
Almost all of the built-in functions are spelled out in full, as in the above example.
The exceptions to this rule are well-known abbreviations such as D for differentiation,
Sqrt for square roots, Log for logarithms, and Det for the determinant of a matrix.
Spelling out the name of a function in full is quite useful when you are not sure whether a
function exists to perform a particular task. For example, if we wanted to compute the
conjugate of a complex number, an educated guess would be:
Inf14]:= Conjugate[3 + 4 i]
ouii4= 3 -41
Whereas square brackets [and] are used to enclose the arguments to functions,
curly braces { and } are used to indicate a /ist or range of values. Lists are a basic data type
in Mathematica and are used to represent vectors and matrices (and tensors of any dimen-
sion), as well as additional arguments to functions such as in P1lot and Integrate.
inf15]:= {a, b, c}.{x, vy, z}

Outf15]= ax+by+cz

In[16]:= Plot[Sin[x + \/? Sin[x]] s {x, 27w, 2 71'}] ;

1

-0.5

;
Inf17l= IntegratelCos[x], {x, a, b}l
Outf17]= -Sinfa] + Sin[b]
In the Plot example, the list {x,-2s, 27} indicates that the function
sin(x+ 2 sin(x)) is to be plotted over an interval as x takes on values from —2x to 2 7.

The Integrate expression above is equivalent to the mathematical expression
b
fﬂ cos(x) dx.

22 An Introduction to Programming with Mathematica

Mathematica has very powerful list-manipulating capabilities that will be explored in
detail in Chapter 3.

When you end an expression with a semicolon (;), Mathematica computes its value
but does not display it. This is very helpful when the result of the expression would be very
long and you do not need to see it. In the following example, we first create a list of the
integers from 1 to 10,000, suppressing their display with the semicolon, and then compute
their sum and average.

In[18]:= nums = Range[10000] ;

In[19]:= Apply [Plus, nums]

Outf19]= 50005000

%

Inf20}:= —m89 ———M
Length[nums]
10001
Out[20]= >

An expression can be entered on multiple lines, but only if Mathematica can tell that

it is not finished after the first line. For example, you can enter 3* on one line and 4 on the

next.
Inf21]:= 3 *
4
outf21j= 12

But you cannot enter 3 on the first line and *4 on the second.

Inf22:= 3
*4
outf2z)= 3

If you use parentheses, you can avoid this problem.

Inf23]:= (3
*4)
outf23)= 12

With the notebook interface, you can input as many lines as you like within an input
cell; Mathematica will evaluate them all when you enter [sj{[am| still obeying the rules

stated above for any incomplete lines.

1 An introduction to Mathematica 23

Finally, you can enter a comment — some words that are not evaluated — by entering
the words between (* and *).

Inf24]:= D[Sin[x], (* differentiate Sin|[x] *)
{x, 1}1 (* with respect to x once *)

Outf24]= Cos [x]

Alternate input syntax

There are several different ways to write expressions in Mathematica. Usually, you will
simply use the traditional notation, fun [x], for example. But you should be aware of
several alternatives to this syntax that are widely used.

Here is an example using the standard function notation for writing a function with
one argument.

In25]:= N[7]
Outf25]= 3.14159
"This uses a prefix operator.
In26]:= Nexw
Outj26)= 3.14159
Here is a postfix operator notation.
Inf27]:= 7w // N
Out27]= 3.14159
For functions with two arguments, you can use an infix notation. The following
expression is identical to N [rr, 30].
In28:= 7 ~N~30
Outf28]= 3.14159265358979323846264338328
Finally, many people prefer to use a more traditional syntax when entering and

working with mathematical expressions. You can compute an integral using standard
Mathematica syntax.

Inf29]:= Integrate[l/Sin[x], x]

outzl- -Log[Cos[Z]] + Log[sin[S]]

24 An Introduction to Programming with Mathematica

The same integral, represented in a more traditional manner, can be entered from palettes
or keyboard shortcuts.

1
In[30]:= j— dx
Sin|[x]

Out[30]= —Log[Cos [;]] + Log[Sin[

Il

Many mathematical functions have traditional symbols associated with their opera-

NI

tions and when available these can be used instead of the fully spelled-out names. For

example, you can compute the intersection of two sets using the Intersection function.
In[31]= Intersection[{a, b, ¢, 4, e}, {b, £, a, z}]
ou3t= f{a, b}
Or you can do the same computation using more traditional notation.
Inf32]:= {a, b, ¢, d, e} N {b, £, a, z}
out3gl= {a, b}
To learn how to enter these and other notations quickly, either from palettes or

directly from the keyboard using shortcuts, refer to the 2D Expression Input section in the
Front End category of the Help Browser.

The front end and the kernel

When you work in Mathematica you are actually working with two separate programs.
They are referred to as the front end and the kernel. The front end is the user interface. It
consists of the notebooks that you work in together with the menu system, palettes (which
are really just notebooks), and any element that accepts input from the keyboard or mouse.
The kernel is the program that does the calculations. So a typical operation between the
user (you) and Mathematica consists of the following steps, where the program that is

invoked in each step is indicated in parentheses:

* enter input in the notebook (front end)
* send input to the kernel to be evaluated by pressing [swr)-[ae| (front end)
* kernel does the computation and sends it back to the front end (kernel)

* result is displayed in the notebook (front end)

There is one remaining piece that we have not yet mentioned; that is MathLink.

Since the kernel and front end are two separate programs, a means of communication is

1 An introduction to Mathematica 25

necessary for these two programs to “talk” to each other. That communication protocol is
called MathLink and it comes bundled with Mathematica. It operates behind the scenes,
completely transparent to the user.

MathLink is a very general communications protocol that is not limited to communi-
cation between the front end and the kernel, but can also be used to set up communication
between the front end and other programs on your computer, programs like compiled C
and Fortran code. It can also be used to connect a kernel to a word processor or spread-
sheet or many other programs.

MathLink programming is beyond the scope of this book, but if you are interested,
there are several books and articles that discuss it (see the References at the end of this

book).

Errors

In the course of using and programming in Mathematica, you will encounter various sorts
of errors, some obvious, some very subtle, some easily rectified, and others not. We have
already mentioned that it is possible to send Mathematica into an infinite loop from which
it cannot return. In this section, we discuss those situations where Mathematica does finish
the computation, but without giving you the answer you expected.

Perhaps the most frequent error you will make is misspelling the name of a function.
Here is an illustration of the kind of thing that will usually happen in this case.

Inf33]:= Sine[l.5]

General: :spell
Possible spelling error: new symbol name "Sine" is
similar to existing symbols {Line, Sin, Sinh}. More..

Outf33]= Sine[1.5]

Whenever you type a name that is close to an existing name, Mathematica will print a
warning message like the one above. You may often use such names intentionally, in which

case these messages can be annoying. In that case, it is best to turn off the warnings.
Inf34]:= Off[General::spell]

Now, Mathematica will not report that function names might be misspelled; and,
when it cannot find a definition associated with a misspelled function, it returns your input

unevaluated.
In35];= Intergate[x?, x]

out35l= Intergate[x?, x]

26 An Introduction to Programming with Mathematica

You can turn these spell warnings back on by evaluating On [General: : spell].

In[36]= On[General: :spell]

Having your original expression returned unevaluated — as if this were perfectly
normal — is a problem you will often run into. Aside from misspelling a function name, or
simply using a function that does not exist, another case where this occurs is when you give
the wrong number of arguments to a function, especially to a user-defined function. For
example, the BowlingScore function takes a single list argument; if we accidentally leave
out the list braces, then we are actually giving BowlingScore 12 arguments.

In[37]= BowlingScore[l10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

Out{37}= BowlingScoref[1l0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

Of course, some kinds of inputs cause genuine error messages. Syntax errors, as
shown above, are one example. The built-in functions are designed to usually warn you of
such errors in input. In the first example below, we have supplied the Log function with an
incorrect number of arguments (it expects one or two arguments only). In the second
example, FactorInteger operates on integers only and so the real number argument

causes the error condition.
Inf38)= Log[2, 16, 3]

Log::argt : Log called with 3
arguments; 1 or 2 arguments are expected. More..

Outf38])= Log[2, 16, 3]

Inf39]:= FactorInteger[1l2.5]

FactorInteger::facn : Argument 12.57 in
FactorInteger[12.5] is not an exact number. More..

Outf39]= FactorInteger[l2.5]

Getting belp

Mathematica contains a vast array of documentation that you can access in a variety of
ways. It is also designed so that you can create new documentation for your own functions
and program in such a way that users of your programs can get help in exactly the same
way as they would for Mathematica’s built-in functions.

If you are aware of the name of a function but are unsure of its syntax or what it does,
the easiest way to find out about it is to evaluate ?function. For example, here is the

usage message for ParametricPlot.

1 An introduction to Mathematica 27

In[40]:= ?ParametricPlot

ParametricPlot[{fx, fy}, {u, umin, umax}] produces a parametric
plot of a curve with x and y coordinates fx and fy generated
as a function of t. ParametricPlot[{{fx, fy}, {gx, gy}, ... },
{u, umin, umax}] plots several parametric curves. More...

Also, if you were not sure of the spelling of a command (Integrate, for example),
you could type the following to display all built-in functions that start with Integ.

In[41]:= ?Integ*

System’
Integer IntegerExponent IntegerQ Integrate
IntegerDigits IntegerPart Integers

Clicking on one of these links will produce a short usage statement about that
function. For example, if you were to click on the Integrate link, here is what would be
displayed in your notebook.

Integrate[f, x] gives the indefinite integral of f with respect

to x. Integrate[f, {x, xmin, xmax}] gives the definite
integral of f with respect to x from xmin to xmax. Integrate]

£, {x, xmin, xmax}, {y, ymin, ymax}] gives a multiple
definite integral of f with respect to x and y. More..

Clicking the More... hyperlink would take you directly to the Help Browser where a
much more detailed explanation of this function can be found.

You can also get help by highlighting any Mathematica function and pressing the F1
key on your keyboard. This will take you directly into the documentation for that function
in the Help Browser.

The Help Browser

Mathematica contains a very useful addition to the help system called the Help Browser.
The Help Browser allows you to search for functions easily and it provides extensive
documentation and examples.

To start the Help Browser, select Help Browser... under the Help menu. You should
quickly see something like the following:

28

An Introduction to Programming with Mathematica

14| Mathematica Help Browser EE
| AT ¥
Frant End | Getting Skarbed T o emns Master Index
Bruill-in Functions | tdd-ors & Links The Mathematica B ook
Humerical Compuisti ¢ |1ﬁ.
Algabraic Earrﬂmﬁ:'l_
Memamatical Funciig s L=
Lists and Matrizes »
Graphics and Sound ¥
Programming g
100% = £ 1l >

Notice the eight category tabs near the top of the Help Browser window. Choosing
the Add-ons & Links tab will give you access to all of the packages that come with each
implementation of Mathematica. Similarly, choosing The Mathematica Book tab will give

you access to the entire Mathematica book that ships with each professional version of

Mathematica.

Suppose you were looking for information about three-dimensional parametric
graphics. First click the Built-in Functions tab, then select Graphics and Sound on the left,
then 3D Plots and finally ParametricPlot3D. The Help Browser should look like this:

1% Mathematica Help Browser ZE
PaizmelicFoih a |l w J‘f_
Frant End Getting Skarked Toun [emas M aster Indew
Buill-in Functions | Add-ons & Links The Mathematica B ook
Mumerical Computsti v |1ﬁ. [fkhabetical Listing] |1ﬁ. P30
Algabraic E:-rr;:l.ltali:'l_' 20 Piots pl = || LetPinta D
Mathamatesl Funetio s L2 | SEimge «' | ParamatricFot3n
Lists and Matrices # Contour Pt "
Graphics and Sound ¥ Density Flots k
Programming ¥ |¥ || Sound Generaton ¥ |V |l
|
ParametricPlot3D

® BarametricPlot3D[{f,, .i'-_vr fale fty rutr, meex]] produces a thresdimensional
spaie cueve paremettized by 8 varishle 1 which russ from tale to feae
A ParaneTr cPIanADTE S o o F Ll owle, meed. Tu. uwele. sl neodneas g ﬂ

100% = £ | 1

[x]

Notice that in the main window, the Help Browser has displayed information about
the ParametricPlot3D function. This is identical to the usage message you would get

if you entered ?ParametricPlot3D.

1 An introduction to Mathematica 29

Alternatively, you could have clicked the Master Index tab and searched for “Paramet-
ricPlot3D” or even simply “parametric” and then browsed through the index to find what
you were looking for.

Many additional features are available in the Help Browser and you are advised to
consult your documentation for a complete list and description.

2 'The Mathematica language

Expressions are the basic building blocks from which everything is built. Their
structure, internal representation, and how they are evaluated are essential to under-
standing Mathematica. In this chapter we focus on the Mathematica language with
particular emphasis on the structure and syntax of expressions. We will also look at
how to define and name new expressions, how to combine them using logical opera-
tors, and how to control properties of your expressions through the use of attributes.

2.1 Expressions

Introduction

Although it may appear different at first, everything that you will work with in Mathematica
has a similar underlying structure. This means things like a simple computation, a data
object, a graphic, the cells in your Mathematica notebook, even your notebook itself, all
have a similar structure — they are all expressions, and an understanding of expressions is

essential to mastering Mathematica.

Internal forms of expressions

When doing a simple arithmetic operation such as 3 + 4= 5, you are usually not concerned
with exactly how a system such as Mathematica actually performs the additions or multiplica
tions. Yet you will find it extremely useful to be able to see the internal representation of
such expressions as this will allow you to manipulate them in a consistent and powerful
manner.

Internally, Mathematica groups the objects that it operates on into different types:
integers are distinct from real numbers; lists are distinct from numbers. One of the reasons
that it is useful to identify these different data types is that specialized algorithms can be
used on certain classes of objects that will help to speed up the computations involved.

32 An Introduction to Programming with Mathematica

The Head function can be used to identify types of objects. For numbers, it will
report whether the number is an integer, a rational number, a real number, or a complex
number.

inf1}= {Head[7], Head[;], Head[7.0], Head[7 +2i]}

Outf1}= {Integer, Rational, Real, Complex}

In fact, every Mathematica expression has a Head that gives some information about
that type of expression.

Inf2]:= Head[a + b]

Outl2]= Plus

Inf3]:= Head[{l, 2, 3, 4, 5}]

Outf3]= List

Atoms

The three basic building blocks of Mathematica — the atoms — from which every expression
is ultimately constructed are, symbols, numbers, and strings.

A symbol consists of a letter followed without interruption by letters and numbers.
For example, both £ and the built-in Integrate are symbols.

Inf4]:= Head[£f]

Outf4]= Symbol

In[5].= Head[Integrate]

Outf5]= Symbol
In Mathematica, built-in constants all are Symbo1ls.

Inf6]:= {Head[n], Head[e], Head[EulerGamma] }

Outf6]= {Symbol, Symbol, Symbol}
Symbols can consist of one or more concatenated characters so long as they do not begin
with a number.

In[7]:= Head[myfunc]

Out{7]= Symbol

2 The Mathematica language 33

The four kinds of numbers — integers, real numbers, complex numbers and rational

numbers — are shown in the list below.
5
injg}= {Head[4], Head[7] , Head[5.201], Head[3 + 4]}
Out/8}= {Integer, Rational, Real, Complex}
A string is composed of characters and is enclosed in quotes. They will be discussed
in detail in Section 3.5.

In[9]:= Head["Mathematica"]

Outf9]= String

The structure of expressions

As mentioned earlier, everything in Mathematica is an expression. Expressions are either
atomic, as described in the previous section, or they are normal expressions, which have a
head and contain zero or more elements. Normal expressions are of the following form,
where b is the head of the expression and the ¢; are the elements which may themselves be

atomic or normal expressions.

}.7[6’1, 627 AR en]

Although we indicated that you can use Head to determine the type of atomic
expressions, this is entirely general. For normal expressions, Head simply gives the head of

that expression.
In[10].= Head[a +b + c]
outf10}= Plus
To see the full internal representation of an expression, use FullForm.

In[11]:= FullForm[a +b + c]

Out[11}/FullForm=
Plus[a, b, c]

In[12]:= FullForm[{a, b, c}]
Out[12)//FullForm=
List[a, b, c]

The important thing to notice is that both of these objects (the sum and the list) have
very similar internal representations. Each is made up of a function (Plus and List,

34 An Introduction to Programming with Mathematica

respectively), each encloses its arguments in square brackets, and each separates its argu-
ments with commas.

Regardless of how an atomic or normal expression may appear in your notebook, its
structure is uniquely determined by its head and parts as seen using FullForm. This is
important for understanding the Mathematica evaluation mechanism which depends on the
matching of patterns based on their FullForm representation, a subject we will turn to in
detail in Chapter 6.

The number of elements in any expression is given by its length.
In[13]:= Length[a +b + c]
Out[13]= 3
Here is a more complicated expression.
In[14]:= expr = Sin[x] (ax?+bx+c)
Outf14]= (c+bx+ax?) Sin[x]
Its head is Times because it is composed of the product of Sin[x] and the quadratic
polynomial.
In[15]:= Head[expr]
Out[15]= Times
Its length is 2 since it only contains two factors.
In[16]:== Length|[expr]
out[16}= 2
Although the FullForm of this expression is a little harder to decipher, if you look

carefully you should see that it is composed of the product of Plus [c, Times [b, x], -
Times [a, Power [x,2]]] and Sin[x].
In[17]= FullForm[expr]
Out[17}/FullForm=

Times[Plus[c, Times[b, x], Times[a, Power[x, 2]]], Sin[x]]

There are several important differences between atomic expressions and nonatomic
expressions. While the heads of all expressions are extracted in the same way — using the
Head function — the head of an atom provides different information than the head of other
expressions. For example, the head of a symbol or string is the kind of atom that it is.

In[18]= Head[Integrate]

Out[18]= Symbol

2 The Mathematica language 35

In[19]:= Head["hello"]

Out[19]= String

The head of a number is the specific kind of number that it is, its data type.
Inf20]:= Head[2]

outi20}= Integer

Inf21]:= Head[5.21]

Outl21]= Real

The FullForm of an atom (except a complex or rational number) is the atom itself.
Inf22]:= FullForm[f]

Out[22)//FullForm=
f

5
Inf23]:= Ful lForm[—]
7

Out[23)//FullForm=
Rational[5, 7]

Atoms have no parts (which of course is why they are called atoms). In contrast,
nonatomic expressions do have parts. To extract different parts of an expression, use the
Part function. For example, the first part of the expression a+b is a.

Inf24]:= Part[a+Db, 1]
outi24j= a

The second part is b.
Inf25]:= Part[a+Db, 2]

Outf25]= b

This should be clearer from looking at the internal representation of this expression.
In[26]:= FullForm[a + b]
Out[26]//FullForm=

Plus[a, b]

So Part [a+b, 1] is another way of asking for the first element of Plus [a, b], which is

just a. In general Part [expr, n] gives the nth element of expr.

36 An Introduction to Programming with Mathematica

It is worth noting that the Oth part is the Head of the expression.
Inf27]:= Part[a+b, 0]

Outf27]= Plus

As we stated above, atomic expressions have no parts.
Inf28];= Part["read my lips", 1]

Part::partd : Part specification
read my lips[1l] is longer than depth of object. More..

Out28]= read my lips[1]

This error message indicates that the string "read my lips" has no first part, since it is
atomic. The expression expr [[1]] is shorthand for Part [expr, 1].
Similarly, complex numbers are atomic and hence have no parts.

Inf29]= (3 +4 &) [[1]]

Part::partd : Part specification
(3+41)[1] is longer than depth of object. More..

Outj29]= (3 +4 1) [1]

Because everything in Mathematica has the common structure of an expression, most
of the built-in functions that are used for list manipulation, such as Part, can also be used
to manipulate the arguments of any other kind of expression (except atoms).

In[30]:= Append[w+xYy, z]
Outf30]= W+ XYy + 2Z
This result can best be understood by looking at the FullForm of the following two
expressions.
Inf31:= FullForm[w + xy]
Out[31}/FullForm=
Plus|w, Times[x, y]]
Inf32]:= FullForm[w+ Xy + 2]
Out[32)//FullForm=
Plus|w, Times|[x, y], z]
Appending z to w+xy is equivalent to adding z as an argument to the Plus function.
More generally:
In[33]= Append[f[a, b], c]

out33l= fla, b, c]

2 The Mathematica language 37

Finally, for more complicated expressions, you might find it useful to display the
internal representation with the TreeForm function, which shows the “tree structure” of
an expression. In the following example, the root node of the tree is Plus, which then
branches three times at ¢, bx, and at 2x?, the latter two branching further.

In34];= TreeForm[ax? +bx +c]
Out[34})//TreeForm=
Plus [c ;o ;o]
Times [b, x] Times[a, |]

Power[x, 2]

Exercises

1. Give the full (internal) form of the expression a (b+c) .
2. What is the traditional representation of Times [a, Power [Plus [b,c], -1]].

3. What do you expect to be the result of the following operations? Use the Ful1Form
of the expressions to understand what is going on.
a. ((x*2 +y) z/w) [[2, 1, 2]]

b. (a/b) [[2, 211

4. What is the part specification of the b in the expressiona x"2 + b x + ¢?

2.2 Definitions

Defining variables and functions

One of the most common tasks in any programming environment is to define functions,
constants, and procedures to perform various tasks. Sometimes a particular function that
you need is not part of the built-in set of functions. Other times, you may need to use an
expression over and over again and so it would be useful to define it once and have it
available for future reference. Because you want your newly defined expressions to work
with all the built-in functions seamlessly, by defining your own functions and constants
you essentially expand the range of Mathematica’s capabilities.

38 An Introduction to Programming with Mathematica

For example, you might define a constant a to have a certain numeric value.

Inf1:= a =N[2 7]

outft}= 6.28319
Then, whenever a is used in a subsequent computation, Mathematica will find a rule
associated with a and will substitute that value wherever a occurs.

Inf2]:= Cos[a]

outizl= 1.
To check what definitions are associated with a, use ?a.

3= ?a

Global~a
a=6.28319

To define a rule for a function £, enclose its arguments in square brackets and use x_
to indicate the variable that will be substituted for x on the right-hand side.

Inf41:= £ =
n[4] [x_] P

Out[4]=

1+x

The expression £ [x_] on the left side of this assignment is a paztern. It indicates the class
of expressions for which this definition should be used. We will have much more to say
about patterns and pattern matching in Mathematica in Chapter 6, but, for now, it is
enough to say that the pattern £ [x_] matches £ [any expression] .

You can evaluate £ at different values by replacing x with the value you wish to use.

These values can be numeric, exact, or symbolic.
infsl= £[.1]

Outf5]= 0.909091

infel= £[1]
ouel= —
weE

Inf7]:= £[a?]

U= 1o

2 The Mathematica language 39

We clear the symbols that are no longer needed.

Inf8]= Clear[a, £f]

Immediate vs. delayed assignments

When you make an assignment to a variable, you are only interested in giving that variable
a specific value and then using the variable name to represent that value in subsequent
computations. But oftentimes, when you set up definitions for functions, those functions
may depend upon the values of previously defined functions or constants. In such instances
it us useful to delay the assignment until the function is actually used in a computation.
This is the basic difference between immediate and delayed assignments.

An immediate assignment is written Set [/bs, 7hs] or, more commonly:

lbs = rbs

where /bs is an abbreviation for “left-hand side” and 7bs abbreviates “right-hand side”.
As an example, consider defining randl to be an immediate assignment that gener-

ates a uniformly distributed random number between 0 and 1.

Inf9]:= randl = Random][]

Outf9]= 0.668693

Notice that the output of this assignment is the value of the right-hand side and that
Mathematica evaluates the right-hand side immediately; that is, when the assignment is made.

A delayed assignment is set up with the SetDelayed function and is written Set -
Delayed [/bs, rbs] or, in its standard input form:

Ibs := rbs

As an example, consider rand2 to be defined similarly to rand1, but with a delayed
assignment.

In[10]:= rand2 := Random][]

Notice that the delayed assignment does not return a value when the assignment is
made. In fact, the right-hand side will not be evaluated until the function rand2 is called.

40 An Introduction to Programming with Mathematica

Let us call the function rand1 five times.
In[11]:= Table[randl, {5}]
Out/11}= {0.668693, 0.668693, 0.668693, 0.668693, 0.668693}
Because the right-hand side of rand1 was evaluated when the definition was made, rand1
was assigned the value 0.668693. Each subsequent call to rand1 returns that value.
In[12]:= ? randl

Global “randil
randl = 0.668693

On the other hand, creating a table of values using rand2 produces a very different result.
In[13:= Table[rand2, {5}]

Out/13)= {0.8312, 0.781807, 0.124634, 0.934537, 0.600252}

Each of the five times that rand2 is called in the Table, Mathematica looks up the
definition of rand2 (which does not have a numeric value), and sees that it should evaluate
Random []. It does this each time it is called, generating a new random number each time.

In[14]:= ? rand2

Global “rand2
rand2 := Random[]

When a SetDelayed function is entered, nothing is returned. When a Set func-
tion is entered, the value resulting from evaluating the right-hand side is returned. This
difference in output is indicative of a more fundamental difference in what happens when
the two kinds of functions are entered and rewrite rules are thereby created. To see this,

we need to look at the global rule base, wherein reside rewrite rules.

The global rule base

The global rule base is composed of two kinds of rewrite rules: the built-in functions,
which are part of every Mathematica session, and the user-defined rewrite rules, which are
entered during a particular session.

We can get information about both kinds of rules in the global rule base by entering
?name. In the case of a built-in function, the resulting usage message gives information
about the syntax for using the function and a brief statement explaining what the function
does.

2 The Mathematica language 41

In[15]:= ? Apply

Apply[f, expr] or f @@ expr replaces the head
of expr by f. Apply[f, expr, levelspec] replaces
heads in parts of expr specified by levelspec. More...

In the case of a user-defined rewrite rule, the rule itself is printed. For the simple
examples above, the crucial difference between rewrite rules created with the SetDe-
layed and Set functions becomes apparent by querying the rule base for the rewrite
rules associated with the symbols rand1 and rand2.

In[16]:= ? randl

Global “randl
randl = 0.668693

A rewrite rule created using the Set function has the same left-hand side as the
function that created it but the right-hand side of the rule may differ from the right-hand
side of the function. This is because the right-hand side of the rule was evaluated at the
moment the rule was first evaluated.

In[17]:= ? rand2

Global “rand2
rand2 := Random[]

Comparing this with the original SetDelayed function, we see that a rewrite rule
created using the SetDelayed function looks exactly like the function that created it.
This is because both the left-hand side and right-hand side of a SetDelayed function are
placed in the rule base without being evaluated.

In view of this difference between the SetDelayed and Set functions, the question
is when should you use one or the other function to create a rewrite rule?

When you define a function, you usually do not want either the left-hand side or the
right-hand side to be evaluated; you just want to make it available for use when the appro-
priate function call is made. This is precisely what occurs when a SetDelayed function is
entered, so the SetDelayed function is commonly used in writing function definitions.

When you make a value declaration, you do not want the left-hand side to be evalu-
ated; you just want to make it a nickname to serve as a shorthand for a value. This is what
happens when a Set function is entered and so the Set function is commonly used to
make value declarations, such as assigning a numeric value to a constant or variable.

A new rewrite rule overwrites, or replaces, an older rule with the same left-hand side.

However, keep in mind that if two left-hand sides are the same except for the names of

42 An Introduction to Programming with Mathematica

their pattern variables, they are considered different by Mathematica. Clear [name] can be

used to remove a rewrite rule from the global rule base.

Piecewise-defined functions

You can set up several definitions for a function and Mathematica will apply the definition
that applies. In the following example we give a piecewise-defined function g, whose values
depend upon whether x is less than 0, between 0 and 1, or greater than 1. We specify the
conditions on x by means of the /; symbol.

Inf18l= glx_] :=x>/;x<0
In[19]= g[x] :=x/; 0<x=<1
Inf20]:= g[x_] :=8in[x] /; x> 1

Inf21]:= Plot[g[x], {x, -2, 3}];

1k

0.5 ¢

Defining the function above is more easily accomplished using the new (in Version
5.1) Piecewise function as follows.

Inf22]:= Piecewise[{{x3, x50}, {x, 0 <x=1}, {Sin[x], x> 1}}]
x3 X =0
Out[22]= b4 O<x=1

Sin[x] x>1
You could plot this expression directly or define a function with this Piecewise
object on the right-hand side of your definition and then use that function like any other.

We will look at further uses of piecewise-defined objects in later chapters, in particular in

the chapter on procedural programming.

2 The Mathematica language 43

Functions with multiple definitions

When you make an assignment, the symbol associated with the evaluation rule is called an
assignment tag. Assignment tags are used to specify the structure of expressions. So, for
example, the expression {a,b,c} is represented internally by List [a, b, c]. Its assign-
ment tag is List. List does not really do anything except serve as a wrapper to specify
the structure of this expression. Similarly, the expression 1+2 is represented internally by
Plus [1,2];its assignment tag is Plus.

Occasionally you will encounter the Tag expression when you try to evaluate some
incorrect input.

Inf23= 1+2 =4
Set::write : Tag Plus in 1+2 is Protected. More..

outj23}= 4

For user-defined functions, the tag basically refers to the name of the function. So,
for example, the following assignment associates the rule 1 + x + «? with the tag .

Inf24}= £[x] :=1+x+x?

There can be many evaluation rules associated with one tag. The following assign-
ments all associate rules with the symbol £.

In2s;= £[x ,y] :=x+y

1
In26l= £[x ,y , z_] := m

To view all of the rules associated with £, use ? £.

Inf271= ? £

Global ™ f

Elx_] :=1+x+x%?
flx , vy] :=x+y
flx_,v_,z_]:=_2

X+y-2z

The advantages of this structure is that you can use one name for a function that will
behave differently depending upon the number or form of arguments you give to that
function. Using a different symbol for each of these tasks would require you and those who
use your programs to have to remember multiple function names when one might be
sufficient.

44 An Introduction to Programming with Mathematica

Let us clear symbols that are no longer needed.

Inf28];= Clear[£f, g]

Exercises

1. What rewrite rules do each of the following functions create? Check your predictions

by entering them and then querying the rule base.
a. randLisl[n]:= Table[Random[], {n}]

b. randLis2[n]:= (x=Random[]; Tablelx, {n}l)
c. randLis3[n_]:= (x:=Random[]; Table([x, {n}])

d. randLis4[n] Table [Random[], {n}]

2. Consider the two functions £ and g, which are identical except that one is written
using an immediate assignment and the other using a delayed assignment.
Infi= £[n_] = Sum[(1 +x)3, {3, 1, n}]

(L+x) (-1+ (1+x)™)
x

outf1}=

nl= g[n_] :=Sum[(1+x)3, {3, 1, n}]

Explain why the output of these two functions ook so different. Are they in fact

different?
Inf3l:= £[2]
Outg= (1+x) (-1+ (1+x)%)
X
Inf4]= g[2]

Outid= 1 +x+ (1+x)?2

3. Create a piecewise-defined function g(x) based on the following and then plot the
function from -2 to 0.

1 -(x+2? —2=<x=-1
glx) =
V1-x2 x<0

2 The Mathematica language 45

2.3 Predicates and Boolean operations

Predicates

When working with data sets, you are often presented with the problem of extracting those
data points that meet certain criteria. Similarly, when you write programs, oftentimes what
to do next at any particular point in your program will depend upon some test or condition
being met. Every programming language has constructs for testing data or conditions.
Some of the most useful such constructs are called predicates. A predicare is a function that
returns a value of true or false depending upon whether its argument passes a test. For
example, the predicate PrimeQ tests for the primality of its argument.

In[1]:= PrimeQ[144]

Out[1]= False

Other predicates are available for testing numbers to see whether they are even, odd,
integral, and so on.

Inf2]:= 0ddQ[21]

outf2l= True

In[3]:= EvenQ[21]

Outf3]= False

In[4]:= IntegerQ[5/9]

Outf[4]= False

The NumericQ predicate tests whether its argument is a numeric quantity. Essen-
tdally, NumericQ [x] gives True whenever N [x] evaluates to an explicit number.

Inf5]:= NumericQ[x]

Out[5]= True

Inf6]:= NumericQ[e]
Outf6]= False
This is distinct from a related function, NumberQ, which evaluates to True whenever its

argument is an explicit number (that is, has head one of Integer, Rational, Real,
Complex).

46 An Introduction to Programming with Mathematica

In[7]= NumberQ[3.2]

Out[7]= True

In[8]:= NumberQ[]

Outf8]= False

Many other predicates are available for testing if an expression is an atom, a list, a
matrix, a polynomial, and much more.

Inf9l:= AtomQ["string"]

Out[9]= True

In[10]:= ListQ[{a, b, c}]

Out[10]= True

1 0 O
Inf11]:= MatrixQ[010]
0 0
outf11}= True
1 1 1
In[12]:= PolynomialQ[— + — + —, x]

x x2 x3

Out[12]= False

In[13]= IntervalMemberQ[Interval[{3, 4}], x]

outf13}= True

Relational and logical operators

Another type of predicate that is commonly used in programming are relational operators.
These are used to compare two or more expressions and return a value of True or False.
The relational operators in Mathematica are Equal (==), Unequal (#), Greater (>),
Less (<), GreaterEqual(z), and LessEqual (=). They can be used to compare num-
bers or arbitrary expressions.

Inf14]:= 7 < 5

Out[14]= False

2 The Mathematica language 47

In[15]:= E 113, 7-4 6
In[15]:= qua [’ -4, ;]

Out[15]= True

In[16]:= %2 -1 ==

1 // Simplify
Out[16]= True

Note that the relational operators have lower precedence than arithmetic operators.
The second example above is interpreted as 3= (7-4) and not as (3==7) -4. Table 2.1
lists the relational operators and their various input forms.

StandardForm | Functional form Meaning

x==y Equal[x, y] equal

xl=y Unequal [x, y] unequal

x>y Greater|[x, y] greater than

x<y Less[x, y] less than

xzy GreaterEquallx, y] | greater than or equal
x=y LessEquallx, y] less than or equal

Table 2.1: Relational operators

The logical operators (sometimes known as Boolean operators) determine the truth
of an expression based on Boolean arithmetic. For example, the conjunction of two true

statements is always true.
Inf17]= 4 <5&&8 > 1
outf17}= True
The Boolean operation “and” is represented in Mathematica by And, with shorthand

notation && or A. Here is a table that gives all the possible values for the And operator.
(The function TruthTable is developed in Chapter 10.)

In[18]:= TruthTable[A AB, {A, B}]

Out[18]//DisplayForm=
A B|AAB
T

Loy I I I |

T

F F
T F
F F

48 An Introduction to Programming with Mathematica

The logical “or” operator, represented by Or and with shorthand notation | | (or V),
is true when either of its arguments is true.

6
In[19]= 4 ==3]]| 3 == —

2
Out[19]= True

22
Inf20}= 0 == 0.0001\/7r == —

Out[20]= False

Note the difference between this Boolean “or” and the common notion of “or.” A
phrase such as, “It is cold or it is hot,” uses the word “or” in an exclusive sense; that is, it
excludes the possibility that it is borh cold and hot. The logical Or is inclusive in the sense
that if A and B are both true, then A| | B is also true.

In21]:= True | | True
Outf21]= True

Mathematica also contains an operator for the exclusive or, Xor.
Inf22]:= Xor [True, True]

Outf22]= False

In[23]:= Xor [True, False]

Out[23]= True

Table 2.2 shows the logical operators and their input forms.

StandardForm Functional form | Meaning
'x Not [«] not

xl=y Unequall[x, y] |unequal

X &&Y And[x, y] and

x|y Or[«x, y] or

@ |]y)&& ! (x&&Yy) | Xor[x, y] exclusive or

Table 2.2: Logical operators

Introduced in Version 4 of Mathematica are the bitwise logical operators. These func-
tions operate on integers as binary bits. For example, BitOr [x, y] gives the integer whose
binary representation has 1s wherever the binary representation of x or y has 1s. Here is
the bitwise OR of 21 and 19, given in binary form.

2 The Mathematica language 49

In[24]:= BaseForm[BitOr[27710101, 2"°°10011], 2]
Out[24]//BaseForm=
10111,

Similarly, BitXor [x,y] gives the integer with 1s at positions where either x or y
have 1s, but not both.
In[25]'= BaseForm[BitXor[2"710101, 2°°10011], 2]

Out[25]//BaseForm=
110,

Functional form | Meaning

BitAnd[x, y] |bitwise AND of xandy

BitOr[x, y] bitwise OR of xand y
BitNot [«x] bitwise NOT of x
BitXor[x, y] | bitwise XORof xandy

Table 2.3: Bitwise operators

In Chapter 4 we will look at an application of bitwise operators to an example
involving error-correcting codes: the computation of Hamming distance.

Exercises

1. Create a predicate function that returns a value of True if its argument is between
—land 1.

2. Write a predicate function NaturalQ [#] that returns a value of True if nis a
natural number and False otherwise; that is, NaturalQ [#] is True if # is among
0,1,2,3, ...

3. Create a predicate function SubsetQ [/is;, /is;] that returns a value of True if /is is

a subset of /is;. Remember: the empty set { }, is a subset of every set.

50 An Introduction to Programming with Mathematica

2.4 Attributes

All functions in Mathematica have certain properties, called attributes. These attributes can
make a function commutative or associative, or they may give the function the ability to be
threaded over a list. The attributes of any function are displayed with the Attributes

function.
In[1]:= Attributes[Plus]
Outfi}= {Flat, Listable, NumericFunction,

OnelIdentity, Orderless, Protected}

The Flat attribute indicates that this function (P1lus) is associative. That is, given
three elements to add, it does not matter which two are added first. In mathematics, this is
known as associativity and is written as 4 + (b + ¢) = (@ + b) + ¢. In Mathematica this could be
indicated by saying that the two expressions Plus[a, Plus[b, c]] and Plus[-
Plus[a, bl, c] areequivalent to the flattened form Plus[a, b, c].When Mathe-
matica knows that a function has the attribute F1at, it writes it in flattened form.

Inf2].= Plus[Plus[a, b], c]

Outl2Zl= a+b+c

The Orderless attribute indicates that the function is commutative; that is,
a+b = b+ a. This allows Mathematica to write such an expression in an order that is useful

for computation. It does this by sorting the elements into a canonical order. For expressions
consisting of letters and words, this ordering is alphabetic.

Inf38l= t+h+i+n

Outf3]= h+i+n+t

Sometimes a canonical order is readily apparent.

Infdi= x> +x>+x*+x?+1+x

Outil= 1 +x+x% +x3 + x* +x°
Other times, it is not so apparent.

In[5]:= x3 y2 +y7 x5 +yx4 +y9 x2+1+x

ousl= 1 +x+x*y+ x> y? + x>y +x?y°

When a symbol has the attribute Protected, the user is prevented from modifying
the function in any significant way. All built-in operations have this attribute.

Functions with the attribute OneIdentity have the property that repeated applica-

tion of the function to the same argument will have no effect. For example, the expression

2 The Mathematica language 51

Plus [Plus[a, Db]] is equivalent to Plus[a, bl, hence only one addition is
performed.
Inf6]:= FullForm[Plus[Plus[a+b]]]
Out[6]//FullForm=
Plus[a, b]

The other attributes for the P1us function, (Listable and NumericFunction)
will be discussed in later chapters. Consult the manual (Wolfram 2003) for a complete list
of the Attributes that symbols can have.

Although it is unusual to want to alter the attributes of a built-in function, it is fairly
common to change the default attributes of a user-defined function. For example, suppose
you had a function which you wanted to inherit the Orderless attribute. Without
explicitly setting that attribute, the function does not reorder its arguments.

Inf7]= £[x, a, m]

ouf7l= £[x, a, m]
The SetAttributes functon is used to change the attributes of a function. Explicitly
setting £ to have the Orderless attribute causes its arguments to be automatically sorted.

Inf8]:= SetAttributes[f, Orderless]

Inf9]= £[x, a, m]
out9]= fla, m, x]

We will see a practical use of SetAttributes in Section 5.3.

3 Lists

The list is the fundamental data structure used in Mathematica to group objects
together. A very extensive set of built-in functions is provided by Mathematica to
manipulate lists in a variety of ways, ranging from simple operations, such as moving
list elements around, to more sophisticated operations, such as applying a function to a
list. We also discuss working with strings, as their structure and manipulation is so
similar to lists.

3.1 Introduction

Many computations involve working with a collection of objects. For example, abstract
mathematics deals with operations on arbitrary sets, represented notationally, but also
conceptually, as lists.

Inf11:= {a, b, e} U {c, 4, e}

Outft}= {a, b, ¢, d, e}

In2l= {a, b, c}N{c, d, e}
outigl= {c}
Data, in Mathematica, is represented using lists. A large collection of functions is

available for manipulating and analyzing lists of data. For example, you can sort any set of
data.

3= Sort[{4, 16, 1, 77, 23}]

oufsl= {1, 4, 16, 23, 77}

You can extract elements of a dataset based on some criteria. Here we select those
numbers from a list that are greater than 0.

Inf4].= Select[{4.9239, -1.24441, -0.80388, 3.27761}, Positive]

Outf4}= {4.9239, 3.27761}

Working with such collections of objects requires that the objects (also called daza
objects) be gathered together in some way. There are a variety of structures that can be used

54 An Introduction to Programming with Mathematica

to store data objects in a computer. The most often used data structure in Mathematica is
the /ist. This is created using the built-in List function which has the standard input form
of a sequence of arguments separated by commas and enclosed in braces.

{mfg1 ;AT ey ﬂrgn}

Lists are used throughout Mathematica, not only to represent a collection of data
elements, but also to delineate a range of values for some variable or iterator. For example,
the second argument to the Table function is a list that specifies the iterator variable and

the values that it should range over.

Inf5]= Table[i?, {i, 1, 5}]

ousi= {1, 4, 9, 16, 25}

Similarly, the plotting functions use lists to specify the range over which a variable
should be evaluated.

Infe]:= Plot[Sin[x], {x, 0, 2 7}];

1

0.5

-0.5

-1
Internally, lists are stored in the functional form using the List function with some
arbitrary number of arguments.

List larg,, arg,, ., arg,]

For example, using FullForm we can view the internal representation of the list
{a,b,c}.
In[7= FullForm[{a, b, c}]

Out[7]//FullForm=
List[a, b, c]

3 Lists 55

The arguments of the List function (the /st elerments) can be any type of expression,

including numbers, symbols, functions, character strings, and even other lists.
In8= {2.4, £, Sin, "ossifrage", {5, 3}, &, {}}

Outl8}= {2.4, £, Sin, ossifrage, {5, 3}, m, {}}

Elements in lists can be rearranged, sorted, removed, new elements added, and
operations performed on select elements or on the list as a whole. In fact, lists are such
general objects in Mathematica that they can be used to represent a vast array of objects.

In this chapter, we will demonstrate the use of built-in Mathematica functions to
manipulate lists in various ways. In cases where the operation of a function is relatively
straightforward, we will simply demonstrate its use without explanation (the on-line Help
system and the The Mathematica Book (Wolfram 2003) should be consulted for more
detailed explanations of all of the built-in functions). The underlying message here is that
almost anything you might wish to do to a list can be accomplished using built-in func-
tions. It is important to have as firm a handle on these functions as possible, since a key to
good, efficient programming in Mathematica is to use the built-in functions whenever
possible to manipulate list structures.

3.2 Creating and measuring lists

List construction

In addition to using the List function to collect data objects, you can also generate lists
from scratch by creating the objects and then placing them in a list.
Range [imin, imax, di] generates a list of ordered numbers starting from imin and

going up to, but not exceeding, iax in increments of di.
In[1:= Range[-4, 7, 3]
Outft}= {-4, -1, 2, 5}

If di is not specified, a value of one is used.
Inf2].= Range[4, 8]

ouz= {4, 5,6, 7, 8}

56 An Introduction to Programming with Mathematica

If neither imin nor di is specified, then both are given the value of 1.

Inf3]= Range[4]

ou3= {1, 2, 3, 4}
It is not necessary for imin, imax, or di to be integers.

Inf[4]= Range[l.5, 6.3, .75]

Out4}= {1.5, 2.25, 3., 3.75, 4.5, 5.25, 6.}

Table [expr, {i, imin, imax,di}] generates a list by evaluating expr a number of
times.

Inf5]= Table[3 k, {k, 1, 10, 2}]

Outf5]= {3, 9, 15, 21, 27}
The first argument, 3k in the above example, is the expression that is evaluated to produce
the elements in the list. The second argument to the Table function, {7, imin, imax, di},
is called the #terator. It is a list that specifies the number of times the expression is evaluated
and hence the number of elements in the list. The iterator variable may or may not appear
in the expression being evaluated. The value imzin is the value of i used in the expression to
create the first list element. The value di is the incremental increase in the value of 7 used in
the expression to create additional list elements. The value #ax is the maximum value of i

used in the expression to create the last list element (if incrementing 7 by di gives a value

greater than #max, that value is not used).
infe}= Table[i, {i, 1.5, 6.3, .75}]
oufe}= {1.5, 2.25, 3., 3.75, 4.5, 5.25, 6.}
Table [, {i,imin,imax,di}] is equivalent to Range [imin, imax,di]. As with the

Range function, the arguments to Table can be simplified when the iterator increment is

one.
In[7].= Table[3 i, {i, 2, 5}]
outf7= {6, 9, 12, 15}

Similarly, both #in and di can be omitted and are then assumed to be 1.
Inf8}:= Table[iZ?, {i, 4}]

oufgl= {1, 4, 9, 16}

3 Lists 57

If the iterator variable does not appear in the expression being evaluated, it may be omitted
as well. The expression will then simply be evaluated that many times.

In9]:= Table[Random[], {3}]
Outf9)= {0.155408, 0.0408563, 0.62081}
The expression that the Table function evaluates can be completely arbitrary. In the
following computation, it is used to create tables of formulas.
In[10}= Table[Expand[(1 +a)¥], {i, 1, 3}]
outf10}= {l+a, 1+2a+a?, 1+3a+3a?+a’}
Table can be used to create a nested list; that is, a list containing other lists as ele-
ments. This can be done by using additional iterators.
Inf11}= Table[i+73, {j, 1, 4}, {i, 1, 3}]
Outtl= {{2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}}
When there is more than one iterator, their order of appearance is important, because the
value of the outer iterator is varied for each value of the inner iterator In the above exam-
ple, for each value of j (the inner iterator), 1 was varied from 1 to 3, producing a three-ele-

ment list for each of the four values of j. If you reverse the iterator order, you will get an
entirely different list.

Inf12}= Table[i+3j, {i, 1, 3}, {3, 1, 4}]
Outf12]= {{21 3, 4, 5}! {37 4, 5, 6}! {41 5, 6, 7}}
You will often find it useful to display nested lists in a matrix or tabular form.

In[13:= Table[i +7, {i, 1, 4}, {j, 1, 3}] // TableForm

Out[13}//TableForm=
2 3 4
3 4 5
4 5 6
5 6 7

In[14]= Table[i +3j, {i, 1, 4}, {j, 1, 3}] // MatrixForm

Out[14}//MatrixForm=
2 3 4

3 4
4 5
5 6

< o o

58 An Introduction to Programming with Mathematica

The value of the outer iterator may depend on the value of the inner iterator, which can

result in a nonrectangular list.
inf15l= Table[i+3j, {i, 1, 3}, {j, 1, i}]

Out[15]= {{2}1 {31 4}/ {4/ 5, 6}}

In[16]:= TableForm[%]

Out[16]//TableForm=
2
3 4
4 5 6

However, the inner iterator may not depend on the outer iterator because, as we have seen,

the inner iterator is fixed as the outer one varies.
In[17}= Table[i +3, {i, 1, 3}, {3, 1, 3}]

Table::iterb :
Iterator {i, 1, j} does not have appropriate bounds. More..

Outf17}= Table[i +7j, {i, 1, 3}, {3, 1, 3}]

Measuring lists

Recall from Chapter 2 that Length [expr] is used to give the number of elements in expr.

For a simple unnested (/inear) list, the Length function tells us how many elements are in

the list.
In[18]= Length[{a, b, ¢, d, e, £}]
Out[18}= 6
In a nested list, each inner list is an element of the outer list. Therefore, the Length
of a nested list indicates the number of inner lists, and not their sizes.
In[19]= Length[{{{1, 2}, {3, 4}, {5, 6}}, {{a, b}, {c, d}, {e, £}}}]
out[19}= 2
To find out more about the inner lists, use the Dimensions function.
Inf20]= Dimensions[{{{1, 2}, {3, 4}, {5, 6}}, {{a, b}, {c, 4}, {e, £}}}]
ou20}= {2, 3, 2}
This indicates that there are two inner lists, that each inner list contains three lists, and

that the innermost lists each have two elements. MatrixForm may help to see the struc-
ture better.

3 Lists 59

Inf211:= MatrixForm[{{{1, 2}, {3, 4}, {5, 6}}, {{a, b}, {c, 4}, {e, £}}}1]

Out[21}//MatrixForm=
i1y i3 i
2] 1a) {6l
iay i C i e

The number of dimensions of a (possibly nested) list, is given by ArrayDepth.
Inf22)= ArrayDepth[{{{1l, 2}, {3, 4}, {5, 61}, {{a, b}, {c, d}, {e, £}}}]

outizz= 3
"This is identical to the number of levels in that expression, as displayed by TreeForm.

Inf23]:= TreeForm[{a, {b, {c}}}]
Out[23)//TreeForm=
List[a, |]
List[b, |]
List[c]

Exercises

1. Generate the list {{0},{0,2},{0,2,4},{0,2,4,6},{0,2,4,6,8}} intwo
different ways using the Table function.

2. A table containing ten random 1s and Os can easily be created using Table [-

Random [Integer], {10}]. Create a ten-element list of random 1s, Os and —1s.

3. Create a ten-element list of random 1s and —1s. This table can be viewed as a list of
the steps taken in a random walk along the x-axis, where a step can be taken in either
the positive x direction (corresponding to 1) or the negative x direction
(corresponding to —1) with equal likelihood.

The random walk in one, two, three (and even higher) dimensions is used in science
and engineering to represent phenomena that are probabilistic in nature. We will use
a variety of random walk models throughout this book to illustrate specific program-

ming points.

4. From a mathematical point of view, a list can be viewed as a vector and a nested list
containing inner lists of equal length can be viewed as a matrix (or an array). Mathe-
matica has another built-in function Array which creates lists. We can use an

undefined function £ to see how Array works.

60 An Introduction to Programming with Mathematica

In[1]:= Array[f, 5]

Ouft}= {£[1], £[2], £[3], £[4], £[5]}

Inf2].= Array[f, {3, 4}]

oufzl= {{f[1, 11, £[1, 21, £[1, 3], £[1, 4]},
{£[2, 1], £[2, 2], £[2, 3], £[2, 4]},
{£[3, 1], £[3, 2], £[3, 3], £[3, 41}}

Generate both of these lists using the Table function.

5. Predict the dimensions of the list { {{1,a},{4,d}},{{2,b},{3,c}}}. Usethe

Dimensions function to check your answer.

3.3 Manipulating lists

Testing a list
The locations of specific elements in a list can be determined using the Position
function.
In[1]:= Position[{5, 7, 5, 2, 1, 4}, 5]
Ouffj= {{1}, {3}}
This result indicates that the number 5 occurs in the first and third positions in the list.

The extra braces are used to avoid confusion with the case when elements are nested within

a list.
In2:= Position[{{a, b, c}, {d, e, £}}, f]
Outizl= {{2, 3}}
The expression £ occurs once, in the third position within the second inner list.

There is also a function that picks out the elements in a list that return True when a
predicate is applied to them. For example, this finds all of the even numbers in a list.

Inf3]:= Select[{1, 4, 1, 5, 9, 2}, EvenQ]
outfsl= {4, 2}

Other functions exist to select or count the num