

Algorithms Unplugged

Berthold Vöcking � Helmut Alt �

Martin Dietzfelbinger � Rüdiger Reischuk �

Christian Scheideler � Heribert Vollmer �

Dorothea Wagner
Editors

Algorithms
Unplugged

Editors
Prof. Dr. rer. nat. Berthold Vöcking
Lehrstuhl für Informatik 1
Algorithmen und Komplexität
RWTH Aachen University
Ahornstr. 55
52074 Aachen
Germany

Prof. Dr. rer. nat. Helmut Alt
Institut für Informatik
Freie Universität Berlin
Takustr. 9
14195 Berlin
Germany

Prof. Dr. Martin Dietzfelbinger
Institut für Theoretische Informatik
Fakultät für Informatik
und Automatisierung
Technische Universität Ilmenau
Helmholtzplatz 1
98693 Ilmenau
Germany

Prof. Dr. math. Rüdiger Reischuk
Institut für Theoretische Informatik
Universität zu Lübeck
Ratzeburger Allee 160
23538 Lübeck
Germany

Prof. Dr. rer. nat. Christian Scheideler
Institut für Informatik
Universität Paderborn
Fürstenallee 11
33102 Paderborn
Germany

Prof. Dr. rer. nat. Heribert Vollmer
Institut für Theoretische Informatik
Leibniz Universität Hannover
Appelstr. 4
30167 Hannover
Germany

Prof. Dr. rer. nat. Dorothea Wagner
Institut für Theoretische Informatik
Karlsruher Institut für Technologie (KIT)
Am Fasanengarten 5
76131 Karlsruhe
Germany

ISBN 978-3-642-15327-3 e-ISBN 978-3-642-15328-0
DOI 10.1007/978-3-642-15328-0
Springer Heidelberg Dordrecht London New York

ACM Codes: K.3, F.2

c© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable to prosecution under
the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Many of the technological innovations and achievements of recent decades have
relied on algorithmic ideas, facilitating new applications in science, medicine,
production, logistics, traffic, communication, and, last but not least, entertain-
ment. Efficient algorithms not only enable your personal computer to execute
the newest generation of games with features unthinkable only a few years
ago, but they are also the key to several recent scientific breakthroughs. For
example, the sequencing of the human genome would not have been possible
without the invention of new algorithmic ideas that speed up computations
by several orders of magnitude.

Algorithms specify the way computers process information and how they
execute tasks. They organize data and enable us to search for information
efficiently. Only because of clever algorithms used by search engines can we
find our way through the information jungle in the World-Wide Web. Reliable
and secure communication in the Internet is provided by ingenious coding and
encryption algorithms that use fast arithmetic and advanced cryptographic
methods. Weather forecasting and climate change analysis rely on efficient
simulation algorithms. Production and logistics planning employs smart algo-
rithms that solve difficult optimization problems. We even rely on algorithms
that perform GPS localization and routing based on efficient shortest-path
computation for finding our way to the next restaurant or coffee shop.

Algorithms are not only executed on what people usually think of as com-
puters but also on embedded microprocessors that can be found in industrial
robots, cars and aircrafts, and in almost all household appliances and con-
sumer electronics. For example, your MP3 player uses a clever compression
algorithm that saves tremendous amounts of storage capacity. Modern cars
and aircrafts contain not only one but several hundreds or even thousands of
microprocessors. Algorithms regulate the combustion engine in cars, thereby
reducing fuel consumption and air pollution. They control the braking sys-
tem and the steering system in order to improve the vehicle’s stability for
your safety. In the near future, microprocessors might completely take over
the controls, allowing for fully automated car driving in certain standardized

vi Preface

situations. In modern aircraft, this is already put into practice for all phases
of a flight from takeoff to landing.

The greatest improvements in the area of algorithms rely on beautiful ideas
for tackling or solving computational problems more efficiently. The problems
solved by algorithms are not restricted to arithmetic tasks in a narrow sense
but often relate to exciting questions of nonmathematical flavor, such as:

• How to find an exit from inside a labyrinth or maze?
• How to partition a treasure map so that the treasure can only be found if

all parts of the map are recombined?
• How to plan a tour visiting several places in the cheapest possible order?

Solving these challenging problems requires logical reasoning, geometric and
combinatorial imagination, and, last but not least, creativity. Indeed, these
are the main skills needed for the design and analysis of algorithms.

In this book we present some of the most beautiful algorithmic ideas in 41
articles written by different authors in colloquial and nontechnical language.
Most of the articles arose out of an initiative among German-language uni-
versities to communicate the fascination of algorithms and computer science
to high-school students. The book can be understood without any particular
previous knowledge about algorithms and computing. We hope it is enlight-
ening and fun to read, not only for students but also for interested adults who
want to gain an introduction to the fascinating world of algorithms.

Berthold Vöcking
Helmut Alt

Martin Dietzfelbinger
Rüdiger Reischuk

Christian Scheideler
Heribert Vollmer
Dorothea Wagner

Contents

Part I Searching and Sorting

Overview
Martin Dietzfelbinger and Christian Scheideler . 3

1 Binary Search
Thomas Seidl and Jost Enderle . 5

2 Insertion Sort
Wolfgang P. Kowalk . 13

3 Fast Sorting Algorithms
Helmut Alt . 17

4 Parallel Sorting – The Need for Speed
Rolf Wanka . 27

5 Topological Sorting – How Should I Begin to Complete My
To Do List?
Hagen Höpfner . 39

6 Searching Texts – But Fast! The Boyer–Moore–Horspool
Algorithm
Markus E. Nebel . 47

7 Depth-First Search (Ariadne & Co.)
Michael Dom, Falk Hüffner, and Rolf Niedermeier 57

8 Pledge’s Algorithm
Rolf Klein and Tom Kamphans . 69

viii Contents

9 Cycles in Graphs
Holger Schlingloff . 77

10 PageRank – What Is Really Relevant in the World-Wide
Web?
Ulrik Brandes and Gabi Dorfmüller . 89

Part II Arithmetic and Encryption

Overview
Berthold Vöcking . 99

11 Multiplication of Long Integers – Faster than Long
Multiplication
Arno Eigenwillig and Kurt Mehlhorn . 101

12 The Euclidean Algorithm
Friedrich Eisenbrand . 111

13 The Sieve of Eratosthenes – How Fast Can We Compute a
Prime Number Table?
Rolf H. Möhring and Martin Oellrich . 119

14 One-Way Functions. Mind the Trap – Escape Only for the
Initiated
Rüdiger Reischuk and Markus Hinkelmann . 131

15 The One-Time Pad Algorithm – The Simplest and Most
Secure Way to Keep Secrets
Till Tantau . 141

16 Public-Key Cryptography
Dirk Bongartz and Walter Unger . 147

17 How to Share a Secret
Johannes Blömer . 159

18 Playing Poker by Email
Detlef Sieling . 169

19 Fingerprinting
Martin Dietzfelbinger . 181

20 Hashing
Christian Schindelhauer . 195

21 Codes – Protecting Data Against Errors and Loss
Michael Mitzenmacher . 203

Contents ix

Part III Planning, Coordination and Simulation

Overview
Helmut Alt and Rüdiger Reischuk . 221

22 Broadcasting – How Can I Quickly Disseminate
Information?
Christian Scheideler . 223

23 Converting Numbers into English Words
Lothar Schmitz . 231

24 Majority – Who Gets Elected Class Rep?
Thomas Erlebach . 239

25 Random Numbers – How Can We Create Randomness in
Computers?
Bruno Müller-Clostermann and Tim Jonischkat . 249

26 Winning Strategies for a Matchstick Game
Jochen Könemann . 259

27 Scheduling of Tournaments or Sports Leagues
Sigrid Knust . 267

28 Eulerian Circuits
Michael Behrisch, Amin Coja-Oghlan, and Peter Liske 277

29 High-Speed Circles
Dominik Sibbing and Leif Kobbelt . 285

30 Gauß–Seidel Iterative Method for the Computation of
Physical Problems
Christoph Freundl and Ulrich Rüde . 295

31 Dynamic Programming – Evolutionary Distance
Norbert Blum and Matthias Kretschmer . 305

Part IV Optimization

Overview
Heribert Vollmer and Dorothea Wagner . 315

32 Shortest Paths
Peter Sanders and Johannes Singler . 317

x Contents

33 Minimum Spanning Trees (Sometimes Greed Pays Off . . .)
Katharina Skutella and Martin Skutella . 325

34 Maximum Flows – Towards the Stadium During Rush
Hour
Robert Görke, Steffen Mecke, and Dorothea Wagner 333

35 Marriage Broker
Volker Claus, Volker Diekert, and Holger Petersen 345

36 The Smallest Enclosing Circle – A Contribution to
Democracy from Switzerland?
Emo Welzl . 357

37 Online Algorithms – What Is It Worth to Know the
Future?
Susanne Albers and Swen Schmelzer . 361

38 Bin Packing or “How Do I Get My Stuff into the Boxes?”
Joachim Gehweiler and Friedhelm Meyer auf der Heide 367

39 The Knapsack Problem
Rene Beier and Berthold Vöcking . 375

40 The Travelling Salesman Problem
Stefan Näher . 383

41 Simulated Annealing
Peter Rossmanith . 393

Author Details . 401

Part I

Searching and Sorting

Overview

Martin Dietzfelbinger and Christian Scheideler

Technische Universität Ilmenau, Ilmenau, Germany
Universität Paderborn, Paderborn, Germany

Every child knows that one can – at least beyond a certain number – find
things much easier if one keeps order. We humans understand by keeping
things in order that we separate the things that we possess into categories
and assign fixed locations to these categories that we can remember. We may
simply throw socks into a drawer, but for other things like DVDs it is best to
sort them beyond a certain number so that we can quickly find every DVD.
But what exactly do we mean by “quick,” and how quickly can we sort or
find things? These important issues will be dealt with in Part I of this book.

Chapter 1 of Part I starts with a quick search strategy called binary search.
This search strategy assumes that the set of objects (in our case CDs) in which
we will search is already sorted. Chapter 2 deals with simple sorting strategies.
These are based on pairwise comparisons and flips of neighboring objects un-
til all objects are sorted. However, these strategies only work well for a small
number of objects since the sorting work quickly grows for larger numbers.
In Chap. 3 two sorting algorithms are presented that work quickly even for a
large number of objects. Afterwards, in Chap. 4, a parallel sorting algorithm
is presented. By “parallel” we mean that many comparisons can be done con-
currently so that we need much less time than with an algorithm in which the
comparisons have to be done one after the other. Parallel algorithms are par-
ticularly interesting for computers with many processors or a processor with
many cores that can work concurrently, or for the design of chips or machines
dedicated for sorting. Chapter 5 ends the list of sorting algorithms with a
method for topological sorting. A topological sorting is needed, for example,
when there is a sequence of jobs that depend on each other. For example, job
A must be executed before job B can start. The goal of topological sorting
in this case is to come up with an order of the jobs so that the jobs can be
executed one after the other without violating any dependencies between two
jobs.

In Chap. 6 we get back to the search problem. This time, we consider the
problem of searching in texts. More precisely, we have to determine whether
a given string is contained in some text. A human being can determine this

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0, c© Springer-Verlag Berlin Heidelberg 2011

4 Martin Dietzfelbinger and Christian Scheideler

efficiently (for short search strings and a text that is not too long), but it is
not that easy to design an efficient search procedure for a computer. In the
chapter, a search method is presented that is very fast in practice even though
there are some pathological cases in which the search time might be large.

The remainder of Part I deals with search problems in worlds that cannot
be examined as a whole. How can one find the exit out of a labyrinth without
ending up walking in a cycle or multiple times along the same path? Chapter 7
shows that this problem can be solved with a fundamental method called
depth-first search if it is possible to set marks (such as a line with a piece of
chalk) along the way. Interestingly, the depth-first search method also works
if one wants to systematically explore a part of the World-Wide Web or if one
wants to generate a labyrinth. In Chap. 8, we will again consider labyrinths,
but this time the only item that one can use is a compass (so that there
is a sense of direction). Thus, it is not possible to set marks. Still there is
a very elegant solution: the Pledge algorithm. This algorithm can be used,
for example, by a robot to find its way out of an arbitrary planar labyrinth
caused by an arbitrary layout of obstacles. In Chap. 9, we will look at a special
application of depth-first search in order to find cycles in labyrinths, street
networks, or networks of social relationships. Sometimes it is very important
to find cycles, for example, in order to resolve deadlocks, where people or jobs
wait on each other in a cyclic fashion so that no one can advance. Surprisingly,
there is a very simple and elegant way of detecting all cycles in a network.

Chapter 10 ends Part I, and it deals with search engines for the World-
Wide Web. In this scenario, users issue search requests and expect the search
engine to deliver a list of links to webpages that are as relevant as possible
for the search requests. This is not an easy task as there may be thousands
or hundreds of thousands of webpages that contain the requested phrases, so
the problem is to determine those webpages that are most relevant for the
users. How do search engines solve this problem? Chapter 10 explains the
basic principles.

1

Binary Search

Thomas Seidl and Jost Enderle

RWTH Aachen University, Aachen, Germany

Where has the new Nelly CD gone? I guess my big sister Linda with her craze
for order has placed it in the CD rack once again. I’ve told her a thousand
times to leave my new CDs outside. Now I’ll have to check again all 500 CDs
in the rack one by one. It’ll take ages to go through all of them!

Okay, if I’m lucky, I might possibly find the CD sooner and won’t have to
check each cover. But in the worst case, Linda has lent the CD to her friend
again: then I’ll have to go through all of them and listen to the radio in the
end.

Aaliyah, AC/DC, Alicia Keys . . . hmmm, Linda seems to have sorted the
CDs by artist. Using that, finding my Nelly CD should be easier. I’ll try right
in the middle. “Kelly Family”; must have been too far to the left; I have to
search further to the right. “Rachmaninov”; now that’s too far to the right,
let’s shift a bit further to the left . . . “Lionel Hampton.” Just a little bit to
the right . . . “Nancy Sinatra” . . . “Nelly”!

Well, that was quick! With the sorting, jumping back and forth a few
times will suffice to find the CD! Even if the CD hadn’t been in the rack,
this would have been noticed quickly. But when we have, say, 10,000 CDs, I’ll
probably have to jump back and forth a few hundred times to examine the
CDs. I wonder if one could calculate that.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 1, c© Springer-Verlag Berlin Heidelberg 2011

6 Thomas Seidl and Jost Enderle

Sequential Search

Linda has been studying computer science since last year; there should be
some documents of hers lying around providing useful information. Let’s have
a look . . . “search algorithms” may be the right chapter. It describes how
to search for an element of a given set (here, CDs) by some key value (here,
artist). What I tried first seems to be called “sequential search” or “linear
search.” As already expected, half of the elements have to be scanned on
average to find the searched key value. The number of search steps increases
proportionally to the number of elements, i.e., doubling the elements results
in double search time.

Binary Search

My second search technique seems also to have a special name, “binary
search.” For a given search key and a sorted list of elements, the search starts
with the middle element whose key is compared with the search key. If the
searched element is found in this step, the search is over. Otherwise, the same
procedure is performed repeatedly for either the left or the right half of the
elements, respectively, depending on whether the checked key is greater or
less than the search key. The search ends when the element is found or when
a bisection of the search space isn’t possible anymore (i.e., we’ve reached the
position where the element should be). My sister’s documents contain the
corresponding program code.

In this code, A denotes an “array,” that is, a list of data with numbered
elements, just like the CD positions in the rack. For example, the fifth element
in such an array is denoted by A[5]. So, if our rack holds 500 CDs and we’re
searching for the key “Nelly,” we have to call BinarySearch (rack, “Nelly”,
1, 500) to find the position of the searched CD. During the execution of the
program, left is assigned 251 at first, and then right is assigned 375, and so
on.

1 Binary Search 7

The function BinarySearch returns the position of “key” in array “A”
between “left” and “right”

1 function BinarySearch (A, key, left, right)
2 while left ≤ right do
3 middle := (left + right)/2 // find the middle, round the result
4 if A[middle] = key then return middle
5 if A[middle] > key then right := middle − 1
6 if A[middle] < key then left := middle + 1
7 endwhile
8 return not found

Recursive Implementation

In Linda’s documents, there is also a second algorithm for binary search. But
why do we need different algorithms for the same function? They say the
second algorithm uses recursion; what’s that again?

I have to look it up . . . : “A recursive function is a function that is defined
by itself or that calls itself.” The sum function is given as an example, which
is defined as follows:

sum(n) = 1 + 2 + · · · + n.

That means, the first n natural numbers are added; so, for n = 4 we get:

sum(4) = 1 + 2 + 3 + 4 = 10.

If we want to calculate the result of the sum function for a certain n and
we already know the result for n − 1, n just has to be added to this result:

sum(n) = sum(n − 1) + n.

Such a definition is called a recursion step. In order to calculate the sum
function for some n in this way, we still need the base case for the smallest n:

sum(1) = 1.

Using these definitions, we are now able to calculate the sum function for
some n:

sum(4) = sum(3) + 4

= (sum(2) + 3) + 4

= ((sum(1) + 2) + 3) + 4

= ((1 + 2) + 3) + 4

= 10.

8 Thomas Seidl and Jost Enderle

The same holds true for a recursive definition of binary search: Instead of
executing the loop repeatedly (iterative implementation), the function calls
itself in the function body:

The function BinSearchRecursive returns the position of “key” in array
“A” between “left” and “right”

1 function BinSearchRecursive (A, key, left, right)
2 if left > right return not found
3 middle := (left + right)/2 // find the middle, round the result
4 if A[middle] = key then return middle
5 if A[middle] > key then
6 return BinSearchRecursive (A, key, left, middle − 1)
7 if A[middle] < key then
8 return BinSearchRecursive (A, key, middle + 1, right)

As before, A is the array to be searched through, “key” is the key to
be searched for, and “left” and “right” are the left and right borders of the
searched region in A, respectively. If the element “Nelly” has to be found in
an array “rack” containing 500 elements, we have the same function call, Bin-

SearchRecursive (rack, “Nelly”, 1, 500). However, instead of pushing the
borders towards each other iteratively by a program loop, the BinSearchRe-
cursive function will be called recursively with properly adapted borders. So
we get the following sequence of calls:

BinSearchRecursive (rack, “Nelly”, 1, 500)
BinSearchRecursive (rack, “Nelly”, 251, 500)
BinSearchRecursive (rack, “Nelly”, 251, 374)
BinSearchRecursive (rack, “Nelly”, 313, 374)
BinSearchRecursive (rack, “Nelly”, 344, 374)
· · ·

Number of Search Steps

Now the question remains, how many search steps do we actually have to
perform to find the right element? If we’re lucky, we’ll find the element with
the first step; if the searched element doesn’t exist, we have to keep jumping
until we have reached the position where the element should be. So, we have
to consider how often the list of elements can be cut in half or, conversely,
how many elements can we check with a certain number of comparisons. If
we presume the searched element to be contained in the list, we can check
two elements with one comparison, four elements with two comparisons, and
eight elements with only three comparisons. So, with k comparisons we are
able to check 2 · 2 · · · · · 2 (k times) = 2k elements. This will result in ten
comparisons for 1,024 elements, 20 comparisons for over a million elements,

1 Binary Search 9

and 30 comparisons for over a billion elements! We will need an additional
check if the searched element is not contained in the list. In order to calculate
the converse, i.e., to determine the number of comparisons necessary for a
certain number of elements, one has to use the inverse function of the power
of 2. This function is called the “base 2 logarithm” and is denoted by log2. In
general, the following holds true for logarithms:

If a = bx, then x = logb a. (1.1)

For the base 2 logarithm, we have b = 2:

20 = 1, log2 1 = 0
21 = 2, log2 2 = 1
22 = 4, log2 4 = 2
23 = 8, log2 8 = 3

...
...

210 = 1,024, log2 1,024 = 10
...

...
213 = 8,192, log2 8,192 = 13
214 = 16,384, log2 16,384 = 14

...
...

220 = 1,048,576, log2 1,048,576 = 20.

So, if 2k = N elements can be checked with k comparisons, log2 N = k
comparisons are needed for N elements. If our rack contains 10,000 CDs,
we have log2 10,000 ≈ 13.29. As there are no “half comparisons,” we get 14
comparisons! In order to further reduce the number of search steps of a binary
search, one can try to guess more precisely where the searched key may be
located within the currently inspected region (instead of just using the middle
element). For example, if we are searching in our sorted CD rack for an artist’s
name whose initial is close to the beginning of the alphabet, e.g., “Eminem,”
it’s a good idea to start searching in the front part of the rack. Accordingly,
a search for “Roy Black” should start at a position in the rear part. For a
further improvement of the search, one should take into account that some
initials (e.g., D and S) are much more common than others (e.g., X and Y).

Guessing Games

This evening I’ll put Linda to the test and let her guess a number between 1
and 1,000. If she didn’t sleep during the lectures, she shouldn’t need more than
ten “yes/no” questions for that. (The figure below shows a possible approach
for guessing a number between 1 and 16 with just four questions.)

10 Thomas Seidl and Jost Enderle

In order to avoid asking the same boring question “Is the number greater/
less than . . . ?” over and over again, one can throw in something like “Is the
number even/odd?”. This will also exclude one half of the remaining possibil-
ities. Another question could be “Is the number of tens/hundreds even/odd?”
which would also result in halving the search space (approximately). However,
when all digits have been checked, we have to return to our regular halving
method (while taking into account the numbers that have already been ex-
cluded).

The procedure becomes even easier if we use the binary representation of
the number. While numbers in the decimal system are represented as sums of
multiples of powers of 10, e.g.,

107 = 1 · 102 + 0 · 101 + 7 · 100

= 1 · 100 + 0 · 10 + 7 · 1,

numbers in the binary system are represented as sums of multiples of powers
of 2:

107 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 1 · 64 + 1 · 32 + 0 · 16 + 1 · 8 + 0 · 4 + 1 · 2 + 1 · 1.

So the binary representation of 107 is 1101011. To guess a number using
the binary representation, it is sufficient to know how many binary digits the
number can have at most. The number of binary digits can easily be calculated
using the base 2 logarithm. For example, if a number between 1 and 1,000 has
to be guessed, one would calculate that

log2 1000 ≈ 9.97 (round up!),

i.e., ten digits, are required. Using that, ten questions will suffice: “Does the
first binary digit equal 1?”, “Does the second binary digit equal 1?”, “Does
the third binary digit equal 1?”, and so on. After that, all digits of the binary
representation are known and have to be converted into the decimal system;
a pocket calculator will do this for us.

1 Binary Search 11

Further Reading

1. Donald Knuth: The Art of Computer Programming, Vol. 3: Sorting and
Searching. 3rd edition, 1997.
This book describes the binary search on pages 409–426.

2. Implementation of the binary search algorithm:
http://en.wikipedia.org/wiki/Binary search

3. Binary search in the Java SDK:
http://download.oracle.com/javase/6/docs/api/java/util/
Arrays.html#binarySearch(long[],long)

4. To perform a binary search on a set of elements, these elements have to be
in sorted order. The following chapters explain how to sort the elements
quickly:
• Chap. 2 (Insertion Sort)
• Chap. 3 (Fast Sorting Algorithms)
• Chap. 4 (Parallel Sorting)

2

Insertion Sort

Wolfgang P. Kowalk

Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany

Let’s sort our books in the bookcase by title so that each book can be accessed
immediately if required.

How to achieve this quickly? We can use several concepts. For example,
we can look at each book one after the other, and if two subsequent books
are out of order we exchange them. This works since finally no two books are
out of order, but it takes, on average, a very long time. Another concept looks
for the book with the “smallest” title and puts it at first position; then from
those books remaining the next book with smallest title is looked for, and
so on, until all books are sorted. Also this works eventually; however, since
a great deal of information is always ignored it takes longer than it should.
Thus let’s try something else.

The following idea seems to be more natural than those discussed above.
The first book is sorted. Now we compare its title with the second book, and
if it is out of order we exchange those two books. Now we look to find the
correct position for the next book within the sequence of the first sorted books
and place it there. This can be iterated until we have finally sorted all books.
Since we can use information from previous steps this method seems to be
most efficient.

Let us look more deeply at this algorithm. The first book alone is always
sorted. We assume that all books to the left of current book i are sorted.
To enclose book i in the sequence of sorted books we search for its correct
position and put it there; to do this all, books on the right side of the correct
place are shifted one position to the right. This is repeated with the next book
at position i + 1, etc., until all the books are sorted. This method yields the
correct result very quickly, particularly if the “Binary Search” method from
Chap. 1 is used to find the place of insertion.

How can we apply this intuitive method so it is useful for any number of
books? To simplify the notation we will write a number instead of a book
title.

In Fig. 2.1 the five books 1, 6, 7, 9, 11 on the left side are already sorted;
book number 5 is not correctly positioned. To place it at the correct position

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 2, c© Springer-Verlag Berlin Heidelberg 2011

14 Wolfgang P. Kowalk

Fig. 2.1. The first five books are sorted

Fig. 2.2. Book “5” is situated at the correct position

we can exchange it with book number 11, then with book number 9, and so on,
until it is placed at its correct position. Then we proceed with book number 3
and sort it by exchanging it with the books on the left-hand side. Obviously
all books are eventually placed by this method at their correct position (see
Fig. 2.2).

How can this be programmed? The following program answers this ques-
tion. It uses an array of numbers A, where the cells of the array are numbered
1, 2, 3, Then A[i] means the value at position i of array A. To sort n books
requires an array of length n with cells A[1], A[2], A[3], . . . , A[n − 1], A[n] to
store all book titles. Then the algorithm looks like this:

Subsequent books are exchanged:

1 Given: A: Array with n cells
2 for i := 2 to n do
3 j := i; // book at position i is current

as long as correct position not achieved

4 while j ≥ 2 and A[j − 1] > A[j] do
5 Hand := A[j]; // exchange current book with left neighbor
6 A[j] := A[j − 1];
7 A[j − 1] := Hand ;
8 j := j − 1
9 endwhile

10 endfor

How long does sorting take with this algorithm? Lets take the worst case
where all books are sorted vice versa, i.e., the book with smallest number is
at last position, that with biggest number at first, and so on. Our algorithm
changes the first book with the second, the third with the first two books, the
fourth with the first three books, etc., until eventually the last book is to be
changed with all other n − 1 books. The number of exchanges is

1 + 2 + 3 + · · · + (n − 1) =
n · (n − 1)

2
.

2 Insertion Sort 15

Fig. 2.3. Compute the number of exchanges

This formula is easily derived from Fig. 2.3. In the rectangle are n·(n−1) cells,
and half of them are used for compare and exchange. This picture shows the
absolute worst case. For the average case we assume that only half as many
compares and exchanges are required. If the books are already almost sorted,
then much less effort is required; in the best case if all books are sorted only
n − 1 comparisons have to be done.

You may have found that this algorithm is more cumbersome than neces-
sary. Instead of exchanging two subsequent books, we shift all books to the
right until the space for the book to be inserted is free.

Instead of exchanging k times two books, we shift k + 1 times one book,
which is more efficient. The algorithm look like this:

Sort books by insertion:

1 Given: A: array with n cells;
2 for i := 2 to n do

// sort book at position i by shifting

3 Hand := A[i]; // take current book
4 j := i − 1;

// as long as current position not found

5 while j ≥ 1 and A[j] > Hand do
6 A[j + 1] := A[j]; // shift book right to position j
7 j := j − 1
8 endwhile
9 A[j] := Hand // insert current book at correct position

10 endfor

16 Wolfgang P. Kowalk

Fig. 2.4. Compute the number of exchanges

Further improvements of this sorting method, like inserting several books
at once, and animations of this and other algorithms can be found at the
Web site http://einstein.informatik.uni-oldenburg.de/forschung/
animAlgo/

Considerations about computer hardware that can calculate shifting sev-
eral books at the same time can be found in Chap. 4.

Even if sorting in normal computers requires a great deal of time, this
algorithm is often used when the number of objects like books is not too big,
or if you can assume that most books are almost sorted, since implementa-
tion of this algorithm is so simple. In the case of many objects to be sorted,
other algorithms like MergeSort and QuickSort are used, which are more
difficult to understand and to implement. They are discussed in Chap. 3.

To Read on

1. Insertion Sort is a standard algorithm that can be found in most textbooks about
algorithms, for example, in Robert Sedgewick: Algorithms in C++. Pearson,
2002.

2. W.P. Kowalk: System, Modell, Programm. Spektrum Akademischer Verlag, 1996
(ISBN 3-8274-0062-7).

3

Fast Sorting Algorithms

Helmut Alt

Freie Universität Berlin, Berlin, Germany

The importance of sorting was described in Chap. 2. Searching a set of data
efficiently, as with the binary search presented in Chap. 1, is only possible
if the set is sorted. Imagine, for example, searching the telephone book of
a big city if it weren’t sorted alphabetically. In this example, we are deal-
ing, as is often the case in practice, with millions of objects that have to
be sorted. Therefore, it is important to find efficient sorting algorithms, i.e.,
ones with relatively short runtimes even for large data sets. In fact, run-
times can be very different for different algorithms applied to the same set of
data.

In this chapter, therefore, we present two sorting algorithms which appear
quite unusual at first. But if you want to sort large sets of objects, they
have much faster runtimes than, e.g., the Sorting by insertion introduced in
Chap. 2.

For simplicity we formulate the algorithms for the case of sorting sets
of cards with numbers on them. Like Sorting by insertion, however, these
algorithms work not only for numbers but also, e.g., for sorting books alpha-
betically by titles or, more generally, for all objects that can be compared by
some kind of “size” or “value.” Also, you do not necessarily need a computer
to execute these algorithms. You can, for example, use these algorithms to
sort a set of packages by weight, using a balance scale for each comparison of
the weight of two packages. The author regularly uses Algorithm 1 for sorting
the exams of his students alphabetically by name.

Therefore, the algorithms will on purpose be first described verbally in-
stead of by a program in a standard programming language or by pseudo-
code.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 3, c© Springer-Verlag Berlin Heidelberg 2011

18 Helmut Alt

3.1 The Algorithms

For simplicity, imagine that you receive from a master a stack of cards each
of which has a number written on it. You are supposed to sort these cards in
the order of ascending numbers and give them back to the master.

This is done as follows:

Algorithm 1

1. If the stack contains only one card, give it back immediately; otherwise:
2. Split the stack into two parts of equal size. Give each part to a helper

and ask him to sort it recursively, i.e., exactly by the method described
here.

3. Wait until both helpers have given back the sorted parts. Then traverse
both stacks from top to bottom and merge the cards by a kind of zipper
principle to a sorted full stack.

4. Return this stack to your master.

With the following example we demonstrate how this algorithm proceeds:

The second algorithm solves the same problem in a completely different
manner:

3 Fast Sorting Algorithms 19

Algorithm 2

1. If the stack consists of one card only give it back immediately; otherwise:
2. Take the first card from the stack. Go through the remaining cards and

split them into the ones with a value not greater than the one of the first
card (Stack 1) and the ones with a value greater than the one of the first
card (Stack 2).

3. Give each of the two stacks obtained this way, if it contains cards at all,
to a helper asking him to sort it recursively, i.e., exactly by the method
described here.

4. Wait until both helpers have returned the sorted parts, then put at the
bottom the sorted Stack 1, then the card drawn in the beginning, then
the sorted Stack 2, and return the whole as a sorted stack.

Demonstrated with an example this looks as follows:

3.2 Detailed Explanations About These Sorting
Algorithms

The first of the two algorithms is called Mergesort. It was already known to
the famous Hungarian mathematician John (Janos, Johann) von Neumann
(1903–1957)1 at a time when computer science was not yet a scientific disci-
pline by itself, and it was applied in mechanical sorting devices.

The second algorithm is called Quicksort. It was developed in 1962 by the
famous British computer scientist C.A.R. Hoare.2

1 Cf. http://en.wikipedia.org/wiki/John von Neumann
2 Cf. http://en.wikipedia.org/wiki/C. A. R. Hoare

20 Helmut Alt

Fig. 3.1. Recursion tree for Mergesort

The descriptions in the previous section show that a computer is not neces-
sarily needed for the execution of the algorithms. For a better understanding of
both algorithms we recommend that you carry them out “by hand” adopting
the roles of the various “helpers” yourself.

In all high-level programming languages (e.g., C, C++, Java) it is possible
for a procedure to call “itself” to solve the same task in the same manner
for a smaller subproblem. This concept is called recursion and it plays an
important role in computer science. For example, if you apply Mergesort to
a sequence of 16 numbers, then both helpers get a subsequence of length 8
each to be sorted. Each of them again calls his two helpers to sort sequences
of length 4, and so on. The complete operation of this algorithm is presented
in Fig. 3.1, which is called a tree in computer science.

The recursion stops when the subproblems become sufficiently small to be
solved directly. In our algorithms this is the case for sequences of length 1,
where nothing has to be done any more to have them sorted. In both de-
scriptions of the algorithms, statement 1 takes care of this base case of the
recursion.

So, our algorithms solve a large problem by decomposing it into smaller
subproblems, solving those recursively, and combining the resulting partial
solutions for a complete solution. Proceeding in this manner is called divide-
and-conquer in computer science. This principle can be applied successfully
not only to sorting but also to many other, quite different problems.

3.3 Experimental Comparison of the Sorting Algorithms

It is a natural question as to why algorithms that strange should be used
for sorting, which seems to be a really simple problem. Therefore, we imple-
mented (i.e., programmed) both algorithms, as well as Sorting by insertion
from Chap. 2, on a computer at our institute and recorded the time that
those algorithms needed for sequences of numbers of different lengths. Fig-
ure 3.2 shows the result. Obviously, Mergesort is much faster than Sorting by
insertion and Quicksort is significantly faster than Mergesort.

3 Fast Sorting Algorithms 21

Fig. 3.2. Runtimes in milliseconds of the three algorithms determined experimen-
tally for sorting sequences of lengths 1 to 150,000

In half a second (500 ms) of computation time, Sorting by insertion can
sort sequences of length up to 8,000, whereas Mergesort manages 20 times as
many numbers in the same time. Quicksort is four times faster than Mergesort.

3.4 Determining the Runtimes Theoretically

As in Chap. 2, it is possible to determine with mathematical methods how
the runtimes of the algorithms depend on the number n of elements to be
sorted, without having to program the algorithms and measure the time on
a computer. These methods show that a simple sorting algorithm, such as
Sorting by insertion, has runtime proportional to n2.

Let us now carry out a similar theoretical estimate of the runtime (also
called runtime analysis) for Mergesort.

First, let us think about how many comparisons are needed for step 3 of
the algorithm, the merging of two sorted subsequences of length n/2 into one
sorted sequence of length n. The merging procedure first compares the two
lowest cards of each subsequence, and then the new complete stack is started
with the smaller of the two. Then we proceed with the two remaining stacks
in the same manner. In each step two cards are compared and the smaller
one is put on the complete stack. Since the complete stack consists of n cards
in the end, at most n comparisons were carried out (exactly, no more than
n − 1).

In order to consider the recursive structure of the entire algorithm let us
once again look at the tree in Fig. 3.1.

22 Helmut Alt

The master at the top has to sort 16 cards. He gives eight to each of the
two helpers; they both give four to each of their two helpers; and so on. The
master at the top in step 3 has to merge two times eight (in general, two times
n/2) cards to a complete sorted sequence of length 16 (n). This takes, as we
saw before, at most 16 (n) comparisons. The two helpers at the level below
merge n/2 cards each, so they need at most n/2 comparisons each, so together
at most n, as well. Likewise, the four helpers at third level merge n/4 cards
each and together again need at most n comparisons; and so on.

So, it can be seen that for each level of the tree at most n comparisons
are necessary. It remains to calculate the number of levels. The figure shows
that for n = 16 there are four levels. We can see that when descending down
the tree, the length of the subsequences to be sorted decreases from n at the
highest level to n/2 at the second level, and further to n/4, n/8, and so on.
So, it is cut in half from level to level until length 1 is reached at the lowest
level. Therefore, the number of levels is the number of times n can be divided
by 2 until 1 is reached. This number is known to be (cf. also Chap. 1) the
base 2 logarithm of n, log2(n). Since for each level at most n comparisons are
necessary, altogether Mergesort needs at most n log2(n) comparisons to sort
n numbers.

For simplicity, we assumed in our analysis that the length n of the input
sequence always can be divided by 2 without a remainder until 1 is reached.
In other words, n is a power of 2, i.e., one of the numbers 1, 2, 4, 8, 16, For
other values of n, Mergesort can be analyzed with some more effort. The idea
remains the same and the result is that the number of comparisons is at most
n�log2(n)�. Here, �log2(n)� is log2(n) rounded up to the smallest following
integer.

Here, we only estimated the number of comparisons. If this number is
multiplied by the time that the computer running the algorithm needs for a
comparison,3 one gets the total time needed for comparisons. This value is
not yet the total runtime, since besides comparisons other operations, such
as for restoring the elements to be sorted and for the organization of the
recursion, are needed. Nevertheless, it can be analyzed that the total runtime
is proportional to the number of comparisons. So, by our analysis, we know
at least that the runtime for Mergesort is proportional to n log2(n).

These considerations explain the superiority of Mergesort over Sorting by
insertion that we observed in the previous section. For that algorithm the
number of comparisons is n(n − 1)/2, as derived in Chap. 2. Indeed, this
function grows much faster than the function n log2(n).

For Quicksort the situation is more complicated. It can be shown that for
certain inputs, e.g., if the input sequence is already sorted, its runtime can
be very large, i.e., proportional to n2. You may get an impression why this is
the case if you follow the algorithm “by hand” on such an input. This case,

3 For a comparison of two integers a modern computer needs about one nanosecond,
i.e., one billionth of a second.

3 Fast Sorting Algorithms 23

however, only occurs if the element x to split the sequence, the so-called pivot,
is the first or the last element in sorted order. If, instead, a random element
from the sequence is chosen, then the probability that the algorithm is slow
is very small. On average, the runtime is also proportional to n log2(n). And,
as our experiments show, the constant factor in front of n log2(n) is obviously
better than that in Mergesort. In practice, Quicksort is indeed the fastest
sorting algorithm, as has also been demonstrated by our experiments in the
previous section.

3.5 Implementation in Java

By the descriptions in Sect. 3.1 the algorithms are already well defined and well
explained. Nevertheless, for readers familiar with the programming language
Java who are interested in the technical details, we will, in addition, give
the implementations of the algorithms. In fact, both algorithms are offered by
Java and can be easily used. Mergesort can be found in the class “Collections”
under the name “Collections.sort” and Quicksort can be found in the class
“Arrays” under the name “Arrays.sort.” These methods can be used not only
for numbers but also for arbitrary objects that are pairwise comparable.

Here, however, we will show self-written and easier to understand methods
for integers. Also, these programs were used for the measurements in Sect. 3.3.
One call of the method is always applied to the parts of an array A whose
boundaries are given.

Let us look at Mergesort first. We show first the method to merge two
sorted sequences into one sorted sequence:

public static void merge (int[] A, int al, int ar,
int[] B, int bl, int br,
int[] C)

// merges a sorted array-Segment A[al]...A[ar] with
// B[bl]..B[br] to a sorted segment C[0] ...

{ int i = al, j = bl;
for(int k = 0; k <= ar-al+br-bl+1; k++)

{ if (i>ar) // A is finished
{C[k]=B[j++]; continue;}

if (j>br) // B is finished
{C[k]=A[i++]; continue;}

C[k] = (A[i]<B[j]) ? A[i++]:B[j++];
}}

Now Mergesort itself can be easily written as a method in Java:

24 Helmut Alt

public static void mergeSort (int[] A, int al, int ar)
{ // sorts the array-Segment A[al] to A[ar]

if(ar>al) {int m = (ar+al)/2;

// recursive sorting of the halves:
mergeSort(A,al,m);
mergeSort(A,m+1,ar);

// merging into array B :
int[] B = new int[ar-al+1];
merge(A,al,m, A,m+1,ar, B);

// storing hack into A:
for(int i=0;i<ar-al+1;i++) A[al+i] = B[i];

}
}

The program can be made even faster by saving the storing of array B
to A and applying the recursive calls alternatively to A and B. For simplicity
we didn’t do that here.

Quicksort has an additional advantage over Mergesort by virtue of its not
needing an auxiliary array B but only the array A, which contains the data.
The splitting (step 2 of the algorithm) is done by using a “pointer variable” i.
i starts at the beginning of the segment to be sorted and stops as soon as
an A[i] has been found which is greater than the pivot, i.e., it doesn’t belong
into the left half. At the same time variable j starts from the right end of the
segment going left and stops at elements A[j] that are smaller than the pivot.
If both pointers stop, A[i] and A[j] are swapped and the run continues until
both pointers meet.

public static void swap (int[] A, int i, int j)
{int t = A[i]; A[i] = A[j]; A[j]=t;}

public static void quickSort (int[] A, int al, int ar)
// sorts the segment A[al],...,A[ar]
{if(al<ar)

{
int pivot = A[al], // 1st element as pivot

i=al, j=ar+1;

// splitting:
while(true)
{ while (A[++i] < pivot && i<ar){}

while (A[--j] > pivot && j>al){}

3 Fast Sorting Algorithms 25

if (i<j) swap(A,i,j);
else

break;
}
swap(A,j,al);

quickSort(A,al,j-1);
quickSort(A,j+1,ar);

}
}

Further Reading and Experiments

For animations of the algorithms presented here, you can search the Internet.
In particular, we recommend the following pages:

http://math.hws.edu/TMCM/java/xSortLab/
http://www.cs.ubc.ca/∼harrison/Java/sorting-demo.html
http://cg.scs.carleton.ca/∼morin/misc/sortalg/
http://www.tcs.ifi.lmu.de/∼gruberh/lehre/sorting/sort.html

On some of those pages, other sorting algorithms and programs in a high-level
programming language are also given.

Sorting by insertion is contained in most of the pages; its runtime is pro-
portional to n2, just as in the case of the frequently presented algorithm Bub-
blesort. Even for small input sequences with 100 or 200 objects to be sorted,
the superiority of Mergesort and Quicksort can be recognized clearly.

4

Parallel Sorting – The Need for Speed

Rolf Wanka

Universität Erlangen-Nürnberg, Erlangen, Germany

Since the early days of the development of “general” computing machines,
there has been the idea to also build dedicated devices that are capable of
solving the sorting problem (already addressed in Chaps. 2 and 3) exception-
ally fast. In this chapter, we present a solution of the sorting problem that is
well suited to be implemented as special purpose hardware on a microchip. It
is a so-called parallel sorting algorithm.

When in the 1890s Herman Hollerith built his famous tabulating machine
in order to evaluate the US Census, he also engineered and built an additional
device used to sort the punch cards that stored the collected data. In the
picture above, we see an original Hollerith machine. The “small” device on
the right is a punch card sorting machine. Of course, the cable we see is not for
data transmission, but for electrical power supply. The punch cards get sorted

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 4, c© Springer-Verlag Berlin Heidelberg 2011

28 Rolf Wanka

by the “sorting by insertion” method we have already encountered in Chap. 2.
In the era of very large-scale integrated circuits, sorting units of course do not
sort punch cards any more, but sort data stored as bits and bytes. Now we
are looking for sorting algorithms that can be realized by modern microchips.

Sorting in Hardware: Comparators and Sorting Circuits

In the following, we present the construction of a hardware sorter. On n
wires, it gets an arbitrarily mixed sequence of n non-negative integer numbers
we call keys. All keys are available simultaneously. We want that the sorter
consist of just one kind of module: Comparator. A comparator has two inputs,
e[1] and e[2], and two outputs, x[1] and x[2]. Two arbitrary keys, a and b,
enter the comparator, and, as the output of the comparator, x[1] receives
the smaller key, i.e., x[1] = min{a, b}, and x[2] receives the larger key, i.e.,
x[2] = max{a, b}. The following figure shows two ways to draw a comparator.
In the rest of this chapter, we shall use the right, more compact picture. For
our purposes, we ignore how a comparator is electronically realized.

Thus, the input keys a = 7 and b = 4 will be processed as follows:

If we have only a single comparator, we may use it to implement the condi-
tional exchange operations in the already introduced algorithms MergeSort

and QuickSort (see Chap. 3). However, as we only have a single compara-
tor, all required conditional exchange operations must be executed one after
another, i.e., sequentially.

4 Parallel Sorting – The Need for Speed 29

Now we design a circuit that consists of many copies of comparators. It
can sort any sequence of n keys much faster than sequential algorithms. We
start with a small, but instructive example of such a circuit consisting of
comparators only. Study the following figure.

The input of length 4 arrives at the left. It passes through the circuit to
the right. Another term often used instead of circuit is network. The following
simple arguments show that the circuit above consisting of six comparators
can sort any sequence consisting of four keys: No matter on which wire the
minimum key will enter the ciruit on the left, it will always leave it on the
upmost wire x[1]. Analogously, the maximum key will always leave the circuit
on the lowermost wire x[4], no matter which wire was its input wire. Finally,
we see that the last comparator guarantees x[2] ≤ x[3]. Hence, we conclude
that this circuit sorts any input sequence. Therefore, it is called a sorting
circuit.

The next figure shows how the input sequence (4, 3, 2, 1) is processed by
this circuit. Note that in every step an exchange is actually executed. This
means that in this circuit no comparator is redundant.

We also learn from this figure that all comparators that are drawn one
below the other may be executed simultaneously. So only four time units will
elapse until the input becomes sorted. Rather than speak of time units, we
speak of parallel steps.

The Bitonic Sorting Circuit: Its Architecture

Can we implement the sequential (non-parallel) sorting algorithms Merge-

Sort and QuickSort from Chap. 3 by comparator circuits because, after
all, they also apply conditional exchange operations as their basic operations?

30 Rolf Wanka

Unfortunately, it is not possible in an immediate way. For MergeSort and
QuickSort we do not know in advance which index positions will be in-
volved in a late conditional exchange operation. These indices depend on the
input sequence, or, more exactly, on the results of previously executed com-
parisons! This is not allowed for comparator circuits. Here, we have to specify
in advance, prior to any input, a fixed circuit.

In 1968, Kenneth Batcher, a computer scientist at Kent State University,
designed a concrete comparator circuit that can sort any input sequence of
length n in very few, namely 1

2 · log2 n · (log2 n+1), parallel steps. That means
this circuit sorts 220 = 1,048,576 keys in just 1

2 · 20 · 21 = 210 parallel steps.
The approach is divide-and-conquer, which we have already seen in Chap. 3.

Assume we want to sort n keys. For this task, we now design a sorting cir-
cuit Sn. Because in our divide-and-conquer approach we partition the input
sequence repeatedly into two equal-sized subsequences, we assume for sim-
plicity that n = 2k for some integer k. So, we can divide n by 2 without a
remainder again and again. Now, suppose we know how to sort n

2 = 2k−1 keys
with the help of circuit Sn

2
. Then, with the help of two copies of Sn

2
, we at

first sort the upper half-sequence and the lower half-sequence of the input.
This is the divide part of the divide-and-conquer approach.

The figure above shows how our circuit has to work. It is called the archi-
tecture of the circuit. The interiors of the boxes consist of comparator circuits
that we still have to design.

The two “half-sized” copies of Sn
2

generate the sequences a[1], . . . , a[n
2]

and b[1], . . . , b[n
2], respectively. As the conquer step, as in MergeSort in

Chap. 3, we have to solve the task of merging. That means we have to design
a merging circuit that receives as input the two sorted sequences a[1], . . . , a[n

2]
and b[1], . . . , b[n

2], and outputs the overall sorted sequence x[1], . . . , x[n]. For
this task, Kenneth Batcher invented a circuit he dubbed Bitonic Merger. Its
architecture is presented in the following figure. The reason for the name will

4 Parallel Sorting – The Need for Speed 31

be clear soon when we analyze the Bitonic Merger. This circuit will be inserted
in the architecture of Sn presented above in the violet box labeled “Merging
Circuit.”

The Bitonic Merger always begins with the step highlighted in yellow (left
“triangle”; it is really only one single parallel step; the comparators are drawn
in this “nice” way to have a clear respresentation). Then, the sequence of steps
highlighted in violet (the “rhomboids”) are executed. In general, the archi-
tecture of the Bitonic Merger consists of the yellow triangle and a sequence
of violet rhomboids, where the height of the rhomboids is halved in every
sucessive step. It is a good idea if the reader draws the Bitonic Merger for
n = 32.

The Bitonic Sorting Circuit: Its Correctness and
Running Time

It is not obvious at all that the two sorted sequences a = (a[1], . . . , a[n
2]) and

b = (b[1], . . . , b[n
2]) are really correctly merged by the Bitonic Merge circuit,

i.e., that the output sequence is sorted. In order to prove this, we use a nice
property of comparator circuits, the so-called 0-1 principle:

If and only if a comparator circuit sorts any sequence of length n that
consists only of 0s and 1s,
then it sorts any sequence of length n of arbitrary keys.

This means that we can prove the correctness of a sorting circuit by proving
that it just sorts all possible 0-1 inputs.

32 Rolf Wanka

In what follows we present a sketch of its proof emphasizing the idea. For
the proof of correctness of the Bitonic Sorter, we only need the statement of
the 0-1 principle, not its proof. Therefore during first reading, the reader may
skip the following short text and resume reading at (∗∗).

The idea of the proof of the 0-1 principle is quite simple. In order to
illustrate it, we show instead of the 0-1 principle the 0-1-2-3-4 principle. Here,
in the above statement we replace “only of 0s and 1s” with “only of 0s, 1s,
2s, 3s, and 4s.”

Now let Cn be an arbitrary, but fixed comparator circuit with n wires. Con-
sider an arbitrary sequence a = (a[1], . . . , a[n]) of the numbers 1 through n.
Every number appears exactly once. Such a sequence is called a permutation.
Let a be the input to Cn. We pick two different keys i and j, i < j, from a
and construct the sequence b = (b[1], . . . , b[n]) with

b[k] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if a[k] < i

1 if a[k] = i

2 if i < a[k] < j

3 if a[k] = j

4 if j < a[i].

That means that in b, all keys less that i are mapped to 0, i is mapped to 1,
all keys between i and j are mapped to 2, j is mapped to 3, and all keys
greater than j are mapped to 4. For example, a = (6, 1, 5, 2, 3, 4, 7) with i = 3
and j = 5 is transformed to b = (4, 0, 3, 0, 1, 2, 4).

Now, a and b are fed into Cn. Mark in Cn the paths of i and j on their
way from left to right in red and blue, respectively. Then compare the red
and blue paths to the paths of 1 and 3 when b is input to the circuit. We see
that 1 takes the red path, and that 3 takes the blue path! Why? If we only
have a single comparator (although n is arbitrary), this is obviously true. And
an arbitrary comparator circuit can be considered a successive application of
single comparators. So it is true for any circuit. Hence, i from a will be output
on the same wire as 1 from b, and j from a will be output on the same wire
as 3 from b.

Now suppose that there is a sequence a that is not sorted by Cn. Then
there are two keys i and j, i < j, that are output in wrong order. So, the
corresponding sequence b is also not sorted. This means the other way around
that, if all 0-1-2-3-4 sequences are sorted by Cn, there can be no permutation
which is not sorted by Cn.

Now it is just a small step to the 0-1 principle: In the construction of b,
replace the keys 0, 1, and 2 with 0, and 3 and 4 with 1. Call this sequence c.
In our example, this yields c = (1, 0, 1, 0, 0, 0, 1). A close look reveals that on
the same wire where i from a is output, a 0 from c is output. Analogously,
where j from a is output, a 1 from c is output. And it is easy to see that all
arguments for b and c also hold if a is not a permutation. So we may repeat
the argument: For every input sequence a that is not sorted, there is a 0-1

4 Parallel Sorting – The Need for Speed 33

input sequence c that is also not sorted. Hence, if any 0-1 input sequence is
sorted, any arbitrary input sequence is also sorted.1

(∗∗) So, for the time being, we consider only those input sequences that
consist of only 0s and 1s. Now we can show that the Bitonic Merger transforms
the sorted 0-1 sequences a and b into a sorted overall sequence. This is the
moment where the term bitonic becomes important. Bitonic sequences arise
if a monotic increasing 0-1 sequence x (this is a sequence where the numbers,
considered from left to right, never get larger) and a monotic decreasing 0-
1 sequence y (this is a sequence where the numbers, considered from left to
right, never get larger) are glued together in arbitrary order. That means both
xy and yx are bitonic 0-1 sequences.

Sounds difficult? Not really! Consider some examples: 00111000, 11100011,
0000, 11111000, and 11111111 are bitonic sequences. I am sure that you can
easily find the necessary sequences x and y, can’t you? There are even many
possibilities to choose such sequences!

Loosely speaking, a 0-1 sequence is bitonic if it goes up and down or if it
goes down and up.

What is the outcome of the yellow step (the triangle), i.e., the first par-
allel step of the Bitonic Merger? Let us reverse the sequence b and place it
underneath a. Then we have the following picture.

Check that the comparators of the yellow step are applied to keys listed
one below the other in (•). That means that the smaller of the two keys will
afterwards be in the upper row, and the larger key will be in the lower row.
The colored parts of the figure show two examples. We see that when the
yellow step has been applied, at least one half-sized sequence consists only of
0s or 1s. And the remaining sequence is bitonic! This bitonic sequence is the
input for the violet steps (the rhomboids). Now we slit the bitonic sequence in
the center and place the two sequences one above the other. The same figure
as above shows up, but of only half the size, and the same happens again to
the keys in the upper and lower rows! It is very instructive to try this out for

1 A very compact, full proof of the 0-1 principle can be found in Donald Knuth’s
book The Art of Computer Programming, Vol. 3: Sorting and Searching (see the
end of this chapter on “Further Reading”) on p. 223.

34 Rolf Wanka

some examples. In the end, after the last violet step, the whole 0-1 sequence
is sorted.

Now let us consider the shape of Sn
2

used in the architecture of Sn. Also,
Sn

2
ends with a Bitonic Merger this time for n

2 input wires. The inputs of
this Bitonic Merger are two copies of Sn

4
. This is repeated until the sorter

that sends its output to the Bitonic Merger is responsible for only two keys.
Of course, for this we use a comparator. Altogether, we have the circuit S16

shown in the following figure. It sorts any 0-1 sequence of length 16, and
hence, by the 0-1 principle, any arbitrary sequence of 16 keys! Here, every
box highlighted in blue is a Bitonic Merger.

Of course, our arguments hold for all n = 2k. Sn sorts all 0-1 sequences of
length n and hence sorts arbitrary length-n sequences due to the 0-1 principle.
The whole circuit is called Bitonic Sorter.

So, here we have S16.

In order to discover the relation of our construction to the divide-and-
conquer approach, the reader is invited to compare this circuit to the figure
presenting the architecture of Sn and to search for the two copies of S8.

In the next figure, we see how a sequence of 16 keys is sorted by S16.
Consider the output sequences of the red boxes, i.e., of the Bitonic Mergers.
We see: They are sorted!

Now that we have proven the correctness of the Bitonic Sorter, we conclude
our analysis with the computation of the parallel running time and the number
of comparators.

4 Parallel Sorting – The Need for Speed 35

For the running time t(n) of the Bitonic Sorter which is the number t(n)
of parallel steps, with n = 2k, the figure above gives us

t(n) = 1 + 2 + · · · + (k − 1) + k =
k∑

i=1

i

=
1
2

· k · (k + 1) =
1
2

· log2 n · (log2 n + 1) .

Compare this to the running time of the sequential MergeSort from Chap. 3.
There we learned that it is about n log2 n. Now, for Bitonic Sort, we may
replace the factor of n in MergeSort’s running time with 1

2 · (log2 n + 1).
This means for our example with n = 220 keys that the factor 1,048,576 is
replaced with the factor 11.5. The parallel Sorter is faster than MergeSort

by a factor of almost 10,000. Every input sequence of length 220 is already
sorted after 210 parallel steps.

Of course, this improvement in the running time is bought at some price.
We have a huge number of comparators to realize in order to achieve this
small number of necessary parallel steps. Now, we compute the number of
comparators that are necessary to implement Sn. It can be seen easily that in
every parallel step, n

2 comparators are applied. Let s(n) denote the number
of comparators. Then we have immediately

s(n) =
n

2
· t(n) =

1
4

· n · log2 n · (log2 n + 1).

36 Rolf Wanka

For n = 220, this is a huge number, namely 110,100,480, but in modern VLSI
technology, this is a realistic number. Note that a comparator has to be real-
ized by an electronic circuit. It consists of more than one transistor.

Concluding Remarks

In this chapter, we presented a way to improve considerably the time for
sorting with the help of a parallel hardware sorter. The price is an increase in
the necessary hardware.

As we have seen, the number of parallel steps is proportional to (log2 n)2. Is
it possible to achieve a better running time? Yes! Miklós Ajtai, János Komlós,
and Endre Szeméredi, three Hungarian scientists, designed a sorting circuit
(see item 5 in “Further Reading” below), where the number of parallel steps
is proportional to log2 n. In honor of its three inventors, the circuit is called
the AKS-sorting circuit. Unfortunately, the actual proportionality factor, com-
puted by Mike Paterson (see item 6 “Further Reading” below), is about 6,200.
This means that the AKS-sorting circuit is better than the Bitonic sorter when
n ≥ 212,400, a number of truly astronomical magnitude!

Further Reading

1. Friedhelm Meyer auf der Heide, Rolf Wanka: Von der Hollerith-Maschine
zum Parallelrechner. Die alltägliche Aufgabe des Sortierens als Fortschritts-
motor für die Informatik. ForschungsForum Paderborn (FFP) 3 (2000)
112–116 (in German).
http://www.upb.de/cs/ag-madh/WWW/wanka/pubs/abstracts/
FFP00ABS.html
This paper shows that many milestones in the development of Computer
Science are closely related to the sorting problem, be it the Hollerith
machine, the first computer program ever written, or the first randomized
algorithm.

2. Chapter 3 (Fast Sorting Algorithms)
Chapter 3 on fast sorting algorithms presents the merge sort approach
that is also used by the Bitonic Sorter.

3. Kenneth E. Batcher: Sorting networks and their applications. In AFIPS
Conf. Proc. 32, 307–314, 1968.
http://www.cs.kent.edu/∼batcher/
http://www.cs.kent.edu/∼batcher/sort.ps
This is Kenneth Batcher’s seminal paper that introduces the Bitonic
Sorter and a proof of its correctness. As in 1968 the 0-1 principle was
not yet discovered, Batcher’s proof is a little bit more complicated than
ours.

4 Parallel Sorting – The Need for Speed 37

4. Donald E. Knuth: The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, 2nd edition, 1998.
This is the classical text on sorting in general, and on sorting circuits
in particular. Its Sect. 5.3.4 contains a wealth of information on sorting
circuits.

5. Miklós Ajtai, János Komlós, Endre Szeméredi: Sorting in c · log n parallel
steps. Combinatorica, 3:1–19, 1983.
This paper describes the currently asymptotically “fastest” sorting cir-
cuit, the famous AKS-sorting circut. Unfortunately, the constant c in the
paper’s title is much too large for real-world applications of the circuit.
Paterson (see item 6) presented a construction where the factor is brought
down to 6,200.

6. Mike S. Paterson: Improved sorting networks with O(log n) depth. Algo-
rithmica, 5:75–92, 1990.
Here, a considerably simplified construction of the AKS-sorting circuit is
presented. This paper is very well written and fun to read (if you are a
theoretical computer scientist). This variant of the AKS circuit “only”
needs 6,200 · log2 n parallel steps.

5

Topological Sorting – How Should I Begin to
Complete My To Do List?

Hagen Höpfner

Bauhaus-Universität Weimar, Weimar, Germany

How on earth shall I handle all of this? I still have to do my homework for
my mathematics class. Furthermore, I have to write an essay for my English
class, but this requires that I first go to the library to borrow a book on the
history of computer science. I also need to search for information on this topic
in the Internet. This reminds me that, after coming back from the last LAN
gaming session, I did not install and connect the computer again. By the way,
I am quite sure that I did not download the math questionnaire so far. It is
still waiting in my Google mail box. On top of this, we are having a party
this evening which requires me to burn a music CD with my favorite artists.
Needless to say this CD must contain the new single by Placebo which I first
have to buy at iTunes.

This is a lot to do, but I also promised my mum to empty the garbage
can, to shine my shoes and to do the dishes. Last but not least, I have to buy
some Coca-Cola for the party. Luckily, the supermarket is on my way to the
library, and I have to buy new dishwashing liquid anyway. But what shall I do
first?

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 5, c© Springer-Verlag Berlin Heidelberg 2011

40 Hagen Höpfner

Well, it is certainly not possible to complete the tasks on my To Do list
in the order they are written. The point is that I can’t burn a CD with-
out having all the songs, and in order to get all songs I have to install the
computer and to connect it to the Internet first. Hence, there are some de-
pendencies among the different tasks, and not all subtasks have been listed
so far. That is why I now pick up my pen and complete my To Do list. Be-
fore doing the dishes I have to buy dishwashing liquid. Therefore, I draw
an arrow from “buying dishwashing liquid” to “doing the dishes.” In order
to buy the dishwashing liquid I have to go to the city center. So, I draw
an arrow from “going to the city center” to “buying dishwashing liquid,”
etc.

Wow, this is much worse than I thought! Where shall I start? This makes
me aware that I have to do a lot. Anyway, the question remains: how shall
I start off with the stuff? An arrow shows me that I have to do something
before I can work on something else. Hence, I can only fulfill a task when no
arrows point to it.

Very well then! I can only start with something that has no incoming
arrows. Thus, I have only the following choices:

• emptying the garbage
• shining my shoes
• installing the computer
• going to the city center

Actually it doesn’t make any difference which of these four alternatives
I choose. Well, I am a nice guy, and therefore first I empty the garbage.

5 Topological Sorting 41

Afterwards I’ll shine my shoes before I install the computer. Following this
I can update my To Do overview and remove the tasks I have done. At the
same time, I can also remove the arrows that start at finished tasks (e.g.
the arrow from “installing the computer” to “connecting the computer to the
Internet”).

Obviously, if I had used a pencil, the updated To Do overview would
be clearer. Then I would have been able to erase the finished tasks and
the canceled arrows. Never mind! The computer is running and I can draw
an electronic task list, by simply using a graphic software. This reminds
me that computer scientists like my brother call such a To Do list with
sub-tasks and arrows a graph. The tasks are represented by nodes of the
graph, and the dependencies are represented as directed edges between
the nodes. Here “directed” means that the direction of the arrow defines
the direction of reading the dependency. If it is possible to come back to
the starting point while tracing (without removing the pen) such a graph,
then the graph is a cyclic graph – in other words there is a cycle in the
graph.

However, what shall I do next? Well, I could still go to the city center. As
I have installed the computer already, I could also connect it to the Internet.
In the end I removed the dependency arrow that pointed to “connecting the
computer to the Internet”. But, all other tasks are still blocked. Since I am
working at the computer at the moment anyway, I can bring it online right
now. Thus, my To Do graph changes again.

42 Hagen Höpfner

Subsequently I could still go to the city center, search online for the infor-
mation that I need for my English essay, buy the Placebo song or print out
my math questionnaire.

Done! In a few minutes I’ll go to the party. Let me shortly summarize the
order in which I finished my To Do list today:

1. emptying the garbage
2. shining my shoes
3. installing the computer
4. connecting the computer to the Internet
5. buying the Placebo song
6. burning the party CD
7. going to the city center
8. buying the dishwashing liquid
9. buying Coca-Cola

10. borrowing the book from the library
11. doing the dishes
12. searching for information on the Internet
13. writing the English essay
14. printing out the math questionnaire
15. answering the math questionnaire

After finishing a subtask, I always removed the entry and all arrows start-
ing at this entry from my To Do graph. Hence, step by step I removed all nodes
from the graph and saved the chosen sequence. You can read the results from
top left to bottom right.

5 Topological Sorting 43

44 Hagen Höpfner

My big brother, who is studying computer science, told me a few min-
utes ago that I used topological sorting. He gave me the following algorithm
description:

The TopSort algorithm outputs the nodes of a directed graph in a topo-
logical order. At this, the graph G = (V, E) consists of the set of nodes V
and a set of edges E of the form (node1,node2), whereas the dependency is
directed from node1 to node2 and V must contain both nodes.

1 function TopSort

2 while V is not empty do
3 cycle:=true
4 for each v in V do
5 if there is an edge e in E of the form (X, v) then

// X is an arbitrary other node

6 remove v from V
7 remove all edges of the form (v, X) from E
8 cycle:=false
9 print v // printing out the nodes

10 endif
11 endfor
12 if cycle=true then
13 print I cannot resolve cyclic dependencies!
14 break // abort while loop
15 endif
16 endwhile
17 end

Moreover, the algorithm detects cyclic graphs that cannot be sorted topo-
logically. This is done by checking whether or not each step removes one node.
In the case that no node is removed before reaching an empty graph, the al-
gorithm automatically stops.

Furthermore, the example used above illustrates a general computer prob-
lem. Computers do their jobs in a “stupid” way, step by step. TopSort aims
at finding one possible topological order. Such a correct topological order
would also be:

• . . .
• going to the city center
• buying dishwashing liquid
• doing the dishes
• . . .
• buying Coca-Cola
• . . .

In this case we would have gone to the city center but would not have
done all necessary shopping. The problem would be, though, that we would
have to go to the city center again in order to buy Coca-Cola. However, this

5 Topological Sorting 45

information has already been removed from the graph. Hence, a little bit of
organizing ability is still required to plan the daily routine.

Further Applications

Topological sorting finds an order that respects the direction of the edges.
This happens independently of the situation represented by the graph and
its nodes because the algorithm does not need to take this into account. The
algorithm simply removes incoming and outgoing edges one by one. Therefore,
it can be used in various areas of computer science. For example, it can help
us to detect deadlocks that might result from parallel access to resources: If
a program wants to exclusively use a resource (e.g., a file) in a computer, the
resource gets locked and cannot be used by other programs. These programs
must wait until the lock is released. A deadlock happens if a program that
waits for a resource locks another resource that is being used by the first
program. Hence, both programs wait for each other and neither of them can
finish its task. It is possible to represent such a wait-for relationship in a wait-
for graph. A deadlock leads to a cycle in the graph and can be detected using
TopSort. In the end, one program participating in the deadlock must be
aborted.

Additional Reading

1. From Wikipedia:
http://en.wikipedia.org/wiki/Topological sorting

6

Searching Texts – But Fast!
The Boyer–Moore–Horspool Algorithm

Markus E. Nebel

TU Kaiserslautern, Kaiserslautern, Germany

Within a computer’s memory many objects to be processed are represented
in the form of text. A straightforward example is text generated by a word
processing program. However, documents published on the Internet are usu-
ally hosted by a Web server in the form of so-called HTML documents, i.e.,
as text with integrated formatting instructions, links to image files, etc. In
this chapter we will focus on the search of words within text. Why? Sim-
ply because of the many situations in which this problem is at hand. Imag-
ine that we performed a Web search using Google and found a Web site
with plenty pages of text. Of course, we want to know where in the text
our search word can be found and we want our Web browser to perform
the task of highlighting all the corresponding positions in the text. Accord-
ingly, the browser needs a routine which finds all those occurrences as fast
as possible. It should be obvious that we face the same or similar demands
quite often. Therefore, we will deal with the so-called string matching prob-
lem, i.e., the problem of searching for all occurrences of a word w within a
text t.

The Naive Algorithm

Within a computer, texts are stored symbol by symbol (letter by letter).
Accordingly, it is not possible to compare a word w with a part of a text in
a single step. In order to decide whether w occurs at a specific position we
need to compare the text and w symbol by symbol. Assuming text t to consist
of n symbols, we will denote by t[i], i an integer between 1 and n, the nth
symbol of t. Thus t[1] denotes the first, t[2] the second symbol, and so on.
Finally, t[n] represents the last symbol of the text. We will make use of the
same notation for the symbols of w, assuming its length to be given by m.
Then, when writing w[j] to represent the jth symbol of word w, j must be

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 6, c© Springer-Verlag Berlin Heidelberg 2011

48 Markus E. Nebel

an integer between 1 and m. As an example consider the text Haystack with
a needle in which we are searching for the word needle. In this case t and w
look like the following (a column headed by number k contains the symbol
t[k] or w[k]):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
H a y s t a c k w i t h a n e e d l e

1 2 3 4 5 6
n e e d l e

In our example, we have n = 22 and m = 6, and t[1] = H, t[2] = a, and
w[4] = d. Please note that spaces of the text have to be considered as symbols
too, and cannot be ignored. In the sequel, we will use this text as our running
example.

In order to decide whether this text starts with the word w = needle, an
algorithm must compare the beginning of t and w symbol by symbol. If all
symbols match, we report success and the first occurrence of w is located at
the first position of t. Obviously this is not the case for our example. In order
to determine that, it is sufficient to compare t[1] with w[1], which yields a
mismatch; t[1] = H �= w[1] = n. By this mismatch our program concludes that
w does not occur at the first position of t. Only if all m comparisons of the
symbols of w to the corresponding symbols of t provide a match is w for sure
contained in t. In our case, a single comparison is sufficient to observe the
contrary, but obviously this is not the case in general. For example, consider
the search of w = Hayrack within t. In this case, even if w does not occur at
the first position of t, the first three comparisons provide a match and we have
to wait until the fourth comparison of w[4] to t[4] to determine a difference;
s is different from r.

The following short program successively executes the comparisons just
discussed. Contrary to our examples it starts with the last symbol of w instead
of the first in order to compare w to a part of t from right to left. The reason
for this will become clear later.

Comparing word w and text t at first position symbol by symbol

1 j := m;
2 while (j > 0) and (w[j] = t[j]) do
3 j := j − 1;
4 if (j = 0) then print(“Occurrence at position 1”);

6 Searching Texts – But Fast! 49

1 2 3 4 5 6 7 8 ...
H a y s t a c k

� j=m=4
d a y s

↓ j:=j−1

H a y s t a c k
� j=3

d a y s

↓ j:=j−1

H a y s t a c k
� j=2

d a y s

↓ j:=j−1

H a y s t a c k
| j=1
d a y s

The figure to the left clarifies the
function of this little program when
searching text t from above for w =
days. Here, a green double arrow
represents a comparison of two iden-
tical symbols; a read bar connects
two symbols for which a mismatch
has been observed. Beginning with
w[4], the text is compared symbol by
symbol to w until either j becomes 0
(which is not the case in our exam-
ple, and would imply an occurrence
of w as part of the text) or the sym-
bols w[j] and t[j] just compared do
not match (which happens for j = 1
in our example). These two condi-
tions are checked within the while-
loop of the program.

In general,

while (j > 0) and (w[j] = t[j]) do j := j − 1;

means that j is decreased by 1 as long as it is larger than 0 and the jth symbol
of the text is equal to the jth symbol of the word. Thus, in cases where the
first m symbols of the text do not match w, the second condition eventually
gets violated, leaving a value of j larger than 0. As a consequence, in line 4
of our program the command if (j = 0) ... will not report an occurrence
(printing the text “Occurrence at position 1” is only a surrogate for any action
to be taken in case of an occurrence of w). If, on the contrary, all m symbols of
w match the first m symbols of t, then the while-loop terminates since j = 0
holds. In this case our program reports success.

Since we have to find all occurrences of w as a substring of t, we obvi-
ously have to search other locations of t than just the beginning. In fact, w
may start at any position of t which has to be checked by our program. In
this context, any position of t means that we have to expect an occurrence
of w at the second, third, . . . positions of t also. For the second position
we must decide if w[1] = t[2] and w[2] = t[3] and . . . and w[m] = t[m + 1]
hold. The third, fourth, . . . positions have to be examined analogously; the
(n − m + 1)th position is the last to be considered where w[m] and t[n] are
aligned. Considering position pos, we have to compare w[1] and t[pos], w[2] and
t[pos+1], . . . , w[m] and t[pos+m − 1] (which our algorithm will do in reverse
order). By introducing an additional variable pos we can easily extend our
program to (according to our preliminary considerations) search for w at any
position of t (parts of the program adopted from above are printed in blue).

50 Markus E. Nebel

Naive String Matching Algorithm

1 procedure Naive
2 pos := 1;
3 while pos ≤ n − m + 1 do // search all positions
4 j := m;
5 while (j > 0) and (w[j] = t[pos + j − 1]) do
6 j := j − 1;
7 if (j = 0) then print(“Occurrence at position”, pos);
8 pos := pos + 1;
9 wend;

10 end.

The outer while-loop at line 3 ensures that all positions where w might
occur as a substring of t are indeed considered. The following figure clarifies
the improvements of our algorithm:

1 2 3 4 5 6 7 8 9
H a y s t a c k ...

| � � � pos=1
d a y s

↘ pos:=pos+1
H a y s t a c k ...

| pos=2
d a y s

↘ pos:=pos+1
H a y s t a c k ...

| pos=3
d a y s

...

For pos = 1 four comparisons are necessary: three matches and one mis-
match. Again, those comparisons are realized by decreasing j step-by-step.
Graphically speaking, by increasing pos by 1 afterwards, w is moved one posi-
tion to the right. The first comparison performed there is unsuccessful; thus,
pos is immediately increased (w moved one position to the right) again, and
so on.

At this point we can give a first hint why comparing the word and the text
from right to left is of advantage: As we will observe later, it is not always
necessary to consider all positions of t (all possible values for pos). Some
may be skipped without our missing any occurrence of w. In such a case,
comparing the word and the text from right to left allows for larger jumps
without complicated calculations.

The algorithm presented before is a first solution to the string matching
problem. Our program will report all occurrences of w as a substring of t
in all circumstances (where else we should expect an occurrence if not at all

6 Searching Texts – But Fast! 51

positions?). However, its runtime can be high since in the worst case we make
about (number of symbols of t) × (number of symbols of w) comparisons to
solve the problem. As an example, this situation occurs for t = aaaaaaaaaaaaaa
and w = baaa.

We can think of two cases. First, it might be impossible to find an algo-
rithm which identifies all occurrences of w in t with less comparisons. In this
case nothing is left but accepting this effort. Second, we just might not have
been clever enough so far to find such an algorithm. As we will see in the
subsequent section, the latter is indeed the case.

The Boyer–Moore–Horspool Algorithm

We will see in this section how to considerably speed up our naive solution to
the string matching problem with some small changes only. For this purpose,
we will make use of the idea presented in the following example:

H a y s t a c k w i t h a ...
| � �

s t i c k

−−−−−→ s t i c k

Comparing w with t symbol by symbol we observe that an a of the text does
not match the i of the word. However, since symbol a is not present in w at all,
there cannot be an occurrence of w even one or two positions to the right since
in both cases symbol a of the text would be compared to a symbol different
from a of the word. As a consequence, we can shift w by three positions to the
right (set pos := pos+3 within our program) without missing any occurrence
of w. This proves that our naive algorithm performs needless comparisons.

Let’s continue our example (from now on we will align the offset of w
according to the rightmost symbol of t we have already seen):

H a y s t a c k w i t h a ...
|

s t i c k

−−−−→ s t i c k

If the comparison of w and t at the actual position is completed (in the
situation just depicted by the mismatch of i and k), we can shift w to the
right as long as we do not cover symbol i of the text by a symbol i found
in w. In our example, this is symbol i depicted in red. Any shift of shorter
distance would try to align i of the text to a symbol distinct from i and thus
would yield a preassigned mismatch. Only the new position of w shown in the
example deserves consideration as all shorter shifts definitely would cause a

52 Markus E. Nebel

mismatch. If the symbol of t used for realigning w (in the subsequent example
symbol i) does not show up within w at all, we can shift w by m (i.e., 5 in
our example) positions to the right without losing any occurrence:

H a y s t a c k w i t h a ...
|

s t a c k

−−−−−−−−−−−→ s t a c k

Now, notice that we can determine the number of positions we may shift w
to the right independently of the actual position and from knowledge of w
only. For a given w we just have to determine once at which minimal distance
(number of symbols) to the right end of w each possible symbol occurs. This
information is stored within a table (array) D with an entry for each possible
symbol. We will use D[a] to denote the entry for symbol a in the sequel.
Accordingly, for a word w with the second to last symbol k we would set
D[k] = 1 (symbol k is at minimal distance 1 to the right end of w). If a
symbol v does not show up in the word at hand, we set D[v] = m. The
following example clarifies this procedure. In order to make the presentation
more convenient we decided to omit all columns of D corresponding to symbols
not in use (whose entries, as already mentioned, are given by m, the length
of w):

w = stacks
Table D = Explanation:

a c k s t
3 2 1 5 4

3←−−−−−−−
s t a c k s

2←−−−−−
s t a c k s

1←−−
s t a c k s

5←−−−−−−−−−−−−
s t a c k s

4←−−−−−−−−−−
s t a c k s

The last s (the one at the right end of w) is not considered since it
would imply an entry of 0, corresponding to a shift of word w by
no position. This is due to our decision to always use the rightmost
symbol of t already seen, i.e., the one currently aligned to w[m], for
deciding the next position to be considered.

6 Searching Texts – But Fast! 53

w = needle
Table D = Explanation:

e d l n
3 2 1 5

Within word w = needle the
rightmost e shows up 3 posi-
tions from the right end of w.
Again, we have to ignore the
last symbol (an e) since it would
imply a shift by zero positions.
The rightmost d can be found
at distance 2, the rightmost l at
distance 1 and the rightmost n
at distance 5 from the right end
of w.

w = with
Table D = Explanation:

h i t w
4 2 1 3

Within w = with the rightmost i
is located at distance 2, the right-
most t at distance 1, and the
rightmost w at distance 3 from
the right end of w. Since symbol
h only shows up at the rightmost
position of w, its entry within D
is the same as in cases where h
is not present at all, i.e., equal to
the length of w, 4.

In general, we can describe the entries of D by the following formula:

D[x] =

{
m if x is none of the first m − 1 symbols of w,
m − i if i is the rightmost position �= m with w[i] = x.

According to our examples above, the first case implies that w can be
shifted to the right by its entire length since the symbol at hand does not
occur within w or occurs only at the rightmost position. In order to compute
D using a program, we just have to execute two loops one after the other:

Computing Table D

1 for all symbols x do
2 D[x] := m; // D[x] = m for any symbol x not occurring within w
3 for i := 1 to m − 1 do
4 D[w[i]] := m − i;

// overwrite initialization for symbol observed within w

54 Markus E. Nebel

Note that for symbols occurring several times within w, the loop in lines 3
and 4 assigns different values to the corresponding entry of D, leaving the
largest value, i.e., the rightmost occurrence, for last.

Now everything is prepared to change our naive algorithm into the so-
called Boyer–Moore–Horspool algorithm. This algorithm for the string match-
ing problem was invented by R. Horspool in 1980 as a simplification of an
algorithm due to Boyer and Moore (see also the section Further Reading). All
we have to do is

1. compute D once before we start the search, and
2. replace line 8 (i.e., pos := pos + 1) with pos := pos + D[t[pos + m − 1]].

This way we obtain (the computation of D omitted):

The Boyer–Moore–Horspool Algorithm

1 procedure BMH
2 pos := 1;
3 while pos ≤ n − m + 1 do begin // search all positions
4 j := m;
5 while (j > 0) and (w[j] = t[pos + j − 1]) do
6 j := j − 1;
7 if (j = 0) then print(“Occurrence at position”, pos);
8 pos := pos + D[t[pos + m − 1]];
9 wend;

10 end.

If now during execution of the algorithm we have to shift w to the right
(have to increase pos), then we ensure that at the new location a symbol of
w matches t[pos + m − 1] (according to the value of pos before increment)
without missing any occurrence of w. If it is impossible to achieve this match,
w entirely skips symbol t[pos + m − 1]:

pos ↓
... H a y s t a c k w i t h a ...

|
s t a c k

D[a] = 2
−−−→ s t a c k

By construction, we know that the two a match without comparison.
But what is our gain by this modification? First, we have to admit that

for the worst case nothing has been achieved and the new algorithm performs
as poorly as the naive one. There are inputs for which D[x] = 1 holds for
all symbols x occurring within the text (in such a case, the text consists of
a repetition of the second to last symbol of w). As a consequence, procedure
BMH would like the naive algorithm search for w at any possible position of

6 Searching Texts – But Fast! 55

the text. An example for such an input is given by text t =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
a a

together with w = baaaa. In this case every position gives rise to five compar-
isons since the four symbols a of w are always compared with symbols of the
text before the fifth comparison yields a mismatch. Furthermore, this word w
implies D[a] = 1; thus, a total number of 18 × 5 = 90 comparisons follows.

From a practical point of view it is rather unlikely to encounter such a text
combined with such a search word. As a matter of fact our new algorithm will
be much faster than the naive one for almost all inputs of practical importance.
For comparison, let us return to our initial example given by the text

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
H a y s t a c k w i t h a n e e d l e

and the search word w = needle, for which we already know that D is given
by:

e d l n
3 2 1 5

It can easily be checked that the naive algorithm would perform 24 compar-
isons of text and word in order to find the single occurrence. Our improved
algorithm is much faster yet. In order to determine D it must consider four
different symbols. Afterwards, for the search of w only 11 comparisons are
needed, of which six are necessary just to establish the single occurrence of
needle. As a consequence, since our text has length 22, this shows that it is
possible to search an entire text without regarding all its symbols (only half
of them in our example). At first, this sounds sort of crazy. The key idea for
this (in most cases) rather efficient strategy was to compare the text and the
search word symbol by symbol from right to left. Only because we first regard
a symbol of the text which later has to be aligned to the search word again
(i.e., only because we consider t[pos+m − 1] first), it becomes possible to skip
certain positions without additional comparisons, since we can infer potential
mismatches in advance. Thus, comparing from right to left is fundamental to
our improvements – a small change of high impact.

Further Reading

1. Chapter 1 (Binary Search)
In this chapter fast search for data is discussed. Each item is assumed
to be uniquely identified by a so-called key the same way as a number
plate uniquely identifies a car. By sorting the data according to its keys
it becomes possible to find items efficiently.

56 Markus E. Nebel

2. Chapter 20 (Hashing)
This chapter discusses a further idea about how to maintain a set of data
in an efficient way. Again, items are assumed to be identified by a unique
key; the keys then are used to compute an address (position) within a
memory at which an item is stored.

3. Wikipedia article on the Boyer–Moore string search algorithm
http://en.wikipedia.org/wiki/Boyer moore
This Wikipedia article deals with the Boyer–Moore Algorithm for the
string matching problem. This algorithm is a variant of the one discussed
in this chapter, making use of different heuristics to compute the step
width applied when shifting the search word w along the text t.

4. http://en.wikipedia.org/wiki/String matching
This article deals with the string matching problem in general and contains
several links to different ideas on how to find all occurrences of a word
within a text by means of an algorithm.

7

Depth-First Search
(Ariadne&Co.)

Michael Dom, Falk Hüffner, and Rolf Niedermeier

Friedrich-Schiller-Universität Jena, Jena, Germany
Humboldt-Universität zu Berlin, Berlin, Germany
Technische Universität Berlin, Berlin, Germany

“Now this happens to those who become hasty in a maze: their very
haste gets them more and more entangled.”

Lucius Annaeus Seneca (4BC– 65AD)

Ariadne, who according to Greek
mythology was the daughter of Mi-
nos, the king of Crete, fell in love
with Theseus. This Athenian hero
had been entrusted with killing the
Minotaur, a monster half man and
half bull. The challenge was made
vastly more difficult by the fact that
the Minotaur was hidden in the Lab-
yrinth. The clever Ariadne provided
her hero with a ball of thread: by fix-
ing the end of the thread at the en-
try of the Labyrinth and unrolling the thread while traversing the Labyrinth,
Theseus could, on the one hand, avoid searching parts of the Labyrinth re-
peatedly, and, on the other hand, be sure to find his way back into Ariadne’s
arms.

Not just the ancient Greeks had to deal with the efficient search of spaces
such as labyrinths; this task also plays a central role in computer science. One
method for this is depth-first search, which we examine more closely in the
following.

Algorithmic Idea and Implementation

As already mentioned, the problem is to completely search a labyrinth. Here,
a labyrinth is a system of corridors, dead ends, and junctions, and the task

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 7, c© Springer-Verlag Berlin Heidelberg 2011

58 Michael Dom, Falk Hüffner and Rolf Niedermeier

is thus to visit every junction and every dead end at least once. Further, we
would like to pass each corridor no more than once in each direction – after
all, Theseus needs to have enough strength in the end for both the Minotaur
and Ariadne.

Probably the simplest idea to solve this problem is to just walk into the
labyrinth from the starting point and to tick off each junction as it is encoun-
tered. If you wind up in a dead end or a junction you have seen before, you
turn around, go back to the last junction, and try again from there in another,
still unexplored direction. If there is no unexplored direction, then go back to
another junction and so on.

Does this method actually lead to the goal? Let us look at the search in
more detail; to simplify the description, we use a piece of chalk instead of a
thread. With the chalk we mark at each junction the outgoing corridors, with
one tick for corridors previously traversed, and with two ticks for corridors
traversed twice (that is, in two directions). Specifically, the rules for our search
in the labyrinth are as follows.

• If you are in a dead end, turn around and go back to the last junction.
• If you reach a junction, tick the wall of the corridor you came from to be

able to find the way back later. After this, there are several possibilities:
1. First, you check whether you moved in a circle: If the corridor you

came from just got its first tick, and there are also ticks visible on
other corridors of the junction, then this is the case. You then make a
second tick on the corridor you came from and turn around.

2. Otherwise, you check whether the junction has unexplored corridors:
If there are corridors without ticks, then choose an arbitrary one (say
the first to the left), mark it with a tick and leave the junction through
this corridor. (Incidentally, this is the case at the start of the search.)

3. Otherwise, there is at most one corridor with only one tick, and all
other corridors have two ticks. Thus, you have already explored all
corridors leaving the current junction, and leave through the corridor
with only one tick, giving it a second tick as a matter of form. If there
is no such corridor, that is, all corridors already have two ticks, then
you are back at the start and have completely searched the labyrinth.

Let us now look at the example shown in Fig. 7.1, where a path from the
start A to the goal F is sought. (That is, again we must traverse the entire
labyrinth, but the search can be cut short when F is found.) We assume that
a dead end can be recognized as such only upon reaching it.

You start from A northwards. The first junction is C. There you leave a
tick at the southbound exit (1). Of course there is no other tick here, so you
choose the first unmarked corridor to the left, which is the one toward the
west, and tick it (2). Then you reach a dead end at B and turn around. Back
at C, the westbound corridor has now two ticks, the southbound one, but
the northbound is not marked at all. Thus, you choose this way. At E, there
is again an unexplored junction, and from the three possible corridors you

7 Depth-First Search (Ariadne & Co.) 59

Fig. 7.1. Example for depth-first search in a labyrinth. Starting from A, a path
to F is sought. Numbers mark the places where chalk ticks are left

choose the one towards the west. After two turns, you cross straight ahead
over the junction at G, leaving two ticks behind (7 and 8). In H, you reach
a dead end, so you again turn around. In G, there is only one option left:
southwards to E. Here the rule against running in circles comes into effect
for the first time: On entering E, you made a tick at the northbound exit
of E (11); further, there is a tick at the southbound exit (5) and one at the
westbound exit (6) – thus, you need to turn back. Over the junction G and
two curves you go back, so that the northern part is now completely searched
and you are back at E. Towards the east, there is no tick, and you go there.
Finally, you reach the goal at F.

The principle we have learned here is called depth-first search, since as
described we always go as deep as possible into the labyrinth and only turn
around when it is not possible to proceed or a known place is encountered.
Only in these cases do we go back a bit and try again from an earlier point
into another direction.

The rules for depth-first search are so simple that they can be taught
to a computer with only a few lines of code. For each junction, a “state”
is stored, and initially the states of all junctions are set to “undiscovered.”
When the DepthFirstSearch function is called at a junction X, it is first
tested whether we moved in a circle (line 2 in the program fragment Depth-

FirstSearch I shown in Fig. 7.2). Next, it is checked whether the goal was

60 Michael Dom, Falk Hüffner and Rolf Niedermeier

DepthFirstSearch I

1 function DepthFirstSearch(X):
2 if state[X] = “discovered” then return; endif
3 if X = goal then exit “Goal found!”; endif
4 state[X] := “discovered”;
5 for each neighboring junction Y of X
6 DepthFirstSearch(Y);
7 end for
8 end function // End of DepthFirstSearch function
9 DepthFirstSearch(start junction); // Main program

Fig. 7.2. Program code for depth-first search using recursion

reached (line 3) – if so, the program quits with the “exit” command, and
the search is finished. Otherwise it goes on, and the junction X is marked
as “discovered” (line 4). Now, all neighboring junctions that have not been
explored yet need to be visited. To do this, the DepthFirstSearch function
calls itself for each neighboring junction Y (lines 5–7). This is a frequent trick
in programming called recursion, which was already described in Chap. 1.
When the newly called DepthFirstSearch function notices that Y was al-
ready visited and we thus moved in a circle, it immediately returns (line 2)
to the calling function at the junction X. Otherwise, the search continues at
junction Y .

Sometimes, one wants to avoid recursion, one reason being that at each
recursive call in the computer implementation additional time is spent to
allocate variables etc. In this case, the depth-first search can be coded without
recursion using a stack. A stack is a data structure that allows placing objects
(in our case junctions) on top of the stack or to remove the object currently
on top of the stack. For us, the stack serves to store the return path; we
always put a junction X on top of the stack when leaving it, together with
a number “exits” that indicates how many of the corridors leaving X have
already been explored (see Fig. 7.3). For each junction, we have an array listing
all neighbor junctions – thus, we can easily retrieve, e.g., the fifth neighbor
junction of a junction X when needed. The variable “mode” contains the
information whether we are following an unexplored corridor or whether we
are coming back from an already explored junction, going through a corridor
that we have already passed in the other direction.

Applications

The depth-first search method works not only for labyrinths, but it also has
applications in completely different contexts, as we see in this section.

7 Depth-First Search (Ariadne & Co.) 61

DepthFirstSearch II

1 X := start junction; mode := “forwards”;
2 repeat
3 if mode = “forwards” then

// we came here through a new corridor
4 if state[X] = “discovered” then
5 mode := “backwards”;
6 take the top pair (X, exits) off the stack;
7 else // junction is unexplored so far
8 if X = goal then exit “Goal found!”; endif
9 state[X] := “discovered”;

10 if X has no exits then exit “Goal not found!”; endif
11 put the pair (X, 1) on top of the stack;
12 X := the first neighboring junction of X ;
13 endif
14 else // we are coming back
15 if exits < number of neighboring junctions of X then
16 exits := exits + 1;
17 put the pair (X, exits) on top of the stack;
18 mode := “forwards”;
19 X := neighboring junction number exits of X ;
20 else // there are no unexplored corridors here any more
21 if the stack is empty then
22 exit “Goal not found!”;
23 else // we go back further
24 take the top pair (X, exits) off the stack;
25 endif
26 endif
27 endif
28 end repeat

Fig. 7.3. Program code for depth-first search without recursion

Example: Web Search

Here, we do not consider Theseus who is wandering about in the labyrinth,
but instead observe a student called Sinon who is searching for a specific Web
page.

Sinon Davis has recently been to a party given by his classmate Ariadne,
and there he struck up a conversation with a cute girl. Now he would like to
see her again, but unfortunately he has not asked for her name. What to do?
Of course, Sinon could ask Ariadne, but first he is too shy, and second Ari-
adne herself does not know all the guests from her party. Finally, Sinon has a
bright idea: Why not look up the girl on the Internet site “fazebook.org”? In
this commonly known social network platform, almost every young person in
the country has a profile, typically with a photo and with links to profiles of

62 Michael Dom, Falk Hüffner and Rolf Niedermeier

Fig. 7.4. Depth-first search in fazebook: The numbers show the order of the hops
from profile to profile. A straight arrow means that a profile contains a link to
another profile. A curved arrow means that the “Back” button is used at this place.
Note that not all shown links are used since some of them are displayed in violet at
the moment when the profile is visited

friends. Hence, Sinon could just visit Ariadne’s profile in fazebook and, start-
ing from there, go through the profiles of all her friends, friends of friends,
friends of friends of friends, and so on – until he has either found his adored
(hopefully, she has a photo in her profile) or completely scanned the relevant
parts of Ariadne’s surrounding. Sinon, therefore, is confronted with the follow-
ing task: scan all profiles in fazebook that are reachable from Ariadne’s profile
via links whose owners have been at the party. As in the previous section, the
difficulty is again, on the one hand, not endlessly to move in a circle and, on
the other hand, to check everything completely and systematically. This can
be done efficiently with a depth-first search in the network of the profiles in
fazebook.

Thus, assume that Sinon is beginning his search and is starting at Ari-
adne’s profile. Hence, he clicks on the first link in the list of Ariadne’s friends
and arrives at the profile of Theseus (Fig. 7.4). Since Theseus is not the person
Sinon is searching for, Sinon continues with clicking on the first link of his

7 Depth-First Search (Ariadne & Co.) 63

profile. In this way, he follows the links from profile to profile, always taking
care not to follow links that lead to profiles that he has already visited. Sinon,
a skilled Web surfer, can recognize these links because his browser displays
them in violet instead of blue (this helpful function of the browser in a sense
corresponds to the chalk markings in our first example). When Sinon finally
reaches a profile whose owner has not been at the party, or when all friends of
the owner have already been processed (and displayed in violet), then Sinon
clicks on the Back button of his browser and continues with the friends on
the resulting profile. Like DepthFirstSearch II, the Back function of the
browser uses a stack; whenever a link is clicked, the address of the page con-
taining the link is put on the stack. Furthermore, whenever the Back button
is used, the browser jumps to the address on the top of the stack and removes
the address from the stack.

If Sinon’s adored one has a photo on her profile, and if her profile can be
reached from Ariadne’s profile by following a series of links whose owners were
all at the party (which was our assumption), then Sinon will definitely find
her with this method! If, however, Sinon finally ends up on Ariadne’s profile
by clicking on the Back button, and all links on Ariadne’s profile have been
visited (and, hence, displayed in violet), then this means that Sinon has bad
luck and will not find her – but at least he can be sure that he has not missed
any of the profiles coming into question.

Example: Labyrinth Creation

Depth-first search is useful not only for Theseus, but also for the Minotaur: it
can be used to create very confusing labyrinths. The method is very simple:
Take a regular grid that consists of squares that are separated by “borders”,
and start the depth-first search at an arbitrary square of the grid. Then, the
depth-first search recursively calls itself for all neighboring squares in random
order (for example, the random number algorithm from Chap. 25 can be
used here). Whenever a square is visited for the first time, the border to the
preceding square is destroyed (that is, the border to the square from which
the depth-first search reached the new square). The result is a pattern like
the one shown in Fig. 7.5. Since the depth-first search visits each square, it
creates a path from the starting point to each square and, therefore, from each
square to each other square. However, these paths are not easy to discover.

Example: Television Shows

Let us assume that the television show “Sick Sister” is going to produce two
new seasons. In this show, the candidates are put into the “Sick Sister House,”
where they are observed by cameras the whole day (and night). In order to
provide interesting entertainment, the candidates should be at loggerheads as
often as possible, which means that in each season there should be no two
candidates in the house who like each other. Now assume that the candidates

64 Michael Dom, Falk Hüffner and Rolf Niedermeier

Fig. 7.5. Example for a labyrinth created by a depth-first search

for the upcoming two seasons have already been selected, but for each candi-
date it still has to be decided – of course, obeying the rule “no two candidates
in the house that like each other” – whether he (or she) is part of the first or
the second season.

To solve this task, one can create a “sympathy graph”: on a piece of pa-
per, draw a small circle – called vertex – for each candidate, and connect two
circles with a line – called edge – if the corresponding candidates like each
other (see Fig. 7.6 for an example).1 Now, the task is to color the vertices of
the graph in such a way that not more than two colors are used, each vertex
gets exactly one color, and no two vertices that are connected by an edge
get the same color. Once the graph is colored, the color of each vertex tells
in which season the corresponding candidate has to take part. The desired
“two-coloring” for the graph can be found using a depth-first search: Choose
an arbitrary vertex and arbitrarily assign one of the two allowed colors to
it. Then start the depth-first search at this vertex. Whenever the depth-first

1 This type of graph, consisting of vertices and edges, has nothing to do with graphs
of functions as they are known in the field of mathematics called analysis. “Vertices-
and-edges graphs” can be used to model a variety of circumstances and objects,
for example, labyrinths: each dead end and each crossing of the labyrinth can be
modeled as a vertex and each path of the labyrinth as an edge.

7 Depth-First Search (Ariadne & Co.) 65

Fig. 7.6. A “sympathy graph”: If two persons like each other, then the correspond-
ing vertices (marked with the initials of the persons) are connected by an edge

search comes from a vertex X to a vertex Y that has not been visited before,
Y gets the color that X does not have. If the depth-first search comes from
a vertex X to a vertex Y that has already been visited, check whether X
and Y have different colors. If this is not the case (that is, two vertices of
the same color have been found that are connected by an edge), then it is
not possible to color the graph as desired. Otherwise, the depth-first search
will yield the coloring and provide for exciting entertainment with “Sick Sis-
ter.”2

We mention in passing that graphs that can be colored with two colors
as described are called bipartite; they are exactly those graphs that do not
contain a cycle of odd length. If the candidates shall be distributed among
three seasons instead of two, then the task is much more difficult and nobody
knows whether it can be solved efficiently with a depth-first search. (The
problem is that whenever one reaches a vertex that has not been visited before,
one has the choice between two colors and does not know which of them to
take.)

Example: Traffic Planning

A further application of depth-first search reads as follows. For the sake of
traffic calming in his town, councilman Hermes wants to declare a number of
streets to be one-way streets. Thereby, Hermes has to beware of incurring the
wrath of the car drivers: He may only prune the street network in such a way
2 In the special case where the sympathy graph consists of several parts – called
“connected components” – that are not connected to each other, then the depth-first
search has to be executed separately for each connected component. This can even
provide a way to distribute the candidates among the seasons as equally as possible
(concerning the number of candidates): just exchange the two colors within some of
the connected components.

66 Michael Dom, Falk Hüffner and Rolf Niedermeier

that no isolated “islands” are generated that cannot be entered or left – that
is, it must still be possible to drive from each place to each other place. In
graph theory, one would say that the street network must remain one single
“strongly connected component”. Again, this problem can be solved efficiently
by using depth-first search; Chap. 9 takes a closer look at this issue.

Breadth-First Search

One problem of depth-first search is that one can quickly move far away from
the start. In many cases, however, it is known that the goal is not too far. For
example in fazebook, it can be assumed that the wanted profile is at a distance
of maybe at most three from the host. In this case, a breadth-first search is
more appropriate: It searches the graph layer-wise from the start point, that
is, first all direct neighbors (distance 1), then all vertices at distance 2, etc.
For this, a data structure called “queue” is used (instead of a stack as is
used for depth-first search). A queue allows us to append vertices at the end
and to remove the vertex that is currently at the front; in case of breadth-first
search, whenever a vertex is removed from the queue, one jumps to this vertex.
Therefore, breadth-first search is not applicable for searching a labyrinth: One
cannot simply note a junction on a list and “jump” to it on demand. For many
other applications (such as the Web search), though, this is not a problem.
The program fragment shown in Fig. 7.7 shows breadth-first search in detail.

The queue always holds the vertices that still have to be visited. Thus,
initially we add the start vertex to the queue (line 2). As long as the queue
has not become empty, the following is repeated: The first vertex is taken
out (lines 3 and 4), and all neighbors of this vertex are added to the queue

BreadthFirstSearch

1 begin // initially, the queue is empty
2 append the start vertex at the end of the queue;
3 while queue is not empty
4 take the first vertex X from the queue;
5 if state[X] �= “discovered” then
6 if X = goal then exit “Goal found!”; endif
7 state[X] := “discovered”;
8 for each neighboring vertex Y of X
9 append Y at the end of the queue;

10 end for
11 endif
12 end while
13 end

Fig. 7.7. Program code for breadth-first search

7 Depth-First Search (Ariadne & Co.) 67

Fig. 7.8. Example for breadth-first search in the labyrinth

(lines 8 and 9). To avoid searching the neighbors of a vertex more than once,
whenever a vertex has been treated in this way, it is marked as “discovered”
(line 7), and discovered vertices are skipped (line 5).

As an example, we will look at the same graph that has already been used
for depth-first search: the labyrinth (Fig. 7.8). Initially, the queue holds only
the vertex A. This vertex is taken out, and all neighbors of A are appended;
this is only C. The resulting queue is depicted next to A. The search continues
with taking out the first element of the queue, which is C. Strictly speaking,
all four neighbors of C would now be added to the queue, but as a small
optimization we ignore A, since it is already discovered and would not have
any effect when taken out of the queue. Thus, B, E, and D are added. At B,
no new vertices are added, and we continue directly at E. There, G and F
are appended, while C is being ignored. At D, again nothing happens, and we
continue at G. Here H is appended, but at F we already find the goal.

It is easy to see that the order in which vertices are visited is very different
than with depth-first search (Fig. 7.1). In breadth-first, vertices are visited in
order of their distance from the start vertex: first vertex C (distance 1), then
B, E, and D (distance 2), finally G and F (distance 3). This also implies that
breadth-first always finds a shortest possible path to the goal, and does not
consider longer paths in-between.

Incidentally, if a stack is used here instead of a queue, then the algorithm
executes a depth-first search instead of a breadth-first search. In contrast to

68 Michael Dom, Falk Hüffner and Rolf Niedermeier

algorithm DepthFirstSearch II, however, the stack is not used to store
the return path, but to memorize the junctions to which corridors have been
seen but that have not been visited immediately. Therefore, the stack can be
significantly larger than with DepthFirstSearch II.

What to choose now with a concrete problem, depth-first search or
breadth-first search? Depth-first search is usually slightly easier to imple-
ment, since by using recursion, it is not necessary to explicitly maintain a
data structure like the queue of breadth-first search. Further, breadth-first
search usually uses more memory; for difficult problems, it can even happen
that available memory is not sufficient. On the other hand, breadth-first search
always finds a shortest path (with respect to the number of edges) and is fast,
in particular when the graph is very large but the goal is close to the start. In
this case, depth-first search can easily get lost in more distant regions. Thus,
which algorithm is the better one depends on the situation at hand.

Further Reading

1. Presentations on depth-first search can be found in most algorithm text-
books.

2. Chapter 9 (Cycles in Graphs)
In this chapter, another application for depth- and breadth-first search is
shown.

3. Chapter 8 (Pledge’s Algorithm)
In our labyrinth example, we assumed that standing at a junction, we can
see all exits. But what happens when our torch extinguishes and we are
in the dark? Even then it is possible to find the goal; how to do that is
explained in Chap. 8.

4. Chapter 32 (Shortest Paths)
Breadth-first search finds a shortest path if the measure is the number of
vertices passed. Often, though, the distances between vertices are different,
and we want a path where the sum of the length of the edges is as small
as possible. This problem is treated in Chap. 32.

Acknowledgement

We thank Martin Dietzfelbinger (Ilmenau) for many constructive suggestions.

“Everything on earth can be found, if only you do not let yourself be
put off searching.”

Philemon of Syracuse (ca. 360BC– 264BC)

8

Pledge’s Algorithm

– How to Escape from a Dark Maze

Rolf Klein and Tom Kamphans

Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
Technische Universität Braunschweig, Braunschweig, Germany

“There must be some way out of here,” said the joker to the thief,
“There’s too much confusion, I can’t get no relief.”

from “All Along the Watchtower” by Bob Dylan

“Oh dear, the light’s gone out! How do I get out of here? Maybe exploring
the tunnels below the imperial Roman baths in Trier all alone was not such a
good idea. But wait! Recently, I read something about systematically search-
ing a maze with crossings and tunnels: depth-first search. But, unfortunately,
one needs some light and chalk for markings. So this does not work in the
dark. Do I really have to spend the night in here?”

What can we do in this situation? Let’s try something. We just follow our
nose, carefully moving forward until we hit a wall. Then we turn right and
follow this wall, always touching the wall with our left hand, until we reach
the exit. This works fine in a maze like this,

but if we hit some kind of pillar, we get into a loop!

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 8, c© Springer-Verlag Berlin Heidelberg 2011

70 Rolf Klein and Tom Kamphans

So, our first idea does not work in general. We need to leave a pillar
eventually. Next try! Follow our nose until we hit a wall; follow the wall until
we can move straight ahead in the original “nose” direction. Now, the pillar
is no longer a problem:

But this approach does not work in our first example.

8 Pledge’s Algorithm 71

“Now it gets scary! Whatever I try, nothing works. But there must be
some way out of here – after all I did get in somehow.”

Of course there is a way out of the maze. We just have to find it. So, is
there an algorithm that finds a path out of every possible maze? Even in the
dark and without any tools such as chalk or GPS?

Amazingly, such an algorithm exists!

Pledge’s algorithm

1 Set angle counter to 0;
2 repeat
3 repeat
4 Walk straight ahead;
5 until wall hit;
6 Turn right;
7 repeat
8 Follow the obstacle’s wall;
9 until angle counter = 0;

10 until exit found;

It is not sufficient to just watch the direction of one’s nose; we need to
count the turns that we make while following the walls.

For simplicity, let us assume that all corners are rectangular, as in our
examples. Then there are only left and right turns of 90 degrees each. We
count these turns as follows. For every left turn we add 1 to our counter, for
every right turn we subtract 1 from the counter (in particular, we subtract 1
for the very first turn we make when hitting a wall).

This algorithm is said to have been invented by a 12-year-old boy named
John Pledge. And it works! Not only for our examples, but in every maze!
Let’s try to prove this.

Suppose Pledge’s algorithm does not find us a way out. Then we get stuck
in a loop that will be followed on and on. Why? There are but a few points
where we may change our direction, the corners of obstacle walls, and from
every corner the first point on an obstacle seen in the initial nose direction. If
we reach one of these points twice with the same angle-counter value, the path
between both visits is repeated forever, because our behavior never changes.

Otherwise, we reach every corner at most once with the same angle-counter
value, in particular, with value 0. When all these visits have been made, we
will never again leave the current obstacle, because whenever we can, the
counter won’t be 0. Thus, our path gets cyclic.

Moreover, we can show that the loop we are following forever can have no
self-crossings. In a crossing, two straight segments of the path – let’s call them
A and B – will meet. One of them – say A – has to be a free segment; that is,

72 Rolf Klein and Tom Kamphans

the segment does not lead along an obstacle wall, because walls of obstacles
do not cross.

Let z be the crossing of A and B and let CA(z′) and CB(z′) be the angle-
counter values in a point z′ shortly behind z, having reached z via A and B,
respectively. Then, we have

CB(z′) = −1,

CA(z′) = −1 + 4 · k for k ∈ Z,

because right after z our nose points in the same direction. For k ≥ 1, we get

CA(z′) = −1 + 4k > 0.

But our angle counter value can never become positive. This is because
after hitting a wall the counter has value −1. As soon as it reaches 0, we leave
the wall. After hitting the next wall, it gets negative again, and so on. Hence,
we must have k ≤ 0.

From k = 0 we would conclude CA(z′) = CB(z′). In this case, the parts of
the path along A and B behind z would never separate again. So, if we walk
along segment B, after visiting z, we would never walk along A again – and
vice versa. This contradicts the fact that both A and B are part of an endless
loop.

Thus, only the case k ≤ −1 remains. Then, we have CA(t) < CB(t) for
every point t from z′ to the point v where both paths split. Moreover, in v we
must have CB(v) = 0. So these parts of the path look as shown in the next
figure. We do not have a real crossing – the parts of the path just touch each
other.

8 Pledge’s Algorithm 73

So far, we have shown the following. If the Pledge algorithm doesn’t get
us out of a maze, we end up in an endless cycle that has no self-crossings.

Assume that we traverse this loop in counterclockwise direction. Then, we
have four more left turns than right turns, and our angle counter increases
each time we complete a cycle. Eventually, its value must become positive,
but we have already seen that this cannot happen. Thus, we traverse the loop
in clockwise direction. In every pass, our angle counter decreases by 4. That
means, we keep following a wall with our left hand without ever leaving it.
But then we are inside a closed room – and there is no way out!

You can use the Java applet http://www.geometrylab.de/Pledge/ to
draw a maze and observe how Pledge’s algorithms deals with it. By the way,
it also works for mazes with non-rectangular angles. In this case, we have to
exactly add the (signed) turning angles instead of just counting the number
of turns.

74 Rolf Klein and Tom Kamphans

Here is an example.

Further Reading

1. Chapter 7 (Depth-First Search)
In this chapter, you learn how to use additional tools such as threads or
chalk.

2. Chapter 9 (Cycles in Graphs)
helps to prevent you running around in a circle.
The “nodes” mentioned in this chapter are rooms in our mazes with more
than one exit. The “edges” are tunnels and doors that connect two rooms.

3. http://www.geometrylab.de/Pledge/
Here, you can try out Pledge’s algorithm with a Java applet. Moreover,
you’ll find a short movie showing a small robot (a Khepera II) which uses
Pledge’s algorithm to solve a maze.

4. Rolf Klein: Algorithmische Geometrie: Grundlagen, Methoden, Anwen-
dungen. Springer, Heidelberg, 2nd edition, 2005 (in German).
Harold Abelson, Andrea A. diSessa: Turtle Geometry. MIT Press, Cam-
bridge, 1980.
In these books you’ll find the proof that Pledge’s algorithm also solves non-
rectangular mazes. Moreover, similar problems are presented; for example,
how a robot can find a target point.

8 Pledge’s Algorithm 75

5. Bernd Brüggemann, Tom Kamphans, Elmar Langetepe: Leaving an un-
known maze with one-way roads. In: Abstracts 23rd European Workshop
Comput. Geom., 2007, pp. 90–93.
http://web.informatik.uni-bonn.de/I/publications/bkl-lumow-
07.pdf
Unfortunately, Pledge’s algorithm does not work if there are passages that
can be traversed in only one direction (e.g., one-way roads). This paper
shows how you can escape anyway.

Acknowledgement

The authors thank Martin Dietzfelbinger for many valuable comments.

9

Cycles in Graphs

Holger Schlingloff

Humboldt-Universität zu Berlin, Berlin, Germany

This chapter is about cycles in graphs. We want to find a way to tell whether
there is a cycle in a set of nodes which are connected by edges. A cycle is a
path which leads from one node back to itself.

Scenario 1

Imagine you were on an airplane
that crashed in the middle of the
jungle and now you’re trying to
find a way back into civilization.
There are some paths through the
jungle that were created by na-
tives; other than those, there is
only coppice around you. The veg-
etation is so dense that you can’t
even see the sky, let alone the sun.
You pack your belongings, choose
one of the paths and start head-
ing in that direction. After a lit-
tle while, there is a fork in the
path.

You decide to turn right. Then
you encounter a junction where you keep walking straight ahead. Unfortu-
nately, this leads you to a dead end: you have to turn around and go back
to the intersection, where you now turn. At the next fork, you take the left
path, then the right, and so on. Suddenly, there is a clearing in the jungle and
you see your airplane, your starting point. Apparently, you’ve been walking
in circles all the time. How can you avoid getting lost again, what would be
a better way to try to return to civilization?

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 9, c© Springer-Verlag Berlin Heidelberg 2011

78 Holger Schlingloff

Scenario 2

Andy wants to go to the movies with Benny and Charly. Charly, however,
has to babysit at home and can only leave when Dany comes and takes over.
Benny may only go when he is finished with his homework. He also needs
help from Dany, who has promised to come over as soon as Eddy returns her
book, which he borrowed from her in school. Eddy himself is still racking his
brains about the homework questions and hopes that Benny will send him an
e-mail with the solutions. Why will Andy probably not get to see the movie
with Benny and Charly tonight?

Both scenarios demonstrate the same problem: cycles in graphs. A directed
graph is a structure that consists of nodes and edges, where an edge leads from
one node to another. In order to visualize a graph, nodes are shown as circles
and edges as arrows between nodes. For this example, we can draw a node
for each person and an edge from node x to node y if person x is waiting for
person y. We write A for Andy, B for Benny, C for Charly, and so on. The
graph for scenario 2 then looks like this:

Obviously, there is a cycle in this graph: B → D → E → B. That means
there is a sequence of nodes connected by edges where the beginning and
the end of the path are the same node. Benny is waiting for Dany, Dany
is waiting for Eddy, and Eddy is waiting for Benny: if they don’t do any-
thing about it, they will wait for each other for a very long time. Cycles like
the one shown here can lead to problems such as endless processes (as in
the first scenario, where you can walk through the jungle endlessly) or pro-
cesses getting stuck (as in the second scenario, where no one will see the
movie unless someone dissolves the cycle). When this happens in a com-
puter program, it is called an endless loop (if the process runs endlessly)
or a deadlock (if the process gets stuck). In both cases, usually the program
fails to show a reaction and has to be ended from the outside, e.g., by the
user. This is why it is important to recognize cycles and, if possible, avoid
them.

9 Cycles in Graphs 79

A traffic deadlock

Finding Cycles by Depth-First Search

So how can we actually find cycles in a program? Let’s look at the first scenario
again: you’re lost in the jungle, trying to find a way out. If you want to avoid
running in circles, you could use the same trick Hansel and Gretel came up
with in the well-known fairytale and mark your way through the dense forest
with pebbles. If you then come across a pebble that you dropped before, you
know right away that you’ve been there already and that this way is not
going to get you out. Basically, this is the same situation that was described
in Chap. 7, where Theseus, trying to find his way through the labyrinth, marks
his path with the thread Ariadne gave him (or, alternatively, with chalk). In
order to simulate our jungle expedition with a computer program, we can use
depth-first search (DFS), as in Chap. 7. First, we describe the jungle map with
a graph: every fork or intersection in the path is a node in the graph, every
stretch of road in between is an edge. The goal of the search is to find a node
which is outside the jungle. We can write the algorithm for our depth-first
search down like this (quite similarly to the algorithm in Chap. 7):

Depth-first search

1 procedure depth-first-search (node x)
2 begin
3 if goal is reached then stop
4 else if x is unmarked then
5 mark x;
6 for all nodes y succeeding x do depth-first-search(y) endfor
7 endif
8 end

80 Holger Schlingloff

Here we assume that all nodes are “unmarked” in the beginning. The
depth-first search begins when the procedure depth-first-search(x1) is
started for any node x1. If x1 is followed by the nodes y1, y2, y3, etc., depth-

first-search(y1), depth-first-search(y2), and so on, will be started in
order. However, if for example y2 has the successor nodes z1, z2, etc., then
depth-first-search(z1), depth-first-search(z2), and so on, will be com-
pleted for all z before depth-first-search for y3 is started. If the search
leads to a node that doesn’t have any successors (a dead end), or a node that
has already been marked, the search is not continued, but will return to the
previous node, and so on.

For our jungle scenario this means that at an intersection you drop a
pebble and then systematically test all possible paths which start from this
intersection. If you reach a dead end at one path, or see a pebble lying on
the ground that you know you dropped before, you return to the previous
intersection and try another path from there. This makes more sense than
just randomly following any path and then, if it reaches a dead end or be-
comes cyclic, returning all the way to the starting point to try a different
path.

This picture illustrates the algorithm for our sec-
ond scenario, in which Andy is trying in vain to
catch a movie with his friends Benny and Charly.
The nodes (which here represent the people in-
volved) are drawn in order from top to bottom (from
A to E); the numbers next to the nodes show the
order in which the nodes are reached and marked by
the algorithm. The search starts with node A, and
therefore with the call depth-first-search(A).
Since A is not marked yet, depth-first-search(B)
and depth-first-search(C) are started in order.
depth-first-search(C) will run after depth-first-

search(B) and depth-first-search of all suc-
cessors of B are completely finished. depth-first-

search(B) calls depth-first-search(D), which
calls depth-first-search(E), which calls depth-

first-search(B), since B is a successor of E. Node B, however, is already
marked; therefore, we go back to the previous node, E. This node does not
have any other successors than B. Therefore, we return to D, then to B, and
then to A. Here we see that A actually has another successor that has not
been called yet, C; therefore, depth-first-search(C) is started now. The
only successor of C, node D, is already marked, so we return to C and then
to A. Now all calls are finished and the algorithm is done.

When trying to find cycles in graphs, the goal is to discover whether
or not a graph contains any cycles, and, if possible, have one (or some) of

9 Cycles in Graphs 81

them displayed. In order to achieve this, we need to adjust our algorithm
a bit. As we can see in our example graph above, there are three kinds of
edges:

1. forward edges, such as A → C
2. sideward edges, such as C → D, and
3. backward edges, such as E → B.

In a directed graph, only an edge that goes backwards can cause a cycle.
Backward edges differ from edges that go sideways in that they lead to nodes
that have not been completely processed yet. We can include this informa-
tion into the above algorithm if we extend the markings: instead of just
“marked” or “unmarked,” we can have the program ‘remember’ whether
the processing of a node has not started yet, is in progress, or is done.
(In our jungle scenario, we could use pebbles of different color for this pur-
pose.)

Depth-first search for cycles

1 procedure search-cycle (node x)
2 begin
3 if mark(x) = “in progress” then a cycle has been found
4 else if mark(x) = “not started yet” then
5 mark(x) := “in progress”;
6 for all nodes y succeeding x do search-cycle(y) endfor;
7 mark(x) := “done”
8 endif
9 end

For our example graph, the order of the calls would look like this:

search-cycle(A) // A not started yet
| A in progress
| search-cycle(B) // B not started yet
| | B in progress
| | search-cycle(D) // D not started yet
| | | D in progress
| | | search-cycle(E) // E not started yet
| | | | E in progress
| | | | search-cycle(B) // B in progress
| | | | | a cycle has been found!
| | | | E done // snapshot
| | | D done
| | B done

82 Holger Schlingloff

| search-cycle(C) // C not started yet
| | C in progress
| | search-cycle(D) // D done
| | C done
| A done

A snapshot during the execution
of procedure search-cycle

Strongly Connected Components

The algorithm search-cycle that was shown above determines whether a
cycle can be reached from the starting node. However, it cannot recognize
which nodes are part of the cycle. The algorithm can therefore not solve the
deadlock in the second scenario: if no one knows that Benny, Dany, and Eddy
are part of a cycle, they can’t solve their problem.

In order to break the deadlock, we have to determine which nodes are part
of it. To do so, the algorithm has to remember the order of the nodes which
are “in progress”. At the snapshot shown above, the current path is A → B
→ D → E → B, which means that B, D, and E are in the cycle: when a node
is encountered along the path that has already been seen (in this case, B), all
nodes that follow this node (here, D and E) are part of the cycle. Whenever
the algorithm is finished with a node and returns to the previous node, the
finished node has to be removed from the current path (as it is obviously not
part of a cycle).

As an algorithm, this idea would look as follows:

9 Cycles in Graphs 83

Finding cycles by depth-first search

1 procedure find-cycle(node x)
2 begin
3 if mark(x) = “in progress” then
4 a cycle has been found;
5 all nodes on the current path starting at x are on the cycle
6 else if mark(x) = “not started yet” then
7 mark(x) := “in progress”;
8 extend the current search path by appending x;
9 for all nodes y succeeding x do find-cycle(y) endfor;

10 mark(x) := “done”;
11 remove x (the last element) from the current path
12 endif
13 end

Here we assume that at the beginning all nodes are marked as “not started
yet” and that the initial search path is empty.

What would happen in this algorithm if there were more than one cycle
in the graph, for example, an additional edge from D to A (that means Dany
would be waiting for Andy)?

The example graph with an additional edge

In this case, firstly, we have the cycle B → D → E → B that already
appeared in the graphs before. Additionally, we have the cycle A → C →
D → A, which has a similar structure. Furthermore, there would be other
cycles, such as E → B → D → A → B → D → E. When two nodes are on the
same cycle, we say that they are connected. For example, nodes A and E are
connected if there is a cycle A → · · · → E → · · · → A somewhere. All nodes
that are connected with each other (that are on one common cycle) form a
strongly connected component (SCC).

Within a strongly connected component, each node can be reached from
every other node. Therefore, if A and E are connected, and there is a path
from A to C, then there must also be a path from E to C. We can imagine a
strongly connected component as a group of nodes which are “similar” with

84 Holger Schlingloff

respect to reachability. The graph that is formed by grouping all nodes of
a strongly connected component is called the quotient graph of the original
graph. A quotient graph does not contain cycles any more. The reason for
this can be seen in the illustration below: if there were a cycle that connected
two strongly connected components, they would ‘melt’ together into one. If
in a graph all nodes are connected with each other (as in the above example
graph with an additional edge), the graph consists of just one single strongly
connected component, and the quotient graph has just one node.

Strongly connected components and quotient graph

Robert E. Tarjan, an American computer scientist (born 1948) who was
given the Turing Award for his work on the design and analysis of algorithms
and data structures in 1986, extended the algorithm find-cycle shown above.
His famous algorithm for strongly connected components made it possible to
find not only cycles, but also the strongly connected components that can be
reached from a starting node. In order to do this, every node gets assigned two
numbers: firstly, the number under which it appears in the order of depth-first

9 Cycles in Graphs 85

search, and secondly, the number of the first node of the strongly connected
component to which the node belongs.

Strongly connected components

1 procedure find-components (node x)
2 begin
3 if mark(x) = “in progress” then a cycle has been found
4 else if mark(x) = “not started yet” then
5 mark(x) := “in progress”;
6 depth-first-search-number(x) := counter;
7 component-number(x) := counter;
8 counter := counter +1;
9 extend the current search path by appending x;

10 for all nodes y succeeding x do
11 if mark(y) is not “done” then
12 find-components(y);
13 if component-number(y) < component-number(x) then
14 component-number(x) := component-number(y)
15 endif
16 endif
17 endfor;
18 if depth-first-search-number(x) = component-number(x) then
19 strongly connected component has been found;
20 all nodes on the current path with this component-number are

part of the same component
21 for all these nodes y do
22 mark(y) := “done”;
23 remove y from the current path;
24 endfor;
25 endif
26 endif
27 end

The counter is initialized with a fixed value (e.g., 1). An example for the
marks of the nodes after running find-components can be seen in Fig. 9.1.
The quotient graph in this example would have the components 1, 2, and 5;
edges lead from 1 to 2, from 1 to 5, and from 5 to 2.

Searching for Cycles with Breadth-First Search

As we can see, depth-first search is very useful for finding all cycles or strongly
connected components in a graph. However, if the goal is merely to find out
whether a given starting node is part of a cycle, we can use a simpler algorithm:
applying the so-called breadth-first search, we can determine the set of nodes
that can be reached from our starting node. For this, we assume that we have

86 Holger Schlingloff

Fig. 9.1. Markings of the nodes after running find-components

an efficient method to calculate the set of nodes that are succeeding a given
set of nodes (i.e., that can be reached from a node in this set by an edge). And
then we start our breadth-first search: the first set of nodes includes only the
starting node, the second set includes all nodes that can be reached from the
starting node, the third set includes all nodes that can be reached from the
nodes of the second set, and so on. At some point, one of the following will
happen: either no more nodes can be reached, or we return to our starting
node. If the latter is the case, we have our answer: the node is part of a cycle;
there is a path that goes from the node back to itself. If the search is done
(that is, no more nodes can be reached), and we have not encountered the
starting node, then it is obviously not part of a cycle.

Breadth-first search

1 procedure breadth-first-search (node x)
2 begin
3 reachable := { }; front := {x};
4 repeat
5 front := {y | y is successor node of some z from front and
6 y is not in reachable}
7 if x is in front then cycle from x to x exists, stop;
8 endif ;
9 reachable := reachable ∪ front;

10 until front = { }
11 end

We can imagine breadth-first search to be somewhat like the propagation
of waves that are created when a stone is thrown into a calm lake. The wave

9 Cycles in Graphs 87

front, the outermost wave, always contains the part of the water surface that
can be reached at a time.

The loop that is used in our breadth-first search algorithm is repeated
at most as many times as there are nodes, usually much less often. (To be
precise, the running time is defined by the longest path from one node to any
other node.)

Breadth-first search can be a very fast and efficient way to determine
whether some node is part of a cycle. (However, for finding all cycles we
would have to run breadth-first search starting from all nodes, which would
lead to a big increase in running time in comparison to depth-first search.)
For breadth-first search, we need to set up and manage the two sets of nodes
front and reachable, which may contain very many nodes compared to depth-
first search. The complexity, i.e., the time and space efficiency of the search,
depends on the efficiency of the set operations that are being used. With an
explicit representation of nodes and edges it is possible to implement breadth-
first search in such a way that the running time is proportional to the number
of edges in the graph; see, e.g., the book by Sedgewick in the References below.
Large sets and relations can also be represented symbolically as so-called
binary decision diagrams. For such a representation, fast library functions
exist, which can be used to implement breadth-first search very efficiently.

Historical Notes

The problem of finding cycles in graphs appeared early in the history of com-
puter science. The first examples of application from the 1950s were the search
for loops in circuits or data flow diagrams. Depth-first search and recursive
algorithms for searching cycles in graphs have been known since the 1960s
and are often used as standard examples for backtracking. Tarjan’s algorithm
to calculate strongly connected components was published in 1972. A very
important application of algorithms used to find cycles in graphs is to recog-
nize deadlocks in resource dependency graphs: in every multitasking operat-
ing system, cyclic waiting conditions can occur due to wrong synchronization.
Popular illustrations for this are Dijkstra’s dining philosophers or Lamport’s
bakery algorithm. Since the 1970s, more and more computer games have ap-
peared that have the player find a way through a virtual labyrinth (a graph),

88 Holger Schlingloff

where a multitude of dangers are waiting and cycles have to be avoided (e.g.,
Dungeons and Dragons). In the 1990s, new efficient algorithms and data struc-
tures to recognize cycles and form quotients were developed for state space
exploration in the automatic verification of models. These methods form the
basis for analyzing safety-critical control software in planes, trains, and auto-
mobiles.

References

1. Robert Sedgewick: Algorithms in {C|C++|Java}, Part 5: Graph Algo-
rithms. Addison-Wesley Professional, 3rd edition, 2003.
A classic textbook on algorithms that is continually updated and ex-
tended.

2. Thomas H. Cormen, Charles Leiserson, Ronald L. Rivest, Clifford Stein:
Introduction to Algorithms. MIT Press, 2001.
Another widely used book on the topic.

3. Robert E. Tarjan: Depth-first search and linear graph algorithms. SIAM
Journal on Computing 1 (2), pp. 146–160, 1972.
The original reference for the algorithm for strongly connected compo-
nents.

4. Edsger W. Dijkstra: Hierarchical ordering of sequential processes. Acta
Informatica 1 (2), pp. 115–138, 1971.
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
The original reference for the dining philosophers analogy.

5. Leslie Lamport: A new solution of Dijkstra’s concurrent programming
problem. Comm. ACM 17 (8), pp. 453–455, Aug. 1974.
http://research.microsoft.com/en-us/um/people/lamport/pubs/
bakery.pdf
The original reference for the bakery algorithm to synchronize the parallel
access to shared resources.

6. Wikipedia articles describing the topics of this chapter:
• Depth-first search: http://en.wikipedia.org/wiki/Depth-first

search
• Breadth-first search: http://en.wikipedia.org/wiki/Breadth-

first search
• Tarjan’s algorithm: http://en.wikipedia.org/wiki/Tarjan’s

strongly connected components algorithm

Acknowledgement

The author wishes to thank Laura Schlingloff for help with the pictures and
translation.

10

PageRank – What Is Really Relevant
in the World-Wide Web?

Ulrik Brandes and Gabi Dorfmüller

Universität Konstanz, Konstanz, Germany

No doubt, the most popular form of Internet usage is the World-Wide Web
(WWW), a network of billions of files. It is made up, for the most part, of
Web pages containing text and images that refer to each other via (hyper)links.
Even if you spent your whole life, day and night, doing nothing but browsing
pages, you’d see only a small fraction of the Web.1 To find something on the
Web, it is therefore necessary to know where it is, or what links there.

Practically everyone surfing the Web therefore uses search engines, i.e.,
special pages on which the information sought is described using a few key
words (query) to obtain a list of pages that may be relevant to the query (hits).
Using many computer science methods, modern search engines are capable of
organizing access to billions of Web pages, and scanning them for matches
with a query within fractions of a second.

Since even a query term such as algorithm yields millions of hits, the results
themselves are too large to be read completely. Search engines therefore sort
their results in such a way that the seemingly most relevant hits are shown
first.

Quiz:

How do search engines manage to find Web pages that seem relevant to us
out of the millions matching a typical query?

As of today, the best known search engine is run by a company called
Google,2 since it was the first search engine to not only sift through an enor-
mous number of pages, but also to use a particularly clever algorithm to rank
the results. Among, e.g., more than a million German-language hits matching
Algorithmus, the site of the original project leading to this book currently
ranks second only to the corresponding Wikipedia article.

1 Assume that you are spending a second per page – how many seconds does an
average life last?
2 www.google.com

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 10, c© Springer-Verlag Berlin Heidelberg 2011

90 Ulrik Brandes and Gabi Dorfmüller

Besides many straightforward criteria such as the location of query terms
in the page (in headlines? near each other?) and many unknown heuristic
rules, a central element of the ranking strategy is an evaluation of the Web’s
linking structure. This component is known as PageRank and is explained in
this chapter.

Tourist Trails

Explanations of PageRank often use for motivation the idea that a page should
be ranked as more relevant, the more frequently one would reach it on a
random walk through the Web. We will explore this idea further, but with a
completely different example.

Imagine that, in the 18th century, mathematician Leonhard Euler had not
proven the inexistence of, but rather found the long-sought tour crossing the
seven bridges of Königsberg (cf. Chap. 28). This tour would be famous: It
would be listed in all city guides, and tourists would walk the tour in droves.
Of course, there would also be vendors selling souvenirs and refreshments in
places that these tourists most frequently stroll by – but where are these
places?

For a tour it does not matter where it is begun. Since, however, every bridge
is crossed exactly once, we can at least be sure that every part is visited half
as often as there are bridges leading there: One bridge is needed to get there,
and another one to leave. The most promising selling spots are where the most
bridges converge. In Königsberg, this would be Kneiphof (labeled A).

Alas, there is no such tour. So let’s assume tourists are wandering around
with no particular goal or destination. More concretely, let them choose the
next bridge to cross randomly and with equal probabilities (this is called
“uniformly at random”) from all those that are feasible, including the one
they just came across. How often do they arrive in a certain location?

The number b of visits at, say, node B can be described in terms of the
number of immediately preceding visits at nodes that are connected to B,
here A and D. If the next bridge to continue with is chosen uniformly at
random from all feasible bridges, we get from A to B in two out of five cases,

10 PageRank – What Is Really Relevant in the World-Wide Web? 91

and from D to B in one out of three. The unknown b can therefore be written
in terms of equally unknown visiting numbers a and d:

b =
2
5
a +

1
3
d.

Corresponding equations can be given for all the unknowns:

a =
2
3
b +

2
3
c +

1
3
d, c =

1
5
a +

1
3
d, d =

1
5
a +

1
3
b.

Interestingly, every solution to this system of equations is of the form a = 5
and b = c = d = 3 or multiples thereof; the relative sizes of these numbers
are thus exactly the same as those we would have obtained had there been an
Eulerian tour! Whether tourists are exploring Königsberg systematically or at
random is therefore of no relevance for our vendors. Moreover, this principle
applies to every other city as well, independent of its particular pattern of
connections among bridges.

Trails on the Web

If we interpret hyperlinks as a recommendation to consult the destination Web
page for further information, we can ask the same question that has just been
considered for locations in Königsberg. Which pages does a random surfer,
someone who is not searching for something in particular and is following
links uniformly at random, visit most frequently? It would seem that the
answer depends on the respective number of links entering a page, as it did
for bridges.

In contrast to the bridges of Königsberg, though, links on the Web are like
one-way streets, because they can only be followed in one direction. Note that
we are ignoring the “back” button for the moment. The following example
illustrates that this simple modification complicates matters significantly.

a = b,

b =
1
2
c + d,

c = a,

d =
1
2
c.

All arguments for setting up a system of equations for the unknown relative
numbers of visits are still valid, but the solutions of the equation in this par-
ticular example are multiples of a = b = c = 2 and d = 1. The correspondence
between these numbers and the number of incoming and outgoing links is lost

92 Ulrik Brandes and Gabi Dorfmüller

(for otherwise, a would have to equal d and both must be different from b
and c).

Real networks in general exhibit at least one other problem in addition to
one-way streets, namely dead ends. In the network depicted here,

one is stuck after following the red link. While simple cases like this one are
easily identified (and Google is likely to remove them), dead ends can also be
less obvious. In larger networks one might be able to continue from nodes such
as F , but still not be able to return to nodes A, . . . , E. Pages that eventually
cannot be reached any more lead to solutions of the system of equations that
are not useful for ranking purposes.

The Web-surfing behavior mimicked so far, however, is a poor match. If
no, or no interesting, link is found on a page, the next page will be chosen by
other means such as the back button, a bookmark, or direct entry of a new
Web address.

Including such spontaneous jumps to other pages into the model yields a
system of equations that is only a little more complicated. We simply assume
that, for instance, on every fifth occasion the new node was not found by
selecting a link, but directly by some other means. We also assume that there
is no bias toward any of the six pages, i.e., in the long run, each node is equally
often the destination of a jump. This way, every page can be reached at any
point in time, and there are no dead ends.

a =
4
5

· b +
1
5

· 1
6
,

b =
4
5

·
(

1
3

· c + 1 · d + e

)

+
1
5

· 1
6
,

c =
4
5

· a +
1
5

· 1
6
,

d =
4
5

·
(

1
3

· c

)

+
1
5

· 1
6
,

e =
4
5

· 0 +
1
5

· 1
6
,

f =
4
5

·
(

1
3

· c

)

+
1
5

· 1
6
.

This system of equations is only a little more involved and just as easy to
solve as the system in the previous section. Try to determine whether results
from the following experiment resemble a solution!

10 PageRank – What Is Really Relevant in the World-Wide Web? 93

Experiment (10 or more subjects, e.g., your class at school)

Every person starts from any of the pages in the above network and starts
moving through the network by following links at random. If necessary, or
out of the blue, any page can be chosen. After one minute everyone stops
upon a signal and remembers the last page visited. For each page, the number
of subjects that have stopped there is recorded.

A less contrived and somewhat larger example of links between entities is
the present book itself. If chapters are viewed as reading locations, referrals
can be interpreted as links between them.

In the network diagram depicted on the next page every chapter in this
book is represented by a rectangle, and their width and height is determined
by the number of links to and from other chapters. A slim, tall rectangle thus
represents a chapter that refers to few others, but is referred to often. Colors
are computed from the equation system and therefore indicate the PageRank
in the referral network: Turquoise rectangles represent chapters with lowest
PageRank, orange rectangles those with highest PageRank, and appropriately
mixed colors are used for values in between.

The chapters on variants of sorting are indeed the ones that a reader ends
up being referred to most often when reading in random fashion, following
links as if on the Web. This matches their crucial role in algorithmics.

Solutions

The model described above cannot be used directly to compare the relevance
of hits returned for a query, since the network that is to be evaluated by an
Internet search engine yields a system with billions of equations. Even the
fastest computers cannot solve such systems using the methods we learn in
school.

Fortunately, the systems resulting from our approach exhibit some special
properties that can be exploited in the search for a solution. Moreover, we do
not really need an exact solution, so that a very simple and efficient algorithm
can instead be used to quickly approximate a solution. There is one equation
for every variable, and if we know the values of all other variables, we would
simply substitute them and thus determine the value of the final variable. The
algorithm therefore starts with an arbitrary initial assignment (e.g., the same
non-zero value for all variables) and solves for every variable of the associated
equation relative to the values currently assigned for all other variables. With
these newly obtained assignments the process is repeated, then repeated, and
repeated, and so on.

94 Ulrik Brandes and Gabi Dorfmüller

10 PageRank – What Is Really Relevant in the World-Wide Web? 95

PageRank Algorithm (almost)

1 Initialize relevance scores of all pages to 1
2 While scores are changing notably
3 Determine for every page P :
4 set new relevance score for P to

4
5

·
∑

for all pages Q
linking Q → P

relevance of Q
number of links of Q

+ 1
5

· 1
number of pages

For our six-node example, this yields the following computation (values
rounded to the 5th decimal):

Start 1st step 2nd step . . . 11th step 12th step . . . Solution
a 1.00000 0.83333 0.29467 . . . 0.10758 0.10740 . . . 0.10665
b 1.00000 0.32667 0.28222 . . . 0.09259 0.09241 . . . 0.09164
c 1.00000 0.83333 0.70000 . . . 0.12154 0.11940 . . . 0.11865
d 1.00000 0.30000 0.25556 . . . 0.06592 0.06574 . . . 0.06497
e 1.00000 0.03333 0.03333 . . . 0.03333 0.03333 . . . 0.03333
f 1.00000 0.30000 0.25556 . . . 0.06592 0.06574 . . . 0.06497

The scores are improving with every step, and when they are not changing
by much anymore, this is an indication that we are close to the exact solution.
A detailed explanation for this welcome behavior is given in Chap. 30.

Conclusion

At the end of this chapter the following question should be easy to answer.

Quiz: If you let many of your friends link to your personal homepage, will it
turn out on top of Google’s result list?

Answer: Thisisonlygoingtoworkifyourfriends’pagesareofhighrele-
vancethemselves–unlikelytobethecase.

Many other ways of scoring linked entities are studied in an exciting area
of research called network analysis. Moreover, there are many ways in which
these structural scores can be utilized in the final relevance ranking. A change
in the slightest detail can have a significant effect on the results. For example,
we could alter the ratio of jumps and link traversal, or introduce a bias into the
selection of destinations for jumps. The specific instantiation of the algorithm
and many more details of the relevance ranking are, of course, proprietary
knowledge, but it seems that the decisions made at Google are working not
too badly.

96 Ulrik Brandes and Gabi Dorfmüller

Further Reading

1. Chapter 30 (Gauß–Seidel Iterative Method for the Computation of Phys-
ical Problems)
More detailed explanation of how and when systems of linear equations
can be solved by iteratively solving single equations.

2. Chapter 28 (Eulerian Circuits)
There are no Eulerian tours in Königsberg, but there are where Santa
dwells.

3. Wikipedia article
http://en.wikipedia.org/wiki/PageRank
More abstract formulation, background information and more references.

Part II

Arithmetic and Encryption

Overview

Berthold Vöcking

RWTH Aachen, Aachen, Germany

Even in the very first years of school we were confronted with algorithms for
basic arithmetic. We were taught how to add multidigit numbers by writing
the numbers below each other and then adding digit by digit, carrying an
overflow digit from right to left. Based on this algorithm for addition, we then
learned an algorithm for multiplication. Two multidigit numbers are multi-
plied by first multiplying the multiplicand by each digit of the multiplier and
then adding up all the properly shifted results. These grade-school algorithms
follow simple rules and can thus be executed using a calculator or a computer
which typically, however, use binary rather than decimal digits. In fact, every
pocket calculator does these calculations much faster and more reliably than
humans and, thus, we are no longer accustomed to performing them by hand.

This part of the book starts with algorithms for different kinds of arith-
metic problems. In Chap. 11, an algorithm for fast multiplication is presented
that is much more efficient than the grade school method, especially if one
wants to multiply large numbers consisting of many digits. Chapter 12 deals
with the Euclidean Algorithm for calculating the greatest common divisor of
two given numbers in a very clever and elegant way. This algorithm was known
already in the ancient world and is still used today in different variants. In
ancient times, it was even known how to calculate prime numbers. Chapter 13
explains the Sieve of Eratosthenes, a very old but still practical algorithm for
computing a table with all prime numbers up to a specified number.

Cryptography deals with the encryption and decryption of information.
Chapters 15 and 16 present two different cryptographic approaches. Chap-
ter 15 presents the so-called One-Time-Pad. This simple symmetric algorithm
uses the same secret key for encryption and decryption. A text can be en-
crypted and decrypted only by someone who knows the secret key. Chapter 16
presents an asymmetric method that uses different keys for encryption and
decryption. The key for encryption is announced publically so that everybody
can encode a message. Only the owner of the matching secret key can de-
code the encrypted message. Most cryptographic schemes used today in the
Internet are based on asymmetric algorithms using a secret and a public key.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0, c© Springer-Verlag Berlin Heidelberg 2011

100 Berthold Vöcking

Chapter 17 deals with cryptographic methods for sharing information. For
example, a gang of pirates can share a treasure map in such a way that all
pirates must meet in order to find the treasure, or a group of three bank clerks
can share a code for a safe in such a way that it is necessary and sufficient for
opening the safe if any two of the three clerks combine their codes. Chapter 18
describes an interesting application of cryptographic methods, it explains how
a group of people can play poker by email, without giving an unfair advantage
to any of the players.

Chapter 14 presents one-way functions, which play an important role in
cryptography. A one-way function can be computed efficiently, but their in-
verse is very difficult to compute. Like most cryptographic algorithms they
rely on findings from number theory. For example, two prime numbers of
several hundred digits can be multiplied very quickly by a computer using
the algorithms for multiplication mentioned above. Given only the product
of these numbers, however, it is extremely difficult to factorize the product
into the two prime factors. In fact, the asymmetric cryptographic algorithm
described in Chap. 16 relies on this difficulty. The best known algorithms run-
ning on the fastest computers, even if we would combine the computational
power of all existing computers, could not solve the factoring problem within
a period of time a human could wait for.

The other three chapters of this part deal with different approaches for
the compression and coding of data. Chapters 19 and 20 present so-called fin-
gerprinting and hashing methods that condense large data sets in an extreme
way so that they are represented by only a few bits. Of course, such extreme
compression comes with a loss of information. However, the condensed data
can, for example, be used in order to check whether two large data sets are
identical by exchanging only a few bits of information, just like fingerprints
are used to distinguish and identify humans. Chapter 21 discusses coding algo-
rithms that do not condense data but, on the contrary, add a few bits in order
to protect data against errors and loss. The highlight is a quite recent finding
that coding algorithms can be used to increase the capacity of a network. This
trick is called network coding and it is a hot research area today.

11

Multiplication of Long Integers –
Faster than Long Multiplication

Arno Eigenwillig∗ and Kurt Mehlhorn

Max-Planck-Institut für Informatik, Saarbrücken, Germany

An algorithm for multiplication of integers is taught in primary school: To
multiply two positive integers a and b, you multiply a by each digit of b and
arrange the results as the rows of a table, aligned under the corresponding
digits of b. Adding up yields the product a × b. Here is an example:

5 6 7 8 · 4 3 2 1
2 2 7 1 2

1 7 0 3 4
1 1 3 5 6

5 6 7 8
2 4 5 3 4 6 3 8

The multiplication of a by a single digit is called short multiplication, and the
whole method to compute a × b is called long multiplication. For integers a
and b with very many digits, long multiplication does indeed take long, even
if carried out by a modern computer. Calculations with very long integers are
used in many applications of computers, for example, in the encryption of
communication on the Internet (see Chaps. 14 and 16), or, to name another
example, in the reliable solution of geometric or algebraic problems.

Fortunately, there are better ways to multiply. This is good for the ap-
plications needing it. But it is also quite remarkable in itself because long
multiplication is so familiar and looks so natural that any substantial im-
provement comes as a surprise.

In the rest of this chapter, we will investigate:

1. How much effort does it take to do long multiplication of two numbers?
2. How can we do better?

Computer scientists do not measure the effort needed to carry out an al-
gorithm in seconds or minutes because such information will depend on the
hardware, the programming language, and the details of the implementation

∗ Now at Google Zurich, Switzerland.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 11, c© Springer-Verlag Berlin Heidelberg 2011

102 Arno Eigenwillig and Kurt Mehlhorn

(and next year’s hardware will be faster anyway). Instead, computer scientists
count the number of basic operations performed by an algorithm. A basic op-
eration is something a computer or a human can do in a single step. The basic
operations we need here are basic computations with the digits 0, 1, 2, . . . , 8, 9.

1. Multiplication of two digits: When given two digits x and y, we know
the two digits u and v that make up their product x × y = 10 × u+ v. We
trust our readers to remember the multiplication table!
Examples: For the digits x = 3 and y = 7 we have x × y = 3 × 7 = 21 =
10 × 2 + 1, so the resulting digits are u = 2 and v = 1. For x = 3 and
y = 2, the resulting digits are u = 0 and v = 6.

2. Addition of three digits: When given three digits x, y, z, we know the
two digits u and v of their sum: x+ y + z = 10 · u+ v. It will soon become
obvious why we want to add three digits at once.
Example: For x = 3, y = 5 and z = 4 the result is u = 1 and v = 2
because 3 + 5 + 4 = 12 = 10 × 1 + 2.

How many of these basic operations are done in a long multiplication? Be-
fore we can answer this question, we need to look at two simpler algorithms,
addition and short multiplication, used during long multiplication.

The Addition of Long Numbers

How much effort does it take to add two numbers a and b? Of course, this
depends on how many digits they have. Let us assume that a and b both
consist of n digits. If one of them is shorter than the other, one can put zeros
in front of it until it is as long as the other. To add the two numbers, we write
one above the other. Going from right to left, we repeatedly do addition of
digits. Its result 10 × u + v gives us the result digit v for the present column
as well as the digit u carried to the next column. Here is an example with
numbers a = 6917 and b = 4269 with n = 4 digits each:

6917
4269

1 1 0 1

11186

The carry digit v from the leftmost column is put in front of the result without
further computation. Altogether, we have done n basic operations, namely one
addition of digits per column.

Short Multiplication: A Number Times a Digit

During long multiplication, we need to multiply the number a, the left factor,
with a digit y from the right factor. We now look at this short multiplication
in more detail. To do so, we write down its intermediate results more carefully
than usual: We go from right to left over the digits of a. We multiply each

11 Multiplication of Long Integers – Faster than Long Multiplication 103

digit x of a by the digit y and write down the result 10×u+v in a separate row,
aligned such that v is in the same column as x. When all digits are multiplied,
we add all the two-digit intermediate results. This gives us the result of the
short multiplication, which is usually written as a single row.

As an example for this, we look again at the long multiplication 5678×4321.
The first of the short multiplications it needs is this one:

5 6 7 8 · 4
3 2

2 8
2 4

2 0
0 0 1 0

2 2 7 1 2

How many basic operations did we use? For each of the n digits of a, we have
done one multiplication of digits. In the example above: four multiplications
of digits for the four digits of 5678. After that, we have added the intermediate
results in n+1 columns. In the rightmost column, there is a single digit which
we can just copy to the result without computing. In the other n columns
are two digits and a carry from the column to its right, so one addition of
digits suffices to add them. This means we needed to do n additions of digits.
Together with the n multiplications of digits, it has taken 2×n basic operations
to multiply an n-digit number a with a digit y.

The Analysis of Long Multiplication

Let us now analyze the number of basic operations used by long multiplication
of two numbers a and b, each of which has n digits. In case one is shorter than
the other, we can pad it with zeros at the front.

For each digit y of b we need to do one short multiplication a × y. This
needs 2 × n basic operations, as we saw above. Because there are n digits in b,
long multiplication needs n short multiplications which together account for
n × (2 × n) = 2 × n2 basic operations.

The results of the short multiplications are aligned under the respective
digits of b. To simplify the further analysis, we put zeros in the empty posi-
tions:

5 6 7 8 · 4 3 2 1
2 2 7 1 2 0 0 0
0 1 7 0 3 4 0 0
0 0 1 1 3 5 6 0
0 0 0 0 5 6 7 8
2 4 5 3 4 6 3 8

The results of short multiplication are added with the method described pre-
viously. We add the first row to the second row, their sum to the third row,

104 Arno Eigenwillig and Kurt Mehlhorn

and so on, until all n rows have been added. This needs n − 1 additions of
long numbers. In our example, n is equal to 4, and we need these n − 1 = 3
additions: 22712000 + 1703400 = 24415400, 24415400 + 113560 = 24528960
and 24528960 + 5678 = 24534638.

How many basic operations do these n − 1 additions need? To answer this,
we have to know how many digits are required for the intermediate sums in
this chain of additions. With a little bit of thinking, we can convince ourselves
that the final result a × b has at most 2 × n digits. While we add the parts
of this result, the numbers can only get longer. Therefore, all intermediate
sums have at most 2 × n digits, like the final result. That means, we do n − 1
additions of numbers with at most 2 × n digits. According to our analysis of
addition, this requires at most (n−1)×(2×n) = 2×n2 −2×n basic operations.
Together with the 2 × n2 basic operations used by the short multiplications,
this yields a grand total of at most 4 × n2 − 2 × n basic operations carried out
in the long division of two n-digit numbers.

Let us see what this means for a concrete example. If we have to multiply
really long numbers, say, with 100 000 digits each, then it takes almost 40
billion basic operations to do one long multiplication, including 10 billion
multiplications of digits. In other words: Per digit in the result, this long
multiplication needs, on average, 200 000 basic operations, which is clearly a
bad ratio. This ratio gets much worse if the number of digits increases: For
1 million digits, long multiplication needs almost 4 trillion basic operations
(of which 1 trillion are multiplications of digits). On average, it spends about
2 million basic operations for a single digit in the result.

Karatsuba’s Method

Let us now do something smarter. We look at an algorithm for multiplying
two n-digit numbers that needs far fewer basic operations. It is named after
the Russian mathematician Anatolii Alexeevitch Karatsuba, who came up
with its main idea (published 1962 with Yu. Ofman2). We first describe the
method for numbers with one, two, or four digits, and then for numbers of
any length.

The simplest case is, of course, the multiplication of two numbers consist-
ing of one digit each (n = 1). Multiplying them needs a single basic operation,
namely one multiplication of digits, which immediately gives the result.

The next case we look at is the case n = 2, that is, the multiplication of
two numbers a and b having two digits each. We split them into halves, that
is, into their digits:
2 A. Karatsuba, Yu. Ofman: “Multiplication of multidigit numbers on automata” (in
Russian), Doklady Akad. Nauk SSSR 145 (1962), pp. 293–294; English translation
in Soviet Physics Doklady 7 (1963), pp. 595–596. Karatsuba describes his method to
efficiently compute the square a2 of a long number a. The multiplication of numbers
a and b is reduced to squaring with the formula a × b = 1

4
((a + b)2 − (a − b)2).

11 Multiplication of Long Integers – Faster than Long Multiplication 105

a = p × 10 + q and b = r × 10 + s.

For example, we split the numbers a = 78 and b = 21 like this:

p = 7, q = 8, and r = 2, s = 1.

We can now rewrite the product a × b in terms of the digits:

a × b = (p × 10 + q) × (r × 10 + s)
= (p × r) × 100 + (p × s + q × r) × 10 + q × s.

Continuing the example a = 78 and b = 21, we get

78 · 21 = (7 · 2) · 100 + (7 · 1 + 8 · 2) · 10 + 8 · 1 = 1638.

Writing the product a × b of the two-digit numbers a and b as above shows
how it can be computed using four multiplications of one-digit numbers,
followed by additions. This is precisely what long multiplication does.

Karatsuba had an idea that enables us to multiply the two-digit numbers
a and b with just three multiplications of one-digit numbers. These three
multiplications are used to compute the following auxiliary products:

u = p × r,

v = (q − p) × (s − r),
w = q × s.

Computing v deserves extra attention because it involves a new kind of basic
operation: subtraction of digits. It is used twice in computing v. Its results
(q − p) and (s − r) are again single digits, but possibly with a negative sign.
Multiplying them to get v requires a multiplication of digits and an application
of the usual rules to determine the sign (“minus times minus gives plus”, and
so on).

Why does all this help to multiply a and b? The answer comes from this
formula:

u + w − v = p × r + q × s − (q − p) × (s − r) = p × s + q × r.

Karatsuba’s trick consists in using this formula to express the product a × b
in terms of the three auxiliary products u, v, and w:

a × b = u × 102 + (u + w − v) × 10 + w.

Let us carry out Karatsuba’s trick for our example a = 78 and b = 21 from
above. The three Karatsuba multiplications are

u = 7 × 2 = 14,

v = (8 − 7) × (1 − 2)= −1,

w = 8 × 1 = 8.

106 Arno Eigenwillig and Kurt Mehlhorn

We obtain

78 × 21 = 14 × 100 + (14 + 8 − (−1)) × 10 + 8
= 1400 + 230 + 8
= 1638.

We have used two subtractions of digits, three multiplications of digits, and
several additions and subtractions of digits to combine the results of the three
multiplications.

Karatsuba’s Method for 4-Digit Numbers

Having dealt with the case of n = 2 digits above, we now look at the case
of n = 4 digits, that is, the multiplication of two numbers a and b with four
digits each. Just like before we can split each of them into two halves p and q,
or r and s, respectively. These halves are not digits anymore, but two-digit
numbers:

a = p × 102 + q and b = r × 102 + s.

Again, we compute the three auxiliary products from these four halves:

u = p × r,

v = (q − p) × (s − r),
w = q × s.

Just like before, we obtain the product a × b from the auxiliary products as

a × b = u × 104 + (u + w − v) × 102 + w.

Example: We look again at the task of multiplying a = 5678 and b = 4321.
We begin by splitting a and b into the halves p = 56 and q = 78 as well as
r = 43 and s = 21. We compute the auxiliary products

u = 56 × 43 = 2408,

v = (78 − 56) × (21 − 43) = −484,

w = 78 × 21 = 1638.

It follows that

5678 × 4321 = 2408 × 10000 + (2408 + 1638 − (−484)) × 100 + 1638
= 24080000 + 453000 + 1638
= 24534638.

In this calculation, we had to compute three auxiliary products of two-digit
numbers. In the previous section, we investigated how to do that with Karat-
suba’s method, using only three multiplications of digits each time. This way,
we can compute the three auxiliary products using only 3 × 3 = 9 multipli-
cations of digits and several additions and subtractions. Long division would
have taken 16 multiplications of digits and several additions.

11 Multiplication of Long Integers – Faster than Long Multiplication 107

Karatsuba’s Method for Numbers of Any Length

Recall how we built Karatsuba’s method for multiplying 4-digit numbers from
Karatsuba’s method for 2-digit numbers. Continuing in the same way, we
can build the multiplication of 8-digit numbers from three multiplications
of 4-digit numbers, and the multiplication of 16-digit numbers from three
multiplications of 8-digit numbers, and so on. In other words, Karatsuba’s
method works for any number n of digits that is a power of 2, such as 2 = 21,
4 = 2 × 2 = 22, 8 = 2 × 2 × 2 = 23, 16 = 2 × 2 × 2 × 2 = 24, and so on.

The general form of Karatsuba’s method is this: Two numbers a and b,
each consisting of n = 2 × 2 × 2 × · · · × 2 = 2k digits, are split into

a = p × 10n/2 + q and b = r × 10n/2 + s.

Then their product a × b is computed as follows, using three multiplications
of numbers having n/2 = 2k−1 digits each:

a × b = p × r × 10n + (p × r + q × s − (q − p) × (s − r)) × 10n/2 + q × s.

Multiplying two numbers of 2k digits in this way takes only three times (and
not four times) as many multiplications of digits as multiplying two num-
bers with 2k−1 digits. This leads to the following table which compares how
many multiplications of digits are used by Karatsuba’s method, or by long
multiplication, respectively, to multiply numbers with n digits.

Digits Karatsuba Long multiplication
1 = 20 1 1
2 = 21 3 4
4 = 22 9 16
8 = 23 27 64

16 = 24 81 256
32 = 25 243 1024
64 = 26 729 4096

128 = 27 2187 16 384
256 = 28 6561 65 536
512 = 29 19 638 262 144

1024 = 210 59 049 1 048 576
1 048 576 = 220 3 486 784 401 1 099 511 627 776

.
n = 2k 3k 4k

Using logarithms, it is easy to express the entries in the table as functions
of n: For n = 2k, the column for long multiplication contains the value 4k.
We write log for the logarithm with base 2. We have k = log(n) and

4k = 4log(n) = (2log(4))log(n) = nlog(4) = n2.

108 Arno Eigenwillig and Kurt Mehlhorn

For n = 2k, the column for Karatsuba’s method contains the value

3k = 3log(n) = (2log(3))log(n) = nlog(3) = n1,58....

Let us return to the question of how much effort it takes to multiply two
numbers of one million digits each. Long multiplication takes almost 4 trillion
basic operations, including 1 trillion multiplications of digits. To use Karat-
suba’s method instead, we first need to put zeros in front of both numbers,
to bring their length up to the next power of two, which is 220 = 1048 576.
Without this padding, we could not split the numbers in halves again and
again until we reach a single digit. With Karatsuba’s method, we can mul-
tiply the two numbers using “only” 3.5 billion multiplications of digits, one
287th of what long multiplication needed. For comparison: One second is a
300th of the proverbial “five minutes”. So we see that Karatsuba’s method
indeed requires much less computational effort, at least when counting only
multiplications of digits, as we have done. A precise analysis also has to take
the additions and subtractions of intermediate results into account. This will
show that long multiplication is actually faster for numbers with only a few
digits. But as numbers get longer, Karatsuba’s method becomes superior be-
cause it produces less intermediate results. It depends on the properties of the
particular computer and the representation of long numbers inside it when ex-
actly Karatsuba’s method is faster than long multiplication.

Summary

The recipe for success in Karatsuba’s method has two ingredients.
The first is a very general one: The task “multiply two numbers of n digits

each” is reduced to several tasks of the same form, but of smaller size, namely
“multiply two numbers of n/2 digits each.” We keep on subdividing until
the problem has become simple: “multiply two digits.” This problem-solving
strategy is called divide and conquer, and it has appeared before in this book
(for example, in Chap. 3 on fast sorting). Of course, a computer does not
need a separate procedure for each size of the problem. Instead, there is a
general procedure with a parameter n for the size of the problem, and this
procedure invokes itself several times for the reduced size n/2. This is called
recursion, and it is one of the most important and fundamental techniques
in computer science. Recursion also has appeared before in this book (for
example, in Chap. 7 on depth-first search).

The second ingredient in Karatsuba’s method, specifically aimed at mul-
tiplication, is his trick to divide the problem in a way that results in three
(instead of four) subproblems of half the size. Accumulated over the whole re-
cursion, this seemingly miniscule difference results in significant savings and
gives Karatsuba’s method its big advantage over long multiplication.

11 Multiplication of Long Integers – Faster than Long Multiplication 109

Further Reading

1. A.A. Karatsuba: The complexity of computations. Proceedings of the
Steklov Institute of Mathematics, Vol. 211, 1995, pp. 169–183, available
at http://www.ccas.ru/personal/karatsuba/divcen.pdf
A.A. Karatsuba reports about the history of his invention and describes
it in his own words.

2. A.K. Dewdney: The (New) Turing Omnibus. Computer Science Press,
Freeman, 2nd edition, 1993; reprint (paperback) 2001.
These “66 excursions in computer science” include a visit to the multipli-
cation algorithms of Karatsuba (for long numbers) and Strassen (a similar
idea for matrices).

3. Wolfram Koepf: Computeralgebra. Springer, 2006.
A gentle introduction to computer algebra. Unfortunately, only available
in German.

4. Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra.
Cambridge University Press, 2nd edition, 2003.
This beautifully prepared textbook for advanced students of computer sci-
ence and mathematics discusses Karatsuba’s method and more advanced
methods (based on Fast Fourier Transformation) for the multiplication of
polynomials.

5. Donald E. Knuth: The Art of Computer Programming, Vol. 2: Seminu-
merical Algorithms. Addison-Wesley, 3rd edition, 1998.
This heavyweight classic of theoretical computer science treats Karat-
suba’s method and other, more advanced algorithms for efficient multipli-
cation of integers, in particular the algorithm of Schönhage and Strassen,
whose running time has a bound proportional to n × log(n) × log(log(n)).

6. Martin Fürer: Faster integer multiplication. Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Computing, 2007, pp. 57–
66.
The currently asymptotically best method for multiplying long integers.
Its running time is proportional to n log(n)2O(log∗(n)).

7. Wikipedia:
http://en.wikipedia.org/wiki/Karatsuba algorithm
http://en.wikipedia.org/wiki/Multiplication algorithm

Acknowledgements

The authors thank H. Alt, M. Dietzfelbinger and C. Klost for helpful remarks
on an earlier version of this chapter.

12

The Euclidean Algorithm

Friedrich Eisenbrand

EPFL, Lausanne, Switzerland

This chapter deals with one of the oldest algorithms that appears in records
from the ancient world. The algorithm is described in The Elements, the
famous book by Euclid, which was written roughly 300 BC. Nowadays, this
algorithm is a cornerstone in many areas of computer science, especially in the
area of cryptography, see Chap. 16, where many fundamental routines rely on
the fact that the greatest common divisor of two numbers can be efficiently
computed.

Imagine that you have two bars of length a and b, respectively, where both
a and b are integers. You want to cut both bars into pieces, each having the
same length. Your goal is to cut the bars in such a way that the common
length of the pieces is as large as possible. We could, for example, cut the bar
of length a into a many pieces of length 1 and the bar of length b into b many
pieces of length 1. Is a larger common length of the pieces possible?

Our algorithm computes the largest possible common length of the pieces.
We describe two versions of the algorithm. The first version is slow, or ineffi-
cient. The second version is fast, or efficient.

Let d denote the largest common length of the pieces that can be possibly
achieved. The bar of length a and the bar of length b are cut into a/d and b/d

Fig. 12.1. Cutting two bars into pieces of common length d

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 12, c© Springer-Verlag Berlin Heidelberg 2011

112 Friedrich Eisenbrand

Fig. 12.2. The common length of pieces that we search for a and b is the common
length of pieces for a − b and b

many pieces, respectively. The picture above displays a situation where a is
cut into 5 and b is cut into 3 pieces. How can we find the largest d?

If both bars have equal length, i.e., if a = b, then the value of d is im-
mediately clear. We do not have to cut the bars at all. The largest length d
such that we can cut a and b into d-sized pieces is the common length of the
bars itself. Let us therefore assume that the length of the two bars is different,
where we assume that a is larger than b. As you lay both bars next to each
other, you make an important observation, see the figure above. If we can cut
both bars into pieces of length d, then we can cut off a piece of length b from
the larger bar.

The resulting bar has length a − b and can be cut into pieces of length d as
well. Conversely, if we can cut both bars, the one of length a − b and the one
of length b, into pieces of length d, then we can cut also a into equal pieces of
length d.

We formulate this insight separately. It is the main principle underlying
our algorithm.

Principle (P)

If a = b, then the length d we are looking for is a.
If a is larger than b, then the common length of pieces for a and b is the
common length of pieces for a − b and b.

We can now formulate an algorithm that computes the largest length d of
pieces into which a and b can be cut.

12 The Euclidean Algorithm 113

Largest common length of pieces

While both bars do not have equal length:
Cut off from the larger bar a piece being as long as the smaller bar and
put this piece aside.

Now both bars have equal length. This common length is the length d we
are looking for.

At this point we must ask ourselves whether the above algorithm ever finishes
or, in computer science terminology, terminates. We can observe that it indeed
does. Remember that the lengths of the bars in the beginning are integers a
and b, respectively. The lengths of the bars remain integers as we cut off a
piece from the longer bar that is as long as the shorter bar. In particular, the
length of both bars is at least 1. As we cut one bar, we remove at least a piece
of length 1. Thus the algorithm performs at most a + b rounds.

The Greatest Common Divisor

Our analysis from above reveals that the length d that we are computing is
also an integer. It is an integer which divides both a and b. In mathematical
terminology this means that there are integers x and y such that a = x ·
d and b = y · d, respectively. The number d is the largest number which
has this property that there exist integers x and y as above. The number
d is the greatest common divisor of a and b. The integers x and y are the
number of pieces of length d into which the bars of length a and b are cut,
respectively.

We can also describe our algorithm in more abstract terminology, where
we no longer use bars. The inputs to our algorithm are two positive inte-

Fig. 12.3. One step of the algorithm

114 Friedrich Eisenbrand

gers a and b. The output of our algorithm is the greatest common divisor of a
and b. We call the algorithm SlowEuclid for a reason that is soon going to be
illuminated.

SlowEuclid

While a �= b
If a is larger than b, then replace a by a − b
If b is larger than a, then replace b by b − a

Return the common value of both numbers.

Let us consider a small example.
The input in this example is 15 and 9. In the first step, we subtract 9 from

15 and obtain the new pair of numbers 6 = 15 − 9 and 9. In the second step,
we obtain 6 and 3. In the third step, we obtain 3 and 3 and the algorithm
returns the number 3.

The next example explains why we called the algorithm SlowEuclid. Con-
sider the input a = 1001 and b = 2. The two numbers during the execution of
the loop of the algorithm are

1001 and 2

999 and 2

997 and 2

995 and 2

. . . (many rounds in-between)

3 and 2

1 and 2

1 and 1

The reason for the algorithm to take such a long time is the fact that the
second number is excessively smaller than the first number of the input.

An Observation That Speeds up the Algorithm

In the example above, how often is 2 subtracted from 1001? One has 1001 =
2 · 500 + 1. Thus the number 2 is subtracted 500 times from 1001 until the
value of the outcome drops below 2.

A computer can very efficiently perform a division with remainder. This
operation computes for positive integers a and b two other integers q and r
with a = q · b + r. The integer r is at least zero and strictly smaller than b. In
our example we have a = 1001, b = 2, q = 500 and r = 1.

If a and b is the input to our algorithm SlowEuclid, where a is larger than
b, then b is repeatedly subtracted from a q times, if there is a remainder r ≥ 1.

12 The Euclidean Algorithm 115

If b divides a exactly and r = 0, then b is subtracted from a q − 1 times and
two bars of equal length are the outcome. This means that we can speed up
the algorithm by immediately replacing a by the remainder r of this division.
It then eventually happens that the remainder r is zero, in which case b is the
greatest common divisor we are looking for and the algorithm terminates.

This is the idea of the next algorithm which we now call Euclid.

Euclid

1 if a < b: swap a and b.
2 while b > 0:
3 compute integers q, r with a = q · b + r, where 0 ≤ r < b;
4 a := b; b := r;
5 return a.

Analysis

You probably guess that the algorithm Euclid is much faster that SlowEu-

clid. Let us now rigorously analyze the number of iterations that the algo-
rithm performs to substantiate this suspicion. Suppose that a is larger than b.
How large then is the number r with which we replace a in the first step of
the algorithm? The next picture reveals that this remainder is always at most
a/2. This is because a is at least b + r and since b > r it follows that a is
larger than 2 · r.

Thus in the first round, b is replaced by a number which is at most a/2.
In the next round, a is replaced by a number which is at most a/2 too. Thus
after two rounds, both numbers are at most a/2.

If we now consider 2 · k consecutive rounds, then both numbers have a
value that is at most a/2k. If k > log2 a, then both numbers would have value
zero. This, however, cannot happen since then the algorithm would already
have finished before. Therefore the number of iterations through the loop of
the algorithm is bounded from above by 2 · log2 a, where we again use the
logarithm to the base 2.

Fig. 12.4. The remainder r is small

116 Friedrich Eisenbrand

The number of digits which is required in our decimal system to write
down the number a is proportional to log2 a. This means that, while the al-
gorithm SlowEuclid requires a number of iterations that is proportional
to the values of a and b, the algorithm Euclid requires only a number
of iterations that is proportional to the number of digits that we need to
write down a and b, respectively. This is an enormous difference in running
time.

An Example

Finally we compute by hand the greatest common divisor of a = 1324 and
b = 145.

The first division with remainder is 1324 = 9 · 145 + 19. Now a is set to
145 and b is set to 19.

The second division with remainder is 145 = 7 · 19+12. The third division
with remainder yields 19 = 1 · 12 + 7. Then one has 12 = 7 + 5, 7 = 5 + 2,
5 = 2 · 2 + 1 and 2 = 2 · 1 + 0, from which we can conclude that the greatest
common divisor of 1324 and 145 is 1. Two integers whose greatest common
divisor is 1 are called coprime.

Further Reading

1. Donald E. Knuth: Arithmetic. Chapter 4 in The Art of Computer Pro-
gramming, Vol. 2: Seminumerical Algorithms. Addison-Wesley, 3rd edi-
tion, 1998.
This classical textbook treats the Euclidean algorithm in Chap. 4.5.2.
Among other things, the author explains that our analysis of the Euclidean
algorithm is the best possible. More precisely it is shown that there exists
a sequence F0, F1, F2, . . . of natural numbers, for which the number of
digits which are necessary to represent Fi is proportional to i while the
Euclidean algorithm requires on input Fi and Fi−1 exactly i iterations.

2. Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra.
Cambridge University Press, 2nd edition, 2003.
This very nice textbook for advanced students of Computer Science and
Mathematics discusses in Chap. 6 the Euclidean algorithm. The book also
discusses the number of elementary operations (see Chap. 11) which are
required by the Euclidean algorithm and some of its variants. Here, and
also in the book of Knuth, the authors describe algorithms to compute the
greatest common divisor of two integers that require a number of elemen-
tary operations which is proportional to M(n) log n. The number n is then
the total number of digits of the input and M(n) denotes the number of
elementary operations that are necessary to compute the product of two
integers having at most n digits each.

12 The Euclidean Algorithm 117

3. In Wikipedia:
http://en.wikipedia.org/wiki/Euclidean algorithm

Acknowledgement

The author is grateful to M. Dietzfelbinger for many helpful comments and
suggestions.

13

The Sieve of Eratosthenes – How Fast Can We
Compute a Prime Number Table?

Rolf H. Möhring and Martin Oellrich

Technische Universität Berlin, Berlin, Germany
Beuth Hochschule für Technik Berlin, Berlin, Germany

A prime number, or just prime, is a natural number that is not divisible
without remainder by any other natural number but 1 and itself. Primes
are scattered irregularly among the set of natural numbers. This fact has
fascinated and occupied mathematicians throughout the centuries.

A prime number table up to n is a list of all primes between 1 and n.
It begins as follows:

2 3 5 7 11 13 17 19 23 29 31 37 41

Over time, many problems involving primes were found. Not all of them
have been solved. Here are two examples.

Christian Goldbach (1694–1764) formulated an interesting observation in
1742:

Every even number greater than or equal to 4 can be written as the
sum of two primes.

For instance, we find:

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 + 5, etc.

This proposition demands that there be at least one such representation. In
fact, there are several for most numbers. The following diagram, based on a
prime table, shows the number of different prime sums. On the x-axis, we see
the partitioned (even) numbers.

The slight trend upward in the columns continues with increasing n. No
even number was found for which the proposition fails. Nevertheless, no proof
is known that it holds for all of them.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 13, c© Springer-Verlag Berlin Heidelberg 2011

120 Rolf H. Möhring and Martin Oellrich

Carl Friedrich Gauß (1777–1855) examined the distribution of the primes
by counting them. He considered the function

π(n) := number of primes between 1 and n.

A diagram of this function looks like this:

π(n) is called a step function, for obvious reasons. Gauß constructed a
“continuous” curve clinging as close as possible to π(n), no matter how large n
grows. In order to picture his plan and to check his results later, he needed
a prime table. (This problem has since been solved. Deeper coverage exceeds
the scope of this book.)

Today, primes are not only a challenge for mathematicians, but are of very
practical value. For instance, 100-digit primes play a central role in electronic
cryptography.

From the Idea to a Method

As far as we know today, an ancient Greek introduced the first algorithm
for the computation of primes: Eratosthenes of Kyrene (276–194 BC). He
was a high-ranking scholar in Alexandria and a director of its famous library,
containing the complete knowledge of ancient mankind. He and others studied
the essential astronomical, geographical, and mathematical questions of their
time: What is the perimeter of the Earth? Where does the Nile come from?
How can one construct a cube containing twice the volume of another given
one? We will follow his steps below from a simple basic idea to a practical
method. Even in his time, it could be executed well on papyrus or sand. We
will also investigate how fast it is in computing a fairly large prime table. As
a measure for “large,” we let n = 109, i.e., one billion.

A Simple Idea

According to the definition of prime numbers, for any m not a prime there
are two natural numbers i, k with the property that

2 ≤ i, k ≤ m and i · k = m.

13 The Sieve of Eratosthenes 121

We use this fact and formulate a very simple prime table algorithm:

• write down all numbers between 2 and n into a list,
• form all products i · k, where i and k are numbers between 2 and n, and

• cross out all reoccurring results from the list.

We immediately see how this prescription does what we want: all numbers
remaining in the list never occurred as a product. Consequently, they cannot
be written as a product and are thus prime.

How Fast Is the Computation?

In order to analyze the algorithm, we write the individual steps of the basic
idea more formally and enumerate the lines:

Prime number table (basic version)

1 procedure Prime number table

2 begin
3 write down all numbers between 2 and n into a list
4 for i := 2 to n do
5 for k := 2 to n do
6 remove the number i · k from the list
7 endfor
8 endfor
9 end

If the number i · k in step 6 is not present in the list, nothing happens.
This algorithm can be programmed in a straightforward fashion on a com-

puter, and we can measure its time consumption. On a Linux PC (3.2 GHz),
we get the following running times:

n 103 104 105 106

Time 0.00 s 0.20 s 19.4 s 1943.4 s

We clearly see how increasing n by a factor of 10 leads to a longer compu-
tation time by a factor of approx. 100. This was to be expected, since i as well
as k run over a range about 10 times as large. The algorithm forms almost
100 times as many products i · k.

From this, we can calculate the time needed for n = 109: we must multiply
the time for n = 106 by a factor of (109/106)2 = 106, resulting in 1943 · 106

seconds = 61 years and 7 months. Clearly, this is of no practical use.

122 Rolf H. Möhring and Martin Oellrich

Fig. 13.1. Computing products i · k in a certain range

How Does the Algorithm Spend Its Time?

The algorithm generates all products in a certain range (Fig. 13.1(a)).
However, every individual result of i · k is needed only once. After being

removed from the list, the algorithm would never have to generate it again.
Where does it do surplus work? This happens, for instance, when i and k
attain exchanged values, say, i = 3, k = 5 and later i = 5, k = 3. In both
cases, the results of the product are identical, as is assured by the commutative
rule of multiplication: i · k = k · i. For this reason, we restrict k ≥ i and avoid
these duplications (Fig. 13.1(b)).

This idea instantly saves half the work! Yet, even 30 years and 10 months
are still too long to wait for our table. Where can we save more? In those
cases when in step 6 never anything happens: for i · k > n. The list contains
numbers up to n, so there is nothing to remove beyond that.

So we need to execute the k-loop (line 5) only for those values satisfying
i · k ≤ n. This condition immediately delivers the applicable k-range: k ≤ n/i.
As a side effect, we can also limit the i-range. From the two restrictions i ≤
k ≤ n/i, we conclude i2 ≤ n, and ultimately, i ≤

√
n. For larger i, there are no

k-values to enumerate. The number domain generated now looks as follows:

13 The Sieve of Eratosthenes 123

The algorithm has now attained the following form:

Prime number table (better)

1 procedure Prime number table

2 begin
3 write down all numbers between 2 and n into a list
4 for i := 2 to �

√
n� do

5 for k := i to �n/i� do
6 remove the number i · k from the list
7 endfor
8 endfor
9 end

(The notation � · � means floor rounding, as i and k can attain integral values
only.)

How fast have we become? The new running times:

n 104 105 106 107 108 109

Time 0.00 s 0.01 s 0.01 s 2.3 s 32.7 s 452.9 s

The effects are considerable, with our target of 109 within close sight: it
is just seven and a half minutes away. We let the computer run and use this
time to make some more improvements!

Do We Need Every i Value?

Let us consider what exactly happens within the i-loop (line 4): i remains
fixed and k traverses its own loop (line 5). Doing so, the product i · k attains
the values

i2, i(i + 1), i(i + 2),

So when the k-loop is finished, no proper multiples of i are left in the list. The
same applies to multiples of numbers less than i. They were removed earlier
in the same way.

What happens if i is not a prime? Example i = 4: the product i · k attains
the values 16, 20, 24, These numbers are all multiples of 2, since 4 itself
has this property. In principle, there is nothing to do in the case i = 4. The
same is true for all other even numbers i > 4.

Example i = 9: the product attains only multiple values of 9. Yet, those
have already been enumerated as multiples of 3 and are thus redundant. This
reasoning applies to all non-primes, since they possess a smaller prime divisor
that was an i-value before them. Consequently, we need to execute the k-loop
exclusively for prime i-values. See the following figure:

124 Rolf H. Möhring and Martin Oellrich

Whether i is a prime or not could be looked up in the list itself – if it were
complete. We can trust it to contain primes only no earlier than termination.
Or is it?

The answer is: yes and no. In general yes; otherwise we could abbreviate
the algorithm. Consider, for instance, n = 100: the non-prime 91 must even-
tually be removed from the list. It is generated close to termination, when
i = 7, k = 13.

Yet in our special case, no. We do not attempt to recognize arbitrary
numbers as prime, but just the specific value i. Also, not at an arbitrary
moment, but exactly at the beginning of the k-loop for the i-value in question.
In this restricted case, the list returns the correct primeness information on i!
Why?

We observed above that for every fixed i all removed values satisfy i·k ≥ i2.
Put differently, the range 2, . . . , i2 − 1 remains unaltered. Upon growing i-
values, this range expands and comprises all previous ranges. In the following
figure, these ranges are marked blue. The first “wrong” number in every table
row is printed in red.

Now all of these ranges do not change until termination. Therefore, they
must be correct before execution of the k-loop for the i-value in question. We
can say the table is completed in quadratic steps. The essential i-values – the
ones whose primeness we need – are printed in green. It is obvious how they
always lie within a blue range. So in order to decide whether i is a prime
number or not, we may simply look it up in the current list.

In our algorithm, we can thus enhance the i-loop as follows:

13 The Sieve of Eratosthenes 125

Prime number table (Eratosthenes)

1 procedure Prime number table

2 begin
3 write down all numbers between 2 and n into a list
4 for i := 2 to �

√
n� do

5 if i is present in the list then
6 for k := i to �n/i� do
7 remove the number i · k from the list
8 endfor
9 endif

10 endfor
11 end

It was this version of the method that the clever Greek presented. It is called
the Sieve of Eratosthenes: sieve because it does not construct the desired
objects, the primes, but filters out all non-primes.

Our time measurements on his algorithm read as follows:

n 106 107 108 109

Time 0.02 s 0.43 s 5.4 s 66.5 s

Even with n = 109, it needs roughly one minute!

Can We Get Even Faster?

With an argument similar to that for the prime i-values above, we can further
restrict the k-values needed: we take only those found in the list! If k was
removed as a non-prime, it possesses a prime divisor p < k. In the i-loop
where i = p, all proper multiples of p were removed. In particular, k and its
multiples were among them. Nothing remains to do.

Again enhancing the algorithm, it appears to be natural to do it as follows:

6 for k := i to �n/i� do
7 if k is present in the list then
8 remove the number i · k from the list
9 endif

But caution! This formulation is misleading. Running the algorithm like that,
we get the following list:

2 3 5 7 8 11 12 13 17 19 20 23 27 28 29 31 32 37 . . .

What is wrong? Let us look at the first steps more closely. After initializing
the list with all numbers up to n (line 3), it reads:

2 3 4 5 6 7 8 9 10 11 . . .

126 Rolf H. Möhring and Martin Oellrich

First, we set i = 2 and then k = 2. The number 2 stands in the list, so we
remove i · k = 4:

2 3 – 5 6 7 8 9 10 11 . . .

Next, we set k = 3. The number 3 also stands in the list and we remove
i · k = 6:

2 3 – 5 – 7 8 9 10 11 . . .

Now something happens: k = 4 is no longer present in the list, since we
removed it. According to the new if -condition, we must skip the k-loop and
continue with k = 5:

2 3 – 5 – 7 8 9 – 11 . . .

This way, 2 · 4 = 8 is erroneously never removed from the list. The problem
is that k eliminates only numbers i · k > k and is subsequently incremented.
Eventually, k attains the value of a former product i · k and the method
unfavorably effects on itself:

The solution is to let k traverse its loop range backwards, thus avoiding
the unwanted feedback:

According to this reasoning, only the following products i · k are formed:

13 The Sieve of Eratosthenes 127

Summarizing, we achieve the following version of the algorithm:

Prime number table (final version)

1 procedure Prime number table

2 begin
3 write down all numbers between 2 and n into a list
4 for i := 2 to �

√
n� do

5 if i is present in the list then
6 for k := �n/i� to i step -1 do
7 if k is present in the list then
8 remove the number i · k from the list
9 endif

10 endfor
11 endif
12 endfor
13 end

Its running times:

n 106 107 108 109

Time 0.01 s 0.15 s 1.6 s 17.6 s

This result is very acceptable by today’s standards. Starting out with a
naive basic version, we have accelerated the method for n = 109 with a few
closer looks by a factor of 254.5 million!

What Can We Learn from This Example?

1. Simple computation methods are not always efficient.
2. In order to accelerate them, we need to understand well how they work.
3. Often several different improvements are possible.
4. Mathematical ideas can lead very far!

Further Considerations

A time of 17.6 seconds is a good result for spending a few thoughts on the
algorithm. Yet after all, how good is that? Have we reached the best possible?

Let us establish what the algorithm generally has to achieve. It must gen-
erate all non-primes up to n at least once and remove them from the list.
Below n = 109 there are exactly 949,152,466 of them. Counting the number
of products i · k computed, we obtain the following values for our variants
above:

128 Rolf H. Möhring and Martin Oellrich

Basic version Better Eratosthenes Final version
Num. products 1018 9.44 · 109 2.55 · 109 9.49 · 108

Relation to 1.1 · 109 9.9 2.7 1.0
nonprimes

In fact, the final version performs just as much work as necessary. In this
respect, it is optimal!

Interestingly, this does not mean we could no longer improve the algorithm.
The comparison with the number of non-primes is no absolute measure, since
we can still diminish them. The following trick works: the list is not initialized
with all numbers from 2 on, but just with 2 itself and all odd numbers ≥ 3.
We know that the even numbers ≥ 4 are never prime, so why generate them
in the first place? The procedure has considerably less work to do on a list
containing odd prime candidates only. The k-loop for i = 2, the longest one
of all, is completely omitted. Only the following products are being generated
now:

We can play more on this theme: we also omit initializing the list with all
proper multiples of 3. At the start, it contains the numbers

2 3 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 . . .

and the actual sieve work begins with i = 5:

This way, we can achieve ever-decreasing initial lists for the same range
up to n by omitting the proper multiples of 5, 7, 11, 13, etc.:

13 The Sieve of Eratosthenes 129

We find the same characteristic in the running times and the memory
consumptions, as the lists themselves are diminished:

Omit

Reduction None 2 2, 3 2–5 2–7 2–11 2–13 2–17 2–19

Run time [s] 17.6 33.0 22.6 17.8 14.7 13.3 12.6 24.0 25.9

Memory [MByte] 119.2 59.6 39.7 31.8 27.3 24.8 22.9 21.6 20.4

The list is represented here by a bit array. At position i in the array, a 1
marks the primeness of i while a 0 indicates that i is a nonprime.

If we choose a linked list as the memory representation instead, we would
incur two disadvantages. First, in order to look up the primeness property of
some number, we would have to search for the appropriate entry first. Second,
the numbers run up to 9 digits and we would need to store all 50,847,534 prime
numbers below one billion in 1551.7 MByte memory.

A note on the almost double computation time after omitting the even
initial numbers. Since the list is condensed, we need a transformation between
the list indices (1, 2, 3, 4, . . .) and the numbers addressed (in this example:
2, 3, 5, 7, 9, . . .). This uses up some time. Yet altogether, we achieve an excellent
12.6 s with a list reduced by the multiples of 2 through 13. Beyond that,
the preparation of the transformation data dominates over the actual list
computation, rendering further reduction useless.

Further Reading

1. http://en.wikipedia.org/wiki/Sieve of Eratosthenes
This Wikipedia article offers a concentrated introduction to the topic.

2. On the homepage of one author, we provide the C code with which we
measured the running times in the tables:
http://prof.beuth-hochschule.de/oellrich/aktivitaeten-mit-
schuelern.html

3. Chapters 14 (One-Way Functions) and 16 (Public-Key Cryptography)
In Chaps. 14 and 16, the primary topic is not prime numbers. But the
treated problems essentially reduce to finding divisors of very large natural

130 Rolf H. Möhring and Martin Oellrich

numbers fast. Since primes possess no proper divisors, none can be found
fast and thus the factorization problem cannot be broken down. Large
primes are hard to recognize and therefore qualify as building bricks for
encryption methods. However, primes with 100 or more digits cannot be
practically handled by means of prime tables. For this purpose, other
methods generate numbers of this magnitude directly.

4. Chapter 20 (Hashing)
In Chap. 20, the main topic is also not prime numbers. Yet for most pur-
poses, hash tables of prime length are advantageous. Hash functions of the
form key value modulo table length generally have good distribution prop-
erties when the keys are uniformly distributed. A certain lookup method
called double hashing can in this way assert to find any free entry. For
the purpose of selecting a suitable prime for a hash table, a prime table
is very useful.

5. A twin prime is a pair of prime numbers with a difference of exactly two.
The first such pairs are: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43),
(59, 61), (71, 73), The very first one (3, 5) is an exception for two rea-
sons. First, the number 5 is the only one to occur in two pairs. Second, in
all other twins, the number between the primes is divisible by 6. This must
be the case, since among three contiguous numbers exactly one must be
divisible by 3 and at least one by 2. The two primes (except with (3, 5)) are
neither divisible by 2 nor by 3, therefore the middle number contains both
factors. Twin primes have been found in arbitrary large ranges of natu-
ral numbers. However, there is still no proof whether finitely or infinitely
many of them exist. In a prime table up to 109, we can find 3,424,506 such
twins.

14

One-Way Functions. Mind the Trap – Escape
Only for the Initiated

Rüdiger Reischuk and Markus Hinkelmann

Universität zu Lübeck, Lübeck, Germany

The contributions so far have shown how a specific algorithmic problem can
be solved fast – slightly more generally, computer scientists use the term
efficiently. If we cannot find a fast algorithm one might be tempted to feel
unhappy. Here we show that problems that are not efficiently solvable can still
be very valuable. Thus, we like to phrase the message of this article as

bad news can turn out to be quite useful.

The Mirror Image of Multiplication: Factorization

In Chap. 11 it is shown that the product of numbers can be computed very
fast, even when the numbers are quite big and therefore require many decimal
or binary digits to write them down. A simple algorithm for multiplying two
numbers is taught at elementary school. This way, a human being can compute
the product of two larger numbers on a piece of paper in a few minutes, even
if it might be boring and require concentration to avoid errors. For computers
it is one of the easiest tasks to multiply numbers with hundreds or thousands
of digits in a few milliseconds.

Let us consider the inverse problem: to split a product back into its factors.
Remember that certain numbers, called primes, cannot be divided further
into a product of smaller numbers, and that the first prime numbers are
2, 3, 5, 7, 11, 13, 17, 19, 23, Mathematicians have shown that every natural
number uniquely can be expressed as a product of primes, for example,

20,518,260 = 2 · 2 · 3 · 5 · 7 · 7 · 7 · 997.

Naturally, the question comes up to design an algorithm that finds this se-
quence of divisors, the factorization problem . Can we do this as efficiently
as multiplication, even for large numbers?

The last digit of a decimal number N tells us whether it can be divided by
2 or 5. Divisibility by 3 can be decided by adding the digits of N . For numbers

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 14, c© Springer-Verlag Berlin Heidelberg 2011

132 Rüdiger Reischuk and Markus Hinkelmann

Fig. 14.1. A one-way function

that have only large prime divisors, however, finding the divisors does not seem
to be that easy. The ancient Greeks knew a method: test N with all primes
p that are at most as large as the square root of N . However, for a 100-digit
number this requires about 8.5 · 1048 division tests, which is incredibly many
and would last longer than the expected lifetime of our universe.

A simpler variant of the factorization problem is the prime number prob-
lem , where one has to find out whether a given number is already prime and
thus has no smaller divisors. Efficient algorithms are known for the prime
number problem, so this will not be the topic here – see Chap. 13.

In the 1970s three computer scientists, Ron Rivest, Adi Shamir and
Leonard Adleman, invented the RSA cryptosystem . It encrypts texts to
be sent over an insecure communication medium like the Internet such that
a third person is not able to find out the contents of the message. Nowadays,
the RSA cryptosystem is used worldwide as a basic tool for secure Web trans-
actions. It selects a number N that is the product of two large primes p and q,
but keeps these two factors secret. Breaking this encryption scheme is closely
related to finding out the factors p, q of N .

In order to demonstrate how secure their system is, in 1977 the inventors
encrypted a message with a 129-digit decimal number N . They then made
N and the encrypted message public, challenging everybody to decrypt the
message, where

Fig. 14.2. How can we get back?

14 One-Way Functions 133

N =

114381.625757.888867.669235.779976.146612.010218.295721.242362.562561.842935.

706935.235733.897830.597123.563958.705058.989075.147599.290026.879543.541

It took 17 years until in 1994 very complex algorithms had been developed
that were more clever than simply testing all possible prime divisors. After
eight months of intensive computing on a worldwide cluster of hundreds of
computers, finally the two factors

N = 3490.529510.847650.949147.849619.903898.133417.764638.493387.843990.820577

× 32769.132993.266709.549961.998190.834461.413177.642967.992942.539798.288533

were found. In total, about 160 trillion computer instructions were executed,
that is 1.6 · 1017. Are you interested in knowing the encrypted message? “The
magic words are squeamish ossifrage.”

One-Way Functions

Today, 16 years after this event:

• The bad news: even with the best algorithms known and the fastest super-
computers available now or in the near future, and using many thousands
of such machines together, for a decimal number with several hundred
digits that has only large prime factors one cannot find these factors in
acceptable time (for example, within 100 years).

• The good news: as long as no new factoring algorithms are found that are
dramatically faster, data encrypted with the help of the RSA-scheme – for
example, passwords during online banking – can be considered absolutely
secure.

Let us summarize so far:

1. The multiplication of numbers, in particular prime numbers, can be done
quite efficiently.

Fig. 14.3. Return through a secret door

134 Rüdiger Reischuk and Markus Hinkelmann

2. Its inverse operation, splitting a product back into its prime divisors,
cannot be done efficiently – at least according to the current state of
knowledge in informatics and mathematics.

How can we make use of such a situation in general? In mathematics, the
term function denotes an operation that transforms mathematical objects into
other objects. In our case, the objects are numbers or sequences of numbers.
Factorization can be considered as the inverse function to multiplication.

An operation that can be computed easily, but for which the inverse is
difficult is called a one-way function . Such functions are important for the
encryption of messages. Instead of sending the original message M one could
send the result of applying the one-way function to M . The encryption can
be done fast, whereas the decryption, that is, applying the inverse function,
is very difficult according to the properties of one-way functions. An attacker
thus has no chance to deduce M from its encryption.

Consider the following example. Alice wants to send to Bob the message
“top secret”. Let us assume that they use only capital letters and instead of a
space between two words write the letter “X”. The letters are then numbered
with 01 up to 26 and each letter is replaced by its number. Then

TOPXSECRET

turns into

T = 201516240503180520.

In general, T will not be prime; however, by adding a few digits at the right
end one can always make this number prime – in our case, for example, using
the digits 13 we get the prime number

p = 20151624050318052013.

Then Alice chooses a second slightly larger prime number, for example,

q = 567891624050318052137

and computes their product

N = p · q = 11443938509186566743788165964622411801781.

This number N can be sent by Alice to Bob without any worry – nobody will
be able to decipher the message p, resp. T since this would mean that the
factorization of N has been found. To be honest, these numbers are too small
to guarantee high security – in reality one should choose prime numbers with
at least 150 digits, thus Alice simply adds more digits to T to generate a p
that is long enough.

But, wait, even Bob cannot decrypt the message. Grrrrr . . . encryption
with one-way function is not totally simple. We need an additional trick.

A one-way function f with secret information, in technical terms a
trapdoor function, has the following additional property:

14 One-Way Functions 135

Fig. 14.4. Using a trapdoor function in cryptology

3. The inverse function of f can be computed efficiently if one possesses a
secret key S.

This requirement may sound strange at first thought; however, we can
illustrate it with a simple example from our daily life.

A Practical Problem: Searching a Telephone Book

Let’s take a step back into history when telephone numbers where not available
online in electronic databases, but had to be looked up in printed telephone
books. If Alice wants to call her old friend Bob after a long time, but does not
have his current number, she only has to search for his name in the telephone
book and then find the number behind Bob’s name. This is simple and fast –
why?

Remember Chap. 1 on binary search. The telephone book for the German
city Lübeck, for example, has about n = 250,000 entries, which means that
with at most 18 ≈ log2 n many comparisons of names one can find Bob since
the names are listed in alphabetical order. If they were not ordered one would
have to read the telephone book from the beginning and compare every name
until Bob is found. On average, this will require about half the book size
since Bob could be anywhere. For a midsize city like Lübeck this would be
completely impractical (instead of transmitting her invitation for a dinner
in the evening to Bob over the phone, Alice would still be searching for his
number the next morning). Although searching in telephone books rarely is
done by a perfect binary search – even by computer scientists – everybody
knows from experience: searching for telephone numbers is easy because of
the alphabetical ordering.

136 Rüdiger Reischuk and Markus Hinkelmann

Fig. 14.5. Normal telephone book

What about searching the other way, for a given number find the owner
of this number?

Alice finds on the display of her telephone that somebody with the
number 123456 has tried to call her while she was away. She cannot
remember this number, thus would not like to call back right away,
but first find out whom to expect at the other end.

Having available only a printed telephone book she has no other choice than
scanning the book entry by entry until she finds the number. Thus the map-
ping name → number is a one-way function, at least for human beings only
having access to printed telephone books.

Computers, however, can sort a sequence of data pairs with clever algo-
rithms very fast (as explained in previous articles) such that nowadays infor-
mation providers also offer telephone books ordered by numbers. With the
help of such an inverted telephone book one can now search for names given
the numbers very fast, too, again exploiting binary search. Thus, in our mod-
ern times one could also solve this problem efficiently. But for a moment let
us stick to the situation where only standard telephone books are available.

A nice telephone company could solve Alice’s problem by assigning num-
bers to customers according to their alphabetical ordering. For example, Alice
gets a number mA that is smaller than Bob’s number mB since her name pre-
cedes Bob in alphabetical order. In such a system we can find names in a few
seconds if we perform binary search with respect to the entries of numbers.

14 One-Way Functions 137

Fig. 14.6. Telephone book ordered by numbers and book with numbers transformed

A telephone book for an ordered number system thus has lost its one-
way property. Bob, who is concerned about protection personal information,
does not like such a system. He demands to keep the “practical” anonymity
of a caller even if his number is displayed, and thus requests to stick to a
chaotic distribution of telephone numbers. Therefore, he asks the international
society of cryptologists (ISCRY) for help. The ISCRY solves the problem by
assigning new numbers to all people. The new numbers are obtained by a
secret transformation h of their numbers in the ordered system such that the
originally ordered sequence of numbers

mA mAndreas mAxel . . . of Alice, Andreas, Axel, . . .

after transformation to

h(mA) h(mAndreas) h(mAxel) . . . looks completely chaotic.

ISCRY, however, knowing the transformation, can recompute the original
number m from h(m) and perform a binary search on these recomputed num-
bers.

The mapping name → number in the transformed telephone book is there-
fore a one-way function with a secret key, the transformation h. Everybody
can easily find the number for each name. The inverse search, however, can
only be done efficiently by those who know the secret transformation h.

138 Rüdiger Reischuk and Markus Hinkelmann

Table 14.1. Numbers are estimated and rounded

Subject Computation time / Numbers

Using the fastest algorithms known today
and all computers on earth for:
Factoring a 256-digit decimal number More than 2 months
Factoring a 512-digit decimal number More than 10 million years
Factoring a 1024-digit decimal number More than 1018 years

Lifetime of our universe ≈ 1011 years

Cycles of a 5-GHz processor in 1 year ≈ 1.6 · 1017

Number of electrons in our universe ≈ 8 · 1077

Number of 100-digit primes ≈ 1.8 · 1097

Security and Googles

Can one make sure for a specific problem that there is no efficient algorithm
to solve it? Intuitively, it seems more difficult to prove the nonexistence of
an object than its existence since in the latter case one only has to present
it.

This is surely true when searching for fast algorithms since there are po-
tentially infinitely many (compare the discussion in Chap. 24).

To remove any last doubts concerning the security of modern cryptosys-
tems, one has to prove that there do not exist efficient algorithms for the
inverse of an encryption function. More than 30 years’ research in informat-
ics has tried to develop methods for analytical proofs that certain problems
cannot be solved efficiently. Although some milestones have been met, there
still seems to be a long way to go to reach this goal.

Finally, we would like to give the reader some feelings for big numbers. Ta-
ble 14.1 contains estimations for the time to factor a number that is composed
of two big primes. For comparison, some physical constants are added.

Further Reading

1. Chapter 16 (Public-Key Cryptography).
Chapter 16 deals with public-key cryptosystems for which one-way func-
tions are an essential precondition.

2. More details about the RSA system can be found at:
http://www.rsa.com/rsalabs/node.asp?id=2214,
for more information to break RSA see:
http://www.wired.com/wired/archive/4.03/crackers.html

3. If you like to read more about cryptography and its history we recommend
the following books:
• B. Schneier, Applied Cryptography. Wiley, 1996. http://www.

schneier.com/book-applied.html

14 One-Way Functions 139

• A. Menezes, P. Oorschot, S. Vanstone, Handbook of Applied Cryptogra-
phy. CRC Press, 2001. http://www.cacr.math.uwaterloo.ca/hac/

• D. Kahn, The Codebreakers – The Story of Secret Writing. Scribner,
2nd edition, 1996.

• F. Bauer, Decrypted Secrets. Methods and Maxims of Cryptology.
Springer, 3rd edition, 2002.

4. Interesting facts about prime numbers can be found at C. Caldwell, The
Prime Pages: http://primes.utm.edu/

15

The One-Time Pad Algorithm – The Simplest
and Most Secure Way to Keep Secrets

Till Tantau

Universität zu Lübeck, Lübeck, Germany

School started just a few weeks ago and Max is already dreading the upcoming
exam in computer science, which will be about something with the slightly
menacing name “encryption algorithms.” Max’s dread is not unfounded since
he has almost no clue as to what “encryption algorithms” might be about,
which in turn is due to the fact that all of Max’s attention has lately been
focused on Lisa, his new girlfriend. Lisa, by comparison, is not only fascinated
by Max, but also by cryptology. Since Max simply has to pass the exam, Lisa
devises a rather straightforward plan: “Fortunately, the exam will consist only
of multiple choice questions, so all I need to do is to pass to you slips of paper
on which I will write the answers to the questions. The teacher never notices
such things.” Max raises a slight objection: “But Peter will be sitting between
us.” Lisa answers: “Ah, don’t worry about Peter, I can sweet-talk him into
passing on anything I give him. So, on the paper, I will put a 1 for each answer
box that you should check and I will put a 0 for the other answer boxes. For
instance, if there are five answer boxes and you should check the first and the
third, I will send:

Lisa’s plan works remarkably well: Lisa and Max (and also Peter by the
way) get excellent grades. However, the teacher becomes somewhat suspicious
since Max is not renowned for his great knowledge concerning the subject. She
decides that during the next exam Max’s former girlfriend, rather than Peter,
will sit between Lisa and Max. The teacher’s idea seems to go in the right
direction since Max starts brooding: “I’d rather fail the exam than have her
copy the answers!” (Max obviously is not all that fond of his former girlfriend.)

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 15, c© Springer-Verlag Berlin Heidelberg 2011

142 Till Tantau

Lisa gives the matter some thought and then informs Max: “Ok, it seems
like we will have to encrypt the solutions using a one-time pad.”

“One-time pad?” Max asks, looking slightly clueless.
“That’s an encryption method for securely encrypting messages a single

time.”
“Encryption method?” Max asks, looking even more clueless.
“You really don’t pay attention in class . . . ” Lisa begins. Max interrupts

her by interjecting “But I love you!”, which Lisa ignores and continues: “En-
cryption means that you and I agree on a key beforehand. I can use this key
to lock the answers to the exercises. You can then use the key to unlock the
answers once more. Your former girlfriend won’t be able to find out the correct
solutions without the key.”

“Eh?” is Max’s only answer, being totally lost at this point.

Encrypting Messages

“Pass me five coins from your wallet,” Lisa asks. Max obliges, although he
seems to mumble something along the lines of “But I will get them back . . . ”
Lisa places the coins on the table and continues: “When a coin face displays
a number, you must check the corresponding box, otherwise you don’t. For
instance, if the first and third box should be checked, we can represent this
using coins as follows:”

“Very well. Whatever. I don’t really see where you are going with this,”
Max answers, slightly bored. “It does not matter whether you write 10100 on
a piece of paper or use five coins, my ex-girlfriend is not that stupid. She will
catch on that this means: Check the first and third boxes.”

“Ah, but now encryption comes into play. Pass me that deck of notes,
thanks. On some of them I’m going to write ‘flip’ and on some others I’m
going to write ‘do not flip’. Now you pick five of them randomly and place
them below the coins.”

Max does as Lisa asks:

15 The One-Time Pad Algorithm 143

“Great,” Lisa says encouragingly. “Those notes will be our key, which we
fix before the exam and have to learn by heart.”

“Now I do see where you are going with this.” Max replies, not being
stupid after all. “Instead of the original coins you pass the coins after they
have been flipped or not flipped according to our key:

My ex-girlfriend can look at this as long as she wants, it won’t help her
one bit – for instance, the first coin can both mean ‘check’ or ‘do not check’
the first box. The chances are exactly fifty–fifty.

However, come to think of it, why should she pass notes at all? Why
shouldn’t she just swallow them to spite me?”

“She also wants you to pass the exam – so that she can pester you next
year in class.”

“Arghh,” Max cringes, then gives a big sigh. “Well, let’s go over the plan
once more: In the exam you solve the first question. Suppose you want to tell
me that I should check the first and third box, which corresponds to 10100.
However, since our key says that the first and fourth ‘coin’ should be flipped,
you send the following instead:

“I have memorized the key and can ‘flip the coins’ once more, which yields
10100. Thus, I check the first and third box.”

“I knew my boyfriend was reasonably smart.” Max looks suspiciously at
Lisa, but she continues: “You will have to agree that this one-time pad method
is pretty simple, but still perfectly safe. By the way, we are not the only ones
who use this method: When heads of state want to send each other messages
and they really want to make sure that these messages are kept secret, they
also use a one-time pad.”

Max bursts out laughing. “You really believe that when the American
president wishes to send a message to the German chancellor, he is going to
start flipping coins and write zeros and ones on a postcard?!”

“Obviously not,” Lisa replies grumpily, “a computer will do that for them.
For this, one needs to write down the algorithm, which would be a rather
good exercise for you.”

144 Till Tantau

The Algorithm

“Let’s see,” Max starts, still smirking. “First of all, I think that, indeed, there
really is only one algorithm because both ‘encoding’ or ‘locking’ our messages
and ‘decoding’ or ‘unlocking’ them work in the same way: In both cases we
start with an array of zeros and ones and a key, and in both cases we end up
with an array of zeros and ones once more. All the algorithm needs to do is
to replace zeros by ones and vice versa, whenever the key says ‘flip’.”

The algorithm OneTimePad encrypts and decrypts the array A with n
entries using the key.

1 procedure OneTimePad (A, key)
2 begin
3 for i := 1 to n do
4 if key [i] = “flip” then
5 if A[i] = 0 then
6 A[i] := 1
7 else
8 A[i] := 0
9 endfor

10 end

“Exactly” Lisa replies. “That’s one way to do this. However, the key nor-
mally is not an array of strings like ‘turn’ or ‘do not turn’, but rather also
an array of zeros and ones. A one in the key array means ‘turn’, while a zero
means ‘do not turn’. The algorithm can then be rewritten rather succinctly
as follows:”

Short version of OneTimePad.

1 procedure OneTimePad (A, key)
2 begin
3 for i := 1 to n do
4 A[i] := A[i] xor key [i]
5 endfor
6 end

“Ah, just a moment,” Max interrupts. “I think I remember, rather vaguely
I might add, that ‘xor’ stands for ‘eXclusive OR’. But I can’t really recall what
that is supposed to mean.”

“The ‘exclusive or’ tests whether exactly one of two numbers is a 1. If
this is the case, the answer is 1, otherwise 0. So, in order for the exclusive
or to be 1, either A[i] must be 1 or key [i] must be 1, but not both. These
two conditions exclude each other, hence the name. Have a look at this table,
which shows what’s going on.”

15 The One-Time Pad Algorithm 145

Table showing the values of A[i] xor key [i].

key [i] = 0 key [i] = 1

A[i] = 0 0 1
A[i] = 1 1 0

“I see. This ‘xor’ is exactly what we need since it is going to ‘flip’ the value
of A[i] when key [i] = 1, and it’s going to leave A[i] as it is when key [i] = 0.”

Breaking the Code

Max is rather pleased with the algorithm. “I like this method. All I need to
do is to memorize a key consisting of five little notes and we can then use it
for the whole exam. That’s much easier than actually studying cryptology.”

“Unfortunately, my sweet Max, things aren’t that simple. Suppose we are
going to use the same key for all of the twenty questions of the exam, each
having five check boxes. Suppose your former girlfriend succeeds in solving
just one question by herself and gets my encoded message. For instance, I find
out that the last three boxes must be checked for this question. Using coins,
this would be represented like this:

“This will also be known to her if she can answer the question by herself.
Now she gets a note from me with the encoded messages 01010 or, written in
coins:

“I think you can see the problem?”
“Indeed, she can deduce the key! Obviously, the first coin has not been

flipped, while the second has been, and so on. She will know that our key
must be:

146 Till Tantau

“Once she has got the key, she can solve all the other questions! That’s a
disaster!”

“That’s why the method is called one-time pad method. The key can only
be used once. If you do not follow this rule, it is pretty easy to find out
the key that has been used. One of the older methods for encrypting wireless
communication used the same key over and over again – and so the keys could
be deduced pretty quickly. So, if you were using a laptop in a coffeehouse to
write emails, students sitting at the other tables could easily read all the emails
you send me.” At this point, Max’s facial color undergoes a rapid succession of
changes. First, his face is completely drained of all color, only to turn bright
red seconds later. Lisa gives him a sweet smile: “Those highly paid people
who came up with the method obviously did not pay attention in school. We
will have to memorize a new key for each question.”

“But that’s horrible, I’ll have to memorize the correct sequence of 100
times ‘flip’ or ‘do not flip’. It would be much easier to just study the material
on cryptology instead!”

“Hmm. Perhaps that’s the best solution anyway. Cryptology is not that
difficult, after all.”

Further Reading

1. Chapter 16 (Public-Key Cryptography)
The method presented in this chapter allows one to reuse keys, unlike the
one-time pad. Even more impressive is the fact that the keys can even be
made public!

2. Chapter 17 (How to Share a Secret)
Some secrets, like the keys in cryptology or the position of a pirate’s chest
on an island, are too important to just store them in one place. This
chapter describes a method for splitting up a secret into parts so that you
really need to get together all parts in order to retrieve the secret.

3. Chapter 25 (Random Numbers)
Lisa and Max created their key by randomly drawing notes from a deck.
However, how does a computer generate random keys? This is a surpris-
ingly difficult question since, normally, there is nothing random about the
way a computer works.

4. http://en.wikipedia.org/wiki/Cryptography
This star-reviewed Wikipedia article is a nice introduction to cryptology
in general.

5. http://en.wikipedia.org/wiki/One-Time-Pad
This Wikipedia article describes the one-time pad algorithm and some
variants in more detail. It includes some background on the history of the
algorithm.

16

Public-Key Cryptography

Dirk Bongartz and Walter Unger

Gymnasium St. Wolfhelm, Schwalmtal, Germany
RWTH Aachen University, Aachen, Germany

Who has never thought about sending a secret message? Even Julius Caesar
did so. He allegedly moved each single character in his message three posi-
tions to the right within the alphabet. Using this procedure, A becomes a D,
B becomes an E, and so on. Finally, W is replaced by Z, X by A, Y by B, and
Z by C.

If one knows this procedure it is certainly quite easy to decrypt an inter-
cepted “secret message.” For instance, what is behind the following message?

To make this idea a little bit more general, one obviously can choose a
number k (k < 26) and move each character of the message to be encrypted
(usually called plaintext) k positions to the right. In this way we obtain a
secret message, the so-called ciphertext. The encryption method is moving the
characters to the right within the alphabet, starting again from the beginning
when the end is reached. In this context k is called the (secret) key. To de-
crypt the message, one simply has to move each character in the ciphertext k
positions to the left.

Once anybody knows the key in such a system, he is able to encrypt as well
as to decrypt all messages. For this reason these procedures are called sym-
metric cryptosystems. Also, the one-time pad method, presented in Chap. 15,
belongs to this category.

Summing up, this means that everybody who could encrypt a message
could also decrypt it and other messages encrypted by the same method.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 16, c© Springer-Verlag Berlin Heidelberg 2011

148 Dirk Bongartz and Walter Unger

On the other hand, there is the major drawback that the regular receiver
of the ciphertext must know not only the used method but also the used key.
But how do we exchange this key if communication partners are really far
away from each other?

In the next section we show that having the same key for encryption and
decryption is not essential. It is even advantageous if keys are not equivalent.
Methods based on two kinds of keys, where one is public and the other one is
private, are called asymmetric cryptosystems.

Public Keys

At first sight, this title might look senseless and the question might come up
how this could work out. For any symmetric system a publicly known key
would reveal all secrets. The problem for the symmetric systems is that it is
possible to compute the decryption key from the encryption key.

However, looking at it again we see that we may use a public key for
encryption, and keep a (different) key for decryption secret. We only have
to make sure that the decryption key cannot be computed from the public
encryption key.

Such a system would be attractive because anyone could send a secret
message to you and only you would be able to decrypt the message.

In fact, it is not so complicated to construct such a system. Just assume
you have several thousand padlocks which may be opened by a single key.
(Note that this is an unusual requirement, as normally only single padlocks
with several keys are on offer.) Now, you distribute your padlocks to all your
friends. You may even place a pile of padlocks at the school office or library.
The key to open all these padlocks stays in your possession.

Now, anyone who wants to send a message to you may take a box and
place the message in it. Because you need no key to lock one of the padlocks,

16 Public-Key Cryptography 149

everyone is able to lock away a message in a box. Furthermore, only you are
able to read the messages because you hold the only key opening the boxes.
Thus, your friends may even ask the biggest blabbermouth of the school to
forward the box to you.

This example shows that such a system is possible. However, there is one
drawback. This example requires a big effort. We have to purchase these pad-
locks and we have to distribute them. This would be quite expensive and
labor-intensive.

It would be nice to have a system which provides such a public-key system
without padlocks. This is possible in principle, using the one-way functions
from Chap. 14. Loosely speaking, it is easy to compute the one-way function
in the forward, standard direction, but hard to do the reverse: given a function
value, recover the corresponding argument.

In our case we need some system in which encryption is easy (so that
everyone is able to send us a message) but decryption is hard. However, you
as the legal receiver should be able to decrypt easily. You should keep some
backdoor for this. One possibility would be to use the inverse telephone book
from Chap. 14. However, here we describe a different idea.

A Limited Algebra

Real public-key cryptosystems which employ computers to encrypt and de-
crypt messages use advanced algebra. We do not describe this kind of arith-
metic here. Instead, we illustrate the principles by using a limited algebra.

Within this limited algebra we only use addition, subtraction, and multi-
plication of integers. We explicitly assume that no one is able to do division in
this limited algebra. Just think yourself back at the time when you had just
learned multiplication, but not division. With this limited algebra we now
describe how Bob sends a message to Alice. For our example, this message is
just one number.

The procedure has three parts. First, we describe how to generate the pub-
lic and the private key; then we explain how to encrypt and decrypt messages.

Construction of the Keys

First we need the keys, the private and the public one. The message is going
to be sent from Bob to Alice. Thus, Alice needs the private key to decrypt the
message. To get this private key, Alice thinks up two numbers and multiplies
them. The first of the two numbers becomes the private key. The other one
and the product are the public key. Thus, the private key is just one number
and the public key consists of two numbers, the public factor and the public
product.

150 Dirk Bongartz and Walter Unger

The public and the private key

p private key
11 public factor
143 public product

For you it is easy to compute the private key because you are able to do
a division. The private key is p = 143/11 = 13. In our limited mathematics,
however, this private key stays secret.

At the bulletin board of the school Alice posts the following note for ev-
erybody to read. However, nobody is able to do divisions. Thus the private
key of Alice stays secret.

Encryption

Bob, who wants to send a message to Alice, also reads this note. Assume
the message is to contain the date of the next party at Bob’s home, which
is December, 5th. The message is the number 5 because it is already known
that the party takes place in December.

Bob encrypts the message as follows. He knows the messages 5 and the
public key of Alice, that is, the numbers 11 and 143.

Bob thinks up a fourth number; this number is called sending secret. Using
this sending secret he computes the encrypted data. This encrypted data
consists of two numbers, the encrypted message and the decryption help.

Bob computes the product of the sending secret and the public product
of Alice. The encrypted message is computed by adding the message to this
product. If we assume that Bob chose 3 as the sending secret; then, the en-
crypted message is 5 + 3 · 143 = 434. This number, 434, is published, but the
number 3 has to be kept secret. Otherwise everyone could reconstruct the
message by computing 434 − 3 · 143 = 5.

16 Public-Key Cryptography 151

Since we revealed the sending secret, we have Bob choose another one,
called s, and he doesn’t tell what the value is. Bob computes the secret mes-
sage:

Computing the secret message

5 + s · 143 = 1292

The 1292 becomes public, while s is kept secret.
As long as only Bob knows the sending help, no one will be able to decrypt

this message. But how can Alice find out what the message is? In order that
only Alice be able to decrypt the 1292, Bob provides as decryption help the
product of the sending help and the public factor of Alice.

Bob computes 11 · s = 99. This number is made public as well.

Computing the decryption help

11 · s = 99

Bob places the following note at the bulletin board of the school.

Thus, everyone knows the following numbers because everyone can read
the two notes at the bulletin board.

Numbers known publicly after encryption and posting

11 public factor from Alice
143 public product from Alice 11 · p
1292 encrypted message 5 + s · 143
99 decryption help s · 11

152 Dirk Bongartz and Walter Unger

Even if everyone knows the computation steps of Bob, without division it
is impossible to compute the sending secret or the private key. And without
the sending secret it is impossible to find out what Bob’s message was.

Decryption

Now Alice decrypts the message from Bob. Like the others, Alice can not do
divisions. However, Alice knows her private key. Let us take a closer look at
the encrypted message.

The encrypted message

1292 message + sending secret · 143
= message + sending secret · public product
= message +

sending secret · public factor · private key
= message + decryption help · private key

Alice can obtain the message by the following calculation.

Decryption

1292 − 99 · (private key p) = 5

As you can see, Alice did not need division for this calculation.

The Eavesdropper

In espionage movies we see how spies eavesdrop on calls and other conversa-
tions. Often, secure connections are used to prevent this. How can we make
sure that these connections are really secure?

For our little message from Bob to Alice we did not need any secure con-
nection. All communication was done publicly by using the bulletin board of

16 Public-Key Cryptography 153

the school. An eavesdropper who cannot do division cannot decrypt the mes-
sage. It is kept private as long as Alice and Bob do not each reveal a secret
number. Furthermore, it was not necessary for Alice and Bob to meet before.
This is the main advantage of this system compared to the one-time pad from
Chap. 15.

Without Limited Mathematics

Our system is secure as long as no one is able to do divisions. However, all of
us have learned at school how to do divisions.

If you have read the previous chapters of this book carefully, you may
have noticed that by using one of the previous methods a division could be
achieved very fast (see Chap. 1). To compute the fraction a/b one may simply
guess a candidate c between 0 and a for given natural numbers a and b. Then,
one checks whether b · c really equals a. If the result is bigger than a, a smaller
value for c must be the true one. If the result is smaller than a, it has to be the
other way around. Applying this idea repeatedly, always choosing the median
of the remaining interval (i.e., performing a binary search), we get the result
very fast.

This method uses the fact that the fraction a/b becomes smaller when b
gets larger. Otherwise, binary search would not be applicable.

A binary search will fail, however, if our calculus is based on residues. The
mathematical background for modular arithmetic is explained below. Since a
division is still efficiently computable for residues, we also have to replace the
division by something else.

ElGamal’s Method

There are (many) more operations in mathematics than just the basic arith-
metic operations. We cleverly choose new operations that are easy to perform,
and use them to replace addition, subtraction, and multiplication in our prim-
itive system from above. The operations are the following.

• Instead of addition we use modular multiplication. (Modular multiplication
is a multiplication on residues. See also the algorithms from Chap. 17 where
modular multiplication is used for sharing a secret.)

• Instead of subtraction we use modular division.
• Instead of multiplication we use modular exponentiation.
• Instead of division we use the modular logarithm.

The resulting method is known as the ElGamal cryptosystem. Till now,
no one knows an algorithm to compute the modular logarithm (also known
as the discrete logarithm) for large numbers (numbers with more than 1000
digits) efficiently. All known algorithms, however, need several centuries even
when running on the fastest computers. Even if at some time in the future
the message is decoded without the private key, it does not help because the
party will be over by that time.

154 Dirk Bongartz and Walter Unger

Modular Multiplication and Modular Exponentiation

Before we describe how modular exponentiation can be performed efficiently,
let us take a quick look at modular multiplication first.

In our modular arithmetic, all calculations will use a prime number p, that
is, a number having exactly two distinct divisors, p and 1. As you know, the
first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19,

The prime number p is called the modulus for our calculations. The result
of the modular multiplication (a · b) mod p is defined as the remainder of the
product a · b when divided by p. For instance, (5 · 8) mod 17 = 6 since dividing
5 · 8 = 40 by 17 gives the quotient 2 (which we ignore) and the remainder 6.

Now we take a closer look at modular exponentiation. In a modular expo-
nentiation a number a is multiplied precisely b times by itself. Each time the
result of the multiplication is the remainder of the division by p. This result
is written as (ab) mod p.

The result of (39) mod 17 is 14, as shown in the following calculation.

Computing (39) mod 17

39 mod 17 = (3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3) mod 17
= ((38 mod 17) · 3) mod 17

38 mod 17 = ((34 mod 17) · (34 mod 17)) mod 17

34 mod 17 = ((32 mod 17) · (32 mod 17)) mod 17

32 mod 17 = (3 · 3) mod 17
= 9

34 mod 17 = (9 · 9) mod 17
= 13

39 mod 17 = (13 · 13 · 3) mod 17
= 14

This example also shows that 39 mod 17 can be computed with fewer than
eight multiplications by cleverly using intermediate results in multiplications.
The following procedure uses this idea.

Computing (ab) mod p

1 If b = 0, then the result is 1.
2 If b = 1, then the result is a.
3 If b is odd, the result is ((ab−1 mod p) · a) mod p.
4 The only remaining case is that b is even and we compute:
5 h = (ab/2) mod p.
6 The result is (h · h) mod p.

In this description, for computing (ab) mod p we used other values of the
form (cd) mod p. The values c and d are always smaller than the values a

16 Public-Key Cryptography 155

and b. Therefore, this method works out and eventually terminates. From this
we get the following recursive algorithm:

Recursive algorithm for computing (ab) mod p

1 ExpMod(a, b, p)
2 If b = 0 then return 1.
3 If b = 1 then return a.
4 If b is odd then
5 begin
6 h = ExpMod(a, b − 1, p)
7 return (h · a) mod p
8 end
9 h = ExpMod(a, b/2, p)

10 return (h · h) mod p

In the following table we present the values 2b mod 59 for all even b. This
table shows how irregular the results are compared to a normal multiplication
due to the application of the modulo operation in intermediate steps.

Values for 2b mod 59

b 2b mod 59
0 1
2 4
4 16
6 5
8 20

10 21
12 25
14 41
16 46
18 7

b 2b mod 59
20 28
22 53
24 35
26 22
28 29
30 57
32 51
34 27
36 49
38 19

b 2b mod 59
40 17
42 9
44 36
46 26
48 45
50 3
52 12
54 48
56 15

The modular logarithm problem is to do the inverse operation, which means
to obtain for a given number x (such as x = 42) a number b such that 2b = x.
Of course, for the modulus 59 this number b can be found by trying out
all possible exponents. But for large numbers this becomes very wasteful.
However, even for large numbers modular exponentiation is still possible, as
the numbers in the above algorithm quickly get smaller.

If the exponent b has ten digits, then at least a million possible solutions
have to be considered to find the modular logarithm. On the other hand, the
computation of the modular exponentiation with an exponent with ten digits
requires at most 65 modular multiplication. This shows the big difference
between the complexity of a modular logarithm and modular multiplication.
Nowadays, the method of ElGamal is used on numbers with more than the
thousand digits. Thus, the “complexity gap” becomes much larger: Trying out

156 Dirk Bongartz and Walter Unger

all possibilities is absolutely impossible, and in fact no alternative algorithm
is known that solves the discrete logarithm problem for moduli p as large as
this in reasonable time.

Description of ElGamal’s Cryptosystem

Now we are able to describe ElGamal’s cryptosystem. It is a simple transfor-
mation of the system which was presented above using limited mathematics.

In the above method the associative law (a · b) · c = a · (b · c) was used.
Within ElGamal’s cryptosystem a similar law for the exponential calculation
should apply. The notation gx indicates that g is to be multiplied with itself
x times. Without going into details, we just state the law which applies here:
(ga·b)c = g(a·b)·c = ga·(b·c) = (ga)b·c.

Furthermore, it is important that all numbers between 1 and p − 1 can
appear as values gx mod p, that is, for each number i between 1 and p−1 there
has to be a number j with i = gj mod p. In such a case g is called a generator
(modulo p), as g generates all elements of {1, . . . , p − 1}. The following table
shows that 4 is not a generator modulo 7, but 3 and 5 are.

Generators for modulo 7: 3 and 5

i 3i mod 7
0 1
1 3
2 2
3 6
4 4
5 5
6 1

i 4i mod 7
0 1
1 4
2 2
3 1
4 4
5 2
6 1

i 5i mod 7
0 1
1 5
2 4
3 6
4 2
5 3
6 1

Alice – in the meantime she has moved on to high school – first finds a
prime number p and a generator g for modulo p. For example, let 59 be the
prime number and 2 be the generator. In the next step, Alice chooses her
private key x. With this private key she computes the first part of her public
key by y = (gx) mod p, in our case, 42 = (2x) mod 59. She announces publicly
the numbers p = 59, g = 2, and y = 42 on the bulletin board of her school.
Note that in the above table the number 42 does not appear. Thus the private
key of Alice is odd. Can you find her private key?

Numbers for Alice’s ElGamal system

59 prime number of Alice
2 generator of Alice
x private key of Alice

42 public key of Alice

16 Public-Key Cryptography 157

Bob wants to send the date of the new party to Alice. This year the party
is ten days later, so the secret number is 15. To send this secret, Bob reads
Alice’s three numbers from the bulletin board. Bob chooses 9 as the sending
secret. He computes: a = 29 mod p, obtaining a = 40. To get the encrypted
message he further computes b = (15 · 429) mod 59, which yields b = 38. Then
he announces these two numbers on the bulletin board of the school.

Bob’s ElGamal values

40 decryption help for Alice
38 encrypted message for Alice

Alice starts the decryption. At first she computes h = 40x mod 59. The
result is 34. By “division modulo p,” Alice can find out that 33·34 mod 59 = 1;
we say that 34 is the inverse of 34 modulo 59.

Let us have a closer look at such inverses. When dealing with addition,
the inverse of a number x is −x since x + (−x) = 0. The inverse of x for a
multiplication is 1

x because x · 1
x = 1. For modular multiplication the inverse

of a number x is a number y for which (x · y) mod p = 1.
Given a prime number p and an x between 1 and p − 1, it is possible to

calculate the inverse of x modulo p (it is unique) by fast exponentiation: Just
calculate y = xp−2 mod p. Then, clearly x · y mod p = xp−1 mod p, and it is
known (“Fermat’s Little Theorem” from Number Theory) that this number
is always equal to 1.

The message is decrypted by computing 38 · 33 mod 59. Alice thus obtains
15 – the original message.

In our description we avoided showing off the private key of Alice. You are
asked to detect this number. Maybe you see that this will be very hard if the
numbers become large.

Further Methods

There are many public-key cryptosystems that are built in a similar way. To
make them more secure, more complicated operations are used, for instance,
“elliptic curves” or even “hyperelliptic curves.”

Security

Of course, the question arises about how secure such a system is. One impor-
tant parameter is the size of the used numbers. The numbers have to be large;
so large that a program which uses trial and error takes a very long time. It
should take such a long time that the revelation of the secret is dispensable.
In our example it suffices to keep the secret safe till the party is over.

On the other hand, it could happen that suddenly one finds an algorithm
computing the modular logarithm efficiently. So far there exists no proof that

158 Dirk Bongartz and Walter Unger

such an efficient algorithm does not exist. Mathematicians and computer sci-
entists have been trying to find such a method for many years. Despite all
their efforts no such efficient algorithm has been found yet. Scientists there-
fore assume that such an algorithm does not exist.

If one day an efficient solution for the modular logarithm is found, then
the decryption by ElGamal will become insecure. We hope that this will not
happen. Note, however, that in this case we still could use the above trick
with other mathematical operations.

Further Reading

1. ElGamal’s cryptosystem is also described in Wikipedia:
http://en.wikipedia.org/wiki/ElGamal cryptosystem

2. Chapter 14 (One-Way Functions)
In that chapter another public-key cryptosystem is mentioned, the so-
called RSA cryptosystem.

3. There are several books introducing encryption systems and discussing
their history. For instance, you may have a look at the following:
Simon Singh: The Code Book: Science of Secrecy from Ancient Egypt to
Quantum Cryptography. Anchor Books, 2000.

17

How to Share a Secret

Johannes Blömer

Universität Paderborn, Paderborn, Germany

The following story line appears again and again in movies and novels like
Cutthroat Island, The Good, the Bad and the Ugly and Treasure Island. Part
of a treasure map is found, but this part of the map is not sufficient to locate
the treasure. To find the treasure the whole map is needed. Therefore, the
finder of the fragment tries to find the other parts of the treasure map as well.
Of course, the owners of these other parts are also extremely interested in
finding the parts of the map they are missing, and so the adventure begins.

This story line is just one example of the problem we present in this
chapter: how to share a secret. We want to investigate how to partition a
treasure map or any other kind of information in such a way that, without
knowing all pieces, the treasure cannot be found or the information cannot
be reconstructed completely. We will see that there are much better methods
than just cutting the map into pieces. Actually, if we think about it, it is then
not very convincing that one needs all parts of a treasure map to find the
hidden treasure.

The general problem is easy to state. We want to partition a secret, let us
call it S, into a certain number of pieces or shares. The individual pieces are
then given to different persons. Furthermore, we want to achieve the following
goals:

1. If all persons collaborate and combine their shares, then they can recon-
struct the secret S completely.

2. However, if only a subset of the persons that received some piece of the
secret collaborate, then the persons in this subset should not be able to
reconstruct the secret S completely. Moreover, the persons in this subset
should only be able to gain little information about the secret S.

Of course, sharing a secret is not just a common story line in movies and
novels; it has many more serious and realistic applications. Imagine that an
important document of a government or an enterprise is stored in a safe.
There is consensus that the document will be published only if all members
of a special committee agree to the publication. To realize this, the safe is

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 17, c© Springer-Verlag Berlin Heidelberg 2011

160 Johannes Blömer

secured with several padlocks, one for each member of the committee. Every
member of the committee has the key to one of the padlocks. To open the safe
and publish the document every member has to unlock her padlock, thereby
agreeing to the publication of the document.

With secret sharing we can also guarantee that the document is published
only if all members of the committee approve the publication. To do so, we
secure the safe, not with padlocks that require a key, but instead with a
single combination lock, whose secret combination consists of, say, decimal
digits. The secret combination is divided into several pieces, one piece for each
member of the committee, and every member of the committee gets her own
piece of the secret combination, that is, her own partial secret. If all members
of the committee agree to the publication of the document, they combine their
partial secrets to retrieve the secret combination, open the safe, and publish
the document. The partial secrets of the committee members are like keys for
different padlocks that secure the safe. This example demonstrates how we
can use secret sharing to replace physical keys by secret information.

In addition to sharing the secret combination of a safe, there are many
other applications of secret sharing. In fact, secret sharing is one of the most
important techniques in cryptology, the science of encrypting messages, or,
more generally, the science of securing information against unauthorized access
and modification. If we combine methods to share a secret with public-key
cryptography (see Chap. 16), then we can replace keys as well as safes and locks
by secret information and algorithms. Using such a combination of methods
we can encrypt data in such a way that, like in our example above, documents
can be recovered or decrypted only if all committee members contribute their
shares of the secret. Here the partial secrets are parts of a public key in a
public-key encryption scheme.

A Simple Method to Share a Secret

So far we have not described methods to share a secret. How can we replace
locks and keys by partial secrets, each of which is known to a single committee
member? To discuss the first idea, we return to our document locked in a safe
that is secured by a combination lock with a 50-digit secret combination. Let
us assume that the secret combination is

S = 65497 62526 79759 79230 86739 20671 67416 07104 96409 84628.

Let us also assume that our committee has ten members. Therefore, we want to
partition our secret S into ten partial secrets such that only all ten committee
members together are able to reconstruct the secret S. What about giving each
committee member 5 of the 50 digits of our secret combination S (Fig. 17.1).

You can see immediately that this is not such a great idea. If 9 out of
10 committee members decide that they want to publish the document, they
already know 45 of the 50 digits of the secret combination necessary to open

17 How to Share a Secret 161

Fig. 17.1. A simple example of how to share a secret

the safe. However, remember that we want that even nine committee members
together can learn little or nothing about the secret S. But with our simple
idea, once 9 out of 10 committee members collaborate, each of them all at
once knows 45 digits of S instead of the 5 digits each of them individually
knew before they collaborated. We can put this differently. Before the collab-
oration each committee member had to try 1045 possible combinations for the
45 digits they did not know. By collaborating, the nine committee members
who exchange their parts of the secret combination reduce the number of pos-
sible combinations they have to try to determine the secret S to 105 = 100000
combinations. To appreciate the information gain the 9 collaborating com-
mittee members achieve, let us assume that a single person can check in one
second whether a given 50-digit number is the secret combination for the safe.
To try all 105 possible combinations for the 5 digits that are still unknown,
the 9 collaborating committee members require roughly 3 hours. This follows
from the fact that a single hour has 3600 seconds; hence in an hour 3600
possible combinations for the safe can be tested. We see that within a rela-
tively short time the nine collaborating committee members can determine
the secret combination of the safe, open it and publish the document even
without the consent of the tenth committee member. Now let us consider how
much time it takes a single committee member, who knows only 5 of the 50
digits of the secret combination, to try out all 1045 possible combinations for
the digits she does not know. Assuming again that it takes a second to test
a single combination, a simple calculation shows that a single member will
need roughly 1035 years to determine the secret combination. Physicists tell
us that the universe has not existed for this long, and that in all likelihood
it will cease to exist well before a single committee member will be able to
determine the complete secret combination.

So, let us try a different technique that brings us much closer to our ulti-
mate goal of sharing secrets. In this method we distribute our secret S among
the ten committee members by choosing ten random numbers larger than zero
that add up to S. These numbers are the partial secrets that are given to the
ten committee members. Let us look at a small example. In this example the
secret S is a natural number, and the partial secrets are numbers between 1
and 50. To simplify the example, we want to share or distribute the secret
among four people rather than the ten committee members from our previous
example. Assume the secret S is 129. Then the partial secrets may be chosen

162 Johannes Blömer

as 17, 47, 31 and 34, since 17 + 47 + 31 + 34 = 129. It is clear that if all
four people owning a partial secret collaborate then they can reconstruct the
secret S; they simply have to add up their partial secrets. But again we have
a problem: All participants know that the partial secrets lie between 1 and
50. Hence, even before receiving their shares the participants know that the
secret S lies between 4 and 200. Now assume that the first three participants
join forces to gain information about S. To do so, they simply add up their
partial secrets and obtain 17 + 47 + 31 = 95. Now they know that S will be a
number between 95 + 1 = 96 and 95 + 50 = 145, since the fourth participant
also received a partial secret between 1 and 50. The number of possible values
for S has dropped from almost 200 to 50, and the three colluding participants
have gained a lot of information about S. But a simple trick helps us modify
the method in such a way that a proper subset of participants will not gain
any information about the secret S even if they exchange all their partial
secrets. The trick is to use division with remainder.

The new method works as follows. We assume that the secret S that we
want to share among a certain number of participants is a natural number
between 0 and some really large number N . In our example with the document
stored in a safe secured with a 50-digit secret combination, the number N will
be 1050. To work with concrete numbers, let us assume again that we want
to share a secret value among ten participants. But once you understand the
method you realize that with this method we can share a secret among an
arbitrary number of participants. To share the secret S we proceed in two
steps.

1. First we choose nine random numbers between 0 and N − 1. Let
us call these numbers t1, t2, . . . , t9. These numbers are the partial
secrets for the first nine participants.

2. To determine the tenth partial secret t10, first we compute t1 + · · · +
t9 and divide this sum by N . However, we perform division with
remainder and are only interested in the remainder R. Next we look
at the difference S − R. If S − R is positive, then t10 is S − R. If
S − R is negative, then t10 is S − R+N . With this recipe we get that
the secret S is the remainder if we divide t1 + t2 + · · · + t10 by N .

To illustrate this method let us look at a simple example, where all numbers
are small enough to compute them by hand. We choose N = 53, and we want
to share the secret S = 23 among four people.

1. We choose the first three partial secrets. Let these be 17, 47 and 31.
2. To determine the fourth partial secret, first we compute the sum of the

first three secrets, 17 + 47 + 31 = 95. We divide 95 by 53 and obtain
remainder R = 42. Since S − R = 23 − 42, which is negative, the fourth
partial secret is 23 − 42 + 53 = 34.

17 How to Share a Secret 163

Fig. 17.2. Example for secret sharing by division with remainder

You can also follow this example in Fig. 17.2.
Does this method really satisfy our requirements? Let us look at our simple

example. If the four owners of partial secrets collaborate they can compute
the sum of their partial secrets. The secret S is then simply the remainder if
they divide the sum by N = 53. In our case, the sum is 129, and the remainder
after division by 53 is 23, the secret. You can easily verify that the approach
works not only in our simple example but in general.

What happens if not all participants collaborate? Can a proper subset
of the participants determine the secret S or gain significant information
about S? At first glance it might seem that we treat the last participant
differently from the remaining participants, since her partial secret depends
on the other partial secrets. However, if we take a more careful look we realize
that this impression is misleading. Let us go back once more to our simple
example, and let us look at the first partial secret, 17. The sum of the partial
secrets excluding 17 is 47 + 31 + 34 = 112. Then x = 17 is the unique number
x such that 23 is the remainder of dividing 112 + x by 53. We see that the
first partial secret 17 depends on the remaining partial secrets in exactly the
same way that the last partial secret 34 depends on the remaining partial
secrets.

We still have not answered the question of what happens if a proper sub-
group of participants tries to determine the secret from its set of partial se-
crets. Phrased differently, the question becomes: Do we really need all partial
secrets to determine the secret? Again, we first look at our example. Assume
that the last three participants with partial secrets 47, 31 and 34 try to de-
termine the secret, or more modestly try to gain some information about the
secret. Of course, we assume that they know the number N = 53, but they
do not know the partial secret of the first participant. They also know the
method we use, so they know that the secret is the remainder we get by di-
viding the sum of the partial secrets by 53. Now they can compute the sum
of their partial secrets, which is 112. Dividing this number by 53 gives the
remainder 6. Had the first partial secret been 0 instead of 17, then the overall
secret would have been 6 instead of 23. A first partial secret of 1 would have
led to the secret 7. And so on, until the possible first partial secrets 51 and
52, which would have led to secrets 4 and 5, respectively. More precisely, for
every number s between 0 and 52 there is a number t such that the sum of
121 and t has remainder s when divided by 53. This means that with first
partial secret t the overall secret would have been s instead of S = 23. This, in
turn, implies that if the last three participants knew their own partial secrets

164 Johannes Blömer

they cannot exclude a single value for the overall secret. Summarizing, we can
say that the last three participants together do not learn anything about the
secret from their partial secrets. You can easily check that this is not only
true for our simple example, but that it is correct in general.

However, you have to ensure that your numbers are not too small. In our
example with N = 53 it is certainly not very difficult to try all possible values
for the missing partial secret. After all, there are just 53 possible values. Even
simpler, since the secret itself can take on just 53 values, you can to try all
possible values for the secret without knowing or taking into account any
partial secrets. In applications of secret sharing therefore one chooses much
larger values for N . For example, you may take N = 1050. With this choice,
there are 1050 possible values for a partial secret of the secret itself. As we
have seen before, in this case it is unrealistic to simply try out all possible
values for a partial secret.

General Secret Sharing

So far we have considered only the situation where all recipients of partial
secrets must collaborate to recover the secret. Now we want to look at a more
general situation in which any sufficiently large number of recipients of partial
secrets together can reconstruct the secret.

Let us begin with the simple case where any two out of three recipients of
partial secrets should be able to recover the secret. However, a single recipient
of a partial secret should not be able to reconstruct the secret or gain a lot
of information about the secret. In this case, representing the secret as the
sum of partial secrets, the idea that was so successful in our scheme above,
will not get us very far. We need a new idea, and a little geometry will help
us. Let our secret be a point P in the plane. We can imagine that the two
coordinates of point P constitute the secret combination of a safe. We also
choose three lines in the plane that meet in point P . The three lines are the
partial secrets. We have illustrated this idea in Fig. 17.3. Now if any two out of
the three recipients of partial secrets collaborate they can simply compute the
intersection point of the lines that constitute their partial secrets to compute
the overall secret. You can see this in the three pictures in Fig. 17.4.

Fig. 17.3. Three lines that intersect in a point. The intersection point is the secret

17 How to Share a Secret 165

Fig. 17.4. Secret sharing in the plane

What does a single participant learn about the secret from her partial
secret? Clearly, she learns something. Before receiving her partial secret she
only knew that the secret is some point in the plane. After seeing her partial
secret she knows the secret lies on the line that is her partial secret. So, she
definitely has learned something, but she still does not know the secret.

We can easily generalize this method such that any two out of m recipients
of partial secrets can reconstruct the secret from their partial secrets. To do
so, the secret is again a point P in the plane. But instead of three lines that
intersect in P we choose m lines that intersect in P . Every one of theses lines
is a partial secret.

What about the case that any three recipients of partial secrets must be
able to compute the secret? In this case we leave the plane and enter (three-
dimensional) space. Again, our secret is a point P ; this time, however, it is a
point in the three-dimensional space. As partial secrets we choose planes in
the space such that any three of these planes intersect in point P . In Fig. 17.5
you can see this for four partial secrets.

Any three of our recipients of partial secrets can reconstruct the secret by
computing the intersection of the three planes they received as partial secrets.
You can see this nicely in Fig. 17.5(c). However, if fewer than three partici-
pants collaborate they also learn something about the secret. For example, if
two recipients of partial secrets work together they can compute the line in
which their two planes intersect. You can observe this by looking at the red
and green planes in Fig. 17.5(b). If the recipients of the red and green planes
combine their partial secrets, they can deduce that the secret must lie on the
intersection line of the red and green planes. However, they still have no clue
which point on this line is the secret.

Secret Sharing, Information Theory and Cryptography

Of course, we can further generalize our problem and ask whether it is possible
to share a secret S among m people such that any t (or more) of these people
are able to reconstruct the secret, whereas fewer than t people are not able to
reconstruct the secret, or more stringently, do not gain a lot of information

166 Johannes Blömer

Fig. 17.5. Secret sharing in space

about the secret S. As it turns out, for any combination of m and t this
is possible and is called t-out-of-m secret sharing. One way to realize such
general secret sharing schemes is by generalizing the geometric constructions
that we discussed above. To obtain a t-out-of-m secret sharing scheme one
has to go to t-dimensional spaces.

There are even constructions for t-out-of-m secret sharing in which fewer
than t people learn absolutely nothing about the secret. These schemes do not
rely on geometry; instead they use so-called polynomials. This construction
was invented by Adi Shamir, a famous cryptologist, and therefore it is called
Shamir’s secret sharing scheme.

17 How to Share a Secret 167

Who computes and distributes the partial secrets? So far we have com-
pletely ignored this question. Obviously, this is an important question. Who-
ever computes and distributes the partial secrets must know the secret. If one
applies secret sharing schemes, you usually have to assume that a trustworthy
person exists who computes and distributes the partial secrets. One can think
of this person as a completely trustworthy and incorruptible referee.

What exactly do we mean, if we say that someone has gained informa-
tion? What is information? Somehow we all know what information is. But
if we want to deal with information in a precise mathematical sense, as we
want in secret sharing, then we have to be more precise. Once you under-
stand the secret sharing methods that we presented above, you will be able
to define concepts like information and information gain in a precise math-
ematical manner. For example, partial shares reveal no information about
the overall secret if knowing the partial shares does not reduce the number
of possible values for the secret. In 1948 the famous mathematician Claude
Shannon used these ideas to found information theory as a branch of mathe-
matics.

We can go even further. Information that we can gain in principle but
only by spending an unreasonable amount of time like 1035 years is useless.
Secret sharing provides a good example. No matter how we share the 50 digit
secret combination of a safe among 10 members of a committee, in princi-
ple it is possible to determine the secret combination by trying all possible
1050 combinations. But in practice this is not a viable option. The number
1050 is so enormous that even with the help of a computer, we cannot try
all 1050 possible secret combinations. Therefore, we can say that a secret
cannot be revealed if determining the secret simply takes too much time to
be practically feasible. These considerations lead us way beyond information
theory. They lead to questions about how many resources are needed to com-
pute something or to gain some information. In this book you can learn,
for many interesting problems, like multiplying large integers (Chap. 11),
how much time is required to solve them. On the other hand, in the chap-
ter about public-key cryptography (Chap. 16) or about one-way functions
(Chap. 14) you also see that sometimes it is very useful if a problem can-
not be solved efficiently or if it is impossible or very difficult to gain certain
information.

Further Reading

1. Chapter 16 (Public-Key Cryptography)
In many applications the secret keys of public-key encryptions schemes as
described in this chapter are not given to a single person. Instead, using
secret sharing techniques, secret keys are distributed among a group of
people. In this way you can avoid situations in which the secret key of a
large cooperation is owned by a single person.

168 Johannes Blömer

2. http://en.wikipedia.org/wiki/Secret sharing
In this article you will find (sometimes longer) descriptions of the tech-
niques that we discussed.

3. Wade Trapp and Lawrence Washington: Introduction to Cryptography.
Pearson Education International, 2nd edition, 2006.
If you want to learn more about secret sharing this book is a good starting
point. Of course, the explanations in this book are much more detailed
and technical than we were able to give in this short chapter.

18

Playing Poker by Email

Detlef Sieling

Technische Universität Dortmund, Dortmund, Germany

In this chapter we explore how to play card games like poker without a meet-
ing of the players. Instead, the cards are distributed using email or snail mail.
Different from commercial online poker systems, the cards are shuffled and
distributed by the players. There is no extra dealer who the players have to
trust. Obviously, there are some difficulties: The player shuffling and distribut-
ing the cards has to do this without gaining any knowledge of the cards he is
distributing, while he has to send emails with information about those cards.
Furthermore, this player must not distribute any card more than once, while
he must not know which cards have already been distributed. Finally, if any
player cheats, the other players should be able to detect this.

Dealing Cards by Snail Mail

In order to collect ideas on how to play card games by email, we first try
to do this by snail mail. We first look at the case of two players, who are
called Alice and Bob. They are at different places and are thus not able to
observe each other. Then each player can easily cheat by using a second deck
of identical cards. From those cards, he can select a good hand, e.g., a royal
flush. In order to make this impossible, each card of the deck in use will have
a seal indicating that this card is really from the deck in use and not from
some other deck.

How to Shuffle and Distribute the Cards

For our poker game we use a card deck with the 52 cards club-ace, club-two,
. . . , diamond-king. After shuffling the cards each player has to get five cards.
How is it possible for one player to shuffle and distribute the cards without
gaining any information on the cards given to the other player? We do this
with envelopes. Bob puts each of the 52 cards into a separate yellow envelope.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 18, c© Springer-Verlag Berlin Heidelberg 2011

170 Detlef Sieling

Later on, it will be crucial to prove who has put a card into a particular
envelope. Thus Bob signs each of the envelopes.

Then Bob shuffles the envelopes and sends them to Alice. Alice cannot
distinguish the envelopes according to their contents. Thus she is not able to
select good cards for herself and poor cards for Bob. So Alice can only shuffle
the envelopes again and select five ones for herself and five for Bob. This is
exactly a random selection of cards for herself and for Bob. Alice returns the
five envelopes to Bob. Then both players can open the envelopes and obtain
their cards.

How can the players cheat? For example Alice can open other envelopes in
order to get a larger number of cards from which she could select the best ones.
Obviously, Alice cannot be prevented from doing this. On the other hand, if
Alice does not cheat, she retains 42 closed envelopes with Bob’s signature,

18 Playing Poker by Email 171

and she can present those envelopes if the two players meet later on. Since
the envelopes are signed by Bob, Alice is not able to put a card back into
the envelope or into a new one. Bob could also try to cheat when he puts the
cards into the envelopes. For example, he could retain a card for himself and
leave an envelope empty. If he gets the empty envelope during the game, he
gets the card he retained and thus this is not at his advantage. Otherwise,
the empty envelope and Bob’s cheating will be detected at the latest when
Alice and Bob check the envelopes after the game.

How to Bid

The next step is the bidding. What is said during the bidding can also be
written into letters. Thus we do not need new ideas to do this by mail.

How to Replace Cards

After the bidding each player may replace one or more of his cards with
randomly chosen ones from the card deck. First Alice may replace n cards
(where n is between 1 and 5). Here we have the following problem: In the
first step Alice has to drop n cards, and only afterwards may she get the new
cards. If she takes her new cards by selecting envelopes as described above, it
is not possible to prevent her from opening the new envelopes and selecting
the cards to be dropped afterwards. Thus Bob also needs to be involved into
replacing the cards of Alice.

On the other hand, Alice cannot return the remaining 42 envelopes to
Bob because then she would lose the proof that she has not cheated so far.
Furthermore, Bob could have marked the yellow envelopes and could thus
recognize the envelopes with good or bad cards. He could do this, for example,
by signing the envelopes in a slightly different way. This can be done even less
obviously than shown in the following picture where the lower-case “b” in Bob
is written differently according to the contents of the envelope.

However, the trick with envelopes works again. Alice puts the remaining
42 yellow envelopes into slightly larger red envelopes, signs those envelopes,
shuffles them and sends the pile to Bob.

172 Detlef Sieling

Furthermore, she puts the n cards she would like to replace into a separate
envelope and sends it also to Bob. Bob must not open the envelope with the
dropped cards because he should not gain any knowledge on those cards.
Later on, both players together can verify that the envelope is still closed and
afterwards that it really contains n cards.

Since Bob cannot distinguish the red envelopes, he can only shuffle them
again and select n envelopes to return to Alice. In this way Alice gets the
replaced cards.

If Bob would like to replace cards, this can be done similarly, where Bob
has to put the red envelopes into another layer of envelopes.

The Showdown

The game ends with presenting the cards to the other player. Each player
writes a letter with the information on his cards. Each player retains his cards

18 Playing Poker by Email 173

in order to prove later on that he really has the cards he claimed. In this way
the winner is determined.

How to Verify That No One Has Cheated

For both players there are many possibilities to cheat by deviating from the
scheme described. For example, each player could open further envelopes in
order to obtain a larger choice for his cards or information on the hand of
the opponent. However, this is easily detected if the players meet after the
game. The players have to retain their cards and the closed envelopes until
this meeting. Then they can present the cards to their opponents and can
open the remaining envelopes together in order to verify that they did not
cheat.

Discussion

There are several obvious disadvantages in this poker scheme:

• Putting the cards into envelopes can only be done manually and it is
expensive. The envelopes cannot be reused.

• The check whether one of the players has cheated cannot be done before
the next meeting of the players. For each other game before this meeting
they need another card deck with a different seal.

• Snail mail is too slow to make the game interesting and it is more expensive
than email.

• If a letter is lost, the game cannot be completed. So, if a player recognizes
that he is likely to lose, he could destroy a letter because it is not possible
to find out who intercepted the letter.

Now the question arises whether there is some kind of “electronic” en-
velopes with similar or even better properties than paper envelopes. In par-
ticular, they could be produced using a computer and sent by email. This
saves the work of putting each card manually into an envelope. Furthermore,
emails can be stored by the sender and can be resent if they are lost.

Dealing Cards by Email

Electronic Envelopes

How can we realize envelopes with emails? The first idea is to use codes for
the cards. Bob creates and shuffles these codes and sends them to Alice. Since
Alice does not know of the correspondence between the codes and the cards,
she can select cards without knowing the cards. Before we describe how to
use the codes for shuffling and distributing the cards, we focus on the special
case that only Bob has to obtain cards. We sometimes assume that the cards

174 Detlef Sieling

have fixed numbers and that both players know this numbering scheme. We
assume that 0 corresponds to the ace of clubs, 1 to the two of clubs, 2 to the
three of clubs, . . . , 12 to the king of clubs, 13 to the ace of spades, and so on
until 51 to the king of diamonds.

How to Shuffle the Cards and Distribute Them to Bob

At the beginning Bob randomly creates codes for the cards, i.e., a table like
the following one:

Card Code
0 (Ace of clubs) → 1
1 (Two of clubs) → 42
2 (Three of clubs) → 22
3 (Four of clubs) → 25
4 (Five of clubs) → 51

Card Code
5 (Six of clubs) → 0
6 (Seven of clubs) → 43
...

51 (King of diamonds) → 13

The left column of the table is a list of all cards. The right column has
been created randomly such that each number between 0 and 51 occurs exactly
once. Up to now Alice does not know this table.

In order to select five cards for Bob, Alice randomly chooses five codes
between 0 and 51 and send them to Bob. Then Bob uses the table in order
to find out his cards. If, for example, Alice has selected the codes 0, 1, 13, 42
and 51, according to the above table Bob gets the six of clubs, ace of clubs,
king of diamonds, two of clubs, and five of clubs. Since Alice does not know
the table, she cannot influence the choice of the cards for Bob. Furthermore,
Alice knows the codes already used such that she can avoid selecting some
card for a second time.

The method described is similar to that using the real envelopes. Instead
of putting the ace of clubs into a yellow envelope, Bob assigns a number to
it; in the example this is the number 1. If envelopes are used, Alice cannot
look into them. Here, Alice does not know the meaning of the code 1. In both
cases Alice cannot influence the cards selected for Bob.

However, at the end of the game, Bob could claim that he has created a
different table and in this way he could select better cards for himself. Thus
Bob has to fix a table in such a way that he cannot change the table later on.
We are going to show how this can be done using one-way functions.

One-Way Functions

One-way functions are presented in Chap. 14. We recall: A one-way function
f is a function that can easily be computed, but for which the inverse function
f −1 is hard to compute. An example in Chap. 14 was a telephone directory.
Computing the one-way function f corresponds to finding the telephone num-
ber for a given name, which is obviously easy. Computing the inverse function

18 Playing Poker by Email 175

f −1 corresponds to finding the name for a given telephone number, which is
obviously difficult.

How can we use one-way functions in order to prevent Bob from changing
the table with the codes of the cards? Similarly to the telephone directory, we
assume that Alice and Bob have copies of a book with a large number of tables
with codings. Furthermore, for each such table there is a unique number in
the book.

Then the distribution of cards to Bob can be done in the following way: In
the first step Bob randomly selects a table with codings from the book (e.g.,
the table in the bottom of page 569). Bob sends the number of this table to
Alice. In this example this is the number 039784. If Alice would like to find
the table used by Bob, she essentially has to scan the whole book. If this takes
too much time for her, she has no possibility to find the table with codes used
by Bob. Then her only possibility is to select five random number from 0 to
51 and to send them to Bob. Then Bob can obtain his cards according to the
table. The card with the number 0 (ace of clubs) has the code 1, the card
with the number 1 (two of clubs) has the code 42 and so on. At the end of the
game, Bob can send Alice the position of the table in the book. Then Alice
knows the table and can verify whether this table has really the number given
by Bob at the beginning of the game. Furthermore, she can verify whether
Bob really got the cards he claimed.

How to Replace Cards

Now replacing the cards does not require new ideas. If Bob would like to
replace the two of clubs in the previous example, he just says to Alice that
he would like to replace the card with the code 42. Since Alice does not know
that this code corresponds to the two of clubs, she does not know either which
card is dropped by Bob. Afterwards, Alice can select a new code in order to
send a new card to Bob. Since she knows which codes have already been used,
she can avoid distributing a card for a second time. We see that this is even
possible without Alice knowing the set of cards she has already distributed.

176 Detlef Sieling

A Mathematical Description

Now we describe the scheme from above a bit more mathematically. The book
with the coding tables corresponds to a one-way function f . This function
maps the positions of the coding tables in the book to numbers. In the scheme
from above, Bob randomly selects a coding table with the position x and sends
f(x) to Alice. Since f is a one-way function, it is hard for Alice to obtain x
from f(x). This corresponds to searching the whole book. At the end of the
game, she obtains x from Bob. Then Alice can easily compute f(x) and verify
that this is the number she got from Bob at the beginning of the game. Thus
Bob cannot cheat by the claim that he used some different coding table.

On the other hand, it is easy to store and search a whole book with a
computer. Instead of a book we should use one-way functions in order to
obtain a number from the coding table, and use this number to commit to
this coding table. However, here we would like to skip the details of such
one-way functions.

Each coding table can also be considered as a function. Above we already
mentioned the numbering scheme for the cards. Then the coding table is a
function b that maps the numbers of the cards (from 0 to 51) to their codes
(also a number between 0 and 51). The coding table also describes the inverse
function b−1 which maps each code to the number of the corresponding card.
In order to compute b−1(z) we search for z in the right column of the table
and obtain the result in the left column. For tables with only 52 entries this
is easy to do. Since in the right column each number occurs exactly once, we
conclude that for all x we have b−1(b(x)) = x.

Distribution of Cards to Both Players

In order to distribute cards to both players, Alice and Bob use separate cod-
ing tables which they create independently and which the opponent does
not know. We call the function described by Alice’s coding table a and the
function of Bob’s coding table b. Another requirement on a and b is that
for all x between 0 and 51 it holds that a(b(x)) = b(a(x)). Mathematicians
call such functions commuting. For commuting functions a and b we obtain
the same result if we apply a on x and afterwards b on the result or vice
versa.

An example of commuting functions are the following ones:

a(x) =

{
x + 25, if x + 25 < 52,
x + 25 − 52, if x + 25 ≥ 52,

and

b(x) =

{
x + 37, if x + 37 < 52,
x + 37 − 52, if x + 37 ≥ 52.

18 Playing Poker by Email 177

In this example the coding tables are not given completely. Instead, we
give formulas how to compute the entry in the right column from the entry
in the left column. It is easy to verify that a(b(x)) and b(a(x)) coincide: For
the computation of a(b(x)) we first have to add 37 to x and afterwards 25,
where we have to subtract 52, if any of the results is larger than 51. For the
computation of b(a(x)) we just have to reverse the order of the additions.
Instead of 37 and 25 we could also use arbitrary different numbers.

This easy example of commuting functions is obviously not suitable for our
application of coding tables. If for example Bob obtains a(x) for the number
x, he can easily compute the number 25 which Alice uses for the addition.
In this way Bob obtains the whole function a and can break all the codes of
Alice. More details on commuting functions suitable for this application are
given in the articles mentioned in the section Further Reading.

Commitment to the Selected Coding Tables

Again we use a and b to denote the coding tables selected by Alice and Bob.
As above, we use a one-way function f . Alice computes f(a) and sends it to
Bob. Similarly, Bob computes f(b) and sends it to Alice. From f(a) and f(b),
Bob and Alice, resp., cannot obtain information on the coding table of the
opponent because f is a one-way function. On the other hand, the players have
committed to the selected coding tables a and b. After the end of the game,
Alice sends her table a to Bob. Then Bob can compute f(a) and verify that
a is really the table selected by Alice at the beginning of the game. Similarly
Alice obtains b from Bob and can verify that b is the table selected by Bob at
the beginning.

Putting Cards into Envelopes

If Alice wants to put the card x into an envelope, she only has to compute
a(x). In order to remove the card from the envelope a(x), she applies the
inverse function a−1 to a(x) because a−1(a(x)) = x. Similarly, Bob can put
cards into envelopes using the function b. Since we used the numbers 0 to 51
for the cards and the codes (i.e. the envelopes) as well, Alice can also put
envelopes b(x) created by Bob into her envelopes by computing a(b(x)).

In our poker protocol for snail mail, in a first step Bob puts the cards
into envelopes and afterwards Alice puts those envelopes into another layer
of envelopes. Bob’s task corresponds to computing b(0), . . . , b(51). It is easy
to see that these are exactly the numbers between 0 and 51. Afterwards Alice
had to compute a(b(0)), . . . , a(b(51)). The result is again the set of numbers
between 0 and 51. Thus Alice and Bob know without any computation that
the set of codes a(b(0)), . . . , a(b(51)) is the set of the numbers between 0 and
51. Since Alice does not know b, she is not able to obtain a card from any
code. Similarly, Bob cannot do this because he does not know a.

178 Detlef Sieling

Distributing Cards to Alice

Bob selects from the list of unused codes (which consists at the beginning
of the number 0 to 51) an arbitrary code for each card that Alice has to
get and removes this code from the list. Since he does not know a, he has
no influence on the selected card. On the selected code a(b(x)) he applies b−1

and obtains b−1(a(b(x))) = b−1(b(a(x))) = a(x) because a and b commute and
b−1(b(z)) = z. Then Bob sends a(x) and a(b(x)) to Alice. Alice applies a−1

to a(x) and obtains the corresponding card x. Furthermore, she can remove
a(b(x)) from the list of unused codes. Thus the same card is not distributed
again.

Distributing Cards to Bob

Alice selects from the list of unused codes one element for each card Bob
has to obtain. Since she does not know b, she cannot influence the selected
cards. On each code a(b(x)) chosen by Alice she applies a−1 and obtains
a−1(a(b(x))) = b(x) because of a−1(a(z)) = z. Then she sends b(x) and a(b(x))
to Bob. From b(x) Bob computes x, i.e., the number of the selected card.
Furthermore, he can remove a(b(x)) from the list of unused codes.

Dropping Cards

In order to drop the card x without sending any information on x to the
opponent, the player sends a message with the code a(b(x)). We already know
that the opponent cannot obtain any information from a(b(x)).

Properties of the Electronic Envelopes

We compare paper envelopes with their electronic counterparts: First we look
at the selection of the cards for Alice. Putting the cards into yellow envelopes
by Bob corresponds to applying the function b. Putting those envelopes into
red envelopes by Alice corresponds to applying the function a. After selecting
the cards for Alice, in the electronic version of envelopes Bob can remove
the interior yellow envelopes by applying b−1 without opening the outer red
envelopes and without getting any knowledge of the contents of the yellow
envelopes. Afterwards, Alice can open the red envelopes by applying a−1. Thus
the electronic envelopes have some properties that paper envelopes cannot
have:

• Alice cannot open the yellow envelopes, and Bob cannot open the red
ones. In particular, after the end of the game it is no longer necessary to
verify that the players did not open the unused envelopes because they
just cannot do this.

18 Playing Poker by Email 179

• It is possible to copy envelopes together with their contents and without
knowing the contents or obtaining any information about it.

• A red envelope with a yellow envelope and a particular card inside is
identical to a yellow envelope with a red envelope and the same card
inside. Thus it is possible to remove the interior yellow envelope without
destroying the outer red envelope.

How to Check Whether the Opponent Has Cheated

At the end of the game, the players send their coding tables a and b to their
opponent. Then they can compute f(a) and f(b), resp., and verify that a and
b are really the coding tables the other player has committed to. Using the
coding tables the players can verify all computations. During the game the
player have to cooperate to open a particular envelope because it is necessary
to evaluate a−1 and b−1 to open an envelope. Thus a meeting of the players
in order to examine the unused envelopes is no longer necessary.

Poker with More than Two Players

Up to now we only considered the situation of two players. What happens
for three or more players? Of course, we could try to generalize the above
ideas to a larger number of players. However, there is a fundamental problem.
Our starting-point was that the players cannot observe each other. How can
a third player prevent Alice and Bob from exchanging information about
their cards using their mobile phones? Commercial online poker systems have
the possibility to arrange groups of players that do not know of each other.
Another possibility would be the analysis of the behavior of the other players,
e.g., whether the player with the worse cards always refrains from bidding.
Nevertheless, it is hard to prove that the other players are cheating. So if we
would like to play with some larger number of players, we should meet, which
also might be more appealing.

Further Reading

1. Adi Shamir, Ronald L. Rivest and Leonard M. Adleman: Mental Poker.
In: The Mathematical Gardner, pp. 37–43. Edited by David A. Klarner,

180 Detlef Sieling

Wadsworth International, 1981. Available at: http://people.csail.mit.
edu/∼rivest/ShamirRivestAdleman-MentalPoker.pdf

In this article a protocol for poker was presented for the first time. The
protocol presented above is a modification of that one.

2. Bruce Schneier: Applied Cryptography. Wiley, 1996.
In this book the protocol of Shamir, Rivest and Adleman for poker as well
as several other protocols for other tasks are described.

The playing cards in the figures are designed by David Bellot. They are
available at http://svg-cards.sourceforge.net/ according to the LGPL
(http://www.gnu.org/copyleft/lesser.html).

19

Fingerprinting

Martin Dietzfelbinger

Technische Universität Ilmenau, Ilmenau, Germany

How to Compare Long Texts over the Telephone

Alice and Bob are very good friends. Alice lives in Adelaide in Australia,
and Bob lives in Barnsley in (Great) Britain. They love to talk to each other
on their cellphones, but this can cost quite some money when they talk for
long. The two of them share many interests, and they are interested in lots
of things. So it comes as no surprise that they both buy an encyclopedia.
They tell each other about their acquisition on the phone. What a surprise
– they both bought the same encyclopedia! On the phone, Alice asks Bob
a simple question: Do both copies contain exactly the same text? Are they
really identical, word by word, comma by comma?

Even if Alice and Bob figure out that both have bought the 37th edition
of the encyclopedia, say, this does not necessarily mean that the copy that
was printed in Australia contains exactly the same text as the one that was
printed in England. Maybe some misprints were corrected? How can they
find out whether both copies are really identical? Alice could read her copy
to Bob, on the phone. Bob would read along and compare each word and
each punctuation mark. This would do the job, but it would cost a hell
of a lot in telephone charges (at least if the two use their cellphones), be-
cause Alice and Bob have chosen quite a voluminous encyclopedia: 12 vol-
umes, about 1,500 pages per volume, about 2,800 characters per page; all in

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 19, c© Springer-Verlag Berlin Heidelberg 2011

182 Martin Dietzfelbinger

all about 18,000 pages and about 50 million characters. If Alice needs only
five minutes to read one page, and they work on it without any breaks, the
two of them and the phone tariff unit counter will be busy for more than
60 days.

In a computer, we may represent a character, including commas, spaces,
and line and page breaks, by a binary code, e.g., with eight bits (one byte) per
character. For the whole encyclopedia this will amount to 50 million bytes,
or about 50 Megabytes. Let us assume that Alice and Bob have individually
managed to enter the text of their respective copies into a computer. As soon
as the encyclopedia is stored electronically, it is actually no big deal to send
this amount of data from Australia to England by e-mail. For the sake of
argument, let us assume however that the connection is either very expensive
or very error-prone, so that the transmission of such a large amount of data
via e-mail is impossible or undesirable.

Is there a way for Alice and Bob to find out whether the two texts are
identical without comparing them character by character? They would prefer
to carry out any conversation needed by cellphone, and hence keep the amount
of information that has to be exchanged very small.

If you sometimes send large files via e-mail or if you ever found it necessary
to make room on your brimful hard disk, you know that there are methods
that do something called “data compression.” By such methods, one “squeezes
together” data such as texts or images, so that they take up less space and
transmission times are shorter. Alice and Bob could use such methods. But
even if they manage to achieve a compression to, say, a fifth of the original
length of their data, it would still take too long to carry out the communica-
tion. So, data compression does not solve the problem.

Here is a very simple observation: Alice should start by counting the char-
acters in her encyclopedia. Let us denote the result by n. Alice tells Bob what
n is, which means reading out eight decimal digits, which is a matter of sec-
onds. Bob also has counted the characters in his copy, with a result of n′.
If n and n′ are different, Bob can announce that the texts are different. (We
assume that Alice and Bob haven’t miscounted.) From now on we may assume
the texts of Alice and Bob have exactly the same length.

Texts as Sequences of Numbers and Modular Arithmetic

Our long-term goal is to find a trick that makes it possible to solve the text
comparison problem with very short messages. For this, we want to translate
texts into numbers and then calculate with these numbers. A little basic work
is needed for this. We already noted that in a computer each character is
represented by a sequence of eight bits, that is, a byte. A standard way of
doing this is given by the ASCII code. In this code, the characters A, B, C, . . .
look like this: 01000001, 01000010, 01000011, etc. These bit patterns can also

19 Fingerprinting 183

be regarded as binary representations of numbers. In this way, we reach the
following way of coding characters by numbers:

A B C · · · Z a b c · · · z
65 66 67 · · · 90 97 98 99 · · · 122

The punctuation marks are assigned numbers as well: for example, the excla-
mation mark (“!”) has number 33 and the space (“ ”) has number 32. In this
way, every character is represented by a number between 0 and 255. The text

Alice and Bob have a chat.

including spaces and the period translates into

65 108 105 99 101 32 97 110 100 32 66 111 98 32
104 97 118 101 32 97 32 99 104 97 116 46,

which we write “mathematically” as a sequence

(65, 108, 105, 99, 101, 32, 97, 110, 100, 32, 66, 111, 98, 32,
104, 97, 118, 101, 32, 97, 32, 99, 104, 97, 116, 46).

Now we can imagine that Alice has translated her whole encyclopedia into
one long sequence

TA = (a1, a2, . . . , an−1, an)

of numbers between 0 and 255, and that Bob has done the same with his copy:

TB = (b1, b2, . . . , bn−1, bn).

Here n is about 50 million, and you see that it is impossible to write down
sequences as long as that in this little book. As a manageable example we
take two sequences of length n = 8:

Texts (“Adelaide” and “Barnsley”) as sequences of numbers

TAd = (a1, a2, . . . , a8) = (65, 100, 101, 108, 97, 105, 100, 101)
TBa = (b1, b2, . . . , b8) = (66, 97, 114, 110, 115, 108, 101, 121)

Now we want to calculate with these number sequences. For this we need
a method that has been mentioned already in Chap. 17 and will be explained
in more detail in Chap. 25: “modular arithmetic.” Taking an arbitrary integer
a modulo an integer m > 1 simply means that one calculates the remainder
when a is divided by m; in other words, one counts how many steps one
has to walk to the left on the number line, starting at a, until one hits a
multiple of m. We write a mod m for this number. For example, if m = 7,
then 16 mod 7 = 2 and −4 mod 7 = 3. In the following table you find some
more values of a mod 7. You will spot the pattern at once: if you walk along
the number line to the right, the values of the remainders a mod m run around
{0, 1, . . . , m − 1} in repeating circles.

184 Martin Dietzfelbinger

a . . . −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 . . .
a mod 7 . . . 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 . . .

“Modular arithmetic” then means that numbers are added and multiplied
“modulo m,” which is done as follows. One adds and multiplies as usual and
then calculates the remainder of the result when divided by m. For example,
3 · (−6) mod 7 = (−18) mod 7 = 3. To make longer calculations easier, one
may replace any intermediate result by its remainder modulo m. For example,
to calculate (6 · 5 + 5 · 4) mod 7, one gets 6 · 5 mod 7 = 30 mod 7 = 2 in a first
step and 5 · 4 mod 7 = 20 mod 7 = 6 in a second, and obtains the final result
as (2 + 6) mod 7 = 8 mod 7 = 1.

Fingerprints

Now we apply modular arithmetic to our texts TAd and TBa. We fix some
number m. Later we will see that m should be a prime number larger than
255 and larger than n, maybe about as large as 2n or 10n. In order to keep
the numbers in the example calculation small and simple, we choose m = 17.

For r = 0, 1, 2, . . . , m − 1 and a text T = (a1, a2, . . . , an−1, an) we look at the
following number:

FPm(T, r) = (a1 · rn + a2 · rn−1 + · · · + an−1 · r2 + an · r) mod m.

Example: For TAd and r = 3 we obtain:

FPm(TAd, 3) = (65 · 38 + 100 · 37 + 101 · 36 + 108 · 35 + 97 · 34 + 105 · 33

+ 100 · 32 + 101 · 3) mod 17.

19 Fingerprinting 185

One should notice right from the start that the length n of the text may
be large, but the number of digits of m and hence the number of digits
of FPm(T, r) is really small. We call the number FPm(T, r) (you should
imagine it is written in decimal or in binary) a “fingerprint” of the text
T = (a1, a2, . . . , an), calculated with respect to r.

The name “fingerprint” tries to convey the idea that the number FPm(T, r)
stores in little space some information about T that makes it possible to
distinguish T from other texts, in a way similar to that in which a little
fingerprint is enough to distinguish one human being from another. Of course,
the length n of T can also be counted as a (very rudimentary) “fingerprint.”

Calculating FPm(T, r) at first glance looks like quite an adventure, in
particular for the long texts in which we are really interested, because the
high powers of r will be extremely large numbers. A simple trick, namely,
factoring out in a clever way, helps us to eliminate this problem:

FPm(T, r) = ((((· · · (((a1 · r) + a2) · r) + · · ·) · r + an−1) · r + an) · r) mod m.

If this expression is evaluated in the usual manner, starting from the inside,
working outwards, and taking remainders modulo m after each step, the in-
termediate results stay small. For example, we have

FPm(TAd, 3) = (((((((((65 · 3) + 100) · 3 + 101) · 3 + 108) · 3 + 97) · 3

+ 105) · 3 + 100) · 3 + 101) · 3) mod 17,

and with r = 3 the single steps are the following:

Values Intermediate result
a1 65 (65 · 3) mod 17 = (14 · 3) mod 17 = 8
a2 100 ((8 + 100) · 3) mod 17 = (6 · 3) mod 17 = 1
a3 101 ((1 + 101) · 3) mod 17 = (0 · 3) mod 17 = 0
a4 108 ((0 + 108) · 3) mod 17 = (6 · 3) mod 17 = 1
a5 97 ((1 + 97) · 3) mod 17 = (13 · 3) mod 17 = 5
a6 105 ((5 + 105) · 3) mod 17 = (8 · 3) mod 17 = 7
a7 100 ((7 + 100) · 3) mod 17 = (5 · 3) mod 17 = 15
a8 101 ((15 + 101) · 3) mod 17 = (14 · 3) mod 17 = 8

Thus, FP17(TAd, 3) = 8.
Now we can formulate the algorithm for calculating a fingerprint

FPm(T, r):

186 Martin Dietzfelbinger

Algorithm FP calculates FPm(T, r)

1 procedure FP(m, T, r)
2 begin
3 fp := (a1 · r) mod m;
4 for i from 2 to n do
5 fp := ((fp + ai) · r) mod m;
6 endfor
7 return fp

8 end

Clearly, the resulting fingerprint is a remainder modulo m and hence a
number between 0 and m − 1, and the intermediate results are always smaller
than m2.

Let us use this procedure to calculate all m = 17 fingerprints for TAd and
for TBa:

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
FPm(TAd, r) 0 12 7 8 11 14 15 5 11 1 2 12 13 13 6 6 0
FPm(TBa, r) 0 16 9 2 2 6 14 3 11 12 2 10 11 15 2 10 11

(Alice could calculate the entries in the first row, Bob the entries in the second
row.) We compare the values for TAd and for TBa. For r = 0 we see a 0
in both rows – no surprise, since in Algorithm FP the last operation is a
multiplication by r. A fingerprint with r = 0 does not contain any information,
and we need not consider r = 0 at all. Apart from that, it is hard to spot a
pattern in the sequences of numbers in the two rows. Let us compare numbers
that appear in the same column. For r = 3 (the example from above) we
have FP17(TAd, r) = 8 and FP17(TBa, r) = 2. Note that knowing these two
fingerprints would allow Bob to decide on the spot that the texts cannot be
the same. For r = 8 and r = 10, on the other hand, the results are the same
(11 and 2, respectively) – these values of r do not help.

Fingerprints with Random Numbers

Here is the central idea that gets the approach off the ground. Why should
Alice and Bob calculate all values in the table? (Thinking of larger values
of n and m, they will not be able to do this anyway, as there is not enough
time.) However, Alice chooses a number r between 1 and m − 1 at random. For
example, in order to determine the decimal digits of r, she could repeatedly
turn a “wheel of fortune” whose circumference is subdivided into ten segments
of equal length:

19 Fingerprinting 187

(In every programming language there is an operation for generating “random
numbers.” Chapter 25 deals with the question of what mechanisms are be-
hind these “random number generators.”) Alice calls Bob and tells him which
number she has chosen. For this, she has to tell him only very few decimal
digits. Then they may hang up. Alice calculates the number FPm(TA, r) – or,
rather, lets her computer calculate this number. Simultaneously, Bob calcu-
lates FPm(TB , r). This may take a while, but no communication is necessary,
and hence there are no phone charges. As soon as both are finished, Alice calls
Bob again and tells him “her” fingerprint FPm(TA, r). Now there are several
possibilities.

Case 1: The texts TA and TB are equal. Then Alice and Bob will have
obtained the same result, no matter which r Alice had chosen.

Case 2: The texts TA and TB are different (in the example, “Adelaide” and
“Barnsley” for m = 17).
• If Alice picked a number r with FPm(TA, r) = FPm(TA, r) (in the

example, r = 8 or r = 10), then Bob will obtain the same fingerprint
as Alice, and it will look for both of them as if the texts could be equal.

• If Alice picked a number r with FPm(TA, r) �= FPm(TA, r) (in the ex-
ample, one of the other 14 numbers), then Bob will obtain a fingerprint
that is different from Alice’s and will be able to announce that with
certainty the texts are different.

In our simple example the chances that Alice and Bob find the difference is
14 : 16 or 87.5 percent. What are the chances in the general case for noticing
the difference? In order to be able to say something about this, we must
rummage a little more deeply in the toolbox provided by number theory, a
part of mathematics that comes in handy also when one wants to encrypt a
text (see Chap. 16). One can prove that the following is always true.

188 Martin Dietzfelbinger

Fingerprinting Theorem

If TA and TB are different texts (sequences of numbers) of length n, and if
m is a prime number larger than all numbers in TA and TB , then at most n
out of the m pairs

FPm(TA, r), FPm(TB , r), r = 0, 1, . . . , m − 1,

can consist of two equal numbers.

This mathematical fact has been known for centuries. Prime numbers have
lots of wonderful properties – this fact belongs to the simpler ones. How
one proves the Fingerprinting Theorem is not really important for Alice and
Bob and for our considerations here, since the proof does not figure in the
algorithm at all. We postpone a sketch of the proof to the last section of this
chapter, and first look at the way in which it helps Alice and Bob solve their
problem.

For our example with n = 8 the theorem means the following: No matter
what TA and TB look like, if they are different, then in our table there will
never be more than seven values r �= 0 that make Alice and Bob calculate
the same fingerprint. This means that their chance of noticing the difference
is always 9 : 16, or more than 50 percent. But wait a second! This is not
quite true. In the example we chose for m a very small number, which is not
larger than 255 (the largest possible number that may appear in a text), as
required in the Fingerprinting Theorem. So, the conclusion that the odds of
noticing the difference between TA and TB are larger than 50 percent is only
true for pairs TA and TB that satisfy ai mod 17 �= bi mod 17 for at least one
character position i. This problem disappears when m is chosen to be larger
than 255.

Now let us try our technique on the original problem with texts of length
about 50 million characters. In order to obtain something useful, Alice and
Bob must choose their prime number m somewhat larger than 50 million – let
us say they choose m = 1,037,482,333. (Such prime numbers, and much larger
ones, can be found in tables on the Internet.) For numbers n and m of that
size we definitely do not want to write down the table of all FPm(T, r) values.
But by the Fingerprinting Theorem we know that if we did, then among the
m columns there would never be more than n many in which the numbers
FPm(TA, r) and FPm(TB , r) are the same. (One of those is the column for
r = 0.)

Now, if Alice chooses r at random from the numbers between 1 and m − 1
and Alice and Bob calculate and tell each other numbers and fingerprints as
just described, then the probability that Alice happens to choose one of the
“bad” values for r and they fail to notice that TA and TB are different is at

19 Fingerprinting 189

most
n − 1
m − 1

≈ 50000000
1000000000

= 0.05,

or 5 percent. The chance that they discover that the texts are different is at
least 95 percent!

What about communication cost? Although Alice and Bob have to cal-
culate a lot (or have their computers compute a lot), they need to exchange
only very little information: Alice has to tell Bob her character count n (eight
decimal digits) and the prime number m (ten digits), and she has to tell him
the two numbers r and FPm(TA, r) (20 digits).

Alice and Bob can achieve an error probability of less than 5 percent
by communicating fewer than 40 decimal digits!

This means that what seemed impossible at the beginning – that one could
compare extremely long texts by some phone calls that do not last longer than
a minute – is indeed feasible.

Maybe Alice and Bob are not satisfied with an error probability of 5 per-
cent, and insist that it must be much smaller. In this case there are improve-
ments to the algorithm that are not really much more expensive in terms of
communicated digits. Alice chooses two numbers r1 and r2 at random and
tells Bob these two numbers and the corresponding fingerprints FPm(TA, r1)
and FPm(TA, r2). Bob declares the two texts to be equal (with a little risk of
being wrong) if he obtains the same two fingerprints for TB . The chance that
Bob declares the texts to be equal while in fact they are not is no larger than

(n − 1)2

(m − 1)2
<

(
n

m

)2

≈ 0.052 = 0.0025,

the chance that the difference is noted is at least 99.75 percent. If Alice even
sends three number pairs (this means the total communication amounts to
fewer than 80 digits), the error probability drops to (n3/m3) ≈ 0.000125
or 0.0125 percent; the chance of detecting a difference increases to 99.9875
percent.

The Protocol

We summarize Alice and Bob’s method to check whether their texts are iden-
tical. As this method involves both computation and communication, one does
not call this an “algorithm” but, rather, a “protocol” (in the sense of a set of
rules that say who has to do what and when).

190 Martin Dietzfelbinger

Protocol Text Comparison by Fingerprinting

Alice has the sequence TA = (a1, . . . , an) of numbers between 0 and d − 1.
Bob has the sequence TB = (b1, . . . , bn′) of numbers between 0 and d − 1.

1. Alice tells Bob what n is. If n �= n′, Bob says “different,” and STOP.
2. Alice and Bob agree on a number k of repetitions.
3. Alice finds some prime number m a little larger than d and 10n.

She chooses k numbers r1, . . . , rk between 1 and m − 1 at random,
and tells Bob m and r1, . . . , rk.

4. Alice calculates FPm(TA, r1), . . . , FPm(TA, rk).
(For this, she modifies algorithm FP in such a way that
the text TA is only run through once to calculate all k results.)

5. Bob calculates FPm(TB , r1), . . . , FPm(TB , rk) in the same way.
6. Alice tells her k results to Bob.
7. Bob compares with his k values.

If there are differences, he says “different,” and STOP.
If all values are equal, he says “can’t see a difference,” and STOP.

One can say the following about the result of the protocol.

• If Alice and Bob have the same text, then the sequences of k fingerprints
they calculate are the same. Hence the result always is “can’t see a differ-
ence.”

• If Alice and Bob have different texts (of the same length), then by the Fin-
gerprinting Theorem, among the m − 1 numbers Alice chooses from, there
are at most n − 1 many values for r that make FPm(TA, r) and FPm(TB , r)
coincide. For r randomly chosen, the probability that FPm(TA, r) and
FPm(TB , r) are equal is at most (n − 1)/(m − 1). The probability that
Alice chooses such “bad” r’s in all k trials, making Bob say “can’t see a
difference” erroneously, is no larger than

(n − 1)k

(m − 1)k
=

(
n − 1
m − 1

)k

<

(
n

m

)k

.

Since we have assumed that m ≥ 10n, the bound is smaller than 1/10k,
and by choosing k large enough Alice and Bob can adjust the error probability
bound to as tiny a value as they wish.

If m ≈ 10n, and n has exactly l decimal digits, and Alice and Bob want the
error probability to be at most 10−k, it is sufficient that Alice communicate
(l + 1) · (2 + 2k) digits. It is astonishing that this figure changes only very
slowly when the length of the text is increased: When comparing texts that
are ten times as long, i.e., n increases by a factor of ten, the number of digits
that have to be communicated increases only by 2k.

19 Fingerprinting 191

Summary

• If one wants to have absolute certainty when comparing two texts, one
may use “lossless data compression” techniques, but normally it will not
be possible to save more than a factor of 5 or so over the full length of the
text.

• If it is acceptable that one erroneously comes to the conclusion that two
texts are the same with a (very) small probability, fingerprinting techniques
can be employed. This will dramatically reduce the length of the messages
to be transmitted.

• For texts of length n, a prime number m > n is used. When sending k
fingerprints, the error probability is no larger than (n

m)k. In this case,
2k + k numbers not larger than m must be transmitted.

• Using randomness in algorithms and communication protocols can lead
to significant savings in resources such as storage space or transmission
time if it is acceptable that with some small probability a wrong result
occurs. More often than not, by simple means (such as repeating the al-
gorithm/protocol) the error probability can be made so small that errors
can be practically eliminated.

• Algorithms and protocols that use randomness to make some decisions or
choices are called “randomized.” In Chap. 25 it is discussed how “random-
ness gets into the computer,” i.e., how one gets the computer to produce
“random” numbers.

• Sometimes very abstract mathematical facts that at first glance look nice
but do not seem to have a practical value can be utilized in order to save
computing cost, storage space, or communication cost.

Remarks on the Fingerprinting Theorem

For the mathematically interested reader, we now give an informal argument
that makes it plausible for the Fingerprinting Theorem to be true.

For this, we consider “polynomials,” more precisely “rational polynomials.”
These are expressions

f(x) = cnxn + cn−1x
n−1 + · · · + c1x + c0

with a “variable” x, where the “coefficients” cn, cn−1, . . . , c1, c0 are rational
numbers, or fractions p/q, with p, q integers and q > 0. For example, the
following expressions are rational polynomials:

2x2 + 3
2 , 3

4x − 1
10 , x5 + 4x4 − 3x2 − 15

29x + 1
3 , 7

8 , 0.

In the second to last example (7
8) we have n = 0 and c0 = 7

8 ; in the last
example (0) there are no nonzero terms at all. When writing polynomials,
terms cix

i with ci = 0 are usually omitted.

192 Martin Dietzfelbinger

Polynomials may be added and subtracted by applying the usual rules:
(
2x2 + 3

2

)
+

(
−3x2 + 3

4x − 1
)

= (2 − 3)x2 + 3
4x +

(
3
2 − 1

)
= −x2 + 3

4x + 1
2 ,

(
2x2 + 3

2

)
−

(
−3x2 + 3

4x − 1
)

= (2 + 3)x2 − 3
4x +

(
3
2 + 1

)
= 5x2 − 3

4x + 5
2 .

If one subtracts a polynomial f(x) from itself, the result is the “zero poly-
nomial”: f(x) − f(x) = 0. Of course, one may also multiply polynomials.
For this, one expands the product by the distributive law and then collects
coefficients that belong to the same power of x. Here is an example:

(2x2 + 3
2) · (3

4x3 − x) = 3
2x5 + 9

8x3 − 2x3 − 3
2x = 3

2x5 − 7
8x3 − 3

2x.

Another important operation with polynomials is “substitution”: If f(x) is a
polynomial and r is a rational number, we write f(r) for the result that is
obtained by substituting r for x in f(x) and evaluating. That means that if
f(x) = x3 − 1

2x2 + 2x − 1, then f(0) = −1 and f(1
2) = 0 and f(1) = 3

2 .
A rational number r is called a root of a polynomial f(x) if f(r) = 0. For
example, r = 1

2 is a root of f(x) = x3 − 1
2x2 + 2x − 1.

Of course, the zero polynomial 0 has infinitely many roots, namely, all
rational numbers. The polynomial f(x) = 10 has no roots at all, and the
polynomial 2x + 5 has exactly one root, namely r = − 5

2 . The polynomial
x2 − 1 has two roots, namely 1 and −1, and the polynomial x2 + 1 has no
(rational) roots. One can prove the following:

Theorem (Number of Roots of Rational Polynomials)

If f(x) = cnxn + cn−1x
n−1 + · · · + c1x + c0 with n ≥ 0 and cn �= 0 is a

polynomial, then f has at most n distinct roots.

(Roughly, the reason for this is the following: If r1, . . . , rk are k distinct roots
of f(x), one can write f(x) as a product (x − r1) · · · (x − rk) · g(x), for some
polynomial g(x) �= 0. Since the highest power of x in f(x) is xn, the number
k cannot be larger than n.)

From the theorem about the roots we can conclude the following: If

g(x) = cnxn + cn−1x
n−1 + · · · + c1x + c0 and

h(x) = dnxn + dn−1x
n−1 + · · · + d1x + d0

are different polynomials, then there are at most n different numbers r that
satisfy g(r) = h(r). Why is that so? Consider the polynomial

f(x) = g(x) − h(x)

= (cn − dn)xn + (cn−1 − dn−1)xn−1 + · · · + (c1 − d1)x + (c0 − d0).

It could happen that cn = dn, and cn−1 = dn−1, and so on, so that many
coefficients in f(x) are 0. But since g(x) and h(x) are different, f(x) cannot
be the zero polynomial, and we can write f(x) = ekxk + · · · + e1x + e0, with
0 ≤ k ≤ n and ek �= 0. By the theorem on the number of roots, we conclude

19 Fingerprinting 193

that f(x) does not have more than k ≤ n roots. But for each r we have that
if g(r) = h(r), then f(r) = g(r) − h(r) = 0, and hence r is a root of f(x).
Hence, there cannot be more than n numbers r with g(r) = h(r).

Hey – this is almost the formulation of the Fingerprinting Theorem! The
only difference is that in the Fingerprinting Theorem we are talking about
calculations modulo some prime number m, and here we consider calculations
with rational numbers. However, for the theorem about the number of roots
of a polynomial to be true we do not really need the rational numbers, but
only a domain of numbers in which we can add, subtract, multiply, and divide
(by any element that is not zero). One can show that arithmetic modulo m
has this property if and only if m is a prime number. This means that the
theorem about the number of roots holds in modular arithmetic modulo a
prime m as well.

Further Reading

1. J. Hromkovič: Design and Analysis of Randomized Algorithms. Springer,
Berlin, 2005.
This book describes many randomized algorithms, protocols, and methods
as well as the fundamentals of the design and the study of such methods.

2. For readers who want to know all the details, a complete proof of the
Fingerprinting Theorem from first principles can be found on the page
http://eiche.theoinf.tu-ilmenau.de/fingerprint/

3. A complete description of the ASCII code, and much more information
about it, can be found at http://en.wikipedia.org/wiki/ASCII

4. A list of prime numbers with size about 2k, 1 ≤ k ≤ 400: http://primes.
utm.edu/lists/2small/0bit.html

Acknowledgement

Many thanks to J.D. for help with the illustrations.

20

Hashing

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

Some Germans have problems distinguishing between hashing and Häschen
(bunny).

Bunnies are hard to find. These shy animals hide very well. A careful observer
may spot the following tracks on a snow-covered field:

Here, two bunnies hopped next to each other in the snow. A track can tell
a lot about an animal: The size and weight, whether it travels in a group and
much more. Sometimes a track comes with something like this:

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 20, c© Springer-Verlag Berlin Heidelberg 2011

196 Christian Schindelhauer

Such droppings are the excrement of a bunny or hare. The droppings tell
us what the animal has eaten, whether it is healthy and many other things.
Nowadays each individual animal can be identified from it using complicated
lab tests. This method may serve also for other animals (and in Madrid canine
environmental polluters are identified this way).

Message Digest

What is the connection to algorithms? Well, the droppings come from the
food eaten by the bunny.

The food is hashed, mixed, digested, dehydrated and deposited; the result
is a small heap. This product can be mapped back to the food. A lot of
information is lost: the (digestive) path, yet the food can still be identified.

Something similar can be done with text documents, music files and video
files. For computer engineers these are just series of bits, being either zero or
one. Such a sequence is mixed, merged and compressed into a bit sequence of
fixed length. We say the bit sequence is hashed. This may look like this.

A well-known algorithm for hashing is MD-5 (Message Digest 5). It was de-
veloped in 1991 by Ronald Rivest, and an accurate description can be found in
Wikipedia (http://en.wikipedia.org/wiki/MD5). Other known algorithms
are Secure Hash Algorithms 1, 224, 256, 284, and 512 (SHA-1, SHA-224, SHA-
256, SHA-384 and SHA-512 – http://en.wikipedia.org/wiki/SHA-1). They
serve the same purpose as the message digest algorithm.

20 Hashing 197

Secure Hashing

What purpose do these hash algorithms serve? First, they map files of different
lengths onto bit sequences of the same length. Second, the result helps to
identify the original files, but does not necessarily allow us to reconstruct the
original. The mathematical description of the identifying feature follows.

By {0,1}* we describe the set of all bit sequences, which is {0, 1, 00, 01, 10,
11, 0000, 0001, . . .}, as well the empty bit sequence, which is no bit at all.
By {0,1}k we describe the set of all bits of length exactly k bits: {000, 001,
010, 011, 100, 101, 110, 111} in the case k = 3. A hash function is a map-
ping:

f : {0, 1}∗ → {0, 1}k.

What does it mean that the result of a hash function identifies the in-
put? It means that f(x) = f(y) if and only if x = y. The opposite state-
ment is that there are two different values x and y such that f(x) =
f(y).

Such an equation is called a collision. We claim that a hash functions exists
where all infinitely many bit sequences never collide. Mathematically this is
complete rubbish. Why?

Imagine as many bins as we have bit sequences of length k. So we have
2k bins: two possibilities for each bit. We claim that in every bin f(x) only
one original bit sequence is deposited. However, there are many more than
2k sequences, namely infinitely many. So, at least one of the bins experiences
infinitely many collisions.

But there is a loophole! We choose k so large that we have enough bins for
every file that ever may be created. So that for each ever-to-be-created file on
each ever-to-be-built computer on this planet one hash value is reserved. This
trick is used in Chap. 14 where one-way-functions are presented. For example,
choose k = 512. Then there are 2512 > 10154 bins. If we succeed in filling these
bins such that nobody (human or machine) can construct a collision, we are
done.

198 Christian Schindelhauer

To this day it is not clear whether such a feat is possible, although we have
candidates for hash functions like SHA-512 (512 bits for each hash value). But
this is of little value. For example, MD-5 is seen as collision free for all existing
files until a method is found to produce arbitrarily many collisions.

Practically collision-free hash functions are so useful that computer engi-
neers choose to work with these candidate functions. For example, they can
be used to prove the correctness of file transmissions. For this, the hash value
can prove that no single bit was lost or altered by the transmission, nor did
somebody exchange the whole message.

Hashing for Dictionaries

Hash functions can be used not only for storing data hash functions. Consider
a storage S for storing m data items. This storage is organized as a table
or array. So, the storage positions S[1], . . . , S[m] can be directly accessed to
retrieve a data item. We want to save the data items into S, which is identified
by a bit sequence (or a text).

For example,

Name Total number
German Black Forest winter snow bunny 12
European field forest and meadow fox 2
Small stinger hedgehog 4
Big brown scary bear 1

The data is quite compact, while the search index is very long. If we had a
hash function which maps to an interval {1, 2, 3, . . . , m}, it would look like
this.

20 Hashing 199

Now we could store at the storage position S[f(“. . . bunny”)] the value 12
in this hash table, at the position S[f(“. . . fox”)] the value and so on. This
operation is named Put.

Put

1 procedure Put (string x, int z)
2 begin
3 S[f(x)] := z
4 end

Get returns the value where the value 0 denotes that no data has been
stored.

Get

1 procedure Get (string x)
2 begin
3 return S[f(x)]
4 end

Unfortunately, these functions work correctly only if the hash function is
without any collisions. So, for example, bunny and hedgehog are not mapped
to the same storage position. This can be guaranteed only for small m, if the
keys are known in advance (like here with bunny, fox, hedgehog and bear)
and a so-called perfect hash function has been chosen.

If one does not know the keys in advance, empty positions must be found.
For this, several methods are at hand. The easiest method is the so-called
linear probing. Then, in addition to the data, also the key must be stored.

Storing a Data Item z with Key x

First we compute the hash value f(x) of x. If the S[f(x)] is already occupied,
the right neighbor is tested (f(x) + 1), and its right neighbor, until an empty

200 Christian Schindelhauer

storage position has been found. If during the search one ends at the right
end of the storage array, the search continues at the first position. If an empty
position is eventually found, the key x and the data item z are stored. If all
storage positions have been unsuccessfully investigated, then the storage is
full and the operation returns an error message.

Searching a Data Item Corresponding to Key x

Again, we compute the hash value f(x) of the key x. If the storage position
holds another key we start the search to the right until the fitting k is found or
an empty storage position has been found. On this search we jump from the
right end of the storage array to the first position. The search is unsuccessful
if an empty storage position has been found or all storage items have been
investigated. In all other cases we find the key x and can return the data
item.

With this collision resolution we can always store m data items no mat-
ter how good or bad the hash functions we have chosen. If you want to try
this yourself, start with natural numbers as keys and choose as the hash
function the modulo-m function, which is the remainder after division by m.
At the beginning, storing and retrieving the data will be surprisingly fast.
But when the table is nearly full, then this algorithm becomes slower and
slower.

This is caused by the way we handle collisions. Linear probing always tests
neighboring positions. Better solutions are known, like quadratic probing or
double hashing, which some Germans mix up with Doppel-Häschen . . .

20 Hashing 201

External Links and References

1. Wikipedia: MD5, SHA-1, Hash-Table.
2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction

to Algorithms. 1184 pages, MIT Press, 2001, ISBN 0-262-53196-8.

21

Codes – Protecting Data Against Errors
and Loss

Michael Mitzenmacher

Harvard University, Cambridge, USA

21.1 Introduction

Suppose that, after meeting a new friend at a party, you want to get his or
her cell phone number – ten digits. (If you’re single, feel free to put this story
in the context of meeting a special someone in a cafe or other locale.) You
don’t have your phones with you, so you resort to having your friend write
their telephone number on a nearby scrap of paper. Sadly, your new friend’s
handwriting is rather messy, and the ink has a tendency to smudge, so you
are worried you will not be able to read one (or more) of the digits later. Let
us assume that if you cannot clearly read a number you will simply treat it
as unknown, or erased. You might read

617-555-0?23,

where we use the question mark to mean you were not sure what that number
was. You’d prefer to avoid calling multiple numbers hoping to find the right
one, so you consider what you can do to cope with the problem in advance.

Your friend could write the cell phone number down for you twice, or even
three times, and then you would be much more likely to be able to determine
it later. By just repeating the cell number twice, you would be guaranteed to
know it if any single digit was erased; in fact, you would know it as long as,
for every digit, both copies of that digit were not erased. Unless you expect
a great number of messy smudges, though, repeating the number seems like
overkill. So here is the challenge – can you write down an eleventh digit that
will allow you to correct for any single missing digit? You might first want
to consider a slightly easier problem: can you write down an extra number
between 1 and 100 that will allow you to correct for any single missing digit?

In this puzzle, we are trying to come up with a code. Generally, a code is
used to protect data during transmission from specific types of errors. In this
example, a number that is so messy or smudged that you cannot tell what
it is would be called an erasure in coding terminology, so our resulting code
would be called an erasure code. There are many different types of errors that

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 21, c© Springer-Verlag Berlin Heidelberg 2011

204 Michael Mitzenmacher

can be introduced besides erasures. I might write down (or you might read)
a digit incorrectly, turning a 7 into a 4. I might transpose two digits, writing
37 when I meant 73. I might forget to write a number, so you only have nine
digits instead of the ten you would expect. There are also codes for these and
other more complicated types of errors.

Codes protect data by adding redundancy to it. Perhaps the most basic
type of coding is just simple repetition: write everything down two or three or
more times. Repetition can be effective, but it is often very expensive. Usually,
each piece of data being transmitted costs something – time, space, or actual
money – so repeating everything means paying at least twice as much. Because
of this, codes are generally designed to provide the most bang for the buck,
solving as many or as many different kinds of errors as possible with the least
additional redundancy.

This brings us back to the puzzle. If I wanted to make sure you could
correct for the erasure of any single digit, I could provide you with the sum
of the digits in my phone number. If one digit then went missing, you could
subtract the other numbers to find it. For example, if I wrote

617-555-0123 35,

and you read

617-555-0?23 35,

you could compute

35 − (6 + 1 + 7 + 5 + 5 + 5 + 0 + 2 + 3) = 1

to find the missing number.
We can reduce the amount of information passed even further because, in

this case, you really do not even need the tens digit of the sum. Instead of
writing 35, I could just write down 5. This is because no matter what digit is
missing, the sum you will get from all of the remaining digits will be between
26 and 35. You will therefore be able to conclude that the sum must have
been 35, and not 25 or smaller (too low) or 45 or larger (too big). Just one
extra digit is enough to allow you to handle any single erasure.

It is interesting to consider how helpful this extra information would be
in the face of other types of errors. If you misread exactly one of the digits in
the phone number, you would see that there was a problem somewhere. For
example, if you thought what I wrote was

617-855-0123 5,

you would see the phone number and the ones digit of the sum did not match,
since the sum of the digits in the phone number is 38. In this case, the extra
information allows you to detect the error, but it does not allow you to correct
the error, as there are many ways a single digit could have been changed to
end up with this sequence. For example, instead of

617-555-0123,

21 Codes – Protecting Data Against Errors and Loss 205

my phone number might originally have been

617-852-0123,

which also differs from what you received in just one digit, and also has all
the digits sum to 35, matching the extra eleventh digit 5 that was sent. Since
without additional information you cannot tell exactly what my original num-
ber was, you can only detect but not correct the error. In many situations,
detecting errors can be just as or almost as valuable as correcting errors, and
generally detection is less expensive than correction, so sometimes people use
codes to detect rather than correct errors.

If there were two changed digits, you might detect that there is an error.
Or you might not! If you read

617-556-0723 5,

the extra sum digit does not match the sum, so you know there is an error.
But if you read

617-555-8323 5,

you would think everything seemed fine. The two errors match up in just the
right way to make the extra digit match. In a similar manner, providing the
sum does not help if the error is a transposition. If instead of

617-555-0123 5,

you thought I wrote

617-555-1023 5,

that would seem perfectly fine, since transpositions do not change the sum.

21.1.1 Where Are Codes Used?

You are probably using codes all the time, without even knowing it. For ex-
ample, every time you take your credit card out of your wallet and use plastic
to pay a bill, you are using a code. The last digit of your credit card number is
derived from all of the previous digits, in a manner very similar to the scheme
we described to handle erasures and errors in the telephone number puzzle.
This extra digit prevents people from just making up a credit card number
off the top of their heads; since one must get the last digit right, at most only
one in ten numbers will be valid. The extra digit also prevents mistakes when
transcribing a credit card number. Of course, transposition is a common er-
ror, and as we’ve seen, using the sum of the digits cannot handle transposition
errors. A more difficult calculation is made for a credit card, using a standard
called the Luhn formula, which detects all single-digit errors (like the sum)
and most transpositions. Additional information of this sort, which is used to
detect errors instead of correct them, is typically called a checksum.

206 Michael Mitzenmacher

Error-correcting codes are also used to protect data on compact discs
(CDs) and digital video discs (DVDs, which are also sometimes called dig-
ital versatile discs, since they can hold more than video). CDs use a method
of error-correction known as a cross-interleaved Reed–Solomon code (CIRC).
We’ll say a bit more about Reed–Solomon codes later on. This version of
Reed–Solomon code is especially designed to handle bursts of errors, which
might arise from a small scratch on the CD, so that the original data can be
reconstructed. The code can also correct for other errors, such as small man-
ufacturing errors in the disc. Roughly one fourth of the data stored on a CD
is actually redundancy due to this code, so there is a price to pay for this pro-
tection. DVDs use a somewhat improved version known as a Reed–Solomon
product code, which uses about half as much redundancy as the original CIRC
approach. More generally, error-correcting codes are commonly used in var-
ious storage devices, such as computer hard drives. Coding technology has
proven to be key to fulfilling our desire for easy storage of and access to audio
and video data.

Of course, codes for error correction and error detection also come into
play in almost all communication technologies. Your cell phone, for example,
uses codes. In fact, your cell phone uses multiple complex codes for different
purposes at different points. Your iPod uses codes. Computer modems, fax
machines, and high-definition television use error-correction techniques. Mov-
ing from the everyday to the more esoteric, codes are also commonly used in
deep-space satellites to protect communication. When pictures are sent back
to NASA from the far reaches of our solar system, they come protected by
codes.

In short, coding technology provides a linchpin for all manner of com-
munication technology. If you want to protect your data from errors, or just
detect errors when they occur, you apply some sort of code. The price for this
protection is paid with redundancy and computation. One of the key things
people who work on codes try to determine is how cheap we can make this
protection while still making it as strong as possible.

21.2 Reed–Solomon Codes

The invention of Reed–Solomon codes revolutionized the theory and practice
of coding, and they are still in widespread use today. Reed–Solomon codes were
invented around 1960 by two scientists, Irving Reed and Gustave Solomon.
The codes can be used to protect against both erasures and errors. Also im-
portantly, there are efficient algorithms for both encoding, or generating the
information to send, and decoding, or reconstructing the original message from
the information received. Fast algorithms for decoding Reed–Solomon codes
were developed soon after the invention of the codes themselves by Berlekamp
and Welch. Most of the coding circuits that have ever been built implement
Reed–Solomon codes, and use some variation of Berlekamp–Welch decoding.

21 Codes – Protecting Data Against Errors and Loss 207

Fig. 21.1. An example of Reed–Solomon codes. Given the two numbers 3 and 5, we
construct the line between the two points (1, 3) and (2, 5) to determine additional
numbers to send. Receiving any two points, such as the points (3, 7) and (4, 9), will
allow us to reconstruct the line and determine the original message

The basic idea behind Reed–Solomon codes can be explained with a simple
example. I would like to send you just two numbers, for example a 3 followed
by a 5. Suppose that I want to protect against erasures. We will think of
these numbers as not just being numbers, but being points on a line: the first
number becomes the point (1, 3), to denote that the first number is a 3. The
second number becomes the point (2, 5), to denote that the second number is
a 5. The line between these points can be pictured graphically, as in Fig. 21.1,
or can be thought of arithmetically: the second coordinate is obtained by
doubling the first, then adding 1. My goal will be to make sure that you obtain
enough information to reconstruct the line. Once you can reconstruct the line,
you can determine the message, simply by finding the first two points (1, 3)
and (2, 5). You then know I meant to send a 3 and a 5. The key idea is that
instead of thinking about the data itself, we think about a line that encodes
the data, and focus on that.

To cope with erasures, I can just send you other points on the line! That
is, I can send you extra information by finding the next points on the line,
(3, 7) and (4, 9). I would send the second coordinates, in order:

3, 5, 7, 9.

I could send more values – the next would be 11, for (5, 11) – as many as I
want. The more values I send, the more erasures you can tolerate, but the
cost is more redundancy.

Now, as long as any two values make it to you, you can find my original
message. How does this work? Suppose you receive just the 7 and 9, so what
you receive looks like

?, ?, 7, 9,

where the “?” again means the number was erased. You know that those last
two numbers correspond to the points (3, 7) and (4, 9), since the 7 is in the

208 Michael Mitzenmacher

3rd spot on your list and the 9 is in the 4th. Given these two points, you can
yourself draw the line between them, because two points determine a single
line! The line is exactly the same line as in Fig. 21.1. Now that you know the
line, you can determine the message.

The key fact we are using here is that two points determine a line, so
once you have any two points, you are done. There is nothing particularly
special about the number two here. If I wanted to send you three numbers,
I would have to use a parabola, instead of a line, since any three points
determine a parabola. If I wanted to send you 100 numbers, I could build
a curve determined by the 100 points corresponding to these numbers. Such
curves are written as polynomials: to handle 100 points, I would use curves
with points (x, y) satisfying an equation looking like y = a99x

99 + a98x
98 +

· · · + a1x + a0, where the ai are appropriately chosen numbers so that all the
points satisfy the equation. To send k numbers, I need k coefficients, or a
polynomial of degree k − 1, to represent the numbers.

Reed–Solomon codes have an amazing property, with respect to erasures:
if I am trying to send you 100 numbers, we can design a code so that you
get the message as soon as you receive any 100 points I send. And there is
nothing special about 100; if I am trying to send you k numbers, all you need
to receive is k points, and any k points will do. In this setting, Reed–Solomon
codes are optimal, in the sense that if I want to send you 100 numbers, you
really have to receive some 100 numbers from me to have a good chance to
get the message. What is surprising is that it does not matter which 100 you
get!

An important detail you might be wondering about is what happens if one
of the numbers I am supposed to send ends up not being an integer. Things
would become a lot more complicated in practice if I had to send something
like 16.124875. Similar problems might arise if the numbers I could send could
become arbitrarily long; this too would be impractical. To avoid this, all work
can be done in modular or clock arithmetic. In modular arithmetic, we always
take the remainder after dividing by some fixed number. If I work “mod-
ulo 17”, instead of sending the number 47, I would send the remainder after
dividing 47 by 17. This remainder would be 13, since 47 = 2 × 17 + 13. Mod-
ular arithmetic is also called clock arithmetic, because it works like counting
on a clock. In Fig. 21.2 we see a clock corresponding to counting modulo 5.
After we get to 4, when we add 1, we go back to 0 again (since the remainder
when dividing 5 by 5 is 0). We have already seen an example of modular arith-
metic in our original puzzle. Instead of sending the entire sum, I could get
away with just sending the ones digit, which corresponds to working “mod-
ulo 10”. It turns out that all the arithmetic for Reed–Solomon codes can
be performed modulo a big prime number, and with this, all the numbers
that need to be sent will be suitably small integers. (Big primes are nice
mathematically for various reasons. In particular, each nonzero number has a
multiplicative inverse, which is a corresponding number whose product with
the original number is one. For example, 6 and 2 are inverses modulo 11, since

21 Codes – Protecting Data Against Errors and Loss 209

Fig. 21.2. Modular arithmetic: counting “modulo 5” is like counting on a clock
that goes back to zero after four. Equivalently, you just consider the remainder
when dividing by 5, so 7 is the same as 2 modulo 5

6 × 2 = 12 = 11 + 1, so 6 × 2 is equivalent to 1 modulo 11. In practice, things
are slightly more complicated; one often does not work modulo some prime,
but uses a number system with similar properties, including the property that
each nonzero number has a multiplicative inverse.)

What about dealing with errors, instead of erasures? As long as the number
of errors is small enough, all is well. For example, suppose again I sent you
the numbers

3, 5, 7, 9,

but you received the numbers

3, 4, 7, 9,

so that there is one error. If we plot the corresponding points, (1, 3), (2, 4),
(3, 7), and (4, 9), you can see that there is only one line that manages to pass
through three of the four points, namely the original line. Once you have the
original line, you can correct the point (2, 4) to the true point (2, 5), and
recover the message. If there were too many errors, it is possible that we
would obtain no line at all passing through three points, in which case we
would detect that there were too many errors. For example, see Fig. 21.3.
Another possibility is that if there were too many errors, you might come
up with the wrong line, and you would decode incorrectly. See Fig. 21.4 for
an example of this case. Again, there is nothing special about wanting to
send two numbers. If I wanted to send you three numbers, and cope with one
error, I would send you five points on a parabola. If there was just one error,
there would be just one parabola passing through four of the five points. The
idea extends to larger messages, and the Berlekamp–Welch algorithm decodes
efficiently even in the face of such errors.

In general, if I am trying to send you a message with k numbers, in or-
der for you to cope with e errors, I need to send you k + 2e points using a
Reed–Solomon code. That is, each error to be handled requires sending two
additional numbers. Therefore, to send you two numbers and handle one error,
I needed to send 2 + 2 · 1 = 4 symbols.

Because Reed–Solomon codes have proven incredibly useful and power-
ful, for many years, it proved hard to move beyond them, even though there
were reasons to do so. On the theoretical side, Reed–Solomon codes were not

210 Michael Mitzenmacher

Fig. 21.3. An example of decoding Reed–Solomon codes when there are errors.
Given the four points, one of which is in error, there is just one line that goes through
three of the four points, namely the line corresponding to the original message.
Determining this line allows us to correctly reconstruct the message

Fig. 21.4. Examples of decoding Reed–Solomon codes when there are too many
errors. Given the four points, when there are two or more errors, there may be no
line that goes through three or more of the points, as in the example on the left, in
which case one can detect there is an error but not correct it. Alternatively, when
there are two errors, three of the points may lie on an incorrect line. On the right-
hand side, one could find a line going through three of the points, and incorrectly
conclude that the point (2, 5) should have been (2, 4), giving an incorrect decoding

optimal for many types of errors. Theoreticians always like to have the best
answer, or at least something very close to it. On the practical side, although
Reed–Solomon codes are very fast for small messages, they are not very effi-
cient when used for larger messages. This is in part because of the overhead of
using modular arithmetic, which can be nontrivial, and because the decoding
schemes just take longer when used for messages with lots of numbers and lots
of erasures or errors. Specifically, the decoding time is roughly proportional
to the product of the length of the message and the number of errors, or ke.
This means that if I want to double the message length and handle twice as
many errors, so that the overall percentage of errors remains the same, the

21 Codes – Protecting Data Against Errors and Loss 211

time to decode increases by roughly a factor of four. If I want the message
length to increase by a factor of one hundred, and handle the same percentage
of errors, the time to decode increases by roughly a factor of 10,000, which is
substantial! The problems of dealing with larger messages were not too im-
portant until computers and networks became so powerful that sending huge
messages of megabytes or even gigabytes became ordinary. These problems
could be dealt with using tricks like breaking up a large message into sev-
eral small messages, but such approaches were never entirely satisfactory, and
people began looking for other ways to code to protect against erasures and
errors.

21.3 New Coding Techniques: Low-Density Parity-Check
Codes

Over the past fifteen years, a new style of coding has come into play. The
theory of these codes has become quite solidly grounded, and the number
of systems using these codes has been growing rapidly. Although there are
many variations on this style, they are grouped together under the name
Low-Density Parity-Check codes, or LDPC codes for short. LDPC codes are
especially good for situations where you want to encode large quantities of
data, such as movies or large software programs.

Like Reed–Solomon codes, LDPC codes are based on equations. With
Reed–Solomon codes, there was one equation based on all of the data in
the message. Because of this, Reed–Solomon codes are referred to as dense.
LDPC codes generally work differently, using lots of small equations based on
small parts of the data in the message. Hence they are called low-density.

The equations used in LDPC codes are generally based on the exclusive-or
(XOR) operation, which works on individual bits. If the two bits are the same,
the result is 0, otherwise it is 1. So writing XOR as ⊕, we have

0 ⊕ 0 = 0; 1 ⊕ 1 = 0; 1 ⊕ 0 = 1; 0 ⊕ 1 = 1.

Another way of thinking about the XOR operation is that it is like counting
modulo 2, which corresponds to a clock with just two numbers, 0 and 1. This
makes it easy to see that, for example,

1 ⊕ 0 ⊕ 0 ⊕ 1 = 0.

We can extend XOR operations to bigger strings of bits of the same length,
by simply XORing the corresponding bits together. For example, we would
have

10101010 ⊕ 01101001 = 11000011,

where the first bit of the answer is obtained from taking the XOR of the first
bits of the two strings on the left, and so on.

212 Michael Mitzenmacher

The XOR operation also has the pleasant property that for any string S,
S ⊕S consists only of zeroes. This makes it easy to solve equations using XOR,
like the equations you may have seen in algebra. For example, if we have

X ⊕ 10101010 = 11010001,

we can “add” 10101010 to both sides to get

X ⊕ (10101010 ⊕ 10101010) = 11010001 ⊕ 10101010.

This simplifies, since 10101010 ⊕ 10101010 = 00000000, to

X = 01111011.

We will now look at how LDPC codes work in the setting where there are
erasures. LDPC codes are based on the following idea. I will split my message
up into smaller blocks. For example, when you send data over the Internet,
you break it up into equal-sized packets. Each packet of data could be a block.
Once the message is broken into blocks, I repeatedly send you the XOR of a
small number of random blocks. One way to think of this is that I am sending
you a bunch of equations. For example, if you had blocks of eight bits, labeled
X1, X2, X3, X4, . . ., taking on the values

X1 = 01100110, X2 = 01111011, X3 = 10101010, X4 = 01010111, . . . ,

I might send you X1 ⊕ X3 ⊕ X4 = 10011011. Or I could just send you X3 =
10101010. I could send you X5 ⊕ X11 ⊕ X33 ⊕ X74 ⊕ X99 ⊕ X111 = 10111111.
Notice that whenever I send you a block, I have to choose how many message
blocks to XOR together, and then which message blocks to XOR together.

This may seem a little strange, but it turns out to work out very nicely.
In fact, things work out remarkably nicely when I do things randomly, in the
following way. Each time I want to send out an encoded block, I will randomly
pick how many message blocks to XOR together according to a distribution:
perhaps 1/2 of the time I send you just 1 message block, 1/6 of the time I send
you the XOR of 2 message blocks, 1/12 of the time I send you the XOR of
3 message blocks, and so on. Once I decide how many blocks to send you,
I choose which blocks to XOR uniformly, so each block is equally likely to be
chosen.

With this approach, some of the information I send could be redundant,
and therefore useless. For example, I might send you X3 = 10101010 twice, and
certainly you only need that information once. This sort of useless information
does not arise with Reed–Solomon codes, but in return LDPC codes have an
advantage in speed. It turns out that if I choose just the right random way
to pick how many message blocks to XOR together, then there will be very
little extra useless information, and you will almost surely be able to decode
after almost just the right number of blocks. For example, suppose I had a
message of 10,000 blocks. On average, you might need about 10,250 blocks to
decode with a well-designed code, and you would almost surely be done after
10,500 blocks.

21 Codes – Protecting Data Against Errors and Loss 213

LDPC codes can be decoded in an interesting and quite speedy way. The
basic idea works like this: suppose I receive an equation X3 = 10101010,
and another equation X2 ⊕ X3 = 11010001. Since I know the value of X3,
I can substitute the value of X3 into the second equation so that it becomes
X2 ⊕ 10101010 = 11010001. Now this equation has just one variable, so we
can solve it, to obtain X2 = 01111011. We can then substitute this derived
value for X2 into any other equations with the variable X2, and look for fur-
ther equations with just one variable left that can be solved. If all works out,
we can just keep substituting values for variables, and solving simple equa-
tions with just one variable, until everything is recovered. At some point, we
get a chain reaction, where solving for one variable lets us solve for more
variables, which lets us solve for more variables, until we end up solving ev-
erything!

Just as Reed–Solomon codes can also be used to deal with errors instead
of simply erasures, variations of LDPC codes can also be used to deal with
errors. One of the amazing things about LDPC codes is that for many basic
settings one can prove that they perform almost optimally. That is, the theory
tells us that if we send data over a channel with certain types of errors,
there is a limit to how much useful information we can expect to get. For
erasures, as we saw with Reed–Solomon codes, this limit is trivial and can
be achieved: to obtain a message of 100 numbers, you need to receive at
least 100 numbers, and Reed–Solomon codes allow you to decode once you
receive any 100 numbers. LDPC codes, in many situations with other types
of errors, brush right up against the theoretical limits of what is possible!
LDPC codes are so close to optimal we can hope to do very little better in
this respect.

21.4 Network Codes

One thought that might be going through your mind is that if the recent
success of low-density parity-check codes means we can reach the theoretical
limits in practice, is coding research essentially over? This is not at all a
strange idea. It comes up as a point of discussion at scientific conferences,
and certainly it is possible for scientific subfields to grow so mature that there
seem to be few good problems left.

I am happy to report that coding theory is far from dead. There are many
areas still wide open, and many fundamental questions left to resolve. Here I
will describe one amazing area that is quite young and is currently the focus
of tremendous energy.

For the next decade, a key area of research will revolve around what is
known as network coding. Network coding has the potential to transform the
underlying communication infrastructure, but it is too early to tell if the idea
will prove itself in the real world, or simply be a mathematical curiosity.

214 Michael Mitzenmacher

To understand the importance of network coding, it is important to un-
derstand the way networks have behaved over the last few decades. Computer
networks, and in particular the Internet, have developed using an architecture
based on routers. If I am sending a file from one side of the country to the
other, the data is broken into small chunks, called packets, and the packets
are passed through a series of specialized machines, called routers, that try
to move the packets to the end destination. While a router could, conceiv-
ably, take the data in the packets and examine, change, or reorganize them
in various ways, the Internet was designed so that all a router had to do is
look at where the packet is going, and pass it on to the next hop on its route.
This step is called forwarding the packet. By making the job of the routers
incredibly simple, companies have been able to make them incredibly fast,
increasing the speed of the network and making it possible to download Web
pages, movies, or academic papers at amazing speeds.

The implication of this design for coding was clear: if you wanted to use
a code to protect your data, the encoding should be done at the machine
sending the data, called the source, before the packets were put on the network.
Decoding should be done at the destination, after the packets are taken off
the network. The routers would be uninvolved, so they could concentrate on
their job, passing on the data.

Currently, this network design principle is being reexamined. Scientists
and the people who run networks have been considering whether routers can
do more than simply route. For example, it would be nice if routers could find
and remove harmful traffic, such as viruses and worms, as soon as possible. Or
perhaps routers could monitor traffic and record statistics that could be used
for billing customers. The reason for this change in mindset has to do with
how the Internet has developed and with changes in technology. As issues like
hacking attacks and e-commerce have moved to the forefront, there has been
a push to think about what more the network can do. And as routers have
grown in speed and sophistication, it becomes natural to question whether
in the future they should be designed to do more, instead of just forwarding
packets even faster.

Once you lose the mindset that all the router should do is forward packets,
all sorts of questions arise. In the context of coding, we might ask if the
routers can usefully be involved with coding, or if coding can somehow help the
routers. These ideas represent a fundamental shift from the previous paradigm
where encoding is done only at the source and decoding only at the receiver.
Once people started asking these questions, interesting and innovative results
started to arise, leading to the new field of network coding.

What sort of coding could you do on a network? There is a nice prototypi-
cal example, given pictorially in Fig. 21.5. To explain the example, it helps to
start by thinking about the connections as pipes, carrying commodities like
water and oil. Suppose that I control the supplies of oil and water, located at
S, and I want to ship water and oil along the connections shown, which are
my pipes. I can send one gallon per minute of either on any pipe, but I can’t

21 Codes – Protecting Data Against Errors and Loss 215

Fig. 21.5. Network coding in action. The left-hand side is the original network.
The middle shows what happens if you just use forwarding; there is a bottleneck
from V to W , slowing things down. I can get both blocks to X or to Y , but not to
both simultaneously. The right-hand side demonstrates network coding. I avoid the
bottleneck by sending the XOR of M1 and M2 to both X and Y by way of W

send both water and oil on the same pipe at the same time. After all, oil and
water do not mix! Can I get two gallons of water and oil per minute flowing
at each of the final destinations X and Y ?

Obviously, the answer is no. The problem is that I can only get two gallons
of stuff per minute out of S in total, so there is no way I can get two gallons
of both oil and water to each of X and Y .

Now suppose that instead of sending oil and water I was sending data –
packets – corresponding to movies that people want to download. The network
would look the same as my original network in Fig. 21.5, but now all my pipes
are really fiber-optic cables, and I can carry 10 Megabits per second along
each cable. Can I get both movies to both final destinations each at a rate of
10 Megabits per second? Now the oil and water limitation does not necessarily
hold, since I can forward information on multiple links, making copies.

If I just use forwarding, however, it does not seem possible to get both
movies to both X and Y , as shown in the middle of Fig. 21.5. To simplify
things, suppose I just have two message blocks of eight bits, M1 = 00000011
and M2 = 00011110, that need to get to each destination X and Y , without
any interference anywhere along the path. Again, because I can copy data
at intermediate points, the fact that there are just two pipes out of S is not
immediately a problem. The block M2 I send from S to U can be forwarded
to both V and Y , and from V it can be forwarded on to X, as shown in
Fig. 21.5. But even though there are two pipes into X and two pipes into Y ,
it does not seem like I can make effective use of all of them, because of the
bottleneck from V to W . I can send M1 = 00000011 to X by going from S to
T to X, and similarly I can send M2 = 00011110 to Y by going from S to U
to Y . But if I then try to send M1 to Y by way of V , and M2 to X by way

216 Michael Mitzenmacher

of V , the two blocks will meet at V , and one will have to wait for the other
to be sent, slowing down the network.

One way to fix this would just be to speed up the link between V and
W , so that both messages could be sent. If I could send two blocks on that
link at a time, instead of just one, the problem would disappear. Equivalently,
I could build a second link between V and W .

Is there any way around the problem without adding a link between V
and W or speeding up the link that is already there? Amazingly, the answer
is yes! The reason is that, unlike in the case of shipping physical commodities
like oil and water, data can be mixed as well as copied! To see how this
would work, consider the right side of Fig. 21.5. I start sending my data as
before, but now, when M1 and M2 get to V , I take the XOR of the two
blocks and transport that value as a block 00011101 to X and Y through W .
This mixes the data together, but when everything gets to the destinations,
the data can be unmixed just by using XOR again. At X, we take the block
M1 ⊕ M2 = 00011101 and XOR it with M1 = 00000011 to get

M2 = 00011101 ⊕ 00000011 = 00011110,

and at Y we take the block M1 ⊕ M2 = 00011101 and XOR it with M2 =
00011110 to get

M1 = 00011101 ⊕ 00011110 = 00000011.

An XOR here, an XOR there, and the bottleneck disappears! The magic is
that the value M1 ⊕ M2 is useful at both X and Y .

Network coding is naturally much harder than this simple example sug-
gests. In a large network, determining the best ways to mix things together
can require some work! In many cases, we do not yet know what gains are
possible using network coding. But there is a great deal of excitement as
new challenges arise from our new view of how the network might work. Our
understanding of network coding is really just beginning, and its practical
impact, to this point, has been negligible. But there is a great deal of poten-
tial. Perhaps someday most of the data traversing networks will be making
use of some form of network coding, and what seems novel today will become
commonplace.

21.5 Places to Start Looking for More Information

1. There are several relevant pages on Wikipedia, including:
• http://en.wikipedia.org/wiki/Luhn algorithm
• http://en.wikipedia.org/wiki/Checksum
• http://en.wikipedia.org/wiki/Reed-Solomon error correction
• http://en.wikipedia.org/wiki/Cross-interleaved Reed-

Solomon coding
• http://en.wikipedia.org/wiki/Low-density parity-check code

21 Codes – Protecting Data Against Errors and Loss 217

• http://en.wikipedia.org/wiki/Network coding
2. The book Information Theory, Inference, and Learning Algorithms, by

David MacKay, Cambridge University Press, 2003. A version is also avail-
able online at http://www.inference.phy.cam.ac.uk/mackay/itila/
book.html

3. The book Modern Coding Theory, by Tom Richardson and Rüdiger Ur-
banke, Cambridge University Press, 2008.

Acknowledgement

The author is supported by NSF grant CCF-0915922.

Part III

Planning, Coordination and Simulation

Overview

Helmut Alt and Rüdiger Reischuk

Freie Universität Berlin, Berlin, Germany
Universität zu Lübeck, Lübeck, Germany

Strategic thinking and planning are commonly regarded as typically human
capabilities. Ever since computer programs demonstrated that they can beat
chess grand masters, however, one can see that some of these skills can be
successfully managed by machines. On the other hand, some games can be
won with very simple strategies, one must have the right knowledge. In a
chapter in this part of the book we see this demonstrated impressively by the
match game Nim.

In many games, it is important that we don’t allow the enemy to antic-
ipate our moves. A simple strategy – referred to in computer science jargon
as deterministic – can, however, be predicted. This can be avoided if you in-
clude random decisions – without this many games such as rock–paper–scissors
would be quite boring. Many algorithms can be improved or be speeded up
in this way – these are called probabilistic or randomized algorithms. Now we
need to ask ourselves how a computer could toss a coin, given that we would
expect only full precision? The chapter here on random numbers provides an
answer.

A strategic and algorithmic approach makes sense even with everyday
problems, and not just during games. For example, if we wish to disseminate a
message to a broad group of people through phone calls or to many computers
via an electronic network, then we need a good plan in order to achieve this
objective quickly and reliably. We see this in the chapter on broadcasting. In
a further chapter we see a clever approach to determining the winner of an
election.

Some tasks require careful long-term planning. An example is the game
schedule for the Bundesliga, the German soccer league, which requires us to
consider various constraints.

Two chapters in this section deal with simulations, i.e., simulating natural
processes using computers. First we consider a problem from physics. We see
how to calculate the heat distribution in a metal rod or plate using so-called
Gauss–Seidel iteration. In the other chapter we consider a theme from biol-
ogy. We see how one can determine how closely two organisms are related to

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0, c© Springer-Verlag Berlin Heidelberg 2011

222 Helmut Alt and Rüdiger Reischuk

each other from their genetic information (DNA); and we see from mutations,
minimal changes in the genetic heritage, how far apart they are from each
other or from a common ancestor.

The famous mathematician Leonhard Euler posed the Königsberg Bridges
Problem: Can you cross all seven bridges exactly once on a walk and then
return to the starting point? This playful question – by the way, the answer is
“No”! – has important applications, such as in route planning, covered in the
chapter on Eulerian circuits. In vehicle navigation we are now accustomed to
a friendly voice that offers directions or tells us the distance to travel before
the next turn. For a long time natural speech was an unsolved problem for
computers. In this part of the book we see that even pronouncing long numbers
involves considerable computational effort.

Finally, we consider a problem in computer graphics. Draw a circle as
round as possible on a screen, realized using a grid of individual pixels. Strictly
speaking we cannot draw a slanted or curved line, as we could with paper and
pencil. However, a detailed analysis of the problem leads to surprisingly easy
and fast solution algorithms.

22

Broadcasting – How Can I Quickly
Disseminate Information?

Christian Scheideler

Universität Paderborn, Paderborn, Germany

In the Middle Ages, there was no mass media like TV or radio. As most
people were not able to write or read, information was mostly disseminated
on a mouth-to-mouth basis, and since the travel speed of humans was quite
restricted at those times, the spreading of information was mostly bounded
by the speed of horses (though other means like pigeons and smoke or light
signals were also used occasionally). Nowadays, the telephone and other media
like the Internet allow anyone to spread information very quickly around the
world. Let us consider a specific example here.

Steffi has just been given the task to organize a party for her class, and
this at a time when the school holidays have just started! Now, she has to try
to reach all fellow students by phone or email. Unfortunately, Steffi does not
know their email addresses, but she has a list of all 121 students with their
phone numbers which was recently given to every student (and that hopefully
no one has thrown away yet!). Now, Steffi could try to do 120 phone calls,
which would consume a lot of time. Hence, she thinks about an alternative
approach to reach all students as quickly and cheaply as possible.

Strategy 1: Call everybody directly

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 22, c© Springer-Verlag Berlin Heidelberg 2011

224 Christian Scheideler

The first strategy that comes to her mind is the silent post game: she just
calls the first person on the list and asks him or her to call the next one on
the list, who will then call the next one, and so on, until everybody on the
list has been reached.

Strategy 2: Silent post

The advantage of this strategy is that every student only has to make one
call. However, since the calls have to be performed one after the other, a very
long time can go by until all students have been reached. In fact, if just 10%
of the students do not reach the next one on the list within the same day they
were called, it takes at least 12 days until everybody has been informed. Even
worse: if someone does not bother to call the next one on the list, the whole
system will break down! Thus, Steffi thinks about an alternative approach.

Since she is interested in computer science, she recalls a sorting method
that has also been presented in Chap. 3. There, a master uses two helpers to
cut a sorting problem into two smaller sorting problems, who themselves use
two helpers each to cut their sorting problems into even smaller problems,
and so on, until just one element is left. Something similar to that should also
work for the distribution of calls! For example, Steffi could divide the phone
list into two halves and call the first person on each of the two halves. Each
of them will then be asked to cut their list into two further halves and call
the first person on these halves. This is continued until everybody has been
called, i.e., we reach a level in which people are called who just have to take
care of an empty list. In this way, the students can be reached much quicker.

Strategy 3: Partitioning the phone list into sublists

22 Broadcasting 225

Strategy 4: Everybody at list position i calls positions 2i + 1 and 2i + 2

Indeed, Steffi determines that just seven rounds of calls are sufficient to
reach all 120 fellow students. This is much better than 120 rounds of calls!
However, her strategy sounds very technical, so it’s questionable whether the
other students can be made to adhere to the rules without errors. Thus, she
thinks about an alternative strategy.

Suppose that she calls the first two people on the list, Andi and Berthold,
and asks Andi to call the students at positions 3 and 4 while Berthold is asked
to call the students at positions 5 and 6. In general, the rule would be that
everybody at position i in the list will call the students at positions 2i + 1
and 2i + 2 (if they exist). Then the information spreads at the same speed as
in the previous strategy, but the calling rule sounds now much more natural
and easy to understand.

Nevertheless, Steffi is not quite happy with her calling strategy. What if
one of her fellow students does not count right and calls a wrong pair of
students on the list? Moreover, there can still be a couple of students who
just forget or do not bother about calling their pair on the list. In this case,
some students would not be informed, who would then be mad at Steffi!

Therefore, Steffi thinks about a more robust strategy. One possibility
would be that everyone at list position i would call the four students at po-
sitions 2i + 1 to 2i + 4. In this case, all students (except for the first four
on the list who will directly be called by Steffi) will be called by exactly two
students in the ideal case. Thus, as long as for each such pair at most one of
the students is unreliable (by not being reachable or forgetting to make the
call), all of the reliable students will still be informed. Intuitively, this can
be argued as follows: If one can select a caller for each student who works
reliably, then everybody who is reliable has a reliable call chain from himself
or herself back to Steffi (see also Fig. 22.1).

Steffi quickly realizes that this strategy can be made even more robust,
so that she can be really sure to reach everybody who is reachable: If every
student at position i calls the students at positions 2i + 1 to 2i + 2r for some

226 Christian Scheideler

Fig. 22.1. Chain of reliable students for Alex, if the positions 2i + 1 to 2i + 4 are
called

fixed r, then every student (except for the first 2r ones who are directly called
by Steffi) will be called by exactly r many students in the ideal case. Hence,
as long as at most r − 1 of these are not calling, all reliable students will still
be reached.

Now, we have come to a point where it would be helpful to conduct some
experiments. For a given number x (e.g., 10) of unreliable students, who
are assumed to be randomly distributed over the list, we want to determine
the minimum value of r for which the probability that all reliable students are
reached is still above, say, 90%. In order to determine this r, one can use the
algorithm presented below. This algorithm does not emulate the dissemination
of information (that runs concurrently in reality) but just determines whether
under the given communication rule all reliable students can be reached. For
this it suffices to run the for-loop in line 6 till N/2 since students with larger
list positions will not call any other student. The algorithm is based on an
array A that is defined as follows:

• A: array [1..N] of integers; A[i] counts, for a reliable student at position
i, the number of calls that student would get from other reliable students.
N is the total number of students.

Fig. 22.2. The r students that will call Alex in the ideal case for r = 3

22 Broadcasting 227

• For every reliable student, A[i] is initially set to 0.
• For all unreliable students at position i, A[i] will initially be set to −r (so

that even after r calls there will not be a positive value in A[i]).

Algorithm for r-fold information dissemination

1 procedure Broadcast (r)
2 begin
3 for j := 1 to 2 ∗ r do // Steffi calls students 1 to 2r
4 A[j] := A[j] + 1
5 endfor
6 for i := 1 to N/2 do // Student i calls 2i + 1 to 2i + 2r
7 if A[i] > 0 then // if call has been received
8 for j := 2 ∗ i + 1 to 2 ∗ i + 2 ∗ r do
9 if j ≤ N then A[j] := A[j] + 1

10 endif
11 endfor
12 endif
13 endfor
14 // Did it work?
15 for i := 1 to N do
16 if A[i] = 0 then output “not everybody reached”, stop
17 endif
18 endfor
19 output “everybody reached”
20 end

After all this thinking, Steffi has more and more fun in inventing new
rules. Next, she considers the more challenging case that every student has
a different list of all the other students, so all of her prior strategies are not
applicable any more. Is there still a fast and robust strategy to reach all of
the reliable students if, say, an arbitrary quarter of the students is unreliable?

After some thinking, Steffi has the idea that she, like everybody else who
is called the first time, just randomly picks r students on the list and calls
them (see Strategy 5).

If Steffi starts with this strategy, then she will certainly inform r students
who have not already been called (if all of them are reachable). In the ideal
case, all of them are reachable and reliable, so each of them will call r other
students. Hence, at best, r2 students will then be informed. In reality, however,
it can happen that a student is called more than once. Since every student
will become active only once (otherwise, the calls would never terminate!),
this harms the dissemination of Steffi’s information. Also, it can happen that
unreliable students are called, which will further lower the dissemination of
the information. Nevertheless, one can verify through experiments that Steffi’s
information will reach all reliable students with high probability if r is suffi-
ciently large (but still reasonably small). In order to determine this r, one can
use the algorithm below. It is based on two arrays A and C that are defined
as follows:

228 Christian Scheideler

Strategy 5: Every student, including Steffi, calls r random students for r = 3

Algorithm for random r-fold information dissemination

1 procedure RandomBroadcast (r)
2 begin
3 for j := 1 to r do // calls from Steffi
4 if A[C[0][j]] = 0 then A[C[0][j]] := 1
5 endif
6 endfor
7 continue := 1 // indicator for newly called students
8 while continue = 1 do
9 continue := 0

10 for i := 1 to N do // search for newly called students
11 if A[i] = 1 then
12 continue := 1; A[i] := 2
13 for j := 1 to r do
14 if A[C[i][j]] = 0 then A[C[i][j]] := 1
15 endif
16 endfor
17 endif
18 endfor
19 endwhile
20 // Did it work?
21 for i := 1 to N do
22 if A[i] = 0 then output “not everybody reached”, stop
23 endif
24 endfor
25 output “everybody reached”
26 end

• A: array [1..N] of integers; initially A[i] = −1 if student i is unreliable and
otherwise A[i] = 0. N is the number of students.

22 Broadcasting 229

• If a reliable student i is called for the first time, then A[i] is set to 1, and
once he or she has finished all calls, A[i] is set to 2.

• C: array [0..N][1..r] of integers; C[i][j] gives the number of the jth student
who is called by student i (Steffi counts here as student 0). C is chosen at
random.

Of course, one can think of many other strategies to disseminate infor-
mation in a group of people, and everybody is encouraged to do so. Which
strategy would you have chosen if you were Steffi?

References

1. http://en.wikipedia.org/wiki/Broadcasting (computing)

This Wikipedia article gives an introduction to broadcasting and to stan-
dard strategies used in this area.

2. C. Diot, W. Dabbous, and J. Crowcroft: Multipoint Communication:
A Survey of Protocols, Functions and Mechanisms. IEEE Journal on Se-
lected Areas in Communications 15(3), pp. 277–290, 1997.
K. Obraczka: Multicast Transport Protocols: A Survey and Taxonomy.
IEEE Communications Magazine 36(1), pp. 94–102, 1998.
M. Hosseini, D.T. Ahmed, S. Shirmohammadi, and N.D. Georganas:
A Survey of Application-Layer Multicast Protocols. IEEE Communica-
tions Surveys & Tutorials 9(3), pp. 58–74, 2007.
These articles are recommended for an introduction to the scientific liter-
ature on broadcasting.

3. R. Karp, S. Shenker, C. Schindelhauer, and B. Vöcking: Randomized Ru-
mor Spreading. In: IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 565–574, 2000.
This article contains advanced broadcasting methods that are more ef-
fective but also more complex than the strategies presented here. It is
recommended to everyone interested in learning about the newest results
in this field and who is not afraid of mathematical formulas.

23

Converting Numbers into English Words

Lothar Schmitz

Universität der Bundeswehr München, Munich, Germany

The problem we are considering here is how to convert numbers into English
words. This is what we naturally do when talking to somebody or when filling
out a cheque. An amount of, say, $ 31,264 would be pronounced as “thirty-one
thousand two hundred and sixty-four dollars.” In contrast, telephone numbers
are often articulated digit by digit. So tel. 31264 would be pronounced as
“telephone three-one-two-six-four.”

To indicate a distance of 1,723 miles to New York, the software of a modern
GPS route guidance system would not use telephone style

one-seven-two-three miles to New York

Rather, we expect its friendly voice to say (like we do)

one thousand seven hundred and twenty-three miles to New York

A route guidance system for outer space would have to be able to pro-
nounce very large numbers. For example, 12,345,678,987,654,321 would have
to be spoken as

twelve quadrillion
three hundred and forty-five trillion
six hundred and seventy-eight billion
nine hundred and eighty-seven million
six hundred and fifty-four thousand
three hundred and twenty-one

In principle, we all can do that (given the names of very large cardinals).
But how would a computer program solve this problem? Here, the details will
probably turn out to be tricky! We start by precisely specifying the problem
to be solved.

Problem: Given a natural number x satisfying 1 ≤ x < 1027 generate the
English wording for x. For simplicity, we assume that numbers of this size can
be represented in the programming language we are using and that comparison

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 23, c© Springer-Verlag Berlin Heidelberg 2011

232 Lothar Schmitz

operators as well as basic arithmetic operations like addition, subtraction,
multiplication and integer division are available for these numbers.

Stepwise Development of an Algorithm

The simplest method would be to store for each number its associated English
wording and to retrieve the wordings on demand. Because of its enormous
storage requirements this approach is not viable. Note that memorizing such
an amount of data would overstrain our human brains as well. Instead, we
systematically generate number wordings each time we need them. Obviously,
this allows us to keep far less data in our brains.

Now let us try to become aware of and explicitly describe the method we
are unconsciously applying ourselves when generating number wordings! How
does that method work?

Usually, large numbers are separated by commas into groups of three dig-
its, starting with the three last digits – those with the lowest weight. This
indicates how our mental processing works: We first split large numerals into
groups of three digits each. For the last example this gives:

ones: 321
thousands: 654
millions: 987
billions: 678
trillions: 345
quadrillions: 12

We observe that each group denotes an integer between 0 and 999. The left-
most group may have fewer than three digits (but at least one digit).

Now the groups are processed from left to right. For each group first the
wording of its associated number (an integer between 0 and 999) is gener-
ated. To this an indication of the group’s weight is attached: “quadrillions,”
“trillions,” “billions,” etc. A weight indication for ones is simply left out.

When generating the wording of a number between 0 and 999 we process
the digits from left to right, i.e., in decreasing weight order: hundreds, tens,
and ones. These weights independently may occur or not. Hundreds are joined
to the following digits (if any) with an “and.” Likewise, tens and following ones
are joined with a hyphen. There are a number of special cases like “twelve” and
“seventeen”, where tens and ones are merged into one word. More subtleties
will turn up later in the program development.

Splitting Numbers into Three-Digit Groups . . .

In order to split a number into three-digit groups, we repeatedly divide the
number by 1000 and thus each time obtain the next three-digit group. Step 1

23 Converting Numbers into English Words 233

below additionally computes the number i of three-digit groups contained in
the given number.

Step 1: Splits number into three-digit groups. The three-digit groups are stored
in array group: the group with weight 1 in group[0], the group with weight 1,000 in
group[1], the group with weight 1,000,000 in group[2], and so on. Variable i records
the number of three-digit groups found so far.

1 i := 0 // initially no group found
2 while number ≥ 0 do
3 group[i] := number mod 1000 // remainder and . . .
4 number := number/1000 // quotient when dividing by 1000
5 i := i + 1 // one more group found
6 endwhile

. . . and Generating the English Words

In Step 2 below, the more complex parts are deferred to the auxiliary func-
tions generateGroup and generateWeight, which compute the English
wording of a three-digit group and its weight, respectively.

Step 2: Generating the English words. Indices in array group range from 0 to i − 1,
for the variable i computed in Step 1. The index of the leftmost group (i.e. the
one to be translated first) is i − 1. Variable text records the English number text
generated so far. The & operator joins (“concatenates”) two pieces of text into one
piece.

1 text := ”” // initially text is empty
2 i := i − 1 // index of the leftmost group
3 while i ≥ 0 do
4 text := text & generateGroup(group[i]) // generate words . . .
5 text := text & generateWeight(i)

// . . . for group and its weight
6 i := i − 1 // on to the next group
7 endwhile

After executing both Step 1 and Step 2 in order, variable text contains
the English wording of the given number, as required!

Function generateGroup

If a three-digit group denotes the value 0, it does not contribute to the English
wording of the number. This is demonstrated by an example: The number
1,000,111 is spoken “one million one hundred and eleven.” The middle group
000 denoting the value 0 indeed does not show in the generated text.

Three-digit groups denoting values greater than 0 are split into three digits:
digit h with weight 100, digit t with weight 10, and o with weight 1.

Here, we cannot proceed without knowing the English names of the Arabic
digits and a few other names that are used to systematically build up the

234 Lothar Schmitz

English numbers. Since numbers less than 20 are not built as regularly as
numbers beyond 19, we simply store the full names of numbers less than 20
in an array lessThan20 of strings. Likewise, we store the names of multiples
of 10 (between 20 and 90) in an array times10 of strings. This results in:

Declaration of arrays with small numbers (between 1 and 19) and multiples of 10.
For i between 1 and 19 we find the name of i in lessThan20[i]. For j between 2
and 9 the element times10[j] contains the name of j · 10.

1 lessThan20: array [0..19] of string :=
2 [””, ”one”, ”two”, ”three”, ”four”, . . . , ”eighteen”, ”nineteen”]
3 times10: array [2..9] of string :=
4 [”twenty”, ”thirty”, ”forty”, . . . , ”eighty”, ”ninety”]

We are now prepared to define the core function generateGroup, which
generates the English wording of a number between 0 and 999. If (part of)
a number has value 0, its generated text will be empty. The text will be
built up in the string variable words, which initially is empty. First, digit h is
translated, then the rest r of the number. If r < 20, the translation is taken
from array lessThan20[r]. Otherwise, r is split into the two digits, t and o,
which are translated into words using the arrays times10 and lessThan20,
respectively. Non-empty hundreds and rests are joined with the word “and”.
Likewise, non-empty translations of t and o are joined with a hyphen. Keep
in mind, that practically all number components may be missing. Note how
spaces separating words are inserted into the text.

Translate a number between 0 and 999 into English text.

1 function generateGroup(number)
2 h := number/100
3 r := number mod 100
4 t := r/10
5 o := r mod 10
6 words := ””
7 begin
8 if h > 0 then words := words & lessThan20[h] & ”hundred ” endif
9 if h > 0 and r > 0 then words := words & ”and ” endif

10 if r < 20 then
// for r = 0 this works because of lessThan20[0] = ””

11 words := words & lessThan20[r]
12 else
13 if t > 0 then words := words & times10[t]
14 if t > 0 and o > 0 then words := words & ”-”
15 if o > 0 then words := words & lessThan20[o]
16 endif
17 return words
18 end

23 Converting Numbers into English Words 235

Function generateWeight

The English names of the weights, like the names of Arabic digits, must simply
be known. For this purpose we introduce an array weight of strings. Recall
that a weight of 1 is “not spoken.”

Declaration of array weight .

1 weight : array [1..8] of string :=
2 [””, ”thousand”, ”million”, ”billion”, ”trillion”,
3 ”quadrillion”, ”quintillion”, ”sextillion”, ”septillion”]

Compared to other languages, English allows the text of numbers to be gen-
erated very systematically, almost without grammatical irregularities. One
exception is that if the last part is less than one hundred it is joined to the
preceding text with an “and” even if there are no preceding hundreds. For
example, 4,000,001 is pronounced as “four million and one” and 5,004,003 as
“five million four thousand and three.”

Function generateWeight below takes all this into account and also
inserts blanks to properly separate the wordings of weights and three-digit
groups from each other. If you want to change any of these features, function
generateWeight is the place for modifications.

Generate the weight wording for the ith group. Ensure that all words are separated

by blanks.

1 function generateWeight(i)
2 words := ””
3 begin
4 if group[i] > 0 then
5 words := ” ” & weight [i] & ” ”
6 endif
7 if i = 1 and group[0] < 100 and group[0] > 0 then
8 words := words & ”and”
9 endif

10 return words
11 end

Lessons Learned

We now understand how to program the speech output for a GPS route guid-
ance system. Since we have tried to model our algorithm using our own,
intuitive approach we now also better understand the way humans generate
English number texts.

236 Lothar Schmitz

It is surprising how little we have to know “by heart” in order to be able
to generate a multitude of English numbers. All primitive names “known
to” the algorithm are stored in the arrays lessThan20, times10, and weight .
A total of 36 short strings suffices for generating almost 1027 English number
names – more than we can use in our whole life (100 years have only about
3,153,600,000 seconds)!

And it goes on like this: In order to increase the range of numbers that can
be generated by a factor of 1,000 you need to extend the weight array by only
one more string entry. You can continue this way as long as you find correct
weight names (many are listed on the web site http://home.hetnet.nl/∼

vanadovv/BignumbyN.html).
For other languages, say French or German, that also use a positional num-

ber system, number names can be generated “in principle” in the same way.
As a consequence, we probably can adapt our algorithm to these languages
rather easily. Actually, the original version of our algorithm was written for
German numbers. More about that below!

Adaptability to changing requirements is an important property of mod-
ern software – for our algorithm obvious modifications would be to extend
the number range or to produce numbers in other natural languages as indi-
cated above. Often, this is accomplished by storing data that will probably be
changed in some data structure. For our algorithm we have achieved adapt-
ability by storing all name primitives in the three arrays lessThan20, times10,
and weight .

What to Read and Try out for Yourself

1. The Wiktionary page http://en.wiktionary.org/wiki/Appendix:
Numbers

Here, you can learn interesting facts about number representation systems,
e.g., what names there are for very large numbers. Among other things,
we learn that millions and billions are followed by trillions, quadrillions
and quintillions, and that a “googol” corresponds to the number 10100,
that is, a 1 followed by 100 zeroes!

2. Richard Bird. Introduction to Functional Programming Using Haskell.
Prentice-Hall, 1998.
In Sect. 5.1 of this textbook, a Haskell program is developed in detail that
allows you to generate English numbers smaller than one million.

3. Write a “real program.”
If you try to code the algorithm in your favorite programming language, in
order to obtain an executable program, you will probably find very soon
that the finite representations typically used for natural numbers (int,
integer, long or something similar) are not suitable for storing the big
numbers we are discussing here. Actually, it is much better to store decimal

23 Converting Numbers into English Words 237

constants like 12345678987654321 as strings (i.e., “12345678987654321”)
in the first place. In the algorithm, arithmetic operations like number
mod 1000 and number/1000 are only used to access and delete the last
three-digit group, respectively.

4. Processing even larger numbers.
As already indicated this algorithm can easily be adapted to handle larger
numbers. You only have to extend the array weight accordingly. If you
want your program to be able to handle novemdecillions (1060), you have
to add a dozen strings. Other simple extensions are to include zero and
negative numbers.

5. Speaking other languages.
It takes more effort to adapt the program to another natural language:
Obviously, all the primitive names (i.e., the contents of the three arrays
lessThan20, times10, and weight) have to be replaced. The trickier part
is to adapt the functions generateGroup and generateWeight to
the grammatical peculiarities of the new target language. For example,
in German numbers the order of the last two digits of every three-digit
group is inverted, like in “one-and-twenty.” Also, the different grammatical
genders of words and different singular and plural forms require different
versions of the weight array to be used. If you buy the German original
of this book (Taschenbuch der Algorithmen, Springer, 2008), you can find
out all the details.

24

Majority – Who Gets Elected Class Rep?

Thomas Erlebach

University of Leicester, Leicester, UK

Adam stares at the pile of papers in front of him. His class has just finished
voting in the election of a class rep. All pupils have written the name of their
preferred candidate on a piece of paper, and Adam has volunteered to count
the votes and determine the result of the election. Prior to the election the
class agreed that a candidate should become class rep only if more than half
the class voted for him or her. If none of the candidates wins the absolute
majority of the votes, the election will have to be repeated. Adam’s task is
now to find out whether any candidate has received more than half of all the
votes.

How should Adam approach this task? He doesn’t think about it much
and decides to use the most straightforward method, namely putting down
the names of all candidates that receive votes on a piece of paper, and keeping
a tally of how many votes each of them has received. He picks up each of the
ballot papers in turn to see which name has been written on it. If the name is
not yet on his sheet, he writes down the name and puts one tally mark next
to it. If the name is already on his sheet, he simply adds an extra tally mark
next to that name. When Adam is done with all the ballot papers, his sheet
looks as follows:

Now Adam looks for the name that has the most tally marks. If the num-
ber of those tally marks is larger than half the class size, that candidate is
the winner of the election. Otherwise, none of the candidates has won the
absolute majority, and the election needs to be repeated. Adam sees that

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 24, c© Springer-Verlag Berlin Heidelberg 2011

240 Thomas Erlebach

Hannah has received the most votes, namely 14. Adam’s class has 27 pupils.
As 14 is more than 13.5 (half the class size), Hannah has won the absolute
majority and is therefore elected class rep. Hannah has already been class
rep in the previous year, and she will surely continue to do well in that role.
All the pupils and the teacher congratulate Hannah on winning the elec-
tion.

Later, Adam starts to think about the counting of the votes once more.
He wonders how good the method that he had used was. For each ballot
paper he had to look through the list of names on his sheet and add a tally
mark or even a new name to the list. Doing this for 27 votes was fine, but
in a larger election that would surely become quite tedious. Just imagine an
election with hundreds or thousands of votes! The list of names could then
also get very long, and consequently it would take quite long to check for the
name on a ballot paper whether it is already in the list or not. Furthermore,
Adam’s method of counting the votes has produced more information than
was required: He didn’t just determine the winner of the election, but he also
counted the votes for each of the other candidates. The latter information
wasn’t really necessary for solving his task. Maybe it would have been possible
to avoid determining unnecessary information and solve the task with less
effort?

Let us remark here that it is also often important for data protection
reasons to avoid unnecessary collection and processing of data and to gen-
erate only the information that is required to solve the task at hand; this
significantly reduces the danger of misuse of personal data. A more detailed
discussion of data protection issues is beyond the scope of this chapter, how-
ever.

Adam has recently become interested in algorithms and knows by now
that there are often methods that are much faster than the most obvious
method for solving a task. Therefore, he decides to investigate this further
and find out whether there is a faster method for checking absolute majority
in an election. Together with Laura, who is also interested in algorithms,
Adam searches through various books on algorithms to see if they can find
out something about the majority problem.

Majority Algorithm

Laura and Adam indeed find information about the majority problem, i.e., the
problem of determining from among N given elements the majority element
(the element that occurs more than N/2 times, if it exists). They come across
the description of the following algorithm.

24 Majority – Who Gets Elected Class Rep? 241

Majority Algorithm

1 Use a stack of elements that is initially empty.
2 Phase 1: Process one by one each of the N given elements and execute for

each element X the following:
3 If the stack is empty, put X on top of the stack.
4 Otherwise compare X with the top element of the stack. If X and that

element are identical, put X on top of the stack; if the two elements
differ, remove the top element from the stack.

5 If the stack is empty, report that there is no majority element.
6 Phase 2: Otherwise take the top element Y of the stack and count how often

Y occurs among all N given elements. If Y occurs more than N/2 times,
output Y as answer. If Y does not occur more than N/2 times, report that
there is no majority element.

Laura and Adam are surprised that this should work. That algorithm
would indeed significantly simplify the process of determining the winner in
a large election: When processing a ballot paper, the name on the ballot
paper would only have to be compared with a single other name, namely the
name of the ballot paper on top of the stack. In the end one would have
to go through all the ballot papers a second time to count how often the
name determined in Phase 1 occurs, but that wouldn’t be too time-consuming
either. The algorithm appears very interesting, but Laura and Adam still
doubt whether it really works correctly. It seems that at the end of Phase 1 the
top of the stack might contain an arbitrary element that happened to occur
a couple of times among the last elements that were processed in Phase 1.
A completely different element could then be the majority element. Laura
and Adam are still doubtful and decide to first try out how the algorithm
processes a few sample inputs. For example, they consider an input consisting
of the following N = 7 elements (for the sake of simplicity, we use capital
letters to denote elements): B, B, A, A, C, A, A. The algorithm executes
Phase 1 as shown in the following table. Each line of the table represents one
step of the algorithm, and the current elements in the stack are specified in
each line by listing them in the order from the bottom to the top of the stack:

Stack Considered element Action
empty B put B on the stack
B B put B on the stack
B, B A remove B from the stack
B A remove B from the stack
empty C put C on the stack
C A remove C from the stack
empty A put A on the stack
A

242 Thomas Erlebach

Indeed, in the end there is an A at the top of the stack. In Phase 2 the
algorithm counts how often A occurs among the given elements. Since A occurs
four times among the N = 7 elements B, B, A, A, C, A, A, the algorithm
correctly recognizes and outputs A as majority element. Thus, the algorithm
has worked correctly for this example. One also notices that in each step the
elements on the stack are all identical; actually this has to be the case because
the algorithm puts an element on the stack only if the stack is empty or the
element is identical to the element at the top of the stack.

How does the algorithm behave if the input does not contain a majority
element, for example, if the input is A, B, C, C? Here, C occurs twice among
the N = 4 elements, but a majority element would have to occur strictly more
than N/2 times. Phase 1 of the algorithm would proceed as follows:

Stack Considered element Action
empty A put A on the stack
A B remove A from the stack
empty C put C on the stack
C C put C on the stack
C, C

This time we have a C at the top of the stack when Phase 1 ends. This
shows that Phase 2 of the algorithm is really necessary. In Phase 2 the al-
gorithm counts how often C occurs in the input. Since C occurs only twice,
the algorithm reaches the correct conclusion that the input does not contain
a majority element.

How does the algorithm deal with an input of the form A, A, A, B, B,
in which an element different from the majority element occurs several times
near the end of the input? Even this does not fool the algorithm:

Stack Considered element Action
empty A put A on the stack
A A put A on the stack
A, A A put A on the stack
A, A, A B remove A from the stack
A, A B remove A from the stack
A

At the end there is an A at the top of the stack, so the algorithm finds the
correct majority element once again. Somehow the algorithm seems to always
produce the correct output, although Laura and Adam still don’t understand
completely why it actually works. They take another look at the algorithms
book. There they find a proof for the correctness of the algorithm. At first the
proof seems quite complicated and difficult to comprehend, but Laura and
Adam go through it several times and help each other by explaining the parts
of the proof that they so far understand. Finally, they are convinced that the
algorithm always works correctly.

24 Majority – Who Gets Elected Class Rep? 243

Correctness of the Majority Algorithm

The proof of correctness of the majority algorithm can be summarized as
follows: If the algorithm outputs an element X, then that element must indeed
be the majority element, because the algorithm has verified in Phase 2 that X
occurs more than N/2 times. Thus, the only case in which the algorithm could
possibly go wrong is when the input contains a majority element X but the
algorithm wrongly reports that the input does not contain a majority element.
This can only happen if at the end of Phase 1 the stack is empty or an element
different from X is at the top of the stack. The following considerations show
that this is impossible.

Consider an arbitrary input with N elements, among which more than
N/2 elements are identical to X. Assume that at the end of Phase 1 there
is no X at the top of the stack. As at any time all elements of the stack are
identical, this means that at the end of Phase 1 there is not a single X in the
stack. Therefore, there are only the following two possibilities for what could
have happened to each X in the input:

1. When the X was processed, the stack contained one or several elements
different from X. The algorithm did not put X on the stack, but removed
an element Y from the stack.

2. When the X was processed, the stack was empty or contained elements
identical to X. Therefore, the X was put on the stack. Since there is no
X in the stack at the end of Phase 1, there must have been an element Z
that came after the X and caused the X to be removed from the stack.

Based on these considerations, each element X can be assigned to an element
different from X: In the first case X is assigned to the respective element Y,
and in the second case to the respective element Z. In addition, one can see
that no two elements X are assigned to the same element different from X.
From this we can deduce that there were at least as many elements differ-
ent from X as there were elements identical to X. Since there are only N
elements in total, this contradicts the assumption that the input contains
more than N/2 elements identical to X. Therefore, it is impossible that X
is the majority element but there is no X at the top of the stack at the
end of Phase 1. Consequently, there must be an X at the top of the stack
when Phase 1 ends, and the algorithm correctly recognizes X as majority
element.

How Many Comparisons Are Necessary?

It is also interesting to ask how many comparisons between elements a ma-
jority algorithm needs to make in order to solve the problem. Here, the term
‘comparison’ refers to the operation of checking whether two elements are
identical or not. The majority algorithm described above performs at most

244 Thomas Erlebach

N − 1 comparisons in Phase 1: The first element is put on the stack without
a comparison, and when each of the remaining elements is processed, that
element can be compared only to the one element that is at the top of the
stack at that time. Phase 2 can also be carried out with at most N − 1 com-
parisons. Altogether the algorithm makes at most 2N − 2 comparisons if the
input consists of N elements.

The natural question now is, Can we do better, i.e., are fewer than 2N − 2
comparisons sufficient to solve the problem? The answer is yes, because the
following variation of the majority algorithm never needs more than �3N/2� −2
comparisons. (The notation �.� means that the value gets rounded up to the
next integer; for example, for N = 5 we have �3N/2� = �15/2� = �7.5� = 8,
and for N = 6 we have �3N/2� = �18/2� = �9� = 9.)

Refined Majority Algorithm

1 Use two stacks of elements that are initially empty.
2 Phase 1: Process one by one each of the N given elements and execute for

each element X the following:
3 If Stack 2 is not empty and X is identical to the element at the top of

Stack 2, then put X on Stack 1.
4 Otherwise put X on Stack 2 and, if Stack 1 is not empty, remove the

top element of Stack 1 and put it on Stack 2.
5 Assume that at the end of Phase 1, the top element of Stack 2 is a Y.
6 Phase 2: While Stack 2 is not empty, repeat the following operations:
7 Compare the element at the top of Stack 2 with Y.
8 If the top element of Stack 2 is identical to Y, remove two elements from

the top of Stack 2. (If Stack 2 contains only a single element, remove it
from Stack 2 and put it on Stack 1.)

9 Otherwise (i.e., if the top element of Stack 2 is different from Y) remove
the top element from Stack 1 and the top element from Stack 2. (If
Stack 1 was already empty and we can’t remove an element from Stack 1,
terminate and report that there is no majority element.)

10 If Stack 1 is not empty, output Y as majority element. Otherwise report
that there is no majority element.

We see that even the description of the individual steps of the refined majority
algorithm is rather complicated. It is not only difficult to become convinced
that the algorithm is correct, it is also a challenge to work through the steps
of the algorithm correctly for an example input. To better understand the
refined majority algorithm, let us first consider the input

B, B, A, A, C, D, A, A, A

and see how the algorithm executes Phase 1 (in each line, the contents of the
two stacks are listed in the order from bottom to top):

24 Majority – Who Gets Elected Class Rep? 245

Stack 1 Stack 2 Considered Action
element

empty empty B put B on Stack 2
empty B B put B on Stack 1
B B A put A on Stack 2,

remove one B from Stack 1
and put it on Stack 2

empty B,A,B A put A on Stack 2
empty B,A,B,A C put C on Stack 2
empty B,A,B,A,C D put D on Stack 2
empty B,A,B,A,C,D A put A on Stack 2
empty B,A,B,A,C,D,A A put A on Stack 1
A B,A,B,A,C,D,A A put A on Stack 1
A,A B,A,B,A,C,D,A

Indeed, the majority element A is at the top of Stack 2 when Phase 1 ends.
Phase 2 now executes as follows:

Stack 1 Stack 2 Action

A,A B,A,B,A,C,D,A The element at the top of Stack 2 is
identical to A (this must be the case,
because A was chosen to be the ele-
ment that was at the top of Stack 2
when Phase 1 ended), so remove the
two elements (D,A) from Stack 2

A,A B,A,B,A,C The element C at the top of Stack 2
is different from A, so remove one el-
ement from Stack 2 and one element
from Stack 1

A B,A,B,A The element at the top of Stack 2 is
identical to A, so remove the two ele-
ments (B,A) from Stack 2

A B,A The element at the top of Stack 2 is
identical to A, so remove the two ele-
ments (B,A) from Stack 2

A empty

Now Stack 2 is empty and Phase 2 ends. Since Stack 1 is not empty, the
algorithm correctly outputs A as the majority element. We also see that the
algorithm has made only four comparisons in Phase 2. In the first of the
four comparisons the result of the comparison was already clear in advance
(as explained by the remark in brackets), so the number of comparisons that
actually need to be performed in Phase 2 is only three.

Let us briefly sketch the analysis that shows that the refined majority
algorithm is correct. Essentially, the role of the stack in the first majority

246 Thomas Erlebach

algorithm is now performed by Stack 1 together with the top element of
Stack 2. Furthermore, the elements in Stack 1 are identical at any time (and
are also identical to the top element of Stack 2). Besides, it can never happen
that two identical elements are placed in Stack 2 directly next to each other
(i.e., one directly on top of the other). This implies that the element Y that is
at the top of Stack 2 at the end of Phase 1 is the only possible candidate for a
majority element. Each iteration of Phase 2 then removes two elements, one of
which is identical to Y and one of which is different from Y. It follows that Y is
the majority element if and only if Stack 1 is not empty at the end of Phase 2
(and thus still contains at least one Y). This establishes the correctness of the
refined majority algorithm. Regarding the number of comparisons, we find
that the algorithm makes at most N − 1 comparisons in Phase 1 and at most
�N/2� − 1 comparisons in Phase 2 (the latter holds because in each iteration
of Phase 2 two elements are removed, but only one comparison is made; this
can also be seen in the example above). This means that the algorithm needs
at most �3N/2� − 2 comparisons to identify the majority element (or to detect
that there is none).

Can we do even better than that? This time the answer is negative. One
can prove that every algorithm requires at least �3N/2� − 2 comparisons on
some input with N elements. Consequently, it is impossible to beat the refined
majority algorithm with respect to the number of comparisons that it needs
in the worst case.

Applications and Extensions

The majority problem occurs not only in the context of elections, but also
in various other applications. For example, consider safety-critical computa-
tions where a correct result is extremely important. Such computations can
be carried out by N different processors in parallel, and the majority ele-
ment of the N solutions computed by the different processors is then taken
as the result. This method ensures that as long as less than half of the pro-
cessors are faulty and produce a wrong solution, one still obtains the correct
result.

Among N given elements, an element is the majority element if it occurs
more than N/2 times. As a generalization of this concept, one can consider
frequent elements, i.e., elements that occur more than N/K times, where K is
a fixed number. For example, for K = 10 these are elements that occur with
a frequency larger than 10%. Identifying frequent elements is a very relevant
problem in the context of monitoring Internet traffic, because one wants to
know which applications or users produce the largest amount of traffic. As
data packets need to be processed extremely quickly, one needs an algorithm
that can handle each new packet in the shortest possible time. The majority
algorithm can be generalized to solve such problems.

24 Majority – Who Gets Elected Class Rep? 247

What Can We Learn from the Solutions to the Majority
Problem?

• The most straightforward solution to a problem is not always the fastest
one.

• Often there are clever algorithms that can solve the same task with much
less effort.

• It is not always easy to see whether an algorithm produces the correct
result for every possible input.

• Sometimes one can prove that for a problem it is impossible to find an
algorithm that is better than the one we already have.

Further Reading

1. Chapter 1 (Binary Search)

Binary search is a method that allows us to search for a value in a sorted array
very quickly. For an election one could store the names of all candidates in a
sorted array, together with a counter for each candidate that is initially zero.
When processing a vote, one could then find the candidate in the array very
quickly and increase the corresponding counter by 1.

2. Chapter 3 (Fast Sorting Algorithms)

Fast algorithms for sorting could be used to quickly rearrange a given list of
candidates into sorted order.

3. Further information on the majority algorithm and its extensions can be found
in original articles that were published in journals and conference proceedings.
Both the refined majority algorithm and the proof that every majority algorithm
needs at least �3N/2� − 2 comparisons on some inputs were presented in the
following article:

M.J. Fischer, S.L. Salzberg: Finding a majority among N votes. Journal
of Algorithms 3(4):375–379, 1982.

The extensions of the majority algorithm to the problem of identifying frequent
elements in a data stream are discussed in the following article:

J. Misra, D. Gries: Finding repeated elements. Science of Computer
Programming 2:143–152, 1982.

Further refinements of the algorithm for identifying frequent elements for the
purpose of analyzing packet streams on the Internet are discussed in this article:

E.D. Demaine, A. López-Ortiz, I. Munro: Frequency estimation of Inter-
net packet streams with limited space. Proceedings of the 10th Annual
Symposium on Algorithms (ESA 2002), LNCS 2461, Springer, 2002,
pp. 348–360.

25

Random Numbers – How Can We Create
Randomness in Computers?

Bruno Müller-Clostermann and Tim Jonischkat

Universität Duisburg-Essen, Essen, Germany

Algorithms are clever procedures to efficiently solve a variety of problems.
In the preceding chapters we learned numerous examples for “normal” al-
gorithms, like binary search, insertion sort, depth-first search in graphs and
finding shortest paths. As a consequence one might assume that algorithms –
despite all their cleverness and efficiency – are stubborn and purely replica-
tive procedures yielding in any case perfect and unique solutions. Seemingly
algorithms have nothing to do with randomness (or chance). But wait! When
applying Quicksort the pivot-element is proposed to be selected randomly.
The One-Time-Pad procedure uses keys that have been randomly chosen. In
Fingerprinting numbers are randomly selected.

Tactical and strategic PC games likewise apply algorithms where random-
ness is highly desirable or even indispensable. Often the computer operates as
an opponent, steering its actions by algorithms that imitate meaningful and
intelligent behaviors. This is well known from interactive games like Sims,
SimCity, the Settlement Game, and World of Warcraft. Under identical situa-
tions the computer is not expected to show identical behaviors, to the contrary
a range of various effects and actions is pleasing. As a consequence, diversity
and stimulation increase.

Generating random numbers or random events by throwing a die (getting
numbers 1, 2, . . . , 6) or a coin (getting heads or tails) is obviously not possi-
ble in a programmed algorithm. On the other hand, can random behavior be
programmed? Is it possible to create randomness by algorithms? The answer
is as follows: Randomness is imitated by algorithms, which generate numbers
that are apparently random. Hence such numbers are often called pseudoran-
dom numbers (although the term random numbers is quite common). Here we
consider well-known and approved procedures to construct random number
generators. There are many fields of application for random numbers. Here
we introduce two examples: A computer game and the so called Monte Carlo
simulation for the determination of surface areas.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 25, c© Springer-Verlag Berlin Heidelberg 2011

250 Bruno Müller-Clostermann and Tim Jonischkat

Fig. 25.1. Rock, paper, scissors (Picture credits: Tim Jonischkat)

Fig. 25.2. Coin: heads or tails; die: 1, 2, . . . , 6; roulette wheel: 0, 1, . . . , 36 (Picture
credits: Lukasz Wolejko-Wolejszo, Toni Lozano)

A Tactical Game: “Rock, Paper, Scissors”

As a simple example for a programmed game we can consider an algorithm
for the popular game “Rock, Paper, Scissors”. The game works like this:
As a player you have to choose one of three options: rock, paper or scissors
(Fig. 25.1). Afterwards the algorithm is executed and also yields one of the
three options. The evaluation of this round follows these rules: Rock beats
scissors, scissors beats paper, paper beats rock. The winner gets one point
and the next round follows.

How shall the algorithm proceed? A permanent alternation between “scis-
sors” and “rock” would be a possible (and boring) tactic that is soon deci-
phered by a human opponent! Obviously the result of the algorithm should
be unforeseeable, like throwing dice, drawing lottery numbers or spinning a
roulette wheel.

A mechanical coupling of an algorithm with dice or a roulette wheel
(Fig. 25.2) would be rather troublesome, in any case such a construction would
be neither efficient nor clever. Hence an algorithmic procedure is needed that
chooses seemingly at random among the three possibilities rock, paper and
scissors. In other words, we need a random number generator.

Means for the Generation of Random Numbers: Modular
Arithmetic

Before we have a closer look at the computation of random numbers, we
need the concept of modular arithmetic. The modulo-function (also called
mod-function) determines the remainder that is left over under division of

25 Random Numbers – How Can We Create Randomness in Computers? 251

two natural numbers. For example consider the division of 27 by 12; since
27 = 2 · 12+3, we obtain the remainder 3. In the case of two arbitrary natural
numbers x and m, we may divide x through m and find as result x = a · m+r,
where a is called quotient and r is called the remainder. The remainder r is a
natural number from the interval {0, 1, . . . , m − 1}.

Examples for Modular Arithmetic

• 9 mod 8 = 1
• 16 mod 8 = 0
• (9 + 6) mod 12 = 15 mod 12 = 3
• (6 · 2 + 15) mod 12 = 27 mod 12 = 3
• 1143 mod 1000 = 143

In the case of division by 1000 the remainder r is given by the last 3 digits.

Illustration of Modular Arithmetic

Modular arithmetic can be considered like a walk along a circle that carries the
numbers 0, 1, 2, . . . , m − 1. To find out x mod m (the perimeter the remainder
r when dividing x through m) we start at position 0 and make x steps in
clockwise direction. The number of completed revolutions along the circle
equals the quotient a; the position we finally arrive at is the remainder r.

As an example consider the hour hand of a clock in the interval between
January 1st, 0 a.m. and January 2nd, 7 p.m. Obviously a period of 43 hours
has passed, yielding 3 complete revolutions of the hour hand (each revolution
accounting for 12 hours) and another 7 steps that move the hour hand to
7 hours. Since a clock displays hours modulo 12, this number 7 is exactly
the result of r = 43 mod 12. In modular arithmetic addition corresponds to
movement in clockwise direction. We consider two examples (cf. Fig. 25.3).

If we start at position x = 9 and add the number 6, we have to take 6 steps
and arrive at position 3; e.g., it holds that (9 + 6) mod 12 = 3 (cf. Fig. 25.3,
left).

Fig. 25.3. Two examples of modular arithmetic: 9 mod 6 = 3 and (6 · 2)mod12 = 0

252 Bruno Müller-Clostermann and Tim Jonischkat

Multiplying a number x with a factor a can be resolved into a series of
additions; if we start at position x = 2 and multiply by a = 6, we have to add
5 times the value 2, i.e., we have to take 5 two-steps in clockwise direction,
leading us to position 0; e.g., it holds that (6 · 2) mod 12 = 0 (cf. Fig. 25.3,
right).

In computer science modular arithmetic may be seen as the “natural”
arithmetic because a computer’s storage is always limited (finite); moreover,
storage cells are also finite and can only store numbers up to a certain size.

An Algorithm for the Generation of Pseudorandom
Numbers

The algorithm as given below employs modular arithmetic and provides ran-
dom numbers from the interval {0, 1, . . . , m − 1}. The basic principle is quite
simple: Take a starting value x0, the factor a, the constant c, and the modulus
m; compute the remainder r as r = (a · x0 + c) mod m. We set this value to
be the first random number: x1 = r. Now we use x1 to compute the second
random number x2 = (a · x1 + c) mod m; proceeding with x2 in the same way,
we obtain a sequence of random numbers x1, x2, x3,

This procedure can be written down more precisely as follows:

x1 := (a · x0 + c) mod m,

x2 := (a · x1 + c) mod m,

x3 := (a · x2 + c) mod m,

x4 := (a · x3 + c) mod m,

etc.

In general notation we achieve an iterative procedure as follows:

xi+1 := (a · xi + c) mod m, i = 0, 1, 2,

To achieve a concrete random number generator, numerical values for fac-
tor a, constant c, and modulus m must be supplied; furthermore we need a
starting value x0, which is sometimes called the seed of the generator.

Setting a = 5, c = 1, m = 16 and x0 = 1 results in these calculations

x1 := (5 · 1 + 1) mod 16 = 6,

x2 := (5 · 6 + 1) mod 16 = 15,

x3 := (5 · 15 + 1) mod 16 = 12,

x4 := (5 · 12 + 1) mod 16 = 13,

x5 := (5 · 13 + 1) mod 16 = 2,

x6 := (5 · 2 + 1) mod 16 = 11,

25 Random Numbers – How Can We Create Randomness in Computers? 253

x7 := (5 · 11 + 1) mod 16 = 8,

x8 := (5 · 8 + 1) mod 16 = 9,

etc.

Obviously this sequence is completely determined by the prescribed cal-
culations. That is, for a given starting value x0 we will always get the same,
strictly defined and reproducible elements; such a behavior is called determin-
istic. By choosing another starting value x0, the entry point into the sequence
can be newly selected for another run of the algorithm.

Periodic Behavior

If we continue the above calculation we see that after 16 steps the sequence
returns to its start value 1, and that each of the 16 possible numbers from
the interval {0, 1, . . . , 15} has occurred exactly once. Computing the next 16
values x16, x17, . . . , x31, the sequence will repeat itself, and we notice a repro-
ducing behavior, here with a period of length 16. When the modulus m is
set to a very large number and furthermore we choose the factor a, and the
constant c precisely, larger periods are achieved. In the ideal case we manage
to reach a full period of length m. Sometimes programming languages provide
a built-in random number generator or provide it through a function library;
the programming language Java offers a full-period generator with parameter
values a = 252149003917, c = 11 and m = 248.

Simulation of True Random Number Generators

Pseudorandom numbers from the interval {0, 1, . . . , m − 1} are basic for many
applications. Examples are the simulation of throwing a coin yielding heads or
tails, throwing a die resulting in one of the values 1, 2, 3, 4, 5 and 6, or spinning
a roulette wheel providing the 37 possibilities 0, 1, . . . , 36.

Let us assume that for each example the random generating devices coin,
die and roulette wheel are fair and do produce the corresponding outcomes
with probabilities 1

2 , 1
6 and 1

37 . To simulate dice throwing we need a procedure
to transform a random number x ∈ {0, 1, . . . , m − 1} in a number z ∈ {0, 1},
where 0 stands for “heads” and 1 for “tails”. An easy procedure could be a
mapping of “small” numbers to the value 0, and of “large” numbers to 1, or
mathematically expressed: z := 0 if x < m

2 , z := 1 if x ≥ m
2 . In the case of

the roulette wheel we could use as transformation procedure z := x mod 37,
and for the die z := x mod 6 + 1.

The Algorithm for Rock, Paper, Scissors

Now, after all, we return to our tactical game. We need an algorithm that
decides randomly (or at least apparently random) between the three prospects:

254 Bruno Müller-Clostermann and Tim Jonischkat

rock, paper and scissors. To this end we use a random number generator that
generates for each round a random number x; by the calculation z := x mod 3
we obtain a new number that can just provide one of the values 0, 1 and 2.
Dependent on the actual value of z the algorithm chooses rock (0), paper (1)
or scissors (2). This algorithm has been implemented as a small program, the
rock-paper-scissors-applet.

A selection of four different (pseudo) random number generators is avail-
able; the first one is given just as the extreme case of a fixed sequence of
numbers 0, 1 and 2.

1. Deterministic: The fixed sequence of numbers 2, 0, 1, 1, 0, 0, 0, 2, 1, 0, 2
2. RNG-016: a = 5, c = 1, m = 16 and start value x0 = 1 (period is of length

16)
3. RNG-100: a = 81, c = 1, m = 100 and start value x0 = 10 (period is of

length 100)
4. Java Generator: The generator of programming language Java: “java.

util.Random”

The algorithm nextRandomNumber uses the input value x from the inter-
val {0, 1, . . . , m − 1} and the constant parameters a, c and m. With return
the computed value from the interval {0, 1, . . . , m − 1} is passed back. This
value is the next random number following the input number x.

1 procedure nextRandomNumber (x)
2 begin
3 return (a · x + c) mod m
4 end

Fig. 25.4. Scissors cut paper (left), rock is wrapped by paper (right)

Table 25.1. State of game after three rounds: human 2, machine 1

25 Random Numbers – How Can We Create Randomness in Computers? 255

This procedure randomNumberExample(n) is to illustrate the usage of
the procedure nextRandomNumber(x). Firstly parameters a, c and m are
initialized. The start value is set to value 1. Each invocation of procedure
nextRandomNumber(x) changes the value of x to a new value that is
returned and printed out. Additionally the value x mod 3 is also printed
out.

1 procedure randomNumberExample (n)
2 begin
3 a := 5; c := 1; m := 16;
4 x := 1;
5 for i := 1 to n do
6 x := nextRandomNumber(x);
7 print(x);
8 print(x mod 3)
9 endfor

10 end

The generated random numbers are as follows:
xi: 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, . . .
xi modulo 3: 0, 0, 0, 1, 2, 2, 2, 1, 2, 1, . . .

The pictures show two possible outcomes of a round “human” versus “ma-
chine” (Fig. 25.4) and the state of the game after several rounds (Table 25.1).

Figure 25.5 illustrates the working principle of the selected random num-
ber generator (here RNG-016). The current calculation is highlighted, and
furthermore the future values are already visible! Hence, one can forecast the
future decision of the machine (a small cheat).

Fig. 25.5. Algorithm of the machine

256 Bruno Müller-Clostermann and Tim Jonischkat

Monte Carlo Simulation: Determination of Areas Using
“Random Rain”

An important field of application for random numbers is the so called Monte
Carlo simulation, named after the gambling casino in Monte Carlo. Monte
Carlo simulation can be used – for example – to determine the areas of ir-
regular shaped geometric figures by means of “random rain”. The term “ran-
dom rain” describes the situation where many two-dimensional random points
(x, y) are hitting a flat surface like rain drops. A random point on a flat surface
is given as an (x, y)-pair of random coordinates, where x-value and y-value
are random values from the real interval [0, 1]. To this end random values
x ∈ {0, 1, . . . , m − 1} are transformed to real values between 0.0 and 1.0; the
transformation rule is plainly given as x := x/(m − 1).

If an arbitrary area is placed into a unit square, i.e., all edges have length
1.0, and random points are thrown into the square, a fraction will hit the area
whereas the others will miss it. Consider Fig. 25.6 for an example.

An estimate for the area is obtained by counting the hits and calculation
of the term A = (hit count)/(drop count). To achieve a good estimate the
number of drops should be rather large, say many millions or even some bil-
lions of random points must be thrown. Of course, carrying out the algorithm
by hand is out of discussion; as a substitute a programmed algorithm running
on a computer has no problem to drop some million random points into a
square.

As an example for the practical application of the Monte Carlo technique
we consider a technique for the determination of the few first digits of the
famous mathematical constant π = 3.14159 This can be done by throwing
random points (x, y) into the unit circle. We consider a unit square (a square
with side length 1.0 and area 1.0 as well), with an inscribed quadrant of the
unit circle. Since the circle has radius r = 1 its area is A = r2 · π = π and the
area of the quadrant is π

4 .

Fig. 25.6. Two random points (x1, y1) and (x2, y2), a hit and a miss (left); random
rain: Count the number of drops hitting the area (right)

25 Random Numbers – How Can We Create Randomness in Computers? 257

Fig. 25.7. How many points hit the quadrant?

If T is the number of hits in the quadrant and N is the number of hits
in the unit square, we can approximately calculate π ≈ 4 · T

N . The figure
shows 130 random points where 102 points fall into the quadrant, i.e., we
calculate π ≈ 4 · 102

130 ≈ 3.1384. This result is still not very precise, although
with 100,000 or some millions or even one billion points the result should
become significantly better. This procedure is summarized more precisely in
the algorithm RandomRain.

The algorithm RandomRain delivers an estimate for the mathematical con-
stant π. We assume a unit square (side length = 1) with area 1.0.

1 procedure RandomRain (n)
2 begin
3 a := 1103515245; c := 12345; m := 4294967296; // parameters
4 z := 1; hits := 0; // start values
5 for i := 1 to n do
6 z := (a · z + c) mod m;
7 x := z/(m − 1);
8 z := (a · z + c) mod m;
9 y := z/(m − 1);

10 if inCircle(x,y) then
11 hits := hits + 1
12 endif
13 endfor
14 return 4 · hits/n
15 end

Comment : The function inCircle() tests whether the point (x, y) is located
inside the circle area. Therefore it uses the equation x2 + y2 = r2; the point
(x, y) is counted as a hit in the unit circle if x2 + y2 ≤ 1.

258 Bruno Müller-Clostermann and Tim Jonischkat

There are an abundant number of applications of Monte Carlo simula-
tions in engineering and the natural sciences. In computer science the field
of randomized (or probabilistic) algorithms developed out of Monte Carlo
simulation.

Further Reading

1. A starting point for further reading is Wikipedia:
http://en.wikipedia.org/wiki/Pseudorandom number generator

2. Modular arithmetics as used for pseudorandom number generation is es-
sential for other fields within computer science, e.g., for techniques like
Public-Key Cryptography (Chap. 16), Fingerprinting (Chap. 19), the One-
Time Pad (Chap. 15) and Simulated Annealing (Chap. 41).

3. Other fields of application for random numbers are stochastic simulation
programs that are used to investigate the performance of complex systems
like computer networks, mobile systems and Web services.

26

Winning Strategies for a Matchstick Game

Jochen Könemann

University of Waterloo, Waterloo, Canada

I am currently feeling mildly exasperated, and am also somewhat confused.
Last night, I found my brother in a suspiciously cheerful mood – which is in
general not a good sign! Grinning broadly, he tells me of a “very interesting”
new IQ test which he would love me to try. Knowing my brother, my first
instinct is to be very careful as I remember countless previous occasions just
like this that ended up being a set-up. At the same time, however, I am also
too curious to let him walk away, and I say, “Sounds interesting. Tell me more
about it!”

“Great,” he says and his grin widens. He rum-
mages in his pants pocket, only to produce a small
box of matchsticks seconds later. He opens the box,
and out fall 18 matchsticks which now lie in between
the two of us on the table. “Let’s play a game!” he
says, and continues explaining the surprisingly simple
rules. He and I would move in turns. The first player
decides to remove 1, 2 or 3 matchsticks from the table. Now it is the other
player’s turn, and he must take either 1, 2 or 3 of the available matchsticks,
and remove them from the table. The game continues like this, and the player
who takes the last matchstick loses the game.

“All clear?” asks my brother. He always has to show off and make me feel
like the little brother! “Of course!” I say, “After all, the game isn’t all that
complicated”. The suspicious grin on his face broadening yet again he says,
“Good! Let’s get going then, and since it doesn’t really matter, let me start, as
I am the oldest of the two of us.” He promptly removes one of the matchsticks
from the table, and, accordingly, 17 sticks remain.

Great, so I can’t lose in this turn; no matter whether I remove 1, 2 or
3 matchsticks, there will always be at least 14 remaining sticks, and hence
my brother will have to play again. I decide to pick 2 sticks, and it is once
again my brother’s turn with 15 remaining matchsticks on the table. He still
smirks (I wonder why) and grabs two more sticks, which leaves a total of

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 26, c© Springer-Verlag Berlin Heidelberg 2011

260 Jochen Könemann

13 matchsticks on the table. The table below summarizes the current game
situation. The left column shows the number of remaining sticks, and the right
column has the subsequent move.

After my brother’s last move, there is one last matchstick left on the table.
The rules of the game now force me to remove this stick from the table, and
I have then lost! “Well, that was clearly just luck!” I say, and ask for a revenge
game. Unfortunately, my brother wins this game and the following two as well,
and I am starting to get a little frustrated. My brother seems to have an edge
in this game. But how does he do that?

Learning from Small Examples

In order to better understand the game, I consider a few small examples.
I know that I lose the game if it is my turn and there is only a single match-
stick left on the table. But what should I do if there are exactly two sticks
on the table and it is my turn? Well, in this case, the solution is rather
straightforward: I should pick a single stick, which leaves my brother with one
remaining stick, and he has therefore lost the game. This says that I have a
winning strategy whenever two matchsticks remain, and it is my turn in the

26 Winning Strategies for a Matchstick Game 261

game. Given the above argument, it is not difficult to see that I also have a
winning strategy if it is my turn and there are 3 or 4 matchsticks on the table.
In the former case, I remove 2 sticks, and in the latter case, I pick 3. In both
cases, my brother is faced with a single stick lying in front of him, and he will
therefore lose the game.

Let us summarize the insights we gained so far. We now know that a player
has a winning strategy if it is his turn, and if there are 2, 3 or 4 matchsticks
remaining on the table. In either one of these cases, the player can move
strategically, and force the other player to lose the game.

The table below has a column for each of the game situations that we have
analyzed so far. The lower entry in column i (which we denote by GSi) indi-
cates whether the current player has a winning strategy, given that i match-
sticks remain.

i 1 2 3 4
GSi No Yes Yes Yes

So far so good. But what happens if there are 5 matchsticks on the table?
The answer to this question appears to be slightly less obvious in comparison
to the previous cases. It is, however, a game situation that interests me quite
a bit as it was the second to last configuration I faced in the first game
against my brother. Could I have forced him to lose out of this configuration?
Let’s see! The rules of the game force me to remove at least 1 and at most
3 matchsticks from the table. No matter what I do, my brother will have 2, 3
or 4 matchsticks left on the table. But we already know that he has a winning
strategy in each of these situations! Therefore, if my brother plays smartly,
he will force me to lose no matter how I move. As long as the other player
moves strategically, a player cannot win starting from a game configuration
with 5 matchsticks, and thus GS5 = No.

If there are 6 matchsticks remaining on the table, I can take either 1, 2 or
3 sticks which leaves my brother with 3, 4 or 5 sticks. Looking at the table,
I know that my brother has a winning strategy, given that there are 3 or 4
sticks remaining for his move. However, if I leave him 5 sticks, then he can’t
win given that I play cleverly. Therefore, I do have a winning strategy, given
that there are 6 sticks remaining: I just have to take one stick off the table.
Therefore, we have GS6 = Yes.

An Algorithm to Compute a Winning Strategy

It is now easy to extend the example calculations above. For example, assume
that we have already computed GSi for 1 ≤ i ≤ 14, and that we know whether
a player has a winning strategy, given that there are i matchsticks remaining,
whenever i is at most 14. If there are 15 matchsticks remaining, then the
current player needs to pick 1, 2 or 3 sticks off the table, and would leave 12,

262 Jochen Könemann

13 or 14 sticks for the next player. If the other player has a winning strategy
in each of these situations (i.e., GS12 = GS13 = GS14 = Yes), and if he moves
cleverly, then the current player will lose the game; hence, we let GS15 = No
in this case. If, however, if GSj = No for at least one j ∈ {12, 13, 14}, then the
current player can force the other player to lose by picking 15 − j matchsticks,
and hence GS15 = Yes.

We obtain the following algorithm to compute GS1 to GSx:

WinningStrategy(x)

1 GS1 = No, GS2 = Yes, GS3 = Yes
2 i := 3
3 while i < x do
4 i := i + 1
5 if GSi−3 = GSi−2 = GSi−1 = Yes then
6 GSi = No
7 else
8 GSi = Yes
9 endif

10 endwhile

We can now use this algorithm to compute GS1 to GS18. We summarize
the results of this run in the following table. For brevity, we use “N” for “No”
and “Y” for “Yes”.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
GSi N Y Y Y N Y Y Y N Y Y Y N Y Y Y N Y

Wonderful! Now I know that my brother has a winning strategy whenever
he starts the game, and 18 matchsticks remain. But how exactly does he figure
out what number of matchsticks he needs to remove in each move?

Let us recall the first game between me and my brother. In this game, we
start with 18 matchsticks, and my brother has the first move. Looking at the
table, we see that GS18 = Y, and he therefore has a winning strategy. He can
therefore win against me, as long as he makes the right moves. In his first
move, he will have to take 1, 2 or 3 matchsticks off the table. What should
he do? Another look at the table tells us that I have a winning strategy if my
brother leaves me 15 matchsticks. My brother will naturally want to avoid
this, and probably won’t remove three matchsticks. Similarly, he won’t take
2 matchsticks which would leave me with 16 sticks, and the table tells us that
I can win the game from this situation. The sole remaining option for my
brother is to remove 1 matchstick, and that will leave me 17 matchsticks for
my move. According to the table (GS17 = N), I will lose the game from here
if my brother makes no mistake.

“What was it that I did, after my brother removed 1 matchstick in his first
move?” Right! I picked up 2 of the remaining 17 matchsticks, leaving 15 for
my brother. The table tells us that my brother still has a winning strategy,

26 Winning Strategies for a Matchstick Game 263

starting from a configuration with 15 sticks. Furthermore, removing 2 is the
only option for him to maintain his advantage; i.e., GS12 = GS14 = Y, and
GS13 = N. “So, after all this ‘game’ was a set-up and not an IQ-test! My
brother knew exactly what to do in order to make me lose!”

The Running Time of the Algorithm

How many elementary operations (comparisons and assignments) does the
algorithm need in order to compute GSx? The inner while-loop is executed
x − 3 times. Every iteration in turn accesses three previously computed terms
GSi−3, GSi−2 and GSi−1, in order to compute GSi. Therefore, three compar-
isons and two assignments suffice for steps 4–9 of the algorithm, and the total
number of steps needed is

(x − 3) · (3 + 2) + 4 = 5x − 11.

The running time is therefore proportional to the given number of matchsticks.
This is probably not a problem if we play the game in practice with the
matchsticks in front of us on the table. Naturally, we could use a computer to
execute our algorithm, and that would enable us to compute GSx for much
larger numbers x. For example, we could use a computer to determine who
wins starting from x = 9876543210 matchsticks. Even though this number can
be described with 10 digits, the algorithm would need roughly 5 · 9876543210
steps to find an answer; this is already quite a large number!

It would be a lot nicer if the number of steps in our algorithm were propor-
tional to the number of digits needed to write x, instead of being proportional
to the number itself. The number of digits needed to write x depends on the
representation used. Computers typically store numbers in so-called binary
representation, in which x corresponds to a string

akak−1 . . . a0

of 0, 1-bits such that

x =
k∑

i=0

2iai.

The length of the input for our algorithm is then the length k + 1 of the
representation of x, and not the value of x. How large is x with respect to its
representation length k? We clearly have

2�log2 x�+1 ≥ 2log2 x+1 = 2 · x, (26.1)

and we therefore conclude that ai = 0 for all i > �log2 x�. In other words, the
binary representation of x has at most �log2 x� + 1 bits. The largest number
x that can be represented using k + 1 bits is

264 Jochen Könemann

k∑

i=0

2i = 20 + 21 + · · · + 2k.

This is a geometric series, and one can show that its value is exactly 2k+1 − 1
(we provide a reference to an article with further information below). Substi-
tuting k = �log2 x� − 1 we obtain

�log2 x� −1∑

i=0

2i = 2�log2 x� − 1 ≤ 2log2 x − 1 = x − 1, (26.2)

and the binary representation of x therefore needs at least �log2 x� + 1 bits.
The two bounds in (26.1) and (26.2) together imply that the length of the

binary representation of x is in the interval [�log2 x� + 1, �log2 x� + 1]. The
number of operations needed by our algorithm is therefore

5x − 11 ≥ 5 · 2k − 11,

and this is exponential in the length k of the input x. Generally speaking,
we call an algorithm efficient if its running time is bounded by a polynomial
of the length of its input. Algorithms whose running time is bounded by a
polynomial of actual values in the input (like the algorithm in our example)
are called pseudo-polynomial time algorithms.

By the above reasoning, the algorithm WinningStrategy from our ex-
ample is therefore not a truly efficient algorithm; it is a pseudo-polynomial
time algorithm. It seems unlikely that my brother used it to compute his win-
ning strategy in the game against me. Indeed, my brother tells me that it is
easy to prove that we have GSx = Y whenever the remainder of x divided
by 4 is 1. Thus, once I have reached a configuration in which I have a win-
ning strategy, I can determine my move easily: whenever my opponent picks
y matchsticks, I will need to pick 4 − y sticks so that the sum of the sticks
taken by him and by me is always exactly 4.

It is easy to check that this formula is correct for the game played between
me and my brother, and that it explains why my brother did not need a table
or a computer to figure out his moves in his play against me.

Extensions and Background

The matchstick game we discussed in this chapter has numerous extensions.
One popular variant is called Nim and works as follows: the game starts with
several rows of matchsticks. Much like our game, Nim is once again a two-
player game. The two players move in turns. The moving player first picks
one of the remaining rows of matchsticks, and then takes at least one and
arbitrarily many of the remaining sticks in this row. Just like before, the
player who picks the last matchstick loses. The analysis of this game is very

26 Winning Strategies for a Matchstick Game 265

similar to the analysis presented before for the simpler (single-row) version.
In particular, there is also a formula describing the winning strategy for this
game.

The game Nim is quite old, and is generally believed to have its origins
in China (it is quite similar to the Chinese game Tsyanshidzi). The game
appeared first in Europe during the 16th century. Its name Nim was coined
by Charles Bouton, who published a complete analysis of Nim in 1901.

The algorithm WinningStrategy presented here is a relatively sim-
ple example of a method which is commonly known as dynamic program-
ming. This powerful method was developed during the 1940s by the Amer-
ican Richard Bellman, and is mostly used for the solution of more general
optimization problems whose instances can be decomposed into similar but
smaller subproblems. For example, in our matchstick game, we showed that
the question of whether a player has a winning strategy facing x remaining
matchsticks can be reduced to the same question with x − 1, x − 2 and x − 3
remaining sticks.

A far more complex example for dynamic programming is given in Chap. 31,
where the method is used to compute the mutation distance of two genetic
strings.

Further Reading

1. http://en.wikipedia.org/wiki/Nim

An article discussing the game Nim.
2. http://en.wikipedia.org/wiki/Dynamic programming

Dynamic programming on Wikipedia.
3. http://en.wikipedia.org/wiki/Geometric series

An article discussing geometric series.
4. D.P. Bertsekas: Dynamic Programming and Optimal Control, Vols. 1

and 2. Athena Scientific, 3rd edition, 2005.
This comprehensive textbook provides in-depth coverage of dynamic pro-
gramming.

27

Scheduling of Tournaments or Sports Leagues

Sigrid Knust

Universität Osnabrück, Osnabrück, Germany

Let us consider a small table tennis club that wants to organize a tournament
for six players. Each player has to play against each other player exactly once,
and every player should play at most one match per evening. Since each of the
six players has to play against five other players, in total 6·5

2 = 15 matches
have to be scheduled (we must divide by 2 since the match i against j is
counted for player i as well as for player j). If every player plays exactly one
match each evening, we have three matches per evening, i.e., for all matches
in total 15

3 = 5 evenings are needed.
The players start their competition, and every evening each player searches

for another player against whom he has not played before. After three evenings
the following matches have been performed:

Evening 1 Evening 2 Evening 3
1-2 1-3 1-4
3-5 2-6 2-5
4-6 4-5 3-6

It is easy to see that the remaining 6 matches, 1-5, 1-6, 5-6, 2-3, 2-4, 3-4,
cannot be completed within two additional evenings (when the match 1-5
takes place, the two matches 1-6 and 5-6 cannot be scheduled in parallel since
each player may only play one match per evening). Thus, the tournament can
only be finished during three additional evenings:

Evening 4 Evening 5 Evening 6
1-5 1-6 5-6
2-3 2-4 3-4

Hence, the club needs one more evening for the whole tournament than
originally intended. Furthermore, during the last two evenings two players do
not play.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 27, c© Springer-Verlag Berlin Heidelberg 2011

268 Sigrid Knust

Somebody who is interested in sports may notice that similar scheduling
problems occur for several sports leagues. For example, in the German soccer
league 18 teams play a tournament with 2 half-series, where in each half-
series every team plays against every other team exactly once. Usually, in
every round (weekend) within 2 · 17 = 34 weeks every team plays exactly one
match. Thus, we may ask the question whether, for any number of teams, a
schedule always exists in which all teams play in every round.

Let us now consider this scheduling problem from a more general point
of view: Given are an even number n of teams (or players) and n − 1 rounds
(days for matches). The objective is to determine a schedule such that each
team plays against each other team exactly once, and each team plays exactly
one match per round. Thus, for each even number n, we ask whether such
a schedule exists and how we can construct a corresponding schedule. In the
following we show that for each even n a solution exists (i.e., for n = 18 as
well as for n = 6, but also for n = 100 or n = 1024). Furthermore, we describe
an algorithm which constructs such a schedule for any even number n.

Generation of Schedules

In order to describe an algorithm for the generation of schedules we first model
our problem using so-called graphs, which are often used in computer science
(see also Chaps. 28, 32, 33, 34, and 40). A graph consists of a set of vertices
and a set of edges, where an edge connects two vertices. For example, with a
graph we may model a network of roads where the roads correspond to the
edges and the crossings correspond to the vertices.

For our sports scheduling problem we introduce a vertex for each team;
the matches correspond to the edges. For example, for n = 6 teams we obtain
the graph in Fig. 27.1.

Fig. 27.1. Graph for six teams

27 Scheduling of Tournaments or Sports Leagues 269

Such a graph is also called complete since each vertex is connected with
every other vertex by an edge (recall that each team plays against every
other team). In order to obtain a schedule we color the edges with the colors
1, 2, . . . , n − 1, where every color represents a round. Such a coloring is called
feasible if it corresponds to a feasible schedule. This is the case if all edges that
are connected to the same vertex are colored with different colors (otherwise
not every team plays once per round).

For our graph with n = 6 vertices, the edge coloring in Fig. 27.2 with
n − 1 = 5 colors is feasible. A corresponding schedule is shown beside the
graph, where the color “red” represents the first round, the color “blue” the
second round, etc.

It remains to show how a feasible edge coloring of the complete graph for
any even number n can be constructed. In our example let us consider the
graph which is obtained after eliminating vertex 6 and all 5 edges that are
connected to this vertex. We get a pentagon where the 5 edges on the boundary
(1-2, 2-3, 3-4, 4-5, 5-1) are colored differently. If we draw this pentagon as a
regular pentagon as in Fig. 27.3 (i.e., all angles at the 5 corners are equal),
we see that each edge in the inner part of the pentagon is colored with the
same color as the corresponding parallel edge on the boundary. If in an edge
coloring always only parallel edges (which are not connected to the same
vertex) are colored with the same color, obviously the condition is fulfilled
that edges which are connected to the same vertex are colored differently. In
our example we also see that for each of the five vertices four colors are used
and always one other color is missing (which can be used for the edges to
vertex 6).

These considerations can be used to construct a feasible edge coloring of
any complete graph having an even number n of vertices. The origin of this
procedure is not precisely known, but it is reported that the English pastor
and mathematician Thomas P. Kirkman (1806–1895) did similar considera-
tions. Please see the algorithm “Edge Coloring” which iteratively colors sets

Fig. 27.2. Edge coloring of the graph with six teams

270 Sigrid Knust

Fig. 27.3. Resulting pentagon

Algorithm Edge Coloring (geometrical version):

1. Build a regular polygon from the vertices 1, 2, . . . , n−1 and place
the vertex n to the top left side beside the polygon.

2. Connect vertex n with the “top” of the polygon.
3. Connect each of the remaining vertices with the opposite vertex

on the same height in the polygon.
4. Color the resulting n

2 edges with the first color (in the example
we color the edges 6-1, 5-2, 4-3).

5. Rotate the vertices 1, . . . , n − 1 of the polygon cyclically anti-
clockwise by one position (i.e., vertex 2 is moved to the position
of vertex 1, vertex 3 replaces the old vertex 2, . . . , vertex n − 1
replaces the old vertex n − 2 and vertex 1 replaces the old vertex
n − 1). Vertex n stays at the same place beside the polygon, and
the edges added in Steps 2 and 3 remain at their positions in the
polygon.

6. Color the resulting n
2 edges with the second color (in the example

we color the edges 6-2, 1-3, 5-4).
7. Repeat Steps 5 and 6 for the remaining colors 3, . . . , n − 1.

of parallel edges in n − 1 iterations (see also Fig. 27.4). It can be shown that
this algorithm generates a feasible edge coloring for any even number n.

In order to implement the algorithm presented above using a computer, it
would be relatively costly to store polygons and rotate them cyclically in each
iteration. Using the division of integers with remainder (modulo operation,
see Chap. 12), the algorithm can simply be written as follows:

27 Scheduling of Tournaments or Sports Leagues 271

Fig. 27.4. Iterations of the procedure

The algorithm ColorEdges colors all edges of the complete graph with an
even number n of vertices with n − 1 colors.

1 procedure ColorEdges (n)
2 begin
3 for all colors i := 1 to n − 1 do
4 color edge [i, n] with color i
5 for k := 1 to n

2
− 1

6 color all edges [(i + k)mod(n − 1), (i − k)mod(n − 1)]
7 with color i
8 endfor
9 endfor

10 end

In this algorithm a mod b denotes the remainder after dividing the integer
a by the integer b. For example,

• 14mod 4 = 2, since 14 = 3 · 4 + 2,
• 9 mod 3 = 0, since 9 = 3 · 3 + 0 and
• −1 mod 5 = 4, since −1 = (−1) · 5 + 4.

If we divide by the number n − 1 in Step 6, we get remainders from the set
0, 1, . . . , n − 2. Since our vertices are numbered by 1, . . . , n − 1 (and not by
0, 1, . . . , n − 2), we identify the remainder 0 with n − 1.

In our example in Step 6 we get for i = 1 the edges

• [(1 + 1)mod 5, (1 − 1)mod 5] = [2, 5] for k = 1, and
• [(1 + 2)mod 5, (1 − 2)mod 5] = [3, 4] for k = 2.

The calculation of the values for i = 2, 3, 4, 5 may be done by the reader.

272 Sigrid Knust

Schedules with Home–Away Assignments

Let us again consider a soccer league. In contrast to the table-tennis tourna-
ment, the matches are not performed at the same location, but in the stadi-
ums of the teams. If in the first half series the match between teams i and j
is scheduled in the stadium of team i, then in the second half series team j
is the home team. Thus, in a schedule for such a league, in addition to the
pairings (who plays whom) per round, for each pairing a home team has to
be determined.

For various reasons (e.g., fairness, attractiveness for the spectators) for
each team home and away matches should alternate as much as possible. If a
team has two consecutive home or away matches, this is also called a break
(the alternating sequence of H- and A-matches is broken). When breaks are
undesirable, a schedule without any breaks would be the best. But, if we have
a closer look at the schedules of different leagues in various sports disciplines
we see that in every season breaks occur. We may ask the question whether
breaks are unavoidable or whether better schedules (without any breaks) exist.

It is relatively easy to see that with respect to our constraints no schedule
without any breaks exists. If no team has a break, each team must have a
home–away sequence of the form HAHA. . . H or AHAH. . . A. On the other
hand, two teams with the same home–away sequence (e.g., HAHA. . . H) can
never play against each other (since always both teams play either home or
away). For this reason at most two teams can have a home–away sequence
without any break. Thus, the remaining n − 2 teams must have at least one
break, i.e., each schedule for a half series contains at least n − 2 breaks.

It can be shown that schedules with exactly n − 2 breaks exist which
can be generated with an extension of the algorithm described above. In this
extension additionally the home team has to be determined in Steps 4 and 6
of algorithm ColorEdges as follows:

• Any match [i, n] is a home match for team i if i is even; otherwise it is a
home match for team n.

• Any match [(i + k) mod(n − 1), (i − k) mod(n − 1)] is a home match for
team (i + k) mod(n − 1) if k is odd; otherwise it is a home match for team
(i − k) mod(n − 1).

In our graph model, home and away matches can easily be integrated if the
edges are oriented. If the directed arc i → j means that the match between
teams i and j takes place at team j, then for our example with n = 6 teams,
using the extended algorithm we obtain the schedule from Fig. 27.5 with
n − 2 = 4 breaks (teams 1 and 6 have no break, teams 2, 3, 4, 5 each have
one break).

The geometrical construction procedure based on the polygon can also be
extended by giving each edge an orientation. While the edges in the polygon
are always oriented in the same direction, the orientation of the edge to the
outer vertex n alternates in each iteration (see Fig. 27.6).

27 Scheduling of Tournaments or Sports Leagues 273

Fig. 27.5. Schedule with n − 2 breaks

Fig. 27.6. Iterations of the extended procedure

Summarizing, we can state that for any even number n of teams a schedule
with n − 1 rounds and n − 2 breaks exists which can be constructed by the
described algorithm.

Finally, let us come back to the soccer league. Since there we have two
half series, in each half series at least n − 2 breaks occur. In the professional
German soccer league the matches of the second half series are scheduled in
the same sequence as in the first half series (with exchanged home rights). For
such a system it can be shown that at least 3n − 6 breaks occur. A schedule
having 3n − 6 breaks (n − 2 in both half series and n − 2 at the border between
first and second half series) can easily be constructed with the above method.
Using a slight modification, it can additionally be ensured that no team has
two consecutive breaks.

274 Sigrid Knust

Usually, scheduling of a sports league in practice is more difficult since
additional constraints have to be respected. For example, if a league contains
teams which share the same stadium, two such teams cannot play at home
simultaneously. Thus, when one of these teams plays at home, the other must
play away. Furthermore, due to limited train or police capacities, not too
many matches should be played in a region at the same day. Additionally, it
may happen that in some rounds a stadium is unavailable since another event
(e.g., a concert or a fair) is already taking place. Then the corresponding team
has to play away in such a round. Finally, the media and spectators expect
a varied, eventful, and exciting season (e.g., top matches should be scheduled
at the end of a season) and attractive matches should be distributed evenly
over the season.

For now most sports leagues schedules are still constructed manually.
A scheduler generates a generic schedule for the corresponding league size
with the above algorithm where at first the numbers 1, . . . , n are used as
placeholders for the teams. Afterwards, in a second step each specific team
is assigned to a number (e.g., 1 = Werder Bremen, 2 = Hamburger SV, 3 =
Bayern München, etc.). In this step as many additional constraints are met as
possible (e.g., that two teams sharing the same stadium never play at home
simultaneously).

Let us now consider how many different team assignments are possible for
a league with n = 18 teams. For the first number we can choose among 18
teams, and for the second number we have 17 possible teams (since the first
team is already chosen), then 16 possibilities for the third number, etc. Thus,
in total we get 18! = 18 · 17 · 16 · · · · · 2 · 1 ≈ 6.4 · 1015 possibilities. If we
assume that a computer can generate 109 solutions per second, we need 74
days in order to check all possibilities. This enormously huge number shows
that a human scheduler even with the help of a computer can only check a
very small number of possible schedules.

A further disadvantage of the described method is that only one specific
schedule is used as the foundation for the assignment. There are several other
schedules which cannot be generated with the above method. Thus, with
this procedure it cannot be guaranteed that good schedules (i.e., schedules
satisfying the given constraints as much as possible) are found. For this reason,
current research in the area of sports scheduling deals with the development
of new algorithms that try to calculate good schedules in a reasonable amount
of time.

Further Reading

1. Chapter 28 (Eulerian Circuits), Chap. 32 (Shortest Paths), Chap. 33 (Min-
imum Spanning Trees), Chap. 34 (Maximum Flows) and Chap. 40 (The
Travelling Salesman Problem).

27 Scheduling of Tournaments or Sports Leagues 275

Further models and algorithms based on graphs can be found in these
chapters.

2. J.M. Aldous and R.J. Wilson: Graphs and Applications. Springer, 2003.
An introduction to graphs and their applications.

3. Eric W. Weisstein: Kirkman’s Schoolgirl Problem. From MathWorld –
A Wolfram Web Resource:
http://mathworld.wolfram.com/KirkmansSchoolgirlProblem.html

An additional combinatorial problem where solutions can be represented
by graph colorings.

4. S. Knust: Construction Methods for Sports League Schedules
http://www.informatik.uos.de/knust/sportssched/webapp/index.
html

A website where different construction methods for sports league schedules
are shown (e.g., the construction methods discussed above).

28

Eulerian Circuits

Michael Behrisch, Amin Coja-Oghlan, and Peter Liske

Humboldt-Universität zu Berlin, Berlin, Germany
University of Warwick, Coventry, UK
Humboldt-Universität zu Berlin, Berlin, Germany

Teasing your mates with riddles can be quite an amusing pastime
– provided that you know the answer already! The “House of
Santa Claus” provides a nice little teaser:

This figure consists of five nodes (the blue dots) and eight
edges (the lines that connect the nodes). Can you draw the House
of Santa Claus in one sweep, without lifting the pen and without
drawing any edge twice?

Of course, it won’t be long until all your friends know how to solve this
one (as there are actually 44 different ways of drawing the House of Santa
Claus). But fortunately there are plenty of other figures that can be drawn in
one sweep as well, provided that you know how. In some other cases you may
end up trying for quite a while, just to realize that drawing the figure in one
go seems all but impossible.

In this chapter we present an algorithm that will always produce a way to
draw a given figure in one go if this is possible. To devise such an algorithm,
let us first try to deal with figures that can be drawn in one sweep such that

Fig. 28.1. Try the star and the dragon!

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 28, c© Springer-Verlag Berlin Heidelberg 2011

278 Michael Behrisch, Amin Coja-Oghlan, and Peter Liske

Fig. 28.2. The sailing boat provides a counterexample

the pen ends up at the same node where it started. The route that the pen
traverses is then called an Eulerian circuit. This is because the mathemati-
cian Leonhard Euler was the first to find out what figures can be sketched
in this way. (Actually Leonhard Euler was mostly interested in one partic-
ular figure, namely the roadmap of his home town of Königsberg.) Follow-
ing Euler, we first deal with the question of whether an Eulerian circuit ex-
ists. Later on we sort out how to find an Eulerian circuit quickly if there is
one.

In what follows we are going to figure out why, for example, the star has
an Eulerian circuit, and why neither the House of Santa Claus nor the ship
admit one. Bizarrely, the House of Santa Claus can be drawn in one go if we
allow that the pen ends up at a different node than where it started, whereas
even this is impossible in the case of the ship. To find out why, we need to take
a closer look at the nodes, i.e., the places where the pen can change direction.
(Recall that the nodes are just the blue dots in our figures.)

When Does an Eulerian Circuit Exist?

The degree of a node is the number of edges that pass through that node. For
instance, the degree of the mast top of the ship is three. If we draw a figure
in one sweep so that in the end the pen returns to the starting point, then
the pen leaves every vertex exactly as many times as it enters that vertex. In
effect, the degree of each node is even.

Observe that the ship has four nodes of odd degree (namely, all the nodes
that belong to the sail). This shows that it is impossible to draw the ship in
one go such that the starting point and the endpoint coincide. The same is
true of the House of Santa Claus, because it has two nodes of degree three.
However, there is a little twist (to be revealed later) that enables us to draw
the figure in one sweep, but with different starting point and endpoint. By
contrast, all nodes of the star have even degree. But does any figure with
this property feature an Eulerian circuit? And, if so, how do we actually find
one?

28 Eulerian Circuits 279

Finding Eulerian Circuits

Suppose that all nodes have even degrees. In the absence of a better idea,
we could just start somewhere and go ahead drawing. That is, we start at an
arbitrary node and follow an arbitrary edge to another node. Once we get
there, we pick another edge that we haven’t used before arbitrarily, and so
on.

Each time we enter or leave a node, we use up two of its edges (because
we are not allowed to use an edge more than once). Hence, if the node had an
even degree initially, the number of available edges at that node will remain
even. As a consequence, we won’t get stuck in a dead end. In other words, our
“just go ahead” strategy will eventually lead us back to the node where we
started.

In the left figure a circuit (i.e., a route through several edges
that leads back to the origin) consisting of three edges has
emerged. The circuit passes through the vertices b, e, and a.

Yet following the above strategy (“start somewhere and keep
on going until you get back to the origin”) does not necessar-
ily yield a circuit that covers all edges. Namely, we could have
taken a “shortcut” at some node, thereby skipping a part of the

figure. If this happens, we will need to extend the circuit that we have con-
structed so far. Before we do this, we remove the edges that we have visited
already (because we are not allowed to pass through the same edges again
anyway).

For instance, in the above figure upon returning to the origin
b, we can repeat the same procedure to construct another circuit.
In the above example the second circuit is a triangle through the
nodes b, d, and c (right figure).

Linking the two circuits that we have obtained so far, we
obtain a longer circuit (b,e,a,b,d,c,b). Alas, even this circuit
does not comprise all the edges. Hence, we are in for another
extension. Of course, since all the edges that pass through the start vertex
b are already used up, we need to pick another vertex to construct the next
circuit.

Observe that removing all edges that our current circuit
(b,e,a,b,d,c,b) passes through leaves us with a figure in which
all nodes have even degrees. Hence, we can easily find yet an-
other circuit as follows: Pick a node on the “old” circuit that
has an edge that we haven’t visited yet. Declare this node the
new starting vertex and proceed to find another circuit by fol-
lowing the “just draw ahead” strategy. In the above example we

get the quadrangle with the corners a, d, e, and f as shown in the left fig-
ure.

Thus, in addition to our “old” circuit we have got a new one that starts
and ends at some node of the old circuit. Now, the plan is to hook the new

280 Michael Behrisch, Amin Coja-Oghlan, and Peter Liske

circuit into the old one. To achieve this, we first follow the old circuit un-
til we reach the node where the new circuit starts. In the above example
this is node e. We then proceed through the new circuit until we get back
to its starting point (i.e., e). Finally, having completed the new circuit, we
continue following the old circuit until the end. Hence, the complete route is
(b,e,f,a,d,e,a,b,d,c,b).

In summary, we have created a “big” circuit by combining two “small”
ones. In our example the big circuit comprises the entire figure, as desired.
But what do we do in other cases, where even the big circuit does not pass
through all the edges?

Well, it’s easy: Why not just repeat the entire procedure? That is, we
search for a node on the big circuit that has an edge that we have not passed
through yet. Since the original figure was just one connected object, such
a vertex exists so long as we have not passed through all the edges. After
removing all edges of the big circuit from the figure, we start at the chosen
node and construct a new circuit just as before. Then, we link the two circuits
to obtain a bigger one.

We keep doing this until all the edges of the figure are
used up. Once all edges are finished, we have an Eulerian
circuit.

In the above example we first combined the two cir-
cuits (b,e,a,b) and (b,d,c,b) to obtain the circuit
(b,e,a,b,d,c,b). Then, starting anew from node e, we
obtained (e,f,a,d,e). Linking this to the previously ob-
tained circuit (b,e,a,b,d,c,b), we finally constructed the
Eulerian circuit (b,e,a,d,e,f,a,b,d,c,b), which is de-
picted in the right figure. The numbers indicate the order
in which the tour traverses the edges.

The Algorithm

The algorithm below works similarly to the example above except for the
linking step, which is performed in place. Hence, after finding a subcircuit (e.g.
(b,e,a,b,d,c,b)), the next circuit will be inserted right away. For instance,
assume the current circuit is (b,e,a,b,d,c,b) and the node chosen in line 4
is u = a. The edge selected could be (a,d), which would extend the circuit
preliminary to (b,e,a,d,b,d,c,b). Obviously, this is not a valid circuit yet
but the algorithm will continue until it reaches a again.

28 Eulerian Circuits 281

The algorithm EulerianCircuit calculates for a figure with even degree nodes
the way to draw it in one sweep, and prints the order in which the edges have to
be followed

1 function EulerianCircuit(Figure F)
2 begin
3 Circuit := (s), for an arbitrary (start) node s in F
4 while there is a node u with an outgoing edge in the Circuit
5 v := u
6 repeat
7 take an edge v − w, starting in v
8 insert the other end node w into the Circuit after v
9 v := w

10 remove the edge from F
11 until v = u // the circuit is closed
12 endwhile
13 return Circuit
14 end

The House of Santa Claus

Up to now, we have only cared about figures featuring an Eulerian circuit,
which could thus be drawn in a single sweep with matching start and end
point. We already know that this works only if all nodes of the figure have
even degree. But this is not true for the House of Santa Claus: Both bottom
nodes have degree 3. Nevertheless, it is possible to draw the figure in one
sweep, if we do not insist on starting point and endpoint being identical.

How can we adapt the algorithm so that it works for the House of Santa
Claus as well?

The simple trick is to insert a new node and connect it to both nodes of
degree 3. The resulting figure has only nodes of even degree, and thus the
algorithm will work and produce an Eulerian Circuit.

In the end we simply omit our “artificial” node from the Eulerian Circuit:
We start drawing at the left “neighbor node” and finish at the right neighbor,
thus getting a solution for the House of Santa Claus! This works particularly
well in our example because the edges added are the last ones in the circuit.

282 Michael Behrisch, Amin Coja-Oghlan, and Peter Liske

If this is not the case we have to “shift” the circuit (this means, rotate the
order of the edges such that 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 becomes 4, 5, 6, 7, 8,
9, 10, 1, 2, 3, for example), to move those edges to the end.

If we have exactly two nodes of odd degree in our figure, this trick will
always work. Figures with more than two nodes of odd degree cannot be drawn
in one sweep at all, even if you allow the start and end point to differ.

Of Postmen and Garbage Collectors

In addition to the fact that you can impress your mates with the algorithm
described (especially by deciding at “first sight”, i.e., by testing the degrees of
the nodes, whether the figure can be drawn in one sweep), there are also some
serious applications. Assume the edges are streets and the nodes junctions.
Then a path visiting each street exactly once is an Eulerian Circuit. Thus, if
you have Eulerian Circuits in your road network they provide fast and fuel-
saving routes for postal delivery and garbage collection. Our algorithm can
calculate these routes, but we would, of course, implement it on a computer
to process road networks with hundreds of streets.

Unfortunately, in reality there are often more than two junctions with an
odd number of streets. That is why the calculation of the garbage collection
routes has to take into account that some streets have to be used multiple
times. When calculating the shortest route in this scenario the length of the
streets comes into play as well. This leads to the so-called Chinese Postman
Problem.

Thus, dealing with Eulerian Circuits does not only allow for a round trip
through edges and nodes but also leads from one pleasant carrier (Santa Claus)
to another (the postman).

Further Reading

1. http://en.wikipedia.org/wiki/Seven Bridges of Koenigsberg
This Wikipedia article explains everything about the starting point of
this problem as a “touristical” question addressed by Euler more than
270 years ago.

2. http://en.wikipedia.org/wiki/Leonhard Euler
Life and work of the eponym not only of the Eulerian Circuit but also
Eulerian Number and many other important mathematical achievements.

3. In contrast to an Eulerian Circuit, which visits all the edges of a given
figure, Chap. 9 is about testing whether a figure contains a given vertex.
The algorithm for this problem is quite similar to the one for finding
Eulerian Circuits.

28 Eulerian Circuits 283

4. Chapter 40 (the Travelling Salesman Problem)
In this chapter we saw an algorithm for finding an Eulerian Circuit, i.e.,
a circuit that traverses every edge of a given figure exactly once. Sur-
prisingly, the problem of finding a cycle that merely visits every vertex
precisely once seems much more difficult. If in fact the goal is to find a
shortest such cycle, we end up with a notoriously difficult problem known
as the Travelling Salesman Problem.

5. Think beyond: We have seen that the algorithm works for figures with an
even number of outgoing lines at each point, we know that we can easily
repair two “odd nodes” and that it does not work with four. But what
about one or three “odd nodes”?

29

High-Speed Circles

Dominik Sibbing and Leif Kobbelt

RWTH Aachen University, Aachen, Germany

If you look very closely at the screen of a computer, you will realize that
a picture contains thousands of small colored dots, the so-called pixels (=
picture elements). Generating an image with a computer means determining
the color each pixel glows with. This is similar to painting a picture by coloring
the squares of quad paper, as in Fig. 29.1. On current monitors the number
of pixels is 10,000 times more than the number of squares on regular quad
paper. Since in videos and computer games the images typically have to be
redrawn at 30 frames per second, the use of very efficient algorithms becomes
necessary. To draw a geometrically complicated scene, common methods in
computer graphics break the scene down to a large number of simple elements
like triangles, lines, and circles, which approximate this complex scene. As
mentioned, these elements have to be drawn efficiently, i.e., by using as few
and simple operations as possible. In this chapter we want to explain how to
design such an efficient algorithm for drawing circles.

Fig. 29.1. Drawing with circles

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 29, c© Springer-Verlag Berlin Heidelberg 2011

286 Dominik Sibbing and Leif Kobbelt

Drawing Circles: Keep It Simple!

If you want to draw a circle, the first thing which might come to mind is to use
dividers. The principle of such a device is to keep the distance of the pen from
the center of the circle constant while turning the pen 360◦. To mimic this
method we have to calculate the position of the pen at every point in time.
Knowing the radius R of the circle and the angle α between the x-axis and
the line connecting the pen and circle center, we can determine the position
of the pen by using the sine and cosine functions (Fig. 29.2):

(x, y) = (R · cos(α), R · sin(α)).

Assume we have a command “plot (x, y)” which activates the pixel with co-
ordinates (x, y). Together with the formula from above, we can activate a set
of pixels which belong to the circle. Here is a first try at activating N pixels
lying on a circle:

Naive Algorithm for drawing circles

1 for i := 0 to N − 1 do
2 x = R · cos(360 · i/N)
3 y = R · sin(360 · i/N)
4 plot(x, y)
5 endfor

As you might see, the expression within the brackets of the sine and cosine
function goes from 0◦ to 360◦, so the whole circle gets covered.

Fig. 29.2. Parametrization of a circle

29 High-Speed Circles 287

But how do we choose the number N of pixels to be activated? On the one
hand we want to calculate as few points as possible, because every calculation
takes time. On the other hand, if we do not calculate a sufficient number of
points, our circle might contain gaps. Assume the width of a pixel is equal
to 1. By using the formula for the circumference,

U = 2πR ≤ R,

one can estimate that 7R pixels are sufficient to draw a circle without any
gaps.

Although this algorithm works well, many multiplications and summations
and the evaluation of the complicated sine and cosine functions require high
computation times, and so the drawing of thousands of circles will cause long
waiting periods.

Circles are symmetric. Would it be possible to save some time and improve
our algorithm?

If we look at a circle, we realize its symmetry. One can utilize this symme-
try by, e.g., drawing only the upper half of the circle and get the lower part by
simply reflecting each point w.r.t. the x-axis. Mathematically this reflection is
very simple, since we only need to change the sign of the y-coordinate. If you
look at Fig. 29.3 you see other lines of symmetry which are as simple as the x-
axis. The reflection w.r.t. the y-axis just changes the sign of the x-coordinate.
Taking both axes into account, it is only necessary to compute the points of
one quarter of the circle. It is even possible to compute just one-eighth of the
circle if we also consider both diagonals of the coordinate system. For both
lines the reflection is also very simple, since we just need to exchange the x-

Fig. 29.3. Symmetry of a circle

288 Dominik Sibbing and Leif Kobbelt

and y-coordinates. So, by calculating a point (x, y) lying on the arc between
12 o’clock and 1:30, we directly derive the other seven symmetric points

(y, x), (−y, x), (x, −y), (−x, −y), (−y, −x), (y, −x), and (−x, y)

with nearly no additional computational costs (see Fig. 29.3).
Using this knowledge one can produce an algorithm that is nearly seven

times faster than the “naive algorithm” from above:

Improved naive algorithm for drawing a circle

1 N = 7R
2 for i := 0 to N/8 do
3 x = R · cos(360 · i/N)
4 y = R · sin(360 · i/N)
5 plot(x, y); plot(y, x)
6 plot(−x, y); plot(y, −x)
7 plot(x, −y); plot(−y, x)
8 plot(−x, −y); plot(−y, −x)
9 endfor

Bresenham’s Algorithm for Circles

In this section we look at the calculation of the points (x, y) themselves,
which still needs too much time to evaluate. Especially the sine and cosine
functions are quite complicated to compute. Using Pythagoras’s theorem one
can immediately calculate the y-coordinate dependent on the x-coordinate
(see Fig. 29.2):

x2 + y2 = R2, also y =
√

R2 − x2.

The first advantage of an algorithm using Pythagoras’s theorem is that it
does not need to precompute the number N of pixels to be activated, since it
just enumerates the x-coordinates. The second advantage is that it does not
evaluate the sine and cosine functions.

Unfortunately the evaluation of the single square root is computationally
as costly as the evaluation of a sine function. In addition to this, the result of
a square root and a sine and a cosine function always comes with a very small
error. So it would be best if these functions would completely vanish in our
algorithm and if we could only use simple summations and multiplications.

The high speed algorithm is called “Bresenham’s algorithm for circles.” It
was invented by Jack E. Bresenham (1962) and was originally used to draw
lines. An adaption of this algorithm to draw circles will be described in the
following chapter.

The Idea. We start by drawing the topmost pixel with coordinates (0, R) in
whole numbers. In each step of the algorithm the x-coordinate is increased
by 1. For the arc between 12 o’clock and 1:30, the slope of the curve is between

29 High-Speed Circles 289

0 and −1. So, the y-coordinate will not change if we go east and it will be
decreased by one if we go southeast. The decision in which direction to go
about is made so that the center of the new activated pixel (the blue dot
of Fig. 29.4) lies close to the red circle. The algorithm stops when we have
drawn one eighth of the circle, since we can complete the remaining parts by
reflecting the points w.r.t. the lines of symmetry.

To decide whether the center of the pixel lying in the east or southeast
direction is closer to the circle, we look at the green dots (Fig. 29.4). With
respect to the current position these dots are always shifted by one unit of
length to the right and a half unit of length downwards. Since we start at
(0, R), the first green dot to be tested lies at (1, R − 1

2).
With regard to the green points, the decision to go east or southeast is

made as follows:
Case 1: If the green dot is inside the circle, we go east:

(x, y) ← (x + 1, y).

Case 2: If the green dot is outside the circle, we go southeast:

(x, y) ← (x + 1, y − 1).

Decision: inside or outside the circle? To distinguish both cases we need a
way to decide whether a point is inside or outside the circle.

A point (x, y) is inside the circle if the distance between the center of the
circle and this point is smaller than the radius R of the circle, i.e., it is inside
if the value of the function

F (x, y) = x2 + y2 − R2

is smaller than 0. The good thing is that we do not have to compute a square
root any more!

Fig. 29.4. Bresenham’s Algorithm for circles

290 Dominik Sibbing and Leif Kobbelt

The value for the first green dot can easily been found:

F

(

1, R − 1
2

)

= 1 + R2 − R +
1
4

− R2 =
5
4

− R.

If we decided to go from a blue point (x, y) in the east direction, the value
of F , evaluated at the green point (xg, yg) = (x + 1, y − 1

2), will change in the
following way:

F (xg + 1, yg) = (xg + 1)2 + y2
g − R2

= x2
g + 2xg + 1 + y2

g − R2

= F (xg, yg) + 2xg + 1.

Going in southeast direction, we have to add 1 to the x-coordinate and sub-
tract 1 from the y-coordinate of the green point, so the value of F changes as
follows:

F (xg + 1, yg − 1) = (xg + 1)2 + (yg − 1)2 − R2

= F (xg, yg) + 2xg − 2yg + 2.

After these steps we activate the pixel and start the process for the next pixel.
As described, we do not recompute F in very step, but we just update it by
adding small values, depending on the direction we went in. This is called
an “incremental” computation of F , which can be done much faster than
recomputing the whole expression.

Having this in mind we can write down a first version of Bresenham’s
Algorithm for circles.

Bresenham’s Algorithm for circles

1 (x, y) = (0, R)
2 F = 5

4
− R

3 plot(0, R); plot(R, 0)
4 plot(0, −R); plot(−R, 0)
5 while (x < y) do
6 if (F < 0) then
7 F = F + 2 · (x + 1) + 1
8 x = x + 1
9 else

10 F = F + 2 · (x + 1) − 2 · (y − 1
2
) + 2

11 x = x + 1
12 y = y − 1
13 endif
14 plot(x, y); plot(y, x)
15 plot(−x, y); plot(y, −x)
16 plot(x, −y); plot(−y, x)
17 plot(−x, −y); plot(−y, −x)
18 endwhile

29 High-Speed Circles 291

But we can do faster. For both increments (2xg + 1) and (2xg − 2yg + 2)
we need multiplications. Our algorithm would be faster if we could limit all
calculations to simple additions.

To achieve this we need two more variables, which we call dE and dSE ,
so we can track the change of the increments. The idea is that we increase
the function F by dE if we go in the east direction, and by dSE if we go in
the southeast direction, which would only require one summation. In addition
to this we also need to change dE and dSE depending on the direction we
went in. For both variables we need the initial values, which can be found by
plugging in the initial values of xg and yg:

dE

(

1, R − 1
2

)

= 2 · 1 + 1 = 3,

dSE

(

1, R − 1
2

)

= 2 · 1 − 2 · R + 1 + 3 = 5 − 2 · R.

Now we have to think about how dE and dSE will change if we decide
upon one direction. This can be done in a way very similar to changing the
function F itself. Assuming we go in the east direction, both values change in
the following way:

dE(xg + 1, yg) = 2 · (xg + 1) + 1 = dE(xg, yg) + 2,

dSE(xg + 1, yg) = 2 · (xg + 1) − 2 · yg + 2 = dSE(xg, yg) + 2.

Going in the southeast direction will affect the values for dE and dSE as
follows:

dE(xg + 1, yg − 1) = 2 · (xg + 1) + 1 = dE(xg, yg) + 2,

dSE(xg + 1, yg − 1) = 2 · (xg + 1) − 2 · (yg − 1) + 2 = dSE(xg, yg) + 4.

The fraction is gratuitous. All the increments are whole numbers, but since the
initial value for F contains a fraction, we carry around this fraction during the
entire process. Since whole numbers can be represented with more accuracy,
it would be nice to just deal with integers.

To figure out if we can omit the fraction in some way, we consider what
F < 0 means. Starting with

F =
5
4

− R

and assuming K to be a whole number, we see that F equals K +1/4 in every
step of the computation, since F is only increased by a whole number. So, in
every step F is one of these numbers

F ∈
{

· · · , − 3
4
,
1
4
,
5
4
, · · ·

}

.

This means, if F drops below zero, then also F − 1/4 drops below zero. So,
instead of starting with F = 5/4 − R, we are also allowed to start with
F = 1 − R, without affecting the correctness of the algorithm.

292 Dominik Sibbing and Leif Kobbelt

The final version of Bresenham’s Algorithm for drawing circles uses only
simple summations over whole numbers:

Improved Bresenham’s Algorithm for drawing circles

1 (x, y) = (0, R)
2 F = 1 − R
3 dE = 3
4 dSE = 5 − 2 · R
5 plot(0, R); plot(R, 0)
6 plot(0, −R); plot(−R, 0)
7 while (x < y) do
8 if (F < 0) then
9 F = F + dE

10 x = x + 1
11 dE = dE + 2
12 dSE = dSE + 2
13 else
14 F = F + dSE

15 x = x + 1
16 y = y − 1
17 dE = dE + 2
18 dSE = dSE + 4
19 endif
20 plot(x, y); plot(y, x)
21 plot(−x, y); plot(y, −x)
22 plot(x, −y); plot(−y, x)
23 plot(−x, −y); plot(−y, −x)
24 endwhile

A Racing Duel

Drawing circles with this algorithm works very well: By letting all presented
algorithms compete against each other, one can figure out that the last algo-
rithm is able to draw circles 14 times faster than the one that was presented
first! In addition to that, it just needs summations on whole numbers, which
is useful if we deal with specialized processors. You should try it at home!

There are similar algorithms for other geometric primitives, such as lines
and triangles. These algorithms are integrated as an essential part of current
graphics cards, so displaying detailed pictures at high frame rates becomes
possible for applications such as computer games.

The presented process of finding an algorithmic solution for a problem
is typical in computer science. First of all it is necessary to find a precise
mathematical description of the problem. This makes the implementation of
a simple algorithm for the specific task possible; it might still have some

29 High-Speed Circles 293

problems (such as gaps in the circle), but it helps us understand the problem
better. After that one can try to find a solution, which can be calculated much
faster. Therefore, we can take additional knowledge into account (symmetry
of a circle) or reformulate some equations to simplify some calculations (in-
cremental computation). In the end we can consider architectural properties
of our computer to further accelerate the computations (e.g., summations can
be calculated faster than multiplications). This process might not only lead
to the optimal solution of our specific problem, it might also give solutions
for similar problems. With some minor changes, the high speed algorithm for
drawing circles can also be used to draw ellipses, parabolas, hyperbolas, or
similar curves used in computer graphics.

Further Reading

1. Chapter 8 (Pledge’s Algorithm) and Chap. 36 (The Smallest Enclosing
Circle)
Results of the presented methods can be illustrated in a graphical sense.
This requires fast rendering algorithms like Bresenham’s Algorithm for
lines and circles, which are capable of drawing geometric primitives.

2. Chapter 11 (Multiplication of Long Integers)
Bresenham’s algorithm for drawing circles does not need any multiplica-
tions. If, however, multiplications become necessary, it should be possible
to calculate them in a fast way. How this works is described in this chapter.

3. Alan Watt: 3D Computer Graphics. Addison-Wesley, 3rd edition, 1999
The book describes basic algorithms from the field of computer graphics.
It contains many examples.

4. Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner: The OpenGL Pro-
gramming Guide. Addison-Wesley Professional, 5th edition, 2005.
The book explains techniques far beyond the drawing of simple primitives
and gives an introduction to OpenGL programming. Since it comes with
many examples it motivates the reader to try out different techniques.

30

Gauß–Seidel Iterative Method
for the Computation of Physical Problems

Christoph Freundl and Ulrich Rüde

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Warmup: Soccer

The following algorithm deals with the simulation of physical effects. Com-
puters can also be utilized to simulate processes in physics, chemistry, and
anywhere in nature. This is becoming more and more important because it
helps to understand how nature works. For example, our weather forecast
is based on a simulation that attempts to represent the natural weather as
accurately as possible on a computer. New car models and planes are also
simulated, long before they are built for the first time. Many scientists actu-
ally completely depend on simulations. Astronomers who want to understand
what happens if two black holes collide have to use computer simulations,
since experiments with real black holes are impossible. Computer games are
also often similar to simulations, only for games it is not necessarily a goal
that the computations coincide with the real world.

Here, we are going to simulate an important problem with our algo-
rithm, namely that of heat distribution, as it would also be important for
weather forecasts. However, we will restrict ourselves to solid bodies like a
two-dimensional plate because it makes the simulation easier to explain if we
do not have to take the air flow into account. But let us first start with a
“warmup exercise” and have a look at soccer games.

After having barely missed the final round of the last World Cup, the
national team finally reaches the final game four years later. The players are
very nervous, so nervous that the coach is convinced that they will not even
be able to form a line, arranged by shirt numbers, for the national anthem.

As the coach is not allowed to enter the field where he could easily put
every player into his place in the line, he desperately comes up with the
following method: he impresses upon the two players with the numbers 1 and
11, which are the left- and rightmost players in the line, to take care that there
is enough space between them for all other players. After that, they shall not
leave their places anymore.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 30, c© Springer-Verlag Berlin Heidelberg 2011

296 Christoph Freundl and Ulrich Rüde

Fig. 30.1. Situation during the line-up: player 5 is being called by the coach. He
moves to the exact middle between his neighbors, the players 4 and 6. The red
dashed line is given by the two players at the boundaries, in the end all players
should stand on it ideally

The other players with the numbers from 2 to 10 receive the following in-
struction: if they are called they shall move to the exact middle between their
right and left neighbors (see Fig. 30.1). The coach calls all players consecu-
tively in the order of their shirt numbers. After the player with the highest
number has moved, the coach starts again from the beginning.

You can try this out yourself quickly, for example with game pawns. The
website for this algorithm contains a program that visualizes this approach.
You will see: after several cycles of this method the players have indeed moved

30 Gauß–Seidel Iterative Method 297

such that they form at least an approximate line. It is not completely perfect
but good enough such that nobody notices it.

In order to get the players exactly onto the line, the algorithm would
have to run for an infinitely long time. This is why you will never get the
completely right result in practice. But that does not matter because after
sufficiently many steps the algorithm’s outcome can get arbitrarily close to
the correct solution. You encounter algorithms like this often when it comes
to so-called numerical problems, i.e., when real decimal numbers have to be
computed, such as those needed by physicists or engineers.

If the players line up in the order of their back numbers, they will be
called from left to right over and over again but we can also do it differently.
A popular variant is the so-called red-black ordering of the players. There the
half of the players with the lower numbers occupy every other place in the
line first, then the players with the high numbers fill up the remaining places.
But even if the players are arranged completely at random, the method still
works, only it must be obvious to every player who both his neighbors are.

This method is the algorithm of Gauß and Seidel, which we are going to
apply for physical problems in the following.

Temperature Calculation in a Rod (1D)

Now, let us really consider the calculation of a temperature distribution. Is it
not somewhat amazing that we can use the principle of lining up in a row?
For example, if you look at the temperature distribution in a thin rod you will
notice that the temperature at every point along the rod is the average of the
temperatures in the neighborhood of that point. If you fix the temperature
at both ends of the rod, the temperature between both ends runs “in a row”,
i.e., linearly from one end to the other.

In order to compute this linear distribution of values, you need not use a
computer, just as a soccer coach needed no complicated algorithm in order
to place players in a row. But we can now see that the problems are related,
and maybe they can be solved in the same way. Observe that the position of
a player corresponds to a temperature value, otherwise the computation can
proceed in the same way as in our soccer problem.

Next, we make the task a bit more interesting: how does the temperature
distribution look if we heat the rod at some point in the middle? Then the
temperature at that point is of course no longer the average of the neighboring
temperatures, the additional heating has to be taken into account.

Now there is no longer an obvious possibility to determine the resulting
temperature distribution so we ponder how to utilize the computer for solving
this problem. A first difficulty is posed by the fact that there are infinitely
many points along the rod, however a computer can only treat finitely many
objects in finite time. Therefore, we choose a finite number of points along
the rod (see Fig. 30.2) at which we want to compute the temperature. This

298 Christoph Freundl and Ulrich Rüde

Fig. 30.2. Discretization of a continuous rod with 11 points

method is also called discretization as we are mapping a continuous problem
to a discrete problem.

If the points are distributed evenly along the rod, and if ui denotes the
temperature value and fi the heating at point i, then the temperature at a
particular point is updated by the formula

ui :=
1
2
(ui−1 + ui+1) + fi.

The algorithm GaussSeidel1D

1 procedure GaussSeidel1D (n, u, f)
2 begin
3 for i := 2 to n − 1 do
4 u[i] := 1

2
(u[i − 1] + u[i + 1]) + f [i]

5 endfor
6 end

Like in the example of the soccer players only the points in the interior
of the rod are continuously recalculated, we assume the temperatures at both
boundary points of the rod are given. Depending on the physical experiment
it could also be the case that the temperatures at the rod’s boundaries are

30 Gauß–Seidel Iterative Method 299

not fixed. We also have not considered that in practice the rod would lose
some heat to its neighborhood. We could take that into account by using
correspondingly more complicated formulas and computations, but that would
lead us too far for now. Instead, we will investigate another difficulty which
arrives if we do not want to compute the temperature distribution in a one-
dimensional rod, but in a two-dimensional plate.

Temperature Computation on a Plate (2D)

We can generalize the formulation of the task by leaving the one-dimensional
rod behind and will now consider a two-dimensional cooking plate, which
might again be heated at some places.

The discretization works similarly to the above case, only now we get a
two-dimensional grid of points. We want to compute the temperature at these
points. Averaging the neighboring temperatures at particular points means
now to take not only the right and left neighbors into account but also the
upper and lower neighbors (see Fig. 30.3).

Because of this representation of the dependencies of a point with respect
to its neighboring points one identifies the stencil which has to be applied to
the point and its surrounding in order to recompute its value. In this case we
have a five-point stencil (because it involves five neighboring points), and the

Fig. 30.3. Schematic view of a discretized two-dimensional plate and the five-point
stencil

300 Christoph Freundl and Ulrich Rüde

new value of a point in the interior of the plate is computed by

ui,j :=
1
4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) + fi,j .

The algorithm GaussSeidel2D

1 procedure GaussSeidel2D (n, u, f)
2 begin
3 for i := 2 to n − 1 do
4 for j := 2 to n − 1 do
5 u[i, j] := 1

4
(u[i − 1, j] + u[i + 1, j] + u[i, j − 1] + u[i, j + 1])

6 +f [i, j]
7 endfor
8 endfor
9 end

Let us consider a quadratic plate whose left lower corner is located at
the point (0, 0) and whose right upper corner is located at the point (1, 1).
The temperature values at the boundary points of the plate are fixed, the
temperature distribution at the right boundary is a curve described by the
function sin(πy), and the temperature at all other boundaries is zero. We
plot the temperature as a value in the third dimension depending on the
position on the plate. In this three-dimensional picture we see therefore a
landscape whose height corresponds to the temperature at that point. The first
picture (Fig. 30.4(a)) shows a temperature distribution on a grid consisting
of 33 × 33 points, where the temperature is zero at all points except on the
right boundary. There we have the mentioned temperature curve.

This is not the correct temperature distribution which has to be computed
first by our Gauß–Seidel method. It has to arrive at a smooth temperature
distribution which is no longer linear as in the one-dimensional case even if
there are no additional heat sources, which is assumed in this case.

If we execute algorithm GaussSeidel2D once, we call this one executed
iteration. This already implies that we have to perform the algorithms mul-
tiple times to get a good solution. If we trace several Gauß–Seidel iterations
(Fig. 30.4(b) to Fig. 30.4(f)) we see how the preset temperature at the bound-
ary spreads into the interior of the plate until the temperature distribution
over the whole plate finally looks nicely smooth. The amount of computation
is not to be underestimated as every iteration of the Gauß–Seidel method
has to compute the average of four numbers at 31 × 31 = 961 points. For
a thousand iterations the computer has to perform already nearly 5 million
arithmetic operations.

Even though the computed solution looks fairly good after 100 iterations
(Fig. 30.4(e)), we must not stop the method at this time as we can see in
Fig. 30.5. The first picture (Fig. 30.5(a)) shows the exact solution for this
problem and the computed solution after 100 Gauß–Seidel iterations together
such that we can see that the computed result is not quite right yet. (You

30 Gauß–Seidel Iterative Method 301

Fig. 30.4. Progress of Gauß–Seidel iterations

can determine the exact solution in this special case using a mathematical
formula, it is u(x, y) = 1

sinh π sinh(πx) · sin(πy) which is the only function that
fulfills the given boundary conditions and for which the sum of the derivatives
by x and y equals zero.)

Only after about 1000 iterations (Fig. 30.4(f) and Fig. 30.5(b)) does the
overlay show no difference between the exact and the computer solutions
anymore.

302 Christoph Freundl and Ulrich Rüde

Fig. 30.5. Differences between approximated (red) and exact (green) solution

Even if it might appear that the temperature distribution shows the tem-
poral advance of the heating during the iterations, this is not the case here.
What we compute here is the state when the system is at an equilibrium with
the given heating. Other, slightly more complicated methods would allow us
to compute the correct temporal changes of heating or cooling.

Of course it is an interesting question how many iterations of the Gauß–
Seidel method are actually needed in order to get a good approximation to the
physical solution. By experience (or better by a mathematical analysis of the
method) we can tell that for a grid consisting of N points we have to perform
circa N ×N iterations. On the other hand, as the temperature on the plate can
be represented more exactly the finer the grid points are located, we quickly
reach a computational effort that exceeds even the power of modern PCs. This

30 Gauß–Seidel Iterative Method 303

is especially true if we want to simulate not only two-dimensional (like the
plate) but three-dimensional objects and if additional physical phenomena –
like in weather forecasts – make the computations more complicated. Then we
need not only supercomputers which are a lot more expensive (costing millions
of Euros) but also significantly improved algorithms that can compute the
same result in a shorter time.

For those who are interested here are two ideas for how the method could
be accelerated: in the pictures it can be seen that the exact solution is approx-
imated from one side, namely from below. In other words, every Gauß–Seidel
iteration brings us closer to the exact solution but it does not go far enough.
We can utilize this observation by increasing the computed change in ev-
ery single iteration, i.e., by multiplying with a number larger than one (but
smaller than two). The resulting method is the so-called SOR method (from
“successive over-relaxation”). The second idea is even more complex and is
based on several grids with different point intervals working together in a
skillful way. This so-called multigrid method needs only a very small number
of iterations before it computes good solutions and is regarded as the fastest
known method for these types of problems.

Finally we want to mention that the Gauß–Seidel method was invented
by the most famous of all mathematicians, Carl Friedrich Gauß, in 1823, and
was further developed by one of his colleagues, Philipp Ludwig Seidel. At the
time of Gauß and Seidel you had to perform the calculations manually of
course. Gauß wrote in a letter: “The method can be performed half blindfold
or one can think of other things when performing it.” If we program the
method nowadays on a computer, we can also think of other things while the
computers do the computational work.

Further Reading

1. Chapter 10 (PageRank)
The article about the page-rank algorithm shows how to solve a system of
equations step by step: this is exactly the Gauß–Seidel method, only for
a different equation system.

2. The Gauß–Seidel method as Algorithm of the Week:
http://www-i1.informatik.rwth-aachen.de/∼algorithmus/algo39.
php
In the online version of this article (German only) are Java applets which
illustrate the execution of the method.

3. http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel method
This Wikipedia article contains an exact mathematical description of the
Gauß–Seidel method for arbitrary equation systems.

4. “Why Multigrid Methods Are so Efficient” by Irad Yavneh:
http://doi.ieeecomputersociety.org/10.1109/MCSE.2006.125

304 Christoph Freundl and Ulrich Rüde

This article, appearing in the journal Computing in Science & Engineer-
ing, explains the idea of the multigrid methods mentioned above, but it
also requires more mathematics for understanding.

5. TOP500 – the list of the 500 fastest computers in the world:
http://www.top500.org/
This list is presented twice a year. It comprises those computers which
can be used for computing solutions to really big problems.

6. http://en.wikipedia.org/wiki/Carl Friedrich Gauss
http://en.wikipedia.org/wiki/Philipp Ludwig von Seidel
These articles describe in short the lives of the German mathematicians
Carl Friedrich Gauß and Philipp Ludwig von Seidel to whom the presented
method can be traced back.

31

Dynamic Programming – Evolutionary
Distance

Norbert Blum and Matthias Kretschmer

Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

150 years ago parts of the skeleton of the so-called Neanderthal man were
found near Düsseldorf (Germany) for the first time. Since then we’ve wanted
to know how Homo sapiens, our ancestor, and the Neanderthal man are re-
lated. Today we know that Homo neanderthalensis is not an ancestor of Homo
sapiens, and vice versa. Differences in the genotype of Homo sapiens and Homo
neanderthalensis proved that. New technologies allow us to extract genotypes
from bones that are more than 30,000 years old. The genotypes are extracted
in the form of DNA sequences. These DNA sequences are like construction
plans of animals and humans. In the course of time, DNA sequences change
through mutations. Given the DNA sequences of different species, one can cal-
culate their similarity with the help of a computer. We measure the similarity
of two sequences by specifying a distance between them. A small distance of
two DNA sequences indicates a high similarity of both sequences. How do we
calculate the distance of two DNA sequences? We will show how to develop an
algorithm for solving this problem. To do this, we need a mathematical model
of DNA sequences, mutations and the distance between two DNA sequences.

Mathematical Modeling

A DNA sequence consists of bases. A sequence of three bases encodes an amino
acid. There exist four different bases which are represented by the letters A,
G, C and T . Hence, a DNA sequence may be represented by a string over the
alphabet Σ = {A, G, C, T }. For example,

CAGCGGAAGGTCACGGCCGGGCCTAGCGCCTCAGGGGTG

is a part of the DNA sequence of the chicken.
In nature DNA sequences change through mutations. A mutation can be

considered as a mapping from a DNA sequence x to a DNA sequence y. We
assume that all mutations are modeled using the following three types of basic
mutations:

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 31, c© Springer-Verlag Berlin Heidelberg 2011

306 Norbert Blum and Matthias Kretschmer

1. deletion of a character,
2. insertion of a character, and
3. substitution of a character with another character.

For example, let x = AGCT be a DNA sequence. Then the mutation substi-
tute G by C would mutate x to the sequence y = ACCT . We use the notation
a → b to represent the substitution of a by b. a → represents the deletion of
character a and → b is the insertion of character b. The position where the
mutation has to be performed is explicitly given by the algorithm.

To measure the distance of two DNA sequences, we give every basic mu-
tation a specific cost. The mutation s has cost c(s). The cost of a mutation
corresponds to the probability of that mutation. The more likely a mutation
is the lower the cost. We use the following costs for the three basic mutations:

• deletion: 2
• insertion: 2
• substitution: 3

To compare two DNA sequences x and y, we require in most cases more
than one basic mutation to transform x to y. For example, if we want to
compare x = AG and y = T , then one basic mutation would not be sufficient.
But we could perform the transformation using the sequence of mutations
S = A →, G → T (delete A and substitute G by T). The cost c(S) of a
sequence of mutations S = s1, . . . , st is the sum of the costs of its basic
mutations, i.e.,

c(S) := c(s1) + · · · + c(st).

The distance of two DNA sequences is defined by the cost of a specific
sequence of mutations which transform one to the other. The problem is that
there might be many different sequences of mutations that transform one
DNA sequence to another. For example, we could use the following mutation
sequences to transform the DNA sequence x = AG to y = T :

• S1 = A →, G → T ; c(S1) = c(A →) + c(G → T) = 2 + 3 = 5
• S2 = A → T, G →; c(S2) = c(A → T) + c(G →) = 3 + 2 = 5
• S3 = A →, G →, → T ; c(S3) = c(A →)+ c(G →)+ c(→ T) = 2+2+2 = 6
• S4 = A → C, G →, C →, → T ;

c(S4) = c(A → C) + c(G →) + c(C →) + c(→ T) = 3 + 2 + 2 + 2 = 9

There exist many other sequences that transform x to y, but none of them
have lower cost than the sequences S1 and S2. To define the distance of two
DNA sequences, we use the sequence of mutations with the lowest cost. Given
a cost function c, the distance dc(x, y) of the DNA sequences x and y is defined
by

dc(x, y) := min{c(S) | S transforms x to y}.

31 Dynamic Programming – Evolutionary Distance 307

For example, the sequences S1 and S2 are the sequences of mutations with
the lowest cost that transform x = AG to y = T . Hence, the evolutionary
distance dc(x, y) of x and y is five.

Calculation of the Evolutionary Distance

How to calculate the evolutionary distance dc(x, y)? We only allow the ba-
sic mutations deletion, insertion and substitution to transform x to y. The
definition of the basic mutations and of their costs are in such a way that
multiple mutations at the same position can be replaced by a single mutation
with lower cost. For example, the deletion of the character A and the insertion
of the character B can be replaced by the substitution of A by B which has
lower cost (cost 3 for the substitution and 2 + 2 = 4 for the deletion and
insertion). Operations at different positions do not depend upon each other.
Hence, we can perform the mutations in any order. Assume that the last mu-
tation will always be performed at the last position of both DNA sequences.
Let x = a1a2 . . . am and y = b1b2 . . . bn two DNA sequences; i.e., x consists of
m and y of n characters. By the definition of our three mutations, we have
the following three possibilities for the last mutation:

1. Deletion: Transform a1a2 . . . am−1 to b1b2 . . . bn and then delete am.
2. Insertion: Transform a1a2 . . . am to b1b2 . . . bn−1 and then insert bn.
3. Substitution: Transform a1a2 . . . am−1 to b1b2 . . . bn−1 and then substitute

am by bn.

For the calculation of the evolutionary distance, we only need to consider the
last mutation with the lowest cost.

We develop our algorithm by using the scheme above. Let x[i] be the
sequence consisting of the first i characters of x. This sequence is called the
prefix of length i of x. The prefix of length 0 of x is the empty sequence
x[0]. The sequence of length m of x is x itself (x consists of m characters).
Analogously, y[j] denotes the prefix of length j of y. Now we can reformulate
the three possible last mutations:

1. Transform x[m − 1] to y and then delete am.
2. Transform x to y[n − 1] and then insert bn.
3. Transform x[m − 1] to y[n − 1] and then substitute am by bn.

It remains to solve the following problem: How to transform x[m−1] to y, x to
y[n − 1] and x[m − 1] to y[n − 1]? For these three transformations, we can just
apply the same scheme. To calculate the evolutionary distance dc(x[i], y[j]) of
the prefix of length i of x and the prefix of length j of y, we use the following
scheme:

dc(x[i], y[j]) := min

⎧
⎪⎨

⎪⎩

dc(x[i − 1], y[j]) + c(ai →) (deletion),
dc(x[i], y[j − 1]) + c(→ bj) (insertion),
dc(x[i − 1], y[j − 1]) + c(ai → bj) (substitution).

308 Norbert Blum and Matthias Kretschmer

Hence, we require the distances dc(x[i − 1], y[j]), dc(x[i], y[j − 1]) and dc(x[i −
1], y[j − 1]) to calculate the distance dc(x[i], y[j]).

If one of the prefixes has length zero then not all of the three mutations
can be performed. We cannot delete a character from or substitute a char-
acter into the empty string. To transform x[i] to the empty string y[0] with
minimum cost, we will never insert or substitute a character. Each charac-
ter that is inserted or substituted has to be deleted, thus we can omit the
insert and substitute mutations and get a sequence of mutations with lower
cost. The lowest cost transformation from x[i] to y[0] is thus the sequence of
basic mutations which consists only of deletions. Similarly, in the case of the
transformation from x[0] to y[j], the lowest cost transformation is to insert
the characters of the string y[j]. Hence, for i = 0 and j > 0 we perform only
insertions and for i > 0 and j = 0 we perform only deletions. The cost of the
sequences of mutations in the case of i = 0 and j > 0 is 2 · j and in the case of
i > 0 and j = 0 is 2 · i. If both i and j are zero then we have to transform the
empty string to the empty string. Of course, we do not need any mutation for
this transformation. Hence, the cost dc(x[0], y[0]) is zero.

For example, consider the two DNA sequences x = AGT and y = CAT .
Assume that we know the distances dc(x[1], y[2]) = dc(A, CA), dc(x[2], y[1]) =
dc(AG, C) and dc(x[1], y[1]) = dc(A, C). Then we can use the scheme above
to get the evolutionary distance dc(x[2], y[2]) = dc(AG, CA) by calculating
the minimum of

• dc(x[1], y[2]) + c(a2 →) = dc(A, CA) + c(G →) = dc(A, CA) + 2,
• dc(x[2], y[1]) + c(→ b2) = dc(AG, C) + c(→ A) = dc(AG, C) + 2, and
• dc(x[1], y[1]) + c(a2 → b2) = dc(A, C) + c(G → A) = dc(A, C) + 3.

The minimum of these three cases is the evolutionary distance dc(AG, CA).

The Algorithm

How to get an algorithm from this scheme? The distances of most prefixes of x
and y are required multiple times. For example, the distance dc(x[i−1], y[j−1])
is required to calculate dc(x[i − 1], y[j]), dc(x[i], y[j − 1]) and dc(x[i], y[j]). To
save time, we only want to calculate dc(x[i − 1], y[j − 1]) once. Hence, we have
to keep this value to use it multiple times without recalculation. To do this,
we use a table in which we store all previous calculated evolutionary distances
of prefixes of x and y. We store in the cell (i, j) (row i and column j) of the
table the value of the evolutionary distance dc(x[i], y[j]). The advantage of
this method is that we only need to calculate the distances of prefixes once
and can use a simple table lookup operation to get the value again. We require
the evolutionary distance for all 0 ≤ i ≤ m and 0 ≤ j ≤ n to calculate the
distance of the DNA sequences x and y. Thus the table consists of m+1 rows
and n + 1 columns.

31 Dynamic Programming – Evolutionary Distance 309

Fig. 31.1. Table for the calculation of the evolutionary distance of x = ATGAACG
and y = TCAAT

For example, let x = ATGAACG and y = TCAAT . The corresponding
table for the calculation of the evolutionary distance is given in Fig. 31.1.

We start by calculating the distance of dc(x[0], y[0]) and storing the value
in cell (0, 0). As mentioned above, we know that this distance is always zero.
We already know the values of the entries in Column 0 and in Row 0. In
Column 0 we only perform deletions and in Row 0 only insertions. Hence, we
store the values 2, 4, 6, . . . in this column and this row.

We use the developed scheme to calculate the values of the other cells. For
example, consider the cell (2, 1). The cell represents the evolutionary distance
of x[2] = AT and y[1] = T . The deletion of A is intuitively the only mutation
of minimum cost to transform x[2] to y[1]. The algorithm has to calculate the
same distance. It chooses one of the following possible mutations:

1. dc(x[1], y[1]) + c(a2 →) = dc(A, T) + c(a2 →) = 3 + 2 = 5 (deletion of T),
2. dc(x[2], y[0]) + c(→ b1) = dc(AT, y[0]) + c(→ b1) = 4 + 2 = 6 (insertion

of T) and
3. dc(x[1], y[0]) + c(a2 → b1) = dc(A, y[0]) + c(a2 → b1) = 2 + 0 = 2 (substi-

tution of T by T).

The substitution of T by T is no mutation. We use this to keep the notation
simple. In reality we do not substitute T by T . Hence, the cost for this op-
eration is zero. The deletion of A is not explicitly given in this step of the
algorithm. This mutation is performed during the transformation of x[1] = A

310 Norbert Blum and Matthias Kretschmer

to y[0]. Since the algorithm will choose the third possible mutation in the last
step, it will generate the solution which we have intuitively generated.

The lines in the table that form a path from cell (0, 0) to a cell (i, j),
represent the possible transformations from x[i] to y[j]. In the case of (2, 1),
we used the path over (1, 0) by first deleting A and then substituting T by T .
The table shows that there might be multiple paths to a cell (i, j). Hence, there
might exist multiple different optimal sequences of mutations to transform x
to y. The lines can be calculated by the algorithm, as these just represent
the case that lead to a minimum distance in a single step. The red colored
lines constitute the path of minimum cost for the transformation of x to y.
Hence, these represent the sequences of mutations that transform x to y with
minimum cost and which can be used to get the evolutionary distance.

We do not know which cells we require for the calculation of a path of
minimum cost to transform x to y. Thus, we have to calculate the values of
all cells. To calculate the value dc(x[i], y[j]) of cell (i, j), we need the values
of the cells (i − 1, j), (i, j − 1) and (i − 1, j − 1). To make sure that we have
already calculated these values, we generate the table row by row or column
by column. If we do it row by row, we need to go through the rows from
the left to the right. Similarly, if we generate the table column by column,
we need to go through the columns from the top to the bottom. This ensures
that all required values are stored in the table, when we calculate the distance
dc(x[i], y[j]). At the end, the evolutionary distance dc(x[m], y[n]) = dc(x, y) is
stored in the cell (m, n).

Conclusion

Starting with the smallest subproblem, the calculation of dc(x[0], y[0]), we
have solved larger and larger subproblems. In each step we have increased the
lengths of the prefixes of x and y and calculated their evolutionary distances.
For the calculation of the distance dc(x[i], y[j]) we have used the distances
dc(x[i − 1], y[j]), dc(x[i], y[j − 1]) and dc(x[i − 1], y[j − 1]). Hence, we have
used the optimal solution of these smaller subproblems to solve the larger
subproblem.

Given a problem, the calculation of a solution of minimum cost is called an
optimization problem. The calculation of the evolutionary distance of two DNA
sequences is such an optimization problem. We have used a specific technique
to create an algorithm for our optimization problem. This generic technique
may be applied to other but not all optimization problems. Implicitly, we have
used the following property of our optimization problem:

• Every subsolution of an optimal solution which is a solution for a subprob-
lem is an optimal solution for that subproblem.

Many optimization problems have this property. The technique we have used
for solving the problem of finding the evolutionary distance may be applied

31 Dynamic Programming – Evolutionary Distance 311

to any problem with this property. This technique is called dynamic pro-
gramming. In the case of dynamic programming, we split the problem into
subproblems. We solve the smallest subproblems directly. In our case, this is
the calculation of dc(x[0], y[0]). The solution for this subproblem is zero. From
the optimal solutions of small subproblems we calculate the optimal solutions
of larger subproblems. We repeat this until we have calculated the optimal so-
lution of the original problem. Dynamic programming is an important generic
technique that is often used for the development of algorithms.

The algorithm for calculating the minimum evolutionary distance of two
DNA sequences can be used for other purposes than calculating the similarity
of two species. For example, one can use it to measure the similarity of two
words. This can be useful for spellchecking software. The correct spelling of a
word has most probably a very small distance to the incorrectly spelled word
given by the user. So the software may show the user all words within a given
maximum distance as possible correct spellings of the given word.

References

The references below provide a generic introduction to dynamic programming.
They present the theoretical background and also examples of its application.

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein: Introduction to Algorithms. MIT Press, 2nd edition, 2001. Chap-
ter 3.

2. Jon Kleinberg, Éva Tardos: Algorithm Design. Addison-Wesley, 2005.
Chapter 6.

Part IV

Optimization

Overview

Heribert Vollmer and Dorothea Wagner

Universität Hannover, Hannover, Germany
Karlsruher Institut für Technologie, Karlsruhe, Germany

How can we find the shortest way to go from one city to another? How can
we find the order in which to visit different cities such that the resulting
round tour is the shortest among all possibilities? In the final part of this
book we look at such tasks where, given a generally very large set of “possible
solutions” to an algorithmic goal, we have to determine in a certain sense
the “optimal solution.” In computer science, such problems are known as
optimization problems.

We will see that for many optimization problems very tricky algorithms
are known that produce an optimal solution very quickly (“efficiently”). The
above-mentioned shortest-path problem is one of them. In Chap. 32 an algo-
rithm for this and related problems will be presented. Also the subsequent six
chapters of the final part of this book explain efficient procedures to find so-
lutions for different optimization problems. In Chap. 33 some islands have to
be connected via a system of bridges in such a way that it is possible to drive
from each island to each other, but the number and size of the bridges has to
be as small as possible. Chapter 34 explains how car traffic can be distributed
among the different streets of a city with different numbers of lanes in such
a way that we have as few traffic jams as possible. This is an example of a
so-called network flow problem – these problems are of immense importance
in computer science today. The task of a dating service to arrange meetings
among marriage-minded ladies and gentlemen is solved optimally (at least
from a theoretical point of view) in Chap. 35. In Chap. 36 we must choose
the location for a new suburban fire brigade headquarters.

Finally we have to find solutions for optimization problems where the
problem specification is not completely known from the beginning. For these
online problems the parameters become known only little by little. In Chap. 37
we have to decide if, for a skiing holiday, it is better to buy or rent the skis,
but we do not know yet if we will reuse the skis later. In Chap. 38 we want to
move, and we want to use as few boxes as possible to pack our stuff, but we
are not fully decided yet which things we want to move and which we want
to throw away.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0, c© Springer-Verlag Berlin Heidelberg 2011

316 Heribert Vollmer and Dorothea Wagner

For many other important optimization problems no efficient solution al-
gorithm is known to this day. The only way to find the optimal solution is to
compare all possible solutions. The time requirement for this simple proce-
dure is of course dependent on the number of solutions and hence in general
it is very large. For example, in Chap. 39 a knapsack has to be packed opti-
mally for a hike, but there are many different ways to use its capacity. Also
the above problem to determine the shortest round-trip through a number
of cities is one of the hard problems for which we do not know how to find
an optimal solution. But in Chap. 40 we will see how a so-called approxi-
mation algorithm finds a tour that is maybe not the shortest one but one
whose length usually is quite close to the optimum; in the worst case it is
twice as long. The final chapter of this book, Chap. 41, introduces simulated
annealing, an algorithmic method that produces approximate solutions for a
number of optimization problems with certain mathematical properties. The
name of this magical method is due to an analogy with an industrial technique
that involves the heating and controlled cooling (“annealing”) of a material
to improve its stability.

32

Shortest Paths

Peter Sanders and Johannes Singler

Karlsruher Institut für Technologie, Karlsruhe, Germany

I have just moved to Karlsruhe and into my first flat. Such a big city is rather
complicated. I already have a city map, but how can I find the fastest way
to get from A to B? I like cycling but I am notoriously impatient, so I really
need the shortest path to the university, to my girlfriend, and so on.

Systematic planning could look like this: I pin the city map on a table
and put thin yarn threads along the streets, knotting them at crossroads and
junctions. I also knot all possible start points, end points and dead ends.

Copyright Karlsruher Institut für Technologie, Institut für Photogrammetrie und

Fernerkundung

Here comes the trick: I pick the starting knot and slowly lift it up. One
after another the knots leave the table surface. I have labeled the nodes so that

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 32, c© Springer-Verlag Berlin Heidelberg 2011

318 Peter Sanders and Johannes Singler

I always know where each knot comes from. At last, all knots hang vertically
below the starting knot.

The rest is really easy: To find the shortest path, I only have to find the end
knot and trace the straight threads back to the start. The distance between
both points can then be found with a measuring tape. The path found this
way must indeed be the shortest, because if there was a shorter one, it would
have kept the start and end closer together.

Suppose, for example, I need the shortest path from the cafeteria (M) to
the computing center (F). I pick knot M, lifting all other knots off the table.
The figure below shows the situation at the moment when knot F hangs in
the air for the first time. To make the figure clearer, the knots are pulled
apart horizontally a bit. The orange knots are hanging, the numbers on the
right indicate the distance to M using the thread length from the first fig-
ure.

It is obvious that the shortest path from M to F leads via G. Between L
and K, the thread is already sagging with no chance of hanging any straighter.
This means there is no shortest path from M using this connection.

I have tried this method successfully for the campus and its surroundings.
But I failed miserably with my first trial run for the whole city of Karlsruhe,
which produced nothing but a heap of tangled threads. It took me half the
night to disentangle them and lay them out on the city map again.

My younger brother drops by the next day. “No problem,” he says, “I will
solve the problem with superior technology!” He turns to his chemical kit and
soaks the threads in a mysterious liquid. Good grief! He ignites the web at
the starting point. Seconds later, the room disappears in a cloud of smoke.
This pyromaniac turned the threads into fuses. He explains proudly: “All

32 Shortest Paths 319

threads are burning at the same speed. So the time before a knot catches fire
is proportional to the distance from the starting point. Besides, the direction
from which a knot catches fire contains the same information as the straight
threads of my hanging web approach.” Great! Unfortunately, he forgot to
record the inferno, so we have only ashes left. Even with a video tape I would
have to start over with every new starting point. Below, there is a snapshot
of the threads after the flames from starting point M have burned part of the
way (gray).

I throw my brother out and start to think. I have to get over my fear of
abstraction and make the problem clear to my stupid computer. This does
have certain advantages: threads that do not exist cannot get tangled up or
burn. My professor told me that back in 1959 a certain Mr. Dijkstra developed
an algorithm that solves the shortest-path problem in a way that is quite
similar to the thread method. Neatly enough, Dijkstra’s algorithm can be
described in thread terminology.

Dijkstra’s Algorithm

Mainly, it is about simulating the thread algorithm. For every knot, a com-
puter implementation must know the threads starting from it and their re-
spective lengths. It also administrates a table d which estimates the distance
from the starting point. The distance d[v] is the length of the shortest connec-

320 Peter Sanders and Johannes Singler

tion from the starting knot to v using only hanging knots. As long as there
are no “hanging connections,” d[v] is infinite. Therefore, in the beginning,
d[starting knot] = 0, and d[v] = infinite for all other knots.

The pseudocode given here describes the calculation of all knots’ distances
to the starting knot:

Dijkstra’s Algorithm in Thread Terminology

1 all knots are waiting, all d[v] are infinite, only d[starting knot] = 0
2 while there are waiting knots do
3 v := the waiting knot with the smallest d[v]
4 Turn v hanging
5 for all threads from v to a neighbor u of the length � do
6 if d[v] + � < d[u], then d[u] := d[v] + �

// found shorter path to u, leads via v

How is this algorithm linked to the process of slowly lifting up the starting
knot? Each iteration of the while-loop corresponds to the transition of knot
v from waiting to hanging. The next knot lifted in turn is the waiting knot
v of the smallest value d[v]. This value is the height to which we have to lift
the starting knot to make v hanging. Since other threads lifted to this height
later on cannot decrease it, d[v] is the definitive distance from the starting
knot to v.

The plus side of Dijkstra’s algorithm is that the d[u] values of the other
knots can easily be adapted when v becomes hanging: only the threads starting
from v have to be considered, which is done by the inner for-loop. A thread
between v and a neighboring knot u of the length � builds a connection of
the length d[u] := d[v] + � from the starting knot to u. If this value is smaller
than the last value of d[u], the latter is diminished accordingly. In the end, all
knots reachable from the starting knot are hanging and the d[u] values give
the lengths of the shortest paths.

In the following, you see some steps in the execution of the algorithm.
Hanging knots are orange, blue ones are waiting and the remaining, as of yet
unreached knots are white. Inside the circles the current d[u] is given. After
the algorithm has finished you can go backwards from the target knot and
along the red threads to find the shortest path.

The algorithm starts with the following configuration, when all knots are
still lying on the table.

32 Shortest Paths 321

The next figure shows the algorithm’s state after ten steps, i.e., the same
situation as in the hanging thread web in this chapter’s first figure.

322 Peter Sanders and Johannes Singler

The end state looks like this: All knots are hanging in the air, and the
shortest paths from M lead along the red threads.

With my computer implementation, I can now calculate distances between
knots to my heart’s content, without having to clean up ashes or disentan-
gle threads. My anger is subsiding slowly, and maybe my brother will not be
permanently banned from my flat after all. However, for real route planning,
I must expand Dijkstra’s algorithm to make the shortest paths themselves
available. Whenever d[u] is set to a new value, the program remembers which
knot was responsible for this: knot v that has just been lifted. In the end,
the route is reconstructed by going backwards, following the predecessor in-
formation from the target to the start knot. The pointers contain the same
information as the red threads in the figures.

FAQs and Further Reading

Where can I find a more detailed description of Dijkstra’s algo-
rithm? There are many good algorithm textbooks explaining everything there
is to know, e.g., K. Mehlhorn, P. Sanders. Algorithms and Data Structures –
The Basic Toolbox. Springer, 2008.
Who was Dijkstra? Edsger W. Dijkstra (http://de.wikipedia.org/wiki/
Edsger Wybe Dijkstra) was born in 1930 and died in 2002. Not only did he
invent the algorithm described above, he also made substantial contributions
in the field of systematic programming and to the modelling of parallel pro-
cesses. In 1972 he was presented with the Turing Award, the most prestigious

32 Shortest Paths 323

award for computer scientists. His famous article “A note on two problems
in connexion with graphs” was published in 1959 in the journal Numerische
Mathematik. The “other” problem he mentions is the calculation of minimum
spanning trees. If you leave out the “d[v]+” in line 6 of our pseudocode you
get the Jarńık–Prim algorithm from Chap. 33.
What are threads, etc., in “technicalese”? Knots are called nodes in
computer science; instead of threads we have edges. Networks of nodes and
edges form graphs.
Have I not already come across something like this in this book?
In computer science, the search for paths and the related problem of finding
circles are very important.

• Depth search systematically lists certain paths, which is the basis of many
algorithms. See for example Chap. 7 (Depth-First Search) and Chap. 9
(Cycles in Graphs).

• The Eulerian Circles in Chap. 28 use each edge exactly once.
• The Travelling Salesman Problem described in Chap. 40 is concerned with

a round trip between cities that has to be as short as possible. Determining
the travelling time between the cities, however, is a shortest path problem.

How to implement the pseudocode efficiently? We need a data structure
that supports the following operations: insert nodes, delete nodes with the
shortest distance, and change distance. Since this combination of operations
is needed quite often, there is a name for it – priority queue. Fast priority
queues need time at most logarithmic in the number of nodes for any of the
operations.
Can we do this even faster? Do we really have to look at the whole
Western European road network in order to find the shortest path from Karl-
sruhe to Barcelona? Common sense says otherwise. Current commercial route
planners only look at highways when “far apart” from starting points and
destinations, but cannot guarantee not to overlook short cuts. In recent years,
however, faster procedures have been developed that guarantee optimal solu-
tions, see, for example, the work of our group http://algo2.iti.kit.edu/
routeplanning.php.
Is this a route planner for road networks only? The problem is much
more common than it seems. For instance, Dijkstra’s algorithm does not have
to know about a node’s geographical position, and is not limited to (spatial)
distances, but can also use travelling times as thread lengths. This even works
for one-way streets or differing travelling times for the trips from A to B
and back, since our algorithm only considers the thread length from start to
end. The network can also model many other things, e.g., public transport
including departure times, or communication channels in the internet. Even
problems that, at first sight, look unrelated to paths, can often be rephrased
appropriately. For example, the distance between two strings of characters
(genome sequences) in Chap. 31 can be interpreted as a distance in a graph.

324 Peter Sanders and Johannes Singler

Nodes are pairs of letters of the two inputs that are matched. Edges encode
the operations delete, insert, replace and transfer.
Is it possible to have streets of negative length? This can be quite
useful, e.g., it is possible to factor in that my favorite ice cream parlor is in
a certain street, so I do not mind detours. However, a round trip of negative
length is not allowed, otherwise you could go in circles for as long as you
like (eating ice cream) while the path is continuously becoming shorter –
the concept of the shortest path would not make sense anymore. But even if
there are no negative circles, Dijkstra’s algorithm could fail. The problem is
that via a knot already hanging, a thread of negative length could provide
improved routes for other nodes. Dijkstra’s algorithm does not handle this
case. A better-suited alternative is Bellman and Ford’s algorithm, which takes
more care to cover all cases but is much slower.

33

Minimum Spanning Trees
(Sometimes Greed Pays Off . . .)

Katharina Skutella and Martin Skutella

Technische Universität Berlin, Berlin, Germany

Once upon a time in a remote island kingdom there lived the Algo clan.
The clansmen lived scattered all over the seven islands of the kingdom shown
below.

The seven islands and the mainland were connected by several ferries al-
lowing visits and excursions to the mainland. The ferry connections are plotted
in dashed lines on the map (Fig. 33.1). The numbers indicate the length of
the ferry connection in meters.

Fig. 33.1. The island kingdom of the Algos comprised the seven islands B, C, . . . , H.
The dashed lines depict ferry connections. The numbers indicate the lengths of the
ferry connections in meters. For example, one ferry cruised between the mainland
A and the island D, covering a distance of 700 m one-way

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 33, c© Springer-Verlag Berlin Heidelberg 2011

326 Katharina Skutella and Martin Skutella

The Bridge Project of the Algos

Once in a while, during stormy weather, ferries capsized. Therefore, the Algos
decided to replace certain ferry connections by bridges.

In the first year, one of the seven islands was going to be connected to the
mainland by a new bridge. The Algos built a bridge of length 130 m between
A and H, since all connections from A to other islands are longer.

During the second year, they wanted to connect another island to the
mainland. Therefore, the construction of a bridge between A or H and another
island was taken into consideration. The Algos built the shortest possible
bridge of length 90 m between H and C.

In the third year, the construction of another bridge (starting from A, C,
or H) should connect a third island to the mainland. This time, the shortest
possible option was the bridge of length 110 m connecting B and C.

The status quo of the ongoing building project is shown in Fig. 33.2. As
you can see, the Algos were not yet ready with their project.

In the following years, the bridge of length 170 m between C and G, then
the bridge of length 70 m connecting F and G, next the bridge of length 80 m
from G to E, and finally the bridge of length 180 m connecting B and D were
built.

Finally, after seven years, all islands were connected to each other and to
the mainland by bridges. The bridge project was therefore completed.

The final bridge system of the Algos is shown in Fig. 33.3.
The Algos were delighted. The time and effort for building the bridges

had been enormous, but they were convinced that they had avoided the con-

Fig. 33.2. The status quo of the building project after three years. The islands B,
C, and H are already connected to the mainland

33 Minimum Spanning Trees 327

Fig. 33.3. The final bridge system of the Algos

struction of excessively long bridges as far as possible. The total length of all
bridges added up, as you can easily check, to exactly 830 m.

Building Bridges After the Hurricane

Shortly after the completion of the last bridge, a terrible hurricane swept over
the kingdom and completely destroyed the precious bridges. After recovering
from the shock, the Algos decided to construct a new bridge system. Again,
the bridges were supposed to connect all islands to each other and to the
mainland.

Due to the hurricane, there was a lack of building material. It was agreed
to first build a shortest possible bridge. Therefore, in the first year after the
hurricane, the bridge of length 70 m connecting F and G was built.

Also in the second year building material was scarce, so that the next
longer bridge of length 80 m from E to G was built.

According to this strategy, in the third year the bridge of length 90 m
between C and H was built. After the construction of these three bridges the
three islands E, F, and G and the two islands C and H were connected to each
other (see Fig. 33.4).

In the fourth year, the shortest connection that had not been realized yet
was the one of length 100 m between E and F. Because both islands were
already connected to each other via G, they instead built the bridge of length
110 m connecting B and C.

During the fifth year, the bridge of length 130 m from A to H was added,
then the bridge of length 170 m connecting C and G, and finally, in the seventh

328 Katharina Skutella and Martin Skutella

Fig. 33.4. The status quo of the second bridge project three years after the hurri-
cane. The bridge system consists of three bridges of lengths 70 m, 80 m, and 90 m.
The shortest connection that has not been realized yet is the one between E and F
(marked by a dashed line on the map). In the fourth year, however, the Algos de-
cided against building this bridge, because these two islands were already connected
to each other via G

Fig. 33.5. The second bridge system of the Algos

year, the bridge of length 180 m from B to D. The new bridge system of the
Algos is depicted in Fig. 33.5.

With great astonishment the Algos realized that despite their new strategy
in building bridges, they had ended up with the same bridge system of total
length 830 m (compare Fig. 33.3). This confirmed the Algos’ belief that they

33 Minimum Spanning Trees 329

had found the optimal bridge system for their islands. And unless no second
hurricane has made trouble ever since, the Algos stroll happily and proudly
over their bridges till today.

The Algorithms of Prim and Kruskal

Now you probably wonder, whether the Algos were rightly proud of their
bridge system. Perhaps, there is still a better, thus shorter bridge system?
Using trial and error you can find out that any other bridge system that
connects the seven islands and the mainland to each other is longer than
830 m.

A bridge system of minimum total length that connects several places (here
mainland A and islands B to H) to each other is called “minimum spanning
tree.” The problem of finding a minimum spanning tree has many different
practical applications aside from building bridges. For example, it arises when
planning the sewage system of a new housing estate. The goal is to connect all
estates to the sewage system at the lowest possible price. Other applications
are the design of computer chips and the planning of traffic or communication
networks (telephone, TV, internet, etc.).

Both strategies of the Algos exemplify well-known algorithms for solving
the problem. The first strategy is known as “Prim’s Algorithm.” This algo-
rithm connects places to the mainland one after another. In each step the
shortest possible bridge is being built.

Prim’s Algorithm

1 Choose a special place (mainland) and call it reachable.
2 Initially all other places are not reachable.
3 Repeat the following steps until all places are reachable:

Build the shortest bridge between two places, of which one is reachable
and one is not reachable, and call the one that had not been reachable
yet reachable.

The second strategy described above (after the hurricane) is known as
“Kruskal’s Algorithm.” This algorithm builds in each step the shortest bridge
connecting two places that have not been connected before. It differs from
Prim’s Algorithm in the way that it not only takes bridges establishing a
connection to the mainland into consideration, but allows for arbitrary bridges
connecting two places that have not been connected yet.

Kruskal’s Algorithm

Repeat the following step until all places are connected to each other through
bridges:
Build the shortest bridge that connects two places that are currently not yet reach-
able from each other.

330 Katharina Skutella and Martin Skutella

The algorithms of Prim and Kruskal both compute a minimum spanning
tree and they have something in common. Recall the strategy of the Algos.
In both strategies, the Algos planned fairly nearsightedly from year to year.
Every year they chose the best (i.e., shortest) bridge coming into question at
that time. In doing so they did not take into consideration the effects of their
decisions for the future of their construction project. They acted “greedily.”
Algorithms with this property are also called “greedy,” because, at every step,
they make the best possible choice under the current circumstances. As you
can see, sometimes greediness pays off.

But such a greedy approach is not always successful. Imagine, for example,
you were asked to connect only island D to the mainland A by a bridge system
of minimum total length. The greedily designed bridge system of the Algos
connects D to A via the islands H, C, and B. The total length of bridges along
this path is 510 m. You can certainly find a shorter connection from mainland
A to island D! If you want to learn more about how to find the shortest
connection from mainland A to island D, go ahead and check Chap. 32.

In fact, the two algorithms described above have another interesting prop-
erty. They always compute a solution, in which the length of the longest
bridge is as small as possible. You can check this using the example of the
island kingdom.

Further Reading

1. Chapter 32 (Shortest Paths)
Not all Algos were happy with their bridges. For example, chief “Limping
Leg” from island D, who regularly consulted the medicine man on the
mainland, complained that the way from D to A via B, C, and H was
obviously too long (510 bridge meters). One should have better built a
bridge from A to B, which would have reduced the distance to 490 bridge
meters. Find out in Chap. 32 how to find the shortest connection from
the mainland to all bridges!

2. Chapter 40 (Travelling Salesman Problem)
Also milkman “Whining Whey,” who had to deliver a bag of coconuts to
each island day-to-day, kept complaining. In his opinion, one should have
built the bridges in such a manner that they yield a shortest round trip
starting from the mainland and passing by all islands. How to please the
milkman is the topic of Chap. 40.

3. Chapter 3 (Fast Sorting Algorithms)
To apply Kruskal’s Algorithm, it is advisable to first sort the possible
connections according to their lengths and then process them in ascending
order. You can find out how to sort fast in Chap. 3.

4. Chapter 9 (Cycles in Graphs)
In the fourth year after the hurricane, the Algos did not build the shortest
bridge connecting E to F, but instead the bridge from B to C. Because

33 Minimum Spanning Trees 331

the bridge from E to F would have connected two islands, which were
already connected by several other bridges. In other words: building a
bridge from E to F would have closed a cycle from E to G via F and back
to E. More on cycles and how to detect them is discussed in Chap. 9.

5. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Al-
gorithms. MIT Press, 2nd edition, 2001.
How to implement Prim’s and Kruskal’s Algorithms on a computer, such
that they find the solution as fast as possible, and many more things, can
be found in this textbook, which is frequently used in courses for first-year
computer science students.

34

Maximum Flows –
Towards the Stadium During Rush Hour

Robert Görke, Steffen Mecke, and Dorothea Wagner

Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

“What the heck is this? We’ll never get to the soccer stadium this way!” Jogi
sat in the car, next to his mother, and was beginning to get nervous. “It’s
not my fault that everybody’s using this street to the stadium. Now there is
a traffic jam,” she said. “Then simply turn around, and let’s take Ford Street
over there. Nobody uses that route.” Jogi’s mother did not really buy this,
but for the sake of peace she drove back, and, indeed, on Ford Street there
was less traffic. Up to the next junction at least. There, Ford Street led into
busy and broad Station Street, and there was the traffic jam again. “These
idiots don’t know what they’re doing. Turn left, mum!” – “But the stadium is
straight ahead,” she replied. “That’s true,” Jogi returned, “but we can take
Karl Street over there. While that is a detour, that street will definitely be
free.” Jogi’s mum remained skeptical, but she gave it a try. And it actually
appeared that Jogi was right. Nobody was taking that detour. Jogi even made
a futile attempt to encourage other cars coming towards them to turn around,
but nobody followed them. “Those fools! In a second they’ll be stuck in the
traffic jam although they could easily get through here!”

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 34, c© Springer-Verlag Berlin Heidelberg 2011

334 Robert Görke, Steffen Mecke, and Dorothea Wagner

Jogi arrived at the stadium in time, but the match turned out to be a
boring waste of time, which made Jogi think about the traffic situation earlier.
“Letting drivers choose their routes by themselves easily leads to congestion.
Traffic signs should be put up at each junction in order to route the cars
in such a way that traffic keeps flowing and as many cars as possible can
reach their goal soon. But how can we find the best solution for this routing
problem?” He did not arrive at a satisfactory answer immediately. However,
a few days later he spoke to his older sister about the incident. She studied
computer science but nonetheless did not have a solution at hand.

“Let’s simplify the problem as much as possible first: Let’s assume that
all drivers start from the same point . . . ” She marked the point on a piece of
paper and labeled it S for “start.” “. . . and want to go to another point.” She
marked that one with a Z for Zuse Stadium. “In between, there are streets
which meet at the junctions.” She drew several more points and lines between
the start and Zuse Stadium.

“But the streets can differ in capacity. Let’s put the number of lanes right
next to each street and thicken the lines in the drawing accordingly. Hmm,
we learned about shortest paths in a lecture recently, but that doesn’t help
much here. Of course we can start by finding the shortest path from S to Z.”
– “This one here?” Jogi marked it in the drawing. “But now we can continue
looking for more routes. We just have to record how many cars are already
using each street.”

Let us leave Jogi and his sister alone for now and continue their approach:
We are given a road network with road capacities, and we would like to know
how to route the cars in order to let traffic flow optimally. To keep things
simple, we assume that all cars start at S and aim for Z. Usually, car drivers
try to take the shortest path to their goal. But when too many cars take
a route at the same time, the traffic gets stuck. In our case “at the same
time” means “in the hour before the soccer match starts.” Each street can
only handle a certain number of cars passing through it (the capacity of the
street). This number does not so much depend on the street’s length but
rather on its width (the number of lanes). For example, a street with 1 lane
can be used by 1000 cars per hour. However, we still write 1 (the number of
lanes) instead of 1000, since we want to avoid dealing with such big numbers.

Other critical points in road networks are junctions. In case more cars
arrive at a junction than can continue, we have a congestion. By contrast,
if the number of cars that can leave a junction does not fall short of the

34 Maximum Flows – Towards the Stadium During Rush Hour 335

number of arriving cars, all is well. We now ask ourselves how many cars we
can simultaneously push through the network from S to Z. (“Simultaneously”
means “per hour” here.) A solution to the problem in our example would be
the following “traffic flow”:

Each street is now additionally labeled by the number of cars using it and
an arrow denoting their driving direction. Thus, 1 | 3 → means that one of
three available lanes is in use by cars going to the right. The first number must
never exceed the number of lanes (i.e., something like 3 | 2 is not allowed).
This rule is so important that we give it a name. We call it the capacity rule.
The requirement that the numbers of cars leaving and arriving at a junction
are equal (otherwise cars will get stuck) is called flow conservation rule (as
it ensures a steady flow at junctions). Only S and Z are an exception to this
rule.

Among all traffic flows fulfilling these two rules, we now seek one which
allows as many cars as possible to start off simultaneously or – which is the
same – to arrive at the goal. Computer scientists call the result a maximum
flow.

This kind of problem does not only occur in the field of traffic routing.
For instance, you could also think about how to evacuate buildings as fast as
possible or how to route data through a computer network. Can you think of
other examples?

The Algorithm

So how do we find a maximum flow? Let’s just give it a try: to start with,
there are no cars at all in our road network. We start by just sending out (red
in the picture) as many cars as possible from S without violating the capacity
rule.

336 Robert Görke, Steffen Mecke, and Dorothea Wagner

On each street leaving S, there are now as many cars as there are free
lanes (green). Of course, we do not use real cars for this purpose but, e.g., toy
cars instead. Or simply pen and paper. As soon as we have determined the
best solution for our problem, we can start routing real traffic on real streets
with real cars.

Now, obviously, the junctions these streets end at have an excess flow
(blue) of cars, that we have to send somewhere

such that the flow conservation rule is not violated. In order to get rid of this
congestion, we just push cars along some street leaving this junction (again
red). However, we always have to comply with the capacity rule and must
not push forth more cars than there are lanes. Inevitably, this causes a new
congestion at the next junction (blue). But when the cars finally arrive at Z,
we need not push them any further (but simply put them in the parking
lot).

We have seen that we cannot always push forth as many cars as we would
like to. The crucial point is: We always push forth as many cars as possible
but never more cars than there are lanes and, of course, at most as many
as are stuck at the junction. And, by any means, we have to obey one-way
streets. In case we are stuck altogether – because more cars arrive at a junction
than can possibly depart by all the streets leaving it – we have to be allowed
to “push back” cars (like in the junction at the upper left in the following
picture).

34 Maximum Flows – Towards the Stadium During Rush Hour 337

By doing so we reduce the number of cars that use a street. In fact it is not
allowed to go backwards on one-way streets, but remember that we are only
simulating here. Needless to say, we only push back as many cars as necessary
in order to get rid of the excess flow at the junction (after that the junction
is grey). And naturally we cannot push back more cars than have arrived in
the first place.

To sum up: In every step we select a junction with excess flow (i.e., a
junction where more cars arrive than depart) and push forth as big a portion
of those excess cars as possible. This results in the following procedure:

The procedure Push pushes cars from a junction with excess flow (either
forward or backward).

1 procedure Push (C)
2 precondition C is a junction with excess flow
3 begin
4 choose one of the following:
5 Select among the streets leaving C one with free lanes and push

forth as many cars as possible on it.
6 or
7 Select among the streets leading to C one with cars driving on it

and push back as many of the excess cars as possible.

8 end of choice
9 end

Unfortunately, this procedure does not yet lead to success. The reason for
this is that it can easily happen that two junctions (or more than two) simply
push their excess flow back and forth forever and we never come to an end,
as happens with the three junctions in the following six pictures. Computer
scientists say: “The algorithm doesn’t terminate.”

338 Robert Görke, Steffen Mecke, and Dorothea Wagner

Thus, we need a good idea for making our search for the best flow more
goal-directed. Let’s introduce the following additional rule: Each junction is
assigned a height. At the start all junctions have height 0. Later on we grad-
ually raise the junctions in the following fashion: We stipulate that cars may
only be pushed downwards. Hence, in order to push forth an excess flow from
a junction we first need to raise it to, say, height 1. Then we are allowed to
push (forth or back) excess cars only on streets leading to lower junctions.
In the beginning we raise S to height 1 and push, like before, as many cars
as possible away from S. Afterwards, we raise the next junction with excess
flow to height 1, push forth, then raise the next junction, and so on. We never
have to raise the goal Z because once the cars have arrived there, they have
reached their final destination.

Usually, many cars arrive at Z in this fashion. Nevertheless we might end
up with junctions having excess flow but no neighboring junctions at height 0
to get rid of their excess flow. Then we are allowed to raise them even higher.
How high? Well, at least by 1. Chances are that this does not yield a new
possibility for pushing downwards. In that case we may continue raising the
junction. But only far enough to arrive at a height that allows pushing forth
(or backwards). Naturally, we raise the junction only in our model. Once we
have found our final solution, there is no need to call the construction workers
with their diggers to raise real junctions.

34 Maximum Flows – Towards the Stadium During Rush Hour 339

The procedure Raise raises a junction C if it has excess flow but can push
it neither forward nor backward.

1 procedure Raise (C)
2 precondition Pushing from C not possible.
3 begin
4 Raise C until there is an opportunity to push flow to a lower junction.

5 end

We amend the procedure Push with the prerequisite that excess flow must
only be pushed downwards.

This Push procedure has – on top of the previous version – the restriction
that flow may only be pushed downwards.

1 procedure Push (C)
2 begin
3 choose one of the following:
4 Select among the streets leaving C one that leads to, say, N and

that is not full yet. If C is higher than N , push excess cars along
this street; but neither more than fit on the street nor more than
there is excess.

5 or
6 Select among the streets leading from, say, N to C one with cars

driving on it. If C is higher than N , then push back as many of
the excess cars as possible; but never more than C has excess.

7 end of choice
[sometimes neither is possible]

8 end

We can now repeat these two procedures (Push and Raise) until there is
no junction with excess flow left. We can stop raising S as soon as it reaches
height n, where n denotes the number of junctions in our network. After that
we merely deal with the excess flow at the remaining junctions, and then
we are done. The reason why stopping then is okay will be explained in the
section “Why does it work?” below. Note that we could also simply raise S
to height n directly at the beginning. In our example S has height 9.

The actual algorithm thus looks like this:

340 Robert Görke, Steffen Mecke, and Dorothea Wagner

The algorithm Maximum Flow finds a maximum flow from the start S to
the target Z, by repeatedly calling the procedures Raise and Push.

1 procedure Maximum Flow (G, S, Z)
2 begin
3 Raise S to height n (n is the number of junctions).
4 For each street leaving S, push as many cars as possible away from S.

5 Leave all other junctions (except S) at height 0.
6 while there is a junction C with excess flow do
7 if pushing from C possible
8 Apply procedure Push (at junction C).
9 else

10 Apply procedure Raise (at junction C).
11 endwhile
12 end

In order to describe a complete run of our algorithm, we first have to give
names to the junctions:

The following pictures show the progress of the algorithm. We annotated each
junction with its current height.

Initial state: 0. Push all cars away from the start:

1. Raise (Ada’s Column) to 1:
2. Push (Ada’s Column):

one car to Euler’s Gate:

34 Maximum Flows – Towards the Stadium During Rush Hour 341

3. Raise (Euler’s Gate) to 1 4. Push (E): 1 to C

We list some intermediate steps in short only:
5. Raise (C) to 1 6. Push (C): 3 to F
7. Raise (F) to 1 8. Push (F): 2 to Z
9. Raise (F) to 2 10. Push (F): 1 to C
11. Raise (C) to 2 12. Push (C): 1 to E
13. Push (E): 1 to G 14. Raise (G) to 1
15. Push (G): 1 to Z 16. Raise (B) to 1
17. Push (B): 1 to D 18. Raise (D) to 2
19. Push (D): 1 to B 20. Raise (B) to 3
21. Push (B): 1 to D 22. Raise (D) to 3
23. Push (D): 1 to F 24. Raise (A) to 10
25. Push (A): 2 to S 26. Raise (F) to 3
27. Push (F): 1 to C 28. Push (C): 1 to E
29. Raise (E) to 2
30. Push (E): 1 to G 31. Push (G): 1 to Z

32. Raise (B) to 10 33. Push (B): 2 to S

This is the solution to our problem:

342 Robert Görke, Steffen Mecke, and Dorothea Wagner

We could now use this solution to route traffic in the real world, avoiding
congestions.

Some Open Questions

• The algorithm does not specify which junction to choose each time step
6 is called. Any choice works as long as we obey the rules for pushing
(“always downwards”) and raising (“only if no more pushing is possible
and then only as high as necessary to push again”)! Our example needs
33 steps: 15 times Raise and 18 times Push (excluding the initial raising
of and pushing from the start). Try coming up with a different sequence
of operations for our example. Can you find one that reaches a solution
more quickly?

• Have you realized that excess flow may only be pushed back to S, after a
junction has been raised higher than n?

Why Does It Work?

As if by magic, the algorithm always works correctly. If you are in the mood,
try playing around with different road networks. But if you are interested in
why the algorithm works, continue reading:

First of all, we should convince ourselves that the algorithm outputs a
valid traffic flow. To this end we must merely realize that:

• We have never pushed more cars along a road than fit on it (capacity rule),
and

• no junction ends up with excess flow (flow conservation rule).

Thus the traffic can flow unhindered.
Having tried a few examples, you will notice that there is a crucial dif-

ference between junctions which are higher than n, and those that are not.
From high junctions traffic is always pushed back towards S. These are the
junctions having no chance any more to pass their excess flow on towards Z.
But what happens before this?

In the beginning excess flow is only pushed from junctions at height 1 to
junctions at height 0. In a way these are the simple cases. Only after all simple
options are exhausted, are junctions gradually raised higher and higher. An
important observation is that excess flow is always only pushed down one
level, i.e., from junction C at height h to a neighboring junction D at height
h − 1. It can never happen that this neighboring junction D has, e.g., height
h − 2. After all, we would then not have been allowed to raise C that high in
the first place. Cars that are supposed to arrive at Z must gradually descend
from h to h−1, then from h−1 to h−2 and so on, until they arrive at Z, which
always remains at height 0. Therefore at least h different stages are visited.

34 Maximum Flows – Towards the Stadium During Rush Hour 343

This ensures that excess flow cannot be pushed back and forth perpetually
between two junctions. This is due to the fact that there can be at most
n − 1 different stages (not n because we never pass through S). Moreover,
this guarantees that really all options to push forth excess flow are exhausted,
before pushing back flow to S. If by no means excess flow can be routed to Z,
backward routing toward S works by the same principle. Ultimately all excess
flow ends up at either Z or S, and we have finally found the best traffic flow.

Epilogue

Some time later Jogi’s sister learned how to meticulously prove that this algo-
rithm finds the best traffic flow. In fact, this is quite involved. It turned out,
that the order in which junctions are selected for Push and Raise operations
does not affect the correctness of the algorithm. She also learned that Andrew
Goldberg and Robert Tarjan found this algorithm in 1988. Jogi often still gets
stuck in traffic jams on his way to the stadium.

Solution

There is actually a sequence of operations that requires only 19 steps to find
the best traffic flow:
1. Raise (A) to 1 2. Push (A): 1 to E
3. Raise (C) to 1 4. Push (C): 1 to E
5. Push (C): 1 to F 6. Raise (B) to 1
7. Push (B): 1 to D 8. Raise (D) to 1
9. Push (D): 1 to F 10. Raise (F) to 1
11. Push (F): 2 to Z 12. Raise (E) to 1
13. Push (E): 2 to G 14. Raise (G) to 1
15. Push (G): 2 to Z 16. Raise (A) to 10
17. Push (A): 2 to S 18. Raise (B) to 10
19. Push (B): 2 to S

Further Reading

1. Chapter 7 (Depth-First Search)
Many flow algorithms are based on a so-called depth-first search or
breadth-first search in the graph. This is also true for the algorithm of
Ford–Fulkerson, for instance. In this chapter you can read up on how a
depth-first search in a graph works, and how it can be used.

344 Robert Görke, Steffen Mecke, and Dorothea Wagner

2. Chapter 9 (Cycles in Graphs)
In rare cases, the algorithm of Goldberg and Tarjan sends a few units of
flow around in a circle somewhere in the graph that does not contribute to
the actual flow from the start to the target. By means of a cycle search,
these circular paths can be removed after the maximum flow has been
determined. This chapter explains how this can be done.

3. Chapter 32 (Shortest Paths)
A problem closely related to maximum flows is the search for a shortest
path. Here the goal is not to route a whole flow of cars from the start to
the target but to find the quickest route for a single car. You can read up
on how these shortest paths can be found in this chapter.

4. The 3D-animation Flow Commander at
http://i11www.iti.uni-karlsruhe.de/adw/jaws/GTVisualizer3D.
jnlp (requires Java Web Start).
Why not look at height as an actual third dimension? Fly through the
graph and behold Push and Raise operations taking place in 3D! If Java
is installed on your computer (which is most likely the case), you can
install and launch Flow Commander at this URL.

5. One of the quickest algorithms for maximum flows: Lestor R. Ford, Jr. and
D.R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

6. The original publication of the presented algorithm: Andrew V. Goldberg
and Robert E. Tarjan: A new approach to the maximum-flow problem.
Journal of the ACM 35:921–940, 1988.
http://dx.doi.org/10.1145/48014.61051

7. The English Wikipedia article on the algorithm of Goldberg and Tarjan:
http://en.wikipedia.org/wiki/Push-relabel algorithm

8. The Wikipedia article on network flow:
http://en.wikipedia.org/wiki/Flow network
Among other things this article explains how flows are interrelated to
so-called cuts.

35

Marriage Broker

Volker Claus, Volker Diekert, and Holger Petersen

Universität Stuttgart, Stuttgart, Germany

35.1 Problem

A marriage broker attempts to create the greatest possible number of couples
from a given set of men and women. A necessary condition is that the two
persons who form a couple are mutually friendly. We also assume the classic
marriage: Each pair consists of exactly one man and one woman, and each
person appears in the set of couples not more than once.

Put somewhat more abstractly, there is a set H of men, a set D of women
and a set L of “friendly couples” of the form HD. An entry of the form HD
means that the man H and the woman D are mutually friendly. The goal is to
form the largest number of couples from L, with no person a member of more
than one couple. Figure 35.1 shows a set H = {A, B, C, D, E} of 5 men and
a set D = {P, Q, R, S, T } of 5 women. If a man and a woman are mutually
friendly, we connect them with a line (a so-called edge). As an example, we
look at a set L with the sympathy-relations AP , AR, BP , BQ, BS, CQ, CR,
CT , DR, DS, ES and ET . This is graphically shown in Fig. 35.2.

Fig. 35.1. Five women and five men

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 35, c© Springer-Verlag Berlin Heidelberg 2011

346 Volker Claus, Volker Diekert and Holger Petersen

Fig. 35.2. The sympathy-relations between men and women

Now the broker could choose the following couples: BP , CR, ES. However
then the broker has to stop, because he cannot put together another suitable
pair. But the broker may also have formed couples AP , BQ, CR, DS and
ET , in which case all persons would have a partner. Now the problem is: How
does one find a largest possible subset M of L, in which every person from H
and D appears not more than once? Such a subset M is called a maximum
matching for H, D and L.

First we want to introduce the idea and after that the algorithm which
helps to construct such a maximum matching. It is unimportant whether the
algorithm is executed by an employee of the broker (using index cards and
other tools) or by request of the affected persons between themselves.

35.2 The Basic Principle of the Procedure

Initially, one can put people together into couples if they are friendly but not
already assigned to another couple. Once this is no longer possible, there can
be a partnerless person (here we take a partnerless man H) who asks all the
women who are friendly to him whether they can leave their partner.

These women are assigned to exactly one man, and therefore they hand
over the question to their partner. In the next step all these men ask all
the women who are friendly to them whether these women can leave their
partner. Now these women ask their assigned men whether they could find
a new partner, etc. A wave of inquiries runs from the partnerless man H to
women who are friendly to him, and from these to their respective assigned
men and even spreads further to the set of all persons until one of the following
conditions is met:

(i) At one point a man asks a previously partnerless woman. In this case the
whole wave of requests stops immediately. From this new partnership one

35 Marriage Broker 347

follows the chain of requests backwards toward the man H and exchanges
the previous partnerships along exactly this way.

(ii) One finds out that the wave of requests reaches only women who already
have partners. In this case one deletes the man H from the set of men.

Subsequently one can adopt this picture of a wave of requests, spreading
from H toward all persons, alternately going through a friendly relationship
and an already taken assignment. Once a new partnership is discovered, this
wave breaks abruptly, and the couples are rearranged on the path of requests
from this new partnership to H.

Hint: This wave can be processed simultaneously or in any sequence, but
the most vivid picture is the parallel uniformly spreading wave (in Computer
Science we talk about breadth-first search regarding L). Here no person is
asked who has already been questioned once, so that the wave only expands
to persons who have not yet been considered.

35.3 The Construction of a Maximum Matching

One starts with any pair from the set L. Let this pair be HD and put M =
{HD}. (If the set L is empty, there are, of course, no couples to form and
there is nothing to do.) Note that in the set M below each person appears
not more than once.

Now we can assume that a set of couples M = {H1D1, H2D2, . . . , HrDr }
has been constructed. If all men occur in M one is finished, because bigamy is
illegal. The interesting situation is when a man H is without a female partner,
thus he does not occur in M . How can we assign to him a female partner D?

(a) Obviously one has to ask every person D about person H who has
sympathies for D (i.e., HD is included in the set L), whether she still has
no partner. If there exists such a person D without a partner, then one just
adds HD to the set M and applies the algorithm again to another partnerless
person. We have performed this by starting from the pair BP by adding pairs
CR and ES in Fig. 35.3. The set M = {BP, CR, ES} is given by the red
edges. Case (a) is not true any more and we cannot enlarge M in this way,
although there are still partnerless persons left.

(b) What has to be done if there is no partnerless person D matching
the partnerless person H in L? Then there is a partner H ′ assigned to each
person D, who is found friendly by H. Now one tries to take away woman D
from man H ′ in favor of man H, which means one tries to replace H ′D by
HD, consequently H ′ becomes partnerless.

Now one tries to take away the partner H ′ ′ from one of the women D′

(but not the woman D), who is friendly to H ′, making H ′ ′ partnerless and
requiring another partner, etc. Only such women D′, D′ ′, D′ ′ ′, etc., are being
considered who have not yet been included. Based on H a sequence of alter-
nating friendship relations HD and already allocated H ′D relations from the

348 Volker Claus, Volker Diekert and Holger Petersen

Fig. 35.3. Assembly of the set M only with criterion (a) of the algorithm

set M is passed through. At one point either case (a) occurs, or the iteration
stops when all persons reachable in this way have been tried unsuccessfully.

If case (a) occurs, then one has obtained a new set of couples by actually
making the replacements “H ′D was replaced by HD,” which leads to the
case (a), while all other couples in M remain unchanged. Expressed more
precisely: If case (a) occurs the first time, then there is exactly one sequence
(starting with H = H1)

H1, D1, H2, D2, . . . , Hk, Dk

with H1 being partnerless, H1D1 ∈ L, H2D1 ∈ M, H2D2 ∈ L, . . . , HkDk−1 ∈
M, HkDk ∈ L and Dk is partnerless. The situation with the partnerless
woman Dk

allows the replacement of the red edges in M by the black edges (“re-coloring”
of red and black edges on this path):

where M grows by one pair and all persons who already had a partner before
now have a partner once again. With this increased set M one starts the
algorithm again.

In our example, this approach leads to success (see Figs. 35.4–35.8): Previ-
ously, the couples BP , CR and ES were selected. More couples are no longer
possible. So now couples have to be regrouped. For this we assume in Fig. 35.4
the man A, who still has no partner. We assign to him one of his potential
partners P or R, which now makes man B (former partner of P) or C (former
partner of R) partnerless; for each of these again an attempt is made to find
new female partners (Fig. 35.5), etc. Each person is not treated more than

35 Marriage Broker 349

Fig. 35.4. A is partnerless. A could be paired with P or with R. We start with P .
Her partner is B. Experimentally we now replace BP by AP , indicated by dashed
edges

Fig. 35.5. Now B is partnerless. The case (a) occurs already, because the couple
BQ with the partnerless woman lies in L

once, i.e., if during the process a person is met who has already been investi-
gated, he or she is not considered again. If case (a) occurs, one gets a new set
M , as shown in Fig. 35.8.

(c) If this method is not successful by finding case (a), a mathematical
theorem states that the person H may be excluded from the further proce-
dure.

In principle, this situation is quite easy to understand. Because what hap-
pens if the set M does not get enlarged? Then there is a set of d women, who
have been totally questioned starting from H. Each of these d women also has
a partner after the rearrangement, so there are d men with a partner. Only
the last of the men who lost his partner, now has none. So there are d + 1
men who occurred in this row. And here comes the crucial observation: The

350 Volker Claus, Volker Diekert and Holger Petersen

Fig. 35.6. The “experimental” repairing will be definitively adopted, and we get
the assignment {AP, BQ, CR, ES}, where BP has been replaced by AP and BQ

Fig. 35.7. Now we start the process again with the partnerless person D (note: D is
the name of the man in this example). Experimentally we match DR and herefore
remove CR. The newly partnerless person C may be matched to a pair with the
person T

totality of the possible female partners of these d + 1 men is exactly the set
of these d women. Consequently, one man has to remain partnerless. Thus we
can remove him from the beginning. This argumentation is explained again
in Sect. 35.6.

We maintain: If M is a maximum assignment, there is also a maximum
assignment M ′, which has as many elements as M , but does not contain H.
Therefore one can abandon H. Therefore we delete H and start the algorithm
again with another partnerless person. (By the way, instead of H we could
have also deleted one of the last men from an experimental rearrangement.
This is rarely done in practice. First the important persons from the broker’s
point of view receive a partner. The approach described here guarantees that
once-arranged persons are not partnerless in the end.)

35 Marriage Broker 351

Fig. 35.8. Finally we have obtained the set M = {AP, BQ, CT, DR, ES}. Now,
every person has a partner and therefore the algorithm ends. (The experimental
rearranging takes up as many steps as there are edges left, because already tested
persons will not be tested again)

(d) The procedure ends when every person not deleted has a partner, that
means it is included in the set M . Now this set M is the maximum assignment.

So how is the gradual increase of the number of couples in the assignment
set M (see Figs. 35.4—35.8)? The red edges belong to the couples of the
set M . The black edges show the remaining friendly relations (L − M). Now
the set M is reordered every time. We look at a path of alternating black and
red edges, starting and ending with a black edge and which has a partnerless
person at the beginning and at the end. If this happens, we can replace in M
the red edges by the black edges of exactly this path. In this way the number
of couples is increased by 1.

Hint: Such paths of alternating black and red edges, whose ending nodes
do not have outgoing red edges, are called augmenting paths.

35.4 The Algorithm

The following Marriage Broker algorithm provides a maximum set M of
couples, if the sets H, D, and L are given. It is clear that one just has to
look at one of the two sets H and D in order to choose the next partnerless
candidate. We restrict ourselves to the set H (see line 2 of the algorithm); in
practice one takes the smaller of the two sets H and D.

Given: The sets H and D, and the set L as the set consisting of only one
couple HD for some H from H and D from D.

352 Volker Claus, Volker Diekert and Holger Petersen

The algorithm Marriage Broker calculates a maximum set of couples M

1 choose a couple HD from L; M := {HD};
2 while there is still a partnerless person H in H do
3 follow all paths starting from H, which consist alternately
4 of one edge from L, which is not in M ,
5 and one edge from M and
6 contains no person more than once;
7 if one finds a partnerless person
8 (which necessarily is in D)
9 then replace all edges in M on this path in M

10 by edges which are not in M on this path;
11 else (in this case there is no such path)
12 remove H from H
13 end if
14 end while;
15 return M ;

Inside the while-loop one has to realize a systematic search in the part
“follow all paths starting from H,” This part is implemented “recursively.”
We have already written in Sect. 35.3, part (b): “Now one tries to take away
woman D from man H ′. . . ”. This is exactly the recursion that has to do the
same procedure with H ′ instead of H, if H ′ hasn’t been treated already. One
should maintain in a boolean array the components which are set to false at
the beginning of the while loop (before row 3 in the program) and in which
one records if a person has been considered in this iteration or not. How the
overall procedure is implemented can be found in books. (At the end of this
chapter is a list of references.)

35.5 The Marriage Theorem

That the procedure works correctly is based on the Marriage Theorem of the
English mathematician Philip Hall in 1935. It follows from this theorem that
there exists an assignment of all men to appropriate women if and only if the
following marriage condition holds: For each subset of men, there is an at least
equally large subset of potential female partners.

The condition means that if, e.g., we look at 17 men from the set H, then
there are at least 17 potential female partners available for them. Instead of
17 we may also use any other number. Initially just the right relation of the
numbers is important. The assignment is insignificant at this time.

The criterion of the Marriage Theorem is not directly suitable for finding
a solution. First, an inspection for each 50 men and women would need more
than one million years, even if one billion combinations of men per second
could be examined (because you have to test 250 = 1,125,899,906,842,624
subsets). Second, the theorem only provides information whether a solution

35 Marriage Broker 353

exists, but not what it looks like. For this we need the algorithm described
above.

35.6 Where Is the Marriage Theorem Needed by the
Algorithm

The Marriage Theorem is needed by the algorithm at the point where one
has to find at least another man whose partner gets newly assigned and who
has the chance to find a different woman for himself. We explain this with the
help of an example:

Consider Fig. 35.9. Let M = {H2D1, H4D2, H3D3}. H is partnerless. We
start with H.

{H} is a subset T1. To proceed, the subset {D1, D2} = T2 (= all with H
connected persons) belonging to T1 has to be at least as large as |T1| = 1
(Marriage Theorem!). See Fig. 35.10.

Now we replace H2D1 on a trial basis by HD1, making H2 partnerless. We
could also replace H4D2 by HD1, making H4 partnerless. Overall, we have
to find partners for T3 = {H, H2, H4}. The set of women belonging to T3 is
T4 = {D1, D2, D3, D6}, see Fig. 35.11. Again |T3| ≤ |T4| holds, so following
the Marriage Theorem there has to exist an assignment here. We detect this
by further examining the men belonging to women from T4, etc.

Fig. 35.9. M = {H2D1, H3D3, H4D2}, H is partnerless

Fig. 35.10. |{H} | ≤ |{D1, D2} |

354 Volker Claus, Volker Diekert and Holger Petersen

Fig. 35.11. |{H, H2, H4} | ≤ |{D1, D2, D3, D6} |

If a solution exists, the Marriage Theorem ensures that the algorithm can
always proceed at any point with a person who has not yet been considered.

35.7 Time Analysis

The running-time of the procedure can be estimated easily from above. We
assume that there are n men and n women as well as m edges (= number
of elements in the set L). The while-loop in the algorithm is finished after
at most m steps, because each person is taken into account not more than
once and therefore each edge has to be examined only once. Because after
every loop either one man is eliminated or another couple is added, the whole
process ends after the while-loop has been executed (n − 1) times. For the
duration estimation we receive n · m as upper bound for the number of steps
taken by the execution of the algorithm.

Are there faster ways to calculate a maximum set of couples? One piece
of evidence of wasted time in our algorithm is that at the beginning of a
pass of the loop no information is available, although earlier passes had col-
lected information about the course of augmenting paths. Making clever use
of this, one can achieve a running-time proportional to m ·

√
n, saving the

factor
√

n. This accelerated procedure was developed in 1971 by the Ameri-
can researchers John E. Hopcroft and Richard M. Karp. For these and many
other achievements these two researchers received the Turing Award in 1986
and 1985, respectively. [This is a kind of Nobel Prize in Computer Science.]

Further Reading

1. In Chap. 34 of this book the problem of a maximum flow is examined.
A solution of this problem can be used to determine a maximum set
of couples. Furthermore, the procedure that was presented here can be
generalized to arbitrary graphs. (Think for yourself or refer to one of the
following books.)

35 Marriage Broker 355

2. Thomas Ottmann, Peter Widmayer: Algorithmen und Datenstrukturen.
Spektrum Akademischer Verlag, 2002. A standard textbook written in
German. In the chapter Zuordnungsprobleme maximum assignments are
found with the help of the calculation of maximum flows.

3. Reinhard Diestel: Graph Theory, 3rd edition. Springer, 2006. Chapter 1
deals in great detail with pairings in general and bipartite graphs. There
you can also find a proof of the Marriage Theorem.

4. Dexter C. Kozen: The Design and Analysis of Algorithms. Springer, 1992.
This book contains 40 chapters on topics of the theory of algorithms, each
of which corresponds to a lecture. In Chaps. 19 and 20 the more efficient
method of Hopcroft and Karp with the corresponding correctness proofs
is presented.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein:
Introduction to Algorithms. MIT Press and McGraw-Hill, 2001. Section
26.3: Maximum bipartite matching, pp. 664–669. This is a very detailed
and very successful book on the theory of algorithms.

6. Several articles about the Matching Problem and the Marriage Theorem
can be found in the free encyclopedia wikipedia, www.wikipedia.org.

Acknowledgements

We thank Botond Draskoczy and Sascha Riexinger for technical support.

36

The Smallest Enclosing Circle –
A Contribution to Democracy from
Switzerland?

Emo Welzl

ETH Zürich, Zürich, Switzerland

The fire service needs a new station and it should be located optimally with
respect to the houses served by it. The quality of the location is measured by
the maximum of the distances to the relevant houses, and this greatest dis-
tance should obviously be as short as possible. We idealize the houses and the
new location as points in the plane and model the real distances by distances
between the points. So the input for our problem is a set P of points in the
plane.

Let us choose a point s as a potential location. The distance from s to the
farthest point in P will be denoted by r. Then a circle of radius r centered at
s encloses all the points of P .

It is clear that the best location is the center of a circle enclosing all the
points of P that has the smallest radius. (From there, the firemen can reach
even the farthest house as fast as possible.) Such a circle exists and is unique
– we take this as a fact.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 36, c© Springer-Verlag Berlin Heidelberg 2011

358 Emo Welzl

There are many houses and people are thinking how to decide on the best
location.

Somebody got the idea to invite representatives of a small random sample
R1 of, say, 13 houses and to let them determine the best location for them-
selves – without any regard for the other houses. A method can be found
in the literature, which indeed solves the problem quickly for 13 houses, but
unfortunately turns out to be too slow for all the houses.

So they come up with a proposal for a place s1 and a radius r1, so that
the circle with the center s1 and radius r1 encloses all the chosen houses – it
is the smallest enclosing circle of R1.

The first location is found.

Even though the set R1 is chosen at random, people strongly oppose this
choice of location, especially the occupants of the houses standing outside the
determined circle.

To accede to the protests, a second sortition is called, but, as before,
nobody knows how to find the smallest enclosing circle for such a large set
– it was already hard enough for 13. The proposal to invite all who stay
outside the first circle appears unrealistic, too. It comes down to the following
compromise: all houses standing outside the ominous circle have two entries
in the sortition of 13 new representatives.

36 The Smallest Enclosing Circle 359

The 13 representatives, a set R2, are chosen, and they meet and agree
on their most preferred location s2 and the corresponding radius r2 of the
smallest circle enclosing R2.

Less surprisingly, even this encounters resistance. Again, there are many
houses standing outside the circle determined as a solution for R2.

Now, we should take into account that the municipality has not yet secured
the sources for financing of the new fire-service building. Therefore they like
the decision-making process – they are actually glad when this procedure does
not lead quickly, if at all, to a conclusion satisfactory for everyone.

So the result of the second round is rejected as well. For the next round,
the number of entries is doubled for every house standing outside the second
circle. If there is a house out of the circle for both the solutions determined
so far, then it gets in return four tickets in the polling urn!

Round three proceeds as before.

Et cetera, et cetera.

It becomes a routine. The circle-finding emerges as a popular entertain-
ment, not least because the municipality provides food and drinks. It is no
longer disappointing to be out of the announced circle, as the proposal would
not be realized anyway and the chance of participating in the next meet-
ing grows. The polling urn swells up, but the municipal secretary has soon
arranged for an electronic sortition (encouraged by Chap. 25 on random num-
bers).

But then, after 13 representatives have met again and proposed a solution,
which is the best for themselves, and themselves only, something unexpected
happens. No house is outside the calculated circle. The information spreads
quickly and a speedily obtained expertise confirms what all have guessed: This
must be the smallest circle enclosing all points. A circle enclosing all points
cannot be smaller than a circle enclosing only 13 points after all.

The optimum location is found!

Have we been lucky that the chosen representatives were so successful, or
should we have been expecting it? The latter: We have learned a randomized
(i.e., based on randomness) algorithm developed by Kenneth Clarkson. It
calculates the smallest enclosing circle for n points. It can be shown that the
procedure computes the circle with probability 1 and the expected number of
rounds is in fact only logarithmic in n. It is necessary not to set the sizes of the
randomly chosen subsets too small (in our story 13) – though 13 is enough,
independent of how big n is. In the same way, it is also possible to calculate
the smallest enclosing ball of points in 3-dimensional space or even in higher
dimensions (only the random sample must be somewhat bigger depending on
the dimension).

360 Emo Welzl

Why It Works

For those keen enough we should reveal, omitting many details, why it really
works. We need therefore to understand the structure of the problem some-
what better. The smallest circle enclosing a point-set P – it’s high time to
give it a name: K(P) – is determined by at most three points of P . To put it
more precisely, there is a set B of at most three points of P for which we have
K(B) = K(P). Next we need to observe: If there is a subset R of P such that
the circles K(R) and K(P) are not yet equal, then there must be a point of B
lying outside K(R). For our procedure it means that at least one point of B
doubles its number of entries in the sortition poll in each round. Consequently,
after k rounds, at least one of the points has at least 2k/3 ≈ 1.26k entries in
the poll. It grows quite nicely.

On the other hand, we can show that, thanks to the random choice, there
are not too many new entries in the poll on average. It is because exactly the
entries of the houses outside the current circle are doubled. This number is
on average 3z/13, when there are z entries in the poll (we will owe you the
proof of this statement). It means that for the next round, we expect about
(1 + 3/13)z ≈ 1.23z entries in the poll. (To understand it correctly: The “3”
comes from the size of B and the “13” is the size of the sample as we have
set it.)

On the one hand, the number of entries in a round increases approximately
by a factor of 1.23, i.e., there are some n · 1.23k entries after k rounds (n is the
number of points). On the other hand, there is a point that has at least 1.26k

entries in the poll after k rounds. Regardless of how big n is, since 1.26 > 1.23,
sooner or later that single point will have more than all points together. There
is only one way of resolving this paradox: The procedure must come to an end
before this happens.

It may sound confusing. But this is what randomized algorithms are like:
simple in themselves – but at the same time very intriguing that they really
work.

Further Reading

1. Kenneth L. Clarkson: A Las Vegas Algorithm for linear and integer pro-
gramming when the dimension is small. Journal of the ACM 42(2): 488–
499, 1995.
This is the original work developing and analyzing the procedure we have
described here.

2. Chapter 25 (Random Numbers)
Here you can learn how to generate the random numbers necessary for
our procedure.

37

Online Algorithms – What Is It Worth
to Know the Future?

Susanne Albers and Swen Schmelzer

Humboldt-Universität zu Berlin, Berlin, Germany
Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

The Ski Rental Problem

This year, after a long time, I would like to go skiing again. Unfortunately,
I grew out of my old pair of skis. So I am faced with the question of whether
to rent or buy skis. If I rent skis, I pay a fee of $10 per day. On the seven days
of my vacation I would pay a total of $70. Buying a new pair of skis costs me
more, namely $140. Maybe I will continue going skiing in the future. Then
buying skis could be a good option. However, if I lose interest after my first
trip, it is better to pay the lower renting cost. Figure 37.1 depicts the total
cost of a single purchase and the daily rental if skis are used on exactly x days.

Without knowing how often I go skiing, I cannot avoid paying a bit more.
It is always easy to be clever in hindsight. However, how can I avoid saying
later, “I could have gone skiing for less than half the cost”? Problems of this
kind are called online problems in computer science. In an online problem one

Fig. 37.1. Costs of the strategies “Buy” and “Rent”

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 37, c© Springer-Verlag Berlin Heidelberg 2011

362 Susanne Albers and Swen Schmelzer

has to make decisions without knowing the future. In our concrete case, we
do not know how often we will go skiing but have to decide whether to rent or
buy equipment. If we knew the future, the decision would be simple. If we go
skiing for less than 14 days, renting skis incurs the smaller cost. For periods
of exactly 14 days, both strategies are equally good. For longer periods of
more than 14 days, buying skis yields the smaller cost. If the entire future
is known in advance, we have a so-called offline problem. In this case we can
easily determine the optimum offline cost. This cost is given by a function f ,
where x denotes the number of days for which we need skis.

f(x) =

{
10x, if x < 14,

140, if x ≥ 14.

In contrast, in an online problem, at any time, we have to make decisions
without knowing the future. If we rent skis on the first day of our trip, then
on the second day we are faced with the same renting/buying decision again.
The same situation occurs on the third day if we continue renting skis on the
second day. If using an online strategy our total cost is always at most twice as
high as the optimum offline cost (knowing the entire future), the correspond-
ing strategy is called 2-competitive. That is, the strategy can compete with
the optimum. In general, an online strategy or an online algorithm is called
c-competitive if we never have to pay more than c times the optimum offline
cost. Here c is also referred to as the competitive ratio. For our ski rental
problem we wish to construct a 2-competitive online strategy.

Online strategy for the ski rental problem: First, in the begin-
ning, we rent skis. When, at some point, the next rental would result
in a total renting cost equal to the buying cost, we buy a new pair of
skis. In our example we would rent skis on the first 13 days and then
buy on the 14th day.

In Fig. 37.2 the left chart depicts in grey the optimum offline cost (func-
tion f). In the right chart, the cost of our online algorithm is shown in black.
Using the two charts we can immediately convince ourselves that the online
strategy never pays more than twice the optimum offline cost. If we go skiing
for less than 14 days, we pay the same amount as the optimum cost. On longer
periods, we never pay more than twice the optimum cost.

We are satisfied with the solution to our concrete ski rental problem. How-
ever, what happens if the renting and buying costs take other values? Do we
have to change strategy? In order to see that our strategy is 2-competitive for
arbitrary values of renting and buying costs, we scale the costs such that a
rental incurs $1 and a purchase incurs $n. Our online strategy buys a new pair
of skis on the nth day when the total rental cost is exactly $n − 1. Figure 37.3
demonstrates that, for periods of x < n days, the cost of our online strategy
is equal to that of the optimum offline cost. For x ≥ n, the incurred cost is no
more than twice the optimum cost. Hence we are 2-competitive.

37 Online Algorithms – What Is It Worth to Know the Future? 363

Fig. 37.2. Illustration of the competitive ratio of 2 – concrete example

Fig. 37.3. Illustration of the competitive ratio of 2 – general case

This is an appealing result but, actually, we would like to be closer to
the optimum. Unfortunately, this is impossible. If an online algorithm buys
according to a different strategy, that is, at a different time, there is always
at least one case where the incurred total cost is at least twice the optimum
offline cost. Let us consider our concrete example. If an online strategy buys
earlier, say on the 11th day, the incurred cost is equal to $240 instead of the
required $110. If the strategy buys later, for instance, on the 17th day, the
resulting cost is $300 instead of the $140. In both cases the incurred cost is
more than twice the optimum offline cost. In general, no online algorithm can
be better than 2-competitive.

364 Susanne Albers and Swen Schmelzer

The Paging Problem

In computer science an important online problem is paging, which permanently
arises in a computer executing tasks. In the paging problem, at any time, one
has to decide which memory pages should reside in the main memory of the
computer and which ones reside on hard disk only; see Fig. 37.4.

The processor of a computer has very fast access to the main memory.
However, this storage space has a relatively small capacity only. Much more
space is available on hard disk. However, data accesses to disk take much
more time. The approximate relative order of the access times is 1 : 106. If an
access to main memory took one second, an access to hard disk would require
about 11.5 days. Therefore, computers heavily depend on algorithms loading
memory pages into and evicting them from main memory so that a processor
rarely has to access the hard disk. In the following example (see Fig. 37.4),
memory pages A, B, C, D, E, and G currently reside in the main memory.
The processor (CPU) generates a sequence of memory requests to pages D, B,
A, C, D, E, and G, and is lucky to find all these pages in the main memory.

On the next request the processor is unlucky, though. The referenced page
F is not available in main memory and resides on hard disk only! This event is
called a page fault. Now the missing page must be loaded from disk into main
memory. Unfortunately, the main memory is full and we have to evict a page
to make room for the incoming page and satisfy the memory request. However,
which page should be evicted from main memory? Here we are faced with an
online problem: On a page fault a paging algorithm has to decide which page

Fig. 37.4. The memory hierarchy in the paging problem

37 Online Algorithms – What Is It Worth to Know the Future? 365

to evict without knowledge of any future requests. If the algorithm knew which
pages will not be referenced for a long time, it could discard those. However,
this information is not available as a processor issues requests to pages in an
online fashion. The following algorithm works very well in practice.

Online strategy Least-Recently-Used (LRU): On a page fault,
if the main memory is full, evict the page that has not been requested
for the longest time, considering the string of past memory requests.
Then load the missing page.

In our example LRU would evict page B because it has not been requested
for the longest time. The intuition of LRU is that pages whose last request
is long ago are not relevant at the moment and hopefully will not be needed
in the near future. One can show that LRU is k-competitive, where k is the
number of pages that can simultaneously reside in main memory. This is a
high competitive ratio, as k takes large values in practice. On the other hand,
the result implies that LRU has a provably good performance. This does not
necessarily hold for other online paging algorithms.

Beside LRU, there are other well-known strategies for the paging problem:

Online strategy First-In First-Out (FIFO): On a page fault, if
the main memory is full, evict the page that was loaded into main
memory first. Then load the missing page.

Online strategy Most-Recently-Used (MRU): On a page fault,
if the main memory is full, evict the page that was requested last.
Then load the missing page.

One can prove that FIFO is also k-competitive. However, in practice, LRU
is superior to FIFO. For MRU, one can easily construct a request sequence
such that MRU, given a full main memory, incurs a page fault on each request.
Given a full main memory, consider two additional pages A and B, not residing
in main memory that are requested in turn. On the first request to A, this
page is loaded into main memory after some other page has been evicted. On
the following request to B, page A is evicted because it was requested last.
The next request to A incurs another page fault as A was just evicted from
main memory. MRU evicts page B, which was referenced last, so that the
following request to B incurs yet another fault. This process goes on as long
as A and B are requested. MRU incurs a page fault on each of these requests.
On the other hand, an optimal offline algorithm loads A and B on their first
requests into main memory by evicting two other pages. Both A and B remain
in main memory while the alternating requests to them are processed. Hence
an optimal offline algorithm incurs two page faults only, and MRU exhibits
a very bad performance on this request sequence. In practice, cyclic request
sequences are quite common as programs typically contain loops accessing
a few different memory pages. Consequently, MRU should not be used in
practice.

366 Susanne Albers and Swen Schmelzer

Further Reading

Online problems arise in many areas of computer science. Examples are data
structuring, processor scheduling, and robotics, to name just a few.

1. Chapter 38 (Bin Packing)
A chapter studying the bin packing problem, which also represents a clas-
sical online problem.

2. http://en.wikipedia.org/wiki/Paging
An easily accessible article on the paging problem.

3. D.D. Sleator and R.E. Tarjan: Amortized efficiency of list update and
paging rules. Communications of the ACM, 28:202–208, 1985.
A seminal research paper in the area of competitive analysis. The article
addresses the paging problem as well as online algorithms for a basic data
structures problem.

4. S. Irani and A.R. Karlin: Online computation. In: Approximation Algo-
rithms for NP-hard Problems. PWS Publishing Company, pp. 521–564,
1995.
A survey article on online algorithms studying, among other problems,
also ski rental and paging.

5. A. Borodin and Ran El-Yaniv: Online Computation and Competitive
Analysis. Cambridge University Press, 1998.
A comprehensive textbook on online algorithms.

38

Bin Packing or “How Do I Get
My Stuff into the Boxes?”

Joachim Gehweiler and Friedhelm Meyer auf der Heide

Universität Paderborn, Paderborn, Germany

I’m going to finish high school this summer, and I’m looking forward to be-
ginning with my studies – in computer science, of course! Since there is no
university in my small city, I’ll have to move soon. For this, I’ll have to place
all the thousands of things from my closets and shelves into boxes. In order
to make moving as inexpensive as possible, I’ll try to place all these things in
such a way that I’ll need as few boxes as possible.

If I just take objects one after another out of my shelves and put them into
one box after another, I’ll waste a lot of space in the boxes: The objects have
various shapes and sizes and would therefore leave many holes in the packing.

I’d surely find the optimal solution for this problem, i.e., the fewest possible
boxes required, if I try out all possibilities to place the objects into the boxes.
But with this many objects, this strategy would take ages to complete and
furthermore create chaos in my flat.

That’s why I’d like to place the objects into the boxes in the same arbitrary
order I get them into my hands when taking them out of the closets and
shelves. Thus, the crucial question now is: “How many more boxes am I going
to use this way compared to the optimal solution?” In order to find out, I’ll
now analyze the problem.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 38, c© Springer-Verlag Berlin Heidelberg 2011

368 Joachim Gehweiler and Friedhelm Meyer auf der Heide

The Online Problem “Moving Inexpensively”

Since I’ll take the objects out of the closets and shelves consecutively, my prob-
lem is an online problem (see introduction to online algorithms, Chap. 37):

• The relevant data (the sizes of the particular objects) becomes available
over time. We denote the list of these sizes, in order of their appearance,
by G.

• There is no information on future data (the sizes of not-yet-considered
objects).

• The number of items to process (objects to pack) is not known in advance.
• The current request has to be processed immediately (objects can’t be put

aside temporarily).

In reality, there are some estimates on the sizes: Since I’ve been living in
this flat for years, I thus have a certain overview of what is in the closets and
on the shelfs. But let’s abstract away from this and consider the problem in
an idealized way. Experts generally refer to this problem as the Bin Packing
problem.

My packing strategy can now be formalized as an online algorithm: The
input consists of a sequence G = (G1, G2, . . .) of sizes Gi of the objects to
pack. The boxes are denoted by Kj , and the output is the number n of boxes
used.

Algorithm NextFit

1 Set n := 1.
2 For each Gi in G do:
3 If Gi doesn’t fit into box Kn,
4 close box Kn and
5 set n := n + 1.
6 Place Gi in box Kn.

With a little more effort, I could also proceed as follows: Before placing
an object, I could check all boxes used so far for a sufficient space to fit it
and only close the boxes when finished. This approach is an advantage when I
have to open a new box for a rather big object and then have a series of very
small objects to pack, which still fit into previous boxes. This second strategy
formalized as an online algorithm looks as follows:

38 Bin Packing 369

Algorithm FirstFit

1 Set n := 1.
2 For each Gi in G do:
3 For j := 1, . . . , n do:
4 If Gi fits into box Kj ,
5 place Gi in box Kj and
6 continue with the next object (go to step 3).
7 Set n := n + 1 and
8 place Gi in box Kn.

Analysis of the Algorithms

To simplify the analysis of how well or poorly my strategies perform, I make
the following assumption: An object fits into a box if and only if the volume
of the object to place does not exceed the volume left over in the box, i.e.,
I neglect any space in the boxes which is not usable due to “clipping.” Fur-
thermore, I choose the unit of volume so that the capacity of the boxes is
exactly 1 (and, thus, the sizes of the objects to pack are less than or equal
to 1).

Let’s take a look at some examples in order to get a feeling for the quality
of the results of my online algorithms. If all objects have the same size – like
in Example 1 – both NextFit and FirstFit find the optimal solution:

Example 1

G =
(

1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4

)

NextFit = FirstFit: n = 5

For the input in Example 2 both NextFit and FirstFit still find the optimal
solution:

370 Joachim Gehweiler and Friedhelm Meyer auf der Heide

Example 2

G =
(

1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8

)

NextFit = FirstFit: n = 5

But Example 3 illustrates that the order of the objects can influence the result
– algorithm NextFit performs rather poorly here:

Example 3

G =
(

1
2 , 1

8 , 1
2 , 1

8 , 1
2 , 1

8 , 1
2 , 1

8 , 1
2 , 1

8 , 1
2 , 1

8 , 1
2 , 1

8 , 1
2 , 1

8

)

NextFit: n = 8

FirstFit: n = 5

If one chooses a much smaller number than 1
8 for the sizes of the small

objects in Example 3, the unused space in each box grows to almost half
of the size of the box when using NextFit, i.e., in a worst-case scenario
NextFit would need almost double the amount of boxes compared to an
optimal packing.

38 Bin Packing 371

Although strategy FirstFit has still performed optimally in Example 3,
there are also bad inputs for FirstFit, as shown in Example 4:

Example 4

G = (0.15, 0.15, 0.15, 0.15, 0.15, 0.15,
0.34, 0.34, 0.34, 0.34, 0.34, 0.34,
0.51, 0.51, 0.51, 0.51, 0.51, 0.51)

FirstFit: n = 10

Optimal: n = 6

Here we obtain a ratio of 10 : 6 for FirstFit compared to the optimal
packing, i.e., FirstFit needs 1.67 times as many boxes as an optimal algo-
rithm would require.

Now we are curious whether or not the negative examples 3 and 4 are
already the worst possible inputs for NextFit and FirstFit:

In Chap. 37 we learned that we call an online strategy α-competitive if it
does not produce – for any input – more than α times the cost compared to
an optimal solution, i.e., compared to the cost we would have produced if we
knew the future. In order to determine the competitive factor of NextFit, we
denote the number of objects by k and the number of boxes used by NextFit

by n. Furthermore, we write v(Gi) for the volume of object Gi and v(Kj) for
the volume used in box Kj . When now considering two successively filled
boxes Kj and Kj+1, 1 ≤ j < n, it holds:

v(Kj) + v(Kj+1) > 1.

If this condition was not satisfied, all objects in Kj+1 would still have fit into
Kj and would thus not have been put into Kj+1 by NextFit. Now, when
adding the volumes used in K1 and K2, in K3 and K4, in K5 and K6, and so
on, we notice that all these sums are always greater than 1. Thus, we get for

372 Joachim Gehweiler and Friedhelm Meyer auf der Heide

the sum over all boxes:
n∑

j=1

v(Kj) >

⌊
n

2

⌋

.

Using the floor function � � we round down the fraction on the right-hand side
of the inequality in the case that n is odd. Hence, we obtain a lower bound
for the number of required boxes, i.e., a value that cannot be undercut even
with an optimal packing. Now we observe that the total volume of all objects
is equal to the volume totally occupied in all boxes:

k∑

i=1

v(Gi) =
n∑

j=1

v(Kj).

Thus, even the best possible packing requires at least
⌈

k∑

i=1

v(Gi)

⌉

≥
⌈

n

2

⌉

boxes, due to the total volume of the objects. The volume of the objects has
to be round up here, because the number of the boxes has to be an integer.
Hence, we obtain for the ratio of the number of boxes required by NextFit

to the number of boxes required for an optimal packing:

solution NextFit

optimal solution
=

n

� n
2 � ≤ 2.

Thus the online algorithm NextFit is 2-competitive (see introduction to on-
line algorithms, Chap. 37). As this proof can be transferred to FirstFit,
it is 2-competitive as well. It is possible to show that FirstFit is even
1.7-competitive, using a much more complicated proof (which we won’t exer-
cise here, see Further Reading).

How Well Can Online Algorithms for Bin Packing
Perform?

We now know lower bounds for the approximation quality of NextFit and
FirstFit, and we know that there are input sequences for which these bounds
are almost reached, i.e., for which the results cost almost twice (for NextFit)
and 1.7 times, respectively, (for FirstFit) as much as an optimal solution.
On the one hand, this is a good result as we know that the wasted space in the
boxes never exceeds a certain factor. But on the other hand, this result still
is somehow unsatisfactory because you sorely feel it in your budget if moving
costs 2000 Euro (or 1700 Euro, respectively) instead of 1000 Euro.

To finally judge how well or how poorly a strategy really performs, we
also have to take into account how well any online algorithm for bin packing

38 Bin Packing 373

can perform at all. Since the input sequence is not known in advance, it
somehow seems impossible to design an online algorithm which always outputs
an optimal result. We’re now going to prove this fact.

Suppose we have an input sequence which contains 2·x objects of size 1
2 −ε,

where x is a positive integer and ε is an arbitrarily small, positive number. The
optimal packing for this input sequence obviously is: x boxes which contain
2 objects each. Let’s now consider an arbitrary online algorithm and denote
it by BinPac. BinPac will spread the 2 · x objects over the boxes so that –
depending on the strategy – each box either contains one or two objects. We
denote the number of boxes containing one object by b1, and those containing
two objects by b2. By b = b1 + b2 we denote the total number of boxes used
by BinPac. Then we can find this correlation:

b1 + 2 · b2 = 2 · x ⇒ b1 = 2 · x − 2 · b2.

By inserting this into b = b1 + b2 we get:

b = (2 · x − 2 · b2) + b2 = 2 · x − b2. (38.1)

We’ll get back to this intermediate result later. Now let’s check what happens
if our input sequence consists of 4 · x objects, in which the first 2 · x objects
again have size 1

2 − ε and the remaining 2 · x size 1
2 +ε. Since online algorithms

generally cannot look into the future, BinPac will behave on the first 2 · x
smaller objects the same way as in the previous example, where no further
objects were following. Thus, when placing the remaining objects of size 1

2 +ε,
we can first fill up the b1 many boxes with one object, and then we’ll have to
open a new box for each of the remaining 2 · x − b1 objects. Hence, BinPac

at least needs

b + (2 · x − b1) = (b1 + b2) + (2 · x − b1) = 2 · x + b2 (38.2)

boxes for this input sequence in total. But the optimal solution would have
been to put one of the smaller and one of the bigger objects in each box,
leading to a total of only 2 · x required boxes.

Now we are ready to prove that no online algorithm is better than
4
3 -competitive. We argue by first assuming that there would be a better online
algorithm and then showing that this assumption leads to a contradiction.

Suppose BinPac would be better than 4
3 -competitive. Then the number

of boxes used for the first input sequence would have to be strictly less than
4
3 times the number of boxes required for an optimal solution. Formally:

b <
4
3

· x.

Applying this to (38.1), we get:

2 · x − b2 <
4
3

· x ⇒ b2 >
2
3

· x. (38.3)

374 Joachim Gehweiler and Friedhelm Meyer auf der Heide

Analogously, for the second input sequence, we perceive that the number of
the boxes used (see (38.2)) is strictly less than 4

3 times the number of boxes
required for an optimal solution (2 · x). Formally:

2 · x + b2 <
4
3
(2 · x) ⇒ b2 <

2
3

· x. (38.4)

Now we end up in a contradiction because, as of (38.3) and (38.4), b2 would
have to be both strictly less and strictly greater than 2

3 · x at the same time,
which is impossible. Thus, our assumption must have been wrong, and we
have proven:

Theorem 1

There is no α-competitive online algorithm for the bin packing problem with
α < 4

3 .

Now, knowing that even the best possible online strategy for bin packing
cannot be better than 4

3 -competitive, the 1.7-competitive strategy FirstFit

appears in a much more positive light. Okay, people, let’s get packing!
A further application for bin packing is, for example, to assign files to CDs

when backing up a huge amount of data. In this case, the above-described
strategies can even be applied directly, i.e., we don’t have to make simplify-
ing assumptions as there is no “clipping” problem when dealing with (one-
dimensional) data streams.

Further Reading

1. http://www-cg-hci-f.informatik.uni-oldenburg.de/∼da/iva/baer/
start/bin1.html
This Java applet interactively illustrates how the FirstFit algorithm
works.

2. D. Johnson: Fast algorithms for bin packing. Journal of Computer and
System Sciences 8 (1974), pp. 272–314.
This is the first publication on online bin packing.

3. S. Seiden: On the online bin packing problem. In: Proceedings of the
28th International Colloquium on Automata, Languages and Program-
ming (July 2001), Springer, pp. 237–249.
The best algorithm for online bin packing known so far (Harmonic++),
which is 1.58889-competitive, is introduced in this article.

4. A. van Vliet: An improved lower bound for online bin packing algorithms.
Information Processing Letters 43, 5 (October 1992), pp. 277–284.
In this article the value for α in Theorem 1 is improved from 4

3 to 1.5401.

39

The Knapsack Problem

Rene Beier and Berthold Vöcking

Max-Planck-Institut für Informatik, Saarbrücken, Germany
RWTH Aachen, Aachen, Germany

In two months, the next rocket will leave Earth heading to the space station.
The space agency, being a little short of money, offers to carry out scientific
experiments for other research institutions at the space station. For each ex-
periment, some equipment needs to be lifted up to the station. However, there
is a limit on the weight the rocket can carry. Apart from the obligatory food
rations, the rocket is able to carry up to 645 kg of scientific equipment. The
space agency receives several offers from different research institutions stating
how much they are willing to pay for the execution of an experiment and
specifying the weight of the necessary equipment. The space agency wants to
figure out which of these experiments should be chosen in order to maximize
the profit.

This scenario exemplifies a classic optimization problem, the so-called
knapsack problem: Suppose we have a knapsack that has a certain capac-
ity described by a weight threshold T . We are given a set of n items, each
bearing a weight and a profit. The task is to choose a subset of the items that
should go into the knapsack. Only subsets of total weight at most T can be
chosen. The objective is to make the profit as large as possible. That is, one
seeks for a subset such that the sum of the profits of the items in the subset is
as large as possible under the constraint that the sum of the weights of these
items is at most T .

In the introductory example the knapsack corresponds to the rocket. The
weight threshold is T = 645. The items correspond to the experiments. To
make the example more concrete we assume that the space agency can choose
from n = 8 experiments listed with the following weights and profits.

Item 1 2 3 4 5 6 7 8
Weight in kg 153 54 191 66 239 137 148 249
Profit in 1000 Euro 232 73 201 50 141 79 48 38
Profit density 1.52 1.35 1.05 0.76 0.59 0.58 0.32 0.15

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 39, c© Springer-Verlag Berlin Heidelberg 2011

376 Rene Beier and Berthold Vöcking

How can we find a feasible set of items that maximizes the profit? Intu-
itively we could choose those items first that achieve the largest profit per
unit weight. This ratio between profit and weight is called profit density. We
have calculated the profit density for all items. The table lists the items from
left to right in such a way that this ratio is decreasing.

Our first algorithm follows the idea above and sorts all items by decreasing
profit density, e.g., by using the algorithms from Chap. 2 or Chap. 3. Starting
with the empty knapsack we add items one by one in this order as long as
the capacity of the knapsack is not exceeded. In our example, we would pack
items 1, 2, 3, and 4 as their cumulative weight is 464, which is still below the
threshold. Adding item 5 would result in a total weight of 464 + 239 = 703,
which would overload the knapsack. The four packed items yield a profit of
556. Is this the maximal profit that we can achieve? Not quite. By adding
item 6 we obtain a knapsack packing with a total weight of 601 that is still
feasible and has a total profit of 635. Is this now the most profitable subset?
Unfortunately not.

Of course, in order to guarantee optimality we could test all possible com-
binations of packing the knapsack. To better illustrate let us draw all possible
packings in a weight–profit diagram, irrespective of the weight threshold. For
instance, we draw the point (601, 647) for the packing with items {1, 2, 3, 4, 6}.

Each point represents a subset of items. How many points do we have to
draw? We must decide whether to include each item or not; hence there are
two possibilities per item. As the choice for each item is independent from
the choice made for the other items, there are 2n possibilities for n items.
Thus, in our example, we would need to test 28 = 256 different packings.

39 The Knapsack Problem 377

The packings with weights greater than the threshold T are not feasible.
These subsets correspond to points in the diagram that lie to the right of the
vertical line. Points to the left of or exactly on the vertical line correspond
to feasible packings. Among those feasible packings we choose the one with
maximum profit. In our example, it is the point with coordinates 637 and
647, corresponding to the packing containing items 1, 2, 3, and 5. This is the
optimal solution.

This approach of finding the best solution is practical only for a small
number of items as the computational effort increases rapidly when increasing
the number of items. Each additional item doubles the number of packings
that need to be tested. When the space agency, for example, can choose among
60 experiments the number of possible packings grows to

260 = 1,152,921,504,606,846,976.

Assuming that a modern computer can test 1,000,000,000 packings per
second, it would still take more than 36 years to finish the computation. Of
course, we do not want to delay the start of the rocket for such a long time.

Pareto-Optimal Solutions

How can we find the optimal solution faster? The key to a more efficient
algorithm is the following observation: A packing cannot be optimal if there
exists another packing with lower weight and higher profit. Let’s go back to
our example.

378 Rene Beier and Berthold Vöcking

None of the black points can be the optimal solution since for each of
them we can find at least one other point that is better, i.e., that has both
lower weight and higher profit. We say that this better point dominates the
black point. The blue points in the diagram are exactly those points that are
not dominated by any other point. These points are called Pareto-optimal.
Hence, a packing is Pareto-optimal if there exists no other packing of less
weight that yields a higher profit. In our example, only 17 of the 256 packings
are Pareto-optimal. The optimal solution must be among those 17 packings.
Observe that the property of being Pareto-optimal is independent of the choice
of the weight threshold. In particular, for any given threshold we can find the
optimal solution among those 17 packings.

So far we have ignored in the discussion the fact that two packings can
have the same weight or the same profit. In order to correctly handle those
cases we define that packing A dominates packing B if A is at least as good
as B in weight and in profit and additionally if A is strictly better than B in
at least one of the two criteria.

But how can we compute a list of all Pareto-optimal packings efficiently,
namely without testing all 2n packings? Consider the following small example
starting with three items. We plotted all 23 = 8 different packings in a weight–
profit diagram.

Let us assume that we know the set of Pareto-optimal packings for these
three items, and we consider an additional fourth item. For each of the eight
packings we can generate a new packing by adding the fourth item. This way,
we obtain eight additional packings. Each black point generates a new red
point with a horizontal and vertical shift corresponding to the weight and
profit of the fourth item. Hence, the set of red points is just a shifted copy of
the set of black points.

39 The Knapsack Problem 379

What can we say about the Pareto-optimality of these 16 points? We
exploit that we already know the set of Pareto-optimal packings for three
items. A black point dominated by some other black point is by definition
not Pareto-optimal. The same holds for each red point dominated by some
other red point. In other words, a black point that is not Pareto-optimal with
respect to the black point set (3 items) cannot become Pareto-optimal with
respect to all 16 points (4 items). The same applies to red points that are
not Pareto-optimal with respect to the red-point set. As a consequence, only
points from the following two sets can potentially be Pareto-optimal.

A: black points that are Pareto-optimal with respect to the black point set,
and

B: red points that are Pareto-optimal with respect to the red point set.

Observe that the points in B are just shifted copies of the points in A. Now
consider a point p from A. Suppose p is dominated by a red point q. If q does
not belong to B then there must be a red point q′ in B that dominates q and
thus dominates p as well. Hence, in order to check the Pareto-optimality of a
point from A (with respect to both black and red points), one only needs to
check if this point is not dominated by a point from B. Analogously, in order
to check the Pareto-optimality of a point from B, one only needs to check if
it is not dominated by a point from A.

Now we have a procedure for computing the set of Pareto-optimal pack-
ings when adding one additional item: First construct all red points that are
generated from Pareto-optimal black points. Then delete all red points dom-
inated by a black point. Finally, delete all black points dominated by a red
point.

The Nemhauser–Ullmann Algorithm

The following algorithm was invented by Nemhauser and Ullmann in 1969. It
uses the arguments above in an iterative fashion, adding one item after the
other. That is, it starts with the empty set of items and adds items one by
one until it finally obtains the set of Pareto-optimal packings for all n items.

380 Rene Beier and Berthold Vöcking

An efficient implementation maintains the set of Pareto-optimal points in
a list that is sorted according to the weight of the points. The initial list
L0 contains only the point (0, 0), which corresponds to the empty packing.
Now we iteratively compute lists L1, L2, . . . , Ln, where Li denotes the list of
Pareto-optimal points with respect to items 1 to i.

Using Li−1 and the ith item we compute Li as follows. First we generate
L′

i−1 (the red point set), which is a shifted copy of Li (the black point set).
Each point in Li−1 has to be copied and shifted right and up by the weight and
profit of the ith item, respectively. Now we merge the two lists, Li−1 and L′

i−1,
filtering out points that are dominated. As both lists are sorted according to
the weight of the points (and therefore also according to the profit – can you
tell why?), this task can be achieved by scanning only once through both of
these lists. Thus, the time needed to merge these lists is linear in the sum of
the length of the two lists.

The algorithm Merge merges two sorted lists of points L and L′.

1 procedure MERGE (L, L′)
2 BEGIN
3 PMAX = −1; E = { }
4 REPEAT
5 Scan L for a point (w, p) with profit p > PMAX
6 Scan L′ for a point (w′, p′) with profit p′ > PMAX
7 If no point has been found in line 5 (finished scanning L)
8 Insert remaining points from L′ into E; RETURN(E)
9 If no point has been found in line 6 (Finished scanning L′)

10 Insert remaining points from L into E; RETURN(E)
11 IF (w < w′) OR (w = w′ AND p > p′)
12 THEN insert (w, p) into E and set PMAX := p
13 ELSE insert (w′, p′) into E and set PMAX := p′

14 END

The resulting list Ln contains all Pareto-optimal points with respect to the
n items. From this list, we choose the point with maximal profit whose weight
is at most T . The packing belonging to this point is the optimal solution.

Is this algorithm better than simply testing all possible packings? Not in
every case, as it is possible that all 2n packings are Pareto-optimal. This can
happen, for instance, when the profit density of all items has the same value
c, i.e., pi = c ∗ wi for some constant c. However, this is not what one typically
experiences. Usually, the number of Pareto-optimal solutions is much smaller
than 2n. In our introductory example we generated weights and profits of the
eight items at random. Only 17 out of the 256 packings are Pareto-optimal.
Mathematical and empirical analyses show that typically only a very small
fraction of the packings are Pareto-optimal. For this reason, the described
algorithm can handle instances of the knapsack problems with thousands of
items in a reasonable amount of time.

39 The Knapsack Problem 381

Further Reading

1. H. Kellerer, U. Pferschy and D. Pisinger: Knapsack Problems. Springer,
2004.
This nice textbook is completely devoted to algorithms for the knap-
sack problem. It discusses various practical variations of this problem and
presents several algorithmic approaches to tackle these problems. It gives
a comprehensive overview of the state of the art in this field.

2. S. Martello and P. Toth: Knapsack Problems: Algorithms and Implemen-
tations. Wiley, Chichester, 1990.
This is an older textbook about the knapsack problem; nevertheless it
gives some interesting insights into different approaches for solving the
problem and its variations.

3. Wikipedia elaborates on the knapsack problem, too. In particular, it
presents an algorithm using the dynamic programming paradigm. (An in-
troduction to this paradigm applied to a different problem can be found
in Chap. 31 of this book.) The same algorithm can be found in several
introductory textbooks about algorithms as well. In many instances, how-
ever, it is much slower than the algorithm that we have presented here:
http://en.wikipedia.org/wiki/Knapsack problem

4. The knapsack problem is closely related to bi- or multicriteria optimization
problems which optimize two or more criteria simultaneously. For exam-
ple, one is given n objects, each of which comes with a profit and a weight,
like in the knapsack problem, but there is no threshold on the weight. In-
stead one assumes that there is a decision-maker that, on the one hand,
seeks for a subset of items giving a large profit. On the other hand, the
decision-maker wants to select a subset of low weight. Of course, these are
conflicting goals and the question is how to resolve them. Such problems
arise in many practical applications. For example, consider a navigation
system for traveling by car. (Such a system uses algorithms similar to the
shortest-path algorithm explained in Chap. 32.) The objective might be
to find a short route between a starting point and a destination in a traffic
network. The shortest route, however, is not always the quickest one, as it
might directly lead through the city rather than taking a relatively short
detour along the highway on which one can travel much faster. Here to ev-
ery route could be attached two values, distance and time. The interesting
solutions are the Pareto-optimal ones with respect to these two criteria
among which the driver should make his choice. An entry point into the
field of Pareto optimization can be found in Wikipedia:
http://en.wikipedia.org/wiki/Pareto-efficiency

40

The Travelling Salesman Problem

Stefan Näher

Universität Trier, Trier, Germany

Introduction

The Travelling Salesman Problem (TSP) is one of the most famous and most-
studied problems in combinatorial optimization. It is defined as follows: A trav-
elling salesman has to visit n cities in a round trip (often called tour). He starts
in one of the n cities, visits all remaining cities one by one, and finally returns
to his starting point.

The actual optimization problem is to find a tour of minimal total length.
For this purpose the distances between all pairs of cities are given in a table
or matrix. Besides the exact geometric distance values other values may be
used, such as travel time or the cost of the required amount of fuel. The goal
is to plan the tour in such a way that the total distance, travel time, or the
total cost is minimized, respectively.

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 40, c© Springer-Verlag Berlin Heidelberg 2011

384 Stefan Näher

TSP belongs to a class of very difficult problems: the so-called NP-hard
problems (see also, for example, Chap. 39). No efficient algorithms are known
for this class of problems. In fact, it is assumed that every algorithm to solve
these problems exactly needs exponentially many steps. However, there exists
no mathematical proof of this assumption. Efficient algorithms have been
found for special variants of TSP and for the computation of approximative
solutions, which allow tours that may be more expensive than the optimal
tour.

The TSP appears in many practical optimization problems as a subprob-
lem, e.g., optimization problems in traffic scheduling or logistics. On the other
hand, many NP-hard problems can be reduced to the TSP problem.

We will begin with a very simple strategy for solving TSP exactly, the so-
called brute-force method. This method is a good example for the disastrous
slowness of algorithms with exponential running time.

The Brute-Force Method

The brute-force method is the simplest algorithm to solve TSP exactly. It
looks at all possible tours one by one, computes the total length of each tour,
and computes the optimal tour by finding the minimum of these length values
using comparisons. Unfortunately, the total number of all possible tours grows
extremely fast with increasing numbers of cities. It is easy to see that there
are (n − 1)! = 1 · 2 · 3 · 4 · · · · · (n − 1) different ways to visit n cities by a tour.
Each tour has to start in one city (e.g., the first one), then it has to visit all
n − 1 remaining cities in an arbitrary order, and finally return to the first city.
However, there are exactly (n − 1)! possible orderings or permutations of the
remaining n − 1 cities.

Figure 40.1 shows the 6 = (4 − 1)! possible tours for four cities A, B, C,
and D. Note that the lower three tours are just reversals of the upper three
tours. So it is only necessary to compute the total length of half of the tours.
This leads to the observation that the algorithm has to look at 1

2 · (n − 1)!
tours. After all, there exist variants of TSP without this symmetry property.
Then, in fact, all tours have to be considered.

Table 40.1 shows how extremely quickly the number of tours grows with
increasing n. The last column gives an estimate of the running time of a
program solving TSP using the brute-force method. Here we assume that the
handling of one single tour takes about one millisecond. In the last row of the
table one can see that such a program would run for about 20 years to solve a
TSP with only 16 cities. The table also shows that running times not exceeding
one hour are only possible for problems with at most ten cities. Chapter 39
of this book shows a similar problem with an extremely fast-growing number
of possible situations.

40 The Travelling Salesman Problem 385

Fig. 40.1. All possible tours for four cities

Cities Possible tours Running time

3 1 1 msec
4 3 3 msec
5 12 12 msec
6 60 60 msec
7 360 360 msec
8 2,520 2.5 sec
9 20,160 20 sec

10 181,440 3 min
11 1,814,400 0.5 hours
12 19,958,400 5.5 hours
13 239,500,800 2.8 days
14 3,113,510,400 36 days
15 43,589,145,600 1.3 years
16 653,837,184,000 20 years

Table 40.1. Number of all possible tours and running time of brute-force method

Dynamic Programming

Recursion is a strategy that is used very frequently in computer science and
in particular in algorithm design. The idea is to reduce the solution of a
problem to smaller problems of the same kind (see also Chap. 3). Dynamic
Programming is a special variant of this technique that maintains the results
of recursively defined subproblems in a table.

386 Stefan Näher

Let us assume that the n cities of TSP are numbered from 1 to n such that
we can write the set of all cities as the set S = {1, 2, . . . , n}. Furthermore we
assume that the distances between all pairs of cities are given in a table DIST
such that DIST [i, j] is equal to the to the distance from city i to city j. Since
a tour can start and end in an arbitrary city, we can assume that every tour
begins in city 1, then moves on to some city i ∈ {2, . . . , n}, visits all remaining
cities {2, . . . , i − 1, i + 1, . . . , n}, and finally returns to city 1.

Let i be an arbitrary city and A some set of cities, then define L(i, A) to
be the length of a shortest path

• that begins in city i,
• visits every city in set A exactly once,
• and ends in city 1.

The following observations lead to an algorithm for the computation of all
L(i, A) values:

1. L(i, ∅) = DIST [i, 1] for each city i ∈ S.
It is obvious that the shortest path from i to 1 that visits no other city
must be the direct connection from i to 1.

2. For each city i ∈ S and subset A ⊆ S \ {1, i} we have
L(i, A) = min{DIST [i, j] + L(j, A \ {j}) | j ∈ A}.
If set A is not empty then the optimal path can be defined recursively as
follows: For every j ∈ A consider the path that beginning in i first visits
j. For the shortest of these paths the rest, leading from j to 1, must be
optimal too. According to our definition this path has length L(j, A \ {j}).

3. L(1, {2, . . . , n}) is the length of an optimal TSP tour. This follows imme-
diately from the fact that any tour begins in 1, visits all remaining cities,
and finally returns to 1.

Then the table of all L(i, A) values can be computed for larger and larger
subsets A by the following algorithm.

Algorithm TSP with Dynamic Programming

1 for i := 1 to n do L(i, ∅) := DIST [i, 1] endfor;
2 for k := 1 to n − 1 do
3 forall A ⊆ S \ {1} with |A| = k do
4 for i := 1 to n do
5 if i /∈ A then
6 L(i, A) = min{DIST [i, j] + L(j, A \ {j}) | j ∈ A}.
7 endif
8 endfor
9 endfor

10 endfor
11 return L(1, {2, . . . , n});

40 The Travelling Salesman Problem 387

n cities Size of the table (n2 · 2n) Running time

3 72 72 msec
4 256 0.4 sec
5 800 0.8 sec
6 2304 2.3 sec
7 6272 6.3 sec
8 16,384 16 sec
9 41,472 41 sec

10 102,400 102 sec
11 247,808 4.1 minutes
12 589,824 9.8 minutes
13 1,384,448 23 minutes
14 3,211,264 54 minutes
15 7,372,800 2 hours
16 16,777,216 4.7 hours

Table 40.2. Table size and running time of dynamic programming

The algorithm fills a table of n rows (i = 1, . . . , n) and of at most 2n

columns (for all subsets of size k ≤ n − 1). Thus the size of this table is at
most n · 2n. For every entry a linear search for the minimum of n numbers
is performed (lines 4 to 7). Then line 6 of the algorithm is executed at most
n · n · 2n = n2 · 2n times.

Table 40.2 shows in column 2 the values of this number for TSP problems
with at most 16 cities. The last column gives the corresponding running times.
Here it is assumed that the computation of a single table entry takes one
millisecond. It is easy to see that the total running time is still growing faster
than exponentially. However, we achieve a dramatic improvement compared
to the brute-force method described in the previous section. The time for
solving a TSP for 15 cities is reduced from 20 years to 5 hours.

Approximative Solutions

The dynamic programming approach has dramatically improved the running
time compared to the brute-force method. However it still requires time ex-
ponential in the input size n and is completely useless for larger values of n.
A second problem is the huge memory consumption for storing the table. This
section presents an algorithm that does not always find the optimal TSP tour
but it does find a pretty good one. More precisely, it computes a tour with a
length not exceeding two times the optimal tour length. Such an algorithm is
also called a heuristic.

To this purpose we model TSP as a problem on a graph G whose nodes
represent the cities, and an edge between two nodes i and j represents the
direct shortest connection from i to j. We assume that every edge is labeled

388 Stefan Näher

with the corresponding distance. Since for every pair (i, j) of cities there exists
such a direct connection, the constructed graph G = (V, E) is a so-called
complete graph that contains all pairs of nodes as edges, i.e., E = V × V . In
this model a tour is represented by a cycle in G that visits every node exactly
once. Such a cycle is called Hamiltonian.

There is a simple relation between possible tours (i.e., Hamiltonian cycles)
and special subgraphs of G, the so-called spanning trees. A spanning tree is
an acyclic subgraph connecting all nodes of G. A minimal spanning tree is a
spanning tree with minimal total cost (summing up the cost of all edges).

Removing an arbitrary edge from a tour yields a so-called Hamiltonian
path. Since any Hamiltonian path fulfills the conditions of a spanning tree (an
acyclic subgraph connecting all nodes), its total cost must be at least as large
as the cost of a minimum spanning tree. In other words, the total cost of a
minimum spanning tree cannot exceed the total cost of an optimal tour.

Efficient algorithms for minimum spanning trees are presented in Chap. 33
of this book. The most expensive step of these algorithms is to sort all edges of
the graph according to their cost. Starting with a minimal spanning tree it is
easy to construct a TSP tour. The complete algorithm consists of the follow-
ing steps: The corresponding figures have been produced by a program that
can be downloaded from http://www-i1.informatik.rwth-aachen.de/∼

algorithmus/Algorithmen/algo40/tsp.exe.

MST Algorithm

1. Construct the complete graph G = (V, E), where V represents the set of
all cities and E = V × V (see Fig. 40.2).

2. Compute a minimal spanning tree T of G such that the cost of every
edge (i, j) is equal to the distance between city i and city j (DIST [i, j]).
Figure 40.3 shows the result of this step.

3. In the next step, tree T is transformed into a first tour by simply walking
around T along its edges (see Fig. 40.4). The total length of this tour is

Fig. 40.2. The complete graph of all direct connections

40 The Travelling Salesman Problem 389

Fig. 40.3. The minimal spanning tree

Fig. 40.4. Tour around the minimum spanning tree

apparently twice as large as the total cost of T , because every edge is used
twice. Following the considerations made above we conclude that the total
length of this tour is at most twice as large as the length of an optimal
TSP tour.

4. Obviously, the tour constructed in the previous step is not optimal. Ac-
tually it is not a correct tour at all, because it visits every node twice.
However, it is not difficult to turn it into a correct tour with smaller total
length. Consider three successive nodes a, b, c, and check whether the two
edges a −→ b −→ c can be replaced by the shortcut a −→ c without
isolating node b. The result of this step is shown in Fig. 40.5.

Table 40.3 shows the running time of the MST algorithm for randomly
chosen cities. The program used to create the table computes a minimum
spanning tree of a graph with 1000 edges in about one millisecond. As shown
in the table, the algorithm finds an approximate solution for a TSP problem
with 1000 cities in about one minute. The computed tour can be improved
by further heuristics. As an example, we explain the 2-OPT method (see
Fig. 40.6). Consider two arbitrary edges of the computed tour A −→ B and
C −→ D. Removing these edges splits the tour into two pieces from B to C

390 Stefan Näher

Fig. 40.5. The minimum spanning tour

Cities Running time

100 0.01 sec
200 0.08 sec
300 0.36 sec
400 1.30 sec
500 3.62 sec
600 8.27 sec
700 16.07 sec
800 29.35 sec
900 50.22 sec

1000 85.38 sec

Table 40.3. Running time of the MST-heuristics

Fig. 40.6. One step of the 2-OPT heuristics

and from D to A. Now check if these two parts can be combined to a shorter
tour by adding edges A −→ C and D −→ B.

Some Final Remarks

• There are many more heuristics for improving the quality of approximative
solutions. In many practical cases they are even able to find the optimal
tour.

40 The Travelling Salesman Problem 391

• Algorithms for the exact solution of TSP have been considerably improved
over recent years. They can solve problems with several thousand cities in
a few hours.

• In the worst case solving TSP remains difficult and requires an exponential
number of computation steps.

Further Reading

1. Wikipedia: Travelling Salesman Problem
http://en.wikipedia.org/wiki/Travelling Salesman Problem.

2. An introduction by Martin Grötschel and Manfred Padberg (in German)
http://elib.zib.de/pub/UserHome/Groetschel/Spektrum/index2.
html

3. The Travelling Salesman Problem Home Page
http://www.tsp.gatech.edu

4. The Knapsack Problem (Chap. 39)
An optimization problem with a similarly fast growing number of possi-
bilities.

5. Fast Sorting Algorithms (Chap. 3)
An introduction to recursive algorithms.

6. A demo program that provided the figures in this chapter
http://www-i1.informatik.rwth-aachen.de/∼algorithmus/
Algorithmen/algo40/tsp.exe

41

Simulated Annealing

Peter Rossmanith

RWTH Aachen, Aachen, Germany

Let us look at a simple combinatorial puzzle game: we can place several
quadratic tiles on a wooden board at 12 × 8 different positions. At the begin-
ning the tiles might be placed as indicated in Fig. 41.1. As you can see, each
tile has four sides that may be colored blue, yellow, green, and orange.

We can exchange the positions of any two tiles, but we are not allowed to
rotate them. The goal of the game is to obtain as many neighboring sides of
tiles of the same color as possible: You score one point for each such neigh-
boring pair. In that way it is not possible to score more than 172 points: Each

Fig. 41.1. Background of the domino game: The pieces are arranged at random in
the box. Even in this situation we see 36 points

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0 41, c© Springer-Verlag Berlin Heidelberg 2011

394 Peter Rossmanith

row contains 11 tile pairs and each column contains 7. There are 8 rows and
12 columns making altogether 11 · 8 + 7 · 12 = 172.

Throughout this chapter we will continue to consider this tiling game as a
typical example that is similar to many problems in combinatorial optimiza-
tion. Some of the optimization problems mentioned in this book can be solved
quite efficiently (Chaps. 32, 33, 34, and 35), while we can exactly solve others
only for relatively small input sizes (Chaps. 39 and 40). Here we are interested
more in the latter kind, in particular problems that can neither be solved by
trying out all possibilities nor with the help of backtracking. One method that
works well in many of those cases is simulated annealing, which is the topic
of this chapter.

What Is Simulated Annealing?

Simulated Annealing means simulating a process that involves first heating
and then slowly cooling some material. There are several technological pro-
cesses based on a similar principle. For example, cooling red hot iron in met-
alworking quickly or slowly leads to materials with quite different properties.
So why do that? Let us think about what happens to the particles (atoms) of
the metal:

The atoms are bound in a rigid crystal structure. When we start to heat
the metal they start to break free from their bonds and move about. If we
let the metal cool again, the particles will find new bonds. Interestingly, often
their new distribution will be more regular than before. Doing it the right way
leads to metal that is softer, more flexible, and contains fewer irregularities.

To better understand the effects of slowly cooling, we can think of the
particles as small balls. If you just throw them into a vessel, they will lie
around higgledy-piggledy. What can we do to put them into order? Shake
them! At first their disorder increases and the balls fly about, but soon they
get into order all by themselves. If we, however, stop shaking too suddenly,
the balls will not be packed very closely.

This is also an important principle in the manufac-
turing of silicon semiconductors, of which computers’
processors and memory chips consist. In that case we
require very pure silicon crystals that do not contain
any defects. Usually silicon is polycrystalline: similarly
to grains of sand, many small monocrystals are placed
close to each other. Each monocrystal itself consists of
very many small elementary cubes that are flawlessly
stacked next to each other. On the left side you can

see such a silicon elementary cube. On the outside eight silicon atoms form a
cube in whose interior ten more silicon atoms reside. In semiconductor pro-
duction we need relatively large monocrystals. To this end a monocrystalline
“pillar” is slowly drawn out of a bath of molten silicon. Consequently, with

41 Simulated Annealing 395

the help of a saw the monocrystal is cut into wafers, which finally are turned
into electronic semiconductors.

The monocrystalline state of silicon has the small-
est energy possible: the bonds between individual
atoms are strongest. From this perspective, the dif-
ference from our tiling game is not that big anymore.
Here, too, we are concerned with elementary par-
ticles whose relative position can be changed. The
bond between two neighboring tiles is stronger if
sides with the same color face each other. Again,
we are looking for a tessellation with smallest pos-
sible energy. If our game were a heated crystal, the
tiles would wildly jump about. The lower the tem-
perature gets, the harder it becomes to tear a tile
from its position, and the more stable bonds they
have with their neighbors, the stronger they stick to
their position.

It seems to be very hard to modify the board
game in order to make it behave just like that, al-
though it might be possible: Perhaps we could en-
force stronger bonds between sides of same color
by cleverly located magnets and mount the whole
board on a vibrating table. On the other hand, it
is much easier to simulate the whole process using a computer. Shaking the
board corresponds to swapping the positions of two tiles in the simulation.
Doing so, it is quite easy to compute how much the number of points scored
increases or decreases. At high temperatures we tolerate swaps that decrease
the number of points, while at low temperatures we get stricter and will tend
to allow only “good” changes to the board. The following algorithm can easily
be implemented in all usual programming languages:

Tiling Game

Repeat quite often:

1. Decrease the temperature a little
2. Swap two randomly chosen tiles
3. If the number of points has decreased:

• Randomly decide whether to keep this swap
• The probability for keeping the swap decreases with the temperature
• Undo the swap in case of a negative decision

This algorithm works surprisingly well for our tiling game. During the
execution of the algorithm the point score both increases and decreases. In
the beginning its fluctuation is quite big, but the longer we wait – and the
lower the temperature gets – the smaller it becomes. Finally, we cannot notice

396 Peter Rossmanith

Fig. 41.2. How the point score changes by repeatedly swapping tiles: The y-axis
indicates the number of points and the x-axis shows the number of steps in units of
10,000. Altogether 500,000 steps are executed. In the end the score amounts to 171
points

any change in the point score anymore. Figure 41.2 shows how the point score
changes in the course of time, showing only scores higher than 140. This area
is reached very quickly, while further improvements become more infrequent
toward the end.

At this point, the question why we do not always take back swaps that
decrease the point score arises – in that way we would never voluntarily give
up earned points? Very often such a strategy works quite well and, therefore,
bears its own name: method of steepest descent (in our metaphor of reaching
the highest mountain, method of steepest ascent would make more sense, but
some optimization problems happen to be maximization problems, while oth-
ers are minimization problems, and the name was chosen based on the latter
ones). This strategy only climbs upwards, never downwards. If we want to
climb the highest mountain, we choose a direction that leads upwards, until
no such direction exists anymore, which is only the case on a summit. Can we
be sure that it is the highest summit? Not necessarily!

One who wants to climb the highest mountain, must be also willing to
descend along the way.

An application of the method of steepest descent to our tiling problem
leads to a solution with 167 points, from which point on it is impossible to
further increase the score by swapping tiles. This score is quite good. Simu-
lated annealing, however, leads to the better solution with 171 points, shown
in Fig. 41.3. Only one possible point is missing, whose location is not at all
easy to spot with just a quick glance on the board. (Hint: Tilt the picture by
45◦ and look along the visually emerging diagonal lines.)

41 Simulated Annealing 397

Fig. 41.3. Positions of the tiles after application of simulated annealing: The score
is 171 points, and a closer look reveals that we got almost all possible points

Scoring 171 of theoretically possible 172 points is an excellent result
achieved by simulated annealing. We leave the natural question of whether a
perfect solution with 172 points exists as an open question to the interested
reader.

The Travelling Salesperson Problem

Let us have another look at a typical and famous problem in computer sci-
ence, the travelling salesperson problem, which is also a topic in Chap. 40
in this book: A salesperson likes to visit a number of cities, spending as lit-
tle time as possible for the trip. So the goal is to fix the sequence in which
he or she visits the cities in such a way that the total mileage traveled be-
comes as small as possible. Surprisingly, this turns out to be a very hard
problem.

Maybe we can find a nearly optimal solution by employing simulated an-
nealing. To find some solution to start with is easy: Just put the cities in some
arbitrary order! So we start with a random tour and, of course, it is highly
improbable that this tour is short.

How can we improve this tour by incorporating only small adjustments?
Well, one possibility is to choose randomly a segment of the tour and traverse
it in the opposite direction:

398 Peter Rossmanith

Another possibility is to visit some city at a different point in time, while
preserving the order in which we visit the remaining cities:

After adjustments of either kind, the new tour might be better or worse
than the old one. If the new one is better, we keep it, otherwise we return to
the old tour.

A big tour connecting 200 cities is depicted in Fig. 41.4. Of course, it was
found by using the two kinds of adjustments mentioned above and simulated
annealing.

Further Applications

We can employ simulated annealing if the following conditions are met:

1. The quality of a solution can be expressed as a number.
2. An initial solution can be easily computed.
3. There are simple adjustment rules that locally change a solution.
4. Every solution can be turned into every other solution by application of

these adjustment rules.

As these conditions are by no means very restrictive, it turns out that a
surprisingly large number of problems can be successfully solved by simulated
annealing.

Let us finally note that computer scientists were not the first to use crys-
tal growing by slow cooling as a model for solving technical problems. If you
take this book into your hand, for example, you might notice the accurate

41 Simulated Annealing 399

Fig. 41.4. A tour that connects 200 cities

fitting of the pages’ edges thanks to a precise cutting machine. If you, how-
ever, flip quickly through the pages you might also notice that the edges of
the text are perfectly aligned. This alignment is due to the perfect adjust-
ment of the pages before binding them into a book. Technically, this is a
quite complex task: If you have a pile of loose pages (or cards from a deck),
it is quite hard to align their edges perfectly. Even brute force is not very
helpful.

The technical solution to this problem is a machine called a paper jog-
ger. It perfectly aligns the pages by using strong vibrations. Figure 41.5
shows a small paper jogger that can be operated manually and is used to
align exercise sheets coming freshly out of a printing machine. The control
dial is used to turn the vibration from strong to gentle: simulated anneal-
ing!

400 Peter Rossmanith

Fig. 41.5. The exercise sheets come out of the printing machine. The edges are not
aligned. The paper jogger shakes them, and in the end we get a perfectly aligned
stack of paper

Further Reading

Simulated annealing was presented in this chapter in a simplified way. Al-
though you can achieve good results by using the method as presented, there
are many details whose observance leads to much better results. The en-
try on simulated annealing in Wikipedia is a good starting point to learn
more (http://en.wikipedia.org/wiki/Simulated annealing). Textbooks
on simulated annealing quite often are too specialized for the casual reader. To
learn more you can consult a book that contains, besides simulated annealing,
other interesting methods for the solution of hard problems:

Juraj Hromkovič. Algorithmics for Hard Problems (Introduction to Combina-
torial Optimization, Randomization, Approximation, and Heuristics). Springer,
Heidelberg, 2nd edition, 2002.

You can also find many applets on the Internet for the interactive demon-
stration of simulated annealing. Just look for them using a search engine.

Author Details

Susanne Albers, Institut für Informatik, Humboldt-Universität zu Berlin,
Germany [Chap. 37, Online Algorithms]

Helmut Alt, Institut für Informatik, Freie Universität Berlin, Germany
[Chap. 3, Fast Sorting Algorithms; Overview of Part III, Planning, Coor-
dination and Simulation]

Michael Behrisch, Institut für Informatik, Humboldt-Universität zu Berlin,
Germany [Chap. 28, Eulerian Circuits]

Rene Beier, Max-Planck-Institut für Informatik, Saarbrücken, Germany
[Chap. 39, The Knapsack Problem]

Johannes Blömer, Institut für Informatik, Universität Paderborn, Ger-
many [Chap. 17, How to Share a Secret]

Norbert Blum, Institut für Informatik V, Rheinische Friedrich-Wilhelms-
Universität Bonn, Germany [Chap. 31, Dynamic Programming – Evolutionary
Distance]

Dirk Bongartz, Gymnasium St. Wolfhelm, Schwalmtal, Germany [Chap. 16,
Public-Key Cryptography]

Ulrik Brandes, Fachbereich Informatik & Informationswissenschaft, Uni-
versität Konstanz, Germany [Chap. 10, PageRank – What Is Really Relevant
in the World-Wide Web]

Volker Claus, Institut für Formale Methoden der Informatik, Universität
Stuttgart, Germany [Chap. 35, Marriage Broker]

Amin Coja-Oghlan, Mathematics and Computer Science, University of
Warwick, UK [Chap. 28, Eulerian Circuits]

B. Vöcking et al. (eds.), Algorithms Unplugged,
DOI 10.1007/978-3-642-15328-0, c© Springer-Verlag Berlin Heidelberg 2011

402 Author Details

Volker Diekert, Institut für Formale Methoden der Informatik, Universität
Stuttgart, Germany [Chap. 35, Marriage Broker]

Martin Dietzfelbinger, Institut für Theoretische Informatik, Fakultät für
Informatik und Automatisierung, Technische Universität Ilmenau, Germany
[Chap. 19, Fingerprinting; Overview of Part I (Searching and Sorting)]

Michael Dom, Lehrstuhl Theoretische Informatik I, Friedrich-Schiller-Uni-
versität Jena, Germany [Chap. 7, Depth-First Search (Ariadne & Co.)]

Gabi Dorfmüller, Fachbereich Informatik & Informationswissenschaft, Uni-
versität Konstanz, Germany [Chap. 10, PageRank – What Is Really Relevant
in the World-Wide Web]

Arno Eigenwillig, Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many; now at Google, Zürich, Switzerland [Chap. 11, Multiplication of Long
Integers – Faster than Long Multiplication]

Friedrich Eisenbrand, Chair of Discrete Optimization, EPFL, Lausanne,
Switzerland [Chap. 12, The Euclidean Algorithm]

Jost Enderle, Lehrstuhl für Informatik 9 (Datenmanagement und -explor-
ation), RWTH Aachen University, Germany [Chap. 1, Binary Search]

Thomas Erlebach, Dept. of Computer Science, University of Leicester, UK
[Chap. 24, Majority – Who Gets Elected Class Rep?]

Christoph Freundl, Lehrstuhl für Informatik 10 (Systemsimulation),
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany [Chap. 30,
Gauß–Seidel Iterative Method for the Computation of Physical Problems]

Joachim Gehweiler, Heinz Nixdorf Institut und Institut für Informatik,
Universität Paderborn, Germany [Chap. 38, Bin Packing or “How Do I Get
My Stuff into the Boxes?”]

Robert Görke, Institut für Theoretische Informatik, Karlsruher Institut für
Technologie (KIT), Germany [Chap. 34, Maximum Flows – Towards the Sta-
dium During Rush Hour]

Markus Hinkelmann, Institut für Theoretische Informatik, Universität zu
Lübeck, Germany [Chap. 14, One-Way Functions. Mind the Trap – Escape
Only for the Initiated]

Hagen Höpfner, Mobile Medien, Fakultät Medien, Bauhaus-Universität
Weimar, Germany [Chap. 5, Topological Sorting – How Should I Begin to
Complete My To Do List?]

Author Details 403

Falk Hüffner, Institut für Informatik, Humboldt-Universität zu Berlin, Ger-
many [Chap. 7, Depth-First Search (Ariadne & Co.)]

Tim Jonischkat, Institut für Informatik und Wirtschaftsinformatik, Uni-
versität Duisburg-Essen, Germany [Chap. 25, Random Numbers – How Can
We Create Randomness in Computers?]

Tom Kamphans, Institut für Betriebssysteme und Rechnerverbund (IBR),
Technische Universität Braunschweig, Germany [Chap. 8, Pledge’s Algorithm]

Rolf Klein, Lehrstuhl für Informatik I, Rheinische Friedrich-Wilhelms-Uni-
versität Bonn, Germany [Chap. 8, Pledge’s Algorithm]

Sigrid Knust, Institut für Informatik, Universität Osnabrück, Germany
[Chap. 27, Scheduling of Tournaments or Sports Leagues]

Leif Kobbelt, Lehrstuhl für Informatik 8 (Computergraphik und Multime-
dia), RWTH Aachen University, Germany [Chap. 29, High-Speed Circles]

Jochen Könemann, Dept. of Combinatorics and Optimization, University
of Waterloo, Canada [Chap. 26, Winning Strategies for a Matchstick Game]

Wolfgang P. Kowalk, Dept. für Informatik (Rechnernetze), Carl-von-Os-
sietzky-Universität Oldenburg, Germany [Chap. 2, Insertion Sort]

Matthias Kretschmer, Institut für Informatik V, Rheinische Friedrich-
Wilhelms-Universität Bonn, Germany [Chap. 31, Dynamic Programming –
Evolutionary Distance]

Peter Liske, Institut für Informatik, Humboldt-Universität zu Berlin, Ger-
many [Chap. 28, Eulerian Circuits]

Steffen Mecke, Institut für Theoretische Informatik, Karlsruher Institut für
Technologie (KIT), Germany [Chap. 34, Maximum Flows – Towards the Sta-
dium During Rush Hour]

Kurt Mehlhorn, Algorithmen und Komplexität, Max-Planck-Institut für
Informatik, Saarbrücken, Germany [Chap. 11, Multiplication of Long Integers
– Faster than Long Multiplication]

Friedhelm Meyer auf der Heide, Heinz Nixdorf Institut und Institut für
Informatik, Universität Paderborn, Germany [Chap. 38, Bin Packing or “How
Do I Get My Stuff into the Boxes?”]

Michael Mitzenmacher, School of Engineering and Applied Sciences, Har-
vard University, USA [Chap. 21, Codes – Protecting Data Against Errors and
Loss]

404 Author Details

Rolf Möhring, Institut für Mathematik, Technische Universität Berlin, Ger-
many [Chap. 13, The Sieve of Eratosthenes – How Fast Can We Compute a
Prime Number Table?]

Bruno Müller-Clostermann, Lehrstuhl für Praktische Informatik (Sys-
temmodellierung), Institut für Informatik und Wirtschaftsinformatik, Uni-
versität Duisburg-Essen, Germany [Chap. 25, Random Numbers – How Can
We Create Randomness in Computers?]

Stefan Näher, Fachbereich IV – Informatik, Universität Trier, Germany
[Chap. 40, The Travelling Salesman Problem]

Markus E. Nebel, Fachbereich Informatik, AG Algorithmen und Kom-
plexität, TU Kaiserslautern, Germany [Chap. 6, Searching Texts – But Fast!
The Boyer–Moore–Horspool Algorithm]

Rolf Niedermeier, Institut für Softwaretechnik und Theoretische Infor-
matik, Technische Universität Berlin, Germany [Chap. 7, Depth-First Search
(Ariadne & Co.)]

Martin Oellrich, Fachbereich II – Mathematik, Physik, Chemie, Beuth
Hochschule für Technik Berlin, Germany [Chap. 13, The Sieve of Eratosthenes
– How Fast Can We Compute a Prime Number Table?]

Holger Petersen, Institut für Formale Methoden der Informatik, Univer-
sität Stuttgart, Germany [Chap. 35, Marriage Broker]

Rüdiger Reischuk, Institut für Theoretische Informatik, Universität zu
Lübeck, Germany [Chap. 14, One-Way Functions. Mind the Trap – Escape
Only for the Initiated; Overview of Part III, Planning, Coordination and Sim-
ulation]

Peter Rossmanith, Lehr- und Forschungsgebiet Theoretische Informatik,
RWTH Aachen University, Germany [Chap. 41, Simulated Annealing]

Ulrich Rüde, Lehrstuhl für Informatik 10 (Systemsimulation), Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany [Chap. 30, Gauß–Seidel
Iterative Method for the Computation of Physical Problems]

Peter Sanders, Institut für Theoretische Informatik, Karlsruher Institut für
Technologie, Germany [Chap. 32, Shortest Paths]

Christian Scheideler, Institut für Informatik, Universität Paderborn, Ger-
many [Chap. 22, Broadcasting – How Can I Quickly Disseminate Informa-
tion?; Overview of Part I, Searching and Sorting]

Christian Schindelhauer, Rechnernetze und Telematik, Institut für Infor-
matik, Albert-Ludwigs-Universität Freiburg, Germany [Chap. 20, Hashing]

Author Details 405

Holger Schlingloff, Institut für Informatik, Humboldt-Universität zu Berlin,
Germany [Chap. 9, Cycles in Graphs]

Swen Schmelzer, Lehrstuhl für Informations- und Kodierungstheorie,
Albert-Ludwigs-Universität Freiburg, Germany [Chap. 37, Online Algorithms]

Lothar Schmitz, Institut für Softwaretechnologie, Fakultät für Informatik,
UniBw München, Germany [Chap. 23, Converting Numbers into English
Words]

Thomas Seidl, Lehrstuhl für Informatik 9 (Datenmanagement und -explor-
ation), RWTH Aachen University, Germany [Chap. 1, Binary Search]

Dominik Sibbing, Lehrstuhl für Informatik 8 (Computergraphik und Mul-
timedia), RWTH Aachen University, Germany [Chap. 29, High-Speed Circles]

Detlef Sieling, Lehrstuhl Informatik 2 (Effiziente Algorithmen und Kom-
plexitätstheorie), Technische Universität Dortmund, Germany [Chap. 18,
Playing Poker by Email]

Johannes Singler, Institut für Theoretische Informatik, Karlsruher Institut
für Technologie, Germany [Chap. 32, Shortest Paths]

Katharina Skutella, Institut für Mathematik, Technische Universität
Berlin, Germany [Chap. 33, Minimum Spanning Trees]

Martin Skutella, Institut für Mathematik, Technische Universität Berlin,
Germany [Chap. 33, Minimum Spanning Trees]

Till Tantau, Institut für Theoretische Informatik, Universität zu Lübeck,
Germany [Chap. 15, The One-Time Pad Algorithm – The Simplest and Most
Secure Way to Keep Secrets]

Walter Unger, Lehrstuhl für Informatik 1, Algorithmen und Komplexität,
RWTH Aachen University, Germany [Chap. 16, Public-Key Cryptography]

Berthold Vöcking, Lehrstuhl für Informatik 1, Algorithmen und Kom-
plexität, RWTH Aachen University, Germany [Chap. 39, The Knapsack Prob-
lem; Overview of Part II, Arithmetic and Encryption]

Heribert Vollmer, Institut für Theoretische Informatik, Leibniz Universität
Hannover, Germany [Overview of Part IV, Optimization]

Dorothea Wagner, Institut für Theoretische Informatik, Karlsruher Insti-
tut für Technologie (KIT), Germany [Chap. 34, Maximum Flows – Towards
the Stadium During Rush Hour; Overview of Part IV, Optimization]

406 Author Details

Rolf Wanka, Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design),
Universität Erlangen-Nürnberg, Germany [Chap. 4, Parallel Sorting – The
Need for Speed]

Emo Welzl, Institut für Theoretische Informatik, ETH Zürich, Switzerland
[Chap. 36, The Smallest Enclosing Circle – A Contribution to Democracy
from Switzerland?]

	Cover
	Algorithms Unplugged
	Copyright
	9783642153273

	Preface
	Contents
	Part I - Searching and Sorting
	Overview
	1 Binary Search
	Sequential Search
	Binary Search
	Recursive Implementation
	Number of Search Steps
	Guessing Games
	Further Reading

	2 Insertion Sort
	To Read on

	3 Fast Sorting Algorithms
	3.1 The Algorithms
	3.2 Detailed Explanations About These Sorting Algorithms
	3.3 Experimental Comparison of the Sorting Algorithms
	3.4 Determining the Runtimes Theoretically
	3.5 Implementation in Java
	Further Reading and Experiments

	4 Parallel Sorting - The Need for Speed
	Sorting in Hardware: Comparators and Sorting Circuits
	The Bitonic Sorting Circuit: Its Architecture
	The Bitonic Sorting Circuit: Its Correctness and Running Time
	Concluding Remarks
	Further Reading

	5 Topological Sorting - How Should I Begin to Complete My To Do List?
	Further Applications
	Additional Reading

	6 Searching Texts - But Fast! The Boyer-Moore-Horspool Algorithm
	The Naive Algorithm
	The Boyer-Moore-Horspool Algorithm
	Further Reading

	7 Depth-First Search (Ariadne & Co.)
	Algorithmic Idea and Implementation
	Applications
	Example: Web Search
	Example: Labyrinth Creation
	Example: Television Shows
	Example: Traffic Planning

	Breadth-First Search
	Further Reading
	Acknowledgement

	8 Pledge's Algorithm
	Further Reading
	Acknowledgement

	9 Cycles in Graphs
	Scenario 1
	Scenario 2
	Finding Cycles by Depth-First Search
	Strongly Connected Components
	Searching for Cycles with Breadth-First Search
	Historical Notes
	References
	Acknowledgement

	10 PageRank - What Is Really Relevant in the World-Wide Web?
	Tourist Trails
	Trails on the Web
	Solutions
	Conclusion
	Further Reading

	Part II - Arithmetic and Encryption
	Overview
	11 Multiplication of Long Integers - Faster than Long Multiplication
	The Addition of Long Numbers
	Short Multiplication: A Number Times a Digit
	The Analysis of Long Multiplication
	Karatsuba's Method
	Karatsuba's Method for 4-Digit Numbers
	Karatsuba's Method for Numbers of Any Length

	Summary
	Further Reading
	Acknowledgements

	12 The Euclidean Algorithm
	The Greatest Common Divisor
	An Observation That Speeds up the Algorithm
	Analysis
	An Example
	Further Reading
	Acknowledgement

	13 The Sieve of Eratosthenes - How Fast Can We Compute a Prime Number Table?
	From the Idea to a Method
	A Simple Idea

	How Fast Is the Computation?
	How Does the Algorithm Spend Its Time?
	Do We Need Every i Value?
	Can We Get Even Faster?
	What Can We Learn from This Example?

	Further Considerations
	Further Reading

	14 One-Way Functions. Mind the Trap - Escape Only for the Initiated
	The Mirror Image of Multiplication: Factorization
	One-Way Functions
	A Practical Problem: Searching a Telephone Book
	Security and Googles
	Further Reading

	15 The One-Time Pad Algorithm - The Simplest and Most Secure Way to Keep Secrets
	Encrypting Messages
	The Algorithm
	Breaking the Code
	Further Reading

	16 Public-Key Cryptography
	Public Keys
	A Limited Algebra
	Construction of the Keys
	Encryption
	Decryption
	The Eavesdropper
	Without Limited Mathematics

	ElGamal's Method
	Modular Multiplication and Modular Exponentiation
	Description of ElGamal's Cryptosystem
	Further Methods

	Security
	Further Reading

	17 How to Share a Secret
	A Simple Method to Share a Secret
	General Secret Sharing
	Secret Sharing, Information Theory and Cryptography
	Further Reading

	18 Playing Poker by Email
	Dealing Cards by Snail Mail
	How to Shuffle and Distribute the Cards
	How to Bid
	How to Replace Cards
	The Showdown
	How to Verify That No One Has Cheated
	Discussion

	Dealing Cards by Email
	Electronic Envelopes
	How to Shuffle the Cards and Distribute Them to Bob
	One-Way Functions
	How to Replace Cards
	A Mathematical Description
	Distribution of Cards to Both Players
	Commitment to the Selected Coding Tables
	Putting Cards into Envelopes
	Distributing Cards to Alice
	Distributing Cards to Bob
	Dropping Cards
	Properties of the Electronic Envelopes
	How to Check Whether the Opponent Has Cheated

	Poker with More than Two Players
	Further Reading

	19 Fingerprinting
	How to Compare Long Texts over the Telephone
	Texts as Sequences of Numbers and Modular Arithmetic
	Fingerprints
	Fingerprints with Random Numbers
	The Protocol
	Summary
	Remarks on the Fingerprinting Theorem
	Further Reading
	Acknowledgement

	20 Hashing
	Message Digest
	Secure Hashing
	Hashing for Dictionaries
	Storing a Data Item z with Key x
	Searching a Data Item Corresponding to Key x

	External Links and References

	21 Codes - Protecting Data Against Errors and Loss
	22.1 Introduction
	22.1.1 Where Are Codes Used?

	21.2 Reed-Solomon Codes
	21.3 New Coding Techniques: Low-Density Parity-Check Codes
	21.4 Network Codes
	21.5 Places to Start Looking for More Information
	Acknowledgement

	Part III - Planning, Coordination and Simulation
	Overview
	22 Broadcasting - How Can I Quickly Disseminate Information?
	References

	23 Converting Numbers into English Words
	Stepwise Development of an Algorithm
	Splitting Numbers into Three-Digit Groups …
	…and Generating the English Words
	Function generateGroup
	Function generateWeight

	Lessons Learned
	What to Read and Try out for Yourself

	24 Majority - Who Gets Elected Class Rep?
	Majority Algorithm
	Correctness of the Majority Algorithm
	How Many Comparisons Are Necessary?
	Applications and Extensions
	What Can We Learn from the Solutions to the Majority Problem?
	Further Reading

	25 Random Numbers - How Can We Create Randomness in Computers?
	A Tactical Game: "Rock, Paper, Scissors"
	Means for the Generation of Random Numbers: Modular Arithmetic
	Examples for Modular Arithmetic
	Illustration of Modular Arithmetic
	An Algorithm for the Generation of Pseudorandom Numbers
	Periodic Behavior
	Simulation of True Random Number Generators
	The Algorithm for Rock, Paper, Scissors
	Monte Carlo Simulation: Determination of Areas Using "Random Rain"
	Further Reading

	26 Winning Strategies for a Matchstick Game
	Learning from Small Examples
	An Algorithm to Compute a Winning Strategy
	The Running Time of the Algorithm

	Extensions and Background
	Further Reading

	27 Scheduling of Tournaments or Sports Leagues
	Generation of Schedules
	Schedules with Home-Away Assignments
	Further Reading

	28 Eulerian Circuits
	When Does an Eulerian Circuit Exist?
	Finding Eulerian Circuits
	The Algorithm
	The House of Santa Claus
	Of Postmen and Garbage Collectors
	Further Reading

	29 High-Speed Circles
	Drawing Circles: Keep It Simple!
	Bresenham's Algorithm for Circles
	A Racing Duel
	Further Reading

	30 Gauß-Seidel Iterative Method for the Computation of Physical Problems
	Warmup: Soccer
	Temperature Calculation in a Rod (1D)
	Temperature Computation on a Plate (2D)
	Further Reading

	31 Dynamic Programming - Evolutionary Distance
	Mathematical Modeling
	Calculation of the Evolutionary Distance
	The Algorithm
	Conclusion
	References

	Part IV - Optimization
	Optimization
	32 Shortest Paths
	Dijkstra's Algorithm
	FAQs and Further Reading

	33 Minimum Spanning Trees (Sometimes Greed Pays Off …)
	The Bridge Project of the Algos
	Building Bridges After the Hurricane
	The Algorithms of Prim and Kruskal
	Further Reading

	34 Maximum Flows - Towards the Stadium During Rush Hour
	The Algorithm
	Some Open Questions

	Why Does It Work?
	Epilogue
	Solution
	Further Reading

	35 Marriage Broker
	35.1 Problem
	35.2 The Basic Principle of the Procedure
	35.3 The Construction of a Maximum Matching
	35.4 The Algorithm
	35.5 The Marriage Theorem
	35.6 Where Is the Marriage Theorem Needed by the Algorithm
	35.7 Time Analysis
	Further Reading
	Acknowledgements

	36 The Smallest Enclosing Circle - A Contribution to Democracy from Switzerland?
	Why It Works
	Further Reading

	37 Online Algorithms - What Is It Worth to Know the Future?
	The Ski Rental Problem
	The Paging Problem
	Further Reading

	38 Bin Packing or "How Do I Get My Stuff into the Boxes?"
	The Online Problem "Moving Inexpensively"
	Analysis of the Algorithms
	How Well Can Online Algorithms for Bin Packing Perform?
	Further Reading

	39 The Knapsack Problem
	Pareto-Optimal Solutions
	The Nemhauser-Ullmann Algorithm
	Further Reading

	40 The Travelling Salesman Problem
	Introduction
	The Brute-Force Method
	Dynamic Programming
	Approximative Solutions
	MST Algorithm
	Some Final Remarks
	Further Reading

	41 Simulated Annealing
	What Is Simulated Annealing?
	The Travelling Salesperson Problem
	Further Applications
	Further Reading

	Author Details

