

Parallel Computing

Roman Trobec · Marián Vajteršic · Peter Zinterhof
Editors

Parallel Computing

Numerics, Applications, and Trends

123

Editors
Roman Trobec
Dept. of Comm. Systems
Jožef Stefan Institute
Jamova 39
SI-1000 Ljubljana
Slovenia
roman.trobec@ijs.si

and

Peter Zinterhof
Department of Computer Sciences
University of Salzburg
Jakob–Haringer Str. 2
5020 Salzburg
Austria
peter.zinterhof@sbg.ac.at

Marián Vajteršic
Department of Computer Sciences
University of Salzburg
Jakob–Haringer Str. 2
5020 Salzburg
Austria
marian@cosy.sbg.ac.at

Mathematical Institute
Department of Informatics
Slovak Academy of Sciences
Dúbravská 9
840 00 Bratislava
Slovakia
vajtersic@savba.sk

ISBN 978-1-84882-408-9 e-ISBN 978-1-84882-409-6
DOI 10.1007/978-1-84882-409-6
Springer Dordrecht Heidelberg London New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009926892

c© Springer-Verlag London Limited 2009
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To all who make our lives worthwhile.

Preface

The use of parallel programming and architectures is essential for simulating and
solving problems in modern computational practice. There has been rapid progress
in microprocessor architecture, interconnection technology and software develop-
ment, which are influencing directly the rapid growth of parallel and distributed
computing. However, in order to make these benefits usable in practice, this devel-
opment must be accompanied by progress in the design, analysis and application
aspects of parallel algorithms. In particular, new approaches from parallel numer-
ics are important for solving complex computational problems on parallel and/or
distributed systems.

The contributions to this book are focused on topics most concerned in the trends
of today’s parallel computing. These range from parallel algorithmics, program-
ming, tools, network computing to future parallel computing. Particular attention is
paid to parallel numerics: linear algebra, differential equations, numerical integra-
tion, number theory and their applications in computer simulations, which together
form the kernel of the monograph. We expect that the book will be of interest to
scientists working on parallel computing, doctoral students, teachers, engineers and
mathematicians dealing with numerical applications and computer simulations of
natural phenomena.

The roots of this book are in Parallel Numerics, an initiative that has been ac-
tive in the Central European Region since 1994, starting with the Central European
Initiative (CEI) joint research project Programming Environments, Algorithms, Ap-
plications, Compilers and Tools for Parallel Computation (PACT). The initial scope
was focused on the new results and ideas related to parallel numerics. Later the
research and applied interests were broadened to theoretical and practical aspects
of parallel and distributed computing, creating a fruitful combination of theoretical
and applied research. Besides numerical applications, the parallel solution of finan-
cial, medical and other problems from the natural and technical sciences has been
incorporated. We are glad to see that the output of this initiative has become use-
ful in everyday computational practice, through adopting new algorithmic solutions
and/or progressive programming techniques and architectural improvements.

vii

viii Preface

We are grateful to the authors for their valuable contributions which make this
book rich in content. We are grateful also to Springer-Verlag London for their ex-
cellent technical and editorial support. We are indebted to the Jožef Stefan Institute
and the University of Salzburg for their generous support of our work.

Roman Trobec
Ljubljana, Salzburg Marián Vajteršic
December, 2008 Peter Zinterhof

List of Contributors

Selim G. Akl
School of Computing, Queen’s University, Kingston, Ontario, Canada,
e-mail: akl@cs.queensu.ca

Tore Birkeland
Department of Mathematics, University of Bergen, Norway,
e-mail: Tore.Birkeland@math.uib.no

Urban Borštnik
National Institute of Chemistry, Ljubljana, Slovenia,
e-mail: urban@cmm.ki.si

Rajkumar Buyya
Grid Computing and Distributed Systems Laboratory, University of Melbourne,
Australia, e-mail: raj@csse.unimelb.edu.au

Uroš Čibej
Faculty of Computer and Information Science, University of Ljubljana, Slovenia,
e-mail: uros.cibej@fri.uni-lj.si

Matjaž Depolli
Department of Communication Systems, Jožef Stefan Institute, Ljubljana, Slovenia,
e-mail: matjaz.depolli@ijs.si

Stefan Donath
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg,
Germany, e-mail: stefan.donath@informatik.uni-erlangen.de

Thomas Fahringer
Institute for Computer Science, University of Innsbruck, Austria,
e-mail: Thomas.Fahringer@uibk.ac.at

ix

x List of Contributors

Christian Feichtinger
Chair for System Simulation, Friedrich-Alexander University Erlangen-
Nuremberg, Germany, e-mail: christian.feichtinger@informatik.
uni-erlangen.de

Bogdan Filipič
Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia,
e-mail: bogdan.filipic@ijs.si

Jan Götz
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg,
Germany, e-mail: jan.goetz@informatik.uni-erlangen.de

Andreas Grothey
School of Mathematics, University of Edinburgh, England,
e-mail: A.Grothey@ed.ac.uk

Klaus Iglberger
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg,
Germany, e-mail: klaus.iglberger@informatik.uni-erlangen.de

Dušanka Janežič
National Institute of Chemistry, Ljubljana, Slovenia,
e-mail: dusa@cmm.ki.si

Peter Jez
Department of Computer Sciences, University of Salzburg, Austria,
e-mail: peter.jez@cosy.sbg.ac.at

Rade Kutil
Department of Computer Sciences, University of Salzburg, Austria,
e-mail: rkutil@cosy.sbg.ac.at

Marius Nagy
School of Computing, Queen’s University, Kingston, Ontario, Canada,
e-mail: marius@cs.queensu.ca

Gabriel Okša
Mathematical Institute, Department of Informatics, Slovak Academy of Sciences,
Bratislava, Slovakia, e-mail: Gabriel.Oksa@savba.sk

Matej Praprotnik
National Institute of Chemistry, Ljubljana, Slovenia,
e-mail: praprot@cmm.ki.si

List of Contributors xi

Jarmo Rantakokko
Department of Information Technology, Uppsala University, Sweden,
e-mail: Jarmo.Rantakokko@it.uu.se

Ulrich Rüde
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg,
Germany, e-mail: ulrich.ruede@informatik.uni-erlangen.de

Tor Sørevik
Department of Mathematics, University of Bergen, Norway,
e-mail: tor.sorevik@math.uib.no

Anthony Sulistio
Grid Computing and Distributed Systems Laboratory, University of Melbourne,
Australia, e-mail: anthony@csse.unimelb.edu.au

Michael Thuné
Department of Information Technology, Uppsala University, Sweden,
e-mail: michael.thune@it.uu.se

Roman Trobec
Department of Communication Systems, Jožef Stefan Institute, Ljubljana, Slovenia,
e-mail: roman.trobec@ijs.si

Andreas Uhl
Department of Computer Sciences, University of Salzburg, Austria,
e-mail: uhl@cosy.sbg.ac.at

Marián Vajteršic
Department of Computer Sciences, University of Salzburg, Austria, and
Mathematical Institute, Department of Informatics, Slovak Academy of Sciences,
Bratislava, Slovakia,
e-mail: marian@cosy.sbg.ac.at

Peter Zinterhof
Department of Computer Sciences, University of Salzburg, Austria,
e-mail: peter.zinterhof@sbg.ac.at

Contents

1 Overview – Parallel Computing: Numerics, Applications, and
Trends . 1
Marián Vajteršic, Peter Zinterhof and Roman Trobec
1.1 Introduction . 1

1.1.1 Parallel Numerics . 2
1.1.2 Parallel Architectures . 4
1.1.3 Scalability . 6
1.1.4 Supercomputers . 7
1.1.5 Grid Computing . 8
1.1.6 Parallel Programming Languages . 9
1.1.7 Parallel Compilers . 11

1.2 Book Chapters . 13
1.2.1 Introduction to Parallel Computation 13
1.2.2 Tools for Parallel and Distributed Computing 14
1.2.3 Grid Computing . 15
1.2.4 Parallel Structured Adaptive Mesh Refinement 16
1.2.5 Applications and Parallel Implementation of QMC

Integration . 17
1.2.6 Parallel Evolutionary Computation Framework

for Single- and Multiobjective Optimization 18
1.2.7 WaLBerla: Exploiting Massively Parallel Systems for

Lattice Boltzmann Simulations . 20
1.2.8 Parallel Pseudo-Spectral Methods for the Solution

of the Time Dependent Schrödinger Equation 21
1.2.9 Parallel Approaches in Molecular Dynamics Simulations 23
1.2.10 Parallel Computer Simulation of Heat Transfer

in Bio-Tissue . 24
1.2.11 SVD Computing in LSI Applications for Data Retrieval . 25
1.2.12 Short-Vector SIMD Parallelization in Signal Processing . 27
1.2.13 Financial Applications: Parallel Portfolio Optimization . . 29
1.2.14 Future of Parallel Computing . 30

xiii

xiv Contents

1.3 Conclusions . 32
References . 36

2 Introduction to Parallel Computation . 43
Selim G. Akl and Marius Nagy
2.1 Introduction . 44
2.2 Parallel Versus Sequential Computation . 45
2.3 Parallel Computational Models . 46

2.3.1 Shared-Memory Models . 46
2.3.2 Interconnection Network Models . 48
2.3.3 Circuit Models . 49
2.3.4 Clusters . 49
2.3.5 Grids . 51

2.4 Parallel Algorithm Design Methods . 52
2.5 Theoretical Underpinnings . 55

2.5.1 Speedup . 55
2.5.2 Slowdown . 57
2.5.3 Quality-Up . 57
2.5.4 Computations that Seem Inherently Sequential 58

2.6 Parallel Algorithms for Conventional Computations 60
2.6.1 Parallel Prefix and Suffix Computations on a Linked List 60
2.6.2 Sorting on a Model with Buses . 63

2.7 Parallel Algorithms for Unconventional Computations 66
2.7.1 Computations that Can be Simulated Sequentially 67
2.7.2 Computations that Cannot be Simulated Sequentially . . . 73

2.8 Non-Universality in Computation . 77
2.9 Conclusion . 79
References . 80

3 Tools for Parallel and Distributed Computing . 81
Thomas Fahringer
3.1 Introduction . 82
3.2 Related Work . 83
3.3 ASKALON Architecture . 85

3.3.1 Data Repository . 87
3.3.2 ASKALON Visualization Diagrams 88

3.4 SCALEA . 88
3.4.1 Instrumentation . 88
3.4.2 Overhead Analyzer . 89
3.4.3 Performance Analyzer . 90

3.5 ZENTURIO . 91
3.5.1 ZEN Experiment Specification Language 91
3.5.2 Experiment Generator . 92
3.5.3 Experiment Executor . 93

3.6 AKSUM . 93
3.6.1 Search Engine . 94

Contents xv

3.6.2 Reinforcement Learning for Performance Analysis 97
3.7 Grid-Prophet . 98

3.7.1 Prediction Techniques . 99
3.8 Experiments . 103

3.8.1 Performance Analysis with SCALEA 103
3.8.2 Performance and Parameter Studies of a Three-

Dimensional Particle-In-Cell Application with
ZENTURIO . 105

3.8.3 Performance Analysis for a Backward Pricing
Application with AKSUM . 106

3.8.4 Workflow Performance Prediction with the Grid-Prophet 108
3.9 Conclusions . 111
References . 111

4 Grid Computing . 117
Uroš Čibej, Anthony Sulistio and Rajkumar Buyya
4.1 Introduction . 117

4.1.1 Grid Categorization . 119
4.1.2 Comparison Between Clusters and Grids 122
4.1.3 Putting It All Together . 122

4.2 Challenges in Grid Computing . 123
4.2.1 Resource Sharing . 124
4.2.2 Guaranteed Quality of Service . 124
4.2.3 Resource Regulation . 126
4.2.4 Data Management . 127

4.3 Tools and Applications . 129
4.3.1 Middleware . 130
4.3.2 Tools for Computationally Intensive Applications 133
4.3.3 Tools for Workflow Composition and Execution 134
4.3.4 Tools That Support Advance Reservation 135
4.3.5 G-Lambda Grid Scheduling System 137
4.3.6 Application Fields . 137

4.4 Conclusions and Future Trends . 139
References . 140

5 Parallel Structured Adaptive Mesh Refinement 147
Jarmo Rantakokko and Michael Thuné
5.1 Introduction . 148
5.2 An Introduction to SAMR . 150

5.2.1 Approaches to Structured Adaptive Mesh Refinement . . . 150
5.2.2 SAMR in a Computer Science Perspective 153
5.2.3 Software Frameworks for SAMR . 154

5.3 Details of SAMR . 155
5.3.1 Advancing the Solution on a Structured Adaptive Grid

Hierarchy . 155
5.3.2 The Algorithmic Key Components of SAMR 157

xvi Contents

5.4 Computer Science Aspects of SAMR . 158
5.4.1 Data Dependencies . 158
5.4.2 Dynamic Load Balancing . 159
5.4.3 Parallelization Models . 163

5.5 Some Results . 164
5.5.1 An Integrated Decomposition and Partitioning

Approach for Irregular Block-Structured Applications . . . 164
5.5.2 A Hybrid Dynamic MPI-OpenMP Model 165
5.5.3 Geographical Locality . 166
5.5.4 A Hybrid Patch/Domain-Based Partitioner Framework . . 168
5.5.5 A Meta-Partitioner for Structured Grid Hierarchies 168

5.6 Conclusions and Future Work . 169
References . 170

6 Applications and Parallel Implementation of QMC Integration 175
Peter Jez, Andreas Uhl and Peter Zinterhof
6.1 Introduction . 176
6.2 Monte Carlo and Quasi Monte Carlo Methods in Numerical

Integration Over [0,1)s . 177
6.2.1 Application of Reproducing Kernel Hilbert Spaces 181

6.3 QMC Methods for Integrals over R
s with a Weight Function 182

6.3.1 Feynman’s Path Integrals . 185
6.3.2 Application in Financial Engineering 186

6.4 QMC Integration on Parallel Systems . 188
6.5 Numerical Experiments . 191

6.5.1 Sequential Computations . 191
6.5.2 Parallel Case . 194
6.5.3 Experimental Results . 195
6.5.4 Overall Comparison . 206

6.6 Application of the Diaphony in Parallel Computation 208
6.7 Conclusion . 211
References . 213

7 Parallel Evolutionary Computation Framework for Single- and
Multiobjective Optimization . 217
Bogdan Filipič and Matjaž Depolli
7.1 Introduction . 218
7.2 Optimization Problems . 219
7.3 Evolutionary Algorithms . 222

7.3.1 Multiobjective Evolutionary Algorithms 224
7.4 Parallel Single- and Multiobjective Evolutionary Algorithms 224

7.4.1 Parallelization Types . 224
7.4.2 Calculation of Speedups . 226

7.5 Casting Process Optimization Task . 229
7.6 Parallel Evolutionary Computation Framework 230

7.6.1 Speedup Estimation . 231

Contents xvii

7.7 Empirical Evaluation . 233
7.7.1 Experimental Setup . 233
7.7.2 Experiments and Results . 234

7.8 Conclusion . 239
References . 240

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice
Boltzmann Simulations . 241
Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and
Ulrich Rüde
8.1 Motivation . 242
8.2 Introduction to the Lattice Boltzmann Method 243
8.3 Domain Partitioning Using Patches . 245

8.3.1 Memory Reduction . 247
8.4 Communication Concept . 247

8.4.1 Process Local Communication . 248
8.4.2 MPI Communication . 248

8.5 Performance Studies . 249
8.5.1 Serial Experiments . 250
8.5.2 Parallel Experiments . 252
8.5.3 IBM Cell Processor . 258

8.6 Conclusion . 258
References . 259

9 Parallel Pseudo-Spectral Methods for the Time-Dependent
Schrödinger Equation . 261
Tore Birkeland and Tor Sørevik
9.1 Introduction . 261
9.2 Time Stepping and Split Operator Technique 264
9.3 Variable Transformations and Spectral Bases 265

9.3.1 Cartesian Coordinates and Fourier Basis 265
9.3.2 Spherical Coordinates . 266

9.4 Parallelizing Many Dimensional FFTs . 267
9.5 Creating a Framework for Combining Discretization Methods 271

9.5.1 Wavefunction . 272
9.5.2 Operators and Transforms . 273
9.5.3 Split-Step Propagator . 274
9.5.4 Explicit Propagators . 275

9.6 A Numerical Example . 275
9.6.1 Physical Model . 275
9.6.2 Numerical Considerations . 276
9.6.3 Scalability . 277

9.7 Conclusion . 278
References . 278

xviii Contents

10 Parallel Approaches in Molecular Dynamics Simulations 281
Dušanka Janežič, Urban Borštnik and Matej Praprotnik
10.1 Split Integration Symplectic Method . 282

10.1.1 Calculation of Infrared Spectra . 288
10.1.2 Enlarging the Integrational Time Step 290

10.2 Parallel Computers . 290
10.2.1 Parallel Computing . 291
10.2.2 Parallel Computer Types . 292
10.2.3 Reducing Computational Complexity in Molecular

Dynamics Simulations . 293
10.3 Parallel Molecular Dynamics Computer Simulations 294

10.3.1 Methods for Parallel Molecular Dynamics Simulations . . 295
10.3.2 Specialized Processors . 296
10.3.3 Global Communication in Parallel Molecular

Dynamics Simulations . 298
10.4 Parallelization of SISM . 299

10.4.1 The Distributed Diagonal Force Decomposition Method . 299
10.5 Conclusions . 301
References . 302

11 Parallel Computer Simulations of Heat Transfer in Biological
Tissues . 307
Roman Trobec
11.1 Introduction . 308
11.2 Principal Steps in Computer Simulation . 311
11.3 Numerical Solution of Partial Differential Equations 314

11.3.1 Finite Difference Method . 315
11.3.2 Finite Element Method . 316
11.3.3 Solution Methods of Time-Dependent PDEs 316
11.3.4 Computational and Memory Complexity 320

11.4 Diffusion Equation . 321
11.4.1 Analytical Solution . 324
11.4.2 Finite Differences with Gradient Term 324
11.4.3 Explicit Finite Difference Scheme . 325
11.4.4 Comparison of Results . 328

11.5 Bio-Heat Equation . 330
11.6 Geometric Modeling of a Knee . 333
11.7 Simulation Methods and Parameters . 336
11.8 Variation of Simulation Parameters . 338
11.9 Simulation Results . 340

11.9.1 Washing Out During Arthroscopy . 341
11.9.2 Resting After Arthroscopy . 342
11.9.3 Postoperative Topical Cooling . 342

11.10 Validation of Results . 345
11.11 Parallel Implementation . 347

Contents xix

11.11.1 Opportunities for Parallelization . 348
11.11.2 Computation and Communication Complexity 349
11.11.3 Measured Speedup . 352

11.12 Conclusions . 354
References . 356

12 Parallel SVD Computing in the Latent Semantic Indexing
Applications for Data Retrieval . 359
Gabriel Okša and Marián Vajteršic
12.1 Introduction . 359
12.2 Two Updating Problems in LSI . 361

12.2.1 Updating Documents . 361
12.2.2 Updating Terms . 362

12.3 Two Downdating Problems in LSI . 363
12.3.1 Downdating Documents . 364
12.3.2 Downdating Terms . 366

12.4 Kogbetliantz Method for Triangular Matrices 366
12.4.1 Butterfly Form of Triangular Matrices 367
12.4.2 Modulus Pivot Strategy . 368
12.4.3 Block Version and Parallelism . 370

12.5 Parallel Two-sided Block-Jacobi SVD Algorithm with Dynamic
Ordering . 377

12.6 LSI Implemented on a Grid . 383
12.6.1 Storage . 383
12.6.2 Updating Documents . 384
12.6.3 Updating Terms . 385
12.6.4 Downdating Documents . 385
12.6.5 Downdating Terms . 386
12.6.6 Retrieval of Documents . 387

12.7 LSI Implemented on a Distributed System . 388
12.7.1 Building a Global Approximation . 389
12.7.2 Updating and Downdating . 391
12.7.3 Retrieval of Documents . 392

12.8 Conclusions . 394
References . 395

13 Short-Vector SIMD Parallelization in Signal Processing 397
Rade Kutil
13.1 Introduction . 397

13.1.1 Signal Processing Algorithms . 398
13.1.2 Short-Vector SIMD . 399

13.2 General Vectorization Approaches . 401
13.2.1 Loop Unrolling . 401
13.2.2 Straight Line Code Vectorization . 401
13.2.3 Loop Fusion . 402
13.2.4 Loop Transposition . 402

xx Contents

13.2.5 Algebraic Transforms . 403
13.3 Convolution Type Algorithms . 404

13.3.1 Simple FIR Filter . 404
13.3.2 The Haar Filter . 407
13.3.3 Biorthogonal 7/9 Without Lifting . 408
13.3.4 Biorthogonal 7/9 With Lifting . 414
13.3.5 Conclusion . 418

13.4 Recursive Algorithms . 419
13.4.1 Sequential IIR Algorithm . 420
13.4.2 Scheduling Approach . 420
13.4.3 Algebraic Transforms . 421
13.4.4 Experimental Results . 422

13.5 Block Algorithms . 423
13.5.1 Data Layout . 424
13.5.2 Basic FFT-Blocks . 425
13.5.3 Automatic Tuning and Signal Processing Languages

(SPL) . 426
13.6 Mixed Algorithms . 428

13.6.1 Recursive Convolution – Wavelet Transforms 428
13.6.2 Multi-dimensional Algorithms . 429

13.7 Conclusion . 431
References . 432

14 Financial Applications: Parallel Portfolio Optimization 435
Andreas Grothey
14.1 Introduction . 436
14.2 Asset and Liability Management by Stochastic Programming 437

14.2.1 Stochastic Programming . 438
14.2.2 Asset and Liability Management Models 440
14.2.3 Model Extensions . 444

14.3 Parallel Solution Approaches: Decomposition 446
14.4 Parallel Solution Approaches: Interior Point Based Algorithms . . . 448

14.4.1 IPM Applied to Stochastic Programming Problems 451
14.4.2 Results . 457

14.5 Parallel Solution Approaches: Heuristics
and Evolutionary Algorithms . 458

14.6 Other Approaches . 458
14.7 Detailed Comparison of Parallel Interior Point Approaches 459

14.7.1 OOPS (Gondzio and Grothey) . 459
14.7.2 Riccati-Based IPM Solver (Blomvall and Lindberg) 461
14.7.3 Tree Sparse IPM Solver (Steinbach) 464

14.8 Conclusions . 465
References . 466

Contents xxi

15 The Future of Parallel Computation . 471
Selim G. Akl and Marius Nagy
15.1 Introduction . 472
15.2 Quantum Computing . 475

15.2.1 Quantum Mechanics . 475
15.2.2 Mathematical Framework . 478
15.2.3 Entanglement . 484

15.3 Parallelism in Quantum Computing . 485
15.3.1 Quantum Parallelism . 485

15.4 Examples . 488
15.4.1 Parallelizing the Quantum Fourier Transform 488
15.4.2 Quantum Decoherence . 496
15.4.3 Quantum Error-Correction . 499
15.4.4 Quantum Distinguishability . 502
15.4.5 Transformations Obeying a Global Condition 506

15.5 Looking Ahead . 507
References . 508

Index . 511

About the Editors

xxiii

Roman Trobec received MSc and PhD degrees in electrical engineering and com-
puter science from University of Ljubljana, Slovenia, in 1979 and 1988, respec-
tively. He is with the Department of Communication Systems at the Jožef Stefan
Institute since 1976, holding currently the position of principal investigator. Since
2001 he is Associate Professor at the University of Ljubljana, Faculty of Electrical
Engineering and Faculty of Computer and Information Science and visiting profes-
sor at the University of Salzburg, Department of Scientific Computing.

His research and working experiences are in the area of parallel and distributed
computing, interconnection networks, scientific computing, computer simulations,
computer-aided applications, wireless sensor networks and advanced biosignal anal-
ysis. He has published over seventy scientific papers in international recognized
journals and six book chapters. He is a program or editorial board member of sev-
eral international conferences and journals. He is cooperating on various national
and EU scientific and applied projects from the areas relevant to his research.

Marián Vajteršic graduated in Numerical Mathematics from Comenius University,
Bratislava (Slovak Republic) in 1974. He received his CSc (candidate of sciences)
degree in mathematics from the same university in 1984 and he defended there
the DrSc (doctor of sciences) degree in 1997. In 1995, he obtained the habilitation
degree in numerical mathematics and parallel processing from the University of
Salzburg (Austria).

His research activity is focused on the area of parallel numerical algorithms for
high-performance computer systems. He is author of two monographs, co-author of
three other books and of more than 100 scientific papers. Since 1974, he is with the
Slovak Academy of Sciences in Bratislava, Slovakia. As a visiting professor he has
been with the universities of Vienna, Bologna, Milan, Linz, Salzburg, Amiens and
Munich. Since 2002 he is a Professor at the Department of Computer Sciences at
the University of Salzburg, Austria.

He holds a fellowship of the Alexander von Humboldt-Foundation and the Royal
Norwegian Society. He coordinated a number of national and international projects

xxiv About the Editors

(e.g. EU, NATO). He is a member of the editorial boards of multiple international
journals (e.g. PPL, IJPEDS, CAI) and programme committees of conferences in
parallel computing and numerical linear algebra.

Peter Zinterhof received his PhD in mathematics after a visiting scholarship at
Steklov Institute in Moscow from University of Vienna in 1968. He defended his
habilitation in mathematics at Technical University of Vienna in 1971. He is Pro-
fessor for Mathematics since 1972 and also Professor for Theoretical Informatics
since 1989. He served as Dean of the faculty of Natural Sciences and as Head of
the Mathematics and computer science departments of the University of Salzburg
for many years and is actual Head of the department for Computer Science of the
University of Salzburg. He is program or editorial board member of several inter-
national conferences and journals. His research interests are parallel computation,
number theoretical numerics, uniform distribution of sequences, Monte-Carlo- and
Quasi-Monte-Carlo-Methods, stochastics and reliability theory, and Hilbert space
methods in numerics and applied mathematics. He is the co-founder of the Austrian
Center for Parallel Computation (ACPC) and founder of the Computer Science De-
partment of the Salzburg University. He is author or co-author of more than hundred
original papers and co-author of several books and book chapters.

Chapter 1
Overview – Parallel Computing: Numerics,
Applications, and Trends

Marián Vajteršic, Peter Zinterhof and Roman Trobec

Abstract

This book is intended for researchers and practitioners as a foundation for modern
parallel computing with several of its important parallel applications, and also for
students as a basic or supplementary book to accompany advanced courses on par-
allel computing. Fifteen chapters cover the most important issues in parallel com-
puting, from basic principles through more complex theoretical problems and ap-
plications, together with future parallel paradigms including quantum computing.
Each chapter is written on two levels: a more general overview and a more specific
example of theory or practice. In this introductory chapter some views regarding
state-of-the-art and trends in parallelism are given, accompanied by a summary of
individual chapters.

1.1 Introduction

The use of parallel processing is today essential for solving practical problems in
science and engineering. Parallelism is a way of speeding up computations which
make high time and memory demands. Historically [1], parallelism was first aimed
at speedup, as its primary objective, which was characterized by the Amdahl’s law.

Marián Vajteršic
Department of Computer Sciences, University of Salzburg, J.-Haringer-Strasse 2,
5020 Salzburg, Austria, and Mathematical Institute, Department of Informatics, Slovak Academy
of Sciences, Bratislava, Slovakia, e-mail: marian@cosy.sbg.ac.at

Peter Zinterhof
Department of Computer Sciences, University of Salzburg, J.-Haringer-Strasse 2,
5020 Salzburg, Austria, e-mail: peter.zinterhof@sbg.ac.at

Roman Trobec
Department of Communication Systems, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana,
Slovenia, e-mail: roman.trobec@ijs.si

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_1, 1
c© Springer-Verlag London Limited 2009

2 Marián Vajteršic, Peter Zinterhof and Roman Trobec

The Gustafson–Barsis’ law then turned the attention to scalability, the goal being to
keep the time constant as the problem size grows. The consequence of this was a
construction of systems with increasing numbers of processors, which were mostly
special purpose and hence costly not only from the hardware point of view but also
because of the accompanying software development. So parallelism approached the
cluster era, with cheap systems configured as clusters of desktop computers, which
were interconnected by special or commodity networks. And the progress continues:
at the microprocessor level parallelism is encountered in multicores and manycores.
The ambition of the Grid and Cloud ideas is to elevate parallelism to the highest
level, making the computational power as widely available to that extent as we know
it for electricity. Further, on the horizon there are radically new solutions such as
quantum computing, optical computing, and chips working on biological structures,
which all possess a potential for future parallel computing.

All this progress is tightly connected with development of methods and algo-
rithms for these systems. Without effort on this field, the computational power of
supermodern computers, which are today available in a very rich variety of prod-
ucts, cannot be exploited. Fast and robust algorithms, programmed with the neces-
sary skill, are essential for efficiently solving urgent scientific problems in physics,
medicine, biology, pharmacy, meteorology, information retrieval, and other areas,
where parallelism is already a domestic principle.

This book deals with a broad spectrum of issues related to parallelism. It is a
reflection of new opportunities and challenges which require major progress in ar-
chitecture, system scalability, and interconnect technologies for algorithm design-
ers, system architects, and software developers when aiming to master solutions of
larger and more complex problems in parallel.

1.1.1 Parallel Numerics

Primary attention is paid to parallel numerics, since the kernel group of the authors
of this book were participating at the ParNum initiative [2], focused on design and
implementation of parallel numerical methods and their applications. In order to
exploit all the power that modern parallel systems offer, the algorithm design for
solving numerical problems is of a crucial importance. Numerical algorithms are
widely used by solving intensive problems in a great variety of application areas
in natural and technical sciences. Problems related to the algorithm area include
parallelization paradigms, optimal data structures, analysis of rounding errors of
parallel numerical computations, optimalization techniques for various parallel plat-
forms, parallel numerical libraries, testing and benchmarking, performance tuning,
etc. Without considering the intimate relationship between algorithms on the one
hand and languages, tools, and environments for their programming on contempo-
rary computer architectures on the other, parallel numerical computing could never
be successful.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 3

The topical issue in parallel numerics is the parallel linear algebra [3]. It is be-
cause, in our opinion, the work of parallel linear algebra solvers is fundamental
to solving scientific computing applications. Over the past two decades the devel-
opment of efficient linear algebraic techniques has become an important feature
of research in many theoretical and application areas of parallel computing. Novel,
highly efficient methods, algorithms, and implementations have been developed and
are now in widespread use.

Some of the relevant themes in this problem area include:

• parallel methods for solving large dense, sparse, and structured linear systems of
equations: direct, iterative, domain decomposition

• parallel eigenvalue and singular value computations
• parallel matrix multiplication and combinatorial scientific computing
• parallel linear algebra methods in data mining
• parallel linear algebra solvers for ordinary and partial differential equations
• parallel least squares and optimization.

The libraries LAPACK (Linear Algebra PACKage) [4] and ScaLAPACK (Scalable
LAPACK) [5] are still main sources of software for linear algebra. In LAPACK
algorithms, parallelism is exploited at the level of the BLAS [6] operations. ScaLA-
PACK provides optimized high performance scalable algorithms, based on the dis-
tributed memory versions (PBLAS) of BLAS and on communication subprograms
(BLACS), which makes it suitable for parallel computers with distributed memory.

The project FLAME (Formal Linear Algebra Methods Environment) [7] pro-
vides a new way toward the systematic and mechanical development of libraries for
this field. Many obstacles in library production (e.g., effort required to identify can-
didate algorithms, formal correctness approval through extensive testing, numerical
stability analysis, and the time for empirical tuning) may be overcome by applying
modern software engineering approaches and tools. The effort and expense of up-
grading for new architectures can thus be reduced. Within this, a new notation for
expressing dense linear algorithms is being formulated, raising the level of abstrac-
tion at which the algorithm is represented.

For problems involving very large matrices, the so-called OOC (out-of-core) al-
gorithms have been developed [8]. It is often the case that the data structures of
the problem are too large to fit in the memory; therefore, it is reasonable to use
disk storage which is cheap and available in larger quantity. OOC LU decomposi-
tion of a nonsymmetric dense matrix with pivoting [9], sparse symmetric–indefinite
factorization [10], and QR and SVD decompositions [11] are examples of such al-
gorithms.

New trends in this area are influenced by the existence of multicore systems, for
which the library routines have to be reformulated or new algorithms have to be
developed. The exploitation of fine grain parallelism becomes a major requirement
and introduces the necessity of loose synchronization in the parallel execution of
an operation. Algorithms for the Cholesky, LU, and QR factorization, where the
operations can be represented as a sequence of small tasks that operate on square

4 Marián Vajteršic, Peter Zinterhof and Roman Trobec

blocks of data, are already available [12]. These tasks can be scheduled dynami-
cally for execution based on the dependences between them and on the availabil-
ity of computational resources. This may result in an out-of-order execution of the
tasks which will completely hide the presence of intrinsically sequential tasks in the
factorization.

1.1.2 Parallel Architectures

It is out of the scope of this book to cover the huge progress in computer architecture,
but we have to at least mention the revolutionary multicore idea in processor design.
What is the motivation for it? One could name power consumption, heat dissipation,
minimization of communication distance, and other physical limitations which are
factors pushing the microprocessor industry toward multicores.

Multicore architectures have started a new era of computing and boost perfor-
mance and efficiency of parallel programs. The problem is, however, how to execute
sequential programs efficiently and reliably on multicores. Multicore architectures
usually have many cores that are weaker than those in a monolithic out-of-order
core; however, the aggregation of many small cores provides better computing and
power efficiency than a monolithic one. It is expected that with multi- and manycore-
based systems, performance increase on the microprocessor side will continue ac-
cording to Moore’s law, at least in the near future. However, the already limited
memory access is expected to become more of a problem with multiple cores on a
chip, and gets more complex because of the required hierarchies of cache memory.
In addition, the increasingly hybrid and hierarchical design of high-end systems,
including accelerator components, is another obstacle for programming. These is-
sues will have a major impact on overall performance in future systems. Nanoscale
manufacturing processes increase the relevance of reliability and availability while
the future appearance of tens or hundreds of cores on a single chip moves the pro-
grammability to a center stage.

This confirms our earlier statement that computation- and data-intensive tasks
can benefit from the hardware’s full potential only if both processor and architecture
features are taken into account at all stages from the early algorithm design to the
final implementation.

Problem areas related to efficient use of multicore systems include

• design of multicore-aware approaches for large-scale parallel simulations in both
implementation and algorithm design, including scalability studies

• compiler techniques and code optimization strategies for parallel systems with
multicore processors

• tools for performance and cache behavior analysis (including cache simulation)
for parallel systems with multicore processors

• parallelization with appropriate programming models and tool support for multi-
core and hybrid platforms.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 5

One example of a novel multicore architecture is the Cell Broadband Engine (Cell
BE) developed jointly by IBM, Sony, and Toshiba [13]. It is an innovative heteroge-
neous multicore chip that differs significantly from conventional multiprocessor or
multicore architectures. It represents a new execution platform for computation-
intensive applications that reflect both the requirements of future computational
workloads and manufacturing constraints. The Cell BE is a heterogeneous chip
achieving more than 200 GFlop per chip. The initial target of the Cell BE was
the Sony’s PlayStation 3 game console, which boasts a chip with nine CPUs for
faster and more realistic video gaming. Soon it became evident that the impressive
computational power of Cell BE could make it potentially well suited for other ap-
plications such as visualization, multimedia processing, and various scientific and
technical workloads [14].

The number of cores on a single chip continues to increase: there are actual re-
ports of 64 [15] and even 80 [16] cores accommodated on a single chip. All these
new designs confirm the evidence that the exploitation of their spectacular capa-
bilities will require new tools, new algorithms, and a new way of looking at the
programming.

Network-on-Chip (NoC) constitutes a practical approach in the architecture of
communication networks [17]. It is driven by the advanced CMOS nanotechnology
and its function is to provide delivery between the source node and the destina-
tion within large VLSI (Very Large Scale Integration) systems implemented on a
chip. An NoC can provide separation between computation and communication.
The fact is that while the computation logic grows, the performance of on-chip
interconnections does not scale as well. Wire delay dominates gate delay and the
gap between wire delay and gate delay becomes wider as process technology im-
proves. In addition, human design productivity cannot keep up with the growth rate
of available circuits on a single chip. NoC enables wire segmentation and wire shar-
ing design techniques to be applied to resolve the performance bottleneck due to
wire delay [18].

In particular, NoC switches must be small, energy-efficient, and fast. The rout-
ing algorithms should be implemented by simple logic, and the number of data
buffers should be minimal. Most NoCs are based on a regular mesh-like pattern, but
there are already thoughts about using heterogeneous and less regular topologies,
enabling application-specific designs [19].

Field Programmable Gate Arrays (FPGAs) [20] are a novel series of building
blocks for massively parallel systems. They are programmable computing devices
that are given their final functionality shape by the customer or designer following
manufacture. FPGAs are wired together from programmable logic components, us-
ing a hierarchy of reconfigurable interconnections. Due to their flexibility, FPGAs
are well suited for constructing special-purpose hardware. Moreover, they may be
used to design reconfigurable massively parallel architectures [21]. Because of the
many ways in which FPGAs can be arranged into massively parallel systems, they
have achieved a high profile in modern High-Performance Computing (HPC) envi-
ronments [22].

These programmable chips are useful for applications where parallelism can be
applied massively, e.g., in signal processing [23] or cryptography [24]. In particular,

6 Marián Vajteršic, Peter Zinterhof and Roman Trobec

both FFT-based and convolution-based numerical computations can be executed
efficiently on FPGAs instead of general-purpose microprocessors [25]. An itera-
tive image restoration algorithm has been developed to suit FPGAs implementation
in [26]. Performance results, obtained from an actual implementation of this ap-
proach on a Xilinx FPGA, demonstrate the advantage of this attractive hardware
concept also for solving more demanding signal processing tasks.

Parallel linear algebra solvers have also been proposed for FPGAs with promis-
ing speedups achieved over CPUs. Matrix inversion and LU decomposition with
pivoting and the so-called mixed-precision direct linear system solvers have been
designed and examined from this perspective in [27]. A family of fixed-point lin-
ear algebra intellectual property (IP) cores for Xilinx FPGA devices is already on
offer commercially [28]. These cores constitute direct implementations of Matlab
procedures in silicon.

With each newcomer in architecture there is a need for researchers from academia
and industry to share and exchange their experience, discuss challenges, and report
state-of-the-art and in-progress research of all features of a new technology. In par-
ticular, experience from application developers with its use, performance of real
applications, results from the implementation of tools supporting the development,
and final execution are required in order to provide a final answer about its real
potential.

1.1.3 Scalability

The most used choice for large-scale computing is the parallelism for supercomputer
clusters with distributed memory. This parallelization is of coarse-grain type, where
large portions of programs should run on processors independently, without mutual
communication. For communication, the message passing standard is adopted. Also
a proper load balancing of tasks among the processors has to be optimized in order
to achieve reasonable performance figures. Thus, the problems which are going to
be parallelized have to be analyzed and solved in such a way that these requirements
are met.

Other option for parallel solution of challenging applications and for processing
huge and complex information sets of all kinds are the heterogenous distributed
systems. These range from simple networks of desktop computers to highly complex
Grid computing environments. Such computational systems have been preferred due
to their reduced costs and inherent scalability, but their efficient use poses many
challenges in terms of information access, storage and retrieval, as well as in terms
of algorithms for efficient management, transfer, and analysis of huge volumes of
data and knowledge.

Grid computing, peer-to-peer technology, data and knowledge bases, distributed
information retrieval technology, and networking technology all these converge by
addressing the scalability problem [29]. Furthermore, with the advent of emerg-
ing computing architectures, e.g., SMTs (Simultaneous Multithreading) [30], GPUs

1 Overview – Parallel Computing: Numerics, Applications, and Trends 7

(Graphics Processing Unit) [31], multicores, etc. The importance of designing tech-
niques explicitly targeting these systems is becoming more and more important.
Some areas where scalability plays a role are:

• parallel and distributed information retrieval
• Grid information systems
• peer-to-peer systems
• mobile systems
• Web services
• multimedia information systems
• emerging computing architectures (SMTs, GPUs, multicores)
• data mining
• information security
• very large databases.

1.1.4 Supercomputers

In 2008, supercomputing entered the petaflop/s era. In the TOP500 list of the most
powerful computers is a system which for the first time in history delivered a peak
performance of 1.026 petaflop/s [32]. The system is named Roadrunner and was
built by IBM [33] for the Los Alamos National Laboratory in New Mexico. It is
based on the IBM QS22 [34] blades which are built with advanced versions of the
processor in the Sony PlayStation 3.

Rank 2 on the actual TOP500 list, which has been produced since 1993 twice a
year and brings a survey of trends and changes in the global supercomputer area, is
now reserved for IBM Blue Gene/L with 478.2 teraflop/s. This computer is installed
at the Lawrence Livermore National Laboratory and it has been the world’s number
one from 2004.

The first five positions occupy systems in the U.S. Number 3 is the new IBM
Blue Gene/P (450.3 teraflop/s) at the Argonne National Laboratory, followed by the
new Sun SunBlade x6420 Ranger system (326 teraflop/s) at the Texas Advanced
Computing Center at the University of Texas in Austin, and the upgraded Cray XT4
Jaguar (205 teraflop/s) at the Oak Ridge National Laboratory. The first ranked site in
Europe is Forschungszentrum Jülich on rank 6 with its BlueGene/P of 180 teraflop/s.
Among the first ten systems, there are also two installations in France.

The advent of multicores is also apparent in these systems. Quad-core proces-
sors are used in 283 systems and 203 systems are using dual-core processors. Only
11 systems still use single-core processors, and three systems use IBM’s advanced
Sony PlayStation 3 processor with 9 cores.

IBM is the leader in the list for the total number of systems and also for the per-
formance. It leads in systems with 210 systems (42 percent) over Hewlett-Packard
with 183 systems (36.6 percent) and in performance with 48 percent of installed total
performance, compared to Hewlett-Packard with 22.4 percent. The rapid progress

8 Marián Vajteršic, Peter Zinterhof and Roman Trobec

in supercomputers is illustrated also by the fact that the last system on the current
list would have been listed at position 200 just six months ago.

For the first time, the TOP500 list also provides energy efficiency calculations
(in Mflop/s/Watt). The Roadrunner is not only the most powerful but also the most
energy-efficient supercomputer at the moment. It uses the IBM QS22 Cell processor,
which has an efficiency up to 488 Mflop/s/Watt, while in second position, also held
by IBM with BlueGene/P systems, is this value up to 376 Mflop/s/Watt.

1.1.5 Grid Computing

Grid computing occupies the other side of the parallel computational spectrum. It
tries to fulfill a long-term goal of the user community to have computing power
available anytime and at any place just by simply plugging a terminal into the net.
However, we are still far from this goal, but the idea is still challenging. In such ar-
eas as scientific and enterprise computing there are already results from utilization
of geographically dispersed computer facilities. The main problem is that the sys-
tems included in Grid are heterogeneous. It is assumed that Grid comprises a large,
collaborative system consisting of different hardware platforms, operating systems,
software libraries, and applications providing the ability to perform higher through-
put computing. While some differences may be relatively easy to overcome, such
as different processor architectures or operating systems, other differences are more
subtle, such as binary patches or simply placement within the file system, and carry
a much greater potential for failure.

A broad range of both commercial and scientific toolkits for Grid computing
exists. The Open Grid Forum (OGF) [35] holds the standardization position and the
result of this effort is the reference implementation Globus Toolkit [36]. The design
of the common Grid architecture of the OGF is referred to as the Open Grid Services
Architecture. The approach taken by the OGF relies fundamentally on a web-based
service-oriented architecture, as embodied by the World Wide Web consortium’s
web service standards.

More problems already examined for Grid implementation come from parallel
numerics. Monte Carlo methods appear to be good examples of this effort [37].
Monte Carlo for matrix operations is applied in Grid environment in [38], and Quasi
Monte Carlo for high-dimensional integration is published in [39]. Also a general-
ized eigenvalue problem was solved in Grid environment [40]. For linear algebra,
a scientific computing environment based on web services is presented in [41]. It
allows users to perform their linear algebra tasks without explicitly calling the li-
braries like BLAS, LAPACK or ScaLAPACK, and software tools, as well as without
installing related software on local computers. A user enters an algebraic formula,
as, e.g., in Matlab, which is evaluated for determining the combinations of services
answering the user request. Services are then executed over the Grid using the DIET
(Distributed Interactive Engineering Toolbox) [42] middleware.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 9

Information retrieval is an application that really can take advantage from Grid
computing. Because of the large amount of distributed data, well-known online in-
formation retrieval engines are already powered by proprietary Grid-like technolo-
gies. In [43], the parallel SVD (Singular Value Decomposition) was the kernel oper-
ation in the application of the LSI (Latent Semantic Indexing) principle for algebraic
data retrieval approach on a Grid.

Parallel numerical methods are also included in more complex applications, e.g.,
from medicine, multimedia, meteorology, and bioinformatics, which are solved on a
Grid within the national project AGRID2 (Austrian Grid) [44], which includes lead-
ing Austrian research institutions in advanced computing technologies with partners
working in Grid-relevant application areas. One of the applications is the image re-
trieval using the widespread vector-space model with the help of Grid middleware,
where Householder orthogonalizations were used [45].

In this context, the rapidly growing area of the Cloud computing has to be
noted [46]. This approach is based on the Internet as a vehicle to satisfy the com-
puting needs of the consumers. Such technologies developed for Internet, such as
SaaS (Software as a Service) [47], Web2.0, and GoogleApps [48], enable the use of
remote computing capacities of a huge numbers of servers. Without having knowl-
edge about the organization of the services behind it, the application is put into
the cloud of elastic computing power, where it will be processed on the usual pay-
ment basis. There are already scientific clouds available, such as Nimbus (University
of Chicago), Stratus (University of Florida), Wispy (Purdue University), and Kupa
(Masaryk University, Czech Republic) [49], as well as those for commercial pur-
poses, offered by vendors such as Amazon, Google, and Salesforcee [50]. However,
this challenging idea needs a long period of evolution before it becomes a widely
adopted technology. The first obstacle is that not all applications are naturally suited
to this concept. Generally, the applications should be split into a relatively large
number of subtasks, all of which can be executed concurrently. The second problem
lies in the software. Only a few applications are coded in such a manner that they
can run on a large number of servers.

1.1.6 Parallel Programming Languages

For programming of parallel computers, MPI (Message Passing Interface) [51],
which conforms to the message-passing model, is the most widely considered tool
at present. It is an example of a successful standardization process, which has been
followed by a number of realizations such as MPICH2 [52], LAM/MPI [53], or
implementations by principal vendors (IBM, Sun, and Intel). The implementations
contain parallelization functions with language interface to Fortran and C/C++. The
state-of-the-art of the MPI standard is called MPI-2, which adds one-sided commu-
nication, dynamic processes, and parallel I/O.

PVM (Parallel Virtual Machine) [54] is another example of a message-passing
library. A pool of workstations was configured by PVM to a virtual parallel machine

10 Marián Vajteršic, Peter Zinterhof and Roman Trobec

capable of performing concurrent computations, like a high-performance computer,
but with significantly lower cost.

The so-called PGAS (Partitioned Global Address Space) languages [55] consti-
tute an improvement of message-passing libraries that are designed for a memory
model where the global address space is logically partitioned in such a way that a
portion of it is local to each processor. The main representatives of this group are
Co-array Fortran [56], UPC (Unified Parallel C) [57], and Titanium [58].

Since most of scientific computing applications are written in Fortran, a parallel
version of this language was expected to be echoed by parallel programmers. With
this objective, parallel versions of this language Vienna Fortran [59] and HPF (High
Performance Fortran) [60], based respectively on Fortran77 and Fortran90, were
developed. HPF is a representative data-parallel language in which the basic idea
is to implement vector and matrix operations in parallel, whereby operations on
array elements are executed simultaneously across available processors. Moreover,
the responsibility for low-level details of the implementation is transferred from the
programmer to the compiler. This makes data-parallel programming attractive for
use. Despite this fact, neither the first version of this language nor its successor
HPF-2 has gained the acceptance as expected. The best-known commercial HPF
compiler is provided by Portland Group [61] and is a good tool for those who want
to parallelize their Fortran codes with operations on large arrays.

In the shared-memory world, the programming approaches are based on threads.
There are more options for employment of threads. The first is to use the thread
library, from which the standard represents POSIX (Pthreads) [62]. Its weakness
is that it has marginal support for data-parallel operations that frequently occur in
scientific computing.

The most frequently used approach for shared-memory parallelization is still
OpenMP [63]. Targeting Fortran or C/C++, it enriches the programming language
by a set of compiler directives, used to describe the parallelism in the source code,
and a small library of supporting routines. It is the compiler that arranges for the
low-level work and creates, when necessary, a number of threads to process si-
multaneously parallel regions in the code. OpenMP programming is simpler and
on a higher level than programming with Pthreads or MPI. Because of its suc-
cess, there is a development attempting to bring OpenMP also onto the distributed-
memory territory. Initiated by Intel, its name is Cluster OpenMP [64] and is related
to the distributed shared-memory concept. On a software basis, it provides cluster
nodes with access to a large shared memory, in addition to their non-shared private
memories.

The popular Matlab [65] environment also provides parallel programming sup-
port for both task- and data-parallelism. The Matlab producer MathWorks developed
the parallelized version Parallel Computing Toolbox [66] which enables to solve
computation- and data-intensive problems using Matlab on multicore and multi-
processor computers. Parallel processing constructs such as parallel for–loops and
code blocks, distributed arrays, parallel numerical algorithms, and message-passing
functions enable task- and data-parallel algorithms to be implemented in Matlab

1 Overview – Parallel Computing: Numerics, Applications, and Trends 11

at a high level without programming for specific hardware and network architec-
tures. Thus, converting serial Matlab applications to parallel Matlab applications
is done easily by few code modifications and without programming in a low-level
language.

It is obvious that, with the advent of multi- and manycore processors and het-
erogeneous architectures, hardware deep memory hierarchies and exponentially in-
creasing numbers of processors, new programming models, and support have to
be proposed. These factors dictate the use of language features that provide higher
level abstractions than do C or older Fortran standards. Also, object-oriented pro-
gramming, represented by C++ and to an increasing extent by Java and Python [67],
is not able to meet these demands.

A novel and promising proposal in the area of parallel programming languages
is going to be Chapel [68]. This language is under development by Cray within the
Cascade Program. This project is part of DARPA’s High Productivity Computing
Systems (HPCS) initiative [69], whose main objective is to provide a new genera-
tion of economically viable HPCS. HPCS program focuses on productivity in the
HPC domain, which is defined as a combination of performance, programmability,
portability, and robustness. The ambition of the initiative is to increase the produc-
tivity by a factor of 10 by the end of the period 2007–2010.

Chapel uses concepts from already developed languages, mainly from the HPF.
It is based on the multithread execution model where the parallelism is expressed in
terms of independent computations using threads. It supports high-level abstractions
for data parallelism, task parallelism, and nested parallelism. It enables optimization
for the data locality. Object-oriented features are also included. Interoperability with
other languages (C, Fortran, C++, Python, and Java) is also foreseen. On November
15, 2008, the first public release of Chapel became available for download.

Results from the study [70] are interesting, from the parallel programming reality
point of view. A pool of 250 participants answered a question about parallel pro-
gramming systems they use in practice. It was not surprising that MPI was the clear
winner, followed by POSIX Threads and OpenMP. Together with Java Threads [71],
these three systems are widely known and used tools for parallel programming by
the practitioners who participated in the above worldwide inquiry.

1.1.7 Parallel Compilers

One of important factors contributing to the performance of parallel applications is
the quality of the generated code, which depends heavily on the compiler. A program
written in a high-level language, such as C/C++ and Fortran, has to be converted into
the machine instruction set of the architecture being used. This kind of translation
is done by compilers and interpreters. Parallel compilers are programs that try to
parallelize the process of program compilation.

The appearance of processors with simultaneous multithreading, and currently
with the advent of chip multiprocessors with an increasing number of cores,

12 Marián Vajteršic, Peter Zinterhof and Roman Trobec

stimulates the interest of both industry and academia to improve compilers to be
able to exploit this type of parallelism. In these systems, the already traditional gap
between processor speed and memory speed is now overbridged by the increase
in the number of computing cores that demand data from the same memory. As a
result, understanding the complex interaction between software and memory hier-
archy hardware, and the implementation of automatic compiler techniques that lead
to optimal exploitation of this hierarchy are, and will continue to be, hot research
topics.

Interest in shared-memory compilers, motivated particularly by the advent of
multicores, has also stimulated new developments, of which OpenUH [72] is one.
It is a portable OpenMP compiler which fully supports the latest OPenMP version
and contains, in addition, many analysis and optimization passes. Another example
is the adaption of OpenMP to Java, called JaMP, described in [73]. This system
proposes new extensions to OpenMP which are better suited to the object-oriented
programming by Java.

Another current trend is due to the growing availability and complexity of em-
bedded processors. Here, much more than in the HPC area, we may observe a devel-
opment of new processors with novel features that can be very compiler-dependent
such as VLIW (Very Large Instruction Word) and complex register file architec-
tures. The difficulty in programming these architectures and the strong demands for
real-time response drive the developers mostly to low-level manual programming.
Hence, the understanding and design of powerful analysis and heuristics for com-
pilers oriented to these architectures is an attractive research topic.

It is recommended that, instead of completely re-engineering compilers for par-
allelism, it is more efficient to use autotuners that search to yield efficient parallel
code [74]. The arguments for looking in new direction are obvious: new functions
added to compilers need a large programming investment and testing and, due to the
limitations of exiting compilers, peak performance may still require labor-intensive
manual programming of parallel issues, such as data layout, data movement, and
processor synchronization.

Despite the fact that autotuners for parallel codes do not exit so far, their use
would be a promising way to overcome these obstacles. Autotuners [75] work on a
search principle and optimize a set of library kernels by generating many variants of
a given kernel and benchmarking each variant by running on the target platform. The
search process effectively tries many or all optimization switches. In many cases, the
autotuned code is faster than vendor libraries that were specifically hand-tuned for
the target machine. Autotuners for parallel codes have to take into account the fact
that, for a given problem to be solved, there may be several parallel algorithms, each
with alternative parallel data layouts. The optimal choice may depend not only on
the processor architecture, but also on the parallelism of the computer, as well as the
network bandwidth and latency.

It is expected that compiler development will continue to be driven by the ap-
pearance of new needs, novel hardware architectures, and programming languages
and paradigms. The more that parallelism will be offered at different levels of

1 Overview – Parallel Computing: Numerics, Applications, and Trends 13

future computer systems, the greater will be the motivation to develop programs
for them in an easy and user-friendly manner, for which new compiler solutions are
inevitable.

1.2 Book Chapters

In this part of the book’s introductory chapter, a brief annotation of subsequent chap-
ters, with some information on the authors and their institutions, will be given.

1.2.1 Introduction to Parallel Computation

Selim G. Akl and Marius Nagy, Kingston, Ontario, Canada

The first author of this chapter is a well-known expert in the area of algorithm design
and analysis, in particular for problems in parallel computing. His recent research
interests are focused on unconventional computing [76]. He published fundamental
books related to parallel models and algorithms, of which [77,78] could be counted
as classics among textbooks in this area. He is editor in chief of Parallel Processing
Letters (World Scientific), one of the most prestigious international journals devoted
to parallelism.

His chapter, co-authored by M. Nagy, provides an overview of the fundamental
concepts and ideas in the field of parallel computation. The first part gives the reader
useful introductory information about possible computational models, algorithm de-
sign methods, and specific analysis techniques, which are helpful to understand the
themes discussed in further chapters of the book, especially for a non-expert audi-
ence.

Fundamental parallel classical models, ranging from the shared-memory model,
through combinatorial circuits, clusters, up to the Grid are included and explained.
The section devoted to the design methods for parallel algorithms is written from
the perspective that the algorithm designer has to consider necessarily the charac-
teristic features of the model being used. The design methodology consists of four
basic steps: partitioning (decomposition to a maximum number of concurrently ex-
ecutable tasks), communication analysis (evaluating the amount of communication
among tasks), granularity control (reduction of communication requirements by ag-
glomeration), and mapping (assigning tasks to processors of the model). The process
is illustrated for the Gaussian elimination on the mesh of trees topology.

Parallel algorithms for conventional computations, i.e., for computations which
are frequent components of various applications, are illustrated by designs for
prefix-sum and suffix-sum computations on a linked list and by sorting on a model
with three configured buses. Following the authors’ view on classification of com-
putations, for the so-called unconventional computations, they present interesting

14 Marián Vajteršic, Peter Zinterhof and Roman Trobec

algorithmic solutions which confirm that parallelism is beneficial from the point of
view of speedup and quality-up.

The second part of the chapter concludes with a surprising and maybe, at the
same time, provocative claim that the notion of universality in computation is false.
It is based on the observation that no machine can claim universality since there will
always be a larger set of problems that such a machine cannot solve. Parallelism
should deliver a proof of the nonuniversality claim: there is no finite computational
device, sequential or parallel, conventional or unconventional, which is able to sim-
ulate all others [79].

1.2.2 Tools for Parallel and Distributed Computing

Thomas Fahringer, Innsbruck, Austria

The author is the head of the Institute of Computer Science, University of Inns-
bruck, Austria, where he also leads the Distributed and Parallel Systems Group.
Before joining the University of Innsbruck, he worked at the University of Vienna.
T. Fahringer was involved in numerous national and international research projects
including AURORA [80] and the Austrian Grid [81]. His group currently coordi-
nates two EU projects (edutain@grid and EC-GIN). He has published three books,
the most recent one by Springer [82]. His current research contributions are related
to the area of compilers and programming languages and tools for distributed and
parallel systems.

In our book, the author presents the ASKALON system [83], which comprises
a tool set to support performance-oriented development of parallel and distributed
applications. It was originally designed for clusters of multiprocessors and has later
on been extended to a powerful environment for application development and opti-
mization for Grid and Cloud applications. An important aspect of ASKALON deals
with the problem to port existing software tools to Grid and Cloud infrastructures
which turned into an increasingly serious problem over the last couple of years and
has not been thoroughly addressed by the scientific community. Portability and in-
teroperability problems of software tools on the Grid and on Clouds are caused
mostly by the heterogeneous and often machine-dependent nature of tools, by com-
plex operating system and compiler dependencies as well as by differences and
incompatibilities in tool functionality, interfaces, and other proprietary solutions.

The chapter starts with a detailed description of related work that reflects pre-
vious and ongoing work in this area. The overall architecture of the ASKALON
development and runtime environment and its basic functionality is outlined in the
first section devoted to this system. A separate section is reserved for the detailed
introduction of each of the four constituent tools, the structure of which is based on
the composition and sharing of remote Web services.

ASKALON’s four tools are coherently integrated into a Web service-based dis-
tributed architecture which enables their interoperability. SCALEA is a performance

1 Overview – Parallel Computing: Numerics, Applications, and Trends 15

instrumentation, measurement, and analysis tool for parallel programs that supports
automatic generation of instrumentation code and delivers required performance
parameters during or after program execution. ZENTURIO is a general purpose
experiment management tool for automatic generation and conduction of a large
number of experiments in the context of large-scale performance and parameter
studies for clusters and Grid and Cloud architectures. AKSUM provides the user
with an interface for analysis of performance data of several experiments and de-
fines how experiments are generated and executed. After the necessary information
has been provided, AKSUM automatically conducts performance analysis without
any user interference. The Grid-Prophet can predict the performance of parallel and
distributed applications based on machine learning techniques.

The chapter is concluded by numerous experiments which demonstrate the use-
fulness and effectiveness of the ASKALON development and runtime environment
for a variety of real-world applications.

1.2.3 Grid Computing

Uroš Čibej, Ljubljana, Slovenia
Anthony Sulistio and Rajkumar Buyya, Melbourne, Australia

Grid computing occupies one of the most trendy positions in contemporary com-
puter science. It offers obvious benefits and has a big potential to be accepted as
a new computing technology for and beyond parallel computing. Clearly these are
good arguments to include into our publication also a chapter devoted to this evolv-
ing topic. Grid computing has been recognized as a new strategy in computing;
almost each IT-developed country has started its national Grid initiative. As an ex-
ample of integration on international level, the EU Project EGEE (Enabling Grids
for E-SciencE) [84] could be named, which is the world’s largest scientific Grid
and achieves a scale comparable to today’s largest supercomputers. It encompasses
more than 37,000 CPUs and 15 Petabytes of memory with servers at 240 sites in 40
countries. The latest efforts of the European Grid Initiative (EGI) [85] are trying to
establish a permanent Grid infrastructure for Europe.

The fact that Grid is a worldwide echoed paradigm for modern computing is also
confirmed by the occupation of authors of this chapter; they work at research sites
on two geographically distanced continents. The first author is working on more
topics of Grid computing: e.g., tool development for visualizing data Grid simu-
lations, development of data Grid simulators, and on writing Grid-aware scientific
applications.

His coauthors are with the Grid Computing and Distributed Systems (GRIDS)
Laboratory at the University of Melbourne, the research of which is centered around
the Gridbus project [86]. From most recent publications related to Grid, the up-
coming monograph [87] will bring an overview of the Grid economy research and

16 Marián Vajteršic, Peter Zinterhof and Roman Trobec

technologies that will facilitate a global commercial Grid system. In [88], a common
work of all three authors concerning data Grids is presented.

Grid computing can be characterized as the utilization of widely distributed re-
sources within virtual organizations for the solution of large-scale problems from
science and, most recently, also from business. The authors write about the moti-
vation for developing and using the Grid; they bring an useful overview of tech-
nologies behind it and also describe practical applications and new promising future
trends.

The chapter starts with the categorization of Grids. In the second section, actual
problems related to Grid computing, such as quality-guarantee of services, resource
regulation, and data management are discussed. In order to make Grid available to
users, the middleware plays a key role. The third section concentrates on descrip-
tion of three toolkits: Globus, gLite, and Gridbus. From tools for computationally
intensive applications, MPICH-G2, Cactus, Condor-G, and GridSolve are put into
context. Also application-specific Grid projects from medicine, astronomy, finance,
and digital libraries are mentioned, which document that this new paradigm is not
only a domain of IT researchers, but it is convincing now also to practitioners.

The efficiency of a Grid depends heavily on the way how the management of
jobs and resources is organized. Authors survey advance reservation strategies. Also
new trends are sketched, pointing out that Cloud computing is the most promising
new paradigm. It is interesting to note that this idea was initiated by the industrial
enterprises and afterward it became a hot topic for the research community. It is in
contrary to the Grid, which was formulated as a concept first by the academicians
and later on it found acceptance by users from a practice.

1.2.4 Parallel Structured Adaptive Mesh Refinement

Jarmo Rantakokko and Michael Thuné, Uppsala, Sweden

The techniques for mesh construction and mesh refinement are of crucial importance
in many areas of large-scale computing, where PDEs (Partial Differential Equations)
are to be solved numerically. The topic of this chapter is Structured Adaptive Mesh
Refinement (SAMR), which is used in simulations where the problem domain is
divided into rectangular subdomains, upon each of them a structured mesh is su-
perimposed. SAMR enables to automatically adapt the mesh granularity in subdo-
mains, according to the resolution quality required to represent important features
contained in them. Parallelism for this type of problems can be exploited naturally.
However, in simulations the refinement on subdomains has to be performed dynam-
ically, in order to reply to desired changes in the resolution. For parallel implemen-
tation it means to take into account dynamically changing work load, data volume,
and communication pattern at runtime. As a consequence, dynamic load balanc-
ing techniques have to be applied, which have implications for the parallelization
strategy.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 17

The authors are primarily oriented to numerical scientific computing in two
of its key facets: methods [89, 90] and software [91, 92]. Their chapter gives an
overview of SAMR approaches and reports on new results obtained in framework
of the ongoing research project Dynamic Load Balancing of Parallel SAMR Ap-
plications, which is under development by the research group Software Aspects
of High-Performance Computing of the Scientific Computing Division at Uppsala
University. This university has a long tradition and high reputation in scientific
computing. This is concentrated around the Department of Information Technology,
which is linked to more research centers, among them also the Uppsala Multidisci-
plinary Center for Advanced Computational Science (UPPMAX), which provides
high-performance computers and know-how of HPC.

The chapter starts with a brief introductory survey of SAMR techniques and soft-
ware packages. The main part of the chapter deals with various issues related to
implementation of SAMR on parallel computers. From a computer science point of
view, such aspects as data dependencies, parallel programming models, data place-
ment strategy, and appropriate choice of the dynamic load balancing are discussed
for systems based on the shared memory as well as the distributed memory. Various
approaches and algorithms are presented in the fifth section, where a place is also
given to own results achieved by the authors. The conclusion of their comparison is
that there is no single best alternative under all circumstances because the appropri-
ate choice of all the above-mentioned aspects to be considered by the parallelization
depends on both the application state and the computer platform.

The chapter ends with a section about the future research plans, where the ob-
jective is to equip SAMR-based simulation software with additional features of
self-configuration and self-optimization. Two self-optimization functions, which the
software should be able to do automatically, will be focused: selection of the amount
of parallel resources and selection of the details of the model. This progress toward
autonomicity will make the SAMR software more attractive to a broad community
of scientists and engineers who are working on simulation of large-scale applica-
tions, without being primarily parallel computing experts.

1.2.5 Applications and Parallel Implementation of QMC
Integration

Peter Jez, Andreas Uhl, and Peter Zinterhof, Salzburg, Austria

The team of authors, affiliated to the Department of Computer Sciences of the Uni-
versity of Salzburg, combine expertise in advanced numerical algorithms with ex-
perience in parallel computing. This twofold competence enables synergies, which
profile the department in the area of Scientific Computing. The department is led
by P. Zinterhof, whose research roots are in high-dimensional number theoretic
numerics [93] and signal and image processing [94]. He has been coordinator of
the ParNum initiative, which was the actual background on which the cooperation

18 Marián Vajteršic, Peter Zinterhof and Roman Trobec

in parallel numerics for a majority of authors of this book started. The intensity
and productivity of A. Uhl’s research is evident from his wide–scope publications
and projects in the area of image and video processing, multimedia security [95],
biometrics [96], medical imaging [97], and parallel numerical mathematics [98].
P. Jez is specialized in Quasi-Monte Carlo (QMC) methods [99]. In particular, high-
dimensional numerical integration and QMC methods belong to the topics making
Salzburg visible in the Scientific Computing community. Methods from both the
areas offer a potential for parallelization. It is a motivation for this chapter, where
the authors deal with numerical computation of integrals over a high-dimensional
domain. The approach applied for it is the QMC, due to the special choice of de-
terministic point-sequences for the integration, the use of which allows to increase
significantly the convergence rate against randomly chosen sequences, as it is the
case by the Monte Carlo (MC) methods.

In the first part of the chapter, some theoretical results about QMC integration
over a high-dimensional domain are presented. In this context, the application of
the reproducing kernel Hilbert spaces within the QMC integration is discussed. Im-
portance of integrals of the considered type is illustrated for two application areas:
solving PDEs and finance engineering.

The second part of the chapter is devoted to the parallelization of the integration
computations and their implementations. It is introduced by a survey of parallel and
distributed QMC approaches. Due to the convergence rate of QMC integration, the
integrand must be evaluated on a huge amount of integration nodes. Here is the main
space for parallelism because these evaluations can be splitted into independent sub-
tasks, which can be assigned to different processors for a simultaneous execution.
Three different concepts of parallelization have been under consideration: block-
ing, leaping, and parametrization. The experiments were performed on the cluster
Gaisberg, installed at the Department, which is configured as a two-dimensional
(2D) 6× 6 Scalable Coherent Interface (SCI) torus with dual-core AMD Athlon
MP2800+ processors.

Different low discrepancy sequences, among them Good Lattice Points and Zin-
terhof sequences, were examined in parallel. The integration results for sample
integrals are compared and illustrated by a number of figures accompanying the
chapter.

1.2.6 Parallel Evolutionary Computation Framework
for Single- and Multiobjective Optimization

Bogdan Filipič and Matjaž Depolli, Ljubljana, Slovenia

Both authors are working at the Jožef Stefan Institute in Ljubljana, which is the
leading institution in progressive IT-related research in Slovenia. The first author
is with the Department of Intelligent Systems, which is active in areas of artificial
intelligence, intelligent systems, information systems, information society, medical

1 Overview – Parallel Computing: Numerics, Applications, and Trends 19

informatics, natural language processing, and cognitive sciences. His research is pri-
marily oriented to evolutionary computations, the scope of which ranges from the
algorithm design to practical applications in dynamic system control and industrial
process optimization. Optimization for industry-relevant applications is presented in
two recent papers [100, 101]. The second author is the youngest contributor to this
book. Since 2005, he is with the Department of Communication Systems, which
is specialized also at the development of algorithms for digital signal processing
and parallel computing. His research interests include evolutionary computation,
artificial intelligence, and knowledge discovery applications in communication sys-
tems [102].

Evolutionary computing is a name used from early 1990s to embrace subareas
such as evolutionary programming, genetic algorithms, evolution strategies, and ge-
netic programming. To the area of evolutionary computing belong several compu-
tational techniques, which reflect to some extent the evolution of biological life in
the natural world. It became a popular topic in modern computer science, because
the evolutionary algorithms enable to search, applying the adaptation principle, for
optimal solutions of problems related to a given environment. Components of an
evolutionary algorithm, which selects for the survival the fittest individual, are defi-
nition of individuals, fitness function, population, parent selection mechanism, mu-
tation, and survivor selection. Many problems from science, technics, economy, and
production were solved effectively using these algorithms. A weakness of evolu-
tionary algorithms is their computational complexity, which is due to the iterative
population-based search of the solution space. From the point of view of paral-
lelism, these algorithms are naturally parallelizable since processing a population of
candidate solutions can be done concurrently.

The evolutionary computing principle is applied in this chapter to solving numer-
ical optimization problems with one ore more objectives. A framework for the selec-
tion process is developed and it is shown how to solve within it a high-dimensional
optimization task from industrial practice. At the beginning of the chapter, a for-
mal definition of optimization problems is given. A difference between single- and
multiobjective optimization is explained and a review of the concepts needed to
deal with multiobjective optimization problems, such as the dominance relation and
Pareto optimality, is presented. The framework uses differential evolution, which
is a particular kind of evolutionary algorithms. After a description of its original
single-objective optimization form, its extension for dealing with multiple objec-
tives is formulated. The final section of the chapter reports on a parallelization of
the proposed evolution algorithm on a computer cluster.

The performance of the framework is evaluated by solving an industrial optimiza-
tion problem. The task comes from metallurgy, where tuning of coolant flows in the
steel casting process helps to increase the steel quality. The optimization problem
is solved for both the single- and multiobjective variants in parallel and analysis of
achieved results is given.

20 Marián Vajteršic, Peter Zinterhof and Roman Trobec

1.2.7 WaLBerla: Exploiting Massively Parallel Systems for Lattice
Boltzmann Simulations

Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger, and Ulrich Rüde,
Erlangen, Germany

Erlangen belongs to mostly known and competent sites for Computer Science re-
search and education in Germany. Historically, it is connected to such names as
W. Händler, F. Hofmann, H. J. Schneider, und U. Herzog, who pioneered paral-
lel computing from the mid of 1970s [103]. Experimental parallel multiprocessors
EGPA [104, 105] and DIRMU [106] were constructed and operated in Erlangen in
the first half of 1980s and at that time they were way-giving pointers to further
progress in parallel architectures, operating systems, programming, and algorith-
mics. The Erlangen school in parallel systems found its continuation in later works
of A. Bode in Munich, E. Mehle in Lübeck, and J. Volkert in Linz. In Erlangen
started in 1981 also the CONPAR conference series which continues today under
the name EuroPar and evolved to be the first forum for parallel processing presenta-
tions in Europe.

The authors of this chapter are from the Chair 10 of the Department of Com-
puter Science, University Erlangen–Nuremberg. This Chair widens the profile of
the Erlangen’s Computer Science through the engagement in the area of system
simulation. A research at the Chair 10 is performed by four working groups: High-
Performance Computing, Algorithms for Simulation, Complex Flows, and Laser
Simulation. There is a noteworthy number of ongoing research projects, in which
the Chair is engaged. Their topics are numerical simulation, multigrid methods,
massively parallel solvers, and solving PDEs [107–109]. One of the projects is
WaLBerla [110], which is the theme of authors’ contribution to this publication (the
acronym resembles the hill Walberla in Franconia, the region of northern Bavaria,
where Erlangen is located).

A motivation for the project is a development of a software tool for solving a
broad class of computational fluid dynamics applications by the lattice Boltzmann
methods, which promise to be a modern alternative to the classical solvers based
on the Navier–Stokes equations. The goals of WaLBerla are easy adaptivity and
extensibility for new fluid problems, physical correctness, high performance, and
easy to be used. The WaLBerla is planned to be a comprehensive tool rich in features
as well as a library for efficient development of new applications based on fluid
simulation. This ambition seems to be realistic, taking into account experience in
parallel numerics and software abilities of the developers’ team.

In this chapter, the authors focus on the parallelization of the framework, which is
based on a domain partitioning scheme named patch concept. A parallelization is the
only possible alternative for obtaining time-acceptable simulations for Boltzmann
solvers: as authors say, for a typical application one time step would run 3 hours on a
serial single-core computer, while a supercomputer with 4864 dual-core processors
will reduce this time to 1.5 seconds. Totally, for 50,000 time steps the simulation
time would be 20 hours compared to 17 years for the nonparallel realization.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 21

The text starts with a brief overview of the lattice Boltzmann method in 3D, fol-
lowed by the introduction of the waLBerla parallelization concept. This is based on
patches, which characterize partitioning of the fluid domain and represent the basic
components for the parallelization, the optimization strategies, and the flexibility,
which are needed for the integration of further applications. When patches belong
to the same process, the so-called local communication is applied for data exchange
among them, whereas interprocess communication is done via MPI. Serial tests are
described and a detailed and comprehensive report on parallel studies is given for
five parallel systems, among them for the HLRB II at the Leibniz Rechenzentrum in
Munich and for the JUICE Cell Cluster at the Forschungszentrum in Jülich, which
belong to ten most powerful systems in Europe. These tests used up to 810 cores
and a domain containing up to 15303 lattice cells. Also the advanced multicore pro-
cessor Cell BE of IBM was examined by computing the blood flow simulation. The
fact was confirmed that a good performance is possible for these new systems only
when the implementations are performed carefully, using architecture-related opti-
mizations. In the concluding section, an outlook for future work is given: tests on
systems beyond 1000 cores and a development of new fluid dynamics applications
with free surfaces and moving objects.

1.2.8 Parallel Pseudo-Spectral Methods for the Solution
of the Time Dependent Schrödinger Equation

Tore Birkeland and Tor Sørevik, Bergen, Norway

Both authors are affiliated with the University of Bergen, which has a strong tra-
dition in computational sciences. In particular, this university was the early starter
with parallel computers. Since 1985, when the first commercially available parallel
system Intel Hypercube iPSC-1 was installed, in Bergen were operated more than a
dozen different parallel HPC-platforms, and for more than two decades it has been
visible as a top European supercomputing center. On the November 2008 TOP500
list, their Cray XT4 QuadCore system is ranked as no. 65. Today the focus among
the computational scientists at the University of Bergen has shifted from basic re-
search on core parallel algorithm and their implementation to solving large-scale
computational problems in applied sciences as exemplified by their contribution in
this book. Their chapter fits perfectly with the main objective of our book: it deals
with a computationally difficult and relevant problem from numerics, which is out of
limit to be solvable serially and for which parallelism is the only way for obtaining
acceptable and usable results. Moreover, the parallelism employed is not straight-
forward; there is an intricacy in the formulation of the parallelization strategy and in
the implementation as well. Thus, the know-how from numerics as well as computer
science has to be combined in order to reach a satisfactory result.

T. Sørevik’s research backgrounds do combine these qualifications. He was
formerly with the Department of Informatics, focusing on parallel computing.

22 Marián Vajteršic, Peter Zinterhof and Roman Trobec

Currently he is affiliated with the Department of Mathematics, focusing on numeri-
cal solution of high-dimensional problems. He has a profound background in numer-
ical mathematics and long-term experience with programming high-performance
parallel computers. In particular, constructing lattice rules for high-dimensional in-
tegration [111] and numerical solution of PDEs [112] belong to his favorite numer-
ical research topics. Topics such as data partitioning [113], load balancing [114],
programming models, and parallel applications are problem areas from parallelism
he has been involved in.

T. Birkeland is his Ph.D. student developing new numerical techniques and soft-
ware for solving the time-dependent Schrödinger equation, which is the theme of
their chapter. In addition to physics and numerical mathematics, he also has a strong
interest in modern software engineering.

The problem under discussion is from quantum mechanics. Due to complicated
interactions in few electron systems, approximation techniques from computational
chemistry, simplifying the coupling between particles, cannot be used. The full
quantum mechanical solution is required and it can easily become extremely com-
putationally demanding, making parallel computing a necessity. The split-step prop-
agator method was chosen for the solution, because each fractional step corresponds
to simpler differential operators, which can easily and accurately be approximated
by spectral methods. Furthermore, the technique can easily be parallelized provided
the data is properly distributed. However, the standard data distribution has limited
scalability; thus an improved data distribution scheme is devised and implemented.

The text starts with the problem formulation and the presentation of the split-
operator technique for time-stepping. It follows with the discussion on choice of
the coordinate systems. The next section deals with the parallelization of the multi-
dimensional FFT, since each partial operator typically requires a different spectral
representation. Thus between each partial step there is a need for transforming the
data. Parallelizing such transformations on huge data sets on distributed memory
computers usually leads to a communication bottleneck. The authors propose a data
redistribution algorithm which helps to overcome this difficulty.

In order to minimize the discretization error and to maximize the performance,
one has to make problem-dependent choice of appropriate coordinate system, cor-
responding discrete representation, and a time propagation scheme. A framework
called PyProp is described, which makes it possible to make choices between dif-
ferent methods at runtime. This enables researchers to choose methods based on
testing on the given problem instead of relying on a priori estimates. PyProp tries to
combine the flexibility of object-oriented programming (C++) with the convenience
of high-level scripting language (Python) and high-performance computational li-
braries (blitz++, FFTW, and LAPACK). The ionization of the hydrogen molecular
ion was taken as the computational example to demonstrate some of the features of
PyProp. Experiments on the Cray XT4 show good speedup (over 1000 against run
on a single processor) and scalability behavior of the produced solution strategy.

In the outlooks, the authors proclaim that parallel computing will be an indis-
pensable tool for their further research on this topic, which will be conducted toward
higher dimensions, new algorithms, and implementation improvements.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 23

1.2.9 Parallel Approaches in Molecular Dynamics Simulations

Dušanka Janežič, Urban Borštnik, and Matej Praprotnik, Ljubljana, Slovenia

Another area where parallel numerics has been adopted successfully is molecular
dynamics. This contribution brings a view on parallel approaches in molecular dy-
namics simulation.

It is written by a team of authors from the Center for Molecular Modeling at
the National Institute of Chemistry, Slovenia. The research activities of the Center
tackle the molecular modeling in more of its aspects: in theory, hardware, software,
applications, and also in education. A project related to parallel computing area is
named VRANA, which aims to build low-cost parallel computers for computations
needed for the Center-specific research. The systems are based on Beowulf clus-
ters connected by torus or other point-to-point based parallel topologies, avoiding
expensive network switching technology. Currently, their VRANA clusters under
operation contain altogether over 700 cores.

D. Janežič is the head of the Center. She is experienced in application of numer-
ical methods for solving simulation problems in molecular dynamics. Her current
research focuses on the development of symplectic integration algorithms for molec-
ular dynamics simulations and their application to simulations of macromolecules
to provide better understanding of biological systems [115]. U. Borštnik contributed
through parallel implementations to the simulation research [116]. M. Praprotnik is
working on computer simulation of soft matter [117]. He is focused on both devel-
opment of new simulation techniques and their application to realistic systems.

A general problem with parallel simulations in molecular dynamics represent the
interactions among all atoms of the simulated system, which is the most compu-
tationally demanding part of the whole simulation. Parallel methods differ in their
distribution of these calculations among the processors.

Concretely, the chapter deals with parallelization of the split integration sym-
plectic method for the numerical solution of molecular dynamics equations. A com-
puter program for this method, designed to run on specialized parallel computers,
is presented. The molecular dynamics integration is performed by a new integra-
tion method, which analytically treats high-frequency vibrational motion and thus
enables the use of longer simulation time steps. The low-frequency motion is com-
puted in parallel for each simulation time step. The performance of simulation on
specialized computers is analyzed and a comparison to the implementations on stan-
dard personal computers is given. It is shown that the combination of the new inte-
gration method with two specialized parallel computers is an effective way to signif-
icantly increase the speed of molecular dynamics simulations. Also a parallellized
version for the distributed diagonal force decomposition method has been devel-
oped. It is shown that compared to other methods in molecular dynamics simulation,
its communication requirements are lower and it features dynamic load balancing.

This chapter clearly illustrates that parallel processing for this type of appli-
cations has to consider special granularity and interaction of the computational

24 Marián Vajteršic, Peter Zinterhof and Roman Trobec

patterns, which have implications for both the algorithmic design and the parallel
computer topology.

1.2.10 Parallel Computer Simulation of Heat Transfer
in Bio-Tissue

Roman Trobec, Ljubljana, Slovenia

This chapter deals with the application of parallel numerical methods in medicine.
The concrete subject is the parallel computer simulation of heat transfer in parts of
a human body. This application is of great practical importance, because the tem-
perature in human tissues, which is an important factor in surgery, physiology, and
other medical domains, can be estimated by computer simulations. The obtained
results, based on numerical solutions of partial differential equations, have practi-
cal advantages for patients, because they bring some additional information, which
could improve chances for positive outcomes of many medical treatments.

The author is with the Department of Communication Systems at the Jožef Stefan
Institute. From the beginning in 1993, R. Trobec and his team were with the ParNum
project, and thanks to him Ljubljana, together with Salzburg and Bratislava, became
one of the pillar-centers of this research initiative. He was the main organizer of
the three successful ParNum workshops in Slovenia: Gozd Martuljek (1996), Bled
(2002), and Portorož (2005) [118], which significantly contributed to the scientific
synergy and to the establishing of the initiative on the international scene.

Having a strong background in numerical mathematics, his research and working
experience are mainly in the area of parallel and distributed computing, intercon-
nection networks, computer simulations, and advanced signal analysis. In particu-
lar, scientific computing applications in medicine [119, 120], where numerical and
parallel computing meet together, is his most recent publication field. He has been
working on parallel network topologies and their performances [121, 122]. He also
contributes into the research of parallel numerics, as documented, e.g., by his recent
paper [123] about meshless methods for solving the diffusion equation.

After a clearly written introduction to the chapter’s topic, a description of prin-
cipal steps of computer simulations is presented, including mathematical modeling
and geometric modeling, domain discretization, numerical solution, and validation
of simulated results and their visualization. Numerical solution of partial differ-
ential equations is discussed in the third section, with particular attention paid to
a solution of time-dependent problems. For these problems, explicit and implicit
numerical schemes are presented. The computational and memory complexity for
generating the linear algebraic system, related to the finite difference approximation
and for its solution by linear algebra procedures, are also mentioned in this relation-
ship. The diffusion equation, which represents the basic equation that describes the
heat transfer, is a subject of the subsequent section. Analytical as well as numeri-
cal solution approaches are presented for this equation, whereby the formulas for

1 Overview – Parallel Computing: Numerics, Applications, and Trends 25

explicit difference scheme are given for both 2D and 3D problems. The numerical
finite difference solution of a simple test case is compared to its analytical solution,
for inhomogeneous domain, confirming that they match even for the case of very
different diffusivities.

The part of a human body being simulated was the knee joint. For temperature
modeling, the so-called bio-heat equation was used, which incorporates heat con-
duction, heat transfer between blood and tissues, and heat production by metabolism.
A model of the knee has been developed from digital images coming from the VHD
(Visible Human Dataset) project. All major tissues were incorporated in the model.
The simulation program computed temperature evolution in the knee during a 2-
hour surgery and also during the postoperative 2-hour cooling phase.

The parallel implementation is based on the domain decomposition technique
and the message-passing communication. The numerical approach selected was the
explicit finite difference method. Mapping of computational subdomains to the pro-
cessing nodes of parallel computer is discussed and the theoretical performance of
the proposed parallel algorithm is analyzed. The implementation of all simulation
steps is described in detail. Execution time is measured on a computer cluster with
different number of processors and compared with theoretical predictions. Results
obtained by the simulation have been verified by measurements.

The work and results presented in this chapter are convincing enough for a con-
clusion that parallel computer simulations can be of great use in medicine either for
planning a surgery or for evaluating different doctrines of medical treatment or for
testing of new medical methods.

1.2.11 SVD Computing in LSI Applications for Data Retrieval

Gabriel Okša, Bratislava, Slovakia and Marián Vajteršic, Salzburg, Austria

Research activities of both authors are tightly coupled to the Department of Infor-
matics at the Institute of Mathematics of the Slovak Academy of Sciences. Due
to its renowned position in the area of parallel numerics, this site has been one
of the key partners of the ParNum initiative. Particularly, Bratislava has a long re-
search tradition in the field of parallel numerical algorithms. The fact that paral-
lelism represents a revolutionary trend in computing was recognized there from its
beginning: already in the early 1970s a young team of mathematicians working with
J. Mikloško published first works related to this topic. At the Slovak Academy of
Sciences, a first prototype of a massively parallel computer in the former Eastern
block was built in the early 1980s, under the coordination of I. Plander. Acquired
know-how in parallel algorithmics was exploited for development of the application
software for this system. In the scope of this project, a library with more than 100
assembler-written parallel routines from various application areas of numerical and
discrete mathematics was produced [124].

26 Marián Vajteršic, Peter Zinterhof and Roman Trobec

The first author is an internationally acknowledged expert on numerical linear
algebra. His research career started at Nuclear Power Plant Research Institute in
Trnava, Slovakia, where he was engaged in solving theoretical and implementation
problems of stationary diagnostic systems for the monitoring of technical status of
nuclear power plants. He has also been interested in work on parallel algorithms,
particularly for systolic arrays. After his move to the Academy of Sciences, his
research has become more intensively oriented to parallel linear algebra, especially
to fast and reliable algorithms for structured matrices (e.g., Toeplitz, Vandermonde,
Cauchy, etc.) [125] and eigenvalue and singular value problems [126,127]. Recently,
his research scope has been broadened through parallel PDE solvers and algebraic
methods for data retrieval.

The second author is one of the founders of ParNum. He published and coedited
more monographs on parallel algorithms and scientific computing, e.g., [128, 129].
He has coordinated a number of national and international projects in parallel com-
puting (funded, e.g., by EU and NATO) and has been on boards of important con-
ferences (e.g., EuroPar) and journals (e.g., PPL and IJPEDS) in this area. His recent
research is focused on parallelization of the Singular Value Decomposition (SVD)
and its applications for multiprocessors and Grids [130].

Their chapter illustrates a situation when a method from the numerical linear al-
gebra can be efficiently used in an application, which is nonnumerical in its nature.
Moreover, the role of parallelism is shown to be indispensable for getting solutions
of problems which are practically relevant. The authors write how the problem of
text data retrieval in huge documents sets is solved in parallel by the reduced SVD
approach. Easy and reliable manipulation with text data by computers requires an
efficient encoding. In a mathematical model adopted by the authors, the Latent Se-
mantic Indexing (LSI) is used, where the occurence of text terms in documents is
represented by the so-called term–document matrix. In real-life applications, the
number of retrieved documents is large and, hence, computations with large-sized
matrices are a consequence in such cases. Therefore, a decomposition technique is
used to reduce the dimension of the searching space. The truncated SVD not only
enables to reduce the space complexity, but also decreases the storage requirements
and, what is even more important, it decreases the time for real-time query analysis
and data retrieval. Thus, SVD becomes the kernel computational operation of the
whole LSI-based retrieval process. Due to their long-term expertise with parallel
SVD algorithms, the authors show how to perform these computations efficiently.

The chapter is introduced by a short description of the LSI model and the trun-
cated SVD. The next two sections deal with adaptation of the LSI model to the text-
retrieval problem in changing environments, like the World Wide Web (WWW). The
former of the sections is devoted to the updating problem. Both cases are consid-
ered: i.e., when the number of terms as well as documents have increased against the
original problem. It is shown, how the decomposition of the original term–document
matrix can be exploited advantageously for solving the enlarged problem. In the lat-
ter section, the downdating problem, also for both cases, is formulated mathemat-
ically. The computational kernel for all these cases is similar: it requires to solve
SVD of upper triangular matrices.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 27

It is a reason for a presentation of the Kogbetliantz method, which preserves the
triangular structure of the matrix during the elimination process. Newly developed
parallel algorithms, aiming to use level-3 routines of the BLAS library, are presented
for the implementation of this method. Another alternative to solve the kernel prob-
lem represents a two-sided block-Jacobi SVD method. The authors make use of an
original idea of M. Bečka, who proposed a dynamic ordering for the annihilation of
the off-diagonal matrix blocks. In this approach, the eliminations in each sweep do
not proceed according to a statically prescribed order, but that is generated during
the runtime. It is a highly efficient technique, because it picks up for elimination
always as first those blocks, which contribute mostly to the non-diagonal structure
of the matrix to be diagonalized. Parallel numerical experiments with this method
confirm savings in number of sweeps against the statical orderings.

In the following section, the LSI model is parallelized for a Grid environment,
consisting of a number of individual computing nodes, where only a restricted inter-
communication is possible. Both updating and downdating are analyzed and the
organization of the global retrieval process by a comparison of retrieval results be-
tween individual nodes is proposed. Finally, another strategy of storage of docu-
ments and their retrieval is discussed. A situation is considered when the individual
nodes of a distributed system can communicate and mutually exchange data. In the
first phase, each processor generates its own reduced SVD for a data block assigned
to it. An algorithm is proposed on how a global approximation of the original term–
document matrix can be built upon the partial approximations produced by individ-
ual processors. Thus, a completely different retrieval strategy, compared to the Grid
system, can be formulated. A discussion of some interesting scenarios for the final
retrieval, that can arise in real life, concludes the chapter.

1.2.12 Short-Vector SIMD Parallelization in Signal Processing

Rade Kutil, Salzburg, Austria

The working field of R. Kutil is concentrated on parallelism of signal and image
processing applications. In particular, he achieved original results concerning par-
allelization of wavelets, e.g., in filtering by using Single Instruction Multiple Data
(SIMD) extensions [131], in 2D lifting [132], and in encryption [133]. Recently,
he is also involved in a project dealing with algebraic methods for retrieval of im-
ages in distributed Grid environment [43]. His another research theme is computer
arithmetics, where he proposed a language called Alluvion for algorithm representa-
tion [134]. Through these topics, the research landscape of the Scientific Computing
working group of the Department of Computational Sciences at the University of
Salzbug has been enriched. He also has insight into architectures of modern proces-
sors and supercomputers. He is experienced in all facets of modern programming,
ranging from microprogramming through high-level languages up to the program-
ming tools for distributed and shared-memory supercomputers. This know-how is

28 Marián Vajteršic, Peter Zinterhof and Roman Trobec

reflected in this chapter, where he writes about application of the SIMD parallelism
in digital signal processing.

Parallelism in various forms influences also the architecture of CPU cores of
modern processors. Particularly, for digital signal processors, the SIMD principle
can be exploited efficiently. It is because in signal processing a large amount of
data is processed continuously under the same instruction stream. For this type of
data processing, the so-called short-vector SIMD units represent cost-efficient ex-
tensions for performance enhancement on the intraprocessor level. SIMD extensions
are not restricted only to the domain of specialized processors. They are included
in almost all general-purpose processors, which makes SIMD still present also in
high-performance computing.

Parallelism in this chapter concerns signal processing algorithms, which are char-
acterized by almost regular computational and communication patterns. These prop-
erties make them, from early parallel era already, exemplary candidates for execu-
tion on almost all parallel architectures (e.g., systolic arrays, hypercubes, pyramids,
and toroidal massively parallel systems). The availability of processors with inher-
ently implemented SIMD parallelism on short vectors brings a new challenge to
examine the signal processing algorithms from this perspective.

The introduction brings a description of basic operations for both classes of sig-
nal processing algorithms: global and local. Global work on data blocks are based
on global operators (mostly orthogonal transforms like the discrete Fourier trans-
form), while the local ones are convolution-based. Afterward, the SIMD short-
vector parallelization principle is explained and an overview of general vectoriza-
tion approaches is presented. In the next section, the loop transformations as well as
novel vectorization approaches are combined and evaluated for some representative
local convolution-based operators. The operators considered are related to simple
filters as well as to more complex filter banks from the field of wavelet transforms.
Experimental results on an Intel Pentium, with SIMD extensions capable to process
vectors of four single-precision numbers, are shown and thoroughly discussed. The
subsequent section deals with vectorization of the so-called recursive algorithms,
where the output data are reused as inputs for the next computational step, as it is
a case, e.g., in the Infinite Impulse Filters (IIR). Two algorithmic approaches have
been developed: one is based on a straightforward loop rescheduling, while the other
uses algebraic transformations to resolve occurring data dependencies. It is shown
that for certain values of filter parameters, the proposed algorithm is faster than the
professional IPP library implementation.

For a presentation of vectorization strategies in the class of global operators, the
Fast Fourier Transform (FFT) has been chosen. It is because the other fast orthog-
onal transforms are of similar structure and hence the vectorization strategies for
them would be basically the same. Since the input data are complex, the data layout
for their real and imaginary parts has to be done carefully in order to suit to the
basic operations involved in the transform. Then the vectorization operations for the
basic FFT block are formulated. Also the principle of automatic tuning is discussed
in this context. The final technical section of the chapter deals with the so-called
mixed algorithms. These are approaches which cannot be identified fully with one

1 Overview – Parallel Computing: Numerics, Applications, and Trends 29

of the two classes mentioned above. The wavelet transform was chosen as a repre-
sentative of convolution where recursion is involved. Also vectorized versions for
the multidimensional transforms are described and corresponding speedup figures
are depicted.

The author’s conclusion is that the SIMD short-vector vectorization brings per-
formance improvement for digital signal computations, but a creation of the best
technique is not a simple task and it is to be done for each application individu-
ally. A matter of a future research is a development of languages with automatic
vectorization features.

1.2.13 Financial Applications: Parallel Portfolio Optimization

Andreas Grothey, Edinburgh, United Kingdom

The application area of this chapter is nowadays a hot actual theme for almost ev-
eryone. The worldwide finance crisis has not suppressed the role of computers in the
finance sector – in contrary, we learned that it became a consequence of questionable
and unqualified handling caused by the human factor. Hence, the necessity of qual-
ified computer-supported decisions is expected to increase, in order to avoid steps
which could lead to such critical and unpredictable situations as we are witnessing
on these days.

Finance applications such as portfolio management, risk estimations, and design
of new credit and saving products call for employment of computers which could
solve related mathematical problems. Because these are mostly large-scale prob-
lems, high-performance computing is adopted to increase the speedup and reliabil-
ity of such computations. This chapter is focused on the portfolio managment area
and outlines the position of parallelism in solving multistage stochastic optimization
problems.

It is contributed by A. Grothey, a mathematician, with research interests cen-
tered on mathematical optimization. In particular, he is specialized in Interior Point
Methods (IPM) [135], development of object-oriented parallel solvers, decompo-
sition methods for large-scale nonlinear nonconvex constrained optimization, and
modeling approaches for large-structured problems.

The practical result of this research is the Object-Oriented Parallel Solver (OOPS)
[136, 137]. It is a parallel interior point code that exploits any special structure in
the Hessian and Jacobian matrices. The solver is implemented using object-oriented
programming techniques. It solves very large linear (LP), quadratic (QP), and non-
linear (NLP) problems. The code is developed for massively parallel platforms and
capable to solve problems of sizes up to 109 variables [138]. Indeed, OOPS has
been used to solve a QP problem with 1, 010, 507, 968 variables and 352, 875, 799
constraints.

The chapter is introduced by explaining the position and objective of portfolio
management in finance. The objective could be characterized as trade-off between

30 Marián Vajteršic, Peter Zinterhof and Roman Trobec

investment return and associated risk. Different formulations of the problem are
mentioned, including the classical mean-variance model and models, where a num-
ber of additional classes of constraints are incorporated. The model discussed in
detail is the so-called Asset and Liability Management (ALM) which plays an im-
portant role for long-term investments such as issued by insurances or pension
funds. Portfolio optimization problems are usually treated as stochastic program-
ming problems. In the second section, this framework for the mathematical descrip-
tion of the ALM model is reviewed. Various aspects of the model, such as variables,
constraints, objective, and the structure, are formulated in the subsequent text. Par-
ticularly, the constraint matrix with its nested form is presented and its suitability for
parallel computations is examined. The review part of the models is completed with
the extensions to the prototype ALM model and their consequences for development
of parallel solution approaches.

The model and its extensions lead to large-sized problems with millions of un-
knowns and more, which cannot be solvable without parallelism. Therefore, parallel
solution approaches for stochastic programming problems are treated in subsequent
sections. Two main directions represent here: decomposition and IPM. Particular
attention is paid to the application of the IPM to the multistage stochastic program-
ming problem. The presentation of resulting matrices is nicely structured and all
linear algebra operations clearly stated. An overview of different implementations
on a variety of computing platforms ranging from dedicated parallel machines to
PC clusters up to Grid environments is given. In the final section, three parallel IPM
approaches are compared, among them also the OOPS codeveloped by the author at
the School of Mathematics in Edinburgh. A general conclusion for parallelization is
that the method and parallelization techniques have to be adapted to both the specific
portfolio management model formulation and the available computing platform.

The author is convinced that new developments in parallel architecture will pose
new challenges for further stimulation of research in parallel finance applications.

1.2.14 Future of Parallel Computing

Selim G. Akl and Marius Nagy, Kingston, Ontario, Canada

Both authors are members of the Parallel and Unconventional Computation Group
in the School of Computing at Queen’s University in Kingston. The research scope
of the Group is wide: it is tackling not only classical topics in parallelism, such
as, e.g., implementations and applications of shared-memory models, properties of
interconnection networks and their algorithms, and fundamental theorems in parallel
computation, but also themes related to new trends, such as, e.g., new paradigms in
parallel computation, energy-aware computing, quantum computing [139], parallel
biomolecular computing [140], scheduling algorithms for wireless mobile ad hoc
networks [141], sensor networks [142], and unconventional computing [143].

1 Overview – Parallel Computing: Numerics, Applications, and Trends 31

Due to the topics on this list, each of which is supported sufficiently by relevant
publications, it is apparent that with such scientific background the authors are ca-
pable enough to say a competent word about outlooks and future trends in parallel
computation.

This chapter closes the arc of themes spanned by our publication. It brings a view
on innovative trends and outlines perspectives in parallel computing. The progress
in computing is generally driven on one side by investigations in theoretical com-
puter science, which provides studies on models inspired by physical, chemical, and
biological phenomena coming from nature. The second source for this progress are
revolutionary technological and software achievements, which give us opportunities
to build and program ever more powerful systems capable of approaching solutions
of grand challenge problems. The third driving force is the never declining need to
employ computers in the increasingly wider and more complex spectrum of tasks
tackled by modern society.

The chapter is introduced by arguments for the fundamental role parallel pro-
cessing continues to occupy in the theory of computing. It is shown that the
idea of massive parallelism is reflected in unconventional models of computation
such as DNA computing, membrane-computing systems, quantum computing, and
reaction–diffusion computers. Also, the accelerating machine model can be thought
of as deriving its power from doubling the number of processing units (operating in
parallel) at each step.

The text is primarily focused on parallelism in quantum computing. This com-
puting paradigm, impacted by quantum mechanics, is foreseen as one of the most
promising candidates for future computers. This expectation is supported by a pre-
sentation of five problems in quantum information processing, for which only a
parallel approach can guarantee a reliable solution.

After reviewing the basic notion from quantum mechanics, such as qubit, su-
perposition, measurement, and interference, the mathematical framework for this
type of information processing is presented. It is explained how the quantum states
and the transformations acting on them can be expressed in terms of the linear al-
gebra apparatus and Hilbert spaces. In the next section, the mechanism of quan-
tum parallelism is described and it is shown that, through its application, exponen-
tial speedup over a conventional computer is achieved for some applications. The
above-mentioned five examples are then treated in detail. Their common feature is
their evolving nature, i.e., their characteristics vary during the computational pro-
cess. Because of their dynamic nature, these computations may be labeled as un-
conventional as opposed to the conventional computations characterized, e.g., by
simulations on the Turing machine.

The Quantum Fourier Transform (QFT) is the first of these examples: it is shown
that the quantum mechanical principle of superposition of states allows all possi-
ble inputs to be processed at the same time which brings a distinctive advantage
over the classical FFT algorithm. In this approach, parallelism can be exploited and
the analysis confirms the complexity savings. The second treated problem concerns
quantum decoherence, which is due to the sensitivity of qubits, when interactions
are taking place between the quantum computing system and the environment. This

32 Marián Vajteršic, Peter Zinterhof and Roman Trobec

affects the values stored in quantum registers because these may significantly dif-
fer before and after the decoherence threshold. The paradigm here is that of time-
varying variables, and the use of parallelism overcomes the decoherence effect. Par-
allelism also helps to correct other errors occurring in quantum computations. A
known fact is that the complexity of errors in quantum computing increases with
time. Parallelism splits the computation into smaller independent tasks and thus,
through shortening the total execution time, the probability of error is reduced and
eventual register recovery is much easier. One way for corrections is the construc-
tion of quantum error–correcting codes. These are based on the idea of digitizing
the errors, where the error is expressed as a linear combination of the so-called
Pauli error operators. Another technique presented here is the so-called error cor-
rection via symmetrization. The next problem relates to quantum states and their
distinguishability. It is shown that this problem can be solved successfully only in
parallel, enabling a simultaneous measurement of all qubits. A global condition is
a condition on variables of a problem describing the input state, which has to be
obeyed at every step of the computational process. In quantum computing, there ex-
ist transformations with such constraints. When some qubits fail during the quantum
computational process, the constraint is not satisfied. Parallelism makes it possible
to identify the difference in qubits simultaneously and, thus, a guarantee is given
that the initial state and the final one coincide.

The looking ahead section of the chapter ends with an optimistic perspec-
tive for parallelism. Quantum computing as well as other new trends in biology-,
chemistry-, and physics-motivated computing are all testimony to the fact that paral-
lelism is universally applicable and that the future of computing cannot be conceived
without parallel processing.

1.3 Conclusions

The book brings together several aspects of parallel processing. The first is parallel
numerics, which is fundamental for the design of parallel algorithms used in high-
performance scientific computing. Parallel computing applications comprise the
second aspect. The book shows, on a representative palette of application domains,
that parallelism is the only possible vehicle for solving large and time-demanding
problems arising in the computational practice. The final aspect relates to modern
trends and outlooks in this area. In the first part of this introduction and in the texts
of individual chapters itself, sufficient arguments and working examples are given
to testify the fact that parallelism is still vital, delivering new impulses not only for
theory but also for practice and industry. All authors assert in their chapters that par-
allelism is inevitable for a successful continuation of their further research on open
problems related to their problem area. In particular, the final chapter shows that all
promising future computing paradigms will also possess the idea of parallelism in
their substance.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 33

The first part of this chapter has been devoted to a brief sketch of some actual
themes and trends in parallel computing. We start with parallel numerics, which
is reflected directly or indirectly in almost all the chapters. A particular focus is
on achievements in numerical linear algebra, which is a basis for solving matrix-
formulated problems. In this context, a new library concept, OOC algorithmic pro-
posals, and solutions motivated by the multicore architecture are presented.

Developments in parallel numerical algorithms go hand in hand with progress in
parallel architectures. New multicore architectures and networks on chip are at the
center of our attention, when presenting advances in this area.

The important role, played by scalability in modern supercomputing, is outlined
in the next subsection. In order to provide hard evidence of the huge progress in su-
percomputing, an excerpt from the recent list of the most powerful supercomputers
in the world is also presented, together with some of their parameters.

Grid and Cloud computing can be viewed as new paradigms in parallel dis-
tributed computing, and some numerical solutions already available for these en-
vironments have been surveyed.

The battle for performance of a parallel numerical algorithm is usually won or
lost in the way it is programmed in parallel. For this reason, we present not only
existing parallel programming approaches, but also a new project aiming at the
development of a programming friendly and function-rich high-level language for
emerging, economically viable HPCS.

The introductory part of this chapter is concluded by a discussion on parallel
compilers. Developments in this, probably the hardest field in the parallel area, are
decisive in whether parallel computing will gain acceptance not only by experts but
also by a broad clientele of computer users. We provide information about work on
new compilers, motivated primarily by the ever increasing employment of multicore
processors, together with an interesting view on using the autotuners in engineering
of parallel compilers.

The contents of the chapters are described in the second part of this introduc-
tory chapter. The selection of individual chapters and their ordering reflect the main
intention of the book: to present modern parallel numerical computing in all the rich-
ness of its facets through real parallel applications. We have tried to mediate there
the whole spectrum of themes of the book and to point out crossovers of individual
texts with the topics treated substantially in the first part of the introduction.

In order to make key notions and terminology from parallel computing under-
standable to nonspecialized readers, S. Akl and M. Nagy describe in the first part
of their chapter existing relevant parallel models and show illustrative examples of
parallel algorithms for some selected topologies. In the second part, unconventional
parallel computer models are formulated and the problem of universality in compu-
tation is discussed.

The evolving Grid and Cloud computing paradigms are covered in the book
through the next two chapters. The chapter contributed by T. Fahringer tackles this
topic from the perspective of software tool development. After presenting the state-
of-the-art in this area, he describes in detail an actual system, consisting of four
integrated tools supporting the design of applications for these environments. The

34 Marián Vajteršic, Peter Zinterhof and Roman Trobec

results of tests confirm that it is a practical and robust software system for auto-
matic generation, management, and performance prediction of applications for Web-
driven parallel applications. U. Čibej and his coauthors reserve more place in their
contribution to a systematic overview of the middleware toolkits and to Grid projects
from various application domains, such as medicine, astronomy, and finance, where
Grid computing has already demonstrated its usefulness.

As noted above, the main aim reflected in this book is to demonstrate the rele-
vance of parallel numerics within parallel computing. The first representative of this
research line is the paper by J. Rantakokko and M. Thuné, who identify and ana-
lyze the role of parallelism for the construction and refinement of meshes, which is
a crucial part of many simulations in large-scale scientific computing. Their study
on parallelism for this problem establishes the relations between the dynamically
changing work load, data volume, and communications. They have proposed an au-
tomatic system for mesh refinement in runtime, which will be extended through the
self-configuration and self-optimization features.

Another theme from the parallel numerics is treated in the chapter by P. Jez et al.
They propose a parallel implementation for multidimensional integration by a QMC
method. This problem is relevant, e.g., to finance models, and the parallelism can
be exploited there beneficially because the integrand has to be evaluated in a huge
number of points. Various parallelizing strategies have been developed and exam-
ined experimentally on a supercomputer cluster.

Attention is given in the subsequent chapter to single- and multiobjective op-
timizations. B. Filipič and M. Depolli present a parallel framework for numerical
optimization of practical problems from industry. Their approach is based on evolu-
tionary computing. Because of its high complexity, this type of algorithm is critical
for realization on serial computers. The authors explain the principle on which the
evolutionary algorithms work, pointing out their potential for parallel exploitation.
They illustrate their approach with a problem from metallurgy and demonstrate the
advantages gained by the parallel solution.

The team led by U. Rüde concentrates on a parallel software tool, mathematically
based on the Lattice Boltzmann simulators. These methods offer a new computa-
tional vehicle for solving numerical problems in fluid dynamics. The authors report
the development, features, and optimization strategies of their parallelization con-
cept. For computational experiments, which are highly data- and memory-intensive,
some of the most powerful parallel systems in Germany were used, among them
those based on the well-known Cell BE multicore processors.

Another kernel chapter of the book also deals with a large-scale numerical appli-
cation arising by solving PDEs. T. Sørevik and T. Birkeland treat the time-dependent
Schrödinger equation, which describes processes in quantum mechanics. The ap-
proximate solution for the full problem is very time-consuming and not achievable
in practice without parallelism. The contribution provides an in-depth analysis of
the parallelizable blocks, among them the multidimensional FFT. A parallel soft-
ware system for testing and simulating various methods is described. It features
different languages and libraries, among them the Python. Satisfactory scalability

1 Overview – Parallel Computing: Numerics, Applications, and Trends 35

behavior of the parallel solution has been achieved for a typical example, the hydro-
gen molecular ion.

The chapter of D. Janežič et al. concentrates on numerics in another computa-
tionally demanding problem area: molecular dynamics. A critical issue here is to
evaluate interactions between all atoms in the simulated system. A novel contribu-
tion presented here is an efficient parallel algorithm for molecular dynamics integra-
tion. This is designed for a specialized parallel system, which has been constructed
at the authors’ home institution.

In medicine, the role of parallelism has been recognized already in both research
and practical treatment. This is further confirmed in the chapter by R. Trobec, who
writes about a parallel computer simulation of heat transfer in parts of the human
body. The mathematical background constitutes the numerical solution of the heat
equation by finite-diference methods. The simulation was performed for heat prop-
agation in tissues of the human knee. The simulation results obtained for the time
during and after surgery have been promising enough to justify the author’s parallel
model and its numerical implementation on a parallel cluster.

The book also illustrates the fact that parallel numerical methods can find a use
in applications that are, at first sight, non-numerical, such as data retrieval in large
document sets. Using the Latent Semantic Indexing (LSI) model for data encryp-
tion, the so-called term–document matrix is generated and thus the retrieval problem
can be transferred onto the linear algebra platform. G. Okša and M.Vajteršic show
how the full searching space can be reduced, applying a truncated Singular Value
Decomposition (SVD) method. The focus is on solving retrieval problems in chang-
ing environments, where update and downdate of document sets occur dynamically.
Original parallel implementations of the SVD are presented and retrieval strategies
for various real-life scenarios are discussed.

Signal processing is, from the beginning of the parallel era, one of the most at-
tractive domains for the employment of parallelism. R. Kutil tackles the new op-
portunity that parallelism offers for this application domain – short-vector SIMD
extensions. Here, parallelism is applied on the deepest level of a computational plat-
form – in the CPU cores. Both transform-based and convolution-based operations
are parallelized and implemented in this model. Experimental results are obtained
for SIMD functions applied to vectors with four single-precision numbers. They in-
dicate that this type of parallelism, when applied carefully, can bring performance
enhancement for signal-processing computations.

The next chapter shows that parallel computing is being positioned successfully
in the finance sector. Large and complex stochastic financial models call for a treat-
ment by parallel optimization techniques, where the know-how of numerical linear
algebra can be exploited. Concretely, A. Grothey presents parallel methods for port-
folio management that are based on the Interior Point Method (IPM). They have
been implemented on different parallel computing platforms, including the Grid.
He asserts the conclusion that successful parallelization of this application has to
take into account both the portfolio management model and the computer platform.
This is not specific for this case alone, but is a confirmation of a generally known
fact in parallel computing.

36 Marián Vajteršic, Peter Zinterhof and Roman Trobec

The last chapter in our collection is devoted to future trends and outlooks in par-
allel computing. It is written by the same authors who wrote the first chapter. This
coincidence is not only symbolic, i.e., that the arc spanning the variety of this book’s
topics begins and terminates in the same hands, but it is more a consequence of the
research competence of the team around S. Akl, which has been deeply rooted in
parallel computing since its early beginning. The chapter brings convincing argu-
ments for the importance of parallelism in future computing paradigms, inspired by
physics, chemistry, and biology. In particular, the role of parallelism is illustrated
by solving examples of problems arising in quantum computing. The chapter sends
an optimistic message concerning parallel computing: parallelism is universally ap-
plicable, and not only existing advanced paradigms but also the future trends in
computing cannot but obey this principle.

We believe that the selection of chapters covered in this monograph provides a
representative sample of current achievements and challenges in parallel numerical
computing. We anticipate that developments in this area will continue, supported by
inspiring inputs coming from theory, applications, and industry.

We hope that the book will be positively echoed not only by specialists from the
parallel and HPC communities, but also by a broader audience of readers, interested
in computer solutions for their applications.

Acknowledgments The editors are grateful to the authors for all their efforts in contributing to
this book and for the smooth and friendly cooperation.

References

1. D. Keyes, Parallel numerical algorithms: An introduction, in: Parallel Numerical Algo-
rithms, D. E. Keyes, A. Sameh, V. Venkatakrishnan (Eds.), Kluwer Academic Publisher,
Norwell, MA (1997).

2. M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.), Parallel Numerics 2005, JSI Publisher,
Ljubljana (2005).

3. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. van der Vorst, Numerical Linear Algebra for
High-Performance Computers, SIAM, Philadelphia (1998).

4. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, SIAM,
Philadelphia (1999).

5. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley, ScaLAPACK
Users’ Guide, SIAM, Philadelphia (1997).

6. L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, An updated set
of basic linear algebra subprograms (BLAS), ACM Transactions on Mathemetical Software
28 (2002), 135–151.

7. R. A. van de Geijn, E. S. Quintana-Orti, The Science of Programming Matrix Computations
(2008).

8. S. Toledo, A survey of out-of-core algorithms in numerical linear algebra, in: External Mem-
ory Algorithms, J. M. Abello, J. S. Vitter (Eds.), DIMACS Series in Discrete Mathematics

1 Overview – Parallel Computing: Numerics, Applications, and Trends 37

and Theoretical Computer Science, American Mathematical Society Boston, MA (1999)
161–179.

9. G. Wang, A. Monti, G. Quan, Out-of-Core LU decomposition on a multiple-DSP platform,
In: Electric Ship Technologies Symposium, IEEE (2007) 275–280.

10. O. Meshar, D. Irony, S. Toledo, An out-of-core sparse symmetric-indefinite factorization
method, ACM Transactions on Mathematical Software 32 (2006) 445–471.

11. E. Rabani, S. Toledo, Out-of core SVD and QR decompositions, in: Proceedings of the 10th
SIAM Conference on Parallel Processing for Scientific Computing, Norfolk (2001).

12. A. Butari, J. Langou, J. Kurzak, J. Dongarra, A class of parallel tiled linear algebra algo-
rithms for multicore architectures, Technical Report 2007.122, University of Manchester
(2007).

13. Cell Broadband Engine,
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/
CellBroadbandEngine/.

14. Sony PS3 Cluster (IBM Cell BE), http://moss.csc.ncsu.edu/~mueller/
cluster/ps3/.

15. S. Bell et al., TILE64 Processor: A 64-Core SoC with Mesh Interconnect, Digest of Techni-
cal Papers, IEEE International (2008).

16. S. Vangal et al., An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS, Digest of Tech-
nical Papers, IEEE International (2007).

17. A. Jantsch, H. Tenhunen (Eds.), Networks on Chip, Kluwer Academic Publishers, Dort-
drecht (2003).

18. T. Bjerregaard, S. Mahadevan, A survey of research and practices of Network-on-chip,
ACM Computing Surveys 38 (2006).

19. Z. Song, G. Ma , Heterogeneous NoC physical-level low-power implementation, in: Internet
Computing in Science and Engineering, IEEE (2008) 379–382.

20. Revolutionary architecture for the next generation platform FPGAs,
http://www.xilinx.com/company/press/kits/asmbl/asmbl_arch_
pres.pdf/.

21. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, M. Schimmler, A configuration concept for a massive
parallel FPGA architecture, in: International Conference on Computer Design (CDES’06)
(2006).

22. E. H. D’Hollander, D. Stroobandt, A. Touhafi, Parallel computing with FPGAs – Concepts
and applications, in: Parallel Computing and Applications, C. Bishof et al. (Eds.), NIC Series
38, Jülich (2007) 739–740.

23. DSP with FGPAs, http://www.andraka.com/dsp.htm/.
24. T. Wollinger, Ch. Paar, How secure are FPGAs in cryptographic applications, in: Proceed-

ings of International Conference on Field Programmable Logic and Applications (FPL
2003), LNCS 2778, Springer-Verlag, Berlin (2003) 91–100.

25. T. Sansaloni, A. Perez-Pascual, J. Valls, Area-efficient FPGA-based FFT processor, Elec-
tronics Letters 39 (2003) 1369–1370.

26. S. O. Memik, A. K. Katsaggelos, M. Sarrafzadeh, Analysis and FPGA implementation of
image restoration under resource constraints, IEEE Transactions on Computers 52 (2003)
390–399.

27. J. Sun, High Performance Reconfigurable Computing for Linear Algebra: Design and Per-
formance Analysis, PhD dissertation, University of Tennessee, Knoxville (2008).

28. AccelChip Develops Linear Algebra Cores for Xilinx’s FPGA Devices,
http://www.embeddedstar.com/press/content/2005/7/
embedded18667.html/.

29. Scalable Definition, http://www.linfo.org/scalable.html/.
30. S. Swanson, L. McDowell, M. Swift, S. Eggers, H. Levy, An evaluation of speculative in-

struction execution on simultaneous multithreaded processors, Transactions on Computer
Systems 21 (2003) 314–340.

31. GPU, http://www.webopedia.com/TERM/G/GPU.html.

38 Marián Vajteršic, Peter Zinterhof and Roman Trobec

32. TOP500 Supercomputer Sites at Mannheim University and University of Tennessee, http:
//www.netlib.org/benchmark/top500.html/.

33. Computer science reaches historic breakthrough,
http://www.ibm.com/ibm/ideasfromibm/us/roadrunner/20080609/
index.shtml/.

34. IBM BladeCenter QS22,
http://www-03.ibm.com/systems/bladecenter/hardware/servers/
qs22/index.html.

35. Open Grid Forum, http://www.ogf.org/.
36. Globus Toolkit, http://www.globus.org/toolkit/.
37. M. Mascagni, Grid-Based Monte Carlo Application, GRID (2002) 13–24.
38. S. Branford, C. Sahin A. Thandavan, C. Weihrauch, V. N. Alexandrov, I. T. Dimov, Monte

Carlo methods for matrix computations on the grid, Future Generation Computer Systems
24 (2008) 605–612.

39. H. Hofbauer, A. Uhl, P. Zinterhof, Quasi Monte Carlo integration in Grid enviroments, Par-
allel Processing Letters 16 (2006) 285–312.

40. T. Sakurai, Y. Kodaki, H. Tadano, D. Takahashi, M. Sato, U. Nagashima, A parallel method
for large sparse generalized eigenvalue problems using a grid RPC system, Future Genera-
tion Computer Systems 24 (2008) 613–619.

41. H. Astsatryan, V. Sahakyan, Y. Shoukouryan, M. Daydé, A. Hurault, M. Pantel, E. Caron, A
Grid-aware Web interface with advanced service trading for linear algebra calculations, in:
International Meeting High Performance Computing for Computational Science (VECPAR
2008) (2008).

42. E. Caron, F. Desprez, DIET: A scalable toolbox to build network enabled servers on the Grid,
International Journal of High Performance Computing Applications 20 (2006) 335–352.

43. M. Watzl, R. Kutil, Distributed information retrieval using LSI, in: Proceedings of the 1st
Austrian Grid Symposium, J. Volkert, T. Fahringer, D. Kranzlmüller, W. Schreiner (Eds.),
Austrian Computer Society, Schloss Hagenberg (2006), 90–101.

44. Austrian Grid 2: Distributed Supercomputing in the Grid, http://www.risc.
uni-linz.ac.at/projects/agrid2/.

45. T. Berka, Parallel image retrieval on the grid using the vector space model, Master Thesis,
University of Salzburg (2008).

46. W. P. Carey, Cloud computing: The evolution of Software-as-a-Service,
Knowledge@W.P.Carey, 2008.

47. K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay, M. Munro, Service-based soft-
ware: The future for flexible software, in: Proceedings of the Seventh Asia-Pacific Software
Engineering Conference (2000) 214.

48. Google Apps: Web Applications for Communication and Collaboration,
http://www.google.com/apps/.

49. Science Clouds, http://workspace.globus.org/.
50. R. Martin J., N. Hoover, Guide to cloud computing, InformationWeek, 2008.
51. Message Passing Interface Forum, http://www.mpi-forum.org/.
52. MPICH2, http://www.mcs.anl.gov/research/projects/mpich2/.
53. LAM/MPI Parallel Computing, http://www.lam-mpi.org/.
54. PVM – Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/.
55. B. Carlson, T. El-Ghazawi, R. Numerich, K. Yelick, Programming in the partitioned global

address space model, Tutorial at Supercomputing 2003, http://upc.gwu.edu/.
56. Co-Array Fortran, http://www.co-array.org/.
57. Unified Parallel C, http://upc.gwu.edu/.
58. Titanium, http://titanium.cs.berkeley.edu/.
59. B. Chapman, P. Mehrotra, H. Zima, Programming in Vienna Fortran, Scientific Program-

ming 1 (1992), 31–50
60. High Performance Fortran, http://www.netlib.org/hpf/.
61. The Portland Group, http://www.pgroup.com/.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 39

62. POSIX Threads Programming, https://computing.llnl.gov/tutorials/
pthreads/.

63. OpenMP, http://www.openmp.org/.
64. Cluster OpenMP, User’s Guide, Version 9.1, INTEL, 2006.
65. The MathWorks, http://www.mathworks.com/.
66. Parallel Programming in MATLAB,

http://www.mathworks.com/products/parallel-computing/
parallel/.

67. Python Programming Language, http://www.python.org/.
68. B. L. Chamberlain, D. Callahan, H. P. Zima, Parallel programmability and the Chapel lan-

guage, International Journal of High Performance Computing Applications 21 (2007)
291–312.

69. High Productivity Computer Systems, http://www.highproductivity.org/.
70. M. Süss, C. Leopold, Evaluating the state of the art of parallel programming systems,

Technical Report KIS 1/2005, University of Kassel (2005).
71. Introduction to Java Threads,

http://www.javaworld.com/javaworld/jw-04-1996/jw-04-threads.
html/.

72. Ch. Liao, O. Hernandez, B. Chapman, W. Chen, W. Zheng, OpenUH: An optimizing,
portable OpenMP compiler, Concurrency and Computation: Practice and Experience 19
(2007) 2317–2332.

73. M. Klemm, M. Bezold, R. Veldema, M. Philippsen, JaMP: An implementation of
OpenMP for a Java DSM, Concurrency and Computation: Practice and Experience 19 (2007)
2333–2352.

74. K. Asanovic et al., The landscape of parallel computing research: A view from Berkley,
Technical Report UCB/EECS-2006-183, University of California, Berkley (2006).

75. K. Yelick, Automatic Performance Tuning Workshop, http://cscads.rice.edu/.
76. S. G. Akl, Unconventional computational problems with consequences to universality, In-

ternational Journal of Unconventional Computing 4 (2008) 89–98.
77. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Upper Saddle

River, NJ (1989).
78. S. G. Akl, Parallel Computation: Models and Methods, Prentice Hall, Upper Saddle River,

NJ (1997).
79. M. Nagy, S. G. Akl, Parallelism in quantum information processing defeats the Universal

Computer, Parallel Processing Letters 17 (2007) 233–262.
80. AURORA 2007 Conference on Scientific Computing, http://www.vcpc.univie.

ac.at/aurora/.
81. The Austrian Grid Consortium, http://www.austriangrid.at/.
82. R. Prodan, T. Fahringer, Grid Computing. Experiment Management, Tool Integration and

Scientific Workflows, LNCS 4340, Springer-Verlag, Berlin, (2007).
83. T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin,

M. Siddiqui, H.-L. Truong, A. Villazon, M. Wieczorek, ASKALON: A development and
Grid computing environment for scientific workflows, in: Workflows for eScience: Scientific
Workflows for Grids, I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields (Eds.), Springer-
Verlag, Berlin, (2007) 450–474.

84. Enabling Grids for E-sciencE (EGEE), http://www.eu-egee.org/.
85. The European Grid Initiative (EGI), http://web.eu-egi.eu/.
86. Gridbus News Blog, http://www.gridbus.org/.
87. R. Buyya, K. Bubendorfer (Eds.), Market Oriented Grid and Utility Computing, Wiley Press,

New York (2009).
88. A. Sulistio, U. Čibej, S. Venugopal, B. Robič, R. Buyya, A toolkit for modelling and sim-

ulating data Grids: an extension to GridSim, Concurrency and Computation: Practice and
Experience 20 (2008) 1591–1609.

89. M. Thuné, Straightforward partitioning of composite grids for explicit difference methods,
Parallel Computing 17 (1991) 665–672.

40 Marián Vajteršic, Peter Zinterhof and Roman Trobec

90. M. Ljungberg, K. Otto, M. Thuné, Design and usability of a PDE solver framework for
curvilinear coordinates, Advances in Engineering Software, 37 (2006) 814–825.

91. J. Rantakokko, A dynamic MPI-OpenMP model for structured adaptive mesh refinement,
Parallel Processing Letters 15 (2005) 37–47.

92. M. Nordén, H. Löf, J. Rantakokko, S. Holmgren, Geographical locality and dynamic data
migration for OpenMP implementations of adaptive PDE solvers, in: OpenMP Shared Mem-
ory Parallel Programming, M. S. Müller, B. M. Chapman, B. R. de Supinski, A. D. Malony,
M. Voss (Eds.), LNCS 4315, Springer-Verlag, Berlin, (2008) 382–393.

93. C. Amstler, P. Zinterhof, Uniform distribution, discrepancy, and reproducing kernel Hilbert
spaces, Journal of Complexity 17 (2001) 497–515.

94. T. Schell, A. Uhl, P. Zinterhof, Measures of uniform distribution in wavelet based image
compression, Monte Carlo Methods and Applications 10 (2004) 587–598.

95. A. Uhl, A. Pommer, Image and Video Encryption: From Digital Rights Management to
Secured Personal Communication, Springer-Verlag, 2004.

96. A. Uhl, P. Wild, Footprint-based biometric verification, Journal of Electronic Imaging 17
(2008).

97. M. Haefner, R. Kwitt, A. Uhl, A. Gangl, F. Wrba, A. Vecsei, Computer-assisted pit-pattern
classification in different wavelet domains for supporting dignity assessment of colonic
polyps, Pattern Recognition, doi:10.1016/j.patcog.2008.07.012, Elsevier Ltd. Amsterdam
(2008).

98. H. Hofbauer, A. Uhl, P. Zinterhof, Zinterhof sequences in Grid-based numerical integration,
in: Monte Carlo and Quasi-Monte Carlo Methods 2006, A. Keller, S. Heinrich, H. Nieder-
reiter (Eds.), Springer-Verlag, Berlin (2008), 495–510.

99. P. Jez, Approximative solution of the Cauchy problem of the homogenous heat conduction
equation by Quasi Monte Carlo methods, Technical Report 2007-03, Department of Com-
puter Sciences, University of Salzburg, 2007.

100. T. Tusar, P. Korošec, G. Papa, B. Filipič, J. Šilc, A comparative study of stochastic optimiza-
tion methods in electric motor design, Applied Intelligence 27 (2007) 101–111.

101. I. Fister, M. Mernik, B. Filipič, Optimization of markers in clothing industry, Engineering
Applications of Artificial Intelligence 21 (2008) 669–678.

102. M. Depolli, V. Avbelj, R. Trobec, Computer-simulated alternative modes of U-wave genesis,
Journal of Cardiovascular Electrophysiology 19 (2008) 84–89.

103. Wolfgang Händler, Fridolin Hofmann, Hans Jürgen Schneider, A general purpose array with
a broad spectrum of applications, Computer Architecture (1975) 311–335.

104. W. Händler, U. Herzog, F. Hofmann, H. J. Schneider, Multiprozessoren für breite Anwen-
dungsbereiche: Erlangen General Purpose Array, ARCS (1984) 195–208.

105. A. Bode, G. Fritsch, W. Händler, W. Henning, F. Hofmann, J. Volkert, Multi-Grid oriented
computer architecture, International Conference on Parallel Processing (1985) 89–95.

106. W. Händler, E. Maehle, K. Wirl, Dirmu multiprocessor configurations, International Confer-
ence on Parallel Processing (1985) 652–656.

107. M. Stürmer, H. Köstler, U. Rüde, A fast full multigrid solver for applications in image pro-
cessing, Numerical Linear Algebra with Applications 15 (2008) 187–200.

108. H. Köstler, R. Schmid, U. Rüde, Ch. Scheit, A parallel multigrid accelerated Poisson solver
for ab initio molecular dynamics application, Computing and Visualization in Science 11
(2008) 115–122.

109. Ch. Freundl, T. Gradl, U. Rüde, Towards Petascale multilevel finite-element solvers, in:
Petascale Computing: Algorithms and Applications, D. A. Bader (Ed.), Chapman and Hal-
l/CRC, Boca Raton, FL (2008) 375–389.

110. S. Donath, J. Götz, S. Bergler, Ch. Feichtinger, K. Iglberger, U. Rüde, waLBerla: The need
for large-scale supercomputers, in: High Performance Computing in Science and Engineer-
ing, S. Wagner, M. Steinmetz, A. Bode, M. Brehm (Eds.) Springer-Verlag, Berlin (2008)
459–473.

111. J. N. Lyness, T. Sørevik, Five dimensional K-optimal lattice rules, Mathematics of Compu-
tation 75 (2006) 1467–1480.

1 Overview – Parallel Computing: Numerics, Applications, and Trends 41

112. T. Sørevik, L. B. Madsen, J. P. Hansen, A spectral method for integration of the time-
dependent Schrödinger equation in hyperspherical coordinates, Journal of Physics A: Math-
ematical and General 38 (2005) 6977–6985.

113. T. Birkeland, T. Sørevik, Parallel redistribution of multidimensional data, in: Parallel Com-
puting: Architecture, Algorithms and Applications, C. Bishop et al. (Eds.), John von Neu-
mann Institute for Computing, NIC Series 38 (2007) 433–440, 2007.

114. R. Blikberg, T. Sørevik, Load balancing and OpenMP implementation of nested parallelism,
Parallel Computing 31 (2005) 984–998.

115. U. Borštnik, D. Janežič, Symplectic molecular dynamics simulations on specially designed
parallel computers, Journal of Chemical Information and Modeling 45 (2005) 1600–1604.

116. U. Borštnik, M. Hodoscek, D. Janežič, Improving the performance of molecular dynamics
simulations on parallel clusters, Journal of Chemical Information and Modeling 44 (2004)
359–364.

117. M. Praprotnik, S. Hocevar, M. Hodoscek, M. Penca, D. Janežič, New all-atom force field for
molecular dynamics simulation of an AlPO4-34 molecular sieve, Journal of Computational
Chemistry 29 (2008) 122–129.

118. ParNum 2005, http://www.cosy.sbg.ac.at/events/parnum05/.
119. P. Trunk, J. Močnik, R. Trobec, B. Geršak, 3D heart model for computer simulations in

cardiac surgery, Computers in Biology and Medicine 37 (2007) 1398–1403.
120. R. Trobec, M. Šterk, S. Almawed, M. Veselko, Computer simulation of topical knee cooling,

Computers in Biology and Medicine 38 (2008) 1076–1083.
121. I. Rozman, M. Šterk, J. Močnik, B. Robič, R. Trobec, Performance measurements of com-

puting networks, Parallel and Distributed Computing Practices 9 (2008) 143–150.
122. R. Trobec, M. Šterk, B. Robič, Computational complexity and parallelization of the meshless

local Petrov-Galerkin method, Computers and Structures 87 (2009) 81–90.
123. M. Šterk, R. Trobec, Meshless solution of a diffusion equation with parameter optimization

and error analysis, Engineering Analysis with Boundary Elements 32 (2008) 567–577.
124. J. Mikloško, R. Klette, M. Vajteršic, I. Vrt’o, Fast Algorithms and their Implementation on

Specialized Computers, North-Holland, Amsterdam (1989).
125. G. Okša, M. Bečka, M. Vajteršic, Parallel algorithm for matrix multiplication by Gramian of

Toeplitz-block matrix, Proceedings of 20th IASTED Conference Applied Informatics 2002,
ACTA Press (2002) 53–58.

126. G. Okša, M. Vajteršic, Efficient pre-processing in the parallel block-Jacobi SVD algorithm,
Parallel Computing 32 (2006) 166–176.

127. G. Okša, M. Vajteršic, Preconditioned parallel block-Jacobi SVD algorithm, Parallel Pro-
cessing Letters 16 (2006) 371–380.

128. M. Vajteršic, Algorithms for Elliptic Problems: Efficient Sequential and Parallel Solvers,
Kluwer Academic Publisher, Dordrecht-Boston (1993).

129. L. Grandinetti, J. Kowalik, M. Vajteršic (Eds.), High Performance Computing: Technology
and Applications, Kluwer Academic Publisher, Dordrecht (1997).

130. M. Bečka, G. Okša, M. Vajteršic, Dynamic ordering for a parallel block-Jacobi SVD method,
Parallel Computing 28 (2002) 243–262.

131. R. Kutil, P. Eder, Parallelization of wavelet filters using SIMD extensions, Parallel Process-
ing Letters 16 (2006) 335–349.

132. R. Kutil, A single-loop approach to SIMD parallelization of 2-D wavelet lifting, in: Proceed-
ings of the 14th Euromicro Conference on Parallel, Distributed and Network-based Process-
ing (2006) 413–420.

133. D. Engel, R. Kutil, A. Uhl, A symbolic transform attack on lightweight encryption based on
wavelet filter parameterization, in: Proceedings of ACM Multimedia and Security Workshop
(2006) 202–207.

134. R. Kutil, Alluvion – A language for computer arithmetic algorithms, in: Scientific Comput-
ing in Salzburg, Austrian Computer Society, Vienna (2005) 113–120.

135. J. Gondzio, A. Grothey, A new unblocking technique to warmstart interior point methods
based on sensitivity analysis, SIAM Journal on Optimization 19 (2008) 1184–1210.

42 Marián Vajteršic, Peter Zinterhof and Roman Trobec

136. J. Gondzio, A. Grothey, Solving nonlinear portfolio optimization problems with the primal-
dual interior point method, European Journal of Operational Research 181 (2007) 1019–
1029.

137. J. Gondzio, A. Grothey, Parallel interior point solver for structured quadratic programs: Ap-
plication to financial planning problems, Annals of Operations Research 152 (2007) 319–
339.

138. J. Gondzio, A. Grothey, Direct solution of linear systems of size 109 arising in optimiza-
tion with interior point methods, in: Parallel Processing and Applied Mathematics 2005,
R. Wyrzykowski, J. Dongarra, N. Meyer, J. Wasniewski (Eds.), LNCS 3911, Springer-
Verlag, Berlin (2006) 513–525.

139. M. Nagy, S. G. Akl, Coping with decoherence: Parallelizing the quantum Fourier transform,
Proceedings of the Nineteenth International Conference on Parallel and Distributed Com-
puting Systems, San Francisco, (2006) 108–113.

140. N. Nagy, S. G. Akl, Aspects of biomolecular computing, Parallel Processing Letters 17
(2007) 185–211.

141. W. M. Alsalih, S. G. Akl, H. Hassanein, Cooperative ad hoc computing: towards enabling
cooperative processing in wireless environments, International Journal of Parallel, Emergent
and Distributed Systems 23 (2008) 59–79.

142. N. Nagy, M. Nagy, S. G. Akl, Quantum wireless sensor networks, in: Proceedings of the Sev-
enth International Conference on Unconventional Computation, C. S. Calude, et al. (Eds.),
LNCS 5204, Springer-Verlag, Berlin (2008) 177–188.

143. M. Nagy, S. G. Akl, Quantum computing: beyond the limits of conventional computation,
International Journal of Parallel, Emergent and Distributed Systems 22 (2007) 123–135.

Chapter 2
Introduction to Parallel Computation

Selim G. Akl and Marius Nagy

Abstract

This chapter is intended to provide an overview of the fundamental concepts and
ideas shaping the field of parallel computation. If serial (or sequential) algorithms
are designed for the generic uni-processor architecture of the Random Access Ma-
chine (RAM), in the case of parallel algorithms there are a variety of models and
architectures supporting the parallel mode of operation: shared-memory models, in-
terconnection networks, combinational circuits, clusters and grids.

Sometimes, the methods used in designing sequential algorithms can also lead to
efficient parallel algorithms, as it is the case with divide and conquer techniques.
In other cases, the particularities of a certain model or architecture impose specific
tools and methods that need to be used in order to fully exploit the potential of-
fered by that model. In all situations, however, we seek an improvement either in
the running time of the parallel algorithm or in the quality of the solution produced
by the parallel algorithm with respect to the best sequential algorithm dealing with
the same problem.

The improvement in performance can even become superlinear with respect to
the number of processors employed by the parallel model under consideration. This
is the case, for example, of computations performed under real-time constraints,
when the deadlines imposed on the availability of the input and/or output data leave
little room for sequentially simulating the parallel approach. Furthermore, in the ex-
amples presented at the end of the chapter, the impossibility to simulate a parallel
solution on a sequential machine is due to the intrinsically parallel nature of the
computation, rather than being an artifact of externally imposed time constraints.

Selim G. Akl
School of Computing, Queen’s University, Kingston, Ontario, Canada,
e-mail: akl@cs.queensu.ca

Marius Nagy
School of Computing, Queen’s University, Kingston, Ontario, Canada,
e-mail: marius@cs.queensu.ca

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_2, 43
c© Springer-Verlag London Limited 2009

44 Selim G. Akl and Marius Nagy

In this respect, parallelism proves to be the vehicle leading to a Non-Universality
result in computing: there is no finite computational device, sequential or parallel,
conventional or unconventional, that is able to simulate all others.

2.1 Introduction

In our sophisticated modern world, time is perhaps the most precious commodity.
We live our lives in the fast lane, always trying to buy more time. In this world, speed
is of the essence and efficiency translates naturally into how fast (and sometimes
how well) we can solve the problems we face. To this end, parallel computing, the
central theme of this book, is perhaps our greatest ally.

Indeed, the main motivation for parallel computing is to speed up computation.
The pervasive nature of computers nowadays makes it possible for huge amounts of
data to be acquired and stored in large databases for future analysis, data mining,
referencing, etc. In some cases, the amount of information that needs to be processed
is so huge, that the time required to complete the job becomes prohibitively long.
As an illustrative example, imagine you are charged with the following task: given a
phone number, you are required to look in the phone book for the name and address
of the person whose phone number you were given. If you live in a big city, that is,
if the phone book is big, then this task is a tedious one if you are to perform it all
by yourself. But if you decide to call your friends and each one agrees to look only
at the names beginning with a certain letter, for example, then the task is completed
much faster.

The simplicity of the example above is intentional, so that the main message is
not obstructed by unnecessary details. Often, and this will become apparent from
the applications addressed throughout the book, splitting a job among the available
processors is not a trivial task and the overhead incurred by parallelization may
become significant. Regardless, the message conveyed by the parallel computing
paradigm remains the same: If several processors work together (cooperate) to solve
a given computational problem, then the time required to complete the task may be
greatly reduced.

But time is not the only measure for the advantage gained by using a parallel
approach. Sometimes, it is the quality of the solution computed that is greatly im-
proved if more processors are available, in a fixed amount of time. Furthermore,
computational scenarios have been identified, in which the only chance to terminate
a computation and reach a solution is to have the required number of processors
working simultaneously on that respective task. We call such problems inherently
parallel, because the ability of a parallel computer to be “in more than one place
at a time” through its multiple processing elements is a necessary condition to suc-
cessfully tackle these problems.

The renewed interest in various forms of parallel computing that we are witness-
ing today can be largely explained by the availability and affordability of computing
power. When it becomes increasingly difficult and costly to build faster processors,

2 Introduction to Parallel Computation 45

it seems that the best idea to improve performance is to design architectures and
methods that allow several relatively cheap processors to combine their capabilities
in order to achieve performances that none of the processors, taken individually,
would have been capable of.

There are many different ways in which multiple processors can work together,
and parallel algorithms designed to solve a certain computational problem neces-
sarily depend on the underlying architecture. It is the intention of this early chapter
to try to guide the reader through the main concepts governing the study of parallel
computing: possible computational models, algorithm design methods and specific
analysis techniques. The later part of the chapter proves that the field of parallel
computing is worth investigating in its own respect, providing useful and some-
times unexpected insights into the theory of computing. Specifically, we discuss the
importance and implications of the parallel computing paradigm for various com-
putational environments and formulate a perhaps surprising Non-Universality result
in computing.

2.2 Parallel Versus Sequential Computation

Whenever we are in the position of analyzing the performance of a parallel algo-
rithm, we compare it with the best possible sequential approach dealing with the
same problem. The sequential scenario represents the reference for any paralleliza-
tion attempt. Therefore, it is only natural to begin our review of parallel models with
a short description of the sequential model of computation.

CONTROL PROCESSOR MEMORY

INPUT
UNIT

OUTPUT
UNIT

INSTRUCTIONS OF DATA

SEQUENCESEQUENCE OF

Fig. 2.1 Architecture of a sequential computer.

The main components of a sequential computer are depicted in Fig. 2.1. This
design, which coincides with the inception of computer science, proved to be so
successful that even today single-processor computers follow the same architecture.

46 Selim G. Akl and Marius Nagy

Relevant for our discussion is the observation that a single sequence of instructions
(the program) is executed, one at a time, by the single processing unit on a single
sequence of data (the problem instance). At each step, the control unit provides the
processor with the type of operation to be performed (such as addition, comparison,
etc.) and the operands (data) on which the operation is to be carried out. Usually, the
data has to be loaded from memory into the processor’s internal registers. For this
purpose, a memory access unit (not shown in Fig. 2.1 for simplicity) is responsible
to create a path from the processor to any desired memory location. Owing its name
to this way of working with a memory, the sequential (or serial, or conventional)
model of computation sketched above is known as the Random Access Machine
(RAM) [1].

When two or more processors must work together to solve the problem at hand,
the mode of operation of the parallel machine represents a radical departure from the
way the RAM operates. From an algorithmic viewpoint, the problem to be solved
is broken into subproblems, which are solved simultaneously, each on a different
processor. During this phase, the processors may communicate with each other to
exchange partial results. In the final step, the results must be combined to form the
solution to the original problem.

In order to support the execution of parallel algorithms, any design for a parallel
architecture must address several key issues. What arrangement or topology should
be chosen to best organize the processors? How can they be made to communicate
efficiently? Should they all execute the same code (program) on different subsets
of the input data or each processor is allowed to execute its own particular pro-
gram? Should the processors operate synchronously or asynchronously? Depending
on how these and other related questions are answered, we can have a plethora of
different models of parallel computing. The next section reviews some of the most
important choices for a parallel model of computation.

2.3 Parallel Computational Models

Parallel and distributed computing models share many important characteristics, the
difference being made by how far apart are the processing units that need to collab-
orate in order to solve a computational problem. Consequently, along with shared-
memory models, interconnection networks and combinational circuits (representing
three large classes of parallel computers), we also include clusters and grids in our
discussion, as possible models of distributed computing.

2.3.1 Shared-Memory Models

A direct extension of the RAM, in which several identical processors are connected
to a single shared memory is the Parallel Random Access Machine (PRAM), shown

2 Introduction to Parallel Computation 47

in Fig. 2.2. The Memory Access Unit (MAU) allows any of the N processors to
gain access to any particular memory location, whether for the purpose of reading
or writing. Thus, the shared memory can be viewed as a communication medium
among the processors. Any datum that processor Pi needs to communicate to pro-
cessor Pj is first written into the memory by Pi, from where it is subsequently read
by Pj.

MEMORY

PROCESSORS

MEMORY

ACCESS

UNIT

(MAU)

MEMORYSHARED

LOCATIONSP

P

2

1

N

P

Fig. 2.2 The Parallel Random Access Machine.

Although the model is general enough to allow each processor to execute its own
algorithm in a totally asynchronous fashion, many useful applications assume that
the processors perform the same operation in a synchronous fashion on different
data. In this latter mode of operation, each step of the parallel algorithm can be bro-
ken into three phases: a read (from memory) phase, a compute phase and a write
(into memory) phase. During the read and write phases, it is possible for more than
one processor to simultaneously read from the same memory location (Concurrent
Read) or for several processors to write into the same memory location at the same
time (Concurrent Write). Obviously, conflicting situations may arise in which dif-
ferent processors attempt to write different values into a single memory location,
during the same write phase. Depending on how such conflicts are resolved, sev-
eral variants of the Concurrent Write (CW) instruction are possible [2]. Also, not
all processors must be active in every single step. The algorithm can specify which
processors are active in each step, usually by making use of their indices.

The PRAM is a powerful model of parallel computing, especially due to the
concurrent forms of memory access available in its repertoire of instructions. But,
if the size of the shared memory is big and/or the number of processors N is large,
then the MAU endowing the PRAM with its power may become too complex for
practical purposes. This puts a limit on the scalability of the PRAM model.

48 Selim G. Akl and Marius Nagy

2.3.2 Interconnection Network Models

Interconnection network models try to avoid the bottleneck caused by a MAU hav-
ing to connect many processors to many memory locations and they do this by
abandoning the concept of a shared memory altogether. Instead, each processor has
its own local memory and all communications among processors take place via di-
rect links connecting them. Thus, a “network of processors” is formed, with many
different topologies possible. Popular topologies include the following: linear array,
mesh, tree, hybrid interconnections such as the mesh of trees, hypercube, star, and
the enumeration could continue. Figure 2.3 shows, for example, how processors are
connected in a hypercube with four dimensions.

0010

P0111

P0001
P1000 P

1001

P0110

P
0100

0000

P
1010

P
1110 P1111

P
0101

P1100 P1101

P
1011

P
0011

P

P

Fig. 2.3 A hypercube interconnection network with four dimensions.

Since we no longer have a shared memory to ensure a fast two-step commu-
nication between any pair of processors, sometimes a datum has to travel several
links in order to reach its destination. This is because a fully connected network is
impractical if the number of processors is not small. Therefore, a good design for
an interconnection network is one that aims to keep the diameter of the network
small. The diameter is defined as the length of the longest distance between pairs of
processors in the network. In this context, the distance between two processors in a
given topology is taken as the smallest number of links connecting those processors
in that particular topology.

An important challenge in achieving a small diameter is to also maintain the
number of neighbors (or degree) of each processor to a small value. The obvious
reason, as mentioned above for a complete network, is the high cost associated with
having many neighbors or even the infeasibility of such a design. Furthermore, there
are other criteria that can also be used to compare different topologies. For example,
the length of the links between processors and the regularity showed by a specific
arrangement are important elements to take into consideration for the extendibility
of a network.

In conclusion, it is difficult (if not impossible) to find a single topology that is
desirable from all points of view. Therefore, when choosing an interconnection net-
work, one should pay attention to those features that are best suited for the particular
problem to be solved.

2 Introduction to Parallel Computation 49

2.3.3 Circuit Models

Another model of parallel computation is the family of combinational circuits.
These circuits consist of very simple processors (such as comparators, for instance)
arranged in columns (or stages). The circuit in Fig. 2.4 uses nine comparators ar-
ranged in three stages to merge two sequences of four numbers each. The processors
in the same column can all operate in parallel.

6

5

3

1

8

7

4

8
7

6

5
4

3
2

12
2

5
5

2

7

3

4

6

4

6

Fig. 2.4 A merging circuit.

The distinctive characteristic of combinational circuits is the fact that they do
not have feedback. Data flow through a circuit from input to output, with each pro-
cessor being used only once during the computation. Assuming that each processor
takes one time unit to produce its output(s) from the moment all of its inputs are
available, we can assimilate the worst-case running time of a combinational circuit
with its depth or number of stages. The width, on the other hand, or the maximum
number of processors in a stage represents the maximum degree of parallelism of-
fered by a combinational circuit. Finally, the total number of processors used by a
combinational circuit is known as its size.

Naturally, when designing a combinational circuit to solve a certain problem
whose input is specified by n input lines, the goal is that the depth and size of the
circuit be functions that grow slowly with n. Also, depending on the application, the
operation effected by a processor can be a comparison (like in sorting and merging
circuits) or any other simple arithmetic or logic operation, such as addition or log-
ical and. As in the circuit in Fig. 2.4, many combinational circuits are targeted to
address specific problems, but multipurpose circuits exist that may be used for many
different kinds of applications.

2.3.4 Clusters

The parallel models discussed so far are characterized by a spatial proximity of the
processing elements with which a parallel computer is endowed. With clusters and

50 Selim G. Akl and Marius Nagy

grids we move to another class of parallel computing models, which can rightfully
be labeled as distributed computing models, since their computing elements can be
distributed over a large area.

A cluster is generally defined as a collection of interconnected stand-alone com-
puters working together as a single, integrated computing resource. The organiza-
tion in a network is specific to both interconnection network models and clusters, but
a node in an interconnection network parallel computer is just a processor, while in
a cluster a node is a computing system in its own right, endowed with memory, I/O
facilities and an operating system, among other things. In particular, a node could
even be a multiprocessor system, such as a shared memory parallel computer. The
components of a cluster are usually connected to each other through dedicated, fast
links (like in a local area network, for instance) and in many respects may appear as
a single system to users and applications. Such a system can provide a cost-effective
way to improve performance (speed, reliability, availability, throughput, etc.) com-
pared with supercomputers of similar characteristics.

Comm.
SW

Cluster
 Node

NIC

Comm.
SW

Cluster
 Node

NIC

Comm.
SW

Cluster
 Node

NIC

Sequential
Application Programming Environment

Parallel

Parallel
Application

Cluster Middleware

Fast Network

Fig. 2.5 Cluster computer architecture.

The typical architecture of a cluster is depicted in Fig. 2.5. It consists of multiple
computing nodes (PCs, workstations, multiprocessor systems) connected to a high
speed communication medium (network infrastructure) through Network Interface
Cards (NICs). These are responsible for transmitting and receiving packets of data
between cluster nodes. The communications software layer endows the node with
fast communication protocols and services, offering a means of fast and reliable
data communication among cluster nodes. The cluster middleware is an interface

2 Introduction to Parallel Computation 51

between applications and the individual computers composing the cluster and has
the important role of making the latter appear as a unified system to the former.
Parallel applications run on the cluster with the support of specific parallel pro-
gramming environments and tools, such as compilers, parallel virtual machines and
message passing libraries.

Clusters can have different purposes, according to the particular performance
metric they have been deployed to improve. High availability clusters, for example,
seek to improve the availability of services offered by the cluster. They achieve this
by having redundant nodes which can keep providing services even if some system
components fail. Alternatively, load balancing clusters are designed with the main
purpose of distributing the workload as evenly as possible among the cluster’s nodes.
Other possible factors for cluster classification are node ownership, node hardware,
node operating system, node configuration and the level of clustering.

Besides offering high performance at a relatively low cost, clusters are easily
expandable, thus making cluster computing an increasingly popular form of paral-
lel/distributed computing.

2.3.5 Grids

In some sense, grid computing can be seen as an extreme case of cluster comput-
ing. The following properties may help draw a separation line between clusters and
grids, although this line is not always very visible. Grids are usually geographically
dispersed and consequently more loosely coupled than clusters. The network infras-
tructure allowing nodes in a grid to communicate is typically the Internet. This may
create important additional problems for the grid middleware in charge of managing
the access to the grid’s resources, as the nodes can be heterogeneous (different op-
erating systems and hardware architectures), having different owners and not fully
trusting each other.

One way to deal with faulty or malicious nodes producing erroneous results is to
assign a chunk of work randomly to several nodes (presumably with different own-
ers) and check that at least two different nodes report the same answer. Nodes such
as laptops or dial-up Internet computers are very unreliable in terms of maintaining
connectivity, so one strategy to address this problem is to assign large work chunks
in order to avoid the need for a continuous connection. If a node fails to report its
results in a reasonable amount of time, that particular job would then have to be
reassigned. Of course, the workloads assigned to the nodes must consist of many
independent packets of work, such that each computer will perform its task inde-
pendently of the rest of the grid. In this way, intermediate results obtained on one
node do not affect other jobs in progress on some other nodes of the grid. Resources
such as storage, on the other hand, may be shared by all the nodes in the grid.

In essence, grid computing aims at making computer power as easy to access as
an electric power grid and for this reason grid computing is also known as utility
computing, since utilities such as processor time, data and storage space are offered

52 Selim G. Akl and Marius Nagy

as a service supported by a pool of distributed computing resources. In principle,
any application can be “plugged” into the grid in order to take advantage of its re-
sources, but it is the very large tasks that will benefit most from the grid’s ability to
aggregate the computing power of many different and distant machines into some
sort of “virtual supercomputer.” Thus, unlike clusters (which usually number hun-
dreds of nodes), a grid may harness the resources of even millions of computers,
coordinating their efforts to accomplish tasks that would otherwise be impossible to
complete on a single machine due to cost and/or time constraints.

An example of such very large grid is the SETI@home project, which uses about
three million computers all over the world to analyze the colossal amount of data
produced by the Arecibo Observatory radiotelescope in its search for evidence of
extra-terrestrial intelligence.

2.4 Parallel Algorithm Design Methods

Designing an algorithm for a particular model of parallel computation is a process
that necessarily has to take into consideration the characteristic features, strengths
and weaknesses of that model. Therefore, the design of a parallel algorithm is clearly
model-dependent. Nevertheless, at a high level, the design methodology for a paral-
lel algorithm consists, in general, of the following four steps:

1. Partitioning: The problem is decomposed into fine-grain tasks, maximizing the
number of tasks that can be executed simultaneously.

2. Communication analysis: Determine what communications are required among
the tasks. Sometimes, the output of this step takes the form of a task graph with
fine-grain tasks as nodes and communication channels as edges.

3. Granularity control (or Agglomeration): Aims to reduce communication re-
quirements by combining groups of fine-grain tasks into fewer, but larger coarse-
grain tasks.

4. Mapping: Assign coarse-grain tasks to processors, trying to achieve an optimal
tradeoff between communication costs and degree of parallelism.

With respect to the design methodologies we are familiar with from sequential algo-
rithms, the approach sketched above reminds us of the “divide and conquer” tech-
nique. Certainly, this is not at all surprising, since by definition, a parallel algorithm
has to break the original problem into subproblems and assign them to different
processors that may need to communicate in order to exchange partial results.

To exemplify the process of developing a parallel algorithm for a particular
model, we show how Gaussian elimination can be implemented on a mesh of trees in
order to solve a system of linear equations. The method solves the equation A ·x = b
(in matrix form) by applying a sequence of transformations to both A and b such
that in the end, A is reduced to the identity matrix I. If the original system contains
n equations in n unknowns, then the Gaussian elimination algorithm is made up of
n iterations. The aim of the ith iteration is to make all elements in column i of A

2 Introduction to Parallel Computation 53

equal to 0 except for aii, which becomes 1. This can be accomplished by subtracting
multiples of row i from all other rows, according to the transformation:

a(i)
r j ←− a(i−1)

r j −
a(i−1)

ri ·a(i−1)
i j

a(i−1)
ii

, for r �= i and i≤ j ≤ n (2.1)

and dividing the elements of row i by the pivot aii:

a(i)
i j ←−

a(i−1)
i j

a(i−1)
ii

, i≤ j ≤ n. (2.2)

The same transformations are effected on the elements of vector b:

b(i)
r ←− b(i−1)

r − a(i−1)
ri ·b(i−1)

i

a(i−1)
ii

, for r �= i, (2.3)

b(i)
i ←− b(i−1)

i

a(i−1)
ii

. (2.4)

For numerical stability considerations, the pivot is always chosen as the largest el-
ement (in absolute value) from the submatrix of A whose upper left corner element
is aii. Therefore, before the new values for the elements of A and b are computed,
a search for the pivot is first conducted. If this element is not already on row i and
column i, then row i has to be switched with the row containing the pivot and/or
column i is interchanged with the column on which the pivot was found. When two
rows of A are interchanged, the corresponding elements of b have to be switched as
well and similarly, when two columns change places, the corresponding unknowns
also have to be interchanged.

Fig. 2.6 Gaussian elimination
on a mesh of trees.

a
11

b
1

a

baaa

a a a b

12 13

21

a

23

31 32 33

2

3

22

How can the Gaussian elimination algorithm be implemented on a mesh of
trees? First of all, note how the processors are connected in this particular topol-
ogy (Fig. 2.6). The processors are indeed arranged in a mesh-like structure, but they
are not connected using regular mesh links. Instead, the processors in each row are
connected together to form a binary tree of processors, with the root of the tree being

54 Selim G. Akl and Marius Nagy

the first processor in that row. Similarly, there is a binary tree of processors for each
column of the mesh. This particular way of connecting processors determines the
communication patterns. A datum can propagate to all processors on a certain row
(or column) in time logarithmic with respect to the number of processors on that
row (or column).

We can identify a fine-grain task with the process of computing the new value
for an element of A or b. The maximum degree of parallelism is achieved when
each such task is mapped onto one processor in the mesh, as illustrated in Fig. 2.6.
The processors in the last column also keep track of the unknowns x1,x2, . . . ,xn and
are responsible for swapping xi and x j whenever columns i and j in A have to be
swapped. A description of this is given in Algorithm 2.1.

Algorithm 2.1 Mesh_of_Trees_Gaussian_Elimination

1: for i = 1 to n do
2: Find the pivot as the largest element a(i−1)

kl in the submatrix of A delimited by rows i, i +
1, . . . ,n and columns i, i+1, . . . ,n.

- the binary tree over each row i is in charge of finding the maximum element (and
its column index) on that row. For this purpose, each node in the tree compares its
own value against the values received from its two children and sends to its parent the
larger of these three and the column index corresponding to this value. Eventually, the
processors in column 1 will store the maximum value (and its column index) in each
row.
- the binary tree over the first column of the mesh is used to find the overall largest

element a(i−1)
kl together with its row and column numbers, k and l, respectively.

3: if k �= i then
4: exchange rows i and k using the column trees (bi and bk are also swapped).
5: end if
6: if l �= i then
7: exchange columns i and l using the row trees (xi and xl also change places in the last

column of the mesh).
8: end if
9: Distribute a(i−1)

ii to all processors in row i using the binary tree over row i.

10: Compute a(i)
i j and b(i)

i according to Equations (2.2) and (2.4).
11: for each row r �= i in parallel do
12: distribute a(i−1)

ri to all processors in row r (using the binary tree over row r).
13: end for
14: for each column j, 1≤ j ≤ n, in parallel do
15: distribute a(i−1)

i j /a(i−1)
ii to all processors in column j (using the binary tree over column

j).
16: end for
17: Distribute b(i−1)

i /a(i−1)
ii to all processors in the last column using the binary tree over col-

umn n+1.
18: Compute in parallel the new values of a(i)

r j and b(i)
r , r �= i, i ≤ j ≤ n, according to Equa-

tions (2.1) and (2.3).
19: end for

2 Introduction to Parallel Computation 55

The most important observation that can be formulated by analyzing Algo-
rithm 2.1 is that by choosing the finest granularity we indeed ensure maximum
parallelism, but we must pay a certain communication cost among so many small
tasks, each assigned to a different processor. Once the processors have the required
data, each computes a single value of the A or b matrix. This allows all processors
to compute the new values for the elements of A and b simultaneously, in each itera-
tion. But before the actual computation can take place, we must spend O(logn) time
in each iteration choosing the pivot and distributing (communicating) the necessary
data to the processors (we note in passing that the distribution steps 12, 15, and 17
can all be performed simultaneously).

Consequently, we can aggregate logn fine-grain tasks into one coarse-grain task,
which is now charged to compute the new values for logn elements, sequentially.
The overall O(n logn) running time of the algorithm remains the same, because the
time spent on sequential computation is not asymptotically higher than the com-
munication time. Mapping one coarse-grain task to one processor, the problem can
still be solved in the same amount of time (asymptotically), but now with fewer
processors.

2.5 Theoretical Underpinnings

Similar to the design process, analyzing a parallel algorithm requires specific tools
that take into consideration all aspects influencing the performance of a parallel
computer. In this section, we discuss the most important performance measures used
to evaluate the “goodness” of a parallel algorithm as well as what can and cannot
be expected from the parallel computing paradigm vis-à-vis the sequential mode of
computation.

2.5.1 Speedup

Historically, the main motivation behind using more than one processor to perform a
certain task is to complete the task as quickly as possible, in other words, to speed up
computation. It is only natural, therefore, to use the speedup achieved by a parallel
algorithm designed for a certain problem relative to the best available sequential al-
gorithm for the same problem as a primary means of evaluating parallel algorithms.
Formally, the speedup provided by a parallel algorithm is defined as the ratio:

S(1, p) =
t1
tp

, (2.5)

where t1 denotes the worst-case running time of the fastest available sequential al-
gorithm for the problem at hand, while tp is the worst-case running time of the par-
allel algorithm running on p processors. In the case of Algorithm 2.1, the speedup

56 Selim G. Akl and Marius Nagy

achieved on a mesh with n× (n+1) processors is

S(1,n× (n+1)) =
O(n3)

O(n logn)
= O

(
n2

logn

)
. (2.6)

Obviously, when designing a parallel algorithm, the goal is to make this ratio as
large as possible. But we should always take into consideration the number of pro-
cessors that contribute to a certain speedup. In Eq. (2.6), a speedup of O(n2/ logn)
is achieved by O(n2) processors. As already shown, the same speedup can be ob-
tained using only O(n2/ logn) processors, by having each processor compute the
values of logn elements, sequentially. In this way, the speedup becomes equal (up
to a constant factor) to the number of processors used.

For most computational problems, and especially those we are familiar with,
the maximum possible speedup equals the number of processors employed in the
parallel computer. As a simpler example, think of an unstructured search in a list of
n items (an instance of which is looking for a number in the phone book example,
given in the Introduction). If we can partition the list into 10 equal parts and have 10
processors looking simultaneously for the target element, each in a different sublist,
then the most we can hope for is to reduce the search time by a factor of 10, in
the worst case of the search. This limitation on the largest speedup possible when
p processors are employed in the parallel model is expressed in general through the
following inequality:

S(1, p)≤ p, (2.7)

which is usually given as the status of a theorem. The justification is simple. If the
speedup is greater than the number of processors, it follows that we can obtain a
better sequential algorithm than the fastest possible by simulating the parallel algo-
rithm on a sequential machine (executing, in sequence, the work of each of the p
processors on the sequential computer).

The key observation to formulate here is that this simulation is not always pos-
sible or it simply does not make sense in some cases. It is certainly possible for
the majority of the problems encountered in computer science, problems that we
can term as traditional or conventional (adding a set of numbers stored in memory,
searching, sorting, etc.). But as we will show later in this chapter, there are particu-
lar computational environments for which the speedup limit stated above (Eq. (2.7))
does not apply. Coming back to standard computations, in many applications even
that limit cannot be reached, either because there is no way to decompose the prob-
lem such that all processors are busy at all times or because the overhead caused by
inter-processor communications is too high.

2 Introduction to Parallel Computation 57

2.5.2 Slowdown

Similar to how speedup is defined, we can use slowdown as a measure of how the
performance of a parallel algorithm degrades when the number of processors de-
creases. More precisely, if a certain computation is completed in time tp by p pro-
cessors and in time tq by q processors, where q < p, then the slowdown incurred by
reducing the number of processors from p to q is

s(p,q) =
tq
tp
≤ p

q
. (2.8)

The above inequality imposes an upper bound to how much the running time of a
parallel algorithm can increase when fewer processors are available. Although it is
sometimes referred to as “Brent’s theorem” (or Folk Slowdown theorem), Eq. (2.8)
has the same scope as the “speedup theorem.” It holds only when the work per-
formed by p processors can be simulated on a parallel model endowed with only q
processors.

Most conventional problems, however, exhibit this property and, consequently,
they fall under the scope of Brent’s theorem. For example, the running time of
Algorithm 2.1 does not increase asymptotically when we reduce the number of pro-
cessors in the mesh from O(n2) to O(n2/ logn). In other cases, like the searching
problem, having fewer processors to perform the search does increase the duration
of the procedure, but the slowdown incurred still obeys Eq. (2.8).

On the other hand, there are situations where the inherently parallel nature of the
problem to be solved requires a certain number of processors in the model. Anything
below the required degree of parallelism can lead to arbitrarily bad running times.
Examples of such computing paradigms can be found in Sect. 2.7.

2.5.3 Quality-Up

In some computational environments, having more processors available to work on a
certain problem may account for obtaining a better solution rather than a faster one.
This may look quite surprising at a first glance, since the same solution obtained
by a parallel computer can also be arrived at by a sequential machine, if the latter
simulates the work of each processor of the former, in sequence. However, we must
draw attention again on the fact that such a simulation is not always possible and a
typical example is a real-time computational environment where firm deadlines are
imposed on when the solution is to be produced.

Also, what constitutes a better solution depends on the problem under consider-
ation. If, for instance, the problem to be solved is an optimization one, then several
cooperating processors may compute a solution closer to optimal than a single pro-
cessor is able to, before the deadline. Alternatively, “better” might mean more accu-
rate for numerical problems, more secure for cryptographic applications, providing

58 Selim G. Akl and Marius Nagy

superior error correction capabilities when applying error-correcting schemes or
higher compression rates for source coding algorithms and so on. But, regardless
of the particular context, we need a way to quantify the improvement in quality of
the solution computed in parallel with respect to the best one that can be obtained
sequentially.

In analogy with speedup (which is an improvement in speed), we can term an
improvement in quality as quality-up and define it formally as the ratio:

quality-up =
Vn

V1
, (2.9)

where Vn is the value of the solution obtained in parallel and V1 is the value of the
solution derived sequentially. How V1 and Vn are defined depends again on the type
of application. When the purpose is to maximize a quantity (such as the profit in
an optimization problem or the level of security in a cryptographic application), the
choice of V1 and Vn is straightforward. But in those cases where the goal is to mini-
mize a quantity, like the amount of error in the solution to a numerical computation,
the value of a numerical solution should be defined as the inverse of the error it
contains.

Although for most traditional ways of computing, quality-up is unitary (no gain
in quality whatsoever by using parallelism), there are modes of computation for
which parallelism can translate directly into an impressive quality-up, even super-
linear in the number of processors used (see Sect. 2.7.1.2).

2.5.4 Computations that Seem Inherently Sequential

Striving to design efficient parallel algorithms can sometimes be frustrating. There
are problems that seem to resist all our attempts to speed up the computation through
parallel processing. In this section we review what is known and what is not known
about problems that are not efficiently parallelizable, from the viewpoint of compu-
tational complexity theory.

2.5.4.1 Class NC

Intuitively, computations that do not admit an efficient parallel solution are seen
as inherently sequential. Therefore, we begin our discussion with a precise defini-
tion for the class of problems that can be efficiently solved on a parallel model of
computation and then look for inherently sequential problems outside that class.

The class NC is the set of decision problems decidable in poly-logarithmic time
on a parallel computer with a polynomial number of processors. More formally, a
problem belongs to NC if it can be solved in O(logc n) time using O(nk) processors,
where c and k are constants and n is the size of the problem. For definiteness, the
parallel computer can be assumed to be a PRAM. Equivalently, we may think of NC

2 Introduction to Parallel Computation 59

as the set of decision problems decidable by uniform Boolean circuits with poly-
logarithmic depth (running time) and a polynomial number of gates (processors).

Examples of problems belonging to NC are numerous. In our unstructured search
problem, if we have as many processors as there are elements in the list, then the
search can be performed in just one time unit. An odd-even-merge sorting circuit
has a depth of O(log2 n) and can sort n numbers using O(n log2 n) comparators [1].
Any textbook on parallel algorithms may provide many other examples.

We note in passing that one of the drawbacks of class NC is the fact that any
sequential algorithm with logarithmic time is in NC regardless of its parallel feasi-
bility. A typical example is parallel binary search, which yields a modest speedup
and is therefore far from being considered efficiently parallelizable. But since its
parallel running time is logarithmic, we do consider binary search as having an effi-
cient parallel solution and therefore, parallelizable.

In order to gain a better understanding about the relationship between paralleliz-
able and non-parallelizable problems, it may be useful to draw an analogy with the
relationship between tractable and intractable problems.

2.5.4.2 P-completeness

The complexity class P is the set of decision problems that can be solved on a
deterministic sequential machine in an amount of time that is polynomial in the
size of the input. Just as the problems in P can be considered as tractable, so NC
can be thought of as the class of problems that can be efficiently solved on a parallel
computer. Because complexity classes are defined in terms of languages accepted by
Turing machines and Turing machines can simulate each other efficiently, it follows
that NC is a subset of P, since the operation of a parallel machine can be simulated
on a sequential one with a polynomially bounded overhead.

However, it is not known whether NC = P, although most researchers suspect that
this is not the case, just as the equality P = NP (where NP is the set of all decision
problems whose solution can be found in polynomial time on a non-deterministic
machine) is also suspected to be false. This means that there are probably some
tractable problems which are inherently sequential and cannot be significantly sped
up through a parallel approach. The most difficult problems in NP are labeled as
NP-complete, owing their name to the property that any problem in NP can be re-
duced to an NP-complete problem in polynomial time. In the same way class NP-
complete can be thought of as identifying “probably intractable” problems; we can
define class P-complete as the set of problems seen as “probably not parallelizable”
or “probably inherently sequential.” Formally, a decision problem is in P-complete
if it is in P and every problem in P can be reduced to it using NC reductions (re-
ductions that can operate in poly-logarithmic time on a parallel computer with a
polynomial number of processors).

Many problems have been proved to belong to P-complete and so they are widely
believed to be inherently sequential. Here are a few:

60 Selim G. Akl and Marius Nagy

• Circuit value problem: Given a circuit, the inputs to the circuit and one gate in
the circuit, calculate the output of that gate.

• Linear programming: Maximize a linear function subject to linear inequality con-
straints.

• Horn-satisfiability: Given a set of Horn clauses, is there a variable assignment
which satisfies them?

• Game of life: Given an initial configuration of Conway’s Game of Life, a partic-
ular cell, and a time T (in unary), is that cell alive after T steps?

Finally, analogous to problems that are not proven to be either NP-complete or
P-complete (such as factoring, for example), we have problems that are not known
to be either P-complete or NC, but are still thought to be difficult to parallelize. One
example is finding the greatest common divisor of two binary numbers (decision
problem form).

2.6 Parallel Algorithms for Conventional Computations

The vast majority of computations carried out every day as part of various appli-
cations can be labeled as “conventional.” Unless the computational environment
exhibits some special properties, for example, imposing restrictions on the avail-
ability or reliability of data to be processed, any computation is a conventional or
traditional one. Immediate examples that come to mind are sorting, searching, op-
erations on matrices and so on. In Sect. 2.4 we have already seen, in detail, how
a conventional problem, namely, solving a system of linear equations using Gaus-
sian elimination, can be solved by a parallel algorithm on a mesh of trees. In what
follows, we develop parallel algorithms for two other conventional problems, quite
different in nature from Gaussian elimination. The parallel models for which the
algorithms are intended are also of a different kind.

2.6.1 Parallel Prefix and Suffix Computations on a Linked List

In this section, we show that a parallel approach can also be useful when working
with pointer-based data structures, such as a linked list. A singly linked list L con-
sists of a number of nodes where each node (except the last one) holds a pointer to
the next node in the list (Fig. 2.7(a)). Besides this pointer, a node also usually holds
a value (that depends on the application) and other necessary information.

For our problem, we assume that a linked list L has been stored in the shared
memory of a PRAM. Each node was added to the list at a different time, without
global knowledge of the data structure constructed so far or the positions where fu-
ture nodes will be added. The list-sequencing problem asks for the sequence number
of each node to be computed. The head of the list has sequence number 1, the node
pointed at by the head bears sequence number 2 and so on. If we are given a pointer

2 Introduction to Parallel Computation 61

1

1 2 3 4 5 6 7 8

1 2 3 4 4 4 4 4

22222221

1 1 1 1 1 1 1

4
P

5
P

6
P

1
P

7
P

0
P

3
P

2

(a)

(b)

(c)

x
0

x x x x x x x
1 2 3 4 5 6 7

P

(d)

Fig. 2.7 A singly linked list L (a) and how it is transformed by Algorithm 2.2 after one iteration
of the while loop (b); after two iterations (c); after three iterations (d).

to the head of L, we can easily compute the sequence numbers for all nodes in time
linear in the size of L, just by following the chain of pointers and adding 1 to the
current sequence number at each step. In order to execute this algorithm, a single
processor suffices. The question is whether we can do better than a linear running
time, if we have more processors available.

For simplicity, assume that the PRAM model in charge of solving the problem
has as many processors as there are nodes in L. Thus, each processor knows the
location of one distinct node in the list and can therefore access any information
stored in that node in constant time (see Fig. 2.7(a)). This may well be the case in
practical applications, as each processor may have contributed to the construction
of L with the node they are in charge of.

For the list-sequencing problem, the values x j, 1 ≤ j ≤ n, stored in each node
are initially all equal with 1. The parallel algorithm then consists of repeatedly per-
forming the following step: each processor adds its own value to the value stored
in its successor node and then updates its pointer to the node following its succes-
sor. A graphical illustration of the algorithm, for the particular case of a list with
8 elements is given in Fig. 2.7. Note that the number of final sequence numbers
computed at each step doubles. Therefore, it is easy to see that for a list L hav-
ing n nodes, O(logn) steps are required to complete the computation and each step
takes constant time. In the end, each node will have its successor pointer set to nil
(Fig. 2.7(d)). A formal description of the algorithm is given as Algorithm 2.2.

The algorithm works with copies of the original succ pointers in order to protect
them and preserve the initial structure of the list, since all next pointers become

62 Selim G. Akl and Marius Nagy

Algorithm 2.2 PRAM_List_Sequencing

1: for all i in parallel do
2: next(i)←− succ(i);
3: val(i)←− 1.
4: end for
5: f inished ←− false;
6: while (not f inished) do
7: f inished ←− true;
8: for all i in parallel do
9: if next(i) �= nil then

10: val(next(i))←− val(i)+ val(next(i));
11: next(i)←− next(next(i));
12: if next(i) �= nil then
13: f inished ←− false.
14: end if
15: end if
16: end for
17: end while

nil at the end of the algorithm. In fact, this is the condition for the termination
of the algorithm: each node has its next pointer set to nil. As soon as this pointer
becomes nil for some node, the processor in charge of that node will remain idle
for the remaining of the algorithm. But since a processor has no knowledge about
when other processors have completed their work, we use the variable f inished to
detect when all processors have become idle and the algorithm can terminate. In this
respect, note that the variable f inished can be set to false at the end of an iteration
of the while loop by several processors using a CW instruction from the PRAM
repertoire.

The algorithmic technique used to solve the list-sequencing problem has a far
broader applicability than just computing the sequence numbers of the elements
composing a linked list. If we modify Algorithm 2.2 such that we replace addition by
a generic operator “◦,” transforming two objects xi and x j into an object of the same
type xi ◦x j, then what we obtain is an algorithm performing a prefix computation. It
is called so because the values stored in each node at the end of the algorithm are
x1,x1 ◦ x2,x1 ◦ x2 ◦ x3, . . . ,x1 ◦ x2 ◦ · · · ◦ xn, from the head of the list down to the last
element.

On the other hand, in a suffix computation, the resulting values would be x1 ◦x2 ◦
· · · ◦ xn,x2 ◦ x3 ◦ · · · ◦ xn, . . . ,xn. Transforming a prefix computation algorithm into a
suffix one is easily achieved by replacing the line

val(next(i))←− val(i)◦ val(next(i)) (2.10)

in the modified version of Algorithm 2.2 with

val(i)←− val(i)◦ val(next(i)). (2.11)

2 Introduction to Parallel Computation 63

If we now instantiate “◦” back to “+” and initialize all values with 1, then instead
of the list-sequencing problem we are now solving the list-ranking problem, where
we have to compute the rank of each node as its distance from the end of the list.
Many problems of practical interest can be reduced to a form of prefix or suffix
computation; so having an efficient parallel algorithm to deal with these two generic
computations is of great importance.

2.6.2 Sorting on a Model with Buses

In Sect. 2.4 we have exemplified the design methodology for developing parallel
algorithms on a model where the processors are arranged in a mesh-like structure,
but with the regular mesh links replaced by row and column binary trees. The rea-
son behind choosing this topology is to reduce the diameter of a regular mesh of
processors, thereby reducing the communication cost among the processors in the
model. In doing so, however, we also introduce some disadvantages. The new topol-
ogy does not possess the regularity and modularity that make a mesh of processors
so easy to extend. In addition, the length of the links in a mesh of trees increases
with the number of processors in the model, affecting its scalability.

A popular way to make communications inside a mesh of processors easier, while
still retaining the attractive features of the model, is to augment them with buses. In
the context of our discussion, a bus is simply a communication link to which a num-
ber of processors are attached in order to transmit and receive data. Depending on
the particular technology used to implement them, these buses can be fixed, recon-
figurable or optical. In order to present algorithmic techniques that are specific to
models enhanced with buses and also prove their usefulness, we develop a parallel
algorithm for sorting a sequence of numbers on a mesh with reconfigurable buses.

We begin by describing the model that will allow us to sort an arbitrary sequence
of numbers in constant time. Any processor that is not on the border of a regular
mesh has four neighbors. In order to communicate with its neighbors, a processor
uses direct links. The interface through which a link connects to a processor is called
a port. Consequently, a processor included in a mesh structure is equipped with four
ports: north (N), south (S), west (W) and east (E). In a mesh with reconfigurable
buses, any processor is capable of connecting its ports internally, in arbitrary pairs.
When combined with the standard (external) mesh links, these internal connections
can be used to create paths (buses) of the desired length and shape. Figure 2.8 depicts
a mesh in which three buses have been formed by its processors. In particular, if
every processor in a row connects its W and E ports together, then we obtain a row
bus. Similarly, by connecting the N and S ports for each processor in a column, we
create a column bus.

As their name says, the most important property of reconfigurable buses is that
they are dynamic, that is, they can change according to the needs of the algorithm, as
many times as required. This distinguishes them from fixed buses, which are “hard-
wired” into the model and remain unchanged throughout the computation. Any path

64 Selim G. Akl and Marius Nagy

Fig. 2.8 A mesh with three
configured buses.

can be set up in constant time, as we take the number of time units for a proces-
sor to connect its ports internally to be a constant. Otherwise, reconfigurable buses
behave just like fixed ones: only one processor is allowed to write a datum on a
bus at any given time and all processors connected to the bus can read that datum
simultaneously.

In order to sort n numbers on a mesh with reconfigurable buses we resort to a
common technique called sorting by enumeration. For each number in the sequence,
we compute its rank (position in the sorted sequence) as the number of elements that
are smaller than it. We choose to break ties using the index of each element in the
original sequence. Consequently, for the purpose of our algorithm, whenever xi = x j,
xi is considered “smaller” than x j if and only if i < j. Once all ranks are computed,
we just need to permute the elements such that in the end each occupies the position
indicated by its rank.

MESH n-1MESH 0 MESH i

1

x
n-1

x
0

x

Fig. 2.9 Distribution along rows in sorting by enumeration on a mesh with reconfigurable buses.

For each element xi, 0 ≤ i ≤ n− 1, we assign a distinct mesh (MESH i) to the
task of computing its rank (see Fig. 2.9). Therefore, to sort n numbers in constant
time we need a mesh with n rows and n2 columns. At the outset, the sequence to
be sorted is stored by the processors in the first column of the mesh: x0 by P(0,0),
x1 by P(1,0), . . . ,xn−1 by P(n−1,0). When the algorithm terminates, the same first
column holds the sequence sorted in non-decreasing order from top to bottom. The
algorithm, broken into four main steps, is given as Algorithm 2.3.

2 Introduction to Parallel Computation 65

Algorithm 2.3 Reconfigurable_Buses_Mesh_Sort

1: I. Distribution:
2: for all processors in parallel do
3: connect W and E ports (creates row buses across the entire mesh).
4: end for
5: for i = 0 to n−1 in parallel do
6: distribute xi to all processors in row i using the bus on row i (see Fig. 2.9).
7: end for
8: for i = 0 to n−1 in parallel do
9: processors in column 0 of MESH i connect N and S ports (creates a column bus in the first

column of each n×n mesh);
10: processor P(i,0) distributes xi to all processors in its column using the column bus.
11: end for
12:
13: II. Comparison:
14: for i = 0 to n−1 in parallel do
15: for j = 0 to n−1 in parallel do
16: P(j,0) from MESH i compares x j to xi:
17: if x j < xi then
18: R = 1
19: else
20: R = 0 (R is a local register in each processor).
21: end if
22: end for
23: end for
24:
25: III. Rank computation:
26: for i = 0 to n−1 in parallel do
27: for j = 1 to n−2 in parallel do
28: all processors in column j of MESH i connect W and E ports (row buses are created for

each row of each n×n mesh).
29: end for
30: for j = 0 to n−1 in parallel do
31: P(j,0) in MESH i broadcasts the content of its R register to all processors attached to its

row bus (see Fig. 2.10(a)).
32: end for
33: end for
34: for all processors in parallel do
35: if R = 0 then
36: connect N and S ports
37: else
38: connect W with N and S with E (see Fig. 2.10(b)).
39: end if
40: end for
41: for i = 0 to n−1 in parallel do
42: P(n−1,0) of MESH i writes a marker symbol on the bus to which its S port is connected

(rank of xi = column index of processor receiving the marker symbol, see Fig. 2.10(c)).
43: end for

66 Selim G. Akl and Marius Nagy

Algorithm 2.3 Reconfigurable_Buses_Mesh_Sort (Continued)

44: IV. Permutation:
45: for i = 0 to n−1 in parallel do
46: all processors in MESH i connect their N and S ports (creates column buses);
47: processor P(0, j) in MESH i containing the marker symbol broadcasts j (xi’s rank) to all

processors attached to its column bus;
48: processor P(i, j) in MESH i broadcasts xi to all processors in column j using the column

bus.
49: end for
50: for all processors in parallel do
51: connect W and E ports (creates row buses across the entire mesh).
52: end for
53: for i = 0 to n−1 in parallel do
54: P(j, j) of MESH i (j is xi’s rank) broadcasts xi along its row bus to be read (received) by

processor on row j in the first column of the entire mesh.
55: end for

Probably, the most notable feature of Algorithm 2.3 is the unique way in which
a numeric computation (the sum of n bits) is performed in the third step exclusively
through the manipulation of buses. The last step also demonstrates that an arbitrary
permutation of n objects can be performed in constant time on an n× n mesh of
processors, if reconfigurable buses are supported. Overall, since each step in the
algorithm can be executed in constant time, we can sort a sequence of n numbers
in constant time. This shows the power and flexibility that reconfigurable buses be-
stow upon a standard mesh of processors, but at the high cost of O(n3) processors
employed. However, more involved sorting algorithms on a mesh with reconfig-
urable buses have been developed [3] to alleviate the exorbitant cost induced by the
large number of processors required to sort in O(1) parallel time in the algorithm
described in this section.

2.7 Parallel Algorithms for Unconventional Computations

When it comes to tackling a computational problem with unconventional charac-
teristics, a parallel approach may yield even better results than those we have seen
so far in this chapter. In what follows, we describe a series of particular computing
environments for which parallel processing proves extremely beneficial, if not crit-
ical. These relatively new computational paradigms, although unconventional, are
still realistic and many real-world applications can be identified as instances of such
unconventional computations.

In some cases, the performance of the parallel algorithm, expressed in terms of
the speedup or quality-up achieved, is superlinear in the number of processors used
in the parallel computer, relative to what the best sequential algorithm can offer. In
other cases, the inherently parallel nature of the problem renders a sequential ma-
chine (or even one with insufficient processing elements) useless, and consequently,

2 Introduction to Parallel Computation 67

11 1 1 1

1 1 1 1 1

0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

COLUMN

(b)(a)

*

*
(c)

0 321 4

Fig. 2.10 Ranking in MESH i: (a) Each processor in the leftmost column broadcasts the value
contained in its R register to all processors in its row; (b) A processor containing a 0 connects its N
and S ports, whereas a processor containing a 1 connects W with N and S with E; (c) The processor
in the bottom left corner sends a marker symbol on the bus to which its S port is connected.

a sequential solution fails altogether. When this occurs, the improvement in perfor-
mance obtained through the use of a parallel model can be considered unbounded.

2.7.1 Computations that Can be Simulated Sequentially

The two examples of unconventional paradigms presented in this section belong
to the class of real-time computation. The concept of real time is difficult to cap-
ture formally [4] despite the broad spectrum of real-time systems encountered in
everyday life: air traffic control, process control (e.g., in a chemical plant), nuclear
reactors, telecommunications, integrated vision/robotics/AI systems, etc. From the

68 Selim G. Akl and Marius Nagy

algorithmic viewpoint adopted herein, we are interested mainly on the relationship
between data and time, particularly on the deadlines imposed on when input data
should be processed after it becomes available and when the outputs (or results) are
to be produced. These deadlines are considered tight (measured in terms of a few
time units) and firm (missing a deadline causes the computation to fail).

A parallel approach may prove to be very useful when computing with deadlines,
by helping the computation to terminate on time or by computing a better solution
than it is possible sequentially, in the time allowed. Thus, a sequential computer can
also reach a solution by trying to adapt (or simulate) the parallel algorithm on the
single processor it is endowed with, but the consequences may be dramatic in terms
of either speed or quality. Furthermore, the superlinear improvement in performance
that we are about to describe is consistent and provable, in the sense that it occurs in
every instance of the computational problem under consideration. In particular, this
improvement is independent of any discrepancies between the sequential and paral-
lel computers used and it is not an occasional artifact due to an inefficient sequential
algorithm, a restricted memory size on the sequential computer, or expensive con-
text switching that has to be performed on the sequential machine.

2.7.1.1 Superlinear Performance in Speed

Consider the following computation taking place in a real-time environment.

x1,n

x
x

1,n-1

1,n-2

x
x

1,3x
1,2

1,1

x
x
x

x
x
x

2,n

2,n-1

2,n-2

2,3

2,2

2,1

x
x
x

x
x
x

3,n

3,n-1

3,n-2

3,3

3,2

3,1

x
x
x

x
x
x

n,3

n,2

n,1

n,n-2

n,n-1

n,n

P1

INPUT

OUTPUT

Fig. 2.11 A sequential computer can monitor only one stream.

2 Introduction to Parallel Computation 69

Problem

n sources provide data to solve a certain problem. Each source provides n data, one
per time unit. The problem can be solved using the data set provided by any of the n
sources. However, only one source allows the problem to be solved in n time units,
while data from all other sources lead to a solution in 2n time units. Moreover, it
is impossible to tell a priori which source leads to a quick solution. This can only
be determined once all n data from a source become available. Finally, there is a
deadline on the availability of each datum produced by each source: if the current
datum generated by a source is not acquired and stored by a processor during that
time unit, the datum is irretrievably lost, being overwritten at the beginning of the
next time unit by the subsequent piece of data.

Sequential Solution

A sequential computer can monitor only one stream with its single processing unit,
so it chooses one arbitrarily (third stream in the example depicted in Fig. 2.11) and
computes the solution using the n data supplied by that stream. In the worst case, the
time required to complete the computation sequentially is T1 = n+2n time units.

x1,n

x
x

1,n-1

1,n-2

x
x

1,3x
1,2

1,1

x
x
x

x
x
x

2,n

2,n-1

2,n-2

2,3

2,2

2,1

x
x
x

x
x
x

3,n

3,n-1

3,n-2

3,3

3,2

3,1

x
x
x

x
x
x

n,3

n,2

n,1

n,n-2

n,n-1

n,n

PPP P1 2 3 n

INPUT

OUTPUT

Fig. 2.12 A linear array of n processors can monitor all streams.

70 Selim G. Akl and Marius Nagy

Parallel Solution

The parallel model we choose to deal with this problem is a linear array of pro-
cessors (see Fig. 2.12), arguably the weakest model of parallel computation. Even
so, if the array comprises n processors, then each of them can monitor one of the n
streams and attempt to solve the computational problem using the n data provided
by that stream (Fig. 2.12). One (and only one) of the processors attains a solution n
time units after the arrival of the last datum in its chosen stream. Therefore, the time
required in parallel to complete the computation is Tn = n+n = 2n time units.

Analysis

The ratio between the sequential and parallel running times gives us the following
speedup:

S(1,n) =
T1

Tn
=

n+2n

2n
= θ

(
2n−1

n

)
. (2.12)

This speedup is exponential in the number of processors employed in the linear
array, thus contradicting the “speedup theorem.” Similarly, Brent’s theorem does
not apply either. If the linear array contains only q processors, where 2 ≤ q < n,
then we find ourselves again in the situation where we cannot monitor all streams.
The q processors can choose only at random q streams to monitor. In the worst case,
none of the processors chooses a stream whose data lead to a solution in n time units
and the running time Tq = n+2n time units is no better than the sequential running
time T1. This worst case occurs with probability 1− (q/n), so when n is large and
q is small, it is almost certain that the computation will require exponential time to
complete. By comparison with the n-processor solution, the slowdown incurred is

s(n,q) =
Tq

Tn
=

n+2n

2n
= θ

(
2n−1

n

)
. (2.13)

This slowdown is superlinear in �n/q�, regardless of the value of q, and the Folk
Slowdown theorem does not hold.

Although the processors that equip the parallel model are always considered
identical with the one employed in the sequential computer, it is interesting to note
that in the paradigm described above, a superlinear speedup in n can still be achieved
even if each processor of the linear array is n times slower than the processor of the
sequential machine. More precisely, assume that a processor of the parallel com-
puter requires n time units to execute the same (arithmetic and logical) operations
performed by the processor of the sequential computer in one time unit. Then the
parallel completion time becomes n + n2 time units, while the sequential comple-
tion time remains n + 2n, in the worst case. Their ratio confirms that the parallel
computer continues to achieve a speedup superlinear in n, despite the unreasonable
assumption made about its processors in favor of the sequential computer.

2 Introduction to Parallel Computation 71

Similar real-time computational paradigms have been uncovered for which the
speedup obtained exceeds any conventional bounds (e.g., data accumulation, one-
way functions [5, 6]).

2.7.1.2 Superlinear Performance in Quality

When computing under the pressure of a deadline, it is sometimes the case that both
the sequential and parallel computer succeed in arriving at a solution before the
specified deadline. However, for some classes of problems, the solution computed
in parallel is far superior in quality to the best one obtained sequentially. This is
especially true for numerical computations, due to their particular characteristics.
Numerical methods always yield approximate results because of roundoff and trun-
cation errors, so a qualitative measure can easily be assigned to the solution of a
numerical problem, depending on the amount of error it contains.

m1

m2 m3

f(x)

xa
b

Fig. 2.13 Computing a zero of a continuous function f in the interval [a,b] using the bisection
method.

Suppose, for example, that we wish to compute a zero of a continuous function f
(a value xexact , such that f (xexact) = 0) in a given interval [a,b] (with f (a)× f (b) <
0). The bisection method repeatedly halves the interval where the solution can be
found by computing the middle point m = (a+b)/2 and focusing only on the half-
interval for which the images through f of the two extremities have opposite signs

72 Selim G. Akl and Marius Nagy

(see Fig. 2.13). After r such iterations, the error contained in the computed solution
xapprox is bounded by:

|xexact − xapprox| ≤
|b−a|

2r . (2.14)

Now consider the following real-time computational environment for the bisection
method.

Problem

At the beginning of each time unit i, a new 3-tuple 〈 f ,a,b〉i is received for which
a zero is to be found. It is required that each 3-tuple be processed as soon as it is
received and an appropriate solution xapprox be produced as output as soon as it is
computed. Furthermore, one output must be produced at the end of each time unit,
with possibly an initial delay before the first output is produced. It is assumed that
reading a tuple 〈 f ,a,b〉, performing one iteration of the bisection algorithm and
producing xapprox as output once it has been computed can all be performed within
one time unit.

Sequential Solution

Here, there is a single processor whose task is to read each incoming 3-tuple, to
compute xapprox and to produce the latter as output. Since each 3-tuple must be
processed immediately upon arrival, it follows that the sequential computer has only
one time unit to try to compute an approximate solution for the current tuple, before
having to move on to the next input. Consequently, the sequential algorithm can
perform no more than one iteration on each input 〈 f ,a,b〉 and produce the solution
xapprox = m = (a + b)/2. This being the only option available, it is by default the
best solution possible sequentially.

P P P P P1 2 3 n-1 n<f,a,b> x approx

Fig. 2.14 n processors arranged in a linear array can compute a better approximation than a single
processor. Pi applies iteration i of the bisection method for each 3-tuple received.

Parallel Solution

To tackle the problem in parallel we are using again a linear array of n processors ar-
ranged as illustrated in Fig. 2.14. Processor P1 is designated to receive the successive
input 3-tuples, while it is the responsibility of Pn to produce xapprox as output. The

2 Introduction to Parallel Computation 73

same strict deadline forcing the sequential computer to execute only one iteration
of the bisection method for each received tuple applies also to P1, which must turn
its attention to a new input every time unit. Unlike the sequential solution, however,
the parallel algorithm can perform additional iterations as follows.

Once P1 has executed its single iteration on 〈 f ,a1,b1〉, it sends 〈 f ,a2,b2〉 to P2

and deals with the next 3-tuple arriving as input. Now P2 can execute an additional
iteration before sending 〈 f ,a3,b3〉 to P3. This continues until xapprox = (an +bn)/2
is produced as output by Pn. Meanwhile, n− 1 other 3-tuple inputs coexist in the
array (one in each of P1, P2, . . ., Pn−1) at various stages of processing. One time unit
after Pn has produced its first xapprox, it produces a second, and so on, such that an
output emerges from the array every time unit, after an initial delay of n time units.
In this way, each output xapprox is the result of applying n iterations of the bisection
algorithm, since there are n processors and each executes one iteration.

Analysis

For a numerical computation, the quality of a solution is most appropriately defined
as its accuracy, which in turn can be taken to be the inverse of the maximum error. In
the sequential case, when only one iteration can be applied (r = 1 in Eq. (2.14)), the
maximum error is |b−a|/2. In contrast, each parallel solution undergoes n iterations
before being output by Pn and therefore the maximum error is |b−a|/2n. By defining
quality-up as the ratio of the parallel accuracy to the sequential accuracy, we have

quality-up(1,n) =
1/parallel error

1/sequential error
=

2n

2
= 2n−1. (2.15)

According to this result, the improvement in quality is exponential in the number
of processors employed in the parallel model. Other numerical algorithms may also
yield a superlinear quality-up when executed on a parallel machine. It is the case,
for example, of the trapezoidal method to compute an approximation for the value
of a definite integral [7]. Extending the range of applications, discrete optimiza-
tion problems and cryptographic methods may lead to a superlinear improvement
in quality as well, with respect to their sequential counterparts, if the computations
take place in the presence of deadlines [7, 8].

2.7.2 Computations that Cannot be Simulated Sequentially

In the examples presented above (Sects. 2.7.1.1 and 2.7.1.2), the various time con-
straints placed upon the data (whether it is input or output) make the simulation of
the parallel solution attempted by the sequential computer extremely inefficient, in
terms of either speed or quality of the result. But, inefficient as it may be, a sequen-
tial solution can still be produced. In this section, we explore a different class of un-
conventional paradigms, whose inherent parallelism renders a sequential simulation

74 Selim G. Akl and Marius Nagy

pointless. The main attribute of these computing paradigms is their dynamic nature.
Their characteristics change during the computational process itself, whether it is the
data or the complexity of the algorithm that evolves with time. Evolution, or merely
change, is a fundamental property of many systems that we observe and investigate,
whether they are physical, biological, economic, social or of any other kind. Evolv-
ing computational processes occurring in nature are, in fact, the main motivation
and inspiration behind studying inherently parallel computing paradigms.

At an abstract level, the following generic problem needs to be solved: a set of n
input variables x0,x1, . . . ,xn−1 have to be read and a certain function F (x0, x1, . . .,
xn−1) must be computed and the result reported. In some of the instantiations that
follow, what evolves during the computation is the complexity of each step in the
algorithm, while in others it is the input variables that determine the dynamics of
the system.

2.7.2.1 Time-Varying Variables

In this paradigm (and the one that follows), time plays the main role. Each argument
of function F is itself a function of time: x0(t), x1(t), . . ., xn−1(t). At each time unit,
the values assumed by the input variables change in such a way that the new value
cannot be predicted from the former, nor the former recovered from the latter. Cer-
tainly, this makes the computation of F (x0(t0), . . . ,xn−1(t0)) at the precise moment
t = t0 a challenging task, in case we do not have the capability of reading all n input
variables, in parallel, at the right moment.

Assuming that reading the value of one input variable requires one time unit, a
sequential computer can only read the value of one variable at moment t0. By the
time this is done, one time unit has elapsed and all other variables have changed
values in a random, unstoppable and irreversible manner. Clearly, the sequential
computer fails to perform the computation. A machine endowed with n processors,
on the other hand, can instruct each processor to read the value of a distinct variable,
simultaneously, at the required moment t0. The computation of F can then proceed
as necessary. Quantum bits affected by errors over time or genes in a living cell
changing over time as the cell ages or becomes infected are possible examples of
variables in a computation, whose values are affected by the relentless passage of
time.

2.7.2.2 Time-Varying Computational Complexity

When analyzing the computational complexity of a given algorithm, we usually
focus on how this quantity varies as a function of the problem size, without pay-
ing too much attention to how the complexity of each step in the algorithm varies
throughout the computation. Though in many cases the complexity of each step is a
constant, there are computations for which the cost of executing essentially similar
steps is different from one step to another.

2 Introduction to Parallel Computation 75

The passage of time not only can influence the values assumed by various vari-
ables in a computation, but it can also directly influence the computational com-
plexity of a given step in an algorithm. If the cost of executing step S j is a function
of the particular moment in time when that step is executed, then what we have is
a procedure with steps of time-varying computational complexity. For example, if
the computational complexity of S j is described by the function c(t) = 22t

, then the
computational resources required to complete that step are rapidly growing with the
moment in time when S j is actually executed.

Moreover, if the function c(t) describes the computational complexity of any step
composing a certain algorithm, then a sequential computer may quickly run out of
resources (time, memory, etc.) when trying to execute that algorithm, regardless of
the order in which the steps are executed. In contrast, a parallel computer equipped
with sufficient processors, such that one processor is in charge of executing only
one step, can complete the computation after just two time units by having all steps
executed simultaneously at time t = 0, each by a different processor (assuming, of
course, that the algorithm allows a full parallelization).

Time-varying computational complexity is everywhere around us. As software
viruses spread with time they become more difficult to deal with, a spaceship racing
away from Earth becomes ever harder to track, and so on.

2.7.2.3 Rank-Varying Computational Complexity

Another factor that can dictate the complexity of a step is its rank, defined as the
order of execution of that step. Examples of this kind are hardly new. Euclid’s algo-
rithm for computing the greatest common divisor of two numbers executes the same
basic operation (a division) at each step, but the size of the operands (and implic-
itly the complexity of the operation) decreases continually. Algorithms for which an
amortized analysis can be applied also make good examples of rank-varying com-
putational complexity. Incrementing a binary counter [9] is a procedure in which the
number of bit flips at each step is not constant, though it is neither strictly increasing
nor strictly decreasing with the rank.

Suppose now that the cost of executing the ith step of an algorithm is c(i) = 2i

elementary operations or time units. Since the computational complexity of a step
grows exponentially with its rank, a sequential machine may again have difficulties
keeping up, while a parallel approach can avoid the whole problem of dealing with
steps of ever-increasing complexity by executing them in parallel. Thus, all steps in
the parallel algorithm have rank 1.

The difference between a rank-driven and a time-driven computational complex-
ity can probably be synthesized best in the following manner. If the cost of executing
step S j depends only on the state of the system after executing the previous j− 1
steps, regardless of how much time was consumed to reach that state, then we clearly
have an example of rank-varying computational complexity.

76 Selim G. Akl and Marius Nagy

2.7.2.4 Interacting Variables

In the next paradigm that we describe, it is the interactions among mutually de-
pendent variables caused by an interfering agent (performing the computation)
that is the origin of the evolution of the system under consideration. Thus, a
relationship exists between x0,x1, . . . ,xn−1 that connects them together. Any at-
tempt to read the value of any one variable will inevitably and unpredictably dis-
turb the values of the remaining variables. More precisely, the act of reading xi,
for any i ∈ {0,1, . . . ,n− 1}, causes the system to make a transition from state
(x0,x1, . . . ,xi, . . . ,xn−1) to (x′0,x

′
1, . . . ,x

′
i, . . . ,x

′
n−1). In this way, some of the values

needed in the computation of F may be lost without possibility of recovery. This is
the hallmark of the interacting variables paradigm and the only way to deal with it
is to read the values of all variables at the same time, so that eventual disturbances
after a simultaneous reading no longer affect the computation of F . Examples of
physical systems with interacting variables are:

• a quantum register made up of n entangled quantum bits. Reading (measuring)
any one of them necessarily causes the others to assume a state compatible with
the outcome of the measurement.

• n living organisms housed in a closed environment and depending on one another
for survival. Performing any operation on one of the organisms in exclusion of the
others may have the effect of disturbing the equilibrium sufficiently to provoke a
serious adverse effect (or even death) on the remaining organisms.

• a chemical system under stress (viewed as a change in pressure, temperature or
concentration). According to Le Châtelier’s principle, if a system at equilibrium
is subjected to a stress, the system will shift to a new equilibrium in an attempt
to reduce the stress.

2.7.2.5 Variables Obeying a Global Condition

Finally, the relationship among the input variables may take the form of a global
property P(x0,x1, . . . ,xn−1) that characterizes the initial state of the system and
which must be maintained throughout the computation. In particular, if the effect of
the computation is to change xi to x′i at some point, then P(x0,x1, . . . ,x′i, . . . ,xn−1)
must be true for the new state of the system. If the property P is not satisfied at a
given moment of the computation, the latter is considered to have failed.

There exist problems for which acting on a single variable (regardless of which
particular one) will inevitably lead to a violation of the global condition and the
only way to reach a final state is to act simultaneously on all variables, during each
step of the computation. Geometric flips, map recoloring and rewriting systems are
three examples of transformations that may be constrained by a global mathematical
condition [10].

2 Introduction to Parallel Computation 77

2.8 Non-Universality in Computation

Finally, we relate the inherently parallel computing paradigms presented in the pre-
vious section with the hypothetical notion of a Universal Computer. Such a machine
must be able to follow (execute) the steps of any program made up of basic input,
output and internal processing operations. The Universal Computer is intended to
be the most general possible model of computation, encompassing all existing or
imagined computational paradigms. It must also have a means of communicating
with the outside world at any time during a computation, either for receiving input
or for producing output (results). The machine is endowed with the ability to ac-
quire input data through measurements on outside-world systems, performed by a
set of probes (or sensors). The program, the input data (either received or acquired),
the output and all intermediate results are stored in (and can be retrieved from) a
memory which is generously allowed to be unlimited.

To make this Universal Computer a “realistic” model of computation, it is sub-
jected to the finiteness condition: In one step, requiring one time unit, the Universal
Computer can execute a finite and fixed number of basic operations (arithmetic,
logic, read, write, measure, etc.). It is precisely this limitation (quite natural and
reasonable) that makes the Universal Computer a utopian concept. Specifically, five
classes of computable functions F are described in Sect. 2.7.2, which cannot be
computed by any machine obeying the finiteness condition. This condition restricts
the number of input variables upon which the Universal Computer can operate in
parallel (read, measure, transform and so on, depending on the particular paradigm
under discussion). So, if the Universal Computer is able to act on n variables in par-
allel, during one step, where n can be arbitrarily large, but finite, then the Universal
Computer will fail to solve the same problem for n + 1 variables. In other words,
the Universal Computer cannot simulate a computation that is perfectly possible for
another machine. However, it is exactly the principle of simulation that lies at the
heart of universality.

Choosing a machine endowed with n+1 processing units as the Universal Com-
puter is not a solution. By an adversary argument, we can construct a problem in-
stance involving n+2 variables and the Universal Computer will fail once again to
compute the required function F , although it can be trivially computed by a ma-
chine with n + 2 processors. This argument is valid for any given Universal Com-
puter having a fixed (and finite) number of processing elements and therefore a
limited degree of parallelism to tackle such inherently parallel tasks. An infinite hi-
erarchy of parallel models is thus formed (see Fig. 2.15), in which a machine on a
certain level can simulate any machine below it in the hierarchy, but none above it.
And since the principle of simulation is the cornerstone for the concept of a Univer-
sal Computer, we must conclude that the existence of such a machine is impossible.

We wish to draw the reader’s attention on the remarkable similarity between the
underlying formal structures of this negative result regarding universality in com-
puting, on one hand, and Gödel’s incompleteness theorem in mathematics, on the
other hand. The similarity becomes apparent in the light of the following analo-
gies. An arbitrary machine Ui in the hierarchy depicted in Fig. 2.15 corresponds to a

78 Selim G. Akl and Marius Nagy

U

U
U

A

A
A

1

2

3

1

2

3

U Ai i

Fig. 2.15 An infinite hierarchy of parallel models mirror an infinite hierarchy of incomplete formal
systems.

certain formal system Ai for which a self-referencing proposition Gi can be con-
structed such that the proposition, although true, cannot be proved within Ai. Since
Ai allows the formulation of a true proposition that cannot be proved within Ai, it
follows that Ai is incomplete, just as Ui is not universal.

To go up in the hierarchy, we add the recalcitrant proposition as a new axiom
of Ai, thus obtaining a new system Ai+1. For the new system, Gi does not create
problems anymore, but we can now construct a new proposition Gi+1, not provable
within Ai+1. We can prove Gi+1 in a new system Ai+2, which in turn has its own
problem proposition Gi+2 not provable within it, and so on forever. To complete the
analogies, an unprovable proposition corresponds to a problem instance unsolvable
by a machine on the current level. Thus, just as no complex-enough formal system
can be considered complete, there is no computing machine that can be considered
universal.

2 Introduction to Parallel Computation 79

2.9 Conclusion

Parallel computing emerged from the need to speed up computations that, otherwise,
would necessitate an impractical amount of time to complete. Even today, reducing
the running time remains the main motivation behind using a parallel algorithm for
many practical applications.

For decades, parallel computing has been an active field of research and it is even
more so nowadays. With every new technological advancement, an opportunity pre-
sented itself to try to incorporate the new technology into more efficient parallel
models of computation. An illustrative example is the way linear arrays and meshes
of processors were augmented with electronic buses (at first, fixed, and later, recon-
figurable) and optical buses, as the technologies developed and matured. A more
recent example is the way parallel computing can harness the immense computa-
tional power offered by the Internet in order to accomplish tasks that, not long ago,
were thought to be beyond the capabilities of any computer.

Lenstra, who was the first together with several colleagues to factor the ninth
Fermat number 229

+ 1 (155 decimal digits), also played an instrumental role in
cracking both RSA-129 and RSA-130. More precisely, a 129-digit number used as
a public key to encrypt a message by applying the RSA algorithm was factored in
1994 after a gargantuan computational effort that lasted about eight months and in-
volved some 1600 computers distributed over the Internet. Improvements in factor-
ing technology made possible a much quicker factorization of a 130-digit RSA key
two years later. Moreover, Lenstra believes that RSA codes depending on 512-bit
numbers (corresponding to 155 decimal digits) are within the reach of cypherpunks,
if they could get hundreds of thousands of machines computing for them (see [11]
page 167).

These results clearly showed the huge potential offered by models relying on
massive parallelism and further encouraged research into how to better exploit this
potential. The field of distributed computing, a very attractive research field nowa-
days, can trace back its roots to those early efforts. Models such as clusters and grids
(see Sects. 2.3.4 and 2.3.5 at the beginning of the chapter) will certainly continue to
play an increasing role in the landscape of parallel computing. This is facilitated by
the continued increase in availability and affordability of relatively cheap processors
and simple computers, compared with the sophistication and cost of supercomputers
with similar performances as grids or clusters.

The current renewed interest in parallel computing methods we are witnessing
today is also due to a certain shift in the type of applications dominating the field
of computing. With ubiquitous, embedded and mobile computing devices becom-
ing more prevalent, the design of efficient on-line and real-time algorithms becomes
more and more important. In this context, the benefits of a parallel approach can
be tremendous, not only in terms of speed but also for the quality of the solution
computed, especially for numerical applications. Also, unconventional computing
paradigms have been uncovered for which a parallel solution is the only viable op-
tion for a successful approach.

80 Selim G. Akl and Marius Nagy

Finally, the study of parallel methods of computation is worth pursuing in its own
respect for the valuable insights offered into the theory of computing, in general,
as it is the case, for example, with the negative result on universality presented in
Sect. 2.8.

References

1. S. G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, Upper Saddle River,
NJ, 1997.

2. J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
3. Y. Ben-Asher, D. Peleg, R. Ramaswami, A. Schuster, The power of reconfiguration, Journal

of Parallel and Distributed Computing 13 (1991) 139–153.
4. C. M. Krishna, K. G. Shin, Real-Time Systems, McGraw-Hill, New York, 1997.
5. S. D. Bruda, S. G. Akl, On limits on the computational power of data-accumulating algo-

rithms, Information Processing Letters 86 (4) (2003) 221–227.
6. S. G. Akl, Superlinear performance in real-time parallel computation, The Journal of Super-

computing 29 (1) (2004) 89–111.
7. S. G. Akl, Parallel real-time computation: Sometimes quality means quantity, Computing and

Informatics 21 (5) (2002) 455–487.
8. S. G. Akl, S. D. Bruda, Improving a solution’s quality through parallel processing, The Journal

of Supercomputing 19 (2001) 219–231.
9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MIT Press,

Cambridge, MA, 2001.
10. S. G. Akl, Evolving computational systems, in: S. Rajasekaran, J. H. Reif (Eds.), Parallel

Computing: Models, Algorithms, and Applications, CRC Press, Boca Raton, FL 2007, a mod-
ified version is available as Technical Report No. 2006-526, School of Computing, Queen’s
University, Kingston, Ontario, Canada.

11. J. Brown, The Quest for the Quantum Computer, Touchstone Edition, Simon & Schuster, New
York, 2001.

Chapter 3
Tools for Parallel and Distributed Computing

Thomas Fahringer

Abstract

Performance engineering of parallel and distributed applications is a complex task
that iterates through various phases, ranging from modeling and prediction, to per-
formance measurement, experiment management, data collection, and bottleneck
analysis. There is no evidence so far that all of these phases should/can be integrated
in a single monolithic tool. Moreover, the emergence of Cloud computing as well
as established Grid infrastructures as a wide-area platform for high-performance
computing raises the idea to provide tools as interacting Web services that share
resources, support interoperability among different users and tools, and most im-
portant provide omni-present services over Grid or Cloud infrastructures.

We have developed the ASKALON tool set to support performance-oriented de-
velopment of parallel and distributed applications. ASKALON comprises four tools,
coherently integrated into a Web service-based distributed architecture. SCALEA
is a performance instrumentation, measurement, and analysis tool of parallel and
distributed applications. ZENTURIO is a general purpose experiment management
tool with advanced support for multi-experiment performance analysis and param-
eter studies. AKSUM provides semi-automatic high-level performance bottleneck
detection through a special-purpose performance property specification language.
The Grid-Prophet enables the user to model and predict the performance of parallel
and distributed applications at early development stages.

In this chapter we describe the overall architecture of the ASKALON tool set
and outline the basic functionality of the four constituent tools. The structure of
each tool is based on the composition and sharing of remote Web services, thus
enabling tool interoperability. In addition, a Data Repository allows the tools to
share common application performance and output data which has been derived by
the individual tools. A Service Repository is used to store common portable Web

Thomas Fahringer
Institute for Computer Science, University of Innsbruck, Technikerstr. 21a,
A-6020 Innsbruck, Austria, e-mail: Thomas.Fahringer@uibk.ac.at

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_3, 81
c© Springer-Verlag London Limited 2009

82 Thomas Fahringer

service implementations. A general-purpose Factory service is employed to cre-
ate service instances on arbitrary remote computing sites. Discovering and dynami-
cally binding to existing remote services is achieved through a Registry service. The
ASKALON visualization diagrams support both online and post-mortem visualiza-
tion of performance and output data.We demonstrate the usefulness and effective-
ness of ASKALON by applying the tools to a variety of real-world applications.

3.1 Introduction

Computational Grids, Cloud infrastructures [1], and parallel computers have be-
come an important asset that enable application developers to aggregate resources
scattered around the globe for large-scale scientific and engineering research. How-
ever, developing applications that can effectively utilize Grid/Cloud infrastructures
and parallel computers still remains very difficult due to the lack of high-level tools
to support application programmers. To this date, many individual efforts have been
devoted to support performance-oriented development of parallel and distributed ap-
plications. Commonly users must write programs at low level of abstractions such
as MPI [2] or Web services technology [3] which are both error-prone and time-
consuming. Other languages such as OpenMP [4] allow incremental parallelization
at a higher level but at the cost of controlling locality which is an important as-
pect on most parallel computers. Porting existing software tools on the Grid and
Cloud infrastructures poses additional challenges. Portability and interoperability
of software tools on the Grid and on Clouds are critical issues which have not been
thoroughly addressed by the scientific community. We believe that this situation has
been caused by the heterogeneous and often machine-dependent nature of tools,
complex operating system and compiler dependencies, as well as differences and
incompatibilities in tool functionality, interfaces, and other proprietary solutions.

Languages, software, system, and network neutrality have been successfully ad-
dressed over the past 10 years by well-known distributed object-oriented component
technologies such as the Java Remote Method Invocation (RMI [5]), the Common
Object Request Broker Architecture (CORBA [6]), Microsoft’s Distributed Com-
ponent Object Model (DCOM [7]), Enterprise Java Beans [8], Jini [9], Web ser-
vices [10], or JavaSymphony [11].

Web services address heterogeneous distributed computing by defining tech-
niques for describing software components, methods for accessing them, and dis-
covery methods that enable the identification of relevant service providers. A key
advantage of Web services over previous distributed technology approaches is their
programming language, model, network, and system software neutrality.

Following the advantages offered by Web services, the Open Grid Services
Architecture (OGSA) [12] builds on the Web services technology mechanisms
to uniformly expose Globus Grid services semantics, to create, name, and dis-
cover transient Grid service instances, to provide location transparency and multiple

3 Tools for Parallel and Distributed Computing 83

protocol bindings for service instances, and to support integration with underlying
native platform facilities. The Web Service Resource Framework (WSRF – [13]) is
the technical specification which defines extensions and specializations to the Web
services technology to standardize and ease the development of Grid services as
required by OGSA.

In this chapter we describe the ASKALON tool set for parallel and distributed
computing. ASKALON integrates four interoperable tools: SCALEA for instrumen-
tation and performance analysis, ZENTURIO for automatic experiment manage-
ment, AKSUM for automatic bottleneck analysis, and the Grid-Prophet for perfor-
mance prediction. The tool-set has been designed as a distributed set of stateful Web
services (WSRF – [13]), exporting a platform independent standard API. Platform
dependent and proprietary services are preinstalled on specific appropriate sites and
can be remotely accessed through a portable interface. A service repository is em-
ployed to store implementations of public portable Grid services. Each tool provides
its own graphical user portal to be accessed by the user in a friendly and intuitive
way. Remote services are created by a general purpose Factory service using the in-
formation from the Service Repository. On the other hand, the portals discover and
bind to existing service instances by means of advanced lookup operations invoked
on a Registry service [14]. Interoperability between tools is naturally achieved by al-
lowing multiple clients to connect and share the same service instances from the ini-
tial design phase. Furthermore, a Data Repository with a standard schema definition
allows tools to share performance and output data of Grid and Cloud infrastructures
and applications.

This chapter is organized as follows. The next section discusses related work.
Section 3.3 presents an overall Grid service-based architecture of the ASKALON
tool-set. Sections 3.4, 3.5, 3.6, and 3.7 describe the basic functionality of each tool
in brief. Various experiments conducted by each individual tool on several real-
world applications are reported in Sect. 3.8. Concluding remarks and future work
are presented in Sect. 3.9.

3.2 Related Work

Early work at the Technical University of Munich developed THE TOOL-SET [15],
consisting of a mixture of performance analysis and debugging tools for parallel
computing. Attempts to accommodate these tools into a single coherent environment
produced the On-line Monitoring Interface Specification (OMIS) [16]. In contrast
to this effort, ASKALON focuses on performance analysis for parallel, Cloud, and
Grid applications, whose tools are integrated through a distributed Grid service-
based design.

Significant work on performance measurement and analysis has been done by
Paradyn [17], TAU [18], Pablo toolkit [19], and EXPERT [20]. SCALEA differs
from these approaches by providing a more flexible mechanism to control instru-
mentation for code regions and performance metrics of interest. Although Paradyn

84 Thomas Fahringer

enables dynamic insertion of probes into a running code, Paradyn is currently lim-
ited to instrumentation of subroutines and functions, whereas SCALEA can instru-
ment – at compile-time only – arbitrary code regions including single statements.
repositories, options, and high-level analysis. Paradyn also supports experiment
management [21] through a representation of the execution space of performance
experiments and techniques for quantitative comparison of several experiments. In
contrast to ZENTURIO, experiments (by varying problem and machine size param-
eters) have to be set up manually under Paradyn.

The National Institute of Standards and Technology (NIST) developed a proto-
type for an automated benchmarking tool-set [22] to reduce the manual effort in
running and analyzing the results of parallel benchmarks. Unlike in ZENTURIO,
experiment specification is restricted to predefined parameters available through a
special purpose graphical user interface.

Various groups have developed performance tools that are oriented toward auto-
matic analysis. Paradyn [9] performs an automatic online analysis by searching for
performance bottlenecks based on thresholds and a predefined (but immutable) set
of hypotheses. The European working group APART [23] defined a specification
language for performance properties of parallel programs based on which JavaPSL,
the language for performance property specification used in AKSUM, has been de-
signed. Performance properties defined by APART also inspired some of the pre-
defined properties AKSUM provides. Kappa-Pi [24] and Earl/Expert [20] are post-
mortem tools that search for performance properties in message passing trace files
in combination with source code analysis. Expert also covers OpenMP and mixed
parallel programs and uses the concept of performance properties organized in a
hierarchy. Performance properties are also used in the Peridot [25] project.

There have been several approaches employing machine learning methods in
different fields, ranging from simple activities execution time [26], compiler per-
formance optimization and prediction [27], scheduling [28] to networks [29]. There
is also a series of related work for single activity execution time predictions using
application profiles [30], analytical methods [31], soft benchmarks [32], historical
data [26, 33] etc. But to the best of our knowledge, no effort has been made to pre-
dict the performance of workflows with different variations of problem sizes, Grid
sites, and high-level middleware services.

Another effort closer to our focus is by Glatard et al. in [34]. The authors use
probabilistic models to analyze workflow performance in the Grid, by consider-
ing execution times of individual activities, and data transfers between the activ-
ities and modeling various other execution phases as random variables. Gelenbe
et al. [35] and Mussi et al. [36] also considered the execution time of a task graph as
a random variable and determined its distribution from the graph parameters. These
approaches assume very simple application workflows, ignoring complex control
flows between activities, and loops over different (sets of) activities – which are
completely driven by input problem-size, and are of core importance for overall
workflow performance predictions. Moreover, variations in execution time due to
input data set are not taken into account. In contradiction, we take into account
the workflow structure attributes as well as the problem-size used for application

3 Tools for Parallel and Distributed Computing 85

workflow execution. Furthermore our work also considers the optimizations done
by different schedulers used for mapping workflow activities on different Grid sites.

Authors in [33,37,38] have used different attributes to define similarity of execu-
tion of single activities. Lee et al. [38] have also described attributes to define sim-
ilarity of resource states and policies. In contrast to these approaches which focus
on single activities execution time predictions, our work emphasizes execution time
prediction of full workflows. We consider (almost) all major workflow attributes
describing its execution at different Grid infrastructural levels (such as Grid site,
network etc.), in particular the workflow structure attributes to consider workflow
structure similarities defined by Wombacher et al. [39]. Another major difference in
our approach from the existing approaches (for activity execution time prediction)
is the inclusion of problem-size attribute to describe a workflow execution.

Gibbons et al. [37] and Lee et al. [26] use a fixed set of templates, and Smith et
al. [33] employ greedy search and genetic search to find effective templates. Com-
pared to these efforts, we employ dynamic methods of supervised exhaustive search
and evolution programming to find suitable template sets. Supervised exhaustive
search is better than the greedy search in a way that it uses a notion of external super-
vision, by assigning probabilities of selection to different attributes and thus guiding
the selection process. Similarly, our method of evolution programming is more effi-
cient than genetic search used in [33] in implementation as well as in computation.
In contrast to these approaches, we also introduce a notion of attribute relationships
to decide their inclusion while selecting attributes for suitable templates.

3.3 ASKALON Architecture

The ASKALON tool set consists of four performance tools that we identified as im-
portant for performance analysis of parallel, Grid, or Cloud applications, integrated
into a single coherent environment. Each tool consists of a single user portal and
a set of distributed Grid services (see Fig. 3.1). The functionality of each tool is
implemented by shared use of own services, together with the ones provided by the
other integrated tools. In this section we show how such a distributed service design
helps the integration of tools and enables their interoperability. The design solutions
adopted are, however, fully generic for a Grid environment and are not constrained
to our performance analysis goal. The concrete scenarios by means of which each
performance tool interoperates with others through shared use of common services
is described in the corresponding sections of this section (see Sects. 3.4, 3.5, 3.6,
and 3.7). Furthermore, such a generic design will be beneficial for the integration of
new Grid tools that we envision for the future.

The services are based on the WSRF-technology [13] and expose a platform in-
dependent standard API, expressed in the standard Web Services Description Lan-
guage (WSDL) [40]. Platform dependent and proprietary services are preinstalled
on specific appropriate sites from where they can be remotely accessed in a portable
way, via the Simple Object Access Protocol (SOAP) [41] over HTTP. By isolating

86 Thomas Fahringer

ASKALON
Data

Repository

Performance
Property
Analyzer

Application

Compilation
Command

Execution
Command

Machine

Experiment
Generator

Scheduler

ASKALON
Service

Repository

Service Sites

Compute Site

Overhead
Analyzer

Search
Engine

Performance
Analyzer

SCALEA
User Portal

ASKALON
Visualization

Diagrams

ZENTURIO
User Portal

AKSUM
User Portal

Grid-PROPHET
User Portal

Performance
Estimator

SIS
Instrumentor

Experiment
Executor

Registry

M
id

dl
ew

ar
e

Factory

Factory

Fig. 3.1 The ASKALON tool set architecture.

platform dependencies on critical resources, extra flexibility for the installation and
management of the tools is achieved. Each tool provides its own graphical user por-
tal to be accessed in a friendly and intuitive way. The user portals are light-weight
clients, easy to be installed and managed by the end-users. User portals reside on the
user’s local machine (e.g., a notebook) and provide gateways to performance tools
by dynamically creating and connecting to remote services. ASKALON services
can be persistent (e.g., Factory) or transient, as specified by WSRF. All services can
be accessed concurrently by multiple clients, which is an essential feature in a Grid
or Cloud environment and enables tool interoperability. The Grid Security Infras-
tructure (GSI) [42] based on single sign-on, credential delegation, and Web services
security [43] through XML digital signature and XML encryption is employed for
authentication across ASKALON user portals and Grid services.

Remote service instances are created by a general-purpose Factory service using
the information from the Service Repository. Additionally, the Data Repository (see
Sect. 3.3.1) with a common standard schema definition stores and shares common
performance and output data of the applications under evaluation. It thus provides
an additional mode of integration and interoperability among tools. To increase reli-
ability of the system by avoiding single point of failures, multiple Service and Data
Repository instances are replicated on multiple sites and run independently.

An WSRF-based asynchronous event framework enables Grid services to notify
clients about interesting system and application events. ASKALON services support

3 Tools for Parallel and Distributed Computing 87

both push and pull event models, as specified by the Grid Monitoring Architecture
(GMA) [44]. Push events are important for capturing dynamic information about
running applications and the overall Grid or Cloud infrastructure on-the-fly and
avoid expensive continuous polling. Pull events are crucial for logging important
information, for instance in cases when tools like ZENTURIO run in off-line mode,
with disconnected off-line users.

ASKALON classifies the Grid/Cloud sites on which the services can run into two
categories (see Fig. 3.1):

(1) Compute sites are Grid/Cloud locations where end applications run and which
host services intimately related to the application execution. Such services in-
clude the Experiment Executor of ZENTURIO, in charge of submitting and con-
trolling jobs on the local sites and the Overhead Analyzer of SCALEA, which
transforms raw performance data collected from the running applications into
higher-level more meaningful performance overheads.

(2) Service sites are arbitrary Grid/Cloud locations on which ASKALON services
are preinstalled or dynamically created by using the Factory service.

3.3.1 Data Repository

All ASKALON tools share a common Data Repository for storing information
about the parallel and distributed applications under evaluation. The repository im-
plementation is based on the PostgreSQL [45] open-source relational database sys-
tem. The database schema definition reflects a layered design and has been jointly
implemented by all tool developers.

Any tool can optionally store relevant experimental data including application,
source code, machine information, and performance and output results into the
repository. An interface with search and filter capabilities for accessing repository
and leveraging the performance data sharing and tool integration [46] is provided.
Tools exchange data via the Data Repository and also provide direct interfaces to
subscribe for specific performance metrics, or parameter study results. Data can also
be exported into XML format so that it can easily be transferred to and processed
by other tools.

SCALEA stores mostly performance overheads, profiles, and metrics in the Data
Repository. ZENTURIO through the Experiment Executor adds information about
experiment parameters (ZEN variables) as well as output data required by param-
eter studies. AKSUM adds through its Property Analyzer the ZENTURIO schema
definition information about high-level performance properties (inefficiency, scala-
bility) and their severity. The Grid-Prophet can access information provided by any
ASKALON tool to guide its prediction effort. Moreover, predicted performance data
can be inserted into the Data Repository as well, which can be accessed by ZEN-
TURIO and AKSUM instead of invoking SCALEA for a real program run.

88 Thomas Fahringer

3.3.2 ASKALON Visualization Diagrams

In addition to the distributed Web service-based design and the common Data
Repository, ASKALON provides a Java-based package that comprises a set of
generic and customizable visualization diagrams [47]. Available diagrams include
linechart, barchart, piechart, surface, as well as a more sophisticated hierarchical di-
agram for the simultaneous visualization of a maximum of seven dimensions, which
is used to graphically display performance studies of distributed and parallel pro-
grams.

Besides visualizing static post-mortem information, all diagrams accept online
data streams as input for dynamic on-line visualization of parallel and distributed
program behavior. The diagrams are generic and fully customizable, which enable
both user and Web services to map application parameters, output results, or perfor-
mance metrics onto arbitrary visualization axes. All ASKALON tools employ the
ASKALON visualization diagrams.

3.4 SCALEA

SCALEA [48] is a performance instrumentation, measurement, and analysis tool for
parallel programs that supports post-mortem performance analysis.

3.4.1 Instrumentation

The Instrumentation Service provides support to instrument services and appli-
cations. We support three approaches: command line options, directives, and dy-
namic instrumentation. In the first approach, the SCALEA Instrumentation Sys-
tem (SIS) provides automatic instrumentation of Fortran MPI, OpenMP, HPF, and
mixed OpenMP/MPI programs. The user can select (by directives or command-line
options) code regions (loops, procedures, arbitrary code regions, I/O statements,
HPF INDEPENDENT loops, OpenMP PARALLEL loops, OpenMP SECTIONS,
OpenMP CRITICAL, MPI barrier statements, etc.) and performance metrics (wall-
clock, cpu time, communication overhead, cache misses, synchronization overhead,
etc.) of interest for which SCALEA automatically generates instrumentation code
and determines the desired performance values during or after program execution.
Furthermore, SIS provides a mechanism in order to control tracing/profiling by turn
on/off the measurement process. Moreover, SIS offers an interface for other tools
to traverse and annotate an abstract syntax tree to specify code regions for which
performance metrics should be obtained. Based on preselected code regions and/or
performance metrics, SIS automatically analyzes source codes and inserts probes
(instrumentation code) in the code which will collect all relevant performance in-
formation during execution of the program on a target architecture. The source

3 Tools for Parallel and Distributed Computing 89

code level approach, however, requires all the source files to be available. In ad-
dition, instrumentation and measurement metrics can not be configured at runtime.
To overcome these problems, we are currently exploiting the dynamic instrumenta-
tion mechanism based on Dyninst [49]. In order to enable dynamic instrumentation,
we implement a mutator service which contains Dyninst API calls, the code that
implements the runtime compiler and the utility routines to manipulate the appli-
cation process. A mutator is responsible for controlling the instrumentation of an
application process on the machine where the process is running. We developed an
XML-based instrumentation request language (IRL) to allow users and services to
specify code regions for which performance metrics should be determined and to
control the instrumentation process.

With the command-line options, performance metrics and code regions for in-
strumentation are specified through the command-line parameters when invoking
the instrumentation system. Command-line options can be used along with direc-
tives.

3.4.2 Overhead Analyzer

SCALEA provides a novel classification of performance overheads for parallel
programs that include data movement, synchronization, control of parallelism, addi-
tional computation, loss of parallelism, and unidentified overheads [48]. The Over-
head Analyzer Service is used to investigate performance overheads of a parallel
program based on the overhead classification.

This analysis allows the user to examine sources of overheads simultaneously
with code regions causing the overhead in the parallel application. Based on that,
the user can further launch other functions to analyze the code regions in detail or
can deploy suitable methods to tune the code in order to reduce the overhead.

The types of overheads and portion of identified overhead within total overhead
determined are dependent on the instrumentation and measurement. In an overhead
analysis phase, we conduct two tasks: (1) to determine the total overhead To and (2)
to determine detailed types of overheads for each code region.

Given a code region r, let Ts(r) and Tp(r) be the execution time of a sequential
version and a parallel version with p processors, respectively. The total overhead
To(r) of code region r when executed with p processors can be computed as follows:

To(r) = Tp(r)−
Ts(r)

p

The total overhead can be determined only when (1) both sequential and parallel
version of r exist or (2) r is an addition parallel programming-dependent code re-
gion. In the latter case, r is necessarily required for the parallelization of programs,
e.g., a code region used to send data (e.g., MPI_SEND); r is not introduced in the
sequential version.

90 Thomas Fahringer

The total overhead provides a value of how much overhead occurs in a code
region; with total overhead we can determine whether a performance problem exists
or not. However, in order to examine more detailed information about the sources
that contribute on the total overhead, we need to determine sub overhead categories
of the total overhead. These categories can provide more insightful information,
which can be used to reveal the causes of performance problems.

To this end, we may need to divide a code region into subregions, to measure
subregions and to determine types of overheads of individual subregions besides
measuring the code region.

Performance overheads of code region instances of a given experiment are com-
puted, displayed, and stored into the Data Repository.

The SIS measurement library supports profiling of parallel applications, collect-
ing timing, counter information, as well as hardware parameters via the PAPI li-
brary [50]. The Overhead Analyzer computes performance overheads and stores
them into the Data Repository.

3.4.3 Performance Analyzer

The Performance Analyzer Service evaluates the raw performance data collected
during program execution and stores them into the Data Repository. All requested
performance metrics are computed. Several analyses (e.g., Load Imbalance Analy-
sis, Inclusive/Exclusive Analysis, Metric Ratio Analysis, Overhead Analysis, Sum-
mary Analysis) are provided.

While most performance tools investigate the performance for individual exper-
iments one at a time, SCALEA goes beyond this limitation by supporting also per-
formance analysis for multiple experiments (e.g., Speedup/Improvement Analysis,
Scalability Analysis, Multi-Region Analysis, Multi-Set Experiment Analysis). The
user can select several experiments, code regions, and performance metrics of inter-
est whose associated data are stored in the Data Repository. The outcome of every
selected metric is then analyzed and visualized for all experiments. SCALEA sup-
ports the following multi-experiment analyses:

• performance comparison for different sets of experiments: The overall execution
of the application across different sets of experiments can be analyzed; exper-
iments in a set are grouped based on their characteristics (e.g., problem sizes,
communication libraries, platforms).

• overhead analysis for multi-experiments: Various sources of performance over-
heads across experiments can be examined.

• parallel speedup and efficiency at both program and code region level: Com-
monly, these metrics are applied only at the level of the entire program. SCALEA,
however, supports examination of scalability at both program and code region
level ranging from a single statement to the entire program.

3 Tools for Parallel and Distributed Computing 91

3.5 ZENTURIO

ZENTURIO [51] is a tool to automatically generate and conduct a large number
of experiments in the context of large-scale performance and parameter studies on
cluster, Grid, and Cloud architectures. ZENTURIO uses the ZEN language to spec-
ify a large set of performance and parameter study experiments in a compact and
user friendly manner. Thereafter, it automatically generates, conducts, and analyzes
the performance and output data through a distributed service-oriented Grid archi-
tecture shielded from the end-user by means of a graphical user portal. ZENTURIO
systematically organizes the performance and output data produced by all experi-
ments into a Data Repository for post-mortem analysis.

3.5.1 ZEN Experiment Specification Language

Existing parameter study tools provide support to specify value ranges for applica-
tion parameters of interest, e.g., by means of external scripting languages [52], or
through graphical annotation of input files [53]. All of these approaches, however,
force the user to export the application parameters to global input files or program
arguments, which often require undesired source code adaptation for using the tool.
Additionally, there are no tools that combine the experiment specification and man-
agement with cross-experiment performance analysis.

In contrast, ZENTURIO defines a directive-based language called ZEN [54] to
annotate arbitrary application files. ZEN directives are used to assign value sets to
so called ZEN variables. A ZEN variable can represent any problem, system, or ma-
chine parameter, including program variables, file names, compiler options, target
machines, machine sizes, scheduling strategies, data distributions, etc. The value
set represents the list of interesting values for the corresponding parameter. The ad-
vantage of the directive-based approach over an external script [52] is the ability to
specify more detailed experiments (e.g., associate local scopes to directives, restrict
parametrization to specific local variables, evaluate different scheduling alternatives
for individual loops, etc.).

ZEN defines four kinds of ZEN directives as follows:

• Substitute directives assign a set of values to an application parameter. Each value
from the set represents an experimental value for the parameter that shall be used
by the application scientist in a separate experiment. The parameter instantiation
is performed through plain string substitution that replaces all occurrences of the
parameter name with its experimental value (in the scope of the directive);

• Assignment directives have analogous specification semantics as the substitute
directive with the difference that the parameter instantiation is performed by in-
serting an assignment statement in place of the directive, which assigns the ex-
perimental value to the parameter name (as program variable);

92 Thomas Fahringer

• Constraint directives define a boolean condition over multiple parameters which
restricts the set of possible experiments to a meaningful subset;

• Performance directives are used to request a wide variety of performance met-
rics for specific code regions of the program. The scope of the ZEN language is
therefore not restricted to parameter studies.

A file/application annotated with ZEN directives is called ZEN file/application. A
ZEN transformation system generates all ZEN file instances for a ZEN file, based on
the ZEN directives inserted. The SCALEA instrumentation engine, which is based
on a complete Fortran90 OpenMP, MPI, and HPF front-end and unparser, is used to
instrument the application for performance metrics. The ZEN performance behavior
directives are translated to SCALEA SIS directives and compiler command-line
options.

3.5.2 Experiment Generator

The Experiment Generator is in charge of generating the experiments defined by
an input ZEN application. Each ZEN file of the ZEN application is first parsed
using the scanner and parser modules of the ZEN Transformation System which
produces an abstract syntax tree. The abstract syntax trees of all ZEN files are then
given as input to the experiment generation algorithm which generates a set of ZEN
application instances which corresponds to an experiment.

We use SCALEA (see Sect. 3.4) as an instrumentation engine for Fortran 90,
OpenMP, MPI, and HPF to instrument the application for performance metrics
based on ZEN performance directives.

Additionally, we provide an interface to logically insert ZEN directives into the
abstract syntax tree of each parsed ZEN file for situations when it is not practical to
insert the directives manually.

We provide as part of the Experiment Generator service four methods for gener-
ating the experiments of a ZEN application:

1. synchronous by means of a single method invocation. This approach is rather
primitive since the synchronous invocation can be very expensive and produces
blocking (i.e., non-responsive) clients;

2. iterative, compliant with the pull event model, each experiment being returned
by an iterator upon synchronous request;

3. asynchronous, compliant with the push event model, each experiment being sent
to the client using an asynchronous callback as soon as it is generated;

4. random, by instantiating each ZEN variable (or a subset of them) with a random
ZEN element. This method is used for implementing randomized optimization
algorithms as in genetic algorithms.

In the case of using ZENTURIO in online Grid mode, the Experiment Generator
automatically transfers the experiments to the target Grid execution site using the
GridFTP protocol. In the case of using DUROC as job manager, the experiments are

3 Tools for Parallel and Distributed Computing 93

copied to multiple destination Grid sites which we retrieve from the RSL description
of the application.

3.5.3 Experiment Executor

The Experiment Executor is a generic service with a high-level interface for exe-
cuting and managing experiments on target Grid execution sites. We designed the
Experiment Executor as a stand-alone Grid service independent of ZENTURIO that
can be deployed for experiment management purposes in other infrastructures too.
The Experiment Executor assumes a properly installed application on the target ex-
ecution site(s). The Experiment Executor interacts at the back-end with a batch job
scheduler, which in the current implementation can be Condor [55], LoadLeveler,
LSF, PBS, and Sun Grid Engine for cluster, and GRAM [56] or DUROC for Grid
computing.

After each experiment has completed, the application output results and perfor-
mance data are stored into the ASKALON Data Repository (see Sect. 3.3.1). High-
level performance overheads are computed by the Overhead Analyzer service of
SCALEA. An Application Data Visualizer portlet of the user portal, developed on
top of the ASKALON visualization diagrams (see Sect. 3.3.2), automatically gen-
erates visualization diagrams that display the variation of performance and output
data across multiple sets of experiments.

3.6 AKSUM

AKSUM [57] has been designed to be a multi-experiment analysis tool, to a high
degree independent of hardware and programming paradigms; it provides the user
with a uniform and highly customizable interface to instrument an application, ac-
cess and analyze performance data relative to several experiments, define how ex-
periments are generated and executed, control the end of the search process, and
define the search output. Once this information has been provided (or the default
values have been accepted), AKSUM automatically conducts performance analysis
without any user interference.

Figure 3.2 depicts the architecture of AKSUM. Through its user portal, the user
inputs hypotheses that should be tested, machine and problem sizes for which per-
formance analysis should be done (application input parameters), files that com-
pound the application, and possibly conditions to stop the analysis process. The
user portal displays, while the search process is going on, which hypotheses were
evaluated to be true for the machine and problem sizes tested.

The experiment engine (implemented by ZENTURIO) launches the experiments
considering the platform where the application will run. The instrumentation and
monitoring engine is responsible for monitoring and instrumenting the application

94 Thomas Fahringer

Aksum

Experiment data
repository

Experiment
engine

Search
engine

Instrumentation and
monitoring engine

User
portal

Standard
properties

User-defined
properties

Instrumented
application

Instrumentation
and monitoring

system

Application

Data flow

Control flow

Fig. 3.2 The architecture of AKSUM.

independently of the language or paradigm utilized; it relies on an instrumentation
and monitoring system to instrument the user’s application and generate raw perfor-
mance data, which is processed and stored in the experiment Data Repository, where
the experiment engine also stores data. Currently, we use SCALEA (see Sect. 3.4)
and Twilight [58] as instrumentation and monitoring systems. SCALEA is responsi-
ble for instrumenting Fortran programs, while Twilight instruments Java programs.
AKSUM also uses the abstract syntax tree generated by the front end of VFC [59],
which allows AKSUM to traverse the structure of Fortran programs and to inform
SCALEA which code regions must be instrumented.

The search engine coordinates the entire search process and, using the data in
the experiment Data Repository, tries to detect performance problems (called per-
formance properties) in the application. The user-provided data, which influence the
search process, flow from the user portal to the search engine, while the output of
the search process flows from the search engine to the user portal.

3.6.1 Search Engine

The search engine coordinates the search process; it tries to detect performance
properties in the application using the data generated by the other engines and stored
in the experiment Data Repository. Properties are hierarchically organized into tree
structures called property hierarchies, which are used to tune and prune the search
for performance properties. For example, one may assume that, if an application is
efficient, there is no need to compute its load imbalance. This assumption can be

3 Tools for Parallel and Distributed Computing 95

encoded in a specific property hierarchy by placing the property LoadImbalance
under the property inefficiency. Another example would be the definition of a
property hierarchy without any communication properties when it is known that the
application is encoded as an OpenMP code and runs on a shared memory machine.

Each node in the property hierarchy represents a performance property and is
described by two elements:

• Performance property name: the name of the performance property associated
with this node; the property definition is stored in a property repository (defined
by the user or provided by AKSUM).

• Threshold: a value that is compared against the severity value of each instance
of the property represented by this node; if the severity value is greater than or
equal to this value, then the property instance is critical and will be included in
the list of critical properties.

Figure 3.3 shows a property hierarchy with six properties, and how the prop-
erty LoadImbalance is customized. There are four standard property hierarchies
provided by AKSUM, covering message passing, shared memory, mixed parallel
programs, and distributed Java programs, but the user can define and store new
property hierarchies from scratch or based on these predefined hierarchies. The ref-
erence code region for every property node in the predefined property hierarchies is
per default set to the main program.

Users can use the set of properties provided by AKSUM and also specify in
Java their own properties and add them to AKSUM in order to extend it. Any new
property must be a class defining the following three methods:

• boolean holds(): returns true if the property (class) instance holds (that means,
the “negative performance behavior” is present).

• float getSeverity(): returns a value between 0 and 1 indicating how severe a
property instance is (the closer to 1, the more severe the property instance is).

• float getConfidence(): returns a value between 0 and 1 that indicates the degree
of confidence in the correctness of the value returned by holds.

AKSUM comes with a library, called JavaPSL [60], to help with the specification
of performance properties, as it allows easy access to the performance data (timing
information, overheads, and hardware counters) that SCALEA provides.

The process of searching for performance properties usually finishes when all ap-
plication instances have been executed. In addition, AKSUM supports the definition
of checkpoints to stop the search for properties before the end of the last experiment.
A checkpoint is a Boolean function defined as follows:

• op(severity(property, code region, number of experiments)) relop value where
op ∈ maximum, minimum, average, standard deviation

• relop ∈ { >, ≥, <, ≤, =, �= }. Any property and any code region are also valid
values for property and code region.

96 Thomas Fahringer

Fig. 3.3 Property hierarchy and property customization.

The following checkpoint, for instance, means that the search must stop if the sever-
ity of the any property in any code region is greater than 0.6.

maximum(severity(any property, any code region, 1)) > 0.6

The user-supplied input data is provided to the search engine, which is in the
center of AKSUM and controls the entire search process. By issuing requests to the
instrumentation engine, the search engine determines the performance information
to be collected for application code regions and problem and machine sizes. The
instrumentation engine of AKSUM invokes the SCALEA Instrumentation service
for the actual code instrumentation, that is, it is a layer that enables the search engine
to access and traverse application files in a machine independent way, to instrument
them, and to transparently modify makefiles, scripts, and the compilation command
line in order to link the instrumented application with the instrumentation library
provided by SCALEA.

The instrumented code is submitted to ZENTURIO’s Experiment Generator ser-
vice, which changes the execution parameters according to the input parameters

3 Tools for Parallel and Distributed Computing 97

provided by the user and transfers the files to the appropriate Grid sites where ZEN-
TURIO’s Experiment Executor service will compile and execute the experiments,
as well as transfer performance data to the Data Repository after each experiment
has been executed.

The search engine evaluates the performance data in the Data Repository by in-
voking a Performance Property Analyzer service, which determines all critical per-
formance properties (i.e., property instance whose value returned by the method
getSeverity is greater than a certain threshold). A cycle consisting of consecutive
phases of application execution and property evaluation is continued until all exper-
iments are done or some system or user-defined condition stops the search process.
Under the user portal, every performance property that has been determined to be
critical is dynamically displayed (together with the source code) to the user during
the search process and stored in a Data Repository.

3.6.2 Reinforcement Learning for Performance Analysis

While the analysis techniques used in AKSUM are effective to find performance
problems, it still lacks a more formal approach that can be used to explain the de-
cisions taken during the analysis and to justify their correctness. A well-established
theory to model the performance analysis problem was needed which, when im-
plemented, performed as good as or better than the original implementation of AK-
SUM. For this purpose reinforcement learning was used as part of AKSUM to model
the performance analysis problem for two reasons: The trial-and-error nature of re-
inforcement learning resembles closely the empirical character of performance anal-
ysis, and, differently of other forms of learning, no expert teacher is required to tell
the agent the correct actions to take.

Performance analysis can be seen as a reinforcement problem where the goal is
to find in a short time many performance problems and with as little as possible
interference in the application’s behavior. Because reinforcement learning is based
on trial and error, it would take too much time to learn the right actions for a given
state if the performance analysis were post-mortem and the instrumentation static,
since the reward would come only after the application finished executing. For this
reason, for AKSUM only the dynamic performance analysis has been modeled as a
reinforcement learning problem.

As usual, the first challenge when modeling real-world problems is deciding
which elements are significant when solving the problem and which are not. An
excessive number of variables added to the problem definition may slow down the
resolution: reinforcement learning may have more signals to perceive and process,
and it may take some time until the agent finally realizes that a variable has little
or no significance for the problem. On the other hand, a model represents a type
of biased knowledge, where a learning agent is told which signals can be safely
ignored according to someone’s point of view (points of view, however, are not al-
ways right). Another challenge is converting the result of actions to a scalar value

98 Thomas Fahringer

that the agent can use as reinforcement, which may also contain a biased view of the
problem and therefore will be transferred to the agent. Details of how reinforcement
learning has been applied as part of AKSUM to support the search for performance
analysis can be found in [61].

3.7 Grid-Prophet

The Grid-Prophet is a performance estimator for Grid workflow applications. An
application workflow is a sequence of activities (small parts of an application) con-
nected through control flows and/or data flows. The performance prediction of a
Grid workflow is defined as the time it takes to execute all workflow activities. The
workflow activities may be mapped on different Grid sites in the Grid, with/without
the support of high-level Grid-services (such as resource broker, advance reserva-
tions etc.). The performance of a workflow in the Grid mainly depends upon the
selected set of Grid sites, the problem size of the application, and states of the Grid
resources, besides many other factors.

Performance prediction of a workflow is required to support dynamic execution
of a Grid workflow. In addition, it helps in

• providing a decisive base for selection of Grid sites regarding time and cost.
• analyzing the overall performance and diagnosing performance bottlenecks,

(e.g., a guide for scheduler and enactment engine).
• comparisons of different meta-scheduling policies/algorithms used to guide the

workflow execution in the Grid, etc.

The prediction of the workflow execution time can be speculated in two dimen-
sions: reciprocal workflow performance prediction that predicts workflow execution
time for one iteration of activities in the critical path of the workflow (including
one iteration of each loop in the workflow structure), and absolute workflow per-
formance prediction that includes several repeating iterations of workflow until its
termination. Here, we focus on absolute workflow execution time prediction.

For different perspectives of decision makings in the Grid, there may be dif-
ferent requirements of workflow execution time predictions in terms of optimistic
predictions as the most likely performance or the last (nearest neighbor) similar ex-
ecution performance; pessimistic predictions in terms of upper and lower bounds
of execution time, and accuracy of predictions in terms of confidence intervals for
the predictions. We address the most likely performance and the accuracy of the
predictions here.

On the other hand, performance of a workflow is very profound to predict due
to several phases in workflow execution and involvement of resources from almost
all levels of the Grid infrastructure. Performance of the whole workflow is compre-
hended from the performance of individual activities along the critical path of the
workflow, different Grid services involved in automatic workflow execution such as
meta scheduler, resource broker etc., and the network transfers. The critical path of

3 Tools for Parallel and Distributed Computing 99

the workflow may include some control flow and parallel or sequential loops over
some/all activities. Moreover, performance of individual activities is shaped from ar-
chitecture specific execution of individual activities, local resource manager (LRM)
policies, queue wait times, and external load (memory and CPU) at the time of their
execution. The different phases of a workflow execution in the Grid are depicted in
Fig. 3.4.

Middleware Job Sub Job Queue Id. Time Ext. Load Par. Jobs wait Network Transfers ... Polling for
term.

waiting Activity exe. time

Pending Active Complete

Loop

Res. Mang. Sched. Execut. Perf. Pred.

Loop

Loop

Job start Job end

Tran. endTran. start

Wf start Wf end

Mem. CPU Network
Cong.

Fig. 3.4 Different execution phases of a Grid workflow.

Different Grid infrastructural components affecting workflow performance in-
clude Grid middleware, wide area network, Grid site, and local network [62] – these
are shown in Fig. 3.5.

Fig. 3.5 Different Grid infrastructural components affecting workflow performance in the Grid.

3.7.1 Prediction Techniques

It is very difficult to formulate the performance of a workflow execution in the Grid
from characterized performance of the individual Grid components involved in the
execution of the workflow, due to involvement of the several components (such as

100 Thomas Fahringer

CPU, memory, network etc.) as shown in Fig. 3.5. Moreover, finding and including
their combinatorial relative effects on workflow performance is even more complex.
In order to take into account the effects of all the major components affecting perfor-
mance of application workflow and include their combinatorial effects on workflow
performance, we employ two methods from the domain of machine learning to pre-
dict performance of application workflows. First, the Similarity Templates and sec-
ond, the Local Learning Framework. These methods are addressed in Sects. 3.7.1.2
and 3.7.1.3 respectively.

Fig. 3.6 Workflow properties composition.

3.7.1.1 Characterizing Workflow Performance

To exploit maximum strength of machine learning methods and get a higher pre-
diction accuracy, we characterize the application workflow execution at the levels
of different phases (see Fig. 3.4). At a coarse-grain level we define workflow ex-
ecution in terms of application workflow properties and execution properties. Ap-
plication workflow properties can be considered in terms of activity properties (like
problem size, executables, versions, etc.) and workflow structure properties (like po-
sition of the activities, their dependencies etc.). The workflow structural properties
need to be defined and considered in workflow similarity definitions [39] to incor-
porate the effects of structural differences (like dependencies between activities) in
the executions of the workflows.

The execution properties are defined in terms of activity execution properties
and execution environment properties (like Grid middleware, background load on
the Grid sites etc.). Furthermore, activity execution properties are defined in terms
of activity properties (activity description [63], parameters for execution etc.) and
expert execution guidance like scheduling policy/algorithm used by a meta sched-
uler. Likewise, the execution environment properties include the Grid sites selected
for execution, resource state properties (like jobs in the queue, jobs running, free
memory etc.), and Grid environment properties (like Grid-middleware, high-level
services used like meta-scheduling). For application workflows, the set of activities

3 Tools for Parallel and Distributed Computing 101

in the workflow and the Grid sites selected to map these activities are considered.
This composition of properties is shown in the Fig. 3.6. The detailed workflow exe-
cution attributes at these levels are summarized in Table 3.1.

Table 3.1 Workflow execution attributes in the Grid.

Attributes Type

Workflow-level Workflow name Nominal
Set of activities Nominal vector
Activity position Numeric vector
Workflow start time Numeric

Application-level Application name, desc Nominal
Problem size Nominal vector
Executables Nominal vector
Versions Nominal vector
File sizes Numeric vector

Execution-level Set of Grid-sites Nominal vector
Activities mapping Nominal vector
Time Numeric vector
Grid middleware Nominal
Scheduling strategy Nominal

Resource-level Jobs already in the queue Nominal vector
CPUs req. in the queue Numeric
Jobs already running Nominal vector
Already occupied CPUs Numeric
Jobs running in parallel Nominal vector
CPUs occupied in parallel Numeric

Policy-level User-name Nominal
Group (VO) Nominal
Queues Nominal vector

Network-level Bandwidth Numeric
Latency Numeric

Type nominal represents non-numeric values; vector represents more than one value.

3.7.1.2 Similarity Templates

It is well known that similar applications’ executions with similar setups are more
likely to have similar execution time than the executions which have nothing or little
in common [37]. We employ similarity templates (sets of attributes to define sim-
ilarity) using a more sophisticated definition of similarity of application workflow
execution than in [26, 33], and argue that carefully selected properties of similarity
can lead to significant improvements in dynamic prediction accuracy, particularly
employing workflow structure attributes. This is why we achieve higher prediction
accuracy in our results (see Sect. 3.8.4) than related work [26, 33].

One of the core issues for the effectiveness of the predictions generated from the
templates is to define a suitable set of templates and evaluate them quantitatively

102 Thomas Fahringer

by using historical traces. On the one hand, putting fewer or unrelated attributes
in the templates will lead to the generation of classes which will classify unrelated
jobs (having very few attributes in common) together. On the other hand, putting
too many attributes in a template will result in too many classes with fewer jobs
classified in each. None of these classes will truly be a candidate for predictions for
all the classes and thus predictions with poor accuracy will be the consequence.

We introduce here two search techniques to construct a suitable and meaning-
ful set of templates τ: the Supervised Exhaustive Search algorithm and Evolution
Programming [64]. The τ contains a set of workflow attributes α j (described in
Table 3.1), and may be any subset of P{(α1

1),(α2
1 ,α2

2), ...,(α j
1 ,α j

2 , ...,α j
j)}, where

P represents the power set, and α j
i corresponds to the ith attribute in the jth template.

The template generation phase is followed by generating classes from these tem-
plates by assigning different respective possible values to attributes in the templates.
These classes are then used to generate predictions. We select the class with the
minimum standard deviation of execution times of its data instances (historical data
categorized in that class), for generating predictions. To generate predictions from
the selected class, we use three induction models. The first is simple by taking the
mean of all the instances in the class. The second technique exploits an additional
information, the total number of CPUs (from different Grid sites) associated with
historical run times, by performing regressions to compute the coefficients a and b
for linear regression (r = an + b), logarithmic regression (logr = a logn + b) and
inverse regression (r = n

a + 1
b) between number of CPUs n and job run time r. The

third technique we use is the least mean square error of the predictions generated
based on previous induction models.

3.7.1.3 Local Learning Framework

We employ the Instance Based Learning (IBL) in the framework of local learning.
The main advantage of IBL is that it is sensitive to even small variations in the
attributes of workflow execution and thus can yield higher accuracy. Typically, it
makes predictions for the query of given specifications of data attributes by finding
its nearby data instances and then applying some induction model. The four major
components of IBL framework are (1) the distance function, (2) the number of near-
est neighbors, (3) the weighting function for the neighbors, and (4) the induction
model to fit the neighbors.

The IBL algorithm assumes all the data instances correspond to points (repre-
senting data) in the n-dimensional space Rn (real numbers), where n is the number
of data attributes (here workflow execution attributes). To measure the nearness of
the data (described by the attributes described in Table 3.1), we employ the Het-
erogeneous Euclidean-Overlap Metric (HEOM) [65] as a distance function. This
distance function can easily be used on nominal and numeric scalar attributes and
we also extended it for numeric vector attributes.

We employ three induction models to generate predictions. First, the mean of the
k-nearest neighbors, which considers k data points closest to the data point queried

3 Tools for Parallel and Distributed Computing 103

for prediction is computed. Second, the weighted average (k-WA) that considers k
nearest neighbors and takes their weighted average based on their distance from
the queried specifications (weight nearer neighbors higher and vice versa) is de-
termined. Third, the linear locally weighted regression is computed, where closest
points are weighted by proximity to the prediction data point using a kernel and then
computing linear regression using the weighted points.

The application of IBL requires tuning for some of the parameters for its ef-
fective functioning; for example, different attributes in the distance function must
be assigned some weights, to differentiate between their relativeness to data items,
in order to measure the “better” nearness. Furthermore, selection of a good induc-
tion model, history size, and neighbor size must be tuned too. We exploit evolution
programming [64] to optimize these parameters by minimizing average prediction
error on the historical data set. We compare the optimization of different attributes
through Bias-Variance Analysis [66] and adaptively select a set of optimized param-
eter values.

3.8 Experiments

In this section, we present numerous experiments to demonstrate the usefulness and
effectiveness of the ASKALON tool set for a variety of real-world applications.

3.8.1 Performance Analysis with SCALEA

We illustrate SCALEA by applying it to a mixed OpenMP/MPI Fortran program
that solves the two-dimensional Stommel Model of Ocean Circulation using a five-
point stencil and Jacobi iteration. This code has been automatically instrumented,
executed, measured, and analyzed for several problem and machine sizes based
on user-provided SIS directives inserted in the source code. Our experiments have
been conducted on Gescher but nodes are run with Linux 2.4.17-SMP patched with
perfctr for hardware counters measurement. Gescher is a cluster multiprocessor
system that consists of 16 nodes; each comprises four Intel Pentium III Xeon 700
MHz CPUs with 1MB full-speed L2 cache, 2Gbyte ECC RAM, Intel Pro/100+Fast
Ethernet, Ultra160 36GB hard disk is run with Linux. We use MPICH 1.2.3 and
pgf90 compiler version 3.3 from the Portland Group Inc. The problem size is set
to 200×200 points.

SCALEA supports the programmer in the effort to examine detailed performance
overheads for an experiment of a given program. Two modes are provided for this
analysis. First, Region-to-Overhead mode (see Fig. 3.7) allows the programmer to
select any code region instance for which all detected performance overheads are
displayed. Second, the Overhead-to-Region mode (see Fig. 3.8) enables the pro-
grammer to select the performance overhead of interest, based on which SCALEA

104 Thomas Fahringer

displays the corresponding code region(s) in which the selected overhead occurs.
This selection can be limited to a specific code region instance, thread or process.
For both modes the source code of a region is shown only if the code region instance
is selected by a mouse click.

Fig. 3.7 Region to Overhead mode for Stommel executed on four SMP nodes.

Fig. 3.8 Overhead to Region mode for Stommel executed on four SMP nodes.

3 Tools for Parallel and Distributed Computing 105

Figure 3.9 presents the execution time of Stommel in six experiments. Overall,
Stommel does not scale well. The reason is mostly due to the high overhead (espe-
cially communication) as presented in Fig. 3.10.

Fig. 3.9 Execution time of Stommel in six experiments. 1N×4P means 1 SMP node with four
processors.

Fig. 3.10 Performance overheads of Stommel in six experiments.

3.8.2 Performance and Parameter Studies of a Three-Dimensional
Particle-In-Cell Application with ZENTURIO

The three-Dimensional Particle-In-Cell (3DPIC) [67] is a Fortran 90 MPI appli-
cation that simulates the interaction of high intensity ultrashort laser pulses with
plasma in three-dimensional geometry. In this section we present a 3DPIC perfor-
mance study based on the following parameter annotations:

1. The machine size is restricted by the peculiarities of this application to 1, 4, 9, 12,
16, 25, and 36 parallel processes which we have expressed through the count

106 Thomas Fahringer

argument of the GRAM RSL script shown in Example 3.1. Based on the number
of processes of one experiment, GRAM allocates the correct number of dedicated
SMP nodes using PBS as back-end local job manager. We set the job type to
single which gave us flexibility in selecting the local interconnection network.
We started the application using the shell script illustrated in Example 3.2 which
assigns to the MPIRUN ZEN variable the path to the mpirun script;

2. The interconnection network is studied by annotating an application Makefile.
Similarly, a constraint directive associates the implementation specific mpirun
command with the correct MPI library;

3. The performance metrics of interest are the execution time and the communica-
tion overhead.

Example 3.1 (Globus RSL script).

(*ZEN$ SUBSTITUTE count\=4 = { count={1,1,3,3,4,7,9} }*)
& (count=4)
(jobtype=single)
(directory="/home/radu/APPS/LAPW0/znse_6")
(executable="script.sh"))

Example 3.2 (Shell script – script.sh).

#!/bin/sh
cd $PBS_O_WORKDIR
n = ‘wc -l < $PBS_NODEFILE‘
#ZEN$ ASSIGN MPIRUN ={ /opt/local/mpich/bin/mpirun,

/opt/local/mpich_gm/bin/mpirun.ch_gm }
$(MPIRUN) -np $n -machinefile $PBS_NODEFILE lapw0

We inserted five ZEN directives into four files to generate a total of 14 experi-
ments. Figure 3.11 indicates a good scalability behavior of the 3DPIC application.
The use of the Myrinet network yields approximately 50% performance improve-
ment compared to the Fast Ethernet, which is explained by the reduced communi-
cation time (see Fig. 3.11) over the faster Myrinet network with lower latency and
higher bandwidth. Fig. 3.11 shows a relatively low ratio between the application
execution time (i.e., one full pie) and the MPI overheads measured, which explains
the good application scalability.

3.8.3 Performance Analysis for a Backward Pricing Application
with AKSUM

The backward pricing application [68] implements the backward induction algo-
rithm to compute the price of an interest rate-dependent product. The backward in-
duction algorithm has been implemented as an HPF code based on which the VFC
compiler [59] generates a mixed OpenMP/MPI code. Based on the user provided

3 Tools for Parallel and Distributed Computing 107

(a) Network comparison (Fast Ethernet versus Myrinet).

(b) Communication overhead comparison (Fast Ethernet versus
Myrinet).

(c) Contribution of the Myrinet communication overheads to the wall-clock time.

Fig. 3.11 3DPIC performance results for various machine sizes.

108 Thomas Fahringer

input data, the search engine of AKSUM automatically determines that seven perfor-
mance properties in the property hierarchy are critical for this code (see Fig. 3.12),
where the properties are presented in ascending order of severity. As usual, the user
portal displays initially only the property names for those instances whose severity
is above the user-defined threshold (we set it to 0.01). The property instances can
be shown by expanding each property name. For every instance the corresponding
program unit and severity value is indicated. In the backward pricing application,
the most serious performance property is ExecutionTimeLoadImbalance, which has
an instance that holds for the main (entire) program with severity value 0.80 (see
the entry BW_HALO_3 0.80). The same property holds for the subregion of the
main program indicated by the entry BW_HALO_2 0.80. The severity of the Ex-
ecutionTimeLoadImbalance property instances for the entire application increases
with the number of execution threads (not shown in Fig. 3.12), from 0.01 for 2 CPUs
to 0.80 for 64 CPUs. This behavior also explains the increasing severity values for
the inefficiency property (varying from 0.05 for 2 CPUs to 0.79 for 64 CPUs) All
other properties in the property hierarchy have lower severity values (Synchroniza-
tionOverhead: 0.01, MessagePassingOverhead: 0.17 with 64 CPUs, for the other
machine sizes 0.0).

The main program calls the subroutine BW, which calls subroutine COM-
PUTE_SLICE. As the properties’ inefficiency and nonscalability are not critical for
COMPUTE_SLICE, and since the critical instances of these properties have always
approximately the same value for both the main program and the subroutine BW,
we conclude that performance tuning should mainly be concentrated on subroutine
BW.

3.8.4 Workflow Performance Prediction with the Grid-Prophet

We present results from our experiments to demonstrate the effectiveness of our
approach for application workflow performance prediction for a real-world applica-
tion workflow MeteoAG [69] in the Austrian Grid [70]. The structure of MeteoAG
workflow is shown in Fig. 3.13. Here we present our prediction accuracy results as

average normalized absolute error =
|ActExeTime−PredExeTime|

ActExeTime

where ActExeTime represents actual execution time and PredExeTime represents
predicted execution time. Accuracy of the predictions is evaluated across different
problem sizes of the workflow and also along different number of Grid sites used to
execute the workflow.

Normalized absolute error for three problem sizes of MeteoAG and for differ-
ent combinations of Grid sites from one to nine is shown in Fig. 3.14. The average
normalized absolute errors in our predictions for the three problem sizes over differ-
ent combinations of Grid sites were respectively 18, 30, and 23%. The same across
different number of Grid sites was 24%. Maximum error remained at different num-
ber of Grid sites for the three problem sizes. The overall maximum error (61%)

3 Tools for Parallel and Distributed Computing 109

Fig. 3.12 AKSUM property visualization for the backward pricing application.

was found against problem size of three when executed on different combinations
of seven Grid sites, and the minimum error (10%) was found for problem size of
one when executed on different combinations of eight Grid sites. We find our ac-
curacy results much better than related works using similar techniques for single
activity execution time predictions [26,33], both quantitatively and considering that
our predictions are for a set of activities potentially with complex dependencies
(workflow).

110 Thomas Fahringer

rams_makevfile
Initial Conditions

rams_init
6 h Simulation

revu_compare
Post Process

rams_hist
18 h Simulation

stageout

raver
Verify and Select

revu_dump
Post Process

case 1 case 2 case n

rams_makevfile
Initial Conditions

rams_makevfile
Initial Conditions

simulation_init

continue?

yes

no

case_init case_init case_init

Fig. 3.13 MeteoAG workflow structure, activities, control flows, and data flows.

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of Grid Sites

N
or

m
al

iz
ed

 A
bo

so
lu

te
 E

rr
or

Prob-size 1
Prob-size 2
Prob-size 3

Fig. 3.14 Normalized absolute error in performance predictions for MeteoAG workflow for dif-
ferent combinations of problem sizes and Grid sites.

3 Tools for Parallel and Distributed Computing 111

3.9 Conclusions

The development of the ASKALON tool set has been driven by the need of scien-
tists and engineers to perform performance analysis, experiment management, pa-
rameter studies, modeling, and prediction of parallel and distributed applications for
cluster and Grid infrastructures. ASKALON supports these functionalities through
the provision of four sophisticated tools: SCALEA for instrumentation and perfor-
mance analysis; ZENTURIO for experiment management, performance, and param-
eter studies; AKSUM for automatic bottleneck detection and performance interpre-
tation; and the Grid-Prophet for performance modeling and prediction. Each tool
can be accessed and manipulated via advanced user portals. ASKALON has been
designed as a distributed Grid service-based architecture and implemented on top
of the WSRF technology and Globus toolkit. Designing each tool as a composition
of remote Grid service provides a series of advantages: (1) isolates platform de-
pendencies on specific critical sites under a well-defined portable API; (2) enables
light-weight clients, easy to be installed and managed by users on local sites (e.g.,
on notebooks); (3) allows the interaction of multiple tools by accessing resources
concurrently through common shared services. The ASKALON tools exchange in-
formation through a common Data Repository or interoperate through the underly-
ing Grid services. A generic visualization package that supports a wide variety of
portable diagrams in both post-mortem and on-line modes is employed by the user
portals of all tools.

Currently, we are working on a more elaborate integration and interoperability
of all tools to reflect the continuously evolving Globus, WSRF, and Web service-
based Grid specifications. Moreover, the ASKALON is also adjusted to be applied
to applications on Cloud computing infrastructures.

Acknowledgments I am very thankful to Radu Prodan, Farrukh Nadeem, and the entire DPS
(Distributed and Parallel Systems) team from the Institute of Computer Science at the University
of Innsbruck as well as to Hong-Linh Truong from the Vienna University of Technology and Clovis
Seragiotto, formerly with the University of Vienna. This work has been accomplished as part of the
AURORA project funded by the Austrian Science Fund, the Austrian Grid project funded by the
Austrian Federal Ministry for Education, Science and Culture, and the K-WF Grid project funded
by the EU 6th FP under contract IST-2002-511385.

References

1. R. Ramakrishnan, Cloud computing – was thomas watson right after all?, in: ICDE, IEEE,
(2008), p. 8, http://dx.doi.org/10.1109/ICDE.2008.4497407.

2. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, University of
Tennessee, Knoxville, TN, (1995).

3. E. R. Harold, XML: EXtensible Markup Language, IDG Books, San Mateo, CA,
USA, (1998), http://www.amazon.com/exec/obidos/ISBN=0764531999/
cafeaulaitA/.

112 Thomas Fahringer

4. L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory pro-
gramming, IEEE Computational Science and Engineering 5(1) (1998) 46–55, http://
www.computer.org/cse/cs1998/c1046abs, http://dlib.computer.org/
cs/books/cs1998/pdf/c1046.pdf.

5. W. Grosso, Java RMI, O’Reilly, Associates, Inc., 981 Chestnut Street, Newton, MA 02164,
USA, 2002, designing and building distributed applications.

6. D. S. Linthicum, CORBA 2.0?, Open Comput. 12 (2) (1995) 68–70.
7. N. Brown, C. Kindel, Distributed Component Object Model Protocol: DCOM/1.0, Microsoft

Corporation and Redmond, WA, 1998.
8. B. Roth, An introduction to Enterprise Java Beans technology, Java Report: The Source for

Java Development 3.
9. W. K. Edwards, Core Jini, IEEE Micro 19 (5) (1999) 10–10.

10. W3C, Web Services Activity, http://www.w3.org/2002/ws/.
11. T. Fahringer, A. Jugravu, JavaSymphony: New Directives to Control and Synchronize Local-

ity, Parallelism, and Load Balancing for Cluster and GRID-Computing, in: ACM Java Grande
– ISCOPE 2002 Conference, ACM, Seattle, 2002, pp. 8–17.

12. I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integration, The Globus Project and The Global
Grid Forum, http://www.globus.org/research/papers/OGSA.pdf (Novem-
ber 2002).

13. G. A. WSRF, Web services resource framework, http://www.globus.org/wsrf.
14. M. Siddiqui, T. Fahringer, Gridarm: Askalon’s grid resource management system, in: EGC,

(2005), pp. 122–131.
15. R. Wismüller, T. Ludwig, THE TOOL-SET – An Integrated Tool Environment for PVM, in:

H. Lidell, A. Colbrook, B. Hertzberger, P. Sloot (Eds.), Proc. High-Performance Computing
and Networking, Vol. 1067 of Lecture Notes in Computer Science, Springer-Verlag, Brussels,
Belgium, (1996), pp. 1029–1030.

16. R. Wismüller, J. Trinitis, T. Ludwig, OCM – A Monitoring System for Interoperable Tools, in:
Proc. 2nd SIGMETRICS Symposium on Parallel and Distributed Tools SPDT’98, ACM Press,
Welches, OR, USA, (1998), pp. 1–9, http://www.in.tum.de/\~{}wismuell/
pub/spdt98.ps.gz.

17. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, T. Newhall, The Paradyn Parallel Performance Measurement Tool. IEEE
Computer 28 (1995) 37–46.

18. A. Malony, S. Shende, Performance technology for complex parallel and distributed systems,
in: In G. Kotsis and P. Kacsuk (Eds.), Third International Austrian/Hungarian Workshop on
Distributed and Parallel Systems (DAPSYS 2000), Kluwer Academic Publishers, Dortdrect,
(2000), pp. 37–46.

19. D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, L. F. Tavera, Scal-
able Performance Analysis: The Pablo Performance Analysis Environment, in: Proc. Scalable
Parallel Libraries Conf., IEEE Computer Society, (1993), pp. 104–113.

20. F. Wolf, B. Mohr, Automatic Performance Analysis of Hybrid MPI/OpenMP Applications,
in: Proceedings of the Eleventh Euromicro Conference on Parallel, Distributed and Network-
based Processing (PDP-11), IEEE Computer Society Press, (2003), pp. 13–22.

21. K. L. Karavanic, B. P. Miller, Experiment management support for performance tuning, in:
ACM (Ed.), Proceedings of the SC’97 Conference, ACM Press and IEEE Computer Society
Press, San Jose, California, USA, (1997).

22. M. Courson, A. Mink, G. Marcais, B. Traverse, An automated benchmarking toolset, in:
HPCN Europe, (2000), pp. 497–506, citeseer.nj.nec.com/424567.html.

23. APART – IST Working Group on Automatic Performance Analysis: Real Tools, Aug 2001
until July 2004, http://www.kfa-juelich.de/apart.

24. A. Espinosa, T. Margalef, E. Luque, Integrating Automatic Techniques in a Performance Anal-
ysis Session, in: Proceedings of the 6th International Euro-Par Conference 2000, Lecture
Notes in Computer Science 1900, Springer, (2000), pp. 173–177.

3 Tools for Parallel and Distributed Computing 113

25. M. Gerndt, A. Schmidt, M. Schulz, R. Wismueller, Performance Analysis for Teraflop Com-
puters – A Distributed Automatic Approach, in: Proceedings of 10th Euromicro Workshop
on Parallel, Distributed, and Network-based Processing (EUROMICRO-PDP 2002), Canary
Islands, SPAIN, (2002), pp. 23–30.

26. H. Li, D. Groep, J. Templon, L. Wolters, Predicting job start times on clusters, in: CCGRID
’04: Proceedings of the 2004 IEEE International Symposium on Cluster Computing and the
Grid, IEEE Computer Society, Washington, DC, USA, (2004), pp. 301–308.

27. J. Cavazos, C. Dubach, F. V. Agakov, E. V. Bonilla, M. F. P. O’Boyle, G. Fursin, O. Temam,
Automatic performance model construction for the fast software exploration of new hardware
designs, in: CASES, (2006), pp. 24–34.

28. P. Priore, D. D. L. Fuente, A. Gomez, J. Puente, A review of machine learning in dynamic
scheduling of flexible manufacturing systems, Artificial Intelligence for Engineering Design
15 (3) (2001) 251–263.

29. A. Eswaradass, X.-H. Sun, M. Wu, Network bandwidth predictor (nbp): A system for online
network performance forecasting, in: CCGRID ’06: Proceedings of the Sixth IEEE Interna-
tional Symposium on Cluster Computing and the Grid, (2006), pp. 265–268.

30. V. Taylor, X. Wu, J. Geisler, R. Stevens, Using kernel couplings to predict parallel application
performance, in: HPDC ’02: Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing, (2002), p. 125.

31. D. A. Bacigalupo, S. A. Jarvis, L. He, D. P. Spooner, D. N. Dillenberger, G. R. Nudd, An
investigation into the application of different performance prediction methods to distributed
enterprise applications, Journal of Supercomput. 34 (2) (2005) 93–111.

32. F. Nadeem, M. M. Yousaf, R. Prodan, T. Fahringer, Soft benchmarks-based application per-
formance prediction using a minimum training set, in: E-SCIENCE ’06: Proceedings of
the Second IEEE International Conference on e-Science and Grid Computing, IEEE Com-
puter Society, Washington, DC, USA, (2006), p. 71, http://dx.doi.org/10.1109/
E-SCIENCE.2006.131.

33. W. Smith, I. Foster, V. Taylor, Predicting application run times with historical information,
Journal of Parallel and Distrib. Comput.

34. T. Glatard, J. Montagnat, X. Pennec, A probabilistic model to analyse workflow performance
on production grids, in: CCGRID, (2008), pp. 510–517.

35. E. Gelenbe, E. Montagne, R. Suros, C. M. Woodside, A performance model of block structured
parallel programs, in: Proceedings of the international workshop on Parallel algorithms &
architectures, (1986), pp. 127–138.

36. P. Mussi, P. Nain, Evaluation of parallel execution of program tree structures, in: ACM SIG-
METRICS Performance Evaluation Review, 12(3) (1984), 78–87.

37. R. Gibbons, A historical application profiler for use by parallel schedulers, in: Job Scheduling
Strategies for Parallel Processing, Springer Verlag, London, (1997), pp. 58–65.

38. H. Li, J. Chen, Y. Tao, D. Gro, L. Wolters, Improving a local learning technique for queuewait
time predictions, in: CCGRID ’06: Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID’06), (2006), pp. 335–342.

39. A. Wombacher, M. Rozie, Piloting an empirical study on measures forworkflow similarity.,
in: IEEE SCC, (2006), pp. 94–102.

40. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services Description Language
(WSDL), http://www.w3.org/TR/wsdl (March 2001).

41. A. Ryman, Simple Object Access Protocol (SOAP) and Web Services, in: Proceedings of the
23rd International Conference on Software Engeneering (ICSE-01), IEEE Computer Society,
Los Alamitos, California, (2001), pp. 689–689.

42. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A security architecture for computational grids,
in: Proceedings of the 5th ACM Conference on Computer and Communications Security
(CCS-98), ACM Press, New York, (1998), pp. 83–92.

43. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein, B. LaMac-
chia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Nagaratnam, H. Pra-
fullchandra, J. Shewchuk, D. Simon, Web Services Security (WS-Security), Specification,

114 Thomas Fahringer

Microsoft Corporation, http://www-106.ibm.com/developerworks/library/
ws-secure/ (Apr. 2002).

44. B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, M. Swany, A Grid Monitor-
ing Architecture, The Global Grid Forum, http://www-didc.lbl.gov/GGF-PERF/
GMA-WG/papers/GWD-GP-16-2.pdf+ (January 2002).

45. R. Herzog, PostgreSQL – the Linux of databases, Linux Journal 46, ftp://ftp.ssc.
com/pub/lj/listings/issue46/2245.tgz.

46. H.-L. Truong, T. Fahringer, On Utilizing Experiment Data Repository for Performance Analy-
sis of Parallel Applications, in: 9th International Europar Conference(EuroPar 2003), Lecture
Notes in Computer Science, Springer-Verlag, Klagenfurt, Austria, (2003), pp. 27–37.

47. T. Fahringer, ASKALON Visualization Diagrams, http://www.dps.uibk.ac.at/
projects/askalon/visualization.

48. H.-L. Truong, T. Fahringer, SCALEA: A Performance Analysis Tool for Parallel Programs,
Concurrency and Computation: Practice and Experience 15 (11–12) (2003) 1001–1025.

49. B. Buck, J. K. Hollingsworth, An API for Runtime Code Patching, The International Journal
of High Performance Computing Applications 14 (4) (2000) 317–329.

50. S. Browne, J. Dongarra, N. Garner, K. London, P. Mucci, A Scalable Cross-Platform In-
frastructure for Application Performance Tuning Using Hardware Counters, in: Proceedings
SC’2000, (2000).

51. R. Prodan, T. Fahringer, ZENTURIO: A Grid Middleware-based tool for experiment
management of parallel and distributed applications, Journal of Parallel and Distributed
Computinghttp://www.cs.iit.edu/~sun/jpdc/.

52. D. Abramson, R. Sosic, R. Giddy, B. Hall, Nimrod: A tool for performing parameterised
simulations using distributed workstations high performance parametric modeling with nim-
rod/G: Killer application for the global grid?, in: Proceedings of the 4th IEEE Symposium
on High Performance Distributed Computing (HPDC-95), IEEE Computer Society Press, Vir-
ginia, (1995), pp. 520–528.

53. M. Yarrow, K. M. McCann, R. Biswas, R. F. V. der Wijngaart, Ilab: An advanced user interface
approach for complex parameter study process specification on the information power grid,
in: Proceedings of Grid 2000: International Workshop on Grid Computing, ACM Press and
IEEE Computer Society Press, Bangalore, India, (2000).

54. R. Prodan, T. Fahringer, ZEN: A Directive-based Language for Automatic Experiment Man-
agement of Parallel and Distributed Programs, in: Proceedings of the 31st International Con-
ference on Parallel Processing (ICPP-02), IEEE Computer Society Press, Vancouver, Canada,
(2002).

55. M. J. Litzkow, M. Livny, M. W. Mutka, Condor : A hunter of idle workstations, in: 8th In-
ternational Conference on Distributed Computing Systems, IEEE Computer Society Press,
Washington, D.C., USA, (1988), pp. 104–111.

56. K. Czajkowski, I. Foster, N. Karonis, S. Martin, W. Smith, S. Tuecke, A resource management
architecture for metacomputing Systems, in: D. G. Feitelson, L. Rudolph (Eds.), Job Schedul-
ing Strategies for Parallel Processing, Springer Verlag, London, (1998), pp. 62–82, lect. Notes
Comput. Sci. vol. 1459.

57. T. Fahringer, C. Seragiotto, Automatic search for performance problems in parallel and dis-
tributed programs by using multi-experiment analysis, in: International Conference On High
Performance Computing (HiPC 2002), Springer Verlag, Bangalore, India, (2002).

58. C. Seragiotto Jr., T. Fahringer, Performance analysis for distributed and parallel java programs
with aksum, in: CCGRID, (2005), pp. 1024–1031.

59. S. Benkner, VFC: The Vienna Fortran Compiler, Scientific Programming, IOS Press, The
Netherlands 7 (1) (1999) 67–81.

60. T. Fahringer, C. Seragiotto, Modeling and detecting performance problems for distributed and
parallel programs with JavaPSL, in: Proceeding SC’2001, Denver, USA, (2001).

61. C. S. Junior, Systematic Performance Analysis and Interpretation for Parallel and Distributed
Programs with Aksum, Ph.D. thesis, Vienna University of Technology (2005).

62. F. Nadeem, R. Prodan, T. Fahringer, A. Iosup, Benchmarking grid applications, in: CoreGRID
Workshop on Middleware, Springer Verlag, Dresden, Germany, (2007).

3 Tools for Parallel and Distributed Computing 115

63. M. Siddiqui, A. Villazon, J. Hofer, T. Fahringer, Glare: A grid activity registration, deployment
and provisioning framework, in: SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, IEEE Computer Society, Washington, DC, USA, (2005), p. 52, http:
//dx.doi.org/10.1109/SC.2005.30.

64. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.),
Springer-Verlag, London, (1996).

65. D.R. Wilson, T. M. Martinoz Improved heterogenous distance functions., J. Artificial Intelli-
gence Research 6 (1997) 1–34.

66. G. Valentini, T. Dictterich Bias-variance analysis of support vector machines for the devel-
opment of SVM-based ensemble methods, Journal of Machine Learning Research 5 (2004)
725–775.

67. M. Geissler, Interaction of High Intensity Ultrashort Laser Pulses with Plasmas, Ph.D. thesis,
Vienna University of Technology (2001).

68. E. Dockner, H. Moritsch, Pricing Constant Maturity Floaters with Embeeded Options Using
Monte Carlo Simulation, Technical Report AuR_99-04, AURORA Technical Reports, Uni-
versity of Vienna (January 1999).

69. S. Felix., J. Qin, F. Nadeem, Performance, Scalability and Quality of the Meteorological Grid
Workflow MeteoAG, in: 2nd Austrian Grid Symposium, Innsbruck, Austria, (2006).

70. T A G Consortium, http://www.austriangrid.at.

Chapter 4
Grid Computing

Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

Abstract

The vision of Grid computing is to develop a platform which gathers geographically
distributed resources (such as computational power, data, and equipment) into one
very powerful and easy to use system. In this chapter, we present the main motiva-
tions behind this technology. Furthermore, we outline the challenges that researchers
need to face when constructing such a complex distributed system. To demonstrate
the practical impact, we describe various tools and applications which are already
been extensively used to solve real problems. Finally, we give some pointers to the
future directions in which Grid computing will evolve.

4.1 Introduction

Because of lack of adequate and, more importantly, standardized solutions for dis-
tributed computing on a larger (geographically distributed) scale, a new paradigm
was coined in the late 1990s which is now known as Grid computing. The goal of
Grid computing is to gather various resources into one, simple-to-use, secure, and
quality assuring environment. As it is best described in [1]:

Uroš Čibej
Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, 1000 Ljubl-
jana, Slovenia,
e-mail: uros.cibej@fri.uni-lj.si

Anthony Sulistio
Grid Computing and Distributed Systems Laboratory, The University of Melbourne, Australia,
e-mail: anthony@csse.unimelb.edu.au

Rajkumar Buyya
Grid Computing and Distributed Systems Laboratory, The University of Melbourne, Australia,
e-mail: raj@csse.unimelb.edu.au

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_4, 117
c© Springer-Verlag London Limited 2009

118 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

Grid is a type of parallel and distributed system that enables the sharing, selection, and
aggregation of geographically distributed “autonomous” resources dynamically at runtime
depending on their availability, capability, performance, cost, and users’ quality-of-service
requirements.

The resources can be anything from computational power, storage, network capa-
bility, scientific equipment, or even people. The development of this technology was
driven by the current state of technology, and by the increasing need of users for new
types of applications. Therefore, let us first elaborate the emerging requirements of
the users:

• Collaboration. The functioning of organizations has changed drastically in the
last decade. People are becoming much more mobile, due to their organizations
participating in international projects. Thus, there is a need for sophisticated re-
mote collaboration tools to share data, storage, and project specific services and
equipment.

• Computing power. Modern users require more and more computing power. How-
ever, they might not need it all the time, only on specific occasions (e.g., when a
project deadline is approaching). A purchase of a special high-performance sys-
tem, which could provide the required computing power for such occasions, is
simply not economically feasible.

• Enormous amounts of data. Scientists are generating enormous amounts of data
from their experiments, and various organizations are gathering more and more
data for future analysis. Such generated or gathered data need to be made ac-
cessible to many people and applications in the organization (or to even broader
audience).

On the other hand, a lot of resources nowadays remain under-utilized:

• Ubiquitous connectivity. Most of the computers and computing systems have
a network connection and are therefore easily accessible from anywhere in the
world.

• Under-utilized computing power. Most of the modern computing systems are
used for very simple tasks and usually these systems remain mainly unused.
Fig. 4.1 shows an example of the CPU usage during a working day of a desk-
top computer. The CPU is completely unused during night time, but also during
working hours the load is very low.

• Increase in connection speeds. It is commonly known that the number of ele-
ments in an integrated circuit doubles every 18 months (Gordon Moore’s law
[2]). Despite the age of this prediction, it is still very accurate. It is less com-
monly known, however, that the speed of computer network components dou-
bles every 6 months [3]. In practice, this means that communication between
computer processes over the network is not such a big bottleneck anymore. This
is a great opportunity for new types of data-intensive applications, which were
not possible until now.

As shown in Fig. 4.2, Grid computing can be a solution to the increasing needs
of users by gathering and exploiting the resources that are already available.

4 Grid Computing 119

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

C
P

U
us

ag
e

(p
er

ce
nt

)

Time (hours)

usage

Fig. 4.1 A example graph of a CPU utilization for a desktop PC during a working day. The word
processor, mail, browser, and other typical application hardly load the CPU. The peak utilization
shown in the figure is the result of virus scanner checking the system.

Needs Available

Solution
Cooperation
Comp. power

Data

Internet
Idle comp. power

Fast networks

Grid computing

Fig. 4.2 Grid computing as a solution for the increasing requirements of users.

Besides these user requirements, Grid computing makes it possible to explore
various new aspects and applications of distributed computing, and to bring this
innovative approach to a much broader group of users. In what follows, we present
various categories of Grid computing depending on the main solution they provide.

4.1.1 Grid Categorization

Grid computing represents a significant achievement toward the aggregation of
clusters and/or other networked resources for solving large-scale data-intensive or
compute-intensive applications [4]. Depending on the target application domain and
purpose, Grids can be classified into several categories [5], as shown in Fig. 4.3.

1. Computational Grids. These provide distributed computing facilities for
executing compute-intensive applications, such as Monte Carlo simulations [6],

120 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

Fig. 4.3 Types of Grids and
their focus. The Grids on
higher level use the function-
ality of the Grids on the lower
levels. The focus also shifts
from dealing with infrastruc-
tural problems to providing
advanced services to the users.

Computational Grid

Data Grid

ASP Grid

Interaction Grid

Knowledge Grid

Utility Grid

U
se

rs
In

fr
as

tr
u
ct

u
re

and Bag-of-Tasks (BoT) applications [7], where each consists of a collection of
independent tasks or jobs. Some projects such as Nimrod-G [8], SETI@home [9],
and MyGrid [10] utilize Grids to schedule these applications on available re-
sources.

2. Data Grids. These provide the infrastructure to access, transfer, and man-
age large datasets stored in distributed repositories [11, 12]. In addition, Data
Grids focus on satisfying requirements of scientific collaborations, where there
is a need for analyzing large collections of data and sharing the results. Such
applications are commonly found in the area of astronomy [13], climate simu-
lation [14], and high energy physics [12]. There are several projects involved in
Data Grids, namely LHCGrid [15], Biogrid [16], Virtual Observatory [17], and
Avaki EII [18].

3. Application Service Provisioning (ASP) Grids. These con-
centrate on providing access to remote applications, modules, and libraries
hosted on data centers or Computational Grids, e.g., NetSolve [19].

4. Interaction Grids. These provide services and platforms for users to in-
teract with each other in a real-time environment, e.g., AccessGrid [20]. Thus,
this type of Grid is suitable for multimedia applications, such as video confer-
encing, and those that require fast networks.

5. Knowledge Grids. These work on knowledge acquisition, data processing,
and data management. Moreover, they provide business analytics services driven
by integrated data mining services. Some projects in this field are Knowledge
Grid [21] and the EU Data Mining Grid [22].

6. Utility Grids. These focus on providing one or more of the above Grid
services to end-users as information technology (IT) utilities on a pay-to-access
basis. In addition, they set up a framework for the negotiation and establishment
of contracts, and allocation of resources based on user demands. Existing projects
in this area are Utility Data Center [23], at the enterprise level and Gridbus [24]
at the global level.

These types of Grids can be logically realized as a layer of services with one
building on top of the other. A Grid on a higher layer utilizes the services of Grids
that operate at lower layers in the design. For example, a Data Grid utilizes the ser-
vices of Computational Grid for data processing, and hence builds on it. Moreover,
lower-layer Grids focus heavily on infrastructural aspects, whereas higher-layer

4 Grid Computing 121

Fig. 4.4 A typical grid usage scenario.

ones focus on users and Quality of Service (QoS) delivery, such as deadline and
cost.

A typical usage scenario of Grid activities, in this case for a Data Grid, is shown
in Fig. 4.4. Scientific instruments, e.g., a satellite dish, generate large datasets which
are stored in a Storage Resource. The Storage Resource then notifies a Replica Cat-
alogue (RC) about a list of available datasets. The RC acts as an indexing server
for handling registrations, notifications, and queries from resources and users. Next,
this RC will synchronize its information with other RCs in the Grid. When a user
submits his/her jobs, a Compute Resource communicates to the nearest RC to find
out the location of the required datasets (if not stored locally). Then, the Compute
Resource requests replicas or copies of these datasets from the Storage Resource.
The RCs may be arranged in different topologies depending on the requirements
of the application domain, the size of the collaboration around the application, and
its geographical distribution [25]. Moreover, various replication techniques [26–28]
may be applied to minimize the transfer time and bandwidth costs.

Based on this usage scenario, from the user’s perspective, Grid computing can be
considered as creating a virtual computer aggregating large hardware and storage
infrastructures that are managed by different organizations across the world [4].
This scenario also identifies several key functionalities or components that need to
be addressed by Grid resource providers:

• user interface, where users can submit and track jobs by using a command-line
interface or a remote login, a graphical user interface (QMON for Sun Grid En-
gine [29]) or a web-based portal, such as the P-GRADE Portal [30] and the Bi-
oGrid Portal [31].

• security and access management, where users need to be authenticated and au-
thorized before submitting jobs and using the resources respectively.

122 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

• administration and monitoring, where resource administrators can control and
monitor the current state of resources, and users can track or see the progress of
their jobs through an interface.

• resource discovery, where resources register their status and availability to a cen-
tral server or a Replica Catalogue, as shown in Fig. 4.4. Thus, users can query
about these resources.

• data management, where resources manage queries, replication, and deletion of
datasets. In addition, various replication techniques are applied.

• resource management, where resources are allocated, assigned, and accessed ac-
cording to QoS criteria, such as advance reservation, deadline, and cost.

• job scheduling, where a local resource scheduler, such as Maui [32], executes
waiting jobs in a queue based on the QoS criteria, as mentioned above.

4.1.2 Comparison Between Clusters and Grids

Grid computing has a lot of common points with similar technologies, such as clus-
ters. For understanding Grid computing better, it is necessary to know the simi-
larities and, even more importantly, the differences between these systems. In this
section, we will point out the essential differences which also determine different
approaches to design and implementation of these technologies.

The first difference we can point out is the expected size of the system. A typical
size of cluster can be measured at most in hundreds of nodes, whereas Grid systems
are expected to have thousands of nodes. This is the basic motivation for a more
scalable design of services which are mainly centralized in clusters.

Another crucial difference is the ownership and administration. In clusters, the
nodes are owned and administered by a single organization. However, in Grids, ev-
ery node can have a different owner and therefore different policies of resource
usages. This raises many security issues which need to be handled very differ-
ently from security in cluster systems. The connection between nodes is another
distinction which makes Grids different from clusters. Clusters are connected by
dedicated high-speed networks, whereas Grids mostly use public internet. Because
of this fact, in Grids we cannot make strong reliability assumptions, and the large
latency of connections makes them unsuitable for the applications that prosper in
cluster (communication-intensive applications). These and some other points are
summarized in Table 4.1.

4.1.3 Putting It All Together

In this introduction part, we have presented the motivation behind Grid Computing.
In addition, we have outlined the most relevant features these systems have to offer
and the differences between grids and clusters.

4 Grid Computing 123

Table 4.1 Key characteristics of clusters and grids.

Characteristics Clusters/data centers Grids

Population Commodity computers High-end computers
Size/scalability 100s 1000s
Ownership Single Multiple
Discovery Membership service Centralized indexing and De-

centralized Info Services
Service negotiation Yes Yes, SLA based
User management Centralized Decentralized and also VO (vir-

tual organization)- based
Resource management Centralized Distributed
Allocation/scheduling Centralized Decentralized
Standards/interoperability VIA based Web services-based and Open

Grid forum efforts
Single system image Yes No
Capacity Stable and guaranteed Varies, but high
Throughput Medium High
Interconnection network Dedicated, high-end Mostly public internet, Some

used high-end networks
Speed (Latency, Bandwidth) Low, high High, low
Application drivers Science, business,

enterprise computing, web
applications, data centers

e-Science, e-business, multi-
party conferencing, integration
of scientific instruments

When building Grids, lessons learned from other types of distributed systems are
relevant. However, to be able to obtain a common infrastructure with all the relia-
bility, security, and QoS that the Grid computing vision demands, other challenges
need to be faced. In what follows, we will describe some of difficult problems re-
searchers and developers of grid systems have to deal with, and outline the solutions
which are already available.

4.2 Challenges in Grid Computing

Managing various resources and applications scheduling in highly dynamic Grid
environments is a complex and challenging process. Resource and data management
are not only about scheduling large and compute- and data-intensive applications,
but also the manner in which resources are allocated, assigned, and accessed. In this
Section, we list several challenges that are currently being addressed in the research
community.

124 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

4.2.1 Resource Sharing

As mentioned earlier, there is an increasing need of international collaboration
among users and institutions. In Grid computing, a virtual organization (VO) al-
lows users and institutions to gain access to their accumulated pool of resources to
run applications from a specific field [33], such as high-energy physics or aerospace
design. Common resources that can be shared are computers, networks, software
licenses, storages, or scientific instruments.

The operational phase of a VO is a complex task because institutions may in-
volve in one or more VOs. Therefore, resource sharing in VOs is conditional
and rules-driven by means of authentication and authorization. For authentication,
well-known protocols are usually used, such as Community Authorization Service
(CAS) [34], Kerberos [35], and X.509 [36].

With regards to the authorization in a VO, Alfieri et al. [37] propose a centralized
authorization service, named Virtual Organization Membership Service (VOMS).
VOMS stores a list of groups, and each user’s roles and accesses in a database.
Thus, VOMS is used to bind authorization information to a user identity [37]. On
the other hand, Sinnott et al. [38] suggest a federated model for scalability, where
sites manage their own security information and authorization policies.

VO management is another challenging task, where institutions and users can
join/leave a VO at any time. Thus, VOs have a short lifespan. Nasser et al. [39] pro-
pose a methodology to dynamically build a VO, based on an Organization Based
Access Control (OrBAC) model. The OrBAC [40] models a multi-administered en-
vironment, where users, actions, and objects can be represented as role, activity, and
view, respectively. This abstraction allows the OrBAC policy rules to be indepen-
dent of the physical underlying infrastructure [40]. As a result, runtime binding of
available resources can be done according to pre-defined criteria.

In a recent work, the XtreemOS project [41] is developing a Linux-based op-
erating system that supports a VO model and management. Therefore, XtreemOS
provides interoperability with other VO frameworks and security models, customiz-
able access control, a scalable dynamic VO management, and dynamic mapping
between VO and operating system entities [42].

4.2.2 Guaranteed Quality of Service

To ensure resources are available for applications when required, several researchers
have proposed the need for advance reservation (AR) [43–46]. Common resources
that can be reserved or requested are compute nodes (CNs), storage elements (SEs),
network bandwidth, or a combination of any of these.

In general, reservation of the aforementioned resources can be categorized into
two: immediate and advance. However, the main difference between these two reser-
vations is the starting time. Immediate reservation acquires the resources to be uti-

4 Grid Computing 125

lized straight away, whereas advance reservation defers their usage later in the fu-
ture.

Advance reservation can be useful for several applications, as described below:

• parallel applications, where each task requires multiple compute nodes simulta-
neously for execution.

• workflow applications, where each job may depend on the execution of other
jobs in the application. Hence, it needs to wait for all of the dependencies to be
satisfied before it can be executed.

(a) without advance reservation.

T i m e

N o d e 0

N o d e 1

N o d e 2

J o b 3

N e w
J o b

J o b 1

J o b 2

A R 1
A R 2

A R 3

(b) with advance reservation.

Fig. 4.5 Comparison of scheduling without and with advance reservation.

However, there are challenges in adopting advance reservation into Grids. Some
of these are:

1. Significantly more complex operations and algorithms are needed for scheduling
jobs, as shown in Fig. 4.5. A reservation-based system needs to handle incoming
bookings and queries with respect to available spaces in the current and future
time, as depicted in Fig. 4.5(b). Note that without AR, the future time is not
considered, as illustrated in Fig. 4.5(a).

2. Possibly longer waiting time for other jobs in the queue, and lower resource
utilization due to fragmentations or idle time gaps, as illustrated in Fig. 4.5. For
example, in Fig. 4.5(a), in a system without AR, a new job that requires two
compute nodes can be scheduled after Job2. However, in a system that uses AR,
this new job can be executed only after AR2, as depicted in Fig. 4.5(b).

3. Potentially more negotiations between the resource and users due to their re-
quests being rejected. Hence, the system needs to manage the overheads of many
requests for reserving future availability.

4. Regulating resource supplies and reservation demands during busy and non-busy
periods, as this has an impact on utilization, income revenue, number of rejec-
tions, and waiting time for local jobs in the system queue.

5. Possible loss of income due to cancellations and no-shows of existing reserva-
tions, since unused AR slots can not be sold to other jobs.

To address some of the challenges, Sulistio [43] presents a system model for
scheduling task graphs with advance reservation and interweaving to increase re-
source utilization, and proposes a new data structure, named Grid advance reserva-
tion Queue (GarQ), for administering reservations in the Grid system efficiently. In

126 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

addition, Sulistio [43] provides a case for an elastic reservation model, where users
can self-select or choose the best option in reserving their jobs, according to their
QoS needs, such as deadline and budget. With the adaptation of an on-line strip
packing (OSP) algorithm into the elastic model, it manages to reduce the number of
rejections and fragmentations (idle time gaps) caused by having reservations in the
Grid system.

Similarly, the fuzzy model introduced by Roeblitz et al. [44] provides a set of
parameters when requesting a reservation, and applies speedup models for finding
the alternative solutions. Moreover, their model requires additional input conditions,
such as the gap between two consecutive time slots and maximum number of time
slots. However, no optimization on the resource utilization is considered.

The model proposed by Siddiqui et al. [45] uses a three-layered negotiation pro-
tocol, where the allocation layer deals with flexible reservations on a particular Grid
resource. In this layer, the authors also used the strip packing method. However, the
resources are dynamically partitioned into different shelves based on demands or
needs, where each shelf is associated with a fixed time length, number of CNs, and
cost. Thus, the reservation request is placed or offered into an adjacent shelf that is
more suitable.

Venugopal et al. [47] present an alternate offers protocol to handle negotiations
of previously rejected reservation requests. The protocol allows each party to submit
a counter proposal until an agreement has been reached. Thus, it enables the user to
fulfill its QoS requirements. Note that the last two challenges of AR are discussed
next through the use of economy model.

4.2.3 Resource Regulation

Buyya et al. [48] introduced the Grid economy concept that provides a mechanism
for regulating supply and demand, and calculates pricing policies based on these
criteria. Thus, Grid economy offers an incentive for resource owners to join the
Grid, and encourages users to utilize resources optimally and effectively, especially
to meet the needs of critical applications.

Regulating supply and demand of resources is an important issue, as a study by
Smith et al. [49] showed that providing AR capabilities increases waiting times of
applications in the queue by up to 37% with backfilling. This study was conducted,
without using any economy models, by selecting 20% of applications using reserva-
tions across different workload models. This finding implies that without economy
models or any set of AR policies, a resource accepts reservations based on a first-
come-first-serve basis and is subject to availability. Moreover, it also means that
these reservations are treated similarly to high priority jobs in a local queue.

In order to address the above problem, Sulistio [43] proposes the use of Revenue
Management (RM) techniques. The main objective of RM is to maximize profits by
providing the right price for every product to different customers, and periodically
update the prices in response to market demands [50]. Therefore, a resource provider

4 Grid Computing 127

can apply RM techniques to shift demands requested by budget conscious users to
off-peak periods as an example. Hence, more resources are available for users with
tight deadlines in peak periods who are willing to pay more for the privilege. As a
result, the resource provider gains more revenue in this scenario.

Apart from RM, numerous economic models for resource management have
been proposed in the literature. These include commodity market models (e.g.,
Nimrod-G [8] and Gridbus Broker [51]), tendering or contract-net models (e.g.,
JaWS [52] and Mariposa [53]), auction models (e.g., POPCORN [54], Spawn [55],
and OCEAN [56]), bid-based proportional resource sharing models (e.g., Tycoon
[57]), and cooperative bartering models [58].

In Nimrod-G, a user specifies QoS parameters, such as deadline and budget to a
broker. Then, the broker schedules user tasks to resources with different allocation
systems. In Tycoon, a user specifies his/her preference of each resource by giving
a weight to it manually. Then, the Tycoon’s agent selects which resource to bid on
based on the user weight and total bid of other users for each resource. In contrast,
Sulistio and Buyya [59] propose a time optimization algorithm that schedules a user
application in auction-based proportional share systems across multiple VOs. Thus,
the algorithm adjusts a user bid periodically on these systems in order to finish
the application on time. Broberg et al. [60] provide detailed and comprehensive
descriptions on other economy models.

4.2.4 Data Management

Another important aspect in Grid Computing is data management. As we pointed
out in the Introduction, Data Grids are a type of grids which focus on the efficient
management and retrieval of distributed datasets. Data Grids enable applications to
produce and manipulate large amounts of data. In modern production Grids, the
amount of data is expected to be measured in Terabytes and even Petabytes [61].
Therefore, the two most important components of a Data Grid are

• a reliable high-performance data transfer mechanism, and
• a scalable replica management and discovery system.

Data transfer involves not only moving data between Grid resources, but also
other aspects of data access such as security, access control, and management of
data transfers. Security can be divided into three categories: authentication, autho-
rization, and encryption of data transfers.

For authentication, well-known protocols are usually used, such as Kerberos [35]
and X.509 [36]. Authorization mechanisms used in Data Grids are typically similar
to mechanism used in UNIX systems for file access permissions, but more fine-
grained mechanisms have been developed and used, such as Role-Based Access
Control [62] and Task-Based Authorization Control [63]. For data encryption, the
predominant method in production Grids is data encryption through Secure Sockets
Layer (SSL).

128 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

Replica Manager

Replica Catalogue

Grid Node

Grid Node

Grid Node

File 1 File 1

File 1 File 2

File 3

Data transfer

Query

Fig. 4.6 Replica manager architecture.

Because of the large amount of data, data replication is crucial to provide fault-
tolerance, scalability, and minimization of the use of bandwidth. A replica manage-
ment system ensures access to the required data, while managing the underlying
storage. Typical architecture of a replication system is shown in Fig. 4.6. The two
components that orchestrate the replications are Replica Manager and Replica Cat-
alogue.

Replica Catalogue is used as an information system which maps logical names
of files or data objects to their physical names, i.e., the locations of the replicas of
a certain data. They also store metadata about replicas, so users can query Replica
Catalogues looking for specific features of the data. Grid nodes update the Replica
Catalogue when any change of the data or metadata occurs. Replica Catalogue can
be completely centralized or organized in a certain topology. The catalogue can be
organized hierarchically, such as Globus Replica Catalog [64], or it can use data
hashes to catalogue entries similarly to P2P networks [65].

The second component is Replica Manager, which can differ in terms of its dis-
tribution and type of replica strategy. The Replica Manager can be a centralized
entity of the grid system, or it can be distributed – usually every storage element
has its own Replica Manager. Replica Managers use different strategies to decide
how many replicas of data to make and where to put them. These strategies can be
divided into static and dynamic. Static replication strategies do not adapt to changes
in the system, since the location of the data stays unchanged during runtime of the

4 Grid Computing 129

system. For a highly dynamic grid system, static replication might sound unrea-
sonable; however, this approach offers some advantages [66]. Algorithms for static
placement can be much more rigorously analyzed and can find a robust placement
which will provide satisfactory service for most cases.

However, most of the developed replication strategies are dynamic. A lot of work
in dynamic replication strategies has been done in the project EU Data Grid. This
project was focusing on developing an infrastructure for analysis of results of the
Large Hadron Collider. Bell et al. [67] presented two simple methods which are
derived from caching in operating systems, namely, Least Recently Used (LRU),
and Least Frequently Used (LFU). The methods work as follows: scheduler submits
jobs to a certain grid node. The Replica Manager then transfers the required files to
the local storage and, if there is enough space, creates a replica of the file. However,
if there is not enough space, the manager deletes some data based on the LRU or
LFU criterion.

Carman et al. [68] presented an economic strategy of replication. In this model,
the files are handled as economic goods, and nodes make replicas of data based
on the estimated profit (i.e., how many times the replica will be actually used).
The estimated profit is calculated based on the previous usage pattern of the file.
Recently Nicholson [69] compared the LRU, LFU, and economic replication on
larger Data Grids and demonstrated that LRU and LFU strategies perform better on
larger grids than the sophisticated economic model.

Independently of EU Data Grid project, other authors presented innovative repli-
cation strategies. Ranganathan et al. [70] compared different combinations of repli-
cation and scheduling algorithms and demonstrated that these two problems are
highly interconnected.

We have to point out that all the mentioned strategies do not address a very im-
portant issue, and that is data synchronization. For current applications this was not
critical, but for applications that also update the available data, replication strate-
gies need to take into account the time required for updating the replicas. This is an
important open question for future research in this area.

4.3 Tools and Applications

In this Section, we demonstrate the versatility of Grid computing by describing
various very different fields in which they have already been successfully applied.
We also describe some of the most important toolkits that make it possible to easily
deploy large-scale Grid system.

130 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

4.3.1 Middleware

The elementary building blocks of a Grid system are gathered in what is called
middleware. Grid middleware is typically a “bag of tools,” which can be combined
together in many different ways in order to implement the vision described in the
introduction of this chapter. Many different toolkits exist nowadays. We give a short
overview of three most influential and most widely used.

4.3.1.1 Globus Toolkit

Globus toolkit [71] is one of the first middleware toolkits and many production
grids are based on it. This toolkit is being developed as a part of Globus alliance, an
international collaboration for development of future Grid technologies. The “bag
of tools” which Globus provides can be divided into five main groups:

1. Common Runtime. The common runtime includes libraries for different lan-
guages (currently Python, C, and Java) which enable building new services and
applications.

2. Security. The tools for authorization, authentication, delegation of jobs, and com-
munity authorization are the core of the security of Globus Toolkit. The security
is based on Grid Security Infrastructure (GSI).

3. Execution Management. These components are responsible for management of
jobs in a grid. They consist of schedulers, monitoring, and coordination tools.

4. Data Management. Data management in Globus consists of Reliable File Trans-
fer, Data Replication tool, and OGSA-DAI which enables various types of
databases to be accessed via the grid.

5. Information Services. Information service include tools for monitoring the re-
sources and jobs, and tools for discovery of needed resources. Currently, there are
three components which enable this functionality: WebMDS, Index, and Trigger.

All the described services are implemented as Web (Grid) Services, but Globus
includes also the components which are not based on Web Services, since older
releases included them. However, it is expected that in the future releases only Web
Service-based components will remain.

4.3.1.2 gLite

The gLite middleware is produced by the EGEE (Enabling Grids for E-sciencE)
project. EGEE is one of the most important grid projects in the EU, which builds on
the legacy of preceding projects such as EU DataGrid [72]. The goal of this project
is to construct a production-quality infrastructure for e-Science, to attract new fields
(from science as well as from industry) to this exciting technology, and to develop
and maintain the gLite middleware.

4 Grid Computing 131

Access

Security

Authorization Authentication

Auditing

Information &
Monitoring

Information
& Monitoring

Application
Monitoring

Workload
Management

Job
Provenance

Package
Manager

Computing
Element

Workload
Management

Data Management

Metadata
Catalog

File&Replica
Catalog

Storage
Element

Data
Movement

Fig. 4.7 Components of gLite.

The target application of this project is primarily high-energy physics, more
specifically the Large Hadron Collider and the analysis of data this experiment will
produce. But the applications are definitely not limited to this field and EGEE will
disseminate the results to other scientific disciplines as well.

Similarly to Globus, gLite tools can be divided into five groups (also shown in
Fig. 4.7):

1. Access. Different set of command line tools and APIs for accessing other com-
ponents of gLite and building new services and applications.

2. Security. Authentication, Authorization, and Auditing components provide the
required security in gLite.

3. Information and Monitoring. This functionality is split into two tools, one is basic
Generic Information and Monitoring system and the other is Application moni-
toring.

4. Data Management is done by four components: the Metadata Catalog, File and
Replica Catalog, an abstraction of a Storage Resource which is called Storage
Element, and a tool for data transfers called File Transfer Service.

5. Workload management. Also for workload management, there are four core com-
ponents: an abstraction of a Computing Element, Job Provenance tool, a Package
Manager and a general Workload Management component.

All the main components of gLite have been built to be interoperable with Globus
toolkit.

132 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

Fig. 4.8 Gridbus components in a broader context.

4.3.1.3 Gridbus

The Gridbus Project is engaged in the design and development of grid middleware
technologies to support eScience and eBusiness applications. The main guidance
for the development of this toolkit is the Grid Economy Model. The components of
Gridbus middleware can be divided into three groups:

• Grid Fabric Software,
• Core Grid Middleware,
• and User-Level Middleware.

For the first group, Gridbus offers Libra, an economy-based scheduler for clus-
ters. The second group of components consists of basic grid management compo-
nents, such as Grid Storage Economy, Grid Exchange and Federation, Grid Bank,
and Grid Market Directory. A completely novel tool which is based on .NET is
Aneka. Aneka is a complete computing platform and is currently moving toward
a commercial release. The third group of Gridbus components consists of schedul-
ing components, such as Grid Workflow Engine and Gridbus Resource Broker, and
programming tools such as ExelGrid, Workflow APIs and other Task, Parametric
and Components programming kits. Some of the Gridbus technologies have been
developed by making use of Web Services technologies and services provided by
low-level Grid middleware, particularly Globus Toolkit. Gridbus components are
depicted in a broader context in Fig. 4.8.

4 Grid Computing 133

4.3.2 Tools for Computationally Intensive Applications

The first goal of Grid computing was to gather large amounts of distributed com-
puting resources to be able to solve even larger computationally intensive tasks.
Many communities that are dealing with this type of applications are already used
to certain tools and applications. Bringing the grid to these communities means ex-
tending well-known tools and enabling them to use Grids without changing the user
experience. This brings only the benefits of the new technology and no overhead of
learning new tools and new skills.

We present a few such tools, which already have a large community of users, and
were successfully extended to use geographically distributed resources with the use
of Grid computing.

4.3.2.1 MPICH-G2

MPICH-G2 [73] is an implementation of the Message Passing Interface (MPI)
framework, which is especially popular in clusters. More specifically, MPICH-G2
implements the MPI v1.1 specification. This framework enables the developers to
write applications which consist of tightly-coupled processes. The processes coordi-
nate their execution by passing messages to each other. MPI provides an abstraction
for starting and stopping the processes and transferring the data among processes.

MPICH-G2 uses Grid services for manipulating processes on distributed re-
sources, and for security. MPICH-G2 also adjusts the communication method, de-
pending on whether the processes communicate locally or between geographically
distributed resources.

4.3.2.2 Cactus

Cactus [74] is an open-source environment for developing parallel, high-performance
simulations and visualizations. The goal users are scientists and engineers from a va-
riety of fields; currently it is most widely used in research collaborations of physi-
cists and computer scientists. The structure of Cactus is highly modular; its name
is basically derived from its design. The base code infrastructure is provided by the
central core (or flesh), all the other functionality is extended from the flesh with
application modules (which are called thorns).

Thorns implement the functionality from different fields of science and engi-
neering, such as general relativity equation solver, elliptic equation solver, or simu-
lations of a 3D scalar field. But thorns also provide other functionality for orches-
trating the computation, such as parallel I/O, data distribution, and access to grid re-
sources. Since Cactus is designed to run on many different architectures, from desk-
top computers, to supercomputers, the heterogeneity of grids presents no problems.
Cactus provides thorns which make it possible to execute Cactus computations on

134 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

Globus-enabled resources. Furthermore, various Grid portals have been developed,
which make it possible to easily start and monitor Cactus applications.

4.3.2.3 Condor-G

Condor-G [75] is an extension of the well-known tool Condor, which is used for
High Throughput Computing on large collections of distributive-owned computing
resources. Condor provides facilities, such as job management, scheduling policies,
and monitoring.

The architecture of Condor includes a collector which is responsible for gath-
ering the information about worker nodes in the system. The users submit the re-
quirements for their jobs in the form of ClassAds. Based on the ClassAd, the col-
lector matches the job with the suitable nodes. Furthermore, Condor provides the
infrastructure for monitoring the jobs, fault-tolerance, credential management, and
job-interdependencies (which is most suitable for workflow execution). Condor-G
has been developed to be fully compatible with Globus Toolkit and has already been
extensively used in several grid projects.

4.3.2.4 GridSolve

GridSolve [76] is an extension of NetSolve, an environment that enables aggregat-
ing distributed computational resources. It is based on RPC and it is oriented to
computationally intensive scientific applications. NetSolve autonomously chooses
suitable computational resources on the network, based on the task requirements. It
also enables some fault-tolerance, since the failed jobs are restarted.

The architecture of this system includes three entities: a lightweight client, an
agent, and a server. The agent is an additional layer between the client and the
server which is responsible for resource discovery, scheduling, load balancing, and
fault-tolerance. GridSolve includes interfaces to many widely used languages for
computational tasks like Fortran, MATLAB, Octave, C, Mathematica, and others.

4.3.3 Tools for Workflow Composition and Execution

Workflows are a natural paradigm to describe applications that arise in many dis-
ciplines from astronomy, bioinformatics, chemistry to economy, and business anal-
ysis. A lot of effort has been made to introduce workflow execution to grids, and
overview can be found in [77].

A workflow execution can be divided into three stages [78]: (1) Workflow Gen-
eration, (2) Mapping, and (3) Execution system. Workflow Generation consists of
tools for constructing the workflow, e.g., visual development environments for draw-
ing workflow templates. It also consists of tools which populate a template workflow

4 Grid Computing 135

with data and tools for gathering and analysis of workflow results. In recent years
a lot of user-friendly tools have been developed for these tasks, some of the most
widely used are Triana [79], Karajan [80], and Taverna [81]. For popularization
of solving problems with workflows, a social network like myExperiment [82] has
been created for scientists to exchange workflows they use in their research.

The second component is the workflow management system, which is responsi-
ble for mapping and orchestrating the workflow. In this state an abstract workflow
is mapped the specific sites on which it is going to be executed. The Workflow man-
agement system therefore includes a scheduler for the workflows, but also other
components, which enable a reliable, scalable, and optimized execution. Examples
of such systems include Pegasus [78] and Gridbus workflow engine [83].

4.3.4 Tools That Support Advance Reservation

In this Section, we present a brief description on some advance reservation projects
or systems for job and resource management in Grids.

4.3.4.1 PBS Pro

Portable Batch System, Professional Edition (PBS Pro) [84, 85], is a local resource
manager that supports scheduling of batch jobs. It is the commercial version of PBS
with added features such as advance reservation, security (e.g., authentication and
authorization), cycle harvesting of idle workstations, information management (e.g.,
up-to-date status of a resource and its queue length), and automatic input/output file
staging. PBS Pro can be installed on Unix/Linux and Microsoft Windows operating
systems.

PBS Pro consists of two major component types: user-level commands and sys-
tem daemons or services (i.e., Job Server, Job Executor and Job Scheduler) [85].
Commands, such as submit, monitor and delete jobs, can be first submitted through
a command-line interface or a graphical user interface. These commands are then
processed by the Job Server service. These jobs are eventually executed by the Job
Executor service or MOM. In addition, PBS Pro enables these jobs to be submitted
to Globus [86] via the Globus MOM service. Finally, the Job Scheduler service en-
forces site policies for each job, such as job prioritization, fairshare, job distribution
or load balancing, and preemption. By default, the Job Scheduler uses the First In
First Out (FIFO) approach to prioritize jobs, however, it can also use a Round Robin
or fairshare approach, where jobs are ordered based on the group’s usage history and
resource partitions.

Reservations are treated as jobs with the highest priority by the Job Scheduler
service. Hence, reservation requests need to be checked for possible conflicts with
currently running jobs and existing confirmed reservations, before they are being
accepted. Requests that fail this check are denied by the Job Scheduler service.

136 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

4.3.4.2 Sun Grid Engine (SGE)

Sun Grid Engine (SGE) is an advanced resource management tool for distributed
computing environments [29]. It is deployed in a cluster and/or campus Grid testbed,
where resources can have multiple owners, but they can also belong to a single
site and organization. SGE enables the submission, monitoring, and control of user
jobs through a command line interface or a graphical user interface via QMON. In
addition, SGE supports checkpointing, resource reservation, and Accounting and
Reporting Console (ARCo) through a web browser.

In SGE, resources need to be registered or classified into four types of hosts. The
master host controls the overall resource management activities (e.g., job queues
and user access list), and runs the job scheduler. The execution host executes jobs,
while the submit host is used for submitting and controlling batch jobs. Finally, the
administration host is given to other hosts, apart from the master host, to perform
administrative duties. By default, the master host also acts as an administration host
and a submit host.

To manage resource reservations, each job is associated with a usage policy or
priority, the user group, waiting time, and resource sharing entitlements [29]. Thus,
the earliest available nodes will be reserved for pending jobs with higher priority
by the SGE scheduler automatically. This reservation scenario is mainly needed to
avoid the job starvation problem for large (parallel) jobs. On the other hand, SGE
can leverage an external scheduler, such as Maui Scheduler [32] to provide more
comprehensive reservation functionalities.

4.3.4.3 Highly-Available Resource Co-Allocator (HARC)

Highly-Available Resource Co-Allocator (HARC) [87], developed by the Center
of Computation & Technology (CCT) at Louisiana State University (USA), is an
open-source system for managing multiple reservations of various resources. This
can be done by users sending reservation requests to HARC via its Java API or
a command-line interface. Then, the requests are managed by HARC Acceptors.
These Acceptors are responsible for interacting with an individual Resource Man-
ager of a specific type, similar to GARA’s LRAM. Next, the Resource Manager
communicates with a local scheduler to determine the resource availability in the
future for a particular request. Finally, the Resource Manager sends a message to
users via Acceptors, whether it accepts or rejects the given reservation request. If
the request is accepted, then it needs to be committed afterwards [87].

From the above description, HARC employs a two-phase commit protocol. To
ensure the reliability of Acceptors and to prevent any missing messages, HARC uses
Paxos Commit [88], a transaction commit protocol, where it uses multiple Acceptors
for the same user to communicate with Resource Managers. With this approach,
each Resource Manager will send the same message to multiple Acceptors. If the
head or lead Acceptor fails, then other Acceptors will take its place automatically.

4 Grid Computing 137

In HARC, new types of resource can be integrated easily by creating new Re-
source Managers. To reserve compute nodes, the HARC Compute Resource Man-
ager works with a local batch scheduler that supports advance reservation, such as
Maui Scheduler [32] or Moab Workload Manager [89]. To reserve network band-
width, the HARC Network Resource Manager acts as a centralized scheduler that
oversees the overall management of network traffic for the entire testbed [90].

4.3.5 G-Lambda Grid Scheduling System

The Grid scheduling system, developed as part of the G-lambda project, is a Web
Service system that is able to allocate resources (compute nodes and network) in
advance [91]. The aim of the G-lambda project is to build a standard web service
interface among resource management systems in Grid and network computing [92].
The Grid scheduling system consists of two main components: the Grid Resource
Scheduler (GRS) and the Network Resource Management System (NRM).

The GRS is developed using Globus Toolkit 4 [93], a Java implementation of
Web Services Resource Framework (WSRF). It handles reservation requests from
applications or Grid portals. To reserve compute nodes, the GRS interacts with
Computing Resource Manager (CRM) on each site. To reserve network bandwidth,
the GRS communicates with Network Resource Management System (NRM). The
NRM provides optical paths on a GMPLS-controlled network infrastructure. GM-
PLS is a generalization of the MPLS architecture, where it supports multiple types
of switching other than label switching, such as lambda and fibre (port) [94].

To satisfy the user’s QoS requirements, the scheduling module inside the GRS
interacts with the CRM and/or NRM to locate available reservation slots using a
depth-first search scheme [91]. However, new scheduling techniques can be easily
incorporated into the module without affecting the rest of the system.

4.3.6 Application Fields

Until now we described some tools for writing general user applications. In what
follows, we outline some specific disciplines where Grid computing has already
proved very useful, and we give examples of successful projects which helped ap-
plying Grids into practice.

4.3.6.1 Medicine and Healthcare

Medicine offers plenty of possibilities for Grid computing applications. The first
area is medical research, where analysis and visualization of large amount of data

138 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

can lead to new discoveries. Examples of this type of application are: Neuro-
Grid [95], MediGRID [96], and KidneyGrid [97].

The second area where medicine can benefit from Grid computing is the intro-
duction of this technology directly into the healthcare system. The examples of us-
age in healthcare include:

• easy collaboration between physicians,
• easier diagnostics, e.g., MammoGrid [98],
• virtual surgery,
• and simulation of treatments.

Healthcare applications need a lot of data and computational power, but due to
high sensitivity of data in the healthcare system, security is the most important as-
pect. Grids offer a flexible but strong model of security and could therefore be trust-
worthy enough to be widely implemented.

4.3.6.2 Astronomy

Astronomers are producing large amounts of data from sources like regular tele-
scopes and radio telescopes. The data is gathered on only a few places on Earth (or
in space if we are talking about the Hubble telescope), but astronomers are spread all
over the planet and require the access to this data. Furthermore, the analysis of data
requires a lot of computational power. Thus, Grid computing is a very well-suited
platform for this type of application.

Some of the very successful projects have already tested the benefits of Grid,
such as GRIST [99], AstroGrid-D [100], and Australian Astronomy Grid [101].

4.3.6.3 Finance

The financial industry is another field of possibilities for Grid computing. Busi-
nesses acquire unprecedented amounts of data which need to be analyzed as fast as
possible. Speed and accuracy bring the competitive edge to the companies and is
therefore of vital importance. Examples of such applications include value-at-risk
calculations, real-time trading, and risk modeling. A lot of these applications require
Monte Carlo simulations and a scalable computing and data platform would bring
the needed speed and accuracy to the companies. Projects such as GriFin [102] are
striving to build such a platform which will satisfy very demanding financial com-
panies.

4.3.6.4 Digital Libraries

The main goals of traditional libraries are the following:

• production of new knowledge,

4 Grid Computing 139

• preservation of the produced knowledge,
• and access to the knowledge for many generations.

The modern libraries are having more and more problems to achieve these goals
due to an incredible explosion of information that needs to be archived and also
made easily accessible. The libraries are therefore forced to shift to digital appli-
cations to be able to cope with this problem. The effort of implementing digital
libraries is an ongoing process which is sometimes denoted as Digital Library Tech-
nologies. The solutions which are available now are mostly static archives, which
provide only simple services. The next step is building highly dynamic digital li-
braries, which would provide more fault-tolerance, optimization, and also very flex-
ible services which can adapt to specific needs of libraries and users. And this is
where Grids can bring the needed flexibility and dynamics. Libraries will become
global and the goals mentioned above will be served even much better than before.
The most influential project that is trying to bring the advantages of Grid computing
to digital libraries is DILIGENT [103].

4.4 Conclusions and Future Trends

In this chapter, we have presented the technology that enables revolutionary ap-
plications, gathers unused computing power, facilitates complex collaborations and
access to distributed data and equipment.

It has been more than a decade of intensive work of making the Grid comput-
ing vision a reality. Grids have progressed from highly experimental environments,
which were mainly used as a playground for new ideas, to trustworthy environments
for critical applications.

We have presented some of the challenges that researchers had/have to deal with
when building quality Grid systems. We also gave an outline of middleware, tools,
and applications which are already being successfully used in practice.

As this technology becomes more mature, the industry is starting to embrace
the possibilities it offers. The big players in IT industry (e.g., IBM, Sun, and HP)
developed their own Grid computing solutions. The tools to set up world-wide grid
systems are much closer to “out of the box” solutions, which is crucial for the wide
acceptance of grids.

Grid technologies are also becoming an integral part of operating systems with
projects like XtreemOS [41] developing a Linux-based operating system with the
most advanced grid functionality already included. We are facing a (r)evolution of
how computers are being used. Business models are shifting from “selling soft-
ware” to “lending services” which will hopefully also bring a less monopolized
software/service market.

New paradigms have emerged and the lessons learned from Grid computing and
other breakthrough ideas from distributed computing are being used to develop even
more flexible, extendible, and scalable platforms for future applications. Some of
the paradigms which have been developed in this decade include P2P computing,

140 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

Fig. 4.9 The vision of cloud computing.

service computing, market-oriented computing, utility computing, and the most re-
cent and most perspective paradigm is cloud computing [104].

Cloud computing has been nominated as the “next big thing” in computing. This
paradigm shares most of the vision of Grid Computing, i.e., to collect distributed
resources and present them to the users as a uniform service as shown in Fig. 4.9.
However, there are also fundamental differences.

Some of the most well-known cloud computing solutions include: Amazon Elas-
tic Compute Cloud, Google App Engine, Microsoft Azure, and Sun Network.com.
As it can be seen, cloud computing is coming mostly from industry and is moving
slowly to the research community, whereas Grid computing on the other hand was
born in the academic community and is progressing to the industry. At the moment,
the academic effort in cloud computing can be mostly seen in the Aneka frame-
work [105], which was basically started as a Grid Computing solution and is now
progressing to include cloud computing ideas.

The industrial origin of cloud computing brings also a more commercial view to
the technology. Therefore one of the main goals is to develop simple and efficient
economic models for selling cloud services (mostly computing and data resources).
Another crucial difference between Grid Computing and cloud computing is tech-
nological, i.e., the extensive usage of virtualization technologies in clouds. Virtual-
ization facilitates the development of services on heterogeneous platforms, which
was one of the key problems in grids, since most of the existing middlewares run on
a limited variety of platforms. With virtualization technologies, the security also im-
proves, since the applications can run isolated in virtual machines. Therefore, these
applications do not have a lot of influence on the host system.

The emergence of so many different paradigms besides Grid computing is
promising a very interesting future for this technology, and the impact will defi-
nitely be substantial on all areas of society.

References

1. Grid computing info center, http://www.gridcomputing.com (2008).
2. G. E. Moore, Cramming more components onto integrated circuits, Electronics (1965),

pp. 114–117.
3. L. Roberts, Beyond moore’s law: Internet growth trends, Computer 33 (1) (2000) 117–119.
4. I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a Future Computing Infrastructure,

Morgan Kaufmann Publishers, San Francisco, USA, 1999.

4 Grid Computing 141

5. C. S. Yeo, R. Buyya, M. D. de Assuncao, J. Yu, A. Sulistio, S. Venugopal, M. Placek, Utility
computing on global grids, in: H. Bidgoli (Ed.), The Handbook of Computer Networks, Vol.
III Part 1, John Wiley & Sons, New York, USA, 2007.

6. D. Abramson, J. Giddy, L. Kotler, High performance parametric modeling with nimrod/G:
killer application for the global grid?, in: Proceedings of the 14th International Parallel and
Distributed Processing Symposium(IPDPS’00), Cancun, Mexico, (2000), pp. 520–528.

7. W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos, E. Santos-Neto, R. Medeiros,
Grid computing for bag of tasks applications, in: Proceedings of the 3rd IFIP Conference on
E-Commerce, E-Business and E-Government, Sao Paolo, Brazil, (2003), pp. 591–609.

8. R. Buyya, D. Abramson, J. Giddy, Nimrod-G: An architecture for a resource management
and scheduling system in a global computational grid, in: Proceedings of the 4th International
Conference & Exhibition on High Performance Computing in Asia-Pacific Region (HPC
Asia’00), Beijing, China, (2000), pp. 283–289.

9. D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer, SETI@home: An experi-
ment in public-resource computing, Communications of the ACM 45 (11) (2002) 56–61.

10. L. B. Costa, L. Feitosa, E. Araujo, G. Mendes, R. Coelho, W. Cirne, D. Fireman, MyGrid:
A complete solution for running bag-of-tasks applications, in: Proceedings of the Simposio
Brasileiro de Redes de. Computadores (SBRC’04), Gramado, Brazil, (2004).

11. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data grid: Towards an
architecture for the distributed management and analysis of large scientific datasets, Network
and Computer Applications 23 (2001) 187–200.

12. W. Hoschek, F. J. Jaén-Martínez, A. Samar, H. Stockinger, K. Stockinger, Data management
in an international data grid project, in: Proceedings of the 1st International Workshop on
Grid Computing (Grid’00), Bangalore, India, (2000), pp. 77 – 90.

13. J. C. Jacob, D. S. Katz, T. Prince, G. B. Berriman, J. C. Good, A. C. Laity, E. Deel-
man, G. Singh, M.-H. Su, The montage architecture for grid-enabled science processing
of large, distributed datasets, in: Proceedings of the Earth Science Technology Conference
(ESTC’04), (2004).

14. M. J. Mineter, C. H. Jarvis, S. Dowers, From stand-alone programs towards grid-aware ser-
vices and components: A case study in agricultural modelling with interpolated climate data,
Environmental Modelling and Software 18 (4) (2003) 379–391.

15. LCG Computing Fabric Area, http://lcg-computing-fabric.web.cern.ch
(2008).

16. Biogrid Project, http://www.biogrid.jp/e/project/index.html (2008).
17. International Virtual Observatory Alliance, http://www.ivoa.net (2008).
18. Avaki EII - Enterprise Data Integration Sofware, http://www.sybase.com/

products/allproductsa-z/avakieii (2008).
19. K. Seymour, A. YarKhan, S. Agrawal, J. Dongarra, NetSolve: Grid enabling scientific com-

puting environments, in: L. Grandinetti (Ed.), Grid Computing and New Frontiers of High
Performance Processing, Vol. 14 of Advances in Parallel Computing, Elsevier, Netherlands,
(2005), pp. 33–51.

20. L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, T. Udeshi, Access grid: Immersive
group-to-group collaborative visualization, in: Proceedings of the 4th International Immer-
sive Projection Technology Workshop, Ames, USA, (2000).

21. M. Cannataro, D. Talia, The knowledge grid, Communications of the ACM 46 (1) (2003)
89–93.

22. EU Data Mining Grid, http://www.datamininggrid.org (2008).
23. S. Graupner, J. Pruyne, S. Singhal, Making the utility data center a power station for the

enterprise grid, Tech. Rep. HPL–2003–53, HP Labs, Palo Alto, USA (2003).
24. R. Buyya, S. Venugopal, The gridbus toolkit for service oriented grid and utility computing:

An overview and status report, in: Proceedings of the 1st International Workshop on Grid
Economics and Business Models (GECON’04), Seoul, Korea, (2004), pp. 19– 66.

25. S. Venugopal, R. Buyya, K. Ramamohanarao, A taxonomy of data grids for distributed data
sharing, management and processing, ACM Computing Surveys 38 (1) (2006) 1–53.

142 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

26. H. Stockinger, Database replication in world-wide distributed data grids, Ph.D. thesis,
Fakultät für Wirtschaftswissenschaften und Informatik, Universität Wien (2001).

27. M. Tang, B.-S. Lee, C.-K. Yeo, X. Tang, Dynamic replication algorithms for the multi-tier
data grid, Future Generation Computer Systems 21 (5) (2005) 775–790.

28. V. Agarwal, G. Dasgupta, K. Dasgupta, A. Purohit, B. Viswanathan, DECO: Data Replica-
tion and Execution CO-Scheduling for Utility Grids, in: Proceedings of the 4th International
Conference on Service Oriented Computing, Chicago, USA, (2006), pp. 52–65.

29. Sun Grid Engine, http://gridengine.sunsource.net (2008).
30. G. Sipos, P. Kacsuk, Multi-grid, multi-user workflows in the P-GRADE portal, Journal of

Grid Computing 3 (3–4) (2005) 221–238.
31. H. Gibbins, K. Nadiminti, B. Beeson, R. Chhabra, B. Smith, R. Buyya, The Australian Bi-

oGrid Portal: Empowering the molecular docking research community, in: Proceedings of
the 3rd APAC Conference and Exhibition on Advanced Computing, Grid Applications and
eResearch (APAC’05), Gold Coast, Australia, (2005), pp. 26–30.

32. Maui Cluster Scheduler, http://www.clusterresources.com/pages/
products/maui-cluster-scheduler.php (2008).

33. I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable virtual orga-
nizations, High Performance Computing Applications 15 (3) (2001) 200–222.

34. L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke, A community authorization ser-
vice for group collaboration, in: Proceedings of IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, Monterey, USA, (2002).

35. B. Neuman, T. Ts’o, Kerberos: An authentication service for computer networks, IEEE Com-
munications Magazine 32 (9) (1994) 33–38.

36. R. Housley, W. Polk, W. Ford, D. Solo, Internet X. 509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile (2002).

37. R. Alfieri, R. Cecchini, V. Ciashini, L. dell’Agnello, A. Frohner, K. Lorentey, F. Spataro,
VOMS, an authorization system for virtual organizations, in: Proceedings of the 1st European
Across Grids Conference, Santiago de Compostela, Spain, (2003).

38. R. O. Sinnott, D. W. Chadwick, J. Koetsier, O. Otenko, J. Watt, T. A. Nguyen, Supporting
decentralized, security focused dynamic virtual organizations across the grid, in: Proceedings
of the 2nd IEEE International Conference on e-Science and Grid Computing, Amsterdam,
Netherlands, (2006).

39. B. Nasser, R. Laborde, A. Benzekri, F. Barrere, M. Kamel, Dynamic creation of inter-
organizational grid virtual organizations, in: Proceedings of the 1st IEEE International Con-
ference on e-Science and Grid Computing, Melbourne, Australia, (2005).

40. A. A. E. Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswartes, A. Miege,
C. Saurel, G. Trouessin, Organization based access control, in: Proceedings of the 4th In-
ternational Workshop on Policies for Distributed Systems and Networks, Lake Como, Italy,
(2003), pp. 120–131.

41. C. Morin, XtreemOS: A grid operating system making your computer ready for
participating in virtual organizations, in: 10th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC 2007).
IEEE, (2007), pp. 393 – 402.

42. M. Coppola, Y. Jégou, B. Matthews, C. Morin, L. P. Prieto, Ó. David Sánchez, E. Y. Yang,
H. Yu, Virtual organization support within a grid-wide operating system, IEEE Internet Com-
puting 12 (2) (2008) 20–28.

43. A. Sulistio, Advance reservation and revenue-based resource management for grid systems,
Ph.D. thesis, The University of Melbourne, Australia (2008).

44. T. Roeblitz, F. Schintke, A. Reinefeld, Resource reservations with fuzzy requests, Concur-
rency and Computation: Practice & Experience (CCPE) 18 (13) (2006) 1681–1703.

45. M. Siddiqui, A. Villazon, T. Fahringer, Grid capacity planning with negotiation-based ad-
vance reservation for optimized QoS, in: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing (SC’06), Florida, USA, (2006), p. 21.

46. S. Naiksatam, S. Figueira, Elastic reservations for efficient bandwidth utilization in lambda-
grids, Future Generation Computer Systems 23 (1) (2007) 1–22.

4 Grid Computing 143

47. S. Venugopal, X. Chu, R. Buyya, A negotiation mechanism for advance resource reservation
using the alternate offers protocol, in: Proceedings of the 16th International Workshop on
Quality of Service (IWQoS’08, Twente, The Netherlands, (2008), pp. 40–49.

48. R. Buyya, D. Abramson, S. Venugopal, The grid economy, Proceedings of the IEEE 93 (3)
(2005) 698–714.

49. W. Smith, I. Foster, V. Taylor, Scheduling with advanced reservations, in: Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS’00), Cancun, Mexico,
(2000), pp. 127–132.

50. R. L. Phillips, Pricing and Revenue Optimization, Stanford University Press, Pala Alto, CA,
(2005).

51. S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling e-science appli-
cations on global data grids: Research articles, Concurrency and Computation: Practice and
Experience (CCPE) 18 (6) (2006) 685–699.

52. S. Lalis, A. Karipidis, JaWS: An open market-based framework for distributed computing
over the internet, in: Proceedings of the 1st IEEE/ACM International Workshop on Grid
Computing (Grid’00), Bangalore, India, (2000), pp. 87–106.

53. M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah, C. Staelin, An
economic paradigm for query processing and data migration in Mariposa, in: Proceedings of
the 3rd International Conference on Parallel and Distributed Information Systems (PDIS’94),
Austin, USA, (1994), pp. 58 – 68.

54. O. Regev, N. Nisan, The POPCORN Market – An online market for computational re-
sources, in: Proceedings of the 1st International Conference on Information and Computation
Economies (ICE’98), Charleston, USA, (1998), pp. 148 – 157.

55. C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, W. S. Stornetta, Spawn: A
distributed computational economy, Software Engineering 18 (2) (1992) 103–117.

56. P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. Frank, C. Chokkareddy, OCEAN: The open
computation exchange and arbitration network, a market approach to meta computing, in:
Proceedings of the 2nd International Symposium on Parallel and Distributed Computing (IS-
PDS’03), Ljubljana, Slovenia, (2003), pp. 185–192.

57. K. Lai, B. A. Huberman, L. Fine, Tycoon: A distributed market-based resource allocation
system, Tech. Rep. arXiv:cs.DC/0404013, HP Labs, Palo Alto, USA (April 2004).

58. B. F. Cooper, H. Garcia-Molina, Bidding for storage space in a peer-to-peer data preserva-
tion system, in: Proceedings of the 22nd International Conference on Distributed Computing
Systems (ICDCS’02), Vienna, Austria, (2002), pp. 372–381.

59. A. Sulistio, R. Buyya, A time optimization algorithm for scheduling bag-of-task applications
in auction-based proportional share systems, in: Proceedings of the 17th International Sym-
posium on Computer Architecture and High Performance Computing, Rio de Janeiro, Brazil,
(2005), pp. 235–242.

60. J. Broberg, S. Venugopal, R. Buyya, Market-oriented grids and utility computing: The state-
of-the-art and future directions, Journal of Grid Computing 6 (3) (2008) 255–276.

61. R. Moore, C. Baru, R. Marciano, A. Rajasekar, M. Wan, Data-intensive computing, the Grid:
Blueprint for a new computing infrastructure, Morgan Kaufmann (1999) 105–129.

62. R. Sandhu, E. Coyne, H. Feinstein, C. Youman, Role-based access control models, computer
(1996) 29(2) 38–47.

63. R. Thomas, R. Sandhu, Task-based authorization controls (TBAC): a family of models for
active and enterprise-oriented authorization management, Database Security 11 (1998) 166–
181.

64. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefe-
dova, D. Quesnel, S. Tuecke, Data management and transfer in high-performance computa-
tional grid environments, Parallel Computing 28 (5) (2002) 749–771.

65. A. Chervenak, M. Cai, Applying peer-to-peer techniques to grid replica location services,
Journal of Grid Computing 4 (1) (2006) 49–69.

66. U. Čibej, B. Slivnik, B. Robič, The complexity of static data replication in data grids, Parallel
Comput. 31 (8+9) (2005) 900–912.

144 Uroš Čibej, Anthony Sulistio and Rajkumar Buyya

67. W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, F. Zini, Simulation of
dynamic grid replication strategies in optorsim, in: Proc. IEEE Workshop on Grid Computing
(Grid’2002), Springer Verlag, Lecture Notes in Computer Science, (2002), pp. 46–57.

68. W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger, F. Zini,
Evaluation of an economy-based file replication strategy for a data grid, in: Proc. Inter-
national Workshop on Agent based Cluster and Grid Computing, IEEE Computer Society
Press, (2003), p. 661.

69. C. Nicholson, D. G. Cameron, A. T. Doyle, A. P. Millar, K. Stockinger, Dynamic data repli-
cation in lcg 2008, in: Proc. UK e-Science All Hands Meeting, (2006), pp. 1259–1271.

70. K. Ranganathan, I. Foster, Decoupling computation and data scheduling in distributed data-
intensive applications, in: Proc. International Symposium on High Performance Distributed
Computing, (2002), pp. 352–358.

71. I. Foster, Globus toolkit version 4: Software for service-oriented systems, Journal of Com-
puter Science and Technology 21 (4) (2006) 513–520.

72. The European DataGrid Project, http://eu-datagrid.web.cern.ch/
eu-datagrid (2008).

73. N. Karonis, B. Toonen, I. Foster, MPICH-G2: a Grid-enabled implementation of the message
passing interface, Journal of Parallel and Distributed Computing 63 (5) (2003) 551–563.

74. M. Ripeanu, A. Iamnitchi, I. Foster, Cactus application: Performance predictions in grid
environments, Lecture Notes in Computer Science (2001) 807–816.

75. J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-G: A computation manage-
ment agent for multi-institutional grids, Cluster Computing 5 (3) (2002) 237–246.

76. A. YarKhan, J. Dongarra, K. Seymour, GridSolve: The evolution of a network enabled solver,
International Federation for Information Processing-Publications-IFIP 239 (2007) 215.

77. J. Yu, R. Buyya, A taxonomy of workflow management systems for grid computing, Journal
of Grid Computing 3 (3) (2005) 171–200.

78. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi, M. Livny,
Pegasus: Mapping scientific workflow onto the grid, in: Across Grids Conference 2004,
Nicosia, Cyprus, (2004), pp. 11–20.

79. I. Taylor, M. Shields, I. Wang, A. Harrison, Visual grid workflow in triana, Journal of Grid
Computing 3 (3) (2005) 153–169.

80. G. von Laszewski, Java CoG kit workflow concepts for scientific experiments, Technical
Report, Argonne National Laboratory, Argonne, IL, USA, (2005).

81. T. Oinn, M. Greenwood, M. Addis, M. Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis,
D. Hull, D. Marvin, et al., Taverna: lessons in creating a workflow environment for the life
sciences, Concurrency and Computation 18 (10) (2006) 1067.

82. C. Goble, D. De Roure, myExperiment: social networking for workflow-using e-scientists,
in: Proceedings of the 2nd workshop on Workflows in support of large-scale science, ACM
Press New York, NY, USA, (2007), pp. 1–2.

83. Gridbus workflow homepage, http://www.gridbus.org/workflow/ (2008).
84. PBS Pro, http://www.pbsgridworks.com/ (2008).
85. B. Nitzberg, J. M. Schopf, J. P. Jones, PBS Pro: Grid computing and scheduling attributes,

in: Grid Resource Management: State of the Art and Future Trends, Kluwer Academic Pub-
lishers, Norwell, MA, USA, (2004), pp. 183–190.

86. I. Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit, Supercomputer
Applications 11 (2) (1997) 115–128.

87. J. MacLaren, HARC: The highly-available resource co-allocator, in: Proceedings of the In-
ternational Conference on Grid Computing, High-PerformAnce and Distributed Applications
(GADA’07), Vilamoura, Algarve, Portugal, (2007), pp. 1385–1402.

88. J. Gray, L. Lamport, Consensus on transaction commit, ACM Transactions on Database Sys-
tems (TODS) 31 (1) (2006) 133–160.

89. Moab workload manager, http://www.clusterresources.com/pages/
products/moab-cluster-suite/workload-manager.php (2008).

4 Grid Computing 145

90. J. MacLaren, Co-allocation of compute and network resources using HARC, in: Proceed-
ings of Lighting the Blue Touchpaper for UK e-Science: Closing Conference of the ESLEA
Project, Edinburgh, UK, 2007, p. 16.

91. A. Takefusa, M. Hayashi, N. Nagatsu, H. Nakada, T. Kudoh, T. Miyamoto, T. Otani,
H. Tanaka, M. Suzuki, Y. Sameshima, W. Imajuku, M. Jinno, Y. Takigawa, S. Okamoto,
Y. Tanaka, S. Sekiguchi, G-lambda: Coordination of a grid scheduler and lambda path ser-
vice over GMPLS, Future Generation Computer Systems 22 (8) (2006) 868–875.

92. G-lambda, http://www.g-lambda.net (2008).
93. I. Foster, Globus toolkit version 4: Software for service-oriented systems, in: IFIP Interna-

tional Conference on Network and Parallel Computing (NPC’06)), Tokyo, Japan, (2006), pp.
2–13.

94. E. Mannie, RFC 3945: Generalized Multi-Protocol Label Switching (MPLS) Architecture,
http://www.ietf.org/rfc/rfc3945.txt (Oct. 2004).

95. J. Geddes, S. Lloyd, A. Simpson, M. Rossor, N. Fox, D. Hill, J. Hajnal, S. Lawrie,
A. Mclntosh, E. Johnstone, et al., NeuroGrid: Using grid technology to advance neuro-
science, in: Computer-Based Medical Systems, 2005. Proceedings. 18th IEEE Symposium
on, (2005), pp. 570–572.

96. Medigrid project homepage, http://www.medigrid.de/ (2008).
97. X. Chu, A. Lonie, P. Harris, S. R. Thomas, R. Buyya, A service-oriented grid environment

for integration of distributed kidney models and resources, Concurrency and Computation:
Practice and Experience 20 (9) (2008) 1095–1111.

98. S. Amendolia, M. Brady, R. McClatchey, M. Mulet-Parada, M. Odeh, T. Solomonides, Mam-
moGrid: Large-scale distributed mammogram analysis, The New Navigators: From Profes-
sionals to Patients (2003).

99. J. Jacob, R. Williams, J. Babu, S. Djorgovski, M. Graham, D. Katz, A. Mahabal, C. Miller,
R. Nichol, D. Berk, et al., Grist: Grid data mining for astronomy, Astronomical Data Analysis
Software and Systems (ADASS) XIV (2004).

100. Astrogrid-d project homepage, http://www.gac-grid.de/ (2008).
101. Australian virtual laboratory, http://aus-vo.org/ (2008).
102. Project grifin homepage, http://www.grifin.eu/ (2008).
103. D. Castelli, DILIGENT project homepage http://www.diligentproject.org/

(2008).
104. R. Buyya, C. Yeo, S. Venugopal, Market-oriented cloud computing: vision, hype, and reality

for delivering IT services as computing utilities, in: Proceedings of 10th IEEE International
Conference on High Performance Computing and Communications, (2008).

105. X. Chu, K. Nadiminti, C. Jin, S. Venugopal, R. Buyya, Aneka: Next-generation enterprise
grid platform for e-Science and e-Business applications, in: e-Science and Grid Computing,
IEEE International Conference on, (2007), pp. 151–159.

Chapter 5
Parallel Structured Adaptive Mesh Refinement

Jarmo Rantakokko and Michael Thuné

Abstract

Parallel structured adaptive mesh refinement is a technique for efficient utilization
of computational resources. It reduces the computational effort and memory re-
quirements needed for numerical simulation of complex phenomena, described by
partial differential equations. Structured adaptive mesh refinement (SAMR) is ap-
plied in simulations where the domain is divided into logically rectangular patches,
where each patch is discretized with a structured mesh. The purpose of adaptive
mesh refinement is to automatically adapt the mesh to the resolution required to
represent important features of the simulated phenomenon in different subdomains.
In a parallel computing context, an important consequence of the adaptation is
that the dynamically changing resolution leads to a dynamically changing work
load, data volume, and communication pattern at run-time. This calls for dynamic
load balancing and has implications for data placement as well as parallelization
granularity.

This chapter gives an overview of structured adaptive mesh refinement ap-
proaches. After a brief introductory survey of SAMR techniques and software pack-
ages, the main part of the chapter addresses various issues related to implementation
of SAMR on parallel computers. In particular programming models, data placement
and load balancing are discussed, for shared memory as well as distributed mem-
ory platforms. Various approaches and algorithms are presented. The appropriate
choice of dynamic load balancing algorithm, data placement strategy, programming
model, etc., depends on both the application state and the computer platform. There

Jarmo Rantakokko
Department of Information Technology, Uppsala University, Sweden,
e-mail: Jarmo.Rantakokko@it.uu.se

Michael Thuné
Department of Information Technology, Uppsala University, Sweden,
e-mail: Michael.Thune@it.uu.se

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_5, 147
c© Springer-Verlag London Limited 2009

148 Jarmo Rantakokko and Michael Thuné

is no single best alternative under all circumstances. Consequently, the chapter ends
with an account of ongoing research where the objective is to equip SAMR-based
simulation software with additional adaptivity, e.g., automatic selection of load bal-
ancing algorithms and automatic decision about level of parallelization granularity
using a hybrid MPI/OpenMP programming model.

5.1 Introduction

Adaptive mesh refinement (AMR) is one of the core techniques in high-performance
scientific computing. AMR is indispensable for simulation of phenomena of inter-
est in science and engineering that exhibit large variation in scales [1]. Simulations
where high-performance computers are applied to compute numerical solutions to
mathematical models of various phenomena are used in numerous important con-
texts, such as climate modeling, vehicle design, combustion modeling, to mention a
few.

AMR makes numerical simulation software self-configuring by automatically
adjusting the accuracy of the simulation to a specified level. The “mesh” is the set
of data points used in the simulation. With AMR the set of data points is repeatedly
adapted at run-time. Points are added or removed to heuristically minimize the re-
source utilization for attaining a required numerical accuracy. This means that the
mesh evolves dynamically at run-time.

Figure 5.1 shows an example from computational systems biology. This is a sim-
ulation of a biochemical “clock” known as the Circadian rhythm. Such clocks regu-
late the cell biochemistry in many organisms. The axes in Fig. 5.1 correspond to two
molecular species, X and Y , respectively. The point (x,y) represents a state where
there are x molecules of species X and y molecules of species Y . Figure 5.1 shows
contour plots and underlying mesh points. The different contour plots correspond to
different points in time. For each state (x,y), the graph for time t shows the probabil-
ity that the biological system is in that state at that point in time. The series of graphs
exhibit a periodicity pattern that constitutes the Circadian rhythm. This example is
taken from [2] where the interested reader can find more details.

Presently, we focus on the adaptive mesh depicted in Fig. 5.1. Two things are
of particular interest to note. First, the mesh is finer where the probability is dense.
In this region there are steep gradients in the solution and consequently more mesh
points are required for accurate resolution, compared to the regions with low prob-
ability density. Second, the refinements move with time, in response to the time-
dependent behavior of the probability density. The adaptive mesh refinement al-
gorithm presented in [2] achieves this automatically, without any need for human
intervention. This is typical for adaptive mesh refinement techniques.

Realistic PDE models of phenomena related to nature, technical artifacts, eco-
nomic and social systems, etc., are too complicated to be solved analytically.
Software for simulation of such phenomena uses numerical algorithms to com-

5 Parallel Structured Adaptive Mesh Refinement 149

Fig. 5.1 Snap-shots from a simulation of the Circadian rhythm, a biological “clock.” The contours
show probability densities. The underlying rectilinear grid depicts the adaptive mesh used in the
simulation. The mesh points are at the intersection of the grid lines. To make the picture clearer,
we only show every eighth grid line in each dimension. For details, see [2].

pute approximate, numerical solutions to the PDEs. Approximate solution values
are computed at each mesh point.

In the biological clock example described above and in numerous other, impor-
tant applications, structured meshes are used. Here, “structured” means that mesh
points can be indexed in such a way that neighbor relations between points can be
inferred from the indices. By making use of this property, it is possible to design
particularly efficient adaptive mesh refinement techniques for structured meshes.
This is known as Structured Adaptive Mesh Refinement (SAMR). Such algorithms
are the topic of this chapter. In particular we will discuss computer science issues
related to the implementation and execution of SAMR-based simulations on par-
allel computers. Parallelization issues have always been central in the context of
SAMR, since computationally demanding simulations of complex phenomena re-
quire execution on parallel high-performance computing platforms. The focus on
parallel SAMR has been further accentuated in recent years, with the emergence of
multicore processors.

150 Jarmo Rantakokko and Michael Thuné

5.2 An Introduction to SAMR

We begin by a broad overview of the issues involved. This will serve as a back-
ground for the more detailed presentation in later sections.

5.2.1 Approaches to Structured Adaptive Mesh Refinement

The purpose of adaptive mesh refinement is twofold: to reduce the amount of com-
putational resources needed by numerical PDE solvers for the simulation of complex
phenomena and to control the numerical errors in the simulation. A “numerical PDE
solver” is a computer program that solves a set of PDEs numerically. The program’s
resource utilization in terms of computational effort and memory requirements de-
pends on the number of mesh points. By using fewer mesh points in the simulation
we get shorter execution time and need less memory. However, with fewer mesh
points we may also get lower accuracy in the computed, approximate solution.

The challenge addressed by AMR is to use as few mesh points as possible to
attain a given, desired accuracy. A numerical PDE solver computes numerical solu-
tions to the PDEs for mesh points in a certain domain. By adding more mesh points
in the domain we increase the resolution of the simulation. The key to AMR is the
observation that the resolution required to attain the desired accuracy differs be-
tween different regions of the computational domain. Higher resolution is required
in regions where the solution exhibits steep gradients, than in areas with relatively
constant solution. Also, in the simulation of a time-dependent phenomenon the re-
quired resolution in a certain region can vary with time. An AMR algorithm will
automatically add mesh points in regions where higher resolution is required and
remove mesh points where less resolution is needed.

Figure 5.2 provides an illustration of how an AMR algorithm works. This ex-
ample shows a snap-shot of a computation based on a so called block-wise SAMR
algorithm that will be described in more detail later in this chapter. In this case the
computational domain is covered by a regular pattern of rectangular blocks of mesh
points. The simulated phenomenon is a pulse that is moving through the domain.
As can be seen in Fig. 5.2, the blocks in the vicinity of the pulse have a higher res-
olution than the blocks where the solution is almost constant. The AMR algorithm
has automatically set an appropriate resolution in each block, to meet the accuracy
requirements defined by the user. Moreover, in this time-dependent simulation, the
AMR algorithm will automatically increase the block resolution as the pulse moves
into a new region and decrease the block resolution in the region that the pulse has
left.

So what is particular about structured adaptive mesh refinement? Normally, a
structured mesh takes the form of a logically rectangular grid.1 A numerical PDE
solver based on such grids can be implemented using array data structures to rep-

1 In the following, “mesh” and “grid” will be used as synonymous concepts.

5 Parallel Structured Adaptive Mesh Refinement 151

0

0.5

1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

yx

Fig. 5.2 A snap-shot of a SAMR-based simulation of a pulse moving through a domain. Note
that the resolution is higher in the region containing the pulse than in the surrounding region with
almost constant solution.

resent the mesh points and their associated solution values. The key to efficiency in
PDE solvers based on structured grids is that the neighbor relations between mesh
points can be inferred from the array indices in the data structure used to store the
mesh. Due to this property the operation to retrieve the solution values at neighbor-
ing mesh points can be particularly efficiently implemented for structured meshes.
This is essential in algorithms for solving PDEs numerically, since the solution at
one mesh point depends on solution values at neighboring mesh points. From this
point of view structured meshes are advantageous in simulations where the execu-
tion time is a critical bottle neck.

When adaptive mesh refinement is applied to numerical PDE solvers on struc-
tured meshes, it is important that the mesh refinement procedure preserves the struc-
ture of the mesh. This will preserve the efficiency of the execution of the numerical
PDE solver. Also, the AMR procedure itself can be more efficiently implemented if
it takes advantage of the mesh structure.

The general idea of AMR is to begin computing on a coarse grid. When a prelim-
inary solution has been computed, the point-wise errors in the computed solution are
estimated and mesh points where the accuracy is too low relative to a user-defined
threshold are flagged. Subsequently, the grid is refined in areas around the flagged
points. Then, a new, preliminary solution is computed on the refined grid and the re-
finement procedure is repeated recursively until a sufficiently accurate solution has
been obtained.

152 Jarmo Rantakokko and Michael Thuné

In a time-dependent simulation, the AMR procedure is applied after each simu-
lated time step. In this way, the grid continues to adapt to the evolving solution.

The most common approach to structured AMR is to adapt the grid by adding
refined rectangular grid patches in areas where higher resolution is required and to
remove such patches from areas where higher resolution is no longer needed. This
approach was developed by Berger and Oliger [3] and was later modified by Berger
and Colella [4].

Berger’s approach consists of four steps:

1. Point-wise estimation of the errors in the computed solution.
2. Flagging of points where the accuracy is insufficient.
3. Clustering of flagged points.
4. Grid-fitting, i.e., insertion of higher resolution grid patches around such clusters.

The refinements are inserted as new, logically rectangular grid patches on top of
the underlying coarser grid. When the refinement procedure is iteratively repeated,
even finer patches may be superimposed on the first level of refinement patches, etc.

In the original procedure by Berger and Oliger [3], the superimposed grid patches
were allowed to be arbitrarily oriented with respect to the underlying patches. This
allows for patches being aligned to spatially directed phenomena of interest, such as
shocks. However, this freedom of patch alignment introduces additional overhead,
since the transfer of information between underlying and superimposed patches be-
comes more complicated. Consequently, Berger and Colella introduced the restric-
tion that the boundaries of the various patches had to be parallel to each other, the
so called Berger–Colella approach [4].

The result of the SAMR procedure described above is a hierarchical, composite,
structured grid [5]. A numerical PDE solver based on SAMR needs to be able to
compute the solution on such a grid. Most commonly, the simulations concern time-
dependent phenomena. The solution is then computed at different, discrete time
levels.

The steps in the SAMR procedure described above contribute to the overall ex-
ecution time of the simulation. There is a trade-off between the gain in execution
time by reducing the number of grid points and the loss in terms of overhead costs
for the mesh adaptation.

In order to reduce the overhead, some authors have suggested a block-wise ap-
proach to SAMR [6–11], with the purpose to avoid the clustering and grid-fitting
steps in the Berger–Colella approach. The initial, coarse grid is divided into a num-
ber of blocks. Subsequent refinements are carried out with respect to entire blocks.
That is, if some points in a block are flagged for refinement, then the whole block is
refined.

Finally, the Trompert–Verwer approach can be mentioned as an example of a
structured adaptive mesh refinement algorithm that does not operate on logically
rectangular patches [12]. Their basic idea is to avoid the clustering and grid fitting
steps by refining only at flagged points. This leads to refinement patches in the form
of stair-shaped grids. Consequently, a numerical PDE solver to be used with this
kind of refinement has to be able to operate on such grids, which requires some

5 Parallel Structured Adaptive Mesh Refinement 153

additional book-keeping compared with calculations on rectangular patches. In our
understanding, this approach has not been widely adopted, so it will not be further
discussed here.

5.2.2 SAMR in a Computer Science Perspective

From a computer science point of view the challenges in SAMR are related to the
data structures. Both the Berger–Colella approach and the block-wise approach re-
sult in hierarchical grids. Since the block-wise approach is a simplified version of
the Berger–Colella approach we will base our discussion on the latter. Differences
between the two approaches will be pointed out where this is of importance.

The key data structure in the Berger–Colella version of SAMR is the grid hier-
archy. The hierarchy consists of logically rectangular, structured grid patches. Each
patch is said to be on a certain level of refinement. Level 0 has the coarsest resolu-
tion. Moving from level l to level l +1 means that the resolution increases by some
factor.

Let us assume for simplicity that the computational domain can be covered by
one structured grid. 2 Under this assumption there is only one level 0 patch. It covers
the entire computational domain and constitutes the “base grid.” In regions where
finer resolution is needed, level 1 patches are superimposed on the base grid. The
procedure is recursive, so that level l +1 patches are superimposed on level l patches
where further resolution is required.

The resulting grid hierarchy can be regarded as a tree structure. Its root is the
base grid, level 0, and each patch on level l +1 is the child of a level l patch.

Given the hierarchic grid data structure, we need to understand how to use it for
solving PDEs numerically. Assume that we have computed a sufficiently accurate
approximate solution at discrete time level t and that the solution is stored in a
hierarchical grid resulting from the SAMR procedure indicated above. In order to
advance the solution to the next discrete time level, t + k, we have to compute the
solution on each of the refinement levels in the grid hierarchy. The computations
begin on the base grid and then move to the finer levels in order of refinement.

Before we begin to update the solution on level l +1, data from level l are inter-
polated to provide boundary data for level l + 1. When we have computed a more
accurate solution on a level l +1 patch, that solution will be projected onto the corre-
sponding region of the underlying level l patch, to replace the less accurate solution
there.

This procedure introduces data dependencies. Within a level of refinement, data
at neighboring mesh points depend on each other. In addition, there are data de-
pendencies between levels of refinement. In regions where different level patches
intersect, the same PDE solution is represented on each of the different patches in

2 More general cases can be handled in a similar way by the introduction of multi-block grids.

154 Jarmo Rantakokko and Michael Thuné

the intersection, with different resolution. This data dependency is manifested via
the interpolation and projection operations discussed above.

Both the intra-level and inter-level data dependencies have consequences for se-
rial data placement and parallel data distribution. This will be discussed in more
detail in Sect. 5.4.1.

Existing parallel implementations of SAMR use a single program, multiple data
approach. That is, all processors or threads execute the same program but on differ-
ent partitions of the data. This means that the central step in parallelizing the SAMR
computations is to partition the data and then to distribute the data over the available
processors.

The base grid will initially be partitioned and distributed over the processors. The
partitions will be generated by a grid partitioning algorithm with the objectives to
balance the load and minimize the amount of synchronization and communication
between the processors.

As the simulation proceeds, the adaptive mesh refinement will result in the addi-
tion of grid points in some regions of the grid and possibly in the removal of grid
points from other regions. This will disturb the load balance significantly. For an
example, see the case study in [13, Sect. 3].

To maintain parallel efficiency of the SAMR-based simulation, dynamic rebal-
ancing of the load is required. Typically, this has to be done frequently during a
simulation. As a consequence, parallel SAMR requires special dynamic load bal-
ancing algorithms that are considerably faster than algorithms for static load bal-
ancing. See Sect. 5.4.2 for a survey of algorithms for dynamic load balancing of
SAMR applications.

The parallel implementation of SAMR applications can be realized in a dis-
tributed memory environment using explicit message passing (e.g., MPI) or in a
global shared memory using a thread model (OpenMP or Pthreads). In either case,
the grid patches or parts of the grid patches are assigned to different processes or
threads using the SPMD approach, as described above. The parallelization models
can also be combined into a hybrid approach using both the MPI and thread model.
Then different grid patches are assigned to different MPI processes and within a
MPI process the computations over a patch are further parallelized using threads.

5.2.3 Software Frameworks for SAMR

A large number of frameworks for solving partial differential equations using the
technique of structured adaptive mesh refinement have been developed. Many of
these are also freely available for downloading on the Internet. We will here consider
some of these that are frequently mentioned in the literature.

The vast part of these are implementing the Berger–Colella algorithm with a
hierarchy of refinement levels on top of each other. The parallelization model is a
distributed memory model using MPI for message passing. In this group we have,

5 Parallel Structured Adaptive Mesh Refinement 155

e.g., CHOMBO [14], AMROC [15, 16], ENZO [13], GrACE [17], AMRLib [18],
and SAMRAI [19].

In using the global shared memory parallelization model we have AMRCLAW
[20] that has been parallelized in two levels with OpenMP [21]. Also the Racoon
framework has been parallelized in two levels but using a hybrid of MPI and POSIX-
Pthreads [6].

While AMRCLAW is implementing the Berger–Colella approach Racoon is us-
ing the block-wise approach, i.e., a flat grid divided into a number of blocks. At
refinement of a block the block is split into smaller blocks which then are using a
higher resolution. PARAMESH [10] is another framework with this block-wise ap-
proach. PARAMESH was originally developed on the Cray T3E using the SHMEM
communication library but is now converted into using MPI as well.

In the examples above the applications and the adaptivity algorithms are inte-
grated in the software framework. In the AGRIF framework [22] the application
and the model independent parts are more loosely coupled. Here, the user specifies
the application model in a specification file and then the model-dependent functions
are created by the framework. The model independent parts, i.e., the adaptivity algo-
rithms are included in AGRIF and coupled to the created model-dependent functions
when building the AMR-solver.

5.3 Details of SAMR

We will now add some detail to the description given above. In particular, we elab-
orate on aspects of the SAMR algorithm that are of importance from a computer
science point of view.

5.3.1 Advancing the Solution on a Structured Adaptive Grid
Hierarchy

In the case of structured grids, the numerical PDE solver will typically be based on
finite difference or finite volume approximations. Assume that the simulation has
been going on for some time, and that the mesh adaptation algorithm has generated
a grid hierarchy consisting of L+1 refinement levels, where level 0 is the base grid,
and level L contains the most refined patches. For simplicity, we first consider the
example L = 2 and assume that each refinement increases the resolution by a factor
of 2 in each space dimension.

In this case, the following procedure advances the solution from time t to t + k.
First, one time step of size k is taken on the base grid. Then, the base grid solution is
interpolated to the first level of refinement, to provide boundary data for the level 1
patches. Subsequently, one time step of size k/2 is taken on the level 1 patches.

156 Jarmo Rantakokko and Michael Thuné

Then, the level 1 solution is interpolated to the boundaries of the level 2 patches
where two time steps of size k/4 are taken.

After one such pass through the grid hierarchy, the solution has been advanced
to time t + k on refinement level 0, and to time t + k/2 on level 1 and level 2. Since
the solution on level 2 is expected to be more accurate than the one on level 1, it is
projected to the level 1 patches, before the computation continues.

Next, another time step of size k/2 is taken on level 1, which brings the level 1
solution to time t +k. Interpolating from level 1 to provide boundary data for level 2,
and then taking another two steps of size k/4 on level 2 brings also the finest level
solution to time t +k. Subsequently, there is a projection of the solution from level 2
to level 1 and then from level 1 to level 0.

More generally, L is a non-negative integer and the resolution is refined by an
integer constant r(l) when moving from level l to level l + 1. Then, the procedure
advance(l,k) for advancing the solution on grid level l from time t to time t +k
can be recursively expressed as shown in Algorithm 5.1.

Algorithm 5.1 Basic steps of Structured Adaptive Mesh Refinement (SAMR)

advance(l, k):
take one step of size k on level l
if l=L then
return

else
interpolate from level l to l+1
for i=1 to r(l):
advance(l+1,k/r(l))

endfor
project from level l+1 to level l

endif

The procedure call advance(0,k) advances the solution from time t to time
t + k in the entire grid hierarchy.

Note that we have described the procedure in principle. Actual implementa-
tions may use variants of the algorithm. In particular, in the block-wise approach
to SAMR, there is no grid hierarchy as in the general Berger–Colella approach.
Each block has a certain level of refinement and covers a particular subdomain. The
block contains the solution computed at its level of refinement on that subdomain.
In addition the same block contains the corresponding solution computed at the
next coarser level of refinement. This allows for a considerable simplification of the
algorithm for advancing the solution in time.

In a parallel computing context, the interpolation and projection steps constitute
synchronization points that can lead to serialization bottlenecks, degrading the par-
allel performance. This will be further discussed in Sect. 5.4.1.

5 Parallel Structured Adaptive Mesh Refinement 157

5.3.2 The Algorithmic Key Components of SAMR

From a numerical analysis point of view, there are three key components in SAMR:
error estimation, mesh refinement, and conditions at internal boundaries. We will
now briefly indicate how each of these can be handled.

The point-wise error estimate is typically computed via Richardson extrapolation
or similar techniques. Algorithmically, this means that to obtain error estimates on
a grid patch G , we compute two approximate solutions on G , one using all mesh
points and the other one using only every second mesh point. The information con-
tained in the two solutions is combined to derive the error estimate.

In general, the error for a fixed mesh size will be largest where the solution
changes most rapidly. Consequently, to attain a given accuracy, higher resolution
is required in areas with large gradients than in regions where the solution changes
more slowly.

When error estimates are available, the next step in the SAMR procedure is to
flag all points where the point-wise error exceeds a given threshold. The threshold
value is typically set by the user as an input parameter.

In the Berger–Colella approach to SAMR, the procedure continues with cluster-
ing of the flagged points and grid-fitting around clusters. Normally, the rectangular
bounding box around a cluster will contain both flagged and non-flagged points. If
the fraction of non-flagged points is large, then it is inefficient to cover the entire
area inside the bounding box with a refined grid patch. Consequently, when initial
clusters have been created, they will be subdivided into smaller ones. The standard
way of dividing a cluster into two smaller clusters is to use the Berger–Rigoutsos
algorithm [23]. The clusters are subdivided repeatedly until the ratio between non-
flagged and flagged points is small enough. Finally, the area inside each bounding
box is covered with a new, superimposed, refined grid patch.

In the block-wise approach to SAMR, the base grid is initially divided into
equally sized blocks. Whenever one single point is flagged in a box, the entire box is
refined. This simplification of the procedure avoids the overhead costs for clustering
and grid-fitting.

An additional advantage of the block-wise approach is to allow for simpler data
structure and data dependencies, compared to the tree structure in the Berger–
Colella case.

In a variant of the block-wise approach, blocks are split after refinement to keep
the number of mesh points equal in all blocks. This leads to a slightly more compli-
cated data structure, but simplifies dynamic load balancing, as will be discussed in
more detail below.

Finally, the insertion of patches or division of the base grid into blocks intro-
duces artificial internal boundaries. It is necessary that the interpolation and pro-
jection procedures mentioned above preserve both the stability and accuracy of the
numerical PDE solver and important properties of the solution across the internal
boundaries. These are central research issues concerning SAMR methods from a
numerical analysis point of view. From a computer science perspective, the interpo-
lation across internal boundaries will introduce data dependencies between blocks.

158 Jarmo Rantakokko and Michael Thuné

These dependencies must be taken into account in data placement, load balancing,
etc., in order to avoid performance bottlenecks.

5.4 Computer Science Aspects of SAMR

In Sect. 5.2 we indicated some computer science aspects of SAMR, related to data
dependencies, dynamic load balancing, and parallelization models. After the intro-
duction provided in the previous sections, we now have the background required for
a more detailed discussion about these aspects.

5.4.1 Data Dependencies

For efficient execution, data should be placed in memory in such a way that locality
properties due to data dependencies are respected. This is important for both serial
and parallel execution.

In the serial case, data placement that allows for exploitation of spatial and tem-
poral locality properties will lead to efficient utilization of the cache memory. This
is also a prerequisite for high performance on each of the processors in a parallel
computing environment.

What are the consequences of these observations in the case of SAMR? As de-
scribed above, the structured adaptive mesh refinement results in a hierarchy of grid
patches. This hierarchy is a tree structure. The root of the tree is the coarse base grid,
level 0. Each patch on level l is the child node of a level l−1 patch. In other words,
each level of mesh refinement constitutes a level of nodes in the tree structure.

The data dependencies between the nodes are as follows. Data need to be interpo-
lated from parent nodes to child nodes in the tree, and data need to be projected from
child nodes to parent nodes. Nodes on the same tree level need to exchange data if
the corresponding patches share a boundary segment. In all these cases, nodes with
data dependencies between them will be close to each other in the tree.

Consequently, for efficient execution, data should be placed in memory in such
a way that the locality properties of the tree structure are preserved. Since storage
in computer memory is linear, the tree structure has to be mapped to a linear repre-
sentation that exhibits approximately the same locality pattern. One way to achieve
this is to use inverse space filling curves for the mapping [24].

In a parallel computing context there are additional issues related to data depen-
dencies. Most importantly, if the data dependencies described above are not handled
properly they can easily lead to serialization of the parallel execution. This is due
to the control flow in Algorithm 5.1, where one level at a time is updated. Before
level l + 1 can be updated, it has to receive data via interpolation from the recently
updated level l, etc. As a consequence, if all level l patches are mapped to the same

5 Parallel Structured Adaptive Mesh Refinement 159

processor, Pk, then all other processors will be idle while Pk is busy updating the
level l patches. Likewise, when the other levels are being updated, Pk will be idle.

Obviously, it is not a good idea to distribute the data as in this example. It is
necessary that grid patches are mapped to processors in such a way that serialization
bottlenecks are avoided. This can be done in different ways, with different pros and
cons, as will become clear when we now turn to the issue of load balancing.

5.4.2 Dynamic Load Balancing

Due to the need for frequent re-balancing of the load in parallel SAMR, the chal-
lenge is to design dynamic load balancing algorithms that are very fast but still yield
a data distribution of acceptable quality. There are several issues involved. The arith-
metic work load should be evenly distributed over the processors. Synchronization
and communication overhead should be low. Moreover, the overhead costs for the
load balancing procedure itself, including the redistribution of data between proces-
sors, should be small.

For fast re-balancing of the load in parallel SAMR, it is advantageous to exploit
the fact that the grids are structured. It is straightforward to subdivide a structured,
rectangular grid patch across gridlines so that the result will be a set of smaller,
structured, rectangular blocks of grid points. With this approach, partitioning of
structured grids will result in partitions, where each partition consists of a single
structured grid block or is a union of several such blocks. All the load balancing
algorithms discussed below have this property.

Structured grids are rectangular. If the grid is Cartesian, it is strictly rectangular.
However, the structured grid may also be curvilinear. Then, there will be a cor-
responding Cartesian grid on which the actual computations are carried out and a
mapping from the strictly rectangular computational grid to the logically rectangular
physical grid.

A single structured grid can only cover one, logically rectangular domain. Nor-
mally, real-life applications involve more complex domains. They are treated by
decomposing the domain into a number of logically rectangular, possibly overlap-
ping subdomains, each of which can be covered with a structured grid. It is then said
that the complex domain is covered by a “composite, structured grid.” The multi-
block grids that are used, e.g., in aircraft simulations constitute an important special
case.

Assume that we are going to carry out a simulation based on structured adaptive
mesh refinement, using a composite, structured base grid. Then, there are various
alternatives for the initial load balancing of the base grid (for an overview, see [25,
26]). All of these alternatives are relatively straightforward generalizations of load
balancing techniques for single, structured grids. Consequently, without significant
loss of generality, the remainder of this subsection will focus on the situation where
there is a single, structured base grid.

Moreover, we consider structured adaptive mesh refinement of the Berger–
Colella type (see Sect. 5.2.1). This means that the data structure to be

160 Jarmo Rantakokko and Michael Thuné

distributed – so as to attain load balance – is a grid hierarchy consisting of an un-
derlying base grid with one or several levels of superimposed refinement patches.

There are two basic strategies for addressing the load balancing problem in this
context. One is patch based, which means that each patch is distributed over a group
of processors, in a way that does not explicitly preserve the hierarchical relationship
between patches (see, e.g., [10,13,27–29]). The second alternative is domain based,
in the sense that the underlying domain, represented by the base grid, is partitioned
and distributed over the processors (see, e.g., [30, 31]). Superimposed patches are
distributed accordingly, so that each part of a patch is placed in the processor where
it “geographically” belongs, according to the domain distribution.

Using a patch-based approach, the load balancing due to the introduction of new
patches can be handled straightforwardly, by distributing each new patch over all
processors, or over an appropriate subset of processors.

This alternative is not available in the domain-based case. There, a repartitioning
of the entire grid hierarchy will typically be required in order to rebalance the load.
Such domain-based repartitioning will amount to “cutting” through all levels of the
grid hierarchy, as if there were only one single grid. In practice, only the base grid is
partitioned. The impact of the superimposed patches is taken into account by theo-
retically mapping their work loads down to the base grid. Consequently, domain-
based repartitioning of a structured grid hierarchy is equivalent to the partitioning
of a single structured grid with inhomogeneous work load.

The two basic strategies are complementary to each other in terms of strengths
and weaknesses. With the patch-based strategy it is relatively easy to balance the
arithmetic work load. However, this approach will typically yield a significant com-
munication overhead, due to the interaction between different refinement levels in
the grid hierarchy. The domain-based approach, on the other hand, will avoid this
inter-level communication, by preserving the hierarchical relationship between the
grid patches. This comes at the price of getting a more difficult load balancing prob-
lem for the arithmetic work load.

As a consequence of the complementary properties of patch-based and domain-
based approaches, hybrid techniques, combining elements of both approaches, are
also of interest to explore (see, e.g., [26, 31, 32]).

We begin by considering the patch-based approach. There, the grid hierarchy
can be regarded as a collection of n patches. A straightforward way of distributing
such a collection over p processors is to divide each patch into p rectangular boxes,
distributing one box to each processor. This means that the “partition” for each pro-
cessor will consist of n boxes, one from each patch. It has been shown theoretically
that this simple strategy works well in cases where the number of processors and
patches is modest, and the individual patches are close to square in shape [33].

Another kind of patch-based strategy is to distribute the n patches according to
some bin-packing algorithm or similar strategies such as greedy and round-robin
algorithms. The simplest alternative is to assign complete patches to processors.
However, this is likely to yield a bad arithmetic work load distribution and also
scales badly to large numbers of processors. More sophisticated alternatives include
splitting patches into smaller rectangular blocks, as described above, in order to

5 Parallel Structured Adaptive Mesh Refinement 161

balance the arithmetic work load properly. Finally, there are also ways to take the
communication work load into account in a patch-based context. See [34] and [13]
for examples of elaborate algorithms along these lines.

The domain-based alternative can be rephrased as the partitioning of a single,
structured grid with inhomogeneous work load, as explained above. A classic way
of treating such cases is the binary dissection algorithm proposed by Berger and
Bokhari [35]. Here, the grid is divided into precisely p partitions, one for each
processor, in such a way that the arithmetic load is well balanced. Later develop-
ments of the algorithm introduce a parameterization in order to take into account
the trade-off between the arithmetic and the communication work loads [36]. In the
original algorithm, the number of processors was assumed to be 2ν for some integer
ν . However, the generalization to arbitrary numbers of processors is straightfor-
ward [37, Sect. 4.1].

A more general way of handling the inhomogeneous partitioning problem was
proposed by Rantakokko [38]. He introduced a framework within which a wide
variety of algorithms can be conceived as special cases. The framework consists
of three phases. The first phase is a structured division of the grid into a number of
boxes. Here, the Berger–Bokhari algorithm can be used as an alternative. In general,
any blocking scheme can be used. Moreover, it is not necessary to generate exactly p
boxes. It is often advantageous to create m > p boxes in order to get a better balanced
arithmetic work load. In the case of recursive blocking, the recursion can be carried
to different depth in different parts of the grid, depending on the variation of work
load within the grid. The result of the blocking phase is a number of boxes, with
neighborhood relations between them. This can be represented as a graph, where
nodes correspond to boxes, and edges correspond to neighborhood relations. This
graph will typically be unstructured. The second phase of Rantakokko’s framework
is to partition this box-graph into p partitions, using any technique for general graph
partitioning. The result will be a number of partitions, where each partition consists
of a collection of boxes. The number of boxes may vary between partitions. The
partitions are mapped onto processors. Finally, as a third phase, a post processing
step is carried out, where boxes residing on the same processor are being merged if
possible, in order to avoid unnecessary overhead due to the box management.

This framework can be used in many different ways to yield specific algorithms.
For example, Rantakokko used his framework for investigating a variety of algo-
rithms for the partitioning of static, structured grids, both single grids [38] and
multi-block grids [25].

Parashar and Brown [17, 30] and Steensland et al. [31, and references therein]
used Rantakokko’s framework for investigating domain-based algorithms for dy-
namic load balancing of grid hierarchies emanating from structured adaptive mesh
refinement. The crucial difference between the static and the dynamic case is that
the partitioning of the box-graph needs to be done very rapidly in the dynamic
case. Techniques based on inverse space-filling curves constitute a promising alter-
native in this context [24,30,39,40]. The conclusion of Steensland’s work on strictly
domain-based algorithms is that they work well for “shallow” grid hierarchies, with

162 Jarmo Rantakokko and Michael Thuné

up to three levels of refinement [41]. For deeper hierarchies, it becomes increasingly
difficult to balance the arithmetic work load with a domain-based approach [31].

With a patch-based approach, the load balance can be kept under control even if
there are many levels of refinement. On the other hand, with such an approach each
new level of refinement will add to the cost for synchronization due to inter-level
data dependencies.

Since patch-based and domain-based algorithms have complementary strengths
and weaknesses, and both kinds of algorithms are less suitable for deep grid hier-
archies, Steensland has suggested a hybrid approach [31]. There, the initial domain
is coarsely decomposed into “natural regions.” Subsequently, each natural region is
partitioned with a partitioning algorithm that has been proven to be successful for
that kind of region. For example, for a coarse grid region a regular blocking scheme
may be used. For a region with few refinement levels, a strictly domain-based al-
gorithm may be preferable, and for a region with many refinement levels, some
blend of domain-based and patch-based approach can be applied. Steensland imple-
mented a parameterized framework for this hybrid approach and reported promising
results [31, Chapter 9]. The further exploration of these ideas is subject to continu-
ing research.

Block-wise SAMR algorithms (see Sect. 5.2.1) can be considered as a simpli-
fied version of the Berger–Colella approach. The simplification can be exploited
for dynamic load balancing. There are two variants. In one variant of block-wise
SAMR [7–9], the number of blocks is kept fixed during the entire execution of the
parallel SAMR code, but the work load associated with a block will vary as an effect
of mesh refinement. In this case, the SAMR grid can be described as a very coarse
and very regular graph of blocks, with varying node weights representing the work
load associated with the blocks. Due to the small size of the graph it can be parti-
tioned very quickly with inverse space-filling curve-based methods. It is even feasi-
ble to use more advanced graph partitioning algorithms that would be prohibitively
expensive for dynamic load balancing in more general kinds of SAMR. In a com-
parison of different partitioning algorithms for this variant of block-wise SAMR,
Steensland et al. found that an alternative based on Spectral Recursive Bisection
actually gave the shortest overall execution time in some cases [42].

In the other variant of block-wise SAMR a block is subdivided whenever it is re-
fined [6,10,11]. The effect is that the number of blocks grows but the number of grid
points per block is constant. The latter simplifies load balancing. To partition grid
level l, the level l blocks can be ordered in a sequence according to an inverse space
filling curve index. Subsequently, a load balanced partitioning can be conveniently
obtained by dividing the sequence of blocks into equally sized subsequences. Since
all blocks have the same number of mesh points, all level l blocks will have the
same workload, and equally sized partitions of the sequence of blocks will give a
balanced workload among the partitions. For an example of this approach, see [6].

In summary, a large number of dynamic load balancing algorithms, patch based
as well as domain based and hybrids, have been tried by various researchers. An
important conclusion to be drawn is that no single algorithm is the best alterna-
tive in all cases. For this reason, Steensland et al. [31] proposed the development

5 Parallel Structured Adaptive Mesh Refinement 163

of a meta-partitioner for the dynamic load balancing of dynamic grid hierarchies.
The meta-partitioner will be equipped with a variety of dynamic load balancing al-
gorithms. During a simulation, whenever dynamic load balancing is called for, the
meta-partitioner will assess the current state of the application and computer system.
Based on that assessment, an appropriate load balancing strategy will be selected.
All of the algorithms mentioned above are potential candidates for inclusion in such
a tool. The actual selection of algorithms could either be based on ideas from the
area of recommender systems (see, e.g., [43, 44]) or use simpler tabular mappings
based on coarse classifications of load balancing algorithms with respect to various
application and system state characteristics (see, e.g., [42,45]). The meta-partitioner
idea will be further discussed in Sect. 5.5.5.

5.4.3 Parallelization Models

All the dynamic load balancing algorithms discussed above partition the grid hierar-
chy in such a way that each partition consists of one or several structured, rectangu-
lar blocks of grid points. The most common parallelization model for SAMR is in
local name space using MPI. Then, the parallelization is coarse grained over entire
blocks, i.e., each processor is responsible for one or more blocks. The computa-
tions are performed locally within each processor and block. The data dependencies
between the partitions are handled with communication calls in MPI. To make the
communication efficient and to avoid unnecessary communication/synchronization
overheads the number of messages can be minimized by collecting data from several
blocks that are going to the same processor into one large message. The communi-
cation can then be performed asynchronously with MPI_ISEND and MPI_PROBE
in a first-come-first-serve order.

An alternative parallelization model is to use global name space and OpenMP
directives. A straightforward implementation is to use a fine grained loop level
parallelism within each block, i.e., each block is parallelized over all threads. Un-
fortunately, the parallel overheads very quickly become large and the performance
degrades significantly [46]. A better alternative is to have a coarse grained paral-
lelization over the blocks, i.e., processing locally one or more blocks in each thread.
OpenMP gives some support for load balancing through the schedule directive in
loops (e.g., schedule dynamic) but as we also need to keep the data locality this
approach is not sufficient for our goals [47]. A remedy is to mimic the MPI par-
allelization, i.e., to only use the parallel directive and check if the particular block
belongs to this thread’s partition before executing the code on the thread. The par-
titions can be computed with an explicit load balancing algorithm as in the MPI
case.

Combining the MPI approach and the OpenMP approach exploits both the
coarse-grain and the fine-grain parallelism. We can parallelize with MPI over the
blocks and use OpenMP within the blocks for loop-level parallelism. A similar ap-
proach has been implemented in Racoon [6] but by using a combined MPI-Pthreads

164 Jarmo Rantakokko and Michael Thuné

parallelization. The two-level parallelization approach has further been developed
for dynamic allocation of resources giving further improvements of performance,
see Sect. 5.5.2. Finally, in [21] they have a two-level parallelization in OpenMP
using nesting of the threads. The first level is a parallelization over the blocks and
the second over the loops within a block, similarly to the combined MPI-OpenMP
approach described above.

The different parallelization models are preferable in different settings depending
on the application state (the grid hierarchy, refinement levels, number of patches,
etc.) and the computer state (number of available processes and threads, memory
characteristics, etc.). Generally, the coarse-grain parallelization model with MPI is
preferable for cases with many small patches while the fine-grain loop-level paral-
lelism is preferable for cases with few large patches. Note that the application state
changes during run-time in SAMR applications, giving preference to different par-
allelization models in different phases within one run. For further discussion on this
topic see Sects. 5.5.2 and 5.6.

5.5 Some Results

So far, we have given a general overview of parallel SAMR, citing results by vari-
ous research groups, including some of our own work. Next, we will briefly mention
some additional research results specifically from our own research group at Upp-
sala University.

5.5.1 An Integrated Decomposition and Partitioning Approach for
Irregular Block-Structured Applications

Irregular block decompositions are commonly used in scientific applications where
partial differential equations are solved numerically. For example, in structured
multi-block methods the computational grid is decomposed into blocks and the
blocks are fitted around or within an object. The blocks may then be of different
sizes and connected to each other in an irregular fashion. In structured adaptive
mesh refinement techniques we have irregular regions with high error. The flagged
points, i.e., the high error points, are clustered together and a new refined level of
grids with an irregular block decomposition is created. Similar techniques are also
used in Ocean modeling. Here, we have an irregular geometry of water points but we
still use a rectangular structured grid covering both land and water. The land points
are then masked out in the computations. Still, the inactive points will consume
both processor power and memory. It is then necessary to have an irregular block
decomposition to cover the active points as efficiently as possible, minimizing the
overheads associated with the inactive points.

5 Parallel Structured Adaptive Mesh Refinement 165

Rantakokko developed an integrated block decomposition and partitioning method
for irregularly structured problems arising in Ocean modeling [48]. The approach
is not limited to Ocean modeling but is also suitable for other similar applications,
e.g., structured adaptive mesh refinement applications. The algorithm consists of
three steps or phases. The idea is to first cluster the water points in “dense” blocks,
striving to get a block efficiency – i.e., the fraction of active points – above a given
threshold. The next step is to distribute the blocks onto the processors with a small
load imbalance ratio and a low number of inter-processor dependencies. The final
step is to try to merge blocks on the same processor into larger rectangular blocks.
The objective of the last step is to reduce the total number of blocks, since there is a
small cost associated with each block, e.g., starting up loops, calling functions, and
updating the block boundaries.

The domain decomposition method has been compared with the Berger–Rigoutsos
grid clustering algorithm, [23], and the new method gives better results for the ap-
plications here. The new approach is simpler and faster but still gives a higher block
efficiency, i.e., a higher fraction of active points in the blocks. A result is that it
is not necessary to introduce the complexity of the Berger–Rigoutsos algorithm to
get comparable or even better results. The distribution method has also been com-
pared with other algorithms found in the literature, namely, the k-way partitioning
algorithm in Metis, an inverse space filling curve-based method, and a bin-packing
algorithm. A second result is that the new method outperforms the other algorithms.
It gives a better load balance with fewer blocks and then less serial overhead in the
solver, resulting in a shorter parallel solver execution time. The irregular block de-
composition and partitioning algorithm has successfully been used by the Swedish
Meteorological and Hydrological Institute to partition the Baltic Sea [49,50] in their
operational Ocean model.

5.5.2 A Hybrid Dynamic MPI-OpenMP Model

All the previously mentioned parallelization approaches (see Sect. 5.4.3) have some
drawbacks making them non-optimal in different settings. A parallelization on the
block level has limited parallelism dictated by the number of blocks. A paralleliza-
tion on the grid point level, i.e., within the blocks, has many synchronization points.
Moreover, some blocks may be too small to parallelize giving excessive parallel
overheads. A static mixed coarse-fine level parallelization increases the parallelism
compared to block-level parallelization and decreases the parallel overheads com-
pared to parallelization on the grid point level. Still, some blocks may be too small
to parallelize with a fixed number of threads while some other blocks may be large
enough to benefit from using more threads than were given from start. These condi-
tions also change during run-time, e.g., at some state none of the blocks is suitable
for loop-level parallelism while at another state most of the blocks would benefit
from additional threads. This makes it hard for static parallelization/programming
models to be efficient for structured adaptive mesh refinement methods.

166 Jarmo Rantakokko and Michael Thuné

Rantakokko suggested a dynamic MPI-OpenMP approach, [51], that sets the
number of threads for each block individually depending on the size of the block.
With this approach, the blocks are assigned to MPI-processes and then an appropri-
ate number of threads are spawned for each block at run-time (using the function
OMP_SET_NUM_THREADS before each parallel region). The most obvious strat-
egy is to set the number of threads proportional to the number of grid points in the
blocks. This approach gives the same work load per thread and each block can be
processed in unit time, approximately. But, the parallel overhead grows significantly
with the number of threads and the benefit of exploiting the low-level parallelism
is lost if too many threads are used. Thus, a better strategy is to use proportion-
ally fewer threads on the largest blocks and to give the blocks appropriate weights
before load balancing between processes. What the optimal number of threads per
block is depends on the absolute block sizes (not relative) and the computer system
(synchronization overhead, cache performance, thread allocation time, etc.). While
static hybrid approaches, with fixed number of processes and threads throughout the
whole simulation, can fail to give good performance for some settings and stages of
the grid hierarchy, the dynamic strategy adapts the number of threads continuously
to the grid hierarchy and gives a high parallel efficiency throughout the whole sim-
ulation. This is shown for the test cases in [51].

5.5.3 Geographical Locality

The global name space model assumes that the grid hierarchy is placed in a shared
memory to which all threads have equally fast access. Under this assumption, all
threads with the same computational work load will execute with the same speed.
In reality, the assumption is only fulfilled in shared memory systems with uniform
memory access time, so called UMA systems.

Larger shared memory computers do not have the UMA property. In order to
scale to large systems, the logically shared memory has to be physically distributed.
Such a computer is typically built as a network or cluster of nodes, where each node
can be regarded as a UMA system in itself. Since the computer has shared memory,
all threads will be able to directly access all memory units, but the memory access
time will be non-uniform. Accessing a memory item in the thread’s local memory
is faster than making an access to a remote memory unit. In such a non-uniform
memory access (NUMA) system, threads with the same computational work load
can execute with different speed, because of the differences in memory access time.

As a consequence, geographical locality becomes important for efficient execu-
tion of parallel SAMR codes on NUMA systems. Geographical locality means that
a thread’s partition of data is placed in the local memory of the node on which the
thread is executing.

Markus Nordén et al. made an experimental study under carefully controlled
circumstances, to measure the effect of geographical locality on the performance
of a parallel, block-wise SAMR code [47]. For the experiment, four nodes of a

5 Parallel Structured Adaptive Mesh Refinement 167

Sun Fire 15K system were used in dedicated mode. Each node was a four processor
UMA system. In one part of the experiment, the parallel SAMR code was executed
using four processors on a single node. This constituted a small UMA system. In
another part of the experiment, the same code was executed on four different nodes,
using one processor on each node. This was a NUMA system. Finally, a third part of
the experiments used the same NUMA system, but added data migration directives
to achieve geographical locality. Below this case will be denoted by NUMA-MIG.

In all parts of the experiment, care was taken to bind threads to specific CPUs,
not allowing for automatic thread migration. The parallel SAMR code was written
in Fortran 90 with OpenMP. A first-touch strategy was used to ensure that the initial
placement of data preserved geographical locality. Each time the grid was adapted,
dynamic load balancing was invoked to repartition and remap data to threads. In the
NUMA case, the repartitioning and remapping operations were not followed by mi-
gration of data. Consequently, geographical locality was destroyed. In the NUMA-
MIG case, on the other hand, a migration directive was inserted after each instance
of dynamic load balancing, so that data were relocated in accordance with the new
partitioning and mapping, to preserve geographical locality.

In short, the results of the experiments were as follows: while the execution time
on the UMA system was ca. 4 hours, the same parallel SAMR execution on the
NUMA system took more than 6.6 hours, whereas the NUMA-MIG case executed in
ca. 4 hours. The difference in execution time between the UMA and the NUMA case
depends on the NUMA ratio, i.e., the quotient between remote and local memory
access time. On the computer system used for these experiments the NUMA ratio
was ca. 2.

It was expected that the UMA system would give the shortest execution time.
Nordén et al. were primarily interested in two issues: How much longer would the
execution time be on the NUMA system, due to the lack of geographical locality?
Would the active migration of data in the NUMA-MIG case pay off, or would the
overhead for migration be prohibitively large?

The experimental results summarized above show that there is a significant
penalty in not preserving geographical locality. Most importantly, the results demon-
strate the viability of active data migration to preserve the locality. The NUMA-MIG
experiments gave the same execution time as those carried out in UMA mode, im-
plying that the overhead for data migration was negligible.

The conclusion of these experiments is that for OpenMP-based parallel SAMR
implementations on large shared memory machines it would be highly desirable to
be able to give directives about data migration. In the absence of such directives,
multi-threading via POSIX is the alternative for those who wish to have full control
over data placement to preserve geographical locality [6].

It is not necessary to have explicit data placement directives. In the NUMA-MIG
experiments we used Sun Microsystem’s migrate-on-next-touch directive
that was available in the Sun Fire 15K system. The directive was inserted after the
dynamic load balancing operation, with the effect that after each instance of load
balancing, data items were migrated according to the first-touch principle. Only data
that had actually been assigned to a new thread were moved. This is a convenient

168 Jarmo Rantakokko and Michael Thuné

way of preserving geographical locality. With such a directive added to OpenMP, the
competitiveness of OpenMP-based parallel SAMR implementations would increase
significantly.

5.5.4 A Hybrid Patch/Domain-Based Partitioner Framework

Both patch-based and domain-based partitioners have inherent shortcomings for
partitioning different grid hierarchies in SAMR, as described above. In particu-
lar, deep grid hierarchies including many refinement levels are difficult to partition.
In [31] a hybrid partitioner Nature+Fable for SAMR is presented. The hybrid ap-
proach combines both patch-based and domain-based algorithms to take advantage
of their complementary strengths. Nature+Fable is a partitioning framework pro-
viding a number of parameters that can be tuned to represent different partitioning
algorithms.

First a pre-partitioning step is used to generate coarse partitions that are mapped
to a group of processors. The coarse partitions are then further partitioned within
the processor groups. Here, the grid is separated into un-refined and refined regions.
The un-refined regions are partitioned with a patch-based approach while the refined
regions are further separated into bi-levels, i.e., two overlaying refinement levels
that are grouped together. The bi-levels are then partitioned with a domain-based
approach. A set of parameters governs the partitioning process yielding different
partitioning algorithms for different settings of the parameters.

Partitioning outcomes from a suite of test cases show that the hybrid approach
gives results that are comparable with the domain-based approach in terms of com-
munication volumes and comparable to the patch-based approach in terms of load
balance [31]. These results are very encouraging as the hybrid approach can be fur-
ther tuned for each setting of the application state [52].

5.5.5 A Meta-Partitioner for Structured Grid Hierarchies

The meta-partitioner was briefly mentioned in Sect. 5.4.2. It is based on the obser-
vation that no single partitioning algorithm will be the best alternative in all circum-
stances. On the contrary, the state of the grid hierarchy may change so much due to
the mesh adaptation that different partitioning algorithms will be preferable at dif-
ferent instances of dynamic load balancing during a single run of a parallel SAMR
code.

The idea, then, is that when dynamic load balancing is required, the parallel
SAMR code will call the meta-partitioner. Based on information about the current
state of the application and computer system the meta-partitioner will automatically
select an appropriate partitioning algorithm that it will subsequently invoke to carry
out the re-partitioning of the SAMR grid hierarchy. At the next instance of dynamic

5 Parallel Structured Adaptive Mesh Refinement 169

load balancing during the same run of the parallel SAMR code, the meta-partitioner
will be called again, possibly invoking another partitioning algorithm, etc.

Henrik Johansson has recently implemented the meta-partitioner as a collection
of CCA components [53]. 3 One of the meta-partitioner components is a data base
with stored application states collected from a series of benchmarking experiments.
For each of the stored states, performance data for a variety of partitioning algo-
rithms are available in the data base. Another meta-partitioner component matches
the current application state to the stored application states in the data base. The
meta-partitioner selects the partitioning algorithm that gave the best performance
for those stored application states that were closest to match the current application
state [55].

Johansson’s meta-partitioner is currently being tested using partitioning algo-
rithms generated within the Nature+Fable framework. The preliminary results are
promising.

5.6 Conclusions and Future Work

In this chapter, we have given a brief overview of structured adaptive mesh refine-
ment techniques, with particular emphasis on issues related to their implementation
on parallel computers. Two definite conclusions can be drawn from the existing lit-
erature on these topics.

First, methods based on adaptive mesh refinement significantly enhance the pos-
sibilities to simulate phenomena that exhibit large variation in scales. Climate mod-
eling, vehicle design, and combustion in 3D are three examples from the very long
list of cases with this property. Due to their usefulness in simulations of such phe-
nomena, AMR-based methods are among the core techniques in computational sci-
ence and engineering.

The second conclusion from the existing research on parallel SAMR is that the
appropriate choice of dynamic load balancing algorithm, data placement strategy,
programming model, etc., depends on both the application state and the computer
platform. This is because the characteristics of the application change dynamically
during the course of the simulation. In particular, in a parallel SAMR-based sim-
ulation there may be significant changes in data volume and communication-to-
computation ratio at run-time. As a consequence, the overall execution time would
decrease if different load balancing algorithms were used at different stages of the
simulation.

The dynamically changing characteristics of parallel SAMR-based simulations
are the rationale for the meta-partitioner project discussed above. The
meta-partitioner adds an element of self-configuration to the parallel SAMR code
in selecting the load balancing algorithm automatically at run-time. In addition, the
meta-partitioner implies self-optimization, since different load balancing algorithms

3 CCA is the Common Component Architecture, see [54].

170 Jarmo Rantakokko and Michael Thuné

will be selected at different instances of load re-balancing during a single run of the
parallel SAMR software, with the purpose to reduce the execution time.

Self-configuration and self-optimization are two of the key aspects of autonomic
computing [56]. In our continued work we aim to equip parallel SAMR software
with additional elements of autonomicity. Primarily, we will consider two further
kinds of self-optimization. The first is to make the software able to automatically
select an appropriate amount of parallel resources. The second is to make the paral-
lel SAMR software able to automatically select details of the parallelization model.
The software would ideally be able to make adjustments in parallel resource alloca-
tion and parallelization model at run-time, in response to the dynamically changing
characteristics of the simulation.

Making parallel SAMR codes increasingly autonomic will contribute to mak-
ing them even more attractive. First, self-configuration and self-optimization will
be instrumental in ensuring efficient execution for a variety of simulation cases and
parallel computing platforms without special hand-tuning of the code for each case
and/or platform. Second, a certain degree of autonomicity that ensures good perfor-
mance without human intervention is essential to make parallel SAMR accessible
to a broad community of scientists and engineers who want to simulate phenomena
of interest in their areas of research but are not experts in parallel computing.

In conclusion, parallel SAMR is by now a core technique in computational sci-
ence and engineering. Appropriately implemented it significantly widens the scope
for simulations of important phenomena, for example in combustion and climate
modeling. Current and future research activities aiming to add elements of auto-
nomicity to the software will further increase the potential of parallel SAMR tech-
niques.

Acknowledgments Our research on parallel SAMR has been conducted in cooperation with
Ph.D. students and colleagues at the Department of Information Technology, Uppsala University.
In particular, we want to thank former and present Ph.D. students Henrik Johansson, Henrik Löf,
Markus Nordén, Stefan Söderberg, and Johan Steensland for their contributions. We also thank our
colleagues Lars Ferm, Erik Hagersten, Sverker Holmgren, and Per Lötstedt.

References

1. E. Steinthorsson, D. Modiano, Advanced methodology for simulation of complex flows using
structured grid systems, Tech. Rep. 95-28, ICOMP, NASA Lewis Research Center, Cleveland,
OH (1995).

2. L. Ferm, P. Lötstedt, P. Sjöberg, Conservative solution of the Fokker–Planck equation for
stochastic chemical reactions, BIT 46 (2006) 561–583.

3. M. J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations,
Journal of Computational Physics 53 (1984) 484–512.

4. M. J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of
Computational Physics 82 (1989) 64–84.

5. M. J. Berger, Data structures for adaptive grid generation, SIAM Journal on Scientific and
Statistical Computing 7 (1986) 904–916.

5 Parallel Structured Adaptive Mesh Refinement 171

6. J. Dreher, R. Grauer, Racoon: A parallel mesh-adaptive framework for hyperbolic conserva-
tion laws, Parallel Computing 31 (2005) 913–932.

7. L. Ferm, P. Lötstedt, Blockwise adaptive grids with multigrid acceleration for compressible
flow, AIAA J. 37 (1999) 121–123.

8. P. Lötstedt, S. Söderberg, Parallel solution of hyperbolic pdes with space-time adaptivity, in:
D. H. R. Vilsmeier, F. Benkhaldour (Ed.), Finite Volumes for Complex Applications II, Her-
mes Science, Paris, 1999, pp. 769–776.

9. P. Lötstedt, S. Söderberg, A. Ramage, L. Hemmingsson-Frändén, Implicit solution of hyper-
bolic equations with space-time adaptivity, BIT 42 (2002) 128–153.

10. P. MacNeice et al, PARAMESH: A parallel adaptive mesh refinement community toolkit,
Computer Physics Communications 126 (2000) 330–354.

11. K. G. Powell et al., A solution-adaptive upwind scheme for ideal magnetohydrodynamics,
Journal of Computational Physics 154 (1999) 284–309.

12. R. A. Trompert, Local uniform grid refinement for time-dependent partial differential equa-
tions, Ph.D. thesis, University of Amsterdam (1994).

13. Z. Lan, V. E. Taylor, G. Bryan, A novel dynamic load balancing scheme for parallel systems,
Journal of Parallel and Distributed Computing 62 (2002) 1763–1781.

14. P. Colella, D. T. Graves, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale, D. Modi-
ano, P. O. Schwartz, T. D. Sternberg, B. V. Straalen, Chombo software package for AMR ap-
plications: Design document, Available at the Chombo website: http://seesar.lbl.
gov/ANAG/chombo/ (September 2008).

15. R. Deiterding, Parallel adaptive simulation of multi-dimensional detonation structures, Ph.D.
thesis, Brandenburgische Technische Universität Cottbus (2003).

16. R. Deiterding, Detonation structure simulation with AMROC, in: L. Y. et. al. (Ed.), High Per-
formance Computing and Communications, No. 3726 in Lecture Notes in Computer Science,
Springer, Berlin Heidelberg, (2005), pp. 916–927.

17. M. Parashar, J. Browne, System engineering for high performance computing software: The
HDDA/DAGH infrastructure for implementation of parallel structured adaptive mesh refine-
ment, in: Structured Adaptive Mesh Refinement Grid Methods, Volume 117 of IMA Volumes
in Mathematics and its Applications, Springer-Verlag, Berlin (2000), pp. 1–18.

18. C. Rendleman, V. Beckner, M. Lijewski, W. Crutchfield, J. Bell, Parallelization of structured,
hierarchical adaptive mesh refinement algorithms, Computing and Visualization in Science 3
(2000) 147–157.

19. A. Wissink, R. Hornung, S. Kohn, S. Smith, N. Elliott, Large scale parallel structured AMR
calculations using the SAMRAI framework, in: Proceedings of Supercomputing 2001, Denver,
USA, (2001).

20. M. Berger, R. LeVeque, Adaptive mesh refinement using wave-propagation algorithms for
hyperbolic systems, SIAM Journal of Numerical Analysis 35 (1998) 2298–2316.

21. R. Blikberg, T. Sørevik, Load balancing and OpenMP implementation of nested parallelism,
Parallel Computing 31 (2005) 984–998.

22. L. Bebreu, C. Vouland, E. Blayo, AGRIF: Adaptive grid refinement in Fortran, Computers and
Geosciences 34 (2008) 8–13.

23. M. J. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans-
actions on Systems, Man and Cybernetics 21 (1991) 1278–1286.

24. J. Pilkington, S. Baden, Dynamic partitioning of non-uniform structured workloads with
spacefilling curves, IEEE Transactions on Parallel and Distributed Systems 7 (3) (1996) 288–
300.

25. J. Rantakokko, Partitioning strategies for structured multiblock grids, Parallel Computing
26 (12) (2000) 1161–1680.

26. M. Thuné, Partitioning strategies for composite grids, Parallel Algorithms and Applications
11 (1997) 325–348.

27. D. Balsara, C. Norton, Highly parallel structured adaptive mesh refinement using language-
based approaches, Journal of parallel computing 27 (2001) 37–70.

28. R. D. Hornung, S. Kohn, The SAMRAI homepage, structured adaptive mesh refinement ap-
plications infrastructure, http://www.llnl.gov/CASC/SAMRAI/.

172 Jarmo Rantakokko and Michael Thuné

29. J. J. Quirk, A parallel adaptive grid algorithm for computational shock hydrodynamics, Ap-
plied Numerical Mathematics 20 (1996) 427–453.

30. M. Parashar, J. C. Browne, On partitioning dynamic adaptive grid hierarchies, presented at
HICSS-29 (1996).

31. J. Steensland, Efficient partitioning of dynamic structured grid hierarchies, Ph.D. thesis, Upp-
sala University (2002).

32. Z. Lan, V. Taylor, G. Bryan, Dynamic load balancing of SAMR applications on distributed
systems, in: Proceedings of Supercomputing 2001, (2001).

33. M. Thuné, Straightforward partitioning of composite grids for explicit difference methods,
Parallel Computing 17 (1991) 665–672.

34. H. Johansson, A. Vakili, A patch-based partitioner for parallel SAMR applications, accepted
for publication in the proceedings of the IASTED International Conference on Parallel and
Distributed Computing and Systems, November 2008.

35. M. J. Berger, S. Bokhari, A partitioning strategy for non-uniform problems on multiprocessors,
IEEE Transactions on Computers 85 (1987) 570–580.

36. S. H. Bokhari, T. W. Crockett, D. M. Nicol, Binary dissection: Variants & applications, Tech.
Rep. ICASE Report No. 97-29, NASA Langley Research Center, Hampton, VA (1997).

37. J. Rantakokko, Strategies for parallel variational data assimilation, Parallel Computing 23
(1997) 2017–2039.

38. J. Rantakokko, A framework for partitioning structured grids with inhomogeneous workload,
Parallel Algorithms and Applications 13 (1998) 135–152.

39. C.-W. Ou, S. Ranka, Parallel remapping algorithms for adaptive problems, Journal of Parallel
and Distributed Computing 42 (1997) 109–121.

40. J. Steensland, Dynamic structured grid hierarchy partitioners using inverse space-filling
curves, Tech. Rep. 2001-002, Uppsala University, Department of Information Technology,
Uppsala, Sweden (2001).

41. J. Steensland, M. Thuné, S. Chandra, M. Parashar, Towards an adaptive meta-partitioner for
parallel SAMR applications, in: Proceedings of the IASTED International Conference on Par-
allel and Distributed Computing Systems, Las Vegas, (2000), pp. 425–430.

42. J. Steensland, S. Söderberg, M. Thuné, Comparison of dynamic load balancing techniques for
a parallel SAMR algorithm, in: T. Sørevik, F. Manne, R. Moe, A. H. Gebremedhin (Eds.),
Applied Parallel Computing—New Paradigms for HPC in Industry and Academia, Springer-
Verlag, Heidelberg, (2001), pp. 160–169, (Lecture Notes in Computer Science, Vol. 1947).

43. E. N. Houstis et al., PYTHIA-II: A knowledge/database system for managing performance
data and recommending scientific software, ACM TOMS 26 (2000) 227–253.

44. N. Ramakrishnan, C. J. Ribbens, Mining and visualizing recommendation spaces for elliptic
PDEs with continuous attributes, ACM TOMS 26 (2000) 254–273.

45. S. Chandra, Armada: A framework for adaptive application-sensitive runtime management of
dynamic applications, Master’s Thesis, Graduate School, Rutgers University, NJ (2002).

46. J. Rantakokko, Comparison of parallelization models for structured adaptive mesh refinement,
in: M. Danelutto, D. Laforcena, M. Vanneschi (Eds.), Lecture Notes in Computer Science
3149, Springer-Verlag, Heidelberg (2004), pp. 615–623.

47. M. Nordén, H. Löf, J. Rantakokko, S. Holmgren, Geographical locality and dynamic data mi-
gration for OpenMP implementations of adaptive PDE solvers, in: Lecture Notes in Computer
Science 4315, (2008), pp. 382–393.

48. J. Rantakokko, An integrated decomposition and partitioning approach for irregular block-
structured applications, in: J. Romlin et al. (Ed.), Proceedings of the IEEE International Paral-
lel and Distributed Processing Symposium, IPDPS 2000, Springer–Verlag, Berlin, (2000), pp.
485–496, Lecture Notes in Computer Science, Vol. 1800.

49. T. Wilhelmsson et al., Increasing resolution and forecast length with a parallel ocean model,
in: Proceedings of the Second EuroGOOS International Conference, (1999).

50. T. Wilhelmsson, J. Schüle, Running an operational baltic sea model on the T3E, in: Proceed-
ings of the Fifth European SGI/Cray MPP Workshop, Cineca, Bologna, (1999).

51. J. Rantakokko, A dynamic MPI-OpenMP model for structured adaptive mesh refinement, Par-
allel Processing Letters 15 (2005) 37–47.

5 Parallel Structured Adaptive Mesh Refinement 173

52. H. Johansson, Performance characterization and evaluation of parallel PDE solvers, Licentiate
Thesis 2006-010, Department of Information Technology, Uppsala University (2006).

53. H. Johansson, Design and implementation of a dynamic and adaptive meta-partitioner for par-
allel SAMR grid hierarchies;, Technical Report 2008-017, Department of Information Tech-
nology, Uppsala University (2008).

54. The Common Component Architechture, http://www.cca-forum.org/.
55. L. Li, B. Norris, H. Johansson, L. C. McInnes, J. Ray, Component infrastructure for managing

performance data and runtime adaptation of parallel applications, accepted for publication in
the Proceedings of PARA2008, Trondheim, Norway, 2008.

56. J. O. Kephart, D. M. Chess, The vision of autonomic computing, IEEE Computer 36 (1) (2003)
41–50.

Chapter 6
Applications and Parallel Implementation
of QMC Integration

Peter Jez, Andreas Uhl and Peter Zinterhof

Abstract

In this chapter we deal with numerical computation of integrals over the domain
R

s (s > 1) with respect to a positive weight function. For one-dimensional inte-
grals Gauss Hermite formulas compute integrals with respect to a Gaussian weight
with quite high accuracy but for high-dimensional integrals the effort increases ex-
ponentially. For integrals over the s-dimensional unit cube probabilistic methods
like Monte Carlo (MC) are not affected by this so-called “curse of dimensions,” but
the convergence rate is rather poor. If the integration nodes are not pure random
points but special deterministic point sequences (the method is called Quasi Monte
Carlo (QMC) due to this fact) this rate can be significantly improved. These low-
discrepancy sequences appear also in the computation of integrals over R

s.
In the first part of the chapter we review some theoretic results about QMC in-

tegration over [0,1)s. Then the integration over R
s is considered for the case of a

Gaussian type weight function. In the second part we discuss the execution of these
computations in a parallel environment. Due to the convergence rate of QMC in-
tegration (which of course depends on the smoothness of the integrand also) the
integrand must be evaluated on a huge amount of integration nodes. To speed up
this calculation it is split into (more or less) independent tasks which run on differ-
ent processing elements (PES). After reviewing the state of the art in parallel and
distributed QMC, we execute experiments for three different concepts of paralleliza-
tion: Blocking, leaping and parametrization.

Peter Jez
Department of Computer Sciences, University of Salzburg, J.-Haringer-Strasse 2,
5020 Salzburg, Austria, e-mail: peter.jez@sbg.ac.at

Andreas Uhl
Department of Computer Sciences, University of Salzburg, J.-Haringer-Strasse 2,
5020 Salzburg, Austria, e-mail: uhl@cosy.sbg.ac.at

Peter Zinterhof
Department of Computer Sciences, University of Salzburg, J.-Haringer-Strasse 2,
5020 Salzburg, Austria, e-mail: peter.zinterhof@sbg.ac.at

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_6, 175
c© Springer-Verlag London Limited 2009

176 Peter Jez, Andreas Uhl and Peter Zinterhof

In the last part an error estimation for the computation in a parallel environment
based on the diaphony is presented and applied to one of the test functions used in
the experiments.

6.1 Introduction

For the numerical computation of integrals over an interval or the real line sev-
eral methods are available. The most simple one is the computation of an approx-
imative Riemann sum (the so-called rectangular rule). The most accurate methods
are the Gauss quadrature formulas based on the zeroes of orthogonal polynomials.
Whereas the usability of these methods for one-dimensional integration is with-
out doubt, they fail for higher dimensions. The reason of this fact is the exponen-
tially growing effort for increasing the dimensionality. To minimize this so-called
“curse of dimensions” other integration methods were developed: The so-called
Monte Carlo (MC) and Quasi Monte Carlo (QMC) methods [1]. Whereas in the
MC case the integration nodes are produced by a random number generator (RNG),
low-discrepancy point sets and sequences (e.g., (t,m,s)-nets or (t,s)-sequences [2])
are employed in QMC algorithms. QMC techniques improve the probabilistic error
bounds of MC techniques especially in higher dimensions. Nevertheless, these tech-
niques are related [3] since a full-period random number sequence may be seen as
a low-discrepancy point set (e.g., a rank-1 lattice rule in the case of a linear congru-
ential generator) as well.

In applications, integration problems over the s-dimensional unit cube often arise.
So we review the basics about these methods over this important domain and recall
ways to extend the results to integration problems over the real line. A famous error
estimation for QMC integration is the Hlawka–Koksma inequality. Unfortunately,
the application of this estimator often fails due to the nonexistent total variation
in the sense of Hardy and Krause or its difficult computation. For integrands of
special function classes, the so-called reproducing kernel Hilbert spaces (RKHS),
it is possible to get analogous error estimations, which are easy to compute. They
also deliver a measure of the quality of a point sequence, the so-called diaphony. We
give an example of an RKHS the basis of which is related to Hermite polynomials.
This space delivers also a generalized diaphony as an error estimation for integrands
from this RKHS with respect to a weight function of Gaussian type.

High-dimensional numerical integration problems may require a significant
amount of computation power. Therefore, substantial effort has been invested in
finding techniques for performing these computations on all kinds of parallel ar-
chitectures (see [4–7] for an exhaustive overview). In order to minimize the com-
munication within a parallel system, each processing element (PE) requires its own
source of integration nodes. Therefore, the aim is to investigate QMC techniques for
using separately initialized and disjoint sets of integration nodes on a single PE.

6 Applications and Parallel Implementation of QMC Integration 177

In this chapter, we propose and evaluate techniques to compute QMC integrals
over the real line (in case of a Gaussian-type weight function) on parallel systems.
Sect. 6.2 reviews QMC integration methods over [0,1]s; these results are extended
to the case of integration over the real line in Sect. 6.3 and examples from Physics
and Financial Engineering are given. In Sect. 6.4 we provide an overview of using
QMC techniques on parallel systems. Experimental results are provided in Sect.
6.5 employing Good Lattice Points (GLP) and Zinterhof sequences as QMC point
sets for which different distribution strategies are evaluated. Finally, Sect. 6.6 shows
an application of the concept of diaphony to provide analytic error estimations for
heterogeneous parallel systems and Sect. 6.7 concludes this chapter.

6.2 Monte Carlo and Quasi Monte Carlo Methods in Numerical
Integration Over [0,1)s

The problem is as follows: Suppose f (x) : [0,1)s → R is given. The task is the
computation of

I =
∫

[0,1)s
f (x)dx. (6.1)

The MC quadrature formula is quite simple: Choose N random points {xk}N
k=1 (the

sequence of integration node points) uniformly distributed in the s-dimensional unit
cube. Then, an approximation of the integral is given by

I ≈ Iapprox =
1
N

N

∑
k=1

f (xk). (6.2)

The dimension of the domain does not change the formula. The problem is shown
by the so-called “main theorem of MC integration”: The error |I− Iapprox| has the
magnitude

|I− Iapprox|= O

(
1√
N

)
,

which can be shown by the central limit theorem of probability. Now the follow-
ing question arises: Can this poor convergence rate be improved, at least for special
classes of integrands? The answer to this question is given by the QMC integration
methods. The difference between MC and QMC is that not arbitrary sequences of
random points are used but sequences of points with special properties. A measure
of the “quality” of a point sequence is the so-called discrepancy of a sequence [8].

Definition 6.1. Let {xk}N
k=1 =

{(
x(1)

k , . . . ,x(s)
k

)}N

k=1
be a finite sequence of points

in R
s. Then the number

DN
(
{xk}N

k=1

)
:= sup

I⊆[0,1)s

∣∣∣∣#(xk : xk ∈ I)
N

−
∫

I
dx

∣∣∣∣ (6.3)

178 Peter Jez, Andreas Uhl and Peter Zinterhof

is the discrepancy of the sequence {xk}N
k=1. I runs through all subintervals of the

form [α1,β1)× . . .× [αs,βs) of the unit cube.

The term of discrepancy delivers a characterization of the distribution of the se-
quence [8]:

Theorem 6.1. A sequence {xk}N
k=1 is uniform distributed modulo 1 if and only if

lim
N→∞

DN
(
{xk}N

k=1

)
= 0

If we permit only intervals of the form

I = [0,a1)× . . .× [0,as)

in (6.3), the resulting number is called the *-discrepancy D∗N
(
{xk}N

k=1

)
of the se-

quence {xk}N
k=1. Another type of discrepancy is given by the so-called L2 discrep-

ancy D(2)
N

(
{xk}N

k=1

)
:

D(2)
N

(
{xk}N

k=1

)
:=

=

(∫
[0,1)s

∣∣∣∣#(xk : xk ∈ [0,y1)× . . .× [0,ys))
N

− y1y2 . . .ys

∣∣∣∣
2

dy1 . . .dys

) 1
2

The square of the L2 discrepancy can be computed explicitly by Warnock’s formula
(see [9]):

(
D(2)

N

(
{xk}N

k=1

))2
=

1
3s −

1
N2s−1

N

∑
k=1

s

∏
j=1

(
1−

(
x(j)

k

)2
)

+

+
1

N2

N

∑
k,l=1

s

∏
j=1

(
1−max

(
x(j)

k ,x(j)
l

))

An efficient algorithm to compute the L2 discrepancy was provided by Heinrich
[10]. For detailed reference regarding discrepancies see [8]. The importance of dis-
crepancies in numerical integration is given by the famous Hlawka–Koksma in-
equality. This inequality estimates the error of the numerical computation of the
integral (6.1) by a quadrature formula (6.2) by a product where one factor depends
only on the integrand (to be more precise, it is the total variation in the sense of
Hardy and Krause of the integrand) and the second factor is the *-discrepancy of
the used sequence:

∣∣∣∣∣
N

∑
k=1

f (xk)−
∫

[0,1)s
f (x)dx

∣∣∣∣∣≤V (f)D∗N
(
{xk}N

k=1

)

The disadvantage of this estimation is the existence and the computation of the total
variation. To get an idea of the quantity of the discrepancy we present some results

6 Applications and Parallel Implementation of QMC Integration 179

here. A lower bound is provided by Roth [11]: Every sequence of N points in R
s

with s≥ 2 satisfies

D∗N >
1

24s

√
1

((s−1)log2)s−1

(logN)
s−1

2

N
,

and every infinite sequence satisfies the inequality

D∗N > Cs
(logN)

s
2

N
,

where Cs is a constant only depending on the dimension s. An upper bound is given
by the famous Erdös–Turan inequality: For h ∈ Z denote h = max(|h|,1). Then an
upper bound of the discrepancy is given by the following inequality:

DN ≤ 2s23s+1

(
1
m

+
m

∑
h1,...hs=−m;hi �=0

1

h1 . . .hs

∣∣∣∣∣
1
N

N

∑
n=1

e2πi(h1x(1)
k +...+hsx(s)

k)

∣∣∣∣∣
)

In one dimension the *-discrepancy can be computed by a formula provided by
Niederreiter:

D∗N =
1

2N
+ max

i=1,...,N

∣∣∣∣xi−
2i−1

2N

∣∣∣∣
For the proof and further details to discrepancies we refer to [12]. Sequences which
satisfy

D∗N = O

(
logs N

N

)

are called “low-discrepancy sequences.” They deliver the best results in numerical
integration. Famous examples of these sequences are

• Halton sequence [13]: The *-discrepancy of this sequence satisfies

D∗N ≤Cs
logs N

N
(6.4)

with a constant Cs depending on the dimension. If the dimension increases the
constant grows super exponentially. Niederreiter [2] showed

lim
s→∞

logCs

s logs
= 1

• Faure sequence [14]: The *-discrepancy satisfies an inequality analog to (6.4),
but the constant decreases very fast when s→ ∞.

• Sobol sequence [15]
• (t,m,s)-nets of Niederreiter [2]: These sequences are generalized Sobol se-

quences
• “Good Lattice Points” by Korobow [16] and Hlawka [17]

180 Peter Jez, Andreas Uhl and Peter Zinterhof

• The monothetic or Weyl sequences [18]: Let θ = (θ1, . . . ,θs) ∈ R
s with θi al-

gebraic numbers independent over Q. Then Niederreiter [19] showed that the

sequence {xn}N
n=1 = (nθ1, . . . ,nθs) has a discrepancy DN = O

(
1

N1−ε

)
. For more

information about these sequences see also [20].

A special case of the Weyl sequences are the Zinterhof sequences [21], which
we use in our experiments: Let (r1,r2, . . . ,rs) ∈ Q

s with ri �= r j �= 0 for all i, j =
1,2, . . . ,s and θ = (er1 ,er2 , . . . ,ers). For computational aspects of these low-discrepancy
sequences applied to financial engineering, that is, implementation examples and
computational results see [22].

We use also the Good Lattice Points by Korobow and Hlawka and that’s why
we give a more detailed description of these point sequences here. A different name
for them is “optimal coefficients” which was introduced by Korobow (see [16]),
the name “Good Lattice Points” was introduced by Hlawka (see [17]). Let {x} be
the fractional part of x and recall the definition of this sequence (as above we use
m = max(|m|,1)) [23]:

Definition 6.2. Let p > 1 be an integer and let aν(p),ν = 1,2, . . . ,s be integers with
gcd(aν(p), p) = 1 for all ν = 1, . . . ,s. Let δp(m) be defined by

δp(m) =

{
1 m≡ 0 mod p

0 else

If there are constants β = β (s) and C = C(s) with

p−1

∑
k1,k2,...,ks=−(p−1)

δp(k1a1 + . . .+ ksas)
k1 . . .ks

≤C
logβ p

p

for infinitely many values p then we call a1, . . . ,as optimal coefficients with index
β . For prime N the sequence (xk)N

k=1 ∈ [0,1)s of the GLP is now given by

xk =
({

a1k
N

}
, . . . ,

{
ask
N

})

Korobow showed that for all prime numbers p there are integers a1, . . . ,as with

p−1

∑
k1,k2,...,ks=−(p−1)

δp(k1a1 + . . .+ ksas)
k1 . . .ks

≤ 2(3+2log p)s

p

and provided a method for the computation of optimal coefficients for N = p1 p2

with p1,p2 prime numbers.

6 Applications and Parallel Implementation of QMC Integration 181

6.2.1 Application of Reproducing Kernel Hilbert Spaces

A very important aspect of numerical integration is the error estimation. The pre-
ferred estimator has the shape of the Hlawka–Koksma estimator: One term depends
only on the integrand, the second one rates the quality of the point sequence. The
disadvantage of the Hlawka–Koksma estimator is the difficult computation of the to-
tal variation in the sense of Hardy and Krause. For special function classes it is very
easy to get these desired error estimations. These function classes are the RKHS.
We recall their definition here [24].

Definition 6.3. Let H be a Hilbert space of complex-valued functions defined on a
set F with inner product < ., . >. If there is a function K(x,y) : F×F → C with the
properties

1. the functions gy(x) := K(x,y) are elements of H for all y ∈ F
2. K(x,y) = K(y,x)
3. for all f (x) ∈ H and all y ∈ F we have f (y) =< f (x),K(x,y) > (reproducing

property)

Then H is called an RKHS with kernel K(x,y).

In the following we assume that there is an element g ∈ H which fulfills the
equation ∫

[0,1)s
f (x)dx =< f ,g > (6.5)

for all f ∈H. The following computation leads to an error estimation for numerical
integration of functions from an RKHS H. Let f ∈ H and consider

∣∣∣∣∣
1
N

N

∑
k=1

f (xk)−
∫

[0,1)s
f (x)dx

∣∣∣∣∣
The reproducing property and (6.5) leads to

∣∣∣∣∣
1
N

N

∑
k=1

f (xk)−
∫

[0,1)s
f (x)dx

∣∣∣∣∣=
∣∣∣∣∣< f (y),

1
N

N

∑
k=1

K(y,xk)−g(y)

∣∣∣∣∣≤

≤ ‖ f‖.
∥∥∥∥∥

1
N

N

∑
k=1

K(y,xk)−g(y)

∥∥∥∥∥=

= ‖ f‖.
(

1
N2

N

∑
k,l=1

K(xk,xl)−
2
N

N

∑
k=1

ℜg(xk)+‖g‖2

) 1
2

= ‖ f‖.rN

The factor rN is called the g-diaphony of the sequence {xk}N
k=1 [25].

We mention one famous example: For ν = (n1, . . . ,ns) ∈ Z
s denote ν = n1 . . .ns,

let a be a positive integer and

182 Peter Jez, Andreas Uhl and Peter Zinterhof

H :=

{
f (x) : [0,1)s → C, f (x) = ∑

ν∈Zs

aν
e2πiνx

νa , ∑
ν∈Zs

|aν |2 < ∞

}

We define a scalar product on H by

<
e2πiνx

νa ,
e2πiμx

μa >= δνμ

Then a reproducing kernel is given by

Ka(x,y) = ∑
ν∈Zs

e2πiν(x−y)

ν2a

By Hurwitz’ representation of Bernoulli polynomials Bk(x) (for more information
about Bernoulli polynomials see [26] and the references there) the kernel can be
written in closed form. With {x}= x mod 1 we have

Ka(x,y) =
s

∏
j=1

(
1+(−1)a (2π)2a

(2a)!
B2a({x j− y j})

)

In this particular case the element g in (6.5) is equal to 1 and for a = 1 the resulting
term for rN is equal to the weighted spectral test of the sequence {xk}N

k=1 [27].

6.3 QMC Methods for Integrals over R
s with a Weight Function

QMC integration methods are used most often over the domain [0,1)s. They can also
be applied to integrals over R

s with a weight function. This problem was studied
in [28]. In our experiments we consider integrals with the weight function

w(x) : R
s → R,w(x) =

s

∏
j=1

e−x2
j , (6.6)

where w(x) is the density of a Gaussian measure up to a constant and it is separable.
Integrals of this type arise quite often in statistics, mathematical finance and physics.
The method can also be applied to other weight functions which are separable and
positive. For QMC integration we need a sequence of points in R

s with suitable
distribution properties. A well-known method to get such a sequence for separable
weight functions is the inversion method [29]. We demonstrate this method on our
weight function (6.6): Our task is the computation of

I =
∫

Rs
f (x)e−|x|

2
dx (6.7)

The strategy is to transform (6.7) to an integral over the unit cube. Set

6 Applications and Parallel Implementation of QMC Integration 183

yi = F(xi) =
1√
π

∫ xi

−∞
e−t2

dt i = 1, . . . ,s (6.8)

Then we get

I =
∫

Rs
f (x)e−|x|

2
dx =

√
πs
∫

(0,1)s
f
(
F−1(y1), . . . ,F−1(ys)

)
dy

The domain of integral on the right-hand side is the unit cube and therefore we

can apply the classical QMC methods: Let {yk}N
k=1 =

{(
y(1)

k , . . . ,y(s)
k

)}N

k=1
be a

sequence of points in the unit cube. Then an approximation of (6.7) is given by

I ≈
√
πs

N

N

∑
k=1

f
(

F−1
(

y(1)
k

)
, . . . ,F−1

(
y(s)

k

))
(6.9)

In the following we give an example of an RKHS where we can deduce an analog to
the classical diaphony. The kernel is delivered by the well-known Mehler formula.
We use the abbreviation: For λ = (λ1, . . . ,λs) ∈ R

s and ν = (ν1, . . . ,νs) ∈ N
s
0 we

use
λν := λν1

1 . . .λνs
s

Let Hn(x) be the the Hermite polynomial of degree n defined by

Hn(x) := (−1)nex2 dn

dxn e−x2

These polynomials form an orthogonal system with respect to the weight function
w(x) = e−x2

. From these polynomials we get an orthonormal basis of the L2(Rs):
Let ν = (n1, . . . ,ns) ∈ N

s
0 and

Φν(x) =Φν(x1, . . . ,xs) =
s

∏
j=1

Hn j(x j)√
2n j n j!

√
π

Then by the orthogonality of the Hermite polynomials and

∫ +∞

−∞
H2

n (x)e−x2
dx = 2nn!

√
π,

we have orthonormality
∫

Rs
Φν(x)Φμ(x)e−|x|

2
dx = δn1m1 . . .δnsms .

We consider the following function space Hλ depending on an s-dimensional pa-
rameter λ = (λ1, . . . ,λs) with |λi|< 1 given by

184 Peter Jez, Andreas Uhl and Peter Zinterhof

Hλ =

⎧⎨
⎩ f (x) : R

s → C : f (x) = ∑
ν∈N

s
0

aνΦν(x)λν , ∑
ν∈N

s
0

|aν |2 < ∞

⎫⎬
⎭ (6.10)

with the inner product defined by

<Φν(x)λν ,Φμ(x)λμ >= δn1m1 . . .δnsms

The reproducing kernel K(x,y) is now delivered by the s-dimensional variant of
Mehler’s formula [30]:

K(x,y) := ∑
ν∈N

s
0

Φν(x)Φν(y)λ 2ν =
1√
πs

s

∏
j=1

1√
1−λ 4

i

e

2x jy jλ
2
j −λ

4
j (x2

j +y2
j)

1−λ4
j

We will apply now the reproducing property to the error estimation for the approx-
imate computation of the integral (6.7) for a function f (x) ∈ Hλ by the formula
(6.9): ∣∣∣∣∣

√
πs

N

N

∑
k=1

f (xk)− I

∣∣∣∣∣=

=

∣∣∣∣∣< f (y),
√
πs

N

N

∑
k=1

K(y,xk) >−a(0,...,0)

√√
π

s
∣∣∣∣∣=

=

∣∣∣∣∣< f (y),
√
πs

N

N

∑
k=1

K(y,xk)−
√√

π
s

Φ(0,...,0)(y) >

∣∣∣∣∣≤

≤ ‖ f‖ .

∥∥∥∥∥
√
πs

N

N

∑
k=1

K(y,xk)−
√√

π
s

Φ(0,...,0)(y)

∥∥∥∥∥
The last inequality is a consequence of the Cauchy–Schwarz inequality. ‖.‖ denotes
the norm induced from the inner product < ., . >. The last factor can be computed
to ∥∥∥∥∥

√
πs

N

N

∑
k=1

K(y,xk)−
√√

π
s

Φ(0,...,0)(y)

∥∥∥∥∥=

=

[
πs

N2

N

∑
k,l=1

K(xk,xl)−
√
πs

] 1
2

=: RN
(
{xk}N

k=1

)

This is an analogon to the classical diaphony defined on the s-dimensional unit cube.
Before we present the numerical experiments we show two applications of inte-

grals of this type.

6 Applications and Parallel Implementation of QMC Integration 185

6.3.1 Feynman’s Path Integrals

We start with the following problem (see [31]): Let κ > 0 and s be a given initial
time. Consider the initial value problem for the function T (x, t) : R

3×R→ R with

∂T
∂ t

= −κΔT −U(x)T t > s (6.11)

T (x,s) = T0(x)

The solution can be written in the form

T (x, t) =
∫

R3
K(x, t;y,s)T0(y)dy

The kernel K(x, t;y,s) is expressed via the discrete action S(x0,x1, . . . ,xn+1) : R
3×

. . .×R
3 → R defined by

S(x0, . . . ,xn+1) =
n

∑
j=0

(
1

4κ

(
x j+1− x j

Δ t

)2

+U(x j)

)
Δ t (6.12)

So we have Feynman’s formula for the kernel K(x, t;y,s):

K(x, t;y,s) =
∫

R3n
e−S(x0,x2,...,xn+1) dx1dx2 . . .dxn

(4πκΔ t)
3n
2

(6.13)

with x0 = x and xn+1 = y. For the time interval [s, t] we use the equidistant composi-
tion s = t0 < t1 . . . < tn+1 = t with t j = s+ jΔ t. We observe the following: For small
Δ t the dimensionality of the integrand in (6.13) is quite high. With a slight mod-
ification we get the initial value problem for Schrödingers equation from (6.11).
Therefore we must replace the time t by the imaginary time it

h̄ and the constant

κ = h̄2

2m with h̄ = h
2π . h denotes Planck’s constant of action and has the value

h = 6.626×10−34Js

To transform the integral (6.13) we introduce new variables a1,a2, . . . ,an by

ai+1 = xi+1− xi i = 1, . . . ,n−1

a1 = x1

or equivalently

xi =
i

∑
k=1

ak i = 2, . . . ,n

x1 = a1

186 Peter Jez, Andreas Uhl and Peter Zinterhof

Remark The new variables ai are of course elements of R
3: ai = (a(1)

i ,a(2)
i ,a(3)

i). For

easier writing we use a2
i = |ai|2 and ai +a j = (a(1)

i +a(1)
j ,a(2)

i +a(2)
j ,a(3)

i +a(3)
j).

The discrete action (6.12) is written in these new variables in the following form:

S(x,a1, . . .an,y) =
(

1
4κ

(a1

Δ t

)2
+U(x)

)
Δ t +

+
n

∑
j=2

(
1

4κ

(a j

Δ t

)2
+U

(
j

∑
k=1

ak

))
Δ t +

+

(
1

4κ

(
y−∑n

k=1 ak

Δ t

)2

+U

(
n

∑
k=1

ak

))
Δ t

Now we can write the integral (6.13) in the form

K(x, t;y,s) =
∫

R3n
g(a1,a2, . . . ,an)w(a1,a2, . . . ,as)da1 . . .dan,

with weight function

w(a1, . . . ,an) =
1

(4πκΔ t)
3n
2

e−∑
n
j=1

a2
j

4κΔ t

and with integrand

g(a1,a2, . . . ,an) = e
−Δ tU(x)−Δ t∑n

j=2 U
(
∑ j

k=1 ak

)
+

(
1

4κ

(
y−∑n

k=1 ak
Δ t

)2

+U(∑n
k=1 ak)

)
Δ t

Remark The weight function has the following property:
∫

R3n
w(a1, . . . ,an)da1 . . .dan = 1

It can be interpreted as the measure of the set of all piecewise linear paths between
x and y. For Δ t → 0 this measure converges to the well-known Wiener measure.
A very detailed and comprehensive exposition of the usage of path integrals in the
various fields of their applications is available in [32].

6.3.2 Application in Financial Engineering

At the beginning of our discussion we repeat some terms from mathematical finance.
We start with the definition of a Brownian motion [22]:

Definition 6.4. A stochastic process

W (t) = (W1(t),W2(t), . . . ,Wd(t))

6 Applications and Parallel Implementation of QMC Integration 187

with 0≤ t ≤ T is called a standard linear Brownian motion on R
d if it has W (0) = 0,

continuous sample paths, independent increments and W (t)−W (s)∼N(0,(t−s)I).

A generalization of the standard linear Brownian motion is given by the follow-
ing (we formulate it for one dimension, the definition for multiple dimension is
analogous) [22]:

Definition 6.5. Let μ ∈ R and σ > 0. A process B(t) is called a Brownian motion
with drift μ and covariance σ (written in the form B(t) ∼ BM(μ ,σ)) if B(t) has
continuous paths and independent increments with

B(t)−B(s)∼ N ((t− s)μ ,(t− s)σ)

Remark The process B(t) from the previous definition satisfies the following stochas-
tic differential equation:

dB(t) = μdt +
√
σdW (t)

where W (t) is a standard linear Brownian motion.
A disadvantage of the Brownian motion is that the values of a Brownian motion

can attain negative values, an undesirable fact in modeling of prices. Therefore Paul
Samuelson [33] introduced the geometric Brownian motion (GBM) as a model in fi-
nance: Suppose we have a Brownian motion B(t)∼BM(μ ,σ2) on R. The stochastic
process S(t) := S(0)exp(B(t)) satisfies the stochastic differential equation

dS(t) = S(t)
(
μ+

1
2
σ2
)

dt +S(t)σdW (t)

Such a process is called geometric Brownian motion. An alternative definition is the
following [22]:

Definition 6.6. Let μ ∈ R, σ > 0 and W (t) be a standard Brownian motion. A pro-
cess S(t) satisfying

dS(t)
S(t)

= μdt +σdW (t)

is called a geometric Brownian motion with drift μ and volatility parameter σ (writ-
ten as S(t)∼ GBM(μ ,σ2)).

A process S(t)∼ GBM(μ ,σ2) with initial value S(0) is given by

S(t) = S(0)exp

((
μ− 1

2
σ2
)

t +σW (t)
)

or for arbitrary u < t

S(t) = S(u)exp

((
μ− 1

2
σ2
)

(t−u)+σ(W (t)−W (u))
)

188 Peter Jez, Andreas Uhl and Peter Zinterhof

This formula provides a recursive procedure for simulating values of S(t) at discrete
values 0 = t0 < t1 < .. . < tn = T :

S(ti+1) = S(ti)exp

((
μ− 1

2
σ2
)

(ti+1− ti)+σ
√

ti+1− tiZi+1

)

with independent Zi ∼ N(0,1).
Consider now a call option: The buyer of the call has the right to buy the under-

lying security at time T for a price K (= “strike price”). Of course the buyer of the
option earns profit only if the actual price of the security at time T is higher than the
strike price. In financial terms this is called “in the money.” We consider especially
the case of an Asian call option. The payoff of this path-dependent option is now
given by a function G(Z1, . . . ,Zn) of the form

G(Z1, . . . ,Zn) = e−μT

(
1
n

n

∑
k=1

S(tk)−K

)
H

(
1
n

n

∑
k=1

S(tk)−K

)

where H(x) denotes the Heaviside function: H(x) = 0 for x ≤ 0 and H(x) = 1 for
x > 0. Pricing the option now means to evaluate E(G(Z1, . . . ,Zn)) with respect to
the standard normal distribution of Z1, . . . ,Zs. In other words we must evaluate the
integral

E(G(Z1, . . . ,Zn))

=
1√
2πn e−μT

∫
Rn

(
1
n

n

∑
k=1

S(tk)−K

)
H

(
1
n

n

∑
k=1

S(tk)−K

)
e−

|z|2
2 dz

This shows a significant increase of the dimensionality of the problem if the time
discretization gets finer.

For more details on the usage of uniform distribution in finance and special se-
quences see [34, 35].

6.4 QMC Integration on Parallel Systems

Different types of parallel or distributed systems require specific attention towards
their specific properties. For example, in systems with heterogeneous PE computing
capacities, this variety in computing speed requires dynamic load balancing capa-
bility. Grid environments are the worst possible application environment since we
additionally face heterogeneous network capacity, failure of hardware resources, ad-
ditional hardware resources becoming available during the computation and many
more specific properties which require highest possible flexibility of the parallel
QMC techniques employed (see [21, 36, 37] for some examples).

In addition to that error bounds and computation results should preferably carry
over from sequential execution. If the QMC point sets differ between sequential

6 Applications and Parallel Implementation of QMC Integration 189

and parallel execution, the quality of the results needs to be investigated thoroughly.
Reproducibility is as well an important issue to be considered.

So far, two entirely different strategies have been discussed in literature to em-
ploy QMC sequences in parallel and distributed environments.

1. Splitting a given QMC sequence into separately initialized and disjoint parts
which are then used independently on the PEs. This strategy comes in two fla-
vors:

• Blocking: p disjoint contiguous blocks of maximal length l of the original
sequence are used on the PEs. This is achieved by simply using a differ-
ent starting point on each PE (e.g., PEi, i = 0, . . . , p− 1, generates the vec-
tors xil ,xil+1,xil+2, . . . ,xil+l−1). In case a large number of smaller blocks is
used index j is assigned dynamically to PEi which generates the vectors
x j,x j+1, . . . ,x j+l−1 (where j is incremented in steps of size l to avoid over-
lap).

• Leaping: interleaved streams of the original sequence are used on the PEs.
Each PE skips those points consumed by other PEs (leapfrogging) (e.g., em-
ploying p PEs, PEi, i = 0, . . . , p−1, generates the vectors xi,xi+p,xi+2p, . . .).

2. Using inherently independent sequences on the different PEs (denoted as
“parametrization” which can be realized, e.g., by randomizations of a given QMC
sequence).

Blocking has been suggested in many application-focused papers. Mascagni and
Karaivanova [38] propose to use disjoint contiguous blocks from Halton, Faure,
and Sobol’ sequences in the context of solving sparse systems of linear algebraic
equations. Numerical experiments are carried out on a homogeneous cluster using
static load distribution. In a second paper [39] the same authors use the suggested
techniques for computing extremal eigenvalues, again a QMC sequence is “neatly
broken into same-sized subsequences” by blocking. The authors point out that this
simple strategy cannot be employed in general for all types of simulation settings.
Alexandrov et al. [40] use scrambled Sobol’ and Halton sequences to solve cer-
tain linear algebra systems. They discuss static and dynamic load balancing and
point out the importance of efficient dynamic load balancing in GRID environ-
ments. Load balancing is done by dynamically distributing chunks (i.e., blocks)
of relatively small size to avoid unevenly sized chunks. Techniques for efficiently
generating nonadjacent chunks an a single PE are discussed in this paper. Tests are
carried out on homogeneous and heterogeneous systems; in the latter case MPICH
over Globus-2 GRID software is used. Li and Mascagni [41] propose to extend tech-
niques used in GRID-based MC methods, for example, the N-out-of-M scheduling
strategy, to QMC sequences by using scrambled quasi random sequences. Further-
more, known statistical properties of MC carry over to scrambled quasi random
sequence, thus allowing partial result validation and intermediate value checking.
Wan et al. [42] present a parallel strategy for pricing multidimensional American
options. In the first stage, the QMC sequence is generated by independently com-
puting equally sized blocks on the PEs using static load distribution. For the second

190 Peter Jez, Andreas Uhl and Peter Zinterhof

stage two strategies, one being the stochastic mesh method which involves a back-
ward recursion, for data distribution are compared, both of which correspond to
distributing the original sequence in blocks of different size in different manner
across the PEs. Tests are conducted on an SGI Onyx machine. Schürer [43] em-
ploys equally sized blocks of (t,m,s)-nets on the PEs when comparing QMC inte-
gration techniques to adaptive cubature rules. An SGI Power Challenge is used as a
test platform. In previous work [44] we have conducted experiments with blocking
Niederreiter (t,s)-sequences where large disjoint blocks are used on the PEs. Good
reliability of the results has been observed in homogeneous and (simulations of) het-
erogeneous environments (tests conducted on an SGI Power Challenge). We have
also provided theoretical evidence for this good behavior by showing that discrep-
ancy estimates of arbitrary blocks do not degrade as compared to estimates of entire
(t,s)-sequences [45].

Leaping has been discussed much more controversially in literature than block-
ing. Bromley [46] describes a leapfrog parallelization technique to break up the
Sobol’ sequence into interleaved substreams in an efficient manner. We have gen-
eralized this idea to all types of binary digital (t,s)-sequences [45] in earlier work.
Based on these techniques, Li and Mullen [47] use a leapfrog scheme for (t,m,s)-
nets to solve financial derivative problems. However, severe problems occur with
leapfrog parallelization especially in case of processor speed heterogeneity which
results in QMC point sets that do not correspond to sequential computation. Ini-
tial results showed that single (t,s)-sequence substreams with leaps of the form 2n

lead to extremely poor numerical integration results whereas this is not the case for
leaps of the form 2n+1 [44]. Using leaped substreams parallelization in a heteroge-
neous processor speed environment may therefore lead to severely degraded results
as compared to sequential execution when this form of leaping is employed. Differ-
ent PEs consume a different number of integration nodes and so the poor results of
using single substreams are propagated to the parallel results if no synchronization
among PEs is performed [44,45,48]. We have also provided theoretical evidence for
the observed effects by showing the discrepancy estimated of leaped substreams to
be significantly larger as compared to the original sequences [45]. It has also turned
out that not only 2n type substreams are affected by poor quality but these effects
occur for many forms of leaps and are highly unpredictable [45, 48].

Parametrization has been proposed as a QMC parallelization strategy by two
groups independently. DeDoncker et al. [49–51] propose randomized (Korobov) lat-
tice and Richtmyer rules (which are a special type of Weyl sequences) and discuss
load distribution strategies for homogeneous and heterogeneous architectures [52].
Results are provided for both, homogeneous and heterogeneous environments, and
in both cases result accuracy and execution efficiency was reported to be very well.
Ökten and Srinivasan [53] propose to use Halton and scrambled Halton sequences
with leaped base sequences on different PEs. Excellent theoretical error estima-
tions are provided and also experimental results for homogeneous as well as for
heterogeneous environments exhibit high quality. Parametrization is also compared
to blocking and leaping in this work and advantages and disadvantages of the three
schemes are analyzed for different application scenarios. Srinivasan [54] confirms

6 Applications and Parallel Implementation of QMC Integration 191

the findings of the latter paper and refines the comparison of the three parallelization
strategies based on simulation results for pricing financial derivatives.

6.5 Numerical Experiments

6.5.1 Sequential Computations

In this section we investigate the behavior of the computation of integrals given in
(6.7). In the following experiments the dimension s is chosen to be 10. We use the
notation

er f (x) =
2√
π

∫ x

0
e−t2

dt

for the error function, and by Hn(x) we denote the Hermite polynomial of degree
n. Let n = (n1, . . . ,ns) ∈ N

s
0, β = (β1, . . . ,βs) ∈ R

s, γ = (γ1,γ2, . . . ,γs) ∈ (R+)s and
δ = (δ1,δ2, . . . ,δs) ∈ (R+)s be arbitrary parameters. As test functions we use

f (n)
1 (x1,x2, . . . ,x10) =

10

∏
j=1

Hn j(x j)√
2n j n j!

√
π

f (β)
2 (x1,x2, . . . , ,x10) =

10

∏
j=1

er f (β jx j)

f (γ)
3 (x1,x2, . . . ,x10) =

10

∏
j=1

e−γ j |x j | −
10

∏
j=1

e
γ2

j
4

(
1− er f

(γ j

2

))

f (δ)
4 (x1,x2, . . . ,x10) =

10

∏
j=1

e−δ jx2
j −

10

∏
j=1

√
1

1+δ j

f (n)
1 (x) is an unbounded polynomially growing function, f (β)

2 (x) is bounded(∣∣∣ f (β)
2 (x)

∣∣∣< 1
)

, f (γ)
3 (x) and f (δ)

4 (x) are also bounded. In the applications functions

of these type occur often. We have
∫

Rs
fi(x)e−|x|

2
dx = 0

for i=1,2,3,4. The functions f (γ)
3 (x1, . . . ,x10) and f (δ)

4 (x1, . . . ,x10) are not separable

in contrast to f (n)
1 (x1, . . . ,x10) and f (β)

2 (x1, . . . ,x10). In our experiments we use the
following parameter values:

n = (8,5,4,4,10,10,8,7,8,9)
β = (2.45,9.67,0.67,1.78,6.45,1.67,0.67,20.78,1.45,9.67)

γ = δ = (2.0,0.78,3.78,4.7,1.3,7.0,1.4,0.4,2.0,0.78)

192 Peter Jez, Andreas Uhl and Peter Zinterhof

These values can be chosen arbitrarily.

Remark The inversion of the Gauss distribution function (6.8) cannot be done in
closed form. We must use numerical approximations to do this. In finance often the
following method is used: The standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt

can be inverted by solving the equation

Φ(x)− y = 0

using Newton’s method. This gives the following approximation sequence x(approx)
k

for a given y:

x(approx)
k+1 = x(approx)

k +
(

y−Φ
(

x(approx)
k

))
exp

(
0.5

(
x(approx)

k

)2
+ log

√
2π
)

Marsaglia et al. (see [55]) suggest now the following starting point:

x(approx)
0 =±

√
|−1.6log

(
1.0004− (1−2y)2

)
|

where the sign depends on y > 1
2 or not.

In our computations we prefer a direct method. The aim is to express the integral
in terms of the error function er f (x) defined by

er f (x) :=
2√
π

∫ x

0
e−t2

dt

and the complementary error function er f c(x) := 1− er f (x). To get a sequence
following the Gaussian distribution we must solve the equation

1√
π

∫ x

−∞
e−t2

dt = y (6.14)

where y is a coordinate from a point of a (low discrepancy) sequence in the unit
cube. At first we investigate the case y > 1

2 : From the normal distribution we know
now that x > 0. In this case we can write Eq. (6.14) in the form

1√
π

∫ 0

−∞
e−t2

dt +
1√
π

∫ x

0
e−t2

dt =
1
2

(1+ er f (x)) = y

or
er f c(x) = 2(1− y)

Now we can use an approximation for er f c(x):

6 Applications and Parallel Implementation of QMC Integration 193

er f c(x)≈ 2
2+ x

exp

(
−x2 +P

(
2

2+ x

))

(x > 0). P(x) is a Tschebyscheff polynomial. The inversion is then done by two
iterations of a modified Newton scheme suggested by the astronomer Edmund Hal-
ley (a friend of Isaac Newton, the famous comet carries his name): If f (x) is twice
differentiable and an equation of the form

f (x) = 0

must be solved, then Halley suggests the iteration

xi+1 = xi−
f (xi)

f ′(xi)
(

1− f (xi) f ′′(xi)
2(f ′(xi))

2

)

The case y < 1
2 is reduced to the previous case in the following way. We solve the

equation
1√
π

∫ 1−x

−∞
e−t2

dt = 1− y

For y = 0 the solution of (6.14) is given by x = 1
2 . For more information about this

algorithm see [56]. In Figs. 6.1 and 6.2 the error of the computation of the integral
(6.7) is plotted for the Zinterhof sequence and GLP respectively. The range of the
integration nodes is [106 : 107] for the Zinterhof sequence. For the sequence of the
GLP the range is [105 : 107]. Due to the high differences of the integration results
the ordinate shows the logarithm of the error. We observe that the GLP give much

-20

-15

-10

-5

0

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

log|err|

N

f1(x)

�
�
�
���������������������������������������

�
f2(x)

+++++++++
+++++++++

+
+++++++++++++++++++++++

+
f3(x)

���
�
�����

����
������

���

���

�
�
����

�
��

�
�
�
�

�
�

�

�

�
f4(x)

×

×

××
××
××

×

×××××
×
×

××
×
××
×
××
×
××
×
××××××××

××
×

××

×

×

Fig. 6.1 Integration error of the test functions in case of Zinterhof sequence.

194 Peter Jez, Andreas Uhl and Peter Zinterhof

-30

-25

-20

-15

-10

-5

0

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

f1(x)

��

�

�
�

�

�
�

�

�

�

�
�

�

�

�
�

�
�

�

�
�

�

�

�
f2(x)

+
+

+++
+

+

+ + ++
+

+
+++ +

+ +
+

+
++

+
f3(x)

�

�
�

�

�
�

�
� �

�
�� ��

�
�
� �

�

�
� �

�

�
f4(x)

×
×
× ×

×× ×
×

× × ×× ×× ××
× ×

×
×
× × ××
×

Fig. 6.2 Integration error of the test functions in case of the Good Lattice Points.

better results for the test functions f (n)
1 (x) and f (β)

2 (x). For f (γ)
3 (x) and f (δ)

4 (x) the
error for both computations is of the same magnitude.

6.5.2 Parallel Case

We consider the three different QMC parallelization strategies discussed in Sect.
6.4: Leaping, blocking and parametrization.

If the environment consists of almost identical computers with identical load the
result is not different from the computation on a single system considering the whole
sequence. Problems can arise if the environment is inhomogeneous (due to load of
some nodes of the environment, different hardware of the nodes, etc.). To achieve
a defined inhomogeneity we consider two different cases: One PE uses much less
points (factor 10−3) than the other PEs (the one slow case) and that one PE is much
faster than the other PEs (factor 103), the one fast case.

We execute the parallel computation on a Linux cluster. Each system has two
AMD Athlon MP2800+ processors and the systems are connected via 6x6 SCI torus.
We use a subset of the cluster consisting of 10 systems. On each system we start 2
processes, so we have 20 PEs.

6 Applications and Parallel Implementation of QMC Integration 195

6.5.3 Experimental Results

6.5.3.1 The Leaped Zinterhof Sequence

We start with the s-dimensional Hermite polynomial f (n)
1 (x). In Fig. 6.3 the integra-

tion error for f (n)
1 (x) is plotted for the one slow case and for the one fast case. In

comparison also the error of the sequential computation is shown. As an interesting

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

�

�

�
�

�
��

��
�
��

�
�
�

��
��

�����
�����

����
���

�

���

�
one fast

++

+
++

+
+

+
+
++++++++++++++++++++++++++++++++

+
sequential computation

�

�

�

�

��
�

�
�
���

�
�
�
�

�
�
��

�����
���

��
����

���
�

����

�

Fig. 6.3 Integration error for f (n)
1 (x) for the Zinterhof sequence with leaping.

fact for this polynomial we observe better results for the inhomogeneous cases than
for the sequential computation.

In Fig. 6.4 we consider the computation of the integral over the bounded function

f (β)
2 (x). The main difference to f (n)

1 (x) is that f (β)
2 is bounded by 1. For this test

function we observe that the one slow case shows quite the same behavior as the
sequential computation (oscillating behavior). The one fast case behaves even better.
This function shows a stable behavior under the considered inhomogeneities.

In the next experiment we investigate the behavior of computation of the integral

over the function f (γ)
3 (x). We expect a high stability of the computation and rather

good results. These are plotted in Fig. 6.5. In the considered range of integration
nodes we observe a fast decrease of the error for the sequential computation. The
one slow case behaves quite similar. As an interesting fact the one fast computation
shows an increasing error.

In the next experiment we investigate the behavior of f (δ)
4 (x). As seen in

Sect. 6.3.1 integrals over functions of this type arise in mathematical physics. We

expect an even higher stability of the computation as for f (γ)
3 (x). Indeed this is true

as seen in Fig. 6.6. For an increasing number of integration nodes all error curves

196 Peter Jez, Andreas Uhl and Peter Zinterhof

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

��

�

��

�
�

�
�

��
�
���

�
�
�
�
��

����
�����

�

�
����

�
����

�
one fast

++
++++

+++++++++++++++++++++++++++++++++++

+
sequential computation

��

�

��

�

�

�
�

���
�
��

�
�
�
�
�
�
����

�����
�

�
�����

�����

�

Fig. 6.4 Integration error for f (β)
2 (x) for the Zinterhof sequence with leaping.

show qualitatively the same behavior which indicates a high stability under the con-
sidered inhomogeneities.

The most stable results are delivered by f (β)
2 (x) and f (δ)

4 (x). The error of the
computation in the inhomogeneous environment delivers comparable errors or even

better results as the sequential case. f (γ)
3 (x) is affected by the inhomogeneities: For

increasing number of integration nodes the error does not decrease any more.

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

8e-05

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

�

�

�

�

�

�
�
�
��

��
�

��
�

�
�

�
��

���

�
�

�

��

�
���

�
����

��

�
one fast

+
+

++++

+++
+
+++

+
++++++

++
++

++++++++
+++++++

++

+
sequential computation

�

�

�

�

�

�

�
�

�

����

�
��

�

��

�

��

��
�

�
�
����

���
�
���

���
�

�

Fig. 6.5 Integration error for f (γ)
3 (x) for the Zinterhof sequence with leaping.

6 Applications and Parallel Implementation of QMC Integration 197

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

�

�
�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�
��

�

�

�

�

�

�
�
�

�

��

���

�

��

�

�

�
one fast

+

+

+
+

+

+++
+
+

+
+
+
+
+
+

++++
++

++
+

+

+++
+
+
++

+++
+++++

+
sequential computation

�

�

��

�

�

�

�

�

�

��

�
�

�
�

�

�

�

�
�
�

��

�

��

�
�
�
�
���

��

�
�
�

�

�
�

�

Fig. 6.6 Integration error for f (δ)
4 (x) for the Zinterhof sequence with leaping.

6.5.3.2 The Leaped Sequence of Good Lattice Points

In the next series of experiments we investigate the computation of the integral (6.7)
for the GLP as integration nodes. As parallelization strategy we choose the leaping
strategy.

The transformed sequence of GLP shows a quite high sensitivity with respect
to inhomogeneities of the computation environment. The reason of this fact is the
dependency of the optimal coefficients on the number of integration node points.
The observed range of integration nodes is from 105 to 107. Due to the differences
between the sequential computation and the parallel computation the ordinate shows
the logarithm of the error.

Figure 6.7 shows the plots of the errors for the computation of the integral over

f (n)
1 (x). As expected the sequential computation results are better than the other

cases. In case of the Zinterhof sequence we observed the reverse.
Now we investigate the computation of the integral over the bounded function

f (β)
2 (x). In Fig. 6.8 we observe a similar behavior: The sequential computation de-

livers quite accurate results. The error rate of the sequential computation is smaller
than the one in the previous computation, but the parallel computation error is of
the same magnitude. So the impact of inhomogeneity is even higher than for the
polynomial considered before.

In the following experiments we investigate the functions f (γ)
3 (x) and f (δ)

4 (x),
see Figs. 6.9 and 6.10 respectively. As an interesting fact the errors of the parallel
computations are comparable with the sequential one or even better: The one slow
case gives more accurate results than the sequential and the one fast case. But all
error curves show an oscillating behavior with quite high amplitudes. Glasserman

198 Peter Jez, Andreas Uhl and Peter Zinterhof

-25

-20

-15

-10

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

�

��
�

�

�

�

� ���

� ��

�
� �

�

�

�

�

�

�

�

�

�

�
one fast

+
++

+ +

+

+ +
+ ++ ++

+

++
+

+ + +
+

+

+

+
sequential computation

��

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

Fig. 6.7 Integration error of f (n)
1 (x) for the Good Lattice Points with leaping.

-30

-25

-20

-15

-10

-5

0

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

��

�
���

�
� �

�

�

�

�

�
�

� �

�
�

� � � � �

�

�

�
one fast

+
+ +++ +

+

+
+ ++ +

+ +
+
+ + + + + + ++

+
sequential computation

�
�

���
�

�

� � ��
�

�
��

� �
�

�
�

�
��

�

Fig. 6.8 Integration error of f (β)
2 (x) for the Good Lattice Points with leaping.

[22] observed in his sequential and especially financial tests an erratic behavior of

these sequences. We observe that the error in the case of f (γ)
3 (x) and f (δ)

4 (x) is

larger than for f (n)
1 (x) and f (β)

2 (x).

6.5.3.3 The Blocked Zinterhof Sequence

We start with the computation result of f (n)
1 (x). In Fig. 6.11 the errors of the parallel

computations are plotted vs. the sequential computation. We observe that the one
slow case delivers a very similar result to the sequential computation. The one fast

6 Applications and Parallel Implementation of QMC Integration 199

-18

-16

-14

-12

-10

-8

-6

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

�

����

�

�
�

�
�

�
�

�

�

�

�

�

�

�
�

�

� �
�

�

�
one fast

+

+
++

+

+ +
+

+
+
+

+

+

+
+

+

+
+ +

+ +

+

+

+
sequential computation

�

�

�

�

�

�

�

�
�

�

�� ��

�

�

�
�

�

�

� �

�

�

Fig. 6.9 Integration error of f (γ)
3 (x) for the Good Lattice Points with leaping.

-16

-14

-12

-10

-8

-6

-4

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

�
�

�

�
� �

� �

�
�

�

�

� �

�

�

�

�

�

�
� �

�

�

�

�
one fast

+

+

+++

+

+ +
+

+
+

++
+

+
+

+

+

+ +
+

++

+
sequential computation

�

�

�

�

�
� �

�

�

�
�

�

�� �
�

�
�

�

�

�
�

�

�

�

Fig. 6.10 Integration error of f (δ)
4 (x) for the Good Lattice Points with leaping.

case delivers much better results over the considered range of integration nodes.
This is different to the leaping case, where we saw the best results for the one slow
case (see Fig. 6.3).

Figure 6.12 shows the computation results for f (β)
2 (x). The magnitude of the

error is in the range of the sequential computation and the leaped computation. One
difference is visible for the one fast case: Whereas in the leaping strategy the error
decreases for growing N (see Fig. 6.4) it does not show this behavior for the blocking
strategy.

In the next experiments (Fig. 6.13 and 6.14) we investigate the behavior of the

computation of the integral over f (γ)
3 (x) and f (δ)

4 (x). We observe again a very high

200 Peter Jez, Andreas Uhl and Peter Zinterhof

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

�

�

�

�
�

�

�
�
��

�
�
�

�

�

�

�

��

�
��

��
�
�
�

�
�

����

���

�

��
�

�
one fast

+++
+

+
+++

+
+

++++++

+
+

+
++

+++++
+

+
sequential computation

�

�

�

�

�
�

�

�
�
��

�
�
�

�
�

�

�
��

�
��

��
��

�

�
�

����

���
�

��
�
�

�

Fig. 6.11 Integration error for f (n)
1 (x) for the Zinterhof sequence with blocking.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow�

�

�

�

�

�
��

�
�

��
�

�
�

�
�

���

�

����

��

�
one fast

++++
+++

++++++++++
++++++++++

+
sequential computation

��

�

��

�

�

�
�

���
�
��

�
�
�
�
�
�
����

�����
�

�
�����

�����

�

Fig. 6.12 Integration error for f (β)
2 (x) for the Zinterhof sequence with blocking.

stability of the computations. The sequential computation and the one slow case
show a very similar behavior. But for these functions also the one fast case shows
a decrease of the error. For these functions the inhomogeneity does not harm the
computation.

6.5.3.4 The Blocked Sequence of Good Lattice Points

In this paragraph we consider experiments regarding the blocked sequence of GLP.
In the case of the leaping method we discovered a significant loss of accuracy of

6 Applications and Parallel Implementation of QMC Integration 201

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

8e-05

9e-05

0.0001

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

�

�

�

�

�

�

�

�

�

�

��
�

����

�
��

������

�
one fast

+

+

+

++

+
+

++
+

+

+

++
+++

++++
++++

+

+

+
sequential computation

�

�

�

�

�

�

�
�
�

����

�
��

�

��

�

��

��
�
�
�
����

���
�������

�

�

Fig. 6.13 Integration error for f (γ)
3 (x) for the Zinterhof sequence with blocking.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow
�

�

�

��
�

�

��
�

�
��

���
��

�

��
�

�
��

��

�
one fast

+

+

+

+

+

+

+
+

+

++

+

+
++

+

+

+

+
+

++
+

++++

+
sequential computation

�

�

��

�

�

�

�

�

�
��

�
�

��

�
�

�

�
�
�

��

�

��

�
�
�
�
�����

�
��

�
�
�

�

Fig. 6.14 Integration error for f (δ)
4 (x) for the Zinterhof sequence with blocking.

the results for the test functions f (n)
1 (x) and f (β)

2 (x). All test functions showed a
sensibility with respect to the considered inhomogeneities. The next experiments
will show the behavior of the computation with the blocking strategy.

At first we investigate the polynomial f (n)
1 (x). Fig. 6.15 shows the integration

errors of the sequential computation versus the parallel computations with inho-
mogeneity. The error of the parallel computation is higher than the error of the
sequential one and qualitatively the same as in Fig. 6.7.

An analogous behavior is seen in Fig. 6.16 for f (β)
2 (x). Again we observe an error

curve comparable with Fig. 6.8.

202 Peter Jez, Andreas Uhl and Peter Zinterhof

-25

-20

-15

-10

-5

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

��
�

�

�
�

�
�

�
�

�

�
��

�

�
�

�
�

�
�

�

�
�

�

�

�
one fast

+++ ++

+
+

+

+

+
+

+
+

+
++ + +

+
+

+
+
+

+
sequential computation

��

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

Fig. 6.15 Integration error for f (n)
1 (x) for the Good Lattice Points with blocking.

-30

-25

-20

-15

-10

-5

0

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

�
����� �

�

��

�

�
�

� ��
�

�
�

�
� � � � �

�

�
one fast

+ +

+
sequential computation

�
�

���
�

�

� � ��
�

�
��

� �

�
�

�
�

��

�

Fig. 6.16 Integration error for f (β)
2 (x) for the Good Lattice Points with blocking.

The error rates of f (γ)
3 (x) and f (δ)

4 (x) are plotted in Figs. 6.17 and 6.18 respec-
tively. As an interesting fact the best results are achieved for these functions in the
one slow case.

6.5.3.5 Parametrization for the Zinterhof Sequence

In this paragraph we discuss the usage of the parametrization method [57] on our
test functions. In our case we use the Zinterhof sequence xn = {nθ} with

θ =
(

e1,e
1
2 , . . . ,e

1
s

)
∈ R

s

6 Applications and Parallel Implementation of QMC Integration 203

-18

-16

-14

-12

-10

-8

-6

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

�
�

�

��

�
� ��

�

�
�
� ��

�
�
�

�

�
�

�

�

�

�

�
one fast

++
+

+

+

+ + + +
+

+
++

+
+
+

+

+ + + + +

+

+
sequential computation

�

�

�

�

�

�

�

�
�

�

�� ��

�

�

�
�

�

�

� �

�

�

Fig. 6.17 Integration error for f (γ)
3 (x) for the Good Lattice Points with blocking.

-14

-12

-10

-8

-6

-4

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

one slow

��

��

�
�

�

�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�

�
�
�

�
one fast

+
+

+ +

+

+
+

+ + +
+ ++ +

+

+
+

+

+

+
+

++

+
sequential computation�

�

�

�

�
� �

�

�

�
�

�

�� �
�

�

�

�

�

�
�

�

�

�

Fig. 6.18 Integration error for f (δ)
4 (x) for the Good Lattice Points with blocking.

To get the different sequences of integration nodes we proceed in the following way:
In the computation environment consisting of M PEs the K-th PE (0≤ K ≤M−1)
uses the sequence with

θK =
(

e
1

sK+1 ,e
1

sK+2 , . . . ,e
1

(K+1)s

)

It can be shown that these sequences are asymptotically independent [58]: The cor-
relation matrix of the M sequences of N integration nodes differs from an identity
matrix by a matrix with entries of O

(
Nε−1

)
.

204 Peter Jez, Andreas Uhl and Peter Zinterhof

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

�

�

�

�

�

�
�

�
�

�
�

���
�
�
�

��

�

�
�

�

�
�

�

�
�
�

�

��
�
��

��
���

�
one fast

++

+
+
+++++++++++

+
+++++++++++++++++++++++++

+
sequential computation

�

�

�

�

�
�

�

�
�
��

�
�
�

�
�

�

�
��

�
��

��
��

�

�
�

����

���
�

��
�
�

�

Fig. 6.19 Integration error for f (n)
1 (x) with parametrization method.

Our first experiment deals with the polynomial f (n)
1 (x). Fig. 6.19 shows a plot of

the error curves of the parallel computation with parametrization method vs. the
sequential computation. We observe the best results for the one fast case. The mag-
nitude of the error is comparable with the leaping strategy.

The next experiment deals with the bounded function f (β)
2 (x). Fig. 6.20 shows

the plot of the error curves. The one slow case gives a much better result than for
the leaping case, but the one fast inhomogeneity is worse (for the leaping case see
Fig. 6.4).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

���
���

�
�

�
�����

��
�

�
��

�

�
����

�
����������

�
�
�

�
one fast

++
++++

+++++++++++++++++++++++++++++++++++

+
sequential computation

��

�

��

�

�

�
�

���
�
��

�
�
�
�
�
�
����

�����
�

�
�����

�����

�

Fig. 6.20 Integration error for f (β)
2 (x) with parametrization method.

6 Applications and Parallel Implementation of QMC Integration 205

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

��

��

�
�

�

�
�

��

�
��

�
�
�

�

�

�

���
�
�
�
�
�
�
��

���

�
�
�
�
��

�
one fast

++

+
++

+
+
+
+++++++++++++++++++++++++++++++++

+
sequential computation

�
�
�

�
�
�
���

�������������
��������������������

�

Fig. 6.21 Integration error for f (γ)
3 (x) with parametrization method.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07 1.1e+07

|err|

N

one slow

�

�

�

�

�

�
�

�

�

�

�
�

��
�
�
�

�

�

�

�

�

�
�

�
�

��

��
�
�
��

�

�

��

�
��

�
one fast

+
+

+
++

++
++++++

++++++++++++++++++++++++++++

+
sequential computation

�
�
��

��������������������������������������

�

Fig. 6.22 Integration error for f (δ)
4 (x) with parametrization method.

The functions f (γ)
3 (x) and f (δ)

4 (x) are quite sensitive for the one slow inhomo-
geneity. Whereas in the leaping strategy the one slow case does not harm the com-
putation (see Figs. 6.5 and 6.6) it has much more impact in the parametrization case
(Figs. 6.21 and 6.22).

206 Peter Jez, Andreas Uhl and Peter Zinterhof

6.5.4 Overall Comparison

In this section we compare the behavior of the parallel computation of the integral
(6.7) in the case of our test functions. We investigate the one slow case. Due to the
fact of the quite different results we have the logarithm of the error on the ordinate.
For all test functions the most accurate results are delivered from the sequence of

-20

-15

-10

-5

0

5

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

Zinterhof sequence with leaping

�

�
�

�������������
��

��

�
��

�
�

���
��

��������
���

�
Zinterhof sequence with blocking

++
+
++++++++++++++++++++++++++++++++++++++

+
Good lattice points with leaping

�

��
�

�

�

�

� ���
� ��

�
� �

�

�

�

�
�

�

�

�

�

�
Good lattice points with blocking

×××
×
××

×
× ××

×
× ××

×
× ××

×

×
×

×

× × ×
×

×
Parametrization of Zinterhof sequence

�����
���

�
�
��

�

��
���

�
�
����

�����������������

�

Fig. 6.23 Integration error for f (n)
1 (x).

-20

-15

-10

-5

0

5

10

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

Zinterhof sequence with leaping

���������
��

������

�

�����������������������

�
Zinterhof sequence with blocking

+ + + + + + + +
+ +

+
+

+ + + + + + + + + + + + + + +

+
Good lattice points with leaping

��

�
���

�
�

�
�

�

�

�

�
�

� �

�

�
� � � � �

�

�

�
Good lattice points with blocking

×××××× ×
×
××

×
×
×
× ×× ×

×
× × × × × × ×

×

×
Parametrization of Zinterhof sequence

�����������������������
�����

����������

�
�
�

�

Fig. 6.24 Integration error for f (β)
2 (x).

6 Applications and Parallel Implementation of QMC Integration 207

-20

-15

-10

-5

0

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

Zinterhof sequence with leaping

�
��

�
�������

�����������
���

�

�

�
�
�
���

�
�
����

��

�
Zinterhof sequence with blocking

+ + + +

+
+ +

+
+ +

+
+ + +

+
+ + +

+ + +
+ + + + +

+

+
Good lattice points with leaping

�

����

�
�

���

�
�

�
�

�

�
�
�

�
�

�
� � �

�

�
Good lattice points with blocking

××
×
××

× × ××

×
× ×× ××

×××
×

× ×

×
×

×
×

×
Parametrization of Zinterhof sequence

�
��

�

Fig. 6.25 Integration error for f (γ)
3 (x).

-20

-15

-10

-5

0

5

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

Zinterhof sequence with leaping

����
�
��

�
��

�
��

�
���

�
�

�
��

��
������

�

��
���

�
��

�
�

�
Zinterhof sequence with blocking

+ + +
+ + +

+

+ + + + + +
+ + + + +

+

+ + + +
+

+ + +

+
Good lattice points with leaping

��
�

�� � � �
�

�

�
�

� �

�

�
�
�

�
� � �

�
�

�

�
Good lattice points with blocking

××
×××× ×

× ×××× ×× ×
×

××
×
× ×

×
× × ××

×
Parametrization of Zinterhof sequence

�
����������������������

������������
�
�����

�

Fig. 6.26 Integration error for f (δ)
4 (x).

the GLP. Although their error curves show an oscillating behavior the result is al-
ways better than the results for the Zinterhof sequence with leaping, blocking or

parametrization. For the test function f (n)
1 (x) the quality of the good results of the

GLP is much better than the other results. For the (bounded) test function f (β)
2 (x)

also the other methods show a decrease of the error. The function f (γ)
3 (x) shows a

quite slow decrease of the error for the parametrization method whereas the other

computations show much better results. Also the function f (δ)
4 (x) should be com-

puted with the GLP due to the slightly better results, although the results for the Zin-
terhof sequence exhibit the same order of magnitude except for the parametrization

208 Peter Jez, Andreas Uhl and Peter Zinterhof

approach. The parametrization method shows a faster decrease of the error but the

starting value (=error for N = 106) is much higher than for the function f (γ)
3 (x).

Except for the polynomially growing function f (n)
1 (x) all methods show a decrease

of the error for an increasing number of integration nodes and can be used for the
computation.

The one fast case shows the same behavior: The best results are achieved for the
GLP, but the differences are not so significant as in the one slow case. The error in
case of the GLP is higher than in the one slow case. The reason is the dependency

of the GLP on the number of integration nodes. The results for the function f (δ)
4 (x)

have the same order except the parametrization (see Fig. 6.27). In Figs. 6.23, 6.24,

-14

-12

-10

-8

-6

-4

-2

0

2

1e+05 1.1e+06 2.1e+06 3.1e+06 4.1e+06 5.1e+06 6.1e+06 7.1e+06 8.1e+06 9.1e+06

log|err|

N

Zinterhof sequence with leaping

�

�
��������

������

�
���

��

���

�

���

�
�
�

�

�
�

�

���
��

�
Zinterhof sequence with blocking

+ + + +
+ +

+
+

+
+ +

+
+ + +

+
+

+
+

+

+ +
+

+ + + +

+
Good lattice points with leaping

�

�

���

�

� �
�

�
�

��
�

��

�

�

� �
�

��

�
Good lattice points with blocking

×
×
× ×

×
×
×

×× ×
× ×× ×

×

× × ×

×
× × ××

×
Parametrization of Zinterhof sequence

��
���

������������������������������������

�

Fig. 6.27 Integration error for f (δ)
4 (x) for one fast case.

6.25, 6.26 and 6.27 we observe that the parametrization method of the Zinterhof
sequence delivers always the worst results. The blocking and leaping strategy of the
Zinterhof sequence and the GLP respectively give errors of the same magnitude. For

f (n)
1 (x) and f (β)

2 (x) the best results are delivered from the GLP whereas for f (δ)
4 (x)

the error for the Zinterhof sequence is of the same order as the error for the GLP.

6.6 Application of the Diaphony in Parallel Computation

In this section we apply the concept of the diaphony to estimations of the errors
of QMC integration: QMC of functions from an RKHS caused by inhomogeneities
of the parallel computation environment. Suppose we have a collection consisting
of M PEs. We use a sequence of node points (xk)N

k=1 ∈ R
s. The PE i, i = 1, . . . ,M,

uses a subsequence of the original one denoted by (xk),k ∈ Ai where Ai are disjoint

6 Applications and Parallel Implementation of QMC Integration 209

subsets of {1,2, . . . ,N}. Let ci = |Ai|. Let D
(
{xk}N

k=1

)
be the diaphony [25] of the

sequence. An error estimation is given by (see [58])
∣∣∣∣∣
√
πs

N

N

∑
k=1

f (xk)− I

∣∣∣∣∣=
∣∣∣∣∣
√
πs

N

M

∑
i=1

ci

ci
∑

k∈Ai

f (xk)− I

∣∣∣∣∣=
∣∣∣∣∣

M

∑
i=1

ci

N

√
πs

ci
∑

k∈Ai

f (xk)− I

∣∣∣∣∣
Usage of the diaphony allows us to separate the error estimator into two terms:

∣∣∣∣∣
M

∑
i=1

ci

N

√
πs

ci
∑

k∈Ai

f (xk)− I

∣∣∣∣∣=

=

∣∣∣∣∣
M

∑
i=1

ci

N

(√
πs

ci
∑

k∈Ai

f (xk)− I

)∣∣∣∣∣≤ ‖ f‖ .
M

∑
i=1

ci

N
D
(
{xk}k∈Ai

)

This means the error caused by the sequence is given by a weighted mean of the
diaphony of the subsequences of each PE.

In our next consideration we deal with estimations of errors caused by inhomo-
geneities: To be more precise we want to estimate the difference of the sequential
computation and the disturbed parallel computation. We consider the i-th PE and
assume that not all integration nodes are consumed by the computation: Let Bi ⊂ Ai

with |Bi|= di < ci. We want to estimate the difference
∣∣∣∣∣
√
πs

ci
∑

k∈Ai

f (xk)−
√
πs

di
∑

k∈Bi

f (xk)

∣∣∣∣∣
We will obtain 2 estimations: The first one is based on the consumed integration
nodes, the second one is based on the unconsumed integration nodes.

The first estimation is quite simple:
∣∣∣∣∣
√
πs

ci
∑

k∈Ai

f (xk)−
√
πs

di
∑

k∈Bi

f (xk)

∣∣∣∣∣=

=

∣∣∣∣∣
√
πs

ci
∑

k∈Ai

f (xk)− I + I−
√
πs

di
∑

k∈Bi

f (xk)

∣∣∣∣∣≤
≤ ‖ f‖ .

(
D
(
{xk}k∈Ai

)
+D

(
{xk}k∈Bi

))
This means we can estimate the error caused by the parallel computation environ-
ment by the diaphony of all integration nodes which should be processed by the i-th
PE and the diaphony of the really processed integration nodes.

The second estimation is achieved in the following way:

210 Peter Jez, Andreas Uhl and Peter Zinterhof

∣∣∣∣∣
√
πs

ci
∑

k∈Ai

f (xk)−
√
πs

di
∑

k∈Bi

f (xk)

∣∣∣∣∣=

=

∣∣∣∣∣
(

1
ci
− 1

di

)√
πs ∑

k∈Bi

f (xk)+
√
πs

ci
∑

k∈Ai\Bi

f (xk)

∣∣∣∣∣=

=

∣∣∣∣∣
di− ci

ci

√
πs

di
∑

k∈Bi

f (xk)+
√
πs

ci
∑

k∈Ai\Bi

f (xk)

∣∣∣∣∣=

=
ci−di

ci

∣∣∣∣∣
√
πs

di
∑

k∈Bi

f (xk)− I + I−
√
πs

ci−di
∑

k∈Ai\Bi

f (xk)

∣∣∣∣∣≤

≤ ‖ f‖.ci−di

ci

(
D
(
{xk}k∈Bi

)
+D

(
{xk}k∈Ai\Bi

))

We can also get an estimation of the difference of the computation in the inhomoge-
neous environment and the exact value of the integral: Let N1 = d1 + . . .+dM . Then
we get ∣∣∣∣∣

M

∑
i=1

di

N1

√
πs

di
∑

k∈Bi

f (xk)− I

∣∣∣∣∣≤

≤
∣∣∣∣∣

M

∑
i=1

di

N1

√
πs

di
∑

k∈Bi

f (xk)−
M

∑
i=1

ci

N

√
πs

ci
∑

k∈Ai

f (xk)

∣∣∣∣∣+

+

∣∣∣∣∣
M

∑
i=1

ci

N

√
πs

ci
∑

k∈Ai

f (xk)− I

∣∣∣∣∣≤

≤
∣∣∣∣∣

M

∑
i=1

di

N1

√
πs

di
∑

k∈Bi

f (xk)− I

∣∣∣∣∣+2

∣∣∣∣∣
M

∑
i=1

ci

N

√
πs

ci
∑

k∈Ai

f (xk)− I

∣∣∣∣∣≤

≤ ‖ f‖.
M

∑
i=1

[
di

N1
D
(
{xk}k∈Bi

)
+2

ci

N
D
(
{xk}k∈Ai

)]
(6.15)

In a similar way an estimation based on the unconsumed points is given by
∣∣∣∣∣

M

∑
i=1

di

N1

√
πs

di
∑

k∈Bi

f (xk)− I

∣∣∣∣∣≤

≤ ‖ f‖
M

∑
i=1

ci

N
D({xk : k ∈ Ai})+

+
N−N1

N
‖ f‖

M

∑
i=1

(
di

N1
D({xk : k ∈ Bi})+

ci−di

N−N1
D({xk : k ∈ Ai \Bi})

)

6 Applications and Parallel Implementation of QMC Integration 211

We will apply now the estimation (6.15) to the one slow blocking case for the Zin-
terhof sequence. By the well-known expansion (see [59])

e−a2x2
=

∞

∑
n=0

(−1)na2n

22nn!(1+a2)n+ 1
2

H2n(x)

for x ∈ R and ℜa2 >−1 we can show that the test function

f (δ)
4 (x1, . . . ,x10) =

10

∏
j=1

e−δ jx2
j −

10

∏
j=1

√
1

1+δ j

is an element of an RKHS of the form (6.10) if

λ 4
i >

δ 2
i

(1+δi)
2

for 1 ≤ i ≤ 10. For our parameter δ this is guaranteed if λi ≡ λ = 0.95. The norm

(induced from the scalar product in Hλ) of f (δ)
4 (x) is given by

∥∥∥ f (δ)
4

∥∥∥ =

⎡
⎣ ∑

(n1,...,n10)∈N
10
0

′
10

∏
j=1

(
2n j

n j

)(δ 2
j

4λ j (1+δ j)
2

)n j
⎤
⎦

1
2

The prime indicates that the term with index (0, . . .0) is omitted. A numerical com-
putation gives the value ∥∥∥ f (δ)

4

∥∥∥≈ 0.8189266

In Fig. 6.28 the estimated error vs. the error of the one slow case is plotted. Due to
the high difference the logarithm of the error is plotted. The reason for this overes-
timation is that the diaphony is the worst case error for all functions of the RKHS
for the considered point sequence. Our estimation uses the diaphony of the really
considered integration nodes which is of course greater than the diaphony of the
whole point sequence.

6.7 Conclusion

We have shown that parallel QMC techniques are a sound way to compute inte-
grals over the real line in case of Gaussian type weight functions. Even in case
of significant inhomogeneities of the PEs computing capacities we observe rather
stable results in most cases. While for Zinterhof sequences we even observe im-
provements of the sequential integration results for some settings and test functions,
the results obtained with GLP degrade with respect to sequential accuracy in the
same scenarios. Overall, the latter point sets deliver better results as compared to

212 Peter Jez, Andreas Uhl and Peter Zinterhof

-14

-12

-10

-8

-6

-4

-2

0

2

4

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

log|err|

N

one slow

� � �
� � �

�

� �
�

�
� �

� � � � �

�

� � �
�

�

�
� �

�
estimated error

+

+ +
+ + + +

+

Fig. 6.28 Estimated error vs. the computed error for the one slow case of f (δ)
4 (x).

Zinterhof sequences; however, for most scenarios the integration error is within the
same order of magnitude (except for parametrization, which gives the worst results
of all techniques considered). Taking the ease of construction of Zinterhof sequences
into account, their use employing blocking and leaping in parallel environments can
specifically be recommended.

Acknowledgments This work has been partially supported by the Austrian Grid Project 2. Aus-
trian Grid is a project funded by the bm:bwk (Federal Ministry for Education, Science and Culture)
after recommendation by the Austrian Council for Research and Technology Development.

6 Applications and Parallel Implementation of QMC Integration 213

References

1. G. Evans, Practical Numerical Integration, Wiley, Chichester, (1993).
2. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF

Regional Conference Series in Applied Mathematics 62, Society for Industrial and Applied
Mathematics (SIAM), 1992.

3. K. Entacher, P. Hellekalek, and P. L’Ecuyer, Quasi-Monte Carlo node sets from linear con-
gruential generators, Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer (2000)
188–198.

4. E. deDoncker, R. Zanny, and K. Kaugars, Distributed numerical integration algorithms and
applications, in: Proceedings of the 4th World Multiconference on Systemics, Cybernetics,
and Informatics (SCI’00) (2000) 244–249.

5. A.R. Krommer and C.W. Überhuber, Numerical Integration on Advanced Computer Systems,
Lecture Notes in Computer Science 848, Springer, Berlin, (1994).

6. A.R. Krommer and C.W. Überhuber, Computational Integration, SIAM, Philadelphia, (1998).
7. R. Schürer and A. Uhl, An evaluation of adaptive numerical integration algorithms on parallel

systems, Parallel Algorithms and Applications 18 (1–2) (2003) 13–26.
8. M. Drmota and R. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Com-

puter Science 1651, Springer, Berlin, (1997).
9. T. T. Warnock, Computational investigations of low discrepancy point sets, Applications of

Number Theory to Numerical Analysis, Academic Press, New York (1972) 319–343.
10. S. Heinrich, Efficient algorithms for computing L2-discrepancy, Mathematics of Computation

65 (216) (1996) 1621–1633.
11. K. F. Roth, On irregularities of distribution, Mathematika 1 (1953) 73–79.
12. H. Niederreiter, Uniform Distribution of Sequences, Interscience, New York, 1974.
13. J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating

multi-dimension integrals, Numerical Mathematics 2 (1960) 84–90; Berichtigung ibid., 196
14. H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta

Arithmetica 41 (1982) 337–351.
15. I. M. Sobol, On the distribution of points in a cube and the approximate evaluation of integrals,

U.S.S.R. Computational Mathematics and Mathematical Physics 7 (4) (1967) 86–112.
16. H. M. Korobow, Approximate calculation of multiple integrals with the aid of methods in the

theory of numbers, Dokl. Akad. Nauk SSSR 115 (1957) 1062–1065.
17. E. Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Mathematik 66

(1962) 140–151.
18. H. Weyl, Über die Gibbssche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ.

Mat. Palermo 30 (1910) 377–407.
19. H. Niederreiter, Methods for estimating discrepancy, Applications of Number Theory to Nu-

merical Analysis, Academic Press, New York (1972) 203–236.
20. P. Zinterhof, Einige zahlentheoretische Methoden zur numerischen Quadratur und Interpo-

lation, Sitzungsberichte der Österreichischen Akademie der Wissenschaften, math.-nat.wiss.
Klasse Abt. II 177 (1969) 51–77.

21. H. Hofbauer, A. Uhl, and P. Zinterhof, Zinterhof sequences in GRID-based numerical integra-
tion, Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Berlin (2008) 495–510.

22. P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, Berlin, 2004.
23. H. M. Korobov, Anwendung zahlentheoretischer Methoden auf Probleme der Numerischen

Mathematik (in Russian), Fismatgis, Moscow, (1963).
24. N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical

Society 68 (1950) 337–404.
25. P. Zinterhof and C. Amstler, Uniform distribution, Discrepancy and reproducing kernel Hilbert

spaces, Journal of Complexity 17 (2001) 497–515.
26. F. Costabile, F. Dell’Accio, and M. I. Gualtieri, A new approach to Bernoulli Polynomials,

Rendiconti di Mathematica 26 (2006) 1–12.

214 Peter Jez, Andreas Uhl and Peter Zinterhof

27. P. Hellekalek and G. Larcher, Random and Quasi-random point sets, Lecture Notes in Statis-
tics 138, Springer, Berlin, (1998).

28. F. J. Hickernell, I. H. Sloan, and G. W. Wasilkowski, On tractability of weighted integration
over bounded and unbounded regions in R

s, Mathematics of Computation 73 (2004) 1885–
1901.

29. J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer, Berlin, (2004).
30. S. Thangavelu, Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton Univer-

sity Press, Princeton, (1993).
31. E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics, Springer, Berlin,

(2006).
32. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial

Markets, World Scientific Pub CO, Singpore (2006).
33. P. A. Samuelson, Proof that properly anticipated prices fluctuate randomly, Industrial Man-

agement Review 6 (1965) 41–50.
34. G. Larcher and G. Leobacher, Quasi-Monte Carlo and Monte Carlo methods and their appli-

cations in finance, Surveys on Mathematics for Industry 11 (2005) 95–130.
35. G. Larcher and F. Pillichshammer, A note on optimal point distributions in [0,1)s, Journal of

Computational and Applied Mathematics 206 (2007) 977–985.
36. S. Li, K. Kaugars, and E. deDoncker, Grid-based numerical integration and visualization,

Sixth International Conference on Computational Intelligence and Multimedia Applications
(ICCIMA’05), IEEE Computer Society Press (2005) 260–265.

37. H. Hofbauer, A. Uhl, and P. Zinterhof, Quasi Monte Carlo Integration in GRID Environments:
Further Leaping Effects, Parallel Processing Letters 16 (3) (2006) 285–311.

38. M. Mascagni and A. Karaivanova, A parallel Quasi-Monte Carlo method for solving systems
of linear equations, in: P. Sloot et al. (Eds.), The 2002 International Conference on Computa-
tional Science – ICCS 2002, Springer, Berlin (2002) 598–608.

39. M. Mascagni and A. Karaivanova, A parallel Quasi-Monte Carlo method for computing ex-
tremal eigenvalues, in: K. T. Fang, F. J. Hickernell, and H. Niederreiter (Eds.), Monte Carlo
and Quasi-Monte Carlo Methods 2000, Springer-Verlag, Berlin (2002) 369–380.

40. V. Alexandrov, E. Atanassov, and I. Dimov, Parallel Quasi Monte Carlo methods for linear
algebra problems, Monte Carlo Methods and Applications 10 (3–4) (2004) 213–219.

41. Y. Li and M. Mascagni, Grid-based Quasi-Monte Carlo applications, Monte Carlo Methods
and Applied 11 (1) (2005) 39–55.

42. J. W. L. Wan, K. Lai, A. W. Kolkiewicz, and K. S. Tan, A parallel quasi Monte Carlo approach
to pricing multidimensional American options, International Journal of High Performance
Computing and Networking 4 (5/6) (2006) 321–330.

43. R. Schürer, Parallel high-dimensional integration: Quasi-Monte Carlo versus adaptive cuba-
ture rules, in: V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. J. K.
Tan (Eds.), The 2001 International Conference on Computational Science – ICCS 2001, San
Francisco, CA, USA, May 2001, Lecture Notes in Computer Science 2073, Springer, Berlin,
(2001).

44. W. Ch. Schmid and A. Uhl, Parallel Quasi-Monte Carlo integration using (t,s)-sequences, in:
P. Zinterhof, M. Vajtersic, and A. Uhl (Eds.), Parallel Computation. Proceedings of ACPC’99,
Lecture Notes on Computer Science 1557, Springer (1999) 96–106.

45. W. Ch. Schmid and A. Uhl, Techniques for parallel Quasi-Monte Carlo integration with digital
sequences and associated problems, Mathematics and Computers in Simulation 55 (2001)
249–257.

46. B.C. Bromley, Quasirandom number generators for parallel Monte Carlo algorithms, Journal
of Parallel and Distributed Computing 38 (1996) 101–104.

47. J. X. Li and G. L. Mullen, Parallel computing of a Quasi-Monte Carlo algorithm for valuing
derivatives, Parallel Computing 26 (5) (2000) 641–653.

48. K. Entacher, T. Schell, W. Ch. Schmid, and A. Uhl, Defects in parallel Monte Carlo and Quasi-
Monte Carlo integration using the leap-frog technique, Parallel Algorithms and Applications
18 (1–2) (2003) 27–47.

6 Applications and Parallel Implementation of QMC Integration 215

49. E. deDoncker, A. Genz, and M. Ciobanu, Parallel computation of multivariate normal proba-
bilities, Computing Science and Statistics 31 (1999) 89–93.

50. E. deDoncker, R. Zanny, M. Ciobanu, and Y. Guan, Distributed Quasi-Monte Carlo methods
in a heterogeneous environment, in: Proceedings of the Heterogeneous Computing Workshop
2000 (HCW’2000), IEEE Computer Society Press (2000) 200–206.

51. E. deDoncker, R. Zanny, M. Ciobanu, and Y. Guan, Asynchronous Quasi-Monte Carlo meth-
ods, in: Proceedings of the High Performance Computing Symposium 2000 (HPC’00) (2000)
130–135.

52. L. Cucos and E. deDoncker, Distributed QMC algorithms: New strategies for and perfor-
mance evaluation, in: Proceedings of the High Performance Computing Symposium 2002
(HPC’02)/Advanced Simulation Techniques Conference (2002) 155–159.

53. G. Ökten and A. Srivivasan, Parallel Quasi-Monte Carlo methods on a heterogeneous cluster,
in: K. T. Fang, F. J. Hickernell, and H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte
Carlo Methods 2000, Springer (2002) 406–421.

54. A. Srinivasan, Parallel and distributed computing issues in pricing financial derivatives
through Quasi-Monte Carlo, in: Proceedings of the International Parallel & Distributed Pro-
cessing Symposium 2002 (IPDPS’02), Fort Lauderdale, FL, USA, April 2002, IEEE Com-
puter Society Press (2002) 14–19.

55. G. Marsaglia, A. Zaman, and J. C. W. Marsaglia, Rapid evaluation of the inverse of the normal
distribution function, Statistics and Probability Letters 19 (1994) 259–266.

56. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes, Cam-
bridge University Press, Cambridge (2007).

57. H. Hofbauer, A. Uhl, and P. Zinterhof, Quasi Monte Carlo Integration on GRIDS: Using
blocked substreams, in: D. Kranzlmüller J. Volkert, T. Fahringer and W. Schreiner (Eds.),
Proceedings of the 1st Austrian Grid Symposium, Austrian Computer society (2006).

58. H. Hofbauer, A. Uhl, and P. Zinterhof, Parametrization of Zinterhof sequences for GRID-
based QMC integration, in: D. Kranzlmüller J. Volkert, T. Fahringer and W. Schreiner (Eds.),
Proceedings of the 2nd Austrian Grid Symposium, Austrian Computer society (2007).

59. N. N. Lebedev, Special functions and their applications (in Russian), GIFML, Moscow-
Leningrad, (1963).

Chapter 7
Parallel Evolutionary Computation Framework
for Single- and Multiobjective Optimization

Bogdan Filipič and Matjaž Depolli

Abstract

Evolutionary computation is an area of computer science utilizing the mechanisms
of biological evolution in computer problem solving. It is concerned with theoret-
ical studies, design and application of stochastic optimization procedures, known
as Evolutionary Algorithms (EAs). EAs have proven effective and robust in solv-
ing demanding optimization problems that are often difficult if not intractable to
traditional numerical methods. They are nowadays widely applied in science, en-
gineering, management, and other domains. However, a drawback of EAs is their
computational complexity which originates from iterative population-based search
of the solution space. On the other hand, processing a population of candidate solu-
tions makes EAs amenable to parallel implementation that may result in significant
calculation speedup.

This chapter presents a parallel evolutionary computation framework developed
for solving numerical optimization problems with one or more objectives, and eval-
uates its performance on a high-dimensional optimization task from industrial prac-
tice. The chapter starts with an introduction to optimization problems. It distin-
guishes between single- and multiobjective optimization and reviews the concepts
needed to deal with multiobjective optimization problems, such as the dominance
relation and Pareto optimality. Next, EAs as a general-purpose optimization method
are described, with a focus on Differential Evolution (DE) which is a particular kind
of EA used in our framework. Then, parallelization of EAs is discussed in view of
known parallelization types and speedup calculation. The chapter continues with an

Bogdan Filipič
Department of Intelligent Systems, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slove-
nia, e-mail: bogdan.filipic@ijs.si

Matjaž Depolli
Department of Communication Systems, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana,
Slovenia, e-mail: matjaz.depolli@ijs.si

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_7, 217
c© Springer-Verlag London Limited 2009

218 Bogdan Filipič and Matjaž Depolli

introduction to the optimization problem in industrial continuous casting, used as a
test problem in this work. Afterwards, the proposed parallel evolutionary computa-
tion framework is presented. The framework is based on DE and implemented on a
cluster of personal computers. It is evaluated on single- and multiobjective variants
of the casting optimization problem and the results are analyzed from the perspec-
tive of the problem domain and, in particular, the achieved speedup.

7.1 Introduction

In the last decades, a number of computational techniques have been proposed that
take inspiration from natural phenomena. Among them is evolutionary computa-
tion [1,2] with the underlying idea of employing the mechanisms of biological evo-
lution in computer problem solving. Search and optimization algorithms designed
according to these principles, known as Evolutionary Algorithms (EAs), simulate
the evolution of candidate solutions to a given problem, usually starting from a
randomly created initial set, and iteratively improving its members until their con-
vergence. Despite its simplicity, this approach has proved efficient and widely ap-
plicable. EAs can nowadays be found in a variety of application domains, ranging
from science [3] to engineering [4] to management [5].

EAs are in many respects superior to traditional algorithms. Candidate solutions
in an EA can be represented and varied in a number of ways which makes these
algorithms suitable for solving radically different types of optimization problems.
Their operation relies on the quality of solutions being processed and requires no ad-
ditional information about the search space. As a result, noncontinuous, multimodal
and time-dependent problems, hard to solve with traditional algorithms, can be suc-
cessfully approached with EAs. On the other hand, the population-based search per-
formed with EAs, as opposed to the single-point search in most other algorithms,
has both advantages and disadvantages. On the positive side, it results in more than
one solution produced in a single algorithm run, which provides a user with alter-
natives that are sometimes highly desirable. As a disadvantage comes the computa-
tional burden of processing a population of candidate solutions. What helps here is
the inherent parallelism of EAs: the solutions can be evaluated independently and
thus run in parallel for the entire population. This property makes EAs amenable
to parallel implementation that may significantly speedup the calculation. This is
particularly useful when solution evaluation is computationally expensive, which is
often the case with real-world problems.

This chapter describes a parallel evolutionary computation framework developed
for solving numerical optimization problems. It starts with a formal introduction
to optimization problems and distinguishes between single- and multiobjective
optimization. It presents the basic concepts needed to deal with multiobjective
optimization problems, such as the dominance relation and Pareto optimality. It
continues with a presentation of EAs in general and then focuses on Differential
Evolution (DE), an EA specialized in numerical optimization. Both the original

7 Parallel Evolutionary Computation Framework 219

single-objective DE and its multiobjective extension are outlined. Next, paralleliza-
tion of EAs is discussed regarding the types of parallelization and the calculation
of speedups. The chapter then introduces the task of process parameter tuning in
industrial continuous casting of steel, where the goal is to satisfy the empirical met-
allurgical criteria formulated to increase the quality of cast steel [6]. This problem
will later be used to evaluate the proposed evolutionary computation framework.
The framework itself is explained in detail. It makes use of any number of pro-
cessors available and increases the performance of the optimization procedure by
distributing the evaluation of candidate solutions among the processors. Installed on
a cluster [7] of Opteron computers running under Linux, it is empirically evaluated
on the casting optimization problem. Both single- and multiobjective variants of
the problem are exercised and the results analyzed in view of the problem domain
and, in greater detail, the achieved calculation speedup. The optimization results
are comparable to the results obtained previously on the same problem instances,
while, in accordance with predictions, high speedups are achieved. These findings
also suggest further work to enhance the performance of the parallel framework on
hardware architectures different from the one used in this work.

7.2 Optimization Problems

Numerous tasks in science, engineering and business require finding the best solu-
tion from a set of candidate solutions that can be evaluated according to a quality
measure and that have to satisfy various constraints. These tasks are called opti-
mization problems, and the procedure of solving an optimization problem is opti-
mization.

We focus on numerical optimization problems where candidate solutions are vec-
tors of real decision variables (sometimes called problem parameters)

x = [x1,x2, ...,xn]T,

and the quality measure is a real function f (x) defined over R
n. Formally, a numer-

ical optimization problem is to find a vector,

x∗ = [x∗1,x
∗
2, ...,x

∗
n]

T,

that fulfills boundary constraints,

xlow
i ≤ xi ≤ xup

i , i = 1,2, ...,n,

inequality constraints,
g j(x)≥ 0, j = 1,2, ...,J,

and equality constraints,

hk(x) = 0, k = 1,2, ...,K,

and optimizes f (x).

220 Bogdan Filipič and Matjaž Depolli

The boundary constraints restrict each decision variable xi to take values within
its lower bound xlow

i and upper bound xup
i , and determine a decision variable space

(or decision space, for short) of a numerical optimization problem. Solutions sat-
isfying all boundary constraints, inequality constraints and equality constraints are
called feasible solutions. On the other hand, solutions not satisfying all the con-
straints are infeasible. Furthermore, f (x) is known as the objective function or cost
function. Optimizing f (x) means either minimizing or maximizing it.

Note that the objective function is not always given explicitly. Particularly in
practical optimization problems it may be very demanding, if not impossible, to
formulate it. Alternatively, candidate solutions can be evaluated empirically through
experiments, measurements, computer simulation, etc.

The traditional definition of a numerical optimization problem given above as-
sumes there is only one objective, and solving such a problem is therefore referred to
as single-objective optimization. However, most real-world optimization problems
involve multiple objectives, and these are often in conflict with each other, in the
sense that improvement of a solution with respect to a selected objective deteriorates
it with respect to other objectives. In such cases we deal with multiobjective opti-
mization problems. These can be formally stated analogously to the single-objective
ones with the exception that the task is now to optimize a vector function

f(x) = [f1(x), f2(x), ..., fM(x)]T.

As a result, there are two spaces associated with a multiobjective optimization
problem: in addition to an N-dimensional decision variable space, there is an M-
dimensional objective space where the objective vectors can be partially ordered
using the dominance relation. Objective vector x is said to dominate objective vec-
tor y, formally x ≺ y, iff x is not worse than y in all objectives and is better than y
in at least one objective.

Let us illustrate the dominance relation with an example. Consider a multiob-
jective optimization problem with two objectives, f1 and f2, that both need to be
minimized. Fig. 7.1 shows five solutions to this problem in the objective space.
Comparing solution a with other solutions, we can observe that a dominates b since
it is better than b in both objectives, that is, f1(a) < f1(b) and f2(a) < f2(b). It
also dominates c as it is better than c in objective f2 and not worse in objective f1.
On the other hand, d outperforms a in both objectives, therefore d dominates a or,
in other words, a is dominated by d. However, regarding a and e, no such conclu-
sion can be made because f1(a) < f1(e) and f2(a) > f2(e). We say that a and e are
incomparable.

In general, in a set of solutions to a multiobjective optimization problem, there
is a subset of solutions that are not dominated by any other solution (d and e in the
example from Fig. 7.1). Referring to the decision variable space, we call this sub-
set a nondominated set of solutions, and in the objective space the corresponding
vectors are called a nondominated front of solutions. The concept is illustrated in
Fig. 7.2 where both objectives need to be minimized again. The nondominated set
of the entire feasible search space is known as the Pareto optimal set, and the non-

7 Parallel Evolutionary Computation Framework 221

Fig. 7.1 Comparison of solutions to a multiobjective optimization problem in the objective space.

dominated front of the entire feasible search space the Pareto optimal front (named
after Vilfredo Pareto (1848–1923), an Italian economist, sociologist and a pioneer
in the field of multiobjective optimization).

Fig. 7.2 Nondominated front of solutions in the objective space (both objectives need to be mini-
mized).

Objective vectors from the Pareto optimal front represent different trade-offs be-
tween the objectives, and without additional information no vector can be preferred
to another. With a multiobjective optimizer we search for an approximation set that
approximates the Pareto optimal front as closely as possible. In practical multiob-
jective optimization, it is often important to provide a diverse choice of trade-offs.
Therefore, besides including vectors close to the Pareto optimal front, the approxi-
mation set should also contain near-optimal vectors that are as diverse as possible.

222 Bogdan Filipič and Matjaž Depolli

7.3 Evolutionary Algorithms

Evolutionary Algorithms is a common name for a family of search and optimization
procedures created and studied in the field of evolutionary computation [1, 2]. The
underlying idea is to solve a given problem through computer-simulated evolution
of candidate solutions. The set of candidate solutions processed by an EA is called
a population, and the population members are referred to as individuals. They are
represented in the form suitable for solving a particular problem. Often-used rep-
resentations include bit strings, real-valued vectors, permutations, tree structures
and even more complex data structures. In addition, a fitness function needs to be
defined that assigns a numerical measure of quality to the individuals; it roughly
corresponds to the cost function in optimization problems.

An EA, shown in pseudocode as Algorithm 7.1, starts with a population of ran-
domly created population members, and iteratively improves them by employing
evolutionary mechanisms, such as survival of the fittest individuals and exchange of
genetic information between the individuals. The iterative steps are called genera-
tions, and in each generation the population members undergo selection and varia-
tion.

Algorithm 7.1 Evolutionary Algorithm (EA)

1: create the initial population P of random solutions;
2: evaluate the solutions in P;
3: while stopping criterion not met do
4: create an empty population Pnew;
5: repeat
6: select two parents from P;
7: create two offspring by crossing the parents;
8: mutate the offspring;
9: evaluate the offspring;

10: add the offspring into Pnew;
11: until Pnew is full;
12: copy Pnew into P;
13: end while

The selection phase of the algorithm is an artificial realization of the Darwinian
principle of survival of the fittest among individuals. The higher the fitness of an
individual (i.e., the quality of a solution), the higher the probability of participating
in the next generation. In the variation phase, the individuals are modified in order
to generate new candidate solutions to the considered problem. For this purpose,
the EA applies operators, such as crossover and mutation, to the individuals. The
crossover operator exchanges randomly selected components between pairs of indi-
viduals (parents), while mutation alters values at randomly selected positions in the
individuals.

The algorithm runs until a stopping criterion is fulfilled. The stopping criterion
can be defined in terms of the number of generations, required solution quality or as

7 Parallel Evolutionary Computation Framework 223

a combination of both. The best solution found during the algorithm run is returned
as a result.

EAs exhibit a number of advantages over traditional specialized methods and
other stochastic algorithms. Besides the evaluation of candidate solutions, they re-
quire no additional information about the search space properties. They are a widely
applicable optimization method, straightforward for implementation and suitable for
hybridization with other search algorithms. Moreover, it is not difficult to incorpo-
rate problem-specific knowledge into an EA in the form of specialized operators
when such knowledge is available. Finally, by processing populations of candidate
solutions, they are capable of providing alternative solutions to a problem in a single
algorithm run. This is extremely valuable when solving multimodal, time-dependent
and multiobjective optimization problems.

A somewhat more specialized EA is DE [8, 9]. It was designed for solving nu-
merical optimization and has proved very efficient in this problem domain. In DE,
candidate solutions are encoded as n-dimensional real-valued vectors. As outlined
in Algorithm 7.2, new candidates are constructed through operations such as vector
addition and scalar multiplication (in line 7, F denotes a predefined scalar value).
After creation, each candidate is evaluated and compared with its parent and the best
of them is added to the new population.

Algorithm 7.2 Differential Evolution (DE)

1: create the initial population P of random solutions;
2: evaluate the solutions in P;
3: while stopping criterion not met do
4: create an empty population Pnew;
5: for each solution Pi, i = 1..pop_size from P do
6: randomly select three different solutions I1, I2, I3 from P;
7: create a candidate solution C := I1 +F · (I2− I3);
8: alter C by crossover with Pi;
9: evaluate C;

10: if C is better than Pi then
11: add C into Pnew
12: else
13: add Pi into Pnew;
14: end if
15: end for
16: copy Pnew into P;
17: end while

224 Bogdan Filipič and Matjaž Depolli

7.3.1 Multiobjective Evolutionary Algorithms

In multiobjective optimization, finding an approximation of the Pareto optimal
front in a single run requires a population-based method. Therefore, EAs are a
reasonable choice for this task. However, since the objective space in multiobjec-
tive optimization problems is multidimensional, any EA originally designed for
single-objective optimization needs to be extended to deal with multiple objec-
tives. This has been done with several EAs that are now used as multiobjective
optimizers and referred to as Multiobjective Evolutionary Algorithms (MOEAs)
[10–12].

Based on the single-objective DE is Differential Evolution for Multiobjective
Optimization (DEMO) [13]. It extends DE with a particular mechanism for deciding
which solutions to keep in the population (see Algorithm 7.3). For each parent in
the population, DEMO constructs a candidate solution in the same way as DE. If
the candidate dominates the parent, the candidate is added to the new population.
If the parent dominates the candidate, the parent is added to the new population.
Otherwise, if the candidate and its parent are incomparable, they are both added
to the new population. During the construction of candidates for all parents in the
population, the new population possibly increases. In this case, it is truncated to
the original population size using nondominated sorting and the crowding distance
metric in the same manner as in the NSGA-II multiobjective algorithm [14]. These
steps are repeated until a stopping criterion is met.

The serial versions of DE and DEMO described here will be used as a foundation
for our parallel evolutionary computation framework to efficiently deal with single-
and multiobjective optimization problems, respectively.

7.4 Parallel Single- and Multiobjective Evolutionary Algorithms

EAs are an example of inherently parallel algorithms. Fitness evaluation can be
independently calculated for each individual and therefore run in parallel for the
entire population at a time. This mainly results in a faster algorithm execution, that
is, speedup [15], although it could in some cases also loosen hardware bottlenecks,
such as memory shortage. This chapter focuses on the speedup, but also provides
notes on efficiency (speedup normalized with the number of processors) and hard-
ware bottlenecks where applicable.

7.4.1 Parallelization Types

There are four types of parallel EAs [16, 17], of which three are basic:master–slave
(also called global parallelization), island, diffusion (also known as cellular) and
hybrid that encompasses combinations of the basic types.

7 Parallel Evolutionary Computation Framework 225

Algorithm 7.3 Differential Evolution for Multiobjective Optimization (DEMO)

1: create the initial population P of random solutions;
2: evaluate the solutions in P;
3: while stopping criterion not met do
4: create an empty population Pnew;
5: for each solution Pi, i = 1..pop_size from P do
6: randomly select three different solutions I1, I2, I3 from P;
7: create a candidate solution C := I1+F·(I2− I3);
8: alter C by crossover with Pi;
9: evaluate C;

10: if C dominates Pi then
11: add C into Pnew
12: else
13: if Pi dominates C then
14: add Pi into Pnew;
15: else
16: add both Pi and C into Pnew;
17: end if
18: end if
19: end for
20: if Pnew contains more than pop_size solutions then
21: truncate Pnew;
22: end if
23: copy Pnew into P;
24: end while

Master–slave EAs are the most straightforward type of parallel EAs and the
only one that makes use of the EAs’ inherent parallelism. As a consequence, they
traverse the search space identically to their serial counterparts. A master–slave
EA can be visualized as a master node running a serial EA with a modifica-
tion in fitness evaluation. Instead of evaluating fitness serially, one individual at
a time, until the entire population is evaluated, individuals are evaluated on the
master and slave nodes in parallel. The highest efficiency of this parallelization
type can be achieved on computers with homogeneous processors and in problem
domains where the fitness evaluation time is constant and independent of the indi-
vidual. When these criteria are fulfilled and the fitness evaluation time is long com-
pared to the time required for other parts of the algorithm, near-linear speedup is
possible.

Island EAs, in contrast, are multiple-population algorithms, consisting of several
largely independent subpopulations that occasionally exchange a few individuals.
In island EAs, each processing node represents an island, running a serial EA on a
subpopulation. A new operator is introduced – migration, that handles the exchange
of individuals between the islands. Migration occurs either in predefined intervals,
e.g., every several generations, or after special events, e.g., when subpopulations
start to converge. Communication overhead is therefore smaller compared to the
master–slave parallelization type. In general, speedup increases with the number of

226 Bogdan Filipič and Matjaž Depolli

islands, but the overall efficiency depends on how well the problem is suited for
solving with multiple-population EAs compared to single-population EAs.

Diffusion EAs split population into multiple small subpopulations and divide
them among the processing nodes. Every subpopulation is allowed to communi-
cate (individuals may interact) with a predefined neighborhood of other subpopula-
tions. These algorithms can also be considered single population with structurally
constrained interactions between individuals. Parallelization of this type has large
communication overhead and may be worth considering only on large computer
clusters with dedicated interconnections between the neighboring processing nodes.
Speedup and efficiency depend greatly on the properties of interconnections and the
suitability of the problem to the structural constraints imposed by the algorithm.

Hybrid parallel EAs are an attempt to minimize the weaknesses of the basic type
algorithms through their hierarchic composition. For example, the island type may
be implemented on top of the master–slave type, providing possibility to use all
available processing nodes, while keeping the number of islands variable. Hybrid
EAs are very adaptable to the underlying hardware architecture, but their design
and implementation are more complex.

7.4.2 Calculation of Speedups

Traditionally, speedup is defined as the ratio between the execution times of the best
serial algorithm and the best parallel algorithm:

S =
Ts

Tp
. (7.1)

As this definition depends on the execution times, we call it the measured speedup,
to contrast it with the estimated speedup. In case of the master–slave EAs, selec-
tion of the best algorithms is trivial, since the parallel algorithm traverses the search
space identically to its serial counterpart. Therefore, for a valid speedup measure-
ment, both algorithms should be run with the same algorithm parameter setting, for
the same number of generations.

More care should be taken when dealing with other types of parallel EAs. Mod-
ifications needed for the island and diffusion EAs may have a positive influence on
some EAs and in some problem domains. These modifications can always be trans-
lated back into a serial algorithm, since every parallel algorithm can be trivially seri-
alized. This way, a new, best-known serial algorithm for calculation of speedup can
be obtained. Therefore, the best serial counterpart to a particular multipopulation
parallel EA may either be its serial implementation or the original, single-population
EA.

The only limiting factor for serialization could be hardware (e.g., multiple-
population EAs require more memory than single-population EAs). In such a case,
parallelization serves as a means of alleviating hardware constraints as well. The

7 Parallel Evolutionary Computation Framework 227

obtained speedup in such cases would be due to parallel execution and due to algo-
rithm improvements, with either contribution unobtainable from the measurements
alone.

Additionally, the island and diffusion EAs make use of additional parameters –
the number of subpopulations and the size and shape of the neighborhood. In par-
allel implementations these parameters are to a large extent fixed to the number of
processors and the computer architecture, but are free in serial implementations.
Therefore, the best algorithm parameter setting may differ between serial and par-
allel implementations.

While measuring the parallelization speedup of the master–slave EAs is straight-
forward, it requires a lot of additional work for the multipopulation parallel EAs.
Since the knowledge of speedup is usually not a priority to the algorithm developers,
the parallel multipopulation EAs are often compared only to the original serial EAs.
This technique frequently yields super-linear speedups, which are a good indication
of the use of suboptimal serial algorithms.

We explore the master–slave EAs in more detail, to estimate their limitations in
speedup. We start with the theoretical limit on speedup according to the Amdahl’s
law:

Smax =
1

(1−P)+ P
N

, (7.2)

where P is the parallel portion of the algorithm and N is the number of processors.
The actual speedup of an algorithm will depend on how well the parallel portion
can be spread up among N processors. Considering the simplest master–slave paral-
lelization type, where only fitness evaluations are parallelized, P is the portion of the
serial algorithm execution time spent on fitness evaluation. It should be noted that
through the process of parallelization, the interprocessor communication is added
to the algorithm, which effectively decreases its parallel portion. As demonstrated
later on, when the interprocessor communication is taken into consideration, P can
still reach very high values if fitness evaluation is complex and time consuming. On
the other hand, N is limited by the population size Np. Only the population of a sin-
gle generation can be evaluated at a time, even when more processors are available.
Speedup upper bound therefore equals the population size:

lim
P→1

Smax = lim
P→1

1

(1−P)+ P
Np

= Np . (7.3)

Another important observation is that not only should Np ≤ N, but also Np | N (Np

divides N), for the algorithm to fully utilize all processors. The algorithm needs �Np
N �

iterations to fully evaluate the population and therefore has �Np
N �×N processor time

slots to fill with Np tasks (fitness evaluations). It is free to choose the best way to
allocate the tasks to processor time slots over the iterations but there will always
remain Np mod N unallocated slots per generation, for which the processors will
be left idle. From this we can derive the effective number of processors used by
the algorithm Neff = Np/�Np

N �. Finally, substituting N with Neff in Eq. (7.2) we can

228 Bogdan Filipič and Matjaž Depolli

rewrite the speedup equation as

Smax =
1

(1−P)+ P×� Np
N �

Np

. (7.4)

An example of Smax(N) for population size Np = 32 and parallel fraction P = 1 is
shown in Fig. 7.3.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

S
pe

ed
up

C
pu

 id
le

 ti
m

e
[%

]
Number of processors

speedup
cpu idle time

Fig. 7.3 Maximum speedup and processor idle time vs. the number of available processors for a
master–slave parallel EA with P→ 1 and N = 32.

The dependence of speedup on the number of processors is alleviated by the
insensitivity of EAs to the population size. Because of the stochastic nature of EAs,
an approximate interval can be determined rather than an exact number for the best
population size on a given problem. If the interval is larger than the number of
processors, then fixing the population size to a multiple of the number of processors
while keeping it inside the interval is possible. In cases when optimal selection of
the population size within the interval is not possible, speedup calculation should be
amended. Suppose an EA with the optimal population size in comparison to an EA
with the selected population size has speedup Sopt. The actual maximum speedup of
a parallel master–slave EA will then be

S∗max =
Smax

Sopt
. (7.5)

7 Parallel Evolutionary Computation Framework 229

7.5 Casting Process Optimization Task

Continuous casting of steel is widely used at modern steel plants to produce vari-
ous steel semi-manufactures. The proces is schematically shown in Fig. 7.4. In this
process, liquid steel is poured into a bottomless mold which is cooled with internal
water flow. The cooling in the mold extracts heat from the molten steel and initiates
the formation of a solid shell. The shell formation is crucial for the support of the
slab behind the mold exit. The slab then enters the secondary cooling area where
additional cooling is performed by water sprays. Led by support rolls, the slab grad-
ually solidifies and finally exits the casting device. At this stage, it is cut into pieces
of predefined length.

Fig. 7.4 A schematic view of continuous casting of steel.

The secondary cooling area of the casting device is divided into cooling zones
and the cooling water flows in the zones can be set individually. In each zone, cool-
ing water is dispersed to the slab at the center and corner positions. Target tempera-
tures are specified for the slab center and corner in every zone, and the optimization
task is to tune the cooling water flows in such a way that the resulting slab surface
temperatures match the target temperatures as closely as possible. From metallurgi-
cal practice this is known to reduce cracks and inhomogeneities in the structure of
the cast steel. Formally, an objective f1 is introduced to measure deviations of actual
temperatures from the target ones:

230 Bogdan Filipič and Matjaž Depolli

f1 =
NZ

∑
i=1
|T center

i −T center∗
i |+

NZ

∑
i=1
|T corner

i −T corner∗
i |, (7.6)

where NZ denotes the number of zones, T center
i and T corner

i the slab center and corner
temperatures in zone i, and T center∗

i and T corner∗
i the respective target temperatures in

zone i. This objective encompasses the key requirement for the process to result in
high-quality cast steel. Technically, this is a single-objective version of the casting
optimization task.

In addition, there is a requirement for core length, lcore, which is the distance
between the mold exit and the point of complete solidification of the slab. The target
value for the core length, lcore∗, is prespecified, and the actual core length should be
as close to it as possible. Shorter core length may result in unwanted deformations of
the slab as it solidifies too early, while longer core length may threaten the process
safety. This requirement can be treated as an additional objective, f2:

f2 = |lcore− lcore∗|, (7.7)

and the more demanding version of the optimization task is then to minimize both
f1 and f2 over possible cooling patterns (water flow settings). The two objectives
are conflicting, hence it is reasonable to handle this optimization problem in the
multiobjective manner.

In the optimization procedure, water flows cannot be set arbitrarily, but accord-
ing to the technological constraints. For each zone, lower and upper bounds are
prescribed for the center and corner water flows. Moreover, to avoid unacceptable
deviations of the core length from the target value, a hard constraint is imposed:
f2 ≤ Δ lcore

max . Solutions violating the water flow constraints or the core length con-
straint are considered infeasible.

A prerequisite for optimization of this process is an accurate mathematical model
of the casting process, capable of calculating the temperature field in the slab as a
function of coolant flows and evaluating it with respect to the objectives given by
Eqs. (7.6) and (7.7). For this purpose we use a numerical simulator of the process
with the Finite Element Method (FEM) discretization of the temperature field and
the related nonlinear heat transfer equations solved with relaxation iterative methods
[6].

7.6 Parallel Evolutionary Computation Framework

We present a parallel framework for numerical single- and multiobjective optimiza-
tion on homogeneous parallel computer architectures. It is based on single-objective
DE and is extended to DEMO when multiobjective optimization is required.

The framework is able to utilize any number of processors by implementing
the master–slave parallelization scheme for both optimization algorithms. Although

7 Parallel Evolutionary Computation Framework 231

designed for use on homogeneous parallel computer architectures, it can use hetero-
geneous architectures as well, but with lower utilization of faster processors. When
a single processor is used, master–slave algorithms degenerate into their nonparallel
versions, thus avoiding potential overhead of the parallelization scheme.

In the framework, the optimization procedure is performed in three stages: ini-
tialization, generational computation and finalization. The initialization consists of
reading the input files and settings and the setup of initial population. Generational
computation iterates over generations, where in each iteration fitness values are cal-
culated for individuals of the current population and the EA operators are applied
to them, spawning the next generation. In finalization, the results are formatted and
returned to the user.

While the initialization and finalization are run by the master process, the genera-
tional computation can be run in parallel by all processes. Each iteration starts with
the master process holding a vector of individuals of unknown fitness. These are
then evaluated by the master and slave processes in parallel, which requires inter-
process communication. For this purpose, the Message Passing Interface (MPI) [18]
is used. It implements the interprocess communication in a two-part, coupled fash-
ion. The first part distributes the data on the individuals among the slave processes,
and the second part returns the fitness values to the master process. For the sake
of simplicity, only the data on one individual is transferred to each slave process
per communication couple. This forces the communication couple to happen more
than once per generation if the population size is larger than the number of pro-
cessors. The master process receives the results from the slave processes inside a
blocking operation, that is, it waits for all the results before it continues execu-
tion, effectively synchronizing the processors. This, in combination with multiple
communication couples per generation, causes some unnecessary synchronizations.
After the fitness values for all individuals are known, the master process applies the
EA operators and spawns the next generation. The slave processes are idle at this
time, waiting to receive the data on individuals of the next generation.

The parallelization approach employed by the proposed framework is, in the
context of multiobjective optimization, known as the Parallel Function Evaluation
(PFE) variant of the single-walk parallelization [19]. It is aimed at speeding up the
computations, while the basic behavior of the underlying algorithms remains un-
changed.

7.6.1 Speedup Estimation

What is the expected speedup of the framework running on several processors in
comparison to the framework running on a single processor, solving an optimization
problem? One should be able to answer this question before starting the optimiza-
tion, to use the most appropriate number of processors. To answer this question, we
start with the speedup as defined in Eq. (7.1). We simplify it by only using the time
for generational computation instead of the total execution time for both, the serial

232 Bogdan Filipič and Matjaž Depolli

and parallel implementations. This is reasonable because the initialization and fi-
nalization are faster than even a single application of the EA operators, and are
negligible in cases when parallelization is considered, that is, when the total execu-
tion time is expected to be long. Furthermore, because the generational computation
is a series of identical single generation computations, we simplify the definition of
speedup to only consider a single generation. Thus we get the initial form of the
speedup equation:

S =
Ts +Te ∗Np

Ts +Te×�Np
N �

, (7.8)

where Te is the time required for a single fitness evaluation, Ts is the time required
for the execution of a single generation, excluding the time required for fitness eval-
uations, Np is the population size, and N is the number of processors. This is a good
estimation if two criteria are met. The first criterion is constant time of fitness eval-
uation. This means that all fitness evaluations take exactly the same amount of time
to complete, not depending on the input, the processor, nor any random factor. The
second criterion is that parallelization produces negligible calculation overhead. In
the master–slave parallelization scheme, the overhead consists of the time required
for interprocess communication, including the time the master process is waiting for
the results from the slave processes.

The time required for communication, Tc, can be simply added to the denomi-
nator in Eq. (7.8). It is irrelevant when it is orders of magnitude shorter than the
fitness evaluation time, but when it is not, it has to be estimated, because it depends
on the problem domain as well as the communication protocols and hardware. For
instance, first the number of bytes used to represent the fitness function input pa-
rameters sets the base size of messages sent from the master to the slaves, and the
number of bytes used to represent the evaluation results sets the base size of mes-
sages sent from the slaves to the master. Then the protocols over which the messages
are sent, e.g., TCP/IP, and the library which implements message passing, e.g., MPI,
increase the message sizes with their overhead. Last, the hardware determines how
fast the messages of certain sizes can be sent between the processors. The speedup
then equals to

S =
Ts +Te ∗Np

Tc +Ts +Te×�Np
N �

(7.9)

Eliminating the constant fitness evaluation time criterion from the equation is more
complex. The master process cannot apply the EA operators until all the individu-
als of the population have their fitness values evaluated. The process executing the
longest fitness evaluation thus forces all other processes to wait until it finishes. We
define the time required for execution of n fitness evaluations in parallel, Tep(n), in
Eq. (7.10) as the expected value of a maximum of n independent fitness evaluation
times. One way of calculating the expected value is numerically, from the cumula-
tive distribution function (CDF) of maximum time of n fitness evaluations, which

7 Parallel Evolutionary Computation Framework 233

equals the CDF of fitness evaluation time, raised to the power of n.

Tep(n) = E(
n

max
i=1
{te,i}) (7.10)

The framework executes a series of parallel evaluations during a single generation if
the population size is larger than the number of processors. Individuals are split into
�Np

N � groups, with first �Np
N � groups of the size equal to the number of processors,

and the last group (if �Np
N � �= �

Np
N �) of size Np mod N. Each group is separately eval-

uated in parallel, adding to the total evaluation time of a population, which can now
be calculated as Tep(N)×�Np

N �+ Tep(Np mod N). The final form of the estimated
speedup equation can now be written as

S =
Ts +Te ∗Np

Tc +Ts +Tep(N)×�Np
N �+Tep(Np mod N)

(7.11)

7.7 Empirical Evaluation

An empirical evaluation of the proposed framework was performed on the computer
cluster comprised of 17 dual processor computers. Optimization of continuous cast-
ing served as a test domain for both the single- and multiobjective optimization.

7.7.1 Experimental Setup

For the evaluation of the framework, a cluster of 17 dual-processor nodes (each node
being a personal computer) was used. The nodes are all interconnected through an
Ethernet switch, and, in addition, there are several direct interconnections between
the nodes (see Fig. 7.5). Nodes 1 through 16 are connected by a toroidal 4-mesh,
and nodes 1 through 4 are directly connected to the additional node. This node
serves as a host node, through which users access the cluster. Static routing is used
to direct the communication between the pairs of nodes, which are not physically
interconnected, through the switch. This makes the use of any desired topology
possible. In our tests, star topologies of various sizes were used.

The cluster is composed of identical personal computers, each containing two
AMD Opteron 244 processors, 1024 MB of RAM, a hard disk drive and six 1000
MB/s Full Duplex Ethernet ports. On each computer, there is an independent instal-
lation of the Fedora Core 2 operating system and the MPICH v1.2.6 library that sup-
ports communication between the computers and is an implementation of the MPI.

234 Bogdan Filipič and Matjaž Depolli

Fig. 7.5 Architecture of the
cluster used in tests.

During the experiments, all nodes are required to be running only the background
system processes which leaves nearly all capabilities to be used by the framework.

The parallel optimization algorithm was written in C++ and compiled with gcc
v3.3.3 for target 64-bit Linux, while the continuous casting simulator was compiled
for 32-bit Microsoft Windows and was executed through an early version of Wine (an
application providing the compatibility layer for the Microsoft Windows programs).
There was also a layer of scripts, translating the communication between the opti-
mization algorithm and the simulator, that is, filtering and converting input/output
files of the simulator.

7.7.2 Experiments and Results

Numerical experiments in optimizing the continuous casting process were per-
formed to analyze both the effectiveness and efficiency of the developed parallel
framework. The former relates to the quality of results, while the latter refers to the
speedup achieved with the parallel optimization approach.

Optimization calculations were performed for a selected steel grade and slab
cross section of 1.70 × 0.21 m and for various casting speeds: the usually practised
speed of 1.8 m/min and two lower speeds of 1.6 and 1.4 m/min that are exercised
when the process needs to be slowed down to ensure the continuity of casting; for
example, when a new batch of molten steel is delayed. Candidate solutions in par-

7 Parallel Evolutionary Computation Framework 235

allel DE and DEMO were encoded as 18-dimensional real-valued vectors, repre-
senting coolant flow values at the center and the corner positions in the nine zones
of the secondary cooling area. Search intervals for coolant flows at the center and
the corner positions in zones 1–3 were between 0 and 50 m3/h, and in the zones
4–9 between 0 and 10 m3/h. The target core length, lcore∗, was 27 m and the maxi-
mum allowed deviation from the target, Δ lcore

max , was 7 m. Reasonable population size
found in initial experiments was 30.

It turned out that for the single-objective and the two-objective versions of the
task, the parallel optimization procedure was able to discover the solutions known
from previous applications of serial optimization algorithms [6,20]. To illustrate the
results for the more challenging two-objective version, Fig. 7.6 shows the resulting
nondominated fronts of solutions (approximating Pareto optimal fronts) found by
the parallel DEMO algorithm for various casting speeds. It can be seen that the two
objectives can simultaneously be fulfilled to the highest degree at the regular casting
speed of 1.8 m/min. On the other hand, the lower the speed, the more evident the
conflicting nature of the two objectives: improving the coolant flow settings with
respect to one objective makes them worse with respect to the other. In addition, a
systematic analysis of the solutions confirms that the actual slab surface tempera-
tures are in most cases higher than the target temperatures, while the core length is
shorter than or equal to the target core length.

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

C
or

e
le

ng
th

 d
iff

er
en

ce
 [m

]

Sum of temperature differences [C]

1.4 m/min
1.6 m/min
1.8 m/min

Fig. 7.6 Nondominated fronts of solutions to the two-objective steel casting optimization problem
for various casting speeds.

In further experimentation, a detailed analysis of the framework speedup on var-
ious numbers of processors was carried out. To make the experimental results di-
rectly comparable, the framework parameters other than the number of processors
did not vary between the tests. Because the framework is based on the master–slave

236 Bogdan Filipič and Matjaž Depolli

parallelization type, the population size was first selected as the one that suits the
problem while also being a multiple of the number of processors. As shown in pre-
vious work [6, 20], optimization of continuous casting with DE and DEMO seems
to work best with population sizes between 20 and 40, which coincides well with
the 34 available processors. Number 34 unfortunately has only four divisors (1, 2,
17 and 34). Having numerous divisors is important as it allows for numerous tests
where population size is a multiple of the number of processors. Therefore, the pop-
ulation size of 32 was chosen, which has six divisors (1, 2, 4, 8, 16 and 32). With
this population size, six tests with various number of processors and maximum ef-
ficiency (minimum processor idle time) were possible. In every test, the framework
was run five times for each, the single- and multiobjective optimization.

Mean wall clock times of the tests were recorded and are summarized in Table
7.1. Two important observations can be made from the measured wall clock times
alone. The first one is great variance of the results. The most likely cause of this
is the variable fitness evaluation time, but we will explore this later. To simplify
matters, we will only use mean values of the tests in further discussion. The second
observation is that the multiobjective optimization appears slightly slower than the
single-objective optimization. The single-sided paired t-test however returns the p
value of 0.12, which means the difference in times is not statistically significant.
Therefore, both algorithms can be considered equally fast and the following analysis
can be generalized in terms of the algorithm choice. Multiobjective optimization
will serve as the basis for all further speedup analyses with its differences towards
single-objective optimization mentioned only when necessary.

Table 7.1 Mean wall clock times and their standard deviations for the tests with variable number
of processors. All times are specified in seconds.

Number of DE DEMO
processors Mean St. dev. Mean St. dev.

1 295735 1180 298502 1576
2 143661 945 145584 5646
4 79565 1018 79751 446
8 41412 370 41105 389

16 21123 93 21454 183
32 10925 122 11019 276

We can calculate the speedup directly from the mean wall clock times of the
DEMO tests, but let us first try to estimate it with Eq. (7.11). First, we make a series
of 100 test runs of fitness evaluations from which we estimate the fitness evaluation
time to be distributed normally with μ = 32.2 s and σ = 1.5 s. We estimate all other
times in the equation to be in the order of milliseconds and therefore negligible com-
pared to the fitness evaluation time. Now we can estimate the speedup for arbitrary
number of processors, Np, and compare it to the measured speedups. Fig. 7.7 shows
the estimated and measured speedups, and the theoretical limit for the speedup on
Np ∈ [1 . . .34].

7 Parallel Evolutionary Computation Framework 237

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of processors

measured
estimated

linear

Fig. 7.7 Measured and analytically derived speedup for DEMO on the continuous casting problem,
with population size 32, for various number of processors. Linear speedup as the theoretical limit
of speedup for master–slave EAs is also shown for reference.

In addition to the total execution time, times of four mutually exclusive steps
of the optimization procedure are measured. The first step, which should also be
the most time-consuming, is fitness evaluation. The second step is the interprocess
communication. This consists of sending the data on individuals from the master
process to the slave processes, and sending the fitness evaluation results in the oppo-
site direction. Waiting of the master process for the slave processes to start sending
their results is also included in the communication, because in the source code the
two are not separated. Next are the output operations, which consist of log keeping
and storing the data on the individuals from each generation in a file. The last step
is the application of the algorithm operators. The distribution of times among the
steps described above for multiobjective optimization on 32 processors is shown in
Table 7.2

Table 7.2 The distribution of total wall clock time among steps of the optimization procedure. All
times are specified in seconds.

Algorithm stage Mean St. dev.

Total 11019 308
Evaluation 9911 376

Communication 1108 129
Input/output 0.307 0.001

EA operators 0.135 0.003

A quick scan over the times used by the algorithm steps reveals that the algo-
rithm behaves as predicted. Fitness evaluation represents by far the largest part of

238 Bogdan Filipič and Matjaž Depolli

execution time, while the times of input/output operations and the EA operators are
negligible in comparison. On the other hand, the interprocess communication time,
which should be negligible, represents a substantial proportion of the total algorithm
wall clock time. But this view is misleading because the communication times are
bundled together with the times of waiting for communication. The latter are a con-
sequence of, and in Eq. (7.11) also a part of, varying fitness evaluation times. We
can understand communication times better by analyzing them per generation.

Out of the four steps for which the times are recorded per generation, two – in-
terprocess communication and fitness evaluation – are worth special attention. In
addition to the interprocess communication time and the fitness evaluation time as
measured on the master process, Fig. 7.8 also shows the maximum time of all fit-
ness evaluations in a generation. It can be seen that the measured communication
time roughly equals the difference between the longest fitness evaluation time and
the fitness evaluation time on the master process. Measured communication time is
therefore mostly spent waiting for the longest fitness evaluations. Pure communica-
tion time can be estimated as the sum of communication and the fitness evaluation
times on the master process, from which the longest fitness evaluation time is sub-
tracted. It sums up to 1.2 s for the shown optimization run, which can be translated
to 4 ms per generation on average. Although this is only a rough estimate, it shows
that communication times are an order of magnitude longer than the times of the
input/output operations and the EA operators, but still negligible in comparison to
the fitness evaluation time. In conclusion, the measured interprocess communication
times are in good accordance with the estimates made before the experiments.

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
[s

]

Generation

longest evlauation
evaluation on master
total communication

Fig. 7.8 Fitness evaluation and interprocess communication times per generation of multiobjective
optimization on 32 processors, for the initial 100 generations. Fitness evaluation time of the master
process is contrasted with the longest fitness evaluation time of all the processes.

7 Parallel Evolutionary Computation Framework 239

7.8 Conclusion

In this chapter, a parallel evolutionary computation framework for solving numeri-
cal optimization problems with one or more objectives was presented. Master–slave
parallel versions of the DE and DEMO algorithms were implemented for solv-
ing single- and multiobjective problems, respectively. The implementation was a
straightforward one, parallelization was done only on the inherently parallel por-
tion of the algorithms – the fitness evaluation – thus keeping the algorithm behavior
independent of the number of processors. The interprocess communication was im-
plemented in a simple manner, focusing on its robustness rather than speed.

The performance of the developed framework was empirically evaluated on an
industrial optimization problem of tuning coolant flows in the continuous steel cast-
ing process. A single- and a two-objective fitness evaluation function were derived
from a computer simulator, implementing a test case of the continuous casting pro-
cedure. The quality of the results and the achieved parallel speedups were evaluated
separately. The results proved satisfactory and comparable to the results obtained
previously on the same problem instances. The measured speedups were high (e.g.,
the speedup on 32 processors was 27) and matched the predictions.

The presented framework demonstrated that due to a relatively simple master–
slave parallelization model, EAs can be extensively used on homogeneous parallel
hardware. At the same time, it highlighted a weakness of the master–slave model
– the sensitivity of the speedup to constant fitness evaluation time. In our case, we
experienced variability in the execution time of fitness evaluation at the order of
several percent. Similar effect would be expected from a constant-time fitness eval-
uation function executing on heterogeneous processors or even on homogeneous
processors under some load, that is, executing other jobs. Therefore, our future work
will focus on overcoming the demand for constant fitness evaluation time. This will
be achieved by eliminating the synchronous nature of the master–slave paralleliza-
tion type and thus maximizing the algorithm efficiency (minimizing processor idle
time). In this way, we expect to increase the speedup and make the algorithms more
usable on heterogeneous hardware architectures that are less suitable to ordinary
master–slave EAs.

Acknowledgments The authors are grateful to Professor Erkki Laitinen from the Department
of Mathematical Sciences, University of Oulu, Finland, for providing the mathematical model and
technical details of the continuous casting process optimized in this study. The work was supported
by the Slovenian Research Agency under research programmes P2-0095 Parallel and Distributed
Systems, and P2-0209 Artificial Intelligence and Intelligent Systems.

240 Bogdan Filipič and Matjaž Depolli

References

1. A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Springer-Verlag, Berlin,
(2003).

2. K. De Jong, Evolutionary Computation: A Unified Approach, The MIT Press, Cambridge,
(2006).

3. G. B. Fogel, D. W. Corne (Eds.), Evolutionary Computation in Bioinformatics, Morgan Kauf-
mann Publishers, Amsterdam, (2003).

4. D. Dasgupta, Z. Michalewicz (Eds.), Evolutionary Algorithms in Engineering Applications,
Springer-Verlag, Berlin, (1997).

5. J. Biethahn, V. Nissen (Eds.), Evolutionary Algorithms in Management Applications,
Springer-Verlag, Berlin, (1995).

6. B. Filipič, E. Laitinen, Model-based tuning of process parameters for steady-state steel casting,
Informatica 29 (4) (2005) 491–496.

7. R. Buyya, High Performance Cluster Computing: Architectures and Systems, Vol. 1, Prentice
Hall, Upper Saddle River, (1999).

8. K. V. Price, R. Storn, Differential evolution: A simple evolution strategy for fast optimization,
Dr. Dobb’s Journal 22 (4) (1997) 18–24.

9. K. Price, R. M. Storn, J. A. Lampinen, Differential Evolution: A Practical Approach to Global
Optimization (Natural Computing Series), Springer-Verlag, Berlin, (2005).

10. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons,
Chichester, (2001).

11. C. A. Coello Coello, D. A. Van Veldhuizen, G. B. Lamont, Evolutionary Algorithms for Solv-
ing Multi-Objective Problems, Kluwer Academic Publishers, New York, (2002).

12. A. Abraham, L. Jain, R. Goldberg (Eds.), Evolutionary Multiobjective Optimization, Springer-
Verlag, London, (2005).

13. T. Robič, B. Filipič, Demo: Differential evolution for multiobjective optimization, in: C. A.
Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds.), Conference on Evolutionary Multi-
Criterion Optimization, Vol. 3410 of Lecture Notes in Computer Science, Springer, Berlin,
(2005), pp. 520–533.

14. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algo-
rithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182–197.

15. S. G. Akl, Parallel Computation: Models and Methods, Prentice Hall, Upper Saddle River,
(1997).

16. E. Cantú-Paz, A survey of parallel genetic algorithms, Tech. rep., University of Illinois at
Urbana-Champaign (1997).

17. D. A. van Veldhuizen, J. B. Zydallis, G. B. Lamont, Considerations in engineering parallel
multiobjective evolutionary algorithms, IEEE Transactions on Evolutionary Computation 7 (2)
(2003) 144–173.

18. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI – The Complete Reference,
The MIT Press, Cambridge, (1996).

19. A. J. Nebro, F. Luna, E.-G. Talbi, E. Alba, Parallel multiobjective optimization, in: E. Alba
(Ed.), Parallel Metaheuristics, John Wiley & Sons, New Jersey, (2005), pp. 371–394.

20. B. Filipič, T. Tušar, E. Laitinen, Preliminary numerical experiments in multiobjective opti-
mization of a metallurgical production process, Informatica 31 (2) (2007) 233–240.

Chapter 8
WaLBerla: Exploiting Massively Parallel
Systems for Lattice Boltzmann Simulations

Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

Abstract

In this chapter, a software concept for massively parallel computational fluid dynam-
ics (CFD) applications is introduced. The focus thereby lies on the parallelization,
which is based on a domain partitioning scheme named patch concept. This concept
also enables a seamless specialization of the partitions to different application fea-
tures as well as the possibility for further optimization such as memory reduction.
It is discussed in detail how our design ensures an efficient and flexible implemen-
tation. The suitability and efficiency of this concept is demonstrated and evaluated
with the waLBerla project, which aims at the development of an efficient massively
parallel lattice Boltzmann framework providing the necessary features for several
CFD applications. To discuss the suitability of the parallelization for massively par-
allel usage, various test scenarios have been investigated on different architectures.
These tests include serial, weak and strong scaling experiments up to 810 cores and
up to a domain size of 15303 lattice cells.

Christian Feichtinger
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlan-
gen, Germany, e-mail: christian.feichtinger@informatik.uni-erlangen.de

Jan Götz
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlan-
gen, Germany, e-mail: jan.goetz@informatik.uni-erlangen.de

Stefan Donath
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlan-
gen, Germany, e-mail: stefan.donath@informatik.uni-erlangen.de

Klaus Iglberger
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlan-
gen, Germany, e-mail: klaus.iglberger@informatik.uni-erlangen.de

Ulrich Rüde
Chair for System Simulation, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlan-
gen, Germany, e-mail: ulrich.ruede@informatik.uni-erlangen.de

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_8, 241
c© Springer-Verlag London Limited 2009

242 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

8.1 Motivation

In computational fluid dynamics (CFD), many applications of scientific interest
share physical and computational aspects. For research environments, the usual
practice is one program for each application, leading to a reimplementation of the
shared physics, the common data structures and also the parallelization, which of-
ten requires a considerable effort. Furthermore, this replicated functionality has to
be validated for each application, again leading to unnecessary work. In addition to
a design flexible enough to include further applications, a generic framework has
to be suitable for the simulation of large domains, which cannot be simulated on
a single CPU. Hence, the framework has to be adapted for parallel architectures.
The waLBerla software library has been designed to provide such a framework. It
will be used throughout this chapter to demonstrate the requirements and a possible
solution for a parallel software library, i.e., flexible enough to support research for
several physical applications that cannot be simulated by existing software pack-
ages. For a detailed description of the features of waLBerla, e.g., parallel simulation
output or input descriptions see Feichtinger et al. [1].

Most of today’s flow simulations are based on numerical schemes that solve the
Navier-Stokes (NS) equations directly. However, there exists an alternative approach
named lattice Boltzmann method (LBM). This method is based on solving an ap-
proximation of the Boltzmann equation and thus is a kinetic-based approach. For
the waLBerla software library, the LBM has been chosen due to its advantages for
the parallelization as well as its suitability for the scheduled applications. These ap-
plications cover moving charged colloids [2–4], fluid flow in blood vessels [5] and
free surface flows [6, 7] through micro porous media in fuel cells.

The requirement of large domains mentioned above results from, e.g., the sim-
ulation of a finely resolved representative volume (REV) of the gas diffusion layer
(GDL) in a polymer electrolyte fuel cell [8]. Approximately, the size of the REV1

is about 0.45mm× 0.45mm× 0.1 mm. The volume of a lattice cell has to be
δx3 = 0.13μm3 due to accuracy reasons and the limitation of the LBM to small
Knudsen Numbers. With a porosity of 10% this leads to 1.8 ·1010 fluid cells, which
results in a memory requirement of about 6.5 TiB for the LBM (for LBM resource
requirements see Sect. 8.2). Such a simulation is not feasible on a single CPU. A
possible system for solving the problem above is the (Höchstleistungsrechner in
Bayern) HLRB II which is an SGI Altix 4700 [9] featuring 39 TiB main memory.
A rough estimation shows the power of this machine: With the performance of the
current implementation of waLBerla (see Sect. 8.5.1), the above example results in
a theoretical computation time of about 3 hours per time step, given a single core
CPU with enough memory. Assuming a parallel efficiency of 70%, a single time step
would take about 1.5 seconds on the 4864 dual-core CPUs of the HLRB II. Thus
running fifty thousand time steps would require about 20 hours, instead of 17 years.
Hence, only with an efficient parallelization it is possible to simulate the fluid flow
in a GDL.

1 Minimum size of REV based on findings from internal projects. No publications yet.

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 243

The remainder of this chapter is organized as follows: In the subsequent para-
graph, a brief overview of the LBM in three-dimensional is given, followed by the
introduction of the waLBerla patch concept in Sect. 8.3. These patches are subdivi-
sions of the fluid domain, which are the basic components for the parallelization, the
optimization strategies, and the flexibility that is needed for the integration of fur-
ther applications. In Sect. 8.4, the implementation of the process local and Message
Passing Interface (MPI) communication is explained in detail. Performance results
are given in Sect. 8.5, where the serial performance as well as the parallel perfor-
mance for various architectures has been evaluated. This investigation discusses the
suitability of the parallel concept for massively parallel usage in basic geometries.
The article is concluded in Sect. 8.6 with a summary and outlook.

8.2 Introduction to the Lattice Boltzmann Method

The LBM is one approach to solve CFD problems numerically. It originates from
the lattice gas cellular automata (LGCA), whereas McNamara and Zanetti were the
first to introduce the Boltzmann collision operator to LGCA in 1988 [10]. Further
work [11] has shown that the LBM can be directly derived from the continuous
Boltzmann equation. Hence, it is independent of the LGCA and based on kinetic
theory. It can also be shown that the LBM is equivalent to an explicit finite differ-
ence scheme of the NS equations with second-order spatial accuracy and first-order
temporal accuracy [12]. Amongst others, the LBM has been successfully applied to
free surface flows [7], multiphase flows [13], flows through porous media [14], fluid
mixtures [15], blood flows [16] and metal foams [17]. Performance optimizations
techniques for the LBM can be found in [18–20]. The advantages of the LBM are
the explicit update rule, the fast mesh generation due to the Cartesian grids, and that
many macroscopic and hydrodynamic effects result from mesoscopic quantities. A
detailed description of the LBM can be found in [21–23]. In the remainder of this
Section an overview of the governing equations of the LBM is provided.

For the waLBerla software library, the D3Q19 stencil [24] and the LBGK [22]
model are used. With the D3Q19 stencil, the LBM is based on cubic cells with 19
unknowns, the particle distribution functions (PDF) fα(xi, t), which are defined as
the expected amount of particles in the volume δx3 located at the lattice position xi

with the lattice velocity eα,i. The lattice direction α points toward the neighboring
cells (see Fig. 8.1 for an illustration). Discretized in time and space the LBGK model
is given in tensor notation by:

fα(xi +eα,iδ t, t +δ t)− fα(xi, t) =−δ t
τ

[
fα(xi, t)− f (eq)

α (ρ(xi, t),ui(xi, t))
]
. (8.1)

Due to simplicity, quantities depending on xi and t will be written without their
dependencies, e.g., fα = fα(xi, t). The relaxation time τ can be determined from
the lattice viscosity defined by Eq. (8.8). Further, the equilibrium distribution

244 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

Fig. 8.1 The D3Q19 stencil.

f (eq)
α (ρ,ui), depending on the macroscopic velocity ui, defined by Eq. (8.5), and

the macroscopic density ρ , defined by Eq. (8.6) for the isothermal case, is given by
the Maxwell-Boltzmann distribution function discretized for low mach numbers:

f (eq)
α (ρ,ui) = ρ ·wα ·

[
1+

1
c2

s
(eα,i ·ui)+

1
2c4

s
(eα,i ·ui)2− 1

2c2
s

u2
i

]
. (8.2)

In the D3Q19 model, the thermodynamic speed of sound is given by cs = 1√
3

and
the lattice velocities eα,i and lattice weights wα are:

eα,i =

⎧⎨
⎩

(0,0,0),
(±1,0,0),(0,±1,0),(0,0,±1),
(±1,±1,0),(0,±1,±1),(±1,0,±1),

α = [0]
α = [1,6]
α = [7,18]

(8.3)

wα =

⎧⎨
⎩

1/3,
1/18,
1/36,

α = [0]
α = [1,6]
α = [7,18]

. (8.4)

The macroscopic quantities of interest (ρ, p,ui) can be determined from the mo-
ments of the distribution functions:

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 245

ρui = ∑18
α=0 eα,i · fα =

18

∑
α=0

eα,i · f (eq), (8.5)

ρ = ∑18
α=0 fα =

18

∑
α=0

f (eq)
α , (8.6)

p = c2
sρ, (8.7)

ν = (τ− 1
2)c2

s . (8.8)

Due to the dependencies in Eq. (8.1), two grids are needed to store the PDFs. Hence,
2× 19 double values are needed per lattice cell. Additionally, the update rule for
each cell only depends on the neighboring cells. This locality can be exploited for
an efficient parallelization. For further details on the actual implementation of the
LBM in the waLBerla framework, see Feichtinger et al. [1].

8.3 Domain Partitioning Using Patches

To create a parallelization suitable for several thousand cores it is essential to
subdivide the global simulation domain into small blocks that are independent of
each other except for the necessary communication between the boundaries. In the
waLBerla framework, these blocks are called patches and are always rectangular due
to performance reasons. In addition to the sole purpose of communication, patches
are an adequate tool to realize different simulation requirements, such as free sur-
faces and moving rigid objects, only in parts of the domain (see Fig. 8.2). This can

Fig. 8.2 Two-dimensional sketch of differently skilled patches interacting with each other. In the
figure patches for pure fluid, free surface flows, particle laden flows and combined free surface /
particle flows can be seen.

246 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

be exploited to increase the performance of the simulation: special treatment for
free surfaces or rigid objects is only enabled in patches where it is needed, whereas
a pure fluid patch can be optimized for performance. Furthermore, the patches can
also be distributed on a hybrid computer architecture. For example, simple pure fluid
patches could be calculated on the Cell processor and communicate to computation-
ally more difficult patches via MPI, which are calculated on standard processors.

Since the waLBerla software library is written in C++, these thoughts can directly
lead to the idea of a hierarchical patch design, which introduces specialized patches
based on an abstract base class. Whereas the introduction of such a hierarchy seems
to be the natural way in C++, a number of problems have been encountered with
this hierarchy that challenged its application in the waLBerla framework (for more
details see Feichtinger et al. [1]). The most important of the problems is that a hi-
erarchical patch design would introduce multiple inheritance and therefore virtual
inheritance to avoid duplicate data members. However, virtual inheritance intro-
duces an additional indirection to the access of the data members of the common
base class, which leads to a performance impact intolerable for a high performance
implementation. Thus, for the waLBerla framework, we decided against a hierarchi-
cal patch design and use the approach illustrated in Fig. 8.3. Here, the single patch

Fig. 8.3 Implementation possibility of choice for patch class hierarchy.

class CalcPatch handles all simulation aspects. Instead of creating different classes
for the simulation features, the CalcPatch class uses different functions, which can
be activated or deactivated, depending on the current situation. If these are again
composed by basic inline functions a high code reuse among the different appli-
cations can be ensured; for example, in a pure fluid patch only the standard LBM
functions are enabled, which allows a fast processing. For particle laden flows the
same standard LBM functions as well as functions for the particle treatment are ac-
tivated. The only other patch class besides the CalcPatch is the CommPatch, which
handles the communication across process boundaries (see Sect. 8.4). With this de-
sign the flexibility needed for optimizations and integration of various applications
is achieved.

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 247

8.3.1 Memory Reduction

Next to the primary purposes of building chunks of memory that can be distributed
among several processes and to distinguish between different simulation require-
ments, the patch concept can also be used to reduce the overall amount of memory
required for the simulation. The idea of this approach is described in detail in a
previous work by Götz [25] who is dealing with LBM blood flow simulations. Due
to the complex, arbitrary geometry of blood vessels and the Cartesian grid setup of
the LBM, a large fraction of LBM cells ends up as solid nodes. To save memory,
the domain is subdivided into patches and then all patches with no fluid cells are
removed (see Fig. 8.4). This approach can also be used efficiently for porous me-
dia. However, the downside of this strategy is the additional communication across
the boundaries of the patches, when the domain is split into several patches on one
process.

Fig. 8.4 Two-dimensional sketch of a vessel bifurcation and patches that can be omitted (white) in
order to save memory.

8.4 Communication Concept

For a scalable simulation on a large number of processors, an efficient commu-
nication concept is inevitable. With the introduction of patches in Sect. 8.3, the
communication is divided into local and MPI communication. Patches on the same
process exchange their data via local communication, whereas patches on different
processes communicate by using MPI. For the D3Q19 model, a patch has to com-
municate with at most 18 neighboring patches. Thereby, only the necessary PDFs
have to be transferred: five for cells lying adjacent to boundary planes, one for edges
and nothing for corners. Each patch stores a structure containing the neighborhood
information, which is set up in the beginning of the simulation by first cutting the
domain into CalcPatches and then assigning the neighbors (either CalcPatches or

248 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

CommPatches) to each patch. For the parallel case, each process allocates a patch
grid of the whole simulation domain including the neighborhood structures, but only
allocates data fields in its own patches. The placement of the patches onto processes
is either done by a Cartesian subdivision of the domain or done by distributing an
equal number of patches to the processes. To treat local and MPI communication in
a similar way, the patch class IPatch holds a common interface for the communica-
tion routines. Thus, a patch does not need to know if its neighbor is a CalcPatch or
CommPatch and can just call the Send() routine of its neighboring patches. In the
next two paragraphs, the difference in process local communication and communi-
cation across process boundaries is discussed.

8.4.1 Process Local Communication

For the process local communication a CalcPatch communicates with a neighboring

Fig. 8.5 Process local communication from CalcPatch I to CalcPatch II.

CalcPatch, which is depicted in Fig. 8.5. The sending patch (CalcPatch I) calls the
Send() function of the receiving patch (CalcPatch II). This function directly copies
the data from the source data fields into the ghost nodes (dark gray nodes, which are
not part of the fluid domain) of the target data fields, without using any buffers in
between.

8.4.2 MPI Communication

The MPI communication concept is illustrated in Fig. 8.6. Here, the CalcPatch I
has to transfer its data to a second CalcPatch II on a different process using MPI.
To make this action transparent to the CalcPatch I, it locally communicates with
a CommPatch I as described in the previous section. Here, the Send() routine of

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 249

the CommPatch copies the data into its SendBuffer and sends it with the MPI com-
mand MPI_Isend to CommPatch II. Afterwards it issues an appropriate MPI_Irecv
to receive data from CommPatch II. After the same procedure has been executed
on the other side, the data sent by CalcPatch I is located in the RecvBuffer of
CommPatch II. With an additional call of the CopyFromBuffer routine the data is
transferred to the ghost nodes of CalcPatch II. For each parallel communication, a
compatible send–receive pair is needed. We use the function argument tag in MPI
to match the messages on the processes by putting both IDs from the source and the
target patch in tag. Unfortunately, the size of this identifier is limited and depends on
the MPI implementation, which restricts the number of patches (see Sect. 8.5.2.1).

Since non blocking MPI commands are used for the MPI communication and
all data transfer (process local and MPI) is issued after the patches finished their
calculations, both communications overlap in time.

Fig. 8.6 MPI communication from CalcPatch I to CalcPatch II via two CommPatches.

8.5 Performance Studies

Before integrating more complex applications, the implementation of the paral-
lelization has to be analyzed. Therefore, performance studies have to be performed
in order to quantify whether the concept is suitable for the use on massively paral-
lel systems. The performance evaluation of the current implementation presented in
this paper consists of serial experiments, weak and strong scaling measurements for
the parallel performance as well as an examination of a multi-core implementation
on the Cell Broadband Engine. For all studies, a simple three-dimensional canal
scenario with inflow and outflow conditions has been used. The results are given in
terms of million fluid lattice updates per second (MFlups), which is an established

250 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

performance measure in the lattice Boltzmann community since it allows for an
estimation of the simulation runtime for a given problem size.

The later denoted parallel efficiency E is:

E(N,P) =
S(N,P)

P
=

1
P
· MFlups(N,P)

MFlups(N,1)
·100%, (8.9)

where S is the speedup gained by the use of P cores or nodes and N is the problem
size.

Two IA32-based clusters, namely the Woodcrest cluster at the Regional Com-
puting Center of Erlangen (RRZE) and the Opteron cluster at the Chair for System
Simulation (LSS) Erlangen, and an IA64-based supercomputer, the HLRB II [9]
at the Leibnitz Computing Center (LRZ) in Munich, are chosen for the evaluation.
The experiments of Cell performance have been performed on the JUICE Cell Clus-
ter [26] at the Research Center Jülich.

The LSS cluster consists of 50 AMD Opteron processors resulting in a rough
overall peak performance of about 220 GFlops. The nodes used for the benchmarks
consist of four single-core CPUs with 4 GiB 2 dedicated memory each and are con-
nected via Infiniband, providing a bandwidth of up to 10 GBit/s. On the Woodcrest
cluster, there are 217 2-socket nodes (HP DL140G3) with dual-core 64-bit enabled
Intel Xeon 5160 CPUs (codename Woodcrest) and Infiniband interconnection. The
rough overall peak performance of the system is about 10.3 TFlops. The HLRB II
features 4846 dual-core Itanium 2 CPUs of Montecito type, each of which capable
to address the whole shared memory of 39 TiB capacity by non uniform mem-
ory access (NUMA). The CPUs are interconnected by a hierarchically organized
NUMAlink 4 network with a nominal bandwidth of 6.4 GiB/s. This computer is
listed as number 27 in the TOP500 list (June, 2008) [27] with an overall peak per-
formance of 56.5 TFlops. The JUICE consists of 12 QS20 blades each equipped
with 2 Cell processors and 2×512 MiB memory.

8.5.1 Serial Experiments

The serial performance of a parallel code is important for the quantification of the
quality of parallel scaling results, since the parallel efficiency depends on the se-
rial performance (see Eq. (8.9)). The presented results are restricted to one of the
IA32 architectures and the IA64-based machine, namely the Woodcrest cluster and
the HLRB II, whereby only for Woodcrest detailed benchmark comparisons are
discussed. On the Woodcrest, the theoretical memory bandwidth of one node is
21.3 GiB/s. However, to estimate the upper limit of the possible memory through-
put for an LBM solver Zeiser et al. [28] suggest to compare with the STREAM [29]

2 1 GiB/s = 10243 B/s, 1 TiB/s = 10244 B/s.

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 251

Table 8.1 Performance and memory transfer rates of waLBerla and STREAM benchmark on one
node of Woodcrest cluster with different number of processes and different placements. STREAM
benchmark values by courtesy of [30].

Configuration 1 Process 2 Processes 2 Processes 4 Processes
1 socket 2 sockets

MFlups GB/s MFlups GB/s MFlups GB/s MFlups GB/s

waLBerla 4.4 2.31 6.4 3.35 8.6 4.51 11.4 5.97
STREAM triad 3.32 3.30 6.09 6.04

vector-triad benchmark. Table. 8.1 shows that the maximum achievable data transfer
rate is around 6 GB/s only3.

On architectures that perform a read for ownership before a write, waLBerla
transfers 524 Bytes per cell update (for details see [1]). The single core perfor-
mance of waLBerla obtains 4.4 MFlups which corresponds to a bandwidth usage of
2.3 GB/s. Compared to the STREAM triad, a single waLBerla process uses 70% of
the available usable bandwidth.

Contrary to IA32-based architectures, achieving high performance on IA64 ma-
chines is generally more difficult. The in-order architecture requires explicit vec-
torization and thus the performance often relies on the capabilities of the compiler
and the use of appropriate pragmas in the code. Performance optimization of LBM
for Itanium 2 is a well-explored task in our group [20]. However, many findings
that enhance the performance of simple kernels cannot easily be applied to com-
plicated programs like waLBerla. To feature a suitable framework for the complex
algorithms of the real-life applications to be implemented, the class design contains
complex structures that are not comparable with flat loops of simple kernels. Cur-
rently, the single core performance of 1.68 MFlups on the HLRB II represents only
39% of the performance on the Woodcrest cluster.

8.5.1.1 Influence of the Process-Local Communication

For an estimation of the influence the local communication has on the performance,
a domain of 1003 lattice cells has been simulated with an increasing number of
patches. While the size of the domain remains constant, the number of patches is
varied from 1 to 1000. In each simulation run, all patches have the same size, re-
sulting in 1003–103 lattice cells per patch. If the domain does not fit exactly into
the patches, the remaining cells in the patches are marked as obstacles, not influ-
encing the MFlups rate. The results (Fig. 8.7) show that the loss in performance
compared to the situation without local communication is architecture dependent.
On the LSS cluster, the performance falls by about 13% for 64 patches and about
28% for 1000 patches, while on the Woodcrest cluster the loss is higher with 14%

3 The STREAM benchmark uses a base of 1000 for the orders of magnitude, thus 1 GB/s =
109 B/s.

252 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

and 35%, respectively. On the HLRB II, the performance losses are smoother with
7 and 23%, respectively. However, this results from the small fraction of time which
the copy operations of the local communication consume compared to the slow
computations. Due to the ghost layers of the patches, the memory requirement on
all architectures increases for 64 patches by 19% and for 1000 patches by 73% com-
pared to a single patch simulation.

Fig. 8.7 Influence of the local communication on the performance.

8.5.2 Parallel Experiments

The parallel efficiency is measured by different parallel experiments: Weak scaling
tests on the Woodcrest cluster and the HLRB II show the influence of both process-
local and MPI communication. Strong scaling experiments on all three clusters test
the proportion of MPI communication to computational time.

As Table 8.1 shows, the memory architecture of the Woodcrest cluster has a
tremendous effect on concurrently running processes. Apparently, the chipset cannot
provide the full achievable memory bandwidth to a single socket, but only nearly the
half. Employing the second core on the same socket does not improve the bandwidth
usage. In the case of waLBerla, one single process cannot utilize the full bandwidth
one socket could achieve. Thus, employing the second core on the same socket can
increase the usage by 45% until the machine’s limit is reached. However, using two
processes on separate sockets or two fully employed sockets does not double the per-
formance and bandwidth usage, similarly to the STREAM benchmark. Using four

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 253

cores results in a performance of 11.4 MFlups and a data transfer rate of 5.9 GB/s
from memory, which equals the bandwidth usage of STREAM benchmark. The ef-
fect of getting not much more than half of the maximum achievable bandwidth on
one socket is attributed to inherent limitations of the memory controller chipset. As a
consequence, a comparison of the parallel scaling measurements based on fully em-
ployed sockets instead of single cores is preferable. However, running less than four
processes without explicit process pinning can lead to different results depending on
their distribution on the sockets (see columns 2 and 3 of Table 8.1). Therefore, the
parallel performance experiments on Woodcrest cluster in this paper always have
been conducted on fully employed nodes with four MPI processes, and the graphs
are based on the number of nodes used. On the LSS cluster, the performance scales
well with the number of cores because every core accesses its dedicated memory.
For the HLRB II, the term “node” is not applicable. The smallest unit in the hierar-
chy is a blade, featuring one (high-bandwidth blades) or two (high-density blades)
dual-core CPUs that share one connection to the NUMAlink 4 network. This con-
nection is able to feed each core with the full bandwidth. Thus, the graphs of the
performance experiments of the latter two architectures are based on the number of
cores.

8.5.2.1 Weak Scaling

For the weak scaling test, the overall size of the problem is not fixed, but scaled by
the number of processes. Thus the problem size on each process is constant for all
simulation runs. This test is especially well-suited to measure the maximal overall
parallel performance of the code and to determine the runtime to be expected for
real-world applications. The weak scaling benchmark in Fig. 8.8 has been carried
out on the Woodcrest cluster. From 1 to 203 nodes each core processes one patch
containing 1003 lattice cells such that the largest system size for this weak scal-
ing experiment is 1000×900×900 consuming approx. 300 GiB (measured value).
Showing a nearly linear speed up, the parallel efficiency is 95.7% for 183 nodes and
93.3% for 203 nodes. Since CFD applications often need large simulation domains
up to and beyond 10003 lattice cells, the parallel efficiency of the code was tested
in a single experiment with large memory consumption. This test resulted in 94.4%
parallel efficiency on 729 cores for a simulated system size of 15303 and 1.2 TiB.
An investigation of the scaling behavior depending on the amount of process-local
communication (see Figs. 8.9 and 8.10) reveals that the MPI communication is not
as expensive as expected due to the low latencies and high bandwidths of the Infini-
band and NUMAlink 4 interconnect on the one hand, and the overlapping of local
and MPI communication in time on the other.

In this weak scaling experiments again, every process computes a domain with
1003 lattice cells, but with different number of patches per process in each experi-
ment. This does not only increase the effort of the local communication but also of
the MPI communication, since every patch sends its data to its remote neighbors via
a separate MPI call. Thus, a process with one patch that has neighbors to all sides

254 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

Fig. 8.8 Weak scaling experiment of waLBerla on the Woodcrest cluster with one single patch per
process in comparison to the ideal scaling.

Fig. 8.9 Weak scaling experiment of waLBerla on the Woodcrest cluster with different numbers
of patches per process in comparison with the single patch version.

sends 18 messages per time step. With two patches it sends 34 messages, with 125
patches 690 and with 1000 patches even 2880. The performance impact in com-
parison with the single patch version is for each scenario relatively constant over
the increasing process number. With 64 patches per process the performance loss
is 18%, with 125 patches 21% and with 1000 patches around 50%. The single core
experiment above resulted in 14, 16 and 35%, respectively. Thus, the overhead of

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 255

Fig. 8.10 Weak scaling experiment of waLBerla on high-bandwidth blades of the HLRB II with
different numbers of patches per process in comparison with the single patch version.

MPI communication is low, which is attributed to the small latencies of the Infini-
band network, but mainly to the fact that local and global communication overlap
in time (as described in Sect. 8.4.2). In fact, a closer measurement with the Intel
TraceAnalyzer shows that 5.6% of the total time are spent for MPI communication
with 16 processes and 125 patches per process. Despite of the good results, further
optimization of the MPI communication is inevitable: The weak scaling experiment
with 1000 patches per process could not be performed with more than 8 nodes on
the Woodcrest and 32 cores on the HLRB II, respectively, because of a limitation in
the current implementation. The tag parameter for MPI communication is used to
code the sending and receiving patch by using a globally unique ID for the patches.
When using more than 32768 patches, the 32-bit signed integer value overflows.
Although for real-world applications the use of 1000 patches per process is very un-
likely, simulations using more than 9000 cores—as planned on the HLRB II—can
quickly reach the limit. Therefore, a future implementation will combine the mes-
sages of the patches of the same process in order to reduce the message count and
evade the patch number limitation.

The NUMAlink 4 interconnect of HLRB II, also having low latencies and a high
bandwidth, has a low impact on the performance in this scaling experiment; how-
ever, the hierarchical structure influences the results (see Fig. 8.10). Up to 32 pro-
cesses, the average performance losses of the parallel version of 10% for 64 patches
and 30% for 1000 patches compare well to the 7 and 23% of the serial performance,
respectively. From 64 to 128 cores as well as from 128 to 256 a decrease in parallel
efficiency can be clearly determined. One compute partition of the HLRB II consists
of 512 cores that are arranged in groups of 64 cores. Thus, messages between cores
from different groups have to hop over routers of a higher hierarchy level. This effect

256 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

Fig. 8.11 Strong scaling experiment of waLBerla on the LSS Cluster.

can be neglected when the amount of communication is small, as in the case of one
patch per process, while 64 and more patches per process experience a noticeable
impact. This is another reason for changing the communication implementation in
order to reduce the message count.

8.5.2.2 Strong Scaling

The strong scaling scenario has been performed with a size of 1003 lattice cells.
Here, the performance of the implementation is measured with an increasing num-
ber of cores, whereas the overall size of the problem remains fixed. This scenario
enables to estimate the shortening of computation time when a higher number of
processes is employed for solving the same problem. To neglect the effects of local
communication one patch per MPI process has been used. The measurements for
the LSS cluster are shown in Fig. 8.11. With 32 processes the parallel efficiency
only drops to 75%.

For the strong scaling on the Woodcrest cluster (see Fig. 8.12) up to 16 nodes
have been used, each node running four MPI processes. The resulting parallel effi-
ciency on 16 nodes is about 84.9%. It has to be noted that for this result the patch
size of 253 does not fit into the cache.

Since for the same problem size the Itanium 2 based implementation is slower,
while having the same amount of communication, the ratio between work and com-
munication is larger than on IA32-based architectures. According to Amdahl’s Law

S =
1

(1− p)+ p/P
,

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 257

Fig. 8.12 Strong scaling experiment of waLBerla on the Woodcrest Cluster.

an increase of the parallelizable part p results in a higher scalability on the same
number of cores P. Therefore, the scaling behavior in a strong-scaling experiment
on HLRB II shows a good efficiency: With 32 cores the efficiency of up to 93.5% is
much better than on Woodcrest cluster, where 8 nodes (32 cores) reach only 87.8%.
Fig. 8.13 shows the scaling on high density and high bandwidth blades. From 8 to 16

Fig. 8.13 Strong scaling experiment on both high density and high bandwidth blades of HLRB II.

cores one can clearly determine the additional overhead induced by the communi-
cation across the boundaries of so-called building blocks (high bandwidth building

258 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

blocks consist of 8 cores), which represent a lower part of the sophisticated hierar-
chy in HLRB II. Due to the large caches, for 64 cores the system size per process
is small enough to fit completely into the cache, which results in super-linear scal-
ing. Since the communication via the NUMAlink 4 network shares the bus to the
memory controller, it is obvious that the scaling on high density nodes is worse.

8.5.3 IBM Cell Processor

To investigate optimization techniques for special hardware and multi-core sys-
tems our group’s research includes the IBM Cell processor, which is the heart of
Sony’s Playstation III gaming console. This hybrid multi-core processor combines
one Power processor element (PPE), which is a PowerPC compliant general pur-
pose core, and eight simple single instruction multiple data (SIMD) cores, so-called
synergistic processor elements (SPEs). The PPE is mainly responsible to run the
operating system and for program control, whereas the SPEs are optimized for effi-
cient data processing. In the Playstation III only six of the SPEs are available to be
used for programing. Whether with Playstations or as blades, this processor can be a
valuable asset to a hybrid cluster enabling high performance for appropriate codes.
Using the Cell, our group implemented a blood flow simulation [25] with simi-
lar concepts as in Sect. 8.3. With just compiling a straightforward implementation,
one gains a meager performance of 2 MFlups on a single SPE, possibly summing
up to 12 MFlups on a Playstation, after all. However, Stürmer et al. [5] showed that
with architecture-related optimizations up to 95 MFlups are possible. Unfortunately,
these results are based on single precision floating point operations. Since the code
performance is limited by the memory bus, one can estimate that performance de-
creases by a factor of 2.5 for double precision, resulting in a sustained performance
of around 40 MFlups.

8.6 Conclusion

In this chapter, the parallelization concept for the waLBerla framework has been
presented, which aims at the integration of various CFD applications together with
an efficient massively parallel implementation. The key component for our realiza-
tion of these aims is the patch concept, which supports the specialization to different
applications as well as domain decomposition needed for parallelization. To verify
the suitability of the parallelization for massively parallel usage the serial and the
parallel performance have been investigated on different architectures.

For the serial performance, it has been demonstrated that the sustained memory
throughput is 70% of the maximum throughput (STREAM triad) on the Woodcrest
cluster which gives an indication of the quality of the serial performance. Addi-
tionally, the influence of the process-local communication has been discussed and

8 WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations 259

it has been shown that the performance with 64 patches only drops by 14% on the
Woodcrest cluster, 7% on the HLRB II and 13% on the LSS cluster.

In the parallel case, weak scaling scenarios up to 1000× 900× 900 lattice cells
have been performed for process-local plus MPI communication and for pure MPI
communication. The results show that the basic concept of the framework is suit-
able for massively parallel usage, as a parallel performance of about 94% has been
achieved for 203(810) nodes (cores) on the Woodcrest cluster. Furthermore, the sce-
narios with several patches per process indicated that the MPI communication has
a smaller impact on the performance than the local communication. The reason for
that is the overlapping of local and MPI communication as well as the low latency
of the interconnects. In addition to the weak scaling scenarios, strong scaling exper-
iments have been performed. On the IA32-based architectures, these result with 32
cores in 87.8% parallel efficiency compared to 93.5% on the IA64-based HLRB II.

In future work, the efficiency of the framework will be tested on the HLRB II
beyond 1000 cores. For this purpose, the communication will be redesigned to re-
duce the overall message count, as the connection network of the HLRB II has a
strong influence on the efficiency when dealing with a high amount of messages.
With further work the CFD applications, e.g., free surfaces and moving objects will
be implemented together with a dynamic load balancing and the specialization of
the patches.

References

1. C. Feichtinger, J. Götz, S. Donath, K. Iglberger, U. Rüde, Concepts of waLBerla prototype
0.1, Tech. Rep. 07–10, University of Erlangen-Nuremberg, Computer Science 10 – System-
simulation (2007).

2. K. Iglberger, N. Thürey, U. Rüde, Simulation of moving particles in 3D with the Lattice Boltz-
mann method, Comp. Math. Appl. 55 (7) (2008) 1461–1468.

3. C. Binder, C. Feichtinger, H. Schmid, N. Thürey, W. Peukert, U. Rüde, Simulation of the
hydrodynamic drag of aggregated particles, J. Colloid Interface Sci. 301 (2006) 155–167.

4. J. Horbach, D. Frenkel, Lattice-Boltzmann method for the simulation of transport phenomena
in charged colloids, Phys. Rev. E 64 (6) (2001) 061507.

5. M. Stürmer, J. Götz, G. Richter, A. Dörfler, U. Rüde, Blood flow simulation on the Cell Broad-
band Engine using the lattice Boltzmann method, Tech. Rep. 07–9, University of Erlangen-
Nuremberg, Computer Science 10 – Systemsimulation, submitted to the International Confer-
ence for Mesoscopic Methods in Engineering and Science, ICMMES (2007).

6. C. Körner, M. Thies, T. Hofmann, N. Thürey, U. Rüde, Lattice Boltzmann model for free
surface flow for modeling foaming, J. Stat. Phys. 121(1-2) (2005) 179–196.

7. N. Thürey, T. Pohl, U. Rüde, M. Oechsner, C. Körner, Optimization and stabilization of LBM
free surface flow simulations using adaptive parameterization, Comput. Fluid 35(8–9) (2006)
934–939.

8. Information on fuel cells, http://www.fuelcells.org (2008).
9. Information on the HLRB II, http://www.lrz-muenchen.de/services/

compute/hlrb/ (2008).
10. G. McNamara, G. Zanetti, Use of the Boltzman equation to Simulate Lattice Gas Automata,

Phys. Rev. Lett. 61 (20) (1988) 2332–2335.
11. X. He, L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to

the lattice Boltzmann equation, Phys. Rev. E 56 (6) (1997) 6811–6817.

260 Christian Feichtinger, Jan Götz, Stefan Donath, Klaus Iglberger and Ulrich Rüde

12. M. Junk, A. Klar, L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation, J. Com-
put. Phys. 210 (2) (2005) 676–704.

13. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and
components, Phys. Rev. E 47 (3) (1993) 1815–1819.

14. T. Zeiser, H.-J. Freund, J. Bernsdorf, P. Lammers, G. Brenner, F. Durst, Detailed Simulation
of Transport Processes in Reacting Multi-Species Flows Through Complex Geometries by
Means of the Lattice Boltzmann method, in: In High Performance Computing in Science and
Engineering ’01, Transactions of the High Performance Computing Center Stuttgart (HLRS),
Springer (2002).

15. P. Asinari, Multiple-relaxation-time lattice boltzmann scheme for homogeneous mixture flows
with external force, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 77 (5) (2008)
056706.

16. A. Artoli, A. Hoekstra, P. Sloot, Mesoscopic simulations of systolic flow in the human abdom-
inal aorta, J. Biomech. 39 (5) (2006) 873–884.

17. C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Hofmann, FreeWIHR: Lattice Boltzmann methods
with free surfaces and their application in material technology, in: A. Bode, F. Durst (Eds.),
High Performance Computing in Science and Engineering, Garching 2004, Springer (2005),
pp. 225–236.

18. C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Zeiser, Parallel Lattice Boltzmann Methods for
CFD Applications, in: A. Bruaset, A. Tveito (Eds.), Numerical Solution of Partial Differential
Equations on Parallel Computers, Vol. 51 of Lecture Notes for Computational Science and
Engineering, Springer (2005) Ch. 5, pp. 439–465.

19. J. Wilke, T. Pohl, M. Kowarschik, U. Rüde, Cache Performance Optimizations for Parallel
Lattice Boltzmann Codes, in: Proc. of the EuroPar-03 Conf., Vol. 2790 of Lecture Notes in
Computer Science, Springer (2003), pp. 441–450.

20. G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor performance of simple
Lattice Boltzmann kernels, Comput. Fluid 35 (8–9) (2006) 910–919.

21. D. Hänel, Molekulare Gasdynamik, Springer (2004).
22. D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer

(2000).
23. D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computation with the method of lattice

Boltzmann equation, Prog. Aero. Sci. 39 (5) (2003) 329–367.
24. Y. H. Qian, D. D’HumiÃĺres, P. Lallemand, Lattice BGK Models for Navier-Stokes equation,

Europhys. Lett. 17 (6) (1992) 479–484.
25. J. Götz, Numerical Simulation of Blood Flow with Lattice Boltzmann Methods, Master’s the-

sis, University of Erlangen-Nuremberg, Computer Science 10 – Systemsimulation (2006).
26. Information on the Juelicher Initiative Cell Cluster (JUICE), http://www.fz-juelich.

de/jsc/service/juice (2008).
27. Top500, The top 500 supercomputer sites, http://www.top500.org (2008).
28. T. Zeiser, J. Götz, M. Stürmer, On performance and accuracy of lattice Boltzmann approaches

for single phase flow in porous media: A toy became an accepted tool – How to maintain
its features despite more and more complex (physical) models and changing trends in high
performance computing!?On performance and accuracy of lattice Boltzmann approaches for
single phase flow in porous media, in: Proceedings of 3rd Russian-German Workshop on High
Performance Computing, Novosibirsk, Springer (2008).

29. J. D. McCalpin, STREAM: Sustainable memory bandwidth in high performance computers,
http://www.cs.virginia.edu/stream/ (1991–2008).

30. T. Zeiser, Private correspondence with Thomas Zeiser, Regional Computing Center Erlangen
(RRZE) (Aug. 2008).

Chapter 9
Parallel Pseudo-Spectral Methods for the
Time-Dependent Schrödinger Equation

Tore Birkeland and Tor Sørevik

Abstract

Simulations in quantum mechanics can easily become extremely computationally
demanding, making parallel computing a necessity. In this chapter we outline a
computational technique of the time-dependent Schrödinger equation (TDSE) us-
ing pseudo-spectral methods. The split-step propagator method with dimensional
splitting enables efficient parallelization; each fractional step can be perfectly par-
allelized, while redistribution is necessary between steps. It is showed that the scal-
ability of the split-step method can be greatly increased by applying an improved
data distribution scheme. The software framework PyProp is also introduced, imple-
menting the methods described in this chapter. PyProp tries to combine the flexibil-
ity of object-oriented programming (C++), the convenience of high-level scripting
language (Python) and high-performance computational libraries (blitz++, FFTW,
LAPACK) to create a flexible framework for solving the TDSE.

9.1 Introduction

In quantum mechanics, a system of particles is completely described by the wave-
function ψ(x, t) and the Hamiltonian operator H. H is a linear, but possibly time-
dependent operator describing the setup of the system, and the wavefunction is a
complex-valued function describing the state of the system at a given time t. A fun-
damental principle of quantum mechanics is that all measurable values can be calcu-

Tore Birkeland
Department of Mathematics, University of Bergen, 5008 Bergen, Norway,
e-mail: tore.birkeland@math.uib.no

Tor Sørevik
Department of Mathematics, University of Bergen, 5008 Bergen, Norway,
e-mail: tor.sorevik@math.uib.no

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_9, 261
c© Springer-Verlag London Limited 2009

262 Tore Birkeland and Tor Sørevik

lated from the wavefunction. For instance, the absolute square of the wavefunction
|ψ(x, t)|2 yields the probability density, and an appropriate normalization factor is
usually applied to make the integrated probability one. In general, physically ob-
servable values are obtained by calculating the expectation value of an operator.
The Hamiltonian, for instance, corresponds to the total energy of the system, and
the expectation value of energy can be calculated by

〈E〉=
∫
Ω
ψ∗(x, t)Hψ(x, t)dx. (9.1)

The time evolution of a quantum mechanical system is described by the time-
dependent Schrödinger equation (TDSE)

ih̄
∂
∂ t
ψ(x, t) = Hψ(x, t); x ∈Cs (9.2)

Here, i is the imaginary unit and h̄ is the reduced Planck’s constant. The Hamiltonian
operator, H, reads:

H =− h̄2

2m
∇2 +V. (9.3)

Here we will consider the nontrivial time-dependent case where the potential oper-
ator, V , is a function not only of the spatial variables, x, but of time as well.

The computational challenge of this equation is a consequence of the high dimen-
sionality of interesting systems. The dimension, s, increases proportionally with the
number of particles, p, in the system. Thus for direct discretization of Eq. (9.2), the
amount of work scales exponentially with the number of dimensions, leaving many
particle simulations out of reach for ab initio methods.

In cases where p >> 1 approximation models are the only possibility. Meth-
ods such as Hartree–Fock, Density Functional Theory (DFT) and others tackle the
exponential growth in computational cost by decoupling the dimensionality, at the
expense of accurately modeling the inter-particle exchange interaction. These meth-
ods work well when the exchange interaction is of less importance. However, for
few particle problems where exchange interaction is of importance, none of these
approximate models give satisfying results. In these cases, one is faced with the
daunting task of computing accurate approximations to the full high-dimensional
Schrödinger equation (9.2). Using current technology, realistic simulations beyond
s = 3 challenge the computational limits. To face these challenges one needs to em-
ploy the most efficient algorithms for a specific problem and run the code on the
most powerful computers available.

A typical situation is when the system has some sort of symmetry or only exhibits
slow changes when formulated in the right coordinate system. Thus the first step to
efficient computation will be to use the best possible problem formulation. A flexible
code needs therefore to cater for different coordinate systems. We discuss some of
these possibilities and problems in Sect. 9.3.

The next step is to choose a discretization scheme. In the spatial variables a spec-
tral approximation appears to be the best choice for our problem, although alter-

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 263

natives do exist. In particular, spectral approximations are attractive in combination
with split operator technique. By the right choice of spectral basis we may be able to
diagonalize the operator, allowing for fast, stable and accurate time integration by an
exponential integrator. In Sect. 9.2 we describe the pros and cons of this technique.

The exponential growth of single CPU performance has come to a halt; increas-
ing parallelism appears to be the alternative provided by the hardware vendors for in-
creasing performance. To take advantage of this technology trend, one needs highly
scalable parallel algorithms to efficiently utilize tomorrow’s computers. When par-
allelizing high-dimensional problems using spectral methods, the standard data de-
composition technique has limited scalability. In Sect. 9.4 we explain how to over-
come the scalability issue by taking advantage of the full dimensionality of the prob-
lem.

The primary requirement for a high-performance scientific code is certainly ef-
ficiency. To be able to study increasingly more complex systems, it is paramount
to efficiently utilize modern supercomputers. The best way to get maximum perfor-
mance from these machines is to write the computationally intensive parts of the
program in a “close-to-the-hardware” language and reuse libraries which are opti-
mized for the specific hardware. However, low-level languages such as Fortran have
limited facilities for abstraction. It is therefore difficult to create software that is
flexible enough to support different discretization and propagation methods, while
at the same time keeping duplicate code to a minimum.

Object-oriented techniques can help encapsulate low-level calculation routines
to more functionality oriented objects, and inheritance can be used to encapsulate
the implementation of different discretization methods, while keeping a unified in-
terface. Statically compiled languages such as C++ allow for a high level of ab-
straction and at the same time gives high performance (at least when combined with
high-performance Fortran kernels). An issue with statically compiled languages is
the necessity of recompiling the program every time a change is made. The overhead
of recompilation is certainly insignificant for computationally intensive simulations
taking several hours to complete, which is usually the case for the final simulations
in a project. For the early stages of a project, however, exploration of different pa-
rameters and methods plays an important part, and the overhead of recompiling the
project for every change can become tedious. On the other hand, a dynamic and
interactive runtime combined with a rich plotting environment such as provided by
MATLAB is efficient for exploration, but sacrifices performance for interactivity
and ease of use.

A solution is to recognize that the performance critical parts of most scientific
programs are only a small fraction of the program. The performance critical parts
can then be implemented in a high-performance language, while the bulk of the
program can then be written in an expressive high-level language. Python is an ex-
cellent example of such a language. It is well documented, readily extensible and
has a number of extension modules for scientific computing [1].

We will now describe the split operator technique for solving the TDSE, specif-
ically in the context of spectral approximations. In Sect. 9.5 we describe PyProp,
a framework for solving the TDSE using the methods described in this chapter.

264 Tore Birkeland and Tor Sørevik

Finally, in Sect. 9.6.2, we illustrate the need for parallel computing in this field by a
numerical experiment.

9.2 Time Stepping and Split Operator Technique

Let H be a linear differential operator over the spatial variables for a time-dependent
system

i
∂
∂ t
ψ(t) = Hψ(t). (9.4)

It is convenient to split the operator into suboperators, H = A+B. Assuming H does
not explicitly include any time dependence, the formal solution to the system can be
written:

ψ(t) = e−iHtψ(0) = e−i(A+B)tψ(0). (9.5)

If H is time dependent, the above equation can be amended by performing a se-
quence of smaller time steps Δ t, such that H is essentially time independent on
the interval (t, t +Δ t). As A and B do not in general commute, writing the above
exponential as a product of two exponentials introduces a splitting error

ψ(t +Δ t) = e−iAΔ t e−iBΔ tψ(t)+O(Δ t2[A,B]), (9.6)

where [A,B] = AB−BA is the commutator between A and B. It can be shown that the
error introduced by the splitting can be reduced by splitting in a symmetric manner,
known as the Strang splitting,

ψ(t +Δ t) = e−iAΔ t/2e−iBΔ t e−iAΔ t/2ψ(t)+O(Δ t3), (9.7)

and corresponds to first solving a half-time step of A, then a full-time step of B and
finally another time step of A. The splitting procedure can be generalized further, in
order to decrease the splitting error:

ψ(t +Δ t) = ecnAΔ t edn−1BΔ t · · ·ec1AΔ t ed0BΔ t ec1AΔ t · · ·edn−1BΔ t ecnAΔ tψ(t). (9.8)

This corresponds to 2n time steps of various lengths with operator A and 2n−1 steps
with operator B. Explicit values for the coefficients which give a global splitting
error of O(Δ t2n) are known for n≤ 4 [2, 3].

Any numerical time-stepping scheme may be used to propagate the system to
4n− 1 substeps. In particular, when the transformation to the eigenspace of the
suboperator is known, the propagation may be executed efficiently and accurately.
This strategy was, to our knowledge, first applied to the TDSE by Feit et. al [4]
and later modified and used successfully by many others. See [5] for splitting when
the problem is presented in spherical coordinates. For higher-dimensional hyper-
spherical coordinates, see [6] and for application to the nonlinear TDSE, [7].

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 265

The different operators generally have different eigenfunctions, and consequently
the spectral representation of the wavefunction must be changed accordingly. Thus,
for the strategy sketched above to be efficient, we need fast transformation routines
mapping the data from one representation to another.

9.3 Variable Transformations and Spectral Bases

The choice of coordinate system for a given problem depends on many variables,
such as the symmetries and near symmetries of the system, as well as which ob-
servable features of the system are of interest. An atom, for example, which in the
single active electron model can be described by a spherically symmetric potential,
clearly favors a spherical over a Cartesian representation. However, a spherical dis-
cretization requires more calculation per grid point than a Cartesian representation.
This is due to the fact that the fast Fourier transform available for Cartesian coordi-
nates is significantly faster than any known transformation for spherical harmonics.
In this chapter, only Cartesian and spherical coordinate systems will be discussed.
The methods, however, are readily extensible to other coordinate systems as well,
such as cylindrical or prolate spheroidal coordinates.

9.3.1 Cartesian Coordinates and Fourier Basis

The eigenfunctions of the Laplacian operator on a hyper-rectangle are the Fourier
functions, and for functions with a smooth periodic extension on this domain a
Fourier expansion converges rapidly. Unfortunately, the wavefunction does not live
on a finite domain, but is defined on the entire space. Nevertheless, for prob-
lems where the wavefunction decays rapidly away from origin, no great error is
made if we confine the domain to a finite domain, say [−R,R]s. In these cases, an
s-dimensional Fourier expansion becomes the obvious choice of spectral basis when
using the splitting indicated in Eq. (9.3). The algorithm for advancing one (partial)
time step with the Laplacian operator becomes:

• represent ψ(x, t) by its Fourier expansion:

ψ(x, t) = ∑
||k||∞<N

ψ̂(k)eπikTx/R, (9.9)

• advance the solution by scaling each component by the corresponding eigen-
value:

266 Tore Birkeland and Tor Sørevik

ψ(x, t + c jΔ t) = ec jΔ t∇2
ψ(x, t)

= c jΔ t ∑
||k||∞<N

ec jΔ t − (π||k||)2

R2 ψ̂(k)eπikTx/R.

The simplicity of this algorithm, the existence of the fast Fourier transform (FFT)
algorithm to compute the expansion coefficients and the accuracy of the time step-
ping are the main reasons for choosing this method. One of the main issues with
this method is the necessity to truncate the problem at a cutoff distance and assume
a periodic extension of the wavefunction. Making the computational domain too
small may introduce unacceptable errors, while making it too large implies wasting
resources on storage and computation of insignificant grid points. It is very difficult
to know in advance exactly where to truncate, as that in general requires a priori
knowledge of the function we are computing. Furthermore, as the Fourier colloca-
tion method distributes its evaluation points equidistant, the extra cost of taking to
large domain grows exponentially with dimension.

9.3.2 Spherical Coordinates

Configurations with angular symmetry or slow variations in angular directions are
best expressed in spherical coordinates. In (hyper-) spherical coordinates the s-
dimensional Laplacian takes the form:

∇2 =
∂ 2

∂ r2 +
s−1

r
∂
∂ r
− 1

r2 Λ̂
2(s). (9.10)

Here, Λ̂ 2(s) is the (hyper-) angular momentum operator. In the case of full an-
gular symmetry, derivatives in angular directions become zero, the effect of the an-
gular momentum operator vanishes and the problem effectively reduces to a one-
dimensional problem. But also for problems without complete angular symmetry,
spherical coordinates are of interest. One tractable computational feature is that the
infinite boundaries are removed in the angular direction and replaced with accu-
rate periodic boundary conditions. In the radial direction, however, there still is a
semi-infinite boundary that must be dealt with.

The eigenfunctions of Λ̂ 2(s) are the (hyper-)spherical functions which form an
orthogonal basis in the angular directions. Thus, these are good candidates for basis
functions.

How to deal with the radial direction is still a problem. Replacing ψ(r) with
the reduced wavefunction Φ(r) = r(1−s)/2ψ(r) removes the first derivative term in
Eq. (9.10), making the radial part similar to one of the coordinates in a Cartesian
coordinate system. Any method used for Cartesian coordinates, such as the Fourier
spectral method discussed in Sect. 9.3.1, can be used for the radial part, only on
a slightly different domain, r ∈ [0,∞), with the boundary condition Φ(r = 0) = 0.

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 267

Truncating the right boundary will in this case produce a periodic extension which
is nowhere near a smooth function. Thus a Fourier spectral approximation will con-
verge slowly. The simplest trick is to symmetrize the problem by defining the odd
extension ψ(−r,Ω , t) =−ψ(r,Ω , t) on [−R,R] [5]. The success of this is dependent
on the smoothness of the function at origin. Using the Fourier spectral approxima-
tion suffers from the standard dilemmas of interval truncation as described above.
For many applications, it is better to use a basis of functions orthogonal on [0,∞),
such as the Laguerre functions or the rational Chebyshev functions [8]. Another pos-
sibility is to apply a variable transformation which maps [0,∞) onto [0,1), and apply
a standard Chebyshev basis [9] on that domain. As these are not eigenfunctions of
the radial Laplacian in the new variable, an explicit diagonalization is needed in
order to use an exponential propagator.

9.4 Parallelizing Many Dimensional FFTs

In order to propagate large systems, two restrictions occur: The processing time re-
quired to propagate the problem and the amount of memory required to hold the
entire problem. Both these issues are addressed by large, distributed memory paral-
lel systems.

Having split the spatial operator and applied a spectral eigendecomposition to
each of the partial operators, the time propagation becomes trivial and “embar-
rassingly parallel”. The difficulty is that each partial operator typically requires a
different spectral representation, thus between each partial step there is a need for
transforming the data, i.e., a multidimensional FFT. Parallelizing such transforma-
tions on huge dense data sets on distributed memory computers usually leads to a
communication bottleneck.

The standard way of parallelizing FFT on a tensor product of data is to distribute
one of the ranks across the processing nodes and perform calculations on the ranks
which are local first [10–13]. Next, when it comes to processing the distributed
rank, the data set is redistributed among the nodes such that one of the local ranks
becomes distributed, while the distributed rank becomes local. This is a simple al-
gorithm and is near optimal in terms of data elements that must be moved. However,
it is clear that in the above parallelization scheme, the number of processors cannot
exceed the number of data points in the distributed rank, and for modern super-
computers with a large number of cores, this is a severe limitation of scalability.
Furthermore, the communication pattern is that of all processors participating in an
all-to-all collective operation, transmitting almost the entire wavefunction. On most
inter-processors network this operation does not scale well [14, 15]. In [14, 15] the
authors describe how to perform a 3D FFT when the data were distributed across
two of the ranks. In [16] it was shown how to extend this parallelization scheme by
distributing r ranks of an s-dimensional array. Some of the details of this extension
are given below.

268 Tore Birkeland and Tor Sørevik

Consider an s-dimensional data set of size N0×N1×·· ·×Ns−1 which is mapped
onto an r-dimensional processor array of size P0×P1× ·· ·×Pr−1, 1 ≤ r < s. The
mapping is done by distributing the data set along r dimensions in equal pieces.
We get different mappings depending on which dimensions we choose to dis-

tribute. There are

(
s
r

)
possible mappings. In a computation, as exemplified by

the s-dimensional FFT, the mapping will have to change during the computation.
For convenience we here assume that Ni mod Pj = 0 for all i = 0, · · · ,s− 1 and
j = 0, · · · ,r− 1. This requirement is not a practical limitation, but it simplifies no-
tation and analysis. A straightforward way to deal with the Ni mod Pj = 0 require-
ment is to set P1 = P2 = · · · = Pr = P and pad the data array with zeros to satisfy
Ni mod P = 0. Another way (which we have used in our implementation) is to mod-
ify the algorithm slightly so that it can work with different amounts of data residing
on each processor. In a practical setting we may assume that we can configure our
system, which means we have some control over r and the Pjs, while on the other
hand, s and Ni are defined by the problem. Let S = {i0, i1, ..., ir−1} be an index set
where 0≤ i j < s for j = 0, · · · ,r−1. Then, Snow denotes the dimensions which are
distributed among the r-dimensional processor array. A dimension can only be dis-
tributed over one set of processors, which gives i j �= ik, if j �= k. If we want to do
computation on dimension k, where k ∈ Snow, a redistribution is required. Let Snext

be a distribution where k /∈ Snext . The dimensions Snow\Snext will be distributed,
while the dimensions Snext\Snow will be gathered (Fig. 9.1).

i i i

j

j

j

kkk

S={0,1} S={0,2}
S={1,2}

Life on Proc(0,0)

Fig. 9.1 This figure shows the three different slices of 3D data onto a 2D processor array. The
slice of the data shown here is the local data to P0,0. The shaded part is the portion of the local data
that is invariant for all three different slices. Thus it does not have to be transmitted whenever a
redistribution is needed.

Assuming that the difference between Snow and Snext is exactly one index, i.e.,
the operation to be performed is an all-to-all along one dimension. For such an op-
eration, the processors can be organized in groups, where a processor only commu-
nicates with other processors in the same group. For redistribution along different

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 269

dimensions in the processor grid, different groups will have to be formed. In gen-
eral, one set of groups will be formed for each dimension in the process or array.
A processor Pα , where α = (α0,α1, ...,αr−1), will be a part of the groups G j

α j , for
j = 0,1, ...,r−1 (Fig. 9.2).

Fig. 9.2 A 3×3 processor array. The processors are organized into one group for each dimension
in the processor array. For redistributing the pth dimension in the processor array, processors in the
Gp groups will communicate internally.

For communication within one group, an algorithm similar to the standard im-
plementation of all-to-all is used. Below is an implementation of this algorithm
in simplified Python-like syntax. inData and outData are the input and output
data arrays local to the current processor. fullShape() returns the shape of the
global array and shape(x) returns the local size of the array x. inDistrib and
outDistrib are the dimensions of the data set which is distributed at the begin-
ning and end of the algorithm respectively. groupSize is the number of processors
in the communication group.

Listing 9.1 Algorithm for redistributing one rank

sendSize = fullShape(inDistr)/groupSize
recvSize = fullShape(outDistr)/groupSize

for i in range(groupSize):
sendProc = (groupRank + i) % groupSize
recvProc = (groupRank + groupSize - i) % groupSize

sendSlice = shape(inData)
sendStart = sendProc*sendSize
sendEnd = (sendProc+1)*sendSize
sendSlice[inDistr] = sendStart:sendEnd
sendBlock = inData[sendSlice]

recvSlice = shape(outData)

270 Tore Birkeland and Tor Sørevik

recvStart = recvProc*recvSize
recvEnd = (recvProc+1)*recvSize
recvSlice[outDistr] = recvStart:recvEnd
recvBlock = outData[recvSlice]

irecv(fromProc, recvBlock)
isend(toProc, sendBlock)
wait()

The above algorithm is implemented in C++ using MPI and incorporated into
PyProp (see Sect. 9.5). The processor groups are set up using the Cartesian topol-
ogy routines and each group is assigned a unique communicator. This allows for
optimized MPI implementations to exploit locality in the underlying network topol-
ogy without user interaction. For handling multidimensional data in C++ we have
used the excellent blitz++ library [17]. Using blitz++ and MPI data types, we have
been able to hide the details of sending and receiving a strided hyper-slab, which
has simplified the implementation of the redistribution considerably.

Fig. 9.3 Redistribution time as a function of number of processors plotted for different grid sizes
on the Cray XT4.

We have compared the time it takes to redistribute the data set on a 2D vs. a 1D
processor grid for a 3D data set of size N×N×N = N3, on a processor grid of P2

processors. The tests have been run for several values of P and N. In Fig. 9.3 the
results for the main performance test are shown both for a 1D and a 2D processor
grid. As expected, for few processors, the 1D processor grid is superior. However,
the 2D configuration gives better scaling and eventually becomes faster than the 1D
configuration. The crossover point appears to be Pr ≈ N/2.

Assuming N0 = N1 = · · ·= Ns−1 = N, P0 = P1 = · · ·= Pr−1 = P and N mod P = 0,
the complexity of the two different algorithms becomes

-

-

-

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 271

W1 ∼ Prts + tw
Ns

Pr (9.11)

for distributing along one dimension and

W2 ∼ r(Pts + tw
Ns

Pr) (9.12)

for distributing along two dimensions. Here ts is the latency and tw the reciprocal
bandwidth. Interestingly, we observe that for Pr = N (which is the highest possible
processor count for the 1D processor grid) the 2D processor grid performs best,
even though twice the amount of data is being transferred. This means that not only
does the 2D processor grid allow one to use more processors, it also enables more
efficient utilization of the network. This is most likely due to larger blocks of data
being sent at each step in the redistribution. The relative decrease in efficiency of
the 2D processor grid seen for increasing values of N and Pr can be explained from
the fact that the block size increases cubically with N and decreases linearly with
Pr. As the block size increases, we expect the start-up effects for the 1D processor
grid to decrease.

9.5 Creating a Framework for Combining Discretization
Methods

For a given problem, one must carefully choose a coordinate system, a correspond-
ing discrete representation and a time propagation scheme with the overall goal of
minimizing discretization error and maximizing performance. The interesting prob-
lems in atomic physics are quite varied, and there does not exist a unique choice
which is optimal in all cases. In fact, in many cases it is hard to guess upfront what
the best choices are and thus there is a need for being able to experiment with dif-
ferent coordinate systems, discretization methods and time marching methods in a
simple way, rather than depending on a priori knowledge about the system alone.
This is usually an issue with existing codes, where either cylindrical, spherical or
Cartesian coordinate systems have been chosen early in the development process,
alongside discretization methods for the corresponding ranks. This can lead to a
specific data structure being hard coded throughout the entire program, making it
difficult to reconsider the choice of method later in the development process.

PyProp is an attempt to create a flexible yet efficient framework for solving the
TDSE based on the ideas presented above. An overall design goal is to make it
easy to mix-and-match the different modules such as coordinate system, spatial dis-
cretization and time marching, making it possible to test several methods before set-
tling on the one best suited for the problem at hand. It uses the Python language for
configuration and high-level program flow, while the computational intensive parts
are written in C++ and Fortran90, utilizing high-efficiency libraries like BLAS/LA-
PACK, FFTW [11], blitz++ [17] and GNU Scientific Library (gsl) [18]. C++ is used

272 Tore Birkeland and Tor Sørevik

to allow some object orientation in the computational routines, while some gener-
ated Fortran90 code is used for critical routines. The boost::python library [19] is
used to “glue” C++ and Python together.

9.5.1 Wavefunction

The Wavefunction class is a self-contained model of the wavefunction ψ(x, t) in
Eq. (9.2) for a given t, and is the central class of PyProp. In Fig. 9.4, a simplified
schematic of the Wavefunction class is shown.

Fig. 9.4 Schematic showing the Wavefunction class and dependencies in PyProp. A wavefunc-
tion consists of a set of data buffers, a representation and a distributed model. The representation
describes the data, and knows about grid points and quadrature rules, thus allowing for opera-
tions like inner products and integration. The distributed model knows how the wavefunction is
distributed among the processors, and can redistribute the data. One of the data buffers is always
active and contains the numerical data of the wavefunction, where the others serve as work data
for out-of-place computations.

In addition to the numerical values, it has a representation object attached, which
determines how the numerical values are interpreted. The representation also has
information about integration weights, and can therefore perform inner products be-
tween two wavefunctions. In order to support changing representation in one dimen-
sion without changing the others, the representation object can either be attached di-
rectly to the wavefunction (and thus be responsible for all ranks), or combined with
other representations through a Combined Representation, which delegates respon-
sibility for each rank to a subrepresentation. Furthermore, the wavefunction has a
Distributed Model, which describes the way the wavefunction is distributed across
processors in an MPI environment. The distributed model knows how to change the
distribution of the wavefunction through the algorithm described in Sect. 9.4.

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 273

9.5.2 Operators and Transforms

Given a spatial discretization of Eq. (9.2), there is not a unique method of propa-
gation that will be superior in all cases. It is therefore important that the code is
flexible enough to support different propagation methods. PyProp enables this by
the concept of Transforms and Operators. Transforms are objects that transform
one or more ranks in the wavefunction from one representation to another. Opera-
tors are objects that represent a part of the Hamiltonian (9.3), and can be applied
to the wavefunction when one or more of the ranks are in a certain representation.
Operators can be seen as tensors, which are either diagonal or nondiagonal in each
rank, in the sense that a diagonal operator does not combine different grid points in
a tensor product with the wavefunction. For a nondiagonal operator, the application
of the operator onto the wavefunction can be written the following way

Φi =∑
i′0

∑
i′1

· · ·∑
i′s

Vi,i′ .ψi′ . (9.13)

Here subscript i and i′ are vector indices representing an index to an element in the
s-dimensional arrays. If the operator is diagonal in all ranks, we call it a diagonal
operator or a potential . In that case, it is a function of the coordinates in the given
representation, scaling every grid point independently,

Φi = Viψi. (9.14)

Because a diagonal operator V does not couple any grid points, any analytic function
of the operator, f (V), will have the same property. Applying f (V) to the wavefunc-
tion can then be done elementwise,

Φi = f (Vi)ψi. (9.15)

A Hamiltonian is always represented by a selfadjoint operator (or equivalently,
a Hermitian matrix in the discrete case). This implies that it is possible to find a
unitary similarity transform T which will make the operator V diagonal,

V = TVT T ∗. (9.16)

Note that it is possible to split a selfadjoint operator into two suboperators that are
not selfadjoint and use the split-step method on those suboperators. This is generally
a bad idea, as it can lead to a break of unitarity in the propagation. It can be shown
that any analytic function f (V) will be unchanged under such a similarity transform,
and can be applied directly to the transformed operator.

f (V) = T f (VT)T ∗. (9.17)

The exponential of an operator f (V) = exp(−iΔ tV) is a special case of the above,
and is of special interest in split-step propagation schemes. Diagonal operators in

274 Tore Birkeland and Tor Sørevik

PyProp therefore have methods to apply both the operator itself and the exponenti-
ated operator to a wavefunction.

9.5.3 Split-Step Propagator

Having transforms between representations that make the operators diagonal makes
it possible to propagate the Schrödinger equation with the split-step method dis-
cussed in Sect. 9.2. Propagating one time step will be a series of exponentiated
operators. Between two operators, transforms will be applied in order to get the
wavefunction to a representation where the next operator is diagonal.

ψ(t +Δ t) = PnTn · · ·P1T1P0T0ψ(t), (9.18)

where Ti are transforms and Pi = exp[iΔ tciVi] are exponentiated operators.
In order to cater for different combinations of problems and discretizations,

it is important to make the implementation of Eq. (9.18) as flexible as possible.
In PyProp the sequence of operators and transforms is therefore implemented in
Python, while the actual transforms and operators are implemented in C++ and For-
tran.

Listing 9.2 Action wrappers for split-step propagation

class TransformAction(object):
def __init__(self, transform):
self.Transform = transform

def Execute(self, psi, t, dt):
self.Transform.Transform(psi)

class ExpOperator(object):
def __init__(self, operator):
self.Operator = operator

def Execute(self, psi, t, dt):
self.Operator.ApplyExponential(psi, t, dt)

Before starting propagation, a setup routine determines the transforms and operators
to be used in this propagation. The setup routine wraps the transforms and operators
in the action wrappers above, and returns a list of action wrappers. Propagating one
time step with the split-step algorithm is performed with the code below.

Listing 9.3 Split-step propagation algorithm

def AdvanceStep(psi, t, dt, actionList):
for action in actionList:

action.Execute(psi, t, dt)

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 275

Parallelization of the split-step propagator is done more or less automatically
with the parallelization scheme from Sect. 9.4, in the sense that neither the trans-
forms nor the diagonal operators are concerned with the parallelization details.
Through the Distributed Model object, operators get information about the local
part of the wavefunction. Diagonal operators are applied to the wavefunction ele-
mentwise, and can therefore be applied to the local part of the wavefunction on each
processor independently. A transform acting on one dimension is independent of
the distribution in the other dimensions, and can be applied independently on each
processor as long as the transform acts only on local dimensions. In order to make
transforms local, a redistribution step is applied. The redistribution step can be seen
as a kind of transform, which is well suited to the split-step scheme presented above.

Due to the dynamic nature of Python, it is feasible to create advanced systems on
top of the basic scheme of transforms and operators. We are currently developing a
system where the optimal (in terms of runtime) order of operators is determined at
runtime and the transforms and redistributions needed are determined automatically.

9.5.4 Explicit Propagators

The scheme of separating operators and transforms works well for other propagators
beside the split-step propagator. Explicit propagators, such as multistep methods,
Runge–Kutta methods and Taylor propagators or Krylov subspace based propaga-
tors, are particularly well suited for this scheme. Explicit propagators require only
the action of the Hamiltonian on the wavefunction, and this can be implemented by
a small modification to the algorithm in listings 9.2 and 9.3.

Direct exponential propagators are only efficient when efficient transforms to the
eigenspaces of the operators are available. If this is not the case, other time propaga-
tion schemes such as multistep methods, Runge–Kutta methods and
Taylor propagators or Krylov subspace based propagators should be considered.
These methods will typically need shorter time steps and more work for each time
step, but on the other hand do not require the operator to be diagonalized, and can in
some cases therefore be more efficiently parallelized. Again, there are no universal
rules for choosing the optimal strategy. It is therefore of great advantage to have
software that allows the user to test different time-marching strategies.

9.6 A Numerical Example

9.6.1 Physical Model

In order to demonstrate some of the flexibility and efficiency of PyProp, we will
now consider a numerical example: The ionization of the molecular ion H+

2 . The

276 Tore Birkeland and Tor Sørevik

molecule consists of two hydrogen nuclei and one electron. The nuclei are much
heavier than the electron, and it is therefore a good approximation to assume that
the center of mass of the system are on the axis between the nuclei. We can then
write up the Hamiltonian for the field-free H+

2 in atomic units:

H0(R,r) =− 1
2M

∇2
R−

1
2m
∇2

r−
1

|r−R| −
1

|r +R| +
1
R

, (9.19)

where R is the nuclear coordinate and r is the electronic coordinate.
We will employ spherical coordinates for both coordinates. However, the mass of

the nuclei makes the nuclear motion much slower than the motion of the electrons,
which allows us to neglect the rotational motion of the nuclei and keep only the
vibrational coordinate R.

The molecule is exposed to a dipole laser pulse polarized along the axis of the
molecule. This can be modeled by the following Hamiltonian:

Hlaser = E0 f (t)sin(ωt)r cosθ , (9.20)

where E0 is the field strength of the laser field, ω is the laser frequency, and f (t) is
the convolution giving the shape of the pulse. As there is no explicit φ dependence
in Eq. (9.19) or Eq. (9.20), the electronic motion can be fully described by r and
θ . This gives us a total of three spatial coordinates: R, r and θ . Introducing the
reduced wavefunction trick in both R and r, Φ(R,r,θ) = Rrψ(R,r,θ), we can write
the Hamiltonian for the molecule as

H = H0 +H1 +Hlaser. (9.21)

Here, H0 is the kinetic energy part of the Hamiltonian, which is dependent on coor-
dinate system and discretization, but independent on problem,

H0 =− 1
2M

∂ 2

∂R2 −
1

2m

(
∂ 2

∂ r2 +
Λ 2

r2

)
. (9.22)

H1 is the problem-specific part of the time-independent Hamiltonian, representing
potential energy in the system,

H1 =
1√

(r cosθ ±R)2 +(r sinθ)2
+

1
R

. (9.23)

9.6.2 Numerical Considerations

We now have to decide which discretization methods to use. In this example, we will
use equispaced grids in both r and R, truncated at r = rmax and R = Rmax. The fast
Fourier transform is used to map between grid space and Fourier space as described
in Sect. 9.3.1. The eigenfunctions of the angular operator are the Legendre polyno-

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 277

mials. Thus, we sample the function on the zeroes of the N + 1 degree Legendre
polynomial and apply the associated transform.

PyProp can automatically set up, from a configuration file, the required trans-
forms as well as the diagonal operators required for evaluating H0. We only need to
supply the problem-specific potentials (H1 and Hlaser) to PyProp, and the rest will
be taken care of internally.

In order to study ionization mechanisms of the system, a good representation of
both the bound and unbound states is needed. A high density of grid points near
the origin of R and r is needed to have a good representation of the bound states.
Correspondingly, for a good representation of the unbound states, rmax and Rmax

must be sufficiently large. In this example, we use Rmax = 15 a.u., rmax = 120 a.u.,
Nr = 512, NR = 256 and Nl = 128.

9.6.3 Scalability

Propagating the above-mentioned system on one processing unit takes ≈ 40 s/time
step. In order to study effects under the influence of a laser with wavelength λ =
800 nm, the system must be propagated at least a few cycles of the laser, where each
laser cycle corresponds to t = 110 a.u. Converged results are obtained for a time
step of Δ t = 0.01 a.u., which gives a minimum wall clock time of 5 days per laser
cycle.

From the above estimate, it is clear that in order to study interesting physics of
H+

2 with nuclear motion, it is an absolute requirement to have efficient paralleliza-
tion. We will therefore apply the parallelization technique described in Sect. 9.4. In
Fig. 9.5, the speedup gained from adding processors to the job is shown for a Cray
XT4 supercomputer.

Fig. 9.5 Speedup in wall clock time S = Tn/T1 for a realistic discretization of H+
2 . Tn is the wall

clock time used for propagating the system a few time steps using n processors.

278 Tore Birkeland and Tor Sørevik

Using a 1D processor grid, we alternate between having the R dimension and
the r dimension distributed. This limits the number of processors to Np = 256. Us-
ing more than 256 grid points leads to some processors not having any data when
the R dimension is distributed. The problem can be scaled further by switching to
a 2D processor grid, as described in Sect. 9.4, as in this case the two distributed
dimensions are distributed on

√
Np processors each. We observe that the 1D pro-

cessor grid performs better than the 2D case, but the difference decreases towards
Np = 256. Increasing the number of processors further, the 2D processor grid con-
tinues to scale very well up to Np = 2048, where a speedup of over 1000 has been
achieved compared to running on a single processor.

9.7 Conclusion

In this brief chapter, we have tried to give an introduction to some of the fascinating
aspects of simulating quantum systems. Scalability on modern supercomputers can
be obtained by using the right distribution method for pseudo-spectral methods.
PyProp demonstrates that it is possible to create flexible solvers without sacrificing
significant performance. By recognizing the computational bottlenecks, a hierarchy
of languages can be used to get both flexibility and high performance.

The computational example of Sect. 9.6.2 is intended as a practical demonstra-
tion of how problems beyond reach on desktop computers become readily available
on modern HPC systems (provided adequate software is available). We stress that
this is not the end of the story, only the beginning. In the future, we aim to do calcu-
lations on higher-dimensional systems, and expect to be able to do so by improving
algorithms and implementation, with increasing scalability and system size. Parallel
computing will be an indispensable tool in this effort.

Acknowledgments The numerical experiments were carried out on the Cray XT4 system oper-
ated by Bergen Center of Computational Science, UNIFOB. Computational resources were granted
by NOTUR, the Norwegian infrastructure for high-performance computing and computational sci-
ence.

References

1. H. P. Langtangen, Python Scripting for Computational Science (Texts in Computational Sci-
ence and Engineering), 3rd Edition, Springer (2008).

2. H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (5–7)
(1990) 262–268.

3. R. I. McLachlan, R. W. Quispel, Splitting methods, Acta Numerica 11 (2002) 341–434.
4. M. D. Feit, A. Fleck jr., A. Steiger. Solution of the schrödinger equation by a spectral method,

J. Comput. Phys. 47 (3) (1982) 412–433.
5. M. R. Hermann, A. Fleck jr., Split-operator spectral method for solving the time-dependent

schrödinger equation in spherical coordinates, Phys. Rev. A 38 (12) (1988) 6000–6012.

9 Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation 279

6. T. Sørevik, L. B. Madsen, J. P. Hansen, A spectral method for integration of the time-
dependent schrödinger equation in hyperspherical coordinates, J. Phys. A: Math. Gen. 38
(2005) 6977–6985.

7. G. Muslu, H. A. Erbay, Higher-order split-step fourier schemes for the generalized nonlinear
schrödinger equation, Math. Comput. Simmul. 67 (2005) 581–595.

8. J. P. Boyd, C. Rangan, P. H. Bucksbaum, Pseudospectral method on a semi-infinite interval
with application to the hydrogen atom: A comparison of the mapped fourier-sine method with
laguerre series and rational chebyshev expansions, J. Comput. Phys. 188 (2003) 56–74.

9. T. Sørevik, T. Birkeland, G. Oksa, Numerical solution of the 3D time dependent Schrödinger
equation in spherical coordinates: Spectral basis and effects of split operator technique,
J. Comput. Appl. Math. 225(1) (2009) 56–67.

10. H. Q. Ding, R. D. Ferraro, D. B. Gennery, A portable 3d FFT package for distributed-memory
parallel archite ctures, in: PPSC (1995) pp. 70–71.

11. M. Frigo, S. G. Johnson, Fftw: An adaptive software architecture for the fft (1998) 1381–1394.
12. C. E. Cramer, J. A. Board, The development and integration of a distributed 3d fft for a cluster

of workstations, in: Proceedings of the 4th Annual Linux Showcase and Conference (2000)
pp. 121–128.

13. P. D. Haynes, M. Cote, Parallel fast fourier transforms for electronic structure calculations,
Comput. Phys. Commun. 130 (2000) 132–136.

14. M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward, R. S. Germain, Scalable frame-
work for the 3d ffts on the blue gene/l supercomputer: Implementation and early performance
measurements, IBM J. Res. Dev. 49 (2005) 457–464.

15. A. Dubey, D. Tessera, Redistribution strategies for portable parallel fft: a case study, Concurr.
Comput. Pract. Exp. 13 (2001) 209–220.

16. T. Birkeland, T. Sørevik, Parallel redistribution of multidimensional data, in: C. Bischof,
M. BÃijcker, P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, F. Peters (Eds.), Advances in
Parallel Computing, Vol. 15, IOS Press, (2008).

17. T. L. Veldhuizen, Arrays in Blitz++.
18. M. Galassi, J. Theiler, J. Davies, GNU Scientific Library Reference Manual (2nd Ed.), Net-

work Theory Limited (2003).
19. D. Abrahams, R. W. Grosse-Kunstleve, Building hybrid systems with boost.python, C/C++

Users Journal July.

Chapter 10
Parallel Approaches in Molecular
Dynamics Simulations

Dušanka Janežič, Urban Borštnik and Matej Praprotnik

Abstract

In this contribution we will present the survey of our past and current endeavor
on parallel approaches in molecular modeling algorithm development, for example,
molecular dynamics (MD) simulation. In particular, we will describe the new split
integration symplectic method for the numerical solution of molecular dynamics
equations and methods for the determination of vibrational frequencies and normal
modes of large systems, and the distributed diagonal force decomposition method,
a parallel method for MD simulation.

Parallel computer programs are used to speed up the calculation of computation-
ally demanding scientific problems such as MD simulations. Parallel MD methods
distribute calculations to the processors of a parallel computer but the efficiency of
parallel computation decreases due to inter processor communication. Calculating
the interactions among all atoms of the simulated system is the most computation-
ally demanding part of an MD simulation. Parallel methods differ in their distribu-
tion of these calculations among the processors, while the distribution dictates the
method’s communication requirements.

We have developed a computer program for molecular dynamics simulation that
implements the split integration symplectic method and is designed to run on spe-
cialized parallel computers. The molecular dynamics integration is performed by the
new integration method, which analytically treats high-frequency vibrational motion
and thus enables the use of longer simulation time steps. The low-frequency motion

Dušanka Janežič
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia,
e-mail: dusa@cmm.ki.si

Urban Borštnik
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia,
e-mail: urban@cmm.ki.si

Matej Praprotnik
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia,
e-mail: praprot@cmm.ki.si

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_10, 281
c© Springer-Verlag London Limited 2009

282 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

is treated numerically on specially designed parallel computers, which decreases
the computational time of each simulation time step. We study the computational
performance of simulation on specialized computers and provide a comparison to
standard personal computers. The combination of the new integration method with
two specialized parallel computers is an effective way to significantly increase the
speed of molecular dynamics simulations.

We have also developed a parallel method for MD simulation, the distributed-
diagonal force decomposition method. Compared to other methods its communica-
tion requirements are lower and it features dynamic load balancing, which increase
the parallel efficiency. We have designed a cluster of personal computers featuring
a topology based on the new method. Its lower communication time in comparison
to standard topologies enables an even greater parallel efficiency.

10.1 Split Integration Symplectic Method

The standard integrators for solving the classical equations of motion are the second-
order symplectic leap-frog Verlet (LFV) algorithm [1] and its variants. Their power
lies in their simplicity since the only required information about the studied physical
system are its interacting potential and the timescale of the fastest motion in the sys-
tem, which determines the integration time step size. Therefore they are employed
for solving dynamics problems in a variety of scientific fields, for example, molec-
ular dynamics (MD) simulation [2, 3], celestial mechanics [4–6], and accelerator
physics [7]. However, in the case of MD integration, the integration time step size
is severely limited due to the numerical treatment of the high-frequency molecular
vibrations, which represent the fastest motion in the system [8]. Therefore, a huge
number of integration steps is usually required to accurately sample the phase space
composed of all the coordinates and momenta of all the particles. This is a time-
consuming task and is often too demanding for the capabilities of contemporary
computers.

One way of overcoming the limitation of the standard methods’ integration time
step size is to analytically treat high-frequency molecular vibrations. This requires
the standard theory of molecular vibrations [9] to be built into the integration
method. In this way the fast degrees of freedom are rigorously treated and not
removed, as in case of rigid-body dynamics [10–12], where small molecules are
treated as rigid bodies. Such semi-analytical second-order symplectic integrators
were developed by combining MD integration and the standard theory of molecular
vibrations [13–16]. The unique feature of these MD integrators is that the standard
theory of molecular vibrations, which is a very efficient tool to analyze the dynam-
ics of the studied system from computed trajectories [17–23], is used not to analyze,
but to compute trajectories of molecular systems. Information about the energy dis-
tribution of normal modes and the energy transfer between them is obtained without

10 Parallel Approaches in Molecular Dynamics Simulations 283

additional calculations. The analytical description of coupled molecular vibrations
can be employed only when using the normal coordinates [9, 13–15] and a translat-
ing and rotating internal coordinate system of each molecule [24,25]. The dynamics
of an Eckart frame has to be adopted to be used within the second-order generalized
leap-frog scheme [26, 27] for MD integration. This assures the time reversibility of
the methods [13,16]. In the following we shortly summarize technical details of the
method.

In MD simulations for each atom of the system the Hamilton equations are solved

dη
dt

= {η ,H}= L̂Hη (10.1)

where L̂H is the Lie operator, {,} is the Poisson bracket [28], and η = (q,p) is a
vector of the coordinates of all the particles and their conjugate momenta.

The formal solution of the Hamiltonian system (10.1) can be written in terms of
Lie operators as

η |tk+Δ t = exp(Δ tL̂H)η |tk (10.2)

and represents the exact time evolution of a trajectory in phase space composed of
coordinates and momenta of all the particles from tk to tk + Δ t, where Δ t is the
integration time step [28].

The first step in the development of a new symplectic integration method is to
split the Hamiltonian H of a system into two parts [29, 30]

H = H0 +Hr, (10.3)

where H0 is the part of the Hamiltonian that can be solved analytically and Hr is the
remaining part.

Next, a second-order approximation for (10.2), known as the generalized leap-
frog scheme [26, 27], is used

η |tk+1 = exp

(
Δ t
2

L̂H0

)
exp(Δ tL̂Hr)exp

(
Δ t
2

L̂H0

)
η |tk +O(Δ t3), (10.4)

which defines the split integration symplectic method (SISM). The whole integra-
tion time step combines the analytical evolution of H0 with a correction from the Hr

resolved by numerical integration. The Eq. (10.4) on the operators level describes
how to propagate from one point in phase space to another. First, the system is prop-
agated for a half integration time step by H0, then for a whole step by Hr, and finally
for another half step by H0. The whole integration time step thus combines the ana-
lytical evolution of H0 with a correction arising from the Hr performed by numerical
integration. This integration scheme was used as the basis for the development of
the SISM.

The model Hamiltonian has the following form

284 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

H =∑
i

p2
i

2mi

+
1
2 ∑bonds

kb(b−b0)2 +
1
2 ∑angles

kθ (θ −θ0)2 +
1
2 ∑

torsions
V0(cosφ − cosφ0)2

+∑
i> j

eie j

4πε0ri j
+∑

i> j
4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6
]

, (10.5)

where i and j run over all atoms, mi is the mass of the i-th atom, pi is the linear
momentum of the i-th atom, b0 and θ0 are reference values for bond lengths and
angles, respectively, kb and kθ are corresponding force constants, φ0 are the refer-
ence values for the torsion angles, and V0 are the corresponding barrier heights; ei

denotes the charge on the i-th atom, ε0 is the dielectric constant in vacuum, ri j is
the distance between the i-th and j-th atoms, and εi j and σi j are the corresponding
constants of the Lennard–Jones potential.

The Hamiltonian (10.5) is a typical MD Hamiltonian that describes a system of
molecules with only one equilibrium configuration and no internal rotation. We as-
sume that the height of the barrier of the torsional potential is large enough that
the motion of atoms in the vicinity of the minimum of the torsional potential can
be treated as a harmonic vibration around the equilibrium configuration. The vibra-
tional potential energy is therefore the sum of vibrational potential energies of all
the molecules in the system

Vvib =
m

∑
j′=1

Vvib j′ =

1
2 ∑bonds

kb(b−b0)2 +
1
2 ∑angles

kθ (θ −θ0)2 +
1
2 ∑

torsions
V0(cosφ − cosφ0)2, (10.6)

where Vvib j′ is the vibrational potential energy of the j′-th molecule.
The pure harmonic Hamiltonian H0 in the splitting (10.3) is defined as the sum

of vibrational energies of all the molecules in the system

H0 = T +Vharm =
m

∑
j′=1

(Tj′ +Vharm j′), (10.7)

where T = ∑i p2
i /2mi is the kinetic energy of all the atoms in the systems, Tj′ is

the kinetic energy of the j′-th molecule, Vharm is the harmonic vibrational potential
energy, which is for an individual molecule defined by Eq. (10.11), Vharm j′ is the

corresponding harmonic vibrational potential energy of the j′-th molecule, and m is
the number of all the molecules in the system.

The remaining part of the Hamiltonian

Hr = H−H0 = Vnb +Vah (10.8)

10 Parallel Approaches in Molecular Dynamics Simulations 285

is then equal to the sum of the nonbonded potential energy

Vnb =∑
i> j

eie j

4πε0ri j
+∑

i> j
4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6
]

(10.9)

and the anharmonic vibrational potential energy of higher terms (cubic, quartic, etc.)
in terms of displacements of atoms from their equilibrium positions

Vah = Vvib−Vharm. (10.10)

The underlying principle to enable the SISM to permit longer integration time
steps lies in the analytical treatment of high-frequency vibrations described by H0.
The propagation scheme (10.4) enables to treat the time evolution of the vibrational,
rotational, and translational degrees of freedom of each molecule (described by
exp

(
(Δ t/2)L̂H0

)
) independently of all other molecules in the system because the

total intermolecular interactions are described by a separate term exp
(
Δ tL̂Hr

)
. Each

molecule is treated as an isolated molecule when propagating by exp
(
(Δ t/2)L̂H0

)
.

Propagation by exp
(
(Δ t/2)L̂H0

)
can therefore be solved analytically using normal-

mode analysis. In the latter, only quadratic terms are kept in the expansion of the
vibrational potential energy Vvib and all higher terms are neglected [9]

Vvib ≈Vharm =
1
2

3N

∑
i, j=1

(
∂ 2Vvib

∂Δqi∂Δq j

)
0
ΔqiΔq j =

1
2

3N

∑
i, j=1

(
∂ 2Vharm

∂Δqi∂Δq j

)
0
ΔqiΔq j

=
1
2

3N

∑
i, j=1

Hi jΔqiΔq j =
1
2
Δq ·H ·Δq. (10.11)

Here Δq = (Δx1,Δy1,Δz1, . . . ,ΔxN ,ΔyN ,ΔzN) is a vector of the relative Cartesian
displacement coordinates and their corresponding momenta are Δp = (m1Δv1x ,
m1Δv1y ,m1Δv1z , . . . ,mNΔvNx ,mNΔvNy ,mNΔvNz), where subscripts x, y, x denote
x, y, z components of the internal coordinate system, respectively (see Fig. 10.1).

The Hessian H ∈ R
3N×3N is a symmetric matrix of the second derivatives of the

vibrational potential energy with the elements

Hi j = Hji =
(

∂ 2Vvib

∂Δqi∂Δq j

)
0
=
(

∂ 2Vharm

∂Δqi∂Δq j

)
0
. (10.12)

To determine the vibrational motions of the system, the eigenvalues and eigen-
vectors of the mass-weighted Hessian M−1/2 ·H ·M−1/2 have to be calculated [9,
20–22]. This leads to solving a secular equation

det(M−1/2 ·H ·M−1/2−λ I) = 0, (10.13)

286 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

x

z
r

Tj

qΔ
2j

3j
qΔ

4j
qΔ

5j
qΔ

6j
qΔ

2

3

4

5

6

1j
qΔ

1

y

e

e2j

e3j
1j

2j
q

Fig. 10.1 Atom displacement in the Cartesian and the internal coordinate system.

where M∈R
3N×3N is a diagonal mass matrix. The diagonal elements are M11 = m1,

M22 = m1, M33 = m1,. . . ,M3N−2,3N−2 = mN , M3N−1,3N−1 = mN and M3N,3N = mN .
For a nonlinear molecule composed of N atoms, Eq. (10.13) has 3N− 6 nonzero
eigenvaluesωi =

√
λi describing molecular vibrations. The corresponding dynamics

is described in the standard theory of molecular vibration by normal coordinates Qi,
i = 1,2, . . . ,3N−6 [28]. Six of 3N roots in Eq. (10.13) are zero. They correspond to
three translations and three rotations of a molecule as a whole while their dynamics
is not described in terms of the normal coordinates [9, 13].

An alternative approach to standard theory’s description of molecules’ rotation
and translation [9] is to describe rotation and translation of a molecule in terms of
the normal coordinates. To do so the whole atom velocity needs to be expressed
in terms of the relative Cartesian displacement coordinates. It has been shown in
full detail that the dynamics of the internal coordinate system in this case differs
from the dynamics of the Eckart frame, which is employed in the standard theory of
molecular vibrations [13].

The equations of motion for the normal coordinates take the Hamiltonian form
as [13]

d
dt

Pi =−ω2
i Qi;

d
dt

Qi = Pi, i = 1,2, . . . ,3N (10.14)

where Pi is the conjugate momentum to the normal coordinate Qi [28].
The particular solution of the system (10.14) can be written as [13]

10 Parallel Approaches in Molecular Dynamics Simulations 287

[
Pi(Δ t

2)
Qi(Δ t

2)

]
=
[

cos(ωi
Δ t
2) −ωi sin(ωi

Δ t
2)

1
ωi

sin(ωi
Δ t
2) cos(ωi

Δ t
2)

][
Pi(0)
Qi(0)

]
. (10.15)

Equation (10.15) describes vibrational motion corresponding to the normal mode i
with ωi > 0.

The equations of motion for the translation and rotation of a molecule in terms of
the normal coordinates, obtained from Eq. (10.15) for the normal coordinates with
ωi = 0 and using limx→0

sinx
x = 1, are [13]

Pi

(
Δ t
2

)
= Pi(0), (10.16)

Qi

(
Δ t
2

)
= Pi(0)

Δ t
2

+Qi(0). (10.17)

The expressions for the transformations between Cartesian, relative Cartesian
displacement, and normal coordinates are obtained in a straightforward way [13].

The SISM then explicitly reads as follows:

• Preparatory step: at the outset of calculation, vibrational frequencies and nor-
mal modes of H0, represented by the normal coordinates P, Q, are determined.
The initial normal coordinates P0

i , Q0
i , i = 1, ...,3N, are obtained from the ini-

tial atoms’ velocities and the initial displacements of the atoms from their equi-
librium positions by means of the transformational matrix A. The columns
of A are the eigenvectors of the root-mass-weighted second-derivative ma-
trix M−1/2 ·H ·M−1/2 and N is the number of atoms in each molecule.

• Analytical solution exp
(Δ t

2 L̂H0

)
: the normal coordinates, P0

i , Q0
i , are rotated in

phase space by the corresponding vibrational frequency ωi for Δ t
2 :

[
P′i
Q′i

]
= R

[
P0

i
Q0

i

]
(10.18)

R =
[

cos(ωi
Δ t
2) −ωi sin(ωi

Δ t
2)

(1/ωi)sin(ωi
Δ t
2) cos(ωi

Δ t
2)

]
(10.19)

ωi �= 0 defines the vibrations of atoms in each molecule
ωi = 0 defines translations and rotations of molecules
The normal coordinates of the normal modes with frequency zero
(limx→0

sinx
x = 1 for ωi = 0) evolve as

P
′
i = P0

i (10.20)

Q
′
i = P0

i
Δ t
2

+Q0
i (10.21)

Coordinate transformation: the normal coordinates P′k, Q′k are transformed to
the Cartesian displacement coordinates Δ p′i, Δq′i (m1 = m2 = m3,...,m3N−2 =
m3N−1 = m3N , where mi, i = 1, ...,3N are the atoms’ masses):

288 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

Δ p
′
i =
√

mi∑
k

AikP
′
k (10.22)

Δq
′
i =

1√
mi
∑
k

AikQ
′
k (10.23)

• Numerical solution, exp(Δ tL̂Hr): momenta in the Cartesian coordinates are nu-
merically integrated:

p′′i = p′i−Δ t

(
∂Hr

∂q

)
(10.24)

q′′i = q′i +Δ t

(
∂Hr

∂ p

)
= q′i (10.25)

Only one force calculation per integration step must be performed. Since Hr =
Hr(q) and

(
∂Hr
∂ p

)
= 0, only momenta change at this step.

Back-transformation: the Cartesian displacement coordinates Δ p′′k , Δq′′k are back-
transformed to the normal coordinates P′′i , Q′′i :

P
′′
i =∑

k

1√
mk

AT
ikΔ p

′′
k (10.26)

Q
′′
i =∑

k

√
mkAT

ikΔq
′′
k (10.27)

• Analytical solution, exp
(Δ t

2 L̂H0

)
: the normal coordinates are again rotated in

phase space for Δ t
2 : [

Pi

Qi

]
= R

[
P′′i
Q′′i

]
(10.28)

This concludes one full SISM integration step, which is repeated until the desired
number of integration steps is reached.

One time step of SISM is schematically presented in Fig. 10.2.

10.1.1 Calculation of Infrared Spectra

The vibrational and rotational motions of molecules are those which involve ener-
gies that produce the spectra in the infrared region. Therefore, the SISM is partic-
ularly suitable for computing the IR spectra because rotational, translational, and
vibrational motions are resolved analytically, independently of the MD integration
time step.

Figure 10.3(a) demonstrates that the IR spectra of bulk water at ambient condi-
tions calculated by SISM and LFV using a 0.5 fs integration time step are in good
agreement. These IR spectra were taken as a reference for comparison with calcu-
lated IR spectra using longer integration time steps. When using a 1.0 fs integration

10 Parallel Approaches in Molecular Dynamics Simulations 289

Analytical solution

Numerical solution

Preparatory step

Analytical solution
 (First half)

(Second half)

Transformation

tΔ

Δ

Δt/2

t/2

Back−transformation

Normal Modes

Evolve with H0
Vibration, Rotation, Translation

Evolve with Hr = Hr (q)
Force calculation

Evolve with H0
Vibration, Rotation, Translation

Physical Properties

Fig. 10.2 Solution scheme for SISM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM_MTS

(a) Δ t = 0.5 fs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM-MTS

(b) Δ t = 1.0 fs

Fig. 10.3 Calculated (LFV, SISM) IR spectrum of bulk water for Δ t = 0.5 fs and Δ t = 1.0 fs.

time step, the high-frequency double peak at 3300 cm−1 in the IR spectrum calcu-
lated by the LFV already shifts to the higher frequencies as shown in Fig. 10.3(b).
The observed blue shift suggests that when using a 1.0 fs integration time step, the
LFV can no longer accurately describe the high-frequency vibrational motions of
atoms in a water molecule. This phenomenon is even more evident in Fig. 10.4 for
the cases of 1.5 fs and 2.0 fs integration time steps, where the peak at 1775 cm−1

also starts shifting toward higher frequencies. Peaks in corresponding IR spectra,

290 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM-MTS

(a) Δ t = 1.5 fs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

I

1
λ cm []-1

LFV
SISM

SISM-MTS

(b) Δ t = 2.0 fs

Fig. 10.4 Calculated (LFV, SISM) IR spectrum of bulk water for Δ t = 1.5 fs and Δ t = 2.0 fs.

which are calculated by the SISM, however remain at the same positions as cor-
responding peaks in the reference IR spectra calculated using the integration time
step of 0.5 fs. This proves that owing to the analytical description of high-frequency
molecular vibrations, the latter are accurately described by the SISM also using a
2.0 fs integration time step [15].

10.1.2 Enlarging the Integrational Time Step

The actual speedup of an integrational method is determined by measuring the re-
quired CPU time per integration step. Our results show that the computational cost
per integration step is slightly larger for the SISM than the LFV for systems smaller
than 1000 atoms. However, for larger systems consisting of more than 1000 atoms
the computational cost per integration step becomes approximately the same for
all of the methods due to the time-consuming O(N2) numerical calculation of non-
bonded forces, which is performed by all three methods in the same way and prevails
over the additional calculations in the iterative SISM, which scale linearly with N.
Therefore, the speedup of the SISM over the LFV is determined mainly by the sig-
nificant difference in the integration time step size owing to the analytical treatment
of high-frequency motions by SISM [16, 31].

10.2 Parallel Computers

Computers are an essential tool used to solve computational problems in science
today. The speed of computer processors is continually increasing, enabling its use
to approach ever more complex computational problems [32, 33]. However, many
existing problems would be well served by an increase in computational capacity

10 Parallel Approaches in Molecular Dynamics Simulations 291

today. For these problems, parallel computers provide a solution [34]. Many scientific
problems can be effectively parallelized to run on a parallel computer.

10.2.1 Parallel Computing

In parallel computing, a problem is split into several subproblems that are solved
concurrently on parallel processors in a shorter time. A parallel program is written to
be executed on many processors at once and they must correctly share and exchange
data to solve the problem. Generally, the processors must communicate throughout
the computation since the results from one processor are needed by others. The
manner in which the initial problem is divided among the processors – the data
distribution and the distribution of computation – greatly affects how the parallel
program is written and the time that is spent for communication. Generally, time that
is spent for communication cannot be used for communication, since the processor
is waiting for input for its next calculation.

10.2.1.1 Parallel Efficiency

Since it is the goal of parallel computing to reduce the total time required to solve
a problem, the time spent for communication must be minimized. If it takes time T
to solve the problem, an ideal parallel computation on P processors would take only
T/p; however, due to the time lost to communication and other factors, the time Tp

required by any processor is usually greater: Tp > T/p. We can now define the
speedup

S =
T
Tp

(10.29)

as the factor specifying how much faster the parallel computation is compared to
a single processor computation. Ideally, the speedup S would equal the number of
processors P, S = P, which is true if Tp = T/P. In several rare cases such a linear
speedup is possible or even exceeded due to hardware effects [35]. We can define
the parallel efficiency

E =
S
P

=
T

PTp
(10.30)

to measure the performance of the parallel computation relative to the ideal time. In
optimizing a parallel program, we strive to obtain the highest parallel efficiency
since it directly translates to increasing the speedup offered by the program. A
higher parallel efficiency is obtained by bounding the communication time and
by ensuring that all of the processors have an equal computational load. If proces-
sors have unequal computational loads, then whenever the processors communicate
globally, the ones with the lowest load must wait for the most loaded processor to
finish its computation and begin communication. Load balancing the computation

292 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

attempts to keep an equal computional load among all processors, which minimizes
waiting time and achieves a higher parallel efficiency.

10.2.2 Parallel Computer Types

Parallel computers may be divided into two broad categories depending on the way
processors access memory. The type of memory access greatly influences the way
in which a parallel program must be written.

Shared Memory

In shared memory computers, all processors may access all memory directly (i.e., a
processor may read from or write to any memory location, as if the memory were
local). The two common types of shared memory computers are symmetric multi-
processing (SMP) computers, in which all memory is local to all of the processors.
In effect, all memory accesses require the same access time. In nonuniform mem-
ory access computers (NUMA), processors have local memory, which provides the
fastest access times; however, they can still directly access remote memory (i.e.,
another processor’s local memory), albeit with a higher access time.

Distributed Memory

In distributed memory computers, processors can access only their local memory,
but they cannot directly access remote memory. All data exchange between the pro-
cessors must occur by explicit message passing that involves both processors ex-
changing messages over a processor interconnect, which provides the connection
among the processors. Current interconnect technologies range from standard Eth-
ernet to higher-performance Myrinet [36], Infiniband [37], and others.

Libraries, such as the Parallel Virtual Machine [38] (PVM) or the Message Pass-
ing Interface [39,40] (MPI) are used to abstract the implementation details of a given
computer’s message-passing hardware, providing a standard interface to the pro-
grammer. Since distributed memory computers are more specific than shared mem-
ory computers, parallel programs targeted for distributed memory computers can
run on shared memory ones as well. Specific implementations of message-passing
libraries on shared memory computers are often optimized to take advantage of the
shared memory.

Modern parallel computers, such as clusters of personal computers, are
increasingly hybrids of both shared memory and distributed memory computers:
the parallel computer is composed of a number of shared-memory nodes (such as
multiprocessor, multi-core personal computers), which are in turn connected by the
interconnect. While the processors in one node share memory, the overall parallel

10 Parallel Approaches in Molecular Dynamics Simulations 293

computer is still characterized by its distributed memory. The programmer must still
use a message-passing library as the overall data exchange mechanism.

10.2.2.1 Topologies of Clusters

Clusters are traditionally built using switching technologies. Indeed, the first clus-
ters used the fastest Ethernet switches then available [41, 42]. However, switches
often have limited number of connections, limiting the cluster size, and often have
a limited amount of bandwidth that must be shared among all nodes connected to it,
which is especially true if multiple levels of switches are used [43].

Many parallel computers have therefore been designed around point-to-point
connections between individual processors. A point-to-point processor interconnect
can be described by a mathematical graph. The vertices of a graph correspond to the
processors while the edges correspond to the interconnect’s connections between the
processors. The topology of the interconnect is then described by the graph’s topol-
ogy. While it is virtually impossible to provide full direct connectivity among any
processor pair for larger numbers of processors, the topology can be chosen to have
desirable attributes from both a performance standpoint as well as from an ease of
programming perspective. Generally, successful topologies used for MD simulation
have been rings, meshes [44], and hypercubes [45].

10.2.3 Reducing Computational Complexity in Molecular
Dynamics Simulations

The number of nonbonding interactions in a molecular system greatly outnumbers
the number of bonding interactions. A system of N atoms has O(N2) nonbonding
interactions arising from the N2/2 atomic pairs. Since any atom can have at most
a few bonds, the number of bonding interactions is O(N). The calculation of the
nonbonding interactions is the principal limiting factor in computer simulations,
limiting not only the attainable simulation lengths but also the system sizes that can
be feasibly simulated.

Several approaches are used to reduce the computational complexity of nonbond-
ing interactions below O(N2). Among these are employing an interaction cutoff dis-
tance, the Barnes–Hut tree method [46], and the fast multipole methods [47, 48].

Cutoff Distance

Employing a cutoff distance is among the principal means of reducing the com-
putational complexity of computing nonbonding interactions [49]. A characteristic
of nonbonding interactions is their decreasing magnitude with increasing distance.
Both commonly-employed potentials in classical MD simulations behave this way.

294 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

The Lennard–Jones potential used to describe van der Waals interactions between
atomic pairs, decays as r−6 with increasing distance r and the Coulomb potential,
which describes the electrostatic interaction between atomic pairs, decays as r−1

with increasing distance r. The limit at infinite distance for these interactions is 0.
The potential can be changed or redefined to be 0 beyond a certain cutoff distance.
Various methods are used to achieve this while retaining an accurate simulation de-
spite the changed functional form [50, 51].

The gain is that only interactions with the cutoff distance need to be calculated.
Since interactions among atoms farther apart than the cutoff distance is defined to be
zero, their calculation can be ignored. Instead of calculating O(N) interactions for
each of the N atoms (yielding O(N2) interaction calculations), only a finite subset
of interactions for each of the N atoms must be calculated. The size of the subset
depends on the system density and the cutoff radius, but is independent of the system
size. The computational complexity is therefore reduced to O(N).

Tree and Fast Multipole Methods

Tree-based methods and fast multipole-based methods provide a means to account
for all the pairwise interactions in a molecular system with a computational com-
plexity less than O(N2). Both involve clustering spatially close atoms into clus-
ters and using representative values of these clusters instead of individual atoms to
calculate distant interactions. In the Barnes and Hut tree method, interactions are
calculated individually for each atom. For close by atoms, the interaction is calcu-
lated directly. Beyond a certain distance, the interactions are calculated between the
atom and the cluster. The computational complexity of the tree-based methods is
O(N logN). In the fast multipole methods, several orders of multipoles are calcu-
lated for each atomic cluster. Atomic interactions are derived from the interactions
of their representative multipoles. For most distant clusters, individual atoms are not
even considered.

As seen later in Sect. 10.3.1, the tree- and multipole-based methods are espe-
cially well suited to parallelization techniques in which the presence of atoms on
individual processors is limited.

10.3 Parallel Molecular Dynamics Computer Simulations

In parallel calculations of molecular dynamics simulations, processors are used in
parallel to calculate the two parts of every MD integration step: the force calculation
and the coordinate update [52]. MD simulation time steps are inherently sequential:
the newest coordinates are needed to correctly calculate the forces and coordinates
can be updated only when the latest forces have been calculated. While the force
calculation and the coordinate update are calculated in parallel, the processors must
exchange force and atomic coordinates between these two calculations in a global

10 Parallel Approaches in Molecular Dynamics Simulations 295

Fig. 10.5 The parallel main
loop in molecular dynamics.
It consists of two computation
phases indicated in white
boxes (the force calculation
and coordinate updates) and
two communication phases
indicated in grayed boxes
(the force summation and
coordinate broadcast). The
global operations performed
in the communication phases
are detailed in Sect. 10.3.3.

Initial coordinates

Force calculation

Force summation

Coordinate updates

Coordinate broadcast

operation step. The parallel MD loop is shown in Fig. 10.5 and the global operations
are detailed in Sect. 10.3.3.

10.3.1 Methods for Parallel Molecular Dynamics Simulations

Three main classes of parallel methods have been developed for MD simula-
tions: replicated data [53, 54], spatial decomposition [55], and force decomposi-
tion [54, 56, 57]. Several advanced methods combine both the spatial and force
decomposition approaches [58–61]. The methods differ in how interaction calcu-
lations are distributed among the processors. Since a processor needs coordinate
data to calculate interactions, the distribution of interaction calculation determines
the data distribution among the processors. The data distribution in turn governs the
data that must be transferred among processors in each global operation. In addition,
the atomic distribution maps atoms to processors for coordinate updates and other
calculations that do not depend on interactions with other atoms.

Replicated Data

The replicated data method [53, 54] is the most straightforward parallelization
method yet with the highest communication cost. As its name implies, all atomic
data are replicated among all processors. As such, each global operation step en-
tails the transfer of all N atomic data among all P processors, which has a higher
communication cost than other methods. The global communication can easily be
performed using a single collective operation routine. Any processor can calculate
any interaction and perform any of the force updates, which simplifies load balanc-
ing. The atomic distribution is therefore very fluid.

296 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

Spatial Decomposition

In the spatial decomposition method, the space of the molecular system is divided
into separate regions, nominally one per processor. The processors are then respon-
sible for calculating the interactions among atoms in their region of space; for this,
they need to communicate with at least their 27 neighboring processors resulting
in a data transfer volume of (N/P)2/3. The spatial decomposition method is well
suited to simulations with a short cutoff distance. Since the transferred data vol-
ume is limited and the communication due to the global operations is also limited
to nearby processors, it is straightforward to map processors onto common inter-
connect topologies such as a mesh. If no cutoff would be used, the communication
would degenerate to data replication. If the molecular system does not have uniform
density, the load balancing is nontrivial. The atomic distribution generally mirrors
the spatial decomposition, that is, a processor updates coordinates of the atoms in
its assigned spatial region.

Force Decomposition

The force decomposition [54,56,57] method divides the N2 force matrix (represent-
ing the N2 interactions among N atomic pairs) into P disjoint sets called blocks,
where P is related to the number of processors employed for the calculation. Such a
division of the force matrix implies that the set of N atoms is divided into N/

√
P sub-

sets. Each processor calculates the interactions in its region, that is, among the atoms
in two blocks. Only O(N/

√
P) data is exchanged and a processor communicates

only with
√

P other processors that are in the same processor row or column. The
atomic distribution is a refinement of the distribution of atoms into blocks. Atoms
in a block are assigned to one of the

√
P processors associated with the block for

coordinate updates since its data are already present on the processor.

10.3.2 Specialized Processors

Specialized processors are processors that are designed for only a certain type of
calculation. While they are much faster than general-purpose processors, they are
more difficult to use. They are usually coprocessors, located in the host computer,
and software must be specially written to effectively use them. A common exam-
ple are the graphics processing units (GPU) found in modern personal computers.
These processors optimized for calculating the linear algebra operations that are
commonly used for computer graphics but are not as suited for other general pur-
pose calculations as general-purpose processors [62, 63].

10 Parallel Approaches in Molecular Dynamics Simulations 297

CPU

MDG2MDG2

CPU

RAM RAM

PCI Bus

System Bus

GigEGigE
PCI Bus

System Bus

PCPC

Gigabit Ethernet

Fig. 10.6 The use of parallel MDGRAPE-II processors. Shown are two personal computers (PCs),
each with one MDGRAPE-II processor (labeled MDG2). The PCs are directly connected with a
gigabit Ethernet point-to-point connection.

q

q
MDGRAPE−II Forces on atoms

Atomic coordinates

Atomic coordinates
f

Fig. 10.7 The calculation of forces by the MDGRAPE-II. The atomic position vectors q are input,
and the MDGRAPE-II returns a vector of forces f exerted on the atoms.

MDGRAPE

The MDGRAPE (MD Gravity Pipeline) processor is a specialized processor for
calculating MD simulations [64–67]. Specifically, it is used for the fast evalua-
tion of pairwise interactions, which is precisely the most demanding part of MD
simulations. Due to its specialization, it can be effectively used to calculate only
the nonbonding interactions. Other calculations, including bonding interactions, are
calculated on the general-purpose processor of the host computer. An example of
two MDGRAPE-II processors placed in two PCs is shown in Fig. 10.6. Using the
MDGRAPE-II processor achieves an eightfold speedup in the evaluation of pairwise
interactions compared to standard contemporary processors [68].

In MD applications on specialized processors, the input data are the atomic co-
ordinates and atomic types, while the output data are the interactions, for example
the forces acting on the atoms or the energies of individual atoms. As an example
for the MDGRAPE-II processor, the interaction to be calculated (i.e., the Coulomb
and the Lennard–Jones potential) is defined as a function and uploaded to the pro-
cessor. Coordinates are then sent to the processor in a vector, and the return value
is the vector containing forces or the atomic energies. The process of calculating
interactions is depicted in Fig. 10.7. The calculation on other specialized processors
proceeds in a similar manner.

298 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

10.3.3 Global Communication in Parallel Molecular
Dynamics Simulations

Global operations entail a communication operation in which all processors par-
ticipate. A simple example is the broadcast of data by one processor to all others.
The collective operations that are present in many message-passing libraries often
include basic collective operations such as a broadcast-to-all and all-to-all data ex-
changes; however, more complex global operations must still be programmed by
hand to be efficient [45, 69]. The two main operations found in parallel MD are the
global sum and global broadcast [45, 69]. The role of these two global operations is
illustrated in Fig. 10.5.

Global Sum

The global sum operation in MD is used after the calculation of interactions, for
example, forces acting on atoms. After the calculation, many processors may have
a partial force acting upon an atom, their sum being the total force, which is the
same as if it were calculated by a single processor. The global sum operation there-
fore sums all of the partial forces to obtain the total forces. In addition, the force is
needed only by the processor that updates coordinates. Therefore, an efficient imple-
mentation of the global sum operation leaves the total forces only on the processors
performing the coordinate updates of the respective atoms. The global operation
can be implemented using the MPI_reduce_scatter MPI routine in a paral-
lel MD program using the replicated data parallelization method [69] in which any
processor may have a force acting on any atom.

Global Broadcast

The global broadcast is used in MD simulations to broadcast updated coordinates
to processors. After processors perform force updates for their respective atoms,
other processors must receive the updated coordinates to correctly calculate the next
interactions. The global broadcast operation performs this broadcast. In a replicated
data parallel MD program, the MPI_allgatherv MPI routine may be used since
every processor may need coordinates of any atom.

The global sum and broadcast operations for parallel MD not using the replicated
data parallelization method tend to be more complex. In spatial decomposition, the
global sum needs to sum interactions from neighboring processors only (assuming
the cutoff distance is small enough) and the broadcast has a similarly small locality.
In the force decomposition method, the communication in the global sum and global
broadcast operations is limited to blocks. Only the processors that share a block
communicate. Since data within a block is replicated, the processors within a block

10 Parallel Approaches in Molecular Dynamics Simulations 299

Fig. 10.8 The decomposition
of the force matrix used
for our parallel SISM MD
program. An example for
20 atoms and 16 processors
is shown. The atoms are
divided into 4 blocks and
one processor is assigned
to calculate the interactions
among each of the 4×4 = 16
block pairs. Blocks

B
lo

ck
s

1 2 3 4

4

3

2

1

perform a “block-limited” version of the global operation used in replicated data
parallel MD.

10.4 Parallelization of SISM

Because the SISM method focuses on speeding up the calculation of bonding inter-
actions and parallelization focuses on speeding up the calculation of non-bonding
interactions, it is natural to complement the two approaches.

To showcase the complementarity of the SISM method, parallelization, and
the use of specialized processors, we have developed a parallel program for MD
simulation implementing the SISM method [68]. It supports the use of multiple
MDGRAPE-II processors in many host computers. We opted to use the force de-
composition approach to parallelization and do not rely on any special interconnect
topology. The method is available for distributed memory parallel computers

The decomposition of the force matrix that we used in our program is depicted
in Fig. 10.8. Molecules are never split into different blocks. The molecules in every
block are also assigned to individual processors, forming an atomic distribution. A
processor applies the SISM to the molecules assigned to it, including coordinate
updates of its constituent atoms. The processor is also responsible for calculating
interactions among the atoms in two of its associated blocks. If the MDGRAPE-II
board is present, the calculations are performed on the board as shown in Fig. 10.9,
otherwise the host processor calculates the interactions.

10.4.1 The Distributed Diagonal Force Decomposition Method

To enable calculations of the SISM method on larger, general parallel computers that
do not rely on specialized processors, we have implemented the distributed diagonal
force decomposition (DDFD) method [70,71]. The DDFD method is an extension of
the general force decomposition method. It uses a minimal number of processors for

300 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

MDGRAPE−II

Blocks

B
lo

ck
s

Forces of block 2 atoms
on block 3 atoms

Block 3 coordinates

Block 2 coordinates
1 2 3 4

4

3

2

1

Fig. 10.9 Force calculation on the MDGRAPE-II processor using force decomposition. Shown
is the force calculation of the interactions among the atoms in blocks 2 and 3, specifically the
forces exerted by block 2 atoms on block 3 atoms. The blocks are highlighted with a light gray
background; the dark gray square represents the interactions among the atoms of these two blocks.
A separate calculation is used to calculate the equal but opposite forces of block 3 atoms on block 2
atoms.

the number of blocks used to decompose the force matrix. Since a larger number of
blocks are smaller, the communication requirements are lower, resulting in a higher
parallel efficiency.

In the DDFD method, the diagonal of the force matrix is distributed. As seen in
Fig. 10.10(a), there are three types of interactions among the atomic blocks: a block
product (interactions among two atomic blocks) lies either above, on, or below the
diagonal. The interactions in the block products above the diagonal are opposite but
equal to the interactions in the block products below the diagonal, so they do not
have to be explicitly calculated. The interactions in block products on the diagonal
are only among atoms in the same block. Any processor that has atomic data for
these atoms can calculate any of the intra-block interactions for this block. As seen
in Fig. 10.10(b), these interactions are distributed for calculation to processors below
the diagonal; Fig. 10.10(c) shows the final state. The number of processors needed
is equal to only the number of block products below the diagonal.

A side effect of the diagonal distribution process in the DDFD method is the
straightforward implementation of load balancing. The distribution of interactions
from a diagonal block product to processors holding the block data can easily be
altered, assigning specific processors more or less interaction calculations. By alter-
ing the diagonal distribution in this way, the computational load of the processors
is changed [70, 71]. Load balancing is especially crucial when using an interaction
cutoff distance, since the computational load inherently varies among processors. In
addition, due to atomic motion during the MD simulation, the atoms included with
one atom’s cutoff range varies throughout a simulation. Since the load balancing in
the DDFD method is dynamic, the load balancing is dynamically tuned during the
entire MD simulation, resulting in a higher parallel efficiency.

10 Parallel Approaches in Molecular Dynamics Simulations 301

4 5 6
32

1
1

2

3

4

1

2

3

4

1 2 3 4

1 2 3 4

B
lo

ck
s

.

Blocks
(a)

4 5 6
32

1
1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

B
lo

ck
s

.

Blocks
(b)

4 5 6
32

1
1

2

3

4

1

2

3

4

1 2 3 4

1 2 3 4

B
lo

ck
s

.

Blocks
(c)

Fig. 10.10 The distributed diagonal force decomposition (DDFD) method. In (a) the interactions
between the atoms are shown. The self-interactions (diagonal interactions) are 0 and not consid-
ered. The grayed interactions above the diagonal are equal but opposite to the ones below the
diagonal and are therefore obtained from those. One processor is assigned to every block product
of two different blocks. For example, processor 1 is assigned to the product of blocks 1 and 2, while
no processor is assigned to the product of block 1 with itself; as shown in (b), these interactions
are rather assigned to processors calculating other interactions with block 1 (i.e., processors 1, 2,
and 4). The final state when this diagonal distribution is performed for all 4 blocks is shown in (c).

10.5 Conclusions

We have presented our research on parallel approaches to MD simulation. We have
shown the complement between algorithmic approaches and parallelization in the
quest to speed up the calculation of simulations.

The SISM, based on the standard theory of molecular vibrations, enables the use
of much larger integration time steps than are possible with standard MD methods.
Since the computational cost of an MD time step remains virtually constant, the
computational time of an MD simulation is drastically reduced.

302 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

While the SISM allows larger integration time steps to be used, other methods
must be used to reduce the computational time of the time steps themselves. Calcu-
lating nonbonding interactions dominates an MD time step, so focusing on reducing
the time of calculating nonbonding forces is crucial. Specialized hardware can be
effectively used to reduce the computational time of nonbonding interactions. We
have shown the use of multiple MDGRAPE-II processors to speed up the calculation
of nonbonding interactions.

As the algorithmic approaches and specialized hardware reduce the computa-
tional cost of individual MD time steps, efficient parallelization becomes even more
important to achieving faster MD simulations, since the communication time in-
creases relative to the computational time. The SISM is readily parallelized, includ-
ing its implementation with multiple specialized processors. Used in combination
with the force decomposition method, the communication between the distributed
memory computers is guaranteed to be limited even for systems where no distance
cutoff is employed. The DDFD method further reduces communication require-
ments among processors and enables a greater number of processors to be used.
In addition, it intrinsically supports dynamic load balancing, which allows effective
load balancing, which leads to higher parallel efficiencies and greater speedups of
MD simulations.

Acknowledgments The authors would like to acknowledge the financial support of the Slovenian
Research Agency under grant No. P1-0002.

References

1. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of
Lennard-Jones molecules, Phys. Rev. 159 (1967) 98–103.

2. J. M. Sanz-Serna, M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London
(1994).

3. B. J. Leimkuhler, S. Reich, R. D. Skeel, Integration methods for molecular dynamics, IMA
(1994) 1–26.

4. J. Wisdom, M. Holman, Symplectic maps for the N-body problem, Astron. J. 102 (1991)
1528–1538.

5. J. Wisdom, M. Holman, J. Touma, Symplectic correctors, Field Inst. Commun. 10 (1996)
217–244.

6. J. Laskar, P. Robutel, High order symplectic integrators for perturbed Hamiltonian systems,
Celestial Mech. 80 (2001) 39–62.

7. L. Nadolski, J. Laskar, Application of a new class of symplectic integrators to accelator track-
ing, Proceedings of EPAC 2002 (2002) 1276–1278.

8. T. Schlick, E. Barth, M. Mandziuk, Biomolecular dynamics at long timesteps: Bridging the
timescale gap between simulation and experimentation, Annu. Rev. Biophys. Biomol. Struct.
26 (1997) 181–222.

9. E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations, McGraw-Hill Book Company,
Inc., New York (1955).

10. N. Matubayasi, M. Nakahara, Reversible molecular dynamics for rigid bodies and hybrid
Monte Carlo, J. Chem. Phys. 110 (1999) 3291–3301.

10 Parallel Approaches in Molecular Dynamics Simulations 303

11. T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, G. J. Martyna, Symplectic
quaternion scheme for biophysical molecular dynamics, J. Chem. Phys. 116 (2002) 8649–
8659.

12. M. Ikegutchi, Partial rigid-body dynamics in NPT, NPAT and NPγT ensembles for proteins
and membranes, J. Comput. Chem. 25 (2004) 529–541.

13. D. Janežič, M. Praprotnik, F. Merzel, Molecular dynamics integration and molecular vibra-
tional theory: I. New symplectic integrators, J. Chem. Phys. 122 (2005) 174101.

14. M. Praprotnik, D. Janežič, Molecular dynamics integration and molecular vibrational theory:
II. Simulation of non-linear molecules, J. Chem. Phys. 122 (2005) 174102.

15. M. Praprotnik, D. Janežič, Molecular dynamics integration and molecular vibrational theory:
III. The infrared spectrum of water, J. Chem. Phys. 122 (2005) 174103.

16. M. Praprotnik, D. Janežič, Molecular dynamics integration meets standard theory of molecular
vibrations, J. Chem. Inf. Model 45 (2005) 1571–1579.

17. R. Rey, Vibrational energy of HOD in liquid D2O, J. Chem. Phys. 104 (1996) 2356–2368.
18. R. Rey, Transformation from internal coordinates to Cartesian displacements in the Eckart

frame for a triatomic molecule, Chem. Phys. 229 (1998) 217–222.
19. R. Rey, Vibrational phase and energy relaxation of CN−1 in water, J. Chem. Phys. 108 (1998)

142–153.
20. B. R. Brooks, D. Janežič, M. Karplus, Harmonic analysis of large systems: I. Methodology, J.

Comput. Chem. 16 (12) (1995) 1522–1542.
21. D. Janežič, B. R. Brooks, Harmonic analysis of large systems: II. Comparison of different

protein models, J. Comput. Chem. 16 (12) (1995) 1543–1553.
22. D. Janežič, R. M. Venable, B. R. Brooks, Harmonic analysis of large systems: III. Comparison

with molecular dynamics, J. Comput. Chem. 16 (12) (1995) 1554–1566.
23. M. Praprotnik, D. Janežič, J. Mavri, Temperature dependence of water vibrational spectrum:

a molecular dynamics simulation study, J. Phys. Chem. A 108 (2004) 11056–11062.
24. C. Eckart, Some studies concerning rotating axes and polyatomic molecules, Phys. Rev. 47

(1935) 552–558.
25. J. D. Louck, H. W. Galbraith, Eckart vectors, Eckart frames, and polyatomic molecules, Rev.

Mod. Phys. 48 (1) (1976) 69–106.
26. H. F. Trotter, On the product of semi-groups of operators„ Proc. Am. Math. Soc. 10 (1959)

545–551.
27. G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal.

5 (1968) 506–517.
28. H. Goldstein, Classical Mechanics, 2nd Edition, Addison-Wesley Publishing Company

(1980).
29. D. Janežič, F. Merzel, An efficient symplectic integration algorithm for molecular dynamics

simulations, J. Chem. Inf. Comput. Sci. 35 (1995) 321–326.
30. D. Janežič, F. Merzel, Split integration symplectic method for molecular dynamics integration,

J. Chem. Inf. Comput. Sci. 37 (1997) 1048–1054.
31. D. Janežič, M. Praprotnik, Molecular dynamics integration time step dependence of the split

integration symplectic method on system density, J. Chem. Inf. Comput. Sci. 43 (6) (2003)
1922–1927.

32. U. Borštnik, M. Hodošček, D. Janežič, Fast parallel molecular simulations, Croat. Chem. Acta
78 (2) (2005) 211–216.

33. W. F. van Gunsteren, H. J. C. Berendsen, Computer simulation of molecular dynamics:
Methodology, applications, and perspectives in chemistry, Angew. Chem. Int. Ed 29 (9) (1990)
992–1023.

34. D. W. Heermann, A. N. Burkitt, Parallel Algorithms in Computational Science, Springer-
Verlag, Berlin (1991).

35. R. Trobec, M. Šterk, M. Praprotnik, D. Janežič, Implementation and evaluation of MPI-based
parallel MD program, Int. J. Quant. Chem. 84 (1) (2001) 23–31.

36. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, W.-K. Su,
Myrinet: A gigabit-per-second local area network, IEEE Micro 15 (1) (1995) 29–36.

304 Dušanka Janežič, Urban Borštnik and Matej Praprotnik

37. J. Liu, J. Wu, D. K. Panda, High performance RDMA-based MPI implementation over Infini-
Band, Int. J. Parallel Programm. 32 (3) (2004) 167–198.

38. V. S. Sunderam, PVM: A framework for parallel distributed computing, Concurr. Pract. Exper.
2 (4) (1990) 315–339.

39. G. Burns, R. Daoud, J. Vaigl, LAM: An open cluster environment for MPI, in: Proceedings of
Supercomputing Symposium, Vol. 94 (1994) pp. 379–386.
URL http://www.lam-mpi.org/download/files/lam-papers.tar.gz

40. W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of
the MPI message passing interface standard, Parallel Comput. 22 (6) (1996) 789–828.

41. T. Sterling, D. J. Becker, D. Savarese, Beowulf: A parallel workstation for scientific computa-
tion, in: Proceedings, 24th International Conference on Parallel Processing, Vol. 1 (1995) pp.
11–14.

42. D. H. M. Spector, Building Linux Clusters: Scaling Linux for Scientific and Enterprise Appli-
cations, O’Reilly & Associates, Sebastopol, CA (2000).

43. H. G. Dietz, T.I.Mattox, KLAT2’s flat neighborhood network, in: Extreme Linux track of the
4th Annual Linux Showcase (2000).

44. R. Trobec, Two-dimensional regular d-meshes, Parallel Comput. 26 (13) (2000) 1945–1953.
45. U. Borštnik, M. Hodošček, D. Janežič, Improving the performance of molecular dynamics

simulations on parallel clusters, J. Chem. Inf. Comput. Sci. 44 (2) (2004) 359–364.
46. J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324 (4) (1986)

446–449.
47. J. A. Board, Jr., C. W. Humphres, C. G. Lambert, W. T. Rankin, A. Y. Toukmaji, Ewald and

multipole methods for periodic N-body problems, in: P. Deuflhard, et al. (Eds.), Lecture Notes
in Computational Science and Engineering, Springer-Verlag (1998).

48. J. Board, L. Schulten, The fast multipole algorithm, Comput. Sci. Eng. 2 (1) (2000) 76–79.
49. A. R. Leach, Molecular Modeling: Principles and Applications, Addison Wesley Longman

Limited, Essex (1996).
50. R. Loncharich, B. Brooks, The effects of truncating long-range forces on protein dynamics,

Proteins: Struct. Funct. Genet 6 (1989) 32–45.
51. S. Feller, R. Pastor, A. Rojnuckarin, S. Bogusz, B. Brooks, Effect of electrostatic force trunca-

tion on interfacial and transport properties of water, J. Phys. Chem. 100 (1996) 17011–17020.
52. R. Trobec, I. Jerebic, D. Janežič, Parallel algorithm for molecular dynamics integration, Par-

allel Comput. 19 (9) (1993) 1029–1039.
53. B. R. Brooks, M. Hodošček, Parallelization of CHARMm for MIMD machines, Chemical

Design Auto. News 7 (1992) 16–22.
54. S. Plimpton, B. Hendrickson, Parallel molecular dynamics algorithms for simulation of molec-

ular systems, in: T. G. Mattson (Ed.), Parallel Computing in Computational Chemistry, Amer-
ican Chemical Society (1995) pp. 114–132.

55. T. G. Mattson (Ed.), Parallel Computing in Computational Chemistry, American Chemical
Society (1995).

56. S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Chem. Phys.
117 (1) (1995) 1–19.

57. S. J. Plimpton, B. A. Hendrickson, A new parallel method for molecular-dynamics simulation
of macromolecular systems, J. Comp. Chem. 17 (1996) 326–337.

58. M. Snir, A note on N-body computation with cutoffs, Tech. rep., IBM T. J. Watson Research
Center (2001).

59. M. Snir, A note on n-body computations with cutoffs, Theory Comput. Systems 37 (2004)
295–318.

60. K. Bowers, R. Dror, D. Shaw, The midpoint method for parallelization of particle simulations,
J. Chem. Phys. 124 (18) (2006) 184109–184109.

61. K. Bowers, R. Dror, D. Shaw, Overview of neutral territory methods for the parallel evaluation
of pairwise particle interactions, J. Phys. Conf. Ser. 16 (2005) 300–304.

62. K. Moreland, E. Angel, The FFT on a GPU, in: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware, ACM (2003).

10 Parallel Approaches in Molecular Dynamics Simulations 305

63. J. Krueger, R. Westermann, Linear algebra operators for GPU implementation of numerical
algorithms, ACM Trans. Graphics 22 (3) (2003) 908–916.

64. T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, B. Elmegreen, Molecular dynamics ma-
chine: Special-purpose computer for molecular dynamics simulations, Mol. Sim. 21 (1999)
401–415.

65. T. Narumi, Special-purpose computer for molecular dynamics simulations, Doctor’s thesis,
University of Tokyo (1998).

66. T. Narumi, A. Kawai, T. Koishi, An 8.61 Tflop/s molecular dynamics simulation for NaCl with
a special-purpose computer: MDM, in: Proceedings of SuperComputing 2001, ACM, Denver
(2001).

67. M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, A. Konagaya, Protein
explorer: A Petaflops special-purpose computer system for molecular dynamics simulations,
in: Proceedings of SuperComputing 2003, ACM, Phoenix (2003).

68. U. Borštnik, D. Janežič, Symplectic molecular dynamics simulations on specially designed
parallel computers, J. Chem. Inf. Model. 45 (6) (2005) 1600–1604.

69. K. Kutnar, U. Borštnik, D. Marušič, D. Janežič, Interconnection networks for parallel molec-
ular dynamics simulation based on hamiltonian cubic symmetric topology, J. Math. Chem.
45(2) (2009) 372–385.

70. U. Borštnik, Parallel computer simulations on clusters of personal computers, Ph.D. thesis,
University of Ljubljana (2007).

71. U. Borštnik, B. R. Brooks, D. Janežič, The distributed diagonal force decomposition method.
I. Description of the method, submitted for publication (2008).

Chapter 11
Parallel Computer Simulations of Heat Transfer
in Biological Tissues

Roman Trobec

Abstract

Parallel computer simulation of heat transfer in parts of the human body is de-
scribed. Realistic geometric models and tissues with different thermodynamic prop-
erties are analyzed. The principal steps of the computer simulations, including
mathematical and geometric modeling, domain discretization, numerical solution,
validation of simulated results, and visualization, are described. An explicit finite
difference method for the inhomogeneous computational domain has been devel-
oped and tested on the diffusion equation. The bio-heat equation, which incorpo-
rates heat conduction, heat transfer between blood and tissues and heat production
by metabolism, was used in our analysis. Because of significant calculation com-
plexity, a parallel simulation code was also implemented.

Domain decomposition and communication with messages have been selected in
the parallel implementation of the explicit finite difference method. Mapping of the
computational domain on the parallel computer was addressed, followed by theoret-
ical performance analysis of the proposed parallel algorithm. The implementation
of all simulation steps is shown in detail for the simulation of the steady-state tem-
perature and its evolution in time for a human knee exposed to external conditions
and to topical cooling. The results have been validated by experimental measure-
ments. Execution time was measured on a computing cluster with different numbers
of processors and compared with theoretical expectations. It is shown that parallel
computer simulations can be of great use in medicine, either for planning surgery
or for evaluating doctrines of medical treatment. The chapter concludes with a sum-
mary of the results and a list of relevant references from the research field.

Roman Trobec
Department of Communication Systems, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana,
Slovenia, e-mail: roman.trobec@ijs.si

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_11, 307
c© Springer-Verlag London Limited 2009

308 Roman Trobec

11.1 Introduction

In recent decades, computer simulations have proved a great help in understand-
ing and solving a variety of problems in science [1, 2], medicine [3, 4], engineer-
ing [5,6], etc. Initial simulations and optimizations in the design of cars, aircrafts, or
turbines [7, 8] are done on computers. Basic characteristics of the designed devices
are obtained using computer simulations, which are significantly less expensive than
real modeling and testing. Computer simulations are complementary methods for
speeding up prototyping processes. Hazardous modifications on nuclear plants [9],
natural phenomena like weather [10], and molecular dynamics [11] cannot be sub-
ject to experiment in reality, and computer simulations are the only viable option for
obtaining some deeper insight into such phenomena.

Especially in medicine, experiments are often difficult to perform because hu-
man subjects are involved [12]. Measurements during clinical procedures are time
consuming and often not as accurate as desired, because many parameters are diffi-
cult to control [13]. In many cases, measurements made during clinical procedures
would be too invasive and limited to only a few test points at best. An example
would be the search for the highest temperature or for its steepest gradient in a part
of the human body. With the use of computer simulation, however, it is possible to
calculate, analyze, and visualize the temperature changes that occur with time.

In most scientific computing applications, a physical system is represented by
a mathematical model. Real problems cannot be solved analytically, that is, by a
formula that provides the solution for any moment in time and any spatial point.
Instead, the numerical solution must be obtained, for which the continuous physical
domain has to be replaced by its discrete form.

The computational domain, which is a simplified presentation of the physical
domain being simulated, cannot always be represented by a simple object for which
there is an eventual analytical solution. For example, parts of the human body are
irregularly shaped three-dimensional (3D) objects, which must be represented by a
spatial geometric model [14]. Such models of the body organs can be created using
the visible human dataset (VHD) [15] or a similar data source based on 2D slices.

The investigated phenomena are often described mathematically by partial differ-
ential equations (PDE). Usually, the physical domain is partitioned into many small
subdomains and a simple algebraic equation is obtained for each. If the 3D geomet-
ric model is obtained by stacking the 2D slices, it is natural and simple to discretize
the problem, using an orthogonal structured mesh of points and replacing deriva-
tives in PDEs by finite differences in order to obtain a system of algebraic equations.
Some other, more sophisticated, methods exist for the numerical solution of PDEs
based on unstructured meshes, such as finite element methods (FEM) [16], or, more
recently, meshless methods [17,18] that construct the final linear system from small
sets of nearest neighbors only. These methods are more efficacious for irregularly
shaped domains, but conceptually and computationally more complex. Therefore,
we have proceeded with the simplest finite difference methods (FDMs), which have
given adequate results. Note that we will use the terms mesh and points for domain
discretization and network and nodes for computer interconnection topology.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 309

Solving the resulting system of equations over such a discretized domain gives
the values for certain physical quantities at every subdomain. If the evolution in
time is of interest, then time discretization also has to be implemented, by dividing
the investigated interval into a set of short time-steps. For each time-step, an alge-
braic system of equations has to be solved [19]. For higher accuracy, the number
of discretized subdomains and their equations can become too large to be managed
with a single computer, and high performance computers are advantageous in such
cases [20].

Computing performance can also be improved by numerous approaches, such
as network computing, grid computing, cloud computing, and other variants of the
more general term “distributed computing” [21]. This is characterized by hetero-
geneous, interconnected computers of different computing performance, different
operating systems and, what is most important, different characteristics of the in-
terconnecting channels. Such a heterogeneity constitutes a serious drawback for the
application of distributed computing in computer simulations [22], particularly be-
cause of slow communication and the occasional unavailability of computing re-
sources.

On the other hand, parallel computers are composed of fast, unified computers
connected by fast, dedicated communication links. Today, low-cost parallel comput-
ers are available with computing clusters [23, 24]. The parallel speedup is defined
as the ratio of the execution time on a single processor to that on a parallel com-
puter. The time of running an application on a parallel computer consists of both
computation and communication time. Increasing the number of processors usually
increases the ratio of communication time to computation time; thus, both processor
performance and communication time have to be improved in order to improve the
overall performance of parallel algorithms. In some problems where a significant
amount of global communication is needed, for example, molecular dynamics [25],
optimal performance of intra-cluster communication is particularly important.

The temperature in human tissue is an important factor in many fields of physi-
ology [26], surgery [27, 28], sport [29], cryotherapy [27, 30], etc. The temperature
profiles are influenced by environmental conditions, by the temperatures of neigh-
boring tissues, by the muscle metabolism, and by the circulating blood. Different
tissues have different physical and thermodynamic properties and respond diversely
to temperature change [31]. The temperature field varies in space and time in differ-
ent parts of the investigated domain. In vivo measurements are usually invasive and
often impossible, if deep tissue or vital organs are in question.

A substantial amount of work on analytical and numerical solutions of the bio-
heat equation has been published [12, 32–34]. In this chapter a computational
method for the solution of the bio-heat equation has been devised that incorpo-
rates heat diffusion, heat generation by tissue metabolism, and heat transfer between
blood and tissues. Some important extensions have been introduced by our work, in
particular an inhomogeneous spatial model composed of tissues with different char-
acteristics, and modeling of the heat transfer and heat sources as functions of the
surrounding tissue temperature. This solution of the bio-heat equation was evaluated

310 Roman Trobec

in terms of stability and accuracy and solved numerically on single and parallel
computers.

We implemented the parallel version of the proposed method, which runs ef-
ficiently on 16 or more connected computers – a computing cluster. In this way
computation time can be shortened significantly. Such an approach enables the so-
lution of several millions of equations for each time-step. Besides the results, the
computer simulations also support the development of new ideas and theories be-
cause “unexpected” simulated results have to be explained. The proposed method is
quite general and can be applied to investigations of a variety of living tissues.

The simulation procedure was previously tested using published measurements
of the steady-state temperature fields of the human forearm, in particular from the
well-known Pennes’ paper published 60 years ago [32]. Other experimental data are
available for the temperature of the forearm during immersion in water at various
temperatures, either evolving in time [35] or near their steady state [36]. These mea-
surements have since been elaborated by others [33, 37]. We have simulated most
of these measurements with high accuracy, which has confirmed that the proposed
simulation is stable and accurate. We have shown that the measured Pennes’ results
actually reflect, in detail, correct measured values.

We have also studied in detail other parts of the human body, like the human
knee and heart. In paper [38] we have been interested in simulating possible modes
of knee cooling following injury or surgery [26,27]. Two different methods of topi-
cal cooling were compared; first, use of a gel pack filled with refrigerated gel [30],
which is exposed to ambient temperature and therefore becomes less and less ef-
fective, and secondly, use of a cryo-cuff cooled by a liquid at constant temperature
maintained by an external cooling device [29]. Lowering the tissue temperature re-
duces the need for pain medication and shortens the rehabilitation period. The aim
of this work was to simulate topical cooling of the knee after injury or surgery and
to calculate and display the development of temperature distribution in all tissues of
the knee region.

A simulation of the cooling of the human heart during surgery has been described
in [4]. We present results obtained using a more complex mathematical model that
takes into account convection, diffusion and fluid flow, as well as providing a higher
spatial resolution. The technique used can also be applied for the prediction of tem-
perature elevation following coronary artery occlusion and many other medical sit-
uations. The human body and the heart have to be cooled appropriately in order
to slow down their vital functions [39]. To lower metabolic requirements, the body
and the heart have to be cooled, for example, by pumping a cold solution through
coronary vessels (cardioplegia). For even better cardiac cooling a method of topical
cooling is sometimes used [40], for example, submerging the heart in cooling liq-
uid. In vivo temperature measurements are invasive and limited to a few test points,
while computer simulation provides improved analysis of various cooling options.
Some initial results on the simulation of heart cooling based on diffusion have been
reported in [14, 41].

In this chapter the complete design of a parallel computer simulation procedure
will be presented, from initial modeling and implementation to the final validation

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 311

and analysis of the results. In the next section the principal steps of computer sim-
ulations are described and some basic terms from the field are introduced. Methods
for the solution of the PDEs are then described. A time-dependent diffusion equa-
tion is taken as an example. The explicit FDM was selected as the most appropriate
for our application, because of simple implementation of a numerical scheme for
inhomogeneous tissue and a great potential for parallelization. In the second part of
the chapter, the bio-heat equation, which was used in the simulation of heat transfer
and temperature distribution in a human knee, is introduced. The equation incorpo-
rates heat conduction, heat transfer between blood and tissues, and heat production
by metabolism. The results show the evolution of the temperature field and its steady
state. The simulation results were evaluated by comparison with experimental mea-
surements.

The solution method, based on the finite differences, was implemented on a par-
allel computing cluster. Opportunities for parallelization of the solution method are
described and its calculation complexity analyzed. Domain decomposition and com-
munication with messages were selected in the parallel program. Execution time
was measured on a computing cluster with various numbers of computers and com-
pared with theoretical expectation. The chapter concludes with a summary of results
and a list of relevant references from the research field.

11.2 Principal Steps in Computer Simulation

Computer simulation of physical phenomena involves several steps. Some of them
depend on user requirements and others on the results of previous steps. Some
of them are not obligatory, for example, parallel implementation, if the simulated
problem can be managed in a reasonable time by a single computer. The computer
simulation process is iterative by its nature and can be implemented by loops for
step refinement. The flowchart of a typical computer simulation process is shown in
Fig. 11.1.

Goals of the simulation, with possible strategies and formulations of the math-
ematical model, have to be considered first. The designers have to locate a bal-
ance between requirements and limitations, using assumptions and approximations.
Much previous knowledge, available from the mathematical modeling area, can be
applicable to a different application area; however, models often need to be adapted
in order to be useful for the specific application. The modeling step usually finishes
with a system of PDEs, with initial and boundary conditions that depend on the
simulated case. In our work we focus on heat transfer in biological tissue, modeled
by a diffusion equation, with some additional terms for heat production and heat
transport.

The simulated region, termed the computational domain, is usually bounded and
placed in the environment that interacts with the simulated phenomenon through the
boundary conditions. If the phenomenon is time dependent, an initial state must be
specified, from which its evolution in time will be calculated. Geometric objects in-
side the domain can be analytically defined bodies from a single material, or bodies

312 Roman Trobec

Fig. 11.1 Principal steps of
computer simulation process
loop.

of irregular shape, composed of several materials with different physical proper-
ties. Modeling the geometry is strongly related to the simulation scale. In molecular
dynamics, atoms and molecules are modeled as interacting particles; at the other
extreme, in the simulation of galaxies, stars are taken as a modeled unit. In our con-
tribution, we will be modeling 3D organs or parts of a human body that are irregular
and inhomogeneous. The geometric model must satisfy the user requirements and
those of the mathematical model in order to provide a stable and accurate solution
of the simulated system.

Usually the PDEs cannot be solved analytically, therefore they are converted into
a set of equations, which is accomplished by approximating the solution in a set of
points that are placed within simulated objects in the domain [42]. Points are also
placed on the borders of objects and on boundary layers between different tissues,
which enables the imposition of boundary conditions and continuous transitions be-
tween different materials in the domain. The points are traditionally “connected”
by neighboring points to make a mesh, in order to be able to approximate deriva-
tives in PDEs [43] or a local solution function [16]. Recently, meshless methods
have been proposed that rely only on a set of neighboring points, weighted by a
hat-shaped weight function [17, 18]. In both cases the density of points varies to an
extent depending on the geometric detail of the model and the gradients in the so-
lution. Usually, the initial mesh is not adequate and must be refined after validation
of the first simulated results [44]. The mesh refinement may also introduce some
changes in the geometrical and mathematical models.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 313

Often, at the time of initial meshing, no knowledge is available about the regions
with larger gradients or discontinuities in the simulated solution [45]. In order to
improve the accuracy of the simulated solution, an adaptive domain discretization
is needed [46].

A system of equations that provides a simulated solution is constructed using a
discretized domain and different approximation principles. For example, using an
FDM, derivatives in the mathematical model are replaced by finite differences and,
for each internal point [43], an equation is formed using collocation, which states
that the model equations should be satisfied exactly at all points, while by the FEM
the weighted residual method [42] is used, which minimizes the difference between
the solution and its approximation over the whole computational domain.

Only temporal derivatives, if present, remain, thus PDEs are transformed into
a system of ordinary differential equations (ODEs) that can be solved using time
discretization by explicit or implicit numerical methods [19]. The explicit methods
are simple and require just matrix-vector multiplication at each time-step, while
implicit methods require solution of a system of equations at each time-step.

The simulated solution has to be visualized in order to understand and analyze
the simulated results. By FDM the solution values between points are obtained by
interpolation, while those by FEM are obtained by evaluating the numerical solution
at any desired point. The solution thus obtained must be validated by its application
to some simplified problem, for example, a homogeneous cube with simple initial
and boundary conditions for which the analytical solution is known [47]. Alter-
natively, previous measurements [32, 35, 48] of simulated variables from physical
experiments can be used for validation.

The whole simulation process is iterative, with local loops for improving models
or refining domain discretization, or for debugging the simulation program. Appli-
cations, as in the simulation of aircrafts, rocket engines, human organs, etc., require
several millions of discretization points. Standard sequential computers may not be
able to compute the simulation results in a reasonable time or to have enough mem-
ory for all the simulation steps. One of the possible solutions is reimplementation of
the knowledge embedded in the sequential programming code by developing a new
parallel program, which can run on a large number of parallel processors [49].

Parallel speedup is defined as the ratio of the execution time on a single proces-
sor to that on a parallel computer. Parallel efficiency is the speedup normalized by
the number of processors [20]. Efficient parallel implementation of the simulation
procedure must encompass the parallelization of most simulation steps including
domain discretization, numerical solution, and visualization. None of them have
been adequately solved today, so further research is needed in this area. We will
focus in the rest of the chapter on the explicit FDM, which requires a simple struc-
tured mesh and is simple to parallelize. Other simulation approaches, for example,
FEMs or meshless methods are based on similar steps, except that the domain dis-
cretization and consequent construction of the final system of equations could be
more complex, however, also more stable and accurate.

314 Roman Trobec

11.3 Numerical Solution of Partial Differential Equations

The mathematical model of a system is a set of variables and equations that de-
scribe the system. If the equations involve derivatives of system variables, we talk
about a system of ODEs with solutions that are functions of independent variables.
Many of the basic laws in nature, for example, from the area of electromagnetic
field (Maxwell’s equations), fluid flow (Navier–Stokes equations), etc., can be ex-
pressed effectively by the use of partial derivatives of unknown functions with re-
spect to independent system variables. Equations that involve partial derivatives of
unknown functions with respect to more than one independent variable are termed
PDEs.

In real cases the PDE solution cannot be written as an analytical expression,
particularly in cases where the computational domain is not composed of simple
geometric objects, as is the case in simulations of biological tissues in human organs.
Numerical solution is a only viable option in such cases. Different approaches exist
for obtaining a numerical solution.

A numerical solution of PDEs is based on spatial discretization of the global
domain Ω and its boundary Γ , which convert a PDE of the form:

L u(x) = f (x), x ∈Ω (11.1)

with boundary conditions
u = u x ∈ Γ (11.2)

into a system of ordinary algebraic or differential equations. u is the unknown solu-
tion, L is a differential operator u �→L u, f is a linear form f : Ω → R, and x is
the vector of independent variables.

Replacing u with the unknown approximate solution û in the PDE, the residual
of Eq. (11.1) can be defined as

r(x) = L û(x)− f (x). (11.3)

If a PDE depends only on spatial variables, a system of ordinary algebraic equa-
tions (OAE) is obtained after discretization.

A time-dependent PDE is converted into a system of ODEs with point parameters
ui(t) as unknowns, which is then discretized in time to give the final system of OAE.
The initial conditions u(x, t0) are required in the time-stepping solution procedure.
We will see that the relationship between the spatial and temporal discretization and
the numerical methods used for the transformation of ODE into OAE are important
issues in the stability of the numerical methodology.

The diffusion equation,

ρc
∂T
∂ t

= ∇ · (λ∇T) (11.4)

described in detail in the next section, is an example of PDE, which models the
time-dependent heat transfer in 3D solid bodies. It has four independent variables,

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 315

three space variables denoted by x, y, z and a time variable denoted by t. To solve the
diffusion equation numerically, the domain Ω was discretized by a set of N points
xi on the equidistant orthogonal mesh of cubes in 3D. The approximate solution T̂
is represented in each point by the corresponding time-dependent point parameters
Ti(t). With an explicit time-stepping method the approximate solution is obtained
for the desired solution time and accuracy. The solution will provide a temperature
field whose derivatives, with respect to the independent variables, boundary values,
and initial state, satisfy the relationships defined by the diffusion equation (11.4).

We will first describe a solution process for a general PDE, then we will apply it
to the solution of the bio-heat equation used in our simulations.

11.3.1 Finite Difference Method

The geometric domain has to be discretized in order to transform PDEs into a sim-
pler system of equations. In the regular FDM, the domain is discretized in space
with a rectangular mesh of points with four neighbors in 2D, and with six neighbors
in 3D. The parameter of each point represents the value of û at the point ui = û(xi)
while, in between points, û is undefined. The values of spatial derivatives in PDEs
are approximated using ui, adjacent point parameters, and their finite differences.
For each internal point xi, an equation is formed using collocation, which states
that the residual should be zero at points, that is, that Eq. (11.1) should be satisfied
exactly at xi

r(xi) = L û(xi)− f (xi) = 0, xi ∈Ω . (11.5)

Similarly, equations for boundary points are formed from Eq. (11.2)

û(xi)−u(xi) = 0, xi ∈ Γ . (11.6)

The spatial order of accuracy of FDM is the same as the lowest order of all the
spatial derivative approximations used [43].

Only temporal derivatives remain, thus the PDE was transformed into a system
of ODE with point parameters ui(t) as unknowns. The system will be solved numer-
ically by approximating time derivatives with finite differences to obtain a system
of OAE. Then, starting with initial condition u(x, t0) and stepping in time for Δ t,
the solution of PDE un+1

i in time tn +Δ t is obtained from the solution in the pre-
vious time-step un

i , either by explicit or implicit numerical methods, described in
Sect. 11.3.3.

316 Roman Trobec

11.3.2 Finite Element Method

Another popular approach for obtaining the PDEs solution is by FEMs. The domain
is discretized in space by an unstructured mesh of triangles or quadrilaterals in 2D,
and tetrahedra or hexahedra in 3D, which is much more complicated than by FDM.
The unknown solution û is approximated by shape functions φi and nodal parameters
u j as

û(x) =
N

∑
j=1

u jφ j(x) = uTΦ(x), uT = [u1, . . . ,uN]. (11.7)

where N is the number of points. The derivatives of û are obtained trivially, provided
that the derivatives of shape functions are known. Simple bilinear or bicubic B-
spline functions with local support are used for shape functions in 2D, and trilinear
or tricubic in 3D, such that φi has its largest value at xi. It is said that the shape
functions are Ck consistent if Eq. (11.7) can exactly reproduce any polynomial of
degree up to k [16].

FEM equations for internal points can be constructed by stating that the residual
(11.3) is orthogonal to a set of test functions Wi:

∫
Ω

Wi(x)r(x)dΩ =
∫
Ω

Wi(x) [L û(x j)− f (x j)] dΩ = 0, (11.8)

which is termed the weighted residual method [42] and is one of the weak forms
of Eq. (11.1). The test functions Wi can, in principle, be any nonzero functions that
lead to a convenient formulation, although the choice affects the accuracy to some
degree. If the test functions are equal to the shape functions we get the Galerkin
method, which is the basis for the formulation of FEM.

For FEM to converge, i.e., for the approximate solution to approach the exact
solution as nodal spacing approaches zero, the shape functions must at least be Cr

consistent, where r is the order of the PDE being solved [16]. The shape functions
are often simple enough, particularly in the case of triangular elements, so that the
integrals can be calculated analytically. With more complicated functions or ele-
ments, numerical integration has to be applied. After integration of Eq. (11.8), PDE
(11.1) is transformed into a system of ODEs with ui(t) as unknowns. From now on,
the solution procedure is identical to that by FDM. Time discretization is applied
for the transformation of the system of ODE to the system of OAE, which is then
solved for each time-step.

11.3.3 Solution Methods of Time-Dependent PDEs

After spatial discretization of PDEs, only temporal derivatives remain, thus PDEs
are transformed into a system of ODEs with time-dependent parameters ui(t) as

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 317

unknowns. Higher-order time derivatives can always be transformed into the first-
order derivatives by introducing new unknowns, which results in a larger system of
first-order ODEs, written as

u′(t) = f(t,u) (11.9)

where u is the unknown solution, u′ = du/dt is the first derivative with respect to
the independent variable t, and f is a known function.

It is known that the solution u of a linear homogeneous system of ODEs with
constant coefficients

u′ = Au (11.10)

can be expressed as the sum of exponential components [19] with eigenvalues of A
in exponents. The solution of such a system is stable if, for every eigenvalue λi of
A, Re(λi)≤ 0, which means that the error in the solution diminishes with time. For
a general ODE u′(t) = f(t,u) the stability is determined by the eigenvalue analysis
of the Jacobian matrix J of derivatives of f with respect to u

Ji j =
∂ fi(t,u)
∂u j

, (11.11)

which represents the locally linearized form of the original ODE. We see that the
stability of the general ODE depends on a particular solution and is also limited to
the local neighborhood of the analyzed point in the computational domain.

The system of ODEs (11.9) is solved numerically by discretizing the time to
short time intervals, then approximating time derivatives with finite differences and
transforming the system of ODEs into a system of OAE. We will be satisfied with
an approximate solution in the discrete time instants obtained from the solutions
in the consecutive time-steps, either by explicit or implicit numerical methods, as
described in the following sections.

11.3.3.1 Explicit Numerical Methods

The system of ODEs (11.9) is solved numerically by first discretizing the time to
short time intervals Δ t, so that tn = t0 +nΔ t for n = 0,1,2, Then, time derivatives
in ODEs are approximated with finite differences, which transforms the system of
ODEs into a system of OAE. Starting with the initial condition in t0 with value

u0 = u(t0,x) (11.12)

and stepping in time for Δ t, the solution of PDE in time t1 = t0 +Δ t, denoted by
u1, is obtained from the initial state. In general, the solution un+1 in time tn+1 =
t0 +(n+1)Δ t is obtained from the solution in the previous time-step un. Often, the
time-step Δ t can be adaptive, but we will suppose in the following that the time-step
is constant through the whole simulation.

With the initial value, a particular solution of ODEs (11.9) is chosen. Addition-
ally, the initial slope u′(t0) can be determined by evaluating Eq. (11.9) at the given

318 Roman Trobec

initial value. If we linearize the solution in the first time-step and apply finite differ-
ence approximation for the first derivative on time

u′(t0) =
u(t1)−u(t0)

Δ t
, (11.13)

we obtain, from Eq. (11.13), the predicted solution in time t1 as

u1 = u(t1) = u(t0)+Δ tu′(t0) = u0 +Δ tu′0, (11.14)

And, in an analogous way, for the predicted solution in time tn+1, as

un+1 = un +Δ tu
′n. (11.15)

The term u
′n from Eq. (11.15) is obtained by evaluation of the right side of

Eq. (11.9), using the already known solution un obtained in the previous time-step
tn

u
′n = f (tn,un). (11.16)

The method described here is known as explicit Euler’s method, because the
solution value in the next time-step is obtained from already known solutions in the
previous time-step. It is a single-step method, because the next approximate solution
value depends only on the solution value from the previous step.

The accuracy of this form of Euler’s method, in each time-step, is proportional
to (Δ t)2, because we take just the linear term from the Taylor series of the exact
solution or, equivalently, we locally interpolate the solution by a linear function.
The global error en of the Euler’s method has an accuracy of the first order O(Δ t)
because the global error is equal to the sum of all n step errors, however n is inversely
proportional to Δ t.

A numerical method is stable if small perturbations do not produce meaningless
solutions. Assuming that our ODE has a form as in Eq. (11.10), we obtain from
Eqs. (11.15) and (11.16) the recurrence

un+1 = (I +Δ tA)un and un = (I +Δ tA)nu0, (11.17)

where I is an identity matrix of the same dimension as the matrix A. The expression
(I +Δ tA) is called the amplification factor. According to the exponential solution,
components with eigenvalues of A in exponents, the errors will not grow if all the
eigenvalues of Δ tA lie on the complex plane inside a circle of radius 1 and centered
at−1, or equivalently, if the spectral radius ρ(I +Δ tA)≤ 1. The spectral radius of a
matrix is defined as the maximal absolute eigenvalue of the matrix. For the general
ODE, a similar analysis can be carried out on the Jacobian matrix (11.11), however
only a local estimate for the stability can be obtained.

From the above condition, we see that stable solutions can be obtained with a
shorter time-step; however, a shorter time-step means more steps in the simulation
procedure and thus greater computational complexity and longer simulation time.
Because the elements of matrix A depend on the density of the spatial mesh, there is

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 319

a relation between space and time discretization. This relation depends also on the
type of initial PDEs and will be derived later for the diffusion equation. In practical
cases, we can deduce the required time-step Δ t that will guarantee a stable numerical
solution, by applying spatial discretization. Intuitively, it is clear that a finer spatial
mesh requires a shorter time-step.

Euler’s method is simple, but inefficient for general problems, so that, in prac-
tice, more complicated methods are used, based on polynomial approximation of
the solution values between several time-steps. Euler’s method does not require the
solution of a linear system. The simulated solution is obtained solely by a matrix-
vector multiplication in each time-step, which can easily be implemented on parallel
computers. Accuracy requirements for the whole simulated time interval often de-
mand the use of such a short time-step that it falls in the same range as the time-step
dictated by the stability criteria. In such cases, a short time-step, dictated by stability,
is not an important disadvantage.

11.3.3.2 Implicit Numerical Methods

The stability of the numerical solution of a system of ODEs can be improved by
implicit methods that will be described in brief. These methods are based also on
the solution obtained in the current time-step tn+1, consequently the solution of a
linear system is required in each time-step [50].

The Crank–Nicolson method is a popular time-stepping scheme [19], imple-
mented by using an approximation of the solution and its derivative in the inter-
mediate points (t + 1

2Δ t)

u(t +
1
2
Δ t) =

u(t)+u(t +Δ t)
2

, (11.18)

u′(t +
1
2
Δ t) =

u(t +Δ t)−u(t)
Δ t

. (11.19)

Substituting Eqs. (11.18) and (11.19) into Eq. (11.9) and rewriting the equation in
the standard form gives

un+1 = un +Δ tf
(

t +
1
2
Δ t,

un +un+1

2

)
. (11.20)

The function f cannot be evaluated directly because the solution un+1 is not, at
this stage, known. It can be obtained by solving the linear system resulting from
Eq. (11.20). It has been shown that the amplification factor of the Crank–Nicolson
scheme is always less than 1, and this scheme is therefore unconditionally stable.
The method achieves second-order temporal accuracy, which is better than the sim-
ple Euler’s method, and is convenient for the solution of the diffusion equation,
because its spatial accuracy is also of the second order.

320 Roman Trobec

We have shown that implicit methods require the solution of a linear system, the
number of equations being similar to that of the discretized points. The solution of
a large linear system is one of the most computationally demanding steps in the
solution procedure; however, the linear system is sparse and many efficient itera-
tive methods are known for its solution [51, 52]. Parallel algorithms for solving an
iterative linear system also exist [53, 54]. We will not go into further detail on this
topic.

We have seen that, if evolution in time is needed, the advantageous stability of
the implicit methods may not be so important, because the solution has to be known
in the predefined time-steps, which are usually more dense than that required for
the implicit solution. Additionally, accuracy requirements can be so strong that the
implicit time-steps must be shortened in order to meet them. For these reasons,
despite its general inefficiency, the simple Euler’s method has been implemented in
our simulation software, described in detail in Sect. 11.4.

11.3.4 Computational and Memory Complexity

The computational complexity consists of two main parts: the construction of the
global system of linear equations and its solution.

11.3.4.1 System Construction

The N points of the regular FDM are placed onto an equidistant orthogonal mesh
within the domain. The point parameters represent the solution values at points.
When the spatial derivatives are replaced by their numerical approximations, a PDE
is transformed to a system of ODE. The solution values of boundary points are al-
ways equal, because they are prescribed by the essential boundary condition and can
therefore be eliminated from the system. For example, by the 2D diffusion equation,
the final linear system, obtained by an implicit numerical method, can be written in
the matrix form as

Aun+1 = Bun, (11.21)

where n is the index of the current time-step, the system matrix A is symmetrical,
and both A and B contain five nonzero elements in each row. For N points, FDM
systems can be generated trivially in time O(N), incorporating all relevant neigh-
boring contributions for each point, or can even be solved without being generated
explicitly.

For comparison, we have shown [55] that the asymptotic computational com-
plexity for the construction of the global FEM linear system is O(eN), where e is
the number of points for each element, for example, e = 3 for triangular elements.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 321

11.3.4.2 System Solution

Direct methods for the solution of a general linear system are not appropriate be-
cause they have the calculation complexity of O(N3) for matrix factorization and
O(N2) for the triangular system solution. Even if the system matrix is constant, the
calculation complexity O(N2) remains in each time-step. Therefore, iterative solvers
have to be used.

In the case of explicit time integration the system is not needed and the solution
value in each step is obtained by a simple matrix-vector multiplication. The matrix
is sparse and possibly banded, so that the asymptotic computational complexity of
such multiplication is equal to O(bN), where b is the width of the nonzero band, for
example, b = 7 in 3D FDM and b≈ 15 in 3D FEM.

Using implicit methods, the linear system is solved by an iterative method in
each time-step. If good preconditioners are known, the number of iterations of effi-
cient iterative solvers for sparse matrices is a small constant, for example, less than
5 and independent of N. The calculation of a temperature field as it evolves with
time offers the possibility of using the information from the solution in the previous
time-step for constructing efficient preconditioners. The asymptotic complexity of
a single iteration is near the number of nonzero elements which is O(bN) [51, 53].

The performances of different iterative solvers: Gauss–Seidel (GS), conjugate
gradient with incomplete Cholesky preconditioning (PCG), and full multimesh (of-
ten termed as multigrid MG) are shown in Fig. 11.2, where the number of iterations
is given for a single step on a 3D cubic domain with N = k3 points. MG(i, j) stands
for a full multimesh method with i Gauss–Seidel iterations at each mesh level and
j or more mesh points at the coarsest level. The iteration stopping criterion was
||err||∞ ≤ 10−6.

The Gauss–Seidel and PCG methods require approximately 1.5k2.1 and 1.4k
iterations respectively, while the full MG method outperforms both, the number
of iterations being independent of k. MG(5,8) requires only 4 iterations in larger
systems also.

11.3.4.3 Memory Requirements

We have seen in the previous description that, for FDM and FEM, the sizes of all the
data structures are, at most, proportional to bN, because all the matrices involved are
sparse and no lists are longer than N. Therefore, the asymptotic memory requirement
of both methods is equal to O(bN).

11.4 Diffusion Equation

Heat transfer, that is, energy transport as a result of a temperature gradient, is im-
portant in homeothermic organisms, because maintenance of a specific temperature

322 Roman Trobec

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 it

er
at

io
ns

Domain size (k)

GS
PCG

MG(2,2)
MG(5,8)

Fig. 11.2 The number of iterations in a single step as a function of the number of points for differ-
ent iterative solvers.

is crucial for their functioning [33]. Besides real experiments, computer simulations
based on theoretical physical models [56] can be very useful for understanding heat
transfer processes in such systems. There are three fundamental heat transfer mecha-
nisms: conduction, convection and radiation. Conduction, described by the heat con-
duction equation, is usually the most important for thermal energy transport within
a solid substance. In order to study the temperature distribution in a system such as
a living organ, efficient numerical schemes for solving the heat conduction equation
are required [19]. The heat conduction model describes conduction on the macro-
scopic scale and the numerical schemes are usually based on the finite difference ap-
proximation [57], as opposed, for example, to molecular dynamics simulations [58],
where the properties of the physical system are computed on the microscopic scale,
and efficient algorithms for solving the Hamilton’s equations for each atom in the
system have to be developed [59].

The basic equation that describes heat transfer is known as the heat conduction
equation [42], often referred to as the diffusion equation

∇ · (λλλ∇T) = ρc

(
∂T
∂ t

+(v ·∇)T
)

, (11.22)

where ∇= (∂∂x ,
∂
∂y ,

∂
∂ z) is a differential operator in terms of Cartesian coordinates, v

is the velocity of a part of the substance volume, ρ = ρ(r) is the mass density, and
c = c(r) is the specific heat at constant pressure. λλλ = λλλ (r,T) is the heat conductivity
of a substance, which could also be temperature dependent.

Although Eq. (11.22) is in general nonlinear, we focus here only on linear cases,
with λλλ independent of temperature. However, λλλ = λλλ (r) because we are simulating

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 323

inhomogeneous objects composed of several tissues with different heat conductivi-
ties. λλλ is in general a 3× 3 tensor. For isotropic substances λλλ = λ I, where I is the
3×3 identity matrix. It holds now that ∇λλλ = ∇λ , and λ can therefore be treated as
a scalar. T = T (r, t) is the temperature as a function of the position rrr = (x,y,z) and
time t.

For a 1D system that is motionless, Eq. (11.22) is now written as

ρc
∂T
∂ t

= λ (x)
∂ 2T
∂x2 +

∂λ (x)
∂x

· ∂T
∂x

, (11.23)

or equivalently

ρc
∂T
∂ t

=
∂
∂x

[
λ (x)

∂T
∂x

]
. (11.24)

Equation (11.23) can be used for determining the stationary temperature distribution
in a 1D heat conductor of length l shown in Fig. 11.3.

Fig. 11.3 A 1D heat conductor composed of two materials with the same thickness but different
λ , ρ , and c.

The conductor is composed of two different materials of the same thickness. The
boundary conditions at the left and right ends are the temperatures TL and TR. The
left part of the conductor is composed of a substance with λ1, ρ1, and c1, and the
substance of the right part is characterized by λ2, ρ2, and c2. This simple system
provides a test case for the analysis of different numerical methods because its ana-
lytical solution can easily be obtained.

Different tissues have different thermodynamic characteristics and any part of
a living organ is composed of several different tissues. Therefore, the numerical
methods have to support such inhomogeneities if we want to obtain accurate results.
After the analytical solution of our simple test case, it will be shown in detail, how
to develop an FDM scheme that is stable and still correct for interfaces between two
different layers. In other types of numerical methods, for example, FEM or meshless
methods, similar approaches have to be applied for the development of appropriate
schemes.

324 Roman Trobec

11.4.1 Analytical Solution

The analytical solution of Eq. (11.23), which is used as the reference to check the
accuracy of the numerical solution, can be derived as follows. In the stationary state,

0 =
∂T
∂ t

= D
∂ 2T
∂x2 (11.25)

holds for each separate part of the conductor, where λ is constant and its derivative
equal to zero. D is the thermal diffusivity of the substance, defined as D = λ/(ρc).
The boundary conditions are T (0) = TL and T (l) = TR and the transient conditions
between the left and right parts of the conductor are

T1(l/2) = T2(l/2) (11.26)

and

λ1
∂T1

∂x
|l/2 = λ2

∂T2

∂x
|l/2, (11.27)

which state that the temperature at the point of contact is the same for both parts
and that the heat flux density, determined by the Fourier law of heat transfer [47], is
conserved. The solution of Eq. (11.25) comprises the linear functions

T1 = A1x+TL, (11.28)

T2 = A2(x− l)+TR. (11.29)

Inserting Eqs. (11.28) and (11.29) into (11.26) and (11.27), the constants A1 and A2

are

A1 =
2(TR−TL)

l(λ1
λ2

+1)
, A2 =

2(TR−TL)

l(λ2
λ1

+1)
, (11.30)

and

T2(l/2) =
λ1TL +λ2TR

λ1 +λ2
. (11.31)

The temperature profile of our test case has the shape of a linear function that is
broken at the contact point between the two parts of the conductor.

11.4.2 Finite Differences with Gradient Term

For the numerical solution of Eq. (11.23), the explicit finite difference scheme can
be used by replacing the spatial and temporal derivatives with finite differences

ρici
T n+1

i −T n
i

Δ t
= λi

T n
i+1−2T n

i +T n
i−1

(Δx)2 +
(λi+1−λi−1)(T n

i+1−T n
i−1)

4(Δx)2 . (11.32)

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 325

Index i denotes the spatial discretization and Δx is the step size. Index n refers to
the time discretization and Δ t is the length of the time-step. Suppose first that the
gradient term in Eq. (11.32)

∂λ
∂x
· ∂T
∂x

=
(λi+1−λi−1)(T n

i+1−T n
i−1)

4(Δx)2 = 0 (11.33)

is zero. The rest of Eq. (11.32) can be written in a matrix form

T n+1 =

⎛
⎜⎜⎝I +

DΔ t
(Δx)2

⎡
⎢⎢⎣
−2 1

1 −2 1
1 −2 1
· · · · · · · · ·

⎤
⎥⎥⎦

⎞
⎟⎟⎠ T n (11.34)

where I is the identity matrix. Denoting the tridiagonal matrix by A, the eigenval-
ues of the Jacobian matrix D

(Δx)2 A are between −4 D
(Δx)2 and 0. Regarding stability

criteria for the explicit Euler’s method, described in Sect. 11.3.3.1, we obtain the
stability condition for this scheme

∣∣∣∣1− 4DΔ t
(Δx)2

∣∣∣∣< 1 or Δ t <
(Δx)2

2D
. (11.35)

If λ is not constant, the maximal value of thermal diffusivity in the system Dmax has
to be inserted in the condition (11.35).

In the case of significant changes in λ , for example because of different sub-
stances with different thermal properties, the difference (λi+1−λi−1) can be large
and so too the gradient, which can significantly increase the spectral radius of the
Jacobian matrix of Eq. (11.32). This will introduce instability into the numerical
method [60] and force Δ t to be smaller. A direct consequence is the increased com-
putational complexity of the simulation.

11.4.3 Explicit Finite Difference Scheme

In developing the explicit finite difference scheme an approach similar to that in the
analytical solution is used. The heat conduction equation (11.32), without the trou-
blesome gradient term (11.33), is solved separately for each mesh element of the
conductor because they are homogeneous. The separate solutions are then smoothly
matched by transient conditions at the contact. The transient condition for the equal-
ity of the temperatures at the contact point is fulfilled by introducing a new inter-
mediate mesh point Ti+1/2 that lies on the boundary between the mesh elements as
shown in Fig. 11.4.

The temperature at the boundary Ti+1/2 is derived from the transient condition
for the heat flux density, using Eq. (11.27)

326 Roman Trobec

Fig. 11.4 Mesh elements
with different λ , ρ , c, denoted
by different patterns.

λi
∂Ti

∂x
|Γ = λi+1

∂Ti+1

∂x
|Γ , (11.36)

where Γ denotes the contact boundary and index i the mesh point where the sudden
change in thermal conductivity occurs. Replacing derivatives by finite differences

λi
Ti+1/2−Ti

Δx
2

= λi+1
Ti+1−Ti+1/2

Δx
2

(11.37)

we obtain the temperature at the contact between the two materials

Ti+1/2 =
λiTi +λi+1Ti+1

λi +λi+1
. (11.38)

The second derivative of the temperature at the mesh points not touching the contact
boundary is computed as

∂ 2Ti

∂x2 =
Ti+1−2Ti +Ti−1

(Δx)2 , (11.39)

and at the mesh points from the boundary as

∂ 2Ti

∂x2 =

Ti+1/2−Ti
Δx
2

− Ti−Ti−1/2
Δx
2

Δx
=

2(Ti+1/2−2Ti +Ti−1/2)
(Δx)2 . (11.40)

In Eq. (11.40) the left and right differences were used for the first derivatives in
the mesh points Ti+1/2 and Ti−1/2, respectively. Thus only the temperatures from the
same mesh element are used in order to avoid the troublesome gradient term (11.33).
If λi = λi−1 = λi+1 then Eq. (11.40) simplifies to (11.39). Ti−1/2 is, analogously to
Eq. (11.38), defined as

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 327

Ti−1/2 =
λiTi +λi−1Ti−1

λi +λi−1
. (11.41)

The devised explicit FD scheme is now

ρici
T n+1

i −T n
i

Δ t
= λi

2(T n
i+1/2−2T n

i +T n
i−1/2)

(Δx)2 . (11.42)

The iterative solution Algorithm using this scheme is as follows:

Algorithm 11.1 Iterative_Explicit_FD_scheme

1: for each time-step n do
2: for each point i in the domain do
3: Compute Ti+1/2 or Ti−1/2 from the temperatures from the previous time-step by

Eqs. (11.38) and (11.41).

- Note that Ti+1/2 is equal to Ti−1/2 of the neighboring mesh element and need not be
calculated separately.

- Computing the second derivatives from Eqs. (11.39) and (11.40) the separate so-
lutions for each mesh element, which itself is homogeneous, are smoothly matched
together. The gradient term (11.33) is thus omitted in the heat conduction equation
(11.23). One does not have to consider how or to what extent the heat conductivity
varies with position. The transient conditions are also considered implicitly.
- Some unnecessary extra computation is performed for calculating Ti+1/2 or Ti−1/2
in parts where the substance is homogeneous. It is interesting that Eq. (11.40) for
an inhomogeneous substance is similar to Eq. (11.39) for a homogeneous substance.
The only difference is the use of weighted temperature averages in Eq. (11.40), as
expressed in Eqs. (11.41) and (11.38).

4: Calculate new temperature by applying the explicit FD scheme devised from Eq. (11.42)

T n+1
i = T n

i +
λiΔ t
ρici

2(T n
i+1/2−2T n

i +T n
i−1/2)

(Δx)2 .

- The temperature field is obtained effectively, in 1D, by multiplication of a tridiago-
nal matrix and vector.
- Note that the scheme (11.42) requires the computation of Ti+1/2 or Ti−1/2, which
can be used advantageously in increasing the resolution of the simulated solution
(see [61] for further details).

5: end for
6: end for

Formulas for 3D Solution

For the 3D example, Eq. (11.23) is generalized to:

328 Roman Trobec

ρc
∂T
∂ t

= λ
(
∂ 2T
∂x2 +

∂ 2T
∂y2 +

∂ 2T
∂ z2

)
+
∂λ
∂x
· ∂T
∂x

+
∂λ
∂y
· ∂T
∂y

+
∂λ
∂ z
· ∂T
∂ z

, (11.43)

where λ = λ (x,y,z) and T = T (x,y,z). Equation (11.43) is a 3D analog of (11.23)
and can be rearranged to

ρc
∂T
∂ t

=
(
λ
∂ 2T
∂x2 +

∂λ
∂x
· ∂T
∂x

)
+
(
λ
∂ 2T
∂y2 +

∂λ
∂y
· ∂T
∂y

)
+
(
λ
∂ 2T
∂ z2 +

∂λ
∂ z
· ∂T
∂ z

)
.

(11.44)
By comparing Eq. (11.44) with (11.23) and by virtue of (11.42), the described ex-
plicit finite difference scheme for an inhomogeneous 3D example yields the form

ρi, j,kci, j,k

T n+1
i, j,k −T n

i, j,k

Δ t
= 2λi, j,k

(
T n

i+1/2, j,k−2T n
i, j,k +T n

i−1/2, j,k

(Δx)2 +

T n
i, j+1/2,k−2T n

i, j,k +T n
i, j−1/2,k

(Δy)2 +

T n
i, j,k+1/2−2T n

i, j,k +T n
i, j,k−1/2

(Δz)2

)
. (11.45)

Indices i, j, and k denote the spatial discretization in the x,y, and z directions, re-
spectively, Δx,Δy, and Δz are the corresponding spatial step sizes, and

Ti±1/2, j,k =
λi, j,kTi, j,k +λi±1, j,kTi±1, j,k

λi, j,k +λi±1, j,k
. (11.46)

Ti, j±1/2,k and Ti, j,k±1/2 can be calculated in the same way as in Eq. (11.46), just by
varying the other indices.

11.4.4 Comparison of Results

The analytical solution was compared with the two numerical approaches, (11.32)
and (11.42), presented for solving the heat conduction equation on the 1d heat con-
ductor from Fig. 11.3. The boundary conditions were TL = 273.2 K, TR = 295 K.
The temperature is dimensionless and is measured in units of the temperature TL

at the left-hand boundary of the conductor. For Δx = 10−3 m, the time-step was
Δ t = (Δx)2/(2Dair) = 0.026 s. The thermodynamic constants used in our test case
are given in Table 11.1.

We found that, using the similar thermal conductivities λ1 and λ2, both schemes,
(11.32) and (11.42), provide correct solutions. The temperature evolution and the
steady-state profiles were computed also for a 1d heat conductor composed of water
and air that have significantly different D. The left half was assumed to be water
and the right half air. The resulting steady-state temperature profiles are shown in

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 329

Table 11.1 Thermodynamic constants of water and air used in the test case.

λ c ρ D

W (m K)−1 J (kg K)−1 kg m−3 m2 s−1

Water 0.58 4204 1000 1.38 ·10−7

Air 0.025 1012 1.29 1.92 ·10−5

Fig. 11.5. Tanal is the analytical solution and TEFD is the numerical solution obtained
by the described explicit FD scheme (11.42).

We see that solutions obtained by the explicit FD scheme agree with the analyti-
cal solution even in the case with very different diffusivities. The numerical solution
obtained by (11.32) is not shown because it was not stable using the time-step cal-
culated above, because of the large value of the gradient term at the contact between
water and air.

0 0.2 0.4 0.6 0.8 1
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

T
/T

L

x/l

T
anal

T
EFD

Fig. 11.5 The steady-state analytical solution and near steady-state (after 2 hours of simulation)
numerical solution for a 1d heat conductor composed of water and air. The numerical solution was
obtained by explicit FD scheme (11.42) and time-step 0.026 s. It is shown with asterisks for each
fifth point only, for better visibility. The temperature is normalized by TL and the position by the
length of the conductor l.

330 Roman Trobec

11.5 Bio-Heat Equation

Because the human knee is an irregularly shaped, 3D object it cannot be represented
as a combination of simple geometric objects. The temperature distribution cannot
be obtained analytically. We selected the explicit finite difference scheme presented
in Sect. 11.4.3 for the numerical solution procedure, because it can be used in in-
homogeneous domains. The meshing is inherited from geometric modeling. The
method has low calculation complexity, it provides time evolution, and it is suffi-
ciently accurate and simple to implement on parallel computers.

Conduction, in and between tissues, was modeled by the diffusion equation, de-
scribed in Sect. 11.4. Convection and radiation were approximated by increased
conduction in order to keep the mathematical model simpler. Besides conduction,
additional heat sources have to be modeled in the living tissue; for example, heat
transfer from arterial blood in large and small vessels to the tissue, and heat pro-
duction from the tissue metabolism. Heating from the arterial blood depends on the
amount of blood perfusion, V , and the difference between the arterial, Ta, and local
tissue temperatures, T . Metabolism itself depends on the metabolic heat production
hm of the local tissue, which is a function of T . Some additional terms could also be
added that would model the heat sink, like breathing and sweating; however, in the
simulation of knee cooling we neglected their impact. The model PDE used in our
simulation is the well-known bio-heat equation [12, 32, 33] that can be written as

ρc
∂T
∂ t

= ∇ · (λ∇T)+(1− k)ρbcbV (T)(Ta−T)+ρhm(T) (11.47)

where k is the coefficient of thermal equilibrium between blood and tissue, ρb and
cb are the density and specific heat of blood, and all other notations are as defined
previously. Note that temperature changes with time and space and that all constants
depend on the specific tissue. The dependence of perfusion and metabolism on the
temperature could be arbitrary functions.

Published measurements of the blood flow V show that it increases with increas-
ing skin temperature and temperature of the surrounding tissue. The function V (T)
has been approximated by an exponential function, using published experimental
data [35, 62]. For the range of temperatures in our simulation from 10 to 40 ◦C, we
obtained

V (T) = (5.142 ·10−5 e0.322T +0.705) ml (100 ml)−1 min−1 (11.48)

which results, for example, in V (33◦C) = 2.82 ml (100 ml)−1 min−1 or in SI units
4.71 · 10−4 s−1. The blood flow in bones was assumed to be much smaller, so we
set it at 10 times smaller than in other tissues. In Fig. 11.6 the fitted measurements
[35, 62] of blood flow are shown as a function of tissue temperature V (T).

Metabolic heat production in the human can be separated from unregulated heat
production from voluntary muscle contraction and normal metabolic pathways, and
from regulated heat production for maintaining temperature homeostasis at lower
ambient temperatures [31]. The rate of metabolic heat production per unit mass, hm,

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 331

15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

T [oC]

V
(T

)
[s

−
1]

measured blood flow data

fitted by 5.142*10−5*e0.322*T + 0.705

Fig. 11.6 Measured (asterisks) and fitted blood flow (solid) as a function of tissue temperature.

was assumed to obey the Q10 rule [63], and is expressed as a function of the tissue
temperature

hm(T) = hr2
(T−Tr)/10 (11.49)

where hr is the reference metabolic heat production of a tissue at the reference
temperature Tr = 35◦C. For resting muscles, hr was taken to be 0.58 J kg−1 s−1,
which is about half the human basal metabolic rate. As in the case of blood flow, the
metabolism of bones was assumed to be negligible.

The modeled nonlinear contribution of heat production in the muscle tissue
from both factors from the right side of the bio-heat equation (11.47) is shown in
Fig. 11.7. Graphs are obtained by evaluating the model Eqs. (11.48) and (11.49). We
see that, at lower temperatures, the impact of blood flow and metabolism is minimal
– they both act as small heat sources. However, if the tissue temperature rises above
37◦C, the arterial blood rapidly cools the tissue. Such behavior is in good agreement
with measured data [62].

Moving air was was not simulated because of its significant contribution to calcu-
lation complexity. We simulated convection and radiation with the same simulation
program as that used for conduction. A layer of “still” air was inserted between
the model surface and the remaining external still air at constant room temperature.
Preliminary simulations at room temperature of 28◦C, and without any other cool-
ing, were made to find the appropriate air layer thickness. We found that a 5mm
thick air layer results in a skin temperature of 33◦C, which was also the measured
value [35]. In this way, the convection and radiation were approximated by increased
conduction. Conduction in the inter-layer air was simulated by a time-step 20 times
smaller than in the rest of the model. Alternative approaches have been proposed
using approximate boundary conditions based on the continuity of the heat flux

332 Roman Trobec

15 20 25 30 35 40
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

−3

T [oC]

H
ea

t p
ro

du
ct

io
n

[K
 s

−
1]

heat from blood flow
heat from metabolism

Fig. 11.7 The heat production rate contributed by the blood flow and metabolism as a function of
muscle temperature.

perpendicular to the surface of the body [12], which however requires knowledge of
the convection coefficient.

Applying the explicit FDM scheme, developed in Sect. 11.4.3, after time and
space discretization of Eq. (11.47), we obtain one equation for each voxel (i, j,k).
T n

i, j,k is the approximation of the temperature in voxels (i, j,k) in the n-th time-
step Δ t, which has to be selected so that the numerical solution remains stable and
accurate. The time-step Δ t is limited by stability with Eq. (11.35) as

Δ t <
min{(Δx)2,(Δy)2,(Δz)2}

6Dmax
. (11.50)

Inserting the parameter values used in our simulation (see Table 11.2) we can calcu-
late the minimal step length for air voxels as Δ ta = 10−6/(6 ·1.9 ·10−5) = 0.0088 s
and for bone voxels as Δ tb = 0.157 s. Bone voxels require the shortest time-step of
the remaining substances, which is still 18 times longer than that for air. We could
substantially shorten the simulation time if the air and all other substances were
simulated with the finest and coarsest time-steps, respectively.

A further limiting factor in the choice of the time-step length is the solution accu-
racy. We made preliminary simulations of knee temperatures after 300 s of cooling
with a gel pack and constant air temperature. The shortest time-step was dictated by
bones. We obtained the reference solution with Δ t 30 times shorter than required by
Δ tb. In Fig. 11.8 the absolute solution errors are shown on the cross section from
the central part of the knee. The errors were calculated for time-steps Δ tb and Δ tb/4
as the differences from the reference solution. The maximal errors, which appear in
the regions with maximal temperature gradients, were 0.012 and 0.003◦C for Δ tb

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 333

and Δ tb/4, respectively. Because we want to simulate with an accuracy higher than
1%, all subsequent simulations have been run with four times shorter time-step as
dictated by the stability condition Δ t = Δ tb/4 = 0.039 s.

0 50 100 150 200 250
−2

0

2

4

6

8

10

12

14
x 10

−3

Y [voxel]

T
 [o C

]

solution error Δ t=0.039 s
solution error Δ t=0.157 s

Fig. 11.8 Solution errors by maximal time-step Δ tb dictated by stability condition and by Δ tb/4.

We have shown that, starting with the initial state T 0, it is possible to compute
T n for every t > 0, stepping through time with the time-step Δ t, just by banded
matrix-vector multiplication and a matrix-vector addition. The calculation complex-
ity of a single iteration step remains proportional to the number of voxels mul-
tiplied by the number of diagonals or, equivalently, the number of neighboring
voxels.

If greater accuracy is needed, the FEM could be applied; however, meshing in
3D, a greater calculation and memory complexity, and a potential requirement for
evolutionary temperature data could diminish the advantages of FEM.

11.6 Geometric Modeling of a Knee

The basic anatomical data for a computer model of the knee was derived from the
colored digital photographs of the human body cross-sectional slices that are avail-
able in the VHD [64]. A similar whole body model at a resolution of 1 mm3 has also
been developed within VHD project, but is not always available for public use. Ad-
ditionally, for our model, manual segmentation was applied on slices with the full
resolution of 1

3 mm2. Cross sections of the human male lower limb were used that
contain tissues from the central region of the knee joint. The knee area was cropped

334 Roman Trobec

from the original photographs as a rectangle of 550 (width) × 610 (height) pixels.
Cropped VHD slice 2301 is shown in Fig. 11.9.

Fig. 11.9 Knee area of 550 × 610 pixels, cropped from the human male VHD slice 2301 (model
slice 102).

Different tissues were identified manually by an expert anatomist who assisted
the segmentation. The total number of pixels was too large for our simulation. Be-
cause the distance between neighboring cross-sections in the Z dimension was 1 mm
we decided to reduce the resolution in the X and Y dimensions to 1 mm, using av-
eraging of neighboring pixels. A model slice z = 102 from the central knee region,
at the level of the femoral intercondylar notch, with the resolution used in the sim-
ulation, is shown in Fig. 11.10. The picture was taken from the custom program
ResultsViewer developed for the visualization of simulated results. This program is
used also for the extraction of the desired plane from the simulated results, in the
selected dimensions and time for figures generated in the subsequent sections.

A 3D geometric model was built simply by stacking 191 consecutive VHD slices
from the knee region, that is, VHD slice 2200 (model slice 1 on the top) to VHD slice
2390 (model slice 191 on the bottom). The 3D model is shown in Fig. 11.11. Skin,
joint liquid, and subcutaneous tissues are not shown; the artero-lateral quadrant is
removed to see into the inside of the knee.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 335

Fig. 11.10 Model slice z = 102 from the central region of the knee at the resolution used in the
simulation. The knee is surrounded by an isolating blanket, cooling layer (black), and a protective
bandage. Skin, subcutaneous tissue, bones, knee joint liquid, muscles, cartilage, nerves, and vessels
are separated by contours. Points of measurements are marked with arrows and denoted by (x,y,z)
coordinates.

Some surrounding space was added around the 3D knee model for the protective
bandage, gel pack, blanket, and for ambient air. The simulation environment was
imitated by an isolated cube composed of x×y×z = 223×243×191 = 10,350,099
small voxels characterized independently by thermodynamic properties and initial
temperatures, each with a volume of 1 mm3. The boundary layers of the simulated
box were held at constant initial temperatures to mimic the effect of the ambient
air. The heat flux from the first and last slices was kept constant in order to imitate
the influence of the leg not exposed to cooling. The knee was covered by a 2 mm
thick protective bandage and embraced by a 12 mm thick cooling layer (gel pack or
cryo-cuff). An additional 5 mm thick isolating blanket was used to cover the cooling
layer in order to reduce convection and slow down its warming from the outside. The
protective bandage, cooling layer, and isolating blanket were inserted into the model
automatically by a computer program.

336 Roman Trobec

Fig. 11.11 3D geometric knee model obtained by stacking 191 consecutive VHD slices from top
to bottom. The frontal quadrant is removed to see into the central knee region.

11.7 Simulation Methods and Parameters

The simulation environment was imitated by an isolated cube composed of voxels
from different substances and characterized independently by thermodynamic prop-
erties and initial temperatures. Boundary layers of the simulated box were held at
constant initial temperatures to mimic the ambient air. The influence of the rest of
the leg, which was not simulated, was managed by setting the temperature flux at
boundaries. The simulation time can be set as desired. Intermediate results can be
written in an output file for later visualization and analysis. The simulation can be
carried out in 2D with the temperature flux in the axial direction set to zero. In this
way an infinitely long “knee”, with homogeneous structure in the axial dimension,
can be simulated. Simulation in 3D was performed on the described model with all
boundaries set to values that are similar to those of the measuring conditions.

We first simulated the steady-state temperatures of the resting knee by the
thermo-neutral conditions [36] at the ambient air temperature of 27 ◦C, which is
equivalent to the ambient water, for example, a water bath of temperature 33 ◦C.
A steady-state was reached after three hours of simulation, the maximal change in
temperature near the end of the third hour being less than 0.01◦C.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 337

The simulated temperatures can now be recorded at arbitrary positions. For ex-
ample, the temperature field over the model slice z = 102 is shown with a 2D surface
in Fig. 11.12. Note that point (0,0) is on the right and the frontal part of the knee
with the patella on the left, for better visibility of the temperature field. The white
curve represents the temperature along the transverse axis Y by x = 106, which is
used in a later analysis. The steady state obtained was used as the initial condition
in all our subsequent simulations. The tissues nearer the patella, toward the surface,
are seen to be colder than the internal part. The impact of the main knee artery, with
its constant blood temperature, is visible as a peak in the temperature field. The lo-
cation of the bones is also evident as shallow depressions in the temperature field,
mainly the result of lower blood flow in bones.

Fig. 11.12 Steady-state temperature field over model slice z = 102. Point (0,0) is in the right
corner for better visibility.

Initial and boundary conditions, thermal constants, rates of blood flow and
metabolism, knee dimensions, and positions of measuring points can be varied in
order to test the stability of the simulation method and to analyze the results ob-
tained with different simulated conditions. In order to compare the simulated results

338 Roman Trobec

with the measurements and to analyze them in more detail, the simulated tempera-
tures were recorded from the points of interest marked in Figs. 11.10 and 11.11.

Numerical values of tissue thermal parameters are not known precisely because
they depend on measurement conditions and state of the tissues. We determined
their constant values from published data for thermal constants [33], for blood flow
[35, 62], and for metabolic heat production [31]. The thermal constants used in the
simulation are listed in Table 11.2.

Table 11.2 Thermal parameters of simulated substances with initial temperatures.

λ c ρ T

Substance W(m K)−1 J(kg K)−1 kg m−3 ◦C

Ambient air 0.025 1012 1.29 25
Blanket 0.04 1200 150 25
Cryo-cuff water 0.58 4204 1000 15∗

Gel pack 0.1 4000 990 0
Bandage 0.04 1200 150 30
Skin 0.51 3431 1200 35
Subcutaneous
Tissue

0.55 2241 812 35.6

Muscle 1.03 4668 1179 36
Bone 2.28 1260 1700 36
Ligament 0.33 3966 1250 36
Cartilage 1.5 2275 1160 36
Joint liquid 0.58 4204 1000 22
Nerve 0.5 3277 1190 36
Venous blood 0.67 3890 1057 36
Arterial blood 0.67 3890 1057 36.8∗

∗ Constant temperatures are denoted by asterisks.

11.8 Variation of Simulation Parameters

The steady-state temperature profiles of the resting knee under the TN conditions
and along the transverse knee axis Y by z = 102 and x = 106 are analyzed in this
section. In Fig. 11.13 the solid curve shows the simulated steady-state temperature
obtained with the 3D simulation. The dotted curve was obtained under the same
conditions with a 2D simulation and zero flux in the third dimension (infinite knee).
The difference between the two simulations is in the range of 0.5◦C, and can be
explained by underestimating the amount of muscle tissue in the whole knee region.
Slice 102 is taken, namely, from the central part of the knee with less muscle that
could contribute additional heat through its blood flow. However, the shapes of the
profiles are similar, so we used 2D simulation for the initial analysis, to reduce the
simulation time.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 339

0 50 100 150 200
33

33.5

34

34.5

35

35.5

36

36.5

37

Y [voxel]

T
 [o C

]

2−D simulation
3−D simulation

Fig. 11.13 Simulated steady-state temperature profiles by thermo-neutral conditions at the slice
z = 102 along the transverse knee axis Y by x = 106 for 3D simulation and 2D simulation.

We can observe and analyze arbitrary simulated points or regions of the domain.
For example, in Fig. 11.14 the steady-state temperature profiles of the knee are
shown for temperatures on the transverse knee axis Y and model slice z = 102 by
x = 96 (dotted), x = 106 (solid), and x = 116 (dashed). It is clear that there can
be significant differences in the temperature, even for analyzed points as close as
10 mm. The effect of altering the observed position in other directions is similar to
that seen in Fig. 11.14.

The stability and conditioning of the simulated steady-state solution was eval-
uated by varying the simulation parameters. Input parameters were varied within
selected ranges and the variations in the solution were analyzed. In Fig. 11.15 the
simulated steady-state temperatures from model slice 102 on the transversal axis Y
at x = 106 are shown for various knee dimensions, diffusion constants, blood flow,
and metabolism, all differing within for +20% (dotted) and −20% (dashed) of their
nominal values. In Fig. 11.15b, c, and d the nominal knee dimension, described in
Sect. 11.6, was used. Fig. 11.15c shows the impact of the blood flow by equating
the coefficient of thermal equilibrium to k = 0.2 (blood flow 20 % below the nom-
inal value), k = 0 (nominal blood flow) and k = −0.2 (blood flow 20 % above the
nominal value).

The most important impact on the temperature profiles seen in Fig. 11.15 arises
from varying the knee dimension (Fig. 11.15a). Larger knees result in a tempera-
ture plateau slightly above 36.7◦C, while smaller knees are cooled more intensively
to the central temperature of about 36◦C, with larger temperature gradients in the
superficial regions of the knee.

Changes in thermal diffusivity (Fig. 11.15b) have a smaller impact on the tem-
perature profiles than changes in the dimensions, and in the opposite direction, that

340 Roman Trobec

0 50 100 150 200
33

33.5

34

34.5

35

35.5

36

36.5

37

Y [voxel]

T
 [o C

]

x=96
x=106
x=106

Fig. 11.14 Simulated steady-state temperature profiles by thermo-neutral conditions on the trans-
verse knee axis Y and model slice z = 102 by x = 96, x = 106 and x = 116.

is, larger diffusivity constants result in lower central temperatures. This result is in
accordance with Eq. (11.34), from which it follows that the changes in temperature
are proportional to the diffusivity and inversely proportional to the square of the
changes in dimensions.

The impact of blood flow (Fig. 11.15c) is similar to that of dimensions, with
higher internal temperatures arising from greater blood flow, however with the im-
portant difference that the shapes of the temperature profiles remain unchanged with
variations of the blood flow.

The impact of metabolism (Fig. 11.15d) is analogous to that of the blood flow –
greater metabolism results in higher internal temperatures, but its impact is so small
that it can be considered in our experiments as negligible.

11.9 Simulation Results

Simulated steady-state temperatures of the resting knee under TN conditions have
been used as the initial condition for all further simulations. We simulated first a
naked knee in the steady state at ambient air temperature of 25 ◦C. We then simulated
a two-hour period of arthroscopic operation, during which the knee joint was washed
out by sterilized water at 22◦C, and therefore cooled. During the following two-
hour period we simulated the temperature evolution in the operated knee while it
was resting and covered by a blanket, and therefore warming. Finally, we simulated
the subsequent two-hour postoperative topical cooling.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 341

0 50 100 150 200
33

33.5

34

34.5

35

35.5

36

36.5

37

Y [voxel]

T
 [o C

]

nominal dimension
+20%
−20%

(a)

0 50 100 150 200
33

33.5

34

34.5

35

35.5

36

36.5

37

Y [voxel]

T
 [o C

]

nominal diffusivity
+20%
−20%

(b)

0 50 100 150 200
33

33.5

34

34.5

35

35.5

36

36.5

37

Y [voxel]

T
 [o C

]

nominal blood flow
+20%
−20%

(c)

0 50 100 150 200
33

33.5

34

34.5

35

35.5

36

36.5

37

Y [voxel]

T
 [o C

]

nominal metabolism
+20%
−20%

(d)

Fig. 11.15 Simulated steady-state temperatures from model slice z = 102 and the transversal axis
Y at x = 106 for various (a) knee dimension, (b) thermal diffusivity, (c) blood flow, and (d)
metabolism. In all figure-panels nominal values are solid, 20 % above nominal values are dotted
and 20 % below nominal values are dashed.

11.9.1 Washing Out During Arthroscopy

During arthroscopic reconstruction of ligaments, the central part of the knee is
washed by sterilized water at 22◦C. The water is circulated in the space around the
femoral intercondylar notch, normally filled by the joint liquid. The initial temper-
atures were taken from the steady state of a naked knee at an ambient temperature
of 25◦C. The temperature of the joint liquid was fixed at 22 ◦C. The temperature
profile after two hours of washing out are shown in Fig. 11.16 for the same plane as
before, that is, along the Y axis by x = 106 but for the 7 mm higher slice at z = 95,
because this was nearer the actual position of our measuring probes for validating
the simulated results. As a consequence, the internal knee temperature decreased
significantly, maximally by more than 14◦C in places with direct contact with the
washing water, as can be seen from the temperature profiles shown.

342 Roman Trobec

0 50 100 150 200

22

24

26

28

30

32

34

36

Y [voxel]

T
 [o C

]

steady−state
after 120 min washing

Fig. 11.16 Steady-state temperature profiles for naked knee and after a two hour washing out
during surgery, from the model slice z = 95 and the transversal axis Y at x = 106.

11.9.2 Resting After Arthroscopy

We next simulated the two-hour period immediately after surgery. The knee was
resting and covered with a blanket in a room temperature of 25 ◦C. The evolution of
the temperatures in voxel (106,128,95), which is at the level of the femoral inter-
condylar notch in the central part of the knee, and in voxel (52,126,95), which is
nearer to the knee surface, 1 cm below the skin in the subcutaneous tissue, are shown
in Fig. 11.17. Positions of both voxels are denoted in Figs. 11.10 and 11.11. Note,
that arbitrary voxels could be selected for the analysis. The knee was initially colder
in the central region because of the previous washing out with cold water. During
resting, its temperature increases and approaches the steady state, with colder re-
gions nearer the skin.

11.9.3 Postoperative Topical Cooling

Finally, we simulated postoperative topical cooling, by two different cooling meth-
ods, gel pack and cryo-cuff. In both cases the knee was bound with a protective
blanket surrounded by ambient air at 25◦C as shown in Fig. 11.10. The protective
bandage, remaining from the surgery, was also simulated.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 343

0 20 40 60 80 100 120
26

28

30

32

34

36

38

t [min]

T
 [o C

]

 simulated resting (106,128,95)
simulated resting (52,126,95)

Fig. 11.17 Simulated temperature evolution in two resting hours after surgery for voxels
(106,128,95) (the central part of the knee) and (52,126,95) (in the subcutaneous tissue).

11.9.3.1 Temperature Evolution During Two Hours of Simulated Cooling

In Fig. 11.18 the simulated temperatures of voxels (106,128,95) and (52,126,95)
are shown for the two-hour simulated period and for the cooling with a gel pack
(initial temperature 0◦C) and a cryo-cuff (water with constant temperature of 15 ◦C).
The effects of the two methods and the knee temperatures are quite different.

On cooling with the gel pack, the temperature of voxel (106,128,95) in the cen-
tral knee region initially increases slightly, on account of the arterial blood perfusion
and metabolism, and because of the weak influence of the initial cooling. After 5
minutes the voxel temperature starts to decrease but after 40 minutes the gel pack
has received enough heat, from the knee surface and the ambient air, to allow the
inner knee temperature to increase during the second part of the cooling period. For
voxel (52,126,95), in the subcutaneous tissue 10 mm below the skin, the tempera-
ture first decreases sharply; the effectiveness of the gel pack then becomes weaker
and the voxel starts warming and after 120 minutes reaches almost 36.0◦C.

Cooling with a cryo-cuff was found to be more effective, in that it induces lower
tissue temperatures, even if the temperature of the cooling liquid is as high as 15 ◦C.
In the initial phase, both voxels experience the same cooling rate as that with the gel
pack; however, there is no subsequent increase in temperature, because the cryo-cuff
is a constant heat sink, which gradually cools the knee. After two hours of cooling,
the near surface voxel reaches a temperature of 27◦C. In the same way, but with
smaller intensity, the inner voxel is cooled to 33◦C.

In the case of topical cooling with an ice pack the heat of fusion should also be
simulated, which is necessary for the transition between aggregate states. Obviously,
for a crushed ice pack, a significant part of the heat is needed for such a transition,

344 Roman Trobec

0 20 40 60 80 100 120

26

28

30

32

34

36

38

t [min]

T
 [o C

]

gel pack (106,128,95)
gel pack (52,126,95)
cryo−cuff (106,128,95)
cryo−cuff (52,126,95)

Fig. 11.18 Simulated temperature evolution in voxels (106,128,95) and (52,126,95), as a func-
tion of time for cooling with a gel pack and a cryo-cuff.

which would prolong the effective cooling time. This phenomenon has not been
incorporated in our mathematical model. Instead, we increased the heat capacity c
of the ice pack in order to recognize and account for this behavior.

From the simulated results it follows that the topical cooling with a cryo-cuff
provides more constant lowering of the temperatures in the whole region of the
knee. Cooling with gel packs is less stable; consequently, they should be changed
every half hour in order to be effective.

11.9.3.2 Temperature Profiles After One Hour of Simulated Cooling

In Fig. 11.19 temperature profiles after one hour of simulated cooling by the gel
pack and cryo-cuff are shown for a cross section from the patella to the lateral side
of the knee on our standard axis, that is, along the Y (anteroposterior) axis at x = 106
on the model slice z = 95.

After one hour of simulated cooling the gradients in the temperature profiles
were much more pronounced than in the initial state. The temperature of the outer
knee layers at the skin level remained cooled to 32◦C and in the centre of the knee
to 36 ◦C by cooling with a gel pack. Peaks in tissue temperatures around y = 100
result from the simulated heat conduction from the middle popliteal artery. Signifi-
cantly lower temperatures are observed by cooling with a cryo-cuff, even though its
constant temperature was as high as 15◦C.

Given the above results, it would be interesting to test how effective simple cool-
ing with ambient air would be. The knee would remain uncovered and exposed
to the ambient air temperature of approximately 20 ◦C. We expect from the results

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 345

0 50 100 150 200
20

22

24

26

28

30

32

34

36

38

Y [voxel]

T
 [o C

]

after resting
gel pack after 60 min
cryo−cuff after 60 min

Fig. 11.19 Simulated initial knee temperature profile after resting and temperatures after one-hour
period of cooling with the gel pack and cryo-cuff along the Y axis at x = 106 and z = 95.

under TN conditions that, in such a case, the skin temperature would be about 26◦C,
which could lower the temperatures inside the knee. This could be tested prelimi-
narily using the proposed simulation method.

11.10 Validation of Results

To evaluate the simulated results we made two control measurements of the knee
temperature following surgery in a room with constant ambient temperature 25◦C.
We measured the temperature of the knee covered with a blanket during the two-
hour resting period immediately after surgery, then during the next two-hour period
in which topical cooling with a gel pack was applied.

Two small thermistors were placed into the knee in thin sterile tubes (Foley-
catheter with temperature sensor, 3 mm, Ch8-thermistor; Curity, Degania Silicone
Ltd., Degania Bet, Israel). Similar tubes, without thermistors, are ordinarily inserted
for wound drainage following surgery. The thermistors were connected to a registra-
tion device for continuous measurement with a sample rate of 0.1 Hz and resolution
of 0.01◦C.

The first thermistor was placed in the centre of the knee near voxel (106,128,95)
and the second approximately 1 cm below the skin in the subcutaneous tissue,
near voxel (52,128,95). The measurements were approved by the Slovenian State
Medical Ethics Committee and the patient gave written informed consent prior to
participation.

346 Roman Trobec

In Fig. 11.20 the simulated and measured temperatures are shown for the two-
hour resting period after washing out during the arthroscopic surgery. The knee was
wrapped in a protective blanket at the ambient temperature of 25 ◦C under the same
conditions as in the simulation.

0 20 40 60 80 100 120
26

28

30

32

34

36

38

t [min]

T
 [o C

]

 simulated (106,128,95)
 measured (106,128,95)
simulated (52,126,95)
measured (52,126,95)

Fig. 11.20 Measured and simulated temperature evolution of voxels (106,128,95) and
(52,126,95) in a two hour resting period after arthroscopic surgery.

The simulated temperature evolution for the resting period shows very good
agreement with measured values for the test point (106,128,95) in the central part
of the knee. However, the simulated rate of cooling in point (52,126,95) in the
subcutaneous tissue was much smaller in the initial phase than those obtained by
measurements. One of the possible reasons is the fact that we did not simulate the
cold washing out inlet that also cooled the surrounding tissue from the skin to the
central part of the knee. The subcutaneous thermistor was placed in such a cooled
environment which could then exhibit faster warming than in our simulation.

In Fig. 11.21 the simulated and measured temperatures are shown for two hours
of cooling with a gel pack, which follows immediately after the resting period. The
initial temperature of the gel pack was 0◦C and the ambient temperature 25◦C. The
knee was bound with elastic bandages approximately 2 mm thick, surrounded with
fixed gel packs and wrapped in a protective blanket as shown in Fig. 11.10.

The simulated evolution of temperature for the cooling period shows good agree-
ment with the measured values for both test points. The simulated rates of warming
in the second hour are slightly greater than by measurement. One of the possible
reasons lies in the incomplete mathematical model that does not include the heat
of fusion for the gel pack. In fact, all the thermodynamic characteristics of the gel
were not available and we just took some approximate values provided by the sup-
plier. Another possible reason is inaccurate measurement, because we did not collect

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 347

0 20 40 60 80 100 120
29

30

31

32

33

34

35

36

37

38

t [min]

T
 [o C

]

gel pack simulated (106,128,95)
gel pack measured (106,128,95)
gel pack simulated (52,126,95)
gel pack measured (52,126,95)

Fig. 11.21 Measured and simulated temperature evolution of voxels (106,128,95) and
(52,126,95) as a function of time for cooling with a gel pack.

detailed data during measurements, for example, the wetness of the protective ban-
dage, which could have a significant impact on the cooling intensity.

At this point we could start another loop in the simulation process shown in
Fig. 11.1 by improving the mathematical model and recalculating the simulation
results. We will leave such investigations for further work.

11.11 Parallel Implementation

The number of equations to be solved was several millions, therefore the execution
time on a single processor could become unacceptably long. We will describe only
the parallel implementation of the discretization and the solution method. Other
steps of the computer simulation process from Fig. 11.1 are not so demanding,
at least for the research purposes, and therefore they were not parallelized. It is
well known [20] that any parallel algorithm has to avoid serial parts because even
small serial tasks, like synchronization of all processors, global communication or
some individual action of the master processing node can significantly degrade the
speedup. The computational domain of our application is static and has a simple
form because we close the simulated object in a box with boundary conditions.
Consequently, the domain decomposition and load distribution can be simplified.

348 Roman Trobec

11.11.1 Opportunities for Parallelization

The time of running the application on a parallel computer tex is the sum of the times
for computation tcp and communication tcm. The associated idle time is neglected in
this idealized model. By increasing the number of processors the tcp decreases, in
the ideal case with the number of processors P. However, if tcm does not scale with
the same rate, the ratio tcm/tcp increases and slows down the execution. Thus both,
processor performance and communication speed, have to be improved in order to
improve the overall performance of parallel algorithms.

The computation time tcp depends on many different factors, such as the CPU
clock, cache system, floating point units, internal processor architecture, etc. In our
simple model we take into account only the time needed for floating point calcu-
lation tFP. We neglect instruction decoding, integer operations, etc., because we
suppose that all these activities run concurrently with the floating point unit, so that
tcp is proportional to tFP.

The simplest communication model was used where tcm of a message transfer is
modeled as a sum of the setup time, ts, needed for preparation of the actual data to
be communicated (delays of operating system, memory buffers, etc.) and the time,
tw, needed for the transmission of a single datum. Each processing node can have
a single connection to the main communication switch or, alternatively, some addi-
tional connections that implement, for example, an interconnection topology with
four nearest neighboring nodes. Such topologies can support, for example, a ring of
computing nodes which can be quite efficient in some demanding applications. In
problems where a significant amount of global communication is needed, such as
molecular dynamics [25, 59], optimal performance of intra-cluster communication
is particularly important.

With reference to the numerical methods described, calculations of each time-
step are independent and can thus be parallelized for each time-step. Data in the
computational domain can be distributed among processing nodes using data do-
main decomposition [20]. We implemented the simplest 1d domain decomposition
which divides the whole 3D geometric knee model into P subdomains with the
shape of flat squares and allocates a single square to each processor. We assume
that processing nodes are connected into a ring topology, that the communication
is bidirectional, and that the two communication channels, such as those to the left
and right neighbors on the ring topology, run concurrently with no degradation in
speed.

If a similar calculation is needed in the whole domain, then the calculation is
automatically balanced by using the same number of voxels in each subdomain. If
some processors are dealing mostly with an empty space around the knee model, or
if others have to calculate more voxels with a shorter time-step, then some further
load-balancing principle should be used for better results.

The explicit FDM requires values from neighboring points; hence, in each
time-step, the new border values of squares have to be exchanged between two
neighboring processors, using communication channels. The communication of 1d
domain decomposition is shown schematically by arrows in Fig. 11.22. To calculate
new step temperatures, processors 1 and 2 have to exchange the last and first slice,

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 349

respectively, which are indicated by the lowest arrow. In the same way all other pro-
cessor pairs have to exchange their first and last slices. First and last processors, 1
and P, will not exchange their first and last slice, because the temperatures of these
slices are fixed by boundary conditions.

Fig. 11.22 Inter processor communication in 1d domain decomposition.

11.11.2 Computation and Communication Complexity

From Eqs. (11.45) and (11.46) given in Sect. 11.4, we see that in a 3D simulation
the new temperature of each voxel T n+1

i, j,k is obtained from its temperature in the
previous time-step T n

i, j,k and the previous temperatures of its six neighbors T n
i±1, j,k,

T n
i, j±1,k, T n

i, j,k±1. Approximately 50 floating point (FP) multiplications or additions
are needed at each time-step. Regarding the bio-heat equation (11.47), two addi-
tional evaluations of exponential functions are needed and about 10 additional FP
operations. Because of the internal parallelism built into the processing unit, we
reckon that in each time-step the computation time for each voxel is about 60 tFP.

For the geometric knee model, at the resolution used in our simulation, we have
N = Nx×Ny×Nz voxels in a box-like domain being simulated on P parallel pro-
cessors. If a balanced load distribution is supposed, then the parallel computation
time is

350 Roman Trobec

tcp = 60N tFP/P. (11.51)

The simulation was parallelized using 1d domain decomposition in order to pre-
serve simplicity and also to enable effective execution on all clusters that can embed
at least the ring topology. Each processor accepts the decomposed data of its subdo-
main and runs a simulation on them, for example, on a �Nz/P� number of consecu-
tive slices. If P cannot divide Nz then the last processor will run only the remaining
slices, which will produce a small load imbalance and prolongation of the execution
time.

In order to implement explicit FDM calculations at every point of the subdo-
main, including the first and last slice of the subdomain, the values of T from neigh-
boring slices are needed. Edge slices of subdomains have their neighboring slices
on neighboring processors. Because T is updated at every time-step, point-to-point
communication is required with the neighboring processors that exchange Nx×Ny

values of T from the subdomain’s edge slices. Assuming that the computation and
communication of any time-step will not run concurrently and that all data to be
communicated are packed into a single message, then the communication time of
each time-step is equal to

tcm = ts +(Nx×Ny) tw. (11.52)

With Nx×Ny = N2/3, the parallel execution time is

tex = 60N tFP/P+ ts +N2/3 tw. (11.53)

In calculating the theoretical speedup, we suppose that one FP number is coded by
40 bits. The typical parameter values in the above equation are tw = 40 · 7 · 10−8 s
= 2.8 ·10−6 s, ts = 10−4 s, tFP = 10−8 s, and N = 5 ·106 because half of the voxels
is the ambient air at constant temperature that are not included in the calculation.
According to Eq. (11.51), the expected single processor execution time for a single
time-step is 60 ·5 ·106 ·10−8 = 3 s, which results by Δ tb/4 = 0.039 s in 77 hours of
computation for every simulated hour of tissue temperatures.

The theoretical speedup of our parallel simulation program can be written as

S = 60N tFP/tex (11.54)

because no communication is needed on a single processor. The theoretical speedup
of the parallel simulation code for 1d domain decomposition and ring topology is
plotted in Fig. 11.23 as a function of the number of processors P. The ideal speedup
is also shown for comparison.

The theoretical efficiency of our parallel program is E = S/P and, in an ideal
case, is at most unity. E is shown on the same graph as speedup in Fig. 11.23, but its
value is multiplied by a factor of 40 for better visibility. We see that the efficiency is
again a decreasing function of the number of processors, because of the prevailing
communication time. Therefore, it is very important to think about the minimization

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 351

of the tcm, either by parallel algorithm design, by interconnection topology, or by
advanced transmission technology.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

P

S

 a
nd

 E

*4
0

theoretical speedup
ideal speedup
theoretical efficiency * 40
ideal efficiency * 40

Fig. 11.23 Theoretical speedup and efficiency of the parallel simulation code for 1d domain de-
composition and ring topology. Ideal speedup, and efficiency, multiplied by a factor of 40, are also
shown.

Because the communication time does not decrease with larger P, and due to
unbalanced computation, we cannot expect any significant speedup above a cer-
tain number of processors. It is quite complicated to balance the computation load
for general domains, because solid as well as air voxels would have to be evenly
distributed among processors. The computational complexity for air voxels is ap-
proximately 18 times greater than for solid voxels. Automatic load balancing was
not implemented in this stage, therefore an even smaller speedup is expected, as
shown in Fig. 11.23.

We neglected the global communication which is needed at the beginning of the
simulation for the implementation of the domain mapping on the parallel computing
nodes. Additionally, the simulated temperatures have to be transferred, either on the
host node or on a common disk, for later visualization and analysis, because we
did not implement parallel programs for these two tasks. The global communication
can be a bottleneck, particularly if the computing nodes are connected just through
a common data switch.

On a parallel computer with a greater number of processors connected in 2D or
3D network topologies, with 4 or 6 neighboring nodes, respectively, the natural do-
main decomposition would also be in 2D or 3D. In this case, more communication
channels work in parallel, which decreases the communication time and increases
overall performance. However, with only a moderate number of processors the ben-
efit of such a complicated communication scheme is minimal.

352 Roman Trobec

11.11.3 Measured Speedup

The parallel simulation program was run on a computing cluster comprising 16
computing nodes connected in a toroidal four-neighbors network. Each node con-
tains two 64-bit processors (AMD Opteron 244), 1024 MB RAM, and six Gigabit
Ethernet ports (2 × Broadcom BCM5704C + 4 × Intel Pro/1000 MT). Besides the
four neighbors, all nodes are also directly connected to a Gigabit switch (Level One
GSW-2451T).

The software used includes Fedora Core 2 Linux with a kernel 2.6.8-1.521smp,
LAM/MPI v3.0.7. communications library [65], and gcc 3.3.3. The communication
speed within MPI was measured preliminarily, then optimized [22] to achieve the
fastest communication rates. The parallel cluster topology used in our simulation is
shown in Fig. 11.24.

Fig. 11.24 Parallel computing cluster with 16 two-processor nodes in a toroidal four-neighbors
network. Each node is also connected to the communication switch.

The parallel execution time was measured with the parallel program on the 3D
geometric model and for different numbers of processors. The execution time of a

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 353

single processor for simulating two cooling hours with the gel pack was 114 hours,
that is, 57 times slower than real time, which is slightly less as expected, probably
because of overestimating the number of FP operations. The speedup of the parallel
code is shown in Fig. 11.25. An almost linear speedup is achieved with up to 8 pro-
cessors, after which the effect of increasing communication time starts to be visible.
The measured speedup with 16 and 32 processors was 10.9 and 16.2, respectively.
The simulation on 32 processors remains 3.5 times slower than the real time. If
greater simulation errors are acceptable, the simulation time can be shortened for a
factor of four on the account of larger time-step (see Eq. (11.50) and explanation in
Sect. 11.5).

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

P

S

theoretical
ideal
measured

Fig. 11.25 Measured speedup of a parallel 3D simulation on a computing cluster. Theoretical and
ideal speedup are also shown for comparison.

As expected, the speedup is close to linear for a number of processors less than
8, and departs significantly from linearity as the number of processors is increased.
As noted, this behavior is a consequence of the increasing proportion of time spent
for communication, and of load unbalance. The first problem could be partially al-
leviated by using 2D or 3D domain decomposition. The second problem could also
be solved to some extent by a more detailed analysis of computational domain de-
composition, which should distribute appropriate proportions of air voxels (shorter
time-step) and the remaining tissue voxels among processors.

354 Roman Trobec

11.12 Conclusions

A method for computer simulation of heat transfer in inhomogeneous tissues is
described. An explicit finite difference scheme has been developed and optimized
for this purpose. A general method for the development of 3D models, based on
digitalized slice data, is described and applied for generating a spatial geometric
model of a knee. Heat transfer in the nonhomogeneous knee tissue was modeled
with the bio-heat equation. We modeled and simulated the diffusive heat transfer, the
heat exchange from blood to tissue and the heat production by tissue metabolism.
The effects of blood flow and metabolism on the distribution of temperature in the
knee are functions of the local tissue properties and temperatures. A corresponding
mathematical model and a computer simulation program have been implemented.

We have confirmed the stability of the method by varying thermal parameters,
initial and boundary values, and model dimensions. We demonstrated a practical
application of the simulation program on the topical postoperative cooling of a
knee. The results have been validated by experimental measurements of knee tem-
peratures. The simulation results confirm that the model and methodology used are
appropriate for the thermal simulation of bio-tissues. Computation time has been
studied on a parallel computer for different numbers of processors, in order to
achieve execution times comparable to those in real time. Similar procedures could
be used for other parts of the human body, such as heart, forearm, eye, brain, etc.,
using an analogous approach.

We have shown that blood flow has a significant and complex impact on stationary-
state temperatures, and on the gradient of temperature change in subcutaneous tissue
and in the tissues nearer the central part of the knee. Lower blood flow results in
linear temperature profiles with larger gradients, for example, in bones. The dimen-
sions of the knee are a very important factor influencing its temperature distribution
and gradient. Temperatures in smaller knees will differ more from arterial blood
temperature than those in larger knees. At the same time the temperature gradient
will be much greater in smaller knees. Thermal constants and metabolism have a
relatively minor impact on the temperature field.

We show that fluctuations in temperature profiles are natural results and a conse-
quence of the complex interplay between the positions of the measuring probes, the
dimensions of the investigated body part, the anatomical positions of the main arter-
ies and bones and the environmental temperature. The fluctuations and augmented
peaks in the temperature profiles can be explained by our simulation results, since
the temperature changes in the center of the knee are influenced by the nearest artery
with constant blood temperature. The steepest, almost linear, gradients in the area
of subcutaneous tissues are observed in the outer parts of the simulated tempera-
ture profiles, particularly in cases with lower cooling temperatures. The temperature
plateaus, measured earlier by other investigators, in the inner knee region with in-
creased dimensions of the knee were also demonstrated by our simulation.

We have assumed that blood flow and metabolism change as exponential func-
tions of the temperature of the neighboring tissues. No firm justification exists for
this except for some measurements of average blood flow in the human forearm.

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 355

In [35], blood flow was measured for two hours and remained practically constant
if skin temperatures were lower than that of the arterial blood. Therefore the local
blood flow depends on the local tissue temperature in the same way as the average
blood flow depends on the bath temperature. Such an assumption needs to be sup-
ported by further physiological research. However, an arbitrary function for blood
flow and metabolism could be incorporated in the simulation tool.

We simulated topical cooling of a knee with a gel pack. The inner knee tissues
reached their lowest temperature in 40 minutes. For continuing effective cooling the
gel pack has to be replaced. The topical cooling with a cryo-cuff was more effective.
We simulated situations with relatively small cooling rates in order to be able to
analyze the small influences of the blood flow and metabolism. The thickness of
a protective bandage and isolating blanket, or their thermal conductivity, together
with the cooling temperature, can be used to regulate cooling intensity.

Simulated results were visualized and compared with measured values. Good
agreement was obtained, leading to the conclusion that the model and method used
in our simulation are appropriate for such medical simulations. Although there are
not many studies of knee temperatures measured in vivo, and the measuring condi-
tions are often not described in sufficient detail, we have also run our simulation soft-
ware with the initial conditions described in some published measurements. In [27]
the temperature in the lateral gutter of the knee decreased by 4 ◦C, one hour after
knee arthroscopy. Similar values have been obtained by our simulation program.
More detailed control studies should be done to compare experimentally measured
and simulated results in order to fine-tune the simulation method. Computer simula-
tions could help in the study of various medical applications. It has been proved that
the technique described can be used to predict the temperature distribution inside a
knee, at any point and time of interest, for particular cooling methods.

For one hour of 3D simulation with a model resolution of 1 mm, the simulation
program runs on a single processor for approximately 57 hours, which is impracti-
cable. The parallel execution time exhibited a speedup of 10.9 on 16 computers and
16.2 on 32 computers. The 3D simulation time on 32 processors is comparable with
the real time if a moderate accuracy suffices. We have shown that a 2D simulation
with a constant temperature flux in the axial knee direction led to results that did not
differ significantly from those obtained by 3D simulation. Such a simulation can be
achieved two orders of magnitude faster and is appropriate also for simulation on a
single computer, at least for the initial analysis.

The method described has several limitations. The 3D knee model used in our
simulation is not complete, as only a small part of the leg above and below the knee
was included. The remaining part of the leg that was not included was compensated
for by a constant flux in boundary conditions. Spatial models differ with different
persons and with time, and consequently the simulated results can differ. Minor
errors in tissue segmentation and inaccurate thermodynamic constants could also
produce small errors in the simulated results. Moving air was compensated by an
artificial thin layer of air with nonconstant temperature. Incorporation of a fluid-flow
model would be needed for even more accurate results.

356 Roman Trobec

The possible influence of blood perfusion by different regulatory mechanisms
has not been simulated. Personal regulatory mechanisms have not been included in
the simulation model but could easily be incorporated. All such limitations could
have some impact on the simulated temperatures, but the essential findings are in
remarkably good agreement with those from experimental in vivo measurements.
The spatial knee model and simulation program are available from the author for
research purposes and for the continuation of the work.

Acknowledgments The author acknowledges many colleagues for their previous cooperation or
contributions, either by discussion, measurements or testing of heat transfer in biological tissues, in
particular Prof. Dr. Borut Geršak, Dr. Marjan Šterk, and Prof. Dr. Matjaž Veselko. We acknowledge
financial support from the state budget by the Slovenian Research Agency under grant P2-0095.

References

1. R. L. Martino, C. A. Johnson, E. B. Suh, et al., Parallel computing in biomedical-research,
Science 265 (1994) 902–908.

2. R. Rook, S. Dost, The use of smoothed particle hydrodynamics for simulating crystal growth
from solution, Int J Eng Sci 45 (2007) 75–93.

3. Y. Aggarwal, B. M. Karan, B. N. Das, R. K. Sinha, Computer simulation of heat transfer in
different tissue layers of body extremities under heat stress in deep anesthetic condition, J Med
Syst 32 (2008) 283–90.

4. M. Šterk, R. Trobec, Biomedical simulation of heat transfer in a human heart, J Chem Inf Mod
45 (2005) 1558–1563.

5. T. Liszka, J. Orkisz, The finite difference method at arbitrary irregular grids and its application
in applied mechanics, Comput Struct 11 (1980) 83–95.

6. K. T. Danielson, R. A. Uras, M. D. Adley, S. Li, Large-scale application of some modern CSM
methodologies by parallel computation, Adv Eng Softw 31 (2000) 501–509.

7. C. Hirsch, Numerical Computation of Internal and External Flows: Fundamentals of Compu-
tational Fluid Dynamics, Butterworth-Heinemann (2007).

8. A. Lipej, Optimization method for the design of axial hydraulic turbines, Proc Inst Mech Eng
A – J Power Energy 218 (2004) 43–50.

9. A. Horvat, M. Leskovar, B. Mavko, Comparison of heat transfer conditions in tube bundle
cross-flow for different tube shapes, Int J Heat Mass Transfer 49 (2007) 1027–1038.

10. L. F. Richardson, Weather Prediction by Numerical Process, Dover Publications, New York
(1965).

11. B. Urban, D. Janežič, Symplectic molecular dynamics simulations on specially designed par-
allel computers, J Chem Inf Modell 45 (2005) 1600–1604.

12. P. Bernardi, M. Cavagnaro, S. Pisa, E. Piuzzi, Specific absorption rate and temperature eleva-
tion in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-
MHz range, IEEE Trans Biomed Eng 50 (2003) 295–304.

13. M. Depolli, V. Avbelj, R. Trobec, Computer-simulated alternative models of U-wave genesis,
J Cardiovasc Electrophysiol 19 (2008) 84–89.

14. R. Trobec, B. Slivnik, B. Gersak, T. Gabrijelčič, Computer simulation and spatial modelling
in heart surgery, Comput Biol Med 28 (1998) 393–403.

15. M. J. Ackerman, The visible human project, Proc IEEE 86 (1998) 504–511.
16. O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method: Its Basis and Funda-

mentals, Elsevier Butterworth-Heinemann (2005).

11 Parallel Computer Simulations of Heat Transfer in Biological Tissues 357

17. M. Šterk, R. Trobec, Meshless solution of a diffusion equation with parameter optimization
and error analysis, Eng Anal Bound Elem 32 (2007) 567–577.

18. V. Nguyen, T. Rabczuk, S. Bordas, M. Duflot, Meshless methods: a review and computer
implementation aspects, Math Comput Simul 79 (2008) 763–813.

19. M. T. Heath, Scientific Computing: An Introductory Survey, 2nd Ed., McGraw-Hill (2002).
20. S. G. Akl, Parallel Computation: Models and Methods, Prentice Hall, New Jersey (1997).
21. A. Sulistio, U. Čibej, S. Venugopal, B. Robič, R. Buyya, A toolkit for modelling and simulat-

ing data Grids: an extension to GridSim, Concurr Comput Pract Exp 20 (2008) 1591–1609.
22. I. Rozman, M. Šterk, J. Močnik, B. Robič, R. Trobec, Performance measurements of comput-

ing networks, Scalable Comput Pract Exp 9 (2008) 143Ű–150.
23. A. A. C. Braga, Technical aspects of beowulf cluster construction, Quimica Nova 26 (2003)

401–406.
24. U. Borštnik, M. Hodošček, D. Janežič, Improving the performance of molecular dynamics

simulations on parallel clusters, J Chem Inf Comput Sci 44 (2004) 359–364.
25. R. Trobec, U. Borštnik, D. Janežič, Communication performance of d-meshes in molecular

dynamics simulation, J Math Chem DOI 10.1007/s10910-008-9423-2.
26. K. L. Knight, Cryotherapy: Theory, Technique and Physiology, Chatanooga Corporation,

Chattanooga (1985).
27. S. S. Martin, K. P. Spindler, J. W. Tarter, K. Detwiler, H. A. Petersen, Cryotherapy: an effective

modality for decreasing intraarticular temperature after knee arthroscopy, Am J Sports Med
29 (2001) 288–291.

28. S. S. Martin, K. P. Spindler, J. W. Tarter, K. Detwiler, H. A. Petersen, Accelerated rehabilita-
tion after anterior cruciate ligament reconstruction, Am J Sports Med 18 (1990) 292–299.

29. W. Grana, Cold modalities, in: J. C. DeLee and D. Drez (Eds.), Orthopaedic Sports Medicine,
Principles and Practice, WB Saunders, Philadelphia (1994).

30. W. C. McMaster, S. Liddle, T. R. Waugh, Laboratory evaluation of various cold therapy modal-
ities, Am J Sports Med 6 (1978) 291–294.

31. D. H.Silverthorn, Human Physiology, An Integrated Approach, Prentice-Hall, New Jersey
(2001).

32. H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting human forearm,
J Appl Physiol 1 (1948) 93–122.

33. H. F. Bowman, E. G. Cravalho, M. Woods, Theory, measurement, and application of thermal
properties of biomaterials, Annu Rev Biophys Bioeng 4 (1975) 43–80.

34. C. K. Charny, Mathematical models of bioheat transfer, in: Y.I. Cho (Ed.), Advances in Heat
Transfer, Academic Press, New York (1992).

35. H. Barcroft, O. G. Edholm, Temperature and blood flow in the human forearm, J Physiol 104
(1946) 366–376.

36. M. B. Ducharme, W. P. VanHelder, M. W. Radomski, Tissue temperature profile in the human
forearm during thermal stress at thermal stability, J Appl Physiol 71 (1991) 1973–1978.

37. E. H. Wissler, Pennes’ 1948 paper revisited, J Appl Physiol 85 (1998) 35–41.
38. R. Trobec, M. Šterk, S. AlMawed, M. Veselko, Computer simulation of topical knee cooling,

Comput Biol Med 38 (2008) 1076–1083.
39. S. Karthik, A. D. Grayson, A. Y. Oo, et al., A survey of current myocardial protection practices

during coronary artery bypass grafting, Ann Roy Coll Surg 86 (2004) 413–415.
40. C. L. Olin, I. E. Huljebrant, Topical cooling of the heart – a valuable adjunct to cold cardio-

plegia, Scand J Thorac Card 41 (1993) 55–58.
41. P. Trunk, B. Gersak, R. Trobec, Topical cardiac cooling – computer simulation of myocardial

temperature changes, Comput Biol Med 33 (2003) 203–214.
42. G. B. Pollard, Lectures on Partial Differential Equations, Wiley, New York (1964).
43. M. N. Özisik, Finite Difference Methods in Heat Transfer, CRC Press, Boca Raton (1994).
44. S. J. Owen, A survey of unstructured mesh generation technology, in: Proceedings of 7th

International Meshing Roundtable, Sandia National Laboratories (1998), pp. 239–267.
45. T. Rabczuk, S. Bordas, G. Zi, A three-dimensional meshfree method for continuous crack

initiation, nucleation and propagation in statics and dynamics, Comput Mech 40 (3) (2007)
473–495.

358 Roman Trobec

46. M. Thuné, Straightforward partitioning of composite grids for explicit difference methods,
Parallel Comput 17 (1991) 665–672.

47. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, London
(1959).

48. P. Trunk, R. Trobec, B. Gersak, Measurement of porcine heart temperatures, Pflügers Arch
440 (2000) R132–R133.

49. G. Golub, J. M. Ortega, Scientific Computing – An Introduction with Parallel Computing,
Academic Press Inc., Boston (1993).

50. M. Vajteršic, Algorithms for Elliptic Problems, Efficient Sequential and Parallel Solvers,
Kluwer Academic Publishers (1993).

51. H. A. van der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the
solution of nonsymmetric linear systems, SIAM J Sci Stat Comput 13 (1992) 631–644.

52. R. Barrett, M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, SIAM, Philadelphia (1994).

53. M. Šterk, R. Trobec, Parallel performance of a multigrid poisson solver, in: Proceedings of
Second International Symposium on Parallel and Distributed Computing, IEEE Computer Soc
(2003), pp. 238–243.

54. C. Shen, J. Zhang, Parallel two level block ILU preconditioning techniques for solving large
sparse linear systems, Parallel Comput 28 (2002) 1451–1475.

55. R. Trobec, M. Šterk, B. Robič, Computational complexity and parallelization of the meshless
local Petrov-Galerkin method, Comput Struct 87 (2009) 81–90.

56. J. W. Mitchell, G. E. Myers, An analytical model of the counter-current heat exchange phe-
nomena, Biophys J 8 (1968) 897–911.

57. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The Art of
Scientific Computing, Cambridge University Press, Cambridge (1986).

58. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1987).
59. D. Janežič, M. Praprotnik, Molecular dynamics integration time step dependence of the

split integration symplectic method on system density, J Chem Inf Comput Sci 43 (2003)
1922–1927.

60. I. Kuščer, A. Kodre, Mathematik in Physik und Technik, Springer Verlag, Berlin (1993).
61. M. Praprotnik, M. Šterk, R. Trobec, Inhomogeneous heat-conduction problems solved by a

new explicit finite difference scheme, Int J Pure Appl Math 13 (2004) 275–291.
62. M. B. Ducharme, P. Tikuisis, In vivo thermal conductivity of the human forearm tissues, J Appl

Physiol 70 (1991) 2682–2690.
63. P. Tikuisis, M. B. Ducharme, Finite-element solution of thermal conductivity of muscle during

cold water immersion, J Appl Physiol 70 (1991) 2673–2681.
64. The visible human project, United States National Library of Medicine, http://www.nlm.

nih.gov/research/visible/getting_data.html.
65. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI – The Complete Reference,

The MIT Press, Cambridge (1996).

Chapter 12
Parallel SVD Computing in the Latent Semantic
Indexing Applications for Data Retrieval

Gabriel Okša and Marián Vajteršic

Abstract

One of the main sources of information in our society is a written word. Since times
of Sumerians, a written document became the main tool to inform, to teach, to enter-
tain and to archive the knowledge. Today, some 6000 years after Sumerians, noth-
ing has changed with respect to the importance of a written text. To become widely
available, the knowledge must be manipulated in an easy and reliable way, and some
type of text encoding on a computer is needed.

The Latent Semantic Indexing (LSI) is a concept-based automatic indexing method
for overcoming the two fundamental problems which exist in the traditional lexical-
matching retrieval schemes: synonymy and polysemy. It is based on the model-
ing of a term – document relationship using the reduced-dimension representation
of a term-document matrix computed by its partial Singular Value Decomposition
(SVD). We describe main principles of the LSI in the form of a mathematical model
and discuss its implementation on a parallel computer with distributed memory.

12.1 Introduction

Latent Semantic Indexing (LSI) is a concept-based automatic indexing method for
overcoming the two fundamental problems which exist in the traditional lexical-
matching retrieval schemes: synonymy and polysemy [1]. With respect to the

Gabriel Okša
Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava,
Slovakia, e-mail: Gabriel.Oksa@savba.sk.

Marián Vajteršic
Department of Computer Sciences, University of Salzburg, Austria, and Mathematical Institute,
Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia,
e-mail: marian@cosy.sbg.ac.at

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_12, 359
c© Springer-Verlag London Limited 2009

360 Gabriel Okša and Marián Vajteršic

synonymy, several different words can be used to express a concept and the key-
words in a user’s query may not match those in the relevant documents. On the
other hand, polysemy means that certain words can have multiple meanings and
the user’s words may match those in the irrelevant documents. LSI is an exten-
sion of the vector space model for information retrieval [1, 2]. In the vector space
model, the collection of text documents is represented by a term-document matrix
A = (ai j) ∈ R

m×n, where ai j is based on the number of times the term i appears
in the document j, m is the number of terms, and n is the number of documents
in the collection. Hence, a document becomes a column vector, and a user’s query
can also be represented as a vector of the same dimension. The similarity between a
query vector and a document vector is usually measured by the cosine of the angle
between them, and for each query a list of documents ranked in a decreasing order
of similarity is returned to the user.

LSI modifies this vector space model by modeling the term – document relation-
ship using a reduced-dimension representation (RDR) of term-document matrix A
computed by its singular value decomposition (SVD). Let

A = PΣQT , Σ = diag(σ1, σ2, . . . , σmin{m,n}), σ1 ≥ σ2 ≥ . . .≥ σmin{m,n},

be the SVD of A. Then the RDR is given by the best rank-k approximation Ak =
PkΣkQT

k , k < min{m,n}, where Pk and Qk consist of the first k columns of P and
Q, respectively, and Σk is the kth leading principal submatrix of Σ . Each of the k
reduced dimensions represents a so-called pseudo-concept [2], which may not have
any explicit semantic content but helps to discriminate documents [2, 3].

Typically, a term-document matrix A is a large, sparse matrix with, say, O(106)
rows and/or columns. Its RDR is of order, say, O(101−102), so that only a relatively
small part of largest singular triplets are needed for representing a given, static, ho-
mogeneous database of documents. Hence, a computational method used for the
reduced SVD of a large, sparse matrix is usually iterative. One can choose, for ex-
ample, the Arnoldi method [4], subspace iteration [5, 6] or trace minimization [7].
Parallel versions of these algorithms are discussed in detail in [8].

In rapidly changing environments such as the World Wide Web, the document
collection is frequently updated with new documents and terms constantly being
added (or deleted). Hence, the task arises to efficiently update the old LSI-generated
RDR after an addition of new documents and terms. As shown in next sections, such
updating (or downdating) requires the SVD computation of structured matrices that
are upper or lower triangular and dense, so that the sparsity of an original term-
document matrix is lost. Although the above mentioned SVD methods can also be
used in these cases, they are not so efficient anymore. Therefore, other parallel SVD
algorithms can be used.

We present some new ideas with respect to the ‘old’ Jacobi SVD method that are
able to accelerate the computation. The emphasis is on the block approach with an
efficient use of the hierarchy of memory modules in modern (parallel) computers via
BLAS-3 matrix operations, on the new type of parallel ordering (so-called dynamic
ordering for the parallel two-sided block-Jacobi SVD algorithm), and on a possi-

12 Parallel SVD Computing for Data Retrieval 361

ble preservation of the matrix triangular structure (the parallel block-Kogbetliantz
variant of the Jacobi SVD method).

The chapter is organized as follows. In Sect. 12.2, the mathematical model of
updating is briefly presented, which is based on algorithms derived in [9]. It turns
out that the computationally most intensive task in the correct updating is the SVD
computation of some upper or lower triangular matrix. The same is true for two
downdating problems (i.e., deleting the documents and/or terms) that are discussed
in Sect. 12.3. In Sect. 12.4 we design a parallel SVD algorithm for solving these
updating/downdating problems, which is based on the Kogbetliantz method with a
special cyclic ordering that preserves the (block) triangular structure of a matrix.
In Sect. 12.5, the parallel two-sided block-Jacobi method with dynamic ordering is
introduced. Using the dynamic ordering of subproblems leads to much faster con-
vergence, but the (block) triangular structure of a matrix is lost after first parallel
iteration.

In the second part of the chapter, two models for the encoding of a distributed
database are analyzed using the paradigm of the LSI. The first model comprises a
grid of individual nodes that possess only a restricted inter-communication, so that
only local level of approximation for individual nodes is possible. In the second
model, the individual processors are connected by a communication network that
enables to build, besides the local approximation, also the global one with respect
to the whole database.

12.2 Two Updating Problems in LSI

12.2.1 Updating Documents

Let us suppose that the RDR of order k was already computed and stored for
some term-document matrix A, and the original matrix was discarded (e.g., for the
memory reasons), so that only Ak = PkΣkQT

k is available in the factored form. Let
D ∈ R

m×r be r new documents. The task is to compute the best rank-k approxima-
tion of the column partitioned matrix

B≡ (Ak, D) .

Using the factorization of Ak, the matrix B can be written as

B =
(
PkΣkQT

k , D
)

=
(
Pk, (Im−PkPT

k)D
)
·
(
Σk PT

k D
0 Ir

)
·
(

QT
k 0

0 Ir

)
.

Note that Im−PkPT
k is the matrix representation of the orthogonal projection, which

maps the columns of matrix D into the subspace P⊥
k that is orthogonal to the col-

umn range of matrix Pk. Let (Im−PkPT
k)D = P̂r R be the QR decomposition of the

362 Gabriel Okša and Marián Vajteršic

matrix (Im−PkPT
k)D. Then

B = (Pk, P̂r) ·
(
Σk PT

k D
0 R

)
·
(

QT
k 0

0 Ir

)
. (12.1)

The crucial point in the above derivation is the observation that the r-orthonormal
columns of matrix P̂r are mutually orthogonal to the k-orthonormal columns of ma-
trix Pk because the columns of P̂r constitute the orthonormal basis of the subspace
P⊥

k . Note that two exterior matrices on the right hand side of Eq. (12.1) are orthog-
onal, but the inner matrix is not diagonal. Hence, from the computational point of
view, the updating problem is reduced to the SVD of the inner matrix in Eq. (12.1).

Based on these facts, Zha and Simon [9] have derived a method for solving the
problem of updating documents. Their approach is summarized in Algorithm 12.1.
Notice that step 4 in Algorithm 12.1 requires the SVD of structured matrix B̂, which

Algorithm 12.1 Algorithm for updating documents

1: Input: k, Pk ∈ R
m×k, Σk ∈ R

k×k, Qk ∈ R
n×k, D ∈ R

m×r.
2: Compute the projection: D̂ = (Im−Pk PT

k)D.
3: Compute the QR decomposition: D̂ = P̂r R, where P̂r ∈ R

m×r, R ∈ R
r×r.

4: Compute the SVD of matrix

B̂≡
(
Σk PT

k D
0 R

)
∈ R

(k+r)×(k+r)

in the form:
B̂ = (Uk, U⊥

k) ·diag(Σ̂k, Σ̂r) · (Vk, V⊥k)T ,

where Uk, Vk ∈ R
(k+r)×k and Σ̂k ∈ R

k×k.
5: Output: The best rank-k approximation of B = (Ak, D) is given by:

Bk ≡
[
(Pk, P̂r)Uk

]
· Σ̂k ·

[(
Qk 0
0 Ir

)
Vk

]T

.

is upper triangular with the diagonal left upper block of order k× k. At the same
time, this step represents the most intensive computation in Algorithm 12.1.

12.2.2 Updating Terms

In this case, let T ∈ R
q×n be the q new term vectors that should be added to the

existing terms at the bottom of the old term-document matrix. The task is to compute
the best rank-k approximation of the row partitioned matrix

C ≡
(

Ak

T

)
.

12 Parallel SVD Computing for Data Retrieval 363

Using steps similar to those in the previous paragraph (see [9]), one gets the Algo-
rithm 12.2 for the correct updating of terms. Similarly to the problem of updating

Algorithm 12.2 Algorithm for updating terms

1: Input: k, Pk ∈ R
m×k, Σk ∈ R

k×k, Qk ∈ R
n×k, T ∈ R

q×n.
2: Compute the projection: T̂ = (In−Qk QT

k)T T ∈ R
n×q.

3: Compute the QR decomposition: T̂ = Q̂q LT , where Q̂q ∈ R
n×q, L ∈ R

q×q.
4: Compute the SVD of matrix

Ĉ ≡
(
Σk 0

T Qk L

)
∈ R

(k+q)×(k+q)

in the form:
Ĉ = (Uk, U⊥

k) ·diag(Σ̂k, Σ̂q) · (Vk, V⊥k)T ,

where Uk, Vk ∈ R
(k+q)×k and Σ̂k ∈ R

k×k.

5: Output: The best rank-k approximation of C =
(

Ak
T

)
is given by:

Ck ≡
[(

Pk 0
0 Iq

)
Uk

]
· Σ̂k ·

[
(Qk, Q̂q)Vk

]T
.

documents, the computationally most intensive step is the SVD of the lower triangu-
lar matrix Ĉ with the upper left diagonal block. Since the upper and lower triangular
matrices are related by the matrix transposition that affects the SVD only by inter-
changing the left and right singular vectors, in the following we focus on the upper
triangular matrix B̂ in Algorithm 12.1. The conclusions with respect to the efficiency
of the SVD computation will be valid for both updating problems.

12.3 Two Downdating Problems in LSI

In downdating problems, there exists the k-dimensional approximation of the orig-
inal term-document matrix A in the form Ak = PkΣkQT

k . As above we assume that
only factors Pk, Σk and Qk are available. In contrast with updating problems, our task
is now either to delete r documents, i.e., the matrix D of order m× r from the rep-
resentation Ak = [D, Ãk], or to delete q terms, i.e., the matrix T of order q×n from

the representation Ak =
(

T
Âk

)
. Our new database is represented by matrix Ãk or Âk,

and we must end with the k-dimensional SVD representation of a reduced matrix
in either case. Next we describe effective serial algorithms published in [10], which
solve both downdating problems. Since both algorithms are very similar, we will
describe in detail only the algorithm for downdating the documents and comment
on differences when downdating the terms.

364 Gabriel Okša and Marián Vajteršic

12.3.1 Downdating Documents

Let us start with the representation Ak = [D, Ãk] = PkΣkQT
k . Let the matrix I1:r

n denote
the first r rows of the identity matrix of order n (we assume n > r, which is natural –
not all n documents are deleted from a database). Let us define the matrix Q̂ as an
n× (k + r) orthogonal matrix of the form

Q̂ = (Qk, S),

where S contains r orthogonal columns of length n, which are orthogonal also to the
columns of Qk – i.e., QT

k S = 0 (to be sure that such S exists, we assume that k + r ≤
n). Then one can check by direct computation that the following decomposition is
valid: (

Ir 0
0 PT

k

)
·
(

I1:r
n
Ak

)
· Q̂ =

(
Q1:r

k S1:r

Σk 0

)
≡W.

Thus the right-hand side matrix above, referred to as W , is composed of the first r
rows of Qk followed by the first r rows of S.

The key step now is to reduce W T by orthogonal transformations into a special
form, which will contain the identity Ir as the left upper diagonal block. Since Σk is
diagonal, we can write

W T =
(

(Q1:r
k)T Σk

(S1:r)T 0

)
.

Notice the special structure of W T . First r columns are dense (in fact, these are
the first r orthogonal rows of the orthogonal matrix Q̂), but next k columns are very
sparse, because Σk is diagonal and the bottom diagonal block is zero. It is this special
structure which allows to use left and right Givens rotations in a so-called non-zero
chasing scheme [11, pp. 145–149] to obtain:

GLW T GR = GL

(
Q1:r

k S1:r

Σk 0

)T

GR =
(

Ir 0
Y B̃

)T

,

where B̃ is the lower triangular matrix. Here GL and GR are orthogonal matrices of
order (k+r) constructed as products of individual Givens rotations. It can be shown
that GT

R does not act on first r rows of the composed matrix. Therefore

GT
R

(
Ir 0
0 PT

k

)
=
(

Ir 0
0 P̄T

k

)
.

However, GT
L reduces exactly r first columns of Q̂ to (Ir, 0)T , so that

Q̂GT
L =

(
Ir 0
0 Q̄k

)

12 Parallel SVD Computing for Data Retrieval 365

(since the columns of Q̂ are orthogonal and remain so also after the orthogonal
transformation, the block 12 must be zero). Then it follows that

(
Ir 0
0 P̄T

k

)
·
(

Ir 0
D Ãk

)
·
(

Ir 0
0 Q̄k

)
=
(

Ir 0
Y B̃

)
,

and the second row yields the downdated Ãk given by

P̄T
k ÃkQ̄k = B̃,

where B̃ is the lower triangular, banded matrix of order k. If the full SVD of B̃ is

B̃ = PBΣB QT
B ,

then the SVD of Ãk is given by

Ãk = (P̄k PB) ·ΣB · (Q̄k QB)T ≡ P̃k Σ̃k Q̃T
k ,

with P̃k = P̄k PB, Σ̃k = ΣB and Q̃T
k = (Q̄k QB)T .

All steps required for deleting a block of documents are summarized in Algo-
rithm 12.3. The most computationally demanding task in Algorithm 12.3 is the SVD

Algorithm 12.3 Algorithm for downdating documents

1: Input: k, Pk ∈ R
m×k, Σk ∈ R

k×k, Qk ∈ R
n×k, D ∈ R

m×r.
2: Complete Qk into the orthonormal matrix Q̂ = (Qk, S) of order n× (k + r) by taking r random

vectors and orthogonalizing them by the modified Gram-Schmidt process.

3: Form the matrix W =
(

Q1:r
k S1:r

Σk 0

)
and find orthogonal matrices GL and GR so that

GLW T GR = GL

(
Q1:r

k S1:r

Σk 0

)T

GR =
(

Ir 0
Y B̃

)T

,

where B̃ is the lower triangular matrix of order k.
4: Compute P̄k and Q̄k by:

GT
R

(
Ir 0
0 PT

k

)
=
(

Ir 0
0 P̄T

k

)
, Q̂GT

L =
(

Ir 0
0 Q̄k

)
.

5: Compute the SVD of B̃, B̃ = PBΣB QT
B . All matrices are square of order k.

6: Output: The best rank-k approximation of Ãk is given by P̃k = P̄k PB, Σ̃k = ΣB and Q̃T
k =

(Q̄k QB)T .

of the lower triangular matrix B̃ in step 5.

366 Gabriel Okša and Marián Vajteršic

12.3.2 Downdating Terms

This case is indeed very similar to the above one for deleting documents. Let Ak =(
T
Ãk

)
= PkΣkQT

k be our original database of order m×n, from which q terms should

be removed. These terms are placed on the top and are present in all documents, so
that their influence is defined by the matrix T of order q×n. Notice that the matrix
AT

k has the structure identical to the case of deleting documents. Hence, to delete a
block of terms, one can work with the representation of AT

k and use the algorithm
from previous subsection.

However, similar steps as in the previous subsection, applied directly to the SVD
factors of Ak, lead to Algorithm 12.4. Again, the most computationally expensive

Algorithm 12.4 Algorithm for downdating terms

1: Input: k, Pk ∈ R
m×k, Σk ∈ R

k×k, Qk ∈ R
n×k, T ∈ R

q×n.
2: Complete Pk into the orthonormal matrix P̂ = (Pk, Z) of order m× (k +q) by taking q random

vectors and orthogonalizing them by the modified Gram-Schmidt process.

3: Form the matrix H =
(

PT
1:q,k Σk

ZT
1:q 0

)
and find orthogonal matrices GL and GR so that

GLHGR =
(

Iq Y
0 B̃

)
,

where B̃ is the upper triangular matrix of order k. Here PT
1:q,k denotes first q columns of PT

k ;

similarly for ZT
1:q.

4: Compute P̄k and Q̄k by:

GLP̂T =
(

Iq 0
0 P̄T

k

)
,

(
Iq 0
0 Qk

)
GR =

(
Iq 0
0 Q̄k

)
.

5: Compute the SVD of B̃, B̃ = PBΣB QT
B . All matrices are square of order k.

6: Output: The best rank-k approximation of Ãk is given by P̃k = P̄k PB, Σ̃k = ΣB and Q̃T
k =

(Q̄k QB)T .

task is the SVD of the upper triangular matrix B̃.
When comparing together Algorithms 12.1, 12.2, 12.3 and 12.4, the computa-

tional pattern is similar – each task requires the SVD of a lower or upper triangular
matrix, which can have some interesting additional structure. Next we describe the
parallel Kogbetliantz variant of the Jacobi method for doing this.

12.4 Kogbetliantz Method for Triangular Matrices

Special form of the Jacobi method for obtaining the SVD of (upper or lower) trian-
gular matrices was proposed by Kogbetliantz; see [12, 13]. However, in his original

12 Parallel SVD Computing for Data Retrieval 367

proposal the method was used for the solution of a system of linear equations, where
the coefficient matrix was first transformed to a triangular form by the QR decompo-
sition; then the R-factor was diagonalized by the two-sided unitary (orthogonal, in
real case) transformations. However, today his method is mainly used for the SVD
computation of triangular matrices.

From the numerical point of view, the Kogbetliantz algorithm is relatively stable
[14], i.e., the tiniest singular values are computed with high relative accuracy. This
property is similar to the one-sided Jacobi method. The convergence criterion can
be checked without any extra cost, whereas the one-sided Jacobi method requires
approximately n2/2 dot products to do this. However, the main weakness of the
Kogbetliantz method is its need to update both matrix columns and rows, which
means twice as many matrix multiplications as compared with a one-sided method.

We start with the serial approach and describe a special, so-called butterfly form
of a triangular matrix. The second ‘brick’ of the method is the modulus pivot strat-
egy, which essentially preserves the butterfly form during the whole iterative pro-
cess. Although the scalar algorithm which deals with individual elements of a matrix
can be parallelized, better efficiency is achieved when working with matrix blocks
because the BLAS-3 algorithms for matrix multiplication can be used. Therefore,
the last subsection describes the approach when a matrix is divided into blocks and
possible parallelization of the Kogbetliantz algorithm is also discussed.

12.4.1 Butterfly Form of Triangular Matrices

For n = 6 and n = 7, the butterfly form of a square matrix A of order n has the
following form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 0 0
x x 0 0 0 x
x x x 0 x x
x x x x x x
x x 0 0 x x
x 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 0 0 0
x x 0 0 0 0 x
x x x 0 0 x x
x x x x x x x
x x x 0 x x x
x x 0 0 0 x x
x 0 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is shown in [15] that each dense square (even rectangular) matrix A can be reduced
to the butterfly form by a series of Householder reflections and Givens rotations
applied from the left.

In our updating/downdating problems, a matrix under interest is upper or lower
triangular. Let us concentrate to the upper triangular form (the lower triangular case
is similar and by transposition can be brought to the upper triangular one). If T is
a general, upper triangular matrix, then an example in [15] shows how T can be
transformed into B, which is in the butterfly form, using a very cheap similarity
transformation by a permutation matrix: B = PT T P. The permutation matrix P is

368 Gabriel Okša and Marián Vajteršic

composed of the product of simple transposition matrices:

P =
{

I12I13(I14I23)(I15I24)(I16I25I34) · (I1,nI2,n−1 · · · Ik,k+1) if n = 2k,
I12I13(I14I23)(I15I24)(I16I25I34) · (I1,nI2,n−1 · · · Ik,k+2) if n = 2k +1.

Here, Ipq = (e1, . . . ,eq, . . . ,ep, . . . ,en), p < q, is the transposition of columns p and
q, where ei is the ith column of the identity matrix In. The parentheses emphasize
those transpositions that can be performed in parallel, because the corresponding
pairs of indices are mutually disjunct. For example, for n = 6 we have k = n/2 = 3,
and the transformation can be depicted as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

x � x x x x
0 x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎠
�→

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 � x x x
x x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎠
�→

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 0 � x x
x x � x x x
x 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 � x
x x 0 � x x
x 0 x x x x
x 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎠
�→

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 0 �
x x 0 0 � x
x 0 x � x x
x x 0 x x x
x 0 0 0 x x
0 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎠
�→

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 0 0
x x 0 0 0 x
x x x 0 x x
x x x x x x
x x 0 0 x x
x 0 0 0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The symbol � denotes the position of one pivot element, the subscripts of which
define the rows and columns which are to be swapped.

It can be easily seen that the whole transformation can be performed in n− 1
parallel steps on n/2 processors by exchanging appropriate columns and rows. Note
that when processors contain whole matrix columns, only matrix columns are sen-
t/received, whereas the matrix rows can be exchanged locally in the processors. This
is an example of a ‘fine-grained’ parallelism, because the number of processors in-
creases linearly with the matrix order n, which is not feasible for very large n.

12.4.2 Modulus Pivot Strategy

In general, the pivot strategy is a fixed list containing the order in which the off-
diagonal matrix elements of matrix A are nullified. For triangular matrices, the spe-
cial, so-called modulus strategy was proposed in [16]. It is defined by the modulus
ordering of the set Pn = {(p,q) : 1≤ p < q≤ n} and is illustrated below for n = 7.

12 Parallel SVD Computing for Data Retrieval 369

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. 6 9 11 14 16 19
. 12 15 17 20 1

. 18 21 2 4
. 3 5 7

. 8 10
. 13

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1 = {(2,7),(3,6),(4,5)}
S2 = {(3,7),(4,6),(1,2)}
S3 = {(4,7),(5,6),(1,3)}
S4 = {(5,7),(1,4),(2,3)}
S5 = {(6,7),(1,5),(2,4)}
S6 = {(1,6),(2,5),(3,4)}
S7 = {(1,7),(2,6),(3,5)}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. 2 3 4 5 6 7
. 4 5 6 7 1

. 6 7 1 2
. 1 2 3

. 3 4
. 5

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The leftmost matrix represents the ordering in which the pivot elements are anni-
hilated within one sweep. By St , 1 ≤ t ≤ 7, we denote the so-called rotation sets
containing index pairs of matrix elements which can be annihilated simultaneously
because all index pairs are mutually disjoint (or commuting). Finally, the rightmost
matrix depicts the pivot positions according to rotation sets which can be zeroed in
parallel.

Hence, the modulus pivoting for triangular matrices enables to introduce a paral-
lel algorithm based on rotation sets. At parallel step t, the rotation set St determines
which elements will be nullified. Since the Kogbetliantz method is iterative, the
algorithm goes through a sequence

S1,S2, . . . ,Sn,S1,S2, . . . ,Sn, . . . ,

until convergence is achieved.
Let Piv(t) denote the pivot set that is currently used as a rotation set. We start

with B[1] = B, and at the beginning of time step t, t ≥ 1, all rotation matrices (i.e.,

all rotation angles) U [t]
i j , V [t]

i j , (i, j) ∈ Piv(t) are computed using the elements of the

same matrix B[t]. Then the transformation

B[t+1] = U [t]T B[t]V [t], U [t] = ∏
(i, j)∈Piv(t)

U [t]
i j , V [t] = ∏

(i, j)∈Piv(t)
V [t]

i j (12.2)

is performed. Here U [t] and V [t] are not computed explicitly; only all V [t]
i j , (i, j) ∈

Piv(t) are applied simultaneously, and afterwards the same is done with U [t]
i j , (i, j)∈

Piv(t). If the right and/or left singular vectors are needed, then the right transforma-
tion V [t] can be accumulated into the orthogonal matrix V during iterations, and then
U can be computed a posteriori from the equation BV = U Σ . Alternatively, one can
accumulate U [t] into U and then compute V a posteriori.

The advantages of using the butterfly form together with the modulus pivot strat-
egy in the Kogbetliantz method is discussed in detail in [15]. If B is in the butterfly
norm then it is permutationally similar to the upper triangular matrix (B is PST).
Therefore, it is also essentially triangular (ET) since it holds: bpq bqp = 0 for p < q.
Moreover, it can be shown that if one starts with a triangular matrix in the butterfly
form, then all matrices generated by the Kogbetliantz method using the modulus
strategy are PST. In particular, when B[t] denotes the iterated matrix in the time step
t with t > n (n is the size of B), then B[t] and B[t−n] have zero structures which are
transposed to each other. Each matrix B[t] is PST, therefore it is ET, and can be

370 Gabriel Okša and Marián Vajteršic

compactly stored in the upper triangle of square array. Hence, the upper triangular
matrix G[t] can be defined by prescription

G[t] +G[t]T = B[t] +B[t]T .

Then the Kogbetliantz method with modulus strategy (KMMS) can be formulated in
terms of matrices G[t] (see [15]). The result is a sequential KMMS algorithm which
works with the upper triangular matrices and in each step applies approximately n/2
non-commuting rotations.

These rotations can be applied in parallel, but the disadvantage of such ‘direct’
parallelization of the KMMS is its low efficiency. We need approximately n/2 pro-
cessors to exploit fully the inherent parallelism of the algorithm, which is certainly
not efficient for large n. The parallelization strategy, which uses the number of pro-
cessors as a (linear) function of the matrix size, belongs to a ‘fine-grained’ approach
and can be very inefficient with respect to the cost of inter-processor communica-
tion for large n. Much better way is to work with matrix blocks, whereby the size of
a block is given by the size of the matrix divided by a given number of processors.
Next we describe a parallelization approach for the block KMMS.

12.4.3 Block Version and Parallelism

When working with matrix blocks, the numerical algorithms become much more
efficient in general, because the memory hierarchy of modern computers can be
used. However, the size of matrix blocks should be tuned according to the size of
fast cache memory of a processor. Ideally, the whole matrix block should fit into the
cache so that no additional calls for data will be made when working with that matrix
block. In this way the algorithm can use the advantage of the so-called BLAS-3 ma-
trix multiplications which are very fast. They are implemented also in modern linear
algebra libraries, for example, LAPACK and ScaLAPACK. Moreover, working with
matrix blocks leads to the ‘coarse-grained’ parallelism, in which the number of pro-
cessors is given beforehand and can be quite small.

We start with the block upper triangular matrix T of order n in the form

T =

⎛
⎜⎜⎜⎝

T11 T12 . . . T1m

0 T22 . . . T2m
...

...
. . .

...
0 0 . . . Tmm

⎞
⎟⎟⎟⎠ .

Each diagonal block Tii is of order ni ≥ 1, so that M = {n1,n2, . . . ,nm} is the parti-
tion of n. We can assume n1 = n2 = · · ·= nm = n/m.

To reduce T to the block-butterfly form, we can use permutations similar to the
scalar case. However, Ii j is now a product of simple transpositions. The effect of IT

i j T

12 Parallel SVD Computing for Data Retrieval 371

is to swap block rows i and j of T ; similarly, T Ii j means swapping the appropriate
block columns.

12.4.3.1 Parallel Step Zero

Let B[0] = B be a matrix in the block-butterfly form. Before starting the iteration
process, some matrix preprocessing is needed which is called the parallel step zero.
It can be described as follows:

B[1] = U [0]T B[0]V [0], U [0] = ∏
(i, j)∈piv(m)

U [0]
i j , V [0] = ∏

(i, j)∈piv(m)
V [0]

i j ,

where piv(m) = {(1,m), (2,m− 1), . . . , (m/2,m/2 + 1)} is the mth pivot set asso-
ciated with the block algorithm (notice that it is defined with respect to the block
index).

The result of this zero step can be summarized as follows:

• The matrix blocks B1,m, B2,m−1, . . .Bm/2,m/2+1 on the upper half of the main
block anti-diagonal are nullified. Recall that B is in the block-butterfly form so
that the lower part of the main block anti-diagonal is zero.

• All diagonal blocks Bii are diagonalized by computing their SVDs. For this, any
numerically reliable serial SVD algorithm can be used.

Moreover, B[1] and all subsequent iteration matrices B[2], B[3], . . . are represented in
the factored form

B[t] = E [t]T C[t] F [t],

where E [t] and F [t] are block diagonal and orthogonal. The main idea behind the fac-
torization is to work with relatively small matrix blocks in updating matrix iterates,
so that all matrix multiplications can be done in the fast cache memory by calling
the appropriate data only once [14]. In addition, the diagonal elements of the current
iterate B[t] are kept separately in the vector γ [t].

Consequently, the parallel step zero must provide the formulae for computing

E [1], C[1], F [1] and γ [1]. Let B[0] = (B[0]
1 , B[0]

2 , . . . ,B[0]
m) be the block column partition

of B[0]. Then the algorithmic description of the parallel step zero is depicted below
as Algorithm 12.5.

Several remarks are in order to better understand the various tricks ‘behind the
scene’:

1. The trick with the factorization of B[0] into the product of three matrices, B[t] =
E [t]T C[t] F [t], is taken from [17]. The main idea here is to arrive at small enough
matrices with good numerical properties (e.g., orthogonality) which can be han-
dled in the cache memory of a processor. It is well known that the cache memory
is up to 6−8 times faster than the main memory. Therefore, even when the num-
ber of flops using the three-term recursion is larger than the direct approach to
updating, the exclusive use of the cache memory can overcome this shortage with
respect to the time complexity of the whole algorithm.

372 Gabriel Okša and Marián Vajteršic

2. Consequently, all matrix multiplications in subsequent step for updating B, B′

and B̄′ are made in the cache memory – hence, they are fast.
3. The cosine–sine (CS) decomposition of an orthogonal matrix has a special struc-

ture and special properties; see [17]. It is still an open question how to compute
it in a numerically reliable way for this class of matrices. Another interesting
problem is its efficient parallelization.

4. The logical variable left controls the set of singular vectors which are computed
during iterations. Only one set of singular vectors is computed in step zero (and in
the iterative process below). The other set is computed a posteriori after finishing
the process by solving the linear systems of equations

BV = U Σ or BT U = V Σ .

This approach almost halves the number of matrix multiplications in each itera-
tion step as compared to the iterative computation of both sets of singular vectors.

Algorithm 12.5 Algorithm for the parallel step zero

1: for i = 1 to m/2 in parallel do
2: Set j = m+1− i.
3: Compute the SVD: (

B[0]
ii B[0]

i j

0 B[0]
j j

)
= U[0]

i j Gi V[0]T
i j .

4: Compute the CS decomposition of U[0]
i j and V[0]

i j :

U[0]
i j =

(
U̇ii 0
0 U̇j j

)
Θi j

(
Üii 0
0 Üj j

)
, V[0]

i j =
(

V̇ii 0
0 V̇j j

)
Φi j

(
V̈ii 0
0 V̈j j

)
.

5: Apply: B′i = BiV̇ii, B′i j = B jV̇j j .
6: Apply: (B′′i , B′′j) = (B′i, B′j)Φi j .
7: Transpose: B̄ = (B′′)T and let B̄ = (B̄1, B̄2, . . . , B̄m) be the block column partition of B̄.
8: Apply: B̄′i = B̄i U̇ii, B̄′j = B̄ j U̇ j j .
9: Apply: (B̄′′i , B̄′′j) = (B̄′i, B̄′j)Θi j .

10: Transpose: C[1] = (B̄′′)T .

11: Copy: E [1]
ii = Üii, E [1]

j j = Üj j, F [1]
ii = V̈ii, F [1]

j j = V̈j j .
12: Copy the first ni and last n j diagonal elements of Gi into the appropriate parts of the vector

γ [1].
13: if (left) then
14: U [1] = E [1]T

15: else
16: V [1] = F [1]T

17: end if

18: end for

12 Parallel SVD Computing for Data Retrieval 373

12.4.3.2 Iterative Process

Recall that after the parallel step zero the matrix B[1] is in the block-butterfly form.
In the iterative process, the block-modulus pivot strategy is applied in each parallel
step until convergence. Thus, the algorithm in the parallel step t proceeds by anni-

hilating the off-diagonal pivot submatrices B[t]
i j , (i, j) ∈ piv(t) and by diagonalizing

the diagonal blocks B[t]
ii , B[t]

j j. Hence, at the beginning of the parallel step t + 1 the
new Frobenius off-norm is given by

‖Ω(B[t+1])‖2 = ‖Ω(B[t])‖2− ∑
(i, j)∈piv(t)

‖B[t]
i j ‖2.

Since B[t] is kept in the factored form of a matrix triple E [t], C[t], F [t], one has to
derive the recursions for updating these matrices together with vector γ [t].

The main equation of the Kogbetliantz method is given by (12.2). For each pair
(i, j) ∈ piv(t) this orthogonal transformation can be written as

B[t]
i j =

(
B[t]

ii B[t]
i j

0 B[t]
j j

)
= U[t]

i j Gi V[t]T
i j , Gi is diagonal. (12.3)

Notice that this equation is the SVD of B[t]
i j . We assume that the diagonal blocks B[t]

ii

and B[t]
j j are diagonal matrices which is certainly true, by construction, for the initial

matrix B[1]. Here, U[t]
i j and V[t]

i j are orthogonal matrices of order (ni +n j)×(ni +n j);
they are called block rotations in [17].

However, B[t] is given in its factored form, so that the upper-triangular matrix B[t]
i j

can be computed as follows:

(
B[t]

ii B[t]
i j

0 B[t]
j j

)
=

(
E [t]

ii 0

0 E [t]
j j

)T (
C[t]

ii C[t]
i j

0 C[t]
j j

)(
F [t]

ii 0

0 F [t]
j j

)

=

(
E [t]T

ii C[t]
ii F [t]

ii E [t]T
ii C[t]

i j F [t]
j j

0 E [t]T
j j C[t]

j jF
[t]
j j

)
.

Since B[t]
ii and B[t]

j j are diagonal, we can fill them by zeros and then copy appropriate

diagonal elements from the vector γ [t] onto the diagonal of B[t]
ii and B[t]

j j (hence, the

diagonal blocks of B[t]
i j are not computed explicitly). After that we need to compute

E [t]T
ii C[t]

i j F [t]
j j on the processor which is associated with the pair (i, j) ∈ piv(t) using

the fast BLAS-3 LAPACK routine *GEMM.
Next, the SVD of B[t]

i j is computed according to (12.3). Since B[t]
i j is upper trian-

gular with diagonal blocks being diagonal matrices, one can here choose among
several fast and accurate serial methods, for example, the one-sided Jacobi or

374 Gabriel Okša and Marián Vajteršic

(cyclic or modulus) Kogbetliantz algorithm. This SVD is computed serially for one

B[t]
i j , but, of course, m/2 processors compute in parallel for m/2 pairs of indices

(i, j), 1≤ i < j ≤ n.

The next step is the CS decomposition of orthogonal matrices U[t]
i j and V[t]

i j , which
can be written in the form (see [17]):

U[t]
i j =

(
U̇ [t]

ii 0

0 U̇ [t]
j j

)
Θ [t]

i j

(
Ü [t]

ii 0

0 Ü [t]
j j

)
,

V[t]
i j =

(
V̇ [t]

ii 0

0 V̇ [t]
j j

)
Φ [t]

i j

(
V̈ [t]

ii 0

0 V̈ [t]
j j

)
.

(12.4)

The matricesΘ [t]
i j and Φ [t]

i j are orthogonal products of at most min{ni,n j} commut-
ing plane rotations (see [17]).

Now comes the parallel computation of the next iteration matrix, B[t+1], using all
available pairs (i, j). It is computed as

B[t+1] = U [t]T (B[t]V [t]),

where U [t] and V [t] are composed from all available matrices U[t]
i j and V[t]

i j , respec-

tively. However, B[t+1] is never computed explicitly. Recall that we have it in the fac-
tored form, so actually we need recursions how to compute E [t+1], C[t+1] and F [t+1].
To this end, let us introduce the matrix Ji j = (Ji,Jj) where In = (J1, J2, . . . , Jm) is
the block-column partition of the identity. Then

B[t] Ji j = (B[t]
i , B[t]

j).

and
B[t+1] ≡ E [t+1]T C[t+1] F [t+1] = U [t]T (E [t]T C[t] F [t])V [t].

Post-multiplying the last equality above by Ji j and writing the identity between C
and F on both sides as JT

i jJi j, we obtain:

E [t+1]T (C[t+1]
i ,C[t+1]

j)

(
F [t+1]

ii 0

0 F [t+1]
j j

)

= U [t]T E [t]T (C[t]
i ,C[t]

j)

(
F [t]

ii 0

0 F [t]
j j

)
V[t]

i j

= U [t]T E [t]T (C[t]
i ,C[t]

j)

[[(
F [t]

ii 0

0 F [t]
j j

)(
V̇ [t]

ii 0

0 V̇ [t]
j j

)]
Φ [t]

i j

] (
V̈ [t]

ii 0

0 V̈ [t]
j j

)
.

Hence, we have immediately the first set of updates:

12 Parallel SVD Computing for Data Retrieval 375

F [t+1]
ii = V̈ [t]

ii , F [t+1]
j j = V̈ [t]

j j ,

(C̄[t]
i ,C̄[t]

j) = (C[t]
i ,C[t]

j)

(
F [t]

ii V̇ [t]
ii 0

0 F [t]
j j V̇ [t]

j j

)
Φ [t]

i j .
(12.5)

These updates can be performed in parallel for all (i, j) ∈ piv(t). This results in the
matrix F [t+1] and auxiliary matrix C̄.

The second set of updates starts with the equation

E [t+1]T C[t+1] = U [t]T E [t]T C̄[t].

After pre-multiplying it by JT
i j (JT

i X is the ith block-row of X) and using the decom-
position of identity I = Ji j JT

i j between E and C on both sides, we obtain:

(
E [t+1]

ii 0

0 E [t+1]
j j

)T (
JT

i C[t+1]

JT
j C[t+1]

)
= U[t]T

i j

(
E [t]

ii 0

0 E [t]
j j

)T (
JT

i C̄[t]

JT
j C̄[t]

)

=

(
Ü [t]

ii 0

0 Ü [t]
j j

)T
⎡
⎣Θ [t]T

i j

(
U̇ [t]

ii 0

0 U̇ [t]
j j

)T (
E [t]

ii 0

0 E [t]
j j

)T (
JT

i C̄[t]

JT
j C̄[t]

)⎤
⎦ ,

and we have the second set of updates:

E [t+1]
ii = Ü [t]

ii , E [t+1]
j j = Ü [t]

j j ,

(C[t+1]T
i ,C[t+1]T

j) = (C̄[t]T
i ,C̄[t]T

j)

(
E [t]

ii U̇ [t]
ii 0

0 E [t]
j j U̇ [t]

j j

)
Θ [t]

i j .
(12.6)

Again, these updates can be performed in parallel for all (i, j) ∈ piv(t). Notice,
that the auxiliary matrix C̄[t], which was computed in (12.5), is to be transposed in
(12.6). Then it is updated from the right hand side and C[t+1]T is obtained. Finally,
the diagonal elements of Gi are copied to the appropriate positions of the vector
γ [t+1].

Equations (12.3), (12.4), (12.5) and (12.6) constitute one iterative step of the
parallel block-Kogbetliantz algorithm. The parallelism is achieved by computing all
updates for pivot indices (i, j) ∈ piv(t) simultaneously. This means that there are
p = m/2 processors (recall that m is the blocking factor) whereby each processor
works over two block columns of matrix data.

We write the iterative part in the form of Algorithm ∼ 12.6. The iteration index
[t] is omitted. The array C is n×n, arrays E and F are nb×nb where nb = maxi{ni}.
The block-column partition of C is given by C = (C1, . . . ,Cm). We denote E [t]

ii by Ei

and similarly for Fi. The vector g is for γ [t], and several arrays U, B, V are square of
size 2nb. The matrices of left or right singular vectors are updated in arrays VECL or
VECR, respectively, according to the logical variables left and right. Similarly

376 Gabriel Okša and Marián Vajteršic

Algorithm 12.6 Algorithm for an iteration step

1: for (i, j) ∈ piv(t) in parallel do
2: Compute: B12 = ET

i Ci j Fj .
3: Copy the appropriate elements from g to diag(B11) and diag(B22).

4: Form: B =
(

B11 B12
0 B22

)
where diagonal blocks are diagonal matrices.

5: Compute the SVD: B = UΓ V T .
6: Update: g← Γ (copy to appropriate positions).
7: Compute the CS decompositions

U =
(

U1 0
0 U2

)
H

(
U3 0
0 U4

)
, V =

(
V1 0
0 V2

)
K

(
V3 0
0 V4

)
.

8: Compute: X = Fi V1, Y = Fj V2.
9: Update block columns of C: Ci ←CiX , Cj ←CjY .

10: If (right) update: VECRi ← VECRi X , VECR j ← VECR j Y .
11: Update: (Ci,Cj)← (Ci,Cj)K.
12: If (right) update: (VECRi,VECR j)← (VECRi,VECR j)K.
13: Update: Fi ← V3, Fj ← V4.
14: Transpose: C←CT .
15: Compute: X = Ei U1, Y = E j U2.
16: Update block columns of CT (i.e., block rows of C): Ci ←CiX , Cj ←CjY .
17: If (left) update: VECLi ← VECLi X , VECL j ← VECL j Y .
18: Update: (Ci,Cj)← (Ci,Cj)H.
19: If (left) update: (VECLi,VECL j)← (VECLi,VECL j)H.
20: Update: Ei ← U3, E j ← U4.
21: Transpose: C←CT (back to the original form of C).

22: end for

to the parallel step zero, several comments are in order also for the iterative part of
the algorithm:

1. The recursions have one important purpose – namely, to arrive at small enough
matrices (or matrix blocks) which can be stored at once in the fast cache memory.
These are the diagonal blocks of E, F and all factors of the CS decompositions.
These all are square matrices of size nb, which is substantially smaller than the
size n of the original upper triangular matrix provided that the blocking factor m
is large enough. Perhaps more importantly, given n, the number of processors p
and the blocking factor m (p = m/2) can be chosen in such way that all small
blocks will indeed be stored in the cache memory at once. This means great time
savings in computing updates by matrix multiplications.

2. The only matrix without any structure used in recursions is C. We see that C is
updated in two steps, whereby the second update works with CT . The reason is
that using the transposition one can update both block columns and block rows
by matrix multiplications from the right, whereby the updating matrices X and
Y are small and should fit in the cache. Such updating will be very fast. If each
processor contains two full block columns of C, then all updates can be com-
puted locally in processors and there is no need to use the distributed matrix

12 Parallel SVD Computing for Data Retrieval 377

multiplication. The price paid for this ‘comfort’ is the need of two transpositions
of C which can be slow on distributed parallel architectures (e.g., on a cluster of
PCs). In other words, one needs some fast, parallel (distributed) algorithm for the
matrix transposition.

12.5 Parallel Two-sided Block-Jacobi SVD Algorithm with
Dynamic Ordering

The modulus pivot strategy described above for the parallel version of the Kog-
betliantz algorithm is an example of a so-called static cyclic ordering, in which there
exists a prescribed list of matrix blocks that are nullified in each parallel iteration
step. The SVD computation then consists of so-called sweeps; in one sweep, each
off-diagonal matrix block is nullified exactly once. The value of the off-diagonal
matrix norm is usually checked at the end of a sweep using the appropriate conver-
gence criterion.

However, all proposed variations of the static ordering in the parallel two-sided
block-Jacobi algorithm do not take into account the actual status of matrix A. An-
other possibility that was designed, implemented and tested in [18,19], tries to max-
imize the decrease of the off-diagonal Frobenius norm in each parallel iteration step
of the parallel two-sided block-Jacobi SVD algorithm. The idea is based on finding a
set of the off-diagonal blocks {Ai j}, i �= j, at the beginning of each parallel iteration
step that, when zeroed, would decrease the off-diagonal Frobenius norm as much as
possible and, at the same time, can be nullified concurrently. Having p processors
and the blocking factor � = 2p (so that matrix A is cut in � block rows and � block
columns), such task is equivalent to the solution of the so-called maximum-weight
perfect matching problem on a complete graph with � vertices.

A perfect matching in an edge-weighted graph G(V ,E), where V is the set of
nodes and E is the set of edges, is a subset of edges such that each node of G is met
by exactly one edge in the subset. If w is a real weighting function on the edges of
G, then the weight of a matching is the sum of the weights of its edges. A matching
is called a maximum-weight matching if its weight is the highest of all possible
matchings. It is shown in [20] that the maximum-weight matching can be found in
time O(|V | · |E |+ |V |2 · log |V |). The historical overview of problem solutions can
be found in [21, 22].

Consider a weighted complete graph G = (V ,E) = K�, where the nodes are
numbered from 0 to �− 1, E = {(i, j) | i < j} and the edge (i, j) has the weight
wi j = ‖Ai j‖2

F +‖A ji‖2
F . The maximum-weight perfect matching of this graph can

be computed in time O(p3) (recall that � = 2p). When an approximate solution is
good enough, a simple greedy approach can be used. Let us sort the edges with
respect to their weights in non-increasing order. Then let us scan this ordered se-
quence from left to right and add an edge to the matching only if neither of its
endpoints is an endpoint of any previously selected edge. The complexity of this

378 Gabriel Okša and Marián Vajteršic

greedy algorithm is O(p2 · log p) due to the complexity of sorting. An example of
perfect matching for p = 3, � = 6 is depicted on Fig. 12.1.

Fig. 12.1 An example of maximum-weight perfect matching for p = 3, � = 6. Edges (1,6), (2,3)
and (4,5) were chosen (dashed), which correspond to three parallel SVDs of three 2× 2 block
subproblems.

Next we describe basic constituents of the parallel two-sided block-Jacobi SVD
algorithm with dynamic ordering; details can be found in [18]. The parallel algo-
rithm for processor me, me = 0, 1, . . . , p− 1, can be written in the form of Algo-
rithm 12.7. For � = 2p, each processor contains exactly two block columns of di-
mensions m× n/� so that �/2 SVD subproblems of block size 2× 2 are solved in
parallel in each iteration step.

The procedure ReOrderingComp (Algorithm 12.7, step 6) computes the op-
timal reordering destinations of all block columns residing in a given processor
(dest1 and dest2) and their locations at new position (tag1 and tag2). The reorder-
ing is based on the maximum-weight perfect matching that operates on the �× �
updated weight matrix W using the elements of W +W T , where (W +W T)i j =
‖Ai j‖2

F + ‖A ji‖2
F [18]. The argument tag provides the matching between the corre-

sponding send and receive calls.
The kernel operation is the SVD of 2×2 block subproblems

Si j =
(

Aii Ai j

A ji A j j

)
, (12.7)

where, for a given pair (i, j), i, j = 0, 1, . . . , �− 1, i �= j, the unitary matrices Xi j

and Yi j are generated such that the product

XH
i j Si j Yi j = Di j

is a block diagonal matrix of the form

Di j =
(

D̂ii 0
0 D̂ j j

)
,

where D̂ii and D̂ j j are diagonal.

12 Parallel SVD Computing for Data Retrieval 379

Algorithm 12.7 Parallel block-Jacobi SVD algorithm with dynamic ordering

1: U = Im

2: V = In

3: (i, j) = (2me,2me+1)
4: while F(A, �)≥ ε do
5: update(W)
6: ReOrderingComp(i, j,W,me) → dest1,dest2, tag1, tag2
7: copy(Ai,Ui,Vi, i) → Ar,Ur,Vr,r
8: copy(A j,Uj,Vj, j) → As,Us,Vs,s
9: send(Ar,Ur,Vr,r,dest1, tag1)

10: send(As,Us,Vs,s,dest2, tag2)
11: receive(Ai,Ui,Vi, i,1)
12: receive(A j,Uj,Vj, j,2)
13: if F(Si j, �)≥ δ then
14: � computation of Xi j and Yi j by SVD of Si j

15: SVD(Si j) → Xi j , Yi j

16: � update of block columns
17: (Ai,A j) = (Ai,A j) ·Yi j

18: (Ui,Uj) = (Ui,Uj) ·Xi j

19: (Vi,Vj) = (Vi,Vj) ·Yi j

20: else
21: Xi j = I(m/p)
22: end if
23: AllGather(Xi j, i, j) → XX(t) = (Xrs,r,s), t = 0,1, . . . , p−1
24: � update of block rows
25: for t = 0 to p−1 do

26:

(
Ari Ar j

Asi As j

)
= XH

rs,t ·
(

Ari Ar j

Asi As j

)

27: end for
28: end while

The termination criterion of the entire process is

F(A, �) =

√√√√ l−1

∑
i, j=0, i�= j

‖Ai j‖2
F < ε , (12.8)

where ε = prec ·‖A‖F is the required accuracy (measured relatively to the Frobenius
norm of the original matrix A), and prec is a suitably chosen small constant, 0 <
prec < 1.

A subproblem (12.7) is solved only if

F(Si j, �) =
√
‖Ai j‖2

F +‖A ji‖2
F ≥ δ , (12.9)

where δ = 2ε/ [�(�−1)] is a given subproblem accuracy.
After the embedded SVD is computed (step 15), the matrices Xi j and Yi j of local

left and right singular vectors, respectively, are used for the local update of block
columns (steps 16–22). In the procedure AllGather (step 23), each processor
sends its matrix Xi j to all other processors, so that each processor maintains an array

380 Gabriel Okša and Marián Vajteršic

(denoted by XX) of p matrices. These matrices are needed in the orthogonal updates
of block rows (steps 24–27).

From the implementation point of view, the embedded SVD is computed using
the procedure *GESVD from the LAPACK library [23] while the matrix multiplica-
tions are performed by the procedure *GEMM from the BLAS (Basic Linear Algebra
Subroutines). The point-to-point (steps 9–12) as well as collective (step 23) commu-
nications are realized by the MPI.

Numerical experiments with random full matrices of order from 2000 to 10000
show that the dynamic ordering needs in average about 40% less parallel itera-
tion steps for convergence than the static cyclic method (cf. [18, 19]). When ap-
plied to updating/downdating problems in the LSI, the efficiency is sometimes even
greater; however, the dynamic ordering does not preserve a triangular structure of
matrices.

We now report and discuss results of numerical experiments performed with the
parallel two-sided block-Jacobi algorithm with the dynamic ordering. The above
parallel algorithm was implemented in Fortran on an SGI – Cray Origin 2000 paral-
lel computer using the Message Passing Interface (MPI) library. The number of used
processors covered the range p = 2, 5, 10 and 15. The constant prec = 10−10 was
chosen for the computation of ε and δ (see Eqs. (12.8) and (12.9)). All computa-
tions were made using the IEEE standard double precision floating point arithmetic
with the machine precision εM ≈ 1.11×10−16.

We have computed the SVD of matrix B̂ in step 4 of Algorithm 12.1. Recall that
B̂ is the upper triangular, square matrix of order v = k + r with the diagonal upper
left block of order k. In practice, the parameter k depends on the text collection
and covers the range from 100 to 300 (cf. [1–3, 9]). It is clear from the output of
Algorithm 12.1 that only k largest singular triplets are needed for the construction
of Bk so that some iterative method for the partial SVD can be considered in this
case. On the other hand, the Jacobi SVD algorithm computes the complete SVD.
However, when k � r (or k � q) – i.e., the number of added documents (or added
terms) is small as compared to k – and when the parallel computation is performed
with a sufficient speedup, the usage of the parallel two-sided block-Jacobi SVD
algorithm can be justified in the updating problems of LSI.

In our experiments, the order of the square upper triangular matrix B̂ together
with the size of its upper left diagonal block Σk were fixed: v = k + r = 500 and
k = 150. The elements of B̂ were generated randomly in two steps using two pos-
itive constants α and β . First, k values uniformly distributed in the interval [0, 1]
were obtained and multiplied by α; they constituted the diagonal of Σk. Next, the
remaining elements of matrix blocks PT

k D and R uniformly distributed in the inter-
val [−1, 1] were generated and multiplied by β . The adopted approach enabled us
to modify the ratio between the Frobenius norm of Σk and that of the rest of matrix
B̂. This is equivalent to the modeling of the relative weight that the new documents
brought to the document collection. In our experiments, the value of α = 100 was
fixed and β = 1, 2, 5, 10, 20 and 50.

The experimental results are presented in the following tables. For a given num-
ber of processors p, the parallel computational time in seconds (first column) and

12 Parallel SVD Computing for Data Retrieval 381

the corresponding number of parallel iteration steps (second column) are shown for
all values of parameter β mentioned above. In Table 12.1, the performance of the
parallel algorithm is documented using the sweep technique with the static cyclic
odd–even ordering (CO(0), see [24, 25]). Table 12.2 contains the results of the dy-
namic ordering method. Let us discuss these results in more detail.

Table 12.1 Total parallel execution time in seconds and number of parallel iteration steps for the
parallel SVD with the static cyclic ordering CO(0) using v = 500, k = 150, α = 100, variable
number of processors p and parameter β (see details in text).

β / p 2 5 10 15
1 43.5 21 32.5 90 22.7 228 17.1 348
2 43.9 21 29.1 99 23.4 247 18.2 348
5 64.5 27 42.5 117 35.4 266 29.8 406

10 71.3 30 62.7 153 53.0 285 46.2 425
20 81.8 36 65.0 153 55.3 342 49.7 522
50 72.3 30 52.4 153 48.4 342 45.4 580

Table 12.2 Total parallel execution time in seconds and number of parallel iteration steps for the
parallel SVD with the greedy dynamic ordering using v = 500, k = 150, α = 100, variable number
of processors p and parameter β (see details in text).

β / p 2 5 10 15
1 22.4 10 17.1 47 13.5 107 10.0 173
2 24.2 10 17.4 48 14.7 111 11.4 183
5 27.2 11 21.2 49 15.2 112 12.1 187

10 29.7 11 20.8 51 17.5 115 14.9 195
20 29.7 12 19.9 53 18.1 121 15.0 198
50 29.4 12 22.1 55 20.3 126 17.7 211

For both orderings, the number of parallel iteration steps increases with an in-
crease of the blocking factor � = 2p, i.e., with an increase of the number of proces-
sors p. This is in accordance with the statistical analysis given in [18] and documents
the rather low scalability of the parallel two-sided block-Jacobi SVD algorithm. In
other words, it has no sense to use a large number of processors for rather small
matrices. This ‘toy’ example serves only for the comparison of two types of parallel
ordering.

The number of parallel iterations steps needed for the convergence is an objec-
tive, machine-independent measure of the algorithm’s performance. (Note that the
computational time depends very much on the organizational details of computa-
tions adopted in a parallel computer, and the user has usually no direct access to
influence these rules.) Comparing Tables 12.1 and 12.2, the greedy dynamic order-
ing clearly outperforms the cyclic one for all combinations of β and p. The ratio of
the number of parallel iteration steps between the old method and the new one lies

382 Gabriel Okša and Marián Vajteršic

in the range 1.9–3.0 (average is 2.4). For a given number of processors p, this ratio
has a tendency to grow with an increase of β , i.e., the greedy dynamic ordering is
more efficient in reducing the relatively larger off-diagonal norms of matrix blocks
than the cyclic ordering. This observation can be explained by the inherent property
of the greedy dynamic ordering to pair the matrix blocks with the maximal sum of
Frobenius norms.

Figure 12.2 depicts (in the logarithmic scale) the decrease of Frobenius norm of
the off-diagonal blocks for β = 50 and p = 10. Similar behavior can be observed

Fig. 12.2 Decrease of Frobenius norm of the off-diagonal blocks for β = 50 and p = 10.

also for other combinations of β and p. The different final norms for the dynamic
and static cyclic ordering result from the fact that, in the case of cyclic ordering,
the whole sweep must end before the convergence criterion is checked. Notice that
for the static cyclic ordering there are many ‘empty’ parallel iteration steps that
do not change the Frobenius norm of the off-diagonal blocks at all due to the pre-
scribed combinations of non-diagonal blocks that do not fulfill the criterion given
by Eq. (12.9). These steps correspond to the horizontal segments on the curve for
the cyclic ordering in Fig. 12.2. In other words, the static cyclic ordering of sub-
problems is, so to say, ‘blind’, because it does not take into account the actual status
of the matrix, i.e., how the overall Frobenius norm is spread over the individual
off-diagonal matrix blocks. Since the dynamic ordering combines the non-diagonal
blocks with maximal Frobenius norms, no such effect is observed in this case, and
the Frobenius norm of the off-diagonal blocks decreases strictly monotonically.

12 Parallel SVD Computing for Data Retrieval 383

12.6 LSI Implemented on a Grid

We have shown that the updating/downdating problems in the LSI can be reduced to
the computation of SVDs of upper or lower triangular matrices. For this purpose, the
parallel block-Kogbetliantz algorithm was described and analyzed from the point of
view of its implementation on a parallel distributed architecture. Another approach
is the use of the two-sided block-Jacobi SVD method with the dynamic ordering,
which is much more efficient than any prescribed cyclic ordering. However, the
dynamic ordering does not preserve the triangular matrix structure.

Using the paradigm of the LSI, we now describe two models for the encoding of
a distributed database. In the first model, the computational system is organized into
a grid of individual nodes, which possess only a restricted inter-communication. The
distributed database consists of mutually uncoupled local databases, which are up-
dated for new documents/terms, and scanned independently for documents match-
ing a given query. There is no easy way of comparing the accuracy of retrieval
from individual nodes, because there exists no global approximation of the whole
database. In the second model (which can describe, e.g., one node of a grid), the
individual processors are connected by some sort of the communication network,
so that the distributed computation and mutual communication are possible. We de-
velop a two-stage model – the local and global levels of approximation – based on
the LSI of documents for such a distributed system. Some interesting computational
issues are discussed including the efficiency of a distributed SVD. Finally, it is pos-
sible to analyze the relationship between the local and global approximations with
respect to the accuracy of retrieval of documents in this case.

Grid computing is based on a distributed computing model that provides the abil-
ity to perform high performance computing by using resources of many separate
computers which are networked to a virtual computer architecture. We adopt for
our model the term computational grid as defined in [26]. It is a hardware and soft-
ware infrastructure that provides dependable, consistent, pervasive and inexpensive
access to high-end computational capabilities.

Let us assume that the computational grid consists of p nodes. In context of the
LSI, each node can store and maintain its individual database, which is represented
by its own term-document matrix A(i), i = 1,2, . . . , p.

In the following two subsections we will describe the algorithms, which can be
used for updating of individual databases and the retrieval of documents in individ-
ual nodes.

12.6.1 Storage

Let the index i denote one of the nodes of the grid under consideration, 1 ≤ i ≤ p.
This node first accumulates its term-document matrix A(i) of order m×ni, then com-
putes its RDR of order ki and, finally, stores the matrices Pki ,Qki and Σki . Although

384 Gabriel Okša and Marián Vajteršic

the individual nodes of the grid work independently, we assume that their data-term
matrices A(i) describe information from the same (or very close) areas of interests,
so that the terms are the same for all nodes – hence, the number of rows m is the
same across the nodes.

12.6.2 Updating Documents

Since each node of the grid works independently, it can receive new documents
from the outside world. Therefore, it must be capable to update its term-document
matrix A(i). However, the original A(i) is not at our disposal anymore – all that is left
is only its ki-dimensional approximation in the factored form. Therefore, a natural
question arises, how to compute a new approximation, which will incorporate a new
information from new documents.

Let D(i) ∈ R
m×ri be the ri new documents vectors that should be added to the

existing documents at the right-end of the old term-document matrix on node i. The
algorithm for updating documents on node i is identical to the Algorithm 12.1, in
which the index i is used to distinguish the node’s number. Note that all nodes in
a grid use the same algorithm. For the sake of clarity, the algorithm is summarized
as Algorithm 12.8. Notice that step 4 in Algorithm 12.8 requires the SVD of the

Algorithm 12.8 Algorithm for updating documents on a node

1: Input: ki, Pki ∈ R
m×ki , Σki ∈ R

ki×ki , Qki ∈ R
n×ki , D(i) ∈ R

m×ri .
2: Compute the projection: D̂(i) = (Im−Pki PT

ki
)D(i).

3: Compute the QR decomposition: D̂(i) = P̂ri Ri, where P̂ri ∈ R
m×ri , Ri ∈ R

ri×ri .
4: Compute the SVD of matrix

B̂(i) ≡
(
Σki PT

ki
D(i)

0 Ri

)
∈ R

(ki+ri)×(ki+ri)

in the form:
B̂(i) = (Uki , U⊥

ki
) ·diag(Σ̂ki , Σ̂ri) · (Vki , V⊥ki

)T ,

where Uki , Vki ∈ R
(ki+ri)×ki and Σ̂ki ∈ R

ki×ki .
5: Output: The best rank-ki approximation of B(i) = (Aki , D(i)) is given by:

B(i)
ki
≡
[
(Pki , P̂ri)Uki

]
· Σ̂ki ·

[(
Qki 0
0 Iri

)
Vki

]T

.

structured matrix B̂(i), which is upper triangular with the diagonal left upper block of
order ki×ki. At the same time, this step represents the most intensive computation in
Algorithm 12.8. For that purpose one can use the parallel version of the Kogbetliantz
algorithm, which was described in Sect. 12.4.

12 Parallel SVD Computing for Data Retrieval 385

12.6.3 Updating Terms

Similarly to the previous case of updating the documents, the algorithm for updating
terms on node i is identical to Algorithm 12.2. Again, the index i is used to denote
local matrices on node i. Therefore, let T (i) ∈ R

qi×ni be the qi new term vectors
that should be added to the existing terms at the bottom of the old term-document
matrix. The task is to compute the best rank-ki approximation of the row partitioned
matrix

C(i) ≡
(

A(i)
ki

T

)
.

Writing Algorithm 12.2 for node i, one gets the Algorithm 12.9 summarized below.
As in the case of updating documents, all nodes of a grid use the same algorithm for
updating the terms. Similarly to the problem of updating documents, the computa-

Algorithm 12.9 Algorithm for updating terms on a node

1: Input: ki, Pki ∈ R
m×ki , Σki ∈ R

ki×ki , Qki ∈ R
ni×ki , T (i) ∈ R

qi×ni .
2: Compute the projection: T̂ (i) = (Ini −Qki QT

ki
)T (i)T ∈ R

ni×qi .

3: Compute the QR decomposition: T̂ (i) = Q̂qi LT
i , where Q̂qi ∈ R

ni×qi , Li ∈ R
qi×qi .

4: Compute the SVD of matrix

Ĉ(i) ≡
(

Σki 0
T (i)Qki Li

)
∈ R

(ki+qi)×(ki+qi)

in the form:
Ĉ(i) = (Uki , U⊥

ki
) ·diag(Σ̂ki , Σ̂qi) · (Vki , V⊥ki

)T ,

where Uki , Vki ∈ R
(ki+qi)×ki and Σ̂ki ∈ R

ki×ki .

5: Output: The best rank-ki approximation of C(i) =

(
A(i)

k
T (i)

)
is given by:

C(i)
ki
≡
[(

Pki 0
0 Iqi

)
Uki

]
· Σ̂ki ·

[
(Qki , Q̂qi)Vki

]T
.

tionally most intensive step is the SVD of the lower triangular matrix Ĉ(i) with the
upper left diagonal block. Again, for that purpose one can use the parallel version
of the Kogbetliantz algorithm described in Sect. 12.4.

12.6.4 Downdating Documents

When ri documents are to be deleted on node i, Algorithm 12.3 can be easily mod-
ified to get Algorithm 12.10 below. The most computationally demanding task in
Algorithm 12.10 is the SVD of the lower triangular matrix B̃ in step 5.

386 Gabriel Okša and Marián Vajteršic

Algorithm 12.10 Algorithm for downdating documents on a node

1: Input: ki, Pki ∈ R
m×ki , Σki ∈ R

ki×ki , Qki ∈ R
n×ki , D ∈ R

m×ri .
2: Complete Qki into the orthonormal matrix Q̂ = (Qki , S) of order n×(ki +r) by taking r random

vectors and orthogonalizing them by the modified Gram-Schmidt process.

3: Form the matrix W =
(

Q1:ri
k S1:ri

Σki 0

)
and find orthogonal matrices GL and GR so that

GLW T GR = GL

(
Q1:ri

k S1:ri

Σki 0

)T

GR =
(

Ir 0
Y B̃

)T

,

where B̃ is the lower triangular matrix of order ki.
4: Compute P̄ki and Q̄ki by:

GT
R

(
Iri 0
0 PT

ki

)
=
(

Iri 0
0 P̄T

ki

)
, Q̂GT

L =
(

Iri 0
0 Q̄ki

)
.

5: Compute the SVD of B̃, B̃ = PBΣB QT
B . All matrices are square of order ki.

6: Output: The best rank-ki approximation of Ãki is given by P̃ki = P̄ki PB, Σ̃ki = ΣB and Q̃T
ki

=
(Q̄ki QB)T .

12.6.5 Downdating Terms

Similarly to downdating the documents, when qi terms are to be deleted on node
i, Algorithm 12.4 can be easily modified to get Algorithm 12.11. Again, the most

Algorithm 12.11 Algorithm for downdating terms on a node

1: Input: ki, Pki ∈ R
m×ki , Σki ∈ R

ki×ki , Qki ∈ R
n×ki , T ∈ R

qi×n.
2: Complete Pki into the orthonormal matrix P̂ = (Pki , Z) of order m× (ki + qi) by taking qi

random vectors and orthogonalizing them by the modified Gram-Schmidt process.

3: Form the matrix H =
(

PT
1:qi,ki

Σki

ZT
1:qi

0

)
and find orthogonal matrices GL and GR so that

GLHGR =
(

Iqi Y
0 B̃

)
,

where B̃ is the upper triangular matrix of order ki. Here PT
1:qi,k

denotes first qi columns of PT
ki

;

similarly for ZT
1:qi

.
4: Compute P̄ki and Q̄ki by:

GLP̂T =
(

Iqi 0
0 P̄T

ki

)
,

(
Iqi 0
0 Qki

)
GR =

(
Iqi 0
0 Q̄ki

)
.

5: Compute the SVD of B̃, B̃ = PBΣB QT
B . All matrices are square of order ki.

6: Output: The best rank-ki approximation of Ãki is given by P̃ki = P̄ki PB, Σ̃ki = ΣB and Q̃T
ki

=
(Q̄ki QB)T .

computationally expensive task is the SVD of the upper triangular matrix B̃.

12 Parallel SVD Computing for Data Retrieval 387

12.6.6 Retrieval of Documents

A retrieval of relevant documents is based on the notion of a query, which is the m-
dimensional binary vector q with ones at positions matching the terms that should
be found and retrieved from the database. Notice that the dimension of a query is

equal to the number of rows of A(i)
ki

, i.e., to the size of the set of terms used for
coding the documents into a database.

We assume that, despite the fact that the nodes of a grid do not communicate
regularly, it is possible to send the same query through the connecting network to
individual nodes. These nodes are capable to receive the query and search inde-

pendently for relevant documents in their individual databases A(i)
ki

, i = 1,2, . . . , p.
Recall, however, that the low-rank approximation is stored in each node in its fac-
tored form given by matrices Pki Σki and Qki . Therefore, one has to work with these

matrices and not with the matrix A(i)
ki

, which is never computed explicitly.
The query matching is based on the comparison of a query vector q to the

columns of the approximation A(i)
ki

by means of the acute angle θ (i)
j between them;

i.e., for j = 1,2, . . . ,ni, one should compute

cosθ (i)
j =

(A(i)
ki

e j)T q

‖A(i)
ki

e j‖2 · ‖q‖2

=
eT

j PkiΣki(Q
T
ki

q)

‖ΣkiQ
T
ki

e j‖2 · ‖q‖2
.

For a fixed low-dimensional approximations, this computation can be made more
efficient by pre-computing ni values:

s(i)
j = ΣkiV

T
ki

e j.

Then

cosθ (i)
j =

s(i)T
j (PT

ki
q)

‖s(i)
j ‖2 · ‖q‖2

. (12.10)

Producing a list of relevant documents is based on the geometric insight about align-
ment of two vectors in the ki-dimensional Euclidean space: Two vectors are the more
aligned (more ‘identical’) the less is the acute angle between them. Since cosine is
the decreasing function in the interval [0, π/2], this allows for the ordering of re-
trieved documents by listing a non-increasing sequence of their cosines. Usually,
some sort of thresholding is applied for retrieved documents – retrieved are only
documents for which

cosθ (i)
j ≥ α(i),

where α(i) is the constant, which can be specific for each node of the grid.

388 Gabriel Okša and Marián Vajteršic

12.6.6.1 Comparison of Retrieval Between Individual Nodes

Since the individual nodes do not communicate, one can not build the ‘global’
database that would represent the compound matrix from individual nodes A =
(A(1),A(2), . . . ,A(p)). From the mathematical point of view, there is no way to repre-
sent the matrix A by some lower, k-dimensional approximation, because there is no
way to get the individual low-dimensional approximations of matrices Ai together
and build upon them the approximation of A.

Therefore, the retrieval of documents is possible only on a local level of indi-
vidual nodes. Moreover, because the global approximation is missing, we can not,
strictly speaking, directly compare the results from individual retrievals of docu-
ments on individual nodes. In other words, since the individual low-dimensional
approximations of Ai were built independently, there is no way how to compare the
accuracy of retrievals coming from two different nodes.

Nevertheless, some general conclusions can be made in a special case. For the
local approximation in each node, the most important parameters are (i) the number
of encoded documents ni and (ii) the dimension of the approximation vector space
ki. If the number of encoded documents is approximately the same in each node,
and if the dimensions of approximations are also the same, than one can expect the
same quality of encoding – i.e., when the same terms are used in each node, the
structure of individual low-dimensional vector spaces will be very similar. In this
case, one can use the same threshold in each node and merge and sort p individual
lists of matched documents into one list according to, for example, non-increasing
cosines. In other words, we can expect approximately the same accuracy of retrieval
over the nodes in this special case.

The problem is, of course, how to manage the first requirement above during the
updates. If the nodes of a grid do not communicate at all, there is no way how to
ensure that the local databases will be built from the approximately same amount
of documents. Therefore, next discussion is devoted to the second model of a dis-
tributed system where the inter-processor communication is available.

12.7 LSI Implemented on a Distributed System

We now consider the second possible paradigm with respect to the storage of doc-
uments and their retrieval. In contrast to the grid, in a distributed system the in-
dividual processors can communicate and mutually exchange data. Therefore, the
term-document matrix A of order m×n can be distributed column-wise among, say,
p processors in the form A = (A1,A2, . . . ,Ap) where Ai is of order m×ni. This dis-
tributed system may even correspond to one node of a grid analyzed above.

Each processor builds its own ki-dimensional approximation of the SVD of its
block Ai as described above. Notice that these computations can be computed in
parallel without any communication between processors. This means that all com-

12 Parallel SVD Computing for Data Retrieval 389

putations are perfectly local to processors and can be realized by some serial numer-
ical library, for example, using the LAPACK.

After this initial computation, however, comes the main difference between a grid
and a distributed system. In contrast to a grid, a distributed system can build another
‘global’ approximation of the original matrix A atop of individual approximations
which were computed in individual processors. This is something completely new
as compared to a grid. This global approximation is then used in the retrieval of
documents.

Next we will describe how such a global approximation can be computed and
updated from individual approximations stored in individual processors.

12.7.1 Building a Global Approximation

For the sake of simplicity of exposition, let us first consider the case of two proces-
sors, PE1 and PE2. All following derivations can be easily extended to the case of
p processors with p > 2.

Let us assume that PE1 has computed its m× k1 approximation of A1 and stored
the corresponding partial factors of SVD P11, Σ11 and Q11. Similarly, PE2 has the
local approximation P21, Σ21 and Q21 of A2 at its disposal. Notice that the first in-
dex in these local approximations can be interpreted as the processor index while
the second one denotes a local level of approximation. Since the original Ai has ni

columns, we must have ki ≤ ni, i = 1,2.
To build a global approximation of local factors, we must first choose the order

k of that approximation. For that purpose, let us organize two local approximations
into a global matrix G,

G = (P11Σ11QT
11,P21Σ21QT

21),

which is the matrix of order m×n (notice that the first matrix is of order m×n1, the
second one is of order m×n2 and n = n1 +n2).

To compute the k-dimensional global approximation of this matrix, we must
clearly have k ≤ k1 + k2. Notice that

(P11Σ11QT
11,P21Σ21QT

21) = (P11Σ11,P21Σ21)
(

Q11 0
0 Q21

)T

,

where the rightmost matrix is of order (k1 + k2)× n with orthonormal rows (after
transposition).

Now the k-dimensional global approximation of G is computed in two steps by
Algorithm 12.12. We have just shown that in the special case, when k = k1 +k2, the
global approximation can be computed quite efficiently. Notice that the formation
of G requires the scaling of the local columns of left singular vectors by local sin-
gular values. This scaling can be performed in parallel without any communication

390 Gabriel Okša and Marián Vajteršic

Algorithm 12.12 Algorithm for global approximation
1: Compute the full SVD of the m× (k1 + k2) matrix

(P11Σ11,P21Σ21) = (Ũk,Ũ
⊥
k)

(
Σ̃k 0
0 Σ̃ ′

)
(Ṽk,Ṽ

⊥
k)T ,

where Σ̃k contains k largest singular values in a non-increasing order. Here, k denotes the
dimension of a global approximation, which must be chosen (but see next step).

2: Now consider the matrix product

Ũk Σ̃k

[(
Q11 0

0 Q21

)
Ṽk

]T

≡ Ũk Σ̃kW̃
T
k .

Notice that W̃k can be computed if and only if k = k1 +k2. In this special case it has orthonormal
columns so that the above matrix product is the truncated k-dimensional SVD of G.

between processors. Then, the SVD of a distributed matrix G has to be computed.
This can be achieved using the ScaLAPACK library, or using some new parallel
block-Jacobi algorithm – see [18, 19]. Finally, a distributed matrix multiplication
(e.g., by the ScaLAPACK routine PDGEMM) has to be performed for the computa-
tion of new global right singular vectors W̃k.

In the case of p processors with p > 2, the above matrix G consists of p blocks
with ni columns, i = 1,2, . . . p. If we choose the special value of global approxima-
tion by k = k1 + k2 + . . .kp, then the local approximations are again not needed in
full – only the locally scaled left vectors are needed in each processor. Hence, one
has to compute explicitly only the SVD of matrix G of order m×k instead of a ‘full’
matrix of order m×n. Therefore, when k� n the substantial saving in computation
time can be achieved.

At this moment, the new global approximation is available in the form of a triple
Ũk, Σ̃k,W̃k, whereby each matrix is distributed through p processors. We can either
collect this global approximation into one (or each) processor by using the procedure
GATHER (or ALLGATHER), or leave the computed global k-dimensional approxi-
mation in the distributed form. The latter approach is more advantageous from the
point of view of storage requirements, since each processor stores the m× ki sub-
matrix of the global left singular vectors, one vector of ki global singular values and
the n× ki submatrix of the global right singular vectors. This means that no proces-
sor has to store the complete k-dimensional factors; since k = ∑p

k=1 ki, this means a
substantial saving in storage space per processor.

With respect to the global approximation, the requirements for each processor
are the same if k1 = k2 = · · · = kp. The local approximation in each processor can
require different amount of storage if ki’s differ across the processors. However, if
we consider a set of processors which process the qualitatively same database (i.e.,
documents from very similar areas of interest, e.g., mathematics, physics and as-
tronomy), then there is no reason why the local orders of approximation ki should
differ too much. This is true provided that the individual ki-dimensional approxi-
mations of local databases in individual processors are based on the roughly same

12 Parallel SVD Computing for Data Retrieval 391

amount of information, i.e., the starting column dimensions ni of local databases are
roughly the same. Hence, we require that ni ≈ n/p where n is the initial number of
documents in the whole (huge) database, which should be distributed among p pro-
cessors. To provide an initial ‘portion’ of information equally to each processor, we
can randomly choose n/p items from the initial set of documents and send them to a
given processor. This starting phase ensures that local approximations can be com-
puted with the same dimension across the processors (i.e., k1 = k2 = · · ·= kp), and
the accuracy in approximating the original local databases will be approximately the
same in each processor.

12.7.2 Updating and Downdating

When new documents are to be inserted into an existing database, it is necessary to
decide which processor(s) should receive all documents and which a portion of doc-
uments. From the computational point of view, it is not advisable to add documents
into database one by one. Instead, new documents should be added in a batch of,
say, d items with d � 1. When necessary, a new batch of documents can be divided
among, say, p1 processors with p1 ≤ p, where p is the total number of processors.
Let us call these p1 processors locally active.

After receiving new documents, locally active processors modify (update) their
local databases in parallel using Algorithm 12.8. Notice that no inter-processor com-
munication is needed at this stage of computation. After finishing local updates in
locally active processors, however, the update on the global level is needed. All
processors must participate in the global update and perform Algorithm 12.12. Af-
ter finishing the global update, a new global, k-dimensional approximation of the
distributed database is available, whereby this global approximation is itself dis-
tributed.

The same procedure is applied when some documents are to be deleted from a
database using Algorithm 12.10 and Algorithm 12.12.

Updating terms is a bit different. Here, even on the local level, all processors
must be active because all processors build their local, ki-dimensional approxima-
tions over the same set of terms (vocabulary). Hence, after receiving new terms,
all processors perform Algorithm 12.9 in parallel. Therefore, there are no inactive
processors as opposed to the local updating of documents, where some processors
may be idle (if they do not receive a batch of new documents). After finishing local
updates of terms, all processors are involved in the computation of a new global
k-dimensional approximation by performing Algorithm 12.12.

The same approach is required when some terms are to be deleted from a
database using Algorithms 12.11 and 12.12.

392 Gabriel Okša and Marián Vajteršic

12.7.3 Retrieval of Documents

In Sect. 12.6.6, the retrieval of documents was described for the set of non-
communicating processors in a grid. In the view of our two-stage procedure for
building the database of documents for the distributed LSI, we can call this approach
a local retrieval. Since the processors in a distributed system build their local as well
as global representation of a database, there is also the possibility of a two-stage re-
trieval of documents in this case. This possibility opens a new, interesting approach
to the estimation of the quality of retrieval.

The first possibility is – as in the case of a grid – the local retrieval of doc-
uments. The query q is sent to all p processors and all of them go through their
ki-dimensional approximations of local databases computing the cosines accord-
ing to the Eq. (12.10). Each processor provides its own list of relevant documents
according to the algorithm described in Sect. 12.6.6, and there is no need for the
inter-processor communication in this stage of retrieval from the local databases.
When assuming that the local databases were built by encoding approximately the
same amount of documents in each processor, then the thresholds αi for cosines can
be chosen the same (say, 0.5) in all processors, i.e., αi = β for all i. Individual lists
can be sent to a marked processor, which can then sort all matched documents into
a final list L1 according to the local cosines obtained in processors.

However, since also the global k-dimensional approximation has been built in the
case of a distributed system, one can try also the different retrieval of documents by
using the distributed factors Ũk (order m× k), Σ̃k (order k× k) and W̃k (order n× k).
This is the global retrieval of documents. It proceeds by computing the cosines

cos θ̃ j =
s̃T

j (Ũ
T
k q)

‖s̃ j‖2 · ‖q‖2
, j = 1,2, . . . ,n, (12.11)

where s̃ j are n pre-computed values given by

s̃ j = Σ̃kW̃
T
k e j. (12.12)

Both the above equations require a clever data organization in computing the re-
quired matrix-vector products with distributed factors and final scalar products. Let
us suppose that the matrices Ũk and W̃ T

k are distributed column-wise, so that proces-
sor i contains the respective blocks of dimension m× ki and k×ni. Then, according
to Eq. (12.12), s̃ j is computed in two steps: (i) take the jth column of W̃ T

k residing
as a whole in some processor, and (ii) scale its �th component by σ̃�, � = 1,2, . . . ,k.
These two steps are most easily performed locally if each processor contains all
k global singular values from Σ̃k. Then, for the computation of θ̃ j according to
Eq. (12.11), one has (i) to compute the distributed matrix-vector product ỹ = (ŨT

k q)
with the query q residing in each processor, (ii) to compute the distributed scalar
product s̃T

j ỹ, and, finally, (iii) to scale the scalar product by 1/(‖s̃ j‖2 · ‖q‖2). All
these computations can be performed by appropriate functions from the ScaLA-
PACK library.

12 Parallel SVD Computing for Data Retrieval 393

The global retrieval ends with sorting of the set {cos θ̃ j} and thresholding them
by some threshold α . Assume that the same threshold is used as in the case of the
local retrieval, i.e., α = β . Thus, a list of matched documents L2 is produced.

Now comes an interesting part of the retrieval process – the comparison of lists
L1 and L2. This comparison enables to make some conclusions with respect to
the accuracy of local and global retrieval. It is assumed that the global and local
threshold for retrieving documents are the same. Furthermore, it is assumed that all
retrieved documents are indeed relevant, so that one can compare both lists without
caring about wrongly matched documents.

In general, the following scenarios with respect to the number of items |L1| and
|L2| and their contents are thinkable:

1. |L1| = |L2| and both lists contain the same documents. This is the ideal situa-
tion, which says that both approximations on the local as well as global level are
equally accurate.

2. |L1| = |L2|, but the lists do not contain the same documents. Hence, there are
at least two different documents D1 and D2 such that D1 ∈ L1, D1 /∈ L2 and
D2 ∈L2, D2 /∈L1. Since we assume k = k1 +k2 + · · ·+kp for the dimension of
global approximation, it is unlikely that this discrepancy is based on the fact of
wrong dimensions in the approximations. It is more likely that some documents
with low ranking in the global list will not be found in the local list because of
falling just below the local threshold (and vice versa). Lowering the threshold
should help to achieve the matching of the same documents on both levels (both
lists can be then larger than the original ones).

3. |L2| > |L1|. This situation tells us that the global approximation is more ac-
curate than the local one. This can happen, for example, when one (or more)
local databases differ substantially in their column dimensions ni, i.e., they lo-
cally encode widely differing numbers of documents. Then the use of the same
dimensionality of approximation at the local level (i.e., k1 = k2 = · · ·= kp) leads
to the under-estimate of optimal dimension because this value must be derived
from the portion Ani having the least number of documents (columns). It is best
to prevent such a situation by keeping the number of documents encoded in in-
dividual processors approximately the same. In other words, at the beginning, n
documents should be divided evenly among processors, and, at the updating, a
new batch of documents of large enough size should be processed so that, again,
each processor receives approximately the same number of documents for its lo-
cal update. Consequently, the new global update will be computed from locally
balanced updates.

4. |L1| > |L2|. Can the retrieval at local level yield more documents than that at
global level? Since k = k1 + k2 + · · ·+ kp, each locally approximating LSI space
is the subspace of the globally approximating LSI space. Hence, all the latent
couplings between terms and documents, which exist in the local databases, exist
automatically also in the global database. (Notice that the reverse is not true.)
Therefore, this situation should not occur in practice.

394 Gabriel Okša and Marián Vajteršic

12.8 Conclusions

This chapter has been devoted to the computational issues arising in the field of LSI.
We have shown that the updating/downdating of large databases, which are encoded
by the low-rank approximation of term-document matrices via the SVD, leads to the
algorithms where the most complex part is the computation of the SVD of large ma-
trices with special structure (upper triangular). For that purpose, the parallel block
Kogbetliantz method with a special ordering seems to be well suited, since it pre-
serves the triangular (or block triangular) structure of a matrix. Another possibility
is to use the parallel two-sided block-Jacobi algorithm with dynamic ordering that
leads to faster convergence than any cyclic ordering of subproblems; however, the
(block) triangular structure is lost after first parallel iteration.

Next, we have described two models of a distributed database of documents that
are encoded using the paradigm of the LSI. The first model is devoted to the grid,
when the individual nodes have a very limited possibility of mutual communica-
tion. In this case, the documents are encoded on individual processors without any
connection between them. All updates of documents/terms are also performed in-
dependently as well as the retrieval of documents. If the grid consists of p nodes,
the retrieval of documents for a given query yields p lists, which have no mutual
relations. In particular, one can not compare the accuracy of retrieval from individ-
ual nodes. In general, it is possible to say only that the accuracy of individual nodes
will be approximately the same when each node encodes approximately the same
number of relevant documents (provided that the dimensions in approximation are
the same in each node).

The more interesting situation arises in the case of a distributed database, when
p processors are connected with some sort of inter-processor network (this can be,
e.g., one node of a large grid). In this case, we have developed a two-stage com-
pression of the latent semantic information. In the first step, the local approximation
of the whole database is constructed by dividing the whole database evenly among
the processors. Since the processors can communicate, the global approximation of
the whole database can be built in the second step. We have shown that the SVD
computation at the global level can be made very efficient when the dimension of
global approximation is equal to the sum of dimensions of local approximations.
We have briefly discussed the implementation issues and shown that the retrieval of
documents will require the use of distributed numerical libraries like ScaLAPACK.
Finally, it is now possible to compare the accuracy of the locally and globally en-
coded database by considering the lists produced when answering the same query.
We have discussed some interesting scenarios that can arise in real life.

Acknowledgments The authors were supported by the VEGA grant no. 2/7143/27 from the
Scientific Grant Agency of the Ministry of Education and Slovak Academy of Sciences, Slovakia.

12 Parallel SVD Computing for Data Retrieval 395

References

1. M. W. Berry and M. Browne, Understanding Search Engines: Mathematical Modeling and
Text Retrieval, First ed., SIAM, Philadelphia, PA (1999).

2. M. W. Berry, Z. Drmač and E. R. Jessup, Matrices, vector spaces, and information retrieval,
SIAM Rev. 41 (1999) 335–362.

3. H. Zha, A subspace-based model for information retrieval with applications in latent semantic
indexing, in: Proc. Irregular ’98, LNCS 1457, Springer Verlag, New York, NY (1998) 29–42.

4. R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi
iteration, SIAM J. Matrix Anal. Appl. 17 (1996) 789–821.

5. B. Parlett, The symmetric eigenvalue problem, First ed., SIAM, Philadelphia, PA (1996).
6. H. Rutishauser, Simultaneuos iteration method for symmetric matrices, Num. Math. 16 (1970)

205–223.
7. A. H. Sameh and J. A. Wasniewski, A trace minimization algorithm for the generalized eigen-

value problem, SIAM J. Num. Anal. 19 (1982) 1243–1259.
8. M. W. Berry, Large scale sparse singular value computations, J. Supercomp. Appl. 6 (1992)

13–49.
9. H. Zha and H. D. Simon, On updating problems in latent semantic indexing, SIAM J. Sci.

Comput. 21 (1999) 782–791.
10. D. I. Witter and M. W. Berry, Downdating the latent semantic indexing model for conceptual

information retrieval, Comput. J. 41 (1998) 589–601.
11. A. Björck, Numerical Methods for Least Squares Problems, First ed., SIAM, Philadelphia, PA

(1996).
12. E. Kogbetliantz, Diagonalization of general complex matrices as a new method for solution of

linear equations, Proc. Intern. Congr. Math. Amsterdam 2 (1954) 356–357.
13. E. Kogbetliantz, Solutions of linear equations by diagonalization of coefficient matrices,

Quart. Appl. Math. 13 (1955) 123–132.
14. V. Hari and J. Matejaš, Accuracy of the Kogbetliantz method, preprint, University of Zagreb

(2005).
15. V. Hari and V. Zadelj-Martič, Parallelizing Kogbetliantz method: A first attempt, J. Num. Anal.

Industr. Appl. Math. 2 (2007), 49–66.
16. F. T. Luk and H. Park, On parallel Jacobi orderings, SIAM J. Sci. Statist. Comput. 10 (1989)

18–26.
17. V. Hari, Accelerating the SVD block-Jacobi method, Computing 75 (2005) 27–53.
18. M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi SVD algo-

rithm, Parallel Comput. 28 (2002) 243–262.
19. M. Bečka and G. Okša, On variable blocking factor in a parallel dynamic block-Jacobi SVD

algorithm, Parallel Comput. 29 (2003) 1153-1174.
20. H. N. Gabov, Data structures for weighted matching and nearest common ancessors with link-

ings, in: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM, New York (1990) 434–443.

21. W. J. Cook and A. Rohe, Computing minimum-weight perfect matchings, INFORMS J. Com-
put. 11 (1999) 138–148.

22. J. Van Leeuwen, ed., Handbook of Theoretical Computer Science. Volume A: Algorithms and
Complexity, Elsevier, Amsterdam (1990) 587.

23. A. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users’ Guide, Second ed.,
SIAM, Philadelphia (1999).

24. M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems: I.
Hypercubes and rings, Parallel Alg. Appl. 13 (1999) 265–287.

25. M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems: II.
Meshes, Parallel Alg. Appl. 14 (1999) 37–56.

26. I. Foster and C. Kasselman, Computational Grids. In: The Grid: Blueprint for a Future Com-
puting Infrastructure, I.Foster and C.Kasselman (Eds.), Morgan and Kaufmann Publishers
(1998).

Chapter 13
Short-Vector SIMD Parallelization in Signal
Processing

Rade Kutil

Abstract

Short-vector Single-instruction-multiple-data (SIMD) units have become common
in signal processors. Moreover, almost all modern general-purpose processors in-
clude SIMD extensions, which makes SIMD also important in high performance
computing. This chapter gives an overview of approaches to the vectorization of
signal processing algorithms. Despite their complexity, these algorithms have a rel-
atively regular data flow. This regularity makes them good candidates for SIMD
vectorization. They fall in two categories: filter banks that operate on streaming sig-
nal data, and Fourier-like transforms that operate on blocks of data. For the first
category, simple FIR filters, IIR filters and more complicated filter banks from the
field of wavelet transforms are investigated to develop and present general vector-
ization strategies. Well-known loop transformations as well as novel vectorization
approaches are combined and evaluated. For the second category, basic approaches
for the fast Fourier transform (FFT) are shown and the workings of automatic vector-
izing performance tuning systems are explained. The presented solutions are tested
on Intel processors with SIMD extensions and the results are compared. Wherever
possible, the reasons for performance gains or losses are uncovered so that good
vectorization strategies can be derived for arbitrary signal processing algorithms.

13.1 Introduction

The trend in parallelization goes toward multi-level parallelism. In addition to the
combination of clusters, shared-memory architectures, and multi-core processors,
CPU cores exploit more and more internal parallelity. Among methods such as ex-

Rade Kutil
Department of Computer Sciences, University of Salzburg, J.-Haringer-Strasse 2,
5020 Salzburg, Austria, e-mail: rkutil@cosy.sbg.ac.at

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_13, 397
c© Springer-Verlag London Limited 2009

398 Rade Kutil

cessive pipelining, specialized units, as used in signal processors, and VLIW (very
large instruction word), SIMD (single instruction multiple data) plays an important
role. One reason for its popularity is the availability of short-vector SIMD exten-
sions in all modern general-purpose processors.

These processors are very cost-effective and, thus, heavily used in high perfor-
mance computing (HPC). As a consequence, their SIMD extensions are exploited
in most HPC software. SIMD always benefits from regularity in algorithms. For-
tunately, this is exactly what makes the difference between signal processing and
other applications. In signal processing, large amounts of data are processed in a
continuous way, which makes the use of SIMD techniques promising.

13.1.1 Signal Processing Algorithms

Most signal processing algorithms fall into two categories: filter banks and Fourier-
like transforms. Other algorithms are usually quite similar to one of the two, or
include at least one of the two as an essential ingredient.

There are differences between the two categories. The most important one is
that Fourier-type transforms operate on blocks of signal data, while filters operate
on streams of data. Another difference is that filters have the simple algorithmic
form of a convolution, whereas fast Fourier-type transforms employ more compli-
cated butterfly-like schemes. Note also that it is possible to implement convolu-
tions and, thus, filters via Fourier transforms by applying the convolution theorem.
This method is feasible whenever the filters are long. Yet another difference is that
Fourier-type algorithms usually operate on complex numbers, whereas filter banks
are almost always real-valued.

Let us look at the basic algorithms in more detail. The simplest form of a finite
impulse response (FIR) filter is

y(n) =∑
k

x(n− k)h(k) , (13.1)

where x is the discrete input signal, y the output signal, and h the (finite) filter. For
causal filters, k is non-negative. In any case, k has finite limits. The general case can
have more than one input and output signals. This leads to the form

yi(n) =∑
j
∑
k

x j(n− k)hi, j(k) . (13.2)

Additionally, input and output signals can be down-sampled, i.e., only every m-th
value has to be calculated in the output signal, or is non-zero in the input signal.
While this reduces the computational demand by omitting zero products, as well
as memory demands by omitting zero values from arrays, it complicates the algo-
rithms. Moreover, some values of hi, j(k) may be equal, or just have opposite signs.
This happens for symmetric filters and quadrature mirror filter pairs, for instance.

13 Short-Vector SIMD Parallelization in Signal Processing 399

Depending on the position of the filter coefficients and down-sampling factors, this
may lead to redundant products, which means further potential for computational
reduction at the price of higher algorithmic irregularity. Finally, the filters may have
“holes,” i.e., inner zero coefficients. All this renders a general-purpose implementa-
tion highly inefficient. Each filter bank has to be handled individually, or automatic
compilation techniques must be used.

Infinite impulse response (IIR) filters are an extension of FIR filters, where the
output signal is reused as input signal.

y(n) =∑
l

y(n− l)a(l)+∑
k

x(n− k)b(k) , (13.3)

where, of course, l > 0. The main difficulty in implementing this scheme is the
recursive data flow that introduces loop dependencies and, thus, complicates paral-
lelization and makes algebraic reformulations of the filter algorithm necessary.

On the other hand, Fourier-type algorithms are relatively irregular to start with.
Despite the easy definition of the discrete Fourier transform

y(n) = F
N

x(n) =
N−1

∑
k=0

x(k)e−i 2π
N kn , (13.4)

where N is the size of the input signal block (x(0), . . . ,x(N− 1)), and 0 ≤ n < N,
fast versions of the Fourier transform employ more complicated recursive reformu-
lations such as

F
N

x = (x̂0 + x̂1, x̂0− x̂1) , x̂0 = F
N/2

x0 , x̂1(n) = F
N/2

x1(n)e−i 2π
N n , (13.5)

where x is split into even samples x0 = (x(0),x(2), . . . ,x(N−2)), and odd samples
x1 = (x(1),x(3), . . . ,x(N−1)). This scheme is due to Cooley and Tukey [1]. In this
version, N has to be even for one recursion level and a power of two for full recursion
(radix 2). Similar schemes can be found for other radices. Further schemes include
the split-radix algorithm [2] and the Rader algorithm [3] for prime sizes N. All these
schemes may be mixed and lead to different memory access patterns with different
computational performances which depend also on machine properties. Automatic
tuning systems have been developed [4, 5] which recursively search the space of
possible implementations, starting from abstract formulations of the algorithms to
rewriting schemes in dedicated signal processing languages such as SPL [6].

13.1.2 Short-Vector SIMD

In SIMD architectures, data is organized in registers containing vectors of several
values. These registers can be used in operations such as multiplication and addition
just as normal registers. The difference is that the values in the vectors are operated

400 Rade Kutil

on independently in parallel. Since it is common that a vector consists of p = 4 val-
ues, we will use this for demonstration throughout this chapter. A vector is written
as a = (a0,a1,a2,a3). Vector operators are displayed with circles:

a�b = (a0 ·b0,a1 ·b1,a2 ·b2,a3 ·b3), a⊕b = (a0 +b0, . . . ,a3 +b3) . (13.6)

SIMD computers have been popular in the 1980s and early 1990s, mainly due to
MasPar and the Connection Machines. Modern SIMD extensions of general pur-
pose CPUs are different from those in that the vectors are much shorter, i.e., p = 2,
4, or 8, hence the name “short-vector SIMD.” All these architectures have differ-
ent constraints in accessing and arranging data in vector registers. While traditional
vector computers only offered certain shift or rotation operations, new SIMD exten-
sions include almost general variations of values in vector registers, written as

a(p,q,r,s) = (ap,aq,ar,as) , (13.7)

or, in the more common form with two operands,

(a,b)(p,q,r,s) = (cp,cq,cr,cs) , (13.8)

where c = (a,b) = (a0,a1,a2,a3,b0,b1,b2,b3), and 0≤ p,q,r,s < 8. Not all of these
so-called shuffle operations are available as single instruction on all architectures.
As an important example, in Intel MMX and SSE, the shuffle operation has the
restriction that the first two values of the destination vector have to be from the
first operand and the last two from the second operand, i.e., 0 ≤ p,q < 4 ≤ r,s <
8 in Eq. (13.8). Additionally, there are two operations called “unpack operations”
which interleave the values of the first or second halves of the source operands,
i.e., (a,b)(0,4,1,5) and (a,b)(2,6,3,7). The maximum number of necessary instructions
for an arbitrary shuffle operation is two. On the other hand, the Motorola AltiVec
architecture provides instructions for arbitrary shuffle operations.

Architectures can also differ in the allowed numerical precisions, and in the vec-
tor size depending on the precision. The common configuration, though, is that vec-
tor registers have 128 bit, so they support 4-fold SIMD for single precision (i.e., 32
bit) and 2-fold SIMD for double precision floating point numbers (i.e., 64 bit). Inte-
ger numbers are also possible, but we will concentrate on floating point numbers in
this chapter.

Another restriction of most SIMD architectures is that they require aligned data
access to memory. This means that p consecutive values that are read from memory
into a vector register must have a starting address that is a multiple of the vector size.
As a consequence, the programmer has to take care that arrays are properly aligned
when they are allocated, and that they are read and written in non-overlapping blocks
of p values. Although some processors allow unaligned reads and writes, these are
usually much slower than aligned accesses.

13 Short-Vector SIMD Parallelization in Signal Processing 401

13.2 General Vectorization Approaches

Most compilers today include options to automatically vectorize the code in order to
utilize SIMD extensions. Although these vectorizations rarely lead to optimal code,
it is advisable to look at vectorization strategies that might also help in manual
vectorization of our signal processing algorithms.

13.2.1 Loop Unrolling

If the inner loop of the algorithm contains only a small number of operations, as is
the case for the filter algorithm, then a simple approach is to unroll p iterations of
the inner loop, where p is the vector length. The corresponding p operations, one
from each iteration, are scheduled to be executed in parallel in a vector instruction.

This approach has only one advantage and many disadvantages. The advantage
is that the data to be processed probably lies consecutively in memory and can sim-
ply be read into a vector register. However, this is mostly not true for both, input
and output data simultaneously. Moreover, the data is unlikely to be aligned. For
instance, in a simple filter algorithm the data to be read is shifted by one for every
outer loop iteration. Therefore, it is aligned only every p-th time.

If iterations depend on previous iterations, the method is hardly usable at all.
This is partly so for the filter algorithm. The multiplication of source data with filter
coefficients can be done in parallel, but the summation of the products is inherently
serial. Some SIMD architectures provide instructions for horizontal sums which
could be used in this situation. However, this reintroduces scalars in the algorithm
and, therefore, is suboptimal.

Nevertheless, unrolling a larger number of iterations, or even the whole inner
loop, may allow good vectorization through clever shuffling of data in registers.
This is, however, a complex problem to solve, and is treated next.

13.2.2 Straight Line Code Vectorization

Algorithms may contain blocks of code with no loops at all. If not, such blocks
can be produced by loop unrolling. Reference [7] presents a basic approach to au-
tomatic vectorization of such a block. It starts with the speculative aggregation of
destination variables into vector variables, followed by a depth-first search for ap-
propriately aggregated operations and source variables. If no feasible solution can
be found, backtracking is used to explore other combinations of variables into vec-
tors. Because a full search may be too expensive, heuristics are used for choosing
good candidates for aggregation.

402 Rade Kutil

This optimizing compiler technique is used and is especially important in auto-
matically tuned FFT packages [8, 9], where small FFTs are recursively expanded
into straight line codelets which are then included in larger FFTs.

13.2.3 Loop Fusion

If an algorithm consists of several passes that process the same arrays of data, where
each pass reads the data that a previous pass has written, these data accesses degrade
the performance and make the algorithm dependent on large cache sizes. Often, it is
possible to fuse these passes into a single one. This is done by interleaving the loop
iterations of different passes. Of course, one has to make sure that data is not read
by an iteration of a later pass before it is written by an iteration of an earlier pass.
In other words, a proper rescheduling of all passes’ loop iterations has to be applied
through a reformulation of the algorithm that respects data dependencies.

As a consequence, intermediate data is likely to be read immediately after it is
written. Therefore, it is better to remove these writes and reads in the first place
and keep the data in registers, local variables, or local buffers instead. The resulting
algorithm consists of a single fused loop containing a larger loop body. In addition to
the improved performance due to decreased cache dependency, the larger loop body
may be vectorized more easily using techniques for straight line code vectorization.

13.2.4 Loop Transposition

Most algorithms contain nested loops. The inner loop is likely to have dependencies
between iterations, which makes vectorization difficult. On the other hand, the outer
loop very often has independent iterations. This is the case, for instance, if the outer
loop iterates the output index, and the output values are calculated independently
from each other, or if the outer loop iterates rows of a row-wise transform.

It should then be possible to transpose the outer and inner loop in order to elim-
inate dependencies in the new inner loop. This corresponds to the commutation of
sum operators if the algorithm is formulated as double sum. Temporary variables
that pass data between iterations, such as running sums, have to be avoided or taken
care of by storing one value for each outer iteration.

Of course, this introduces new memory accesses and reduces the parallel effi-
ciency. Therefore, it may be better to transpose only blocks of the outer loop, ideally
blocks of exactly p iterations. This leads to an algorithm that is basically a copy of
the original algorithm, but operates on vectors instead of scalars. Temporary vari-
ables are kept in vectors as well and do not have to be saved.

This approach is a simple example of iteration rescheduling. It may have benefits
even if the outer loop has dependencies. However, a disadvantage is that data access
may not be contiguous any more. This can make shuffle operations or even redun-

13 Short-Vector SIMD Parallelization in Signal Processing 403

dant data accesses necessary. In many cases, a simple p× p block transposition can
solve the problem. Such a transposition can be implemented by

b(0) = (a(0),a(1))(0,2,4,6), b(1) = (a(2),a(3))(0,2,4,6),

b(2) = (a(0),a(1))(1,3,5,7), b(3) = (a(2),a(3))(1,3,5,7),

c(0) = (b(0),b(1))(0,2,4,6), c(1) = (b(2),b(3))(0,2,4,6),

c(2) = (b(0),b(1))(1,3,5,7), c(3) = (b(2),b(3))(1,3,5,7) .

(13.9)

This scheme uses a minimum of eight shuffle instructions and can also be used on In-

tel SSE architectures. It arranges non-consecutive data (a(0)
i ,a(1)

i ,a(2)
i ,a(3)

i) into the
vectors c(i). On the other hand, it distributes the consecutive data in vectors a(j) to
corresponding slots of different vectors (c(0)

j ,c(1)
j ,c(2)

j ,c(3)
j). Very often, algorithms

can operate more easily on transposed vectors c(i).

13.2.5 Algebraic Transforms

If it is possible to reformulate an algorithm algebraically, it is worth checking
whether the reformulation is more suitable for vectorization. Reformulations can
be as simple as applying associative and distributive laws to addition and multipli-
cation. The associative law can, for instance, reverse the dependencies of summing
loops.

Moreover, it is important to distinguish between dynamic and static data. In our
algorithms dynamic data is mainly signal data that keeps changing. Static data con-
sists of filter or transform coefficients that are constant over loops and, in most cases,
available at compile-time. By applying the distributive law, it can be possible to shift
operations on dynamic data to operations on static data.

An example would be a(x + y) + by, where x and y represent dynamic signal
data and a and b are static coefficients. This expression can be transformed into
ax + (a + b)y, where a + b can be calculated outside of the signal data loop, thus
saving one addition per iteration.

This approach can also reduce shuffle operations if applied cleverly. Combined
with loop unrolling and vector aggregation, the space of possible reformulations is
usually large. Therefore, algorithm specific approaches have to be found, or auto-
matic optimizers with heuristics have to be applied.

Exploring the space of reformulations is even more important for Fourier-type
transforms. This is already done in optimized sequential algorithms [4, 5], as stated
in Sect. 13.1.1. Vectorization of automatically generated straight-line code blocks
(codelets) increases the necessity for testing different possible code blocks since
some may be vectorized more efficiently than others. Inside the code blocks, the
above method of algebraic reformulation could be applied if simple rescheduling,
i.e., the aggregation strategy [8], is not sufficient. However, sequential optimization
is usually the only algebraic reformulation step within code blocks.

404 Rade Kutil

13.3 Convolution Type Algorithms

The most common type of algorithm in signal processing is filtering. Filtering is
basically a convolution of signal data x(t) with the filter impulse response h(t). If
the impulse response is finite, the convolution can be implemented directly. If it
is infinite or too large, a recursive formulation has to be found that is equal to, or
approximates the filter. The latter will be treated in the next section.

In this section we will examine simple filters as well as more complex filter banks
in order to develop and evaluate the most important vectorization approaches. As
examples of filter banks, filter pairs which are common in wavelet transforms (see
Sect. 13.6.1) are used. Automatic vectorization so far has not produced any per-
formance increase for wavelet transforms [10, 11]. Also, approaches on old SIMD
arrays [12–14] cannot be adapted directly. Therefore, good manual vectorization
strategies [15, 16] are important.

Experimental results will also be presented, which were conducted on an Intel
Pentium 4 CPU with 3.2 GHz and 2 MB cache size using the SSE extension with
vectors of 4 single precision numbers. All implementations use the same amount of
code optimization, i.e., memory access through incremented pointers instead of in-
dexed arrays, and compilation with gcc 3.3.5 with the -O3 option. SIMD operations
are implemented using gcc’s built-in functions for vector extensions and the -msse
option. Note that, in order to have full control over generated code, no automatic
vectorization is applied.

13.3.1 Simple FIR Filter

The simplest case of an FIR filter has one input signal x and one output signal y, and
does not apply any down- or upsampling. It is defined by

y(n) =∑
k

x(n− k)h(k) . (13.10)

There are two loops, the inner one for k and the outer for n. The loop iteration de-
pendencies are shown in Fig. 13.1. We will now vectorize this expression by various
methods and evaluate their advantages and disadvantages. The first method to try is
simple loop vectorization. It is depicted as method A in Fig. 13.1. Four consecutive
iterations shall be combined into one vectorized iteration. However, as the sum op-
eration imposes dependencies between iterations, we have to break the parallelity.
We get

y(n) =∑
k

S(x(n−4k−m, . . . ,n−4k−m+3)�h(4k+m, . . . ,4k+m−3)) . (13.11)

The operator S() calculates the scalar sum of a vector’s elements. On some archi-
tectures there is an instruction that implements the S-operator. If there is no such

13 Short-Vector SIMD Parallelization in Signal Processing 405

Fig. 13.1 Loop iteration de-
pendencies and vectorization
strategies for simple FIR
filtering.

signal data
filter taps

AC

B

instruction, a sequence of shuffle and add operations followed by an element extrac-
tion must be used, which is costly and may degrade the performance.

The dislocation parameter m does not have an influence on the result. It has,
however, an influence on the range of k. If indices of h(·) lie outside of its finite
support, h has to be padded with zeros, which introduces redundant calculations
and degrades the parallel efficiency, especially for short filters. For causal filters,
where indices have a minimum of 0, m = 3 avoids zero padding at least at the lower
end of indices. m also determines the alignment of vectorized data access. To make
the read operations on x aligned, m should depend on n such that n−m is a multiple
of the vector size p, i.e., four in our examples. The alignment of read operations on
h cannot be set independently, but this could be solved by preparing p copies of h
with different alignments.

The application of the S operator already makes mild use of the associative law. It
can be further exploited to vectorize most of the summing operation by commutating
the sum and S operator:

y(n) = S

(
∑
k

x(n−4k−m, . . . ,n−4k−m+3)�h(4k +m, . . . ,4k +m−3)

)
.

(13.12)
There are still scalar operations in this algorithm such as the S operator and also
the store operation on y. To make the entire process parallel, we have to look for
a different approach. Therefore, we make use of the loop transposition method de-
scribed in Sect. 13.2.4 by introducing another index l that shall be used to vectorize
blocks of n-indices. It turns out that we have two options to reformulate Eq. (13.10),
namely

B : y(n+ l) =∑
k

x(n+ l− k)h(k) , and (13.13)

C : y(n+ l) =∑
k

x(n− k)h(k + l) . (13.14)

Let us look at method C first. The resulting vectorization strategy is depicted in
Fig. 13.1 as C, and can be formulated as

406 Rade Kutil

y(n, . . . ,n+3) =∑
k

x(n− k)(0,0,0,0)�h(k,k +1,k +2,k +3) , (13.15)

where the so-called splat operator a(0,0,0,0) = (a,a,a,a) on a scalar a creates a vec-
tor filled with the value a. We see that this method is still not completely vectorized
because it reads the x array sequentially before applying the splat operator. How-
ever, this may be circumvented by vectorized reads followed by four simple shuffle
operations for each read, i.e., x(n− k, . . . ,n− k +3)(i,i,i,i) for 0≤ i < 4.

Note that the range of the index k has to be extended to generate all products. For
causal filters, k has to start at k = −3. This introduces the need of additional zero-
padding of h and, as a consequence, redundant operations. Moreover, the access of
the h array is entirely non-aligned.

Therefore, our hope lies in method B. Its vectorization strategy is depicted in
Fig. 13.1 as B, and can be formulated as

y(n, . . . ,n+3) =∑
k

x(n− k, . . . ,n− k +3)�h(k)(0,0,0,0) . (13.16)

This method has the big advantage that no zero-padding of h is necessary. Therefore,
there are no redundant calculations. Two disadvantages are the non-aligned access
of x and the sequential access of h. The latter problem can be reduced by preparing
vectors h(k)(0,0,0,0) in advance, which is favorable especially for short filters.

Fig. 13.2 Shuffle operations
for all vector realignments on
Intel architecture.

The non-aligned access of x implies one shuffle operation per non-aligned read,
i.e., p− 1 = 3 shuffles for p = 4 reads. However, these shuffle operations may not
be available as single instructions on certain architectures. Unfortunately, this is the
case for Intel SSE. However, as all possible realignments are necessary, shuffled
vectors can be reused in other shuffle operations to also achieve a rate of one shuffle
per non-aligned read. The method is depicted in Fig. 13.2 and can be written as

a = (x(n, . . . ,n+3),x(n+4, . . . ,n+7))(2,3,4,5) ,
x(n+1, . . . ,n+4) = (x(n, . . . ,n+3),a)(1,2,5,6) ,
x(n+2, . . . ,n+5) = a ,
x(n+3, . . . ,n+6) = (a,x(n+4, . . . ,n+7))(1,2,5,6) .

(13.17)

To summarize, we have applied the associative law and the loop transposition
method to reschedule and reformulate loop iterations in order to vectorize the simple
FIR filter algorithm. Method B turns out to be the most efficient due to the lack of

13 Short-Vector SIMD Parallelization in Signal Processing 407

redundant calculations. This is confirmed by experiments. We will now apply these
insights in the vectorization of some exemplary and more complicated filter banks.

13.3.2 The Haar Filter

The Haar filter is the simplest orthogonal wavelet filter. It is a 2-tap filter. The co-
efficients are (a,a) = (

√
2

2 ,
√

2
2) in the low-pass form and (a,−a) = (

√
2

2 ,−
√

2
2) in

the high-pass form, where the low- and high-pass filters form a filter bank. Together
with down-sampling by a factor of 2, the following assignments define the filtering
algorithm of the Haar wavelet transform.

for all i : L(i)← ax(2i)+ax(2i+1), H(i)← ax(2i)−ax(2i+1) (13.18)

L and H are the low-pass and the high-pass subbands, respectively. As a first se-
quential improvement we can reuse already computed products, which leads to

for all i : p← ax(2i), q← ax(2i+1), L(i)← p+q, H(i)← p−q . (13.19)

We see that for each pair L(i),H(i) of output values we have to read two input values
x(2i),x(2i+1). Since we want to read and write only full vectors when using SIMD,
we consequently have to read two vectors in each iteration. We find the vectorization
of the Haar filter as

for all i :
p← x(8i, . . . ,8i+3)�a(0,0,0,0), q← x(8i+4, . . . ,8i+7)�a(0,0,0,0),
r← (p,q)(0,2,4,6), s← (p,q)(1,3,5,7),
L(4i, . . . ,4i+3)← r⊕ s, H(4i, . . . ,4i+3)← r s .

(13.20)

In the first line two perfectly aligned vectors are read and each element is immedi-
ately multiplied by the coefficient a. In the second line the elements are rearranged
into one vector containing all even elements and one containing all uneven elements
using shuffle operations. To calculate the sum and difference of every two neighbor-
ing elements, we just have to add and subtract the two vectors, which is done in the
third line.

While the sequential algorithm requires two multiplies and two additions (or sub-
tractions) for every two input values, the SIMD version requires two packed multi-
plies and two packed additions for every eight input values. This gives a theoretical
speedup of 4. However, since the shuffle operations also require some execution
time and memory access can be a bottleneck, the speedup is reduced and we get an
actual speedup of 2.7.

408 Rade Kutil

13.3.3 Biorthogonal 7/9 Without Lifting

In the following sections we will discuss the more complicated example of the
biorthogonal 7/9-tap filter which is used in many multimedia applications such as
the JPEG2000 standard [17]. Note that all algorithms will show the same phases:
memory read, coefficient multiplication, data rearrangement, summation and mem-
ory write. Some will have a different order of execution, though. Especially coeffi-
cient multiplication and data rearrangement will be interchanged.

13.3.3.1 Sequential Algorithm

The biorthogonal 7/9 filter is an example of an uneven, symmetrical filter. It has
9 low-pass (a,b,c,d,e,d,c,b,a) and 7 high-pass coefficients (p,q,r,s,r,q, p). The
sequential algorithm is

for all i :
L(i)← ax(2i−4)+bx(2i−3)+ cx(2i−2)+dx(2i−1)+ ex(2i)

+dx(2i+1)+ cx(2i+2)+bx(2i+3)+ax(2i+4),
H(i)← px(2i−2)+qx(2i−1)+ rx(2i)+ sx(2i+1)

+rx(2i+2)+qx(2i+3)+ px(2i+4) .

(13.21)

However, this algorithm can be optimized in terms of the number of required mul-
tiplications due to the symmetry of the filters. Samples that have to be multiplied
by the same coefficient and added afterwards can be added before multiplication
instead, saving one multiply.

for all i :
L(i)← a(x(2i−4)+ x(2i+4))+b(x(2i−3)+ x(2i+3))

+c(x(2i−2)+ x(2i+2))+d(x(2i−1)+ x(2i+1))+ ex(2i) ,
H(i)← p(x(2i−2)+ x(2i+4))+q(x(2i−1)+ x(2i+3))

+r(x(2i)+ x(2i+2))+ sx(2i+1) .

(13.22)

Thus, 14 adds and only 9 multiplies (instead of 16) are required in each iteration. To
see the gain in performance of the optimized sequential algorithm, look at Fig. 13.3.
This plot shows the execution times in ns/sample over the size of transformed data.
The algorithm has been performed several times on the same data in order to unveil
the influence of cache on the execution time. However, the fact that execution times
per sample do not vary significantly with the data size shows that accessing cached
data has little impact on the performance. This shows that memory access is not
a bottleneck and the speedups shown in this and the following sections represent
algorithmic improvements. The improved algorithm gains a sequential speedup of
1.18. All parallel speedups in this section will be measured against the improved
algorithm.

13 Short-Vector SIMD Parallelization in Signal Processing 409

Fig. 13.3 Execution time of
naive and improved sequential
algorithm in ns/sample. The
horizontal axis shows the size
of the repeatedly transformed
data set in number of single
precision values.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 100 1000 10000 100000 1e+06

naive
improved

13.3.3.2 SIMD Parallelization – Variant 1

There are many possibilities to parallelize the above algorithm. The main difference
between these variants is when to apply the phase of shuffle operations – before or
after multiplying with filter coefficients. The first variant performs this multiplica-
tion directly after source data is read from memory.

As with the Haar filter, two vectors have to be read to calculate one new low-pass
vector and one new high-pass vector. However, since the filter is now longer than
the two taps, the contents of more than two vectors are actually needed. This can be
overcome by reusing intermediate results from previous iterations, which amounts
to passing values from iteration to iteration.

In this first variant, the values of each of the two recently read vectors are imme-
diately multiplied by all necessary filter coefficients. Then appropriate shuffles of
the products have to be added, leading to the following algorithm:

for all i :
Y ← x(8i+4, . . . ,8i+7),Z ← x(8i+8, . . . ,8i+11)
A←C, B← D, C← Y � (a,b,a,b), D← Z� (a,b,a,b),
E ← G, F ← I, G← Y � (c,d,c,d), I ← Z� (c,d,c,d),
J ←M, K ← N, M ← Y � (e,0,e,0), N ← Z� (e,0,e,0),
L(4i, . . . ,4i+3)← (A,B)(0,2,4,6)⊕ (A,B)(1,3,5,7)⊕ (E,F,G)(2,4,6,8)⊕

(E,F,G)(3,5,7,9)⊕ (K,M)(0,2,4,6)⊕ (F,G)(1,3,5,7)⊕ (F,G, I)(2,4,6,8)⊕
(B,C,D)(3,5,7,9)⊕ (C,D)(0,2,4,6),

P← R, Q← S, R← Y � (p,q, p,q), S← Z� (p,q, p,q),
T ←V, U ←W, V ← Y � (r,s,r,s), W ← Z� (r,s,r,s),
H(4i, . . . ,4i+3)← (P,Q,R)(2,4,6,8)⊕ (P,Q,R)(3,5,7,9)⊕ (U,V)(0,2,4,6)⊕

(U,V)(1,3,5,7)⊕ (U,V,W)(2,4,6,8)⊕ (Q,R,S)(3,5,7,9)⊕ (R,S)(0,2,4,6)

(13.23)

Figure 13.4 depicts the algorithm as a data-flow diagram. After multiplying the
two new source vectors by vectors of appropriate filter coefficients, they are rear-
ranged by shuffle operations (thin arrows) so that the sum of the resulting vectors is

410 Rade Kutil

Fig. 13.4 Variant 1 of SIMD-
parallel algorithm. Vectors
are indicated by boxes, mul-
tiplication by boxes with
rounded edges, addition by a
circle with a +, shuffle op-
erations by thin arrows, and
the passing of values between
iterations by dashed arrows.
Only the low-pass calcula-
tions are shown, high-pass
operations are similar.

a b a b

c d c d

e 0 e 0

a b a b

c d c d

e 0 e 0

+

x8i,...,8i+3 x8i+4,...,8i+7 x8i+8,...,8i+11x8i-4,...,8i-1

L4i,...,4i+3

A B C D

E F G I

J K M N

the desired destination vector containing four low-pass filtered samples. Note that
the intermediate vectors (after multiplication) are passed from the previous iteration
(dashed arrows). In this way one can avoid half of the multiplication operations.

Only the low-pass calculations are shown. The operations for high-pass filtering
are similar. A big disadvantage of this variant is that no intermediate results can be
shared between the low- and high-pass part. Moreover, many shuffle operations have
to be composed by two or more instructions. One reason for this is that some such
operations require three source vectors. Another reason is that the Intel processor’s
instruction set does not allow arbitrary shuffles. Altogether this algorithm can be
implemented by 10 multiplies, 14 adds, and 26 shuffles.

13.3.3.3 SIMD Parallelization – Variant 2

A major disadvantage of the first variant is that values that have to be collected in
a single vector are spread over several intermediate vectors, requiring more shuffle
operations. The reason for this is that downsampling causes every second value
to belong together. Therefore, the second variant inserts a single step of shuffling
before the multiplication, putting even and odd samples into separate vectors. This
leads to the following algorithm, which is also shown in Fig. 13.5.

13 Short-Vector SIMD Parallelization in Signal Processing 411

Fig. 13.5 Variant 2 of SIMD-
parallel algorithm.

x8i,...,8i+3 x8i+4,...,8i+7 x8i+8,...,8i+11x8i-4,...,8i-1

a a a a

c c c c

e e e e

b b b b

d d d d

+

L4i,...,4i+3

Y Z

A B C D

E F G I

J K

for all i :
Y ← x(8i+4,8i+6,8i+8,8i+10),Z ← x(8i+5, . . . ,8i+11),
A←C, B← D, C← Y � (a,a,a,a), D← Z� (b,b,b,b),
E ← G, F ← I, G← Y � (c,c,c,c), I ← Z� (d,d,d,d),
J ← K, K ← Y � (e,e,e,e),
L(4i, . . . ,4i+3)← A⊕B⊕ (E,G)(1,2,3,4)⊕ (F, I)(1,2,3,4)⊕

(J,K)(2,3,4,5)⊕ (F, I)(2,3,4,5)⊕ (E,G)(3,4,5,6)⊕ (B,D)(3,4,5,6)⊕C
P← R, Q← S, R← Y � (p, p, p, p), S← Z� (q,q,q,q),
T ←V, U ←W, V ← Y � (r,r,r,r), W ← Z� (s,s,s,s),
H(4i, . . . ,4i+3)← (P,R)(1,2,3,4)⊕ (Q,S)(1,2,3,4)⊕ (T,V)(2,3,4,5)⊕

(U,W)(2,3,4,5)⊕ (T,V)(3,4,5,6)⊕ (Q,S)(3,4,5,6)⊕R

(13.24)

This has two advantages. First, there is one multiplication less for the e-coefficient.
Second, no shuffle requires more than two source vectors. Moreover, the two results
of the first shuffling step can be reused in the high-pass part. Thus, this algorithm is
implemented by only 9 multiplies, 14 adds, and 20 shuffles.

13.3.3.4 SIMD Parallelization – Variant 3

The third variant adopts the scheme of the improved sequential algorithm. First,
the input vectors are shuffled so that the remaining operations can be performed as
in the sequential case. This reverses the order of phases completely. Then, vectors
that have to be multiplied by the same filter coefficients are added, followed by
multiplication and the final sum. The following algorithm is also shown in Fig. 13.6.

412 Rade Kutil

Fig. 13.6 Variant 3 of SIMD-
parallel algorithm. Multipli-
cation by a vector of equal
coefficients is depicted by a
single circle.

x8i,...,8i+3 x8i+4,...,8i+7 x8i+8,...,8i+11x8i-4,...,8i-1

+
+

+
+

a b c d e

+

L4i,...,4i+3

A
B

C
D

E
F

G
I

J
K

for all i :
Y ← x(8i+4, . . . ,8i+7), Z ← x(8i+8, . . . ,8i+11),
A← J, B← K, C← (A,Y)(1,2,3,4), D← (B,Y)(1,2,3,5),
E ← (C,Y)(1,2,3,6), F ← (D,Y)(1,2,3,7), G← (E,Z)(1,2,3,4),
I ← (F,Z)(1,2,3,5), J ← (G,Z)(1,2,3,6), K ← (I,Z)(1,2,3,7),
L(4i, . . . ,4i+3)← (A⊕ J)� (a,a,a,a)⊕ (B⊕ I)� (b,b,b,b)⊕

(C⊕G)� (c,c,c,c)⊕ (D⊕F)� (d,d,d,d)⊕E� (e,e,e,e)
H(4i, . . . ,4i+3)← (C⊕ J)� (p, p, p, p)⊕ (D⊕ I)� (q,q,q,q)⊕

(E⊕G)� (r,r,r,r)⊕F� (s,s,s,s)

(13.25)

Note that only two vectors have to be passed to the next iteration. This reduces the
stress on register allocation significantly. The biggest advantage of this algorithm
is that all results of the shuffle phase can be reused in the high-pass part. Unfortu-
nately, none of the shuffles, as depicted in Fig. 13.6, can be implemented as a single
instruction. However, through appropriate rearrangements some of the additional
instructions can be avoided. Altogether, this variant requires 9 multiplies, 14 adds,
and 12 shuffles.

13.3.3.5 Experimental Results

As variants 2 and 3 of the SIMD algorithms have the same number of multiplies
and adds as the improved sequential algorithm, only with vectors instead of single
numbers, there is a potential speedup of 4. However, due to massive shuffle oper-
ations this speedup cannot be reached, as one can see in Fig. 13.7. According to
expectations variant 3 is the best, giving speedups of 1.8.

Again, accessing cached data has only a minor influence on performance. The
decay of speedup for small data sizes is due to complex startup and close-off oper-
ations, e.g., for initializing registers, which become more dominant for small data
sizes. The slight decay for large data sizes is probably due to cache effects.

13 Short-Vector SIMD Parallelization in Signal Processing 413

Fig. 13.7 Speedups of the
SIMD parallelization variants
against the improved sequen-
tial algorithm. The horizontal
axis again shows the size of
the repeatedly transformed
data set.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 1000 10000 100000 1e+06

variant 1
variant 2
variant 3
Intel IPP

The hand-optimized Intel IPP library has slightly better speedups for medium
data sizes. However, it seems to be more dependent on cache since its performance
decreases noticeably for large data sizes. Also, it seems to have even more problems
with startup operations for small data sizes, although filter allocation is performed
only once for all repeated calls in the experiment. Note that ippsWTFwd_32f is
used here which does not apply lifting and where filters are not fixed, i.e., defined at
runtime.

13.3.3.6 Applicability to Arbitrary Filter Banks

The approaches presented here can all be applied to other filters as well. It is not
apparent, however, which one would be the best for a given filter, or if some modi-
fication of a variant can do even better. Let us, therefore, look at how the features of
the presented variants behave on other kinds of filters.

Variants 1 and 2 rely on the fact that a single filter coefficient has to be applied to
either even or odd samples, but not both. However, this is only true for uneven sym-
metrical filters, or filters without any symmetry. This means that variant 3 has even
more advantages for even symmetrical filters. On the other hand, variant 3 might
imply redundant multiplications for non-symmetrical filters if some low- and high-
pass coefficients are equal. This happens mostly for orthogonal wavelets. In this
case, however, filters have even length and, as a consequence, a low-pass coefficient
for even samples always corresponds to an equal high-pass coefficient for uneven
samples, or vice versa. Therefore, variant 3 does not produce redundant multiplica-
tions for orthogonal wavelets, since multiplied even samples can never be reused for
the high-pass filtering.

Important questions arise for particularly long filters. Variants 2 and 3 need to
store at least one vector for each filter tap to pass it to the next iteration. This requires
the allocation of many CPU registers and leads to additional memory accesses when
the compiler runs out of available registers. On the other hand, variant 3 has to keep
all shuffled vectors in registers, whereas variants 1 and 2 can drop shuffled vectors

414 Rade Kutil

(and even some other intermediate vectors) after having added them to the final sum.
However, variant 3 can also drop these if the filter is non-symmetrical.

All these remarks are only hints, of course. Filters reveal surprisingly diverse fea-
tures with respect to SIMD parallelization. Each particular filter should be examined
thoroughly, based on the approaches presented above.

13.3.4 Biorthogonal 7/9 With Lifting

As most wavelet filters, the biorthogonal 7/9 filter can also be implemented by ap-
plying the lifting scheme [18]. It is a method to implement wavelet filter pairs in a
joint pass. In this way it is possible to reduce the total number of operations.

13.3.4.1 Sequential Algorithm

The lifting approach factors the filter pair into several predict and update steps,
where odd values (values at odd position) are predicted from even values and re-
placed by the difference between prediction and actual value, and even values are
updated to represent a local average. This method significantly reduces the num-
ber of multiplies in the sequential algorithm. In this specific case the sequential
biorthogonal 7/9 without lifting uses 9 multiplies for every two samples (improved
version), whereas biorthogonal 7/9 with lifting as shown here requires only 6 mul-
tiplies.

for all i : x(2i+1)← x(2i+1)+a(x(2i)+ x(2i+2)),
for all i : x(2i)← x(2i)+b(x(2i−1)+ x(2i+1)),
for all i : x(2i+1)← x(2i+1)+ c(x(2i)+ x(2i+2)),
for all i : x(2i)← x(2i)+d(x(2i−1)+ x(2i+1)),
for all i : x(2i+1)←−ex(2i+1),
for all i : x(2i)← 1

e x(2i)

(13.26)

The low-pass and high-pass subbands are then found interleaved in even and odd
positions, respectively. Note that the coefficients a, . . . ,e are not the same as in the
sequential algorithm, but are the result of the factorization process on which the
lifting scheme is based. Note also that each of these assignments has to be executed
for all i before proceeding with the next assignment.

The lifting scheme can also be implemented in a single-loop manner in the sense
that each input value is read from memory only once and each output value is written
to memory once without subsequent updates. While this is an improvement in itself,
since it minimizes memory access, it turns out to be the only reasonable way to go
for the SIMD parallelization. To see why, let us examine the number of operations in
a single lifting pass x2n ← x2n +α(x2n−1 + x2n+1). There are 2 adds and 1 multiply
for every second sample, which makes 1 add and 1

2 multiply per sample. We can
vectorize these operations by

13 Short-Vector SIMD Parallelization in Signal Processing 415

x(2n, . . . ,2n+3)← x(2n, . . . ,2n+3)+
(α,0,α,0)� (x(2n−1, . . . ,2n+2)+ x(2n+1, . . . ,2n+4)) . (13.27)

Since x(2n−1, . . . ,2n + 2) and x(2n + 1, . . . ,2n + 4) require shuffle operations, we
need 2 shuffles, 2 adds, and 1 multiply for every four samples, giving 1

2 shuffle,
1
2 add, and 1

4 multiply per sample or – taken together – 1.25 operations instead of
1.5 in the non-SIMD case. This is, obviously, not a satisfying speedup, given the
theoretical maximum speedup of 4.

Therefore, we develop a new algorithm with a single outer loop. To do so, we
have to rewrite it by applying the well-known loop fusion technique (see Sect.
13.2.3). Immediately after iteration (i, j) of loop i, iteration (i + 1,k) of the sub-
sequent loop i + 1 is executed that depends on iteration (i, j) and does not depend
on an iteration (i, l) in loop i occurring later in that loop (l > j). The process begins
with the first loop. After one iteration of each loop has been executed, one iteration
of the fused loop is completed and the process starts over with a subsequent itera-
tion. As iteration (i, j) also depends on iteration (i, j−1), values have to be passed
between iterations. For every two input values, two output values can be calculated,
one low-pass and one high-pass coefficient. This leads to the following algorithm:

for all i :
o← q, p← x(2i+3), q← x(2i+4),
r← s, s← p+a(o+q),
t ← u, u← o+b(r + s),
v← w, w← r + c(t +u),
L(i)← t +d(v+w) · 1

e , H(i)← w · (−e) .

(13.28)

Fig. 13.8 Sequential single-
loop algorithm for the
biorthogonal 7/9 filter with
lifting. Circles with three in-
puts (l left, r right, u upper)
denote basic lifting operations
y = u +α(l + r). Rounded
frames indicate single itera-
tions.

a a a a a

b b b b b

c c c c c

d d d d d

1/e 1/e 1/e 1/e 1/e-e -e -e -e -e

prolog main main

epilog

q

s

u

w

This algorithm is also shown in Fig. 13.8 for a very short data length of 10. Itera-
tions, as described above, are denoted “main.” Longer data would, of course, require
more “main” iterations. Note that intermediate values q,s,u,w are passed from iter-
ation to iteration, indicated by arrows that cross iteration borders in Fig. 13.8. These
four values have to be set properly at the beginning of the loop. Also, the end of the

416 Rade Kutil

loop needs special treatment. Figure 13.8 shows how this must be done in the case
of mirroring border handling in the phases denoted by “prolog” and “epilog.”

13.3.4.2 SIMD Parallel Algorithm

To be able to obtain speedup using SIMD operations, again full vectors have to be
read. Like in variant 2 of the biorthogonal filter without lifting, data is shuffled after
being read from memory. Then SIMD operations are applied. This leads to interme-
diate results which have to be shuffled again before proceeding. These results can be
reused in the next iteration step, much like in the sequential algorithm, which leads
to the following algorithm:

for all i :
h← x2, x1 ← x(8i+4, . . . ,8i+7), x2 ← x(8i+8, . . .),
q← (h,x1)(0,2,4,6), p← (h,x1,x2)(3,5,7,9), o← (h,x1)(2,4,6,8),
r← s, s← (a,a,a,a)� (o⊕q)⊕ p, r← (r,s)(3,5,6,7),
t ← u, u← (b,b,b,b)� (r⊕ s)⊕o, t ← (t,u)(3,5,6,7),
v← w, w← (c,c,c,c)� (t⊕u)⊕ r, v← (v,w)(3,5,6,7),

L(4i, . . . ,4i+3)← ((d,d,d,d)� (v⊕w)⊕ t)� (1
e ,

1
e , 1

e , 1
e),

H(4i, . . . ,4i+3)← (−e,−e,−e,−e)�w .

(13.29)

See also Fig. 13.9 for a data-flow diagram of the algorithm.

Fig. 13.9 SIMD-algorithm of
biorthogonal 7/9 filter with
lifting. Heavy use of shuffle-
operations may cause non-
optimal speedups. Like in the
sequential case, intermediate
values are passed between
iterations (dashed lines).

a+

1/e-e

x8i,...,8i+3 x8i+4,...,8i+7 x8i+8,...,8i+11

L4i,...,4i+3H4i,...,4i+3

+

b+ +

c+ +

d+ +

The algorithm can also be interpreted as being equivalent to variant 3 of the non-
lifting algorithm, applied to each of the four stages for coefficients a,b,c,d. To see
this, consider each stage as the application of the short filters (a,1,a), . . . ,(d,1,d).
Then each stage consists of the steps shuffle, add, multiply, and sum, just like vari-
ant 3 in Sect. 13.3.3.2. Variants 1 and 2 could also be used here. However, consid-

13 Short-Vector SIMD Parallelization in Signal Processing 417

erations show that these would immediately imply unreasonable slow-downs. For
other filters given in lifting scheme, a similar approach can be applied, interpreting
the lifting steps as short filters.

Again, it is not possible to implement the algorithm in a straight forward way
because SIMD extensions (e.g., Intel SSE instruction set) do not support shuffling
from three sources into a single destination in a single instruction. However, the
algorithm can be implemented with 6 multiplies, 8 adds, and 11 shuffles.

Fig. 13.10 Execution times
in ns/sample of sequential
and SIMD implementations
with and without lifting over
the size of the repeatedly
transformed data set (number
of floats).

 0

 2

 4

 6

 8

 10

 12

 100 1000 10000 100000 1e+06

sequential without lifting (improved)
sequential with lifting

SIMD with lifting
Intel IPP with lifting

13.3.4.3 Experimental Results

Figure 13.10 shows execution times of the sequential and SIMD implementations
of the lifting algorithm in comparison to the non-lifting algorithm. Interestingly,
the sequential implementation is slower with lifting than without, despite the re-
duced number of multiplies and adds. Theoretical considerations [18] would imply
a speedup of 1.64. An investigation of the assembler code showed no obvious rea-
son, the faster code being significantly longer. A guess is that there is a peculiar
problem in scheduling the instructions optimally which can be resolved more easily
in the longer code.

However, the SIMD implementation is able to reduce the execution times signif-
icantly. Again, cached values do not seem to play an important role. Figure 13.11
shows the speedup of the SIMD implementation compared to versions without lift-
ing or SIMD. While, compared to the sequential lifting algorithm, we get a speedup
of up to 2.66 (of a theoretical maximum of 4), the speedup is only 2.36 (of theo-
retical 1.64× 4 = 6.56) compared to the sequential algorithm without lifting since
the latter is faster, as mentioned above. However, the SIMD algorithm with lifting is
faster than that without lifting. There is a speedup of about 1.3 (of theoretical 1.64).
The speedup decay for large data sizes is again probably due to cache problems.

Again, the Intel IPP library is not able to outperform our SIMD implementation
of wavelet lifting, as can be seen in Fig. 13.10. It shows equal performance for small

418 Rade Kutil

Fig. 13.11 Speedup of the
SIMD implementation with
lifting against implementa-
tions without lifting or SIMD.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 1000 10000 100000 1e+06

against sequential without lifting
against sequential with lifting

against SIMD without lifting (variant 3)

and slightly worse performance for medium data sizes. For large data sizes there
seems to be a major cache problem, since its performance even drops below that of
the sequential non-lifting algorithm. Note that ippiWTFwdRow_D97_JPEG2K_
32f_C1R is used where lifting is applied and the filter is fixed, as in our
implementation.

13.3.5 Conclusion

The efficiency of the parallelization depends largely on the filter lengths, their align-
ments, and even on the coefficients of the filters. If some of the coefficients are
equal, as there are for symmetrical filters, the sequential algorithm can be optimized
by reusing computed values. To do the same in the SIMD parallelized algorithm
often implies complicated shuffle operations.

Generally, the need for many shuffle operations reduces the speedup most. Mem-
ory access as a bottleneck could also limit speedups. However, investigations show
that the execution times are almost invariant to whether source data is in cache or
not. This means that the speedups shown above represent purely algorithmic im-
provements.

Apart from speedup issues, algorithms have to be found to derive optimal solu-
tions. This is important because each parallelization presented here is one of many
possible solutions and it is still possible that the shown solutions can be improved.
Since in practice it would be an almost unaccomplishable amount of work to hand-
code a variety of solutions to find the best, automatic optimization techniques as
in [19] are required.

13 Short-Vector SIMD Parallelization in Signal Processing 419

13.4 Recursive Algorithms

Algorithms of the convolution type are non-recursive, which means that output val-
ues are independent of each other. Whenever previous output values are reused in the
computation of new values, the algorithm is called recursive. The IIR filter technique
is the most important example of such an algorithm. Therefore, we shall investigate
it and examine vectorization strategies.

Fig. 13.12 Loop dependen-
cies in IIR filtering.

signal data

filter taps

From a computational point of view, the difference between FIR and IIR filters
lies in the dependencies between loop iterations. Again, there are two loops, one
over signal data and the other over filter taps. In the FIR case, iterations of the
outer loop, i.e., entire inner loops, are independent of each other, leading to a rather
straight-forward SIMD parallelization where the two loops (inner and outer) are
transposed for a number of outer iterations equal to the SIMD vector size p, as
shown in Sect. 13.3.1. In the IIR case, the dependencies are more complicated since
all previous output values are required to calculate a new one. See Fig. 13.12 and
compare to Fig. 13.1. Therefore, SIMD parallelization is more difficult.

In this section we will first apply usual rescheduling techniques and then show
how algebraic transforms of the algorithm can improve the vectorization signifi-
cantly, which is verified by experimental results. These are conducted on an Intel
Pentium 4 CPU with 3.2 GHz and 2 MB cache size using the SSE extension with
vectors of 4 single precision numbers. All implementations use the same amount of
code optimization, i.e., memory access through incremented pointers instead of in-
dexed arrays, and compilation with gcc 4.1.2 with the -O3 option. SIMD operations
are implemented using gcc’s built-in intrinsics for vector extensions and the -msse
option. Note that in order to have full control over generated code, no automatic
vectorization is applied. The results are compared to the hand-optimized Intel Inte-
grated Performance Primitives (IPP) v5.3. Note that the IPP library also uses SIMD
operations, but the applied methods are not known to the author.

420 Rade Kutil

13.4.1 Sequential IIR Algorithm

The goal of IIR filtering is to calculate the signal y from the signal x by

y(n) =
N−1

∑
i=1

a(i)y(n− i)+
M−1

∑
i=0

b(i)x(n− i) , (13.30)

where the second term is an FIR part with coefficients b(i) and the first term is the
IIR part with coefficients a(i). M is the number of FIR filter taps and N is the number
of IIR filter taps. The formula reveals the outer loop over n and two inner loops over
i.

The sequential implementation is optimized for performance to have a reasonable
comparison for the SIMD parallelized version. It turns out that maintaining a pointer
for y(n) and x(n) and addressing x(n− i) and y(n− i) via relative addressing is
fastest. Using extra buffers or local register variables for reused values does not
improve the performance. Therefore, a similar implementation style is adopted for
the SIMD parallelization.

13.4.2 Scheduling Approach

Rescheduling approaches only change the order in which iterations and operations
are executed. They have therefore limited power if there are too many data depen-
dencies, as there are in IIR filtering. Examples can be found in [20,21]. We will use
a rather straight forward approach that will be improved by algebraic transforms in
the next section.

The FIR part is vectorized simply as in Sect. 13.3.1 (method B), with the result
given in u. The IIR part can be parallelized in just the same way for those iterations
where i≥ p, i.e., where the source vector y(n− i, . . . ,n− i+ p−1) does not overlap
with the destination vector y(n, . . . ,n+ p−1) that is being calculated. The iterations
i = 0, . . . , p− 1 might be implemented sequentially after computing the others in a
vectorized way first by

v = u ⊕
N−1

∑
i=p

y(n− i, . . . ,n− i+ p−1)� (ai, . . . ,ai) , (13.31)

followed by

y(n+ k) = vk +
p−1

∑
i=1

a(i)y(n+ k− i) for k = 0, . . . , p−1. (13.32)

A first attempt to parallelize the latter part is to split it into two phases. The first
phase treats those terms that reference y(n+ k− i) where n+ k− i < n, i.e., already
available values.

13 Short-Vector SIMD Parallelization in Signal Processing 421

for i = 1, . . . , p−1:
v← v ⊕ (y(n− p+ i), . . . ,y(n−1),0, . . .)�

(a(p− i), . . . ,a(p− i),0, . . .)
(13.33)

The second phase uses those elements of v that already represent y(n+k) values. At
the beginning, only v0 = y(n). Using this value, v1 can be calculated to hold y(n+1),
and so on. This leads to the following algorithm:

for k = 0, . . . , p−2 :
v← v ⊕ (. . . ,0,vk, . . . ,vk)� (. . . ,0,a1, . . . ,ap−1−k)

y(n, . . . ,n+ p−1)← v
(13.34)

This first approach yields an overhead of p− 1 multiply-accumulate vector opera-
tions, since each phase has p−1 iterations, resulting in 2(p−1) operations, where
only p−1 would be necessary if there were no problems with data dependencies.

13.4.3 Algebraic Transforms

Algebraic transforms of the algorithm can be used to eliminate troubling data de-
pendencies [22]. Here, we will follow an approach that fuses filter taps together to
resolve data dependencies [23]. Let us look at the second iteration (k = 1) of the last
algorithm. Here, v1 = y(n + 1) = v′1 + v0a(1), where v′ comes from the preceding
iteration. Now, we calculate the new v2 as v2 + v1a(1), which can consequently be
expressed as v2 +v′1a(1)+v0a(1)2. Moreover, v2 = v′2 +v0a(2), as calculated in the
first iteration. Together, we get v′1a(1)+v0(a(1)2 +a(2)). The term v′1a(1) could be
calculated in the last iteration of the first phase, and the term v0(a(1)2 + a(2)) can
be calculated in the first iteration of the second phase because we have eliminated
v1 from the term.

Following this approach even further recursively, we get the following algorithm
that substitutes both phases:

for i = 1, . . . , p :
v← v ⊕ (y(n− p+ i), . . . ,y(n−1),0,vi, . . .vi)� s(i)

y(n, . . . ,n+ p−1)← v
(13.35)

s(i) holds the fused filter tap coefficients and has the following form:

s(1) = (a(p−1), . . . ,a(p−1),0)
s(2) = (a(p−2), . . . ,a(p−2),0,c(1))
. . .

s(p−1) = (a(1),0,c(1),c(2), . . . ,c(p−2))
s(p) = (0,c(1),c(2), . . . ,c(p−1)) ,

(13.36)

where

422 Rade Kutil

c(k) =
k

∑
i=1

a(k)c(k− i), c(0) = 1 . (13.37)

This approach finally has only an overhead of one multiply-accumulate vector op-
eration, since it has p iterations. For better comprehensibility, let us write the algo-
rithm for the case p = 4 as in the Intel SSE architecture:

v← v ⊕ (y(n−3),y(n−2),y(n−1),0)� (a(3),a(3),a(3),0)
v← v ⊕ (y(n−2),y(n−1),0,v2)� (a(2),a(2),0,a(1))
v← v ⊕ (yn−1,0,v1,v1)� (a(1),0,a(1),a(1)2 +a(2))
v← v ⊕ (0,v0,v0,v0)� (0,a(1),a(1)2 +a(2),a(1)3 +2a(1)a(2)+a(3))
y(n, . . . ,n+3)← v

Of course, each operation requires at least one shuffle operation, maybe two on the
Intel SSE architecture.

If the number of IIR-taps N is smaller than the vector size p, the above ap-
proach unfortunately only reduces to p− 1 operations. In this case, some divide-
and-conquer algorithm might further reduce the overhead. However, �log2(p + 1)�
seems to be the lower bound, since y(n + p− 1) depends on the p + 1 values
u0, . . . ,up−1,y(n−1) if N takes the minimal value 2.

13.4.4 Experimental Results

In Sect. 13.3 we have seen that the performance of an implementation of a filtering
algorithm possibly depends on whether the signal data is in the cache or not. There-
fore, we will adopt the method of varying data size to examine the cache behavior.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 1000 10000 100000 1e+06

sequential
SSE

Intel IPP

(a) 2 taps

 0

 0.5

 1

 1.5

 2

 100 1000 10000 100000 1e+06

sequential
SSE

Intel IPP

(b) 10 taps

Fig. 13.13 Execution time in ns per sample point and filter tap depending on the data length for
repeated filtering, showing the cache dependency of the algorithms.

13 Short-Vector SIMD Parallelization in Signal Processing 423

The calculation time is expected to depend linearly on the data size and on the
number of filter taps N +M. Therefore, we calculate the execution time per sample
point and filter tap from the total execution time of the algorithm by ttotal/S/(N +
M), where S is the data size.

Figure 13.13 shows the results for N = M = 2 and N = M = 10. It also includes
performance measures of the Intel IPP library. While the IPP library code seems
to depend a little on the data size, the major reason for this seems to be startup-
overhead when filling the delay-lines, which is significant only for small data sizes.
The sequential algorithm and the SIMD algorithm are completely independent of
the cache state.

Fig. 13.14 Execution time in
ns per sample point and filter
tap depending on the number
of filter taps.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 50 40 30 20 10 5 4 3 2

sequential
SSE

Intel IPP

For small numbers of taps, the IPP library code seems to be faster. This is also
shown in Fig. 13.14. For N = M ≤ 5, the SIMD algorithm cannot compete with the
IPP code. The reason is probably that hand-optimized assembler code, as in the IPP
library, is more important for short loops. For N > 5, however, our SIMD approach
outperforms the IPP library by a speedup of about 1.7 and also shows more regular
behavior. Compared to the sequential algorithm, speedups from 1.5 for small N to
4.5 for large N are obtained.

13.5 Block Algorithms

Algorithms that operate on blocks of signal data usually have a more irregular struc-
ture than streaming algorithms such as filtering. The most prominent example is, of
course, the FFT as defined in Sect. 13.1.1. Almost all other blocked transforms are
variants of the FFT and have very similar structure. As a consequence, vectorization
strategies are basically the same. Therefore, we will concentrate on the FFT.

424 Rade Kutil

13.5.1 Data Layout

The FFT operates on complex data, which raises the question where real and imag-
inary parts of complex numbers are stored. The most common is an alternating
scheme to keep real and imaginary parts closely together. The other possibility is
to store them in separate arrays. What does that mean for vectorization efficiency?
In the alternating scheme, p

2 = 2 complex numbers are kept in a vector. Simultane-
ous addition of 2 + 2 complex numbers simply takes the form of a vector addition.
However, vectorized multiplication is more complicated. The point-wise complex
product of arrays z(n) = x(n)y(n) can be implemented by

for all n :
a← (ℜx(n),ℑx(n),ℜx(n+1),ℑx(n+1))
b← (ℜy(n),ℑy(n),ℜy(n+1),ℑy(n+1))
c← a�b, d ← a�b(1,0,3,2)
e← (c,d)(0,4,2,6), f ← (c,d)(1,5,3,7)� (−1,1,−1,1)
(ℜz(n),ℑz(n),ℜz(n+1),ℑz(n+1))← e⊕ f

(13.38)

This scheme in principle needs two vector multiplications and one vector addition
for 2 + 2 complex numbers, whereas the sequential version needs four multiplica-
tions and two additions, or, more precisely, one addition and one subtraction for
1+1 complex numbers, which seems perfect. However, there is an additional mul-
tiplication with (−1,1,−1,1) that is necessary for the sign change in the vectorized
addition, and there are 3 shuffle operations. Moreover, the two shuffles in line 4
need two instructions on Intel SSE, which makes a total of five shuffles. As a conse-
quence, the speedup we get if we implement a sequence of complex multiplications
in this way is actually a slowdown of about 0.7. This is a bad thing to start with
when trying to vectorize an algorithm that is based on complex numbers.

On the other hand, the data layout with separate arrays for real and imaginary
parts implies a vectorized algorithm that is equivalent to the sequential algorithm:

ℜz(n, . . . ,n+3) =ℜx(n, . . .)�ℜy(n, . . .) ℑx(n, . . .)�ℑy(n, . . .)
ℑz(n, . . . ,n+3) =ℜx(n, . . .)�ℑy(n, . . .)⊕ℑx(n, . . .)�ℜy(n, . . .) (13.39)

It uses 4 vector multiplications and 2 vector additions for 4 + 4 complex numbers,
which is perfect, and there are no shuffle operations at all. As a consequence, we get
a speedup of about 3.7 for a sequence of multiplications.

However, the data layout might be predetermined by existing software or inter-
face definitions. In this case, data could be rearranged after reading from memory
and before writing to memory. This can be done by one shuffle operation per input
and output vector. Intermediate stages of the algorithm can keep the separated data
organization, though.

This rearrangement can be incorporated into the bit-reverse sorting pass that is
part of the beginning or end of the FFT algorithm. Bit-reverse sorting moves x(m)
to y(n), where the binary representations of m and n satisfy

13 Short-Vector SIMD Parallelization in Signal Processing 425

m = m020 + · · ·+mB−12B−1 = BR(n) := nB−120 + · · ·+n02B−1 , (13.40)

hence the name. If we combine these movements with the separation of real and
imaginary parts, the sorting algorithm almost does not change. Suppose the array x̃
holds the alternated parts of the complex x, i.e., x̃(2n,2n + 1) = (ℜx(n),ℑx(n)). If
the data block size is at least 8, i.e., 0≤ n < N ≤ 8, or, equivalently, B≥ 3, then the
sorting plus separation can be vectorized by

for all n :
a← x̃(BR(n), . . . ,BR(n)+3),
b← x̃(BR(n+1), . . . ,BR(n+1)+3),
c← x̃(BR(n+2), . . . ,BR(n+2)+3),
d ← x̃(BR(n+3), . . . ,BR(n+3)+3),
e← (a,b)(0,2,4,6), f ← (a,b)(1,3,5,7),
g← (c,d)(0,2,4,6), h← (c,d)(1,3,5,7),
ℜy(n, . . . ,n+3)← (e,g)(0,4,1,5),
ℑy(n, . . . ,n+3)← (f ,h)(0,4,1,5),
ℜy(n+4, . . . ,n+7)← (e,g)(2,6,3,7),
ℑy(n+4, . . . ,n+7)← (f ,h)(2,6,3,7),

(13.41)

where n is a multiple of 2p = 8. This requires eight shuffles for four input vectors.

13.5.2 Basic FFT-Blocks

After bit-reverse sorting, the actual algorithm ensues with recursions such as that in
Eq. (13.5). If the data size N in a recursion iteration is greater than 4, then the iter-
ation consists of point-wise multiplication of half of the complex data by complex
factors of the form e−i 2π

N n, followed by addition and subtraction with the other half
of the data. Due to our data layout, this can be done easily by vectorized multiplica-
tions as in Eq. (13.39).

If the data consists of four complex values, then vector-local computations are
necessary. The FFT of size N = 4, i.e., y = F

N
x is written out sequentially as

b(0)← x(0)+ x(1), b(1)← x(0)− x(1),
b(2)← x(2)+ x(3), b(3)← x(2)− x(3),
y(0)← b(0)+b(2), y(1)← b(1)− ib(3),
y(2)← b(0)−b(2), y(3)← b(1)+ ib(3),

(13.42)

where x is assumed to be already bit-reverse sorted, i.e., x(1) and x(2) are swapped.
This algorithm looks quite regular, but the imaginary factor −i that accompanies
b(3) disturbs the regularity significantly. Nevertheless, a straight forward vectoriza-
tion can be given by

426 Rade Kutil

ℜb←ℜx� (1,−1,1,−1)⊕ℜx(1,0,3,2),
ℑb← ℑx� (1,−1,1,−1)⊕ℑx(1,0,3,2),
ℜy←ℜb(0,1,0,1)⊕ (ℜb,ℑb)(2,7,2,7)� (1,1,−1,−1),
ℑy← ℑb(0,1,0,1)⊕ (ℑb,ℜb)(2,7,2,7)� (1,−1,−1,1) .

(13.43)

We see that there are again vector multiplications for sign change. Note that the
algorithm itself does not include any multiplications at all. There are six shuffle
operations, whereof two require two instructions on Intel SSE. To get rid of the
multiplications, we reschedule the operations so that additions and subtractions are
separated, which is possible because there is always an equal number of positive
and negative signs. This leads to the following algorithm:

a← (ℜx,ℑx)(0,2,4,6), b← (ℜx,ℑx)(1,3,5,7), c← a⊕b, d ← a b,
e← (c,d)(0,2,4,6), f ← (c,d)(1,3,7,5), g← e⊕ f , h← e f ,
ℜy← (g,h)(0,2,4,6), ℑy← (g,h)(1,7,5,3) .

(13.44)

There are still six shuffle operations, only one of which needs two instructions on
Intel SSE. Surprisingly, this algorithm is about 20% slower than that in Eq. (13.43).
The reason is probably increased dependency of vector instructions and, thus, worse
schedulability. All this shows that code optimization is difficult due to architecture
dependencies, but necessary nevertheless. This problem is addressed in the next
section.

13.5.3 Automatic Tuning and Signal Processing Languages (SPL)

Because implementations of algorithms show different performance characteristics
on different architectures, optimal implementations have to be found on each archi-
tecture separately. This not only requires implementation efforts on each architec-
ture, but many implementations have to be tested on each architecture. As this is
rarely done manually, implementations are likely to be suboptimal.

To solve this problem, automatic tuning systems have been developed [4, 5], an
approach that is well known in matrix algebra [24–26]. The idea behind these sys-
tems is that the transform is represented by a matrix M, i.e., y = Mx, and this matrix
can be factored into sparse matrices Mk as

M = M1M2 · · ·Mm . (13.45)

These matrices can be built from the following primitive matrices:

• the identity matrix In = diag(1, . . . ,1),
• the stride permutation matrix Lrs

r = δ (js + k, j + kr) of size rs× rs, where 0 ≤
j < r and 0≤ k < s, and

• the “twiddle”-matrix T rs
r = diag(w0·0, . . . ,w0·(r−1),w1·0, . . . ,w(s−1)(r−1)), where

w = e−i 2π
rs .

13 Short-Vector SIMD Parallelization in Signal Processing 427

The primitive matrices can be combined by the following operations:

• matrix multiplication,

• direct sum A⊕B =
(

A
B

)
,

• Kronecker product A⊗B =

⎛
⎜⎝

A0,0B · · · A0,s−1B
...

. . .
...

Ar−1,0B · · · Ar−1,s−1B

⎞
⎟⎠, and

• recursion, i.e., the use of smaller matrices with the same definition.

Together, these matrices and operations form a framework of a SPL [6]. As an ex-
ample, it is possible to define the Fourier transform of size 4 (DFT4) in this language
through the formula

DFT4 = (DFT2⊗I2)T 4
2 (I2⊗DFT2)L4

2 . (13.46)

Such a formula does not only represent a way to construct the matrix of the trans-
form, it also defines an algorithm by which the transform can be implemented. A
recursively expanded formula can automatically be converted into an actual algo-
rithm in some programming language by substituting the primitive matrices or sim-
ple combinations Mj of them by appropriate loops of arithmetic operations. Because
the matrices Mj are supposed to be sparse, the resulting algorithm usually reduces
the computational complexity. For the Fourier transform, the complexity reduction
is from O(N2) to O(N logN).

If a formula such as Eq. (13.46) is defined with symbolic indices (e.g., DFTrs =
. . .), then the formula constitutes a rule that can be applied in the recursive expansion
of formulas. Usually, the parameters of a rule allow for several possible instantia-
tions (e.g., rs = 2 ·4 or 4 ·2). Moreover, there can be several applicable rules. Thus,
a vast space of algorithmic implementations of a certain transform can be generated
automatically.

The goal of the automatic tuning system is to traverse this space, to measure
the implementations’ performances, and to choose the one implementation with the
best performance. However, some heuristics are necessary since it is usually too
expensive to include the entire space of implementations.

There are two vectorization approaches that can be derived from this automatic
tuning technique. The first one is simply to generate blocks of straight line code
(i.e., code without loops) out of formulas and rules, to vectorize these “codelets” as
described in Sect. 13.2.2. This is the approach taken in [7–9].

Another approach is to use the rules to generate vectorized code. If the expanded
formulas contain right-sided Kronecker products with Ip, where p is the vector size,
then the algorithm is directly vectorizable. This is the approach taken in [27, 28].
Special care has to be taken about shuffle operations. The formulas should be chosen
so that the permutation matrices produce only permutations that are implementable
as single shuffle instructions at a given architecture [29].

The question arises whether the SPL approach can also be used for convolution
type streaming algorithms. A problem here is that the data size is unbounded, which

428 Rade Kutil

would imply matrices of infinite size in the SPL formulation. To work around this
problem, one could select a small number of consecutive iterations of the outer loop
and apply the SPL approach to this block. To choose the vector size as the block size
might be a good choice. The block algorithm is then iterated for consecutive blocks.
This approach is taken in [30] for the LMS algorithm. A disadvantage is that the
technique cannot automatically choose how the block iterations interact, i.e., what
data is passed between iterations. An extension of SPL to infinite cyclic matrices
would certainly be a general solution, but this is future work.

13.6 Mixed Algorithms

There are algorithms in signal processing that cannot be classified as either con-
volution or Fourier oriented. Frequently, Fourier transforms are used on blocks
of streaming data. This is mostly combined with overlapped windowed blocks,
i.e., window functions applied to blocks before the transform to reduce artifacts due
to the lack of periodicity. The well-known short-time Fourier transform (STFT),
including the Gabor transform, is the most prominent kind of such a transform in
time-frequency analysis. Vectorization strategies here are basically the same as for
Fourier-type transforms, as those are the main part of a STFT.

On the other hand, filter operations can be applied on blocks of data, where the
handling of block borders is either zero-padded, periodic, or mirrored. Moreover, fil-
ters can be applied in several phases, which includes recursive splitting of frequency
bands, as in the wavelet transform, or multi-dimensional filtering. In these cases, the
passing of vector data between phases might be optimized for overall performance.
Therefore, we will examine a representative example more closely.

13.6.1 Recursive Convolution – Wavelet Transforms

Fig. 13.15 Wavelet trans-
form.

low-pass high-pass

low high

low high

input data

H-subband

LH-subb.

LLHLLL

13 Short-Vector SIMD Parallelization in Signal Processing 429

The wavelet transform is implemented by filter pairs such as those in Sects.
13.3.2, 13.3.3, and 13.3.4. We get a low-pass and a high-pass subband with half
the size of the original data each. The low-pass subband is then filtered further to be
substituted by two subbands of a quarter of the size of the original data, and so on.
See Fig. 13.15.

Note that the original definition of the lifting scheme in Eq. (13.26) yields an
interleaved data layout of the output data. This means that the input data of further
passes is non-contiguous, which is very bad for vectorization. Fortunately, the ap-
proach with fused loops in Eq. (13.28) can separate the subbands easily, which is
also true for the vectorized algorithm in Eq. (13.29).

Thus, the whole algorithm consists of several passes, where each one reads the
output of the preceding pass. This is subject to cache issues, even more so with
SIMD acceleration because the cache is more likely to be a bottleneck in faster
algorithms. Therefore, the loop fusion technique can also be applied to all passes of
the wavelet transform.

Note that special care has to be taken of block borders. See Fig. 13.8 for the case
of mirrored border handling. The prolog and epilog phases in this algorithm appear
in every pass of the wavelet transform. Therefore, the loop fusion has to incorporate
these phases plus a certain number of main-phase iterations into big prolog and
epilog phases, which can be arduous to hand-code.

13.6.2 Multi-dimensional Algorithms

The multi-dimensional Fourier transform is implemented in separate passes for each
dimension. If the dimension of a certain pass accesses non-contiguous data, i.e., all
passes but the first, then there is an easy method for vectorization. One simply has to
perform the sequential algorithm while operating on vectors of several neighboring
data values, thus transforming several columns at once. This approach can also be
applied in the first dimension by transposing p× p blocks of input and output data
after reading and before writing to memory, respectively, thus transforming p rows
of data at once. See Eq. (13.9) for the vectorized transposition of such blocks.

input
data

LL HL

LH HH

Fig. 13.16 2-D wavelet transform.

The same is true for the wavelet transform [10, 11]. Let us examine the 2-D
wavelet transform. Here, each line is filtered by this scheme followed by columns

430 Rade Kutil

being processed in the same way, giving four subbands denoted by LL, LH, HL,
HH. See Fig. 13.16. As explained before, we choose a data layout with separated
subbands. This has the advantage that further passes can access the subbands in the
same way and the same algorithm can be used. Otherwise, methods for the transform
as a whole would have to be developed [31].

Fig. 13.17 Execution times
per sample point (pixel) for
one separate horizontal and
vertical wavelet filtering pass,
with and without SIMD.

 200

 100

 50

 20

 10

 5
 10000 100000 1e+06 1e+07

ns
 /

pi
xe

l

pixel

SISD
transpose-SIMD

line-SIMD

See Fig. 13.17 for the execution times of a 2-D filtering pass. There is one
horizontal and one vertical filtering step. The two vectorization approaches “line-
SIMD,” i.e., using the algorithm of Sect. 13.3.4.2 for horizontal filtering, and
“transpose-SIMD,” i.e., using the above transposition approach, are compared to
the sequential “SISD” algorithm. We see that there is a performance gain by a factor
of about 2.8 over the whole range of data sizes. The transposition-based paralleliza-
tion is slightly better than the pure horizontal approach, mainly due to the lesser
total number of shuffle operations.

We also see that there is a dependency on cached data and the algorithm does not
scale linearly with the data size. To reduce cache dependencies, we will now fuse
the horizontal and vertical pass [32]. In the 1-D case, we pass four values from one
iteration to the other. To do a similar thing in the second dimension, we apply an
approach that is known as pipeline or line-based computation [33]. If we imagine
a whole row as a single value (as in the easy vertical SIMD algorithm, only with
vectors of the size of a whole row), we must pass four such rows from one iteration
to the other. This amounts to a buffer of four rows. In the 1-D case, we read two
values from memory in a single iteration. In our row-wise approach this means that
we need two new rows to start an iteration.

Since the source data for this row-wise vertical filtering is the output of the hor-
izontal filtering, we try to use the output of the horizontal filtering in the vertical
transform immediately after it is available. Thus, we have to perform two horizontal
filterings (on two consecutive rows) at once. For each row we get a low-pass and
a high-pass coefficient, which makes four values in total. The two low-pass values
are fed into an iteration of the vertical type which produces an LL- and an LH-type
coefficient, followed by the same operation on the two high-pass coefficients which
produces an HL- and an HH-type coefficient. In each iteration the vertical part up-

13 Short-Vector SIMD Parallelization in Signal Processing 431

dates four values in the four-row buffer, which are reused when the next two rows
are processed.

Fig. 13.18 Execution times
per sample point (pixel) for
the single-loop implementa-
tion with and without SIMD.

 50

 20

 10

 5
 10000 100000 1e+06 1e+07

ns
 /

pi
xe

l
pixel

SISD
transpose-SIMD

line-SIMD

This algorithm can be vectorized without major problems, so we get a SIMD
implementation of a 2-D wavelet filtering step in a single loop. The execution times
are shown in Fig. 13.18. There is no cache dependency any more. This time the
transposition based algorithm is significantly worse than the pure line-SIMD ap-
proach. The reason for this is increased buffer size destroying data locality, and an
increased number of concurrently processed intermediate vectors per iteration mak-
ing register allocation more difficult. The line-SIMD algorithm, however, performs
about 3.7 times faster than the non-parallelized, which is very close to the theoretical
maximum of 4.

13.7 Conclusion

Short-vector single-instruction-multiple-data (SIMD) processing is an interesting
choice for parallel signal processing. The regularity of the data flow of algorithms
used in signal processing enables manual and automatic vectorization techniques to
efficiently exploit fine-grained parallelity for code acceleration.

The task of vectorization, however, is difficult. The reason is that there is no
serve-all approach, but each algorithm has to be treated separately. This is even
true if only characteristics like filter length or symmetry are changed for an oth-
erwise simple filtering algorithm. However, most successful vectorization attempts
are based on well-known strategies such as loop unrolling, loop fusion, loop trans-
position, and algebraic transforms. Even hard cases such as recursive filters can be
parallelized efficiently in this way.

Whereas there are no general automatic vectorization systems for convolution
type filtering algorithms, and manual strategies seem to be the only way to go, the
space of possible implementations for Fourier-type algorithms is so large that au-
tomatic performance tuning systems that traverse this space to find the fastest im-

432 Rade Kutil

plementation cannot be beat by manual implementations, at least not in the general
case.

However, the approaches presented in this chapter together with automatic per-
formance tuning techniques may spawn efficient automatic vectorization systems
for a broader range of signal processing algorithms in the future. A promising way
to go might be the extension of SPL, as used in block transforms, to streaming data,
as processed in filter banks.

References

1. J. W. Cooley, J. W. Tukey, An algorithm for the machine calculation of complex Fourier series,
Mathematics of Computation 19 (1965) 297–301.

2. P. Duhamel, M. Vetterli, Fast Fourier transforms: A tutorial review and a state of the art, Signal
Processing 19 (4) (1990) 259–299.

3. C. M. Rader, Discrete Fourier transforms when the number of data samples is prime, in:
Proc. of the IEEE, Vol. 56 (1968), pp. 1107–1108.

4. M. Frigo, S. G. Johnson, FFTW: An adaptive software architecture for the FFT, in: Proc. In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 3 (1998),
pp. 1381–1384.

5. M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, R. W.
Johnson, SPIRAL: A generator for platform-adapted libraries of signal processing algorithms,
High Performance Computing and Applications (2004) 21–45.

6. J. Xiong, J. Johnson, R. Johnson, D. Padua, SPL: A language and compiler for DSP algo-
rithms, in: Proc. Programming Language Design and Implementation (PLDI), ACM (2001),
pp. 298–308.

7. S. Kral, F. Franchetti, J. Lorenz, C. W. Überhuber, SIMD vectorization techniques for straight
line code, Tech. Rep. TR2003-02, Institute of Applied Mathematics and Numerical Analysis,
Vienna University of Technology (2003).

8. S. Kral, F. Franchetti, J. Lorenz, C. W. Überhuber, SIMD vectorization of straight line FFT
code, in: Proc. Euro-Par (2003), pp. 251–260.

9. M. Frigo, S. G. Johnson, The design and implementation of FFTW3, in: Proc. IEEE, Vol. 93
(2005), pp. 216–231.

10. C. Tenllado, D. Chaver, L. Piñuel, M. Prieto, F. Tirado, Vectorization of the 2D wavelet lifting
transform using SIMD extensions, in: Workshop on Parallel and Distributed Image Processing,
Video Processing, and Multimedia, PDIVM ’03, Nice, France (2003).

11. D. Chaver, C. Tenllado, L. Piñuel, M. Prieto, F. Tirado, 2-D wavelet transform enhancement
on general-purpose microprocessors: Memory hierarchy and SIMD parallelism exploitation,
in: Proceedings of the 2000 International Conference on High Performance Computing, Ban-
galore, India (2002).

12. M. Pic, H. Essafi, D. Juvin, Wavelet transform on parallel SIMD architectures, in: F. Huck,
R. Juday (Eds.), Visual Information Processing II, Vol. 1961 of SPIE Proceedings, SPIE
(1993) pp. 316–323.

13. C. Chakrabarti, M. Vishvanath, Efficient realizations of the discrete and continuous wavelet
transforms: From single chip implementations to mappings on SIMD array computers, IEEE
Transactions on Signal Processing 3 (43) (1995) 759–771.

14. M. Feil, A. Uhl, Wavelet packet decomposition and best basis selection on massively paral-
lel SIMD arrays, in: Proceedings of the International Conference “Wavelets and Multiscale
Methods” (IWC’98), Tangier, 1998, INRIA, Rocquencourt (1998), 4 pages.

15. R. Kutil, P. Eder, M. Watzl, SIMD parallelization of common wavelet filters, in: Parallel Nu-
merics ’05, Portorož, Slovenia (2005), pp. 141–149.

13 Short-Vector SIMD Parallelization in Signal Processing 433

16. R. Kutil, P. Eder, Parallelization of wavelet filters using SIMD extensions, Parallel Processing
Letters 16 (3) (2006) 335–349.

17. ISO/IEC 15444-1, Information technology – JPEG2000 image coding system, Part 1: Core
coding system (Dec. 2000).

18. I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps, Journal of Fourier
Analysis Applications 4 (3) (1998) 245–267.

19. M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong,
F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, N. Rizzolo, SPIRAL: Code
generation for DSP transforms, Proceedings of the IEEE, special issue on "Program Genera-
tion, Optimization, and Adaptation" 93 (2) (2005) 232–275.

20. R. Schaffer, M. Hosemann, R. Merker, G. Fettweis, Recursive filtering on SIMD architectures,
in: Proc. IEEE Workshop on Signal Processing Systems (SIPS), 2003, pp. 263–268.

21. M. Hosemann, G. Fettweis, On enhancing SIMD-controlled dsps for performing recursive
filtering, Journal of VLSI signal processing 43 (2–3) (2006) 125–142.

22. J. Robelly, G. Cichon, H. Seidel, G. Fettweis, Implementation of recursive digital filters
into vector SIMD DSParchitectures, in: Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vol. 5 (2004), pp. 165–168.

23. R. Kutil, Parallelization of IIR filters using SIMD extensions, in: Proceedings of the 15th
International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava,
Slovak Republic (2008), pp. 65–68.

24. R. C. Whaley, J. Dongarra, Automatically tuned linear algebra software (ATLAS), in:
Proc. Supercomputing (1998).

25. J. Bilmes, K. Asanović, C. W. Chin, J. Demmel, Optimizing matrix multiply using PHiPAC: A
portable, high-performance, ANSI C coding methodoly, in: Proc. Int. Conf. Supercomputing
(ICS) (1997), pp. 340–347.

26. E.-J. Im, K. Yelick, Optimizing sparse matrix computations for register reuse in SPARSITY,
in: Proc. Int. Conf. Computational Sciences (ICCS) (2001), pp. 127–136.

27. F. Franchetti, M. Püschel, Short vector code generation for the discrete Fourier transform, in:
Proc. IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2003), pp.
58–67.

28. F. Franchetti, M. Püschel, Short vector code generation and adaption for DSP algorithms, in:
Proc. International Conference on Acoutstics, Speech and Signal Processing (ICASSP), Vol. 2
(2003), pp. 537–540.

29. F. Franchetti, M. Püschel, Generating SIMD vectorized permutations, in: Proc. Compiler Con-
struction (CC) (2008), pp. 116–131.

30. J. Robelly, G. Cichon, H. Seidel, G. Fettweis, Design and automatic code generation of the
LMS algorithm for SIMD signal processors, in: Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Vol. 5 (2005), pp. 81–84.

31. G. Lafruit, B. Vanhoof, L. Nachtergaele, F. Catthoor, J. Bormans, The local wavelet transform:
a memory-efficient, high-speed architecture optimized to a region-oriented zero-tree coder,
Integrated Computer-Aided Engineering 7 (2) (2000) 89–103.

32. R. Kutil, A single-loop approach to SIMD parallelization of 2-D wavelet lifting, in: Proceed-
ings of the 14th Euromicro Conference on Parallel, Distributed and Network-based Processing
(PDP), Montbeliard-Sochaux, France (2006), pp. 413–420.

33. C. Chrysafis, A. Ortega, Line based, reduced memory, wavelet image compression, IEEE
Transactions on Image Processing 9 (3) (2000) 378–389.

Chapter 14
Financial Applications: Parallel Portfolio
Optimization

Andreas Grothey

Abstract

Portfolio optimization is an area of tremendous importance for long-term investors.
It is concerned with the problem of how to best diversify investment into different
classes of assets (such as stock, bonds, real estate, and options) in order to meet li-
abilities and to maximize the expected surplus, while hedging against unacceptable
risk.

Different formulations of the problem have been suggested over time, starting
from Harry Markowitz’ seminal mean-variance model. Practical and theoretical lim-
itations of the mean-variance model have led to the proposal of different utility func-
tions, risk measures, and dynamic multi-period models that allow rebalancing of the
portfolio to hedge against adverse market conditions. Furthermore new legislation
has often resulted in the necessity to introduce new classes of constraints on the
portfolio composition.

Multi-period portfolio optimization problems are usually treated as stochastic
programming problems, that is, they involve optimization over a selection of fu-
ture scenarios. The desirability of having future scenarios match static and dynamic
correlations between assets for all future time periods leads to problems of truly
enormous sizes (often reaching millions of unknowns or more). Clearly parallel
processing becomes mandatory to deal with such problems.

The most popular solution techniques for stochastic programming problems are
decomposition methods and interior point methods (IPMs). Both approaches lend
themselves to parallel implementations and impressive results have been achieved
here in the past few years. We will review different implementations on a variety of
computing platforms ranging from dedicated parallel machines to PC clusters all the
way to grid environments. Typically the solution and parallelization techniques have

Andreas Grothey
School of Mathematics, University of Edinburgh, Edinburgh, UK, EH9 3JZ,
e-mail: A.Grothey@ed.ac.uk

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_14, 435
c© Springer-Verlag London Limited 2009

436 Andreas Grothey

to be adapted to both the specific model formulation and the available computing
platform.

14.1 Introduction

Portfolio selection is one of the most relevant and most studied topics in finance.
The problem, in its basic formulation, is concerned with balancing the twin con-
tradictory objectives of maximizing return of investment while minimizing the as-
sociated risk. Early models arising from Markowitz’ seminal work [1] are static
and deterministic. They consider a set A of possible investments and assume that
joint distribution of asset returns is multivariate normal N(μ ,Σ) with known means
μ and covariance matrix Σ . The objective is to maximize expected single period
return, while bounding the variance of the portfolio return as a measure of risk
exposure.

There are a number of perceived weaknesses with this approach that have
emerged over the years: the assumption of normal asset returns (neglecting observed
“fat tails”), the assumption of known fixed means and covariances (which have to be
estimated from historical data, and are clearly neither known exactly nor constant
over time), and not least the inability to capture dynamic effects such as transaction
costs and the possibility to hedge risk through rebalancing of the portfolio at future
time stages. In the past 20 years emphasis has shifted toward stochastic dynamic
models that allow the adequate representation of non-normal joint return distribu-
tion and the effects of portfolio rebalancing. An overview of these issues is given in
the review paper [2].

Realistic models need to account for long planning horizons and adequate cap-
turing of the joint distributions of all future events that can influence the return of
the portfolio over the whole planning horizon. These requirements quickly result in
astronomical problem sizes. While general advances in the power of desktop com-
puters have made larger problem formulations tractable, the area is a prime candi-
date for the successful use of parallel algorithms. This is expected to be the case
even more in future as the trend for desktop and laptop computers is increasingly to
multicore architectures.

The major applications for dynamic portfolio optimization are Asset and Liabil-
ity Management (ALM) models in which the investor seeks an optimal long-term
investment policy that meets anticipated (but unknown) liabilities and maximizes
the expected surplus return, while minimizing the risk of defaulting on the liabil-
ity payments. This is a model of prime importance to long-term investors such as
insurances and pension funds.

In the following section we will review various formulations of the ALM model
that have been proposed in the literature and discuss their properties, in particular in
view of parallel solution approaches. Sections 14.3, 14.4, 14.5, and 14.6 describe
popular parallelizable solution approaches to the models such as decomposition
methods (Sect. 14.3), (Sect. 14.4), IPMs and evolutionary algorithms (Sect. 14.5). In

14 Financial Applications: Parallel Portfolio Optimization 437

the second part (Sect. 14.7) we describe and compare in more detail some of the in-
terior point based nested algorithms which are amongst the most promising general
methods for the parallel solution of multi-period portfolio planning problems.

14.2 Asset and Liability Management by Stochastic
Programming

In the Markowitz model the investor has a choice between different investments or
assets j ∈ A . The return of each investment is given by a random variable R j. It
is assumed that the expected return μ j = IE[R j] of each investment and their joint
covariance structure Q = Cov[R],Qi j = Cov(Ri,R j) are known. In the Markowitz
model the twin contradictory goals of maximizing expected portfolio return IE[R(x)]
over all feasible portfolios x, while minimizing the risk measured by Var[R(x)], are
combined into a single combined objective1

max
x

IE[R(x)]−λVar[R(x)]. (14.1)

Here λ > 0 is a risk-aversion parameter: large values express a risk aversion,
whereas small values express a (relative) risk indifference. There are various re-
formulations of the problem that are equivalent to (14.1), such as

max
x

IE[R(x)] s.t. Var[R(x)]≤ ρ. (14.2)

If we denote the relative proportion of our wealth to be invested in asset j ∈A by
x j with x j ≥ 0,∑ j x j = 1, we can express the portfolio return R(x) as

R(x) = ∑
j∈A

x jR j

and

IE[R] = IE[∑
j

x jR j] = μT x, Var[R] = Var[∑
j

x jR j] = xT Qx. (14.3)

Model formulation (14.1) can then be expressed as

max
x
μT x−λxT Qx s.t. ∑

j∈A

x j = 1,x j ≥ 0. (14.4)

While the Markowitz model has become an industry standard, it suffers from impor-
tant shortcomings, relating to the lack of a dynamic structure. Being a one-period

1 Usually financial optimization models are expressed as maximization whereas in the discussion
of solution algorithms problems are described in terms of minimization. We will keep to this con-
vention throughout this chapter.

438 Andreas Grothey

model, it does not allow the realistic modeling of inherently multi-period concepts,
such as the inclusion of transaction costs. Further in the one-period model the in-
vestor is concerned only with the current risk and ignores the possibility to hedging
via rebalancing of the portfolio. For these reasons the attention has shifted to multi-
period dynamic stochastic models that are better suited to realistically reflect the
financial planning problem associated with tactical asset decisions or longer-term
risk management.

14.2.1 Stochastic Programming

Stochastic programming provides an appropriate framework for the mathematical
description of ALM models. Stochastic programming [3, 4] deals with the situation
in which some of the data describing an optimization model is uncertain. At the time
that the first stage decisions are taken, this data is unknown, but corrective actions
(recourse decisions) can be taken after the uncertain values have become available.
The classical (linear, 2-stage) stochastic programming problem can be written as

minx cT x+ IEξ [V (x,ξ)]
s.t. Ax = b

x≥ 0

V (x,ξ) = miny q(ξ)T y(ξ)
s.t. T (ξ)x+W (ξ)y(ξ) = h(ξ)

y(ξ)≥ 0
(14.5)

where the uncertainty is described by a random variable ξ , and W (ξ),T (ξ),h(ξ),
and q(ξ) are the values of the uncertain data for a given realization of ξ . The op-
timal choice of the first stage decisions, x, takes into account the expected cost
IEξ [V (x,ξ)] incurred by taking the corrective action y(ξ) in order to satisfy the
constraints. Under suitable conditions [5] problem (14.5) can be written as

minx,y(ξ) cT x+ IEξ [q(ξ)T y(ξ)]
s.t. Ax = b

T (ξ)x+W (ξ)y(ξ) = h(ξ)
x≥ 0,y(ξ)≥ 0

(14.6)

where the constraints involving y(ξ) are understood in an almost surely sense. Note
that both (14.5) and (14.6) are linear models to keep the notation simple. A gener-
alization of the methodology to nonlinear problems is straightforward.

In order to obtain a computationally tractable problem, the (continuous) ran-
dom variable ξ is approximated by a random variable with discrete support ξ̃ ∈
{ξ̃1, . . . , ξ̃s}, P(ξ̃ = ξ̃i) = pi, where the realizations ξ̃i correspond to future scenar-
ios. Using the notation Ti = T (ξ̃i) (and analogously for hi,Wi,yi,qi), problem (14.6)
can thus be written as the deterministic equivalent formulation

14 Financial Applications: Parallel Portfolio Optimization 439

min
x,yi

cT x+
s

∑
i=1

piq
T
i yi

s.t. Ax = b
T1x +W1y1 = h1

...
. . .

...
Tsx +Wsys = hs

(14.7)

Problem (14.7) is an approximation of (14.6). The issue of scenario generation, that
is, how to best construct an approximating discrete distribution ξ̃ , is an active re-
search area, but beyond the scope of this chapter. It should be noted, however, that
usually a large number of scenarios are needed to adequately capture the character-
istics of the underlying (continuous) distribution.

The methodology can be generalized to a multistage model in which the evo-
lution of uncertainties can be described as an alternating sequence of decisions
and random realizations that occur at different points in time (stages). Mathemat-
ically, the uncertainty is described by a stochastic process ξ = ξ T = (ξ1, . . . ,ξT),
where ξ t = (ξ1, . . . ,ξt) represents the information available at time t. The decisions
x = (x1, . . . ,xT) are likewise described by a stochastic process, where the decision
xt = xt(ξ t) are non-anticipative, that is, they depend only on information available
at time t and not on future events:

x1 → ξ2 → x2(ξ2)→ ξ3 → x3(ξ2,ξ3)→ ·· ·ξT → xT (ξ1, . . .ξT).

In the discrete case the stochastic process can be represented as a scenario tree
(Fig. 14.1):

π(t−1, (i))

(t,i)

(t,i+1)
ωt

tω

i+1

i

Fig. 14.1 Scenario tree.

440 Andreas Grothey

Each level t of the tree corresponds to a point in time when a realization of the
random process becomes known and a subsequent decision is taken. Each node
i corresponds to a particular series of events to this point in time. The branches
from a particular node represent the (discrete set) of possible future outcomes of the
random variables ξt+1 in the next period. The root node of the tree represents the
current time t = 0, and the leaf nodes represent the possible states of the system at
the end of the planning horizon t = T . We denote by Vt the set of nodes at level t in
the tree and V =

⋃
t Vt the complete node set. For every node i ∈ Vt , we will denote

by π(i)∈ Vt−1 its immediate ancestor and by C (i)⊂ Vt+1 its set of child nodes. For
every node there is a transition probability ω i

t of reaching this node given that its
parent π(i) has been reached. The total probability pi of reaching node i is obtained
by the product of all transition probabilities on the path from the root to node i.

Every scenario, that is a path through the tree from the root to a leaf, represents a
particular sequence of realizations (ξ̂1, . . . , ξ̂T) of the random process ξ , that is one
particular outcome of the random data in the problem. Every node further carries its
own version xi of the decision variable xt of the appropriate stage. The multistage
version of the deterministic equivalent (14.7) can thus be stated as

min
x ∑

i∈V

pid
T
i xi s.t. Tixπ(i) +Wxi = bi ∀i ∈ V \{0}

Wx0 = b0.
(14.8)

For a realistic model description the size of the scenario tree quickly reaches as-
tronomical sizes. The number of nodes is exponential in the number of time stages
considered. For a tree with T = 5 stages and a branching factor of 30 at each node
(barely enough to capture the correlation between, say, 60 considered random vari-
ables describing the evolution of investments and liabilities), the resulting tree has
24 million scenarios.

14.2.2 Asset and Liability Management Models

An ALM model can be seen as a dynamic multistage version of the Markowitz
model. Faced with future liabilities Lt of a priori uncertain amounts, the investor
seeks a strategy that meets the liabilities, while maximizing the expected surplus
at the end of the planning horizon. Notable models are the Frank Russel/Yassuda
Kasai model [6] and the Towers Perrin model [7]. Standard references for ALM is
the research work by Kusy and Ziemba [8], Mulvey and Vladimirou [9], Zenios [10],
and the book by Mulvey and Ziemba [11].

Multistage stochastic programming provides a general framework for modeling
financial planning problems. It provides the tools to model a wide spectrum of re-
alistic issues in financial planning. In this section we will present a basic prototype
ALM model before discussing various extensions to the model and their impact on
the problem structure with particular regard to the consequences for possible paral-
lelization. We do not aim to give a comprehensive overview of ALM models that

14 Financial Applications: Parallel Portfolio Optimization 441

have been suggested in the literature, nor do we attempt to evaluate their usefulness
in practical terms. For these issues we refer the reader to the references given above.

An ALM model is concerned with finding the optimal way of investing into J
assets j ∈A over multiple time periods t = 0, . . . ,T . The returns rt of the assets in
each time period are assumed to be uncertain, but based on some (known) random
distribution. An initial amount of cash b0 is invested at t = 0 and the portfolio may be
rebalanced at discrete times t = 1, . . . ,T , incurring transaction costs. At every time
t a liability payment Lt of uncertain amount is due. The objective is to maximize
the expectation of the final value of the portfolio at time T and to minimize the
associated risk measured, for example, with the variance of the final wealth. In the
stochastic programming formulation the evolution of the uncertain process driving
the asset returns rt = (rt

j) j∈A is described by a scenario tree (Fig. 14.1). Let v j be the
value of asset j, and ct the transaction cost (expressed as a percentage of transaction
volume). It is assumed that the value of the assets will not change throughout time
and a unit of asset j can always be bought for (1+ct)v j or sold for (1−ct)v j. Instead
a unit of asset j held in node i (coming from node π(i)) will generate extra return
ri, j.

Model Variables

We denote by xh
i, j the units of asset j held at node i and by xb

i, j,x
s
i, j the transaction

volume (buying, selling) of this asset at this node. We assume that we start with zero
holding of all assets but with funds b0 to invest. Further we assume that one of the
assets represents cash, i.e., the available funds are always fully invested.

Model Constraints

The standard constraints on the investment policy can be expressed as follows: cash
balance constraints describe possible buying and selling actions within a scenario
while taking transaction costs into account. The net cash flow in each node originat-
ing from selling and buying assets must be equal to the liability payments Li in this
node

∑
j∈A

(1+ ct)v jx
b
i, j− ∑

j∈A

(1− ct)v jx
s
i, j = Li ∀i ∈ V \{0} (14.9a)

∑
j∈A

(1+ ct)v jx
b
0, j = b0. (14.9b)

Each scenario is linked to its parent through inventory constraints; these are balance
constraints on asset holdings (taking into account the random return on asset):

(1+ ri, j)xh
π(i), j = xh

i, j− xb
i, j + xs

i, j, ∀i ∈ V \{0}, j ∈A . (14.10)

442 Andreas Grothey

Model Objective

In the simplest case we consider an objective function that maximizes the expected
portfolio surplus return over all scenarios. The wealth of the portfolio in node i∈ VT

at final time T is given by

wT,i = ∑
j∈A

(1− ct)v jx
h
i, j.

The expected value of the portfolio at t = T is thus

WT = IE[wT] = ∑
i∈VT

piwT,i = (1− ct) ∑
i∈VT

pi ∑
j∈A

v jx
h
i, j. (14.11)

The Complete Model

The prototype ALM problem can be expressed as

max
x

(1− ct) ∑
i∈VT

pi ∑
j∈A

v jx
h
i, j

s.t. (1+ ri, j)xh
π(i), j = xh

i, j− xb
i, j + xs

i, j, ∀i ∈ V \{0}, j ∈A

∑
j∈A

(1+ ct)v jxb
i, j− ∑

j∈A
(1− ct)v jxs

i, j = Li, ∀i ∈ V \{0}

∑
j∈A

(1+ ct)v jxb
0, j = b0.

(14.12)

To illustrate the structure of this problem we gather decision vector components xi

for each node as xi = (xs
i,1,x

b
i,1,x

h
i,1, . . . ,x

s
i,J ,x

b
i,J ,x

h
i,J), and define matrices

W =

⎛
⎜⎜⎜⎝

1 −1 1
. . .

1 −1 1
−cs

1 cb
1 0 · · · −cs

J cb
J 0

⎞
⎟⎟⎟⎠ , Ti =

⎛
⎜⎜⎜⎝

0 0 1+ ri,1
. . .

0 0 1+ ri,J

0 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎠

(14.13)
and

di ∈ IR1×3|A | : (di)3 j = (1− ct)piv j,

where cb
j = (1+ ct)v j,cs

j = (1− ct)v j. We can now rewrite problem (14.12) as

max
x ∑

i∈VT

dT
i xi s.t. Tixπ(i) +Wxi = Lie(J+1) ∀i ∈ V \{0}

Wx0 = b0e(J+1),
(14.14)

where e(J+1) is the (J +1)-th unit vector e(J+1) = (0, . . . ,0,1)T . Problem (14.14) is
in deterministic equivalent multistage stochastic programming form (14.8). While
the representation (14.14) is very compact, it should be kept in mind that ALM prob-
lems can grow to enormous sizes. For the example given earlier with 60 asset types,

14 Financial Applications: Parallel Portfolio Optimization 443

5 times stages, and 30 branches at every stage to capture the correlations between
the asset types, the resulting problem would have 24 million scenarios and 4.5×109

decision variables. Clearly the solution of these problems can only be attempted on
massively parallel hardware. Even for more modest problem dimensions parallel
solution approaches are of tremendous value.

Model Structure

If we further assemble the node-wise decision vectors xi, i ∈ V into a global vec-
tor x = (xσ(0),xσ(1), . . . ,xσ(|V |−1)) where σ is a permutation of the nodes i ∈ V in
reverse depth-first order, the constraint matrix of (14.14) takes the form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣

W Ti
. . .

...
W Ti

W

∣∣∣∣∣∣∣∣∣

0
...
0
Ti

. . .
...∣∣∣∣∣∣∣∣∣

W Ti
. . .

...
W Ti

W

∣∣∣∣∣∣∣∣∣

0
...
0
Ti

W

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14.15)

We will later show how this rather special nested structure can be exploited in the
parallel solution of ALM problems by IPMs. For decomposition approaches on the
other hand it is convenient to represent problem (14.14) in recourse form:

ηi(xπ(i)) = max
xi
∑

j∈C (i)
η j(xi), s.t. Tixπ(i) +Wxi = Lie(J+1), i ∈

T−1⋃
t=1

Vt (14.16a)

ηi(xπ(i)) = max
xi

dT
i xi, s.t. Tixπ(i) +Wxi = Lie(J+1), i ∈ VT (14.16b)

and note that (14.14) can be expressed as

max
x0
∑

i∈V1

ηi(x0), s.t. Wx0 = b0e(J+1). (14.17)

Formulations (14.16) and (14.17) can be conveniently exploited in parallel solution
approaches based on nested Benders decomposition [12–14].

444 Andreas Grothey

14.2.3 Model Extensions

The aim of this section is to give an overview of the various extensions of the pro-
totype ALM model presented in the previous section. We will place particular em-
phasis on the impact of these extensions to the problem structure from the point of
view of possible parallel solution approaches.

As currently presented the ALM model is a tree-structured linear optimization
problem. Various types of linear constraints can be added to the ALM model with-
out changing the problem structure. These include short-selling constraints, limits
on investment in certain types of assets (some regulations cap the amount that can
be invested in risky asset classes), and composition constraints: investment in an
asset class (e.g., stocks) needs to be less than (a multiple) of investments in a dif-
ferent asset class (e.g., bonds). Models can be expanded to include the borrowing
of money, modeling of exchange rate risk in foreign currency transactions [15], or
even elaborate models that predict liabilities through the modeling of the members’
age structure of a pension fund, all while keeping a linear model that fits into the
tree structure (14.14).

More problematic are constraints that lead to an integer programming formula-
tion such as cardinality constraints (i.e., limiting the number of assets in which to in-
vest at any one time) and minimum lot size constraints, i.e., investments can be only
an integer multiple of a given lot size or any nonzero investment has to be above
a certain threshold, after which continuous investments are allowed (Mansini and
Speranza [16]). These constraints lead to very difficult (NP-hard) integer program-
ming formulations. The review paper [17] gives an overview of different constraints
and model formulations.

Many popular extensions concern the choice of objective function. The main
problem with the linear objective function (14.11) is that it fails to take into ac-
count the risk of the investment. In the first instance it would be desirable to use
an objective that is a multistage version of the Markowitz mean-variance objective.
Following from (14.11) and using the identity Var[X] = IE[X2]−IE[X]2, the variance
of the final wealth can be expressed as

Var[WT] = (1− ct)2 ∑
i∈VT

pi(∑
j∈A

v jx
h
i, j)

2− (1− ct)2

(
∑

i∈VT

pi ∑
j∈A

v jx
h
i, j

)2

(14.18)

so that in (14.12) we could use a combined mean-variance objective

max
x

IE[WT]−λVar[WT] (14.19)

as in the Markowitz model (14.1). There are however two major problems with
this formulation. First the use of the variance results in a quadratic model objec-
tive. More importantly, however, the squaring operation in the final term of (14.18)
results in cross products between different final stage nodes i ∈ VT , resulting in a
dense model Hessian and destroying the node separability of the model and hence

14 Financial Applications: Parallel Portfolio Optimization 445

the recourse structure (14.16) and (14.17). Both these issues are causing problems
for some popular parallelizable solution approaches (notably Benders decomposi-
tion and its variants such as the L-shaped method [18]).

For these reasons there have been various suggestions to replace the Var[WT] by
a risk measure that leads to a linear and node-separable model formulation. The use
of mean absolute deviation, leading to the objective function

IE[WT]−λ IE [|WT − IE[WT]|] , (14.20)

is a popular choice, argued for by [19, 20] used, for example, by [21, 22]. Lucka
et al. [23] use just IE[WT] as objective function while restricting risk through re-
quiring that wT,i ≥ C for all nodes i ∈ VT , again yielding a linear model. An-
other popular approach is to use a piecewise linear approximation of a convex
risk measure such as variance or semivariance. Reference [24] uses a piecewise
linear upper approximation of the semivariance. For a discussion of different lin-
earizations of the Markowitz model and their relative performance see the review of
Mansini et al. [25].

A different approach is taken by Gondzio and Grothey [26]. They introduce an
explicit variable y = IE[WT] together with the constraint

y = (1− ct) ∑
i∈VT

pi ∑
j∈A

v jx
h
i, j, (14.21)

resulting in the model formulation (cf. (14.12)):

max
x,y≥0

y−λ
(
∑

i∈VT

pi(1− ct)2[∑
j∈A

v jx
h
i, j]

2− y2

)

s.t. (1− ct) ∑
i∈VT

pi ∑
j∈A

v jxh
i, j = y

(1+ ri, j)xh
π(i), j = xh

i, j− xb
i, j + xs

i, j, ∀i ∈ V \{0}, j ∈A

∑
j∈A

(1+ ct)v jxb
i, j− ∑

j∈A
(1− ct)v jxs

i, j = Li, ∀i ∈ V \{0}

∑
j∈A

(1+ ct)v jxb
0, j = b0.

(14.22)

Defining the lattice matrices Qi,

Qi ∈ IR3J×3J :

{
(Qi)3 j,3k = pi(1− ct)2v jvk, j,k ∈A , i ∈ VT

Qi = 0, i �∈ VT

that have entries only in elements with a row and column index divisible by 3 (cor-
responding to the xh variables), problem (14.22) can be written more compactly as
(cf. (14.14))

max
x,y

y−λ [∑
i∈VT

xT
i Qixi− y2] s.t. ∑i∈VT

dT
i xi = y

Tixπ(i) +Wxi = Lie(J+1) ∀i ∈ V \{0}
Wx0 = b0e(J+1),

(14.23)

446 Andreas Grothey

restoring the node-separability of the objective function and the sparsity of the
model Hessian, albeit at the expense of introducing links between the final stage
nodes i ∈ VT through constraint (14.21). While this is still causing problems for so-
lution approaches based on Benders’ decomposition, the structure in (14.23) can be
efficiently exploited in IPMs.

On the other hand the use of the variance as a risk measure has been criticized
in various places for its simplicity. Variance fails to properly take into account the
observed “fat tails” of the portfolio return distribution as well as undesirably pe-
nalizing for over-performance of the portfolio as much as for under-performance.
Practitioners often recommend the use of a von Neumann–Morgenstern type [27]
nonlinear utility formulation

IE[U(WT)], (14.24)

where U : IR→ IR is a (usually convex) utility function. A popular choice for U(x) is
U(x) =− logx as suggested by Kelly [28] and used by [29,30]. Konno et al. [31,32]
suggest the use of skewness (third moment of WT) in the objective to adequately
cover nonsymmetrical distribution of return. Pflug [33,34] suggests the use of lower
semivariance

IE[WT]−λ
√

IE[([WT − IE[WT]]−)2]

for the same reason. As shown in [30] these formulations can be incorporated into
the model (14.23), at the expense of introducing nonlinear constraint and objective
terms. More recently other risk measures such as VaR [35] or CVaR [36] have been
suggested. It is shown in [36] that the use of CVaR results in a linear model, whereas
VaR leads to difficult nonlinear nonconvex models [37]. Other approaches for ALM
that have been suggested involve robust optimization [38,39] and optimization under
stochastic dominance constraints [40]. However, as far as we are aware there are so
far no parallel implementations of any of these models.

14.3 Parallel Solution Approaches: Decomposition

Decomposition approaches such as nested Benders decomposition [12–14, 41, 42],
the L-shaped method [18], and scenario decomposition [43] have for a long time
been the methods of choice for the solution of stochastic programming problems.
Benders decomposition and related approaches work directly with the recourse for-
mulations (14.16) and (14.17): for the concave recourse functions ηi(x) in (14.16),
piecewise linear overestimating approximations η̃i(x) are built up from cuts received
from its children. Scenario decomposition on the other hand uses the scenario for-
mulation of the deterministic equivalent (14.8), in which every scenario i = 1, . . . ,s
has its own copy xi of the first stage decision variables. Their equality is imposed by
explicit non-anticipativity constraints xi = x.

14 Financial Applications: Parallel Portfolio Optimization 447

minx,y j cT x+
s

∑
j=1

p jq
T
j y j, s.t. Ax = b

Tixi +Wiyi = hi, i ∈ V
xi = x i ∈ V

(14.25)

A multistage version of the scenario formulation in which there are separate ver-
sions xt,i of the decision variables xt in all stages t for all scenarios i ∈ VT with ap-
propriate non-anticipativity constraints can be derived accordingly (see Fig. 14.2).
Here variables in all but the last stage are replicated and independent copies, one
per scenario, are created. Vertical lines on the right-hand side of Fig. (14.2) indicate
duplicated nodes; variables associated with these nodes are forced to be identical by
non-anticipativity constraints.

⇒

Fig. 14.2 Multistage scenario formulation with explicit non-anticipativity constraints.

In a scenario decomposition scheme the non-anticipativity constraints are relaxed
using (augmented) Lagrangians, yielding a formulation that decomposes into single
scenarios.

Decomposition methods are naturally suited for parallelization, with each node
approximation η̃i(x), for each scenario subproblem, being assigned to one proces-
sor. There are many parallel implementations for the solution of ALM problems
that use variants of this idea. See [12, 44] for a review of some of these methods.
More recently Edirisinghe and Patterson [24] use a variant of the L-shaped method
for problems with block-separable recourse to solve a portfolio optimization prob-
lem with a piecewise linear mean-semivariance approximation as objective function.
Though not implemented in parallel the authors point that a parallel version of their
algorithm would be possible. Nevertheless they are able to solve a problem with 5
periods, 100,000 scenarios, and 26 million variables in 1334 seconds on a 2.5 GHz
Pentium IV system. Pflug and coauthors in [34] describe a parallel decomposition
algorithm based on Diagonal Quadratic Approximation (DQA) [43] within a sce-
nario decomposition method based on augmented Lagrangians, which is used as
part of the AURORA Financial Management System developed at the University of
Vienna (see also Sect. 14.6).

Traditionally decomposition algorithms are synchronous: there is a tight coupling
between parent and child nodes. Each parent sends its current solution to its chil-
dren and waits until it has received a new cut from each child before continuing. In
an asynchronous version, local problems at each node are solved continuously, each

448 Andreas Grothey

with the best information available at that point in time. A node does not have to wait
for all children to respond or even for its own parent to send a new trial point. Com-
munication between parent and child nodes is organized through buffers. At each
new iteration, a node scans the buffers for new information from either its children
or its parent and solves its corresponding local problem based on that information.

An interesting application of this idea is by Linderoth and Wright. In [45] they
solve a linear stochastic programming problem with 107 scenarios and 1.26×1010

variables on a heterogeneous computational grid with 1024 nodes in 32 hours, us-
ing an asynchronous version of the L-shaped method. Although the application
in question was not a portfolio optimization problem, there is no doubt that the
methodology can be applied to linear variants of the ALM problem. Laure and
Moritsch [46] on the other hand report on a parallel asynchronous Benders de-
composition algorithm specifically targeted at ALM problems and also used as part
of the AURORA Financial Management System [34]. Their implementation is in
the OpusJava framework for maximal portability. They consider problems using bi-
nary scenario trees with five to eight stages, resulting in 63–511 nodes. They report
a speed-up of 3.48 on a cluster of 4 Sun Ultra 10 workstations and a superlinear
speedup of 18.51 on a 16-node Beowulf Linux cluster.

A disadvantage of decomposition approaches are that their applicability is largely
limited to linear problem formulations. While generalizations to at least convex non-
linear problems exist, they cannot usually match the efficiency displayed for linear
problems. However, Parpas and Rustem [47] review the relative performance of
a regularized Benders decomposition methods and a scenario decomposition em-
ploying augmented Lagrangians for the mean-variance formulation of an ALM on
problems with up to 6250 scenarios and 590,000 decision variables and find these
to be competitive. Also, Mulvey and Shetty in [48] investigate the parallelization
of a scenario decomposition method for an ALM model using the expectation of
a nonlinear (convex) utility function as objective function. They solve multistage
problems with upto 3072 scenarios and 480,000 variables and report a speedup of
2.7 when going from 32 to 128 processors (a parallel efficiency of 69%).

14.4 Parallel Solution Approaches: Interior Point
Based Algorithms

One of the most successful methods for the parallel solution of stochastic pro-
gramming problems are IPMs [49] and multitude of applications to ALM exist
[26, 30, 50, 51]. There are various reasons for this popularity: their applicability to a
wide range of formulations spanning linear, quadratic, and nonlinear models, their
comparative nonsensitivity to large problem sizes (IPMs are in practice observed
to converge in O(logN) iterations, where N is the problem size), and not least the
amenability of the linear algebra operations to parallelization. For these reasons we
will devote a major part of this chapter to the discussion of IPMs in the context
of portfolio optimization. In this section we will give an overview of IPMs and the

14 Financial Applications: Parallel Portfolio Optimization 449

linear algebra issues that make them so well suited to the solution of ALM problems
on parallel hardware. In the later part of Sect. 14.7 we give a detailed analysis and
comparison of some notable implementations.

There are various different variants of IPMs, the most popular being primal–
dual [49] and primal IPM. They differ in details of the algorithm logic. Up to small
differences, the linear algebra computations (and therefore the main computational
effort) of these variants are identical. In what follows we restrict our attention to the
primal–dual IPM and point out differences to primal IPMs where necessary. Further
IPMs can be applied with minor modifications to linear, quadratic, and nonlinear
optimization problems. We will derive IPMs for the quadratic case, again pointing
out differences for linear and nonlinear problem formulations when appropriate.
Consider the quadratic programming problem:

min cT x+ 1
2 xT Qx

s.t. Ax = b, (14.26)

x≥ 0,

where Q ∈ Rn×n, A ∈ Rm×n is a full rank matrix of linear constraints and Q is
positive semidefinite on the null-space of the constraints Ax = b. Vectors x, c, and
b are assumed to have appropriate dimensions. IPMs can be motivated by replacing
the inequality constraints x≥ 0 with logarithmic barrier terms to get

min cT x+
1
2

xT Qx−μ
n
∑
j=1

lnx j

s.t. Ax = b,

where μ ≥ 0 is a barrier parameter. The Lagrangian associated with this problem
has the form:

L(x,y,μ) = cT x+
1
2

xT Qx− yT (Ax−b)−μ
n

∑
j=1

lnx j

and the conditions for a stationary point are thus

∇xL(x,y,μ) = c−AT y−μX−1e+Qx = 0
∇yL(x,y,μ) = Ax−b = 0,

where X−1 = diag{x−1
1 ,x−1

2 , . . . ,x−1
n }. Denoting

s = μX−1e, i.e., XSe = μe,

where S = diag{s1,s2, . . . ,sn} and e = (1,1, . . . ,1)T . The first-order optimality con-
ditions (for the barrier problem) are

450 Andreas Grothey

Ax = b,
AT y+ s−Qx = c,

XSe = μe
(x,s) ≥ 0.

(14.27)

Under appropriate conditions [49] the nonlinear system of equations (14.27) has a
unique solution (xμ ,sμ ,yμ) for every μ > 0, and as μ → 0, this point converges
to the solution (x∗,s∗,y∗) of the original problem (14.26). IPMs employ a homo-
topy approach: at every iteration a Newton step toward the solution of (14.27) is
performed, followed by a gradual reduction of the barrier parameter μ . Appropriate
safeguards guarantee the convergence to the optimal solution of the original prob-
lem. The Newton direction is obtained by solving the system of linear equations:

⎡
⎣ A 0 0
−Q AT I

S 0 X

⎤
⎦
⎡
⎣Δx
Δy
Δs

⎤
⎦=

⎡
⎣ ξp

ξd

ξμ

⎤
⎦ , (14.28)

where

ξp = b−Ax, ξd = c−AT y− s+Qx, ξμ = μe−XSe.

By elimination of

Δs = X−1(ξμ −SΔx) =−X−1SΔx+X−1ξμ

we get from (14.28) the symmetric indefinite augmented system of linear equations

[
−Q−Θ−1 AT

A 0

][
Δx
Δy

]
=
[
ξd−X−1ξμ

ξp

]
, (14.29)

whereΘ = XS−1 is a diagonal scaling matrix. The main difference in primal IPMs
is that Θ = X2 is used. By eliminating Δx from the first equation we can reduce
(14.29) further to normal equations form:

(A(Q+Θ−1)−1AT)Δy = r, (14.30)

for appropriate r. For an IPM applied to a linear problem, Q = 0 can be substituted
throughout. For an IPM applied to the nonlinear problem

min
x

f (x) s.t. g(x) = 0,x≥ 0,

we need to use A = ∇g(x),Q = ∇2 f (x) +∑m
i=1 yi∇2gi(x) in (14.28)–(14.30). Sys-

tems (14.29) and (14.30) are equivalent and it depends on the problem in question
which one is preferable. A relatively dense matrix Q can result in a dense inverse
(Q +Θ−1)−1 and hence a dense system (14.30). For this reason (14.29) would be

14 Financial Applications: Parallel Portfolio Optimization 451

preferred despite its larger size. For linear problems or problems with a sparse (or
even diagonal) Q, either system can be solved efficiently.

Since the main computation work of an IPM is concentrated on the solution of
system (14.29) or (14.30), they are the primary target of parallelization efforts.

14.4.1 IPM Applied to Stochastic Programming Problems

For an IPM applied to the multistage stochastic programming problem formulation
(14.23) constituent matrices of the augmented system (14.29) take the form:

Q=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

Q

Q

Q

Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e

e

e

e

dT dT dT dT

W

W

T

−1

W

W

W

W

W T

T

T

T

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The resulting augmented system matrix is hence a structured matrix of the form
displayed in Fig. 14.3. By a symmetric block row and column reordering, corre-
sponding to gathering together node contributions (Δxi,Δyi), the matrix (14.3) can
be transformed into the form displayed in Fig. 14.4 which is of nested bordered
block-diagonal form (14.31)

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣

Φ Γ T

. . .
...

Φ Γ T

Γ · · · Γ Φ

∣∣∣∣∣∣∣∣∣

Γ T

...
Γ T

Γ T

. . .
...∣∣∣∣∣∣∣∣∣

Φ Γ T

. . .
...

Φ Γ T

Γ · · · Γ Φ

∣∣∣∣∣∣∣∣∣

Γ T

...
Γ T

Γ T

Γ · · · Γ Γ · · · Γ · · · Γ Γ Φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14.31)

The main computational work in an IPM applied to stochastic programming prob-
lems, such as ALM, is in the solution of linear systems with the system matrix
(14.31). A common feature of many approaches is that they use the nested struc-

452 Andreas Grothey

⎛
⎜⎜⎝

−1

Q

Q

Q

Q

e e e eT T T T

WT

WTWT

WT

WT

WT

WT

WTT

d

d

d

d

−1

TT TT

T TT

TT

T

T

e

e

e

e

dT dT dT dT

W

W

T

−1

W

W

W

W

W T

T

T

T

T

⎞
⎟⎟⎠

Fig. 14.3 Augmented system matrix for IPM applied to model (14.23).

ture of (14.31) to obtain a compact implicit representation of the Cholesky factors
of this matrix. The underlying methodology is a nested Schur complement factor-
ization. While this mechanism is not always made explicit, it provides a unifying
framework for the description of these approaches. The basic idea is that a bordered
block-diagonal matrix of the form

Ψ =

⎛
⎜⎜⎜⎜⎜⎝

Φ1 Γ T
1

Φ2 Γ T
2

. . .
...

Φs Γ T
s

Γ1 Γ2 · · · Γs Φ0

⎞
⎟⎟⎟⎟⎟⎠

, (14.32)

where Φi ∈ IRni×ni ,Γ ∈ IRn0×ni allows for a (conceptual) block Cholesky factoriza-
tion

Ψ = LDLT

of the form

14 Financial Applications: Parallel Portfolio Optimization 453

⎛
⎜⎜⎝

dT dT dT dT

eT eT eT eT

T

TTTT

T

TT

T

TT

T

T

TT

T

TT

e

e

e

d

d

d

−1

−1

WT

WT

WT

WT

W T

WT

WT

d

e

W

Q

W

Q

W

W

W

W

Q

W

Q
⎞
⎟⎟⎠

Fig. 14.4 Reordered augmented system matrix for model (14.23).

L =

⎛
⎜⎜⎜⎜⎜⎝

L1

L2
. . .

Ls

L0,1 L0,2 · · · L0,s Lc

⎞
⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎝

D1

D2
. . .

Ds

Dc

⎞
⎟⎟⎟⎟⎟⎠

, (14.33)

where

LiDiL
T
i = Φi, i = 1, . . . ,s (14.34a)

L0,i = ΓiL
−T
i D−1

i , i = 1, . . . ,s (14.34b)

C = Φ0−
s

∑
i=1
ΓiΦ−1

i Γ T
i (14.34c)

LcDcLT
c = C. (14.34d)

The representation (14.34) can be used to compute the solution to the system

454 Andreas Grothey

Ψx = b,

where x = (x1, . . . ,xs,x0)T , b = (b1, . . . ,bs,b0)T as follows:

zi = L−1
i bi, i = 1, . . . ,s (14.35a)

z0 = L−1
c (b0−

s

∑
i=1

L0,izi) (14.35b)

yi = D−1
i zi, i = 0, . . . ,s (14.35c)

x0 = L−T
c y0 (14.35d)

xi = L−T
i (yi−LT

0,ix0), i = 1, . . . ,s. (14.35e)

For a multistage stochastic programming problem the augmented system matrix in
(14.29) is a nested chain of matrices of type (14.32), as depicted in (14.31). Ev-
ery diagonal block Φi in (14.32), (14.33), (14.34), and (14.35) itself is of bordered
block-diagonal structure. This nesting is as deep as the number of stages in the mul-
tistage problem. In order to factorize a nested system matrix (14.31), computations
(14.34) can also be nested. Whenever (14.34a) asks for the factorization of Φi, the
entire process (14.34) can be applied at the next lower level to obtain the required
factorization. Similarly, if for the backsolves (14.35), the matrices Li are themselves
of form (14.33), the process (14.35) can be employed at the next lower level to
compute the result of the operations in (14.35a) to (14.35e).

The principal advantage of this nested structure exploitation is a gain in com-
plexity. Processes (14.34) and (14.35) need to be performed on every node of the
scenario tree; any actual explicit factorization and backsolves are only performed
for matrices of size n (the size of the model on each node). An upper bound for the
total complexity of factorizing the matrix (14.31) occurring in stochastic program-
ming is therefore O(|V |n3), compared with up to O(N3) in the unstructured case.
Of course the complexity of the linear algebra can be significantly less than O(N3)
if sparsity can be exploited, but is unlikely to be able to match the linear complexity
O(|V |) of the nested approach. An additional advantage is a reduction in memory
use, which again is reduced to O(|V |n2).

It is important to realize that these operations are amenable to parallel com-
putations. Calculations (14.34a), (14.34b) and (14.35a) to (14.35e) are indepen-
dent for each i and can be performed simultaneously on different processors. Fur-
ther (14.34c) and (14.35b) require communications and gather-type operations,
whereas only (14.34d) and (14.35b) to (14.35d) require global operations. All the
global calculations and communications involve entities of size n0 (the size of Φ0).
Since in multistage stochastic programming n0 is small compared to the sizes ni of
the diagonal blocks Φi (which are themselves block-structured), the potential for
efficient parallelization is huge. The parallel distribution of calculations is summa-
rized in Fig. 14.5.

This basic principle of nested Schur complement computations is employed by
many parallel IPM approaches to the ALM model.

14 Financial Applications: Parallel Portfolio Optimization 455

Φ1 = L1D1L$1

...

Φs = LsDsL$s

C1 = Γ1L−$1 D−1
1 L−1

1 Γ$1

...

Cs = ΓsL−$s D−1
s L−1

s Γ$s C
=
Φ

0
−
∑

iC
i

C
=

L
cD

cL
$ c

On separate processors

On all processors

Communications

z1 = L−1
1 b1

...

zs = L−1
s bs

l1 = Γ1L−$1 D−1
1 z1

...

ls = ΓsL−$s D−1
s zs

l
=

b 0
−
∑

il
i

z 0
=

L
−

1
c

l

y1 = D−1
1 z1

...

ys = D−1
s zs

y 0
=

D
−

1
c

z 0

x 0
=

L
−
$

c
y 0

x1 = L−$1 (y1−D−1
1 L−1

1 Γ$1 x0)

...

xs = L−$s (ys−D−1
s L−1

s Γ$s x0)

Fig. 14.5 Split of computations (14.34) and (14.35) between processors.

Nested Birge–Qi Factorization

The Schur complement approach presented above exploits the nested structure in the
augmented system (14.29) for multistage stochastic programming. As an alternative
one can consider applying a similar approach to the normal equation form (14.30).
This idea goes back to Birge and Qi [52]. For ease of presentation we consider a
2-stage linear stochastic programming problem with Q = 0 and a system matrix

A =

⎛
⎜⎜⎜⎝

W1 T1
. . .

...
Ws Ts

W0

⎞
⎟⎟⎟⎠ , (14.36)

where W0 can be rectangular, but is assumed to have full row rank. In this case the
normal equations (14.30) reduce to

(AΘAT)Δy = b, (14.37)

whereΘ = diag(Θ1, . . . ,Θs,Θ0), yielding

AΘAT =

⎛
⎜⎜⎜⎝

W1Θ1W T
1

. . .
WsΘsW T

s
I

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

T1 0
...

...
Ts 0
W0 I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

T1Θ0 0
...

...
TsΘ0 0
W0Θ0 −I

⎞
⎟⎟⎟⎠

T

. (14.38)

The inverse of AΘAT can be obtained from the Sherman–Morrison–Woodbury for-
mula

(W +UV T)−1 = W−1−W−1UG−1V TW−1, G = I +V TW−1U.

456 Andreas Grothey

Using W = diag(W1Θ1W T
1 , . . . ,WsΘsW T

s , I) and

U =

⎛
⎜⎜⎜⎝

T1 0
...

...
Ts 0
W0 I

⎞
⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎝

T1Θ0 0
...

...
TsΘ0 0
W0Θ0 −I

⎞
⎟⎟⎟⎠ ,

we can compute

G =
(
Θ0

I

)(
Ĝ W T

0
−W0 0

)
, Ĝ =Θ−1

0 +W T
0 W0 +

s

∑
i=1

T T
i (WiΘiW

T
i)−1Ti.

Hence (14.37) can be solved by the sequence

zi = (WiΘiWi)−1bi, i = 1, . . . ,s (14.39a)

v =
s

∑
i=1

T T
1 zi +W T

0 b0 (14.39b)

(
u1

u2

)
=
(

Ĝ W T
0

−W0

)−1(
v
−b0

)
(14.39c)

wi = (WiΘiW
T
i)−1Tiu1, i = 1, . . . ,s (14.39d)

w0 = W0u1 +u2 (14.39e)

Δyi = zi−wi, i = 1, . . . ,s (14.39f)

Δy0 = z0−w0, (14.39g)

where (14.39c) can be solved by

[W0Ĝ−1W T
0]u2 = W0Ĝ−1v−b0 (14.40a)

Ĝu1 = v−W T
0 u2. (14.40b)

As before we can consider a nested version of the factorization, by realizing that for
a nested system matrix, matrices Wi are again of the form (14.36) and hence (14.39a)
to (14.39d) can be solved by employing the process (14.39) on the next lower level.
As with the Schur complement approach, the nested Birge–Qi factorization can be
parallelized by distributing computations (14.39a), (14.39d), and (14.39f) among
the available processors. The Birge–Qi factorization has been applied to 2-stage
stochastic programming in parallel by Jessup et al. [53]. A nested version for multi-
stage stochastic programming has been derived by Pflug and Halada [54].

14 Financial Applications: Parallel Portfolio Optimization 457

14.4.2 Results

In this section we give an overview of the results that have been reported in the lit-
erature for the parallel solution of portfolio optimization problems by interior point
approaches.

Blomvall and Lindberg in [29] solve a 7-stage ALM with 1.0 million scenarios,
15.7 million constraints, and 16.9 million variables in 20 hours on a serial 200 MHz
Sparc station with 2 GB of memory. In [55] they report on the solution of a 10-stage
ALM problem with 1.9 million scenarios, 67 million variables, and 118 million
constraints in 97 minutes on 32 processors in a Beowulf cluster of 900 MHz Athlon
CPUs with 512 MB memory per node. Further Blomvall [56] solves a series of
ALM problems with the largest having 24 stages, 8.3 million scenarios, 50 million
variables, and 92 million constraints in 1136 seconds on 32 processors on the same
Beowulf cluster. He also reports consistent parallel efficiencies of 93–97% on 1–32
processors on a smaller problem with 2.8 million variables. All these results use a
primal IPM implementations employing a specialized version of the nested Schur
complement factorization.

Grothey and Gondzio also employ a nested Schur complement factorization but
within a primal–dual IPM framework. In [26] they apply sequential quadratic pro-
gramming with the interior point code OOPS as the QP solver to solve various non-
linear variations of the ALM model, including logarithmic utility functions, skew-
ness objectives, and constraints on variance and semivariance. They use a set of
randomly generated test problems with the largest one optimizing 20 assets over 4
periods with a branching factor of 55 leading to 170,000 scenarios and 10.5 mil-
lion constraints. They parallelize the computations on 8 processors of a SunFire
15 K, 48-processor machine with 900 MHz UltraSparc-II processors and 48 GB of
shared memory. They can solve the largest problem in under 2500 seconds on 8 pro-
cessors and report a speedup of 7.28–7.64 over the formulations considered. They
report that a serial version of their algorithm achieves considerable gains in terms of
both solution speed and memory usage compared to commercial solver CPLEX 7.0.
In [26] they solve a mean-variance formulation with 4 stages, 1.7 million scenarios,
10 assets, and over 52 million variables in 8500 seconds on 16 processors of the
above machine. Further on smaller versions of the problem ranging between 5–9
million variables they report a parallel efficiency of 87.7–94.0% on 8 processors.
Finally in [57] they report on the solution of an ALM problem with 6 stages, 12.8
million scenarios, and 1.02×109 variables on 1280 processors of the 1600 1.7 GHz-
processor machine HPCx in 3600 seconds. On a smaller problem with 10 million
variables they report of a parallel efficiency of 86% when comparing 512 processors
with 16 processors on a BlueGene/L machine.

Lucka, Melichercik, and Halada in [23] use a primal–dual IPM employing a
nested Birge–Qi factorization to solve 2- and 3-stage linear ALM models. Their
largest model has 3 stages, 90,000 scenarios, and 450,000 unknowns. They report
serial solution time of 203 seconds on a 3.6 GHz Pentium IV processor and 23.4
seconds on a cluster of 16 such machines, resulting in a parallel efficiency of 54%.
Pflug and Halada in [54] with the same algorithm report a reduction in computation

458 Andreas Grothey

time from 20.7 seconds on 2 processors to 5.8 seconds on 32 processors resulting
in a parallel efficiency of 22% for a 3-stage model with 640 scenarios and 25,600
variables. These results were however obtained on a heterogeneous cluster incorpo-
rating 400 MHz Pentium-II and 700 MHz Pentium-III processors.

A different approach is taken by Durazzi, Ruggiero, and Zanghirati [58]. They
use a primal–dual IPM in which the Newton system is solved by an iterative method
with a structured block-preconditioner. They solve 2-stage linear stochastic pro-
gramming problems (although not specifically ALM models) on a Cray T3E using
up to 120 processors. On their largest problem with 480 scenarios and 46,000 vari-
ables they report near perfect speedup (and in some cases even superlinear speedup).

14.5 Parallel Solution Approaches: Heuristics
and Evolutionary Algorithms

As pointed out in Sect. 14.2.3 many realistic formulations of the ALM model lead
to difficult integer programming or global optimization problems that are beyond
the reach of the solution approaches reviewed so far. However there is a keen inter-
est in applying evolutionary algorithms such as Genetic Algorithms (GA) to port-
folio optimization problems. These algorithms can be employed in two different
lines. First, as single-objective evolutionary algorithms (SOEA) that are used to an
otherwise intractable integer or non-convex formulation (arising from cardinality
constraints or minimum lot size constraints) of a (usually single period) portfolio
selection problem (see for example [59, 60] for a survey). The other line are multi-
objective evolutionary algorithms (MOEA) that are employed to directly calculate
the Pareto efficient set in a multi-objective version of the portfolio selection prob-
lem (using expected return and a risk measure as the objective functions). See [61]
for a survey. While most of these only deal with sequential computing, evolution-
ary algorithms in general are easily parallelized [62]. Loraschi and coauthors [63]
present a distributed parallel GA for the computation of the efficient frontier in a
portfolio selection problem consisting of the expected return and semivariance as
risk measure on a cluster of 10 Sun Sparc machines.

14.6 Other Approaches

Moreno-Vozmediano and coauthors [64] use grid computing in the context of VaR-
constrained portfolio optimization. They use Monte Carlo simulation to evaluate
the VaR of a given portfolio by distributing the considered scenarios among the
available grid computation nodes. They report a speedup of 2.0 for 4 grid nodes
compared to the serial version. Similarly Zanghirati and coauthors [65] use Monte
Carlo simulation to compute the final value of an ALM portfolio with 200 different

14 Financial Applications: Parallel Portfolio Optimization 459

products. They report near linear speedup on a Cray T3E machine with up to 128
processors, simulating 10,240 scenarios.

A notable development is the AURORA Financial Management System [34] at
the University of Vienna. It aims to provide a decision support system in a par-
allel framework for the whole process required in portfolio optimization starting
from data analysis to create a scenario tree for the underlying asset return and li-
ability distributions, the actual optimization of the ALM problem, through to the
post-optimization analysis. Various parallelizable optimization methods have been
described as part of the AURORA framework, notably asynchronous nested Benders
decomposition [46] and scenario decomposition using augmented Lagrangians [34].
An overview is given in [22]. Efforts are underway for a grid-enabled DSS where
not only the optimization, but every component of the whole process (possibly
for several models at the same time) can be distributed over available network re-
sources [66, 67].

14.7 Detailed Comparison of Parallel Interior Point Approaches

In this last section we will give detailed comparison of some of the parallel interior
point implementations that have been applied to portfolio optimization problems.

14.7.1 OOPS (Gondzio and Grothey)

The object-oriented parallel solver (OOPS) of Gondzio and Grothey [26, 30, 57, 68]
explicitly uses the Schur complement mechanism (14.34) and (14.35) in an object-
oriented framework. OOPS represents a multistage stochastic programming as a
tree of matrix objects. Each node of the tree, at any level, represents a matrix of
type (14.32) together with the appropriate linear algebra implementations (14.34)
and (14.35) to support factorize and back-solve operations involving this matrix.
The matrix object also includes obvious secondary routines such as matrix-vector
products. The object-oriented layout of OOPS hides the linear algebra implemen-
tations of a particular node in the scenario tree (or the matrix tree) from its parent
and child nodes. Indeed OOPS does not require the subblocks Φi and Γi to be of
bordered block-diagonal type themselves; they can represent any exploitable block
matrix structure. This layout makes OOPS applicable to a wide range of structured
problems beyond ALM or even stochastic programming.

On the other hand this generality prevents OOPS from exploiting the fine-level
structure of the matrices Γi,Φi, which is apparent from Fig. 14.4 and (14.13), as is
done in competing implementations. In OOPS the Schur complement matrix C and
its Cholesky factor LC in operations (14.34d), (14.35b), and (14.35d) are treated as
dense matrices (as they will be in general), although, as we will see when discussing
alternative IPM approaches, they have further exploitable structure. The main com-

460 Andreas Grothey

putational effort in OOPS is in the assembling of the Schur complement matrix C in
(14.34c):

C =Φ0−
s

∑
i=1
ΓiΦ−1

i Γ T
i .

Since the decomposition Φi = LiDiLT
i is known, (14.34c) can be computed as

C =Φ0−
n

∑
i=1

V T
i D−1

i Vi,

where
Vi = L−1

i Γ T
i .

Generally Γ T
i will be a tall, thin, sparse matrix. If the factors Li are sparse as well,

we can expect Vi to display some sparsity. The local contribution V T
i D−1

i Vi to the
Schur complement is therefore most efficiently obtained as

V T
i D−1

i Vi =∑
k

vikD−1
i vT

ik, (14.41)

where vik is the sparse k-th row of Vi (see Fig. 14.6). This uses the observation that

+ +

+ +

=

Fig. 14.6 Calculation of V T
i Vi = ∑k vikvT

ik.

outer products of sparse vectors can be efficiently computed without the need to
scan for matching sparse elements (as would need to be done for the alternative of
computing pairwise inner product of columns of Vi). However, it requires changing
the representation of Vi from column-wise to row-wise sparse format.

It is paramount for efficiency in Eq. (14.41) that Vi is as sparse as possible, hence
fill-in in the solution step Vi = L−1

i Γ T
i needs to be avoided at all cost. This is how-

ever not easily achievable. For the ALM problem in Fig. 14.4, the Γ T
i matrices are

of the form (0, . . . ,0,T)T , so fill-in in Vi should be limited to the bottom block cor-
responding to T . However usually the factorization ofΦi = LiDiLi involves pivoting
for sparsity, resulting in an unavoidable reordering of Γi = (0, . . . ,0,T)T and subse-
quent fill-in (see Fig. 14.7). Note however that this problem is partially alleviated
by the use of an implicit Schur complement factorization for Φ ; this effectively
restricts the pivot choices to within each current block (Fig. 14.8). While not com-

14 Financial Applications: Parallel Portfolio Optimization 461

pletely avoiding unnecessary fill-in, any occurring fill-in in Vi is restricted to the Φ0

block.

Φ = L D L =

=

TT V

=?

i i ii iLi ΓiΓiT

Fig. 14.7 Sparse calculation of Vi = L−1
i Γ T

i : Fill-in for sparse factors of Li.

Φ = L D L =

=

TT V

=?

i i ii iLi ΓiΓiT

Fig. 14.8 Sparse calculation of Vi = L−1
i Γ T

i : Restricted fill-in for block factors of Li.

14.7.2 Riccati-Based IPM Solver (Blomvall and Lindberg)

A related approach is used by Blomvall and Lindberg [29, 55] and implemented
in parallel in [56]. Like OOPS they use a nested implicit factorization of the sys-
tem (14.31). Differently, however they use the fact that ALM problems (as indeed
most stochastic programming problems) can be written in dynamic stochastic pro-
gramming form. This enables them to use a more compact nested implicit inverse
factorization. The price they pay, however, is a loss of generality. Their solution ap-
proach is only applicable to dynamic stochastic programming; it cannot be applied
to general nested structures in the way that OOPS can.

In detail [29] uses the control formulation:

462 Andreas Grothey

min
xi,ui,i∈V

∑
i∈V

Ui(xi,ui)

s.t. xi−Aixπ(i)−Biuπ(i) = bi, i ∈ V \{0}
Eixi +Fiui ≥ ei, i ∈ V

xi ∈ [xl
i ,x

u
i], i ∈ V

ui ∈ [ul
i ,u

u
i], i ∈ V ,

(14.42)

where xi ∈ IRnx ,ui ∈ IRnu ,ei ∈ IRme and the other matrices and vectors have corre-
sponding dimensions. The ALM formulation (14.12) naturally fits into this frame-
work with the identification xi = (xh

i), ui = (xb
i ,x

s
i). Blomvall and Lindberg proceed

by applying a primal interior point solver to this problem and derive a nested elim-
ination scheme based on the use of discrete time Riccati equations from control
theory. Details are given in [29, 55]. In order to compare the approach with that
taken by [26, 30, 51] we present the Riccati scheme of Blomvall et al. in the frame-
work of Sect. 14.4. A primal IPM applied to system (14.42) needs to solve at each
iteration an augmented system matrix of form (14.31) with the specific choices

Φi =

⎡
⎢⎢⎢⎢⎣

∇2
xxUi +Θ x

i ∇2
xuUi ET

i −I
∇2

uxUi ∇2
uuUi +Θ u

i FT
i

Θ s
i −I

Ei Fi −I
−I

⎤
⎥⎥⎥⎥⎦ Γ T

i =

⎡
⎢⎢⎢⎣

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0
0 0 0 Ai Bi

⎤
⎥⎥⎥⎦ ,

(14.43)
where we have introduced slack variables si for second constraint in (14.42), La-
grange multipliers y and w for the two constraints in (14.42), and the columns corre-
spond to components (xi,ui,si,wi,yi) and (xπ(i),uπ(i),sπ(i),wπ(i),yπ(i)), respectively.
Rather than obtaining a sparse LDLT decomposition of each local node block Φi as
in OOPS, Blomvall and Lindberg use an implicit factorization of Φi. They realize
that through elimination of the Δs and Δw components, the system

⎡
⎢⎢⎢⎢⎣

∇2
xxUi +Θ x

i ∇2
xuUi ET

i −I
∇2

uxUi ∇2
uuUi +Θ u

i FT
i

Θ s
i −I

Ei Fi −I
−I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δx
Δu
Δs
Δw
Δy

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

ξx

ξu

ξs

ξc

ξb

⎤
⎥⎥⎥⎥⎦ (14.44)

can be reduced to⎡
⎣ Qi Pi −I

PT
i Ri

−I

⎤
⎦
⎡
⎣Δx
Δu
Δy

⎤
⎦=

⎡
⎣ ξx +ET

i Θ s
i ξc +ET

i ξs

ξu +FT
i Θ s

i ξc +FT
i ξs

ξb

⎤
⎦ , (14.45)

where

14 Financial Applications: Parallel Portfolio Optimization 463

Qi = ∇2
xxUi +Θ x

i +ET
i Θ s

i Ei (14.46a)

Ri = ∇2
uuUi +Θ u

i +FT
i Θ s

i Fi (14.46b)

Pi = ∇2
uxUi +ET

i Θ s
i Fi (14.46c)

and hence further to

Δx = −ξb (14.47a)

Δu = R−1
i (−PT

i Δx+FT
i Θ s

i ξc +FT
i ξs +ξu) (14.47b)

Δy = QiΔx+PiΔu−ET
i Θ s

i ξc−ET
i ξs−ξx (14.47c)

Δw = Θ s
i EiΔx+Θ s

i FiΔu−ξs (14.47d)

Δs = (Θ s
i)
−1(Δw+ξs). (14.47e)

Note that Blomvall and Lindberg use a logarithmic barrier term directly for the
slack in the Eixi + Fiui ≥ ei constraint, thus the Δs,Δw (slack and multiplier for
this inequality) never explicitly appear in their presentation. Reductions (14.44),
(14.45), (14.46), and (14.47), together with the sparsity of Γ T

i in (14.43), means
that the Schur complement computations (cf. (14.34c))

Φ+
0 =Φ0−∑ΓiΦ−1

i Γ T
i (14.48)

affect only the Q,R, and P blocks in Φ0, hence preserves the sparsity, so that the
same implicit factorization can be used for Φ+

0 after the update

Q̃i = Qi + ∑
j∈C (i)

AT
j WjA j (14.49a)

R̃i = Ri + ∑
j∈C (i)

BT
j WjB j (14.49b)

P̃i = Pi + ∑
j∈C (i)

AT
j WjB j, (14.49c)

where
Wi = Qi−PiR

−1
i PT

i . (14.50)

Blomvall and Lindberg use these updates together with the Schur complement cal-
culations (14.34) and (14.35) in a nested tree elimination scheme. Equation (14.46)
is used to calculate Qi,Ri, and Pi on every node. Then, starting at the leaf nodes
they factorize Ri to get a representation for R−1

i and calculate Wi from (14.50). Once
calculations on the leaf nodes are finished they are aggregated onto the next level
by the updates (14.49). After this the process continues further up the tree using
Q̃i, R̃i, P̃i instead of Qi,Ri,Pi for all remaining nodes. The work involved in building
the Schur complement (14.34c) thus reduces to the recursions (14.49) and the only
explicit factorization necessary is that of R̃i on every node, which is of dimension
nu of the number of control variables u. OOPS in comparison needs to factorize Φi

which is of dimension 2nx + nu + 2me. Through this approach Blomvall and Lind-
berg further manage to reduce the work involved in forming the Schur complement
(14.34c). Whereas in OOPS the calculation of L−1

i Γ T
i fills in over the complete Φi

464 Andreas Grothey

block (see Fig. 14.8) even for very sparse Γi, the fill-in in Blomvall and Lindberg is
limited to the (already dense) Qi,Ri,Pi blocks.

As pointed out, the drawback is a loss in generality, in that the approach is only
applicable to problems that can be stated in nested control formulation. This, how-
ever, is generally the case for ALM models. Another drawback is a possible loss of
stability, since the block-elimination scheme (14.47) effectively restricts the choice
of pivots as compared to a general sparse factorization Φi = LiDiLT

i .

14.7.3 Tree Sparse IPM Solver (Steinbach)

Steinbach in [51,69,70] presents a tree-sparse IPM approach which is very similar to
that of Blomvall and Lindberg. Steinbach, however, works within the primal–dual
interior point framework. He starts from the same control formulation (14.42) as
Blomvall and Lindberg. However, rather than dealing with a general local constraint

Eixi +Fiui ≥ ei

as Blomvall and Lindberg, Steinbach deals with a finer local constraint structure:

Er
i xi +Fr

i ui ∈ [rl j,rul] (14.51a)

Ec
i xi +Fc

i ui = ec
i (14.51b)

Ex
i xi = ex

i (14.51c)

Fu
i ui = eu

i (14.51d)

distinguishing explicitly local state, control, and mixed constraints, with the assump-
tion that for every local node i ∈ V , the matrix

Fl
i =

⎛
⎝Ec

i Fc
i

Ex
i

Fu
i

⎞
⎠

has full rank. He uses these constraints to eliminate as many variables as possible
from the local nodes in a first step, to further reduce the dimension of the recursions
(14.49). In detail, through an incomplete LU-decomposition with row pivoting of
Fc

i (since Fc
i does not need to have full rank), appropriate partitions of Ec

i and ec
i

ΠiF
c
i =

(
LFi 0
Zi 0

)
UFi, ΠiE

c
i =

(
Ec,1

i

Ec,2
i

)
, Πie

c
i =

(
ec,1

i

ec,2
i

)
,

and a change of variables ûi = UFiui, the mixed constraint Ec
i xi + Fc

i ui = ec
i can be

expressed as

14 Financial Applications: Parallel Portfolio Optimization 465

LFiû
1
i +Ec,1

i xi = ec,1
i (14.52)

Ziû
1
i +Ec,2

i xi = ec,2
i (14.53)

and thus

û1
i = L−1

Fi (ec,1
i −Ec,1

i xi) (14.54a)

(Ec,2
i −ZiL

−1
Fi Ec,1

i)xi = ec,2
i −ZiL

−1
Fi ec,1

i . (14.54b)

By substituting ui = U−1
Fi ûi into every equation of (14.42) that contains ui, variables

û1
i are eliminated from each local node, and constraint (14.51b) is transformed into

(14.54a) which is a reduced dimensional constraint of mixed type and (14.54b), an
additional constraint of local-state type (14.51c). In the next step through an LU-
decomposition

Ex
i = (LEi 0)UEi,

(Ex
i being of full rank) and a change of variables x̂i = UEixi, the local constraint

Ex
i xi = ex

i can be expressed as

ex
i = (LEi 0)

(
U1

Eixi

U2
Eixi

)
= LEix̂

1
i

and hence as
x̂1

i = L−1
Ei ex

i , x̂2
i free .

By substituting xi = U−1
Ei x̂i into every equation of (14.42) that contains xi, variables

x̂1
i are eliminated from the system. Finally the same step is applied to the local con-

straint Fu
i ui = eu

i to eliminate a subset of the control variables ui at every local node.
These node eliminations are applied as a preprocessing step, effectively reducing the
dimension of the state and control variables and the mixed constraint Eixi +Fiui ≥ ei

at every node. The recursions (14.49) are thus performed in a reduced space, yield-
ing further efficiency gains. As with the approach of Blomvall and Lindberg the
price to pay for the efficiency gains is a lack of generality and a possible instability
resulting from the restriction of pivot choices.

Although the scheme of Steinbach could clearly be parallelized along the lines
of [56], unfortunately no such implementation seems to exist. It has, however, been
applied to ALM problems in serial [51]. For a problem with 8 assets and 6 stages,
leading to 218,000 scenarios and over 2 million decision variables one complete
factorization could be performed in 33 seconds on a 175 MHz R10000 processor.

14.8 Conclusions

We have presented recent approaches to the parallel solution of multistage portfolio
optimization problems. Traditionally decomposition has dominated this field, but
recently interior point based approaches have proved to be a serious competitor.

466 Andreas Grothey

Problems of many millions of variables can now be routinely solved on moderate
parallel hardware, while the use of dedicated massively parallel machines makes the
solution of problems with 109 variables and more feasible.

High-performance parallel computing is expected to continue to make an im-
pact on solution approaches to financial planning problems, especially as new, in-
expensive parallel hardware becomes commonplace. For many popular solution
approaches such as decomposition, IPMs, and evolutionary algorithms promising
parallel implementations exist; research is underway to adapt these approaches to
distributed parallel systems such as in grid computing.

New computing hardware will require new efficient implementations and modi-
fications of existing algorithm, while on the other hand, progress in the study of ap-
propriate model formulations including risk measures results in new mathematical
challenges for successful parallelism exploitation. The field continues to be exciting.

References

1. H. M. Markowitz, Portfolio selection, J Financ (1952) 77–91.
2. M. Steinbach, Markowitz revisited: Mean variance models in financial portfolio analysis,

SIAM Rev 43 (1) (2001) 31–85.
3. J. R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York

(1997).
4. P. Kall, S. W. Wallace, Stochastic Programming, John Wiley & Sons, Chichester (1994).
5. S. E. Wright, Primal-dual aggregation and disaggregation for stochastic linear programs, Math

Oper Res 19 (4) (1994) 893–908.
6. D. Cariño, T. Kent, D. Myers, C. Stacy, M. Sylvanus, A. Turner, K. Watanabe, W. Ziemba, The

Russel-Yasuda Kasai model: An asset/liability model for Japanese insurance company using
multistage stochastic programming, Interfaces 24 (1) (1994) 29–49.

7. J. M. Mulvey, A. E. Thorlacius, The Towers Perrin global capital market scenario generation
system, in: W. T. Ziemba, J. M. Mulvey (Eds.), World Wide Asset and Liability Management,
Cambridge University Press, Cambridge (1998) pp. 286–312.

8. M. Kusy, W. Ziemba, A bank asset and liability model, Oper Res 34 (1986) 356–376.
9. J. Mulvey, H. Vladimirou, Stochastic network programming for financial planning problems,

Manage Sci 38 (1992) 1643–1664.
10. S. Zenios, Asset/liability management under uncertainty for fixed-income securities, Ann

Oper Res 59 (1995) 77–97.
11. W. T. Ziemba, J. M. Mulvey, Worldwide Asset and Liability Modeling, Publications of the

Newton Institute, Cambridge University Press, Cambridge (1998).
12. G. Consigli, M. Dempster, Dynamic stochastic programming for asset–liability management,

Ann Oper Res 81 (1998) 131–162.
13. M. A. H. Dempster, R. T. Thompson, Parallelization and aggregation of nested Benders de-

composition, Ann Oper Res 81 (1998) 163–188.
14. A. Ruszczyński, Parallel decomposition of multistage stochastic programs, Math Program 58

(1993) 201–228.
15. A. Consiglio, S. A. Zenios, Integrated simulation and optimization models for tracking inter-

national fixed income indices, Technical Report, Department of Public and Business Admin-
istration, University of Cyprus, Nikosia, Cyprus (1998).

16. R. Mansini, M. G. Speranza, Heuristic algorithms for the portfolio selection problem with
minimum transaction lots, Eur J Oper Res 114 (1999) 219–233.

14 Financial Applications: Parallel Portfolio Optimization 467

17. G. Mitra, T. Kyriakis, C. Lucas, M. Pirbhai, A review of portfolio planning: Models and sys-
tems, in: S. Satchell, A. E. Scowcroft (Eds.), Advances in Portfolio Construction and Imple-
mentation, Butterworth and Heinemann, Oxford (2003) pp. 1–39.

18. R. Van Slyke, R. J.-B. Wets, L-shaped linear programs with applications to optimal control
and stochastic programming, SIAM J Appl Math 17 (1969) 638–663.

19. P. Artzner, F. Daelben, J.-M. Eber, D. Heath, Coherent measures of risk, Math Financ 9 (1999)
203–228.

20. W. Ogryczak, A. Ruszczynski, From stochastic dominance to mean-risk models: Semidevia-
tions as risk measures, Eur J Oper Res 116 (1999) 35–50.

21. H. Konno, H. Shirakawa, H. Yamazaki, Mean absolute deviation portfolio optimization model
and its applications to Tokyo stock market, Manage Sci 37 (1991) 519–531.

22. G. C. Pflug, A. Świȩtanowski, Selected parallel optimization methods for financial manage-
ment under uncertainty, Parallel Comput 26 (2000) 3–25.

23. M. Lucka, I. Melichercik, L. Halada, Application of multistage stochastic programs solved in
parallel in portfolio management, Parallel Comput 34 (2008) 469–485.

24. N. C. P. Edirisinghe, E. I. Patterson, Multi-period stochastic portfolio optimization: Block-
separable decomposition, Ann Oper Res 157 (2007) 367–394.

25. R. Mansini, W. Ogryczak, M. G. Speranza, LP solvable models for portfolio optimization: A
classification and computational comparison, IMA J Manag Math 14 (2003) 187–220.

26. J. Gondzio, A. Grothey, Parallel interior point solver for structured quadratic programs: Ap-
plication to financial planning problems, Ann Oper Res 152 (1) (2007) 319–339.

27. J. von Neumann, O. Morgenstern, Theory of Games and Economic Behaviour, Princeton Uni-
versity Press, Princeton (1953).

28. J. L. Kelly, A new interpretation of information rate, AT&T Tech J 35 (1956) 917–926.
29. J. Blomvall, P. O. Lindberg, A Riccati-based primal interior point solver for multistage

stochastic programming, Eur J Oper Res 143 (2002) 452–461.
30. J. Gondzio, A. Grothey, Solving nonlinear portfolio optimization problems with the primal-

dual interior point method, Eur J Oper Res 181 (2007) 1019–1029.
31. H. Konno, H. Shirakawa, H. Yamazaki, A mean-absolute deviation-skewness portfolio opti-

mization model, Ann of Oper Res 45 (1993) 205–220.
32. H. Konno, K.-I. Suzuki, A mean-variance-skewness portfolio optimization model, J Oper Res

Soc Jpn 38 (1995) 173–187.
33. G. C. Pflug, How to measure risk, in: Modelling and Decisions in Economics, Physica-Verlag

(1999) pp. 39–59.
34. G. C. Pflug, A. Świȩtanowski, E. Dockner, H. Moritsch, The AURORA financial management

system: Model and parallel implementation design, Ann Oper Res 99 (2000) 189–206.
35. P. Jorion, Value at Risk: The New Benchmark for Controlling Market Risk, McGraw-Hill

(2000).
36. R. T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, J Risk 2 (3) (2000)

21–41.
37. A. A. Gaivoronski, G. C. Pflug, Value-at-risk in portfolio optimization: Properties and com-

putational approach, J Risk 7 (2) (2005) 1–31.
38. A. Ben-Tal, A. Nemirovski, Robust convex optimization, Math Oper Res 23 (1998) 769–805.
39. D. Goldfarb, G. Iyengar, Robust portfolio selection problems, Math Oper Res 28 (2003) 1–38.
40. D. Dentcheva, A. Ruszczyński, Portfolio optimization with stochastic dominance constraints,

J Bank Financ 30 (2006) 433–451.
41. J. R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs,

Oper Res 33 (1985) 989–1007.
42. H. I. Gassmann, MSLiP: A computer code for the multistage stochastic linear programming

problems, Math Program 47 (1990) 407–423.
43. J. Mulvey, A. Ruszczyński, A new scenario decomposition method for large scale stochastic

optimization, Oper Res 43 (1995) 477–490.
44. S. Zenios, High-performance computing in finance: The last 10 years and the next, Parallel

Comput 25 (1999) 2149–2175.

468 Andreas Grothey

45. J. Linderoth, S. J. Wright, Decomposition algorithms for stochastic programming on a com-
putational grid, Comput Optim Appl 24 (2/3) (2003) 207–250.

46. E. Laure, H. Moritsch, Portable parallel portfolio optimization in the AURORA finan-
cial management system, in: Commercial Applications of High-Performance Computing,
Vol. 4528 of Proceedings of SPIE, Society of Photo-Optical Instrumentation Engineers (2001)
pp. 193 –204.

47. P. Parpas, B. Rustem, Computational assessment of nested Benders and augmented La-
grangian decomposition for mean-variance multistage stochastic problems, INFORMS J Com-
put 19 (2) (2007) 239–247.

48. J. Mulvey, B. Shetty, Financial planning via multi-stage stochastic optimization, Comput Oper
Res 31 (2004) 1–20.

49. S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia (1997).
50. J. Blomvall, P. O. Lindberg, Backtesting the performance of an actively managed option port-

folio at the Swedish stock market, 1990–1999, J Econ Dyn Control 27 (2003) 1099–1112.
51. M. Steinbach, Recursive direct algorithms for multistage stochastic programs in financial en-

gineering, in: P. Kall, H.-J. Lüthi (Eds.), Operations Research Proceedings, Selected Papers
of the International Conference on Operations Research Zürich 1998, Springer-Verlag (1999)
pp. 241–250.

52. J. R. Birge, L. Qi, Computing block-angular Karmarkar projections with applications to
stochastic programming, Manage Sci 34 (12) (1988) 1472–1479.

53. E. R. Jessup, D. Yang, S. A. Zenios, Parallel factorization of structured matrices arising in
stochastic programming, SIAM J Opimiz 4 (4) (1994) 833–846.

54. G. C. Pflug, L. Halada, A note on the recursive and parallel structure of the Birge and Qi
factorization for tree structured linear programs, Comput Optim Appl 24 (2003) 251–265.

55. J. Blomvall, P. O. Lindberg, A Riccati-based primal interior point solver for multistage
stochastic programming – Extensions, Optim Method Softw 17 (3) (2002) 383–407.

56. J. Blomvall, A multistage stochastic programming algorithm suitable for parallel computing,
Parallel Comput 29 (2003) 431–445.

57. J. Gondzio, A. Grothey, Direct solution of linear systems of size 109 arising in optimization
with interior point methods, in: R. Wyrzykowski (Ed.), Parallel Processing and Applied Math-
ematics, Vol. 3911 of Lect Notes Comput Sc, Springer-Verlag, Berlin (2006) pp. 513–525.

58. C. Durazzi, V. Ruggiero, G. Zanghirati, Parallel interior-point method for linear and quadratic
programs with special structure, J Optimiz Theory App 110 (2001) 289–313.

59. S.-H. Chen, Evolutionary Computation in Economics and Finance, Physica-Verlag, Heidel-
berg (2002).

60. F. Schlottmann, D. Seese, Modern heuristics for finance problems: A survey of selected meth-
ods and applications, in: S. Rachev (Ed.), Handbook of Computational and Numerical Meth-
ods in Finance, Birkhäuser, Berlin (2004) pp. 331–360.

61. M. G. C. Tapia, C. A. C. Coello, Application of multi-objective evolutionary algorithms in
economics and finance: A survey, in: Proceedings of the Conference on Evolutionary Compu-
tation (2007) pp. 532–539.

62. Z. Konfrst, Parallel genetic algorithms: Advances, computing trends, applications and per-
spectives, in: 18th International Parallel and Distributed Processing Symposium (2004) pp.
162–169.

63. A. Loraschi, A. Tettamanzi, M. Tomassini, C. Svizzero, C. Scientifico, P. Verda, Distributed
genetic algorithms with an application to portfolio selection problems, in: Artificial Neural
Nets and Genetic Algorithms, Springer-Verlag (1995) pp. 384–387.

64. R. Moreno-Vozmediano, K. Nadiminti, S. Venugopal, A. B. Alonso-Conde, H. Gibbins,
R. Buyya, Portfolio and investment risk analysis on global grids, J Comput Syst Sci 73 (2007)
1164–1175.

65. G. Zanghirati, F. Cocco, G. Paruolo, F. Taddei, A Cray T3E implementation of a paral-
lel stochastic dynamic asset and liabilities management model, Parallel Comput 26 (2000)
539–567.

14 Financial Applications: Parallel Portfolio Optimization 469

66. C. Wiesinger, D. Giczi, R. Hochreiter, An open grid service environment for large-scale com-
putational finance modelling systems, in: M. Bubak, G. Albada, P. Sloot, J. Dongarra (Eds.),
International Conference on Computational Science, Vol. 3036 of Lect Notes Comput Sc,
Springer-Verlag, Berlin (2004) pp. 83–90.

67. R. Hochreiter, C. Wiesinger, D. Wozabal, Large-scale computational finance applications
on the open grid service environment, in: P. Sloot, A. G. Hoekstra, T. Priol, A. Reinefeld,
M. Bubak (Eds.), Advances in Grid Computing: EGC 2005, Vol. 3470 of Lect Notes Comput
Sc, Springer-Verlag, Berlin (2005) pp. 891–899.

68. J. Gondzio, A. Grothey, Exploiting structure in parallel implementation of interior point meth-
ods for optimization, Technical Report MS-04-004, School of Mathematics, University of Ed-
inburgh, Edinburgh EH9 3JZ, Scotland, UK (December 2004).

69. M. Steinbach, Hierarchical sparsity in multistage convex stochastic programs, in: S. Uryasev,
P. M. Pardalos (Eds.), Stochastic Optimization: Algorithms and Applications, Kluwer Aca-
demic Publishers (2000) pp. 363–388.

70. M. Steinbach, Tree-sparse convex programs, Math Method Oper Res 56 (3) (2002) 347–376.

Chapter 15
The Future of Parallel Computation

Selim G. Akl and Marius Nagy

Abstract

As any other scientific discipline, computing science is undergoing a continuous
process of transformations and innovations driven by theoretical research and tech-
nological advancements. Inspired by physical and biological phenomena occurring
in nature, new computational models are proposed, with the potential to greatly in-
crease the efficiency of computational processes. Another direction of development
pertains to the characteristics of the problems tackled by computing science. With
the increasingly ubiquitous and pervasive nature of computers in the modern so-
ciety, the class of problems and applications computing science has to address is
continuously expanding.

The importance played by parallelism in each of these two major development
trends confirms the fundamental role parallel processing continues to occupy in the
theory of computing. The idea of massive parallelism permeates virtually all uncon-
ventional models of computation proposed to date and this is shown here through
examples such as DNA computing, quantum computing or reaction–diffusion com-
puters. Even a model that is mainly of theoretical interest, like the accelerating
machine, can be thought of as deriving its power from doubling the number of pro-
cessing units (operating in parallel) at each step.

The scope of computing science has expanded enormously from its modest
boundaries formulated at the inception of the field and many of the unconventional
problems we encounter today in this area are inherently parallel. We illustrate this by
presenting five examples of tasks in quantum information processing that can only
be carried out successfully through a parallel approach. It is one more testimony to

Selim G. Akl
School of Computing, Queen’s University, Kingston, Ontario, Canada,
e-mail: akl@cs.queensu.ca

Marius Nagy
School of Computing, Queen’s University, Kingston, Ontario, Canada,
e-mail: marius@cs.queensu.ca

R. Trobec et al. (eds.), Parallel Computing, DOI 10.1007/978-1-84882-409-6_15, 471
c© Springer-Verlag London Limited 2009

472 Selim G. Akl and Marius Nagy

the fact that parallelism is universally applicable and that the future of computing
cannot be conceived without parallel processing.

15.1 Introduction

The purpose of this final chapter is to glance into the future and sketch the most
probable forms parallel computing may take, having as a starting point the trends
we can observe today. When it comes to computing in parallel, we can distinguish
two major directions heading into the future. The first is strongly related to the con-
tinuous development and expansion of the Internet and the improvement in network
management schemes. Having better means available for a group of computers to
cooperate in solving a computational problem – whether they are homogeneous or
heterogeneous, geographically close to each other or distributed over the Internet,
small or large in number – will inevitably translate into a higher profile of clusters
and grids in the landscape of parallel and distributed computing. We are not going
to insist further here on the increasing role played by clusters and grids, especially
since we have already discussed them in Chapter 2 in the context of models of par-
allel computing.

Another, more revolutionary, direction taken by parallel computation challenges
the very physical level at which information is stored and manipulated in a comput-
ing machine. The electronic computers now in use are based on large-scale integra-
tion of transistors onto silicon chips such that a logical bit is physically realized as
a voltage level in an electronic circuit. Although this technology was able to sustain
a steady increase in the speed of processors over the past few decades, its limits are
well in sight by now. Consequently, researchers focused on finding alternate ways
of encoding and processing information that have the potential to speed up compu-
tation beyond what is possible using an electronic computer.

Proposals for an unconventional computing device include, but are not limited to,
computing with DNA strands, quantum information processing, membrane comput-
ing (P systems) or computations in reaction – diffusion systems. All these alterna-
tives are inspired from natural phenomena and each advances a fundamentally new
physical support for information.

DNA Computing

In DNA computing, the computation is performed by synthetically obtained DNA
strands. Performing an algorithm in this context amounts to applying some stan-
dard lab manipulation techniques (annealing and denaturation, polymerase chain
reaction, gel electrophoresis, etc.) to the DNA in a test tube [1]. The strands act
as both processors and memory units. Using this “bioware,” NP-complete prob-
lems can be solved in linear time by covering an exponential search space in par-
allel [2–4]. The Watson–Crick complementarity, responsible for the formation of

15 The Future of Parallel Computation 473

the hydrogen bonds that allow two strands of DNA to anneal together, is the key
mechanism used to explore all possible computational paths simultaneously. Un-
fortunately, the scalability of this technique is severely restricted by the amount of
DNA required to ensure an exhaustive search and by the error rate of the molecular
operations involved.

Membrane Computing

Another biologically inspired computational model bears the name of membrane
computing or P systems, in honor of its founder Gheorghe Păun [5]. The model em-
ploys a hierarchy of membranes, with each membrane separating a region, just as
cell components (the nucleus, the Golgi Apparatus, mitochondria and various vesi-
cles) as well as the whole cell itself are identified by a separating membrane. The
mathematical equivalent of molecules (chemicals) inside a cell component are sym-
bols belonging to a certain region. The analogy continues by considering chemical
reactions as production rules.

All membrane regions evolve simultaneously, according to a global clock. During
each time unit in each region, all applicable rules are applied nondeterministically,
in a maximally parallel manner. The computation stops when no further rules can
be applied and the result (output) is read either from the environment (outside the
skin membrane) or as the content of some nondestructible membrane.

Since the inception of the field, a plethora of variants of membrane systems have
been defined and their computational power studied. In particular, algorithms have
been designed to solve NP-complete problems in polynomial time, with the trade-off
of exponential space [6–8]. Through membrane division, however, this exponential
space can be created in polynomial (linear) time.

Quantum Information Processing

A strong candidate for tomorrow’s computing paradigm is manipulating informa-
tion at the quantum level. The idea of harnessing quantum mechanical effects in
order to improve the efficiency of computation naturally follows the miniaturization
trend witnessed in the computer industry for so many years now. According to this
trend, we will soon reach the atomic and subatomic level for the embodiment of a
logical bit and, inevitably, the laws of quantum mechanics will have to be taken into
consideration.

Similar to DNA computing, quantum algorithms attempt to find a solution to a
problem through an exhaustive search. The efficiency of the procedure comes again
from the fact that an exponential number of computational paths can be pursued in
parallel, by preparing a quantum register in a superposition state comprising an ex-
ponential number of classical states. Thus, for applications like integer factorization
and finding discrete logarithms, a quantum computer offers an exponential speedup
over a conventional one [9]. Quantum algorithms acting on small inputs have been

474 Selim G. Akl and Marius Nagy

successfully implemented in practical experiments [10–12], but the main difficulty
to overcome remains the scalability of the various techniques proposed to build a
quantum computer.

The Reaction–Diffusion Computer

Proposals to improve the efficiency of computation can come from any branch of
science, not only biology or physics. Our last example draws its inspiration from
chemistry: the reaction–diffusion computer. In this truly novel paradigm, both the
data and the results of the computation are encoded as concentration profiles of the
reagents. The computation itself is performed via the spreading and interaction of
wave fronts. Because molecules diffuse and react in parallel, a computer based on
reaction–diffusion is endowed with a natural parallelism that allows it to efficiently
solve combinatorial problems [13].

Probably the most evident and, at the same time, fundamental observation about
the unconventional computing paradigms enumerated above is that they owe their
computational power to some form of massive parallelism. In a full test tube act-
ing as a DNA computer we may have 1015−1017 operations performed in par-
allel, while a small chemical reactor may host millions of elementary (2−4 bit)
processors operating in parallel through reaction–diffusion means. Similar charac-
teristics empower the other two paradigms mentioned. It is therefore justified to
affirm, without the risk of making an overstatement, that parallel processing lies
at the heart of the quest for efficiency in computation. As various computing de-
vices are infiltrating every aspect of human life and the pervasive nature of comput-
ers is on the rise, the need for a parallel approach comes also from an increasing
number of applications dealing with real-time requirements and inherently parallel
problems.

Parallel processing may even be the power behind some hypercomputational
models credited with capabilities that go beyond those of a Turing machine. Thus,
the accelerating machine, a computational model of mainly theoretical interest, can
double its speed at each step [14]. More precisely, the time required by an operation
at any given step of a computation is only half (or some other constant fraction)
of that required to perform the same operation in the previous step. This property
allows the accelerating machine to perform any number of iterations of a computa-
tional step in a finite amount of time. As a consequence, solving the Halting Problem
is within the reach of the accelerating machine. This result is entirely due to the ac-
celerating feature of the model and one way the speed can be doubled each step is
by doubling the number of processors operating in parallel at each step.

But the particular form that parallelism will take in the operation of tomorrow’s
computing machines remains for the future to decide. The few paradigms briefly
discussed in this section are representative for the efforts made nowadays toward a
radically new computing technology, with important advantages over the electronic
computer. As things stand today, we credit quantum information processing with
the highest chances of playing an important role in the way computations are going

15 The Future of Parallel Computation 475

to be performed in a few decades time. This attitude is encouraged by the tremen-
dous effort put today into finding a viable design for a practical quantum computer
and the impressive achievements, already commercially available, in quantum cryp-
tography. Consequently, the remainder of this chapter will focus on uncovering the
“secrets” responsible for the potential quantum computation has to offer and the
different ways parallelism is encountered in this novel paradigm of computation.

15.2 Quantum Computing

The field of quantum information processing is based on the postulates governing
quantum mechanics. The aim of this section is to familiarize the reader with these
postulates and the mathematical formalisms required to work with them to the ex-
tent needed for quantum computing. Good introductions to quantum mechanics for
computing scientists can be found in [15–19], but for a detailed exposition of the
field one should see [20].

15.2.1 Quantum Mechanics

We begin our presentation by describing a few experiments that, in our opinion,
best illustrate those features of quantum mechanics that are at the heart of quantum
information processing, namely, superposition, measurement and interference.

15.2.1.1 Double-Slit Experiment

This experiment was first conducted by Thomas Young in 1801, and it demonstrated
that light behaves like waves. Young projected light onto a screen through a barrier
pierced with two closely spaced slits (see Fig. 15.1). What he observed on the screen
was an interference pattern, the hallmark of waves. The importance of modern-day
versions of Young’s experiment is best illustrated by Richard Feynman in his Lec-
tures [20]. He believed that the result of the double-slit experiment was the funda-
mental mystery of quantum mechanics.

If Young performed his experiment using simple screens and candlelight, the
tremendous advances in technology allow us today to repeat the experiment with
very weak light, that is, light produced as one photon at a time. Thus, it is very
unlikely that several photons would be found within the experimental apparatus at
the same time. Surprisingly (and against our intuitions), given that enough time
elapses as to allow the photons, arriving one at a time, to accumulate on the screen,
the same interference pattern will appear. The obvious question is: what was each
photon interfering with, if it was alone in the experimental apparatus?

476 Selim G. Akl and Marius Nagy

Fig. 15.1 Young’s double-slit experiment. Light projected onto a screen through a barrier pierced
with two closely spaced slits creates an interference pattern.

According to the Copenhagen interpretation (the standard view among many
physicists), the only possible answer can be: with itself. In the absence of any obser-
vations, it does not make sense to associate a specific route to the photon in its way
from the light source to the screen. In a sense, each particle went not through one slit,
but rather through both slits, and, as it appeared on the other side, it interfered with
itself. This behavior is a manifestation of the quantum principle of superposition of
states, a principle without which quantum computation and quantum information
would be inconceivable.

If we choose to observe the particle as it goes through the experimental appara-
tus (that is, to measure its state), the wave function describing it will collapse into
one of the two possible outcomes and the particle will be detected passing through
one of the two slits with equal probability. In either case, the superposition is de-
stroyed and with it any chance of interference. But if the particle is not observed
until the end, as it collects on the screen, then the superposition holds through to
the end, enabling the interference phenomenon witnessed on the screen. The duality
between particles and waves has also been demonstrated for other quanta that can
be localized (electrons, neutrons, atoms) and even for larger entities, like complex
molecules composed of tens of atoms.

15.2.1.2 Single Photon Interferometry

The Mach–Zehnder interferometer (depicted in Fig. 15.2) is an optical device com-
posed of beam splitters, mirrors and photon detectors carefully placed to bring about

Barrier Screen

Source

15 The Future of Parallel Computation 477

M1Photon

V

H

BS2
M2

BS1

Fig. 15.2 A Mach–Zehnder interferometer (BS = beam splitter; M = mirror). A photon entering
the first beam splitter horizontally will always emerge from the horizontal port of the second beam
splitter due to self-interference.

quantum interference when a photon travels through the apparatus. A beam splitter
is a half-silvered mirror that will let half of the incident beam pass through and re-
flect the other half. But when a single photon is confronted with a beam splitter,
its state becomes a superposition of being reflected and going through at the same
time. Thus, a photon entering the first beam splitter horizontally will always emerge
from the horizontal port of the second beam splitter, provided the two arms of the
interferometer have equal lengths. As in the case of Young’s two-slit experiment,
the reason is self-interference.

The probabilities of leaving the interferometer horizontally in the two possible
histories (traveling the upper arm and lower arm, respectively) reinforce each other
during the interference process that takes place in the second beam splitter. At the
same time, the probabilities of leaving the experimental apparatus vertically cancel
each other out. Any attempt to find out which way the photon took through the ex-
perimental device will collapse the superposition and ruin the interference. In such a
case, there will be an equal probability of detecting the photon exiting horizontally
or vertically, regardless of the path the photon was observed to take between the
beam splitters.

478 Selim G. Akl and Marius Nagy

BS BS

Fig. 15.3 The two photons always emerge from the beam splitter (BS) along the same output due
to a quantum interference effect.

15.2.1.3 Two-Photon Interferometry

The quantum interference effect witnessed at the second beam splitter in the pre-
vious experiment can also occur if two single-mode, but otherwise independent,
photons enter a 50−50 beam splitter, as shown in Fig. 15.3. The “mode” of a pho-
ton refers to the physical properties, like frequency and polarization, that together
define the electromagnetic field with which a photon is associated. When the two
photons are in the same mode, all the properties of the two photons are identical at
the beam splitter output, so they become essentially indistinguishable.

As a consequence of this “bosonic” character of photons, the probabilities that
both photons will be transmitted or both reflected interfere destructively, canceling
each other. As a result, the two photons will always be seen emerging from the
beam splitter along the same output, either both horizontally or both vertically. This
surprising quantum interference effect was demonstrated for independent photons,
emitted from a single-photon source [21]. Such an experiment is also important from
the practical viewpoint of building quantum logic gates for photon-based quantum
computing [22].

15.2.2 Mathematical Framework

Quantum mechanics takes place in the framework provided by linear algebra. We
can associate to any isolated physical system a complex vector space with an inner
product defined on it, known as the state space of the system. Mathematically, such
a vector space with an inner product is called a Hilbert space. At any given point in
time, the system is completely described by its state vector, which must be a unit
vector in the system’s state space.

Quantum state spaces and the transformations acting on them are traditionally
described in terms of vectors and matrices using the compact bra/ket notation in-
troduced by Dirac [23]. According to his conventional notation, for states that

15 The Future of Parallel Computation 479

correspond to discrete values of an observable, kets like |x〉 are simply column vec-
tors, typically used to describe quantum states. Similarly, the matching bra 〈x| is a
row vector denoting the conjugate transpose of |x〉.

15.2.2.1 The Qubit

At an abstract level, the simplest quantum mechanical system is the quantum bit, or
qubit. A qubit is a unit vector in a two-dimensional state space for which a particular
orthonormal basis, denoted by {|0〉, |1〉}, has been fixed. The two basis vectors |0〉
and |1〉 correspond to the possible values a classical bit can take. However, unlike
classical bits, a qubit can also take many other values. In general, an arbitrary qubit
|Ψ〉 can be written as a linear combination of the computational basis states:

|Ψ〉= α|0〉+β |1〉, (15.1)

where α and β are complex numbers such that |α|2 + |β |2 = 1. This is the funda-
mental difference distinguishing quantum bits from classical ones and is a direct
application of the quantum principle of superposition of states. The qubit |Ψ〉 in
Eq. (15.1) is in a superposition of |0〉 and |1〉, a state in which it is not possible to
say that the qubit is definitely in the state |0〉 or definitely in the state |1〉. After all,
what better intuition about the superposition principle than the idea (quite old and
widely accepted now) that each particle is also a wave.

For a single qubit, there is a very intuitive geometric representation of its state as
a point on a sphere. Taking α = eiγ cos(θ/2) and β = eiγeiϕ sin(θ/2) in Eq. (15.1),
we can rewrite the state of qubit |ψ〉 as

|ψ〉= eiγ(cos
θ
2
|0〉+ eiϕ sin

θ
2
|1〉), (15.2)

where θ , ϕ and γ are real numbers. Note that this is always possible since |α|2 +
|β |2 = 1. Also, because a global phase factor like eiγ has no observable effects (i.e.,
it does not influence the statistics of measurement predicted for qubit |ψ〉), we
can effectively ignore it. Consequently, the pair (θ ,ϕ) uniquely identifies a point
(cosϕ sinθ ,sinϕ sinθ ,cosθ) on a unit three-dimensional sphere called the Bloch
sphere [17, 24].

Figure 15.4 depicts four possible states of a qubit using the Bloch sphere rep-
resentation. Note that the states corresponding to the points on the equatorial cir-
cle have all equal contributions of 0-ness and 1-ness. What distinguishes them
is the phase. For example, the two states displayed above, 1/

√
2(|0〉+ |1〉) and

1/
√

2(|0〉− |1〉) are the same up to a relative phase shift of π , because the |0〉 am-
plitudes are identical and the |1〉 amplitudes differ only by a relative phase factor of
eiπ =−1.

We have described qubits as mathematical objects, but there are real physical
systems which may be described in terms of qubits. Possible physical realizations
of a qubit include two different polarizations of a photon, the alignment of a nu-
clear spin in a uniform magnetic field or two electronic levels in an atom. In the

480 Selim G. Akl and Marius Nagy

|0>

|1>

(|0> |1>+(|0> - |1>))

x

y

z

θ

ϕ

|ψ>

2
1

2
1

Fig. 15.4 The Bloch sphere representation of a qubit.

experiments presented at the beginning of the section, the state of a photon is de-
scribed in terms of the two possible routes that can be used when traversing the
experimental apparatus.

15.2.2.2 Measurements

We now turn our attention on the amount of information that can be stored in a
qubit and, subsequently, retrieved from a qubit. Since any point on the Bloch sphere
can be characterized by a pair of real-valued parameters taking continuous values, it
follows that, theoretically, a qubit could hold an infinite amount of information. As
it turns out, however, we cannot extract more information from such a qubit than we
are able to do it from a classical bit.

The reason is that we have to measure the qubit in order to determine which state
it is in. And another of the fundamental postulates of quantum mechanics, the one
regarding measurements (Postulate 3 in [17]), restricts us in the amount of infor-
mation that can be gained about a quantum state through measurement. According
to this postulate, when we measure a qubit |Ψ〉 = α|0〉+ β |1〉 with respect to the
standard basis for quantum computation {|0〉, |1〉}, we get either the result 0 with
probability |α|2 or the result 1 with probability |β |2. The condition that the proba-
bilities must sum to one corresponds geometrically to the requirement that the qubit
state be normalized to length 1, that is the inner product 〈Ψ |Ψ〉 equals 1.

Furthermore, measurement alters the state of a qubit, collapsing it from its super-
position of |0〉 and |1〉 to the specific state consistent with the measurement result.

15 The Future of Parallel Computation 481

For example, if we observe |Ψ〉 to be in state |0〉 through measurement, then the
post-measurement state of the qubit will be |0〉, and any subsequent measurements
(in the same basis) will yield 0 with probability 1. In general, measurement of a
state transforms the state into one of the eigenvectors of the observable being mea-
sured. The probability that the state is measured as basis vector |u〉 is the square of
the norm of the amplitude of the component of the original state in the direction of
the basis vector |u〉. The implicit assumption we adopt herein is that a measurement
is performed in the standard basis for quantum computation, whenever the basis
vectors associated with the measurement operation are not stated explicitly.

15.2.2.3 No-Clonability

Naturally, measurements in bases other than the computational basis are always pos-
sible, but this will not help us in determining α and β from a single measurement.
One might think of solving this problem by making multiple copies of the initial
qubit |Ψ〉 and then measuring each of the copies in order to obtain an estimation
of α and β . In fact, it turns out to be impossible to make a copy of an unknown
quantum state. The no-cloning theorem, one of the earliest results of quantum com-
putation and quantum information [25], states that quantum mechanics prevents us
from building a quantum cloning device capable of copying nonorthogonal quan-
tum states. The ability to clone orthogonal quantum states translates into the ability
to copy classical information, since the different states of classical information can
be thought of merely as orthogonal quantum states. So it seems that quantum me-
chanics places severe limitations on the accessibility of quantum information, but
in some circumstances (like devising secure quantum cryptographic protocols, for
instance) this can be turned into an advantage.

15.2.2.4 Quantum Registers

Let us examine now more complex quantum systems composed of multiple qubits.
In classical physics, individual two-dimensional state spaces of n particles combine
through the Cartesian product to form a vector space of 2n dimensions, representing
the state space of the ensemble of n particles. However, this is not how a quan-
tum system can be described in terms of its components. Quantum states combine
through the tensor product to give a resulting state space of 2n dimensions, for a
system of n qubits. It is this exponential growth of the state space with the num-
ber of particles that quantum computers try to exploit in their attempt to achieve
exponential speedup of computation over classical computers.

For a system of two qubits, each with basis {|0〉, |1〉}, the resulting state space is
the set of normalized vectors in the four-dimensional space spanned by basis vectors
{|0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉}, where |x〉⊗ |y〉 denotes the tensor product
between column vectors |x〉 and |y〉. It is customary to write the basis in the more

482 Selim G. Akl and Marius Nagy

compact notation {|00〉, |01〉, |10〉, |11〉}. This generalizes in the obvious way to an
n-qubit system with 2n basis vectors.

15.2.2.5 Quantum Evolution

The next step after laying the mathematical foundation for describing quantum reg-
isters is to focus on the “circuits” composing a hypothetical quantum computer.
Operating a quantum gate is strongly related to the way an isolated quantum sys-
tem evolves over time. We already saw what happens when we try to measure such
a quantum system. If, for example, we are trying to read the content of a quan-
tum memory register, the system will undergo a sudden, unpredictable jump into
one of the eigenvectors associated with the measurement operator. In other words,
there will be a discontinuity in the evolution of the quantum memory register. But,
if we leave the register unobserved, the system will undergo a smooth, continuous
evolution governed by Schrödinger’s equation, a deterministic differential equation
which enables us to predict the future or uncover the past evolution of the memory
register. Consequently, any quantum computation is reversible and therefore quan-
tum gates (the quantum analog of classical gates) must always have as many outputs
as they have inputs, in order to avoid any loss of information that would prevent the
computation from being undone.

15.2.2.6 Quantum Gates

A quantum NOT gate acting on a single qubit will evolve the initial state α|0〉+β |1〉
into the final state α|1〉+ β |0〉, in which the roles of |0〉 and |1〉 have been in-
terchanged. Because every quantum gate acts linearly, the transformation is fully
specified by its effect on the basis vectors. Hence, there is a very convenient repre-
sentation of a quantum gate in matrix form. Starting from the expressions of the two
basis vectors in column form:

|0〉=
[

1
0

]
, |1〉=

[
0
1

]
, (15.3)

the matrix X representing the quantum NOT gate is then defined as follows:

X =
[

0 1
1 0

]
. (15.4)

The first column represents the effect of applying the NOT gate to state |0〉, while
the second column is the result of applying the NOT gate to state |1〉. We can now
describe the operation of the quantum NOT gate, acting on an arbitrary qubit state,
through the following equation:

X ·
[
α
β

]
=
[
β
α

]
. (15.5)

15 The Future of Parallel Computation 483

Other examples of single-qubit gates are the Z gate:

Z =
[

1 0
0 −1

]
, (15.6)

which leaves |0〉 unchanged, but introduces a phase shift by flipping the sign of |1〉,
and the Hadamard gate:

H =
1√
2

[
1 1
1 −1

]
, (15.7)

which is one of the most useful quantum gates, because it creates superpositions of
|0〉 and |1〉.

Although there are an infinite number of single-qubit gates, not any two-by-
two matrix is a legitimate representation of a quantum gate. Schrödinger’s equation
states that the dynamics of a quantum system must take states to states in a way that
preserves orthogonality. In other words, the normalization condition |α|2 + |β |2 = 1
for the initial state α|0〉+ β |1〉 must also be true for the quantum state after the
gate has acted. This translates into the requirement that the matrix U describing the
single-qubit gate be unitary, that is, U∗ ·U = I, where U∗ is the conjugate transpose
of U . Single-qubit gates can be conveniently visualized as rotations of the arrow
representing the qubit state on the surface of the Bloch sphere.

x>|y

|x>

|y>

|x>

Fig. 15.5 Controlled-NOT quantum gate.

Quantum gates on multiple qubits can also be defined. Figure 15.5 depicts a
controlled-NOT gate, an instance of the more abstract controlled-U gate, where U =
X . The target bit |y〉 is flipped if and only if the control bit |x〉 is set to 1. The matrix
describing the operation of the controlled-NOT gate is

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ . (15.8)

Multiple qubit gates must also satisfy the requirement that probability be conserved,
so they too must be unitary transformations. Since any unitary matrix is invert-
ible and the inverse is also a unitary matrix, it follows that a quantum gate can al-
ways be inverted by another quantum gate. The set of all one-qubit rotations (gates)
together with the controlled-NOT gate is universal for quantum computation. But

484 Selim G. Akl and Marius Nagy

finite universal sets of gates exist as well. Two researchers working independently
have shown that any imaginable quantum computation can be performed by con-
necting together multiple copies of a certain two-qubit gate [26, 27]. Such universal
quantum gates are analogous to the NAND gate in classical computation.

15.2.3 Entanglement

Entanglement is probably the strangest and most controversial aspect of quantum
mechanics, but at the same time it is credited with the most surprising applications.
This section contains a brief discussion of this unusual phenomenon.

Similar to single qubits, multiple-qubit systems can also be in a superposition
state. The vector

|Ψ〉=
1
2
(|00〉+ |01〉+ |10〉+ |11〉) (15.9)

describes a superposition state of a two-qubit system in which all four components
(corresponding to the four basis vectors) have equal amplitudes. What about the two
qubits composing the system? Can we characterize their states individually? If we
rewrite Eq. (15.9) in order to express |Ψ〉 as the tensor product

|Ψ〉= (
1√
2
|0〉+ 1√

2
|1〉)⊗ (

1√
2
|0〉+ 1√

2
|1〉), (15.10)

then we can legitimately assert that each of the component qubits is also in a su-
perposition state, perfectly balanced between |0〉 and |1〉. Now let us drop the two
middle terms in Eq. (15.9) and consider the superposition state described by

|Φ〉=
1√
2
|00〉+ 1√

2
|11〉. (15.11)

In this case it is no longer possible to find complex numbers α , β , γ and δ such that

(α|0〉+β |1〉)⊗ (γ|0〉+δ |1〉) =
1√
2
|00〉+ 1√

2
|11〉. (15.12)

The state of the system cannot be decomposed into a product of the states of the
constituents. Even though the state of the system is well defined (through the state
vector |Φ〉), neither of the two component qubits is in a well-defined state. This
is again in contrast to classical systems, whose states can always be broken down
into the individual states of their components. Furthermore, if we try to measure
the two qubits, the superposition will collapse into one of the two basis vectors
contributing to the superposition and the outcomes of the two measurements will
always coincide. In other words, if one of the qubits is found to be in state |0〉, then
the second one will necessarily be in the same state, while a state |1〉 assumed after
measurement will be shared by both qubits. Therefore, we say that the two qubits

15 The Future of Parallel Computation 485

are entangled and |Φ〉 describes an entangled state of the system. It was Schrödinger
who actually named the phenomenon entanglement in 1935 [28].

Entanglement defines the strong correlations exhibited by two or more particles
when they are measured and which cannot be explained by classical means. This
does not imply that entangled particles will always be observed in the same state, as
entangled states like

1√
2
|01〉± 1√

2
|10〉 (15.13)

prove it. States like these or the one in Eq. (15.11) are known as Bell states or EPR
pairs, named after the people who pointed out their strange properties [29].

In some sense, we can say that superposition encompasses entanglement, since
entanglement can be viewed as a special case of superposition. It is also interesting
to make an analogy between entanglement and the concept of primality from num-
ber theory. Indeed, an entangled state of the system corresponds to a prime number,
since it cannot be factored or decomposed as a product of subsystem states.

15.3 Parallelism in Quantum Computing

We now have the necessary tools to discuss the role of parallelism in quantum com-
puting. When talking about parallelism in the context of quantum computation, the
immediate understanding given to the term refers to the ability of a quantum com-
puter to simultaneously evolve (transform) a potentially large number of classical
states, by preparing a quantum register in a superposition of all those states and then
applying the desired transformation on the quantum register. This form of paral-
lelism is specific to quantum computing because it exploits the quantum mechani-
cal principle of superposition of states and, hence, it is termed quantum parallelism.
We describe in detail the mechanism of quantum parallelism in the following sec-
tion and show that it is the key ingredient in obtaining an exponential speedup over
a conventional computer for some applications.

15.3.1 Quantum Parallelism

Suppose we want to evaluate an arbitrary function f : N → N for various inputs x.
Then we can define a unitary quantum gate Uf , whose action on the inputs x and
y is shown in Fig. 15.6. Since Uf must be reversible by definition, we need input
y in order to ensure that x is “remembered” at the output (no loss of information).
The image of x through f XOR-ed with y is obtained on the bottom output line
(⊕ denotes an Exclusive OR operation or, equivalently, addition modulo 2). In gen-
eral, the input and corresponding output lines depicted in Fig. 15.6 may represent

486 Selim G. Akl and Marius Nagy

an arbitrary number of qubits, such that ⊕ is applied bitwise. This construction is
possible for any function f .

Uf
|x>

|y>

|x>

|y f(x)>

Fig. 15.6 A generic quantum gate designed to compute the values of a function f .

In order to compute f (x), for some input x, we set y to zero and then f (x) can be
read from the bottom ouput line(s):

Uf (|x〉⊗ |0〉) = |x〉⊗ | f (x)〉. (15.14)

The advantage of the quantum paradigm of computation now becomes apparent. If
we want to compute f (x) for an arbitrary number of inputs x, all we have to do is
to prepare the x part of the quantum register as a superposition of all inputs that we
want to be evaluated and then apply the gate Uf . The y part of the register, which was
initially 0, now stores a superposition of all images f (x) that we sought to compute.

In particular, if we start with n qubits, each in the state |0〉, and apply a Hadamard
gate to each of them, then what we get is a superposition of all inputs from 0 to
2n−1:

1
2n

2n−1

∑
i=0
|i〉. (15.15)

Now, with a single application of the gate Uf we obtain all 2n corresponding images
in a superposition:

Uf ((
1
2n

2n−1

∑
i=0
|i〉)⊗|0〉) = (

1
2n

2n−1

∑
i=0
|i〉)⊗ (

1
2n

2n−1

∑
i=0
| f (i)〉). (15.16)

In this way, a quantum computer can evaluate an exponential number of inputs in
the time it takes a conventional electronic computer to evaluate just one input. This
type of transformation operating in parallel on all inputs is known as quantum par-
allelism. The enormous potential of a quantum computer to outperform a classical
machine lies precisely in the massive parallelism it offers “within a single piece of
hardware” [30].

This form of parallelism, however, does not automatically translate into an expo-
nential speedup for any computational problem. The difficulty resides in extracting
the information we have computed in quantum parallel. In order to see what are the
values f (x) obtained, we must read (that is, measure) the quantum register. And we
have already seen in Sect. 15.2.2.2 that measuring is a disruptive process implying a

15 The Future of Parallel Computation 487

loss of information by collapsing the superposition state of the quantum register to a
state compatible with the outcome obtained through measurement. This means that
from the 2n values encoded in the state of the quantum register before measurement,
we can only read out one and, worse still, we do not even have control over which
one we get, since the measurement process is a probabilistic one.

Nevertheless, an exponential speedup can still be obtained if the information
sought through measurement is a global property of all terms in the superposition
and not just one particular term. It is the case, for example, of the quantum algo-
rithm devised by Shor to factorize an integer in polynomial time [9]. Knowing that
factoring n is as hard as computing orders modulo n, Shor set out to find the period
of a function fx,n(a) = xa mod n, for some x chosen to be coprime with n. Once the
period is found, the divisors of n can easily be inferred using standard techniques
from number theory.

Classically, in order to find the period of a function, we need to evaluate that
function over and over again for many different inputs. But using quantum par-
allelism, we need only one evaluation. Furthermore, what we need afterward is a
global property of all images through f (the period) and not a particular image of a
particular input. In Shor’s algorithm, the quantum Fourier transform (QFT) is used
in order to interfere the computational paths and bring out the period. Some kind of
Fourier transform is usually employed in quantum algorithms to constructively re-
combine different alternatives in a superposition such that the amplitude of solutions
is strengthened, while nonsolutions interfere destructively, canceling each other.

Thus, factoring integers (and the related problem of finding discrete logarithms)
can be solved in quantum polynomial time, while the best known classical technique
for factorization (the number field sieve) is super-polynomial or sub-exponential in
the size of the integer to be decomposed. On the other hand, for the vast majority of
problems in computer science (including NP-complete ones) quantum parallelism
is not expected to bring more than a quadratic speedup [31].

But quantum parallelism is not the only form of parallelism encountered in the
context of quantum information processing. This syntagm is used to denote the abil-
ity to perform a certain computation simultaneously on all terms of a quantum super-
position, regardless of the number of qubits composing the quantum register whose
state is described by that superposition. A different interpretation refers to paral-
lelism as the ability to act simultaneously on a certain number of qubits, whether for
the purpose of measuring them or evolving their quantum state.

In the following section, we illustrate this second meaning of the term paral-
lelism in quantum computation by presenting five examples in which a parallel
computing approach is most appropriate, if not vital, for the success of the com-
putation. The common theme of all these examples, apart from the fact that they are
all drawn from the field of quantum information processing, is their evolving nature,
in the sense that their characteristics vary during the computational process itself.
Because of their dynamic nature, these computations may be labeled as unconven-
tional, as opposed to the computation performed by a Turing machine, for exam-
ple. The problems we are about to describe may also be interpreted as quantum

488 Selim G. Akl and Marius Nagy

mechanical instances of the unconventional computing paradigms introduced in
Chapter 2 as computations that cannot be simulated sequentially.

15.4 Examples

In each of the five cases enumerated below, we describe the problem as it is formu-
lated in quantum information processing and emphasize the importance of a parallel
approach in order to reach a solution. Furthermore, we identify the characteristics
that make it belong to a certain class of unconventional (evolving) computations.

15.4.1 Parallelizing the Quantum Fourier Transform

The Fourier transform is a very useful tool in computer science and it proved of cru-
cial importance for quantum computation as well. Since it can be computed much
faster on a quantum computer than on a classical one, the discrete Fourier trans-
form allows for the construction of a whole class of fast quantum algorithms. Shor’s
quantum algorithms for factoring integers and computing discrete logarithms [9] are
the most famous examples in this category.

The QFT is a linear operator whose action on any of the computational basis
vectors |0〉, |1〉, · · · , |2n− 1〉 associated with an n-qubit register is described by the
following transformation:

| j〉 −→ 1√
2n

2n−1

∑
k=0

e2πi jk/2n |k〉, 0≤ j ≤ 2n−1. (15.17)

However, the essential advantage of quantum computation over classical computa-
tion is that the quantum mechanical principle of superposition of states allows all
possible inputs to be processed at the same time. Consequently, if the quantum reg-
ister is in an arbitrary superposition of the basis vectors ∑2n−1

j=0 x j| j〉, then the QFT

will rotate this state into another superposition of the basis vectors ∑2n−1
k=0 yk|k〉, in

which the output amplitudes yk are the classical discrete Fourier transform of the in-
put amplitudes x j. Classically, we can compute the numbers yk from x j usingΘ(22n)
elementary arithmetic operations in a straightforward manner and inΘ(n2n) opera-
tions by using the Fast Fourier Transform algorithm [32].

In contrast, a circuit implementing the QFT requires only O(n2) elementary
quantum gates, as proved by Coppersmith [33]. Such a circuit can be easily derived
if Eq. (15.17) is rewritten as a tensor product of the n qubits involved:

| j1 · · · jn〉 −→
(|0〉+ e2πi0. jn |1〉)⊗ (|0〉+ e2πi0. jn−1 jn |1〉)⊗·· ·⊗ (|0〉+ e2πi0. j1··· jn |1〉)

2n/2
, (15.18)

15 The Future of Parallel Computation 489

using the binary representation j1 j2 · · · jn of j and binary fractions in the exponents
(for full details see [17]).

Note that each Fourier transformed qubit is in a balanced superposition of |0〉
and |1〉. These qubits differ from one another only in the relative phase between the
|0〉 and the |1〉 components. For the first qubit in the tensor product, jn will intro-
duce a phase shift of 0 or π , depending on whether its value is 0 or 1, respectively.
The phase of the second qubit is determined (controlled) by both jn and jn−1. It
can amount to π +π/2, provided jn−1 and jn are both 1. This dependency on the
values of all the previous qubits continues up to (and including) the last term in
the tensor product. When | j1〉 gets Fourier transformed, the coefficient of |1〉 in the
superposition involves all the digits in the binary expansion of j.

In the case of each qubit, the 0 or π phase induced by its own binary value is
implemented through a Hadamard gate. The dependency on the previous qubits is
reflected in the use of controlled phase shifts, as depicted in Fig. 15.7. In the figure,
H denotes the Hadamard transformation

H ≡ 1√
2

[
1 1
1 −1

]
, (15.19)

while the gate Rk implements a π/2k−1 phase shift of the |1〉 component, according
to the unitary transformation

Rk ≡
[

1 0

0 e2πi/2k

]
. (15.20)

R2

H

2RH

n-1Rn-2R2RH

nRn-1RH

π2
|0> + e |1>

2
i0.j ... j

n
π2

|0> + e |1>

|0> + e |1>
π2 i0.j ... j

1 n

n|j >

|j >n-1

2|j >

|j >1

n-1

ni0.jπ2
|0> + e |1>

n
i0.j j

Fig. 15.7 Quantum circuit performing the discrete Fourier transform. The final swapping of qubits
was omitted for simplicity.

15.4.1.1 Rank-Varying Complexity

Computing the QFT and its inverse can be viewed as examples of algorithms
with rank-varying complexity. According to the quantum circuit above, we need
n Hadamard gates and n− 1 + n− 2 + · · ·+ 1 conditional rotations, for a total of
n(n + 1)/2 gates required to compute the Fourier transform on n qubits. But this

490 Selim G. Akl and Marius Nagy

total amount of work is not evenly distributed over the n qubits. The number of
gates a qubit needs to be passed through is in inverse relation with its rank. | j1〉 is
subjected to n elementary quantum gates, n−1 elementary unitary transformations
are applied to | j2〉, and so on, until | jn〉, which needs only one basic operation.

If we break down the QFT algorithm into n steps (one for each qubit involved),
then its complexity varies with each step. Starting with | j1〉, the time needed to com-
plete each step decreases over time. Since the rank of each step dictates its complex-
ity, the circuit implementing the QFT is an example of a rank-varying complexity
algorithm.

n|j >

|j >n-1

2|j >

|j >1HR2n-1n-1R

2
i0.j ... j

n
π2

|0> + e |1>

H2Rn
i0.j j

n-1
π2

|0> + e |1>

ni0.jπ2
|0> + e |1> H

nR|0> + e |1>
π2 i0.j ... j

1 n

H2Rn-2Rn-1R

Fig. 15.8 Quantum circuit performing the inverse Fourier transform.

Naturally, the computation of the inverse QFT can also be decomposed into steps
of varying complexity. Reversing each gate in Fig. 15.7 gives us an efficient quantum
circuit (depicted in Fig. 15.8) for performing the inverse Fourier transform. Note that
the Hadamard gate is its own inverse and R†

k denotes the conjugate transpose of Rk:

R†
k ≡

[
1 0

0 e−2πi/2k

]
. (15.21)

Getting back to the original | j1 j2 · · · jn〉 from its Fourier transformed expression
has a certain particularity however. Because of the interdependencies introduced by
the controlled rotations, the procedure must start by computing | jn〉 and then work
its way up to | j1〉. The value of | jn〉 is needed in the computation of | jn−1〉. Both
| jn〉 and | jn−1〉 are required in order to obtain | jn−2〉. Finally, the values of all the
higher rank bits are used to determine | j1〉 precisely. Thus, computing the inverse
Fourier transform by the quantum circuit illustrated in Fig. 15.8 is a procedure the
complexity of whose steps increases with their rank.

Certainly, the fact that the total amount of operations (work) is not evenly dis-
tributed over the steps composing a certain algorithm does not change the overall
complexity of the algorithm in any way. But the study of computations that can
be characterized as having rank-varying complexity is important especially in the
field of parallel computing. Operations pertaining to the same step or belonging
to distinct steps may be executed in parallel, leading to an important reduction in
the overall running time of the respective algorithm. In the particular case of the
QFT, the transformation of the first qubit has the highest computational complexity.

15 The Future of Parallel Computation 491

However, the use of an appropriate parallel architecture allows us to complete the
entire computation during the n time units required just for the first qubit. Since the
solution we describe can be characterized as a parallelization of the semiclassical
solution due to Griffiths and Niu [34], we analyze the advantages offered by the
former with respect to the performance of the latter.

15.4.1.2 Semiclassical (Sequential) Solution

Although the circuits for computing the QFT and its inverse are efficient in terms
of the total number of gates employed, the majority of these gates operate on two
qubits. This makes a practical implementation difficult, since arranging for one qubit
to influence another in a desired way is far greater a challenge than evolving a single-
qubit closed quantum system in accordance with any unitary transformation.

A method to replace all the two-qubit gates in the circuit performing the QFT
by a smaller number of one-qubit gates controlled by classical signals has been
developed by Griffiths and Niu [34] under the assumption that a measurement of
the quantum register follows the application of the QFT, as it is usually the case,
including in Shor’s factoring quantum algorithm. Their approach takes advantage of
the fact that the roles of the control and target qubits in any of the two-qubit gates
required to carry on the computation of the QFT are interchangeable. Consequently,
the quantum circuit in Fig. 15.7 is equivalent to the one depicted in Fig. 15.9 (for
inputs restricted to four qubits).

1|k >

2|k >

3|k >

4|k >

R

H2R3R

H2R

H

44|j >

3|j >

2|j >

1 |j >

H2R3R

Fig. 15.9 Alternative arrangement of gates in the circuit performing the quantum Fourier trans-
form. The roles of the control and target qubits in the controlled phase shift gates can be switched.

Note that, from this new perspective, the computation of the QFT appears to be a
procedure whose steps are of increasing complexity. However, under the assumption
that the Fourier transform is immediately followed by a quantum measurement, the
complexity of each step in the computation can be made constant. Since a control
qubit enters and leaves a two-qubit gate unchanged, it follows that the top qubit
in Fig. 15.9 yields the same result regardless of whether it is measured as it exits
the circuit or immediately after undergoing the Hadamard transform. In the latter
case, the result of the measurement can be used to determine the phase shift that
needs to be applied on the second qubit, before it too is subjected to a Hadamard

492 Selim G. Akl and Marius Nagy

transform and then measured. The phase computed for the second qubit together
with the result of the second measurement is passed down as classical inputs for the
rotation applied to the third qubit.

The computation proceeds in this manner all the way down to the last qubit, with
a phase rotation, a Hadamard gate and a measurement being performed at each step.
The process is illustrated in Fig. 15.10, where double lines have been used to denote
a classical signal, according to the usual convention. Although the phase shift ap-
plied to each qubit is considered a single operation, conceptually it is a combination
of the gates depicted in the corresponding box, with each component being applied
only if the controlling qubit was measured as 1.

|j >3

|j >4

H

H

2

H

R2

k4

k3

k2

k1R4R3R2

R3R2H

|j >1

|j >

Fig. 15.10 Semiclassical circuit for computing the quantum Fourier transform. Single lines convey
quantum information, while double lines carry classical information.

Example

Here is an example of how the outcome of measurements determines the phase
rotation that will be applied to subsequent qubits. If the top qubit in Fig. 15.10 yields
a 1 (k4 = 1) when measured, then the second qubit undergoes a π/2 phase shift
before the Hadamard gate and then it is measured. Suppose now that the outcome
of this measurement is a 0 (k3 = 0). Then the third qubit is phase shifted by

k4
π
4

+ k3
π
2

=
π
4

(15.22)

and then the Hadamard gate is applied. Again, without loss of generality, let the
measurement yield a 1 (k2 = 1). Then the phase shift applied to the bottom qubit is

k4
π
8

+ k3
π
4

+ k2
π
2

=
5π
8

. (15.23)

This semiclassical approach to computing the QFT achieves optimality in terms
of the number of elementary unitary transformations that have to be applied. It also
has the important advantage of employing only quantum transformations acting on a
single qubit at a time. However, there is still room for improvement, as the total time
needed to complete the computation can be further squeezed down if parallelism is

15 The Future of Parallel Computation 493

brought into play. In the next section we show how a quantum pipeline architecture
is able to speed up the computation of the Fourier transform.

15.4.1.3 Parallel Approach

The solution developed in [34] to reduce the complexity of the QFT envisages a
purely sequential approach, which is motivated by the same data dependency that
causes the complexity of a step to vary with its rank. Nevertheless, there is a certain
degree of parallelism that is worth exploiting in the computation of the QFT (or its
inverse) in order to minimize the overall running time.

Our parallel approach is based on the observation that once a qubit has been
measured, all phase shift gates classically controlled by the outcome of that mea-
surement can be applied in parallel. The arrangement, again for just four qubits, is
shown in Fig. 15.11. The one-qubit gates are ordered into a linear array having a
Hadamard transform at the top and followed by a π/2 phase shift gate. The phase
shift induced by any other gate down the array is just half the rotation performed by
the immediately preceding gate.

>

>

>

>

>

Control

Measure

4R

3R

2R

H 1

4|j >

3|j >

2|j >

1|j > 4kk ,3k ,2k ,

Fig. 15.11 Quantum pipeline array for computing the Fourier transform. The input is quantum,
but the output is classical. At each step, qubits move one position up in the array.

This architecture allows R2, R3 and R4 to be performed in parallel during the
first cycle. Since each phase shift gate acts on a different qubit, they can all be ap-
plied simultaneously, if the top qubit yielded a 1 upon measurement. In the second
cycle, each qubit in the array travels up one position, except of course for the top
one, which has already been measured. Now, depending on the outcome of the sec-
ond measurement, R2 and R3 can be simultaneously effected on the corresponding
qubits. In the third cycle, only R2 is needed and only if the control is 1. The com-
putation ends with the last qubit reaching the Hadamard gate and being measured

494 Selim G. Akl and Marius Nagy

afterward. A formal description of the procedure, in the general case, is given as in
Algorithm 15.1.

Algorithm 15.1 Parallel_Quantum_Fourier_Transform
1: Input: | j1 j2 · · · jn〉
2: Output: k1k2 · · ·kn

3:
4: for i = 1 to n do
5: | ji〉 ←− H| ji〉;
6: Measure | ji〉 as kn−i+1;
7: if kn−i+1 = 1 then
8: for l = 2 to n− i+1 in parallel do
9: | ji+l−1〉 ←− Rl | ji+l−1〉;

10: | ji+l−1〉 moves one position up in the array
11: end for
12: end if
13: end for

In the worst case, when all qubits are measured as 1, there is no difference be-
tween the parallel algorithm outlined above and the sequential solution envisaged
by Griffiths and Niu [34] with respect to the overall running time. Assuming, for
analysis purposes, that measuring a qubit, applying a phase shift and performing a
Hadamard transformation, each takes one time unit, then the total time necessary
to complete the Fourier transform on a quantum register with n qubits is 3n−1, as
the top qubit in both the sequential circuit of Fig. 15.10 and the parallel circuit of
Fig. 15.11 does not require a phase shift.

However, in the average case, some of the classical signals controlling the ar-
ray of phase shift gates in Fig. 15.11 will have been observed as 0, meaning that
no phase shifts have to be performed during those respective cycles. In contrast,
the sequential solution depicted in Fig. 15.10 requires the application of a phase
shift at every step following the first measurement with outcome 1. If the expected
probability of a measurement yielding 0 equals the expected probability to ob-
serve a 1 following a measurement, then the running time of the parallel solution
is shorter than the sequential running time by a difference proportional to the time
it takes to effect a number of O(n) phase shift gates, where n is the size of the input
register.

The difference between the sequential running time and the parallel running time
is maximum when | j1〉 is measured as 1 and all the other qubits are observed in the
state 0. In this case, the circuit in Fig. 15.10 still performs n− 1 phase shifts for a
total running time of 3n− 1 time units, while the circuit in Fig. 15.11 executes all
n−1 phase shifts in parallel during the first cycle, thus completing the computation
in 2n+1 time units.

The second advantage of the parallel approach is that the phase shift gates that
need to be applied during the computation are known at the outset, making it easy
to set them up beforehand in order to form the required linear array architecture.
In other words, regardless of the initial quantum state of the register on which the

15 The Future of Parallel Computation 495

QFT is to be performed, the first gate in the linear array (top gate in Fig. 15.11) will
always perform a Hadamard gate, the second gate always performs a π/2 phase
shift, the third gate is “hardwired” to effect a π/4 phase shift and so on. The systolic
mode of operation of the quantum array compensates for the fixed characteristics of
each gate, the qubits traversing the array to undergo a specific quantum evolution
at each node. In the current context, the attribute “systolic” describes the rhythmic
mode in which data travel through the array of gates, much like blood does through
the circulatory system.

In the sequential approach, on the other hand, the phase shift applied to each qubit
is not known at the outset, as it is computed on the fly based on the information about
the measurements performed so far and transmitted as classical signals. This means
that the gates effecting the necessary phase shifts in the semiclassical approach of
Griffiths and Niu [34] have to be “programmed” or adjusted during the computation,
in order to accommodate a discrete set of possible values for the phase shift.

In the example given at the end of previous section, the phase shift applied to the
bottom qubit is 5π/8 because the previous measurements yielded k4 = 1, k3 = 0 and
k2 = 1. But the phase shift could have been 7π/8 if all the measurements yielded a
1 or just π/8 if k4 = 1 and k3 = k2 = 0. Therefore, we do not know at the outset how
to “set” the quantum gates responsible with the phase shift performed on each qubit,
as this information becomes available only during the computation, depending on
the probabilistic results of the measurements. Technologically, this is more difficult
to implement than a linear array of gates whose characteristics are fixed for any
possible course of the computation.

The semiclassical Fourier transform and its parallelization are applicable to those
quantum computations in which the Fourier transform immediately precedes a mea-
surement of the qubits involved in the computation, like in Shor’s algorithms for
factoring integers and computing discrete logarithms [9]. Furthermore, the quan-
tum systolic array architecture works equally fine if the input is already classical, in
which case the restriction to measure the qubits after applying the Fourier transform
can be lifted altogether.

When j1, j2, . . . , jn are classical bits, the topology of the circuit in Fig. 15.11
remains unchanged, except that no measurements are performed and the flow of
data through the linear array is reversed, as shown in Fig. 15.12. As more data are
fed into the linear array through the Hadamard gate, after having “controlled” the
parallel execution of a set of phase shifts, the computational complexity of each step
increases with its rank. When j1 enters the array, only the Hadamard gate is active,
but with each consecutive step, a new gate down the array joins the ones above it
to operate on the qubits traversing the array. Because these gates operate in parallel,
the execution time of each step is maintained constant. Also note that, in this case,
all outputs are simultaneously obtained during the last step of the computation.

The overall parallel running time, in the worst case, is therefore 2n−1 time units,
as there are no measurements to perform. The worst case occurs when j2, j3, . . . , jn
all have value 1. For all other inputs (that is, when at least one of j2, j3, . . . , jn
is 0), the parallel running time is smaller than the time needed to complete the

496 Selim G. Akl and Marius Nagy

computation in a purely sequential manner, where each qubit is dealt with one after
the other, in decreasing order of their ranks.

3 4

i0.j j j
|0> + e |1>

2π 2 3 4

H

R2

R3 Control
j1 j2

π

>

>

>

>

, , ,

>

>

|0> + e |1>42πi0.j

|0> + e |1>
i0.j j 2

j

>

>

>

>

>

>

, , ,

π2 1 2 3 4i0.j j j j
|0> + e |1>

3 j4

R4

>

>

>

H

R2

R3

R4

Control
j1 j2 j3 j4

> j3 j42, , ,

>

>

H

R2

R3

R4

Control
j1 j

Fig. 15.12 Quantum pipeline array for computing the Fourier transform on classical inputs. The
output is now quantum and the flow of qubits in the array is downward.

Quantum algorithms employ the Fourier transform in order to create an interfer-
ence among the terms in a superposition. From this point of view, the QFT offers
little advantage, if any, when applied to a classical input. However, the situation
is different for quantum cryptography. Distributing classical keys through quantum
means is a procedure that may use the QFT and its inverse as encoding and decoding
algorithms to protect vital information while in transit [35].

Naturally, the parallel approach detailed in this section for the computation of
the direct Fourier transform is also applicable, with the same results, to the circuit
in Fig. 15.8, performing the inverse Fourier transform. The difference in time com-
plexity between the sequential approach and the parallel one, although seemingly
insignificant from a theoretical perspective, may prove essential under practical con-
siderations, as we show in our next example.

15.4.2 Quantum Decoherence

Qubits are fragile entities and one of the major challenges in building a practical
quantum computer is to find a physical realization that would allow us to complete
a computation before the quantum states we are working with become seriously
affected by quantum errors. In an ideal setting, we evolve our qubits in perfect
isolation from the outside world. But any practical implementation of a quantum
computation will be affected by the interactions taking place between our system
and the environment. These interactions cause quantum information to leak out into

15 The Future of Parallel Computation 497

the environment, leading to errors in our qubits. Different types of errors may affect
an ongoing computation in different ways, but quantum decoherence, as defined be-
low, usually occurs extremely rapidly and can seriously interfere with computing
the QFT and its inverse.

In the context of a quantum key distribution protocol [35], consider the task of
recovering the original (classical) bit string j = j1 j2 · · · jn from its QFT form. The
circuit performing this computation (see Fig. 15.8) takes as input n qubits. The state
of each qubit can be described by the following general equation:

|ψk〉=
1√
2
|0〉+ eiθk

√
2
|1〉, 1≤ k ≤ n, (15.24)

where the relative phase θk, characterizing the qubit of rank k, depends on the values
of bits jk, jk+1, · · · , jn. The corresponding density operator is given by

ρk = |ψk〉〈ψk|=
1
2
|0〉〈0|+ e−iθk

2
|0〉〈1|+ eiθk

2
|1〉〈0|+ 1

2
|1〉〈1|, (15.25)

or in matrix form

ρk =
1
2

[
1 e−iθk

eiθk 1

]
. (15.26)

The diagonal elements (or the populations) measure the probabilities that the qubit
is in state |0〉 or |1〉, while the off-diagonal components (the coherences) measure
the amount of interference between |0〉 and |1〉 [36]. Decoherence then, resulting
from interactions with the environment, causes the off-diagonal elements to disap-
pear. Since that is where the whole information carried by a qubit is stored, the input
qubits for computing the inverse Fourier transform are very sensitive to decoher-
ence. When they become entangled with the environment, the interference brought
about by the Hadamard gate is no longer possible, as the system becomes effectively
a statistical mixture. In other words, decoherence makes a quantum system behave
like a classical one.

Naturally, this process is not instantaneous, but it usually occurs extremely
rapidly, subject to how well a qubit can be isolated from its environment in a par-
ticular physical realization. Because of decoherence, we must obtain the values of
j1, j2, · · · , jn before time limit δ , after which the errors introduced by the coupling
with the environment are too serious to still allow the recovery of the binary digits
of j.

The precise value of δ will certainly depend on the particular way chosen to
embody quantum information. If the qubits are implemented as trapped ions, then
usually such a physical system is relatively well isolated and decoherence is not a
major concern. Nevertheless, other impediments make the design of a scalable quan-
tum architecture a very challenging task. As a consequence, current experiments are
only able to manipulate a handful of qubits. An illustrative example is a result from

498 Selim G. Akl and Marius Nagy

2005 reporting the implementation of the semiclassical QFT on a “quantum regis-
ter” composed of three beryllium ion qubits [12].

At the other end of the spectrum, we have attempts to implement the QFT, and
quantum algorithms in general, using the well-established technology of nuclear
magnetic resonance (NMR). In this case, decoherence plays a much more important
role, directly affecting the accuracy of the results and placing a serious limitation on
the scalability of this type of quantum computing architecture.

Experimental arrangements to compute the QFT on a 3-qubit NMR quantum
information processor are reported by Weinstein et al. [11, 37]. Also, a 7-qubit ex-
periment to implement the simplest meaningful instance of Shor’s algorithm for
factoring the number 15 uses the QFT as an important step of the computation [10].
Again we can see that scalability is the main obstacle toward building a practical
quantum computer.

Of course, one of the possibilities to cope with the errors introduced by quantum
decoherence is to use quantum codes to correct them. But here too, there are lim-
itations. The more serious the errors are, the more ancillary qubits are required to
correct them and consequently, the higher the probability of an error occurring in
the correcting circuit itself. Therefore, we can only use that many auxiliary qubits
to correct quantum errors before no advantage whatsoever in the accuracy of the
solution is gained. From this point of view, parallelism offers a “clean” solution,
avoiding the errors caused by quantum decoherence altogether and completing the
computation before the entanglement with the surrounding environment seriously
affects the ongoing quantum transformations.

The point we wish to make here is that when all other means have been used, a
parallel approach may be the only way to further improve scalability by reducing the
running time of the quantum algorithm and keep it below the decoherence thresh-
old. In the particular case of computing the QFT and its inverse for cryptographic
purposes, when δ lies between the parallel completion time and the sequential com-
pletion time, the quantum pipeline array may be the only architecture capable to
precisely recover all digits in the binary expansion of j. From a different perspec-
tive, the parallel solution allows for longer bit strings to be transmitted between the
communicating parties, thus achieving better scalability over the purely sequential
approach. With respect to scalability, it is also important to note that the parallel
solution scales up linearly in the number of quantum gates employed, when the
number of qubits on which the QFT is performed increases.

15.4.2.1 Time-Varying Variables

We have already seen that the computation of the Fourier transform by quantum
means belongs to the class of computations in which the complexity of each step de-
pends on its rank. In addition, if we also take into consideration the properties of the
computational environment, we are faced with the negative effects caused by quan-
tum decoherence. Formally, the data stored in the quantum register before time limit
δ is significantly different from what the same qubits encode after the decoherence

15 The Future of Parallel Computation 499

threshold δ . The coupling between our qubits and their surrounding environment
effectively places a hard deadline on the computation. After this deadline, the input
data (variables) will have changed and if the computation is not yet complete, it has
inevitably failed. From this perspective, the computation of the QFT (whether direct
or inverse) in the presence of decoherence is an example of the paradigm dealing
with time-varying variables.

As we have demonstrated above, parallelism can help us cope with variables
whose values change over time. The use of a parallel approach becomes critical
when the solution to a certain problem must accommodate a deadline. In our case,
quantum decoherence places an upper bound on the scalability of computing the
QFT or its inverse, and the only chance to reach beyond that limit is through a
parallel solution.

15.4.3 Quantum Error-Correction

Parallel processing is often the best alternative to avoid quantum errors in general
and not just decoherence. The following examples on correcting quantum errors
using specialized quantum codes or via symmetrization clearly show this.

In the computation of the QFT and its inverse the complexity of each step evolves
with its rank. The more steps are executed before the current one, the higher the
computational resources required to complete it. In this section, we still focus on
steps of variable complexity, but in this case the variation is time driven rather than
rank driven. In other words, we can have a high computational complexity even for
the first step, if we allow some time to pass before starting the computation. The
amount of computational resources required to successfully carry out a certain step
is directly proportional to the amount of time elapsed since the beginning of the
computation. We illustrate this paradigm through the use of error-correcting codes
employed to maintain a quantum computation error-free.

The laws of quantum mechanics prevent, in general, a direct application of the
classical error-correction techniques. We cannot inspect (measure) at leisure the
state of a quantum memory register to check whether an ongoing computation is
not off track without the risk of altering the intended course of the computation.
Moreover, because of the no-cloning theorem, quantum information cannot be am-
plified in the same way that digital signals can. Correcting quantum errors certainly
requires much more ingenuity than fixing classical bits, but the basic idea of using
redundancy is still useful.

Like in the classical case, the information contained in a qubit is spread out over
several qubits so that damage to any one of them will not influence the outcome
of the computation. In the quantum case, though, the encoding of the logical qubit
is achieved through the use of specific resources, by entangling the logical qubit
with several ancilla qubits. In this way, the information in the state of the qubit to
be protected is spread out among the correlations characterizing an entangled state.

500 Selim G. Akl and Marius Nagy

Paradoxically enough, entanglement with the environment can be fought back using
quantum error-correcting codes based on entanglement [38].

15.4.3.1 Quantum Codes

The construction of all quantum error-correcting codes is based on the surprising,
yet beautiful idea of digitizing the errors. Any possible error affecting a single qubit
can be expressed as a linear combination of no errors (I), bit flip errors (X), phase
errors (Z) and bit flip phase errors (Y), where I, X , Z and Y are the Pauli operators
describing the effect of the respective errors. Generalizing to the case of a quantum
register, an error can be written as∑i eiEi for some error operators Ei and coefficients
ei. The error operators can be tensor products of the single-bit error transformations
or more general multibit transformations. An error-correcting code that can undo
the effect of any error belonging to a set of correctable errors Ei will embed n data
qubits (logical qubits) in n + k code qubits (physical qubits). The joint state of the
ensemble of code qubits is subject to an arbitrary error, mathematically expressed
as a linear combination of the correctable error operators Ei.

To recover the original encoded state, a syndrome extraction operator has to be
applied that uses some ancilla qubits to create a superposition of the error indices
i corresponding to those correctable error operators Ei that have transformed the
encoded state. Measuring only the ancilla qubits will collapse the superposition of
errors, yielding only one index k. But because the ancilla qubits were entangled with
the code qubits through the application of the syndrome extraction operator, the side
effect of the measurement is that the corruption caused by all error transformations
will be undone, save for the one corresponding to index k. Consequently, only one
inverse error transformation is required in order to complete the recovery process.
In essence, knowing how to deal with a set of fundamental error transformations
allows us to tackle any linear combination of them by projecting it to one of the
basis components. This process is referred to as digitizing or discretizing the errors.

Peter Shor’s second major contribution to the advancement of quantum compu-
tation was the creation in 1995 of an algorithm that could correct any kind of error
(amplitude and/or phase errors) affecting a single qubit in a 9-qubit code [39]. In
a different approach, Steane studied the interference properties of multiple particle
entangled states and managed to devise a shorter 7-qubit code [40]. The number of
qubits necessary for a perfect recovery from a single error was later squeezed down
to a minimum of five [41, 42].

Naturally, in order to cope with more than one error at a time, it is necessary
to use larger and more elaborate codes. The book of Nielsen and Chuang [17] of-
fers a detailed treatment of quantum codes, explaining how ideas from classical
linear codes can be used to construct large classes of quantum codes, such as the
Calderbank-Shor–Steane (CSS) codes [43, 44] or the stabilizer codes (also known
as additive quantum codes), which are even more general than the CSS codes and
are based on the stabilizer formalism developed by Gottesman [45].

15 The Future of Parallel Computation 501

The major drawback in using large and intricate quantum codes is that the cor-
rective circuit itself is as much prone to errors as the quantum circuit responsible for
the main computation. The more errors we are attempting to rectify, the more the
complexity and length of the recovery procedure will increase (see [46] for some
theoretical bounds on the relationship between the number of data qubits, the total
number of entangled qubits and the maximal number of errors that can be tolerated).
Thus, we can only increase the size of the error correction codes up to a certain cut-
off point, past which no further gains in accuracy can be made.

One attempt to overcome this limitation are the concatenated codes. If a certain
code uses n physical qubits to encode one logical qubit, a concatenated version of
that code is obtained by further encoding each of the n qubits in another block of n.
This hierarchical structure (tree) can be further expanded to accommodate as many
levels as desired. By adding more levels of concatenation, the overall chance for an
error can be made arbitrarily small, provided that the probability of an individual
error is kept below a certain critical threshold [47]. Of course, the high cost of using
concatenated codes lies in the exponential increase in the number of qubits with the
number of levels added.

15.4.3.2 Time-Varying Complexity

This short exposition of the various quantum error-correcting codes devised to main-
tain the coherence of fragile quantum states and to protect them from dissipative
errors caused by spontaneous emissions, for example, clearly shows one thing. The
more time it takes to complete a quantum computation, the more errors are intro-
duced in the process. Quantum error-correcting schemes can be employed to deal
with these errors, but the running time, number of ancilla qubits and complexity
of the correcting algorithm are directly proportional to the number and seriousness
of the errors introduced into the computation. Correcting quantum errors is an im-
portant task executed alongside the mainstream computation and its complexity is
heavily dependent on time. Steps executed soon after the initialization of the quan-
tum register will require none or low complexity recovery techniques, while steps
executed long after the initialization time may require complicated schemes and
heavy resources allocated to deal with quantum errors.

Again, parallelism can help avoid this increase in the complexity of the recovery
procedure and ultimately ensure the success of the computation. If the steps of the
algorithm are independent of one another and can be executed in any order, then the
most straightforward application of parallelism is to execute all steps simultaneously
and thus complete the computation before any serious errors can accumulate over
time. In this way we try to avoid or elude quantum errors rather than deal with them.
But parallelism, in the form of redundancy, can also be used to correct quantum
errors.

502 Selim G. Akl and Marius Nagy

15.4.3.3 Error Correction via Symmetrization

The technique called error correction via symmetrization [48, 49] is yet another
example of how the duality of quantum mechanical laws can be exploited for the
benefit of quantum computation. Although the measurement postulate severely re-
stricts us in recycling techniques from classical error correction, it can still offer
conceptually new ways of achieving error correction that are simply unavailable to
classical computers. Error correction via symmetrization relies on the projective ef-
fect of measurements to do the job. The technique uses n quantum computers, each
performing the same computation. Provided no errors occur, the joint state of the n
computers is a symmetric one, lying somewhere in the small symmetric subspace
of the entire possible Hilbert space. Devising a clever measurement that projects the
joint state back into the symmetric subspace should be able to undo possible errors,
without even knowing what the error is.

To achieve this, the n quantum computers need to be carefully entangled with a
set of ancilla qubits placed in a superposition representing all possible permutations
of n objects. In this way, the computation can be performed over all permutations of
the computers simultaneously. Then, by measuring the ancilla qubits, the joint state
of the n computers can be projected back into just the symmetric computational
subspace, without the errors being measured explicitly. Peres has shown that this
technique is most appropriate for correcting several qubits that are slightly wrong,
rather than correcting a single qubit that is terribly wrong [50]. Error correction
via symmetrization can be applied repeatedly, at regular time intervals, to avoid the
accumulation of large errors and continually project the computation back into its
symmetric subspace.

No matter which parallel approach is employed, if the required number of quan-
tum processing units is provided, then the algorithm is successful. Simulating the
same solution on an insufficient number of quantum computers will lead to a grad-
ual accumulation of the quantum errors up to the point where the results of the
computation are compromised.

15.4.4 Quantum Distinguishability

The problem of distinguishing among entangled quantum states is a quantum me-
chanical instance of the interacting variables paradigm (Sect. 2.7.2.4). Suppose
we have a fixed set of quantum states described using the usual Dirac notation
|Ψi〉 (1≤ i≤ n) known to both Alice and Bob. Alice randomly chooses a state from
the set and prepares a qubit (or set of qubits) in that particular state. She then gives
the qubit(s) to Bob who is free to measure them in any way he likes, without apply-
ing any quantum operation on them (Bob lacks the power of a quantum computer).
To be more specific, Bob can apply any kind of measurement on the qubit(s) and
possibly process and/or interpret the classical information acquired through mea-
surement, but he cannot manipulate quantum information using unitary evolution.

15 The Future of Parallel Computation 503

In the end, his task is to identify the index i of the state characterizing the qubit(s)
Alice has given him. The only case in which a set of quantum states can be reliably
(that is, 100% of the time) distinguished from one another is if they are pairwise
orthogonal.

Now consider the case in which we try to distinguish among the four Bell states

1√
2
|00〉+ 1√

2
|11〉, 1√

2
|00〉− 1√

2
|11〉, 1√

2
|01〉+ 1√

2
|10〉, 1√

2
|01〉− 1√

2
|10〉

by resorting only to direct quantum measurements (in other words, no quantum
transformations are possible before a measurement). In these circumstances, any
sequential approach (that is, measuring the qubits one after the other) will be of no
help here, regardless of the basis in which the measurements are performed. By mea-
suring the two qubits in sequence, in the computational basis, Bob can distinguish
the states 1√

2
(|00〉±|11〉) from 1√

2
(|01〉±|10〉). He does this by checking if the out-

comes of the two measurements are the same or not. But this kind of measurement
makes it impossible to differentiate between 1√

2
(|00〉+ |11〉) and 1√

2
(|00〉− |11〉),

or between 1√
2
(|01〉+ |10〉) and 1√

2
(|01〉− |10〉).

Alternatively, Bob can decide to perform his measurements in a different basis,
like (|+〉, |−〉), where the basis vectors are

|+〉= 1√
2
|0〉+ 1√

2
|1〉 (15.27)

and

|−〉= 1√
2
|0〉− 1√

2
|1〉. (15.28)

Due to the fact that

|00〉+ |11〉√
2

=
|++〉+ |−−〉√

2
(15.29)

and

|00〉− |11〉√
2

=
|+−〉+ |−+〉√

2
, (15.30)

Bob can now reliably distinguish the quantum state 1√
2
(|00〉+ |11〉) from 1√

2
(|00〉−

|11〉). Indeed, if the two qubits yield identical outcomes when measured in this
new basis, then we can assert with certainty that the state was not 1√

2
(|00〉− |11〉).

Similarly, if the measurement outcomes for the qubits are different, the original state
could not have been 1√

2
(|00〉+ |11〉). Unfortunately, in this new setup, the quantum

states 1√
2
(|00〉+ |11〉) and 1√

2
(|01〉+ |10〉) become indistinguishable and the same

is true for 1√
2
(|00〉− |11〉) and 1√

2
(|01〉− |10〉).

The computational bases (|0〉, |1〉) and (|+〉, |−〉) are, respectively, the two ex-
tremities of an (theoretically) infinite number of choices for the basis relative to

504 Selim G. Akl and Marius Nagy

which the quantum measurements are to be performed. But even though the separa-
tion line between the four Bell states will drift with the choice of the basis vectors,
the two extreme cases discussed above offer the best possible distinguishability.

Intuitively, this is due to the entanglement exhibited between the two qubits in
all four states. As soon as the first qubit is measured (regardless of the basis), the
superposition describing the entangled state collapses to the specific state consistent
with the measurement result. In this process, some of the information originally
encapsulated in the entangled state is irremediably lost. Consequently, measuring
the second qubit cannot give a complete separation of the four EPR states. But the
Bell states do form an orthonormal basis, which means that (at least theoretically)
they can be distinguished by an appropriate quantum measurement. However, this
measurement must be a joint measurement of both qubits simultaneously, in order
to achieve the desired distinguishability.

15.4.4.1 Generalization

A more compact representation of the Bell basis is through a square matrix where
each column is a vector describing one of the Bell states:

1√
2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎟⎠ . (15.31)

The elements of each column are the amplitudes or proportions in which the com-
putational basis states |00〉, |01〉, |10〉 and |11〉 are present in the respective EPR
state.

This scenario can be extended to ensembles of more than two qubits. The fol-
lowing matrix describes eight different entangled states that cannot be reliably dis-
tinguished unless a joint measurement of all three qubits involved is performed:

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15.32)

In general, for a quantum system composed of n qubits, one can define the following
2n entangled states of the system:

15 The Future of Parallel Computation 505

1√
2
(|000 · · ·0〉 ± |111 · · ·1〉)

1√
2
(|000 · · ·1〉 ± |111 · · ·0〉)

... (15.33)

1√
2
(|011 · · ·1〉 ± |100 · · ·0〉).

These vectors form an orthonormal basis for the state space corresponding to the n-
qubit system. The only chance to differentiate among these 2n states using quantum
measurement(s) is to observe the n qubits simultaneously, that is, perform a single
joint measurement of the entire system. In the given context, joint is really just a syn-
onym for parallel. Indeed, the device in charge of performing the joint measurement
must possess the ability to “read” the information stored in each qubit, in parallel,
in a perfectly synchronized manner. In this sense, at an abstract level, and just for
the sake of offering a more intuitive understanding of the process, the measuring
apparatus can be viewed as having n probes. With all probes operating in parallel,
each probe can “peek” inside the state of one qubit, in a perfectly synchronous op-
eration. The information gathered by the n probes is seen by the measuring device
as a single, indivisible chunk of data, which is then interpreted to give one the 2n

entangled states as the measurement outcome.
From a mathematical (theoretical) point of view, such a measurement operator

can be easily constructed by defining each of the 2n states that are to be distinguished
to be a projector associated with the measurement operation. We are well aware
though that a physical realization of this mathematical construction is extremely
difficult, if not impossible to achieve in practice, with today’s technology. Yet, if
there is any hope to see a joint measurement performed in the future, then only
a device operating in a parallel synchronous fashion on all n qubits (as explained
above) would succeed.

It is perhaps worth emphasizing that if such a measurement cannot be applied
then the desired distinguishability can no longer be achieved regardless of how many
other measuring operations we are allowed to perform. In other words, even an
infinite sequence of measurements touching at most n− 1 qubits at the same time
cannot equal a single joint measurement involving all n qubits.

Furthermore, with respect to the particular distinguishability problem that we
have to solve, a single joint measurement capable of observing n−1 qubits simulta-
neously offers no advantage whatsoever over a sequence of n−1 consecutive single
qubit measurements. This is due to the fact that an entangled state like

1√
2
(|000 · · ·0〉+ |111 · · ·1〉) (15.34)

506 Selim G. Akl and Marius Nagy

cannot be decomposed neither as a product of n−1 individual states nor as a product
of two states (one describing a single qubit and the other describing the subsystem
composed of the remaining n−1 qubits). Any other intermediate decomposition is
also impossible.

Overall, our distinguishability problem can only be tackled successfully within
a parallel approach, where we can measure all qubits simultaneously. Conceptually,
distinguishing among entangled quantum states is a quantum example of measuring
interdependent variables. In this particular quantum instance, the interdependence
between variables takes the form of entanglement between qubits, the phenomenon
ultimately responsible for making a parallel approach imperative. But not only mea-
suring entangled states requires a parallel solution, quantum evolutions that have to
maintain a certain entangled state may also resort to parallelism in order to achieve
their goal. In our last example, we investigate entanglement as a global mathemati-
cal constraint that has to be satisfied throughout a quantum computation.

15.4.5 Transformations Obeying a Global Condition

Some computational problems require the transformation of a mathematical object
in such a way that a property characterizing the original object is to be maintained
at all times throughout the computation. This property is a global condition on the
variables describing the input state and it must be obeyed at every intermediate step
in the computation, including for the final state. Geometric flips, map recoloring and
rewriting systems are three examples of transformations that can be constrained by
a global mathematical condition [51].

Here, we show that some quantum transformations acting on entangled states
may also be perceived as computations obeying a global mathematical constraint.
Consider, for example, an ensemble of n qubits sharing the following entangled
state:

1√
2
|000 · · ·0〉+ 1√

2
|111 · · ·1〉. (15.35)

The entanglement characterizing the above state determines a strict correlation be-
tween the values observed in case of a measurement: either all qubits are detected
in the state 0 or they are all seen as 1. Suppose that this correlation has to be main-
tained unaltered, regardless of the local transformations each of the qubits may un-
dergo. Such a transformation may be the application of a NOT quantum gate to any
of the qubits forming the ensemble. After such an event, the particular entangled
state given in Eq. (15.35) is no longer preserved and as a consequence the correla-
tion between the qubits will be altered. The qubit whose state was “flipped” will be
observed in the complementary state, with respect to the other qubits. The global
mathematical constraint is no longer satisfied.

Parallelism can once again make the difference and help maintain the required
entangled state. If, at the same time one or more of the qubits are “flipped”, we

15 The Future of Parallel Computation 507

also apply a NOT gate to all remaining qubits simultaneously, then the final state
coincides with the initial one. In this way, although the value of each qubit has been
switched, the correlation we were interested to maintain remains the same. Also note
that any attempt to act on less than n qubits simultaneously is doomed to failure.

The state given in Eq. (15.35) is not the only one with this property. Any en-
tangled state from the orthonormal basis set (15.33) could have been used in the
example presented above. The correlation among the qubits would have been differ-
ent, but the fact that applying a NOT gate, in parallel, to all qubits does not change
the quantum state of the ensemble is true for each entangled state appearing in sys-
tem (15.33).

Perhaps the scenario described above can be extended to other quantum trans-
formations besides the NOT gate. Another, perhaps more interesting generalization
would be a quantum computation that has to maintain entanglement as a generic,
global mathematical constraint and not a specific type of entanglement with a par-
ticular correlation among the qubits involved. Such a computation would allow en-
tanglement to change form, but the mathematical definition of entanglement would
still have to be obeyed at each step with each transformation.

15.5 Looking Ahead

In this final chapter, we have reviewed some of the most promising computing
paradigms that have emerged from our relentless quest to make computation more
efficient in terms of speed or accuracy of the result obtained. A special attention was
given to the quantum computing paradigm, which still has the potential to radically
transform the field of computer science, provided that experimentalists will eventu-
ally find a viable design for a practical quantum computer. However, the essential
observation that can be formulated seeing all these efforts is that parallel processing
and the future of computation go hand in hand. Whether we are discussing con-
ventional computing architectures (like clusters and grids) or more exotic proposals
(DNA computing, quantum computing, etc.), they all draw their power from some
form of parallelism and they all can be considered as massively parallel computing
devices.

Moreover, the polymorphic nature of parallelism becomes evident by surveying
all these different ways to envisage computation. In most paradigms, parallelism
refers to a large (and sometimes huge) number of processing elements operat-
ing simultaneously, whether these are conventional electronic processors or DNA
molecules. But in quantum information processing, for instance, massive paral-
lelism is an attribute characterizing the “software” rather than the “hardware”, since
it refers to how a huge computational space can be explored in parallel by manip-
ulating only a relatively small number of qubits. Furthermore, quantum computing
is also the perfect example of how different instances of parallelism can be encoun-
tered within the same computational paradigm, as we showed in this chapter.

508 Selim G. Akl and Marius Nagy

It is difficult to foretell, at this point, what will be the dominant computing tech-
nology in a few decades’ time. It could be one of the alternatives described at the
beginning of the chapter or a hybrid solution involving a combination of two or
more paradigms. Yet another possibility would be the emergence of a totally new
and revolutionary way to perform computations. What we can say for sure, though,
is that parallel processing has reaffirmed its importance with every novel model of
computation proposed over time and it will continue to do so. Its capital role in
the theory of computing will not change, regardless of the physical layer used to
represent and manipulate information. In this respect, the universal attribute of par-
allelism becomes apparent, ensuring its perennity.

References

1. G. Păun, G. Rozenberg, A. Salomaa, DNA Computing – New Computing Paradigms, Springer
(1998).

2. L. Adleman, Molecular computation of solutions to combinatorial problems, Science 266
(1994) 1021–1024.

3. R. J. Lipton, DNA solution of hard computational problems, Science 268 (5210) (1995) 542–
545.

4. W.-L. Chang, M. Guo, J. Wu, Solving the independent-set problem in a DNA-based super-
computer model, Parallel Processing Letters 15 (4) (2005) 469–479.

5. G. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (1)
(2000) 108–143.

6. M. Pérez-Jiménez, A. Riscos-Núñez, A linear solution for the knapsack problem using ac-
tive membranes, in: Membrane Computing. Lecture Notes in Computer Science, Vol. 2933,
Springer (2004) pp. 250–268.

7. G. Păun, P systems with active membranes: Attacking NP-complete problems, Journal of
Automata, Languages, Combinatorics 6 (1) (2001) 5–90.

8. C. Zandron, C. Ferretti, G. Mauri, Solving NP-complete problems using P systems with ac-
tive membranes, in: I. Antoniou, C. Calude, M. Dinneen (Eds.), Unconventional Models of
Computation, Springer, London (2000) pp. 289–301, dISCO – Universita di Milano-Bicocca,
Italy.

9. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer, Special issue on Quantum Computation of the SIAM Journal on Comput-
ing 26 (5) (1997) 1484–1509.

10. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang,
Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic reso-
nance, Nature 414 (2001) 829–938.

11. Y. S. Weinstein, et al., Quantum process tomography of the quantum fourier transform,
Journal of Chemical Physics 121 (13) (2004) 6117–6133, http://arxiv.org/abs/
quant-ph/0406239v1.

12. J. Chiaverini, et al., Implementation of the semiclassical quantum fourier transform in a scal-
able system, Science 308 (5724) (2005) 997–1000.

13. A. Adamatzky, B. D. L. Costello, T. Asai, Reaction-Diffusion Computers, Elsevier, 2005.
14. R. Fraser, S. G. Akl, Accelerating machines: A review, International Journal of Parallel, Emer-

gent and Distributed Systems 23 (1) (2008) 81–104.
15. N. D. Mermin, From Cbits to Qbits: Teaching Computer Scientists Quantum Mechanics,

http://arxiv.org/abs/quant-ph/0207118 (July 2002).
16. E. Rieffel, W. Polak, An introduction to quantum computing for non-physicists, ACM Com-

puting Surveys 32 (3) (2000) 300–335.

15 The Future of Parallel Computation 509

17. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press (2000).

18. M. Hirvensalo, Quantum Computing, Springer-Verlag (2001).
19. A. Berthiaume, Quantum computation, in: L. A. Hemaspaandra, A. L. Selman (Eds.), Com-

plexity Theory Retrospective II, Springer-Verlag, New York (1997) pp. 23–51.
20. R. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. III, Addison-

Wesley, Reading, Mass. (1965).
21. C. Santori, et al., Indistinguishable photons from a single-photon device, Nature 419 (2002)

594–597.
22. E. H. Knill, R. Laflamme, G. J. Milburn, A scheme for efficient quantum computation with

linear optics, Nature 409 (2001) 46–52.
23. P. Dirac, The Principles of Quantum Mechanics, 4th Edition, Oxford University Press, 1958.
24. E. W. Weisstein, et al., Bloch sphere, From MathWorld – A Wolfram Web Resource, http:

//mathworld.wolfram.com/BlochSphere.html.
25. W. K. Wootters, W. H. Zurek, A single quantum cannot be cloned, Nature 299 (1982) 802–803.
26. A. Barenco, A universal two-bit gate for quantum computation, Proceedings of the Royal

Society of London A 449 (1995) 679–683.
27. D. DiVincenzo, Two-bit gates are universal for quantum computation, Physical Review A 51

(1995) 1015–1022.
28. E. Schrödinger, Discussion of probability relations between separated systems, Proceedings

of the Cambridge Philosophical Society 31 (1935) 555–563.
29. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality

be considered complete?, Physical Review 47 (1935) 777–780.
30. A. Berthiaume, G. Brassard, Oracle quantum computing, Journal of Modern Optics 41 (12)

(1994) 2521–2535.
31. S. Robinson, Emerging insights on limitations of quantum computing shape quest for fast

algorithms, SIAM News 36 (1) (2003).
32. J. W. Cooley, J. Tukey, An algorithm for the machine calculation of complex fourier series,

Mathematics of Computation 19 (1965) 297–301.
33. D. Coppersmith, An approximate fourier transform useful in quantum factoring, Technical

Report RC19642, IBM (1994).
34. R. Griffiths, C.-S. Niu, Semiclassical Fourier transform for quantum computation, Physical

Review Letters 76 (1996) 3228–3231.
35. M. Nagy, S. G. Akl, S. Kershaw, Key distribution based on the quantum Fourier transform, in:

Proceedings of the International Conference on Security and Cryptography (SECRYPT 2008),
Porto, Portugal (2008) pp. 263–269.

36. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, Vols. 1 and 2, Wiley, New York
(1977).

37. Y. S. Weinstein, et al., Implementation of the quantum fourier transform, Physical Review
Letters 86 (9) (2001) 1889–1891.

38. J. Preskill, Fault-tolerant quantum computation, in: H.-K. Lo, S. Popescu, T. Spiller (Eds.),
Introduction to Quantum Computation and Information, World Scientific (1998) pp. 213–269,
http://xxx.lanl.gov/abs/quant-ph/9712048.

39. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical Review
A 52 (1995) 2493–2496.

40. A. M. Steane, Error correcting codes in quantum theory, Physical Review Letters 77 (5) (1996)
793–797.

41. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, Mixed state entanglement
and quantum error correction, Physical Review A 54 (1996) 3824–3851, http://arxiv.
org/abs/quant-ph/9604024.

42. R. Laflamme, C. Miquel, J. P. Paz, W. H. Zurek, Perfect Quantum Error Correction Code,
http://arxiv.org/abs/quant-ph/9602019 (February 1996).

43. A. R. Calderbank, P. W. Shor, Good quantum error-correcting codes exist, Physical Review A
54 (2) (1996) 1098–1106, http://arxiv.org/abs/quant-ph/9512032.

510 Selim G. Akl and Marius Nagy

44. A. M. Steane, Multiple particle interference and quantum error correction, Proceedings of the
Royal Society of London A 452 (1996) 2551–2576.

45. D. Gottesman, Class of quantum error-correcting codes saturating the quantum ham-
ming bound, Physical Review A 54 (1996) 1862–1868, http://arxiv.org/abs/
quant-ph/9604038.

46. A. Ekert, C. Macchiavello, Quantum error correction for communication, Physical Review
Letters 77 (1996) 2585–2588.

47. J. Preskill, Reliable quantum computers, Proceedings of the Royal Society of London A 454
(1998) 385–410, http://xxx.lanl.gov/abs/quant-ph/9705031.

48. A. Berthiaume, D. Deutsch, R. Jozsa, The stabilization of quantum computation, in: Proceed-
ings of the Workshop on Physics and Computation: PhysComp ’94, IEEE Computer Society
Press, Los Alamitos, CA (1994) pp. 60–62.

49. A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, Stabi-
lization of Quantum Computations by Symmetrization, http://xxx.lanl.gov/abs/
quant-ph/9604028 (April 1996).

50. A. Peres, Error Symmetrization in Quantum Computers, http://xxx.lanl.gov/abs/
quant-ph/9605009 (May 1996).

51. S. G. Akl, Evolving computational systems, in: S. Rajasekaran, J. H. Reif (Eds.), Parallel
Computing: Models, Algorithms, and Applications, CRC Press (2007) a modified version
is available as Technical Report No. 2006-526, School of Computing, Queen’s University,
Kingston, Ontario, Canada.

Index

Accuracy, 73, 498, 501
Action wrapper, 274
Advance reservation, 124

challenges, 125
tools, 135

AKSUM, 93
execution time load imbalance, 108
JavaPSL, 84, 95
message passing overhead, 108
reinforcement learning, 97
synchronization overhead, 108

All-to-all, 269
multidimensional, 268

Amdahl’s law, 227, 257
Analytical treatment, 282, 283, 285, 288, 290
Application

backward pricing, 106
Jacobi relaxation, 103
MeteoAG application, 108
Stommel, 105

Approximation set, 221
Array, 48, 70, 72, 79, 494, 495, 498
ASKALON, 85

visualization diagrams, 88
Asset and liability management (ALM), 436,

437, 440–442
mean-absolute deviation model, 445
mean-variance model, 444
model extensions, 444
risk measure, 445
utility function, 446

Asynchronous, 46, 47
Atomic distribution, 295, 296, 299
Authentication, 124, 127
Authorization, 124, 127
Automatic performance tuning, 426
Autonomic computing, 170

Barnes-Hut tree method, 293, 294
Bell state, 485, 503, 504
Bio-heat equation, 309, 311, 330

validation, 313
Biological tissue, 311
Bloch sphere, 479, 483
Blocking, 189
Blood

flow, 330
perfusion, 330

Border handling, 416
Boundary

conditions, 311
equations, 315
layers, 335

Bus, 63, 64, 79
fixed, 63, 79
optical, 63, 79
reconfigurable, 63, 64, 66, 79

Cell processor, 258
Chemical bonds, 293
Circuit, 49, 59, 60

depth, 49, 59
size, 49
width, 49

Cloning, 481, 499
Cloud computing, 9, 140

commercial clouds, 9
scientific clouds, 9

Code region, 89, 92
subregion, 90

Codelets, 427
Collective operations, 295, 298
Communication, 106, 107

local, 248
MPI, 248

511

512 Index

Communication time, 348
Complexity

computational, 320
memory, 321
rank-varying, 75, 490
system construction, 320
system solution, 321
time-varying, 75, 501

Computation time, 348
Computational complexity, 293
Computational cost, 290
Computational fluid dynamics (CFD), 242
Computer

cluster, 49–52, 79, 292, 309, 352
distributed memory, 292, 293, 299
NUMA, 292
personal, 292, 296, 297
shared memory, 292
SMP, 292

Computer simulation process
principal steps, 312

Concurrent, 47
read, 47
write, 47, 62

Continuous casting of steel, 229, 234, 239
Conventional, 56, 60
Convolution, 404
Coordinates

Cartesian, 287, 288, 297
normal, 283, 286–288
relative Cartesian displacement, 285–288
transformations between, 287

Crank-Nicolson method, 319
Cutoff, 293, 294, 296, 298, 300

Data
management, 127, 130
replication, 128
transfer, 127

Data distribution, 291, 295
Data migration, 167
Data placement directives, 167
Data repository, 86, 87, 91
Deadline, 68, 73, 499
Decision variable space, 220
Decoherence, 497, 498
Decomposition, 446

asynchronous, 447
Benders decomposition, 446
scenario decomposition, 446

Diagonal operator, 273
Diaphony, 176, 184, 208
Differential Evolution (DE), 218, 223, 230,

239

Differential Evolution for Multiobjective
Optimization (DEMO), 224, 230, 239

Diffusion equation, 311, 314, 322
3D, 327
analytical solution, 324
approximate solution, 315
test case, 323

Digital library, 139
Dipole laser pulse, 276
Discrepancy, 177, 178
Discretization

mesh, 308, 312
space, 308
time, 309

Distinguishability, 502–506
Distributed, 50, 79
Distributed computing, 309
Distributed Diagonal Force Decomposition,

299–301
DNA, 472
Domain

computational, 308, 311
decomposition, 348
discretization, 313
mesh - points, 308
physical, 308
sub-domain, 308

Domain partitioning
patches, 245

Dominance relation, 220
Dynamic load balancing

domain based, 160
for parallel SAMR, 159
hybrid techniques, 160
patch based, 160

eBusiness, 132
Eckart frame, 283, 286
Effectiveness, 234
Efficiency, 224–226, 234, 239
Entanglement, 484, 485, 499–502, 504–507
EPR pair, 485, 504
Equations of motion, 282
eScience, 132
Ethernet, 292, 293
EuroPar, 20, 26
Evolutionary algorithm, 458
Evolutionary Algorithm (EA), 222

diffusion, 226, 227
hybrid, 226
island, 225, 227
master-slave, 225–227
parallel, 224

Evolutionary algorithms, 19

Index 513

basic components, 19
numerical optimization, 19
tuning of coolant flows, 19

Experiment, 91–93, 106
Experiment Generator, 92
Explicit

Euler’s method, 318
FD scheme, 325, 327, 330

comparison, 328
numerical methods, 313, 317

Explicit propagator, 275

Factorization
Birge-Qi , 455
Cholesky , 452
implicit, 452, 463
LU, 464

Factory service, 86
Fast Ethernet, 107
Fast Fourier transform

parallel, 267
Fast multipole methods, 293, 294
Filter

bank, 398, 413
biorthogonal, 408
finite impulse response (FIR), 398, 404
Haar, 407
infinite impulse response (IIR), 399, 419
recursive, 419
symmetrical, 408
uneven, 408

Finite difference method (FDM), 308, 313, 315
explicit, 311, 313
gradient term, 324, 325

Finite Element Method (FEM), 230
Finite element method (FEM), 308, 313, 316
Force decomposition, 295, 296, 299

blocks, 296, 298–301
distributed diagonal, 299

Force matrix, 296, 299, 300
Fourier, 487–492, 494–498
Fourier transform

discrete (DFT), 399
fast (FFT), 399, 423
multi-dimensional, 429
short-time (STFT), 428

Future parallel computing, 31
DNA computing, 31
membrane–computing, 31
quantum–computing, 31
reaction–diffusion computers, 31

Genetic algorithm, 458
Geographical locality, 166

Global, 506, 507
Global operations, 295, 296, 298

broadcast, 298
sum, 298

Globus toolkit (GT), 106
GLP, 179, 193, 197, 200
Graphics processing unit (GPU), 296
Grid, 50, 51, 79, 82, 150, 188

application, 137
category, 119
composite, 152
computing, 117
economy, 126
functionality, 121
hierarchical, 152
patch, 152
structured, 152

Grid computing, 8, 15, 448, 458
DIET middleware, 8
EGEE (Enabling Grids for E-SciencE), 15
European Grid Initiative (EGI), 15
Globus toolkit, 8, 16
Gridbus project, 15
image retrieval, 9
linear algebra implementations, 8
Monte Carlo, Quasi Monte Carlo methods, 8
Open Grid Forum (OGF), 8
text retrieval, 9

Grid hierarchy, 153
interpolation between levels, 155
level of refinement, 153
locality properties, 158
projection between levels, 156

Grid Monitoring Architecture, 87
Grid Resource Allocation Manager (GRAM),

106
Grid Security Infrastructure (GIS), 86
Grid site, 93
Grid tools, 133

Cactus, 133
Condor-G, 134
GridSolve, 134
Karajan, 135
MPICH-G2, 133
Taverna, 135
Triana, 135

Grid-Prophet, 98
GridFTP, 92

Hadamard, 483, 486, 489–495, 497
Hamiltonian, 283, 284, 286

analytical part, 283–285
remaining part, 283, 284
splitting, 283, 284

514 Index

Heart cooling, 310
Heat

conduction, 330
convection, 330
radiation, 330

Heat conduction equation, 322
Heat of fusion, 343
High Performance Fortran (HPF), 88, 92
HPCS program, 11
Human forearm temperature, 310
Hypercomputation, 474
Hypercube, 48

Implicit numerical methods, 313, 319
Independent variables, 315
Infiniband, 292
Infinite Impulse Filters (IIR), 28
Information retrieval, 360

parallel block-Jacobi SVD method with
dynamic ordering, 361

parallel block-Kogbetliantz SVD method
with modulus pivot strategy, 366

query, 360
reduced-dimension representation, 360
singular value decomposition, 360
term-document matrix, 360
vector space model, 360

Initial state, 311
Instrumentation, 88

dynamic, 88
dynamic instrumentation, 89
instrumentation request language, 89

Integrated Performance Primitives (IPP), 413,
417, 419

Integration, 283
MC, 176, 177
QMC, 176, 177, 182
time step, 282, 283, 285, 288–290, 294

Integrator, 282
leap-frog Verlet, 282, 288, 290
symplectic, 282
time reversible, 283

Interactions
bonding, 293, 297, 299
electrostatic, 294
non-bonding, 285, 290, 293, 297, 299
van der Waals, 294

Interconnect, 292, 293, 296, 299
hypercube topology, 293
mesh topology, 293
meshes, 296
point-to-point, 293
ring topology, 293
switch, 293

topology, 293, 296, 299
Interconnection

network - nodes, 308
Interference, 475–478, 487, 496, 497, 500
Interior point method (IPM), 448

augmented system, 450
normal equations, 450
optimality conditions, 449

Internal coordinate system, 283, 285, 286
Inverse space filling curves, 158
IR spectra, 288

blue shift, 289
peaks, 289

Irregular block decomposition, 164
Iterative FD solution, 327

Jacobian matrix, 317
JPEG2000, 408

Knee cooling, 310
cryo-cuff, 310
gel-pack, 310
postoperative, 340, 342
topical, 310

Knee surgery
cooling, 342
resting, 342
washing out, 341

Kronecker product, 427

Latent Semantic Indexing, 359
downdating documents, 361
downdating terms, 361
implemented on a computational grid, 383
implemented on a distributed system, 388
polysemy, 360
synonymy, 360
updating documents, 360
updating terms, 360

Latent Semantic Indexing (LSI), 26
Lattice Boltzmann method (LSS), 243
Leaping, 189, 190
Lifting scheme, 414
Load balancing, 291, 296, 300
Loop

fusion, 402, 415
transposition, 402
unrolling, 401

Machine learning, 84
evolution programming, 102
instance based learning, 102
local learning framework, 102
similarity template, 101

Index 515

supervised exhaustive search, 102
Markowitz model, 436, 437
Mathematical graph, 293
Matrix

stride permutation, 426
twiddle, 426

MDGRAPE, 297
MDGRAPE-II, 297, 299
Measurement, 475, 476, 480–482, 484, 486,

487, 491–495, 499, 500, 502–506
joint, 504, 505

Membrane, 473
Memory, 46, 50, 68, 75, 77

local, 48, 292
remote, 292
shared, 46, 48, 50

Memory Access Unit (MAU), 47, 48
Merge, 49, 59
Mesh, 48, 53, 63, 64, 66, 79, 148

of trees, 48, 52, 60, 63
structured, 149

Meshless methods, 308, 312, 313
Message passing, 292, 293, 298
Message Passing Interface (MPI), 88, 92,

105–107, 231–233, 270, 292, 298
data types, 270

Meta-partitioner, 163
Metabolism, 330

heat production, 330
Middleware, 130

gLite, 130
Globus, 130
Gridbus, 132

Model
3-D geometric, 334
3-D knee, 335
geometric, 308
mathematical, 308, 311, 314

Molecular system
density, 294, 296

Monte-Carlo simulation, 458
Motion

high-frequency, 282, 285, 289, 290
rotational, 286–288
translational, 286–288
vibrational, 282, 285–290

Moving air, 331
MPI-OpenMP approach

dynamic, 166
Multi media extension (MMX), 400
Multiobjective Evolutionary Algorithm

(MOEA), 224
parallel, 224

Multiobjective Evolutionary Algorithms
(MOEA), 224

Myrinet, 106, 107, 292

Network, 48, 51
diameter, 48, 63
interconnection, 48, 50
topology, 48, 53, 63

Nondominated front of solutions, 220, 235
Nondominated set of solutions, 220
Normal modes, 282, 287

analysis, 285
Nuclear Magnetic Resonance (NMR), 498
Numerical, 53, 58, 71, 73, 79
Numerical accuracy, 148
Numerical PDE solver, 150
Numerical treatment, 282, 283, 288, 290

Objective function, 220
Objective space, 220
ODE

solution accuracy, 320
system of equations, 316

Offline tools, 91
OOPS, 457, 459
Open Grid Service Architecture (OGSA), 82
Open Multiprocessing (OpenMP), 92
OpenMP, 88
Operator, 273

exponential of, 274
shuffle, 400
splat, 406
unpack, 400
vector, 400

Optimal control, 461, 464
Optimization

memory reduction, 247
Ordinary algebraic equations (OAE), 308, 314
Ordinary differential equations (ODE), 313,

314
Output parameter, 91
Overhead, 90
Overhead analysis, 89

total overhead, 89

Parallel
algorithm performance, 309
communication time, 350
computation time, 349
computer, 309
efficiency, 313

theoretical, 350
execution time, 348, 350
program, 313

516 Index

simulation, 310
speedup, 313

definition, 309
measured, 353
theoretical, 350

Parallel algorithms
design methodology, 13

Parallel architectures, 4
Cell BE, 5, 21
FPGAs, 5
multicore systems, 4
Network-on-Chip (NoC), 5

Parallel compilers, 11
autotuners, 12
JaMP, 12
OpenUH, 12

Parallel computation, 13
models, 13

Parallel computing
communications, 454, 456

Parallel efficiency, 250, 291, 292, 300, 457
Parallel finance applications, 29

Asset and Liability Management (ALM), 30
Interior Point Methods (IPM), 29
multi–stage stochastic programming, 30
Object Oriented Parallel Solver (OOPS), 29
portfolio management, 29

Parallel fluid dynamics, 20
lattice Boltzmann methods, 20
WaLBerla project, 20

Parallel Function Evaluation (PFE), 231
Parallel heat transfer

bio–heat equation, 25
explicit and implicit numerical schemes, 24
finite-difference approximation, 24
simulation, 24

Parallel linear algebra, 3
FLAME project, 3
libraries, 3
multicore algorithms, 4
out–of–core algorithms, 3
problem areas, 3

Parallel molecular dynamics, 23
split integration symplectic method, 23

Parallel numerics, 2, 25
Parallel Processing Letters (PPL), 13, 26
Parallel programming languages, 9

Chapel, 11
HPF, 10
Java Threads, 11
MPI, 9
OpenMP, 10
PGAS, 10
pMatlab, 10

POSIX (Pthreads), 10
PVM, 10

Parallel quantum mechanics, 22
parallel multidimensional FFT, 22
PyProp system, 22
Schrödinger equation, 22
split–operator technique, 22

Parallel Quasi Monte-Carlo (QMC), 18
Good Lattice Points, 18
numerical integration, 18
reproducing kernel Hilbert spaces, 18
Zinterhof sequences, 18

Parallel Random Access Machine (PRAM),
46, 58, 60, 62

Parallel Virtual Machine (PVM), 292
Parallelization, 224, 231, 247, 311

diffusion, 226
hybrid, 226
island, 225
master-slave, 225

Parallelization in signal processing, 27
convolution–based operators , 28
mixed algorithms, 28
short–vector SIMD extensions, 27
vectorization of the FFT, 28
wavelet transform, 29

Parameter study, 91, 92
Parametrization, 189, 190
Pareto optimal front, 221, 224
Pareto optimal set, 220
ParNum, 2, 18, 24, 26
Partial differential equation (PDE), 308, 314

residual, 314
test function, 316
weak form, 316
weighted residual method, 313, 316

Performance analysis, 90, 91, 105, 107
imbalance analysis, 90
multi-experiment analysis, 90
multi-experiments, 90
NIST, 84
Pablo, 83
Paradyn, 84
Peridot, 84
post-mortem, 88
summary analysis, 90

Performance metric, 91, 92, 106
Performance prediction

probabilistic model, 84
Performance property, 95

confidence, 95
hold, 95
severity, 95
threshold, 95

Index 517

Phase, 489, 491–495, 497, 500
Pipeline, 493, 498
Polymorphic, 507
Portable Batch System (PBS), 106
Portfolio optimization, 436
Potential, 273

Coulomb, 294, 297
Lennard-Jones, 284, 294, 297

Prefix, 62
Processor mapping, 296
Pull event, 92
Push event, 92
PyProp, 277

redistribution, 270
split-step method, 274
wavefunction, 272

Quality of Service, 121, 124
Quality-up, 58, 66, 73
Quantum

codes, 500
concatenated, 501

cryptography, 475, 481, 496, 498
parallelism, 485–487

Quantum computing
interference, 31
quantum decoherence, 31
quantum error–correcting codes, 32
Quantum Fourier Transform (QFT), 31
qubit, 31
superposition, 31

Random Access Machine (RAM), 46
Rank, 63, 64, 75, 490, 493, 495, 498, 499
Reaction-diffusion, 474
Real-time, 67, 71, 72, 79
Recursion, 463
Redundancy, 499, 501
Replica

catalogue, 128
manager, 128

Replica strategy, 128
Replicated data, 295, 298
Replication strategy

economic, 129
Least Frequently Used, 129
Least Recently Used, 129

Rescheduling, 402, 420
Resource Specification Language (RSL), 93,

106
Revenue management, 126
Reversible, 482, 485
Riccati equation, 461
RKHS, 176, 181, 183, 208

Scalability, 6, 47, 63, 106, 473, 474, 497–499
problem areas, 7

SCALEA, 88, 92
search engine, 94

Schrödinger equation, 262
H+

2 , 276
formal solution, 264

Schur complement, 452, 459
Segmentation, 334
Self-configuration, 169
Self-optimization, 169
Sequence

Faure, 179
Halton, 179
Sobol, 179
Zinterhof, 180, 193, 195, 198, 202

Sequences
Weyl, 180

Service-oriented architecture, 91
Signal processing language (SPL), 399, 427
Simulation, 56, 57, 59, 67, 73, 77

2-D, 336
3-D, 336
environment, 336
Monte Carlo, 138
process, 313
scale, 312
variation

2-D to 3-D, 338
observed position, 339
parameters, 339

Single instruction multiple data (SIMD), 399
Singular Value Decomposition (SVD), 9, 26

truncated decomposition, 26
two–sided Jacobi method, 27

Slowdown, 57, 70
Software concept

patches, 246
Solution

feasible, 220
infeasible, 220, 230
sparse linear system, 320

Sort, 49, 56, 59, 60, 63, 64, 66
Sparse linear algebra, 460
Spatial decomposition, 295, 296, 298
Specialized processors, 296
Spectral method

Fourier, 265
radial, 267
spherical harmonic, 266

Speedup, 55, 56, 59, 66, 70, 224–228, 232,
236, 277, 290, 291, 481, 485–487

estimated, 226, 231, 233
linear, 291

518 Index

measured, 226, 239
Spherical coordinates, 276

laplacian, 266
Split Integration Symplectic Method, 282, 283,

285, 287, 288, 290, 299
Split-step method, 264, 274

error, 264
Stability

amplification factor, 318
condition, 325
numerical method, 318
of ODE, 317
spectral radius, 318, 325
time-step, 318

Star, 48
Steady-state, 336
Stochastic programming, 438

multi-stage model, 439, 442
recourse formulation, 443
scenario, 438
scenario tree, 439

Strang splitting, 264
Streaming SIMD extension (SSE), 400, 404,

419
Strong scaling, 256
Structure, 443

nested, 443, 451, 456
Structured Adaptive Mesh Refinement, 16

self–configuration, 17
self–optimization, 17

Structured adaptive mesh refinement (SAMR),
147

Berger–Colella approach, 152
Berger–Oliger approach, 152
block-wise approach, 152
clustering and grid-fitting, 157
conditions at internal boundaries, 157
data dependencies, 158
error estimation, 157
mesh refinement, 157
parallel implementation, 154
software frameworks, 154
Trompert–Verwer approach, 152

Subband, 429
Suffix, 62
Supercomputers, 7

Cray XT4, 7, 21
energy efficiency, 8
IBM Blue Gene/L, 7
IBM Blue Gene/P, 7
JUICE Cell Cluster, 21
Roadrunner, 7

Superlinear, 58, 66, 68, 70, 73

Superposition, 473, 475–477, 479, 484–489,
496, 500, 502, 504

Symmetric Multiprocessor (SMP), 106
Symmetrization, 502
Synchronous, 46, 47
Systolic, 495

Temperature
evolution

cooling, 343
field, 337

after cooling, 344
profiles, 309

Theory of molecular vibrations, 282, 286
Thermal

diffusivity, 324
parameters, 338

Thermistor, 345
Thermo-neutral conditions (TN), 336, 338, 340
Three-Dimensional Particle-In-Cell (3DPIC),

105–107
Time, 499, 501
Tools for parallel and distributed computing,

14
ASKALON system, 14

Total-variation, 178
Transform

algebraic, 403, 421
Tree, 48, 53, 63
Twilight, 94

Unconventional, 66, 73, 79, 488
Unitary, 483, 485, 489, 491, 502
Universal, 77, 80, 483, 508
User Portal, 86, 91

Validation of Results, 345
Value-at-risk (VaR), 446, 458
Variables

interacting, 76
interdependent, 506
obeying a global condition, 76
time-varying, 74, 498

Vector, 399
short, 400

Vectorization, 401
Vectorization approaches, 28
Vibrational frequencies, 287
Virtual organization, 124
Virtualization, 140
Visible Human Dataset (VHD), 308, 333

Walberla, 242
Wall clock time, 236, 238

Index 519

Wavelet transform, 428
Weak scaling, 253
Web

service, 130
Web Service, 82
Web Service Description Language (WSDL),

85
Web Service Resource Framework (WSRF),

83
Workflow, 98, 134

activity, 98
management system, 135
performance prediction, 108
structural property, 100

ZEN, 91
application, 92
application instance, 92
assignment directive, 91, 106
constraint directive, 92
directive, 106
directives, 91
element, 92
experiment specification language, 91, 92
file, 92
performance directive, 92
substitute directive, 91, 106
variable, 92, 106

ZENTURIO, 91
experiment management tool, 93

	Cover
	Copyright
	Preface
	List of Contributors
	Contents
	About the Editors
	1. Overview – Parallel Computing: Numerics, Applications, and Trends
	1.1 Introduction
	1.1.1 Parallel Numerics
	1.1.2 Parallel Architectures
	1.1.3 Scalability
	1.1.4 Supercomputers
	1.1.5 Grid Computing
	1.1.6 Parallel Programming Languages
	1.1.7 Parallel Compilers

	1.2 Book Chapters
	1.2.1 Introduction to Parallel Computation
	1.2.2 Tools for Parallel and Distributed Computing
	1.2.3 Grid Computing
	1.2.4 Parallel Structured Adaptive Mesh Refinement
	1.2.5 Applications and Parallel Implementation of QMC
	1.2.6 Parallel Evolutionary Computation Framework
	1.2.7 WaLBerla: Exploiting Massively Parallel Systems for Lattice
	1.2.8 Parallel Pseudo-Spectral Methods for the Solution
	1.2.9 Parallel Approaches in Molecular Dynamics Simulations
	1.2.10 Parallel Computer Simulation of Heat Transfer
	1.2.11 SVD Computing in LSI Applications for Data Retrieval
	1.2.12 Short-Vector SIMD Parallelization in Signal Processing
	1.2.13 Financial Applications: Parallel Portfolio Optimization
	1.2.14 Future of Parallel Computing

	1.3 Conclusions
	References

	2. Introduction to Parallel Computation
	2.1 Introduction
	2.2 Parallel Versus Sequential Computation
	2.3 Parallel Computational Models
	2.3.1 Shared-Memory Models
	2.3.2 Interconnection Network Models
	2.3.3 Circuit Models
	2.3.4 Clusters
	2.3.5 Grids

	2.4 Parallel Algorithm Design Methods
	2.5 Theoretical Underpinnings
	2.5.1 Speedup
	2.5.2 Slowdown
	2.5.3 Quality-Up
	2.5.4 Computations that Seem Inherently Sequential

	2.6 Parallel Algorithms for Conventional Computations
	2.6.1 Parallel Prefix and Suffix Computations on a Linked List
	2.6.2 Sorting on a Model with Buses

	2.7 Parallel Algorithms for Unconventional Computations
	2.7.1 Computations that Can be Simulated Sequentially
	2.7.2 Computations that Cannot be Simulated Sequentially

	2.8 Non-Universality in Computation
	2.9 Conclusion
	References

	3. Tools for Parallel and Distributed Computing
	3.1 Introduction
	3.2 Related Work
	3.3 ASKALON Architecture
	3.3.1 Data Repository
	3.3.2 ASKALON Visualization Diagrams

	3.4 SCALEA
	3.4.1 Instrumentation
	3.4.2 Overhead Analyzer
	3.4.3 Performance Analyzer

	3.5 ZENTURIO
	3.5.1 ZEN Experiment Specification Language
	3.5.2 Experiment Generator
	3.5.3 Experiment Executor

	3.6 AKSUM
	3.6.1 Search Engine
	3.6.2 Reinforcement Learning for Performance Analysis

	3.7 Grid-Prophet
	3.7.1 Prediction Techniques

	3.8 Experiments
	3.8.1 Performance Analysis with SCALEA
	3.8.2 Performance and Parameter Studies of a Three-Dimensional Particle-In-Cell Application with ZENTURIO
	3.8.3 Performance Analysis for a Backward Pricing Application with AKSUM
	3.8.4 Workflow Performance Prediction with the Grid-Prophet

	3.9 Conclusions
	References

	4. Grid Computing
	4.1 Introduction
	4.1.1 Grid Categorization
	4.1.2 Comparison Between Clusters and Grids
	4.1.3 Putting It All Together

	4.2 Challenges in Grid Computing
	4.2.1 Resource Sharing
	4.2.2 Guaranteed Quality of Service
	4.2.3 Resource Regulation
	4.2.4 Data Management

	4.3 Tools and Applications
	4.3.1 Middleware
	4.3.2 Tools for Computationally Intensive Applications
	4.3.3 Tools for Workflow Composition and Execution
	4.3.4 Tools That Support Advance Reservation
	4.3.5 G-Lambda Grid Scheduling System
	4.3.6 Application Fields

	4.4 Conclusions and Future Trends
	References

	5. Parallel Structured Adaptive Mesh Refinement
	5.1 Introduction
	5.2 An Introduction to SAMR
	5.2.1 Approaches to Structured Adaptive Mesh Refinement
	5.2.2 SAMR in a Computer Science Perspective
	5.2.3 Software Frameworks for SAMR

	5.3 Details of SAMR
	5.3.1 Advancing the Solution on a Structured Adaptive Grid Hierarchy
	5.3.2 The Algorithmic Key Components of SAMR

	5.4 Computer Science Aspects of SAMR
	5.4.1 Data Dependencies
	5.4.2 Dynamic Load Balancing
	5.4.3 Parallelization Models

	5.5 Some Results
	5.5.1 An Integrated Decomposition and Partitioning Approach for for Irregular Block-Structured Applications
	5.5.2 A Hybrid Dynamic MPI-OpenMP Model
	5.5.3 Geographical Locality
	5.5.4 A Hybrid Patch/Domain-Based Partitioner Framework
	5.5.5 A Meta-Partitioner for Structured Grid Hierarchies

	5.6 Conclusions and FutureWork
	References

	6. Applications and Parallel Implementation of QMC Integration
	6.1 Introduction
	6.2 Monte Carlo and Quasi Monte Carlo Methods in Numerical Integration Over [0,1)s
	6.2.1 Application of Reproducing Kernel Hilbert Spaces

	6.3 QMC Methods for Integrals over Rs with a Weight Function
	6.3.1 Feynman’s Path Integrals
	6.3.2 Application in Financial Engineering

	6.4 QMC Integration on Parallel Systems
	6.5 Numerical Experiments
	6.5.1 Sequential Computations
	6.5.2 Parallel Case
	6.5.3 Experimental Results
	6.5.4 Overall Comparison

	6.6 Application of the Diaphony in Parallel Computation
	6.7 Conclusion
	References

	7. Parallel Evolutionary Computation Framework for Single- and Multiobjective Optimization
	7.1 Introduction
	7.2 Optimization Problems
	7.3 Evolutionary Algorithms
	7.3.1 Multiobjective Evolutionary Algorithms

	7.4 Parallel Single- and Multiobjective Evolutionary Algorithms
	7.4.1 Parallelization Types
	7.4.2 Calculation of Speedups

	7.5 Casting Process Optimization Task
	7.6 Parallel Evolutionary Computation Framework
	7.6.1 Speedup Estimation

	7.7 Empirical Evaluation
	7.7.1 Experimental Setup
	7.7.2 Experiments and Results

	7.8 Conclusion
	References

	8. WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations
	8.1 Motivation
	8.2 Introduction to the Lattice Boltzmann Method
	8.3 Domain Partitioning Using Patches
	8.3.1 Memory Reduction

	8.4 Communication Concept
	8.4.1 Process Local Communication
	8.4.2 MPI Communication

	8.5 Performance Studies
	8.5.1 Serial Experiments
	8.5.2 Parallel Experiments
	8.5.3 IBM Cell Processor

	8.6 Conclusion
	References

	9. Parallel Pseudo-Spectral Methods for the Time-Dependent Schrödinger Equation
	9.1 Introduction
	9.2 Time Stepping and Split Operator Technique
	9.3 Variable Transformations and Spectral Bases
	9.3.1 Cartesian Coordinates and Fourier Basis
	9.3.2 Spherical Coordinates

	9.4 Parallelizing Many Dimensional FFTs
	9.5 Creating a Framework for Combining Discretization Methods
	9.5.1 Wavefunction
	9.5.2 Operators and Transforms
	9.5.3 Split-Step Propagator
	9.5.4 Explicit Propagators

	9.6 A Numerical Example
	9.6.1 Physical Model
	9.6.2 Numerical Considerations
	9.6.3 Scalability

	9.7 Conclusion
	References

	10. Parallel Approaches in Molecular Dynamics Simulations
	10.1 Split Integration Symplectic Method
	10.1.1 Calculation of Infrared Spectra
	10.1.2 Enlarging the Integrational Time Step

	10.2 Parallel Computers
	10.2.1 Parallel Computing
	10.2.2 Parallel Computer Types
	10.2.3 Reducing Computational Complexity in Molecular Dynamics Simulations

	10.3 Parallel Molecular Dynamics Computer Simulations
	10.3.1 Methods for Parallel Molecular Dynamics Simulations
	10.3.2 Specialized Processors
	10.3.3 Global Communication in Parallel Molecular Dynamics Simulations

	10.4 Parallelization of SISM
	10.4.1 The Distributed Diagonal Force Decomposition Method

	10.5 Conclusions
	References

	11. Parallel Computer Simulations of Heat Transfer in Biological Tissues
	11.1 Introduction
	11.2 Principal Steps in Computer Simulation
	11.3 Numerical Solution of Partial Differential Equations
	11.3.1 Finite Difference Method
	11.3.2 Finite Element Method
	11.3.3 Solution Methods of Time-Dependent PDEs
	11.3.4 Computational and Memory Complexity

	11.4 Diffusion Equation
	11.4.1 Analytical Solution
	11.4.2 Finite Differences with Gradient Term
	11.4.3 Explicit Finite Difference Scheme
	11.4.4 Comparison of Results

	11.5 Bio-Heat Equation
	11.6 Geometric Modeling of a Knee
	11.7 Simulation Methods and Parameters
	11.8 Variation of Simulation Parameters
	11.9 Simulation Results
	11.9.1 Washing Out During Arthroscopy
	11.9.2 Resting After Arthroscopy
	11.9.3 Postoperative Topical Cooling

	11.10 Validation of Results
	11.11 Parallel Implementation
	11.11.1 Opportunities for Parallelization
	11.11.2 Computation and Communication Complexity
	11.11.3 Measured Speedup

	11.12 Conclusions
	References

	12. Parallel SVD Computing in the Latent Semantic Indexing Applications for Data Retrieval
	12.1 Introduction
	12.2 Two Updating Problems in LSI
	12.2.1 Updating Documents
	12.2.2 Updating Terms

	12.3 Two Downdating Problems in LSI
	12.3.1 Downdating Documents
	12.3.2 Downdating Terms

	12.4 Kogbetliantz Method for Triangular Matrices
	12.4.1 Butterfly Form of Triangular Matrices
	12.4.2 Modulus Pivot Strategy
	12.4.3 Block Version and Parallelism

	12.5 Parallel Two-sided Block-Jacobi SVD Algorithm with Dynamic Ordering
	12.6 LSI Implemented on a Grid
	12.6.1 Storage
	12.6.2 Updating Documents
	12.6.3 Updating Terms
	12.6.4 Downdating Documents
	12.6.5 Downdating Terms
	12.6.6 Retrieval of Documents

	12.7 LSI Implemented on a Distributed System
	12.7.1 Building a Global Approximation
	12.7.2 Updating and Downdating
	12.7.3 Retrieval of Documents

	12.8 Conclusions
	References

	13. Short-Vector SIMD Parallelization in Signal Processing
	13.1 Introduction
	13.1.1 Signal Processing Algorithms
	13.1.2 Short-Vector SIMD

	13.2 General Vectorization Approaches
	13.2.1 Loop Unrolling
	13.2.2 Straight Line Code Vectorization
	13.2.3 Loop Fusion
	13.2.4 Loop Transposition
	13.2.5 Algebraic Transforms

	13.3 Convolution Type Algorithms
	13.3.1 Simple FIR Filter
	13.3.2 The Haar Filter
	13.3.3 Biorthogonal 7/9 Without Lifting
	13.3.4 Biorthogonal 7/9 With Lifting
	13.3.5 Conclusion

	13.4 Recursive Algorithms
	13.4.1 Sequential IIR Algorithm
	13.4.2 Scheduling Approach
	13.4.3 Algebraic Transforms
	13.4.4 Experimental Results

	13.5 Block Algorithms
	13.5.1 Data Layout
	13.5.2 Basic FFT-Blocks
	13.5.3 Automatic Tuning and Signal Processing Languages (SPL)

	13.6 Mixed Algorithms
	13.6.1 Recursive Convolution – Wavelet Transforms
	13.6.2 Multi-dimensional Algorithms

	13.7 Conclusion
	References

	14. Financial Applications: Parallel Portfolio Optimization
	14.1 Introduction
	14.2 Asset and Liability Management by Stochastic
	14.2.1 Stochastic Programming
	14.2.2 Asset and Liability Management Models
	14.2.3 Model Extensions

	14.3 Parallel Solution Approaches: Decomposition
	14.4 Parallel Solution Approaches: Interior Point Based Algorithms
	14.4.1 IPM Applied to Stochastic Programming Problems
	14.4.2 Results

	14.5 Parallel Solution Approaches: Heuristics
	14.6 Other Approaches
	14.7 Detailed Comparison of Parallel Interior Point Approaches
	14.7.1 OOPS (Gondzio and Grothey)
	14.7.2 Riccati-Based IPM Solver (Blomvall and Lindberg)
	14.7.3 Tree Sparse IPM Solver (Steinbach)

	14.8 Conclusions
	References

	15. The Future of Parallel Computation
	15.1 Introduction
	15.2 Quantum Computing
	15.2.1 Quantum Mechanics
	15.2.2 Mathematical Framework
	15.2.3 Entanglement

	15.3 Parallelism in Quantum Computing
	15.3.1 Quantum Parallelism

	15.4 Examples
	15.4.1 Parallelizing the Quantum Fourier Transform
	15.4.2 Quantum Decoherence
	15.4.3 Quantum Error-Correction
	15.4.4 Quantum Distinguishability
	15.4.5 Transformations Obeying a Global Condition

	15.5 Looking Ahead
	References

	Index

