
F5—A Steganographic Algorithm

High Capacity Despite Better Steganalysis

Andreas Westfeld

Technische Universität Dresden, Institute for System Architecture
D-01062 Dresden, Germany

westfeld@inf.tu-dresden.de

Abstract. Many steganographic systems are weak against visual and
statistical attacks. Systems without these weaknesses offer only a rela-
tively small capacity for steganographic messages. The newly developed
algorithm F5 withstands visual and statistical attacks, yet it still of-
fers a large steganographic capacity. F5 implements matrix encoding to
improve the efficiency of embedding. Thus it reduces the number of nec-
essary changes. F5 employs permutative straddling to uniformly spread
out the changes over the whole steganogram.

1 Introduction

Secure steganographic algorithms hide confidential messages within other, more
extensive data (carrier media). An attacker should not be able to find out, that
something is embedded in the steganogram (i. e., a steganographically modified
carrier medium) [8].1

Visual attacks on steganographic systems are based on essential information
in the carrier medium that steganographic algorithms overwrite [5]. Adaptive
techniques (that bring the embedding rate in line with the carrier content)
prevent visual attacks, however, they also reduce the proportion of stegano-
graphic information in a carrier medium. Lossy compressed carrier media (JPEG,
MP3, . . .) are originally adaptive and immune against visual (and auditory re-
spectively) attacks.

The steganographic tool Jsteg [4] embeds messages in lossy compressed JPEG
files. It has a high capacity—e. g., 12 % of the steganogram’s size—and, it is
immune against visual attacks. However, a statistical attack discovers changes
made by Jsteg [5].

MP3Stego [3] and IVS-Stego [6] also withstand auditory and visual attacks
respectively. Appart from this, the extremely low embedding rate prevents all
known statistical attacks. These two steganographic tools offer only a relatively
small capacity for steganographic messages (less than 1 % of the steganogram’s
size).

1 The steganographic techniques considered here are not intended for robust water-
marking.

I. S. Moskowitz (Ed.): IH 2001, LNCS 2137, pp. 289–302, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

290 Andreas Westfeld

2 JPEG File Interchange Format

The file format defined by the Joint Photographic Experts Group (JPEG) stores
image data in lossy compressed form as quantised frequency coefficients. Fig. 1
shows the compressing steps performed. First, the JPEG compressor cuts the
uncompressed bitmap image into parts of 8 by 8 pixels. The discrete cosine
transformation (DCT) transfers 8 × 8 brightness values into 8 × 8 frequency
coefficients (real numbers). After DCT, the quantisation suitably rounds the
frequency coefficients to integers in the range −2048 . . .2047 (lossy step). The
histogram in Fig. 2 shows the discrete distribution of the coefficient’s frequency
of occurrence.

If we look at the distribution in Fig. 2, we can recognise two characteristic
properties:

1. The coefficient’s frequency of occurrence decreases with increasing absolute
value.

2. The decrease of the coefficient’s frequency of occurrence decreases with in-
creasing absolute value, i. e. the difference between two bars of the histogram
in the middle is larger than on the margin.

We will see in Sect. 3 that these properties do not survive the Jsteg embedding
process.

Bitmap image

(BMP/PPM)

DCT Quantisation Huffman coding

JPEG

image

✲ ✲ ✲
✻✻

0 JPEG coefficient

Frequency of occurrence

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

10,000

20,000

30,000

40,000

50,000

Fig. 2

Fig. 1. The flow of information in the JPEG compressor

0 JPEG coefficient

Frequency of occurrence

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

10,000

20,000

30,000

40,000

50,000

Fig. 2. Histogram for JPEG coefficients after quantisation

F5—A Steganographic Algorithm 291

Fig. 3. Carrier medium (World Exhibition in Hanover 2000)

After the lossy quantisation, the Huffman coding ensures the redundancy-
free coding of the quantised coefficients. Reference [2] contains a more detailed
description of the JPEG compression. The following sections mainly refer to
the distribution in Fig. 2. Statements of file sizes and steganographic capacities
relate to the true colour image Expo shown in Fig. 3.

3 Jsteg

This algorithm made by Derek Upham serves as a starting point for the contem-
plation here, because it is resistant against the visual attacks presented in [5],
and nevertheless offers an admirable capacity for steganographic messages (e. g.,
12.8 % of the steganogram’s size). After quantisation, Jsteg replaces the least
significant bits (LSB) of the frequency coefficients by the secret message.2 The
embedding mechanism skips all coefficients with the values 0 or 1. Fig. 4 shows
Derek Upham’s embedding function of Jsteg in C source code.

However, the statistical attack [5] on Jsteg reliably discovers the existence of
embedded messages, because Jsteg replaces bits and, thus, it introduces a de-
pendency between the value’s frequency of occurrence, that only differ in this
bit position (here: LSB). Jsteg influences pairs of the coefficient’s frequency of
occurrence, as Fig. 5 shows. Let ci be the histogram of JPEG coefficients. The
assumption for a modified image is that adjacent frequencies c2i and c2i+1 are
similar. We take the arithmetic mean

n∗
i =

c2i + c2i+1

2
(1)

to determine the expected distribution and compare against the observed distri-
bution

ni = c2i. (2)

2 Let us assume a uniformly distributed message. That not only simplifies the presen-
tation, furthermore it is plausible if the message is compressed and encrypted.

292 Andreas Westfeld

short use_inject = 1; /* set to 0 at end of message */

short inject(short inval) /* inval is a JPEG coefficient */

{

short inbit;

if ((inval & 1) != inval) /* don’t embed in 0 or 1 */

if (use_inject) { /* still message bits to embed? */

if ((inbit=bitgetbit()) != -1) { /* get next bit */

inval &=~1; /* overwrite the lsb ... */

inval |= inbit; /* ... with this bit */

} else

use_inject = 0; /* full message embedded */

}

return inval; /* return modified JPEG coefficient */

}

Fig. 4. Derek Upham’s embedding function Jsteg (comments added)

The difference between the distributions ni and n∗
i is given as

χ2 =
k∑

i=1

(ni − n∗
i)2

n∗
i

(3)

with k − 1 degrees of freedom, which is the number of different categories in the
histogram minus one.

Fig. 6 shows the statistical attack on a Jsteg steganogram (with 50 % of
the capacity used, i. e. 7680 bytes). The diagram presents the probability of
embedding

p = 1 − 1

2
k−1
2 Γ

(
k−1

2

)
∫ χ2

0

e−
t
2 t

k−1
2 −1dt (4)

as a function of an increasing sample: Initially, the sample comprises the first 1 %
of the JPEG coefficients, then the first 2 %, 3 %, . . . The probability is 1.00 up to
54 % and 0.45 at 56 %; A sample of 59 % and more contains enough unchanged
coefficients to let the p-value drop to 0.00.

4 F3

The algorithm F3 serves as a tutorial example. It differs in double respects from
Jsteg:

1. Instead of overwriting bits, it decrements the coefficient’s absolute values
in case their LSB does not match—except coefficients with the value zero,
where we can not decrement the absolute value. Hence, we do not use zero
coefficients steganographically. The LSB of nonzero coefficients match the

F5—A Steganographic Algorithm 293

0 JPEG coefficient

Frequency of occurrence

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

10,000

20,000

30,000

40,000

50,000

Fig. 5. Jsteg equalises pairs of coefficients

0 10 20 30 40 50 60 70 80 90 100
0

Size of sample (%)

Probability of embedding
1

0.8

0.6

0.4

0.2

Fig. 6. Probability of embedding in a Jsteg steganogram (50 % of capacity used)

secret message after embedding, but we did not overwrite bits, because the
Chi-square test can easily detect such changes [5]. So we can hope that no
steps will occur in the distribution. In contrast to Jsteg, F3 uses coefficients
with the value 1. The symmetry of 1 and −1 visible in Fig. 2 consequently
remains.

2. Some embedded bits fall victim to shrinkage. Shrinkage accrues every time
F3 decrements the absolute value of 1 and −1 producing a 0. The receiver
cannot distinguish a zero coefficient, that is steganographically unused, from
a 0 produced by shrinkage. It skips all zero coefficients. Therefore, the sender
repeatedly embeds the affected bit since he notices when he produces a zero.

In comparison to Fig. 2, the histogram shows a relative surplus of even coef-
ficients. This phenomenon results from the repeated embedding after shrinkage.
Shrinkage occurs only if we embed a zero bit. The repetition of these zero bits
shifts the (originally equalised) ratio of steganographic values in favour of the

294 Andreas Westfeld

0 JPEG coefficient

Frequency of occurrence

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

10,000

20,000

Fig. 7. F3 produces a superior number of even coefficients

steganographic zeroes. Hence, the F3 embedding process produces more even
coefficients than odd. The steganographic interpretation of coefficients with the
values 1 or −1 is 1 (because their LSB is 1). For this reason the embedding
function keeps them unchanged when it embeds a 1. Fig. 7 shows the flashy
frequency of occurrence for even and odd coefficients, which we can detect by
statistical means.

If we simply ignore the shrinkage, the superior number of even coefficients
disappears. Unfortunately the receiver gets only fragments of the message in
this case. The application of an error-correcting code could possibly solve the
problem.

If we extract putative messages from unchanged carrier media with F3, these
messages will have a distribution with more ones than zeroes. Therefore, if we
embed more ones than zeroes (in a suitable ratio), the superior number in the
histogram disappears as well. A more elegant solution of this problem (F4) makes
use of the symmetry in Fig. 2.

5 F4

F3 has two weaknesses:

1. Because of the exclusive shrinkage of steganographic zeroes, F3 effectively
embeds more zeroes than ones, and produces—as well as Jsteg, but in a dif-
ferent way—statistically detectable peculiarities in the histogram.

2. The histogram of JPEG files (Fig. 2) contains more odd than even coef-
ficients (excluding 0). Therefore, unchanged carrier media contain (from
Jsteg’s or F3’s perspective) more steganographic ones than zeroes.

The algorithm F4 eliminates these two weaknesses in one stroke by mapping
negative coefficients to the inverted steganographic value: even negative coeffi-
cients represent a steganographic one, odd negative a zero; even positive repre-
sent a zero (as before with Jsteg and F3), and odd positive a one. In Fig. 8 each

F5—A Steganographic Algorithm 295

steganographic 0
steganographic 1

0 JPEG coefficient

Frequency of occurrence

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

10,000

20,000

30,000

40,000

50,000

Fig. 8. Histogram for JPEG coefficients (Fig. 2) with F4’s interpretation of
steganographic values

two bars of the same height represent coefficients with inverse steganographic
value (steganographic zeroes are black, steganographic ones white).

Fig. 9 shows the embedding loop of F4 in Java source code. The array coeff[]
holds all the JPEG coefficients of the carrier medium.

Suppose we have two random variables X, Y for observed coefficients before
and after F4 embeds a message. P (X = x) denotes the probability for JPEG
producing a coefficient with a given value x, and P (Y = y) denotes the proba-
bility for F4 producing a coefficient with a given value y. We can write the two
characteristic properties (cf. Sect. 2) for some coefficient values

P (X = 1) > P (X = 2) > P (X = 3) > P (X = 4) (5)
P (X = 1) − P (X = 2) > P (X = 2) − P (X = 3) > P (X = 3) − P (X = 4) (6)

If the message bits are uniformly distributed, we deduce

P (Y = 1) =
1
2
P (X = 1) +

1
2
P (X = 2) (7)

P (Y = 2) =
1
2
P (X = 2) +

1
2
P (X = 3) (8)

P (Y = 3) =
1
2
P (X = 3) +

1
2
P (X = 4) (9)

We subtract (7) and (8) to get (10), as well as (8) and (9) to get (11).

P (Y = 1) − P (Y = 2) =
1
2
P (X = 1) − 1

2
P (X = 3) (10)

P (Y = 2) − P (Y = 3) =
1
2
P (X = 2) − 1

2
P (X = 4) (11)

With (5) we know that the right hand sides of (10) and (11) are positive, so we
find the first characteristic property for Y

P (Y = 1) > P (Y = 2) > P (Y = 3) (12)

296 Andreas Westfeld

int nextBitToEmbed = embeddedData.readBit();

for (int i=0; i<coeff.length; i++) {

if (i%64 == 0) continue; // skip DC coefficients

if (coeff[i] == 0) continue; // skip zeroes

if (coeff[i] > 0) {

if ((coeff[i]&1) != nextBitToEmbed)

coeff[i]--; // decrease absolute value

} else {

if ((coeff[i]&1) == nextBitToEmbed)

coeff[i]++; // decrease absolute value

}

if (coeff[i] != 0) { // successfully embedded

if (embeddedData.available()==0)

break; // end of embeddedData

nextBitToEmbed = embeddedData.readBit();

}

}

Fig. 9. Java source code for the embedding function of F4 (simplified)

If we add P (X = 2) − P (X = 3) to (6), we find

P (X = 1) − P (X = 3) > P (X = 2) − P (X = 4) (13)

With (13) we see that the right hand side of (10) is greater than in (11). So the
left hand sides give the second characteristic property for Y .

P (Y = 1) − P (Y = 2) > P (Y = 2) − P (Y = 3) (14)

Similarly we can show these characteristic properties for other values modi-
fied by F4, i. e. decreasing occurrence with increasing absolute value (cf. (12)),
and decreasing decrease with increasing absolute value (cf. (14)).

6 F5

Unlike stream media (like in video conferences), image files only provide a limited
steganographic capacity. In many cases, an embedded message does not require
the full capacity (if it fits). Therefore, a part of the file remains unused. Fig. 10
shows, that (with continuous embedding) the changes (×) concentrate on the
start of the file, and the unused rest resides on the end.

To prevent attacks, the embedding function should use the carrier medium
as regular as possible. The embedding density should be the same everywhere.

6.1 Permutative Straddling

Some well-known steganographic algorithms scatter the message over the whole
carrier medium. Many of them have a bad time complexity. They get slower if

F5—A Steganographic Algorithm 297

Fig. 10. Continuous embedding concentrates changes (×)

Fig. 11. Permutative embedding scatters the changes (×)

we try to exhaust the steganographic capacity completely. Straddling is easy,
if the capacity of the carrier medium is known exactly. However, we can not
predict the shrinkage for F4, because it depends on which bit is embedded in
which position. We merely can estimate the expected capacity.

The straddling mechanism used with F5 shuffles all coefficients using a per-
mutation first. Then, F5 embeds into the permuted sequence. The shrinkage
does not change the number of coefficients (only their values). The permutation
depends on a key derived from a password. F5 delivers the steganographically
changed coefficients in its original sequence to the Huffman coder. With the cor-
rect key, the receiver is able to repeat the permutation. The permutation has
linear time complexity O(n). Fig. 11 shows the uniformly distributed changes
over the whole image. Please treat the pixels as coefficients.

6.2 Matrix Encoding

Ron Crandall [1] introduced matrix encoding as a new technique to improve the
embedding efficiency. F5 possibly is the first implementation of matrix encoding.
If most of the capacity is unused in a steganogram, matrix encoding decreases the
necessary number of changes. Let us assume that we have a uniformly distributed
secret message and uniformly distributed values at the positions to be changed.
One half of the message causes changes, the other half does not. Without matrix
encoding, we have an embedding efficiency of 2 bits per change. Because of the
shrinkage produced by F4, the embedding efficiency is even a bit lower, e. g.
1.5 bits per change. (Shrinkage means to change without to embed sometimes,
cf. Sect. 4.)

298 Andreas Westfeld

For example, if we embed a very short message comprising only 217 bytes
(1736 bits), F4 changes 1157 places in the Expo image. F5 embeds the same
message using matrix encoding with only 459 changes, i. e. with an embedding
efficiency of 3.8 bits per change.

The following example shows what happened in detail. We want to embed
two bits x1, x2 in three modifiable bit places a1, a2, a3 changing one place at
most. We may encounter these four cases:

x1 = a1 ⊕ a3, x2 = a2 ⊕ a3 ⇒ change nothing
x1 �= a1 ⊕ a3, x2 = a2 ⊕ a3 ⇒ change a1

x1 = a1 ⊕ a3, x2 �= a2 ⊕ a3 ⇒ change a2

x1 �= a1 ⊕ a3, x2 �= a2 ⊕ a3 ⇒ change a3.

In all four cases we do not change more than one bit. In general, we have a code
word a with n modifiable bit places for k secret message bits x. Let f be a hash
function that extracts k bits from a code word. Matrix encoding enables us to
find a suitable modified code word a′ for every a and x with x = f(a′), such
that the Hamming distance

d(a, a′) ≤ dmax (15)

We denote this code by an ordered triple (dmax, n, k): a code word with n places
will be changed in not more than dmax places to embed k bits.3 F5 implements
matrix encoding only for dmax = 1. For (1, n, k), the code words have the length
n = 2k − 1. Neglecting shrinkage, we get a change density

D(k) =
1

n + 1
=

1
2k

(16)

and an embedding rate

R(k) =
k

n
=

1
n
· ld (n + 1) =

k

2k − 1
(17)

Using the change density and the embedding rate we can define the embedding
efficiency W (k). It indicates the average number of bits we can embed per change:

W (k) =
R(k)
D(k)

=
2k

2k − 1
· k (18)

The embedding efficiency of the (1, n, k) code is always larger than k. Table 1
shows that the rate decreases with increasing efficiency. Hence, we can achieve
high efficiency with very short messages only.

Table 2 gives the dependencies between the message bits xi and the changed
bit places a′

j . We assign the dependencies with the “binary coding” of j to
column a′

j. So we can determine the hash function very fast.

f(a) =
n⊕

i=1

ai · i (19)

3 We denote our concrete example above by the triple (1, 3, 2).

F5—A Steganographic Algorithm 299

Table 1. Connection between change density and embedding rate

k n change density embedding rate embedding efficiency

1 1 50.00% 100.00% 2
2 3 25.00% 66.67% 2.67
3 7 12.50% 42.86% 3.43
4 15 6.25% 26.67% 4.27
5 31 3.12% 16.13% 5.16
6 63 1.56% 9.52% 6.09
7 127 0.78% 5.51% 7.06
8 255 0.39% 3.14% 8.03
9 511 0.20% 1.76% 9.02

Table 2. Dependency (×) between message bits xi and code word bits a′
j

f(a′) a′
1 a′

2 a′
3

x1 × ×
x2 × ×

f(a′) a′
1 a′

2 a′
3 a′

4 a′
5 a′

6 a′
7

x1 × × × ×
x2 × × × ×
x3 × × × ×

We find the bit place
s = x ⊕ f(a) (20)

that we have to change.4 The changed code word results in

a′ =
{

a, if s = 0 (⇔ x = f(a))
(a1, a2, . . . ,¬as, . . . , an) otherwise (21)

We can find an optimal parameter k for every message to embed and every
carrier medium providing sufficient capacity, so that the message just fits into the
carrier medium. For instance, if we want to embed a message with 1000 bits into
a carrier medium with a capacity of 50000 bits, then the necessary embedding
rate is R = 1000 : 50000 = 2 %. This value is between R(k = 8) and R(k = 9) in
Table 1. We choose k = 8, and are able to embed 50000 : 255 = 196 code words
with a length n = 255. The (1, 255, 8) code could embed 196 · 8 = 1568 bits. If
we chose k = 9 instead, we could not embed the message completely.

6.3 Preserving Characteristic Properties

To prove the security of a steganographic algorithm, it would be necessary to
formalise perceptibility. That is much more as for cryptography, where we can es-
tablish information-theoretic relations. Let us try to prove the resistance against
known attacks instead.

The statistical attacks presented in [5] can reveal the presence of a hidden
message, if the steganographic algorithm overwrites least significant bits. This is
4 We interpret the resulting bit vector as an integer.

300 Andreas Westfeld

no longer the case with F4/F5. F4 preserves characteristic properties and does
not equalise frequencies (cf. Sect. 5). We can show that F5 preserves the same
characteristic properties: Let 0 ≤ α ≤ 1 be the fraction of coefficients used for
steganography.5 If we adopt (7) . . . (9), the proof works for F5 too:

P (Y = 1) =
(

1 − α

2

)
P (X = 1) +

α

2
P (X = 2) (22)

P (Y = 2) =
(

1 − α

2

)
P (X = 2) +

α

2
P (X = 3) (23)

P (Y = 3) =
(

1 − α

2

)
P (X = 3) +

α

2
P (X = 4) (24)

We subtract (22) and (23) to get (25), as well as (23) and (24) to get (26).

P (Y = 1) − P (Y = 2) =
(

1 − α

2

) (
P (X = 1) − P (X = 2)

)
+

α

2
P (X = 3) (25)

P (Y = 2) − P (Y = 3) =
(

1 − α

2

) (
P (X = 2) − P (X = 3)

)
+

α

2
P (X = 4) (26)

With (5) (cf. Sect. 5) we know that the right hand sides of (25) and (26) are
positive, so we find the first characteristic property for Y :

P (Y = 1) > P (Y = 2) > P (Y = 3) (27)

With the characteristic properties of X (cf. (5) and (6))

P (X = 1) − P (X = 2) > P (X = 2) − P (X = 3)
P (X = 3) > P (X = 4)

we see that the right hand side of (25) is greater than in (26). So the left hand
sides give the second characteristic property for Y :

P (Y = 1) − P (Y = 2) > P (Y = 2) − P (Y = 3) (28)

Similarly we can show these characteristic properties for other values modified
by F5.

6.4 Implementation

The algorithm F5 has the following coarse structure:

1. Start JPEG compression. Stop after the quantisation of coefficients.
2. Initialise a cryptographically strong random number generator with the key

derived from the password.
3. Instantiate a permutation (two parameters: random generator and number

of coefficients6).

5 F4 is the special case α = 1
6 including zero coefficients

F5—A Steganographic Algorithm 301

4. Determine the parameter k from the capacity of the carrier medium, and
the length of the secret message.

5. Calculate the code word length n = 2k − 1.
6. Embed the secret message with (1, n, k) matrix encoding.

(a) Fill a buffer with n nonzero coefficients.
(b) Hash this buffer (generate a hash value with k bit-places). (cf. (19))
(c) Add the next k bits of the message to the hash value (bit by bit, xor).

(cf. (20))
(d) If the sum is 0, the buffer is left unchanged. Otherwise the sum is the

buffer’s index 1 . . . n, the absolute value of its element has to be decre-
mented. (cf. (21))

(e) Test for shrinkage, i. e. whether we produced a zero. If so, adjust the
buffer (eliminate the 0 by reading one more nonzero coefficient, i. e. re-
peat step 6a beginning from the same coefficient). If no shrinkage oc-
curred, advance to new coefficients behind the actual buffer. If there is
still message data continue with step 6a.

7. Continue JPEG compression (Huffman coding etc.).

7 Conclusion

Many steganographic algorithms offer a high capacity for hidden messages, but
are weak against visual and statistical attacks. Tools withstanding these attacks
provide only a very small capacity. The algorithm F4 combines both preferences:
resistance against visual and statistical attacks as well as high capacity. Matrix
encoding and permutative straddling enable the user to decrease the necessary
number of steganographic changes and to equalise the embedding rate in the
steganogram. F5 accomplishes a steganographic proportion that exceeds 13 %
of the JPEG file size (cf. Table 3). Please understand this result as a friendly
provocation for security analysts. On the other hand F5 is able to decrease the
embedding rate arbitrarily. The software with its source code is public [7].

Acknowledgements. I would like to thank Fabien Petitcolas for helpful com-
ments.

Table 3. Comparison of several JPEG files created with F5

File File size Embedded Ratio embedded Embedding Quantiser
name (bytes) size (bytes) to steganogram size efficiency quality

expo.bmp 1,562,030 0 (carrier medium) — —
expo80.jpg 129,879 0 — — 80%
ministeg.jpg 129,760 213 0.2% 3.8 80%
maxisteg.jpg 115,685 15,480 13.4% 1.5 80%
expo75.jpg 114,712 0 — — 75%

302 Andreas Westfeld

References

1. Ron Crandall: Some Notes on Steganography. Posted on Steganography Mailing
List, 1998. http://os.inf.tu-dresden.de/˜westfeld/crandall.pdf 297

2. Andy C. Hung: PVRG-JPEG Codec 1.1, Stanford University, 1993.
http://archiv.leo.org/pub/comp/os/unix/graphics/jpeg/PVRG 291

3. Fabien Petitcolas: MP3Stego, 1998.
http://www.cl.cam.ac.uk/˜fapp2/steganography/mp3stego 289

4. Derek Upham: Jsteg, 1997, e. g. http://www.tiac.net/users/korejwa/jsteg.htm 289
5. Andreas Westfeld, Andreas Pfitzmann: Attacks on Steganographic Systems, in An-

dreas Pfitzmann (Ed.): Information Hiding. Third International Workshop, LNCS
1768, Springer-Verlag Berlin Heidelberg 2000. pp. 61–76. 289, 291, 293, 299

6. Andreas Westfeld, Gritta Wolf: Steganography in a Video Conferencing System,
in David Aucsmith (Ed.): Information Hiding, LNCS 1525, Springer-Verlag Berlin
Heidelberg 1998. pp. 32–47. 289

7. Andreas Westfeld: The Steganographic Algorithm F5, 1999.
http://wwwrn.inf.tu-dresden.de/˜westfeld/f5.html 301

8. Jan Zöllner, Hannes Federrath, Herbert Klimant, Andreas Pfitzmann, Rudi Pio-
traschke, Andreas Westfeld, Guntram Wicke, Gritta Wolf: Modeling the Security
of Steganographic Systems, in David Aucsmith (Ed.): Information Hiding, LNCS
1525, Springer-Verlag Berlin Heidelberg 1998. pp. 344–354. 289

	F5|A Steganographic Algorithm
	Introduction
	JPEG File Interchange Format
	Jsteg
	F3
	F4
	F5
	Permutative Straddling
	Matrix Encoding
	Preserving Characteristic Properties
	Implementation

	Conclusion

