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Endre Süli; Oxford University Computing Laboratory, U.K.
Wojbor Andrzej Woyczynski; Case Western Reserve University, USA

ISBN 978-0-387-09638-4 e-ISBN 978-0-387-09639-1
DOI 10.1007/978-0-387-09639-1
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009937878

Mathematics Subject Classification (2000): 03D05, 03D10, 03D15, 03D25, 03D45, 68Q01, 68Q05,

68Q10, 68Q15, 68Q17, 68Q45

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my wife, Susan, for her infinite patience
during my extended episodes of “cerebral
absence.”





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

I PROLEGOMENA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 The Three Pillars of Computation Theory . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The Nature of Computation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Sets and Their Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Binary Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The Formal Notion of Binary Relation . . . . . . . . . . . . . . . . . . . 17
2.2.2 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Formal Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 The Notion of Language in Computation Theory . . . . . . . . . . . 22
2.4.2 Languages as Metaphors for Computational Problems . . . . . . 24

2.5 Graphs and Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Useful Quantitative Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Online Automata: Exemplars of “State” . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Online Automata and Their “Languages” . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 A Myhill–Nerode-like Theorem for OAs . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 A Concrete OA: The Online Turing Machine . . . . . . . . . . . . . . . . . . . . 43

vii



viii Contents

4 Finite Automata and Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 The Myhill–Nerode Theorem for FAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 The Theorem: States Are Equivalence Classes . . . . . . . . . . . . . 57
4.3.2 What Do Equivalence Classes Look Like? . . . . . . . . . . . . . . . . 59

5 Applications of the Myhill–Nerode Theorem . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Proving that Languages Are Not Regular . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 On Minimizing Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Finite Automata with Probabilistic Transitions . . . . . . . . . . . . . . . . . . . 70

5.3.1 PFAs and Their Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 PFA Languages and Regular Languages . . . . . . . . . . . . . . . . . . 72

5.4 State as a Memory-Constraining Resource . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.1 A M(n) for Two Specific Infinite OAs . . . . . . . . . . . . . . . . . . . . 80
5.4.2 A Bound on A M(n) for Any OA M with Nonregular L(M) . . 81

5.5 State as a Time-Constraining Resource . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.1 Online TMs with Multiple Complex Tapes . . . . . . . . . . . . . . . . 84
5.5.2 An Information-Retrieval Problem as a Language . . . . . . . . . . 86
5.5.3 The Impact of Tape Structure on Memory Locality . . . . . . . . . 87
5.5.4 Tape Dimensionality and the Time-Complexity of LDB . . . . . . 88

6 Enrichment Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Pumping in Formal Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 The Phenomenon of Pumping in Finite, Closed Systems . . . . . 91
6.1.2 Pumping in Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.3 Pumping in Nonregular Languages . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Closure Properties of the Regular Languages . . . . . . . . . . . . . . . . . . . . 101
6.3 Systems of Linear Equations with Languages as Coefficients . . . . . . . 105

III ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Countability and Uncountability: The Precursors of “Encoding” . . . . . 113
7.1 Encoding Functions and Proofs of Countability . . . . . . . . . . . . . . . . . . 116
7.2 Diagonalization: Proofs of Uncountability . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Where Has (Un)countability Led Us? . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Enrichment Topic: “Efficient” Pairing Functions, with Applications . . 125
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 The Prettiest Pairing Function(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 The Diagonal PF D(x,y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2.2 Is D(x,y) the Only Polynomial PF? . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Pairing Functions and the Storage of Extendible Arrays/Tables . . . . . 130
8.3.1 Array-Storage Mappings via Pairing Functions . . . . . . . . . . . . 131
8.3.2 Pursuing Compact Pairing Functions . . . . . . . . . . . . . . . . . . . . . 133

8.4 Pairing Functions and Volunteer Computing . . . . . . . . . . . . . . . . . . . . . 139



Contents ix

8.4.1 A Methodology for Designing Additive Pairing Functions . . . 141
8.4.2 A Sampler of Explicit APFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9 Computability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1 Introduction and History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2.1 Representing Computational Problems as Formal Languages . 151
9.2.2 Functions and Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2.3 Self-Referential Programs: Interpreters and Compilers . . . . . . 155

9.3 The Halting Problem: The “Oldest” Unsolvable Problem . . . . . . . . . . 155
9.3.1 The Halting Problem Is Semisolvable but Not Solvable . . . . . 156
9.3.2 Why We Care about the Halting Problem—An Example . . . . 158

9.4 Mapping Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.4.1 Basic Properties of m-Reducibility . . . . . . . . . . . . . . . . . . . . . . . 162
9.4.2 The s-m-n Theorem: Where Does One Find Encodings? . . . . . 163

9.5 The Rice–Myhill–Shapiro Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.6 Complete, or “Hardest,” Semidecidable Problems . . . . . . . . . . . . . . . . . 169
9.7 Some Important Limitations of Computability . . . . . . . . . . . . . . . . . . . 172
9.8 (Online) Turing Machines and the Church–Turing Thesis . . . . . . . . . . 174

9.8.1 Simplifying an OTM without Diminishing Its Power . . . . . . . . 176
9.8.2 Augmented TMs That Are No More Powerful Than OTMs . . 195

IV NONDETERMINISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

10 Nondeterministic Online Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.1 Nondeterministic OAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.2 Nondeterminism as Unbounded Search, 1 . . . . . . . . . . . . . . . . . . . . . . . 213
10.3 An Overview of Nondeterminism in Computation Theory . . . . . . . . . . 215

11 Nondeterministic FAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.1 Nondeterministic FAs vs. Deterministic FAs . . . . . . . . . . . . . . . . . . . . . 217

11.1.1 NFAs Are No More Powerful Than DFAs . . . . . . . . . . . . . . . . . 217
11.1.2 Does the Subset Construction Waste DFA States? . . . . . . . . . . 219

11.2 An Application: The Kleene–Myhill Theorem . . . . . . . . . . . . . . . . . . . 221
11.2.1 A Convenient Enhancement of NFAs . . . . . . . . . . . . . . . . . . . . . 221
11.2.2 The Kleene–Myhill Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

12 Nondeterminism in Computability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.2 Nondeterministic Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

12.2.1 The NTM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
12.2.2 Deterministic Simulation of Nondeterminism:

NTMs and OTMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
12.3 Nondeterminism as Unbounded Search, 2 . . . . . . . . . . . . . . . . . . . . . . . 241



x Contents

13 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
13.2 Time and Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

13.2.1 On Measuring Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . 253
13.2.2 On Measuring Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . 256

13.3 Reducibility, Hardness, and Completeness in Complexity Theory . . . 263
13.3.1 A General Look at Resource-Bounded Computation . . . . . . . . 263
13.3.2 Efficient Mapping Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . 264
13.3.3 Hard Problems and Complete Problems . . . . . . . . . . . . . . . . . . 268
13.3.4 An NP-Complete Version of the Halting Problem . . . . . . . . . . 269
13.3.5 The Cook-Levin Theorem: The NP-Completeness of SAT . . . 276

13.4 Nondeterminism and Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 285
13.4.1 Simulating Nondeterminism Space-Efficiently: Savitch’s

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
13.4.2 Beyond Savitch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

V Sample Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315



Preface

The abstract branch of theoretical computer science that we shall call “computation
theory” typically appears in undergraduate academic curricula in a form that obscures
both the mathematical concepts that are central to the various components of the
theory and the relevance of the theory to the typical student. This regrettable situation
is due largely to the thematic tension among three main competing principles for
organizing the material in the course.

1. One can organize material to emphasize underlying mathematical concepts.
The challenge with this approach is that it often violates boundaries mandated by
computation-theoretic themes. A good example of this dilemma is seen wth our
Section 5.5, which studies a computation that can be viewed as an abstraction of
the following. Say that you have a database D, viewed abstractly as a sequence
of binary strings. Say that you also have a (possibly very long) sequence of mem-
bership queries about the contents of D. What are the consequences, in terms of
overall processing time, of demanding that a program respond to each of your
queries as it arrives (the “online” scenario), in contrast to reading in all of your
queries, preprocessing the sequence, and responding to all queries at once (the
“offline” scenario)?
The pedagogical dilemma here is that the computational model of Section 5.5 is a
variant of the traditional Turing machine—material that traditionally comes quite
a way into a course on computation theory—but the technical argumentation uses
techniques that were developed originally for studying finite automata—material
that traditionally comes at the very beginning of a course on computation theory.

2. One can organize material to emphasize underlying computation-theoretic themes.
The challenge with this approach is almost the mirror image of the preceding one.
Referring to Section 5.5, if one decides to cover this (quite illuminating!) material,
but to place it in a chapter devoted to “powerful” computational models such as
Turing machines, it will be quite challenging to expose the student to the fact that
the mathematical underpinnings of this study actually hark back to material on
finite automata that she has not seen since the earliest part of the course.

xi



xii Preface

3. One can organize material to emphasize the relevance of the Theory’s concepts to
real computational (hardware and software) artifacts.
Since theoretical computer science is, ostensibly, a branch of the more general
field of computer science, arguing against this approach is almost like denying
one’s roots. That said, this approach would force one to cover material in a way
that largely obscures the “pure” concepts that underlie the various artifacts, both
the mathematical concepts and the computation-theoretic ones.

So, what is one to do? Almost all undergraduate texts on computation theory opt for
the second of these alternatives; a very few opt for the third. We opt here for the
first alternative! We are motivated by the belief that a deep understanding of—and
operational control over—the few “big” mathematical ideas that underlie the theory
is the best way to enable the typical student to assimilate the “big” ideas of the theory
into her daily computational life.

Why do we need a new computation theory text? In order to answer this question,
we must agree on what we want an upper-level undergraduate, lower-level graduate
computation theory course to accomplish. In my opinion, the course should impart to
the as yet uninitiated student of computer science:

1. the need for theoretical/mathematical underpinnings for what is predominantly an
engineering discipline. This should include an appreciation of the need to think
(and argue) rigorously about the artifacts and processes of “practical” computer
science.

2. the rudiments of the “theoretical method,” as it applies to computer science. This
should include an operational command of the basic mathematical concepts and
tools needed for the rigorous thinking of item 1.

3. a firm foundation in the most important concepts of theoretical computer science.
This foundation should be adequate for subsequent navigation of (large portions
of) advanced theoretical computer science.

4. topics from computation theory that have a clear path to major topics in general
computer science. It is crucial that the student recognize the relevance of these
topics to her professional development and, ultimately, her professional life.

(To me, a corollary of this presumed agenda is that an appropriately designed course
in computation theory should be mandatory for all aspiring computer scientists.)
With some regret, I would argue that most current curricula for computation theory
courses—as inferred from the contents of the standard texts—neither focus on nor
satisfy these objectives. Standard texts typically prescribe a two-module approach to
the subject.

Module 1 comprises a smattering of topics that provide a formal-language-theory
approach to the mathematical theories of automata and grammars. The main justifi-
cation for much of the material in this module seems to be the long histories of these
theories. Within the context of this module, I part ways with the major texts along two
axes: (1) the inclusion of several topics of largely historical interest and the omission
of several topics of central conceptual importance; (2) the way that they present cer-
tain topics. Most of the material in this module and the approaches to that material
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seem to be passed from one generation of texts to the next, without a critical analysis
of what is relevant to the general student of computer science.

Module 2 (which is usually the larger one) provides an intense study of one spe-
cific topic, complexity theory, preceded by some background on its (historical and
intellectual) precursor, computability theory. This is indisputably important material,
which does expose aspects of the intrinsic nature of computation by (digital) com-
puters and does establish the theoretical underpinnings of important topics relating
to the theory of algorithm design and analysis. That said, I feel that much of what
is typically included in this module goes beyond what is essential for, or even rele-
vant to, the general computer science student (as opposed to the aspiring theoretical
computer scientist); moreover, these topics preclude (because of time demands) the
inclusion of several topics that are more relevant to the development of embryonic
computer scientists. Additionally, I am troubled by the typical presentation of much
of the material via artificial, automata-theoretic models that arose during the heyday
of automata theory in the 1970s.1

My proposed alternative to the preceding material is a “big-ideas” approach to
computation theory that is based on the three computation-theoretic “pillars” that
name this book. The mathematical correspondents of these concepts underlie much of
the basic development of theoretical computer science; and the concepts themselves
underlie many of the intellectual artifacts of practical computer science. Such an ap-
proach to the theory allows one to expose students to all of the major introductory-
level ideas covered by present texts and courses, while augmenting these topics with
others that are (in my opinion) at least as relevant to an aspiring computer scientist. I
contend that, additionally, this approach gives one a chance to expose the student to
important mathematical ideas that do not arise within the context of the topics cov-
ered in most current texts. I thus view the proposed “big-ideas” approach as strictly
improving our progress toward all four educational goals enumerated previously. We
thereby (again, in my opinion) enhance students’ preparations for their futures, in
terms of both the material covered and the intellectual tools for thinking about that
material.

While my commitment to the proposed “big-ideas” approach has philosophical
origins, it has been evolving over several decades, as I have taught versions of the
material in this book to both graduate and undergraduate students at (in chronolog-
ical order) Polytechnic Univ. (formerly, Brooklyn Poly.), NYU, Duke, and UMass
Amherst. Each time I have offered the course, I have made further progress toward
my goal of a “big-ideas” presentation of the material. My (obviously biased) percep-
tion is that my students (who have been statistically very unlikely to become computer
theorists) have been leaving the course with better perspectives and improved techni-
cal abilities as the transition to this approach has progressed.

My dream is that this book, which has been developed around the just-stated phi-
losophy, will make the goals and tools of computation theory as accessible to the
“computer science student on the street” as David Harel’s well-received book [35]
has achieved with the algorithmic component of theoretical computer science.

1 This position echoes that espoused in [32] and in the classical computability theory text [80].
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I end this preface with expressions of gratitude to the many colleagues who have
debated this educational approach with me and the even greater number of students
who have suffered with me through the growing pains of the “big-ideas” approach.
Both groups are too numerous to list, and I shall not attempt to do so, for fear of
missing important names. I also wish to thank the UMass Center for Teaching for a
grant that contributed to the costs of preparing this text.

Falmouth, MA, and Denver, CO Arnold L. Rosenberg
October 1, 2009
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machine (TM)

o(1) any function f (n) that tends to the limit 0 as n grows without bound
O( f (n)) the class of functions g(n) whose graphs eventually (for large n) stay be-

low that of cg · f (n) for some constant cg > 0
Ω( f (n)) the class of functions g(n) whose graphs eventually (for large n) stay

above that of cg · f (n) for some constant cg > 0
Θ( f (n)) the intersection of the classes O( f (n)) and Ω( f (n))
|x| the absolute value, or magnitude, of the number x
logb x the base-b logarithm of positive number x
logx log2 x: the base-2 logarithm of positive number x
exp2(n) an alternative notation for 2n

Rk the (perforce, integer) contents of register Rk of a Register Machine
CFG context-free grammar
CFL context-free language
FA finite automaton
IRTM input-recording Turing machine
NFA nondeterministic finite automaton
NTM nondeterministic Turing machine
OA online automaton
OTM online Turing machine
PFA probabilistic finite automaton
TM Turing machine
G a context-free grammar (CFG)
Q the set of states of an automaton
q0 the initial state of an automaton
F the set of final, or accepting, states of an automaton
E(q) the ε-reachability set of an NFA’s state q
A-POP the register machine analogue of the POP operation on a stack
A-PUSH the register machine analogue of the PUSH operation on a stack
POP the operation that removes a symbol from a stack
PUSH the operation that adds a symbol to a stack
δ the state-transition function of an automaton. For an OA, δ maps Q×Σ into

Q.
≡M the (right-invariant) equivalence relation on Σ � “defined” by an OA: x≡M y

just when δ (q0,x) = δ (q0,y).
≡(t)

M a time-parameterized version of ≡M that is studied in Section 5.5.
≡δ the equivalence relation on Q, the set of states of an OA: p≡δ q just when

for all z ∈ Σ �, either both δ (p,z) and δ (q,z) are accepting states, or neither
is.

≡L the (right-invariant) equivalence relation on Σ � “defined” by a language
L⊆ Σ ]star: x≡L y just when, for all z ∈ Σ �, either both xz and yz belong to
L, or neither does.

̂δ the function δ extended to strings rather than single letters.
L(M) the language accepted by automaton M
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L(G) the language generated by CFG G
T M(x) the computation tree generated by the automaton M when processing input

word x
̂T M(x) the analogue of T M(x) generated by a space-bounded automaton M, trun-

cated to eliminate nonhalting branches
L(M,θ) the language accepted by the PFA M with acceptance threshold θ
LDB the database language of Section 5.5
A M(n) the number of states in the smallest FA that is an order-n approximation of

the OA M.
DHP the “diagonal” halting problem: the set of strings x such that program x halts

on input x
EMPTY the set of programs that do not halt on any input
HP the halting problem: the set of program-input pairs 〈x,y〉 such that program

x halts on input y
HP(poly) the poly-time version of the halting problem
SAT the satisfiability problem: the set of CNF formulas that can be made TRUE

by some assignment of truth values to logical variables
TOT the set of programs that halt on all inputs
NP the family of languages accepted by nondeterministic Turing machines that

operate in (nondeterministic) polynomial time
P the family of languages accepted by deterministic Turing machines that op-

erate in polynomial time
� positive subtraction
≤m “is m-reducible to”; “is mapping reducible to”
≤poly “is polynomial-time-reducible to”
≤R “is mapping-reducible to” within resource bound R





PART I
PROLEGOMENA

“The longest journey begins with a single step.”

(folk saying)

This portion of the book is dedicated to laying out the road we shall follow in devel-
oping the rudiments of computation theory and to developing the tools we shall need
during our journey. There are myriad more-or-less equivalent ways to approach the
study of Computation Theory. That said, I believe that certain ways—not surprisingly,
including the approach we take in this text—make it easier for the student to gain op-
erational command over the fundamentals of the Theory and to assimilate all that the
Theory has to say about “real” computation into her professional kitbag. I attempt
to describe—and motivate, and justify—my approoach in Chapter 1. We begin our
journey for real in Chapter 2, which is devoted to developing the mathematical tools
that will uncover for the student the secrets—and, hopefully, the beauty—of Compu-
tation Theory. One feature of our approach will be to emphasize the many ways that
one can look at various phenomena relating to computation. Technical issues that are
rather complicated when looked at from one perspective become almost transparent
from another perspective. This point is illustrated as early as Chapter 2, but it will re-
ally gather steam in the later chapters. It must be admitted that some of the diversity
of terminology and perspective can be frustrating at times, but we attempt to focus
mainly on the benefits we can harvest from the diversity. Even when no such benefits
are obvious, it is often interesting to note how the Theory has absorbed terminolgy
and viewpoints from so many historically diverse sources.





Chapter 1
Introduction

This book is intended as an introduction to computation theory for upper-level under-
graduate students and lower-level graduate students. We develop the underpinnings
of the theory by studying three mathematical concepts that underlie much of the sub-
ject, followed by a number of fundamental applications of each concept. This chapter
attempts to render concrete the rather abstract philosophical “manifesto” of the pref-
ace, focusing specifically on the “three pillars” that give the book its title and that
give rise to the “big ideas” that anchor the book.

1.1 The Three Pillars of Computation Theory

In a famous Talmudic story, Rabbi Hillel is challenged to encapsulate all of the volu-
minous laws of Judaism while standing on one leg. (His response was, “What you find
hateful, do not unto others.”) What would a computation theorist respond when sim-
ilarly challenged? This book attempts, in some way, to answer this question. It turns
out that virtually every major result in elementary computation theory—the portion
of the theory that (in my opinion) every computer scientist should have in her concep-
tual kit bag—refers in some fundamental way to one or more of the following three
notions: state, nondeterminism, and encoding. This book uses these three notions as
the pillars upon which we develop an introductory course in elementary computation
theory.

1.1.1 State

Myriad computational systems, both hardware and software, are organized as state-
transition systems. Such a system evolves over time (or, as we shall say, computes)
by continually changing state in response to one or more discrete stimuli (typically
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termed “inputs”). When in a “stable” configuration/situation, the system is in one of
its well-defined states. (This condition really defines “state.”)

In a hardware system, for instance, the “stable” configurations are typically those in which the
bistable devices (say, flip-flops or transistors) used to build the system have attained a stable
logic level. In a software system, “stability” may reside in a given thread’s having completed
execution and returned a result.

At any such moment, in response to any valid stimulus, the system goes through
some process, ending up in another “stable” configuration/situation, i.e., in another
well-defined state. John Myhill and Anil Nerode jointly produced one of the concep-
tual gems of finite-automata theory, the Myhill–Nerode theorem (Section 4.3, Theo-
rem 4.1), which offers a complete mathematical characterization (via basic algebraic
notions) of the concept “state” within the genre of state-transition system that we are
discussing. Although the theorem focuses solely on finite state-transition systems,
one can fruitfully formulate a version of the theorem that applies to arbitrary such
systems, not just finite ones; we do so in Chapter 3. The theorem’s characterization of
“state” allows one to analyze many diverse aspects of state-transition systems, with
an eye toward improving their designs and/or exposing and quantifying their limita-
tions. Indeed, the applications of the mathematical characterization that we offer in
Chapters 3 and 4 involve several diverse aspects of systems, ranging from their sizes,
to their computational memory requirements, to their computing times for special
computations.

To whet the reader’s appetite for the advertised “range” of applications of Theorem 4.1: In
Section 5.2, we demonstrate how the Myhill–Nerode theorem supplies the mathematical un-
derpinnings of the state-minimization algorithm for finite-state machines that every student
of logic design learns about. In Section 5.3, we use the theorem to establish a surprising
computational limitation relating to certain current approaches to machine learning. In Sec-
tion 5.4, we exploit the theorem to obtain the strongest possible general lower bound on the
memory requirements of a surprisingly broad class of computations. In Section 5.5, we use
the theorem to bound from below the computation time of an abstract class of programs on an
abstract database computation—a bound that has important lessons for the theories of both
data structures and algorithms.

1.1.2 Encoding

Arguably, the most fundamental results in computability theory and complexity the-
ory depend on the ability to encode one computational problem, call it A, as another,
often quite different, computational problem, call it B, via a mapping (called a reduc-
tion) that translates any solution for (an instance of) B to a solution for (the corre-
sponding instance of) A.

One simple example will illustrate how dramatically problems A and B can differ from one
another, yet still be encodings of one another.

Let problem A be presented via a finite sequence of positive integers, m1,m2, . . . ,mn, together
with an (n+1)th positive integer N. The “problem” is to determine whether there is a subset
of the integers mi that sum to N. (A is often called the subset-sum problem.)
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Let problem B be presented by: (a) a set of locations; (b) a matrix of nonnegative numbers
whose (i, j)th entry is the “cost” of traveling from location i to location j—it makes no
difference how this “cost” is measured: it is just a number; (c) a target cost C. The “problem”
is to determine whether there is a tour that visits each location precisely once and that incurs
aggregate cost ≤C. (B is often called the traveling salesman problem.)

While it is not intuitively obvious, there is in fact a way of encoding instances of problem A
as instances of problems B that maps “yes” instances of A to “yes” instances of B and “no”
instances of A as “no” instances of B. Just as surprising: There is also an encoding that goes
in the other direction, from instances of problem B to instances of problem A.

Within computability theory (which we introduce in Chapter 9), one demands that
the encoding that maps instances of problem A to instances of problem B be sup-
plied/specified via a program that produces an instance of problem B from each
instance of problem A. In other words, one insists that the encoding can actually
be computed. Within complexity theory (which we introduce in Chapter 9), one de-
mands additionally that the program that performs the encoding be efficient, in some
sense. The specific notion of efficiency that one insists on depends on the notion of
computational complexity being studied. For instance, if one is studying the time
efficiency of a given class of computing devices on a given class of computations,
then one would insist on encodings that could be computed quickly on these comput-
ing devices; if one is studying the memory efficiency of a given class of computing
devices on a given class of computations, then one would insist on encodings that
could be computed succinctly on these devices. You can easily extrapolate from these
two sample complexity measures. An even more basic use of encodings is found in
Alan Turing’s original study of the inherent limitations of any “reasonable”1 digi-
tal computing system [104]. Turing’s work builds on the encodings used in Gödel’s
seminal work on “incompleteness” in logical systems [30]; this work shows that no
“reasonable” logical system can capture through the notion of proof all true arith-
metic facts. (This is, essentially, the meaning of the term “incompleteness.”) Both
of these intellectual tours de force use encodings to demonstrate rigorously the stark
distinctness of two notions that are easily—and fallaciously—identified in common
discourse; the notions were truth and theoremhood for Gödel, and functions and pro-
grams for Turing. Importantly for the viewpoint espoused here, the encodings in both
Gödel’s and Turing’s work are based on the relatively simple mathematics under-
lying the following results of Georg Cantor [9]. (1) There exist one-to-one asso-
ciations (based on computationally simple pairing functions) between the positive
integers and the positive rational numbers. (2) There can be no one-to-one associ-
ation between the rational numbers and the real numbers—even the real numbers
between 0 and 1. The second of these results employs Cantor’s well-known diago-
nal argument, which itself lives on as a basic tool in studies of reductions. By going
rather far from Cantor’s set-theoretic theme, one can use pairing functions to show
that simple integer arithmetic (addition and multiplication) suffices to encode elab-
orate finite structure—e.g., finite data structures, arithmetic expressions, or strings
of integers—as single integers. Also relevant to the viewpoint underlying this book,

1 Reasonableness here and in Kurt Gödel’s work precludes systems that have answers “wired in.”



6 1 Introduction

even the original, unembellished notion of pairing function has meat to chew on that
retains juice to this day, as we show in Section 7.1.

As just one example, we employ pairing functions in Section 7.1 to develop storage map-
pings for multidimensional arrays or tables that allow one to expand and shrink the ar-
ray/table at will without remapping any already-stored array entries; you can see easily that
the dimension-order array-storage mappings and their ilk that are used by compilers for stan-
dard programming languages do not allow such stability of array entries.

The (un)encodability demonstrated by Cantor’s work was crucial to Gödel and Tur-
ing, for it showed that, quite remarkably, even primitive formal systems can contain
encodings of sentences that are self-referential—in much the way that the paradoxical
sentence, “This sentence is false,” is. Within Gödel’s world, therefore, an integer that
occurs, apparently “harmlessly,” in a logical sentence S could in fact be an encoding of
a sentence—perhaps even of S itself! Thus, sentences that appear to be making state-
ments about integers can be construed as making statements about sentences. And
within Turing’s world, an integer input to a program P could actually be an encoding
of a program—perhaps even of P itself! Thus—and here is the rub!—programs that
appear to perform even simple computations on integers can be encodings of pro-
grams that effect complex transformations of program. We study the relevant mathe-
matical underpinnings of the notion of encoding in Chapter 7, and we observe their
ripples throughout computability theory and complexity Theory throughout the re-
mainder of Part III (Encoding). Not surprisingly, the relevant notions of encoding
gather complexity as we make our way through Part III, from the pairing functions
of Chapter 7, through the mapping-reductions of Chapter 9 and the polynomial-time
mapping-reductions of Chapter 13. One amazing outgrowth of the reductions in Parts
III and IV (Nondeterminism) is that there often exist within a class of computational
problems individual problems that are the “hardest” ones in the class, in the sense
that every problem in the class reduces to each of them. (Such problems are typically
said to be complete for the class.)

We mention two examples here.

The halting problem of Section 9.3, which is generally considered the prototypical compu-
tationally unsolvable problem, is to decide, given a program P and an input x for P, whether
program P ever halts if it is started on input x. The fact that the halting problem is complete
for the class of “semidecidable” or “partially solvable,” problems (as defined in Section 9.2)
means, for instance, that any program that could solve the halting problem can be transformed
into a program that decides the truth or falsity of statements about a broad range of relations
among positive integers.

Historical aside. The halting problem is often known as the “halting problem for Turing ma-
chines” and is almost universally attributed to Alan M. Turing’s seminal paper [104]. Citing
a published letter of Thorkil Naur [71], Andrew Pitts of Cambridge University has pointed
out (in private communication) that the property of Turing machines studied in [104], which
Turing called “circularity,” is actually rather different from halting. That said, Turing’s proof
of the undecidability of circularity puts one well on the road to a proof of the undecidability
of the halting problem. But the two problems are distinct!

The subset-sum and traveling salesman problems (problems A and B) that we referred to
when beginning our discussion of encodings are both complete for the class NP of prob-
lems that can be solved in “nondeterministic polynomial time” (see the next subsection,
on nondeterminism, and see Part IV). A polynomial-time (deterministic) solution for either
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problem would, therefore, settle the well-known P-vs.-NP problem by showing that every
problem that could be solved in “nondeterministic polynomial time” actually admits a com-
putationally tractable deterministic solution. Widely acknowledged as the most significant
computation-theoretic open problem, the P-vs.-NP problem forms the centerpiece of the por-
tion of complexity theory that we develop in Chapter 13.

The encoding-related notions of reduction and completeness underlie most of the
material in Parts III and IV.

1.1.3 Nondeterminism

The state-transition systems—both hardware and software—that one encounters in
“real life” are typically, but not universally, deterministic, in the sense that the current
state of the system, coupled with the specific relevant discrete stimuli that the system
can sense, uniquely determines the next state of the system. We really rely in “real
life” on the fact that if one runs a program repeatedly (on the same system, with
the same stimuli), then one will always get the same answer. The absence of such
determinism—which is called nondeterminism—would make it all but impossible to
design verifiably correct and efficient digital logic and would make it even harder
than it already is to craft verifiably correct and efficient software. Since deterministic
behavior seems, thus, to be fundamental to the desired functioning of the systems that
form the stock in trade of the computer professional, why should one even contem-
plate systems that are nondeterministic? The surprising answer comes in two install-
ments, one based in the late 1950s, the other in the early 1970s. It came as quite a sur-
prise in the late 1950s when the physically unrealizable mathematical idealization of
a “nondeterministic machine”—it is not really a machine because of its nondetermin-
istic behavior—was shown, in [75, 79], to yield dramatically simplified algorithms for
representing the behavior of finite state-transition systems, as exposed by the Kleene–
Myhill theorem (Theorem 11.3, the “regular-expression theorem”) of finite-automata
theory. This surprise became an intellectual supernova in the early 1970s with the dis-
covery of the P-vs.-NP problem and its attendant theory of NP-completeness [18, 56].
Nondeterminism was exposed in those sources as much more than just a mathe-
matical/algorithmic convenience; indeed, it was shown to be a fundamental compu-
tational notion that explains the apparent computational difficulty of myriad im-
portant computational problems. Subsequent studies (cf. the early encyclopedic re-
view of [28]) have exposed seemingly countless computational problems, in areas
ranging from constraint satisfaction,2 to structure mapping,3 to scheduling,4 to logic

2 Sample instance: Can a given set of disjunctive logical contraints be satisfied simultaneously?
3 Sample instance: What is the most efficient way to simulate a (logical) communication network of
structure A on a (physical) network of structure B?
4 Sample instance: What is the most efficient way to schedule final exams in a fixed set of classrooms
whose seating capacities are fixed?
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minimization,5 and beyond, that would admit simple, computationally efficient so-
lutions in a computing platform that implemented true nondeterministic behavior
but that, to this day, defy efficient solution on any known deterministic computing
platform.

To lend some quantitative texture to the preceding few sentences, many of the problems re-
ferred to admit solutions that take (nondeterministic) “time” that is linear in the size of the
problem description (the set of constraints, or the networks A and B, or the class and room
sizes, or the circuit description) upon a nondeterministic computing platform, whereas their
only known solutions on a deterministic computing platform take time that is exponential in
the input size.

Interestingly, the benefits of nondeterminism can be explained in a nutshell, and have
been well known for decades. Nondeterminism in an “algorithm”—as with “ma-
chines” in our earlier discussion, we put the word in quotes because a nondeterminis-
tic “algorithm” is not implementable as a “real” algorithm on a real (hence, determin-
istic!) computing platform—can be viewed as abbreviating a possibly lengthy, ardu-
ous search that is part of an algorithm, by means of a conceptual mechanism that is
embodied in a one-step superalgorithmic primitive of the form “Search for x.” The im-
portant conceptual role of nondeterminism in specifying an “algorithm” is to expose
the existence of the search explicitly, which many (deterministic) algorithms’ speci-
fications do not do. This exposure has successfully explained—but has not explained
away!—the observed computational intransigence of the NP-complete computational
problems one finds in compendia such as [28]. The exposure—when coupled with
other important computational concepts, notably completeness—has additionally al-
lowed us prove that finding a speedy algorithm for any of myriad important intransi-
gent problems will automatically provide speedy algorithms for all of the problems.
The seminal work underlying this branch of complexity theory was done indepen-
dently by Stephen A. Cook [18] and Leonid Levin [56], with extremely important
followup work by Richard M. Karp [48] and many others. Within our coverage of
computation theory, nondeterminism is an indispensable technical/algorithmic tool
in Section 11.2, but it is even more important in Chapter 13, where it provides the
intellectual raw material for much of the theory of computational complexity.

This book builds the elements of computation theory upon the preceding three
pillars (State, Encoding, Nondeterminism) via a part devoted to each. Within this
nonstandard organization, we develop the rudiments of three classical topics, the
theories of finite automata (Chapter 4), computability (Chapter 9), and complexity
(Chapter 13). Our organization allows us to explore interrelationships among these
three branches of computation theory that are not typically exposed in introductory
texts; it also allows us to expose certain common mathematical roots of the branches.
Some of the interrelationships we expose are thematic, such as the role of “state”
in complexity theory (Sections 5.4 and 5.5), while others are more technical, such
as the development of computational reductions, in Part III (Encoding), beginning

5 Sample instance: What is the smallest logic circuit built using nand gates that is functionally
equivalent to a given circuit?
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with Cantor’s countability arguments (Chapter 7). Our approach singles out certain
concepts and results of the three classical branches of computation theory as “big
ideas”—and we view this as a strength of the approach—but we do go beyond these
“big ideas” as we develop the branches, so that the “big ideas” emerge as major sign-
posts in a rich landscape rather than as a collection of isolated topics. We develop
finite automata theory up to, and including, the two basic theorems that character-
ize finite automata by, respectively, definitively elucidating the pillar notion, “state,”
(the Myhill–Nerode theorem, Theorem 4.1) and establishing the “equivalence” of
finite automata and regular expressions (the Kleene–Myhill theorem, of Stephen
C. Kleene and John Myhill, Theorem 11.3).

Only the former of these two results is designated a “big idea” here. Our choice is dictated
by the widespread applications of Theorem 4.1 within computation theory (as exemplified
throughout Part II (State)), in contrast to the relatively narrower shadow that Theorem 11.3—
basically an artifact of finite-automata theory—casts on computation theory as a whole. Be-
cause Theorem 11.3 becomes algorithmically accessible only in the presence of the pillar
“nondeterminism,” we develop the theorem in Part IV, which is dedicated to that pillar.

We develop computability theory from the underlying notions of (non)encodability
[of one computational system as another] and reducibility [of one computational
problem to another]. The culmination of this development is the notion of the com-
pleteness of certain individual computational problems within certain classes of such
problems. Complete problems are singled out for their ability to encode, in a quite
precise sense, any other problem in the class. One of the most exciting applications of
the notion of completeness (at least within computability theory) is the Rice–Myhill–
Shapiro theorem of Henry G. Rice, John Myhill, and Norman Shapiro (Theorem 9.5).
Informally, the theorem asserts the impossibility of effectively [i.e., algorithmically]
determining any properties of the dynamic behavior of a program from its static
description.6

The “big ideas” in computability theory all arise within the context of encoding, so we de-
velop the theory in Part III, which is devoted entirely to this “pillar.”

We develop complexity theory as an outgrowth of computability theory, built upon
(computational) resource-bounded versions of the encoding-based notions of Part III,
coupled with the very important added “pillar” ingredient of nondeterminism.

The importance of nondeterminism within complexity theory has led us to develop the rudi-
ments of the subject in Part IV of the book.

A philosophical aside. In this book, we view complexity theory as an outgrowth of com-
putability theory. Many complexity theorists would reject this view, arguing (with more than
a little truth) the central role of complexity theory within the field of algorithmics—a role
which is not shared by computability theory. Even taking that observation into account, I
still feel that this book’s approach to the material is the appropriate one pedagogically, for
it presents the essential “pillar” ingredients of encodings and nondeterminism in versions of
increasing complication, thereby easing the student’s assimilation of the ideas.

6 Sample questions: Does program P halt on all inputs? Does it halt on any inputs? Does it ever
produce a designated output (such as an “error” message)?
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Our development of complexity theory culminates, in Section 13.3.5, with the un-
derpinnings of the P-vs.-NP problem in the Cook–Levin theorem (Theorem 13.2).
The proof of this seminal result identifies, by example, an algorithmic structure in
computational problems that explains the problems’ efficient solvability on nonde-
terministic computing platforms in the face of their (apparent) inherent inefficiency
on any deterministic computing platform. Aside from its intrinsic usefulness—which
is amply manifest in the world of modern algorithmics—this identification exposes
the centrality of nondeterminism as a putative explanation of the inherent time re-
quirements of myriad diverse “real” computational problems. We finish our cover-
age of complexity-via-nondeterminism with the classic theorem of Walter J. Savitch
(Theorem 13.3) about space complexity, which broadens our perspective on the com-
putational implications of nondeterminism. As a counterpoint to the apparent need
for deterministic exponential time to simulate nondeterministic linear time, at least
in the worst case, Savitch’s theorem demonstrates that simulating a nondeterminis-
tic computing platform on a deterministic one can at worst square the amount of
memory that one needs for a computation. Nondeterminism thus affects the space re-
quirements of computations much more modestly than it (apparently) affects their
time requirements. The qualifier “apparently” here exposes the exciting fact that
complexity theory is very much a living discipline: Most of its most sought-after
secrets remain to be uncovered.

In an effort to get the reader to view what we are terming the “big ideas” of com-
putation theory within a broader context, we include throughout the book digressions
and “enrichment” topics that branch out from our central development of the theory.
Some of this extra material applies concepts in quite different settings from those in
which they were developed; others supplement the “big ideas” with material that may
be less “big” in their impact on computation but that round out the reader’s perspec-
tive on the material.

1.2 The Nature of Computation Theory

Computation theory is a mathematical subject that arose from a variety of disparate
sources, mathematics (including mathematical logic), engineering, and linguistics
being the main three. Studying different problems and facing different conceptual
and algorithmic challenges, all of these sources attempt to understand the power
and limitations of various formal systems: mathematical logic and proof systems,
digital computing systems, and formal mechanisms for specifying and analyzing
the syntaxes of natural and artificial languages. The most exciting aspects of the
theory are as follows:
The dynamic nature of computation theory. Computation theory models objects
that “do things.”

The systems (e.g., machines and circuits) studied within the theory are dynamic, in
the sense that they evolve over time and “do things,” such as compute. This contrasts
sharply with the static systems encountered in most mathematical theories.
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Any student of mathematics has encountered multicomponent mathematical sys-
tems such as graphs, groups, rings, fields. As complex as (some of) these systems
are, their specifications are “one dimensional”: Each system comprises a fixed set S
of objects that can be acted on by a fixed set of operations to yield other objects from
the set S; this process is governed by a fixed set of rules. Thus, if one understands
the objects, the operations, and the rules, then one can—in principle, at least!—
understand everything about the system. The systems in computation theory differ
from the preceding picture, in that they add to the “syntactic” triumvirate of objects,
operations, and rules a “semantic” component that describes how the system evolves
over time. The notion of time thereby sneaks into computation theory as a guest that
is unexpected because it does not appear explicitly when one specifies the formal
systems that the theory uses as models for computational devices and processes. It
may take some time getting used to systems that have both semantic and syntactic
components, but the reader will view the time as well spent as this dynamic theory
begins to unfold.
Robustness. Several of the fundamental models studied by computation theory re-
tain their basic (computational) properties even when their features are changed
significantly.

Many of the computational models studied in the theory have been developed by
practitioners in quite distinct fields, using quite different intuitions and formalisms.

Numerous variants of the finite automaton model, for instance, were invented in-
dependently by electrical engineers studying synchronous sequential circuits, by lin-
guists studying language acquisition in children, by neural scientists seeking models
for the behavior of the brain, by programming theorists studying various constructs in
programming languages, and by computation theorists seeking a “high-level” model
for digital computers. While the resulting models were quite distinct in form, they
all turned out to be behaviorally equivalent. Thus one can perturb many features of
the finite automaton model without changing the underlying theory.

Computability theory evinces an even greater degree of robustness. For many
decades of the twentieth century, people tried to devise mathematical models that
captured the notion “computable by a digital computer.” Models too numerous to list
here, often differing dramatically in form, were proposed. Yet no proposed model
ever exceeded the computing power of the rather primitive model invented by Tur-
ing in his original paper [104]. Indeed, this fact led people to formulate the (extra-
mathematical) Church-Turing thesis, which asserts that a vast array of such models
(including Turing’s original) actually do capture the target notion. In other words,
the thesis posits the coincidence of the preceding concept—which is unformalizable
because we have not yet seen all possible digital computers—and the quite formal
concept “computable by a Turing machine.” (We discuss the thesis at some length
in Section 9.1.)

Robustness of the sort just exemplified has (at least) two impacts. First, it en-
hances our ability to navigate the relevant portion of the theory: As we strive to un-
derstand various phenomena, we can switch from one formulation to another in a
search for perspicuity. Second, it enhances our faith in having discovered something
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“fundamental”: A superficiality is unlikely to retain its inherent nature in so many
dramatically different guises.
Applicability. Many aspects of computation theory have important computational
applications in quite distinct computing-related fields.

The computational applications to which the preceding assertion refers are those
that transcend the fundamental conceptual applications of the theory. We note two
examples: We find far-reaching implications in the theory of finite automata for activ-
ities as disparate as the design of compilers, of digital circuits (especially sequential
circuits, which have state), and of programming languages. Computability theory has
far-reaching consequences in mathematical logic, as well as in every aspect of the de-
sign and use of digital computers and their programs. Complexity theory has incisive
messages for any field that is concerned with optimizing complex processes, as well
as for many approaches to designing and analyzing complex systems.

As we introduce each topic throughout the book, we put the development of the
topic’s individual corner of computation theory into its historical context. Most obvi-
ously, such context helps one appreciate the nature of the theory and its underlying
culture. Less obviously, such context helps one understand (and tolerate) some of the
often obscure and sometimes conflicting terminology and notation in which much
of the theory is couched.

Enough introduction! Let us begin our journey.



Chapter 2
Mathematical Preliminaries

“If your only tool is a hammer . . . ”

This chapter is devoted to reviewing a broad range of mathematical concepts that
are central to our approach to developing computation theory. As we develop these
concepts, we shall repeatedly observe instances of the following “self-evident truth”
(which is what “axiom” means).

The conceptual axiom. One’s ability to think deeply about a complicated concept is always
enhanced by having more than one way to think about the concept.

We shall harvest only small benefits from this axiom within this chapter, but we
shall gather an abundant harvest in the remaining chapters.

2.1 Sets and Their Operations

Sets are probably the most basic object of mathematical discourse. We assume, there-
fore, that the reader knows what a set is and recognizes that some sets are finite,
while others are infinite. Sample finite sets are, for example, the set of words in this
book or the set of characters in any JAVA program. Some familiar infinite sets that
will appear somewhere in our discussions in this book are:1

• the set of nonnegative integers, which we denote by N,
• the set of positive integers, which we denote by N

+,
• the set of all integers, which we denote by Z,
• the set of nonnegative rational numbers—which are quotients of integers,
• the set of nonnegative real numbers—which can be viewed computationally as the

set of numbers that admit infinite decimal expansions,

1 We assume prior familiarity with all of these sets. We include them here just to establish notation
and terminology.

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 13
DOI 10.1007/978-0-387-09639-1 2, c© Springer Science+Business Media, LLC 2010
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• the set of nonnegative complex numbers—which can be viewed as ordered pairs
of real numbers,

• the set of all finite-length binary strings—i.e., strings of 0’s and 1’s—which we
denote {0,1}�.

When discussing computer-related matters, one often calls each 0 and 1 that occurs
in a binary string a bit, (for binary digit), which leads to the term “bit string” as
a synonym of “binary string.” With respect to general set-related notions, a source
such as [34] will supply more than enough background for the topics we discuss in
this book. Despite this assumption, we devote this short section to reviewing some
basic concepts concerning sets and operations thereon. (Others will appear as needed
throughout the book.)

For any finite set S, we denote by |S| the cardinality of S, which is the number
of elements in S. Finite sets having three special cardinalities are singled out with
special names. If |S| = 0—i.e., if S has no elements—then we call S the empty set
and denote it /0. The empty set will reappear myriad times throughout the book, as
a limiting case of set-defined entities. If |S| = 1—i.e., if S has just one element—
then we call S a singleton; and if |S|= 2—i.e., if S has precisely two elements—then
we call S a doubleton. In many of our discussions throughout the book, the sets of
interest will be subsets of some fixed “universal” set U .

We use the term “universal” as in “universe of discourse,” not in the self-referencing sense of
a set that contains all other sets. (Bertrand Russell has shown us in [91] [Chapter X, section
100] that the latter notion leads to mind-bending paradoxes.)

Two universal sets that will appear often are the two sample infinite sets mentioned
earlier, N and {0,1}�. Given a universal set U and a subset S ⊆ U (the notation
meaning that every element of S—if there are any—is also an element of U), we
note that the set inequalities

/0 ⊆ S ⊆ U

always hold.
It is often useful to have a convenient term and notation for the set of all subsets

of a set S. This bigger set—it contains 2|S| elements when S is finite—is denoted by
P(S) and is called the power set of S.2 You should satisfy yourself that the biggest
and smallest elements of P(S) are, respectively, the set S itself and the empty set /0.

Let’s pause for a moment. Why does the power set P(S) of a finite set S contain 2|S| elements?

The conceptual axiom will help us answer this question. We begin by taking an arbitrary
finite set S—say of n elements—and laying its elements out in a line. We thereby establish a
correspondence between S’s elements and positive integers: there is the first element, which
we associate with the integer 1, the second element, which we associate with the integer 2,
and so on, until the last element along the line gets associated with the integer n.

Next, let’s note that we can specify any subset S′ of S by specifying a length-n binary string,
i.e., a string of 0’s and 1’s. The translation is as follows. If an element s of S appears in the
subset S′, then we look at the integer we have associated with s (via our linearization of S),

2 The name “power set” arises from the relative cardinalities of S and P(S) for finite S.
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and we set the corresponding bit-position of our binary string to 1; otherwise, we set this
bit-position to 0. In this way, we get a distinct subset of S for each distinct binary string, and
a distinct binary string for each distinct subset of S. In particular: the number of length-n
binary strings is the same as the number of elements in the power set of S!

The binary string that we have constructed to represent each set of integers N ⊆
{0,1, . . . ,n− 1} is called the (length-n) characteristic vector of the set N. Of course,
the finite set N has characteristic vectors of all finite lengths. Generalizing this idea,
every set of integers N ⊆ N, whether finite or infinite, has an infinite characteristic
vector, which is formed in precisely the same way as are finite characteristic vectors,
but now using the set N as the base set.

We are making progress, but let’s look at an example before pressing onward. Let us focus
on the set S = {a,b,c}. Just to make life more interesting, let us lay S’s elements out in
the order b,a,c, so that b has associated integer 1, a has associated integer 2, and c has
associated integer 3. We depict the elements of P(S) and the corresponding binary strings
in the following table.

Binary string Set of integers Subset of S
000 /0 /0
001 {3} {c}
010 {2} {a}
011 {2,3} {a,c}
100 {1} {b}
101 {1,3} {b,c}
110 {1,2} {a,b}
111 {1,2,3} {a,b,c}= S

So, we need now only establish that there are 2n binary strings of length n. This is accom-
plished most simply by noting that there are always twice as many binary strings of length
n as there are of length n− 1. This is because we can form the set of binary strings of
length n by taking the set A of binary strings of length n− 1, duplicating A to obtain two
equinumerous sets A1 and A2, and appending 0 to every string in A1 and appending 1 to
every string in A2. The thus-amended sets A1 and A2 collectively contain all binary strings
of length n.

We now have the desired result.

Given two sets S and T , we denote by:

• S×T the direct product of S and T , which is the set of all ordered pairs whose
first coordinate contains an element of S and whose second coordinate contains
an element of T .

• S∩T the intersection of S and T , which is the set of elements that occur in both
S and T .

• S∪T the union of S and T , which is the set of elements that occur in S, or in T ,
or in both. (Because of the “or both” qualifier, this operation is sometimes called
inclusive union.)

• S \ T the difference of S and T , which is the set of elements that occur in S but
not in T . (Particularly in the United States, one often finds “S− T ” instead of
“S\T .”)
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We exemplify the preceding operations with the sets S = {a,b,c} and T = {c,d}.
For these sets:

S×T = {〈a,c〉,〈b,c〉,〈c,c〉,〈a,d〉,〈b,d〉,〈c,d〉},
S∩T = {c},
S∪T = {a,b,c,d},
S\T = {a,b}.

When studying the several contexts that involve a universal set U that all other sets
are subsets of, we include also the operation

• T = U \T , the complement of T (relative to the universal set U).
For instance, the set of odd positive integers is the complement of the set of even
positive integers, relative to the set of all positive integers.

We note a number of basic identities involving sets and operations on them. Working
on verifying them will cement your understanding:

• S\T = S∩T ,
• If S⊆ T , then

1. S\T = /0,
2. S∩T = S,
3. S∪T = T .

Note, in particular, that3

[S = T ] iff
[

[S⊆ T ] and [T ⊆ S]
]

iff
[

(S\T )∪ (T \S) = /0
]

.

The operations union, intersection, and complementation—and operations formed
from them, such as set difference—are usually called the Boolean (set) operations,
acknowledging the seminal work of the nineteenth-century English mathematician
George Boole.4 There are several important identities involving the Boolean set op-
erations. Among the most frequently invoked are the two “laws” attributed to the
nineteenth-century French mathematician Auguste De Morgan:

For all sets S and T :

⎧

⎨

⎩

S∪T = S∩T ,

S∩T = S∪T .
(2.1)

While we have focused here on Boolean operations on sets, there are “logical”
analogues of these operations for logical sentences and their logical “truth values” 0
and 1:

3 “iff” abbreviates the common mathematical phrase, “if and only if.”
4 One often encounters the lowercase adjective “boolean.” Such is the price of fame.
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• The logical analogue of complementation is (logical) not, which we shall denote
by an overline;5 e.g., [0 = 1], and [1 = 0].

• The logical analogue of union is (logical) or, which is also called disjunction or
logical sum. Texts often denote “or” in expressions by “∨”; e.g., [X ∨ Y = 1] iff
[X = 1] or [Y = 1] or both.

• The logical analogue of intersection is (logical) and, which is also called con-
junction or logical product. Texts often denote “and” in expressions by “∧”; e.g.,
[X ∧ Y = 1] iff both [X = 1] and [Y = 1]

We end this section with a set-theoretic definition that recurs often throughout
our study. Let C be any (finite or infinite) collection of sets, and let S and T be two
elements of C . (Note that C is a set whose elements are sets.) Focus, just for example,
on the set-theoretic operation of intersection; you should be able to extrapolate easily
to other operations. We say that C is closed under intersection if whenever sets S and
T (which could be the same set) both belong to C , the set S∩T also belongs to C . As
one instance of the desired extrapolation, C ’s being closed under union would mean
that the set S∪T belongs to C .

2.2 Binary Relations

2.2.1 The Formal Notion of Binary Relation

Given sets S and T , a relation on S and T (in that order) is any subset

R ⊆ S×T.

When S = T , we often call R a binary relation on (the set) S (“binary” because there
are two sets being related). Relations are so common that we use them in every as-
pect of our lives without even noticing them. The relations “equal,” “less than,” and
“greater than or equal to” are simple examples of binary relations on the integers.
These same three relations apply also to other familiar number systems such as the
rational and real numbers; only “equal,” though, holds (in the natural way) for the
complex numbers. Some subset of the three relations “is a parent of,” “is a child of,”
and “is a sibling of” probably are binary relations on (the set of people constituting)
your family. To mention just one relation with distinct sets S and T , the relation “A is
taking course X” is a relation on (the set of all students) × (the set of all courses).

We shall see later (Section 7.1) that there is a formal sense in which binary rela-
tions are all we ever need consider: 3-set (ternary) relations—which are subsets of
S1×S2×S3—and 4-set (quaternary) relations—which are subsets of S1×S2×S3×
S4—and so on (for any finite “arity”), can all be expressed as binary relations of
binary relations . . . of binary relations. As examples: For ternary relations, we can

5 Context will always make it clear when we are talking about set complementation and when we
are talking about logical not.
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replace any subset R of S1 × S2 × S3 by the obvious corresponding subset R′ of
S1 × (S2 × S3): for each element 〈s1,s2,s3〉 of R, the corresponding element of R′
is 〈s1,〈s2,s3〉〉. Similarly, for quaternary relations, we can replace any subset R′′
of S1 × S2 × S3 × S4 by the obvious corresponding subset R′′′ of S1 × (S2 × (S3 ×
S4)): for each element 〈s1,s2,s3,s4〉 of R′′, the corresponding element of R′′′ is
〈s1,〈s2,〈s3,s4〉〉〉.

You should convince yourself that we could achieve the desired correspondence also by
replacing S1 × (S2 × S3) with (S1 × S2)× S3 and by replacing S1 × S2 × S3 × S4 by either
((S1×S2)×S3)×S4 or (S1×S2)× (S3×S4).

By convention, with a binary relation R ⊆ S×T , we often write “sRt” in place of
the more conservative “〈s, t〉 ∈ R.” For instance, in “real life,” we write “5 < 7” rather
than the strange-looking (but formally correct) “〈5,7〉 ∈ <.”

The following operation on relations occurs in many guises, in almost all mathe-
matical theories. Let P and P′ be binary relations on a set S. The composition of P
and P′ (in that order) is the relation

P′′ def=
{

〈s,u〉 ∈ S×S | (∃t ∈ S)
[

[sPt] and [tP′u]
]}

.

(Note how we have used both of our notational conventions for relations here. Note
also a new notational device that will recur frequently throughout the book: We use
the compound symbol “

def=” as a shorthand for introducing notation. The sentence
“X

def= Y ” should be read “X is, by definition, Y .”)
There are two special classes of binary relations that play such a central role in

computation theory—and elsewhere!—that we must single them out immediately, in
the next two subsections.

2.2.2 Equivalence Relations

A binary relation R on a set S is an equivalence relation if it enjoys the following
three properties:

1. R is reflexive: for all s ∈ S, we have sRs.
2. R is symmetric: for all s,s′ ∈ S, we have sRs′ whenever s′Rs.
3. R is transitive: for all s,s′,s′′ ∈ S, whenever we have sRs′ and s′Rs′′, we also have

sRs′′.

Sample familiar equivalence relations are:

• The equality relation, =, on a set S which relates each s ∈ S with itself but with no
other element of S.

• The relations ≡12 and ≡24 on integers, where6

6 As usual, |x| is the absolute value, or, magnitude of the number x. That is, if x≥ 0, then |x|= x; if
x < 0, then |x|=−x.
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1. n1 ≡12 n2 if and only if |n1−n2| is divisible by 12.
2. n1 ≡24 n2 if and only if |n1−n2| is divisible by 24.

We use relation ≡12 (without formally knowing it) whenever we tell time using a
12-hour clock and relation ≡24 whenever we tell time using a 24-hour clock.

Closely related to the notion of an equivalence relation on a set S is the notion of a
partition of S. A partition of S is a nonempty collection of subsets S1,S2, . . . of S that
are

1. mutually exclusive: for distinct indices i and j, Si∩S j = /0;
2. collectively exhaustive: S1∪S2∪·· ·= S.

We call each set Si a block of the partition.
One verifies as follows that a partition of a set S and an equivalence relation on S

are just two ways of looking at the same concept. To see this, we note the following.
Getting an equivalence relation from a partition. Given any partition S1,S2, . . . of a set

S, define the following relation R on S:

sRs′ if and only if s and s′ belong to the same block of the partition.

Relation R is an equivalence relation on S. To wit, R is reflexive, symmetric, and
transitive because collective exhaustiveness ensures that each s ∈ S belongs to some
block of the partition, while mutual exclusivity ensures that it belongs to only one
block.

Getting a partition from an equivalence relation. For the converse, focus on any equiv-
alence relation R on a set S. For each s ∈ S, denote by [s]R the set

[s]R
def= {s′ ∈ S | sRs′};

we call [s]R the equivalence class of s under relation R.
The equivalence classes under R form a partition of S. To wit: R’s reflexivity ensures
that the equivalence classes collectively exhaust S; R’s symmetry and transitivity en-
sure that equivalence classes are mutually disjoint.

The index of the equivalence relation R is its number of classes—which can be
finite or infinite.

Let7 ≡1 and≡2 be two equivalence relations on a set S. We say that the relation≡1

is a refinement of (or refines) the relation ≡2 just when each block of ≡1 is a subset
of some block of ≡2. A couple of basic facts:

• The equality relation, =, on S refines every equivalence relation on S. (In this
sense, it is the finest equivalence relation on S.)

• Say that the equivalence relation ≡1 refines the equivalence relation ≡2 and that
≡2 has finite index I2. Then either ≡1 also has finite index I1 ≥ I2, or ≡1 has
infinite index.

7 Conforming to common usage, we typically use the symbol ≡, possibly with an embellishing
subscript, to denote an equivalence relation.
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2.3 Functions

One learns early in school that a function from a set A to a set B is a rule that assigns
a unique value from B to every value from A. Yet, as one grows in (mathematical) so-
phistication, one finds that this notion of function is more restrictive than necessary. A
simple example will illustrate our point. Our first example concerns division. We learn
that division, like multiplication, is a function that assigns a number to a given pair of
numbers. Yet we are warned almost immediately not to “divide by 0”: The quotient
upon division by 0 is “undefined.” So, division is not quite a function as envisioned
in the definition that begins this section. Indeed, in contrast to an expression such as
“4÷2,” which should lead to the result 2 in any programming environment,8 expres-
sions such as “4÷ 0” will lead to wildly different results in different programming
environments. How can one deal with this situation? As presenters of computation
theory, we are going to use an approach that is quite distinct from those of program-
ming environments. We are going to broaden the definition of “function” in a way
that behaves like the definition that begins this section in “well-behaved” situations
and that extends the notion in an intellectually consistent way within “ill-behaved”
situations. Let us begin to get formal.

A (partial) function from set S to set T is a relation F ⊆ S× T that is single-
valued: for each s ∈ S, there is at most one t ∈ T such that sFt. We traditionally write
“F : S → T ” as shorthand for the assertion, “F is a function from the set S to the
set T ”; we also traditionally write “F(s) = t” for the more conservative “sFt.” (The
single-valuedness of F makes the nonconservative notation safe.) We often call the
set S the source (set) and T the target (set) for function F . When there is always a
(perforce, unique) t ∈ T for each s ∈ S, then we call F a total function. Note that
our terminology is a bit unexpected: Every total function is a partial function; that is,
“partial” is the generic term, and “total” is a special case.

You may be surprised that we make partial functions our default domain of dis-
course. This is because most of the functions you deal with daily are total functions.
Our mathematical ancestors had to do some fancy footwork in order to make your
world so neat. Their choreography took two complementary forms.

1. They expanded the target set T on numerous occasions. As just two instances:

• They appended both 0 and the negative integers to the preexisting positive in-
tegers9 in order to make subtraction a total function.

• They appended the rationals to the preexisting integers in order to make division
(by nonzero numbers!) a total function.

The irrational algebraic numbers, the nonalgebraic real numbers, and the nonreal
complex numbers were similarly appended, in turn, to our number system in order
to make certain (more complicated) functions total.

8 We are, of course, ignoring demons such as round-off error.
9 The great mathematician Leopold Kronecker said, “God made the integers, all else is the work of
man”; cf. [3]. Kronecker was referring, of course, to the positive integers.
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2. They adapted the function. In programming languages, in particular, undefined-
ness is anathema, so such languages typically have ways of making functions total,
via devices such as “integer division” (so that odd integers can be “divided by 2”)
as well as various ploys for accommodating “division by 0.”

We are going to be less pragmatic than our ancestors, because computation theory is
traditionally a theory of functions on nonnegative integers (or, as we shall see, some
transparent encoding thereof). The price for such “pureness” is that we must allow
functions to be undefined on some arguments. Simple examples of such nontotal
functions are “division by 2” and “taking square roots.” Both of these functions are
defined only on subsets of the positive integers (the even integers and the perfect
squares, respectively).

Three special classes of functions merit explicit mention. For each, we give both a
down-to-earth name and a more scholarly Latinate one.

A function F : S→ T is:

1. one-to-one (or injective) if for each t ∈ T , there is at most one s ∈ S such that
F(s) = t;
Example: “multiplication by 2” is injective; “integer division by 2” is not (because,
e.g., 3 and 2 yield the same answer).
An injective function F is called an injection.

2. onto (or surjective) if for each t ∈ T , there is at least one s ∈ S such that F(s) = t;
Example: “subtraction of 1” is surjective, as is “taking the square root”; “addition
of 1” is not (because, e.g., 0 is never the sum), and “squaring” is not (because, e.g.,
2 is not the square of any integer).
A surjective function F is called a surjection.

3. one-to-one, onto (or bijective) if for each t ∈ T , there is precisely one s ∈ S such
that F(s) = t.
Example: The (total) function F : {0,1}� →{0,1}� defined by:

(∀w ∈ {0,1}�) F(w) = (the reversal of w)

is a bijection. The (total) function F ′ : {0,1}� → N defined by

(∀w∈{0,1}�) F(w) = (the integer that is represented by w viewed as a numeral)

is not a bijection, due to the possibility of leading 0’s.

A numeral is a sequence of digits that is the “name” of a number. The numerical value of
a numeral x depends on the number base, which is a positive integer b > 1 that is used to
create x. Much of our focus will be on binary numerals—which are binary strings—for
which the base is b = 2. For a general number base b, the integer denoted by the numeral
βnβn−1 . . .β1β0, where each βi ∈ {0,1, . . . ,b−1}, is

n

∑
i=0

βib
i.

We say that bit βi has lower order in the numeral than does βi+1, because βi is multiplied
by bi in evaluating the numeral, whereas βi+1 is multiplied by bi+1.
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A bijective function F is called a bijection.

2.4 Formal Languages

2.4.1 The Notion of Language in Computation Theory

Let Σ be a finite set of (atomic) symbols. Reflecting the linguistic antecedents of
computation theory (one of the theory’s many ancestors), we often call the set Σ
an alphabet and its constituent symbols letters. For each nonnegative integer k, we
denote by Σ k the set of all length-k strings—or sequences—of elements of Σ . For
instance, if Σ = {a,b}, then:

Σ 0 = {ε} (ε is the null string: the unique string of length 0),

Σ 1 = Σ = {a,b},
Σ 2 = {aa,ab,ba,bb},
Σ 3 = {aaa,aab,aba,abb,baa,bab,bba,bbb}.

We denote by Σ � the set of all finite-length strings of elements of Σ ; symbolically,

Σ � =
⋃

k∈N

Σ k.

Again nodding to the theory’s linguistic antecedents, we often call elements of Σ �

words, although we also often call them strings.

Notes. (a) If Σ �= /0, then Σ � is infinite.

(b) Because Σ 0 ⊆ Σ �, Σ � is never empty. Indeed, Σ � is finite iff Σ = /0, in which case Σ �

contains the single word ε .

(c) Be careful when reasoning about the null string ε (just as you should be careful when
reasoning about the null list as a data structure). Specifically, despite ε’s lack of letters, it is
an object, so, for instance, the set {ε} is not empty.

(d) The alphabet Σ = {σ1,σ2, . . . ,σn} is a set; hence, it has no intrinsic order. However,
in many situations, Σ is endowed with an extrinsic order. For instance, if Σ is the Latin
alphabet, then we all “know” that “a” precedes “b,” which precedes “c,” and so on. Similarly,
if Σ = {0,1}, then we all “know” that “0” precedes “1.” For such ordered alphabets, there
is the important notion of lexicographic order, which is a total order on Σ �. Given any two
words from Σ �,

x = σ ′1σ ′2 · · ·σ ′k and y = σ ′′1 σ ′′2 · · ·σ ′′� ,

we say that x precedes y in lexicographic order precisely when one of the following holds:

• x is a proper prefix of y (meaning that y = xz for some nonnull z ∈ Σ �);

• there exists an index i≤min(k, �) such that

– σ ′j = σ ′′j for all j < i

– σ ′i < σ ′′i in the extrinsic order on Σ .
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A language over the alphabet Σ is any subset L⊆ Σ �.

A language L over Σ can be as “small” as /0 or as “big” as Σ �, since, being a set, L satisfies

/0 ⊆ L ⊆ Σ �.

We denote by �(w) the length of the word w ∈ Σ �. Hence, �(ε) = 0, and �(w) = k for
all w ∈ Σ k.

The concatenation of words x ∈ Σ � and y ∈ Σ �, which we denote by juxtaposi-
tion of x and y—namely, xy—is obtained by appending the string y after the string x.
For instance, given two strings x = 01001 and y = 110111 over the alphabet {0,1},
the concatenation of x and y is the string xy = 01001110111. Occasionally—but only
occasionally—for emphasis, we actually insert an operation symbol to denote con-
catenation, by writing x · y in place of xy.

The operation of concatenation is often called the complex product within an algebraic set-
ting. In our context, the underlying algebra is the so-called free semigroup over the alphabet
Σ , which is just an esoteric way of talking about the semigroup of words over Σ , viewing
concatenation as a type of multiplication.

The operation of concatenation is associative, which means that for all strings x, y,
and z from Σ �, we have

x · (y · z) = (x · y) · z.
We leave the inductive argument that establishes this fact to the reader.

Associativity allows us to write long expressions without parentheses. We have been doing
this “forever” with binary operations such as addition and multiplication. We are now just
noting that we can do this also with this new, string-oriented, type of multiplication.

Equivalence relations on Σ �, specifically “right-invariant” ones, cast a broad
shadow in the theory.

An equivalence relation ≡ on Σ � is right-invariant if for all z ∈ Σ �, [xz ≡ yz]
whenever [x≡ y].

Two simple examples illustrate right-invariance. (1) Consider first the finest equiv-
alence relation ≡1, namely, equality:

[x≡1 y] if and only if [x = y].

This relation is right-invariant because if x and y are identical, then appending the
same string z to both leaves you with identical strings, xz and yz. (2) Consider next
the equivalence relation≡2 that “identifies” binary strings that have the same number
of 1’s:

[x≡2 y] if and only if the number of 1’s in x equals the the number of 1’s in y

(You should prove that ≡2 is indeed an equivalence relation.) This relation is right-
invariant because if x and y share the same number of 1’s, then so also do xz and yz,
no matter what string z is.
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A major focus in our development of the theory will be the following specific right-
invariant equivalence relation on Σ �, which is defined in terms of a given language
L⊆ Σ �:

For all x,y ∈ Σ � : [x≡L y] iff (∀z ∈ Σ �)[[xz ∈ L]⇔ [yz ∈ L]]. (2.2)

The following important result is left as an exercise.

Lemma 2.1. For any alphabet Σ and language L ⊆ Σ �, the equivalence relation ≡L

is right-invariant.

2.4.2 Languages as Metaphors for Computational Problems

This section is devoted to an important example of how one can think about compu-
tations in nonobvious ways—a somewhat subtler instance of the conceptual axiom
than we have observed to this point.

Every language L⊆ Σ � has an associated function that allows us to step back and
forth between the world of functions and the world of languages.

We may initially be a bit uncomfortable hopping in this way between formal notions that
are quite unrelated in day-to-day discourse. However, the historical antecedents of computa-
tion theory more or less force us to, especially if we want access to primary sources in the
development of the theory.

The characteristic function of the set/language L is the function κL defined as
follows:

(∀x ∈ Σ �) : κL(x) =
{

1 if x ∈ L,
0 if x �∈ L.

Dually, every function f : Σ � → {0,1} has an associated language L f defined as fol-
lows:

L f = {x ∈ Σ � | f (x) = 1}.
One can study a large range of computational issues involving two-valued func-

tions by focusing on the languages associated with the functions; and one can study
a large range of computational issues involving languages by focusing on the lan-
guages’ characteristic functions. One thus finds three distinct notions talked about
interchangeably within the theory:

1. a language L;
2. the computational problem: to compute L’s characteristic function;
3. the system property: to decide, given x ∈ Σ �, whether x ∈ L.

Interestingly, we shall encounter situations in which we shall be able to compute
only L’s semicharacteristic function κ ′L, which is a partial function that tells us when
a given x ∈ Σ � belongs to L but gives no response when x /∈ L:
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(∀x ∈ Σ �) : κ ′L(x) =
{

1 if x ∈ L,
undefined if x �∈ L.

Alan M. Turing’s world-changing demonstration of the existence of computational
problems that cannot be solved algorithmically [104] in fact exhibited a language L
whose semicharacteristic function is computable but whose characteristic function is
not.

A more concrete example of the duality between functions and languages involves
an arbitrary function

g : {0,1}�×{0,1}� →{0,1}�. (2.3)

(Think of g as being addition or multiplication, for instance.) One often studies the
problem of computing g via the following language-recognition problem. We define
the language10 L(g) as follows. L(g) is a language over the alphabet Σ def= {0,1}×
{0,1} whose letters are ordered pairs of bits. For each n ∈ N, the n-letter word

〈α0,β0〉〈α1,β1〉 · · · 〈αn−1,βn−1〉

in Σ n belongs to the language L(g) precisely when the nth bit of the bit-string

g(αn−1 · · ·α0, βn−1 · · ·β0)

is a 1.

Note that we reverse the orders of bit-strings so that the index of a bit-position equals the
power of 2 that we use to convert the bit-string to an integer. Using this notational convention,
the bit-string αn−1 · · ·α0 is the numeral11 for the integer ∑n−1

i=0 αi2i.

2.5 Graphs and Trees

A directed graph (digraph, for short) G is given by a set of nodes N G and a set of
arcs (or directed edges) AG . Each arc has the form (u→ v), where u,v ∈N G ; we
say that this arc goes from u to v. A path in G is a sequence of arcs that share adjacent
endpoints, as in the following path from node u1 to node un:

(u1 → u2), (u2 → u3), . . . , (un−2 → un−1), (un−1 → un). (2.4)

It is sometimes useful to endow the arcs of a digraph with labels from an alphabet Σ .
When so endowed, the path (2.4) would be written

(u1
λ1→ u2), (u2

λ2→ u3), . . . , (un−2
λn−2→ un−1), (un−1

λn−1→ un),

10 We avoid the notation “Lg” to avoid any confusion with languages and their characteristic func-
tions.
11 Recall that a numeral is the string-name for a number.
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where the λi denote symbols from Σ . If u1 = un, then we call the preceding path a
cycle.

An undirected graph is obtained from a directed graph by removing the direction-
ality of the arcs; the thus-beheaded arcs are called edges. Whereas we say:

the arc (u,v) goes from node u to node v
we say:

the undirected edge {u,v} goes between nodes u and v
or, more simply:

the undirected edge {u,v}connects nodes u and v.
Undirected graphs are usually the default concept, in the following sense: When G is
described as a “graph,” with no qualifier “directed” or “undirected,” it is understood
that G is an undirected graph.

One specific genre of digraph merits separate mention: rooted trees, which are a
class of acyclic digraphs. Paths in trees that start at the root are often called branches.
The acyclicity of a tree T means that for any branch of T of the form (2.4), we cannot
have u1 = un, for this would create a cycle. Each rooted tree T has a designated root
node rT ∈N T . A node un ∈N T that resides at the end of a branch (2.4) that starts
at rT (so u1 = rT ) is said to reside at depth n− 1 in T ; by convention, rT is said
to reside at depth 0. T ’s root rT has some number (possibly 0) of arcs that go from
rT to its children, each of which thus resides at depth 1 in T ; in turn, each child has
some number of arcs (possibly 0) to its children, and so on. (Think of a family tree.)
For each arc (u→ v) ∈ AT , we call u a parent of v, and v a child of u, in T ; clearly,
the depth of each child is one greater than the depth of its parent. Every node of T
except for rT has precisely one parent; rT has no parents. A childless node of a tree
is a leaf. The transitive extensions of the parent and child relations are, respectively,
the ancestor and descendant relations. The degree of a node v in a tree is the number
of children that the node has, call it cv. If every nonleaf node in a tree has the same
degree c, then we call c the degree of the tree.

It is sometimes useful to have a symbolic notation for the ancestor and descendant
relations. To this end, we write (u⇒ v) to indicate that node u is an ancestor of node
v, or equivalently, that node v is a descendant of node u. If we decide for some reason
that we are not interested in really distant descendants of the root of tree T , then we
can truncate T at a desired depth d by removing all nodes whose depths exceed d.
We thereby obtain the depth-d prefix of T . (We encounter in Theorem 13.3 a situation
in which we truncate a tree.)

Figure 2.1 depicts an arc-labeled rooted tree T whose arc labels come from the
alphabet {a,b}. T ’s arc-induced relationships are listed in Table 2.1.

2.6 Useful Quantitative Notions

Although our main focus will be on logical relationships among computation-theoretic
concepts, we shall now and then have occasion to discuss quantitive concepts. This
section reviews a couple of basic definitions involving such concepts.
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Fig. 2.1 An arc-labeled rooted tree T whose arc labels come from the alphabet {a,b}. (Arc labels
have no meaning; they are just for illustration.)

The arc-labeled rooted tree T of Figure 2.1
Node Children Parent Descendants Ancestors

rT = u0 u1 none u1,u2, . . . ,uk,v1,v2, . . . ,vk,w1,w2, . . . ,wk none
u1 u2,v1 u0 u2, . . . ,uk,v1,v2, . . . ,vk,w1,w2, . . . ,wk u0

u2 u3,v2 u1 u3, . . . ,uk,v2, . . . ,vk,w2, . . . ,wk u0

...
...

...
...

...
uk vk uk−1 vk,wk u0,u1, . . . ,uk−1

v1 w1 u1 w1 u0,u1

v2 w2 u2 w2 u0,u1,u2

...
...

...
...

...
vk wk uk wk u0,u1, . . . ,uk

w1 none v1 none u0,u1,v1

w2 none v2 none u0,u1,u2,v2

wk none vk none u0,u1, . . . ,uk,vk

Table 2.1 A tabular description of the rooted tree T of Figure 2.1.

Floors and ceilings. Given any real number x, we denote by �x� the floor (or integer
part) of x, which is the largest integer that that does not exceed x. Symmetrically, we
denote by �x� the ceiling of x, which is the smallest integer that is at least as large as
x. For any nonnegative integer n,

�n� = �n� = n;

for any positive rational number n+ p/q, where n, p, and q are positive integers and
p < q,

�n+ p/q� = n, and �n+ p/q� = n+1.

Logarithms and exponentials. Given any integer b > 1 (for “base”), the base-b log-
arithm function logb(•) maps positive reals to reals and is defined by either of the
following inverse relations:
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(∀x > 0)[x = blogb x = logb bx].

Taking logarithms is, thus, inverse to exponentiating. When b = 2, a particularly com-
mon special case within computation theory, we usually elide the base 2 and just write
logx.

Big-O, Big-Ω , and Big-Θ notation. It is convenient to have terminology and a notation
that allows us to talk about the rate of growth of one function as measured by the rate
of growth of another. We are interested in the exact growth rate, as well as upper and
lower bounds on the growth rate. We do have appropriate such language for certain
rates of growth. We can talk, for instance, about a linear growth rate or a quadratic rate
or an exponential rate, to name just a few—and we get the desired bounds using the
prefixes “sub” or “super,” as in “subexponential” and “superlinear”—but our reper-
toire of such terms is quite limited. Mathematicians working in the theory of numbers
in the late nineteenth century established a notation that gives us an unlimited reper-
toire of descriptors for growth rates, via what has come to be called the big-O, big-Ω ,
and big-Θ notations, which are collectively sometimes called asymptotic notation.

Let f and g be total functions from the nonnegative real numbers to the real num-
bers. We define the following notation:

f (x) = O(g(x)) means (∃c > 0)(∃x#)(∀x > x#)[ f (x)≤ c ·g(x)]
f (x) = Ω(g(x)) means f (x) = O(g(x)),

i.e., (∃c > 0)(∃x#)(∀x > x#)[ f (x)≥ c ·g(x)]
f (x) = Θ(g(x)) means [ f (x) = O(g(x))] and [ f (x) = Ω(g(x))],

i.e., (∃c1 > 0)(∃c2 > 0)(∃x#)(∀x > x#)[c1 ·g(x)≤ f (x)≤ c2 ·g(x)]

Note that all three of the rate specifications are eventual—or asymptotic—because of
the “(∀x > x#)” quantifier. Thus, in contrast to the more familiar completely deter-
mined assertions such as “ f (x) ≤ g(x),” the assertion “ f (x) = O(g(x))” has built-in
uncertainty, regarding both the size of the scaling factor c > 0 and the threshold x#

at which the asserted relationship between f (x) and g(x) kicks in. In mathematical
terms, it is best to think about these three asymptotic bounding assertions as estab-
lishing envelopes for f (x):

• Say that f (x) = O(g(x)). If one draws the graphs of the functions f (x) and c ·g(x),
then as one traces the graphs going rightward (letting x increase), one eventually
reaches a point x# beyond which the graph of f (x) never enters the territory above
the graph of c ·g(x).

• Say that f (x) = Ω(g(x)). This situation is the up-down mirror image of the pre-
ceding one: just replace the highlighted “above” with “below.”

• Say that f (x) =Θ(g(x)). We now have a two-sided envelope: beyond x#, the graph
of f (x) never enters the territory above the graph of c1 ·g(x) and never enters the
territory below the graph of c2 ·g(x).

In addition to allowing one to make familiar growth-rate comparisons such as “n14 =
O(n15)” and “1.001n = Ω(n1000),” we can now also make assertions such as “sinx =
Θ(1),” which are much clumsier to explain in words.
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There are “small”-letter analogues of the preceding “big”-letter asymptotic nota-
tions, but they are not encountered frequently in computation theory (although they
do arise in the analysis of algorithms). In order to prepare the reader for Section 8.4.2,
the one place in this book that employs the small-o notation, we note that the notation
o(1) refers to any function f (n) that tends to the limit 0 as n grows without bound.

We refer the reader to a text such as [20] for the full repertoire of asymptotic
notations that are useful when studying algorithms.





PART II
STATE

“This is a state of mind we live in . . .”

(Jerry Herman, in “Milk and Honey”)

The notion “state” is fundamental to the design and analysis of myriad sophisticated
systems. Consider, as one familiar example, an elevator. The elevator must “know”
when it is in a stable situation—sitting at a floor—and when it is in an unstable
situation—in transit between floors. It must respond to a fixed repertoire of external
stimuli—signals from call buttons and floor identifiers—by moving from one stable
situation to another. It is the stable situations that we call states.

Of particular interest to us, given the goal of this book is that the notion “state” is
fundamental to the design and analysis of virtually all computational systems, from
the sequential circuits that underlie sophisticated electronic hardware, to the semantic
models that enable optimizing compilers, to leading-edge machine-learning concepts,
to the models used in discrete-event simulations.

Decades of experience with state-based systems have taught that all but the
simplest display a level of complexity that makes them hard—conceptually and/or
computationally—to design and analyze. One brilliant candle in this gloomy scenario
is the Myhill–Nerode theorem, which supplies a rigorous mathematical analogue of
the following informal characterization of the notion “state”:

The state of a system comprises that fragment of its history that allows it to behave correctly
in the future.

This part of the book is devoted to developing our first pillar, the notion “state.” We
begin with a formal model that we call an online automaton, a very abstract compu-
tational model that allows us to isolate the notion “state” and its role in computation.
We then specialize online automata to their well-known finite submodel, finite au-
tomata. The conceptual pinnacle of this part is the Myhill–Nerode theorem, which
we develop in two versions, a weak version for online automata and a strong one
for finite automata. The remainder of our study of “state” focuses on several applica-
tions of the Myhill–Nerode theorem. We close this part with a brief development of
so-called pumping lemmas for two classes of languages. Our inclusion of this topic
is intended both for the enrichment of the reader and to contrast the very popular
pumping lemma for regular languages, which seems to appear in all texts, with the
much stronger and more perspicuous Myhill–Nerode theorem, which seems to have
disappeared from almost all texts.

Since we are embarking on a rather mathematical development, this is a good time
to review the material in Sections 2.1, 2.2, 2.3, and 2.4.1. Throughout our discussion
of online automata and their finite versions, finite automata, all functions will be total.





Chapter 3
Online Automata: Exemplars of “State”

3.1 Online Automata and Their “Languages”

An online automaton1 (OA, for short) is an abstract device that is a “pure” state-
transition system. To hone your intuiton for the formal specification of OAs, consider
Figure 3.1, which depicts a finite OA2—which we shall later (in the next chapter, in

OA

σ

YES/NO

Fig. 3.1 A cartoonish depiction of a finite Online Automaton M.

fact) call a finite automaton (FA, for short and finite automata in the plural). One can
think about an OA M as a simple machine that communicates with the world via:

1 The word “automaton,” being Greek in origin, forms its plural as “automata.” It shares these
singular/plural endings with more familiar English words of Greek ancestry, such as “phe-
nomenon”/”phenomena” and “criterion”/”criteria.”
2 Throughout the book, we abbreviate the phrase “finite-state OA” (resp., “infinite-state OA”) to
“finite OA” (resp., “infinite OA).

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 33
DOI 10.1007/978-0-387-09639-1 3, c© Springer Science+Business Media, LLC 2010
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• an input port that can be thought of as a funnel, which admits symbols from some
(finite) input alphabet, which we shall always denote by ΣM (omitting the subscript
M whenever the OA being discussed is clear from context)

• a bistable output mechanism that can be thought of as a light that flashes either
“YES” or “NO.”

When one activates an OA M, i.e., “turns it on,” that action puts M into its designated
initial state. Once M is “on,” one can drop letters that are chosen from M’s input
alphabet Σ into M’s funnel one at a time.

While the repertoire of letters that you can drop into M’s funnel is restricted to the finite set
Σ , you do have access to as many instances of each letter as you want; i.e., for any σ ∈ Σ , you
will always have access to another (instance of) σ whenever you want one. While the abstract
development of this chapter views each letter as atomic—i.e., indivisible and unstructured—
when we design actual OAs in Chapter 4, we actually employ letters with complex structure
that elucidates their roles in the computation.

When M’s internal logic “settles,” so that it is ready to process a new input letter,
M’s output light flashes either “YES” or “NO,” thereby announcing M’s decision on
the string of letters that it has seen to that point, since having been switched on. This
process, or as we shall call it, computation, continues as long as you keep dropping
letters into M’s funnel. We now formalize this definition of OA in two ways, which
will hopefully be synergistically helpful as you think about the model.
OAs as algebraic systems. An OA M is specified as follows:

M = (Q, Σ , δ , q0, F),

where

• Q is a set of states.
• Σ is a finite alphabet.
• δ is the state-transition function: δ : Q×Σ −→ Q.

On the basis of the current state and the most recently read input symbol, δ speci-
fies the next state of M.

• q0 is M’s initial state.
q0 is the state M enters when you first “switch it on.”

• F ⊆ Q is the set of final (or accepting) states.

OAs as labeled digraphs. One can view M as a labeled directed graph (digraph, for
short), in a natural way.

• The nodes of the graph are the states of M.
We shall represent each final state q∈F of M by a double square, and each nonfinal
state q ∈ Q\F by a single square.3 A “tailless” arrow point to M’s initial state q0.
These conventions are illustrated via some finite OAs in Figure 3.2.

3 One usually finds circles instead of squares in these depictions. We use squares because they are
easier to draw.
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Fig. 3.2 Graph-theoretic representations of three simple OAs.

• The labeled arcs represent the state transitions. For each state q ∈ Q and each
alphabet symbol σ ∈ Σ , there is an arc labeled σ leading from state/node q to
state/node δ (q,σ).

The “behavior” of an OA: the language it accepts. In order to make the OA model dy-
namic, we need to talk about how an OA M responds to strings of input symbols,
not just to single symbols. We must therefore extend the state-transition function δ to
operate on Q×Σ �, rather than just on Q×Σ . It is of the utmost importance that our
extension truly extend δ , i.e., that it agree with δ when applied to a string of length 1,
so pay attention to make sure that it does. We call our extended function ̂δ and define
it via the following induction. For all q ∈ Q:

• ̂δ (q,ε) = q.
If you give M no stimulus/input, then it gives you no response.

• (∀σ ∈ Σ , ∀x ∈ Σ �) [̂δ (q,σx) = ̂δ (δ (q,σ),x)].
If you give M a multiletter stimulus/input—say the string σx that consists of the
letter σ followed by the string x—then it begins by responding to the first letter (σ
in this example)—as indicated by the “δ” on the right-hand side of the equation—
and then it responds to the suffix x of the input.

Many times—as in most of this chapter—our interest in the behavior of M on input
string σ0σ1 · · ·σk ∈ Σ k is satisfied by a “summary” behavioral equation of the form

̂δ (q0,σ0σ1 · · ·σk) = qk+1.

There are times, however—notably in the chapters on computing devices that are
more structured than OAs—when we want a more detailed description of M’s trajec-
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tory from q0 to qk+1. In such situations, we represent M’s computation on input string
σ0σ1 · · ·σk as the following interleaved sequence of states from Q and input symbols
from Σ :

q0
σ0−→ q1

σ1−→ q2
σ2−→ ·· · σk−→ qk+1. (3.1)

The interpretation of (3.1) is that M starts out in state q0; in response to input symbol
σ0, it moves to state q1 = δ (q0,σ0); thence, in response to input symbol σ1, it moves
to state q2 = δ (q1,σ1); and so on.

Because it can cause no confusion to “overload” the semantics of the symbol “δ ,”
we henceforth simplify notation by no longer embellishing the extended δ with a hat
and just write δ : Q×Σ � −→ Q.

Note that we have a long history of such semantic overloading. As one quite familiar example,
we use “+” for the addition operation on integers, on rational numbers, on real numbers, on
complex numbers, and on matrices, even though, strictly speaking, each successive operation
in ths list strictly extends its predecessors.

An even more dramatic overloading of the symbol “+” occurs when we use it as a super-
script that denotes positivity—as when we distinguish the set N

+ of positive integers from
its nonnegative superset N. In this case, it is the placement of the symbol and the absence of
immediate right and left neighbors that precludes ambiguity.

Although we are not yet ready to explain the significance of this natural extension
of δ to Q×Σ �, we take a first step in this direction with a simple, yet basic, result
that we call the continuation lemma.

Lemma 3.1. (The continuation lemma) If δ (q0,x) = δ (q0,y) for strings x,y ∈ Σ �,
then for all z ∈ Σ �, δ (q0,xz) = δ (q0,yz).

In words: If strings x,y ∈ Σ � lead M from its initial state Qo to the same state
(δ (q0,x) = δ (q0,y)), then no “continuation” string z ∈ Σ � can help M distinguish x
from y.

Proof. The lemma is immediate from the following chain of equalities:

δ (q0,xz) = δ (δ (q0,x),z) = δ (δ (q0,y),z) = δ (q0,yz).

The chain follows by the way we have extended δ to strings: M reads xz (resp., yz)
by first reading x (resp., y) and then reading z. ��

Finally, we are ready to define the language L(M) that is accepted (or recognized)
by the OA M (sometimes called the “behavior” of M). The language L(M) is the
following subset of Σ �:

L(M) def= {x ∈ Σ � | δ (q0,x) ∈ F}.

In analogy with the equivalence relation ≡L of (2.2), which is associated with a
language L, we associate with each OA M the following equivalence relation on Σ �:

For all x,y ∈ Σ � : [x≡M y] if and only if [δ (q0,x) = δ (q0,y)]. (3.2)
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(You should verify that ≡M is always an equivalence relation on the set Σ �, i.e., that
it is reflexive, symmetric, and transitive.)

Recall (from Sections 2.2.2 and 2.4.1) that for any equivalence relation ≡ on Σ �:

• For each x ∈ Σ �, the ≡-class that x belongs to is [x]≡
def= {y ∈ Σ � | x≡ y}.

(When the subject relation≡ is clear from context, we simplify notation by writing
[x] for [x]≡.)

• The classes of ≡ are the blocks of a partition of Σ �.

The following basic facts about the equivalence relation≡M play a significant role
in exposing the nature of the concept “state.”

Lemma 3.2. For each OA M = (Q,Σ ,δ ,q0,F) :
(a) the equivalence relation ≡M is right-invariant;
(b) L(M) is the union of some of the equivalence classes of relation ≡M.

Proof. (a) The assertion that relation ≡M is right-invariant is just a rewording of the
continuation lemma (Lemma 3.1).

(b) L(M) is the union of the classes of relation ≡M that correspond to strings that
lead M from q0 to a state in F . ��
Reinforcing the preliminaries. Before continuing with our development, we illustrate
our definitions with three simple finite OAs and one infinite one. We hope that these
examples will hone the reader’s intuition and serve as concrete hooks to stabilize our
rather quick journey into the land of abstraction.

Figure 3.2 presents digraph representations of three finite OAs whose structures
are specified in Table 3.1. One verifies by inspection that4

M1 a

→ A B
B C
C A

M2 0 1

→ A A B
B A C
C A D
D A E

E E E

M3 a

→ A B

B C
C A

Table 3.1 Tabular representations of the OAs of Figure 3.2.

1. L(M1) = {ak | k ≡ 0 mod 3}, the set of strings of a’s (i.e., composed of instances
of the letter a) whose lengths are divisible by 3.

2. L(M2) = {x∈{0,1}� | (∃y∈{0,1}�)(∃z∈{0,1}�) [x = y1111z]}, the set of binary
strings (i.e., strings of 0’s and 1’s) that contain four or more consecutive 1’s in at
least one place.

4 We intentionally use diverse terminology in describing these languages, so that the reader will get
familiar with alternative modes of describing the same concept.
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3. L(M3) = {ak | k �≡ 2 mod 3}, the set of strings of a’s whose length is congruent to
either 0 or 1 modulo 3.

These three languages provide simple examples of a finite OA’s ability to make
finitely many discriminations regarding the structure of the string of inputs it has
seen thus far.

Note the roles that these three OAs’ states play in making the discriminations that decide
whether the OA should accept the string of inputs it has seen thus far.

OAs that have infinitely many states can be viewed as abstractions of programs
that can make infinitely many potential discriminations regarding the structure of a
set of potential input strings.

The word “potential” in the preceding sentence is of critical importance. OAs with infinitely
many states do not represent actual machines or programs. A human could never write an
infinite program—she would die before completing it (although most of us have written pro-
grams that would run for an infinite number of steps if not stopped). One should, rather, think
of infinite OAs as abstract representations of all potential finite behaviors of finite programs.
Such an abstract representation is useful in many “real” situations. Consider, as a simple in-
stance, a program—call it P—that executes a single loop some (finite) number of times that
is specified by an integer input. Since there are infinitely many integers, P can, in principle,
exhibit infinitely many distinct start-to-finish sequences of “states”—even though each such
sequence is finite. It is often convenient to analyze such a program by conceptually (but not
physically, of course) “unrolling” its loops, to create an associated quasiprogram that is infi-
nite. (Sophisticated compilers do this as a matter of course.) If the program being “unrolled”
is well-structured, then its infinite quasiprogram can be quite amenable to analysis—as our
two simple sample infinite OAs will illustrate.

We present the following two simple infinite OAs, M4 and M5, via the (partial) di-
graph representations in Figure 3.3, augmented by the (partial) tabular specifications
that appear schematically in the (partial) programs of Table 3.2. The OAsM4 and M5

are (intentionally) so simple that one can see by inspection that they recognize the
following languages:

1. L(M4) = {anbn | n ∈N}, the set of strings over {a,b} that consist of a block of a’s
followed by a like-length block of b’s.

Note the role of the “dead state” C of M4. This state is entered just when the input string
seen thus far has strayed irretrievably from the structure demanded by L(M4), either by
not being a block of a’s followed by a block of b’s, or by having too long a block of b’s. If
either of these iniquitous conditions occurs in the prefix x ∈ {a,b}� read thus far, then no
subsequent input string y ∈ {a,b}� can, when appended to x, lead to a string xy ∈ L(M4);
i.e., the form of x cannot be completed to a string xy of the form demanded by L(M4).

The significance of this example resides in our imminent demonstration that the
highlighted condition, “like-length,” forces M4 to have infinitely many states.

2. L(M5) = {an2 | n ∈N}, the set of strings consisting of a block of a’s whose length
is a perfect square, i.e., a nonnegative integer k of the form k = n2.

In contrast to M4, M5 possesses no irretrievably flawed inputs—so M5 does not need a
“dead state.”
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Fig. 3.3 Graph-theoretic representations of two simple infinite OAs.

The significance of this example resides in our imminent demonstration that the
structure of the set of integers that are perfect squares forces M5 to have infinitely
many states.

We now argue intuitively and informally that the kind of discrimination that M4

and M5 make when deciding whether or not to accept an input string—namely, M4’s
matching the lengths of the blocks of a’s and b’s by M4, and M5’s detection of perfect
squareness—cannot be made by any finite OA. Speaking very intuitively—but with
an intuition that is quite useful—such discriminations require unbounded memory.
We return to these examples with a formal treatment in Section 5.1.

We argue first that no finite OA recognizes the language L1 = L(M4). The simplest
way of seeing this begins by assuming, for contradiction, that there is a finite OA
M = (Q,{a,b},δ ,q0,F) such that L1 = L(M) = L(M4).

This is our first example of a technique of argumentation called “proof by contradiction”—
“reductio ad absurdum” in Latin. The technique consists in assuming the contrary of what
you want to prove, and showing that this contrary assumption leads to “a contradiction,” i.e.,
something that you know to be false. The only danger with this technique of argumentation is
that when you recognize the contradiction, you had better check carefully that your contrary
assumption is the only possible source of contradiction in your argument!
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M4:
Statement Case Action

*BEGIN* Output “YES”
A0 input = a Goto A1

input = b Goto C
C Output “NO”

input = a Goto C
input = b Goto C

A1 Output “NO”
input = a Goto A2

input = b Goto B1

B1 Output “YES”
input = a Goto C
input = b Goto C

A2 Output “NO”
input = a Goto A3

input = b Goto B2

B2 Output “NO”
input = a Goto C
input = b Goto B1

...
...

...
Ak Output “NO”

input = a Goto Ak+1

input = b Goto Bk

Bk Output “NO”
input = a Goto C
input = b Goto Bk−1

...
...

...

M5:
Statement Case Action

*BEGIN* Output “YES”
A0 input = a Goto A1

A1 Output “YES”
input = a Goto A2

A2 Output “NO”
input = a Goto A3

A3 Output “NO”
input = a Goto A4

A4 Output “YES”
input = a Goto A5

A5 Output “NO”
input = a Goto A6

...
...

...

Ak
k square Output “YES”
else Output “NO”
input = a Goto Ak+1

...
...

...

Table 3.2 Representations of the OAs of Figure 3.3 as schematic programs.

One notes that since there are infinitely many finite-length strings of a’s, some two
distinct ones, say ai and a j, must be “confused” by M, in the sense that δ (q0,ai) =
δ (q0,a j) = q; in other words, ai ≡M a j. Because δ is a function, we know that

δ (q,bi) = δ (q0,a
ibi) = δ (q0,a

jbi).

The preceding string of equations means that either both aibi and a jbi are accepted
by M or neither is. If both strings are accepted by M, then it accepts strings that do
not belong to L1; if neither string is accepted by M, then it fails to accept all strings
that belong to L1. In either case, M does not accept the language L1.

We argue next that no finite OA recognizes the language L2 = L(M5). The sim-
plest way of seeing this begins by assuming, for contradiction, that there is a finite
OA M = (Q,{a,b},δ ,q0,F) such that L2 = L(M). One then notes that since there
are infinitely many strings of a’s of the form ak2

—i.e., whose length is a perfect
square—some two distinct ones, say ai2 and a j2 , where j > i, must be “confused”
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by M, in the sense that δ (q0,ai2) = δ (q0,a j2) = q; i.e., ai2 ≡M a j2 . On the one hand,
we note that

δ (q,a2i+1) = δ (q0,a
i2a2i+1) = δ (q0,a

i2+2i+1) = δ (q0,a
(i+1)2

),

which M should accept, because a(i+1)2 ∈ L2. On the other hand, we note that

δ (q,a2i+1) = δ (q0,a
j2 a2i+1) = δ (q0,a

j2+2i+1),

which M should not accept, because

j2 < j2 +2i+1 < j2 +2 j +1 = ( j +1)2,

so that a j2+2i+1 �∈ L2 (the exponent of a falls strictly between two adjacent perfect
squares). We thus see that the state δ (q,a2i+1) (which is a unique state because δ is
a function) should be an accepting state of M in order to accept a(i+1)2

, but it should
be a nonaccepting state in order not to accept a j2+2i+1. We conclude that the OA M
cannot exist.

Note that we have intentionally worded the conclusions of the preceding two arguments a bit
differently from one another. Our intention was to give the reader a sample of the variety of
ways of saying that the posited finite OA does not behave correctly.

What is the common thread in the arguments about L1 and L2? In both cases, we
argued that there must be two strings, x and y, that lead the putative OA M to the same
state, even though M must distinguish x from y in order to accept all and only strings
in the desired language. This inability to distinguish x from y is the (not yet quite
formal) analogue of our saying that there are discriminations M must make if it is to
function correctly. The argument is that simple, but its simplicity should not obscure
the principle that it suggests: The state of an OA M embodies what it “remembers” of
its set of past histories. In particular, past histories that M must discriminate among,
in order to act correctly in the future, must lead M from its initial state to distinct
states! Superficially, it may appear that this definition of “state” is of no greater op-
erational significance than is the foundational identification of the number eight with
the infinitely many sets that contain eight elements. This appearance is too simplistic,
as we shall see in Chapter 4.

3.2 A Myhill–Nerode-like Theorem for OAs

The formalization of “state” in this section lays the foundation for our development
of the powerhouse Myhill–Nerode theorem of finite-automata theory (Theorem 4.1),
in Chapter 4. The version of the theorem that we develop now is weakened so that
it applies to all OAs, not just finite ones. Even this weakened version of the theo-
rem will expose the mathematical essence of the notion “state.” Specifically, we see
that a state of an OA M “is” an equivalence class of the relation ≡M , as defined in
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(3.2)—which means, formally, that a state “is” a subset of an equivalence class of
the relation ≡L(M), as defined in (2.2)—which means that the state is an embodiment
of the distinctions of past histories that are sufficient to decide membership in the
language L(M).

Theorem 3.1. (A Myhill–Nerode-type theorem for OAs)
(a) If L = L(M) for some OA M, then the right-invariant equivalence relation ≡M is
a refinement of the right-invariant equivalence relation ≡L.
(b) Every language L is recognized by an OA ML whose states are the classes of ≡L.

Proof. Because our argument will talk explicitly about the words that are in L and
those that are not in L, we need to have a name for the alphabet that constitutes those
words. Say that L⊆ Σ �.

(a) Let the OA M be given by M = (Q,Σ ,δ ,q0,F). We show that for all x,y ∈ Σ �,
if x ≡M y, then x ≡L(M) y. It will follow that each block of relation ≡M is a subset of
some block of relation ≡L(M).

By definition, if x ≡M y, then δ (q0,x) = δ (q0,y). By the continuation lemma
(Lemma 3.1), we then have also that for all z ∈ Σ �, δ (q0,xz) = δ (q0,yz), or equiva-
lently, xz≡M yz. Because all extended strings xz and yz thus share a destination state
q (starting from q0), they are either both accepted by M (if the shared state q belongs
to F) or both rejected by M (if the shared state q belongs to Q \F). Of course, the
phrases “are accepted by M” and “are elements of L(M)” are synonymous.

(b) We now present a “construction” of an OA ML = (QL,Σ ,δL,q0,L,FL), and we
argue that L(ML) = L.

An explanatory note that is somewhat philosophical is called for here.

The “construction” that we are about to present is a mathematical existence proof, not an
algorithm that can be followed to actually produce the OA ML. (That is why we have placed
quotation marks around “construction.”) This is because the language L is completely arbi-
trary: we do not have access to any rules that might help us decide of a given word x ∈ Σ �

whether x belongs to L. Indeed, as we shall see in Chapter 9, an arbitrary such set of rules
may not be “computable,” i.e., may not be able to be translated into a program that runs on
an actual computer and makes the required decisions. (I hope that this whets your appetite
for Chapter 9, where we adduce conditions that are necessary for a set of rules to be “com-
putable.”)

Again to whet your appetite for later material, I note that the reasoning that leads to Corol-
lary 7.2 at the end of this chapter can be used to show that—speaking with an informality that
we shall make rigorous via the development in Chapter 7—there are “not enough” algorithms
to construct the OAs ML for all languages L.

To reinforce the present digression, you should refer back to the rest of this proof when you
see the real Myhill–Nerode theorem (Theorem 4.1) in Chapter 4.

We specify the four entities that constitute the OA ML:

1. QL = {[x]L | x ∈ Σ �}, the set of classes of relation ≡L.
The set QL is well defined because ≡L is an equivalence relation.
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2. For all x ∈ Σ � and all σ ∈ Σ ,
δL([x]L,σ) = [xσ ]L.

You should verify that the right-invariance of relation ≡L guarantees that δL is a
well-defined function—i.e., that there is precisely one equivalence class [xσ ]L for
each equivalence class [x]L and each σ ∈ Σ .

3. q0,L = [ε]L.
ML’s start state corresponds to its having read nothing.

4. FL = {[x]L | x ∈ L}.
This guarantees that ML accepts precisely those words that belong to the language
L.

The interleaved remarks show that ML is a well-defined OA. The following simple
argument shows that L(ML) = L.

Let σ1σ2 · · ·σn, where n ≥ 0, be any string in Σ �. An easy induction, which we
leave to the reader, verifies that

δL([ε]L,σ1σ2 · · ·σn) = [σ1σ2 · · ·σn]L. (3.3)

(The required induction repeatedly invokes our remarks about the well-definedness
of both the set QL and the function δL.) By definition, the state [σ1σ2 · · ·σn]L belongs
to FL if and only if the string σ1σ2 · · ·σn belongs to L. It follows that L(ML) = L.
��

3.3 A Concrete OA: The Online Turing Machine

This section develops a variant of the classical Turing machine (TM for short), the
computational model introduced by Alan M. Turing in his monumental study [104]
that planted the seeds of the branches of computation theory called computability the-
ory and complexity theory. Our variant of the TM specializes Turing’s model to the
task of language recognition, i.e., to the computation of a characteristic or a semichar-
acteristic function, by rendering the model online, i.e., by having it receive its input
one symbol at a time (through a “funnel”). We call the resulting variant TM an online
TM (OTM, for short).

You should note how our OTM model represents one particular way of lending structure
to the infinite set of states of an OA. This way of achieving that goal is attractive because it
translates rather easily into viewing an OTM as a finite program that is endowed with a simple
data structure for “scratchwork,” with no a priori bound on the size of the data structure.

An OTM can be viewed as an OA that has a finite set of states—the control struc-
ture of the model—augmented with an auxiliary storage device (the data structure just
referred to) that contains only a finite amount of information at any time, but whose
capacity has no a priori upper bound; cf. Figure 3.4.

If we eliminate the auxiliary storage device, then we are left with a finite OA, the model that
we study in Chapter 4 under the name finite automaton (FA, for short).



44 3 Online Automata: Exemplars of “State”

OTM   

σ

AUXILIARY STORAGE DEVICE

Fig. 3.4 A cartoonish depiction of a generic online Turing machine.

To reiterate a crucial point: An OTM is an OA whose infinitely many states result from
appending a simply structured unbounded storage mechanism to a finite-state control.
Remarkably, every “reasonable” digitizable proposal for an OTM’s auxiliary storage
device—or for a TM’s auxiliary storage device—has been shown to give no more
computing power than the storage device proposed originally by Turing, namely, a
single linear tape.

An essential component of a storage device’s being “reasonable” is that at every step of
a computation, the contents of the device can be represented by a finite sequence of bits.
Among other things, this precludes analog devices.

We discuss the importance of the OTM model to the worlds of computation and math-
ematics at some length in Section 9.8. We develop the model here only to show that
the unreasonably abstract—because it cannot be built—OA model can be instantiated
in many quite reasonable ways, to produce eminently buildable OAs.

For a computer scientist, the easiest way to view a TM’s “tape” is as a linear list
of items called symbols; we view lists in a manner consistent with the treatment in
[53]. Within this traditional model, our earlier comment regarding the storage device’s
capacity is rendered as follows: Although a tape is always finite in length, there is no
bound on its capacity over the course of a computation. The single pointer that a TM
uses to access its tape is (for historical reasons) called a read/write head.

In preparation for our formal development, we refer the reader to Figure 3.5 during
this informal description of the operation of a sample, illustrative, OTM M.

The OTM M can access its tape in the following ways:

• M can “read” the symbol currently pointed to by the read/write head.
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Fig. 3.5 An online Turing machine M whose storage device is a linear tape.

All symbols that appear on the tape belongs to M’s working alphabet Γ . While Γ
may contain some or all of the letters in M’s input alphabet Σ , Γ differs from Σ at
least by containing the designated blank symbol, B , which Σ does not contain.

The blank symbol, B , is an actual symbol that occupies space—namely, a square of
the OTM’s tape. It should not be confused with the null string ε . What complicates this
warning is that when B occurs either before all nonblank characters on a tape or after all

nonblank characters, we usually do not write it. When B occurs in the midst of nonblank
characters on a tape, then we always do write it. Such are the vagaries of convention.

• M can “rewrite” the symbol currently pointed to by its read/write head. This act
replaces one symbol by another, but it does not alter the length of the tape.

• M can move its read/write head one unit left or right, thereby:

– accessing the symbol that currently resides in the square it has moved to, if
there is one;

– appending a new copy of B to the tape, if necessary to ensure that the
read/write head always has at least one tape square to its right and at least one
to its left.

This entire process is illustrated in Figure 3.6.

Still staying informal: Each computation by M begins with the TM in its desig-
nated initial state q0, with the tape “empty.” It is convenient when describing M’s
operation to imagine the initial tape as consisting of three instances of B , rather
than being null: M’s read/write head sits on (and scans) the middle B and is flanked
by the others. (With this convention, M can never “fall off” its tape by shifting its
read/write head. Believe it or not, the problem of modeling whether M should be
allowed to “fall off” its tape got a lot of attention not so many decades ago.)

M’s set Q of (internal) states—which are the states of M’s FA control unit—
consists of two disjoint subsets:

1. the set Qpoll of polling states.
These states are characterized by two facts:
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Fig. 3.6 Depicting M’s tape’s growing because of a move by the read/write head.

a. M’s polling states are the ones that admit input symbols into M’s input funnel.

Let’s consider the behavior of the input port in an OTM M’s “online” computation,
by analogy with OAs. One can view an OA as a device that is passive until a symbol
σ ∈ Σ is “dropped into” its input port. If the OA M is in a stable configuration at
that moment—for an actual electronic machine, this means that all bistable devices
(say, flip-flops or transistors) in M’s circuitry have stabilized—then M responds to
input σ by changing its state. The most interesting aspect of this response is that M
indicates whether the entire sequence of input symbols that it has been presented up
to that point—i.e., up to and including the last instance of symbol σ—is accepted.
Note that M responds to input symbols in an online manner—meaning that it makes
acceptance/rejection decisions about each prefix of the input string as that prefix has
been read. Of course, once M has “digested” the most recent instance of symbol σ , by
again reaching a stable configuration, then it is ready to “digest” another input symbol,
when and if one is “dropped into” its input port. Thus, all states of an OA are polling
states.

b. M’s polling states are the ones that make decisions about the string of inputs
that M has “read”—via its funnel—thus far.
Formally, the fact that M makes decisions only when in a polling state means

that Qpoll is partitioned into the set Q(acc)
poll of accepting states and the set Q(rej)

poll
of rejecting states.

If M enters a state q ∈ Q(acc)
poll after having read a word w ∈ Σ �, then we say that M

accepts w; if M enters a state q ∈ Q(rej)
poll after having read a word w ∈ Σ �, then we

say that M rejects w.
2. the set Qaut of autonomous states.

These states are characterized by the fact that they do not admit input symbols via
M’s funnel.

Because the structure of an OA M need not exhibit how M makes its accept/reject
decision—i.e., it need not “justify” its decision via some explicit computation—an OA
has no need for autonomous states. In contrast, an OTM (or, for that matter, a TM) must,
because of its finite set of states, perform an explicit computation in order to decide how
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to react to the most recent instance of symbol σ . (This computation involves the OTM’s
tape—unless the OTM is actually functioning as an FA.) An OTM’s autonomous states
provide the formal mechanism for accommodating these inter-input-symbol computa-
tions. One can view an OTM as entering a sequence of autonomous states whenever it
must “stop to think” before making its decision.

The fact that M makes decisions only in polling states, when it is ready to admit a
new input symbol, means that there may be words w ∈ Σ � that M neither accepts nor
rejects. On such words (if there are any), M enters an infinite sequence of autonomous
states, in which case we say that it “fails to halt” on input w! In contrast to an OA,
which has no autonomous states, hence always halts when the input sequence is finite,
an OTM (or, for that matter, a TM) need never halt. Indeed, the halting problem HP
of Chapter 9 originated within the context of TMs.

At every step of a computation—which means “while M is not in a polling state”—
M accesses the symbol from Γ that is currently scanned on its tape by its read/write
head. (This is the symbol that resides in the square that the read/write head is currently
sitting on. If M is currently in a polling state, then it also awaits an input symbol from
Σ at its funnel. On the basis of the symbol(s) accessed and the current state of the FA
that controls M:

1. M changes the state of its controlling FA, i.e., its internal state;
2. M alters its tape by respecifying the accessed symbol and then, possibly, moving

its read/write head.

The computation proceeds until M enters the next pollng state—which, as mentioned
earlier, may never happen. If a new input symbol now arrives at M’s funnel, then the
computation proceeds for another stage.

Formally, the single-step operation of M is specified by its state-transition function

δ :
((

Qpoll×Σ
)∪Qaut

)×Γ −→ Q×Γ ×{N,L,R}. (3.4)

The interpretation is as follows. On the basis of the current state q (and the current
input symbol σ ∈ Σ at its funnel if q is a polling state) and the current symbol γ ∈ Γ
being scanned on its tape, M makes the “move” specified by δ :

• M enters its next state (which may be the same as the current one);
• it replaces tape-symbol γ by a new one (which can be any symbol from the set Γ ,

including γ or B );
• it moves its read/write head at most one square on the tape: “N” denotes “no

move,” “L” denotes “move one square to the left,” “R” denotes “move one square
to the right.”

From this point on, we cease using the word “configuration” in its everyday sense of5 “an
arrangement of elements in a particular form, figure, or combination,” and we begin to use
the word in a technical sense.

The notion of a computation by M is formalized via the intermediate notion of
a configuration (known also as an instantaneous description), which is a form of

5 The cited definition comes from the dictionary included in Apple’s MacBook computers.
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“snapshot” of M’s progress in a computation. Letting Γ + denote the set Γ + def= Γ Γ �

of nonnull finite strings over Γ , a configuration of M is an ordered pair of strings in
the set

C M
def= Σ �×Γ +QΓ + B . (3.5)

The configuration
C = 〈w, γ1 · · ·γmqγm+1 · · ·γn〉 ∈ C M (3.6)

has the following interpretation. At the moment of the snapshot C:

1. M has read the string w at its input port;
2. M is in (internal) state q;
3. M’s read/write head is residing on symbol γm+1; and, M’s tape is entirely blank,

except possibly for the region delimited by the string γ1 · · ·γmγm+1 · · ·γn ∈ Γ +.
We can think of the phrase “entirely blank” in either of the following two ways.
Either the portion of the tape referred to is null, or it consists of an infinite string
of occurrences of the blank symbol B . The same mathematical formulation de-
scribes either of these intuitive views.

We call the portion γ1 · · ·γmqγm+1 · · ·γn of configuration C in (3.6) the total state
of M—in contrast to the internal state q.

The notion of total state is not just a theoretical construct. It lies at the heart of the SECD
machine model introduced by Peter J. Landin [55] in his quest for a formal mechanism that
could be used both to specify the semantics of a (real) programming language and to guide a
person in implementing these semantics.

The computation by M on input

w = σ1σ2 · · ·σ� ∈ Σ �

(if it exists) is a finite sequence of configurations, C(M)
0 (w), C(M)

1 (w), . . . , C(M)
t (w),6

that satisfies the following constraints:

• The first configuration, C(M)
0 (w), is M’s unique initial configuration.

This means that C(M)
0 (w) has the form

C(M)
0 (w) = 〈ε, B q0 B B 〉,

which indicates that M starts out:

– in its initial state q0,
– with an entirely blank worktape,
– having read none of the input.

6 For obvious reasons, we call the illustrated computation, if it exists, a t-step computation. It is the
posited finiteness of a computation that may prevent the existence of a computation on certain input
strings; cf. the halting problem.
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• The final configuration, C(M)
t (w), is a polling configuration.

This means that C(M)
t (w) is a valid configuration having the form

C(M)
t (w) = 〈w, xqy〉,

where q is a polling state. Note that M must have read precisely the input string

w—neither more nor less—by the time it reaches configuration C(M)
t (w).

• Consecutive configurations C(M)
i (w),C(M)

i+1 (w), where i ∈ [1, t− 1], in the putative
computation follow from one another according to M’s program.

This means that for i ∈ [1, t− 1], configuration C(M)
i+1 (w) is the unique consequent

of configuration C(M)
i (w) under M’s state-transition function δ . In more detail:

Say that C(M)
i (w) has the form

〈σ1σ2, · · ·σ j, xγ1qγ2γ3y〉,

where j ≥ 0, q ∈ Q, {γ1,γ2,γ3} ⊆ Γ , and x,y ∈ Γ �. We consider two main cases,
each with three subcases. You should refer back to definition (3.4) of δ as we
proceed.
1. State q is an autonomous state.

(a) If δ (q,γ2) = 〈q′,γ ′2,N〉, then

C(M)
i+1 (w) = 〈σ1σ2, · · ·σ j, xγ1q′γ ′2γ3y,〉.

(b) If δ (q,γ2) = 〈q′,γ ′2,L〉, then

C(M)
i+1 (w) = 〈σ1σ2, · · ·σ j, xq′γ1γ ′2γ3y,〉.

(c) If δ (q,γ2) = 〈q′,γ ′2R〉, then

C(M)
i+1 (w) = 〈σ1σ2, · · ·σ j, xγ1γ ′2q′γ3y,〉.

2. State q is a polling state.
(a) If δ (q,σ j+1,γ2) = 〈q′,γ ′2,N〉, then

C(M)
i+1 (w) = 〈σ1σ2, · · ·σ jσ j+1, xγ1q′γ ′2γ3y,〉.

(b) If δ (q,σ j+1,γ2) = 〈q′,γ ′2,L〉, then

C(M)
i+1 (w) = 〈σ1σ2, · · ·σ jσ j+1, xq′γ1γ ′2γ3y,〉.

(c) If δ (q,σ j+1,γ2) = 〈q′,γ ′2,R〉, then

C(M)
i+1 (w) = 〈σ1σ2, · · ·σ j,σ j+1, xγ1γ ′2q′γ3y,〉.
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If one views an OTM and its tape as a hardware construct (as Turing did in [104]—
but always keep in mind that programmable digital computers did not exist in those
days), then the preceding definition of an OTM and its computations raises myriad
thorny questions, such as, Can an OTM fall off its tape? How might one build a tape
drive that could handle arbitrarily long tapes (and their arbitrarily large masses)? If
one were to expand the model—as many have!—to allow multiple read/write heads
on a single tape, how could one design cooperating take-up reels for a thus-endowed
tape? If one adopts our recommended software-oriented view of an OTM as a pro-
gram and of its tape as a data structure, then these questions admit trivial answers,
as we all know from our experience programming real digital computers. Read/write
heads are just pointers into a list, so there is no physical mass to worry about as a list
grows; multiple pointers into a list cause no difficulties that would challenge any com-
petent programmer. Moreover, the “software” view of a TM also gives us access to
tractable mathematicizations of a large range of important questions that relate to the
relative “powers” and/or “efficiencies” of various types of data structures. We present
some such questions in the exercises; we deal with some particularly interesting ones
in Section 5.5 and especially in Section 9.8.



Chapter 4
Finite Automata and Regular Languages

4.1 Introduction

A finite automaton (FA, for short) is an online automaton whose state-set Q is finite.
The finite automaton model amply illustrates the three features of computation theory
described in Chapter 1. Essentially equivalent models of finite-state systems were
developed over a span of three decades, to model a large range of “real-life” systems.
In roughly chronological order:

1. Beginning in the 1940s, researchers (e.g., Warren S. McCulloch and Walter H. Pitts
[62]) attempting to explain the behavior of neural systems (natural and artificial
“brains”) developed models that were very close to our model of FA. While today’s
successors to their neurally inspired models have diverged from the standard FA
model in many ways, they still share many of its essential features. We shall briefly
study an early such model in Section 5.3.

2. Electrical engineers seeking to systematize the design and analysis of synchronous
sequential circuits—which are clocked circuits that have memory as well as com-
binational logic—developed a model of finite state machine (FSM, for short) in
the 1940s. Edward F. Moore’s variant of the FSM model [68] is essentially identi-
cal to the FA that we study, the main distinction being that his automata output 0’s
and 1’s, rather than “YES”-es and “NO”-es. George Mealy’s variant [64] of the
FSM model—which associates 0-1 outputs with state transitions rather than with
states—can be translated to our model very easily (with a lag of one-half clock
unit, to accommodate the displaced outputs). These models still play an essential
role in the design of digital systems—from carry-ripple adders to the control units
of digital computers (and often other systems, such as elevator controllers).

3. In the mid-1950s, several linguists—Noam Chomsky being the best known and
most influential (at least within computer science)—sought formal models that
could explain the acquisition of language by children. Chomsky developed a
hierarchy of both generative and analytic linguistic models, each augmenting
the (linguistic) complexity of its predecessor [12, 13]. Chomsky’s lowest-level
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model—his type-3 grammars and languages models—provide an alternative entry
to the world of finite automata and their languages. Chomsky’s work was later
picked up by compiler designers, who could use his type-3 grammars to generate
simple structures such as tokens and his finite automata to check the syntactic in-
tegrity of the tokens. (Chomsky’s work went far beyond the type-3 artifacts just
described, but they are our primary focus in this chapter.)

4. In the late 1950s, researchers (e.g., Michael O. Rabin and Dana Scott) who were
disheartened by the resistance of detailed computational models to algorithmic
tractability—we’ll observe this intractability in Chapter 9, as we study the topic
of unsolvability, and in Chapter 13, as we study the topic of hardness—began to
study finite automata as a very coarse, “high-level,” model for digital computers.
The appropriateness of FAs as such a model stems from the bistable devices (say,
flip-flops or transistors) that implement the hardware of a digital computer—e.g.,
the CPU and the memory. Being finite—albeit astronomical—in number, these
devices can assume only finitely many distinct configurations. The algorithmic
tractability of FAs (which we shall observe repeatedly in this chapter) means that
in principle—i.e., modulo the astronomical numbers—one can analyze many sig-
nificant properties of the dynamic behavior of programs, as long as the information
one seeks is very coarse, so that it can be modeled via FAs.

5. Toward the mid-to-late 1960s (and beyond), as people began to investigate the
possibilities for crafting optimizing compilers (Frances E. Allen and John Cocke
[1]) and program verifiers (Robert W. Floyd [26]). To these ends, they developed
various families of graphs that abstracted the behavior of programs in a way that
facilitates the analysis of the flow of data and the flow of control within the pro-
gram. The analytical tools that had been developed for studying FAs could be
applied—with little or no adaptation—to the analysis of the resulting data- and
control-flow graphs for programs.

The pinnacle in this chapter’s development of the theory of finite automata is the
Myhill–Nerode theorem (Section 4.3), which completely characterizes the power of
finite automata by completely characterizing the notion “state.” As we develop some
of the applications of the theorem, we shall see why we have identified “STATE”
as one of the “pillars” of computation theory. We present a second powerhouse re-
sult about FAs in Section 11.2: The Kleene–Myhill theorem (Theorem 11.3) com-
pletely characterizes the power of finite automata from a totally different perspective
from that of the Myhill–Nerode theorem. We do not view the Kleene–Myhill theo-
rem as exposing a “pillar” of computation theory because we view its applications
and implications as narrower, within the context of the general theory, than those
of the Myhill–Nerode theorem. That said, the Kleene–Myhill theorem is exceed-
ingly important, and it has broad-ranging application within the language-theoretic
and software-engineering related applications of finite automata theory. After deal-
ing with the preceding two blockbuster results, we close this chapter with a theo-
rem, known widely as the “pumping lemma (for regular languages)” (Section 6.1.2).
This result exploits a simple aspect of the structure of FAs—their finiteness. In my
estimation, the pumping lemma has been promoted in textbooks far beyond its in-
trinsic importance. We attempt to put the lemma into perspective by expounding, at
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greater length than is customary in computation theory texts, on its strengths and its
limitations within the context of FA theory. We close the chapter with an “enrich-
ment” section devoted to extensions of the central concepts we have developed.

4.2 Preliminaries

Much of the groundwork for our tour of finite automata theory was laid in Chapter 3,
since, as we noted there, an FA is just an OA whose set of states is finite. The one
point that we want to repeat here for emphasis is that despite the fact that our abstract
development of FA theory treats input symbols (i.e., elements of Σ ) as atomic (i.e.,
indivisible) entities, when we design specific FAs, the symbols usually have intrinsic
structure, which is endowed by their meanings. We shall see this immediately as we
design our first concrete sample FA of this chapter. The following concrete FAs are
intended to add some flesh to the abstract model we began to develop in Chapter 3; we
hope that these examples will hone both the reader’s intuition for and appreciation of
this simple, elegant computational model. We begin gently, with the simple example
of a sequential carry-ripple adder—call it M. The input to M will be a sequence/string
of pairs of bits.

Thus, the input alphabet ΣM for our first concrete FA has structure, being the set {0,1}×
{0,1} of ordered pairs of bits.

The adder M interprets each input string as a pair of binary numerals that are being
fed in simultaneously, low-order bit to high-order bit. M produces an output bit im-
mediately after reading each input symbol: the aggregate output after M has read n
input symbols is the numeral comprising the n lowest-order bits of the sum of the
pair of numerals represented by the input string. Symbolically, the behavior of M
after having read n input symbols can be depicted as follows:

INPUT: 〈αn−1,βn−1〉 〈αn−2,βn−2〉 . . . 〈α1,β1〉 〈α0,β0〉
OUTPUT: γn−1 γn−2 . . . γ1 γ0

where all αi,βi,γi ∈ {0,1} and where

· · · αn−1 αn−2 · · · α1 α0

+ · · · βn−1 βn−2 · · · β1 β0

= · · · γn−1 γn−2 · · · γ1 γ0.

Note that M requires both its input numerals to have the same length. This is no real
restriction, because a short numeral can be “padded out” with leading 0’s without
changing its numerical value.

How can we design the circuitry necessary to implement M? It suffices to imple-
ment M as an FA that has four states. We produce M in a sequence of steps that move
us gradually from the preceding functional specification to a formal specification.
The tabular representation of M in Table 4.1 specifies the four states and their roles
in the addition process; the rightward arrow indicates M’s initial state. The next step
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State-name State “meaning”
→ 0, no-C output 0 is produced no carry is propagated

0, C output 0 is produced a carry is propagated
1, no-C output 1 is produced no carry is propagated
1, C output 1 is produced a carry is propagated

Table 4.1 The states of our carry-ripple adder M.

in designing M is to convert the representation of Table 4.1 to that of Table 4.2. One

State 〈0,0〉 〈0,1〉 〈1,0〉 〈1,1〉
→ 0, no-C 0, no-C 1, no-C 1, no-C 0, C

1, no-C 0, no-C 1, no-C 1, no-C 0, C
0, C 1, no-C 0, C 0, C 1, C
1, C 1, no-C 0, C 0, C 1, C

Table 4.2 A tabular representation of the 4-state carry-ripple adder M.

can directly read off from the latter table the graph-theoretic representation of M as
a Moore-style finite state machine, i.e., one whose outputs are associated with states,
as depicted in Figure 4.1.

<1,1>

1, C

<0,1>
<1,0>

<1,1>

<0,0> <1,0>
<0,1>

<1,0>

0, C

<0,0>

<0,0><1,1> <0,0>

<0,1>

<1,1>

<1,0>
<0,1>

1, no−C0, no−C

Fig. 4.1 A graph-theoretic representation of the 4-state carry-ripple adder M.

Let us pause in our process of translating one representation of M to another, to
follow M’s behavior on a small sample input string: let us add 15 (= 11112) and 6
(= 01102):
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Time −→
State: [0, no-C] [1, no-C] [0, C] [1, C] [1, no-C]
Input: 〈1,0〉 〈1,1〉 〈1,1〉 〈1,0〉
Output: (ignored) 1 0 1 1

The reader may note that it would be more intuitive to use the Mealy variant of FSM
for our adder, rather than the Moore model, for the former associates outputs with
arcs, or state transitions, rather than with states. We stick with the Moore model
because it is the standard that appears in all computation-theoretic studies based on
finite automata, save, perhaps, studies that use FSMs to design synchronous sequen-
tial circuits.

Our final translational step somewhat simplifies our representation of FSMs—and
turns our FSMs into the finite automata that dominate our study in this chapter. This
translation consists in partitioning M’s set of states into those that produce output 1
and those that produce output 0. Having done this, we can suppress explicit mention
of the output in our representation of M, relying on the partition to tell us what output
M is emitting at each step. We illustrate this abbreviated notation in Table 4.3, where
the states that give output 1 are boxed, and those that give output 0 are not. (Of
course, we shall have a more elegant mechanism for distinguishing these classes of
states when we turn to the formal development of the model.)

State 〈0,0〉 〈0,1〉 〈1,0〉 〈1,1〉
→ no-C no-C no-C no-C C

no-C no-C no-C no-C C

C no-C C C C

C no-C C C C

Table 4.3 A tabular representation of the 4-state carry-ripple adder M, with “implicit” outputs.

Each of the two abstract formulations of FAs we have presented—the algebraic
formulation and the graph-theoretic one—lends powerful intuition to the capabilities
and limitations of the devices, as we shall see in Sections 4.3 and 11.2.

We now shift gears from the engineering antecedents of FA theory to the language-
theoretic antecedents that continue to dominate the terminology and, largely, the focus
of the theory. A language L is regular (is a regular set or regular language) precisely
if there is an FA M such that L = L(M). This terminology reflects the fact that the
structure of the strings in L can be delimited via strict rules (“regulae” in Latin).

Using only the background material we have developed thus far, we can already
prove a simple, yet significant, result about the class of regular languages.

Lemma 4.1. The class of regular languages over any alphabet Σ is closed under
complementation; that is, a language L⊆ Σ � is regular if and only if L’s complement
L = Σ � \L is regular.
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Proof. Focus on a language L ⊆ Σ � whose regularity is witnessed by the fact that
L = L(M) for the FA

M = (Q, Σ , δ , q0, F).

To show that L is regular, we need only have the FA M “complement” (or “flip”) its
answer regarding the acceptance or nonacceptance of all input words. This is achieved
formally by switching the roles of M’s accepting and nonaccepting states. Thus, L =
L(M), for the FA

M = (Q, Σ , δ , q0, Q\F).

In more detail: We know that the computations by M and M under any word w ∈
Σ � comprise the same sequences of states—because M and M share the same state-
transition function δ . In particular, we know that δ (q0,w) within M is the same state
as δ (q0,w) within M. But this state is an accepting state within one of these FAs and
a rejecting state within the other. It follows that L(M) = L(M). ��

We shall have many opportunities to invoke Lemma 4.1 as we develop the theory
of FAs and their languages.

One final remark before we turn to the first “big” result about FAs, the Myhill–
Nerode theorem. The study of FAs and their languages is interesting only when these
languages are infinite, for only then do the limitations of the FA as a computational
model impose limitations on the structures of the languages. The following lemma,
whose proof is left as an exercise, states the preceding assertion formally.

Lemma 4.2. Every finite language over a finite alphabet1 is regular.

The two theorems that form the high points of FA theory—the Myhill–Nerode
theorem (Theorem 4.1) and the Kleene–myhill theorem (Theorem 11.3)—expose
quite distinct aspects of the influence of an FA’s finiteness on the language that it
accepts.

4.3 The Myhill–Nerode Theorem for FAs

This section is devoted to establishing the theorem that tells us what the notion
“state” really means within our formal framework. This demonstration will allow
us to examine the importance of the intuitive notion of “state” as enunciated in
Chapter 3:

The state of a system comprises that fragment of its history that allows it to behave correctly
in the future.

Decades of experience with state-based systems have taught that all but the sim-
plest such systems display a level of complexity that makes them hard—conceptually

1 All alphabets that we consider are finite. We mention this finiteness in the statement of the Lemma
only for emphasis.
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and/or computationally—to design and analyze. One brilliant candle in this gloomy
scenario is the Myhill–Nerode theorem, which supplies a rigorous mathematical ana-
logue of the preceding informal characterization of “state.” The theorem turns out to
be a conceptual and technical powerhouse in analyzing a surprising range of problems
concerning the state-transition systems that occur in so many guises within the world
of computation. Indeed, although the theorem resides most naturally within the the-
ory of finite automata—it first appeared in [72]; an earlier, weaker version appeared
in [70]; the most accessible presentation appeared in [79]—it has manifold lessons
for the analysis of many problems associated with any state-transition system, even
those that have infinitely many states (as we shall see in the next chapter).

4.3.1 The Theorem: States Are Equivalence Classes

We refine the development in Section 3.2 as we specialize it to finite OAs. Recall that
the index of an equivalence relation ≡ on Σ � is the number of classes into which ≡
partitions Σ �.

Theorem 4.1 ([70, 72, 79]). (The Myhill–Nerode theorem) The following state-
ments about a language L⊆ Σ � are equivalent.

1. L is regular.
2. L is the union of some of the equivalence classes of a right-invariant equivalence

relation over Σ � of finite index.
3. The right-invariant equivalence relation ≡L of (2.2) has finite index.

The earliest version of the theorem, in [70], uses congruences—i.e., equivalence relations
that are both right- and left-invariant.

Proof. We prove the (logical) equivalence of the theorem’s three statements by ver-
ifying the three cyclic implications: statement 1 implies statement 2, which implies
statement 3, which implies statement 1.

You should verify that the proposed proof strategy is valid. Here is the challenge.

A literal reading of the Theorem asserts the (logical) equivalence of statements 1, 2, and 3.
Using a version of logical notation in which

“A⇒ B” means “A implies B,” i.e., “if A then B,”

and

“A⇔ B” means “A and B are logically equivalent,” i.e., “A if and only if B,”

the theorem asserts that [(1)⇔ (2)], [(1)⇔ (3)], and [(2)⇔ (3)]. We are instead proposing
to prove [(1)⇒ (2)], [(2)⇒ (3)], and [(3)⇒ (1)].

Your challenge is to verify that our strategy does, indeed, provide a legitimate proof of the
theorem.

Hint: You should first verify that logical implication,⇒, is a transitive relation on statements.
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On with the proof!
(1) ⇒ (2). Say that the language L is regular. There is, then, an FA M =

(Q,Σ ,δ ,q0,F) such that L = L(M). Note that the right-invariant equivalence rela-
tion ≡M of (3.2) has, by definition, index no greater than |Q|.

The relation could have index smaller than |Q| if some of M’s states were isolated, i.e., not
accessible from q0.

(One would likely never intentionally design M with isolated states, but we have all inadver-
tently written programs that had inaccessible regions.)

Moreover, L is the union of some of the classes of relation ≡M; specifically:

L = {x ∈ Σ � | δ (q0,x) ∈ F} =
⋃

f∈F

{x ∈ Σ � | δ (q0,x) = f}.

(2) ⇒ (3). We claim that if L is “defined” via some (read: any) finite-index right-
invariant equivalence relation ≡ on Σ �, in the sense of statement 2, then the specific
right-invariant equivalence relation≡L has finite index. We verify the claim by show-
ing that the relation≡ that “defines” L must refine relation≡L, in the sense that every
equivalence class of ≡ is a subset of—i.e., is totally contained in—some equivalence
class of ≡L. To see this, consider any strings x,y ∈ Σ � such that x ≡ y. By the right-
invariance of relation≡, for all z∈ Σ �, we have xz≡ yz. Because L is, by assumption,
the union of entire classes of ≡, we must have

[xz ∈ L] if and only if [yz ∈ L].

But—cf. (2.2)—this logical equivalence means that x ≡L y. Because x and y were
arbitrary strings from Σ �, we conclude that

[x≡ y] ⇒ [x≡L y].

Because relation ≡ has only finitely many classes, and because each class of relation
≡L is the union of some of the classes of relation ≡, it follows that relation ≡L has
finite index.

(3) ⇒ (1). Say finally that the specific right-invariant equivalence relation ≡L on
Σ � has finite index and that L is the union of some of the classes of≡L. Let the distinct
classes of ≡L be [x1], [x2], . . . , [xn], for some n strings xi ∈ Σ �.

Note that because of the transitivity of relation ≡L, we can identify a class uniquely via any
one of its constituent strings. This works, of course, for any equivalence relation.

We claim that these n classes form the states of an FA M = (Q,Σ ,δ ,q0,F) that accepts
L. We identify the various components of M as follows.

This is essentially the same construction as in the proof of Theorem 3.1.

1. Q = {[x1], [x2], . . . , [xn]}.
This set is finite because ≡L has finite index.

2. For all x ∈ Σ � and all σ ∈ Σ , define δ ([x],σ) = [xσ ].
The right-invariance of relation ≡L guarantees that δ is a well-defined function.
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3. q0 = [ε].
M’s start state corresponds to its having read nothing.

4. F = {[x] | x ∈ L}.
We are guaranteed that L is the union of some of the classes of ≡L.

We leave as an exercise the inductive argument that M is a well-defined FA that
accepts L. ��

4.3.2 What Do Equivalence Classes Look Like?

While it is often easy to argue abstractly about states “being” equivalence classes of
≡L, in the sense of Theorems 3.1 and 4.1, it is just as often a daunting exercise to
identify these equivalence classes explicitly when presented with even a moderately
simple language. Put somewhat differently, but equivalently: precisely what distinc-
tions have to be made in order to correctly decide membership in a language L? In
this section, we analyze relation ≡L for a few sample languages L, in an attempt to
lend readers some intuition that will help them gain operational command over this
important component of FA theory.
L1 = {ai | i≡ 0 mod 3}:
—As we argued informally in Section 3.1, the language L1 is accepted by the first
FA depicted in Figure 3.2, hence is regular. Hopefully, this example is simple enough
that the reader will recognize the following equivalence classes of≡L1 as “operational
names” of the states of the depicted FA.

I want to digress momentarily to distinguish names that are operationally useful from those
that are not. Anyone who has tried to do arithmetic with Roman numerals will certainly
appreciate the algorithmic manipulability of our conventional positional (e.g., binary or dec-
imal) numbering systems. Some of the ways we “name” numbers are much clumsier op-
erationally than Roman numerals. One example that comes readily to mind is the number
e = 2.718281828 . . ., the base of the natural logarithm. Indeed, calling this number “e” leaves
one with no idea of how to perform any arithmetic operation on it—even an operation as
simple as identifying the number’s first 100 decimal digits. In contrast, a name such as
∑∞

k=0(1/k!) allows one—albeit with some difficulty—to perform any variety of arithmetic op-
erations on it. Of course, what we have just said about e is just as true about π = 3.14159 . . .,
the ratio of the circumference of a circle to its diameter.

Our point here is that just endowing entities with arbitrary names need not afford one any
“power” over the entities. One should always strive for operational names, such as we de-
scribe here for the states of an FA, and in Section 11.2 for regular languages.

1. [ε]
This class consists of all strings whose length is divisible by 3.
All of these strings are in L1; in fact, L1 = [ε].
For any word x that belongs to this class, an extension of x by a word z is in L1 if
and only if z ∈ [ε]. Symbolically:

(∀x ∈ [ε])(∀z ∈ Σ �)
[

[xz ∈ L1]⇔ [z ∈ [ε]]
]

.
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2. [a]
This class consists of every string whose length leaves a remainder of 1 when
divided by 3.
None of these words is in L1.
For any word x that belongs to this class, an extension of x by a word z—i.e., the
word xz—is in L1 if and only if z ∈ [aa]. Symbolically:

(∀x ∈ [ε])(∀z ∈ Σ �)
[

[xz ∈ L1]⇔ [z ∈ [aa]]
]

.

3. [aa]
This class consists of every string whose length leaves a remainder of 2 when
divided by 3.
None of these words is in L1.
For any word x that belongs to this class, an extension of x by a word z—i.e., the
word xz—is in L1 if and only if z ∈ [a]. Symbolically:

(∀x ∈ [ε])(∀z ∈ Σ �)
[

[xz ∈ L1]⇔ [z ∈ [a]]
]

.

Because all positive integers are congruent either to 0 or to 1 or to 2 modulo 3, we
have thus partitioned {a}�. The annotations that accompany our descriptions of the
blocks of the partition demonstrate that the partition is the sought relation ≡L1 , and
that L1 is the union of some of the classes of this relation—in this case, the “union”
of one of the classes.

L2 = {x1111y | x,y ∈ {0,1}�}:
—This language is accepted by the third FA depicted in Figure 3.2, hence is regu-
lar. One should recognize the following equivalence classes of ≡L2 as “operational
names” of the states of the depicted FA.

The conditions listed (a), (b), . . . in the following descriptions of sets of binary words are
the raw materials for the arguments needed to establish that each of the described sets is a
separate equivalence class of the relation ≡L2 .

1. ε , plus all words ending in 0 that do not contain a run of four 1’s.
This class does not intersect any of the other classes we enumerate because: (a)
none of the words in this class belong to L2; (b) no z ∈ {1,11,111} extends any of
these words to a word in L2; (c) every word z ∈ L2 does extend any of these words
to a word in L2.

2. All words ending in 01 that do not contain a run of four 1’s.
This class does not intersect any of the others because: (a) none of these words
belongs to L2; (b) no z ∈ {1,11} extends any of these words to a word in L2; (c)
every word2 z ∈ {111} · {0,1}� ∪L2 does extend any of these words to a word in
L2.

3. All words ending in 011 that do not contain a run of four 1’s.

2 Recall that the set {111} · {0,1}� comprises all strings that start with three 1’s.
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This class does not intersect any of the others because: (a) none of these words
belongs to L2; (b) the string z = 1 does not extend any of these words to a word in
L2; (c) every word z ∈ {11,111} · {0,1}�∪L2 does extend any of these words to a
word in L2.

4. All words ending in 0111 that do not contain a run of four 1’zas.
This class does not intersect any of the others because: (a) none of these words
belongs to L2; (b) every word z ∈ {1,11,111} · {0,1}� ∪ L2 does extend any of
these words to a word in L2.

5. All words in L2.
This class does not intersect any of the others because every word z ∈ {0,1}�
extends any of these words to a word in L2.

We have thus partitioned {0,1}� into five blocks. The conditions accompanying each
of the blocks can be used to show that the words in each block share precisely the
same set of extensions into L2. Therefore, our partition is, in fact, relation ≡L2 .

L3 = {anbn | n ∈ N}:3
—We shall see in Section 5.1 that this language—which is L(M4) for the OA M4 in
Figure 3.3—is not regular, so that by Theorem 4.1, ≡L3 has infinitely many classes.
(This fact should not intimidate, because the infinitely many classes are quite easy to
describe.) One should recognize the following list of classes as corresponding to the
(infinitely many) states of the first OA depicted in Figure 3.3.

1. [ε]
This is a singleton class, because ε is the unique word in L3 that has a nonnull
continuation that is also in L3. (In fact, it has infinitely many: any x ∈ L3 \{ε} will
work.)

2. [ab]
This class contains all elements of L3 \ {ε}, hence is infinite. All words in this
class belong to L3, but none of them admits any nonnull continuation that is also
in L3.

3. For each integer i > 0, there is the class [ai].
For each integer i > 0, the class [ai] contains all words that are completed to ele-
ments of L3 by the word bi. The few shortest words in the class [ai] are ai, ai+1b,
ai+2b2. No word in any class [ai] belongs to L3.

4. There is a single “dead” class that contains all words that are not in L3 and that
have no completion into L3. These words have one of the following forms: aib j

with j > i > 0, or some word that is not a block of a’s followed by a block of
b’s. The latter contingency includes all words that start with a b (symbolically, all
words in bΣ �) and all words that contain three or more nonnull blocks of a’s and
b’s, such as aba and aabaab.

The Palindromes:
—Our final example in this section is the language

3 for any word x, the notation xn denotes a string that is a concatenation of n occurrences of x.
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L4 = {x ∈ {0,1}� | x reads the same forward and backward;

symbolically, x = xR},

where xR, the reversal of string x ∈ {0,1}�, denotes string x written backward

(σ1σ2 · · ·σn−1σn)R = σnσn−1 · · ·σ2σ1.

The words in L4 are called “palindromes.”
We shall see in Section 5.1 that this language, too, is not regular, so that, by The-

orem 4.1, ≡L4 has infinitely many classes. We organize our analysis of L4 a bit dif-
ferently from our analyses of L1, L2, and L3, because the classes of L4 have a rather
dramatic structure: each is a singleton!

We prove that every x ∈ {0,1}� resides in its own class of ≡L4 using a proof by
contradiction. To this end, we assume that there exist distinct words x,y ∈ {0,1}�
such that x≡L4 y. We distinguish two cases.

Case 1: �(x) = �(y).4

In this case, the fact that xxR ∈ L4, while yxR �∈ L4, contradicts the assumed ≡L4 -
equivalence of x and y.

Case 2: �(x) �= �(y).
Say, with no loss of generality, that �(x) < �(y). Specifically, let

x = α1α2 · · ·αm and y = β1β2 · · ·βmβm+1 · · ·βn, (4.1)

where each αi,β j ∈ {0,1}. Consider the binary word

z = β m+1αm · · ·α2α1.

(Recall that β m+1 = 1−βm+1.) On the one hand, the word xz is a palindrome:

xz = α1α2 · · ·αmβ m+1αm · · ·α2α1.

On the other hand, the word yz is not a palindrome:

yz = β1β2 · · ·βmβm+1 · · ·βnβ m+1αm · · ·α2α1;

as one reads yz forward and backward, one is certain to encounter a mismatch no later
than step m + 1. Because the word z thus extends x into L4 but extends y into L4, we
conclude that x �≡L4 y, contradicting the assumed ≡L4 -equivalence of x and y.

Because x and y were arbitrary binary words, we have thus verified that every word
in {0,1}� occupies its own class of ≡L4 .

4 Recall from Section 2.4.1 that �(w) is the length of word w.



Chapter 5
Applications of the Myhill–Nerode Theorem

This chapter is devoted to justifying our praise for the Myhill–Nerode theorem, by
developing a few of its applications. We strive to display both the usefulness of the
theorem and its versatility.

The usefulness of the Myhill–Nerode theorem. In Section 5.1, we show how to
use the theorem to prove that certain languages are not regular. Indeed, we argue,
both in that section and in Section 6.1.2 that the Myhill–Nerode theorem is always
the preferred tool for this purpose.

In Section 5.2, we use the theorem to develop an algorithm for minimizing the
number of states in an FA. The input to the algorithm we develop is a FA M; the
output is a FA M′ that is equivalent to M, in the sense that L(M′) = L(M), and that
has the smallest number of states of any FA that is equivalent to M. This algorithm is
usually part of every college curriculum in computer or electrical engineering, but the
theoretical underpinnings of the algorithm—namely, the theorem—are, regrettably,
seldom taught.

The far-reaching implications of the Myhill–Nerode theorem. In Section 5.3,
we use the theorem to analyze aspects of a probabilistic FA-like model from [77],
which, despite its 1963 vintage, shares many of the characteristics of models that
are used in modern studies of machine (computer) learning. The main result of the
section shows that a certain class of these models accept only regular languages—so
that their computational power is not enhanced by allowing probabilistic state tran-
sitions. In Section 5.4, we use the theorem to derive a lower bound, first observed
in [47], on the amount of memory that is needed to decide membership in any non-
regular language. The bound assumes the following form. Let L be a nonregular
language. Then for infinitely many integers n, any FA that correctly decides member-
ship/nonmembership in L of all words of length ≤ n must have no fewer than f (n)
states. The bound f (n) is derived via an analogue of the equivalence relation ≡L of
the Myhill–Nerode theorem. Finally, in Section 5.5, we use the theorem to derive a
lower bound, first observed in [38], on the time needed by an online TM that has t
tapes, each of dimensionality d, to solve a simplified database problem. By consid-
ering algorithms for solving this problem on other models, one obtains significant
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information about the computational implications of the “online” regimen for com-
puting and about the relative powers of a variety of families of data structures.

5.1 Proving that Languages Are Not Regular

Finite automata are very limited in their computing power due to the finiteness of
their memories, i.e., of their sets of states. Indeed, as one might infer from the Myhill–
Nerode theorem, the standard way to expose the limitations of FAs—by proving that
a language L is not regular—is to establish somehow that the structure of L requires
distinguishing among infinitely many distinct situations.

The finite-index lemma and fooling sets. Given the conceptual parsimony and
power of Theorem 4.1, it is not surprising that the theorem affords one a simple, yet
powerful, tool for proving that a language is not regular. This tool is encapsulated in
the following lemma, which is an immediate corollary of the equivalence of state-
ments (1) and (3) in the theorem, and which can be viewed as a strengthening of the
continuation lemma for OAs (Lemma 3.1). For reasons that we hope will become
suggestive imminently, we refer to the upcoming lemma as “the finite-index lemma.”

We maintain that the ensuing development should be viewed as the primary tool
for proving that a language is not regular.

Lemma 5.1. (The finite-index lemma) Let L ⊆ Σ � be an infinite regular language.
Every sufficiently large set of words over Σ contains at least two distinct words, x and
y �= x, such that x≡L y.

Proof. Let us say that the infinite regular language L is accepted by the FA M =
(Q,Σ ,δ ,q0,F). Because the set Q is finite, any infinite set of words from Σ � must—
by the pigeonhole principle1—always contain two distinct words, x and y �= x,
that are indistinguishable to M, in the sense that x ≡M y. Clearly, then, x ≡L(M) y;
cf. Lemma 3.2. (The validating argument proceeds as follows. Let us enumerate Σ �

in some way—the specific way is not relevant to the argument—and note, for each
word w∈ Σ � in our enumeration, the state δ (q0,w) to which w leads M. Because Q is
finite, we must eventually find distinct words, x and y, such that δ (q0,x) = δ (q0,y).
By definition, x≡M y.)

A direct calculation based on the way we extended the state-transition function δ
to the domain Q×Σ � now verifies that

(∀z ∈ Σ �)
[

δ (q0,xz) = δ (δ (q0,x),z) = δ (δ (q0,y),z) = δ (q0,yz)
]

.

(We proceed from expression #2 in this chain to expression #3 via the universal al-
gebraic operation of substituting equals for equals.) This system of equalities means
that x≡L y. ��

1 The “pigeonhole principle” asserts: If you put n+ 1 balls into n bins, some bin must receive more
than one ball. It is sometime called “Dirichlet’s box principle,” after Johann P.G. Lejeune Dirichlet



5.1 Proving that Languages Are Not Regular 65

The finite-index lemma has a natural interpretation in terms of FAs, namely, that an FA M
has no “memory of the past” other than its current state. Specifically, if strings x and y lead
M to the same state (from its initial state)—i.e., if δ (q0,x) = δ (q0,y), or, in our shorthand,
x ≡M y—then no continuation/extension of the input string will ever allow M to determine
which of x and y it actually read. (Note how this reasoning builds on the right-invariance of
every FA-based equivalence relation ≡M .)

One applies the finite-index lemma, Lemma 5.1, to the problem of showing that
an infinite2 language L⊆ Σ � is not regular by constructing a fooling set for L, i.e., an
infinite set of words no two of which are equivalent with respect to L. Said another
way: An infinite set S ⊆ Σ � is a fooling set for L if for every pair of words x,y ∈ S,
there exists a word z ∈ Σ � such that precisely one of xz and yz belongs to L.

The fooling-set technique also has a natural interpretation in terms of FAs. As noted in the
proof of Lemma 5.1, there must be distinct words, x and y, such that x≡M y (so that x≡L(M) y).
Given such words, the continuation lemma (Lemma 3.1) tells us that no continuation word z
can ever allow M to distinguish between having read x and having read y.

We now look at a few sample proofs of the nonregularity of languages, which are
based on the finite-index lemma and fooling sets. We shall observe how direct and
simple such proofs can be.

Application 1. The language L1 = {anbn | n ∈ N} ⊂ {a,b}� is not regular.
(L1 = L(M4) for the OA M4 of Figure 3.3.)

We claim that the set S1 = {ak | k ∈N} is a fooling set for L1. To see this, note that
for any distinct words ai,a j ∈ S1, we have aibi ∈ L1, while a jbi �∈ L1; hence ai �≡L1 a j.
By Lemma 5.1, L1 is not regular. ��

Application 2. The language L2 = {ak | k is a perfect square} is not regular.
This application requires a bit of subtlety. We claim that L2 is a fooling set for

itself! To see this, consider any distinct words ai2 ,a j2 ∈ L2, where j > i. On the one
hand, ai2 a2i+1 = ai2+2i+1 = a(i+1)2 ∈ L2; on the other hand, a j2 a2i+1 = a j2+2i+1 �∈ L2,
because j2 < j2 + 2i + 1 < ( j + 1)2; hence ai2 �≡L2 a j2 . By Lemma 5.1, L2 is not
regular. ��

The “subtlety” in Application 2 resides in knowing that we must use the smaller of i and j
in order to construct the fooling continuation a2i+1. You should try to complete the argument
using a2 j+1 in place of a2i+1. You will run into trouble if you attempt an argument as simple
as ours, because for some j > i, i2 +2 j +1 could be a perfect square—so your “punch line”
would not work. (Consider, for instance, the possibility that j = 3i+4, so that 2 j+1 = 6i+9,
so that i2 +2 j +1 = (i+3)2.)

Applications 3 and 4. The language L3 comprising all palindromes over {0,1}�
and the language

L4 = {x ∈ {0,1}� | (∃y ∈ {0,1}�)[x = yy]}

(whose words are often called “squares”) are not regular.

2 You will be asked in the exercises to show that every finite language L is regular.
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We present two proofs for these two languages, so that the reader will not assume
that there is only one road to proofs of nonregularity.

1. We claim that the set S3 = {10k1 | k ∈N} is a fooling set for both L3 and L4. To
see this, consider any pair of distinct words 10i1 and 10 j1 from S3. On the one hand,
10i110i1 ∈ L3 ∩L4: the word is both a palindrome and a square. On the other hand,
10 j110i1 �∈ L3∪L4: this word is neither a palindrome nor a square. We thus see that
10i1 and 10 j1 are not equivalent with respect to either L3 or L4: 10i1 �≡L3 10 j1, and
10i1 �≡L4 10 j1. By Lemma 5.1, neither L3 nor L4 is regular.

2. We claim that the set {0,1}� is a fooling set for both L3 and L4. To see this,
consider any pair of distinct binary words x and y. Assume first that �(x) = �(y). In
this case, xxR is a palindrome, while yxR is not, and xx is a square, while yx is not.
Alternatively, say that �(x) < �(y). In this case, both x1�(y)xR and x0�(y)xR are palin-
dromes, but at least one of y1�(y)xR and y0�(y)xR is not a palindrome. Similarly, both
x1�(y)x1�(y) and x0�(y)x0�(y) are squares, but at least one of y1�(y)x1�(y) and y0�(y)x0�(y)

is not a square. We again conclude that 10i1 �≡L3 10 j1, and 10i1 �≡L4 10 j1, so by
Lemma 5.1, neither L3 nor L4 is regular. ��

5.2 On Minimizing Finite Automata

Theorem 4.1 and its proof tell us several important things regarding the design of
finite automata.

1. The notion of “state” that underlies the FA model is embodied in the relations ≡M

for FAs M. In more detail, a state of an FA M “is” the set of input strings that M
“identifies”—in the sense of “does not distinguish among.” This identification is
permissible, indeed desirable, because—and so that—any two strings in the set are
treated identically as histories, when M makes future decisions about membership
in L(M).

2. The coarsest—i.e., smallest-index—equivalence relation ≡M that “works cor-
rectly” for the (regular) language L—in the sense of allowing M to make pre-
cisely the correct distinctions among input strings—is, by definition, the relation
≡L. This means that the smallest FA that accepts language L has a state-set whose
cardinality is the index of the relation ≡L.

3. The structure of the smallest FA that accepts language L is determined uniquely
by the construction in the “(3)⇒ (1)” step of the proof of Theorem 4.1.

We can turn the preceding intuition into an algorithm for minimizing the state-set of
a given FA. You can look at this algorithm as starting with any given equivalence
relation that “defines” L (usually presented via an FA M such that L(M) = L) and
iteratively “coarsifying” the relation as much as possible, thereby “sneaking up” on
the relation ≡L(M) (which by hypothesis is identical to the relation ≡L).

The resulting algorithm for minimizing an FA M = (Q,Σ ,δ ,q0,F) proceeds by
iteratively computing the following equivalence relation on M’s state-set Q. (The it-
eration embodies the process of “sneaking up” on the desired relation.) For p, q ∈ Q,
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[p≡δ q] if and only if (∀x ∈ Σ �)
[

[δ (p,x) ∈ F ] ⇔ [δ (q,x) ∈ F ]
]

(You should verify that ≡δ is indeed an equivalence relation.) This relation says that
no input string will allow one to distinguish M’s being in state p from M’s being in
state q. When p ≡δ q, one can therefore merge (or identify) states p and q, in order
to obtain an FA that is smaller than M but that also accepts L(M). Therefore, if one
can compute the entire equivalence relation ≡δ , then the equivalence classes of the
relation, i.e., the sets

{[p]≡δ | p ∈ Q},
are the states of the smallest FA—call it ̂M—that accepts L(M). The state-transition
function ̂δ of ̂M is given by

̂δ ([p]≡δ ,σ) = [δ (p,σ)]≡δ . (5.1)

Finally, the initial state of ̂M is [q0]≡δ , and the accepting states are {[p]≡δ | p ∈ F}.
(Why is ̂M a well-defined FA? In other words, why is ̂δ well defined, and why does
the indicated choice of initial state and final states guarantee that L( ̂M) = L(M)?
You will be asked to answer these basic questions as an exercise. As you ponder the
questions, keep in mind that ≡δ is an equivalence relation.)

The FA state-minimization algorithm. We simplify our explanation of how to
compute the relation ≡δ by describing an example concurrently with our description
of the algorithm. We start with a very coarse approximation to ≡δ and iteratively
improve the approximation. Figure 5.1 presents, in tabular form, the FA

M = ({a,b,c,d, f ,g,h},{0,1},δ ,a,{c})

that we use as our running example.

M q δ (q,0) δ (q,1) q ∈ F?

(start state)→ a b f /∈ F
b g c /∈ F

(final state)→ c a c ∈ F
d c g /∈ F
e h f /∈ F
f c g /∈ F
g g e /∈ F
h g c /∈ F

Fig. 5.1 The FA M that we minimize.
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Our initial partition3 of Q is 〈Q\F, F〉. This partition acknowledges that the null
string ε , as an input to M, witnesses the fact that no accepting state of M is ≡δ -
equivalent to any nonaccepting state. We thus have the following initial, stage-0, par-
tition of the states of our running example FA M:

[a,b,d,e, f ,g,h]0, [c]0.

The subscript “0” here indicates that this is the first discriminatory stage of our algorithm.
The general notation is that the “stage-t” partition of Q is obtained by considering the dis-
criminatory impact of all input strings of length ≤ t, i.e., of the set

⋃t
i=0 Σ i.

We observe that state c, being M’s unique final state, is not≡δ -equivalent to any other
state. This means that we can henceforth ignore it as we refine the initial partition,
because its≡δ -class will always remain a singleton. Had M possessed more than one
accepting state, then state c would not have ended up isolated at this stage of the
algorithm.

Inductively—meaning “at a general stage of the algorithm”—we now look at the
current, stage-t, partition and try to “break apart” stage-t blocks. We do this by feeding
single input symbols to pairs of states, say p and q, that reside in the same stage-t
block. If any symbol σ ∈ Σ , as an input to M, leads states p and q to different stage-t
blocks, then, by induction, we will have found a string x that discriminates between
p and q—so that they must reside in distinct stage-(t +1) blocks.

The preceding sentence, being crucial to the development of the algorithm, deserves elabora-
tion. Say that there exist states r and s such that δ (p,σ) = r and δ (q,σ) = s. Say further that
there is a string x that discriminates between r and s—by showing them not to be equivalent
under ≡δ . In this case, the string σx discriminates between states p and q. This is because
saying that x “discriminates between r and s” means that one of δ (r,x) and δ (s,x) belongs to
F , while the other does not. If this is the case, though, then clearly, one of

δ (p,σx) = δ (r,x) and δ (q,σx) = δ (s,x)

belongs to F , while the other does not. This means, as stated, that the string σx discriminates
between p and q—so that the stage-t block containing these states must be split by relegating
p and q to distinct stage-(t +1) blocks.

In our example, we find that input “0” breaks the big stage-0 block, so that we get the
“stage-0.5” partition

[a,b,e,g,h]0.5, [d, f ]0.5, [c]0.5.

(We call this the “stage-0.5” partition because we still have another input symbol,
namely, input “1,” to apply to M, before we will have considered the impact of all
input strings of length t + 1 = 1.) We find that input “1” further breaks the block
down. We end up with the stage-1 partition

[a,e]1, [b,h]1, [g]1, [d, f ]1, [c]1.

3 Recalling that partitions and equivalence relations are (operationally) just different ways of looking
at the same concept, we continue to use notation “[a,b, . . . ,z]” to denote the set {a,b, . . . ,z} viewed
as a block of a partition (= class of an equivalence relation).
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Let’s see how this happens. First, we find that

δ (d,0) = δ ( f ,0) = c ∈ F,

while
δ (q,0) /∈ F

for q ∈ {a,b,e,g,h}. This leads to our “stage-0.5” partition. At this point, input “1”
leads states a and e to block {d, f}, symbolically

{δ (a,1),δ (e,1)} ⊆ [d, f ]0.5;

it leads states b and h to block {c}, symbolically

{δ (b,1),δ (h,1)} = [c]0.5;

and it leaves state g in its present block, symbolically

δ (g,1) ∈ [a,b,e,g,h]0.5.

The main point of this analysis is that states a and e are broken away, as a pair, from
the rest of the class [a,b,e,g,h]0.5, and the same is true for states b and h, as a pair,
and, finally, of the state g by itself. We thus end up with the indicated stage-1 partition.

One now determines that any further application of single inputs to M leaves the
stage-1 partition unchanged! This means that the stage-1 partition must be the coars-
est partition that preserves L(M).

The preceding sentence is critical, in that it embodies the halting condition for
our algorithm. The halting criterion is justified by a simple inductive argument that
establishes the following fact. If at some stage of the described algorithm, a partition
persists under—i.e., is unchanged by—all single-letter inputs, then the partition in
fact persists under all input strings. We claim that such a “stable” partition embodies
the relation ≡M , hence, by Lemma 3.2, the relation ≡L(M).

Lemma 5.2. Let M = (Q,Σ ,δ ,q0,F) be an FA. Consider states p and q such that
δ (q0,x) = p and δ (q0,y) = q, for some x,y ∈ Σ �. If p≡δ q, then x≡M y.

Proof. If p≡δ q, then the state-minimization algorithm places p and q into the same
block of a partition that persists under all input strings. The stability of the partition
means that for all z ∈ Σ �, the states r

def= δ (p,z) and s
def= δ (q,z) belong to the same

block of the partition; hence either both states belong to F or neither does. Recall-
ing that δ (q0,x) = p and δ (q0,y) = q, we have the following dichotomy. Because
δ (q0,x) = p and δ (q0,y) = q, so that δ (p,z) = δ (q0,xz) and δ (q,z) = δ (q0,yz), we
have:

1. If r and s both belong to F (i.e., both are accepting states), then both xz and yz
belong to L(M).

2. If r and s both belong to Q\F (i.e., neither is an accepting state), then both xz and
yz belong to Σ � \L(M) (i.e., neither xz nor y belongs to L(M)).
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By definition, then, x≡L(M) y. Since our argument applies to arbitrary states p and q,
it shows that the relation ≡δ is just an encoding of the relation ≡L(M). ��

Returning for the final time to our running example, our algorithm has identified
the FA ̂M of Figure 5.2 as the minimum-state version of M.

̂M q ̂δ (q,0) ̂δ (q,1) q ∈ F?

(start state)→ [ae] [bh] [d f ] /∈ F
[bh] [g] [c] /∈ F

(final state)→ [c] [ae] [c] ∈ F
[d f ] [c] [g] /∈ F
[g] [g] [ae] /∈ F

Fig. 5.2 The minimum-state FA ̂M that minimizes the FA M of Figure 5.1.

We turn now to a series of three studies that cast a somewhat wider net in their
search for applications of the Myhill–Nerode theorem.

5.3 Finite Automata with Probabilistic Transitions

This section focuses on a computational model that differs significantly from FAs,
or even from OAs, by allowing state-transitions to be probabilistic: Such an FA, M,
moves from state p to state q (in response to an input symbol) only with a designated
probability. In accord with this new scenario, we view M as accepting an input string
x only if the probability that M ends up in an accepting state after reading string
x exceeds a preassigned threshold. The main result that we develop in this section
comes from a 1963 paper by Michael O. Rabin [77]. The result exhibits a nontrivial,
rather surprising, situation in which probabilistic state-transitions add no power to the
FA model: The restricted class of “probabilistic” FAs accept only regular sets.

As of the time of the writing of this book, “probabilistic” FAs are a very timely
model to study. The utility of probabilistic state-transition systems as conceptual tools
is being amply demonstrated in several areas of artificial intelligence, notably the
steadily growing area of machine learning.

5.3.1 PFAs and Their Languages

We start with an FA M = (Q,Σ ,δ ,q0,F) and make its state-transitions and ac-
ceptance criterion probabilistic. We call the resulting model a probabilistic finite
automaton (PFA, for short). We begin by fleshing out the various features of the PFA
model.
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States. We simplify the exposition in our formal development by positing that the
state-set of the PFA M is Q = {1,2, . . . ,n}, with q0 = 1, and F = {m,m + 1, . . . ,n}
for some m ∈ Q.

The names we assign to the state of an FA are clearly irrelevant to our analyses of any PFA’s
properties. Can you see why? (This question really relates to mathemetical models and sys-
tems in general.)

State-transitions. We replace the state-transition function δ of an FA with a set
of state-transition tables for a PFA, with one table for each symbol in Σ . The table
associated with σ ∈ Σ indicates, for each pair of states q,q′ ∈ Q, the probability—
call it ρ(σ)(q,q′)—that M ends up in state q′ when we start M in state q and “feed”
it input symbol σ . It is convenient—for our subsequent manipulations and analyses
of M and its behavior—to present the state-transition tables as matrices, instead of
tables.

Observe how we make use of the basic arithmetic operations on matrices as this section
evolves, in order to simplify our work with PFAs. Try to imagine how awkward it would be
to replace these familiar operations with little programs involving the entries of tables.

To be specific, we represent the table associated with σ ∈ Σ via the σ -state-transition
matrix

Δσ =

⎛

⎜

⎜

⎜

⎝

ρ(σ)(1,1) ρ(σ)(1,2) · · · ρ(σ)(1,n)
ρ(σ)(2,1) ρ(σ)(2,2) · · · ρ(σ)(2,n)

...
...

. . .
...

ρ(σ)(n,1) ρ(σ)(n,2) · · · ρ(σ)(n,n)

⎞

⎟

⎟

⎟

⎠

.

Within each matrix Δσ each4 ρ(σ)(i, j) resides in the interval [[0,1]], and for each
i = 1,2, . . . ,n,

ρ(σ)(i,1) + ρ(σ)(i, j) + · · · + ρ(σ)(i,n) = 1.

The preceding sum reflects the fact that M must end up in some state on input σ , and states
1,2, . . . ,n are the only choices.

PFA states, revisited. The probabilistic nature of M’s state-transitions forces us
to distinguish between M’s set of states—the set Q—and the “state” that reflects M’s
situation at any point in M’s “computation” on an input string x—which is a prob-
ability distribution over Q. We therefore define the state-distribution vector of M at
each step of a computation to be a vector of probabilities q = 〈π1,π2, . . . ,πn〉, where
each πi is the probability that M is in state i at the step we are looking at. M’s initial
state-distribution vector is q0 = 〈1,0, . . . ,0〉, reflecting the fact that M begins each
computation in state 1 (with certainty, i.e., probability 1).

PFA state-transitions, revisited. Under the preceding formalism, the PFA ana-
logue of an FA’s single-symbol state-transition δ (q,σ) is the vector–matrix product

̂Δ(q,σ) = q×Δσ .

4 In this section, we use the notation [[0,1]] for the closed real interval {x | 0≤ x≤ 1}.
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By extension, the PFA analogue of the FA string state-transition δ (q,σ1σ2 · · ·σk),
where each σi ∈ Σ , is

̂Δ(q,σ1σ2 · · ·σk)
def= q×Δσ1 ×Δσ2 ×·· ·×Δσn . (5.2)

The language accepted by a PFA. An FA accepts a string x by ending up in
a final state after reading x—which is encapsulated by the condition δ (q0,x) ∈ F .
The probabilistic analogue of accepting via a final state builds on the notion of an
(acceptance) threshold, which is a probability: θ ∈ [[0,1]]. We say that the string
x ∈ Σ � is accepted by the PFA M just when

pM(x) def=
n

∑
i=m

̂Δ(q0,x)i > θ , (5.3)

where ̂Δ(q,x)i denotes the ith coordinate of the tuple ̂Δ(q,x).

What does condition (5.3) really say? Recall first that M’s final states are those whose integer-
names are no smaller than m. Because of this convention, the formal analogue of the assertion
that M accepts the string x with a probability that exceeds the threshold θ takes the mathe-
matically simple form of (5.3). We need only sum the last n−m+1 terms in the first row of
the state-transition matrix ̂Δ(q,x) and see how the sum compares with θ . This is because that
sum is the probability that string x leads M’s initial state, 1, to one of the states m,m+1, . . .n,
which are all of M’s accepting states. Notice how seemingly innocuous conventions that we
have built up come back to reward us by simplifying the formal development. (Conversely, a
poor choice of conventions could come back to hurt us.)

Thus, M accepts x if and only if the probability that it leads M from its initial “state”
to a final state exceeds θ . As with all FAs, the language accepted by M is the set of all
strings that M accepts. To acknowledge the crucial role of the acceptance threshold θ
in defining the language accepted by the PFA M, we denote this language by L(M,θ):

L(M,θ) def= {x ∈ Σ � | pM(x) > θ}. (5.4)

5.3.2 PFA Languages and Regular Languages

Nonregular PFA languages. It is not difficult to show that there exist simple—e.g.,
two-state—PFAs M, with associated thresholds θ , such that L(M,θ) is not regular.
Consider the following two-state PFA M, whose design is attributed in [77] to Edward
F. Moore.

M’s states: M has two states, denoted by 1 and 2 by our convention; also by our
convention, state 1 is M’s initial state; we choose state 2 as M’s unique accepting
state.

M’s input alphabet is Σ = {0,1}.
M’s state-transitions are specified by the following state-transition matrices:
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Δ0 =
(

1 0
1/2 1/2

)

and Δ1 =
(

1/2 1/2
0 1

)

One can prove by an induction that we leave as an exercise that for every string
x = β1β2 · · ·βn−1βn ∈ Σ �, the probability that x takes M from its initial state, state 1,
to its accepting state, state 2, is, when written as a binary numeral,

pM(x) = pM(β1β2 · · ·βn−1βn) = 0.βnβn−1 · · ·β2β1. (5.5)

(You may want to refer back to (5.3) to verify this.)
The relationship between x and pM(x) that we just revealed leads to a proof that

there exist acceptance thresholds θ for which the language L(M,θ) is not regular.
While this proof relies only on quite general principles, these principles are not de-
veloped in this book until Chapter 7. With ample apologies to the reader for the fol-
lowing forward reference, we now sketch this proof—because this is where the result
belongs. As partial penance, we insert a backward pointer at the end of Chapter 7,
urging the reader to return to the following lemma after studying the material in that
chapter. We here urge the reader either to persist through the following lemma, using
prior background to get at least an intuitive understanding of the lemma’s proof, or
to skip just this proof and to rejoin us after it. It is important to skip no more than
this lemma and its proof, because we return immediately after them to material that
is accessible with the current flow of the text.

Lemma 5.3 ([77]). Focusing on the PFA M just specified: There exist acceptance
thresholds θ for which the language L(M,θ) is not regular.

Proof. Recall that an acceptance threshold can be any real number θ ∈ [[0,1]]. Con-
sider, therefore, two arbitrary positive real numbers, θ1 and θ2 > θ1, in this range; say
that θ1 and θ2 have the respective binary numerals

θ1 = 0.α1α2 · · ·αk10 · · · and θ2 = 0.α1α2 · · ·αk11 · · ·

Given these (possibly infinite) binary numerals, we see that the real number ξ ∈
[[0,1]] whose (finite!) binary numeral is

ξ = 0.α1α2 · · ·αk11

satisfies
θ1 < ξ ≤ θ2.

Now define x to be the (finite) binary string

x = 11αk · · ·α2α1.

As noted in our earlier discussion of the PFA M, pM(x) = ξ . By definition (5.4) of
acceptance by a PFA, we have x ∈ L(M,θ2)\L(M,θ1).

What have we learned thus far? We have shown that every two distinct positive
acceptance thresholds θ1 and θ2 > θ1 define distinct languages when associated with
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the PFA M. In fact, given such θ1 and θ2, we see that L(M,θ1) is a proper subset of
L(M,θ2). It follows that there are uncountably many distinct languages L(M,θ), as θ
ranges over all possible positive acceptance thresholds.

Uncountability is the first of the two notions that we use in this proof but do not develop until
Chapter 7; countability is the other.

A straightforward application of techniques developed in Chapter 7 shows that the set
of regular languages is countable!

The existence of uncountably many PFA languages L(M,θ), but only countably
many regular languages, shows that some—indeed most—of the former languages
are not regular. ��

One quite unsatisfying aspect of the proof of Lemma 5.3 is its nonconstructive
nature: The lemma establishes that some of the languages L(M,θ) are nonregular, but
it does not explicitly identify even a single such language. Some of these recalcitrant
languages are identified explicitly in [77], but without proof. We cite these examples
here and supply a proof. You may want to cover the page and try to derive your own
proof before looking at ours.

An enumeration of {0,1}� is an infinite list of finite binary words that contains
each such word at least once. You could—as but one example—form an enumeration
by listing the finite binary words in lexicographic order: 0, 1, 00, 01, 10, 11, and so
on. An enumerative real number is a positive real number ξ ∈ [[0,1]] whose binary
numeral is formed by concatenating all of the words in an enumeration of {0,1}�. For
definiteness, you could think of ξ = 0.0100011011 · · ·, which uses the lexicographic
enumeration.

Lemma 5.4. Focusing on our two-state PFA M: For any acceptance threshold θ that
is an enumerative real number, the language L(M,θ) is not regular.

Proof. Assume, for the sake of contradiction, that there is an enumerative real number
̂θ for which the language L(M, ̂θ) is regular. Say specifically that L(M, ̂θ) = L(M′)
for the FA M′ = (Q′,{0,1},δ ′,q′0,F ′).

Denote the infinite sequence of binary words—i.e., the enumeration of {0,1}�—
that underlies ̂θ by S = w1,w2, . . .; thus, as a binary numeral, ̂θ = 0.w1w2 · · ·.

Because sequence S contains all binary words, we can identify an infinite sequence
of prefixes of S of increasing lengths, each having an associated binary numeral
formed by concatenating its elements,

S1 = w1,w2, . . . ,wk1 N1 = 0.w1w2 · · ·wk1

S2 = w1,w2, . . . ,wk1 , . . . ,wk2 N2 = 0.w1w2 · · ·wk1 · · ·wk2
...

...
Si = w1,w2, . . . ,wk1 , . . . ,wk2 , . . . ,wki Ni = 0.w1w2 · · ·wk1 · · ·wk2 · · ·wki

...
...

(5.6)

that is chosen for the following property. For each integer j, if we were to continue
the enumeration S beyond the prefix S j, then the next word, wk j+1, would be a string
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of n j 1’s, where n j is strictly bigger than the length of any string of 1’s that occurs in
the numeral Nj = 0.w1w2 · · ·wk j .

Why do we care about the two sequences in (5.6)? Precisely because of the fol-
lowing inequalities:

For all i < j, 0.w1w2 · · ·wk j wk j+1 < ̂θ < 0.w1w2 · · ·wkiwk j+1. (5.7)

We leave it to the reader to validate the two inequalities in (5.7). As a hint, we remind
the reader that because ̂θ is enumerative, one can find both a 0 and a 1 to the right of
any finite bit-position of the numeral ̂θ .

In order to continue the proof, we must now digress to develop some technical
machinery. We focus, for convenience, on the FA M′ such that L(M′) = L(M, ̂θ),
but note that the following development holds for any FA and any input alphabet Σ .
Define the following binary relation on {0,1}�: For any strings x,y∈ {0,1}�, say that
x is totally equivalent to y for FA M′, denoted x ≡̂ y, just when

(∀q ∈ Q′)
[

δ (q,x) = δ (q,y)
]

.

Proposition 5.1 For any FA M′, the relation ≡̂ is an equivalence relation of finite
index. Moreover, if x ≡̂ y for strings x,y ∈ {0,1}�, then M′ either accepts both of x
and y or it accepts neither of them.

Proof (of Proposition). Relation ≡̂ is clearly reflexive, symmetric, and transitive be-
cause of its definition in terms of equality. The finite-index property is a little subtler.
One can view each string x ∈ {0,1}� as a total function from Q′ to Q′, defined by

x(q) = δ (q,x).

There are clearly no more than |Q′||Q′| such functions, because each q ∈ Q′ has no
more than |Q′| “places to go” under any such function.

The assertion about ≡̂-equivalent strings and L(M′) is immediate by definition of
the relation. ��
Proposition 5.2 For any FA M′, the equivalence relation ≡̂ is left-invariant, in the
following sense. If x ≡̂ y for strings x,y ∈ {0,1}�, then for all z ∈ {0,1}�, zx ≡̂ zy.
Moreover, the relation ≡̂ is also right-invariant.

Proof (of Proposition). The proof that relation ≡̂ is left-invariant can be viewed as
a backward version of the continuation lemma (Lemma 3.1). Say that x ≡̂ y. Then
δ (q,x) = δ (q,y) for all q ∈Q′. Hence, in particular, given any z ∈ {0,1}� and q ∈Q′,

δ (q,zx) = δ (δ (q,z),x) = δ (δ (q,z),y) = δ (q,zy).

The middle equation here follows by instantiating the “q” in the definition of ≡̂ with
“δ (q,z).”

The proof that relation ≡̂ is right-invariant is left to the reader, since it follows
from the same argumentation as does the continuation lemma (Lemma 3.1). ��
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Back to proving the lemma. Because there are infinitely many paired sequences in
(5.6), there must be two prefixes of the enumeration S of {0,1}�, say Sa and Sa+b,
such that5

(w1w2 · · ·wa)R ≡̂ (w1w2 · · ·wa+b)R.

(This follows by the pigeonhole principle.) By Proposition 5.2, therefore,

wa+b+1(w1w2 · · ·wa)R ≡̂ wa+b+1(w1w2 · · ·wa+b)R. (5.8)

We designed the sequence of Si’s to ensure that wa+b+1 is a string of 1’s, so that we
can rewrite (5.8) as

(w1w2 · · ·wawa+b+1)R ≡̂ (w1w2 · · ·wa+bwa+b+1)R.

Now, however, we hark back to the special nature of the PFA M, specifically, the
fact that the probability that M accepts a string x is given by pM(x), as defined in
(5.5). This means that the probability that M accepts (w1w2 · · ·wawa+b+1)R is

pM((w1w2 · · ·wawa+b+1)R) = 0.w1w2 · · ·wawa+b+1,

and
pM((w1w2 · · ·wa+bwa+b+1)R) = 0.w1w2 · · ·wa+bwa+b+1.

But the system of inequalities (5.7) now tells us that

(w1w2 · · ·wawa+b+1)R ∈ L(M, ̂θ),

while
(w1w2 · · ·wa+bwa+b+1)R /∈ L(M, ̂θ).

This pair of assertions means, however, that L(M, ̂θ) �= L(M′), because Proposi-
tion 5.1 tells us that either both strings

(w1w2 · · ·wawa+b+1)R and (w1w2 · · ·wa+bwa+b+1)R

belong to L(M′) or neither does.
Since we assumed nothing about the FA M′ (except that it accepted L(M, ̂θ)), we

conclude that M′ does not exist, because L(M, ̂θ) is not regular. ��
L(M,θ) is regular when θ is “isolated.” In view of the preceding demonstration
that even a simple—e.g., a two-state—PFA can accept a nonregular language when
coupled with an “unfavorable” acceptance threshold, it is a bit surprising that there
can exist PFAs M and associated acceptance thresholds θ that are “favorable” for
M, in the sense that the language L(M,θ) is regular! The Myhill–Nerode theorem
provides the tools necessary to show that “favorable” thresholds do exist. We begin
with the formal notion of an isolated threshold for a PFA M.

5 Recall that xR denotes the reversal of string x.
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The threshold θ ∈ [[0,1]] is isolated for the PFA M just when there exists a real
constant of isolation κ > 0 such that for all x ∈ Σ �,

|pM(x)−θ | ≥ κ. (5.9)

Theorem 5.1 ([77]). For any PFA M and associated isolated acceptance threshold θ ,
the language L(M,θ) is regular.

Proof. The proof is a direct application of Theorem 4.1. Specifically, we show that if
M has n states, a of which are accepting states, and if κ is the constant of isolation
from (5.9), then the index IL(M,θ) of the equivalence relation ≡L(M,θ) does not exceed

IL(M,θ) = [1+(a/κ)]n−1. (5.10)

We establish the bound of (5.10) by considering a set of k words—call them x1,
x2, . . . , xk ∈ Σ �—that are mutually inequivalent under ≡L(M,θ). This inequivalence
means that for each pair of distinct such words xi,x j, there must exist a word y ∈ Σ �

such that xiy ∈ L(M,θ) while x jy �∈ L(M,θ) (or vice versa). We now show that k
cannot exceed the bound of (5.10). The theorem will then follow by Theorem 4.1.

Our technical development begins by our converting M’s language-related prob-
lem to a geometric setting. For any string w = σ1σ2 · · ·σh ∈ Σ �, let Δ(w) denote the
matrix

Δ(w) def= Δσ1 ×Δσ2 ×·· ·×Δσh .

Then—cf. (5.2)—̂Δ(q0,w), the state distribution of M after reading w, is just the first
row of Δ(w); and the sum of the last a entries of this row is the probability that M
accepts w.

Referring back to our designated triple of words, xi,x j,y, we consider the following
three points, two in n-dimensional space and one in a-dimensional space:

Corresponding to xi: 〈ξ (i)
1 ,ξ (i)

2 , . . . ,ξ (i)
n 〉

(the first row of Δ(xi), i.e., ̂Δ(q0,xi));
Corresponding to x j: 〈ξ ( j)

1 ,ξ ( j)
2 , . . . ,ξ ( j)

n 〉
(the first row of Δ(x j), i.e., ̂Δ(q0,x j));

Corresponding to y: 〈η1,η2, . . . ,ηn〉
(the coordinatewise sum of the last a columns of Δ(y)).

Easily (cf. (5.3)),

pM(xiy) = ξ (i)
1 η1 +ξ (i)

2 η2 + · · ·+ξ (i)
n ηn;

pM(x jy) = ξ ( j)
1 η1 +ξ ( j)

2 η2 + · · ·+ξ ( j)
n η.

We have focused on the strings xi, x j, and y because M accepts xiy but does not
accept x jy. Therefore, since the acceptance threshold θ is isolated and has associated
constant of isolation κ , we must have

θ +κ ≤ ξ (i)
1 η1 +ξ (i)

2 η2 + · · ·+ξ (i)
n ηn;

θ −κ ≥ ξ ( j)
1 η1 +ξ ( j)

2 η2 + · · ·+ξ ( j)
n ηn.
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It follows by subtraction that

2κ ≤ (ξ (i)
1 −ξ ( j)

1 )η1 +(ξ (i)
2 −ξ ( j)

2 )η2 + · · ·+(ξ (i)
n −ξ ( j)

n )ηn.

Since each entry of Δ(y), being a probability, cannot exceed 1, we have each ηl ≤ a.
Exploiting this fact, we find that

2(κ/a) ≤ |ξ (i)
1 −ξ ( j)

1 |+ |ξ (i)
2 −ξ ( j)

2 |+ · · ·+ |ξ (i)
n −ξ ( j)

n |. (5.11)

The preceding reasoning has transported our automata/language-theoretic prob-
lem to a geometric setting. Let us, accordingly, view each tuple 〈ξ1,ξ2, . . .ξn〉 as a
point in n-dimensional Euclidean space. Consider, for each i ∈ {1,2, . . . ,k} (recall
that k is the number of mutually inequivalent words), the set Λi comprising all points
〈ξ1,ξ2, . . . ,ξn〉 such that

• ξl ≥ ξ (i)
l for all l ∈ {1,2, . . . ,n}.

•
n

∑
l=1

(ξl−ξ (i)
l ) = (κ/a).

Easily, each Λi is a translate of the set

Λ =

{

〈ξ1,ξ2, . . . ,ξn〉 | all ξl ≥ 0 and
n

∑
l=1

ξl = (κ/a)

}

,

which is an (n−1)-dimensional simplex that is a subset of the hyperplane ∑n
l=1 ξl =

(κ/a). The volume of Λ as a function of κ is readily seen to be c(κ/a)n−1 for some
absolute constant c > 0.

Now, because ∑n
l=1 ξ (i)

l = 1, it follows that ∑n
l=1 ξl = 1 + (κ/a) for every point

〈ξ1,ξ2, . . . ,ξn〉 ∈Λi. Therefore, Λi is a subset of the locus of points

̂Λ def=

{

〈ξ1,ξ2, . . . ,ξn〉 | all ξl ≥ 0 and
n

∑
l=1

ξl = 1+(κ/a)

}

.

An elementary argument shows that the k sets Λi share no interior points, i.e.,

points 〈ξ1,ξ2, . . . ,ξn〉 for which each ξl < ξ (i)
l . This means that the volumes of the

sets Λi satisfy

kc(κ/a)n−1 =
n

∑
l=1

Vol(Λl) ≤ Vol(̂Λ) = c(1+(κ/a))n−1,

so that k ≤ [1+(a/κ)]n−1, as was claimed. ��
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5.4 State as a Memory-Constraining Resource

We turn now to a topic that is part of the study of general, possibly infinite-state, OAs
but that we deferred to this point in order to have access to the powerful technical
machinery of Theorem 4.1. A literal reading of the theorem tells us that any OA that
accepts a nonregular language must have infinitely many states. A closer reading,
though—which is enhanced by Theorem 3.1—tells us that the states of an OA M are,
in fact, the equivalence classes of the relation ≡M , which, in turn, is a refinement of
the language-defining relation≡L(M). Under certain circumstances, one can therefore
glean detailed quantitative information about the number of states of M that must be
accessible from its initial state when M processes words of given lengths. The reader
should recognize from earlier developments in this chapter that the states of an OA
contain memory as well as control logic. With this in mind, the reader will recognize
that the analyses of this subsection are really using characteristics of the relation
≡L(M) to bound the memory requirements of computations that decide nonregular
languages.

The reader will find a less abstract approach to studying the memory requirements of compu-
tations, one that is tailored to the Turing machine model, in Section 13.2.2.

This subsection builds on the technical machinery developed in [47], which will allow
us to derive lower bounds on memory requirements. Section 5.4.2, in particular, fol-
lows [47] in developing the strongest possible general lower bounds on the memory
requirements of OAs that accept nonregular languages.

We begin with an OA M = (Q,Σ ,δ ,q0,F) that accepts a nonregular language L
(so L = L(M)). Our goal is to determine how hard it is to construct “regular approxi-
mations” of L, in the following sense. For any integer n > 0, consider the set L(n) that
consists of every word in L(M) whose length does not exceed n. Of course, L(n) is a
finite set, so by Lemma 4.2, there is an FA M(n) such that L(M(n)) = L(n) (i.e., M(n)

accepts L(n)). We call M(n) an order-n approximation of M. The formal specification
of M(n)’s behavior—which should be redundant for you at this point—is as follows:

L(M(n)) = {x ∈ L(M) | �(x)≤ n}.

We denote by A M(n) the (obviously monotonically nondecreasing) number of states
in the smallest order-n approximation of M, as a function of n. The quantity A M(n)
can be viewed as measuring L(M)’s memory requirements (or “space complexity”)
because one needs �log2 A M(n)� bistable devices in order to implement an order-n
approximation of M in circuitry. The main result of this subsection, which is due to
Richard M. Karp in [47], is an “infinitely often” lower bound on A M(n), i.e., a lower
bound that holds for infinitely many n.

Bounds—both upper and lower—come in at least three flavors. The most satisfying, in some
sense, are the “universal” bounds. An easily proved “universal” bound is the following: For
all positive integers n, 2�n/2� ≤ n. (The highlighted phrase is the source of the qualifier
“universal.”) Perhaps next along the satisfaction line are the “eventual” bounds. An easily
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proved “eventual” upper bound is the following: For all sufficiently large positive integers n,
n3 > 215493n2. (Again, the highlighted phrase is the source of the qualifier.) Finally, there are
the “infinitely often” bounds, such as the one we focus on here. An easily proved “infinitely
often” bound is the following: For every positive integer n, there is an integer m > n such that
if one represents both m and n in binary, then one must perform more carries when adding
1 to m than when adding 1 to n. (I have purposely not used the phrase “infinitely often”
in the preceding example, to show you how such bounds are frequently expressed.) While
“infinitely often” bounds may not be as emotionally satisfying as the two stronger types of
bounds, they are often the strongest bounds that hold. Moreover, in many circumstances—the
result of this subsection being an example—it is amazing that any nontrivial bound can be
proved!

Quite surprisingly, the bound we prove for A M(n), which is tight for many
languages—meaning that it cannot be replaced by a larger general lower bound—
assumes nothing about M other than that L(M) is not regular. (Indeed, M’s state-
transition function δ need not even be computable!)

5.4.1 A M(n) for Two Specific Infinite OAs

In order to better appreciate the lower bound we derive for arbitrary nonregular OAs
and their languages, let us determine A M(n) for two OAs that accept nonregular
languages.

Example 1: L(M) = {akbk | k ∈ N}.
Focus first on the OA M that we called M4 in Section 4. We enumerated all of the
classes of ≡L(M) in Section 4.3.2, so we can use this list as a guide in our analysis

of L(M); see Figure 3.3. An order-n approximation M(n) of M may safely make the
following identifications. (In other words, the following classes of words may safely
lead M(n) from its initial state to the same state.)

1. All words that are not of the form aib j, where [i≥ j] and [2i≤ n], can be identified
via a nonaccepting “dead” state. None of these strings is in L(M), and no extension
will bring them into L(M). This category accounts for one state of M(n).

2. For each h ∈ [0,�n/2�− 1], there is a state that identifies all strings of the form
aibi−h, where [h < i] and [2i ≤ n]. Each of these states has a unique continuation,
bh, into L(M). This category accounts for �n/2� states of M(n), one for each indi-
cated value of h.

3. For each i ∈ [0,�n/2�], there is a state that is dedicated to the single string ai.
This string can be continued into L(M) by any string of the form a jbi+ j, where
2(i + j) ≤ n. This category accounts for �n/2�+ 1 states of M(n), one for each
indicated value of i.

Since no two of the thus-enumerated states can be identified (or merged), we see that
A M(n) = 2�n/2�+2.

We have thus proved the following bound on L’s memory requirements.

Lemma 5.5. For any FA M that accepts the language L(M) = {akbk | k ∈ N}, we
have A M(n) = 2�n/2�+2.
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Example 2: L(M) comprises the palindromes over the alphabet {0,1}.
Once again, we can be guided by our enumeration in Section 4.3.2 of all of the classes
of ≡L(M).

1. Since we do not care about any words of length > n, we can relegate all such words
to a single “dead” state. This category gives us one state.

2. We allocate all words of length n to two new states, an accepting state for the
words that are palindromes and a nonaccepting state for the words that are not.
This category gives us two states.

3. We allocate each word x of length �(x) = m≤ n/2 to a state that it shares with no
other word; this state is an accepting state if x is a palindrome and a nonaccepting
state otherwise. The string x is the sole occupant of its state because no other word
y ∈ {0,1}m shares the property that yxR is a palindrome of length 2m ≤ n. This
category gives us 2n/2+1−1 = 2Ω(n) states.

4. Each word x of length n/2 < �(x) < n is allocated to a state based on the subset Sx

of
n−�(x)
⋃

k=0

{0,1}k

all of whose elements extend x to a palindrome (perforce of length ≤ n). Words
that share the same subset are allocated to the same state; words that have different
subsets are allocated to different states. Note that the (k = 0) component of the
union guarantees that if x is a palindrome, then so also are all strings y such that
Sy = Sx; therefore, we are safe in mandating that x be allocated to an accepting
state iff ε ∈ Sx.

As noted, the words of category #3 already show that A M(n) = 2Ω(n).
We have thus proved the following bound on the memory requirements of the

palindromes.

Lemma 5.6. For any FA M that accepts the palindromes over the alphabet {0,1}, we
have A M(n) = 2Ω(n).

5.4.2 A Bound on A M(n) for Any OA M with Nonregular L(M)

We now continue developing the general bounding technique from [47]. Building
on general principles that derive from the conceptual framework of Theorem 4.1,
we shall derive an “infinitely often” lower bound on A M(n) that works with any
OA M that accepts a nonregular language—and that is within a factor of 2 of the
bound that we just derived by analyzing the detailed structure of L(M4) = {akbk}. Of
course, our bound for L(M4) is a “universal” bound—it holds for all n. That said, it
is still remarkable that the upcoming general lower bound is—for those n to which it
applies—just a factor of 2 smaller than the bound that holds for a specific language
that we can analyze in complete detail. (It is less surprising that the general lower
bound is far too small—in fact exponentially so—in the case of the palindromes.)
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Theorem 5.2 ([47]). If M is an OA that accepts a nonregular language, then for in-
finitely many n,

A M(n) >
1
2

n+1. (5.12)

Proof. Let M1 and M2 be OAs. For n ∈ N, we say that M1 and M2 are n-equivalent,
denoted M1 ≡n M2, just when

{x ∈ L(M1) | �(x)≤ n} = {x ∈ L(M2) | �(x)≤ n}.

Saying that M1 ≡n M2 is clearly (logically) equivalent to saying that each of M1 and
M2 is an n-approximation of the other. Moreover, the relation≡n between M1 and M2

can be viewed as an approximation to the relations ≡M1 and ≡M2 ; hence, the relation
≡n allows us to bring the conceptual power of Theorem 4.1 to bear on the problem of
bounding αM1(n) and αM2(n).

Our analysis of n-approximations of OAs builds on the following bound on the
“degree” of equivalence of pairs of FAs.

Lemma 5.7 ([68]). Let M1 and M2 be FAs having s1 and s2 states, respectively. If
L(M1) �= L(M2), then M1 �≡s1+s2−2 M2.

Proof (of Lemma 5.7). We establish the result by bounding from above the number
of partition-refinements that the state-minimization algorithm of Section 5.2 must
perform in order to distinguish the initial states of M1 and M2. (Because FAs M1

and M2 are, by hypothesis, not equivalent, their initial states must be distinguish-
able: there must be at least one word that one of M1 and M2 accepts while the other
doesn’t.)

Because the state-minimization algorithm is actually a “state-equivalence tester,”
we can apply it to state-transition systems that are not legal FAs, as long as we are
careful to keep final and nonfinal states segregated from one another. We can there-
fore apply the algorithm to the following “disconnected” FA M. Say that for i = 1,2,
Mi = (Qi,Σ ,δi,qi,0,Fi), where Q1 ∩ Q2 = /0. Then M = (Q,Σ ,δ ,{q1,0,q2,0},F),
where

• Q = Q1∪Q2;

• for q ∈ Q and σ ∈ Σ : δ (q,σ) =
{

δ1(q,σ) if q ∈ Q1,
δ2(q,σ) if q ∈ Q2;

• F = F1∪F2.

Now, the fact that L(M1) �= L(M2) implies (a) that q1,0 �≡δ q2,0, and (b) that neither
Q\F nor F is empty.

Recall that the algorithm proceeds in stages, where each stage applies every letter
from Σ to all states within each block of the then-current partition of Q, to determine
whether there exists a letter that will drive one state in a block to an accepting state
and another state in the same block to a nonaccepting state (thereby establishing the
inequivalence of those states). How many stages of the algorithm could be needed, in
the worst case, to distinguish states q1,0 and q2,0 within M, when the algorithm starts
with the initial partition {Q\F, F}? (This initial partition is created by applying the
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null string ε to q1,0 and q2,0.) Each stage of the algorithm, save the last, must “split”
some block of the partition into two nonempty subblocks—or else no further “splits”
will ever occur. Because one “split,” namely, the separation of Q\F from F , occurs
before the algorithm starts applying input symbols, and because |Q| = s1 + s2, the
algorithm can proceed for no more than s1 + s2− 2 stages, because after that many
stages, all blocks would be singletons! In other words, if p �≡δ q, for states p,q ∈ Q,
then there is a string of length≤ s1 +s2−2 that witnesses the inequivalence. Because
we know that q1,0 �≡δ q2,0, this completes the proof. ��

Back to the theorem. For each k ∈ N, Theorem 4.1 guarantees—by its guaran-
tee that ≡L(M) has infinite index—that there is a smallest integer n > k such that
A M(k) = A M(n−1) < A M(n). The preceding inequality implies the existence of
FAs M1 and M2 such that:

1. M1 has A M(n−1) states and is an (n−1)-approximation of M;
2. M2 has A M(n) states and is an n-approximation of M.

By statement 1, M1 ≡n−1 M2; by statements 1 and 2, M1 �≡n M2. By Lemma 5.7, then,
M1 �≡A L(n−1)+A L(n)−2 M2. Because M1 ≡n−1 M2, we therefore have A M(n− 1) +
A M(n) > n+1, which yields inequality (5.12), because A M(n−1) ≤ A M(n)−1.
��

It is shown in [47] that Theorem 5.2 is as strong as possible, in two senses: (1)
the constants 1

2 and 1 in (5.12) cannot be improved; (2) the phrase “infinitely many”
cannot be strengthened to “for all but finitely many.”

The phrase “for all but finitely many” is one of many equivalent linguistic devices for speci-
fying an “eventual” bound on integers.

Because our focus here is only on illustrating the power of Theorem 4.1—and not on
proceeding deeper into the subject of approximations to nonregular languages—we
refer the interested reader to [47] for these embellishments of Theorem 5.2.

5.5 State as a Time-Constraining Resource

This section complements the previous section’s analysis of state as a memory-
constraining resource. We now develop lower bounds on the time that online Turing
machines with varying numbers of tapes of varying structures (cf. Section 3.3) re-
quire in order to perform certain specific computations that relate to the encoding and
retrieval of information. There is actually a lesson to be learned from how we rep-
resent our information-retrieval problem as a (nonregular) language L. (As we shall
see, each word of L represents a rather simple database, plus a series of queries to the
database.) As in Section 5.4, we develop the bound of this section by adapting the
Myhill–Nerode theorem (Theorem 4.1) to a broad class of OTMs. In this section, the
required adaptation of Theorem 4.1 is achieved by parameterizing the word-relating

equivalence relation ≡M: for each integer t > 0, the parameter-t relation ≡(t)
M behaves
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like ≡M , but it exposes only discriminations that M can make in t or fewer steps. The
development here is based on the pioneering paper [38] by Fred C. Hennie.

Because the study in [38] focuses on the impact of an OTM’s tape topology on its
efficiency in retrieving sets of words, the bounds we develop here can be viewed as
an early contribution to the theory of data structures. This perspective underlies both
the data graph model of this book’s author [81] and the storage modification machine
model of Arnold Schönhage [94].

The interesting features in this section are the formulation of an information-
retrieval problem as a formal language, and the use of the concepts underlying The-
orem 4.1 to analyze the problem. For completeness, we rephrase here some of the
material from Section 3.3, with an eye to the study we present.

5.5.1 Online TMs with Multiple Complex Tapes

A d-dimensional tape is a linked data structure with a meshlike topology; it is thus
essentially identical to the orthogonal list data structure discussed in [53]. A tape is
accessed via a read/write head—the OTM-oriented name for a pointer. Each cell of
a tape holds one symbol from the OTM’s work alphabet Γ , which always contains
the designated blank symbol B ; e.g., in a 32-bit computer, Γ could be the set of 32-
bit binary words, and the blank symbol could be the word of all 1’s. Access to cells
within a tape is sequential: at each step, the read/write head either remains stationary,
or it moves from its current cell to a neighboring one in any of the 2d permissible
directions.

An OTM M with t d-dimensional work tapes can be viewed as an FA that has
access to t d-dimensional orthogonal lists (cf. [53]). As with any FA, M has an in-
put port, which it uses in the manner described in Section 3.3 in order to receive
a sequence of input symbols that come from M’s input alphabet Σ ; M has a desig-
nated initial state and a designated set of final states. We shall see concretely in this
section why OTMs need both polling and autonomous states: During the “passive”
periods in which an OTM does not accept new input symbols at its input port, the
OTM may be doing quite valuable subcomputations using its work tapes. Indeed, the
study in this section can be viewed as bounding (from below) the cumulative time
that must be devoted to these “introspective” subcomputations as the OTM performs
certain computations. With this intuitive background in place, we note that, formally,
a computational step by M depends on:

• its current state,
• the current input symbol, if M’s program reads the input at this step,
• the t symbols (elements of Γ ) currently scanned by the pointers on M’s t work-

tapes.

On the basis of these, M:

• enters a new state (which may be the same as the current one),
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• independently rewrites the symbols currently scanned on its t worktapes (possibly
with the same symbol as the current one),

• independently moves the read/write head on each tape at most6 one square in one
of the 2d allowable directions.

A few clarifying comments are in order at this point.

First, I want to ensure that we are “on the same page” regarding this new model. There are
twice as many directions to move as there are dimensions to the tape, because there is an
analogue of both UP and DOWN (or LEFT and RIGHT) in each dimension.

Next, I hope that it is clear to the reader that when d = 1, the OTM M has t linear (i.e., one-
dimensional) tapes. Hence, when d = t = 1, M is precisely an OTM as defined in Section 3.3.

The final comment is more in the way of food for thought than clarification. We have chosen
to discuss tapes with topologies that are meshlike mainly because meshlike data structures are
useful in many computational scenarios—see, e.g., the discussion of orthogonal lists in [53];
and the analyses that we are about to embark on require us to know the topologies of M’s
tapes. We shall try to use exercises to show how the upcoming analyses can accommodate
tapes with a broad range of regular topologies that are quite “unmeshlike,” for instance, tapes
with the topologies of trees of various arities. The details of the analyses—especially the
quantitative details—change with tape topology. But the “flow” of the arguments adapts quite
readily.

One extends M’s one-step computation to a multistep computation (whose goal
is language recognition, as usual) as follows. To determine whether a word w =
σ1σ2 · · ·σn ∈ Σ � is accepted by M—i.e., is in the language L(M)—one makes w’s
n symbols available, in sequence, at M’s input port. If M starts in its initial state
with all cells of all tapes containing the blank symbol B , and it proceeds through a
sequence of N steps that:

• includes n steps during which M “reads” an input symbol,
• ends with a step in which M is programmed to “read” an input symbol,

then M is said to decide w in N steps; if, moreover, M’s state at step N is an accepting
state, then M is said to accept w in N steps. (Note that N can be much larger than
n, because of the “introspective” subcomputations alluded to earlier.) See Section 3.3
for details.

With the current model, as with all online automata, we need the just-defined double condition
for acceptance (“includes . . . ” and “ends with . . . ”). This somewhat complicated condition
ensures that if M accepts a word w, then it does so unambiguously. Specifically, after M reads
the last symbol of w, it does not “give its answer” until it is prepared to read a new input
symbol (if that ever happens). This means that M cannot oscillate between accepting and
nonaccepting autonomous states after reading the last symbol of w.

6 The qualifier “at most” indicates that a read/write head is allowed to remain stationary.
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5.5.2 An Information-Retrieval Problem as a Language

Following [38], we shall use a database-inspired language LDB to expose the potential
effect of tape structure/topology on the time necessary for a OTM to perform certain
computations.

We simplify the description of LDB by first describing the language’s words in
the computation-oriented terms. Each word w ∈ LDB specifies—in a manner that will
be clarified imminently—a sequence of like-length, not necessarily distinct, binary
words; let k denote the common length of these words. We view the set consisting of
all the distinct words in this sequence as a (rather primitive) database. After the por-
tion of w that specifies the database comes another sequence of length-k (again, not
necessarily distinct) binary words. We view each of these latter length-k words as a
query into the database. M’s role in this scenario is as follows. M begins by reading in
the database and somehow storing it on its worktapes. Once M reaches the sequence
of queries, it reads these query-words in order. After reading each query-word, M
responds “YES” if the query-word occurs in the database, and “NO” if doesn’t. Wait!
There is a technical problem here. By definition, M must emit a “YES”–”NO” output
before reading each new input symbol: It cannot do so just after reading the special
query-words. (This is because every one of M’s polling states is either an accepting
state (that emits “YES”) or a rejecting state (that emits “NO”).) In order to accommo-
date this requirement of the OTM model, we shall have M produce the output “NO”
before reading each input symbol unless the input string it has read thus far repre-
sents a database, followed by a string of query-words the last of which occurs in the
database.

Let us now rewrite the preceding scenario in language-theoretic terms, by formal-
izing the database language LDB.

LDB is a language over the 3-letter alphabet Σ = {0,1, :}, wherein “:” is a symbol
distinct from “0” and “1.” Each word in LDB has the form

ξ1 : ξ2 : · · · : ξm :: η1 : η2 : · · · : ηn,

where for some k ∈ N,

• each ξi (1≤ i≤ m) and each η j (1≤ j ≤ n) is a length-k binary string;
• m = 2k;
• ηn ∈ {ξ1,ξ2, . . . ,ξm}.
The set of ξi’s, namely {ξ1,ξ2, . . . ,ξm}, is our database. The database string

ξ1 : ξ2 : · · · : ξm

is just the mechanism we use to present the database to M. While the database must
contain at least one word, it could have many fewer than m words, because of possible
repetitions. Each word ηi in the string

η1 : η2 : · · · : ηn
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(which, as a sequence of length-k words, could also contain many repetitions) is a
query. In each word x ∈ LDB, the double colon “::” separates the database from the
queries, while the single colon “:” separates consecutive binary words.

The fact that we are interested only in whether the last query appears in the
database reflects the online nature of the computation: M must respond to each query
as it appears, with no knowledge of which one is the last, i.e., the important one. (This
is essentially the challenge faced by all online algorithms.)

Note how an OTM M that accepts the language LDB can be used to solve the
motivating database problem. Say that one has a set S of length-k binary words, and
one wants to determine whether a given length-k binary word x belongs to S. One can
present the OTM M that accepts LDB with any string

ξ1 : ξ2 : · · · : ξm :: x,

where ξ1 : ξ2 : · · · : ξm encodes (as a string) any length-2k sequence of binary words
formed using all and only words from the set S. By definition of the language LDB, if
M accepts this string, then x ∈ S; if M rejects this string, then x /∈ S.

5.5.3 The Impact of Tape Structure on Memory Locality

The configuration of an OTM M having t d-dimensional tapes, at any step of a com-
putation by M, is the (t +1)-tuple

〈q, τ1, τ2, . . . , τt〉

defined as follows. (More details appear in Section 3.3 for the case t = d = 1.)

• q is the state of M’s finite-state control (its associated FA);
• each τi is the d-dimensional configuration of symbols from Γ that comprises the

non-“blank” portion of tape i, with one symbol highlighted (in some way) to indi-
cate the current position of M’s read/write head on tape i.

The sometimes-encountered term “total state” as an alternative for “configuration”
presages the time-parameterized variant of the equivalence relation≡M that we intro-
duce now; cf. (3.2).

Say that for i = 1,2, the database-string xi ∈ Σ � leads M to configuration CM(xi) =
〈qi,τi1,τi2, . . . ,τit〉. If:

• q1 = q2; i.e., the configurations share the same state;
• for some integer r ≥ 1, and all i ∈ {1,2, . . . , t}, tape configurations τ1i and τ2i are

identical within r symbols of their highlighted symbols (which indicate where M’s
read/write heads reside),

then we say that the configurations CM(x1) and CM(x2) are r-equivalent to M and that
the databases specified by x1 and x2 are r-indistinguishable by M. We denote these

synonymous relations by the following notation: x1 ≡(r)
M x2.
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Consider what the relation “r-indistinguishable” on databases (or synonymously,
the relation “r-equivalent” on configurations) means. Say that two distinct databases,
x1 and x2, leave M in configurations that are r-equivalent. The distinctness of the
databases means that there is a length-k word η that belongs to one of the databases
but not to the other. Say that we feed one of these databases to M, and then apply
the query η . Of course, M must give the answer “YES” if the database we supplied
contains η , and the answer “NO” otherwise. By hypothesis, though, it will take M
at least r steps to determine which of these databases it has read. It follows that M
must perform an “introspective computation” of at least r steps’ duration in order to
respond correctly to the length-k query η .

The preceding somewhat lengthy story can be told more compactly using math-
ematical terminology. The following lemma can be viewed as a time-parameterized

version of the continuation lemma (Lemma 3.1), just as the relation ≡(r)
M is a time-

parameterized version of the relation ≡M .

Lemma 5.8. Say that x1 ≡(r)
M x2 and that there exists a y ∈ Σ � such that one of x1y

and x2y belongs to L(M), while the other does not. If M has read either x1 or x2, then
it must compute for more than r steps while reading y.

The reader may want to prove Lemma 5.8 formally, in order to get practice with a
slightly more complicated version of such an argument.

5.5.4 Tape Dimensionality and the Time-Complexity of LDB

To simplify notation in what follows, we focus now on certain sublanguages of LDB

that are defined by the common length of the binary words in their databases and

query sets. For each k∈N, the language L(k)
DB consists of all words from LDB whose bi-

nary subwords all have length k. In the notation of the preceding subsection, these “bi-
nary subwords” are the ξi that make up the databases and the η j that are the queries.

Note that each database-string in L(k)
DB has length (k +1)2k−1.

Focus on any fixed (but arbitrary) language L(k)
DB, and let x1 and x2 be two database-

strings whose constituent binary words all have length k. If x1 and x2 specify distinct
databases, then there exists a query η that appears in the database specified by one of
the xi but not the other—so, precisely one of the strings x1 :: η and x2 :: η belongs to

L(k)
DB. Database-strings that specify distinct databases must therefore lead M to distinct

configurations. We now consider how “big” these configurations must be, in terms of
the necessary “radius of indistinguishability.”

On the one hand, the database-strings that occur within the words of L(k)
DB can

specify 22k −1 distinct databases (corresponding to that number of nonempty sets of
length-k ξi’s). This means that if M is to distinguish all possible length-k databases—

which it must do in order to correctly decide membership in L(k)
DB—then the config-

urations that M uses to encode length-k databases must have a “radius” r that is big
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enough so that the database-indistinguishability relation ≡(r)
M has index ≥ 22k − 1.

(There must be ≥ 22k − 1 equivalence classes.) This is because for this maximum-r

“radius,” the relation ≡(r)
M must, in fact, be the relation ≡M .

On the other hand, for any M with t d-dimensional tapes, there is a constant αM > 0
that depends only on M’s structure such that M has ≤ α trd

M distinct configurations of
“radius” r—meaning that all nonblank symbols on all tapes reside within r cells of
the read/write heads. Thus, in order for each database to get a distinct configuration

(so that ≡(r)
M has index ≥ 22k − 1), the “radius” r must exceed βM · 2k/d , for some

constant βM > 0 that depends only on M’s structure.

I have slipped some actually simple arithmetic past you in the preceding paragraph. Here’s a
hint at how it goes.

(1) M has |Q| states.

(2) If the number of “radius”-r configurations that can occur on each of M’s t tapes is cr , then
the total number of tape configurations that M could conceivably reach is ≤ ct

r. To wit, each
configuration can occur independently on each tape.

(3) The number cr can be bounded via the following overestimate. Make believe that you
put some grease on one of M’s read/write heads and then repeat the following experiment as
often as you want. Have the read/write head move r steps and then return to its starting place.
On a one-dimensional tape, 2r + 1 tape squares will get greasy. On a two-dimensional tape,
the number is 2r2 + 2r + 1. The exact number gets harder to compute as the dimensionality
d grows, but it is not too hard to show that it is always proportional to rd . The upper bound
(2r +1)d is easy to derive by just imagining a side-(2r +1) d-dimensional chess board.

(4) Finally, since each of the roughly rd tape squares must hold a symbol from the alphabet
Γ , we end up with roughly |Γ |rd

possible configurations for each of M’s tapes, hence with
roughly |Q| · |Γ |trd

possible configurations in all. The “roughly” in this paragraph covers up a
lot of sins that become just constant factors in the next paragraph.

We now have the desired upper bound on the number of potential configurations that a
database string can leave M in, and this bound has the form α trd

M . In order for this number
to exceed 22k

, we must have, roughly (hiding another constant), trd ≥ 2k (by taking loga-
rithms of both sides), so that finally, we get the desired rough (hiding yet another constant)
bound on r, namely, r ≥ β k/d for some constant β > 0.

It is worth doing the calculations here carefully, for practice. But the result we are seeking
really needs just the rough estimates that we have outlined here.

Combining the preceding reasoning with Lemma 5.8, we arrive at the following
time bound.

Lemma 5.9. If L(M) = L(k)
DB, then for some length-k query η , M must take7 more

than βM · (21/d)k steps while reading η , for some βM > 0 that depends only on M’s
structure.

The reasoning behind Lemma 5.9 is information-theoretic. Specifically, the bound
depends only on the fact that the number of distinct databases specified by database-

strings in L(k)
DB is doubly exponential in k, while the number of bounded-“radius”

7 We write 2k/d in the unusual form (21/d)k to emphasize that the dimensionality of M’s tapes (which
is a fixed constant) appears only in the base of the exponential.
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OTM configurations is singly exponential. (This is why we could be so cavalier with
our calculations; we needed just this gross result.) The ultimate message is this: No
matter how M reorganizes its tape contents while responding to one bad query, there
must always be a query that is bad for the new configuration! By focusing on strings
with 2k bad queries, we thus obtain the following result:

Theorem 5.3 ([38]). Any OTM M with d-dimensional tapes that recognizes the lan-
guage LDB must, for infinitely many N, take time > βM · (N/ logN)1+1/d to process
inputs of length N, for some constant βM > 0 that depends only on M’s structure.

Proof. Consider some fixed, but arbitrary, sublanguage of LDB, all of whose words
consist of binary words of length k and have 2k queries. (Thus, this sublanguage of

LDB is also a sublanguage of L(k)
DB.) Call this sublanguage L〈k〉DB.

Now, every word in L〈k〉DB has length (k + 1)2k+1− 1. What is important for the
bound of the theorem is that this common length is roughly k2k; the constant factors
we thereby ignore will get “absorbed” into the constant βM . Repeated invocation of
Lemma 5.9 tells us that no matter how M organizes—and reorganizes—its databases,
at least one of these strings will require M to compute for a number of steps that
is proportional to roughly 2k/d for every query. This “bad” string thus causes M to
compute for roughly 2k(1+1/d) steps on an input of length roughly N = k2k.

The remainder of the proof is the exercise of expressing the quantity 2k(1+1/d) as a
function of N = k2k. To accomplish this, we note that logN is roughly k. (In fact, of
course, logN = k + logk, but given any positive fraction ϕ , for all sufficiently large
k, this sum is less than (1 + ϕ)k.) This means that 2k is roughly N/ logN, so that
2k(1+1/d) is roughly (N/ logN)1+1/d .

By doing the calculations more carefully, one shows finally that as a function of
N = k2k, the quantity 2k(1+1/d) deviates from (N/ logN)1+1/d by only a constant
factor. ��

One finds in [38] a companion upper bound of O(N1+1/d) for the problem of
recognizing LDB. Hence, Theorem 5.3 does, indeed, expose the potential of nontrivial
impact of data-structure topology on computational efficiency.

In its era (the late 1960s), the theorem also exposed one of the earliest examples
of the cost of requiring a computation to be online. Specifically, LDB can clearly be
accepted in linear time by an OTM M that has just a single linear work tape, but
that operates in an offline manner—meaning that M gets to see the entire input string
before it must give an answer (so that it knows which query is important before it
starts computing).



Chapter 6
Enrichment Topics

6.1 Pumping in Formal Languages

This section is devoted to discussing a phenomenon called “pumping,” which is a
characteristic of any finite closed mathematical system. We introduce this notion in
order to explain the so-called pumping lemma for regular languages (and, briefly, its
analogue for so-called context-free languages). Most textbooks introduce the pump-
ing lemma as the primary tool for exposing the limitations of FAs. The reader will
see from the discussion throughout this section that we disagree with this point of
view, on both conceptual and methodological grounds. We hope that the reader will
agree with us after reading this section’s rather thorough explanation of the pumping
lemma, its origins, its strengths, and its weaknesses.

6.1.1 The Phenomenon of Pumping in Finite, Closed Systems

Example 1: Semigroups. A semigroup is a set of elements that is closed under an
associative binary operation that, by convention, is called “multiplication.”

Each of the following number systems, the integers, the rational numbers, and the real num-
bers, forms a semigroup under both the operation of addition and that of multiplication. None
of these systems forms a semigroup under the operation of division: the integers are not
closed under this operation, and while the rationals and the reals are closed under division,
this operation is not associative, as one sees from endpoints of the following chain:

a/(b/c) = ac/b �= a/(bc) = (a/b)/c.

A semigroup is one of the simplest algebraic systems, yet also one that is rich in appli-
cations. And finite semigroups are among the simplest examplars of the phenomenon
of pumping.

Consider any finite semigroup formed by the set of elements S = {α1,α2, . . . ,αn}
and some associative binary multiplication (which we shall denote here by juxtaposi-
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tion). Consider an arbitrary sequence of products of elements of S (with repetitions),
where each sequential item is obtained from its predecessor via post-multiplication—
i.e., multiplication on the right—with some element of S:

αi1
αi1 αi2
αi1 αi2 αi3
...

Because S is finite, every sufficiently long such sequence—specifically, every se-
quence of length > n = |S|—must contain two distinct products,

αi1 αi2 · · ·αik

and
αi1 αi2 · · ·αik αik+1 · · ·αik+�

,

that are equal within the semigroup; i.e., they denote the same element of S:

αi1 αi2 · · ·αik = αi1 αi2 · · ·αik αik+1 · · ·αik+�
. (6.1)

This is an instance of the pigeonhole principle. Do you see how it applies here?

Any such pair of equal products is the seed of an instance of the phenomenon of
pumping within semigroup S. To wit, the associativity of the semigroup multiplication
allows us to iterate the “absorption” in (6.1) to prove that for all h ∈ N,1

αi1 αi2 · · ·αik(αik+1 · · ·αik+�
)h = (αi1αi2 · · ·αik αik+1 · · ·αik+�

)(αik+1 · · ·αik+�
)h−1

= (αi1αi2 · · ·αik)(αik+1 · · ·αik+�
)h−1

...

= (αi1αi2 · · ·αik)(αik+1 · · ·αik+�
)

= αi1αi2 · · ·αik .

Example 2: Edge-labeled directed graphs. Consider next the following little tale,
which suggests how the phenomenon of pumping manifests itself in finite graphs.
Say that you are in a park in Paris (lucky you!) that is organized as a set of n statues
interconnected by one-way paths. (Think of the statues as the nodes of a directed
graph and of the paths as its arcs.) Assume that, as is common in parks, the pattern
of paths is sufficiently complex that every statue marks the end of one one-way path
and the beginning of another. Say that you take a long walk in the park—specifically,
long enough for you to traverse n interstatue paths. Since the graph/park is finite—
note another application of the pigeonhole principle here—you must encounter some
specific statue at least twice in your walk. Moreover, you can keep repeating the

1 The power notation implies iterated multiplication within the semigroup.
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portion of your path that led you to the same statue twice—as many times as you
want—and it will always return you to that statue.

Because one of our ways of visualizing a finite automaton M is as a directed graph
whose nodes are states and whose arcs and their labels represent M’s state-transition
function δM , I am sure that you can already see some form of the pumping lemma for
regular languages just below the surface of Example 2. If you are willing to look at the
FA M just a bit differently from how we have been looking at them, then you will see
a version of the pumping lemma emerge from Example 1 also. Specifically, the fact
that δM is a function with domain QM×Σ means that we can view each letter σ ∈ Σ
as a function that maps QM into QM . The process of investigating M’s behavior under
finite input strings from Σ � is equivalent to studying the semigroup generated by the
letters in Σ under functional composition—which is easily shown to be an associative
“multiplication.” This semigroup of letters-as-functions is clearly finite, since there
are only nn distinct total functions that map an n-element set to itself. (n = |QM| in
this case.) The development in the rest of this section thus consists in just adding
FA-specific details to Examples 1 and 2.

6.1.2 Pumping in Regular Languages

Now let’s talk like automata theorists and translate the basic elements of the phe-
nomenon exposed in Examples 1 and 2 into an FA-theoretic framework.

Focus on an FA M. In Example 1, semigroup elements become input symbols,
viewed as functions from QM to QM , and sequences of such elements become input
strings. In Example 2, statues become states, and interstatue directed paths become
input strings. Within the contexts of both examples, the phenomenon of pumping
ensures the following. Say that the language L(M) that M accepts contains infinitely
many strings. Among other things, we know that given any integer m, L(M) contains
(infinitely many) strings that are longer than m. In particular, no matter how many
states M has, there is a string w ∈ L(M)—in fact, infinitely many of them—whose
length is≥ |QM|. When we feed any such string w to M (starting from the initial state
q0, of course), the sequence of states that we pass through must contain some state—
call it q—at least twice. To analyze this situation in more detail, let’s “parse” w into
the form w = xyz, where:

• x is the prefix of w that leads us from state q0 to state q for the first time;
• y is the maximal-length internal portion of w that takes us from state q back to q;
• z is the suffix of w that leads us from state q to an accepting state q̂ of M.

Clearly, for all integers k = 0,1, . . ., the string xykz acts essentially like w, in the sense
that it takes us from q0 to q (using the prefix x), loops around to q k times (using
the internal portion yk), and then leads from q to q̂ (using the suffix z). If we recast
this description of “pumping” into the formalism of FAs, then we can describe it as
follows.
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Any word w∈ Σ � of length �(w)≥ |QM| can be parsed into the form w = xy, where
y �= ε ,2 in such a way that δ (q0,x) = δ (q0,xy).

Because M is deterministic—so that δ is a function—we find that for all h ∈ N,

δ (q0,x) = δ (q0,xyh). (6.2)

Because the “pumping” depicted in (6.2) occurs also with words w ∈ Σ � that admit a
continuation z ∈ Σ � that places them into L(M)—i.e., wz ∈ L(M)—we arrive finally
at a formal statement of the pumping lemma for regular languages. (As you read
along, note the implicit invocation of Lemma 5.1 in the argument that we have been
developing.)

Lemma 6.1. (The pumping lemma for regular languages) For every infinite regu-
lar language L, there exists an integer n ∈ N such that every word w ∈ L of length
�(w)≥ n can be parsed into the form w = xyz, where �(xy)≤ n and �(y) > 0, in such
a way that for all h ∈ N, xyhz ∈ L.

The proper way to look at Lemma 6.1 is as a strengthened version of the con-
tinuation lemma for OAs (Lemma 3.1) when the latter is applied to FAs. The tech-
nique of using Lemma 6.1 to prove that sets are not regular differs from the fooling
set/finite-index lemma technique of Section 5.1 mainly in the new (and nonintrin-
sic!) requirement that one of the “fooling” words must be a prefix of the other. Indeed
(inexplicably to me), most standard texts actually build all of their proofs of nonregu-
larity of languages on the exposure of undesired “pumping” activity. This method of
argumentation violates the principle of parsimony, by leading to proofs that are longer
than necessary and that focus on restrictions that are extraneous (mainly, demanding
that one “fooling” word be a prefix of the other). Note that we are not suggesting that
the problems based on pumping are wrong—only that they unnecessarily complicate
the proof process and the proofs themselves.

It is worth spending a moment to contemplate the principle of parsimony (lex parsimoniae),
which is attributed to the fourteenth-century logician, William of Occam,

The principle, which is also known as Occam’s razor, mandates that one always use the
simplest possible setting that is sufficient to achieve one’s goals. The extraneous condition
on the “fooling” words that we have just discussed is a clear violation of this principle.

For the Latin lovers among you, Occam’s razor is often stated in the following form, which
seems never to have been established as the actual terminology in which William of Occam
promulgated his principle:

Entia non sunt multiplicanda praeter necessitatem.

One simple example will illustrate my reasons for recommending that proofs of non-
regularity not be based on Lemma 6.1. Consider the following pumping-based proof
of the nonregularity of the language L1 of Application 1 (Section 5.1). One notes that
the “pumped” word y of Lemma 6.1:

1. cannot consist solely of a’s, or else the block of a’s becomes longer than the block
of b’s;

2 Of course, we could countenance the case y = ε , but this would get us (and M) nowhere.
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2. cannot consist solely of b’s, or else the block of b’s becomes longer than the block
of a’s;

3. cannot contain both an a and a b, or else the pumped word no longer has the form
“a block of a’s followed by a block of b’s.”

Even when one judiciously avoids this three-case argument by invoking the lemma’s
length limit on the prefix xy, one is inviting/risking excessive complication by seeking
a string that pumps. For instance, when proving the nonregularity of the language L3

of palindromes, one must cope with the fact that any palindrome does pump about its
center! (That is, for any palindrome w and any integer �, if one parses w into w = xyz,
where x and z both have length �, then indeed, for all h ∈ N, the word xyhz is indeed
a palindrome.)

The danger inherent in using Lemma 6.1 to prove that a language is not regular is
mentioned explicitly in [60]:

The pumping lemma is difficult for several reasons. Its statement is complicated, and it is
easy to go astray in applying it.

We show now that the condition for a language to be regular that is provided in
Lemma 6.1 is necessary but not sufficient. This contrasts with the necessary and
sufficient condition provided by Theorem 4.1.

Lemma 6.2. Every string of length > 4 in the nonregular language

L5 = {uuRv | u,v ∈ {0,1}�; �(u), �(v)≥ 1}

pumps in the sense of Lemma 6.1.

I have been unable to trace the source of the example in Lemma 6.2; the example is discussed
(anonymously) in [106], but it certainly had been in circulation decades before 2005.

Proof. Each string in L5 consists of a nonempty even palindrome followed by another
nonempty string. Say first that w = uuRv and that �(w)≥ 4. If �(u) = 1, then we can
choose the first character of v as the nonnull “pumping” substring of Lemma 6.1. (Of
course, the “pumped” strings are uninteresting in this case.) Alternatively, if �(u) > 1,
then consider the first character of u, call it a. Because ak is a palindrome for every
k > 1, we can let this first letter be the nonnull “pumping” substring of Lemma 6.1.
In either case, the lemma holds. ��

Notably, the discussion of Lemma 6.2 in [106] ends with the following comment.

For a practical test that exactly characterizes regular languages, see the Myhill—Nerode the-
orem.

For the record, we note that the Myhill–Nerode theorem (Theorem 4.1) provides
the following simple proof that L5 is not regular. Let x and y be distinct strings from
the infinite language L = (01)(01)�, with �(y) > �(x). (Strings in L consist of a se-
quence of one or more instances of 01.) Easily, xxR is an even-length palindrome,
hence belongs to L5 (with v = ε). However, one verifies easily that yxR does not begin
with an even-length palindrome, so that yxR �∈ L5. To wit, if one could write yxR in
the form uuRv, then:
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• u could not end with a 0, because the “center” substring 00 does not occur in yxR;
• u could not end with a 1, because the unique occurrence of 11 in yxR occurs to the

right of the center of the string.

It now follows by Lemma 5.1 that L5 is not regular. ��
For completeness, we end this section by citing, without proof, a version of

Lemma 6.1 whose underlying condition is both necessary and sufficient for a lan-
guage to be regular. This version is rather nonperspicuous and a bit cumbersome,
hence is only of academic interest: it shows that there is a version of pumping that
actually characterizes the property of being a regular language. That said, I am stand-
ing by my assertion that Theorem 4.1 should be your main tool when proving that a
language is not regular.

Theorem 6.1 ([46]). (The necessary-and-sufficient pumping lemma for regular
languages) A language L ⊆ Σ � is regular if and only if there exists an integer n ∈ N

such that every word w ∈ Σ � of length �(w)≥ n can be parsed into the form w = xyz,
where �(y) > 0, in such a way that for all z ∈ Σ �:

• if wz ∈ L, then for all h ∈ N, xyhz ∈ L;
• if wz �∈ L, then for all h ∈ N, xyhz �∈ L.

6.1.3 Pumping in Nonregular Languages

This section exposes another enrichment topic that centers around the phenomenon
of pumping. We illustrate a language-theoretic setting—the theory of context-free
languages—where pumping plays a more fundamental role than with regular lan-
guages, because here it is the primary tool for negative proofs. The material in this
section has its roots in Chomsky’s “type-2” grammars and languages of [12, 13].

A context-free grammar (CFG, for short) is specified as follows:

G = (V,Σ ,S,P),

where

• V is a finite vocabulary of nonterminal symbols that play the roles of “syntactic
categories”;

• Σ is a finite alphabet of terminal symbols;
• S ∈V is the sentence symbol, the most general “syntactic category”;
• P ⊆V × (V ∪Σ)� is a relation whose elements are called productions.

Conventionally, a production (A,w), where A ∈V and w ∈ (V ∪Σ)�, is written in the
form “A → w.” (The arrow notation suggests, evocatively, that productions will be
used to rewrite letters as strings.)

Informally, one starts with the sentence symbol S and begins generating strings by
rewriting nonterminal symbols in manners allowed by the productions.
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The just-described process can be viewed as “nondeterministic”—in contrast to procedural—
or as “descriptive”—in contrast to prescriptive—in the following sense. While rewriting a
string (or “sentential form”), you can always employ any production that applies to the “sen-
tential form” that you have at the moment. You will generally have many options at every
step in the process.

One continues to rewrite the symbols of the current “sentential form” until one has a
string of terminal symbols: a sentence. Here is one simple example to provide intu-
ition.

• V = {Mathematical-Expression, Sum, Product, Var}
• Σ = {(,),+,−,×,÷,X ,Y,Z}
• S = Mathematical-Expression
• P consists of the following ten productions:

Mathematical-Expression→ Sum
Mathematical-Expression→ Product
Mathematical-Expression→ Var
Sum→ (Mathematical-Expression + Mathematical-Expression)
Sum→ (Mathematical-Expression −Mathematical-Expression)
Product→ (Mathematical-Expression ∗Mathematical-Expression)
Product→ (Mathematical-Expression / Mathematical-Expression)
Var→ X
Var→ Y
Var→ Z

Hopefully, you can intuit how this CFG specifies a “Mathematical-Expression” as ei-
ther a variable or a fully parenthesized sum/difference or product/ratio of
“Mathematical-Expression”s. Figure 6.1 contains a simple sample derivation of a spe-
cific mathematical expression from the sentence symbol Mathematical-Expression;
we shall return to this example formally. In order to fit within margins, we abbrevi-
ate “Mathematical-Expression” by “M-E” in the figure. (In this example, we always
expanded the leftmost eligible nonterminal symbol; as the preceding comment indi-
cates, we need not have done this.)

We now formalize our intuition about how CFGs work, by supplying the “seman-
tics” of CFGs.

Let us be given a CFG G = (V,Σ ,S,P). Consider any string uAv, where A ∈ V
and u,v ∈ (V ∪Σ)�. If there is a production (A,w) ∈P , then we write

uAv ⇒G uwv,

meaning that string uAv can be rewritten as string uwv under G. This defines⇒G as a
new “rewriting” relation on strings:

⇒G ⊆ (V ∪Σ)�V (V ∪Σ)�× (V ∪Σ)�.

We are really interested in the reflexive, transitive closure of relation ⇒G, which we
denote by ⇒�

G and define as follows. For strings u,v ∈ (V ∪Σ)�, we write u⇒�
G v,

articulated as “v is derivable from u under G,” just when the following holds:
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M-E → Sum

→ (M-E+M-E)

→ (Var+M-E)

→ (X +M-E)

→ (X +Sum)

→ (X +(M-E−M-E))

→ (X +(Prod−M-E))

→ (X +((M-E∗M-E)−M-E))

→ (X +((Var∗M-E)−M-E))

→ (X +((X ∗M-E)−M-E))

→ (X +((X ∗Var-E)−M-E))

→ (X +((X ∗Y )−M-E))

→ (X +((X ∗Y )−Prod))

→ (X +((X ∗Y )− (M-E/M-E)))

→ (X +((X ∗Y )− (Var/M-E)))

→ (X +((X ∗Y )− (Y/M-E)))

→ (X +((X ∗Y )− (Y/Var)))

→ (X +((X ∗Y )− (Y/Z)))

Fig. 6.1 A sample derivation of the expression (X +((X ∗Y )− (Y/Z))) under the CFG G.

u⇒�
G v means

⎧

⎨

⎩

either u = v
or there exist strings w1,w2, . . . ,wn such that

u ⇒G w1 ⇒G w2 ⇒G · · · ⇒G wn ⇒G v.

We can now, finally, define the context-free language (CFL, for short) L(G) that is
generated by the CFG G:

L(G) = {x ∈ Σ � | S⇒�
G x}.

Each derivation

S ⇒G y1 ⇒G y2 ⇒G · · · ⇒G yn ⇒G x (6.3)

of a string x ∈ L(G) under the CFG G can be depicted in a natural way as a rooted,
oriented tree—called the derivation tree of x under G—where:

• S is the root of the tree;
• for each rewriting uAv⇒G uwv in the sequence of rewritings that constitute deriva-

tion (6.3), all of the letters of strings w are, from left to right, the children of node
A;

• the left-to-right sequence of leaves of the tree constitute string x.
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Figure 6.2 illustrates these concepts by means of the derivation tree of the expression
(X +((X ∗Y )− (Y/Z)) under the CFG for mathematical expressions presented ear-
lier. Note how one can read off the derivation in Figure 6.1 from this tree by always
rewriting the leftmost possible variable.

( M−E  +  M−E )

SUM

PROD PROD

( M−E  *  M−E ) ( M−E  /  M−E  )

X Y Y Z

( M−E  −   M−E )

SUM

M−E

VAR

X

Fig. 6.2 A tree-structured depiction of the derivation of the expression (X + ((X ∗Y )− (Y/Z)))
under the CFG G; cf. Figure 6.1.

On to the pumping lemma for the CFG G! We derive this lemma by analyzing
the ramifying (branching) structure in G’s derivation trees, so let us focus on an ar-
bitrary such tree T . Note that every root-to-leaf path in the derivation tree T is a
string β1β2 · · ·βmσ , where each βk ∈ V , and σ ∈ Σ . Let us compactify this path to
eliminate “nonproductive” productions—those of the form βi→ β j. “Nonproductive”
productions add no interesting structure to the tree T ; they merely rename syntactic
categories. While such renaming may be quite significant linguistically, it has no sig-
nificance in the structural analysis we are engaged in. After we have thus compactified
T , the root-to-leaf path we started with has become a string β ′1β ′2 · · ·β ′�σ , where each
β ′k either produces a leaf of tree T (i.e., a terminal symbol) or has more than one child
in tree T . We make two simple, yet important, observations:

• If the path is long enough, then some nonterminal along the path must repeat. This
follows from the pigeonhole principle, because the set V is finite.

• If L(G) is infinite, then the compactified root-to-leaf paths in derivation trees get
arbitrarily long. This is verified using the same reasoning as in the famous “infinity
lemma” of Dénes König [52], because there is an upper bound on the number of
children a node can have in a derivation tree under G—namely, the length of the
longest right-hand string in a production—and because there is no upper bound
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on the number of leaves that a derivation tree for G can have (because L(G) is
infinite).

Consider now the effect of taking the portion of a derivation tree consisting of two
occurrences of the same βi on a path, plus the subtree subtended by these occurrences,
and replicating it.

Why is such replication legal? Because the grammar G is context-free! The context-free prop-
erty means that nonterminal βi can be rewritten via any valid production at any step in a
derivation and wherever the nonterminal occurs.

If one repeats this replication, one discerns a pattern of pumping in the terminal string
derived via the tree! For instance, if one replicates the portion of the derivation tree
of Figure 6.2 that is delineated by the dashed box, then one obtains, via repeated such
replications, the “pumped” sequence of expressions

Number of replications Resulting expression
0 ((X ∗Y )− (Y/Z))
1 (X +((X ∗Y )− (Y/Z)))
2 (X +(X +((X ∗Y )− (Y/Z))))
3 (X +(X +(X +((X ∗Y )− (Y/Z)))))
...

...

Symbolically, after k iterations, one has generated the expression ξ kηζ k, where ξ is
the string “(X+”, η is the string “((X ∗Y )− (Y/Z))”, and ζ is the string “)”. The
situation we have described illustrates a special case of the general phenomenon of
pumping in CFLs, as described in the following lemma. The lemma’s detailed proof
is left as an exercise, but all of the raw material appears in the preceding paragraphs.

Lemma 6.3. (The pumping lemma for context-free languages) For every infinite
context-free language L, there exists an integer m ∈ N such that every word z ∈ L
of length �(z) ≥ m can be parsed into the form z = uvwxy, where �(uv) ≤ m and
�(vx) > 0, in such a way that for all h ∈ N, uvhwxhy ∈ L.

As suggested earlier, Lemma 6.3 is the primary tool for proving that languages are
not context-free. We present just one simple example; others appear as exercises.

Application 5. The language L = {anbncn | n ∈ N} is not context-free.
The proof consists of a case-by-case analysis of where the pumping pair of strings,

v, x, of Lemma 6.3 can reside, relative to the blocks of a’s, b’s, and c’s in each string
in L.

1. If the strings v and x exist, then each contains instances of only one letter. To wit,
if either of these strings, say v, contained instances of two or more letters, then
after a single application of pumping, the resulting string would no longer consist
of a block of a’s followed by a block of b’s followed by a block of c’s; hence the
string would not belong to the language L. (As a simple illustration, after a single
application of pumping, the string ab would become abab.)
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2. By item 1, each of v and x is contained within a single one of the three blocks
of letters that make up string of L. This means that after a single application of
pumping, at most two of the three blocks will have increased in length. Once this
happens, the three blocks will no longer share the same length, so the pumped
string will not belong to L.

The language L is particularly simple prey for the pumping lemma. The reader is
invited to prove (the true, but harder to verify, fact) that the language of “squares”
considered in Application 4 of Section 5.1 is not context-free.

We now leave the subject of pumping in formal languages having given the reader
the rudiments necessary for delving further into the topic.

6.2 Closure Properties of the Regular Languages

So-called closure properties of classes of languages have attracted much attention
since the earliest days of studying formal languages. This interest has several an-
tecedents. From a mathematical perspective, closure properties can expose important
aspects of the intrinsic nature of a class of languages. Indeed, the Kleene–Myhill the-
orem (Theorem 11.3) that we study in Section 11.2 actually characterizes the regular
languages in terms of closure properties.

By “characterizes,” we mean that the theorem employs closure properties to tell us precisely
which languages are regular and which not. This is a mathematical, rather than algorithmic,
description of the class: it does not yield a programmable test for regularity. In fact, the
theorem can be stated in the following form; cf. [51].

The family of regular languages over an alphabet Σ is the smallest class of subsets of Σ � that
contains all finite subsets of Σ � and that is closed under a finite number of applications of the
operations of . . .

From a linguistic perspective, closure properties can expose significant structural fea-
tures of a class of languages.

Perhaps the simplest example of this use of closure properties occurs with CFLs. One can
intuit from Lemma 6.3 that the hallmark of CFLs is that they can “match” pairs of sites
in a string, as those sites develop (say, via pumping). Pairs can be matched, but not larger
groupings. One can observe this phenomenon in action from proofs that the CFLs are not
closed under intersection. To wit:

(a) We leave as an exercise the verification that each of the following languages is a CFL:

L1 = {aib jck | i = j} and L2 = {aib jck | i = k}.

We proved via Application 5 of the preceding section that

L1∩L2 = {anbncn | n ∈ N}

is not a CFL.

Intersection thus forces two pair-matching languages to become a triple-matching language.
We can easily force the matching of arbitrarily high groupings, as the reader can verify from
the following example.
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(b) We leave as an exercise the verification that each of the following languages is a CFL:

L3 = {aib jckd� | i = j and k = �} and L4 = {aib jckd� | j = k}.

A slightly more complicated analogue of the argument in Application 5 of the preceding
section proves, however, that

L3∩L4 = = {anbncndn | n ∈ N}

is not a CFL.

From a computational perspective—the most important one, given our focus on de-
veloping computation theory via formal languages—closure properties afford one a
high-level mechanism for discussing often-intricate manipulations of the language-
recognizing algorithms that we call “automata.”

We shall imminently see the direct-product construction for automata, which is an impor-
tant example of these “intricate manipulations.” Other significant examples appear in Sec-
tion 11.2.

Finally, many significant interlanguage relationships can be expressed and studied by
means of sentences involving closure properties. Here are some important examples.

Focus on two languages, L1 and L2:

(L1 ⊂ L2) iff ((L1 \L2 = /0) and (L2 \L1 �= /0));
(L1 ⊆ L2) iff (L1∪L2 = L2);
(L1 = L2) iff ((L1 \L2)∪ (L2 \L1) = /0).

These examples illustrate but certainly do not exhaust the point here.
Our development of language theory thus far has given us access to a large reper-

toire of closure properties of the class of regular languages. We enumerate several
of these (redundantly, for emphasis) in the following definitions and the subsequent
theorem.

Let L1 and L2 be languages over the alphabet Σ .
The union of L1 and L2 is the set-theoretic union L1∪L2, as defined in Section 2.1.
The intersection of L1 and L2 is the set-theoretic intersection L1 ∩L2, as defined

in Section 2.1.
The complement of L1 is the set-theoretic complement Σ � \L1, as defined in Sec-

tion 2.1.
The concatenation of L1 and L2 (in that order!) is:

L1 ·L2
def= {xy ∈ Σ � | [x ∈ L1] and [y ∈ L2]}.

Thus, L1 ·L2 consists of all strings that have a prefix in L1 whose removal leaves a
string in L2.

“Powers” of a language. For any integer k ≥ 0,

L0
1

def= {ε} and, inductively, Lk+1
1

def= L1 ·Lk
1.
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Clearly, L1
1 = L1. We call each language Lk the kth power of language L—using the

word “power” as with exponentiation.
The star-closure of L1, denoted by L�

1, is, informally, the language comprising all
finite concatenations of strings from L1. Formally,

L�
1

def=
∞
⋃

i=0

Li
1 = {ε}∪L1∪L2

1∪L3
1∪·· · .

Note the somewhat unintuitive fact that /0� = {ε}. (In fact, /0� is the only finite star-
closure language.)

The reversal of L1, denoted LR
1 , is the language obtained by reversing all strings

in L1; i.e.,
LR

1
def= {σnσn−1 · · ·σ2σ1 | σ1σ2 · · ·σn−1σn ∈ L1}.

All σi here belong to Σ .
The three operations union, intersection, and complementation are known collec-

tively as the Boolean operations; less universally, but quite commonly, the three op-
erations union, concatenation, and star-closure are known collectively as the Kleene
operations.

At this point, we only suggest, via pointers, how to prove the following theorem;
details are available by following the pointers.

Theorem 6.2. (Closure properties of the regular languages) The regular languages
are closed under the following operations.

1. the Kleene operations: if L1 and L2 are regular, then so also are (L1)�, L1 ∪L2,
and L1 ·L2.

2. the operation of language-reversal: if L is regular, then so also is its reversal LR.
3. the Boolean operations: if L1 and L2 are regular, then so also are L1, L1∪L2, and

L1∩L2.

Proof Sketch. We defer the proof of the closure of the regular languages under
the Kleene operations until we cover Lemma 11.1, which embodies the portion of
the Kleene–Myhill theorem (Theorem 11.3) that converts a given regular expression
R to an FA MR that accepts the language denoted by R. (The lemma’s companion,
Lemma 11.2, embodies the portion of the theorem that converts a given FA M to
a regular expression RM that denotes L(M).) The detailed definition of regular ex-
pressions must be deferred until Section 11.2, because its technical details build so
heavily on the “pillar” topic NONDETERMINISM, but we note here that each such
expression is a finite string that denotes a regular language.

We use the word “denotes” here to indicate that regular expressions have the same descriptive
power as FAs, in the sense that one can translate either the regular-expression “name” of a
regular language or the FA “name” of the language into the other “name.”

The closure of the regular languages under the Boolean operations follows from
their closure under union and complementation (Lemma 4.1), because of De Mor-
gan’s laws (Section 2.1). ��
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There is another, direct, proof that the regular languages are closed under the
Boolean operations. This proof—or really, its easy generalizations to OAs and their
languages—is important in many applications of OA theory, both to other compo-
nents of computation theory and to application areas such as logic design. We now
present this alternative proof, via the direct-product construction for FAs. (The reader
can easily extend the technique to general OAs.)

The direct-product construction. We illustrate both the construction and the use
of direct products of FAs by focusing on an arbitrary “generalized Boolean operation”
⊗, i.e., a binary operation that can be formed as a finite composition of one or more of
the three basic set-theoretic Boolean operations, union, intersection, and complemen-
tation. (Some of the more important such operations are mentioned in Section 2.1.)
We prove, via the direct-product construction, that the regular languages are closed
under the operation ⊗, obtaining thereby a rather strong, “one size fits all,” proof of
the closure of the regular languages under Boolean operations.

The intuitive strategy that underlies the direct-product construction of FAs is to
“run two FAs in parallel,” state-transition by state-transition, and then combine their
answers to the current input string via the logical Boolean operation that corresponds
to the target set-theoretic Boolean operation ⊗. One achieves this effect formally as
follows. Focus on regular languages L1 and L2, where each Li, for i = 1,2, is accepted
by the FA

Mi = (Qi, Σ , δi, qi0, Fi).

We construct the following direct-product FA:

M⊗
1,2 = (Q1×Q2, Σ , δ1,2, 〈q10,q20〉, F⊗1,2),

where

• For all q1 ∈ Q1, q2 ∈ Q2, and σ ∈ Σ , define

δ1,2(〈q1,q2〉,σ) = 〈δ1(q1,σ),δ2(q2,σ)〉.

Note how the definition of δ1,2 can be viewed as “running the FAs M1 and M2 in
parallel.”

• F⊗1,2 = {〈q1,q2〉 ∈ Q1×Q2 | ([q1 ∈ F1]⊗ [q2 ∈ F2] = 1)}.
To explain the definition of F⊗1,2 in more detail: Note that the predicate “qi ∈ Fi”
can be viewed as evaluating to 0 (if the predicate is false) or to 1 (if the predicate
is true). Thus intepreted, it is meaningful to combine predicates using the logical
version of the set-theoretic Boolean operation ⊗.3 The condition that delimits the
pairs of states of M⊗

1,2 that belong to F⊗1,2 can, therefore, be translated as follows:

1. Take the truth values of the statements [q1 ∈ F1] and [q2 ∈ F2], and combine
them using the logical Boolean operation ⊗.

2. Add the pair 〈q1,q2〉 to F⊗1,2 if and only if the expression [q1 ∈ F1]⊗ [q2 ∈ F2]
evaluates to 1.

3 The semantic overloading of the operation symbol “⊗” should cause no problems, because each
use of the symbol inherits its “type” (set-theoretic or logical) from its arguments.
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We claim that L(M⊗
1,2) = L1⊗L2, whence the latter language is regular. To see this,

note that when we extend the state-transition function δ1,2 of the product FA M⊗
1,2 to

act on strings, rather than single letters (in a way that should be quite clear by this
point in our study) we find that for all strings x ∈ Σ �,

δ1,2(〈q10,q20〉,x) = 〈δ1(q10,x),δ2(q20,x)〉.

By definition, then, the state 〈δ1(q10,x),δ2(q20,x)〉 belongs to F⊗1,2—or equivalently,
x ∈ L(M⊗

1,2)—precisely when

[δ1(q10,x) ∈ F1]⊗ [δ2(q20,x) ∈ F2] = 1,

using the logical version of operation ⊗. But this is equivalent to saying that

L(M⊗
1,2) = L(M1)⊗L(M2) = L1⊗L2,

as was claimed.
You should keep the direct-product construction in an easily accessed place in

your computation-theoretic toolbox. It is an invaluable tool for formally introducing
parallel operation in a succinct manner.

6.3 Systems of Linear Equations with Languages as Coefficients

We have already referred several times to the importance of the Kleene–Myhill theo-
rem (Theorem 11.3) within the theory of finite automata and regular languages. This
importance is attested to by the large number of algorithms that have been developed
for producing a regular expression RM that denotes the language L(M) accepted by a
given FA M. One of the mathematically most interesting of these algorithms, which
appears in [2], produces from any FA M a system of linear equations whose coeffi-
cients are sets (in fact, regular languages in the intended application in [2]) such that
any solution to the system can be translated into a regular expression that denotes
L(M).

The previous sentence is worded so craftily that the reader may suspect that some “sleight
of pen” is being perpetrated here: “any solution to the system can be translated as a regular
expression that denotes L(M)” (highlights added). The careful (but not “crafty”) wording of
the sentence is needed because—as we shall see imminently—many quite distinct regular
expressions denote the same regular language. Although every solution to a given linear sys-
tem denotes the same language, the expressions that different solutions yield may look totally
different. Keep this in mind as we proceed.

A complete treatment of the FA-to-regular expression algorithm of [2] is beyond
the scope of this book. Section 11.2 contains a complete treatment of one such al-
gorithm, and none of these algorithms has a dramatic advantage over any other in
efficiency. From a conceptual vantage point, though, the algorithm of [2] is quite
interesting, in that it helps one develop a deeper understanding of some familiar
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linear-system-solving algorithms from linear algebra, by seeing the basic ideas of the
algorithms—pivoting, unknown elimination, back-substitution—at work with alge-
bras that look quite different from rings and their kin. (See a standard text on modern
algebra, such as [5].) Therefore, we spend some time now exposing the reader to the
underlying mathematical topic of systems of linear equations whose coefficients are
sets. Specifically, we focus (for definiteness) on a fixed but arbitrary alphabet Σ , and
we consider systems of linear equations of the form

X1 = A11 ·X1 ∪ A12 ·X2 ∪ ·· · ∪ A1n ·Xn,
X2 = A21 ·X1 ∪ A22 ·X2 ∪ ·· · ∪ A2n ·Xn,
...

...
...

Xn = An1 ·X1 ∪ An2 ·X2 ∪ ·· · ∪ Ann ·Xn,

(6.4)

where:

• the “multiplication” “·” denotes the operation of concatenation on languages;
• the “addition” “∪” denotes the operation of union on languages;
• X1, X2, . . . , Xn are unknowns that range over subsets of Σ � (i.e., languages);
• each coefficient Ai j is an ε-free language over Σ , i.e., a subset Ai j ⊆ Σ � \{ε}.4
We now show how to solve a system of the form (6.4) for the unknowns X1, X2, . . . ,
Xn, and we show that the resulting solution is unique.

We emphasize that the solution is unique as a sequence of n languages. That is to say, for
each i ∈ [1,n], in every solution, Xi will denote the same language. However, the expressions
that one generates to denote this unique language will possibly be very different depending
on factors such as the order in which one performs the various operations called for in the
algorithm.

Theorem 6.3 ([2]). Every linear system of the form (6.4) can be solved uniquely for
the unknowns X1, X2, . . . , Xn. If each coefficient set Ai j is a regular language, then all
n solution languages5 are regular languages.

Proof. We proceed by induction on the size n of the system (6.4).
Case: n = 1. When the system (6.4) has one equation in one unknown, then the

theorem can be strengthened in the following way, to specify the unique solution.

Lemma 6.4. Every linear equation of the form

X1 = A11 ·X1∪B1, (6.5)

where A11 ⊆ Σ � \{ε}, has the unique solution

X1 = A�
11 ·B1.

4 We consider only ε-free languages for technical reasons. The coefficient languages that occur in
the algorithms of [2] are indeed ε-free.
5 The “n solution languages” are the solutions for X1, X2, . . . , Xn.
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We defer until Section 11.2 the proof that the solution language X1 is regular when-
ever both A11 and B1 are; this fact is a simple corollary of Theorem 11.3.

Proof. We begin our proof of Lemma 6.4 by noting that the set A�
11 ·B1 is a solution

of equation (6.5), as the following chain of equalities demonstrates:

A�
11 ·B1 =

(

(A11 ·A�
11)∪{ε}

)

·B1 (by definition of �-closure)

=
(

(A11 ·A�
11) ·B1

)

∪ ({ε} ·B1) (concatenation distributes over union)

=
(

A11 · (A�
11 ·B1)

)

∪B1 (concatenation is associative;

ε is an identity for concatenation).

It follows that A�
11 ·B1 is a subset of every solution of equation (6.5). We show via

contradiction that A�
11 ·B1 is, in fact, the unique solution to (6.5). Were this not the

case, there would be another solution

X1 = A�
11 ·B1∪C,

for some C ⊂ Σ � that is nonempty and disjoint from A�
11 ·B1. We would then have

A�
11 ·B1∪C = A11 · (A�

11 ·B1∪C)∪B1 (A�
11 ·B1∪C is a solution)

= (A11 ·A�
11 ·B1)∪ (A11 ·C)∪B1 (concatenation distributes

over union)

=
(

A11 · (A�
11 ·B1)∪B1

)

∪ (A11 ·C) (union is commutative

and associative)
= (A�

11 ·B1)∪ (A11 ·C) (A�
11 ·B1 is a solution).

If we intersect the first and last expressions in the preceding chain by C, then we
discover—because C is disjoint from A�

11 ·B1—that

C = C∩ (A11 ·C).

This equation means—cf. Section 2.1—that C is a subset of A11 ·C. But this is absurd:
The fact that A11 is ε-free implies that the shortest string in language C is strictly
shorter than the shortest string in language A11 ·C. (Aha!! We finally see the impact
of ε-freeness!) We conclude that the language C does not exist—so that A�

11 ·B1 is the
unique solution to equation (6.5), as was claimed. ��

For completeness in covering the case n = 1, we note that if A11 is not ε-free. i.e., if ε ∈ A11,
then for every language D⊆ Σ �, the language

X1 = A�
11 · (B1∪D)

is a solution of equation (6.5).

To see this, note that in this case,

A11 = A11∪{ε}.

Therefore, using elementary reasoning about the relevant set operations, we obtain



108 6 Enrichment Topics

A11 · (A�
11 · (B1∪D))∪B1 = (A11∪{ε}) · (A�

11 · (B1∪D))∪B1

= (A11 ·A�
11 · (B1∪D))∪ (A�

11 · (B1∪D))∪B1

= A�
11 · (B1∪D).

Case: n = 2. For pedagogical reasons, we redundantly solve the case n = 2 explic-
itly, even though the case n = 1 provides an adequate base for our induction. Specifi-
cally, the case n = 2 lends intuition for our upcoming analysis of general values of n,
and it illustrates some features of solutions to general systems that are too complex
to see except for small specific values of n. We begin with the (n = 2) version of a
system of the form (6.4):

X1 = A11 ·X1 ∪ A12 ·X2 ∪ B1,
X2 = A21 ·X1 ∪ A22 ·X2 ∪ B2,

(6.6)

wherein each coefficient set Ai j is ε-free. We solve this system by the well-known
strategy of elimination of unknowns. Starting arbitrarily with the first equation in
(6.6)—we could just as easily, and correctly, start with the second—we invoke
Lemma 6.4 to derive the following solution for language X1, which is unique because
A11 is ε-free:

X1 = A�
11 · ((A12 ·X2)∪B1) = (A�

11 ·A12) ·X2∪ (A�
11 ·B1). (6.7)

Substituting the value (6.7) for X1 in the second equation of (6.6) produces the fol-
lowing equation for X2:

X2 = A21 · ((A�
11 ·A12) ·X2∪ (A�

11 ·B1))∪A22 ·X2∪B2

=
(

(A21 ·A�
11 ·A12)∪A22

)

·X2∪
(

(A21 ·A�
11 ·B1)∪B2

)

.

Because A12, A21, and A22 are all ε-free, so also is the set (A21 ·A�
11 ·A12)∪A22. We

can therefore invoke Lemma 6.4 again, to derive the following unique solution for
X2:

X2 =
(

(A21 ·A�
11 ·A12)∪A22

)� ·
(

(A21 ·A�
11 ·B1)∪B2

)

.

We now have a unique complete solution for X2, i.e., a solution that expresses X2 as a
subset of Σ �, independently of X1. We can now back-substitute this solution into (6.7),
in order to get a unique complete solution for X1. We thereby arrive at the following
unique solution-pair for both unknowns in system (6.6):

X1 = (A�
11 ·A12) ·

(

(A21 ·A�
11 ·A12)∪A22

)� ·
(

(A21 ·A�
11 ·B1)∪B2

)

∪
(

A�
11 ·B1

)

,

X2 =
(

(A21 ·A�
11 ·A12)∪A22

)� ·
(

(A21 ·A�
11 ·B1)∪B2

)

.

As an exercise, the reader should now solve the system (6.6) by solving for the
unknown X2 first. The resulting solution-pair will describe the same two solution



6.3 Systems of Linear Equations with Languages as Coefficients 109

languages, X1 and X2—because Lemma 6.4 guarantees the uniqueness of this pair!
But the new expressions that denote these languages will be unrecognizably different
from the ones that we have just derived! We shall note in Chapter 11, specifically in
Section 11.2, that this naming problem—finding denotations for regular languages—
plagues almost all systems for representing regular languages. The one major excep-
tion is representation by minimal-state FAs, which, as we have seen in Section 5.2,
yields “expressions” (i.e., the minimum-state FAs) that are unique up to the renaming
of states. The problem, as we shall also see in Chapter 11, specifically in Section 11.1,
is that the smallest description of a regular language L via a minimum-state FA (an
FA M such that L = L(M)) can be exponentially larger than the smallest description
of L via a regular expression or, equivalently, via a solution to a system such as (6.4).
We just have to live with this state of affairs.

Case: General n > 1. The case of general n—i.e., of solving a system of the form
(6.4)—is an extension of the case n = 2 that is quite straightforward conceptually but
quite onerous computationally. You definitely want to write a program to generate the
solutions! But here is how the basic strategy works.

We choose an arbitrary order in which to eliminate the unknowns in system (6.4).
Regrettably, one can generally not predict which order of elimination of unknowns
will yield the simplest expressions for the solution languages. Therefore, to simplify
the exposition, we shall eliminate the unknowns in the order of their appearance in
(6.4); i.e., we first eliminate X1, then we eliminate X2, then we eliminate X3, and so
on.

One can show by induction—building in a very direct way upon our analysis of the
case n = 2—that at the step in which we eliminate unknown Xi, the coefficient of Xi

is ε-free. We have seen this already in our analyses of the cases n = 1 and n = 2. An
inductive argument shows that the coefficient of Xi, when it is about to be eliminated,
is the union of sets that are “preconcatenated”—i.e., multiplied on the left—by the
sets Ai1, Ai2, . . . , Aii; hence this coefficient set is ε-free, because all of the Ai j are.
We can therefore eliminate each successive unknown Xi by invoking Lemma 6.4 to
derive a unique expression for Xi in terms of all of the coefficient sets and all of the
Xj with j > i (which follow Xi in the order of elimination). Let us call this expression
a quasisolution for unknown Xi, since it involves other unknowns, rather than just
subsets of Σ �.

After the nth unknown-elimination via invocation of Lemma 6.4, we finally have
a unique complete solution for unknown Xn, i.e., a solution in terms of all of the
coefficient sets, as a subset of Σ �. We can now back-substitute this complete solu-
tion for Xn into the quasisolution for Xn−1. Because Xn is the only unknown that
appears in the quasi-solution for Xn−1, this back-substitution gives us a complete solu-
tion for Xn−1. By continuing the process of back-substitution—next back-substituting
the complete solutions for Xn and Xn−1 into the quasisolution for Xn−2, then back-
substituting the complete solutions for Xn, Xn−1, and Xn−2 into the quasisolution
for Xn−3, and so on—we eventually obtain complete solutions for all unknowns,
in the reverse of the order in which we obtained quasisolutions by eliminating
unknowns.
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Thus, after n eliminations, followed by n back-substitutions, we finally have com-
plete solutions for all n unknowns. We emphasize that Lemma 6.4 guarantees that
all complete solutions are unique—even though, we repeat, the expressions that we
obtain for these solutions depend on the order in which we eliminate the unknowns
and perform back-substitutions, and on any possible simplifications that we perform
in the course of these “big” operations.

Since all of the set operations that we perform involve the three operations of
union, concatenation, and �, we shall see in Section 11.2 that all solution languages
are regular whenever all the coefficient languages are. ��



PART III
ENCODING

“Sometimes a cigar is just a cigar.”

(Sigmund Freud [attributed])

While the good Dr. Freud’s observation may be correct in reference to vehicles for
smoking tobacco, it is totally off base regarding computation—as an exemplar of the
large array of disparate subject areas that can be viewed as studying infinite sets via
some system of string-based representations of their elements. We shall see in our
treatment of the “pillar” topic ENCODING that in a computational setting, a positive
integer may (to paraphrase Freud) be just a positive integer, but it may simultaneously
be an encoding of any of myriad finite objects as complex and diverse as:

• a complex data structure D,
• a program P,
• program P operating on data structure D,
• the sequence of operations that program P performs when operating on data struc-

ture D (providing that that sequence is finite).

The preceding list focuses only on phenomena and issues that revolve around automatic dig-
ital computation and its mathematical underpinnings because of this book’s focus. As noted
above, we could compile analogous lists for many other subject areas, including almost any
area that shares computation theory’s (indeed, computer science’s) focus on string-based rep-
resentations of its items of interest. We have already referred numerous times to mathematical
logic (via the work of Gödel and others) as such a representation-focused area. Another ob-
vious such area is the field of formal linguistics (via the work of Chomsky and others). Less
obvious such areas include the representation-oriented subfields of algebra such as the theo-
ries of groups and semigroups (and thereby fields and rings). The reader who would like to
learn more about the algebraic implications of the theory we will be developing under the
“pillar” topic ENCODING might want to study sources such as [7, 66, 78] in parallel with
Chapter 9.

As the preceding discussion suggests, the topic of encoding must play a very sig-
nificant role in our development of computation theory. Importantly for that devel-
opment, the mathematics needed to achieve the encodings that we need for our in-
troductory study of computation theory is minimal. And do not worry that we are
going to be taking only “baby steps” into the theory: We shall be studying each
of the four encodings alluded to in the first paragraph. In a sense that will become
very clear as soon as we begin to probe the technical portion of this “pillar” topic,
a bare-bones kit bag of mathematical tools will suffice. Specifically, once we have
(intellectual) access to the nonnegative integers (the set N), we need only be able to
add and multiply integers, and to test the equality of integer expressions formed using
these operations.

From both historical and intellectual perspectives, it is interesting that our devel-
opment of encodings and their underlying mathematics builds on a seminal study
that does not obviously relate to encodings at all! Indeed, this foundational mate-
rial, which appears in Chapter 7, was developed in order to answer the following
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question—which, note, never refers to representations. “Can one create a one-to-one
association between the integer-coordinate points in the (two-dimensional) plane and
the integer points on the line?” (We shall see that it is easy to rephrase this question
in terms of the rational numbers, instead of integer pairs.) Not obviously, the answer
is yes. All the other encodings that we shall need will be readily accessible from the
one that leads to this affirmative answer. It turns out that this encoding power of pos-
itive integers has (literally!) foundation-shaking implications, especially when paired
with the companion question, “Can one create a one-to-one association between the
real numbers in the interval {x | 0≤ x ≤ 1} and the integer points on the line?” Cer-
tainly not obvious, the answer to this second question is no. Among these foundation-
shaking implications is the following. There exist very well defined specifications for
programs and for digital computers that can never be realized! Specifically, no matter
how technology advances, one will never be able to craft either programs or comput-
ers that meet these specifications!

The integer-related questions of the preceding paragraph—the one with the affir-
mative answer and the one with the negative answer—were both the brainchild of
Georg Cantor. The implications of these questions for encodings of discrete struc-
tures by integers are generally attributed to Kurt Gödel in the case of formal logic and
to Alan Turing in the case of digital computation.

Let’s begin to flesh out the promises of the preceding paragraphs by developing
the machinery for encodings and proofs of nonencodability and by developing the
implications of these results.



Chapter 7
Countability and Uncountability: The Precursors
of “Encoding”

The theory of countability (and uncountability) began with Georg Cantor’s deliber-
ations on the nature of infinity [10]. Cantor concentrated on questions that can be
framed intuitively as follows: Are there “more” rational numbers than integers? Are
there “more” real numbers than integers? (Note that we need to put “more” in quotes,
because all three sets, the integers, the rational numbers, and the real numbers, are
infinite—so what does “more” mean?)

Let us digress a bit so that we can appreciate these questions.

From one perspective, one might intuit that there are “more” rationals than integers and
“more” reals than rationals. Here is the evidence for this position. There are only finitely
many integers between every two integers; there are infinitely many rational numbers be-
tween every two integers; there are infinitely many real numbers between every two rational
numbers.

There is some counter-evidence, though. First, consider the integers and the rational num-
bers. Since every rational number is a quotient of two integers, there do not seem to be “so
many” more rational numbers than integers; indeed, there are certainly no more rational num-
bers than ordered pairs of integers! With this insight, one can start “playing around” with the
integer-pair coordinates that name the so-called integer lattice points in the two-dimensional
plane (which, we have just noted, subsume the rational numbers). By such “playing around,”
we find linear listings of the integer lattice points that make it plausible that there are “equally
many” integers and rational numbers. One linear listing that is particularly pleasing aesthet-
ically is given by the function (7.3) that we shall study a bit in Chapter 8. Second, consider
the rational numbers and the real numbers. Our earlier argument about infinitely many real
numbers between every two rational numbers is clearly flawed—for there also are infinitely
many rational numbers between every two real numbers. Hence, this “density” argument
clearly tells us nothing definitive about the rationals vs. the reals. Indeed, we shall see that
the argument tells us nothing useful even about the rationals and the integers!

Since we are concerned with the set of computable functions rather than any set of
numbers, we actually develop technically simpler analogues of these questions. But
the tools that we develop here—which are, essentially, the ones that Cantor used
to answer his questions—can be adapted in very simple ways to answer Cantor’s
questions directly.

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 113
DOI 10.1007/978-0-387-09639-1 7, c© Springer Science+Business Media, LLC 2010
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In order to start thinking about Cantor’s questions, we must find a formal, precise
way to talk about one infinite set’s having “more” elements than another. We would
like this way to be an extension of how we make this comparison with finite sets. In
other words, if we apply this mechanism to a pair of sets, one infinite and the other
finite, then we demand that the mechanism tell us that the infinite set has “more”
elements than the finite set; and if we apply this mechanism to a pair of finite sets,
then we demand that it tell us that the bigger set has “more” elements than the smaller.
Here is the simple mechanism that Cantor devised and that we use.

Let A and B be (possibly infinite) sets. We write

|A| ≤ |B| (7.1)

just when there is an injection

f : A
1-1−→ B

that maps A one-to-one into B.

When A is a finite set, expression (7.1) as we have defined it means: set A has no more
elements than does set B. It is important not to read the assertion that way when A is infinite,
since “more” is not defined in that case. In fact, since we nowhere define the “cardinality”
of an infinite set A—we don’t need such a definition for our purposes in this chapter—one
should not read “|A|” as “the cardinality of A” (even though that is how it can be read when A
is finite), nor should one read (7.1) as asserting something like “the cardinality of A does not
exceed the cardinality of B” (again, even though a reading of that sort is fine when A is finite).
Because of the danger of thinking about infinite sets in terms that really apply only to finite
sets, and thereby generating fallacies, I always strongly recommend that my students view
the string of symbols (7.1) as a sentence that should be read silently and nonverbally, but that
should not be verbalized, particularly not using the finitistic words we are all accustomed to.
(You can always create your own name for |A| and then read (7.1) as loud as you want—but
you’d better give your audience access to your expanded lexicon.)

Is the preceding formal definition an extension of the familiar relation≤ on the cardi-
nalities of finite sets? The hallmark of an injection such as f is that given any b ∈ B,
there is at most one a∈A such that f (a) = b. This means, whenever set A is finite, that
set B has at least as many elements as A does. Thus, we do, indeed, have an extension
of the finite situation.

Of course, the preceding formal definition, being precise, would make sense even if it did
not provide the desired extension of the finite situation. Therefore, we could just take the
definition as written and start to study it mathematically: the resulting theorems would, in-
deed, be theorems. They would just not be as impressive an accomplishment as Cantor in fact
achieved—for his definition in fact put infinite sets on an equal footing with finite sets, at
least with regard to questions about the relative “sizes” of sets.

When
|A| ≤ |B| and |B| ≤ |A|,

we write
|A| = |B|. (7.2)



7 Countability and Uncountability: The Precursors of “Encoding” 115

Since we have still not defined the notation |A| for arbitrary sets, the assertion in (7.2) is
another one that should be read nonverbally.

By arguing about composition of injections, the reader should prove the follow-
ing fundamental results about the relations in (7.1) and (7.2). The importance of
Lemma 7.1 is that it shows that Cantor’s extensions of the relations ≤ and = from
the domain of (the cardinalities of) finite sets to that of infinite sets obey the rules
that allow one to infer the existence of certain important relations from the existence
of others. As one important example (you can supply others), if for given sets A, B,
and C, we have both |A| ≤ |B| and |B| ≤ |C|, then we know by Lemma 7.1(a) that
|A| ≤ |C|.
Lemma 7.1. (a) The relation “≤” of (7.1) is reflexive and transitive.
(b) The relation “=” of (7.2) is an equivalence relation.

We single out the important case B = N. When

|A| ≤ |N|

we say that the set A is countable. When

|A| = |N|

we say that the set A is countably infinite.
The following important result of Ernst Schröder [95, 96] and Felix Bernstein [4]

plays a crucial role in the study of countability and related topics (such as encodings).

Theorem 7.1. (The Schröder–Bernstein theorem) If |A|= |B|, then there is a bijec-
tion, i.e., one-to-one, onto function,

f : A
1-1,onto−→ B.

The Schröder–Bernstein theorem is quite easy to prove for finite sets but is de-
cidedly nontrivial for infinite ones. (See an algebra text such as [5] for the theorem’s
proof, which is beyond the scope of this book.)

In deference to our intended use of the bijections promised by Theorem 7.1, we
henceforth view these functions as encoding (elements of) set A as (elements of) set
B, rather than just mapping (elements of) set A to (elements of) set B. While this is
more a change of viewpoint than of substance, it may help you to start thinking in a
computation-theoretic way. In order to emphasize the proposed change of viewpoint,
we henceforth call such functions encoding functions.



116 7 Countability and Uncountability: The Precursors of “Encoding”

7.1 Encoding Functions and Proofs of Countability

This section is devoted to establishing the countability of a variety of infinite sets
that we shall use repeatedly as we develop the material related to the “pillar” topic
ENCODING.

Theorem 7.2. The following sets are countable:

1. Σ �, for any finite set Σ .
2. The set of all finite subsets of N.
3. N

�. Note that this set includes all sets N×N×N×·· ·×N, where the product is
performed any finite number of times.

We focus on each of the theorem’s three sets in the next three lemmas.

Lemma 7.2. The set Σ � is countable for any finite set Σ .

Proof. For our purposes, Σ � is the most important of the theorem’s three sets to prove
countable, because every program in any programming language is a finite string
over some finite alphabet. Because a function must be programmable in order to be
computable, we shall, therefore, have the following important corollary to our proof.

Corollary 7.1 The set of computable functions is countable.

Focus on a finite set Σ = {σ1,σ2, . . . ,σn}. The easiest way to prove the countability
of Σ � is to interpret every string over Σ as a base-(n+1) numeral, where n = |Σ |.

We use n + 1, rather than n, as the base in order to avoid the vexatious problem of leading
0’s. We would like every string, viewed as a numeral, to represent a distinct integer. Leading
0’s prevent this, as one can see from the fact that the distinct numerals 1, 01, 001, and so on,
all denote the integer “one.” So, we sneak around this annoying but insubstantial problem by
having our encoding function avoid leading 0’s.

To implement our proof strategy, consider the function

fΣ : Σ � −→ N

that is defined as follows. Order the elements of Σ in any way, so that we can refer
unambiguously to the “kth” element of Σ . Associate each σ ∈ Σ with the integer
assigned via this ordering; denote this integer by |σ |. For instance, if σ is the “kth”
element of Σ , then we denote this fact by the notation |σ |= k. Then define the value
of fΣ on each string σimσim−1 · · ·σi1 ∈ Σ � as follows:

fΣ (σimσim−1 · · ·σi1)
def=

m

∑
j=1
|σi j |(n+1) j−1.
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Because every numeral that contains no 0’s specifies a unique integer in any “–ary”
positional number system (binary, ternary, octal, decimal, etc.), the function fΣ is
one-to-one; hence fΣ witnesses the countability of Σ �. ��

An aside. Although we all “grew up” using “–ary” positional number systems, there are
alternative systems that are interesting in various contexts. One example is the “–adic” family
of positional number systems. Just as each “–ary” system has a name derived from Latin,
each “–adic” system has a name derived from Greek (“dyadic” instead of “binary” for base-
2, “triadic” instead of “ternary” for base-3, and so on.) Focus on base-2 for definiteness;
higher bases behave analogously. The base-2 numeral

β def= βnβn−1 · · ·β1β0

(each βi ∈ {0,1}) represents the integer

f (binary)(β ) =
n

∑
i=0

βi ·2i

in the binary system, and it represents the integer

f (dyadic)(β ) =
n

∑
i=0

(βi +1) ·2i

in the dyadic system. A nice feature of the dyadic system is that every numeral represents a
distinct number. This yields an even simpler proof of the countability of Σ � for any finite Σ .
An inconvenience of the dyadic system is that it has no numeral for the number 0.

Lemma 7.3. The set of all finite subsets of N is countable.

Proof. We build on the just-established countability of all sets Σ � to prove that the set
of all finite subsets of N is countable. Technically, we use a mapping-based technique
called reducing one problem to another, which is exceedingly important in all of
mathematics, and is particularly central to the theories of both computability and
computational complexity. Specifically, we now reduce the problem of establishing
the countability of the set of finite subsets of N to the problem of establishing the
countability of Σ �. We begin by recalling the following notion from Chapter 2.

The characteristic vector, β (S), of a finite set S⊂N is the following binary string,
whose length is 1 greater than the maximum integer in S, call this integer max(S):

β (S) def= δ0δ1 · · ·δmax(S),

where for each i ∈ [0, max(S)],

δi =
{

1 if i ∈ S,
0 if i �∈ S.

We thus see that characteristic vectors afford us an injection

g : [Finite subsets of N] 1-1−→ {0,1}�.
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It follows by the definition of the unpronounceable sentence (7.1) that

|Finite subsets of N| ≤ |{0,1}�|.

Because we already know that the set {0,1}� is countable, and because the relation
“≤” is transitive (Lemma 7.1), we conclude that the set of finite subsets of N is count-
able. ��
Lemma 7.4. The set N

� of all finite integer sequences is countable.

Proof. The ploy of encoding the objects of interest as numerals will not work here,
because there is no natural candidate for the base of the number systems; no finite
base will work in a straightforward way. Therefore, we call in two pieces of heavier
mathematical machinery to accomplish our task.1 The first piece of machinery is
the following theorem, which is traditionally attributed to the Greek mathematician
Euclid.

Theorem 7.3. (Euclid’s theorem on primes) There are infinitely many primes.

Euclid’s theorem on primes can be proved by showing that any finite set of primes
{p1, p2, . . . , pn} is inadequate to provide a prime factorization for the positive integer
1+∏n

i=1 pi. We leave the completion of the proof to the reader.
The second piece of mathematical machinery is the fundamental theorem of arith-

metic, which is sometimes called the prime-factorization theorem.

Theorem 7.4. (The fundamental theorem of arithmetic) Every integer n > 1 can
be represented as a product of primes in one and only one way, up to the order of the
primes in the product.

We use the preceding two theorems to establish the injectivity of a specific function
h : N

� → N; this injectivity verifies the countability of N
�. We define the function h

as follows. For any finite sequence m1,m2, . . . ,mk, of nonnegative integers,

h(m1,m2, . . . ,mk) =
k

∏
i=1

pmi
i ,

where for each i ∈ [1,k], pi is the ith smallest prime. By the fundamental theorem
of arithmetic, the function h assigns a unique integer to each sequence of integers
m1,m2, . . . ,mk; hence h is an injection of N

� into N, whence the former set is count-
able. ��

In addition to meeting our primary goal, namely, establishing the countability of
N

�, the function h can clearly be used to establish the countability of each finite cross
product N×N×·· ·×N. For instance, when we restrict h to the set of ordered pairs
N×N, we obtain the injection

1 As with other mathematical tools, we do not prove these results here; see, e.g., [5].
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h(m1,m2) = 2m1 ·3m2

that maps N×N one-to-one into N; and when we restrict h to the set of ordered triples
N×N×N, we obtain the injection

h(m1,m2,m3) = 2m1 ·3m2 ·5m3

that maps N×N×N one-to-one into N. However, there is something unaesthetic
about using the function h for these finite cross products, namely, the sparseness of
the set of integers that occur as images of h’s argument vectors of integers. When
we use h to encode ordered pairs of integers as integers, for instance, we use just 2
and 3, among the infinitude of available primes, to build the image integers—thereby
“wasting” all the rest of the primes. There must be better encoding functions for these
finite cross products! And indeed there are.

Of course, all of the finite cross products N×N×·· ·×N are infinite sets. By the
Schröder–Bernstein theorem, therefore, there exist bijections

f2 : N×N
1-1,onto−→ N

f3 : N×N×N
1-1,onto−→ N

...

Of course, being bijections, each of these functions employs all of the integers as
images. In fact, in the case of these special sets, the bijections advertised by the
Schröder–Bernstein theorem actually have simple forms. We now present one such
bijection for N×N, just to indicate its charming form. One can easily build the fol-
lowing “pairing” function D (in several ways) into a “tripling” function and a “qua-
drupling” function, and so on.

D(x,y) =
(

x+ y+1
2

)

+ y =
1
2
(x+ y)(x+ y+1)+ y. (7.3)

(Clearly, there is a twin of D that interchanges x and y.)

The bijection D is usually attributed to Cantor in work from the last quarter of the nineteenth
century [10], but there is evidence that it was known already to Augustin Cauchy in the first
quarter of that century [11].

We have dubbed the “pairing” function D of (7.3) the diagonal pairing function
(whence its name “D”) for the following reason. If we illustrate N×N as follows,

(0,0) (0,1) (0,2) (0,3) (0,4) · · ·
(1,0) (1,1) (1,2) (1,3) (1,4) · · ·
(2,0) (2,1) (2,2) (2,3) (2,4) · · ·
(3,0) (3,1) (3,2) (3,3) (3,4) · · ·
(4,0) (4,1) (4,2) (4,3) (4,4) · · ·

...
...

...
...

...
. . .



120 7 Countability and Uncountability: The Precursors of “Encoding”

then the action of the bijection D can be seen in the following illustration, where each
position (x,y) contains D(x,y), and where the “diagonal” x+ y = 4 is highlighted:

0 2 5 9 14 20 27 35 · · ·
1 4 8 13 19 26 34 43 · · ·
3 7 12 18 25 33 42 52 · · ·
6 11 17 25 33 42 52 63 · · ·

10 16 23 31 40 50 61 73 · · ·
15 22 30 39 49 60 72 85 · · ·
21 29 38 48 59 71 84 98 · · ·
28 37 47 58 70 83 97 112 · · ·

...
...

...
...

...
...

...
...

. . .

The preceding illustration lends us the intuition to prove that d is, indeed, a bijection.
To wit:

• Along each “diagonal” of N×N—which corresponds to a fixed value of x+y—the
value of D(x,y) increases by 1 as x decreases (by 1) and y increases (by 1).

• As we leave diagonal x + y—at node (0,x + y)—and enter diagonal x + y + 1—at
node (x+ y+1,0)—the value of D(x,y) increases by 1, because

D(x+ y+1,0) =
(

x+ y+2
2

)

=
(x+ y+1)(x+ y+2)

2

=
(x+ y)(x+ y+1)+2(x+ y+1)

2

=
(x+ y)(x+ y+1)

2
+(x+ y)+1

=
(

x+ y+1
2

)

+(x+ y)+1

= D(0,x+ y)+1.

Note that the various injections that we have used to prove the countability of
sets—numeral evaluation in an “–ary” number system, encodings via powers of
primes, the Cauchy–Cantor polynomial—are eminently computable. The importance
of this fact is that we can use the functions as encoding mechanisms. In other words:

We can now formally and rigorously encode “everything”—programs, data structures, data—
as strings (say, for definiteness, binary strings) or as integers.

On the one hand, this gives us tremendous power, by “flattening” out our universe
of discourse; henceforth, we can discuss only functions from N to N, without losing
any generality. On the other hand, we must be very careful from now on, because
as we apparently discuss and manipulate integers, we are also—via the appropriate
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encodings—discussing and manipulating programs and computations, etc. We shall
see before long the far-reaching implications of this new power.

A brief survey of surprising uses of encoding functions (using their old name,
“pairing functions”) can be found in Chapter 8.

7.2 Diagonalization: Proofs of Uncountability

Just as the major ideas underlying proofs of countability/encodability had their seeds
in the work of G. Cantor, so also do the major ideas underlying proofs of uncountabil-
ity/unencodability. This section is devoted to developing a proof technique called di-
agonalization (or more fully, Cantor’s diagonalization argument), that is the primary
tool for almost all of the negative proofs regarding countability and encodability in (at
least the introductory parts of) the theories of computability and computational com-
plexity. Cantor developed his diagonalization argument to prove that certain sets—
notably, the real numbers—are not countable. Our interest in the argument stems
from its usefulness in establishing the noncomputability of certain functions and/or
the existence of functions whose computational complexity exceeds certain limits. (A
function’s complexity can be measured, e.g., in terms of the time requirements of any
program that computes the function or of the memory requirements of any such pro-
gram.) The latter, complexity-theoretic, role of diagonalization is hard to talk about
until we establish a framework for studying the complexity of computation; in con-
trast, we shall have our first negative computability-theoretic result by the end of this
section!

Theorem 7.5. The following sets are not countable (or, equivalently, are uncount-
able):

1. the set of functions { f : N−→ {0,1}};
2. the set of all subsets of N;
3. the set of (countably) infinite binary strings.
4. the set of functions { f : N−→ N};
Proof. Once we establish the uncountability of the set of binary-valued functions—
i.e., the set { f : N−→ {0,1}}—we can immediately infer the uncountability of the
set of integer-valued functions—i.e., the set { f : N−→ N}—for the former set can
be mapped into the latter via the identity function, which is clearly an injection. (You
should carefully verify this consequence of the transitivity of “≤” [as exposed in
Lemma 7.1].) We therefore leave assertion 4 of the theorem to the reader.

Somewhat surprisingly, we can attack the other three parts of the theorem, namely,
assertions 1, 2, and 3, in tandem. This is because we can encode/represent any of the
three sets in question as any of the others! In some sense, the three sets are just dif-
ferent interpretations of a single set. Let’s consider in detail why the highlighted sen-
tence is true, because the ability to represent/view one type of object as an ostensibly
quite distinct other type is central to the “pillar” topic ENCODING.
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The basic observation underlying our identification of the sets in assertions 1–3 of
Theorem 7.5 is that one can represent either of the following objects,

• any subset of N,
• any function f : N−→ {0,1},
as a unique (countably) infinite binary string.

To establish the preceding claim, focus first on a fixed, but arbitrary, set A⊆N. (A
can be as small as the empty set /0 or as big as N; it can be finite or infinite.) We can
represent the set A by its characteristic vector (as defined in Chapter 2). Because each
subset of N is represented thereby by a unique countably infinite binary string, and
each countably infinite binary string represents a unique subset of N, we thus have

|{subsets of N}| = |{countably infinite binary strings}| . (7.4)

Focus next on a fixed, but arbitrary, function f : N −→ {0,1}. One can represent
the function f by the unique countably infinite binary string comprising the sequence
of values of f on successive integers, namely, the string

f (0) f (1) f (2) · · ·

whose kth bit-value is f (k). Because each function f : N −→ {0,1} is represented
thereby by a unique countably infinite binary string, and each countably infinite bi-
nary string represents a unique binary-valued function, we thus have

|{ f : N−→ {0,1}}| = |{countably infinite binary strings}| . (7.5)

In the presence of (7.4) and (7.5), Lemma 7.1 assures us that the uncountability
of any of the sets in assertions 1–3 of Theorem 7.5 implies the uncountability of all
three sets. So, let us concentrate on the set B of (countably) infinite binary strings
and prove that B is uncountable. The proof is by contradiction.

Assume, for contradiction, that the set B is countable, so that |B| ≤ |N|.
We note first that |N| ≤ |B|, because B is an infinite set. To see this, just focus on

the subset of B that comprises the infinite characteristic vectors of the singleton sets
{{k} | k ∈ N

}

. The infinite characteristic vector of each such set, {m}, is the infinite
binary string that consists of all 0’s, except for precisely one 1, in bit-position m.

Combining the preceding proof that |N| ≤ |B| with the assumed fact that |B| ≤
|N|, we have |B|= |N|.

Worded in a way that might be clearer to some readers: Given our proof that |N| ≤ |B|, if it
were true that |B| ≤ |N|, then we would have |B|= |N|. Therefore, assuming that |B| ≤ |N|
is equivalent to assuming that |B|= |N|.

By the Schröder–Bernstein theorem (Theorem 7.1), there therefore exists a bijection

h : B
1-1,onto−→ N.

It is not hard to view the bijection h as producing an “infinite-by-infinite” binary
matrix Δ , whose kth row is the infinite binary string h−1(k). Let’s visualize Δ :
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Δ =

δ0,0 δ0,1 δ0,2 δ0,3 δ0,4 · · ·
δ1,0 δ1,1 δ1,2 δ1,3 δ1,4 · · ·
δ2,0 δ2,1 δ2,2 δ2,3 δ2,4 · · ·
δ3,0 δ3,1 δ3,2 δ3,3 δ3,4 · · ·
δ4,0 δ4,1 δ4,2 δ4,3 δ4,4 · · ·

...
...

...
...

...
. . .

Now let us construct the following infinite binary string:

Ψ = ψ0 ψ1 ψ2 ψ3 ψ4 · · · ,

by setting, for each index i,

ψi = δ i,i = 1−δi,i.

The term “diagonal argument” for this proof stems from the fact that we create the new string
Ψ by making changes to the diagonal elements of the matrix Δ .

Note that the new string, Ψ , clearly does not occur as a row of matrix Δ . This is
because Ψ differs from each row of Δ in at least one position. Specifically, for each
index i,Ψ differs from row i of Δ at least in position i: ψi �= δi,i. But if the binary string
Ψ does not occur as a row of matrix Δ , then Δ does not contain every infinite binary
string as one of its rows—which contradicts Δ ’s assumed defining characteristic!

Where could we have gone wrong? Every step of our argument, save one, is backed
up by a theorem—so the one step that is not so bolstered must be the link that has
broken. This one unsubstantiated step is our assumption that the set B is countable.
Since this assumption has led us to a contradiction, we must conclude that the set B
is not countable!

We thus have the uncountability of the four sets enumerated in Theorem 7.5, which
completes the proof of the theorem. ��

7.3 Where Has (Un)countability Led Us?

For the purposes of our developing the highlights of computation theory, the most
important consequence of our work in this section is the following.

Corollary 7.2 Because the set of (0-1 valued) integer functions is uncountable, while
the set of programs is countable, there must exist noncomputable (0-1 valued) integer
functions.

As we promised in Section 5.3, we now urge the reader to return to Lemma 5.3 in
that section. You now have ample background to understand that result’s proof!





Chapter 8
Enrichment Topic: “Efficient” Pairing Functions,
with Applications

—Entia non sunt multiplicanda praeter necessitatem.
(Occam’s razor, William of Occam)

We have already seen the preceding admonition by William of Occam (fourteenthth
century), in Section 6.1.2. The principle that underlies the admonition—always to
strive for simplicity—is particularly worth heeding when one seeks mathematical
models of computational phenomena, for it is always tempting to embellish one’s
models with “real” features of the phenomenon or structure being modeled.

The (mathematical) success of models such as the Turing machine testifies eloquently to how
far a truly bare-bones model can take you, even when studying sophisticated notions such as
computation; cf. [104] and Section 3.3.

Within the spirit of Occam’s razor, this chapter provides a (very) short guided tour
through the world of pairing functions—bijections between N

+×N
+ and N

+—as
tools for reducing the representational complexity of complex computational “situa-
tions.” In a word, pairing functions allow one to represent families of structures that
seem inherently to have multidimensional structure as sets of integers. We illustrate
the benefits that can accrue from such simplification via two examples:

1. It is not clear how to devise efficient mappings into computer memory (or com-
puter storage) for multidimensional arrays/tables that can change their shapes
dynamically, i.e., at run time. Focus, for instance, on an extendible 2n× n table
(whch could represent a relation in a database). Say that one wanted to add a
row to the table in the course of a calculation. (Many programming languages al-
low such dynamic changes to the dimensions of multidimensional arrays/tables.)
How should this change in the “logical” table be accommodated in its “physi-
cal” storage layout? A naive approach would relocate/remap the entire new ta-
ble, but this option—which is the one adopted by many programming-language
implementations—would force one to remap roughly n2n table entries in order
to accommodate a change to only n entries! What is the alternative? Section 8.3
is devoted to a sophisticated approach to storage mappings that is based on the
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use of pairing functions and that obviates reallocating any already-stored table
entries.

2. The Internet has given rise to new modalities of computing wherein the owners
of computers “volunteer” their computing resources to others, for reasons ranging
from curiosity to charity to the hope of compensatory computing support; exam-
ples appear in [8, 16, 54], among other sources. One hallmark of many of these
Internet-based computing projects is that the participants are unknown to one an-
other, hence untrusted. Indeed, David Anderson, the director of the well-known
SETI@home project [54] has been reported as saying:

“Fifty percent of the project’s resources have been spent dealing with security problems
. . . the really hard part has to do with verifying computational results.” The report said
that Anderson went on to elaborate: “Seti@home software had been hacked – some were
malicious, others not – to make it run faster, to spoof positive results and to make it look
[as if] more work had been performed to improve leader board rankings.”

http://www.wired.com/news/technology

Given a project with such experiences, one could imagine a desire to keep track of
which “volunteers” produced which results, so that one could ban repeat offenders
from subsequent participation in the project. Putting aside thorny issues such as
how to reliably identify “volunteers” (IP addresses can easily be spoofed), one is
left with the challenge of efficiently associating “volunteers” with the results they
have produced. In Section 8.4, we somewhat simplify this accountability problem,
by using pairing functions to translate the (volunteer, result-index) ordered pairs
to single indices.

Of course, we are not going to abandon the reader with just a couple of proposed
uses for pairing functions in modern computing settings. We shall, in fact, embellish
these proposals with discussions of how to craft pairing functions that are particu-
larly appropriate—mostly in terms of some notion of efficiency—for the proposed
application area. We shall further augment these “applied” enrichment topics with
one “pure” one: a short discussion of the computationally simplest pairing functions,
the Cauchy–Cantor “diagonal” polynomials that we introduced in Section 7.1, via the
specification (7.3).

8.1 Background

Because we shall be using the phrase “pairing function” so often in this chapter, we
shall henceforth abbreviate the phrase—just for this chapter—by “PF.”

As we have described earlier, PFs have played a major role in a variety of studies
that are “classical” within the context of computation theory. They played a pivotal
role in Cantor’s seminal study of infinities [10], supplying a rigorous formal basis
for asserting the counterintuitive “equinumerousness” of the integers and the ratio-
nals. It took revolutionary thinkers such as Gödel and Turing to recognize that the
correspondences embodied by PFs can be viewed as encodings, or translations, of
ordered pairs (and thence of arbitrary finite tuples or strings) as integers. This insight
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allowed Gödel and Turing to build on the existence of studies of, respectively, logical
systems [30] and eminently computable—indeed, easily computed—PFs in their fa-
mous algorithmic systems [104]. The uses we propose for PFs in this chapter, while
certainly less profound than those of Gödel and Turing, also build on the insight that
PFs can be used as encoding mechanisms, specifically allowing one to slip gracefully,
yet formally, among the worlds of strings, integers, and tuples of integers.

Throughout the chapter, we illustrate selected values from selected PFs using the
following convention. We illustrate a PF F : N

+×N
+ ↔ N

+ via a two-dimensional
array whose entries are the values of F as described in Figure 8.1.

F (1,1) F (1,2) F (1,3) F (1,4) F (1,5) · · ·
F (2,1) F (2,2) F (2,3) F (2,4) F (2,5) · · ·
F (3,1) F (3,2) F (3,3) F (3,4) F (3,5) · · ·
F (4,1) F (4,2) F (4,3) F (4,4) F (4,5) · · ·
F (5,1) F (5,2) F (5,3) F (5,4) F (5,5) · · ·

...
...

...
...

...
. . .

Fig. 8.1 Our generic template for sampling from a PF.

8.2 The Prettiest Pairing Function(s)

8.2.1 The Diagonal PF D(x,y)

As we noted early in Chapter 7, it is not a priori obvious that there exist bijections
between N

+×N
+ and N

+. A reading of Cauchy’s major tome [11] makes it likely
that such bijections have been known to exist for (at least) close to two centuries.

The uncertainty results from the fact that Cauchy describes a bijection—indeed, the one spec-
ified in (8.1)—only pictorially, without an accompanying analysis of bijectivity.

Indeed, it has been known for at least 125 years that there exist such bijections that
are polynomials! Specifically, in [10], Cantor shows that the following function from
N

+×N
+ to N

+ is a bijection.

D(x,y) =
(

x+ y−1
2

)

+ y. (8.1)

(Of course, the bijection D has a bijective twin that is obtained by exchanging x and
y in (8.1).) If one observes how the function D “labels” the two-dimensional integer
lattice points with integers—as we begin to do in Figure 8.2—then one sees why we
call D the diagonal-shell PF.

One proves that the function D is really a bijection between N
+×N

+ and N
+

via a simple double induction that specifies in detail how D labels the integer lattice
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1 3 6 10 15 21 28 36 · · ·
2 5 9 14 20 27 35 44 · · ·
4 8 13 19 26 34 43 53 · · ·
7 12 18 25 33 42 52 63 · · ·
11 17 24 32 41 51 62 74 · · ·
16 23 31 40 50 61 73 86 · · ·
22 30 39 49 60 72 85 99 · · ·
29 38 48 59 71 84 98 113 · · ·
...

...
...

...
...

...
...

...
. . .

Fig. 8.2 The diagonal-shell PF D . The shell x+ y = 6 is highlighted.

points. (We provided the calculations for this argument in Section 7.1.) Specifically,
D assigns integers to the lattice points in an “upward direction” along the successive
“diagonal shells,” x+y = 2, x+y = 3, x+y = 4, . . . . One induction establishes that
all of the integer labels assigned to the lattice points of the diagonal shell x+y = c are
smaller than the labels assigned to the lattice points of every diagonal shell x+y < c.
In other words,

D(x,y) < D(x′,y′)

whenever x + y < x′+ y′. The second induction establishes that the label assigned to
the topmost lattice point in the diagonal shell x + y = c is precisely 1 less than the
bottommost lattice point in the diagonal shell x+ y = c+1; i.e.,

D(x+ y+1,1) = 1+D(1,x+ y).

The preceding two assertions are clearly adequate to prove that D is, indeed, a bijec-
tion.

One finds in [23] a proof of D’s bijectivity that is computationally more detailed
than ours, in that it develops an explicit recipe for computing D’s inverse functions.

Note the plural form of the phrase “inverse function” here. D maps a pair of integers, (m,n),
to a single integer, p; therefore, D needs a “left” inverse function that maps p to m, and a
“right” inverse function that maps p to n.

For the interested reader, we present the explicit recipe from [23] for computing D’s
inverse functions. Let us denote by � the operation of positive subtraction, which is
defined as follows. For all real numbers x and y,

x� y =
{

x− y if x≥ y,
0 if x < y.

To obtain D’s inverse functions, define, for any integer n ∈ N
+,

Φ(n) =
⌊

1
2 (�√8n+1�)⌋ � 1,

Ψ(n) = 2n � (Φ(n))2.
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It is shown in [23] that for all x,y ∈ N
+,

x = � 1
2 (Ψ(D(x,y)) � Φ(D(x,y)))�,

y = Φ(D(x,y)) � � 1
2 (Ψ(D(x,y)) � Φ(D(x,y)))�.

We do not present the proof from [23] because—in contrast to our less-detailed proof,
whose skeleton we shall use to validate several alleged PFs in coming sections—
the proof [23] is tightly coupled to the function D , hence provides little insight for
other PFs.

8.2.2 Is D(x,y) the Only Polynomial PF?

The diagonal-shell PF D attests to the existence of PFs that are conceptually and
computationally simple. This is very satisfying to us as computation theorists. But
D attests also to the existence of PFs that are low-degree polynomials—arguably as
computationally simple and well structured as a function can get! This is enough
to increase a mathematician’s heart rate! Invariably, encountering such a pleasant
surprise—a low-degree polynomial PF—leads a mathematically inclined person to
question D’s uniqueness, or lack thereof—as a polynomial PF: Are there others?
In order to to avoid trivial answers to this question (in either direction), we must
eliminate D’s twin from contention. We therefore refine the question of D’s unique-
ness by considering as identical any two PFs that differ only in the interchange of
x and y.

Its apparent simplicity notwithstanding, the question of D’s uniqueness as a poly-
nomial PF remains largely open. There are a few nontrivial beginnings to an answer,
which we enumerate now.

1. There is no quadratic polynomial PF other than D (and its twin) [27].
2. The preceding assertion remains true if the “onto” condition for bijections is re-

placed by a “unit density” condition [57].
3. No cubic or quartic polynomial is a PF [58].
4. The development in [58] excludes large classes of higher-degree polynomials from

being PFs. One simple example: a superquadratic polynomial whose coefficients
are all positive cannot be a PF.

The mathematics underlying these results is beyond the scope of this book, com-
bining elements of geometric number theory with nonstandard Diophantine analysis.

Diophantine analysis—named in honor of the Greek number theorist Diophantus who lived
roughly 1700 years ago—focuses on a variety of questions concerning integer solutions to
polynomial equations, typically of the form

• Do polynomial equations of such and such a type admit any integer solution?

• Do polynomial equations of such and such a type admit infinitely many integer solutions?
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The questions needed to address the uniqueness question for the function D have the form

• Do polynomial equations of such and such a type admit a unique integer solution?

“Standard” Diophantine analysis does not address questions of uniqueness.

The proofs of the cited results focus on two types of situations: those in which a func-
tion F (x,y) in a given class (a) grows too slowly with its arguments, hence cannot be
injective (one-to-one), or (b) grows too fast with its arguments, hence cannot be sur-
jective (onto). For instance, one simple result from [58] shows that a superquadratic
polynomial F : N

+×N
+→ N

+ whose coefficients are all positive cannot be surjec-
tive. To wit, the number of two-dimensional integer lattice points within distance d
of the origin grows quadratically with d (because of the two-dimensionality). Conse-
quently, F ’s superquadratic growth must leave large gaps in its range, so it cannot be
onto. The complication in extending this result to broader classes of superquadratic
polynomials is that one must show that F ’s lower-degree negative terms do not lead
to large “troughs” that capture all of the integers that its lead terms “jump over.”
The cases that must be eliminated grow quickly in number with the degree of F—
cf. [58]—hence yield a barrier to the ultimate resolution of whether there are any
superquadratic PFs. In principle, this barrier is not impenetrable, but new ideas are
likely needed in order to make further progress on the question.

8.3 Pairing Functions and the Storage of Extendible
Arrays/Tables

It has been recognized since the 1950s (cf. [17, 29, 45]) that many classes of compu-
tations, arising in applications as diverse as linear-algebraic scientific computations
(e.g., linear system solvers [29]) and relational databases [17], can be expressed most
naturally with data organized in multidimensional arrays and tables. Moreover, many
of these computations benefit—in ease of specification and execution—from the abil-
ity to reshape the arrays and tables dynamically. Relational databases, for instance,
perform complex transactions by combining smaller tables to create bigger ones and
by extracting smaller tables from bigger ones [17]. Scientific packages sometimes
solve big complex computations on multidimensional arrays by building up the ac-
tual arrays of interest from smaller simpler ones [29]. To simplify the exposition, let
us talk henceforth only about arrays, keeping in mind that we can easily adapt what-
ever we say to tables, because the only feature of arrays and tables that is germane
to our discussion is that their positions can be labeled, or indexed, by a contiguous
collection of integer lattice points.

Several programming languages afford a user easy mechanisms for specifying at
least some types of reshapings of arrays—say, the addition and/or deletion of rows
and/or columns in two dimensions. However, the mechanisms that most language
processors use to implement even such simple reshapings are really quite naive: the
processors completely remap an array each time that it is reshaped. This is, of course,
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very wasteful of time, since one does Ω(n2) work to accommodate O(n) changes
to the array. Can one avoid this apparently wasteful remapping? Yes—provided that
one maps arrays to storage using sophisticated mapping mechanisms, instead of the
dimension-order mappings that have been the standard since the 1950s.

Dimension-order mappings operate as follows. Say that one wants to map an m× n array A
onto the linear address space employed by virtually all computers. Since the days of FOR-
TRAN 1, in the 1950s, one employed the row-major mapping function

F (i, j) = A+(i−1)+n · ( j−1),

which stores each array position A(i, j) via an offset from the base address A of the array.
The mapping F works fine as long as the array retains its m×n “shape,” but if one appends
a column to array A, so that it adopts the new shape m× (n+1), then the storage map F no
longer assigns a unique storage slot to each array position; i.e., F is no longer injective on
the set of positions of array A. To wit, we now have F (n+1,1) = n = F (1,2). In order to
accommodate the new column while retaining the row-major regimen, one must replace the
mapping F by the mapping

F ′(i, j) = A+(i−1)+(n+1) · ( j−1),

which requires one to remap virtually the entire array A.

Note that the need to remap A does not occur when we append a new row to A; the mapping F
continues to work in that case. Of course, a column-major mapping function would behave
complementarily to a row-major function: it would gracefully accommodate new columns
but not new rows. Thus, the challenge we focus on in this section arises only when one seeks
storage mappings that accommodate both new rows and new columns.

Note that we are not claiming that the ability to append new rows and columns comes at no
cost! Each evaluation of the mapping function—i.e., each function evaluation F (i, j)—will
be more complex using the strategy we are about to describe. However, in applications that
involve much reshaping and relatively few probes of individual positions—such as relational
databases—our storage mappings could be a good alternative to dimension-order mappings.

Where should one look for the kind of sophisticated storage mechanism that will
avoid expensive remappings? It turns out that PFs can often serve as efficient storage-
mapping functions for two-dimensional rectangular arrays, providing mappings that
allow one to add and/or delete rows and/or columns dynamically, without ever remap-
ping array/table positions that are unaffected by the reshaping. (We restrict our dis-
cussion to two-dimensional arrays to simplify the exposition. Simple techniques will
extend this work to higher fixed dimensionalities.) This section surveys some of the
results from [82, 83] on the use of PFs as storage mappings for extendible arrays.1

8.3.1 Array-Storage Mappings via Pairing Functions

Storing all square arrays extendibly. We begin our study of this topic with an ex-
ample. Say that one is performing a large number of computations that all operate
on square matrices (or tables)—i.e., matrices of dimensions m×m for some positive

1 Our use of the word “extendible” follows [82, 83]; many sources prefer the term “extensible.”
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integer m. Say, moreover, that the computations build successive matrices by append-
ing “shells” of new positions that expand an m×m matrix to an (m+1)×(m+1) ma-
trix, thence to an (m+2)× (m+2) matrix, and so on. It turns out that there is a com-
putationally simple PF—call it A 1,1, for reasons that will become clear eventually—
that can act as a storage mapping for all of the (square) matrices that one will ever
use, and that morphs from being a storage mapping for an m×m matrix to a storage
mapping for an (m+1)×(m+1) matrix without requiring one to remap any positions
of the m×m matrix. This square-shell PF, A 1,1 is specified by the following explicit
expression.

A 1,1(x,y) = m2 +m+ y− x+1,

where m
def= max(x−1,y−1).

(8.2)

As Figure 8.3 indicates, A 1,1 maps integers in a counterclockwise direction along

1 4 9 16 25 36 49 64 · · ·
2 3 8 15 24 35 48 63 · · ·
5 6 7 14 23 34 47 62 · · ·
10 11 12 13 22 33 46 61 · · ·
17 18 19 20 21 32 45 60 · · ·
26 27 28 29 30 31 44 59 · · ·
37 38 39 40 41 42 43 58 · · ·
50 51 52 53 54 55 56 57 · · ·
...

...
...

...
...

...
...

...
. . .

Fig. 8.3 The square-shell PF A 1,1. The shell max(x,y) = 5 is highlighted.

the square shells m = max(x−1,y−1) = 0, m = max(x−1,y−1) = 1, . . . . Having
noticed this pattern, one verifies A 1,1’s bijectivity on N

+×N
+ via a double induction

that mirrors the one we used to validate the bijectivity of the diagonal-shell PF D of
(8.1) and Figure 8.2. (Of course, A 1,1 has a twin that proceeds in a clockwise direction
along the square shells.)
Extendibly storing arrays of any single shape. It turns out that there is nothing
special about diagonal shells or square shells with respect to extendibility: one can
replicate, for shells of any fixed shape, the desirable support for extendibility that is
illustrated in Figures 8.2 and 8.3—though usually not the simplicity of computation.
We now explain and verify the preceding assertion, by providing a systematic process
for constructing PFs that “favor” any given shell structure. We excerpt from [82].

Procedure PF-Constructor(A )
/*Construct a PF A to favor any fixed set of shells*/

1. Partition N
+ ×N

+, the set of potential array positions, into finite sets called
shells. Order the shells linearly in some way. (Many natural shell-partitions carry
a natural order, as the square and diagonal shells suggest.)
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Samples. For each relevant integer c, shell c comprises all pairs 〈x,y〉 such that:

x+ y = c the diagonal shells that define the PF D of (8.1) and Figure 8.2,
max(x,y) = c the square shells that define the PF A 11 of (8.2) and Figure 8.3,
xy = c the hyperbolic shells of (8.5) and Figure 8.6, which play an

important role later in the section.

2. Construct a PF from the shells as follows.

a. Enumerate the array positions shell by shell, honoring the ordering of the
shells.

b. Enumerate each shell in some systematic way, say “by columns.” This means
enumerating the pairs 〈x,y〉 in the shell in increasing order of y and, for pairs
having equal y values, in, say, decreasing order of x. (Increasing order of x
works as well, of course.)

Theorem 8.1 ([82]). Any function A : N
+×N

+↔N
+ that is designed via Procedure

PF-Constructor is a valid PF.

Proof. Step 1 of Procedure PF-Constructor constructs a partial order on N
+×N

+,
in which (a) each set of incomparable elements—called a shell—is finite; (b) there
is a linear order on the shells. Step 2 extends the partial order of Step 1 to a linear
order, by honoring the linear order on the shells and imposing a linear order within
each shell. The function A constructed by the procedure can thus be viewed as an
enumeration of N

+×N
+—which means that A is a PF. ��

Of course, Procedure PF-Constructor does not address the question of how to guar-
antee that the PF A is “efficient.” This question will be our major focus for the re-
mainder of this section, using two important interpretations of “efficient.” Most of
our effort will be devoted to crafting PFs that are compact, in the sense made precise
in Section 8.3.2; the compactness of a PF A is related to the ease of “managing stor-
age” while using A as a storage mapping. We shall devote some attention also to the
computational complexity of a PF A : how easy it is to compute A (x,y). A version
of this latter question will recur in Section 8.4.1.

8.3.2 Pursuing Compact Pairing Functions

When one considers using a PF for mapping arrays/tables into storage, one notes
immediately the poor resulting management of storage. For instance, the diagonal-
shell PF D spreads the n2-position n×n array/table over 2n2 addresses: D(1,1) = 1
and D(n,n) = 2n2; even worse (percentagewise), D spreads the n-position 1× n
array/table over > 1

2 n2 addresses: D(1,1) = 1 and D(1,n) = 1
2 (n2 + n). This loss

of “compactness” is a more serious deficiency than is the loss of the bidirectional
arithmetic progressions enjoyed by the standard row- or column-major indexings
used by most compilers, since the waste of storage plagues one no matter how one
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intends to access the array. It turns out that one can do a lot better than the PF D
in controlling the “spread” of a PF, a measure of how poorly the PF utilizes storage.
Following [82, 83], we seek PFs A that are compact, as measured by small growth
rates of their spread functions

SA (n) def= max{A (x,y) | xy≤ n}. (8.3)

In other words, SA (n) is the largest address that the PF A assigns to any position of
an array that has n or fewer positions.

The next three paragraphs summarize the relevant results from [82, 83].

A. PFs that favor one fixed aspect ratio. Say that one moderates one’s demands
on the PF A by focusing only on its compactness when storing arrays of a single
fixed aspect ratio 〈a,b〉, i.e., arrays whose dimensions have the form ak×bk for some
integer k. In this highly constrained case, one can manage storage perfectly, in the
sense that there exists a PF A a,b such that

SAa,b
(n) def= max{A a,b(x,y) | [x≤ ak] ∧ [y≤ bk]∧ [abk2 ≤ n]} = n. (8.4)

In other words, A a,b maps every position (x,y) of an ak×bk array that has n or fewer
positions to an address ≤ n.

Note that arrays with aspect ratio 〈1,1〉 are square—which is why we assigned the name A 11

to the square-shell PF of (8.2) and Figure 8.3.

It is easy to construct A a,b via the shells specified as follows, with each shell lin-
earized by columns, i.e., enumerated in column-major order.

1. Shell 1 comprises the positions of the a×b array, i.e., the set

{〈x,y〉 | [x≤ a] ∧ [y≤ b]}.

2. Inductively, Shell k + 1 comprises the positions of the a(k + 1)× b(k + 1) array
that are not elements of the ak×bk array, i.e., the set

{〈x,y〉 | [ak < x≤ a(k +1)] ∨ [bk < y≤ b(k +1)]}.

Figure 8.4 depicts an ak× bk array (A in the figure) and Shell k + 1 (the union of B
and C in the figure), which extends A to an a(k + 1)× b(k + 1) array. We leave as
an exercise the verification of each A a,b’s optimal spread on every array of shape
ak×bk.

Although the preceding specification of each A a,b’s layout strategy ignores the
question of how easy it is to compute each address A a,b(x,y), one sees as follows
that this computation is not onerous.

1. A simple computation determines the shell number k + 1 of array-position 〈x,y〉
as the maximum of:

• the smallest k1 such that ak1 < x≤ a(k1 +1),
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1

a(k+1)

ak

b(k+1)bk

A

B

C

Fig. 8.4 An ak×bk array, A, and its extension to an a(k +1)×b(k +1) array via the shell B∪C.

• the smallest k2 such that bk2 < y≤ b(k2 +1).

2. One then notes that Shell k is composed of two disjoint parts, one having dimen-
sions a× bk (this is the subarray B in Figure 8.4), the other having dimensions
a(k+1)×b (this is the subarray C in Figure 8.4). A a,b stores each of these subar-
rays in column-major order.

We can summarize the results of this paragraph as follows.

Lemma 8.1 ([83]). Each PF A a,b has optimal spread, SAa,b
(n) = n, on arrays having

aspect ratio 〈a,b〉.

B. PFs that favor finite sets of aspect ratios. It is not known how to store extendible
arrays whose aspect ratios are not fixed with optimal compactness, but one can retain
“good” compactness, as long as the arrays cannot assume too many potential shapes.
The following procedure from [83] accomplishes this.

Say that one is given any set {A 1,A 2, . . . ,A m} of m PFs. The following
procedure—which is called dovetailing in [83]—crafts a PF A whose compactness
is no worse than m times that of the most compact of the PFs A i; i.e., for all n,

SA (n) ≤ m ·min
i

SAi(n).

Dovetailing is performed in two steps.

1. Alter each A k to be a bijection A
(m)
k between N

+×N
+ and the congruence class

(k−1) mod m, i.e., the set of integers of the form mx + k−1. Specifically, define

A
(m)
k as follows:

A
(m)
k (x,y) = m ·A k(x,y)+ k−1.

2. Define the PF A as follows: for all integer pairs x,y ∈ N
+,

A (x,y) = min
k
{A (m)

k (x,y)}.

Direct calculation now yields the following summarizing result.
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Lemma 8.2 ([83]). The PF A that is created by dovetailing PFs {A 1,A 2, . . . ,A m}
has spread SA (n) ≤ m ·mini SAi(n).

Lemmas 8.1 and 8.2 tell us how to construct a PF A whose compactness degrades
from optimality only via a factor that is the number of array shapes that A must be
prepared to deal with. Specifically, if one wants a PF to be compact on arrays of any
fixed finite set of, say m, aspect ratios 〈a1, b1〉, 〈a2, b2〉, . . . , 〈am, bm〉, then:

1. One uses the procedure that leads to Lemma 8.1 to construct an optimally compact
PF A i for each aspect ratio 〈ai, bi〉.

2. One uses the procedure that leads to Lemma 8.2 to dovetail the m PFs A 1, A 2,
. . . , A m into a PF A a1,b1;a2,b2;...;am,bm that maps every position (x,y) of an array
that has one of the m fixed aspect ratios and that has n or fewer positions to an
address ≤ mn.

C. A PF that minimizes worst-case spread. The shape-based guarantees of para-
graphs A and B do little to minimize spread when used with applications such as
relational databases, wherein one cannot limit a priori the potential shapes of one’s
tables (or arrays). How far can one go toward minimizing spread—i.e., how com-
pact can a PF be—when storing arrays of arbitrary shapes? Recalling that both the
diagonal-shell PF D of (8.1) and Figure 8.2 and the square-shell PF A 11 of (8.2) and
Figure 8.3 have spread Θ(n2) establishes the benchmark that we have to beat. And
beat it we can! One finds in [83] the specification and analysis of a PF H that is
within a constant factor of optimal in its worst-case spread. In detail:

Theorem 8.2 ([83]). (a) There exists a PF H whose spread satisfies

SH (n) = O(n logn).

(b) No PF can beat H ’s level of compactness (in the worst case) by more than a
constant factor.

Proof. In order to develop the intuition necessary to understand where the PF H
“comes from,” we prove part (b) of the theorem before part (a).

(b) We establish this part of the theorem by answering—to within constant
factors—the question, How fast must the spread of a PF A grow, as a function of
n?

We answer this question in stages. We note first that if integer lattice points 〈x,y〉
and 〈x′,y′〉 both reside in the same array that has ≤ n elements, then—because A
maps N

+×N
+ one-to-one onto N

+—we must have

SA (n) ≥ max(A (x,y), A (x′,y′)).

Consequently, if we let Sn denote the set that comprises all integer lattice points that
reside in some array that has ≤ n elements, then no matter how cleverly we craft the
PF A , we must have
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SA (n) = max{A (x,y) | point 〈x,y〉 resides in an array that has ≤ n elements}
≥ |Sn|.

Our original question has now been reduced to the question, How many elements
does the set Sn have, as a function of n?

To answer this question, we must consider when an integer lattice point 〈x,y〉
resides in some array that has≤ n elements. We sneak up on this question by focusing
on the a×b array, where ab≤ n. On the one hand, this array has ab elements; on the
other hand, every element of this array is an integer lattice point 〈x,y〉 for which
x≤ a and y≤ b. Thus, every element of the array has xy≤ ab≤ n. Conversely, every
integer lattice point 〈x,y〉 for which xy ≤ n resides in the x× y array—which has
xy ≤ n elements. In summation: An integer lattice point 〈x,y〉 resides in some array
that has ≤ n elements if and only if xy≤ n.

So, our original question has now been reduced to the question, How many integer
lattice points 〈x,y〉 have xy≤ n?

This question is easy to answer if one looks at it in the right way. Figure 8.5
(generalized to arbitrary n) should help. One sees from the figure that the union of

1

5

51

10

10 15

15

n  

Fig. 8.5 The aggregate set of positions of arrays having ≤ 16 elements.

the elements of all arrays that have ≤ n elements—which is the set Sn—is the set of
integer lattice points that lie under the hyperbola xy = n. This means that

|Sn| =
n

∑
i=1

⌊n
i

⌋

= Θ(n logn).

The preceding summation follows from our discussion of which lattice points appear
in arrays that have≤ n elements; the size of the sum follows most easily via estimating
the sum by the integral n

∫

(1/x)dx, with appropriate limits; cf. [20].
(a) The preceding analysis gives us strong hints for constructing the PF H : one

strives, for each integer n, to conform as closely as possible to the hyperbola xy = n,
which is the curve depicted in Figure 8.5. The figure suggests how to accomplish
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this using a collection of superimposed rectangles; each rectangle is one of the “max-
imal” arrays that has≤ n elements, where “maximal” means that none of these arrays
is a subset of any other array that has ≤ n elements. (Hence, each “maximal” array
contributes at least one new integer lattice point to Sn.) In detail, we construct the PF
H using the shell-based strategy of Procedure PF-Constructor, with shells that ap-
proximate the hyperbolic shape of the curve in Figure 8.5. The resulting hyperbolic
shells are defined as follows: Shell 1 consists of the unique integer lattice point 〈x,y〉
with xy = 1, namely, 〈1,1〉; Shell 2 comprises the two integer lattice points 〈x,y〉 with
xy = 2, namely, 〈1,2〉 and 〈2,1〉; . . . ; Shell 8 comprises the four integer lattice points
〈x,y〉 with xy = 8, namely, 〈1,8〉 and 〈2,4〉; 〈4,2〉 and 〈8,1〉; and so on.

Using Procedure PF-Constructor with these shells, we end up with the following
specification for the hyperbolic-shell PF H . We can easily give a recipe for com-
puting H , with the help of the function δ (n) that specifies the number of distinct
divisors of the integer n ∈ N

+. We find that2

H (x,y) = ∑xy−1
k=1 δ (k) + the position of 〈x,y〉 among

2-part factorizations of xy,
in reverse lexicographic order.

(8.5)

Figure 8.6 depicts a portion of the PF H .

1 3 5 8 10 14 16 · · ·
2 7 13 19 26 34 40 · · ·
4 12 22 33 44 56 69 · · ·
6 18 32 48 64 81 99 · · ·
9 25 43 63 86 108 130 · · ·
11 31 55 80 107 136 165 · · ·
15 39 68 98 129 164 200 · · ·
17 47 79 116 154 193 235 · · ·
...

...
...

...
...

...
...

. . .

Fig. 8.6 The hyperbolic-shell PF H . The shell xy = 6 is highlighted.

The validity of H as a PF follows from Procedure PF-Constructor. The bound on
the spread of H follows from the analysis in part (b) of the proof.

Aside. The work described in this section aims at giving one a broad range of ways of ac-
cessing one’s arrays: by position, by row/column, by block (at varying computational costs).
If one is interested in accessing an extendible array only by position, then one might be well
served by the hashing schemes studied in [88]. Those hashing schemes enjoy the following
resource consumption. When one’s array has at most n elements, then, no matter what the
array’s aspect ratio, the hashing scheme will employ fewer than 2n memory locations and
will allow one to access any position of the array in expected time O(1) and worst-case time
O(log logn).

2 A “2-part factorization” of an integer n is a pair of integers a,b such that ab = n.
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8.4 Pairing Functions and Volunteer Computing

Computing and communication technology have experienced revolutionary advances
over the past decades. Whereas the Internet has historically—its short history has
itself been revolutionary—been mainly a medium for communication and content
delivery, more recent technological advances have given rise to new modalities of
computing, wherein geographically dispersed computers cooperate on massive com-
putations. One of these modalities—often called volunteer computing—is particu-
larly interesting, because the (owners of the) participating computers neither know
nor trust one another. (They do not necessarily distrust one another; they just don’t
trust one another.) A volunteer computing project—one of the earliest and best known
being SETI@home [54]—proceeds roughly as follows.

We employ evocative anthropomorphic terminology in this description, in place of more pre-
cise computer-oriented terminology.

Volunteers—the remote computers—register with a volunteer computing website. Af-
ter having registered, each volunteer visits the website from time to time to receive a
task to compute. Some time after completing its present task, a volunteer returns to
the volunteer computing website in order to transmit the results from that task and to
receive a new task. And the cycle continues.

As discussed in the early paragraphs of this chapter, typical implementations of
volunteer computing projects—which do not require prior vetting before admitting
a volunteer to the “team,” are vulnerable to volunteers returning “false” results, for
one of several possible reasons, including malice, well-intentioned but misguided
“improvement” of program code downloaded from the volunteer computing website,
or incompatibilities among computers’ processors and operating systems. (See the
interview with David Anderson mentioned earlier and the discussion in [102].)

Although the following topic appears to stray from the scope of the book, it points out a
feature of computation theory that is at variance with much of “practical” computing.

As we have discussed repeatedly, computation theory focuses on computations whose argu-
ments and results are integers or finite strings or bit values (“YES” or “NO”). Therefore,
the theory never has to deal with values that are “equal within a tolerance”: values are ei-
ther equal or not. In contrast, floating-point computations on real computers are sensitive
to the just-mentioned incompatibilities, which lead to myriad practical problems, including
the vetting of volunteers’ results in volunteer computing. This is why we put quotes around
the word “false” when referring to volunteers’ results: the results could have been obtained
quite legitimately, but on a system whose tolerances exceed those of the volunteer computing
website.

Back to the use of PFs in volunteer computing. Volunteer computing is maturing
(as a modality of cooperative computing) beyond being a vehicle for pure research
demonstrations: it now encompasses computations that relate to sensitive matters
such as security3 [90] and clinical drug testing [44, 74]. In these practical domains,
“false” results, even if well-intentioned, could have dire consequences. It seems
clear that a volunteer computing website that detects recurring “false” results from

3 The three volunteer computing websites cited here were active just a few years ago.
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a specific volunteer would want to bar that volunteer from subsequent participation
in the project.

Such detection would typically result from either spot-checking results or from a computing
regimen that involves redundant allocation plus voting [54, 102].

But how does one efficiently keep track of volunteers and the results that they pro-
duce? One finds in [84] a computationally lightweight scheme that employs PFs in a
fundamental way. (Note that this work addresses concerns about accountability, not
security.)

The basic idea from [84] begins by assigning positive-integer indices to (a) the
set of all tasks in the volunteer computing website’s workload, (b) all volunteers who
are currently enrolled in the project, (c) the set of tasks that are reserved for each
volunteer v. One then uses a PF T (which we shall call a task-allocation function in
this context) to link volunteers with their assigned tasks. In other words, the tth task
that volunteer v receives to compute is task T (v, t).

Since the potential practicality of such a scheme demands that the functions T ,
T −1, and S (v, t) def= T (v, t + 1)−T (v, t) all be easily computed, the primary focus
in [84] is on PFs that are additive (APFs, for short): an APF assigns each volunteer v
a base task-index Bv and a stride Sv; it then uses the formula

T (v, t) = Bv +(t−1)Sv

to determine the workload task-index of the tth task assigned to volunteer v. From a
system perspective, APFs have the benefit that a volunteer’s stride need be computed
only when s/he registers at the volunteer computing website and can be stored for
subsequent appearances.

Given our narrow focus on APFs in this section, we ignore several practical concerns for
any scheme that seeks to endow a volunteer computing project with accountability and/or
security.

Probably the thorniest concern results from a Sybil attack [24]: a malicious volunteer’s cam-
ouflaging his/her identity via the use of multiple IP addresses. Strategies for detecting and
preventing Sybil attacks remain a research topic to this day.

A less challenging problem is that any task-allocation scheme that is based entirely on APFs
allows new volunteers to arrive dynamically but not to depart. If volunteers depart, then their
tasks will never be computed—unless new volunteers arrive to take their places and compute
their tasks. Such reassignment would demand added mechanisms to retain accountability.
The complete scheme described in [84] has a “front end” that allows volunteers to arrive and
depart dynamically; it also ensures that faster volunteers are always assigned smaller indices.
These details are beyond this section’s focus on APFs.

Given the proposed use of APFs to assign indices to volunteers, one can argue that
the management of the memory where tasks reside is simplified if one devises APFs
whose strides Sv grow slowly as a function of v. Such APFs are “compact,” in the
sense of (8.3). This observation sets the agenda for [84] and for the remainder of this
section. Section 8.4.1 presents a methodology for designing easily computed APFs;
Section 8.4.2 presents a sequence of APFs that suggest a tradeoff between the ease of
computing an APF and the rate of growth of the APF’s strides.
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We henceforth abstract the preceding discussion from the volunteer computing
scenario by replacing “volunteer” by “row” and “base task-index” by “base row-
entry.” We also revert to our generic uses of x and y, instead of v and t.

8.4.1 A Methodology for Designing Additive Pairing Functions

It is easy to show that any APF must have infinitely many distinct strides; i.e., Sx,
viewed as a function of x, must have infinite range. Despite this, there do exist easily
computed APFs. One strategy for designing such APFs builds on the following well-
known property of the set O of positive odd integers.

Lemma 8.3 ([73]). For any positive integer c, every odd integer can be written in
precisely one of the 2c−1 forms

2cn+1, 2cn+3, 2cn+5, . . . , 2cn+(2c−1),

for some nonnegative integer n.

One builds on Lemma 8.3 to construct APFs as follows.

Procedure APF-Constructor(T )
/*Construct an APF T */

Step 1. Partition the set of row-indices into groups whose sizes are powers of 2
(with any desired mix of equal-size and distinct-size groups). Order the groups
linearly in some (arbitrary) way.

/*One can now talk unambiguously about group 0 (whose members share group-index
g = 0), group 1 (whose members share group-index g = 1), and so on.*/

Step 2. Assign each group a distinct copy of the set O, as well as a copy-index κ(g)
expressed as a function of the group-index g.

Step 3. Allocate group g’s copy of O to its members via the (c = κ(g)) instance of
Lemma 8.3, using the multiplier 2g as a signature to distinguish group g’s copy of
the set O from all other groups’ copies.

Procedure APF-Constructor can be viewed as specializing the quite general scheme
for constructing APFs in [99]. The specialization allows us to specify the APF in a
computationally friendly way.

An explicit expression for T . If we denote the 2κ(g) rows of group g by xg,1, xg,2,
. . . , xg,2κ(g) , then for all i ∈ {1,2, . . . ,2κ(g)},

T (xg,i,y)
def= 2g

[

21+κ(g)(y−1)+(2xg,i +1 mod 21+κ(g))
]

. (8.6)

Theorem 8.3. Any function T : N
+×N

+↔N
+ that is designed via Procedure APF-

Constructor, hence is of the form (8.6), is a valid APF whose base row-entries and
strides satisfy
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Bx ≤ Sx = T (x,y+1)−T (x,y) = 21+g+κ(g). (8.7)

Proof. Any function T as described in the theorem maps N
+×N

+ onto N
+, because

every positive integer equals some power of 2 times some odd integer. Additionally,
T is one-to-one because it has a functional inverse T −1. To wit, the trailing 0’s of
each image integer k = T (x,y) identify x’s group g, hence the operative instance
κ(g) of Lemma 8.3. Then:

1. We compute

x =
1
2

[

(2−gk mod 21+κ(g))−1
]

,

which is an integer because the division by 2g produces an odd number.
2. This leaves us with a linear expression of the form ay + b, from which we easily

compute y.

Finally, we read the relations (8.7) directly from (8.6). ��
In order to implement Procedure APF-Constructor completely, we must express

both the group-indices g and their associated copy-indices κ(g) as functions of x.
This is accomplished by noting that all x whose indices lie in the range

2κ(0) +2κ(1) + · · ·+2κ(g−1) +1 ≤ x ≤ 2κ(0) +2κ(1) + · · ·+2κ(g−1) +2κ(g) (8.8)

share group-index g and copy-index κ(g). Translating the range (8.8) into an effi-
ciently computed expression of the form g = f (x) may be a simple or a challenging
enterprise, depending on the functional form of κ(g) that results from the grouping
of row-indices.

8.4.2 A Sampler of Explicit APFs

Theorem 8.3 assures us that Procedure APF-Constructor produces a valid APF no mat-
ter how the copy-index κ(g) grows as a function of the group-index g. However, the
ease of computing the resulting APF, and its compactness, depend crucially on this
growth rate. We now illustrate how one can use this growth rate as part of the design
process, in order to stress either the ease of computing an APF or its compactness.

A. APFs that stress ease of computation. We first implement Procedure APF-
Constructor with equal-size groups, i.e., with κ(g) = constant. For each c ∈ N

+, let
T 〈c〉 be the APF produced by the procedure with κ〈c〉(g) ≡ c− 1. One computes
easily that

T 〈c〉(x,y) def= 2�(x−1)/2c−1� [2c(y−1)+(2x−1 mod 2c)] .

Lemma 8.4. Each T 〈c〉 is a valid APF whose base row-entries and strides are given
by
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B〈c〉x ≤ S〈c〉x = 2�(x−1)/2c−1�+c. (8.9)

Each T 〈c〉 is easy to compute but has base row-entries and strides that grow expo-
nentially with row-indices. Increased values of c (= larger fixed group sizes) decrease
the base of the growth exponential, at the expense of modest increase in computa-
tional complexity. Computing a few sample values illustrates how a larger value of
c penalizes a few low-index rows but gives all others significantly smaller base row-
entries and strides; cf. the top half of Figure 8.7.

x g T 〈1〉(x,y)
14 13 8192 24576 40960 57344 73728 · · ·
15 14 16384 49152 81920 114688 147456 · · ·
x g T 〈3〉(x,y)

14 3 24 88 152 216 280 · · ·
15 3 40 104 168 232 296 · · ·

...
...

...
...

...
...

28 6 448 960 1472 1984 2496 · · ·
29 7 128 1152 2176 3200 4224 · · ·
x g T #(x,y)

28 4 400 912 1424 1936 2448 · · ·
29 4 432 944 1456 1968 2480 · · ·
x g T �(x,y)

28 3 328 840 1352 1864 2376 · · ·
29 3 344 856 1368 1880 2392 · · ·

...
...

...
...

...
. . .

Fig. 8.7 Sample values by several APFs.

B. APFs that balance computation ease and compactness. The functional form of
the exponent of 2 in (8.9) suggests that one can craft an APF whose base row-entries
and strides grow subexponentially by allowing the parameter c to grow with x, in
a way that (roughly) balances x/2c against c. This strategy leads us to consider the
copy-index κ#(g) = g. When we implement Procedure APF-Constructor with copy-
index κ#, we arrive at an APF T # that is rather easy to compute and whose base row-
entries and strides grow only quadratically with row-indices. To wit: The copy-index
κ#(g) = g aggregates row-indices into groups of exponentially growing sizes. Each
group g comprises row-indices 2g,2g +1, . . . ,2g+1−1. By (8.8), then, one computes
easily that4

κ#(g) = g = �logx�. (8.10)

Instantiating (8.10) in the definitional scheme (8.6), we find that

4 Throughout, all logarithms have base 2.
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T #(x,y) = 2�logx�
(

21+�logx�(y−1)+(2x+1 mod 21+�logx�)
)

. (8.11)

Lemma 8.5. The function T # specified in (8.11) is a valid APF whose base row-
entries and strides (as functions of x) are given by

B#
x < S #

x = 21+2�logx� ≤ 2x2,

hence grow quadratically with x.

Comparing T # and the T 〈c〉. For sufficiently large x, the (exponentially grow-
ing) strides of any of the APFs T 〈c〉 will be dramatically larger than the (quadratically
growing) strides of the APF T #. However, it takes a while for T #’s superiority to
manifest itself; for instance,

• it is not until x = 5 that T 〈1〉’s strides are always at least as large as T #’s;
• the corresponding number for T 〈2〉 is x = 11;
• the corresponding number for T 〈3〉 is x = 25.

C. APFs that stress compactness. By choosing a copy-index κ(g) that grows su-
perlinearly with g, one can craft APFs whose base row-entries and strides grow sub-
quadratically, thereby beating the compactness of T #. But one must choose κ(g)’s
growth rate judiciously, because faster growth need not enhance compactness.

Achieving subquadratic growth. Many copy-index growth rates yield APFs with
subquadratic compactness. However, all of the APFs we know of that achieve this
goal are rather difficult to compute and actually achieve the goal only asymptotically,
hence are more likely of academic than practical interest.

Consider, for each k ∈N
+, the APF T [k] specified by the copy-index κ [k](g) = gk.

By (8.8), the row-indices x belonging to group g now lie in the range

1+2+22k
+ · · ·+2(g−1)k

< x ≤ 1+2+22k
+ · · ·+2gk

,

so that g = (1 + o(1))�(logx)1/k�. We actually use the simplified, albeit slightly in-
accurate, expression g = �(logx)1/k� in our asymptotic analyses of the T [k], because
the o(1)-quantity decreases very rapidly with growing x. Although closed-form ex-
pressions for T [k] in terms of x have eluded us, we can verify that each T [k] does
indeed enjoy subquadratic stride growth.

Lemma 8.6. Each function T [k] produced by Procedure APF-Constructor from the
copy-index κ [k](g) = gk is a valid APF whose base row-entries and strides (as func-
tions of x) are given by

B[k]
x ≤ S

[k]
x = 2O((logx)1/k+logx) = x2O((logx)1/k), (8.12)

hence grow subquadratically with x.

We illustrate a close relative of T [2] that exhibits its subquadratic compactness
at much smaller values of x than T [2] does, namely, the APF T � that Procedure
APF-Constructor produces from the copy-index



8.4 Pairing Functions and Volunteer Computing 145

κ�(g) =
⌈

1
2

g2
⌉

. (8.13)

Mimicking the development with κ [k], we see that the value of g associated with this
copy-index is g = (1 + o(1))�√2logx�+ 1, which we simplify for analysis to the
slightly inaccurate expression

g =
⌈
√

2logx
⌉

+1.

We can easily compute T � from (8.13), in the presence of (8.6), (8.8).

Lemma 8.7. The base row-entries and strides of the APF T � satisfy

B�
x ≤ S �

x = 21+g+κ�(g) ≈ 8x4
√

2logx.

Comparing T � and T #. Any function that grows quadratically with x will even-
tually produce significantly larger values than a function that grows only as x4

√
2logx.

Therefore, T �’s strides will eventually be dramatically smaller than T #’s. Figure 8.7
indicates that this difference takes effect at about the same point as the exponential
vs. quadratic one noted earlier, albeit at the cost of greater computational complexity.

The danger of excessively fast growing κ . If κ(g) grows too fast with g, then the
base row-entries and strides of the resulting APF grow superquadratically with the
row-indices x, thereby confuting our goal of beating quadratic growth. We exemplify
this fact by supplying Procedure APF-Constructor with the copy-index κ(g) = 2g;
the reader can readily supply other examples. By (8.8), we see that in this case,
g = �log logx�+O(1). Therefore, whenever x is the smallest row-index with a given
group-index g (of course, infinitely many such x exist) we have

x = 2κ(0) +2κ(1) + · · ·+2κ(g−1) +1 ≈
√

2κ(g),

while the stride associated with x is (cf. (8.7))

Sx = 21+g+κ(g) > 2κ(g)κ(g) ≈ x2 logx.

We do not yet know the growth rate at which faster growing κ(g) starts hurting com-
pactness. Finding this rate is an atractive research problem.





Chapter 9
Computability Theory

9.1 Introduction and History

Mathematics has been “practiced” for thousands of years, yet it was not until the
nineteenth century that people began to attempt to crystalize/formalize the notion of
proof.

This attempt is an ongoing struggle: the advent of computers and computer-assisted proofs
has led to a rethinking of the formal notions that were developed in the nineteenth and early
twentieth centuries.

The formal notion of proof that led to the birth of the field of mathematical logic made
a proof a kind of rewriting system. One started with a set of axioms (“statements or
propositions that are regarded as being established, accepted, or self-evidently true”),
which were automatically granted the status of theorem (“a truth established by means
of accepted truths”). One then added a set of rules of inference, or rewriting rules, that
allowed one to derive new theorems by selectively “rewriting” preexisting ones.

Inspired by this apparently “mechanistic” notion of “proving a theorem,” at the
very end of the nineteenth century, the great German mathematician David Hilbert
challenged mathematicians to devise “automatic procedures”—what we would now
call algorithms—that would either prove or refute purported theorems within the el-
ementary theory of numbers.

If you have encountered portions of the “elementary” theory of numbers that have not seemed
elementary to you, do not despair! In the context of number theory, the term designates results
that follow from first principles rather than from a long chain of other results.

As we know from our earlier discussions, the hope for any such procedure was dashed
in 1931 by the famous incompleteness theorem of Kurt Gödel [30]. Informally, that
theorem says that in any mathematical system—i.e., axioms plus rules of inference—
that is powerful enough to “talk” about (or express) a quite simple repertoire of
properties of the positive integers, the notion of “theorem” could never be powerful
enough to encompass the notion of “true statement.”

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 147
DOI 10.1007/978-0-387-09639-1 9, c© Springer Science+Business Media, LLC 2010
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In rough terms, the system had only to be able to express the equality of expressions in which
positive integers are combined via addition and multiplication. One such assertion might be
“x× y = z+2x.”

As we described in Section 7, Gödel’s proof of the theorem built upon the mathemat-
ical tools that Georg Cantor developed for comparing the relative “sizes” of infinite
sets. In the mid-1930s, Alan Turing adapted Gödel’s logic-oriented framework to a
computational setting [104], thereby initiating what we now call the theory of com-
putability, or computability theory. Just as Gödel’s 1931 paper turned on its ear the
(mistaken) intuition that mathematics—even elementary number theory—could be
mechanized, Turing’s 1936 paper played a similar role in the realm of computation.
In detail, Turing’s work showed that there exist specific functions f : N→{0,1} that
are quite simple to specify informally but that cannot be computed by any “reason-
able” notion of digital computer.

Here are a couple of ways of thinking about Turing’s landmark work. These are stated very
informally, but they can be made precise and formal. In fact, you will be able to formalize
these assertions by the end of this chapter!

• There exist digital computers whose behaviors can be specified totally unambiguously
that cannot be built.

• There exist processes whose behaviors can be specified totally unambiguously that cannot
be programmed on any digital computer.

In order to appreciate the ingenuity (and imagination) that Turing displayed in formalizing
these assertions, you should recall that digital computers did not yet exist in the 1930s and that
only rudimentary types of “programmed machines”—such as the Jacquard loom, invented by
Joseph Marie Jacquard in 1801—had yet seen the light of day!

The “reasonable” notion of digital computer that Turing studied was the epony-
mous Turing machine, a variant of which we described in Section 3.3. This formal
model was so simple in its structure and its per-step computing capabilities that de-
spite Turing’s demonstrations of the model’s computing power, one could not avoid
wondering whether more powerful “reasonable” notions existed, which would not fall
prey to Turing’s proof of uncomputability!

What, indeed, is a “reasonable” notion of digital computer?

A glib answer is that, paraphrasing U.S. Supreme Court justice Potter Stewart’s remark about
obscenity in his concurring opinion in Jacobellis v. Ohio 378 U.S. 184 (1964), you know it
when you see it!

A more careful answer is that any competent computer designer should agree that the candi-
date notion can indeed be built—and programmed—using existing (or foreseeable) technol-
ogy.

More generally, while it is hard to write a short list of criteria that separate “reasonable”
models from “unreasonable” ones, one can bolster intuition by looking at a few models that
most people would consider not to be “reasonable.” Because computability theory focuses
on procedures that manipulate strings and numerals, any of the following capabilities would
render a model “unreasonable”:

• the ability to manipulate objects that admit no finite representation, e.g., general infinite
series and real numbers;
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• the ability to make infinitesimal discriminations, say, by having no bound on resolution
(think of “resolution” as word size in a digital computer);

• the ability to perform continuous operations, as, say, an analog computer does.

Remarkably, none of the myriad attempts to outdo Turing produced a formal model
that (a) was more powerful than the Turing machine and (b) was deemed “reason-
able” by the computing community. The studies that invented these new models were
certainly not wasted time, though: Many of the attempts gave rise to equally power-
ful, quite different, alternative formulations of computation theory, thereby supplying
quite new insights into the intrinsic nature of digital computation. (Think of the con-
ceptual axiom that introduces Chapter 2.) Many of the others produced models that,
while not more powerful than the Turing machine, accomplished their assigned tasks
much more efficiently than Turing’s rudimentary instruction repertoire permitted. Ac-
knowledging the many contributions of Turing’s competitors, in addition to those of
Turing himself, the theory has freely absorbed notions from competing theories based
on many distinct formalisms. To name just a few of the most successful competitors,
we have

• the lambda calculus of Alonzo Church [14] (which supplied the theoretical under-
pinnings of LISP and other functional programming languages; see, e.g., [31]),

• Stephen Cole Kleene’s theory of recursive functions [49, 50],
• the combinatory logic of Haskell B. Curry, Robert Feys, William Craig, Moses

Schönfinkel, and their collaborators [21, 22, 93],
• Noam Chomsky’s type-0 grammars [12] (which had its greatest impact in the field

of formal languages),
• Andrey A. Markov’s Markov algorithms [61],

and on and on. The confluence of the theories that emerge from the many disparate
attempts to formulate a theory of computability has led all mainstream computer sci-
entists and mathematicians to accept, as an operating principle, the extramathematical
Church–Turing Thesis:
The Church–Turing thesis. The informal notion “computable by a digital com-
puter” is equivalent to the formal notion “computable by a Turing machine.”

Notes.

• The Church–Turing thesis is “extramathematical,” i.e., not subject to proof, because it
asserts the equivalence of a formal notion and an informal one.

• Church and Turing are honored in the name of the Thesis because of their pioneering
work on the theory.

• The reader should view the Church–Turing thesis in the light of more than seventy years
of unsuccessful attempts to refute it (by devising a more powerful “reasonable” model).

The present chapter is devoted to developing the basic conceptual and technical tools
of computability theory, leading up to a few of the theory’s blockbuster theorems.
The most famous of these theorems is, of course, Theorem 9.1, which identifies
the decision function for the halting problem—given a program P and an input x
for P, does P ever halt when started on input x?—as being uncomputable. Perhaps
even more dramatic than Theorem 9.1, though, is the Rice–Myhill–Shapiro theorem
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(Theorem 9.5), which—very informally—can be viewed as the sweeping statement
that one cannot algorithmically decide anything about the dynamic behavior of a pro-
gram P from a static description of P (say, as a list of instructions). (You’ll have
to read Section 9.5 in order to understand what Theorem 9.5 really says.) On the
way to developing Theorems 9.1 and 9.5, we shall encounter some blockbuster con-
cepts. Notable here are the notion of reducing one computational problem to another
(Section 9.4) and the notion that a computational problem, A, is complete within a
class of computational problems (Section 9.6)—meaning, quite informally, that A is
the computationally “hardest” problem in the class. (Here again, you’ll have to read
Section 9.6 in order to understand what “complete” really means.) The “big ideas”
underlying the preceding blockbuster concepts and results are not of just academic
interest: They should be part of the intellectual toolkit of every person who is con-
cerned with the technical aspects of computation—from the computation theorist to
the serious applications programmer.

The present chapter is incredibly rich intellectually. It begins with a background
section (Section 9.2) that continues the development from Chapter 2, but that focuses
on concepts and tools that relate specifically to computability theory. While the mate-
rial in this section may appear to be of only mathematical interest, it actually develops
the main intellectual toolset for the entire theory of computability. Once we turn to the
technical development of computability theory, beginning in Section 9.3, we employ
the model-independent approach that seems to have originated in the now classical
text of Hartley Rogers, Jr. [80]. In brief, this approach invites you to think about the
process of computing in terms of whatever “reasonable” model you find congenial.
(But do not forget that your model must be “reasonable” in the sense of the Church–
Turing thesis!) In particular, this approach invites you to think about these concepts
using (the virtual machines associated with) your own favorite (real!) programming
language—anything from APL to BASIC to C to C++ to FORTRAN to Java to . . . .
This freedom should allow you to employ intuitions that you have developed from
your experience in programming and/or otherwise using real digital computers—and
thereby to appreciate the relevance of computability theory to real computing. The
development in Section 9.2 should convince you that the specific programming lan-
guage that you choose as your “model” is irrelevant: Every real programming lan-
guage can be “encoded” as any another.

Perhaps the biggest advertisement for the model-independent approach that we inherit from
[80] is the early textbook on computability theory by Martin Davis [23], which develops
the theory entirely within the context of the “classical” Turing machine of [104]. While the
development in [23] can be reassuring to the student, in that details that many texts leave to the
reader are carefully derived, it may make it difficult for some to see “the big picture” because
of the focus on details. Since it is usually a nontrivial exercise to translate intuition from one
programming abstraction (i.e., model) to another, one may struggle to see the relevance of
certain Turing machine–oriented constructs to the programming languages that one uses in
daily life. This is a powerful argument for letting each reader use her own model.

The many benefits of a model-independent approach to the theory notwithstanding, it
would be a mistake not to present at least some of the evidence for the Church–Turing
thesis. We do this in Section 9.8, within the context of the online Turing machine
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model that we introduced in Section 3.3. The exercise of considering explicit transla-
tions from one detailed model to another is also needed for our study of complexity
theory, in Chapter 13, because that theory cannot be developed with the same degree
of model independence that computability theory can: While complexity theory cer-
tainly does not demand the confines of a single “standard” model for algorithms and
digital computers, it does impose limitations on how different competing models can
be from one another before the complexity theory of one model diverges from that of
another. In particular, there is no thesis for complexity theory that has anything like
the sweep of the Church–Turing thesis.

9.2 Preliminaries

9.2.1 Representing Computational Problems as Formal Languages

In Section 2.4.2, we discussed briefly how to talk about a variety of computational
problems using the medium of formal languages. This unusual way of talking about
computation has left its tracks in the terminology we use in computation theory—
but so also have the other precursors of the theory, such as mathematical logic and
computer science. The reader should see the traces of some of these precursors in the
following list, which will recur throughout the remainder of the book:

A set (of integers or strings) is:

{

decidable
recursive

}

or

{

undecidable
nonrecursive

}

A computational problem is: solvable or unsolvable
A property of a system is: decidable or undecidable.

I really should be careful here to add a qualifier such as “computation-theoretically” or “in the
sense of computation theory” to the words “solvable and “unsolvable,” because these words
are sometimes used in reference to other, quite different, types of problems, such as:

• finding positive integers x and y such that x2 = 2y2,

• finding a real number x such that x2 +1 = 0,

• finding the roots of a general quintic polynomial using radicals,

• finding positive integers x, y, and z such that z3 = x3 + y3.

I take the risk of not using such qualifiers, because we shall use the words consistently in
their computation-theoretic senses.

The positive—i.e., desirable—notions, decidable, recursive, and solvable, are equiv-
alent to one another, as are the negative—i.e., undesirable—notions, undecidable,
nonrecursive, and unsolvable. When referring to a set/language A, the assertion that
A is decidable is equivalent to the assertion that the characteristic function1 κA of A
is computable; the assertion that A is undecidable is equivalent to the assertion that
κA is not computable. (We really need some standard model of computer in order to
make the preceding sentence precise. Any “reasonable” model will work.)

1 Recall that κA(x) = 1 when x ∈ A and = 0 when x �∈ A.
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In order to develop computability theory, we must extend the preceding notions in
a direction that you may not have anticipated:

A set (of integers or strings) is:

{

semidecidable
recursively enumerable

}

A computational problem is: partially solvable
A property of a system is: semidecidable.

All of the preceding notions are equivalent to one another. When referring to a
set/language A, the assertion that A is semidecidable is equivalent to the assertion
that the semicharacteristic function,2 κ ′A of A is semicomputable. (Here again, we can
invoke any “reasonable” model to ground the notion.)

Probably the best concrete way to think about semicharacteristic functions in a computational
setting is as follows. If the semicharacteristic function κ ′A is computed by a program P, then
P would halt and say “YES” when presented with an input that belongs to set A, and P would
never halt when presented with an input that does not belong to set A. (Perhaps P would
go into a tight loop in response to an input that is not a member of A.) To emphasize the
possibility that P may not halt, we call the function κ ′A semicomputable.

Even at this early stage of our study, we have access to an important result, which
helps define the terrain that we are traversing, by relating the notions we have just
been discussing. For simplicity, we mention only decidability and semidecidability;
we could just as well focus on any of the equivalent notions.

Lemma 9.1. A language L⊆ Σ � is decidable if and only if both L and L = Σ � \L are
semidecidable.

Proof. Say first that L is decidable, so that its characteristic function κL is com-
putable, say by the program PL (which, recall, halts on all inputs). We can then
semicompute the semicharacteristic functions of L and L via the following schematic
programs. On input x ∈ Σ �:

• P′L(x) computes κ ′L(x) by simulating program PL. If PL(x) halts and outputs 1 on
input x, which means that κL(x) = 1, then P′L halts and outputs 1; if κL(x) = 0, then
P′L enters a loop (hence, never halts).

• Similarly, P′
L
(x) computes κ ′

L
(x) by simulating program PL. If PL(x) halts and out-

puts 0 on input x, which means that κL(x) = 0, then P′
L

halts and outputs 1; if
κL(x) = 1, then P′

L
enters a loop (hence, never halts).

The programs P′L and P′
L

exist because the function κL is total and computable. More-
over, P′L clearly computes κ ′L, while P′

L
clearly computes κ ′

L
.

Say next that both L and L are semidecidable, so that κ ′L is semicomputable via
some program P′L, while κ ′

L
is semicomputable via some program P′

L
. The following

program, call it PL, computes κL. On input x ∈ Σ �:

1. PL(x) simulates one step of P′L(x) and one step of P′
L
(x). At most one of the simu-

lated programs can have halted in this step. If either one halts, then PL(x) halts and
gives the appropriate output: it outputs 1 if it was P′L(x) that halted, and 0 if it was
P′

L
(x) that halted.

2 Recall that κ ′A(x) = 1 when x ∈ A.
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2. PL(x) iterates this step until one of P′L(x) and P′
L
(x) has halted.

If neither P′L(x) nor P′
L
(x) has halted in the simulation thus far, then PL(x) simulates

one more step of P′L(x) and one more step of P′
L
(x). At most one of the simulated

programs can have halted in this step. If either one halts, then PL(x) halts and gives
the appropriate output: it outputs 1 if it was P′L(x) that halted, and 0 if it was P′

L
(x)

that halted.

Because P′L(x) computes κ ′L(x), and P′
L
(x) computes κ ′

L
(x), and because L∪L = Σ �,

(precisely) one of the programs P′L(x), P′
L
(x) will halt eventually. Therefore, PL(x)

halts on all inputs, and its output tells whether that input belongs to L. In other words,
PL computes κL. ��

9.2.2 Functions and Partial Functions

This is a good time to review the material in Section 2.3.
Although one can map any set S to any set T via functions (cf. Section 2.3), we

greatly simplify our exposition by focusing on only a few very restricted sets S and
T as we develop computability and complexity theory. We accomplish this by se-
lecting a fixed countable “universal” set U that will serve as a universe of discourse
whenever we talk about computing functions. The encodings we presented when dis-
cussing countability in Chapter 7 give us an extremely broad range of choices for the
set U , but we shall usually stick with just a few sets that have long histories in studies
of computability theory and, more generally, of computation theory. These “standard”
universal sets are:

• the set N of nonnegative integers;
• N’s almost-twin, the set N

+ of positive integers;
• the set Σ � of finite-length strings over some finite alphabet Σ = {σ1,σ2, . . . ,σn}.

We do not care which Σ you choose to use—as long as Σ contains both 0 and 1.
For simplicity, we shall often employ Σ = {0,1} as our universal set.

• Σ �’s specialization to binary strings: the set {0,1}�.

With each topic we study, we shall choose a universal set U and always talk either
about (partial) functions f : U →U or about (partial) functions g : U → {0,1}. (The
latter class of functions is mandated by our focus on languages.) Thus, while we have
almost free choice of the source set S, we constrain the target set T to be either S
or {0,1}. The qualifier “partial” that we used in describing the functions f and g
emphasizes that a function f : U →U or g : U → {0,1} may, in fact, be defined—
i.e., produce a result—on only a proper subset of the set U ; indeed, when g is the
semicharacteristic function of a set S such that S ⊂ Σ � (note the proper subset sign),
then g is guaranteed to be defined on only a proper subset of the set U .

Technically, the existence of nontotal functions means that the set U is the source of the
function f , rather than its domain, which is, by definition, the subset of U where f is defined.
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Section 7.1 and Chapter 8 tell us that there exist pairing functions for the just-
enumerated universal sets that are not only computable, but even efficiently com-
putable. Therefore, we never have to widen our focus explicitly in order to accom-
modate multivariate functions—functions of several variables. By using a pairing
function to map U ×U one-to-one onto U , where U is one of our universal sets, we
ultimately reduce all computable functions to computable univariate (one-variable)
functions. For instance, if we wish to discuss the bivariate function h : U ×U →U ,
then we would select some easily computed pairing function p : U×U ↔U and refo-
cus our attention from the function h to the univariate function q : U →U defined by

q(u) def= h(p−1(u)).

Of course, the functions h and q are computationally equivalent, in the sense that
h(u1,u2) = q(p(u1,u2)); moreover, if we have chosen p well, then h and q are also
roughly equal in computational complexity.

Our insistence on a fixed universe is mostly a happy decision, as it allows us to talk about
functions and compositions of functions without worrying about questions of compatibility
between sources and targets, or between domains and ranges. One unhappy consequence of
this insistence, though, is that we have to develop computability theory and Computational
Complexity Theory as theories of partial functions.

We reiterate from Section 2.3 the possibly unfortunate—but critically important—
(historical) fact that every function is, by default, a partial function—even the total
ones; in other words, “partial” is the generic term, with “total” being a special case.

Although we seldom talk explicitly about nontotal partial functions in everyday
discourse, we in fact deal with such functions all the time, especially in our pro-
fessional roles as students and/or practitioners of computing. We illustrate this fact
with a few common sample nontotal functions, each having the set N of nonnegative
integers as its source:

• the function f (n) =
√

n is partial, being defined only when n is a perfect square;
• the function g(n) = n/2 is partial, being defined only when n is even;
• the function h(n) = n−1 is partial, being defined only when n is positive.

Although it is not relevant to the point we are making here, it is worth noting that we
often—but certainly not always—choose to simplify our lives by extending nontotal
functions such as these to make them total.

• We replace f (n) by either ̂f (n) = �√n� or f̌ (n) = �√n�.
• We replace g(n) by either ĝ(n) = �n/2� or ǧ(n) = �n/2�.
• We replace h(n) by ˜h(n) = n�1.

In these extensions, �x� denotes the floor of x (Section 2.6), �x� denotes the ceiling of x
(Section 2.6), and � denotes positive subtraction (Section 8.2.1).
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9.2.3 Self-Referential Programs: Interpreters and Compilers

The major concepts of computability theory were developed before programmable
computers existed. It is quite remarkable, therefore, to note that the people who de-
veloped the theory came up with the notion of an interpreter: a program P that

• takes two strings, x and y, as arguments,
• interprets string x as an encoding of a program in some predetermined language,
• interprets string y as an encoding of an input to program x,
• simulates program x step by step on input y.

As we remarked earlier, all programs and inputs ultimately get encoded as binary
strings in a real computer, so the preceding scenario is not so far-fetched.

Here is where things take an interesting turn. There is no reason that the strings
P, x, and y could not all be the same string! Were this the case, then the interpreter
would be simulating itself operating on itself. Such self reference plays havoc with
our intuitions, as you can see by pondering whether the following sentence is true:
“This sentence is false.” As we begin our excursion into the mysteries of computabil-
ity theory, keep the notion “self reference” in mind. In some sense, it is the origin
of many of the unpleasantnesses that the work of Gödel and Turing uncovered—
namely, incompleteness and uncomputability. Like it or not, self reference and all of
its by-products are part of our lives as mathematicians and computer scientists—and
speakers of complex natural languages. The next section exposes in detail the first of
these by-products.

9.3 The Halting Problem: The “Oldest” Unsolvable Problem

This is a good time to review the material in Section 7, which contains the mathemat-
ically “purest” version of the mathematical tools we shall be invoking from now on.

This section is devoted to exposing the fundamental nature of the halting problem,
one of the first computational problems to have been identified as “unsolvable,” in the
computation-theoretic use of the word.

You may want to refer back to Section 1.1.2, more specifically to the comment there by
Andrew Pitts, for a bit more historical detail on the “original” computation-theoretically un-
solvable problem.

Once we understand the halting problem, we shall be able to lay the foundation for
understanding the problem’s far-reaching computational consequences.

The halting problem (HP, for short) is the following set of ordered pairs of strings:

HP
def= {〈x,y〉 | Program x halts when presented with input y}.

By using a pairing function, we turn HP into a language. The diagonal halting prob-
lem (DHP, for short) is the set of all programs that halt when supplied with their own
descriptions as input. Symbolically,
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DHP
def= {x | Program x halts when presented with input x}.

(a) Note the self reference inherent in DHP: each string x ∈ DHP is both a program and an
input to that program!

(b) If you look back at our discussion of uncountability in Section 7.2, you should understand
the adjective “diagonal” in DHP’s name.

9.3.1 The Halting Problem Is Semisolvable but Not Solvable

Hopefully, we have built up the suspense sufficiently that you really want to under-
stand why HP and DHP are not solvable. Let’s relieve the suspense.

Theorem 9.1. The diagonal halting problem is not solvable. In other words: the set
DHP is not decidable. Hence, the same is true for the halting problem HP.

Proof. We focus only on proving that DHP is unsolvable, because trivially, if HP
were solvable, then so also would be DHP. To wit: for any string x, we have x ∈DHP
if and only if 〈x,x〉 ∈ HP. Therefore, if we could decide the truth or falsity of the
sentence “〈x,x〉 ∈ HP,” then we could also decide the truth or falsity of the sentence
“x ∈ DHP.”

We shall see in Section 9.4 that the preceding argument actually shows that DHP is mapping-
reducible to HP; i.e., instances of DHP can be encoded as instances of DHP, under a strong
notion of encoding called a mapping reduction. The argument is thus a very simple illustra-
tion of an extremely powerful tool for analyzing the logical interrelationships among compu-
tational problems. The uses of the tool abound in computability and complexity theories.

Assume, for contradiction, that DHP were decidable. There would, then, be a
program—call it P—that operates on strings and that behaves as follows.

On input x, program P outputs:
1 if string x, interpreted as a program, halts when presented

with string x as an input,
0 if string x, interpreted as a program, does not halt when presented

with string x as an input.
(Program P, if it existed, would compute the characteristic function κDHP of DHP.)

For convenience, let us henceforth apply a shorthand to programs such as P, by
rewriting P in the following way.

On input x, program P outputs:
1 if program x halts on input x,
0 if program x does not halt on input x.

I now want to draw on your experience writing programs. You should agree that if
you were presented with program P, then you could modify it to obtain a program P′
that behaves as follows.
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On input x, program P′ outputs:
1 if program x does not halt on input x,

LOOP

FOREVER
if program x halts on input x.

(Program P′, if it existed, would compute the semicharacteristic function κ ′DHP of
DHP.)

It is worth spending a moment to make sure that we are “on the same page.” How
would one construct program P′ from program P? You would take program P and
apply input x to it, and then wait to see what output program P emits. Note that we
are assuming that program P halts on all inputs! If program P outputs 0 when it
halts, then we would have program P′ halt and output 1; if program P outputs 1 when
it halts, then we would have program P′ loop forever, via a statement such as

FOO: goto FOO

Now, there is no need for you to waste your time running program P on input x. You
could, instead, invoke an interpreter for program P to do this for you. Program P′
would then have a form something like the following. (This is the format we shall use
henceforth for “high-level” programs.)

Program P′

Input x

if program x outputs 0 on input x
then output 1
else loop forever

Back to our argument. We have placed no restriction on the input to either program
P or program P′. In particular, this input could be the string P′ itself. (Here is the self
reference!) How does program P′ respond to being presented with its own descrip-
tion? The following sequence of biconditionals (“if-and-only-if” statements) tells the
story. (The highlighted sentences are explanatory notes, not part of the story.)

program P′ halts when presented with input P′
if and only if

program P′ outputs 1 when presented with input P′
/*By definition, P′ outputs 1 if it halts, and (of course) it halts if it outputs 1.*/

if and only if
program P′ does not halt when presented with input P′

/*This is how program P′ is specified!*/

You can “play” this sequence of statements in either direction—biconditionals point
in both directions. In either case, the final statement that you arrive at contradicts the
first statement.

What can be wrong here? The contradictions that we derive by traversing our
sequence of biconditionals in both directions tell us incontrovertably that there is
something wrong somewhere in our argument.

1. If DHP were solvable, then we could write a version of program P that halted on
every input.
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2. If we could write a version of program P that halted on every input, then we could
write a version of program P′ that behaves as claimed.

But our problem with the sequence of biconditionals tells us that we cannot write a
version of program P′ that behaves as claimed. As we have just seen, the only reason
that program P′ cannot exist is that program P cannot exist. This means that DHP
cannot be solvable, which proves the theorem. ��

Although Theorem 9.1 shows that problem HP is “hard,” this bad news is some-
what moderated by the fact that the problem is partially solvable, in the following
sense.

Theorem 9.2. The halting problem HP is partially solvable; that is, as a set HP is
semidecidable.

Proof. To semidecide if the input 〈x,y〉 ∈ HP, construct a program P that behaves as
follows:

• Program P simulates program x on input y.
• If program x ever halts and gives an output, then program P halts and gives the

same output.

Note that we have given no indication of what program P does if program x never
halts. It will be our standard practice to have such unspecified behavior betoken
a program’s entering a tight loop, hence never halting. This is fine when we are
semideciding a language, as we are doing here with HP; cf. Section 9.2.1. ��

9.3.2 Why We Care about the Halting Problem—An Example

The reader can legitimately question why the halting problem (by which I mean both
HP and DHP) is so important. After all, the question whether a program halts on a spe-
cific input does not arise very often in “real” programming (although one does often
program as though such halting were guaranteed). In fact, the real importance of HP
and DHP in “real” computing contexts is immense, albeit indirect. Myriad problems
that are a central focus in “real” programming turn out to be unsolvable precisely
because HP and DHP are! While the preceding claim must be justified gradually over
the next three sections, we now present one simple example that hints at these myriad
consequences of Theorem 9.1.

Imagine that you have written a program P, and you are worried that there may
exist inputs that will send P into an infinite loop. It would be very comforting to
have access to a “metaprogram” P� that would “look at” P and reassure you that your
worries are groundless. Regrettably, program P� cannot exist in general—although
versions of P� may exist for very constrained classes of programs P. Moreover, the
fact that no general “magic bullet” such as program P� can exist follows from the
undecidability of HP and DHP! Here is the mathematical formulation of the preceding
problem and the proof of its unsolvability.
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The “magic bullet” program P� would compute the characteristic function κTOT of
the set/language

TOT = {x | program x halts on all inputs}.

The fact that P� cannot exists thus takes the following form.

Theorem 9.3. The set TOT is undecidable.

Proof. As with most theorems that assert the undecidability of a set/language S, this
theorem is proved by assuming the decidability of S and the derivation of a contra-
diction from that assumption.

Assume, for contradiction, that the set TOT were decidable—or equivalently, that
TOT’s characteristic function κTOT were computable. Let ONE denote a program that
computes the (total) constant function f (n) ≡ 1; for definiteness, we note that ONE
could look as follows:

Program ONE
Input n

output 1

Consider the following infinite family of programs that are indexed by all of the
strings in {0,1}�. For each x ∈ {0,1}�, the program associated with string x is:

Program ONEx

Input n

if program x halts on input x
then simulate program ONE on input n
else loop forever

You should be able to verify that the function FONEx computed by program ONEx

satisfies the following:

FONEx(n) =
{

FONE(n) if x ∈ DHP,
undefined otherwise.

In particular, we find the following chain of biconditionals that expose the behavior
of program ONEx:

Program ONEx halts on all inputs n
if and only if

program x halts on input x
if and only if

program x belongs to the set/language DHP; i.e., x ∈ DHP.

This chain of biconditionals boils down to the following crucial one.

[ONEx ∈ TOT] ⇔ [x ∈ DHP].
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The preceding biconditional means that if the set TOT were decidable, then we could
use its (computable!) characteristic function to decide the undecidable set DHP—
by deciding whether ONEx ∈ TOT. This fact can be expressed symbolically via the
following equation.

κTOT(ONEx) = κDHP(x).

Because we know that κDHP is not computable, we infer that κTOT is also not com-
putable, which means, of course, that TOT is not decidable. ��

Of course, we could have used a program for any specific total computable func-
tion in place of ONE in the preceding proof. Some simple candidates: a program for
the identity function on N, f (n) = n; or a program for the “square” function on N,
f (n) = n2; or a program for the function that reverses (say, binary) strings, f (x) = xR.
You should check your understanding of the proof by making sure that you under-
stand how to replace ONE by any of these other functions.

The proof of Theorem 9.3 shows that one can “reduce” the halting problem DHP
to the problem TOT, in the (mathematical) vernacular sense of that verb. We now
turn to the task of formalizing the notion of reduction, via a special form of encoding
of one problem as another. (In fact, there are many notions of “reduction” in com-
putability theory—cf. [80]—and even more in complexity theory—cf. [18, 48] for
early examples.) In the next section, we begin to develop one of the most common
notions of the reduction of one problem to another, one that is particularly easy to
interpret as an “encoding.” As the remainder of the book unfolds, you will see how
powerful the following simple notion of “reduction” is.

9.4 Mapping Reducibility

At an intuitive level, the ability to “reduce” one computational problem, A, to another
computational problem, B, means that we can use the ability to solve an instance of
problem B to “help” us produce a solution to an instance of problem A. Referring
back to Section 9.3.2, we were able to decide whether program ONEx computed
a total function—i.e., whether ONEx belonged to the language TOT—by deciding
whether program x halted when presented with input x—i.e., whether x belonged to
the language DHP.

The specific question, “Does ONEx compute a total function?” is an instance of problem
TOT; the set/problem TOT can be viewed as the totality of such instances.

The major source of informality in the preceding description is the meaning of the
word “help.” In the context of computability theory, we use the word to mean that
“one” can convert any program that decides language B into a program that decides
language A. The quotes around “one” are intended to suggest that we have not yet
resolved all the informality with our opening intuitive definition. Specifically, we are
not willing to allow human intervention in the helping process: we want the process
of producing a solution to an instance of A from a solution to an instance of B to be
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accomplished by a program! More specifically, we want to be able to write a program
PB→A that produces an instance of problem B from each instance of problem A, in
such a way that, for all strings x,

[x ∈ A] if and only if [PB→A(x) ∈ B].

Note that program PB→A must always work; i.e., it must compute a total function.

The fact that PB→A ∈ TOT is crucial for its role in reducing problem A to problem B. It
is, however, a coincidence that our first encounter with such a function occurs as we are
discussing a reduction to problem TOT.

When we study complexity theory, in Chapter 13, we add some notion of efficiency
to the requirements for program PB→A. But let’s stick with computability theory for
now.

Let’s start to get formal. For convenience, let us fix on a specific (but arbitrary)
finite alphabet Σ and say that all the languages of interest are subsets of Σ �. The
following is one of the most important concepts in all of computation theory.

Language A ⊆ Σ � is mapping-reducible (m-reducible, for short) to language B ⊆
Σ �, written

A≤m B,

if and only if there exists a total computable function f : Σ � → Σ � such that for all
x ∈ Σ �:

[x ∈ A] if and only if [ f (x) ∈ B]. (9.1)

We call the function f that encodes instances of language A as instances of language
B a reduction function.

It is fruitful to view the function f as a mechanism for encoding instances of
problem A as instances of problem B, so that is the terminology we shall use most of
the time. We shall see now how such encoding can “help” one decide or semidecide
a set/language.

We focus solely on mapping reducibility throughout our introduction to computability theory
and complexity theory. The reader should realize, though, that there are many other impor-
tant notions of reducibility that enrich at least computability theory, and possibly complexity
theory also. The interested reader should consult an advanced source such as [80] to see
the range of significant notions studies within computability theory. At the “weakest” end
of such notions, one encounters a version of m-reducibility, called one-one reducibility, that
employs only reduction functions that are one-to-one. At the “strongest” end of such notions,
one encounters the notion of Turing reducibility, which allows the computation that decides
language B to “help” the computation that decides language A throughout the latter compu-
tation (by “answering” questions about the computation thus far), not just at its inception
(by encoding one input as another as m-reducibility does). The description of notions of re-
ducibility as “weaker” or “stronger” is intended to indicate that if language A is reducible to
language B under some specific notion of reducibility, then A is reducible to B also under any
“stronger” notion. (The relation “stronger” is the converse of the relation “weaker.”) For the
three notions we have mentioned explicitly, for instance, we find that one-one reducibility is
“weaker” than m-reducibility, which, in turn, is “weaker” than Turing reducibility.

The reason that we focus solely on mapping reducibility is its combination of mathematical
simplicity and intuitive appeal.
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• Mapping reducibility admits a very appealing informal interpretation via the notion of
encoding instances of language A as instances of language B.

• Sources such as [80] describe the structure that the various notions of reducibility give
to the decidable and semidecidable languages, by studying which decidable or semide-
cidable languages are reducible to which others. If one surveys such results, one finds
that the reductions produced under m-reducibility are the most uniformly consistent with
one’s intuition, if one interprets “reducible to” as “helped by.”

9.4.1 Basic Properties of m-Reducibility

The preceding section laid out an intuitive goal for m-reducibility. (We shall gener-
ally use this shortened name in place of “mapping reducibility.”) Specifically, if one
set/language A is m-reducible to another set/language B, than the ability to decide or
semidecide B should “help” one do the same process for A. It turns out to be easy to
find a formal sense in which m-reducibility plays the desired role.

Lemma 9.2. Let A and B be languages over the alphabet Σ , and say that A≤m B.
(a) If language B is semidecidable (resp., decidable), then language A is semide-

cidable (resp., decidable).
(b) Contrapositively, if language A is not semidecidable (resp., not decidable),

then language B is not semidecidable (resp., not decidable).

Proof. We need prove only part (a) explicitly. Let f be the total computable function
that m-reduces A to B, and let ϕ be a program that computes f . Let’s review precisely
what this means.

If language B is decidable, then there is a program P that always halts such that
when presented with a string x ∈ Σ �, program P outputs 1 when x ∈ B and 0 when
x �∈ B. If language B is semidecidable, then there is a program P′ that, when presented
with a string x ∈ Σ �, halts and outputs 1 precisely when x ∈ B; program P′ loops
forever if x �∈ B.

In either case, we can use program ϕ as a preprocessor to either program P or
program P′. Now, by definition, ϕ converts any input y ∈ Σ � whose membership in
language A is of interest to an input f (y) ∈ Σ � that belongs to language B if and
only if y belongs to A. Therefore, the composite program ϕ-then-P is a decider for
language A; and, the composite program ϕ-then-P′ is a semidecider for language A.
Here, more explicitly, is what the composite program ϕ-then-P looks like:

Program ϕ-then-P
Input x ∈ Σ �

Compute program ϕ on input x: y← ϕ(x)
Compute program P on input y
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The composite program ϕ-then-P′ differs only in the presence of P′ on the last line,
instead of P. ��

It is of great importance for the development of the theory that the m-reducibility
relation is transitive: for any three languages A,B,C ⊆ Σ �, if A ≤m B and B ≤m C,
then A≤m C.

Lemma 9.3. The relation “is mapping-reducible to,” ≤m, is transitive.

Proof. Focus on three arbitrary languages, A,B,C ⊆ Σ �. Say that:

• A≤m B via the total computable function f ; i.e.,

(∀x ∈ Σ �) [x ∈ A]⇐⇒ [ f (x) ∈ B].

• B≤m C via the total computable function g; i.e.,

(∀x ∈ Σ �) [x ∈ B]⇐⇒ [g(x) ∈C].

Then it is easily seen that

(∀x ∈ Σ �) [x ∈ A]⇐⇒ [g( f (x)) ∈C]. (9.2)

Since the composition of total computable functions is another total computable func-
tion, condition (9.2) is equivalent to saying that A≤m C. ��

9.4.2 The s-m-n Theorem: Where Does One Find Encodings?

We now present a result from [50] that allows us to formalize the technique that we
used in Section 9.3.2 to encode one problem as another. Although this result is quite
transparent to anyone familiar with computers, we should never lose sight of the fact
that in common with much of the foundational work in computability theory, this
result was discovered and proved by people who had never seen a programmable
computer!

The result is known within the computability theory community as the s-m-n theo-
rem. The m and n in the name of the theorem actually are variables that range over N,
so that specific invidual instantiations of the s-m-n theorem have names such as “the
s-1-2 theorem.” (The “s” in the name is an uninterpreted letter, but it probably meant
“substitute” originally. You’ll see why imminently). Our applications of the theorem
will typically have m ∈ {1,2} and n = 1, although these restrictions are decidedly not
inherent in the result.

In preparation for stating the s-m-n theorem, let us revisit the proof of Theorem 9.3.
A more systematic rendition of what we did in the proof is the following.

First, we converted the single-input program ONE, which computes the constant
function f (n)≡ 1 to the two-input program ONE(2):
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Program ONE(2)

Input x (x ∈ {0,1}�)
Input n (n ∈ N)

if program x halts on input x
then simulate program ONE on input n
else loop forever

Next, we converted program ONE(2) into the infinite family of programs ONEx,
where x varies over {0,1}�, which is depicted in the proof of Theorem 9.3. It was
this infinite family that yielded the contradiction that establishes Theorem 9.3.

What the s-m-n theorem (really the s-1-1 theorem) asserts is that one can automate
the process of producing the family {ONEx} of indexed programs from the original
program ONE. Specifically, one can write a single-input program P that always halts
and that in response to any input x0 ∈ {0,1}� will produce the string that is program
ONEx0 . One can view program P as actually producing the following variant, ONE ′x,
of program ONEx.

Program ONE ′x
Input n (n ∈ N)

x := x0

if program x halts on input x
then simulate program ONE on input n
else loop forever

Note that in essence, all program P does in response to input x0 is transform program
ONE(2) by replacing the input statement “Input x” with the assignment statement
“x := x0” (which is often articulated “x gets x0”). Clearly, then, one can write a version
of program P that halts on all inputs.

The type of transformation we have just described is easily generalized to produce
the s-m-n theorem. We state the theorem in its general form, but we leave its proof,
which just generalizes our description of program P, to the reader.

Theorem 9.4. (The s-m-n theorem) Let us be given the program Ψ that has m +
n input variables, X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn, that is depicted schematically in
Figure 9.1(a). There exists a program P that has m inputs: X1,X2, . . . ,Xm, such that:

• Program P halts on all inputs.
• In response to inputs x1,x2, . . . ,xm, program P converts program Ψ to the program

Ψ ′ that has n input variables, Y1,Y2, . . . ,Yn, that is depicted schematically in Figure
9.1(b).

The next section exercises Theorem 9.4 vigorously, so be sure that you understand
the proof before proceeding.
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(a)

Program Ψ
Input X1

...
Input Xm

Input Y1

...
Input Yn

BODY

(b)

Program Ψ ′

Input Y1

...
Input Yn

X1 := x1

...
Xm := xm

BODY

Fig. 9.1 (a) The program Ψ and (b) the program Ψ ′ of Theorem 9.4.

9.5 The Rice–Myhill–Shapiro Theorem

The theorem we are about to prove states—informally!—that there is nothing “non-
trivial” that one can determine about the function computed by a program from the
program’s static description. The word “nontrivial” here precludes behavioral prop-
erties that are true either of no program or of every program. Now, on to the formal
statement of the theorem.

A set/language A ⊆ Σ � (whose constituent strings are interpreted as programs) is
a property of functions (PoF, for short) if the following is true. (We say it in three
distinct but equivalent ways for emphasis.)

If the programs x and y compute the same function (say, for definiteness, from Σ � to Σ �), then
either both x and y belong to A, or neither belongs to A.

Equivalently,

If a program x belongs to A, then so also do all other programs that compute the same function
as x.

Equivalently,

All programs that compute the same function lie on the same side of the metaphorical line
that separates the set/language A from its complement A = Σ � \A.

PoFs are our formal mechanism for talking about functions within computability the-
ory: we identify a “property of functions” with the set of all programs that compute
functions that enjoy the desired property. A few examples:

• The property “total function” is embodied in the set of all programs that halt on
every input (hence, compute functions that are total). This is our (by now) old
friend TOT = {x | programx halts on all inputs}.

• The property “empty function” is embodied in the set EMPTY of all programs that
never halt on any input: EMPTY = {x | programx never halts on any input}.

• The property “constant function” is embodied in the set of all programs that halt
and produce the same answer, no matter what the input is:
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{x | programx halts and produces the same result on all inputs}.

• The property “square root” is embodied in the set of all programs that halt precisely
when their input n is an integer that is a perfect square and that produce, when they
halt, the output

√
n (or really, a numeral that represents

√
n).

A PoF A is nontrivial if there exists a program x that belongs to A and there exists
another program y that does not belong to A, so that neither A nor A is empty. The
main point here is that (a) some program has—i.e., belongs to—property A, and some
program does not have—i.e., does not belong to—property A.

Amazingly, all we need to know is that a set A is a nontrivial PoF in order to know
that A is not decidable.

Theorem 9.5. (The Rice–Myhill–Shapiro theorem) Every nontrivial PoF is unde-
cidable. In other words: If a language A is a nontrivial property of functions, then A
is not decidable. Furthermore, if a program for the empty function EMPTY belongs
to PoF A, then A is not semidecidable.

An alternative statement of Theorem 9.5. Every problem that corresponds to a
nontrivial PoF is unsolvable.

Proof. Let us concentrate, for definiteness, on the alphabet Σ = {0,1} and on pro-
grams that compute (partial) functions from {0,1}� to {0,1}�. As we now know, this
is really no restriction because of our ability to encode any finite set as any other finite
set (say, by using pairing functions).

Let us denote by “program x” the program specified by the string x and by Fx the
function computed by program x. In particular, let e be a string such that program e
loops forever on every input, so that Fe is the empty (i.e., nowhere defined) function;
using our earlier notation, e ∈ EMPTY.

It should be clear how to supply the details necessary to turn the following pseu-
doprogram into a real interpreter program, in a real programming language (of your
choice):

Program Simulate.1
Inputs x, y, z

if program x halts on input x
then simulate program y on input z
else loop forever

You should be able to verify that

FSimulate.1(x,y,z) =
{

Fy(z) if x ∈ DHP,
Fe(z) if x �∈ DHP.

If you are comfortable with the development thus far, then you should agree that
we can replace the input y in Program Simulate.1 by a specific string—call it y0—
that is fixed once and for all. (Note that formally, we are applying the s-1-1 theorem
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of Section 9.4.2 in order to effect this replacement.) We thereby obtain the following
pseudoprogram, which again you can convert into a real interpreter program, in a real
programming language:

Program Simulate.2
Inputs x, z

if program x halts on input x
then simulate program y0 on input z
else loop forever

You should now be able to verify that

FSimulate.2(x,z) =
{

Fy0(z) if x ∈ DHP,
Fe(z) if x �∈ DHP.

Now, the dependence of Program Simulate.2 on input x is so formulaic that we
could actually supply x to a preprocessor for our interpreter program that automat-
ically inserts a value for x into Program Simulate.2. Indeed, we can design this
preprocessor so that in response to any string x, it produces the following program,
which will be the input to our interpreter program:

Program Simulate.3
Input z

if program x halts on input x
then simulate program y0 on input z
else loop forever

In more detail, the preprocessor is specified by the following program.

Program Preprocessor
Input x

Output

“Input z

if program x halts on input x
then simulate program y0 on input z
else loop forever”

Note that Program Preprocessor just outputs a string that is fixed except for the
indicated inclusion of the input x. This string is Program Simulate.3 with the appro-
priate value of x in the indicated place. Thus, Program Preprocessor always halts
on every input x; i.e., it computes a total computable function, F : {0,1}�→{0,1}�.
You should now be able to verify that

FF (x)(z) = FSimulate.3(z) =
{

Fy0(z) if x ∈ DHP,
Fe(z) if x �∈ DHP.

(9.3)

Let us now shift gears and start thinking about an arbitrary but fixed nontriv-
ial PoF A. Now, the program e for the empty function belongs either to A or to A.
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Let us assume that e �∈ A. We return to the alternative assumption after deducing the
consequences of this assumption. We infer the following chain of properties about A.

1. Because A is a property of functions, we know that no program y ∈ A is equivalent
to program e. This is because by definition, if A contained such a program, then it
would have to contain program e also.

2. Because of fact 1, we know that every program y ∈ A halts on some input. This is
because any program that violated this would be equivalent to program e.

3. Because A is nontrivial, there must be some program that belongs to A. Let y0 be
a program that belongs to A.

Let’s see what happens when we let the program y0 of fact 3 serve as the program y0

mentioned in Program Simulate.3. When this happens, we can infer from (9.3) that

[x ∈ DHP] ⇐⇒ [F (x) ∈ A]. (9.4)

Why is this true? There are two alternatives we must consider.

x ∈ DHP. If this is true, then FF (x) ≡ Fy0 , as functions. This means that program
F (x) and program y0 compute the same function. Because y0 ∈ A (by hypothesis)
and because A is a PoF, this means that F (x) ∈ A.

x �∈ DHP. If this is true, then FF (x) ≡ Fe, as functions. This means that program
F (x) and program e compute the same function (the empty function in this case).
Because e ∈ A, and because A is a PoF, this means that F (x) ∈ A.

When analyzing the case “x �∈ DHP,” we used the following fact, which you should verify:
The set A is a PoF if and only if its complement A is a PoF.

The preceding alternatives verify (9.4).
What have we shown here? Looking at (9.4) and comparing it to the “formula”

(9.1) for mapping reductions, we find that we have proved the following.
For any nontrivial PoF A that does not contain program e, we have DHP≤m A.

By Lemma 9.2, this means that any such set/language A is undecidable.
Finally, what happens to the preceding reasoning when e ∈ A? You will be asked

as an exercise to make the changes in our argument occasioned by this change of
assumption. By making these changes, you should end up with an argument that
proves the following.

For any nontrivial PoF A that does contain program e, we have DHP≤m A.
In this case, Lemma 9.2 tells us that the set A is not semidecidable!

This completes the proof. ��
The proof of Theorem 9.3 is essentially an instantiation of the proof of Theo-

rem 9.5 for a specific language A—in this case, language TOT—that does not contain
program e. Let us close the current section with an instantiation of the proof of Theo-
rem 9.5 for a specific language A that does contain program e. Let’s use the language
EMPTY as our example.

Corollary 9.1 The set EMPTY is not semidecidable.
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Proof. We shall refer lavishly to the proof of Theorem 9.3 in order to avoid needless
repetition.

Assume, for contradiction, that the set EMPTY were semidecidable—or, equiva-
lently, that EMPTY’s semicharacteristic function κ ′EMPTY were partially computable.
Let ONE denote the program that computes the (total) constant function f (n) ≡ 1,
as in the proof of Theorem 9.3. Consider the following infinite family of programs
that are indexed by all of the strings in {0,1}�. For each x ∈ {0,1}�, the program
associated with string x is program ONEx (from the proof of Theorem 9.3 in Section
9.3.2). You should be able to verify that the function FONEx computed by program
ONEx satisfies the following:

FONEx(n) =
{

FONE(n) if x ∈ DHP,
Fe(n) if x �∈ DHP (i.e., if x ∈ DHP).

Note that saying “FONEx (n) = Fe(n)” is equivalent to saying “FONEx (n) is undefined.”

In particular, we find the following chain of biconditionals that expose the behavior
of program ONEx:

Program ONEx fails to halt on the single input n
if and only if

program x fails to halt on input x
if and only if

program x belongs to the set/language DHP; i.e., x �∈ DHP.

This chain of biconditionals boils down to the following crucial one.

[ONEx ∈ EMPTY] ⇔ [x ∈ DHP].

The preceding biconditional means that if the set EMPTY were semidecidable, then
we could use its (partially computable!) characteristic function to semidecide the
nonsemidecidable set DHP—by deciding whether ONEx ∈ EMPTY. This fact can be
expressed symbolically via the following equation:

κ ′EMPTY(ONEx) = κ ′DHP(x).

Now, we know that κ ′
DHP

is not partially computable, or else, by Lemma 9.1, κDHP

would be computable—which it’s not (Theorem 9.1). We conclude therefore that
κ ′EMPTY is also not partially computable, which means, of course, that EMPTY is
not semidecidable. ��

9.6 Complete, or “Hardest,” Semidecidable Problems

One of the most exciting features of mapping-reducibility is that there exist semide-
cidable problems/languages that in a precise, formal sense are the hardest semide-
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cidable problems. We call these hard problems m-complete, where, as in the term
“m-reducible,” the “m” stands for “mapping.”

From this point until the end of the book, we consistently capitalize the words “Complete”
and “Hard” when used in the technical sense of this section, so the the reader will recognize
easily when the words are being used in a technical sense and when in the vernacular.

A problem A⊆ N is m-Complete precisely when:

1. A is semidecidable.
2. Every semidecidable problem B is mapping-reducible to A; symbolically:

B≤m A.

The reason that we call m-Complete problems the “Hardest” semidecidable prob-
lems is that (by Lemma 9.2): If any semidecidable problem were decidable, then all
semidecidable problems would be decidable.

An informal—but not imprecise—reading of the definition of “m-Complete” indi-
cates that every semidecidable problem can be “encoded” as any m-Complete prob-
lem. This is an extremely strong property, so strong, in fact, that it is not clear a priori
that there exist m-Complete problems! In fact, though, we have been dealing with
two of them throughout this chapter. If you had any doubts about the importance (and
the relevance) of the halting problem, the following two results should allay your
concerns!

Theorem 9.6. The set HP (the halting problem) is m-Complete.

Proof. The semidecidability of HP having been established in Theorem 9.2, we con-
centrate only on the fact that every semidecidable problem m-reduces to HP.

Let A be an arbitrary semidecidable problem. By definition—see Section 9.2.1—
this means that the semicharacteristic function κ ′A of the set A is semicomputable.
More formally, there is a program PA such that for all strings x,

PA(x) halts precisely when x ∈ A.
If y is a string (or integer, if you prefer) that is actually a “name” of program PA—
hence, of set A—then the preceding condition can be rewritten as
〈y,x〉 ∈ HP if and only if x ∈ A.

Clearly, this last assertion implies that A≤m HP via the total computable function fy

defined by fy(x) = 〈y,x〉.
If you choose to develop computability theory in terms of (nonnegative) integers, then the
function fy is a pairing function of the sort developed in Section 7.1; we exhibited several
computable ones there. If you choose to use strings (as we have done most of the time),
then fy would be some kind of string encoding of the sequence (left-angle-brace, string y,
comma, string x, right-angle-brace). The development in Section 7.1 shows that there are
myriad computable options here.

Because A was an arbitrary semidecidable problem, the Theorem follows. ��
Showing that the set DHP is m-Complete takes a bit more work, because it is

not transparent how to embed a reference to the encoded set A within DHP’s single
unstructured constituent strings.
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Corollary 9.2 The set DHP (the diagonal halting problem) is m-Complete.

Proof. The semidecidability of DHP having been established in Theorem 9.2, we
concentrate only on the fact that every semidecidable problem m-reduces to DHP.
Further, because mapping reducibility is transitive (Lemma 9.3), it suffices to show
that HP≤m DHP and then invoke Theorem 9.6, which shows that HP is m-Complete.

We begin our demonstration that HP ≤m DHP by revisiting Section 7.1 in the
light of what we now know about computability. Specifically, we recall that there
exist computable injections F : Σ �×Σ � → Σ � for any finite Σ . (We leave the easy
verification to the reader.) This means that we can computably deal with any ordered
pair of strings 〈x,y〉 as though it were a single string F(x,y).

Consider now the following program.

Program Simulate.1
Input x
Input y
Input z

if program x halts on input y
then output z
else loop forever

Note that whenever the first two inputs to Program Simulate.1 form a pair 〈x,y〉
that belongs to the language HP, the program computes the identity function on its
third input. Hence, in this case, Program Simulate.1 halts for every value of the
third input. When the first two inputs form a pair 〈x,y〉 that belongs to HP (because
program x does not halt on input y) then Program Simulate.1 computes the empty
function. Hence, in this case, Program Simulate.1 never halts for any value of the
third input.

As we did in the proof of the Rice–Myhill–Shapiro theorem (Theorem 9.5) we
can replace Program Simulate.1 by an infinite family of programs—one for each
ordered pair of strings 〈x,y〉. (Note that, formally, we are applying the s-2-1 theo-
rem of Section 9.4.2 in order to effect this replacement.) The family member that
corresponds to the specific ordered pair 〈x0,y0〉 reads as follows:

Program Simulate.2:〈x0,y0〉
Input z

if program x0 halts on input y0

then output z
else loop forever

Note that each program Program Simulate.2:〈x0,y0〉 in this family either computes
the identity function, which is total, or the empty function, which is nowhere defined;
the former occurs when 〈x0,y0〉 ∈ HP; the latter occurs when 〈x0,y0〉 ∈ HP.

Once again, we invoke our knowledge of how interpreters work to assert that
we can write a program P that always halts—hence, computes a total computable
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function—and that on any input pair 〈x,y〉 produces the string that is the program
Program Simulate.2:〈x,y〉. In other words, this program is the value P(x,y).

We can now ask, for any pair of strings 〈x,y〉, whether the string P(x,y) belongs to
DHP, i.e., whether program P(x,y) halts when it is run with a copy of itself as input.
From what we have said earlier, P(x,y) ∈DHP if and only if program P(x,y) halts on
all inputs—and this happens if and only if 〈x,y〉 ∈ HP.

We have thus shown that for all pairs of strings 〈x,y〉 ∈ Σ �×Σ �, [〈x,y〉 ∈ HP] iff
[P(x,y) ∈DHP]. By definition, then, we have shown that HP≤m DHP. It follows that
the latter language is m-Complete. ��

9.7 Some Important Limitations of Computability

Almost all of our comments about computability theory to this point have extolled the
theory’s power—as manifest, say, in the Rice–Myhill–Shapiro theorem—and broad
applicability—as manifest in the Church–Turing thesis. In order to make the theory
part of one’s professional life, it is fully as important that one understand its limita-
tions as its strengths. We now briefly describe two of these limitations, one relating
to the “negative” assertions that the theory makes and one to its “positive” assertions.
What does “uncomputable/undecidable/unsolvable” mean? We have demonstrated
the unsolvability of a number of problems in this chapter. I want to discuss two of
them in a bit more detail. You should be able to extrapolate this discussion to other
problems quite easily.

The problem of deciding whether a given program halts on a given input (the
Halting Problem, HP) is unsolvable, as is the problem of deciding whether a program
halts on all inputs (the set TOT). Yet we clearly encounter program-input pairs for
which the halting problem is solvable all the time, and there are many programs that
we can prove halt on all inputs. Indeed, we have discussed many such program–input
pairs and programs in this chapter! So what is computability theory trying to tell us?
Informally, computability theory is telling us that

• One cannot automate the process of deciding whether a given program halts on a
given input or whether a given program halts on all inputs.

• There exist specific programs for which one cannot decide halting behavior. (The
infinite family of programs Program Simulate.2:〈x0,y0〉 of the preceding section
provide examples.)

Thus, computability theory is really telling us what can be achieved automatically and
in general. The tricky part is that because of the power of encodings, one can never
be certain that one’s apparently innocent program is not a computable encoding of
some troublesome program such as a bad instance of Program Simulate.2:〈x0,y0〉.
What does “computable” mean? It is not surprising that computability theory’s
“negative” assertions must be read with care, but how can a “positive” assertion of a
function’s computability create problems? The problem arises from the so-called law
of excluded middle, a logical principle that posits the truth of the assertion
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A1∨A2∨·· ·∨An∨ (A1∨A2∨·· ·∨An),

no matter what the disjuncts A1, . . . ,An are. This logical “law”—which is usually
stated in the two-alternative case (the case n = 1)—tells us that we can infer the truth
of an exhaustive disjunction of alternatives without knowing which of the alternatives
is actually true! This “law” is, for example, the infrastructure for every proof by
contradiction! In such a proof, we show that assertion A leads to an absurdity, so we
(usually implicitly) invoke the law of excluded middle to infer that A must be true.

How can this “law” that we invoke all the time lead to problems? Consider the
following (total) run-of-7’s function f : N→ N. Letting π denote, as usual, the ratio
of the circumference of a circle to its diameter, define the function f as follows: For
each n ∈ N,

f (n) =

⎧

⎨

⎩

1 if there is a run of ≥ n instances of the digit 7 in the decimal
expansion of π,

0 otherwise.

I claim that the function f is computable—even though I have no idea how to compute
it, and as far as I know, no one else knows how to compute it either! So why is f
computable? Consider the alternatives.

1. For every n∈N, the decimal expansion of π contains a run of instances of the digit
7 whose length exceeds n.

2. There exists an n0 ∈ N such that the decimal expansion of π contains a run of n0

instances of the digit 7, but it does not contain any run of length longer than n0.

By the law of excluded middle, one of the preceding alternatives is true. Note that
there are really infinitely many alternatives here: there exists no longest run; for each
n ∈ N, n is the length of the longest run.

On the one hand, if alternative 1 is true—there is no longest run—then the function
f is computed by the program ONE described in the proof of Theorem 9.3.

On the other hand, if alternative 2 is true, and n0 is the length of the longest run,
then the function f is a so-called step function

f (n) =
{

1 if n≤ n0,
0 if n > n0.

In this case, the following program computes f :

Program ONE-until-n0

Input n

if n≤ n0

then output 1
else output 0
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Here is where the footing gets slippery! We have just listed (with the aid of param-
eterization) an infinite set of programs. By the law of excluded middle, one of them
computes the function f . This means that there exists a program that computes the
function f . By definition, then, f is a computable function. The only stumbling block
is that we do not know which one of our infinitely many candidate programs actually
computes f . But computability theory requires only that we show that there exists a
program that computes f . The theory does not require us to be able to point to the
program!

I am willing to call the preceding problem a “limitation” of computability the-
ory, perhaps even a shortcoming of the theory. If there is any branch of mathematics
that should be “constructive,” one would expect computability theory to be such a
branch—but it’s not!

If the preceding story disturbs you, be assured that you are not alone. There have been several
vibrant schools of constructive mathematics over the past century or more. (The opposing
school is said to do classical mathematics.) All of the constructive schools require proofs of
existence to be accompanied by explicit demonstrations of an object that satisfies the desired
condition. Practitioners of constructive mathematics would, in particular, reject our “proof”
that the function f is computable—precisely because we cannot identify the program that
computes f .

It is hard to give up tools such as the law of excluded middle that, even when not really needed,
tend to make arguments shorter and simpler. For this reason, even some mathematicians who
sympathize at some level with the constructive agenda persist in using classical arguments.

If you are interested in seeing a sophisticated attempt to put much of the math you have
studied in high school and college on a constructive footing, you should thumb through the
fascinating book by Erret Bishop [6].

9.8 (Online) Turing Machines and the Church–Turing Thesis

The current section has three mutually supporting goals that center on exposing the
reader to a number of variants of the Turing machine model. We hope thereby to:

1. give the reader some intuition for why people accept the Church–Turing thesis as
a working hypothesis.
We have asserted earlier that all efforts to find a “reasonable” model of “digital
computer” that is more powerful than the Turing machine have failed. We want
to give some technical meat to these assertions: (a) by discussing a number of the
proposed augmentations of the TM model; (b) by describing how an ordinary TM
can simulate each of these proposals.

2. help the reader gain a better understanding of the TM model, particularly the online
Turing machine (OTM).
It is easy to underestimate the capabilities of the OTM because of its primitive re-
sources for data storage and manipulation. Our study thus far has spent ample time
exposing the limitations of TMs and their variants, via the notion of undecidability
and its even more limiting kin (such as unsemidecidability). It is time to restore
the balance a bit.
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3. present a sampler of variants of the TM model that one might expect to be less
powerful than the Turing machine—but are not!
In order to fully appreciate the capabilities and limitations of digital computation,
one must understand how weak one can make a computing repertoire—instruction
set, data structures—yet still enable the full power of digital computation, as well
as how strong one can make a computing repertoire without augmenting comput-
ing power beyond that of a TM.

The first of these goals is the primary motivation of this section, for all of com-
putability theory and complexity theory depend on the Church–Turing Thesis for the
depth of their impact, which results from (the belief in) the breadth of their implica-
tions. We therefore organize this section as a series of subsections devoted to individ-
ual competitors to the OTM model. We hope that the menu of competitors that we
consider is adequate in number and in disparate computing repertoires to enhance the
reader’s appreciation for the thesis and to supply the reader with the technical tools
needed to add to our menu.

Studying even a small fraction of the massive number of competitors for the TM that have
been proposed over the decades is beyond the scope of this book. But we urge the inter-
ested reader to follow the pointers sprinkled throughout our discussion in Section 9.1 and
elsewhere. Each new competitor model that one considers will enhance one’s understand-
ing of the capabilities and limitations of digital computation—and one’s appreciation for the
Church–Turing thesis.

Regarding our other two goals for this section: Understanding the TM model via
its competitors better helps one understand why the apparently simplistic OTM model
remains relevant to “real” computing to this very day. Indeed, embellished versions
of the OTM can provide a basis for an algorithmic theory of data-structure topology.
Specifically, for many types of computations, one can expose the algorithmic impact
of data-structure topology by comparing the efficiencies—say in computation time—
of competing genres of OTM whose worktapes have competing topologies. We thus
abstract the control portion of an algorithm down to a finite state-transition system
(the competing OTMs’ finite-state controls), and use the OTMs’ worktapes to model
access to data structures. Indeed, the development in Section 5.5 can be viewed as
a valuable test study of this point of view. We urge the reader to reread that section
from the described vantage point. For the aspiring researcher, variants on the classical
TM are a wonderful source of algorithmic problems about data structures!

Throughout this section, we employ the OTM of Figure 3.5 as our “base” model.
In Section 9.8.1, we show how a variety of ways of apparently weakening the OTM
model can, in fact, efficiently simulate the OTM. In Section 9.8.2, we show how a
variety of ways of apparently strengthening the OTM model can, in fact, be simu-
lated efficiently by the OTM. Because this section is devoted to supplying intuition,
we supply highly descriptive sketches of proofs, rather than highly detailed formal
proofs.
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9.8.1 Simplifying an OTM without Diminishing Its Power

This section is devoted to five modifications of the OTM model that one might expect
to deprive the model of some computing power. For each of the five, we show that
the new model can simulate arbitrary computations by an unmodified OTM, hence is
no weaker than an OTM. The first four of our apparently weaker OTMs can actually
simulate an OTM rather efficiently—specifically, with only polynomial slowdown—
a fact that played a significant role in the early development of complexity theory, as
we discuss in Chapter 13.

A. An OTM with a One-Ended Tape

An OTM M can extend its worktape either to the left or the right as a computation pro-
ceeds. This two-way extendibility has the potential of complicating analyses of M’s
behavior, by sometimes requiring an awkward indexing of M’s tape squares using
both positive and negative integers. Consider, for instance, the (imaginary) snapshot
of a computation by M in Figure 9.2(left). In the figure, we imagine that we have

TOP

B

Bγγ
b a

−3−2−1

OTM   OTM   

γγ ......
a b

γ γ γ
c d e B γ γ γ

c d e

0 1 2 30 1 2 3−1−2

...

BOTTOM

Fig. 9.2 Simulating an OTM M via an OTM M′ whose worktape is one-ended.

labeled as “square 0” the tape square where M’s read/write head resided at the start
of some computation and that we have labeled all other squares relative to this base
square. As we suggest in Figure 9.2(right), at the cost of complicating M’s worktape
alphabet a bit, we can rewrite M’s program so that M will never extend its worktape
leftward from the base square. This allows us to index all squares with nonnegative
integers—which sometimes leads to simpler analyses. We now flesh out the sugges-
tion of Figure 9.2 to a simulation algorithm.

Proposition 9.1 For every OTM M, there exists an equivalent OTM M′ whose work-
tape is one-ended, i.e., is never extended to the left. M′ can simulate M step for step:
it executes any t-step computation by M in t steps.



9.8 (Online) Turing Machines and the Church–Turing Thesis 177

Proof (Sketch). We produce the one-ended OTM M′ from the arbitrary OTM M with
the help of an algorithmic device that has broad applications in the worlds of both
TMs and data structures: structuring a worktape into tracks. Refer to Figure 9.2(right)
as we describe the concept and implementation of tracks.

Having a two-track worktape amounts, logically, to splitting each square of the
worktape into an upper half and a lower half. Collectively, the sequence of upper
halves of the squares forms the top track of the tape, and the sequence of lower halves
forms the bottom track. Extending this idea to k > 2 tracks requires merely clerical
changes in our description; e.g., one obtains three tracks by splitting each tape square
into a top third, a middle third, and a bottom third. The formal mechanism for al-
gorithmically implementing the track concept is via a product-structured worktape
alphabet. For instance, in order to algorithmically implement a two-track tape, each
of whose tracks employs the worktape alphabet Γ , one endows the full tape with the
worktape alphabet Γ ×Γ ; for three tracks, one would use Γ ×Γ ×Γ ; and so on.

There is a hair that needs to be split here. In our intuitive description of tracks, and in Figure
9.2(right), the two tracks of the tape are depicted as being one on top of the other. Our sug-
gested formal implementation via product-structured worktape alphabets views the tracks as
implemented by having symbols be ordered pairs (for two tracks), ordered triples (for three
tracks), and so on. This inconsistency is dictated by our employing a “notation” that accom-
modates the different strengths of the textual and graphic media. Once forewarned, the reader
should not be misled by the inconsistent conventions.

We apply tape-tracking to the problem at hand in the following way. Let us begin
with an OTM M that has the freedom of extending its worktape in either direction; let
Γ be M’s worktape alphabet. As indicated in the paragraph preceding the proposition,
we view M’s trajectory on its worktape as inducing a labeling of the squares of the
tape with integers. This labeling is for our convenience in analyzing M’s behavior;
M does not have access to it. We view the square where M begins its journey on
the tape as getting the label 0. The labels of other squares are determined from the
label of this base square: each square’s label is 1 greater than the label of its left-hand
neighbor and 1 less than the label of its right-hand neighbor. These logical labels,
which are provided in Figure 9.2(left), give us a convenient way to describe how
we replace M with the desired equivalent OTM whose worktape can be extended
only to the right. We obtain a snapshot of M′’s tape by “folding” the corresponding
snapshot of M’s tape, in the manner indicated in Figure 9.2(right). Note that each of
M’s tape squares that has a positive label k is paired via our folding with the square
of M’s tape that has label −k. Essentially, M′ will now be able to simulate M step
for step, by

• mimicking M’s moves exactly when M is in the positively labeled region of its
worktape; M′ moves left when M does, and it moves right when M does;

• “flipping” M’s moves when M is in the negatively labeled region of its worktape;
M′ moves left when M moves right, and it moves right when M moves left.

The only complication to this simple step-for-step simulation occurs when M moves
onto its square 0 and continues moving in the same direction. The problem is that
under our simulation strategy, this sequence of moves requires M′ to switch from
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one track of its worktape to the other. We must endow it with the resources needed to
make this switch. We do so via two further slight additions to our description of M′.

1. It is important that M′ know when it is at the left end of its worktape, so that as it
simulates a move of M wherein M leaves its square 0 toward the left, M′ does not
try to extend its tape leftward nor to move left from its square 0 and thereby “fall
off” the tape. We rather want M′ to simulate this leftward move by M by switching
from the top track of its tape to the bottom track. The mechanism that we institute
to identify square 0 for M′ is illustrated in Figure 9.2(right): We do not pair square
0 of M’s tape with another square of M’s tape as we craft square 0 of M′’s tape.
Instead, we pair square 0 of M’s tape with a special symbol � that is distinct from
all letters in Γ , i.e., � �∈ Γ . M′ places � in the bottom track of the tape square
where it starts a computation, which is square 0 of M′’s tape; it never writes �
anywhere else. Thus, we endow M′ with the worktape alphabet

Γ ×
(

Γ ∪{�}
)

rather than just the product Γ ×Γ .
2. As M′ simulates moves of M, it must know when to take its current worktape

symbol from the top track of its tape and when from the bottom. This is an easy
determination, because M′:

• knows that it starts its journey on square 0;
• can tell when it returns to square 0, by the presence of the symbol � on the

bottom track of the square;
• can tell that it is in

– “positive” territory when M’s most recent departure from its square 0 was
via a rightward move,

– “negative” territory when M’s most recent departure from its square 0 was
via a leftward move.

We simplify the formal specification of M′’s track selection by explicitly implant-
ing a TOP/BOTTOM toggle in M′’s state-set. Formally this toggle is implemented
by replacing M′’s state-set Q by the set Q×{TOP, BOTTOM}.
The informal description we have provided, augmented by several formal hints,

should allow the reader to complete the details needed to turn our detailed descripton
into a formal proof of the proposition. ��

There is another approach to constructing the one-ended OTM M′ from M. One can endow M′

with a one-track one-ended worktape and have M′ allocate the odd-labeled squares (resp., the
even-labeled squares) of this tape, in order, to the squares of M’s tape that have nonnegative
(resp., negative) labels. We leave the details to the reader.

We have chosen our track-based simulation strategy for two reasons. (1) The idea of endowing
a TM’s worktape with tracks is useful in a large variety of algorithmic applications. (Indeed,
we shall employ tracks again in the next section.) (2) At the cost of endowing M′ with a
worktape alphabet whose size is roughly the square of M’s, the track-based strategy yields a
step-for-step simulation: M′ simulates t steps of a computation by M in exactly t steps. The
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parity-based simulation strategy allows M′ to have an alphabet that is only roughly twice the
size of M’s, but the simulation incurs a factor-of-2 slowdown.

B. An OTM with Two Stacks instead of a Worktape

A stack can be viewed as a tape whose contents are accessed and manipulated in
a very constrained way. In the following description, we refer repeatedly to Figure
9.3(right), which depicts an OTM M(stack) that has two stacks, which it employs in
place of a standard worktape. A stack has a top, where all access to data takes place.

(stack)

B Bγ
b

γ
a

OTM   OTM   

γγ ......
b

γ γ γ
c d e

...γ γ γ
c d e

...
a

Fig. 9.3 Simulating an OTM M via an OTM M(stack) that uses two stacks in place of a worktape.

To conserve precious resources, we have drawn Figure 9.3(right) and its two successor figures
with M(stack)’s two stacks on their sides. Thus, in the figures, the “top” of the lefthand stack
is, in fact, the tape’s rightmost square, and the “top” of the right-hand stack is, in fact, the
tape’s leftmost square.

A stack is read via the POP operation, which removes the stack’s top square. In the
figure, when M(stack) POPs its left-hand stack, it thereby reads the symbol B , simul-
taneously removing the symbol from the stack; a similar operation on its right-hand
stack produces the symbol γc. The operation POP is destructive: the old top square
(which has been POPped) is no longer on the stack. The double-POP just described
thus produces the configuration depicted in Figure 9.4. A stack is written via the PUSH

operation, which places a new top square “on top of” the previous one. Note that the
PUSH operation is not destructive: the old top square is still in the stack; it is just the
second-from-top square now. Figure 9.5 illustrates how the configuration depicted in
Figure 9.4 changes when M(stack) PUSHes the symbol γf onto its right-hand stack.

We say that a stack is empty if it does not contain any symbols other than the blank
symbol B . Accordingly, when one POPs an empty stack, one receives, in response,
an instance of B . If, as is convenient in many computations, one wants to detect
the “bottom” of the stack—i.e., the symbol that was at the top when the computa-
tion began—then one must initially PUSH onto the stack a designated marker for this
“bottom.”
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Fig. 9.4 The stack-OTM M(stack) after having POPped both of its stacks.
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Fig. 9.5 The stack-OTM M(stack) after having PUSHed a new symbol, γf onto its right-hand stack.

The computing device M(stack) depicted in Figure 9.3(right)—and in Figures 9.4
and 9.5—is a 2-stack OTM (2-STM, for short). M(stack) looks much like an OTM,
except that two stacks jointly form the OTM’s only unbounded data structure. Every
computation begins with both of M(stack)’s stacks “empty,” meaning that each has
just one square, and that square contains the blank symbol B . The reader should be
able to flesh out how M(stack) computes, based on our discussions of the stack data
structure and of the semantics of OTMs (in Section 3.3). Of course, we could easily
extend the STM model by endowing an OTM with k > 2 stacks, but the following
result illustrates that the 2-STM already has the power of an OTM, hence fills the
needs of this section.

Proposition 9.2 For every OTM M, there exists an equivalent 2-STM M(stack). M(stack)

can simulate any t-step computation by M in O(t) steps.

Proof (Sketch). We design the 2-STM M(stack) to simulate a given OTM M as follows.
Say that M(stack) has a left-hand stack and a right-hand stack, as in Figure 9.3.

Overall setup

• M begins a computation with a blank worktape, and M(stack) begins with two blank
stacks.
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• Whenever M polls its input port, M(stack) does likewise.
• Whenever M halts and either accepts or rejects, M(stack) does likewise.
• The inductive correspondence between M’s configuration and M(stack)’s is as fol-

lows:

– the contents of M(stack)’s left-hand stack (bottom to top) are identical to the
contents of that portion of M’s worktape that lie to the left of M’s read/write
head;

– the top symbol on M(stack)’s right-hand stack is identical to the symbol currently
under scan by M’s read/write head;

– the contents of M(stack)’s right-hand stack (top to bottom) that lie below the
topmost symbol are identical to the contents of that portion of M’s worktape
that lie to the right of M’s read/write head.

Operation

• When M reads the symbol currently under scan on its worktape, M(stack) POPs both
of its stacks.
If M reads the symbol γ from its worktape, then, by the inductive hypothesis, γ is
the symbol that M(stack) reads from its right-hand stack. Let γ be the symbol that
M(stack) reads from its left-hand stack, simultaneously with its reading γ from its
right-hand stack.

• Say that M rewrites symbol γ as symbol γ ′.

– If M stays stationary on its worktape at this step, then M(stack):
1. PUSHes γ ′ onto its right-hand stack;
2. PUSHes γ onto its left-hand stack.

– If M moves left on its worktape at this step, then M(stack):
1. PUSHes γ ′ onto its right-hand stack;
2. PUSHes γ onto its right-hand stack.

– If M moves right on its worktape at this step, then M(stack):
1. PUSHes γ onto its left-hand stack;
2. PUSHes γ ′ onto its left-hand stack.

M(stack) thus performs O(1) elementary steps for each elementary step by M.
Moreover, after M(stack) has performed its elementary steps, the inductive situation
is reestablished. This completes the proof. ��

It is not difficult to show that a 1-STM is quite weak computationally—certainly not nearly
in the same league as an OTM. The easiest path to this insight has three steps. (1) We invoke
Chomsky’s early demonstration, in [12], that a 1-STM accepts only context-free languages.
(2) We recall, from Section 6.1.3, that the language L = {anbncn | n ∈ N} is not context-free.
(3) We show quite easily how an OTM can accept the language L: the OTM can write the
block that consists of occurrences of a on its worktape and then match that string’s length
against the length of the block that consists of occurrences of b and the block that consists of
occurrences of c.
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C. An OTM with a FIFO Queue instead of a Worktape

A FIFO queue can be viewed as a tape whose contents are accessed and manipulated
in a very constrained way. (Usually the qualifier “FIFO” is understood and not stated
explicitly; we shall continue this tradition.) In the following description, we refer re-
peatedly to Figure 9.6, which depicts an OTM M(queue) that has a queue, which it
employs in place of a standard worktape. A queue has two ends that we call its IN

e BB ... γ γ γ γ γ
f g h i j

(queue)
OTM   

IN OUTγγ
a b

γ γ γ
c d

Fig. 9.6 An OTM M(queue) that uses a FIFO queue in place of a worktape.

and OUT ports. In a single step, one can DEQUEUE a symbol from the OUT port of a
queue—thereby (destructively) reading from the queue—and/or ENQUEUE a symbol
into the IN port of the queue—thereby writing onto the queue. In Figure 9.6, a DE-
QUEUE would remove/read the symbol γj; an ENQUEUE of a symbol γk would place
that symbol to the left of γa in the figure’s depiction of the queue.

The computing device M(queue) depicted in Figure 9.6 is a queue OTM (QTM, for
short). M(queue) operates much like an OTM, except that it has a single FIFO queue
as its only unbounded data structure. As expected, M(queue) reads its worktape by DE-
QUEUING the symbol at its queue’s OUT port; it writes its worktape by ENQUEUING

a new symbol at its queue’s INport. Initially, M(queue)’s queue is empty, meaning that
it contains just one symbol, B , and that its IN and OUT ports “coincide,” in the sense
that the pointers, IN and OUT, that represent the QTM’s ports point to the same tape
square.

Because a queue is a logical data structure rather than a physical device, its ports are im-
plemented using pointers—so having ports coincide now and then, but not always, presents
neither problems nor contradictions.

The reader should be able to flesh out how M(queue) computes, based on our discus-
sions of the queue data structure and of the semantics of OTMs (in Section 3.3).

Proposition 9.3 For every OTM M, there exists an equivalent QTM M(queue), which
can simulate any t-step computation by M in O(t2) steps.

Proof (Sketch). The way that the QTM M(queue) simulates a given OTM M differs
from our previous simulations, in that M(queue) does not just manipulate an encoding
of M’s worktape within its queue. In fact, M(queue) will employ a simulation strategy



9.8 (Online) Turing Machines and the Church–Turing Thesis 183

that we have not encountered before, but that we shall reencounter a number of times
in Chapter 13: M(queue) will reproduce M’s computation, as a sequence of total states
of M. (Recall the notion total state from Section 3.3.)

Overall setup

• Letting Γ be M’s worktape alphabet and Q its state-set (which, as always, is dis-
joint from Γ ), the worktape alphabet of M(queue) is Γ (queue) = Γ ∪Q.

• M begins a computation with a blank worktape, and M(queue) begins with a queue
that contains only M’s initial state q0, followed by special symbol � that it uses to
identify the boundary between total states of M that are successive in the compu-
tation being simulated; see Figure 9.7.

0

B... ...

OTM   

IN OUT

OTM   

STATE
0

(queue)

Fig. 9.7 Beginning the simulation of an OTM M via a QTM M(queue). The queue square that contains
state q of M is made very bold to highlight it.

• Whenever M polls its input port, M(queue) does likewise.
• Whenever M halts and either accepts or rejects, M(queue) does likewise.

Operation

The inductive correspondence between M’s total states and M(queue)’s queue config-
urations during the course of a simulation is as follows. Consult Figures 9.8, and 9.9
as we proceed. Focus on a moment in a computation when M is in state q ∈ Q and
has the string

γaγb B γcγdγeγfγg

on its worktape, with its read/write head on symbol γc.

• In a stable situation, wherein M is in the process of polling its worktape (and
maybe its input port also), M(queue)’s queue will contain a copy of M’s total state

γaγb B qγcγdγeγfγg.

This is the situation depicted in Figure 9.8. M(queue) recognizes that this is a
stable situation because the delimiter symbol � is in the rightmost of the three
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B γ γ γ
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f g
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f g ...γ γ γ

c d
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a b... e
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OTM   

STATE

IN OUT

(queue)

Fig. 9.8 A stable moment during the simulation of an OTM M via a QTM M(queue). The queue
square that contains state q of M is made very bold to highlight it.

“internal tape squares” that it uses to delay rewriting symbols into its queue. (The
delay allows it to effect moves by M.)

• In a transient situation, wherein M is in the process of executing a move (change
state, rewrite worktape symbol, move read/write head), M(queue)’s queue will be in
the process of simulating M’s move. M(queue) will be in the process of rewriting
its queue contents—i.e., M’s total state—to accommodate M’s most recent move.
This process proceeds as follows.
M(queue) begins copying its queue over. Most of this will be verbatim copying,
because very little of M’s total state can change during the course of a move.
Specifically, the only part of the total state that can change—cf. Section 3.3—
involves the 3-symbol sequence within the total state that contains M’s current
state q at its center. In Figure 9.8, this sequence is

B qγc.

Say that at this step, M rewrites the symbol γc to symbol γc, moves one square to
the right on its worktape, and changes state to q. The relevant 3-symbol sequence
now becomes

B γcq.

As M(queue) rewrites its queue contents, it uses its internal (finite-state) memory in
order to “read ahead” three symbols, so that when it commits itself to writing the
active 3-symbol sequence, it can write the updated version. Figure 9.9 depicts a
moment within the transient situation created by the described move by M:

B qγc −→ B γcq.

Analysis

Focus on a moment when M has k symbols on its worktape, and it executes a step.
Before the step, M(queue)’s queue contains k + 1 symbols: the symbols from M’s
tape, plus M’s state symbol. As M(queue) updates its queue in order to simulate M’s
move, it performs O(k) copy-plus-update operations. This reckoning accounts quite
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Fig. 9.9 A transient moment during the simulation of an OTM M via a QTM M(queue). The queue
square that contains state q of M is made very bold to highlight it.

conservatively for the possibility that M(queue) must add an additional symbol to its
queue (because M has extended its tape), as well as for the fact that M(queue) must
stagger its updating a bit in order to have time to change the active 3-symbol se-
quence from M’s total state before the change.

Because M can add no more than one symbol to its worktape during each of its
steps, it follows that M(queue) can simulate a t-step computation by M(queue) within

O
( t

∑
i=0

i
)

= O(t2)

steps.
Note the big assumption in the preceding summation. We have pulled the big-

O from the inside of the summation to the outside. We are justified in doing this,
because the constant factor hidden within the big-O is uniform across all steps of the
simulation. (You should verify this crucial fact.) Were this not the case, then we could
theoretically have constants that grow with the number of steps that M has executed,
and our alleged time bound would be totally bogus. Thankfully, this is not “not the
case,” so we are quite justified in pulling the big-O outside the summation, and the
result holds. (Note the use of the law of excluded middle (cf. Section 9.7) in the
preceding sentence!)

This completes the proof. ��
When coupled with the weakness we noted in paragraph C regarding OTMs whose only
unbounded data structure is a single stack, this paragraph’s result about QTMs can be viewed
as demonstrating a sense in which a queue is a more powerful data structure than a stack.

Is it true in general that queues are stronger than stacks? The answer is somewhat interesting.

In 1972, Robert E. Tarjan studied the problem of sorting sequences of integers using networks
of stacks or of queues [101]. He discovered that stacks and queues were in some sense dual
to one another in power, in the sense that the smallest network of stacks that would sort the
sequence equaled the number of increasing runs that make up the input sequence, while the
smallest number of queues equaled the number of decreasing runs.

In 1992, Lenwood S. Heath, F. Thomson Leighton, and the author studied the problem of
using networks of stacks or of queues to lay out the nodes of a graph (in a manner consistent
with certain circuit-layout problems) [37]. They uncovered graphs that needed exponentially
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more queues to lay out than stacks. Within this context, then, one could say that stacks are a
more powerful structure than are queues.

The relationship between the computational powers of stacks and of queues is thus far from
a cut-and-dried topic.

D. An OTM with “Paper” Tape

Our next variant of the OTM model is the paper-tape OTM (PTM, for short). A PTM
is an OTM whose worktape alphabet Γ is partially ordered.

A (strict) total order on a set S is a transitive binary relation R on the set, under which,
given any two distinct elements a,b ∈ S, we have either aRb or bRa. A familiar example is
the relation “less than” on the natural numbers: for any two distinct integers m,n ∈ N, either
m < n or n < m.

A partial order on a set S is similar to a total order, but it lacks the insistence that every pair
of distinct elements of S be related (in one direction or the other). One familiar partial order
arises naturally with the set N×N of ordered pairs of natural numbers. Under this order, one
says that 〈x1,y1〉< 〈x2,y2〉 iff x1 < x2 and y1 < y2. Note that pairs such as 〈1,2〉 and 〈2,1〉 are
just not related under this relation “<.”

The partial order “<” that we posit for the worktape alphabets of PTMs are intended
to be induced by the holes in a paper tape. Intuitively, if γ1 ∈ Γ has holes in the same
configuration as γ2 ∈ Γ , but γ1 has more holes than γ2, then γ2 < γ1 under the partial
order on Γ ; otherwise γ1 and γ2 are not related under “<.”

A PTM M operates much like an OTM, except that when M overwrites a symbol γ
on its worktape, it must do so with some symbol γ that is greater than γ in the partial
order. (Intuitively, a PTM can “add holes” to the representation of γ , but it cannot
“remove holes.”)

Interestingly, despite the apparent disadvantage of having “paper tape,” a PTM
can simulate an OTM. Moreover, the simulating PTM can be made to operate in
time polynomial in the computation time of the OTM. We now prove this asser-
tion indirectly, by proving that a PTM can simulate a QTM with only polynomial
slowdown.

Proposition 9.4 For every QTM M(queue), there exists an equivalent PTM. By transi-
tivity, therefore, for every OTM M, there exists an equivalent PTM M(paper). M(paper)

can simulate any t-step computation by M(queue) in O(t3) steps; hence, it can simulate
any t-step computation by M in O(t5) steps.

Proof (Sketch). Let us be given a QTM M(queue). We design a PTM M(paper) that
will simulate any computation by M(queue). The overall strategy of the simulation
will be for M(paper) to always maintain a fresh copy of M(queue)’s queue. Every time
that M(queue) updates its queue, by dequeuing one symbol and enqueuing one sym-
bol, M(paper) copies its fresh copy to a new, as-yet unused, portion of its tape, mak-
ing the required updates as it proceeds. M(paper) orchestrates this copying by making
extra holes in tape squares, to indicate whether they are new (one extra hole), old
but still valid (two extra holes), or obsolete (three extra holes). During its lifetime,
every used square of M(paper)’s worktape thus contains a symbol γ from M(queue)’s
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worktape alphabet—which will never be rewritten—plus either one, two, or three
extra holes; the lifetime thus progresses as follows, using an ordered-pair notation
of the form 〈γ, •• 〉 to denote the worktape symbol γ embellished with extra holes
(each denoted by •):

(unused) −→ 〈γ, • 〉 −→ 〈γ, •• 〉 −→ 〈γ, ••• 〉.

Figure 9.10(right) contains a version of this notation that is adapted for legibility by

.

OTM   OTM   

B

γγ
f gBγγ

a b Bγγ
a b

(queue)

γ γ γ
c d e

(paper)

γ γγγ
a b

γ γ γ
c d e f g

... ......... .. .. .. ........ . .

Fig. 9.10 Simulating a QTM M(queue) via an PTM M(paper) whose worktape is “made of paper.”

omitting the brackets and boxes.

Overall setup

• The worktape alphabet Γ (paper) of M(paper) is Γ ×{ • , •• , ••• }, where Γ is
M(queue)’s worktape alphabet and where the instances of “•” denote holes that
embellish the elements of Γ .

• M(queue) begins a computation with an empty queue, and M(paper) begins with a
blank worktape.

• Whenever M(queue) polls its input port, M(paper) does likewise.
• Whenever M(queue) halts and either accepts or rejects, M(paper) does likewise.
• The inductive correspondence between M(queue)’s configuration and M(paper)’s is

as follows. Consult Figure 9.10 as we proceed.

– Consider, for illustration, string x that forms the contents of M(queue)’s queue
captured in Figure 9.10:

x = γaγb B γcγdγeγfγg.

In any such situation, the contents of M(paper)’s tape will have the following
form
1. The entire left end of the tape will contain symbols embellished with three

holes. The rightmost symbols with three holes will be a (possibly null) prefix
of the string x.
In Figure 9.10(right) the “three-hole” prefix of x is the string
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γaγb B γc.

Tape squares that contain three holes have completed their useful lives and
will never be revisited.

2. Immediately following the string of squares with three holes will be the
remainder of x, with each tape square embellished with two holes.
In Figure 9.10(right) the “two-hole” suffix of x is the string

γdγeγfγg.

Tape squares that contain two holes are in the process of being copied.
3. At the far right of M(paper)’s tape are symbols embellished with one hole.

They are freshened versions of the “three-hole” prefix of x, hence may begin
with a new symbol that M(queue) has just inserted in its queue.

Operation
At each step of its operation, M(queue) removes (dequeues) a symbol from the head of
its queue, and it inserts (enqueues) a symbol at the tail of its queue. M(paper) responds
to this step by completely recopying the fresh portion of its tape—meaning the portion
that does not yet have three holes. It accomplishes this via the following sequence of
operations.

1. M(paper) goes left on its tape until it encounters a three-hole square.
2. M(paper) “picks up” (using its finite-state memory) a copy of the symbol that resides

immediately to the right of the three-hole square. This square should have two
holes; M(paper) immediately gives it a third hole (thereby terminating its useful
life).

3. M(paper) carries the newly acquired symbol rightward, until it encounters a new,
unused square. It deposits the symbol there, embellished with one hole.

Analysis

Focus on a moment when M(queue) has k symbols in its queue, and it executes a step.
As M(paper) freshens its copy of M(queue)’s queue, it traverses an O(k)-symbol segment
of its tape k times. We must assess length O(k) for the traversed segment, rather than
k, because M(queue) may have lengthened its queue (by one symbol) at this step. It
follows that, in aggregate, it takes M(paper) O(k2) steps to simulate this one step by
M(queue).

Because M(queue) can add no more than one symbol to its queue during each of its
steps, it follows that M(paper) can simulate a t-step computation by M(queue) in

O
( t

∑
i=0

i2
)

= O(t3)

steps.
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The implications of the preceding analysis for the speed with which M(paper) can
simulate a t-step computation by an OTM follow via an invocation of Proposition 9.3.
This completes the proof. ��

E. An OTM with Registers instead of a Worktape

The final “simple” model that we consider is a variant of the OTM model that has, as
its unbounded storage medium, some fixed number, k ∈ N, of registers, denoted by
R1,R2, . . . ,Rk. Each register Ri is capable of holding any nonnegative integer m ∈ N

(no matter how large). We call the computational model that we study in this section
a k-register machine (k-RM, for short). A k-RM M can be viewed as an OTM that
has k registers in place of a worktape. (In particular, M polls its input port in exactly
the way that an OTM does, via polling and autonomous states.) Whereas an OTM
interacts with its worktape by reading a single square, respecifying the contents of
that square, and possibly transferring its attention to an adjacent square, the k-RM M
interacts with its registers by means of the following constrained set of interactions.
At each step of a computation, M performs the following operations independently
on each of its registers. Let us denote the contents of a register Ri, i.e., the integer that
resides in Ri, by “Ri.”

• Test register Ri for 0
At each step, M tests each register Ri independently to determine whether Ri = 0.
This is how M polls (or, “reads”) its storage medium.

• “Increment” a register.
At each step, M alters the contents of each register Ri independently, by adding
+1 or −1 or 0 to the number that the register holds. We denote this alteration by
the assignment

Ri ← Ri +α,

where α ∈ {−1,0,+1}.
This is how M alters (or “writes to”) its storage medium.

Thus, the “syntax” of the (one-step) transition function of a k-RM is

δ :
((

Qpoll×Σ
)∪Qaut

)×{zero, nonzero}k −→ Q×{−1, 0, +1}k.

(Compare this with the analogous form for OTMs (3.4).) The notions of computa-
tion, acceptance, and rejection by a k-RM can easily be inferred from the analogous
notions for an arbitrary OA (see Section 3.1). You should be able to supply details.

A k-RM thus has no explicit list-processing capability—although it can simulate
such a capability surprisingly simply. We now use the STM model as an intermediary
in showing that RMs having two or more registers can simulate OTMs rather simply,
albeit not very efficiently.

Before proceeding with the proposition, we endow RMs with another atomic op-
eration on registers, one that is not part of the model’s traditional repertoire. For the
sake of expositional convenience, at a cost of no more than a small constant factor
in performance, we allow an RM to transfer the contents of one of its registers, say
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Ri, to another of its registers, say R j, in a single step. The small Program Register-
Transfer indicates that this transfer instruction, which we denote symbolically by

R j ← Ri,

increases the speed, but not the computing power, of an RM.

Program Register-Transfer Ri, Rj

/*Implement the operation Rj ← Ri*/
Inputs Ri, Rj

R j ← 0
do until Ri = 0

Ri ← Ri−1
Rj ← Rj +1

enddo

Proposition 9.5 1. a. For every 2-STM M, there is an equivalent 3-RM that can sim-
ulate any t-step computation by M in 2O(t) steps.

b. For every OTM M′, there is an equivalent 3-RM that can simulate any t-step
computation by M′ in 2O(t) steps.

2. a. For every 2-STM M, there is an equivalent 2-RM that can simulate any t-step

computation by M in 22O(t)
steps.

b. For every OTM M′, there is an equivalent 2-RM that can simulate any t-step

computation by M′ in 22O(t)
steps.

Proof (Sketch). We present an explicit proof only for the “a” parts of the proposition,
relying on Proposition 9.2 plus the proof of the “a” parts to prove the “b” parts of the
proposition.

1. A 3-RM M(3register) that simulates a 2-STM M

Overall setup

Let Γ be the stack alphabet of the 2-STM M. We employ the following strategy as
we construct M(3 register).

• Register usage

– We use the integer in register R1 (resp., register R2) to “simulate” stack S1

(resp., stack S2) of M.
– We use register R3 as an auxiliary register that allows M(3 register) to manipulate

registers R1 and R2 as it simulates stack-moves by M.

• Encoding of stack contents
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– We assume that the elements of Γ are the integers {0,1, . . . , |Γ |−1}, with the
blank symbol B playing the role of the digit 0. If necessary, we relabel the
elements of Γ to make this true.

– We view each string that appears in one of M’s stacks as a numeral in base
g

def= |Γ |−1, with the digit at the top of the stack being the low-order digit.

Thus, if one of M’s stacks contains the string

x = γnγn−1 · · ·γ1γ0, (9.5)

where each γi ∈ Γ , and where γ0 resides at the top of the stack, then the register of
M(3 register) that represents this stack in the simulation will contain the integer

m =
n

∑
i=0

γig
i,

that is, the base-g value of numeral x.

Under the preceding setup, M(3 register) can simulate M’s PUSH and POP operations
by simple arithmetic analogues, which we call A-PUSH and A-POP, respectively. Our
implementations of these arithmetic analogues are motivated by the following facts.
Let the string x of (9.5) reside on stack Si of M, and let m, the base-g value of numeral
x, reside in register Ri of M(3 register). Then:

• For every γ ∈ Γ , define the effect of the operation

A-PUSH γ onto Ri

via the assignment
Ri ← (Ri ·g)+ γ.

This definition preserves the encoding we have established, because after the op-
eration “A-PUSH γ onto Ri” is executed, the base-g numeral for the number in
register Ri is

γnγn−1 · · ·γ1γ0γ,

which is the result of the M-operation

PUSH γ onto Si.

• For every γ ∈ Γ , define the effect of the operation

m ← A-POP Ri

via the pair of assignments

R3 ← �Ri÷g�,
m ← Ri−R3.
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This definition preserves the encoding we have established, because after the op-
eration “m← A-POP Ri” is executed:

– variable m has the numerical value γ0, which corresponds to the value of vari-
able m that is the result of the M-operation

m← POP Si

– the residual string
γnγn−1 · · ·γ1

is a base-g numeral for the residual number in register Ri.

Thus, these definitions of the arithmetic analogues of PUSH and POP propagate the
encoding of M’s stack contents that M(3 register) uses throughout its simulation of
M.

Note the benefits from having B play the role of the digit 0. (a) To simulate one of M’s

stacks being empty, such as at the beginning of a computation, M(3 register) need only set the
corresponding one of its registers to 0. (b) If M POPs an empty stack, it receives a copy of B

in response; if M(3 register) A-POPs a register that contains 0, it receives 0 as a result—which is
the “code” for B .

In more detail, the arithmetic analogues of PUSH and POP are implemented by the
procedures specified in Program Stack-Register Operations.

Analysis

Focus on M while it is computing. By step t of its computation, (at least) one of M’s
stacks, say Si, could contain a string of length t, but no longer. Under our encoding,
register Ri (which M(3 register) uses to simulate stack Si) could contain a number of
magnitude as large as 2t , but no larger.

For M, each of its stack-updating operations, PUSH and POP, takes a single step.
As M(3 register) simulates instances of these operations via its arithmetic analogues, A-
PUSH and A-POP, the 3-RM requires ≤ g ·2t steps to simulate M’s single-step PUSH

or POP.
It follows that after M has been computing for t steps, the number of steps that

M(3 register) will have executed while simulating M is no greater than

t

∑
i=0

g ·2i = g ·
t

∑
i=0

2i ≤ 2g ·2t .

Since g is a fixed constant, the proof of part 1 is complete.

2. A 2-RM M(2 register) that simulates a 3-RM M(3 register)

We design the 2-RM M(2 register) by modifying our design of the 3-RM M(3 register).
We shall therefore establish part 2 of the proposition by describing only how to
map register configurations of M(3 register) onto register configurations of M(2 register)
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Program Stack-Register Operations

/*Implement the arithmetic analogues of the stack operations*/

Operation by M Operation by M(3 register)

PUSH γ onto Si A-PUSH γ onto Ri

R3 ← 0
do until Ri = 0

Ri ← Ri−1
do g times

R3 ← R3 +1
enddo

enddo
/*R3 = Ri ·g*/
Ri ← R3

/*Our first use of register exchange to simplify exposition*/
do γ times

Ri ← Ri +1
enddo
/*R3 = (Ri ·g)+ γ*/

m← POP Si m← A-POP Ri

R3 ← 0
do until Ri < g

do g times
Ri ← Ri−1

enddo
R3 ← R3 +1

enddo
/*Ri = �Ri÷g�*/
m← Ri

Ri ← R3

and to manipulate the latter configurations. We retain the notation of part 1, wherein
R1, R2, and R3 are the three registers of M(3 register). In order to avoid confusion, we
call the two registers of M(2 register) P1 and P2.

Overall setup

• During a stable moment—i.e., a moment when M(2 register) is not in the process of
updating its representation of M(3 register)’s registers—M(2 register) will encode the
triple of integers

〈R1, R2, R3〉 (9.6)

contained in M(3 register)’s registers by the pair of integers

〈P1, P2〉, (9.7)

where

P1 = 2R1 3R2 5R3 ,
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P2 = 0.

• During an unstable moment—i.e., a moment when M(2 register) is in the process of
updating its representation of M(3 register)’s registers—M(2 register) will encode the
triple of integers (9.6) by a pair (9.7), where P1 and P2 have the following forms
for some c ∈ N:

P1 = 2R1 3R2 5R3 − αc (α ∈ {1,2,3,5}),
P2 = βc (β ∈ {1,2,3,5}).

The reader can firm up the values of α and β from the coming description of the
details of M(2 register)’s operation.

Operation

M(2 register) must simulate the following register operations by M(3 register). M(2 register)

begins all of these operations in a stable configuration.
We focus only on how M(2 register) simulates operations by M(3 register) on register

R1. In order to shift the focus to register R2 or to register R3 instead of register R1,
one just substitutes, respectively, the integer 3 or the integer 5 for the integer 2 in the
following description.

• Test register for 0
Say that M(3 register) tests the condition

R1 = 0?

This is equivalent to having M(2 register) test the condition

Is P1 not divisible by 2?

In order to perform this test, M(2 register) attempts to divide P1 by 2. If this attempted
division leaves a remainder, then P1 is not even, so that R1 is 0; if the attempted
division does not leave a remainder, then P1 is even, so that R1 is not 0.

The attempted division proceeds as follows. M(2 register) repeatedly subtracts 2
from P1 (using two successive subtractions of 1) and adds 1 to P2 until P1 is ei-
ther 0 or 1. If P1 ends up as 0, then the number it contained before the division
was even; if it ends up as 1, then the predivision number was odd. M(2 register)

now knows the “answer” to the test. To regain a stable configuration, it need only
restore the value of P1, which it can easily do by reversing the preceding steps,
i.e., by repeatedly subtracting 1 from P2 and adding 2 to P1 (using two successive
additions of 1) until P2 reaches 0.

• Increment a register
M(2 register) simulates M(3 register)’s incrementing (resp., decrementing) register
R1 by multiplying (resp., dividing) P1 by 2. (For simplicity, we assume that
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M(3 register) will never attempt to decrement a register that contains 0; this just
means that the decrement is preceded by a test for 0 that has a negative outcome.)

A multiplication proceeds as follows: M(2 register) repeatedly subtracts 1 from P1

and adds 2 to P2 (using two successive additions of 1) until P1 reaches 0.
A division proceeds as follows: M(2 register) repeatedly subtracts 2 from P1 (using
two successive subtractions of 1) and adds 1 to P2 until P1 reaches 0.

M(2 register) regains a stable configuration after a multiplication or division by trans-
ferring the contents of register P2 to register P1.

Analysis

The correctness of our strategy for having M(2 register) simulate M(3 register) is a conse-
quence of the fundamental theorem of arithmetic. The complexity of our simulation
follows by adapting the corresponding analysis for part 1, in light of the fact that
M(2 register) manipulates integers that are exponentially larger than those manipulated
by M(3 register), because we use a prime-power pairing function. ��

What about the case k = 1? It is a straightforward exercise to show that 1-RMs
cannot simulate arbitrary OTMs. One can build a proof by showing that a 1-STM can
simulate a 1-RM by using a tally code in its stack, i.e., by representing each integer
m by a string of m 1’s. It then follows from Section 6.1.3 that no 1-RM can accept the
language L = {anbncn | n ∈ N} which is easily accepted by an OTM (as we showed
in subsection B of the current section).

9.8.2 Augmented TMs That Are No More Powerful Than OTMs

This section is devoted to three modifications of the OTM model that one might ex-
pect to enhance the computing power of the model. For each of the modifications,
we show that an unmodified OTM can simulate the new model on arbitrary compu-
tations, with only polynomial slowdown. As we discuss in Chapter 13, the efficiency
of these simulations played a significant role in the early development of complexity
theory.

A. An OTM with Several Worktapes

For any integer k > 1, a k-tape OTM M operates much as does an ordinary (1-tape)
OTM, but it has k worktapes that it interacts with—reads from, writes to, moves
on—independently. As you might expect by this point in our journey, the single-step
operation of M is specified by a state-transition function with the following form:

δ :
((

Qpoll×Σ
)∪Qaut

)×Γ k −→ Q×Γ k×{N,L,R}k. (9.8)

(Compare this with its one-tape analogue in (3.4).)
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A mathematical aside: Note how the use of the kth powers of the sets Γ and {N,L,R} in (9.8)
automatically carries with it the fact that M operates independently on its k worktapes.

The notions of computation, acceptance, and rejection by a k-tape OTM can easily be
inferred from the analogous notions for an arbitrary OA (see Section 3.1). You should
be able to supply the details.

It is not too surprising that an ordinary (1-tape) OTM can simulate arbitrary com-
putations by any k-tape OTM. It is not so obvious, though, that the simulations can
be rather efficient.

Proposition 9.6 For every k-tape OTM M(k), there is an equivalent 1-tape OTM M
that can simulate any t-step computation by M(k) in O(t2) steps.

Proof (Sketch). Let the k-tape OTM M(k) have worktape alphabet Γ .

Overall setup

Refer to Figure 9.11 as we describe our design of an ordinary OTM M that can
simulate M(k) on arbitrary computations. As the figure suggests, we endow our 1-
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Fig. 9.11 Simulating an OTM M that has k linear worktapes with an ordinary OTM.

tape OTM M with a worktape that has 2k tracks. M uses each odd-numbered track
2i− 1 of its tape, where i ∈ [1,k], to simulate tape i of M(k); hence, each square of
each odd-numbered track of M’s tape can hold any symbol from Γ . M uses each
even-numbered track 2i of its tape, where i ∈ [1,k], to keep track of the position of



9.8 (Online) Turing Machines and the Church–Turing Thesis 197

M(k)’s read/write head on tape i. To this end, each square of each even-numbered
track of M’s tape can hold either of the two symbols B and �. In summation, then,
M’s worktape alphabet is the k-fold product

(

Γ ×
{

B ,�
})

×
(

Γ ×
{

B ,�
})

×·· ·×
(

Γ ×
{

B ,�
})

.

At every instant, precisely one square of each even-numbered track 2i of M’s tape
will hold an instance of �, thereby indicating where M(k)’s read/write head resides
on tape i; all other squares of track 2i will hold instances of B . Figure 9.11 depicts
a generic configuration of M(k)’s k tapes and the corresponding configuration of M’s
2k-track tape.

Operation

M simulates a single move by M(k) by executing the following protocol. As we de-
scribe the protocol, keep in mind that M is designed specifically to simulate M(k).
Therefore, in what follows, k is a fixed constant. (This is important because it allows
us to design M so that it can store O(k) items in its internal memory.)

1. M assembles in its internal memory a k-place vector

〈γ1, γ2, . . . , γk〉 ∈ Γ k (9.9)

that specifies the k symbols that M(k) is reading on its multiple tapes at this step.
The intention of our notation is that M(k) is reading γi ∈ Γ on its ith tape.
M assembles this vector as follows.

• M goes to the leftmost non- B symbol on its worktape.
• Starting there, M traverses the extent of its worktape until it encounters the

rightmost non- B symbol.
• As M encounters each instance of the symbol � on an even-numbered track 2i

of its tape, it stores the symbol from Γ that resides in the corresponding square
of track 2i− 1. M “keeps track” in its internal memory of the fact that it now
knows what M(k) is reading on its ith tape at the step being simulated. This
memory allows M to stop its traversal as soon as it knows all k entries of the
vector (9.9).

In Figure 9.11, the vector (9.9) is

〈γc, γg, . . . , B 〉.

2. M uses the vector (9.9)—together with M(k)’s program, plus the symbol at its input
port if M(k) is currently in a polling state—in order to determine the move that M(k)

would make at this step. This includes how M(k) would rewrite each of the k tape
symbols it is currently scanning and where it would move each of its k read/write
heads. M records this information in a 2k-place vector of the following form in its
internal memory:
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〈〈γ1,D1〉, 〈〈γ2,D2〉, . . . , 〈〈γk,Dk〉〉.

3. M makes the necessary updates on its tape by means of another complete sweep
through the nonblank portion of the tape. In detail:

• M goes to the leftmost non- B symbol on its worktape.
• Starting there, M traverses the extent of its worktape until it encounters the

rightmost non- B symbol.
• As M encounters each instance of the symbol � on an even-numbered track 2i

of its tape, it
– rewrites the symbol from Γ that resides in the corresponding square of track

2i−1, in accord with M(k)’s program; this replaces symbol γi by symbol γ i.
– moves the � on track 2i one square in direction Di, placing an instance of

B in the vacated square.

This completes M’s simulation of a single step by M(k).

Analysis

Our analysis is quite similar to that employed in the proof of Proposition 9.3.
Focus on a moment wherein M(k) has just executed the tth step of a computation

and on the corresponding moment after M has just simulated the tth step of this com-
putation by M(k). Because M(k) can add no more than one new tape square to each of
its k worktapes in a single step, we know that at the moment we are considering, none
of its worktapes can exceed t squares in length. Under our simulation strategy, there-
fore, at the corresponding moment, M’s (single) worktape cannot exceed kt squares
in length.

Now let us observe M simulating the next step of M(k)’s computation.

1. M goes to the leftmost non- B square on its tape.
2. M makes a complete sweep across its tape, gathering information about the k sym-

bols that M(k) is reading on its worktapes.
3. M does an internal computation to decide how M(k) would react to the k symbols

it has read.
4. M makes a complete sweep across its tape, making the changes needed to update

the tape contents, as mandated by M(k)’s program.

Steps 1, 2, and 4 of this accounting each takes≤ kt steps by M; step 3, being internal,
is “instantaneous” (because state transitions are “instantaneous”). In aggregate, then,
simulating the (t + 1)th step of M(k)’s computation takes M no more than 3kt steps.
Recalling yet again that k is a fixed constant here, this reckoning shows that M can
simulate the first t steps of M(k)’s computation in no more than

t

∑
i=1

3ki = O(t2)

steps.
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This completes the proof. ��
The timing of the simulation strategy of Proposition 9.6 changes by only constant factors as
the single-tape OTM M simulates OTMs having different numbers of worktapes. In particular,
the strategy takes quadratic time to simulate even a 2-tape OTM M(2). In [39], Fred C. Hennie
and Richard E. Stearns develop a more sophisticated simulation algorithm, via which a 1-

tape OTM can simulate t steps by a 2-tape OTM in O(t log t) steps.

B. An OTM with a Multidimensional Worktape

This section deals with OTMs whose worktapes are 2-dimensional; see Figure 9.12.
We recommend that as readers follow our description of this model, they extrapo-
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Fig. 9.12 An OTM M(2−D) with a two-dimensional worktape.

late the model’s details to OTMs whose worktapes are k-dimensional for values of k
greater than 2 and, more ambitiously, to OTMs whose worktapes have the structure
of fixed-degree rooted trees.

Let M(2-D) be an OTM with a 2-dimensional worktape, as depicted in Figure
9.12. We call M(2-D) a 2-dimensional OTM, or, for short, a 2-D OTM. The squares
of M(2-D)’s tape are indexed by N

+ ×N
+, with the origin square, whose label is

〈1,1〉, being the place where M(2-D)’s read/write head begins every computation.
A step by M(2-D) proceeds exactly as does a step by an ordinary OTM, except
that M(2-D) can move its read/write head one square in any of the four compass
directions:

northward: 〈i, j〉 → 〈i−1, j〉 if i > 1,
eastward: 〈i, j〉 → 〈i, j +1〉,
southward: 〈i, j〉 → 〈i+1, j〉,
westward: 〈i, j〉 → 〈i, j−1〉 if j > 1.

The conditions on northward and westward moves prevent M(2-D) from moving its
head in a way that causes the head to “fall off” the tape. The notions of computation,
acceptance, and rejection by a 2-D OTM can easily be inferred from the analogous
notions for an arbitrary OA (see Section 3.1).
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2-D OTMs are often defined with worktapes that can extend without limit in all four com-
pass directions (so “falling off” is not a danger). One then simplifies the formal develop-
ment by proving a two-dimensional analogue of Proposition 9.1 that converts the “full” two-
dimensional tape to the quadrant-structured tape that we have posited. The proof of this
analogue does not require any ideas that are not already present in our proof of Proposi-
tion 9.1—except, of course, that we now must fold the tape over twice, resulting in four
tracks; therefore, we build this simplification into our model and leave details to the reader.

We show now that although having two-dimensional tapes can enhance the effi-
ciency of an OTM: (a) it does not enhance the raw computing power of the model,
and (b) it can enhance efficiency precisely because it can pack more squares close to
one another. You may want to review Section 5.5 before you embark on the following
result.

Proposition 9.7 For every 2-D OTM M(2-D), there is an equivalent OTM M with
two linear tapes that can simulate any t-step computation by M(2-D) in O(t2) steps.
Hence, there is an equivalent OTM M′ with one linear tape that can simulate any
t-step computation by M(2-D) in O(t4) steps.

Proof (Sketch). We shall design only the 2-tape OTM M, relying on an invocation of
Proposition 9.6 for the design of the 1-tape OTM M′.

Refer to Figure 9.13 as we describe a design for M. For simplicity, we assume that
M has one-ended tapes.

We have M poll its input port and make (accept or reject) decisions about the
input it has read thus far in a manner consistent with M(2-D)’s program. Therefore,
we concentrate only on how M manipulates its two linear tapes in order to simulate
M(2-D)’s manipulation of its single 2-dimensional tape.

Overall setup

When M(2-D)’s tape—call it T (2-D)—has the configuration illustrated in Figure 9.13
(top), then:

• M’s first tape, T1, contains a linearization of T (2-D) that is obtained using the diag-
onal pairing function D(x,y) specified in (8.1). As we discussed in Section 8.2.1,
D(x,y) linearizes N

+×N
+ along “diagonal shells.” The thin curve that is super-

imposed upon T (2-D) in Figure 9.13(top) indicates how D(x,y) would order these
tape squares. This is precisely the order in which these tape squares occur on T1;
cf. Figure 9.13(bottom).
When the square being placed on T1 corresponds to a square of T (2-D) that M(2-D)

has already visited, then the square contains a symbol that M(2-D) has explicitly
written there. However, when the square corresponds to a square of T (2-D) that
M(2-D) has not yet visited, then as a default, M writes the symbol B on the square.
This action does not impair M’s simulation of M(2-D), because if M(2-D) ever visits
this square in the course of its computation, then the square will, indeed, contain
B , because that is how the TM model treats squares that are visited for the first

time.
• M’s second tape, T2, contains three numerals, one each for:
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Fig. 9.13 Toward simulating a two-dimensional worktape with a linear worktape.

– the (integer) value x that indicates the index of the row of T (2-D) where M(2-D)’s
read/write head resides;

– the (integer) value y that indicates the index of the column of T (2-D) where
M(2-D)’s read/write head resides;

– the (integer) value D(x,y) that indicates the index, under the diagonal pairing
function, of the square 〈x,y〉 of T (2-D) where M(2-D)’s read/write head resides.

In Figure 9.13(bottom), x = y = 3, so T2 contains two instances of a numeral for
the value 3 and one instance of a numeral for the value D(3,3) = 13.
Additionally, M will use some of the blank space on T2 for scratch space as it
updates the three numerals.

• M’s first read/write head resides on the square of T1 that corresponds to the square
of T (2-D) where M(2-D)’s read/write head currently resides.
M’s second read/write head resides on the leftmost square of T2.
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Operation

Focus on a step wherein M(2-D) replaces the tape symbol currently under scan by
γ and moves its read/write head one square to the east—so that it moves from the
current square, call it 〈i, j〉, to square 〈i, j + 1〉. (Moves in other directions lead to
similar computations, so we leave them to the reader.) In response to this move, M
performs the following computation.

1. M replaces the tape symbol currently under scan on T1 by γ .
2. M uses the information on T2, together with whatever scratch space it needs, to

perform the following computation.

a. M computes, for the current square 〈i, j〉 and the target square 〈i′, j′〉, the quan-
tity

Δ = D(i′, j′) − D(i, j).

In our example of an eastward move by M(2-D), i′ = i and j′ = j +1, so

Δ = D(i, j +1) − D(i, j)

=
[

(

i+ j
2

)

+ j +1
]

−
[

(

i+ j−1
2

)

+ j
]

= i+ j.

Hence, in the example of Figure 9.13,

Δ = 19 − 13 = 6.

b. The sign of Δ tells M which way to move on T1 to find the appropriate new
square: (Δ > 0) means “move right”; (Δ = 0) means “don’t move”; (Δ < 0)
means “move left.” The magnitude (i.e., unsigned value) of Δ tells M how many
squares to move. In our example of an eastward move by M(2-D), M should
move rightward i+ j squares, so in the example of Figure 9.13, M should move
rightward six squares.
M counts down from Δ to 0 on T2 as it moves on T1 in order to know how many
squares to move on T1.

3. M updates the three numerals on T2 to their appropriate new values. In our example
of an eastward move by M(2-D), M leaves the x numeral unchanged, adds +1 to the
y numeral, and replaces the D(x,y) numeral by a numeral for D(x,y + 1) (which
it has computed in the course of computing Δ ).

This completes M’s simulation of a single step by M(2-D).

Analysis

The dominant components of M’s simulation of the tth step of a computation by
M(2-D) are as follows. This analysis works whether M represents Δ using a tally
encoding or a positional number system.
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• Computing the quantity Δ .
This computation can be accomplished in time proportional to the lengths of the
representations of x and y. This is clearly O(t).

• Orchestrating and executing M’s move along T1.
Orchestrating the move involves counting down the quantity Δ on T2. It is obvious
that this can be accomplished in O(t) steps when M represents Δ using a tally
encoding. For positional number systems, this calculation can be derived using the
techniques in, e.g., Chapter 1 of [53].
Executing M’s move along T1 takes O(t) steps, because the source and target
squares in this move reside, on T (2-D), in adjacent diagonal shells. One verifies
easily that this means that the function D(x,y) assigns these squares values that
are only O(t) apart.

Because M can thus simulate the tth step of M(2-D)’s computation in O(t) steps, it
follows via techniques we have used several times before in this section that M can
simulate an entire t-step computation by M(2-D) in O(t2) steps.

This completes the proof. ��

C. An OTM with a “Random-Access” Worktape

The final model that we discuss in our brief survey attempts to inject a modicum
of realism into an OTM-based model. A random-access OTM M(RA) (RA-OTM, for
short) has both a linear address worktape T (A) and a two-dimensional storage work-
tape T (S). Refer to Figure 9.14 as we describe M(RA)’s operation. As suggested in
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Fig. 9.14 A random-access OTM M(RA). The square of T (S) that is currently being accessed is
highlighted.

the figure, we assume, for simplicity, that T (A) is one-ended and that T (S) has the
structure of a quadrant (as do the two-dimensional tapes of the preceding section).
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An RA-OTM M(RA) behaves like all OTMs with regard to polling its input port and
making decisions regarding acceptance and rejection of input strings. It differs from
the other OTM models we have discussed in its very powerful mechanism for interact-
ing with its storage worktape T (S). After every interaction with its worktapes—which
includes rewriting the symbol currently under scan on T (S)—M(RA) can:

• ignore its address worktape T (A) and move the read/write head on T (S) as though
it were a 2-D OTM.
After this action,

– the read/write head on T (S) will have moved at most one square to the north,
east, south, or west;

– T (A) will be unchanged, with respect to both content and the position of its
read/write head.

• write a numeral x on T (A).
After this action,

– the read/write head on T (S) will have moved to the leftmost square of row x of
T (S), i.e., the row whose index is the number specified by numeral x;

– T (A) will contain the new numeral x, and its read/write head will reside on the
leftmost square of the tape.

The second of the preceding ways of moving on T (S) motivates our using the phrase
“random access” to describe M(RA).

By this time, it will probably come as no surprise that any RA-OTM M(RA) can
be simulated by an ordinary OTM. It may not be obvious, though, that an ordinary
OTM can simulate M(RA) with only polynomial slowdown. Our proof of this fact will
be reminiscent of some of the algorithmics of the field of sparse matrix computations
[33, 103].

Proposition 9.8 For every RA-OTM M(RA), there is an equivalent OTM M with two
linear tapes that can simulate any t-step computation by M(RA) in O(t2) steps.

Proof (Sketch). We describe two ordinary OTMs that solve this problem because
of the algorithmic lessons provided by a comparison of the solutions. Indeed, this
comparison mirrors in many ways a comparison of algorithms for dense vs. sparse
matrix computations; cf. [33].

A computed-address solution for dense random-access computations. Our
first solution is inspired by situations in which before M(RA) accesses row k of its
storage tape T (S), it will have accessed all rows i < k of the tape.

For this situation, we employ the OTM M in Figure 9.13(bottom) as our simulating
OTM. The only change required to the simulation algorithm described in the proof
of Proposition 9.7 regards M’s response to a “random access” by M(RA) to T (S). If
M(RA) writes a numeral for the integer k on its address tape T (A), then this mandates
moving the read/write head of T (S) from the square, 〈i, j〉, that it occupies at this
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step to square 〈k,1〉 for the next step. M simulates this move exactly as in the proof
of Proposition 9.7, but the computation of the “address computer” Δ is a bit more
complicated, because

Δ = D(k,1) − D(i, j)

need no longer have a simple form as in that proof. Importantly, though, when M is
simulating the tth step of a computation by M(RA), the time-complexity of perform-
ing this computation and executing the resulting move on M’s tape T1 remains O(t).
We leave this verification—which depends on the fact that M(RA)’s computation is
dense—as an exercise. (Hint: How far away from D(i, j) can D(k,1) be on M’s tape
T1?)

A table-lookup solution for sparse random-access computations. The OTM M
that we designed for the computed-address solution can be dramatically inefficient
if the computation by M(RA) utilizes its storage tape in a very sparse manner. To
illustrate this point, while supplying intuition for the qualifier “sparse,” consider the
rather extreme—but eminently possible—scenario wherein M(RA) uses only row 2210

of its storage tape T (S). (The programmer of M(RA) has a sense of humor?) In order
to simulate the step in which M(RA) accesses T (S) for the first time, the computed-
address simulator M must traverse roughly D(2210

,1) squares of its storage tape T1

no matter how many computation steps M(RA) has executed. In some sense, therefore,
M’s simulation is unboundedly inefficient.

If we employ a table-lookup approach to linearizing T (S), then we can replace
the unboundedly inefficient computed-address simulator M by a simulator M′ that
suffers only polynomial-time simulation slowdown. Extending the way that M uses
its second tape, T2, M′ uses tape T2 to store (numerals for)

• the coordinates 〈x,y〉 of the square of T (S) that M(RA) is currently accessing;
• the coordinates 〈x′,y′〉 of the square of T (S) that M(RA) will access next.

These coordinates can be specified in one of two ways.

– If M(RA) decides to make a “two-dimensional-tape” move, by moving to a
neighbor of the current square in one of the four compass directions, then
M′ computes the coordinates of the target square and places them on tape T2.
For instance, a northward move by M(RA) would lead M′ to specify 〈x′,y′〉 as
〈x−1,y〉.

– If M(RA) decides to make a “random-access” move, by explicitly specifying a
new row x0 of T (S), then M′ will specify 〈x′,y′〉 as 〈x0,1〉.

(M′ has no need of the computed address D(x,y), so it will not store this value on
T2.) M′ uses the coordinate numerals mostly as uninterpreted strings, for the pur-
pose of pattern matching; it uses them as numerals only in computations such as
“x′ ← x− 1” that are occasioned by “two-dimensional-tape” moves by M(RA). A
more pronounced difference between M and M′ is visible in the respective organi-
zations of their storage tapes T1. Recall that M uses T1 to store M(RA)’s storage tape
T (S), linearized according to the diagonal pairing function D(x,y). In contrast, M′
stores on T1 a list of those squares of T (S) that M(RA) has accessed thus far in its
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computation. This list is stored in the following format. If the square 〈x,y〉 of T (S) has
been accessed by M(RA), and if it currently contains the symbol γ , then T1 will contain
the
following list entry:

x,y : γ;

The delimiter symbols “,” and “:” and “;” play very specific roles in a list entry:

• Each comma (,) separates a pair of coordinate-strings x and y from one another.
• Each colon (:) separates a pair of coordinate-strings “x,y” from a worktape symbol

γ .
• Each semicolon (;) terminates a list entry, hence separates each list entry from its

successor.

Of course, this usage demands that the delimiter symbols not belong to either M(RA)’s
worktape alphabet or the alphabet used to encode the numerals x and y.

Say that M′ has to simulate a move by M(RA) wherein 〈x′,y′〉 are the coordinates of
the sought new square of T (S). M′ scans along tape T1, to find a list entry that begins
with the string “x′,y′ :”.

• If no such list entry is found, then M′ appends a new entry

x′,y′ : B ;

at the end of its list. The fact that this list entry did not exist means that M(RA) has
not previously visited square 〈x′,y′〉 of T (S); hence, on its first visit to the square,
the symbol there will be B .

• If the sought list entry
x′,y′ : γ;

is found, then M′ reads the tape symbol γ and consults (in its internal memory)
M(RA)’s program, in order to decide what M(RA) would do in the current situation,
having read symbol γ on T (S).

How has this table-lookup approach avoided the unbounded—and unboundable—
delays of the computed-access approach? The answer has three components.

1. What is the smallest number of steps that M(RA) could have been computing to
this point if the coordinate-string 〈x′,y′〉 appears on M′’s tape T2? We claim that
M(RA) must have been computing for at least �(x)+ �(y) steps.

• If M(RA) wandered along T (S) via a sequence of “two-dimensional-tape” moves
to a square that is adjacent to square 〈x′,y′〉, then M(RA) must have been com-
puting for at least a number of steps proportional to the number x + y. This
number certainly exceeds the combined length �(x) + �(y) of the numerals x
and y.

• If M(RA) specified the coordinate-string during a “random-access” move, then
M(RA) must have been computing for at least �(x)+ �(y) steps, just in order to
write the string!
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2. As M′ proceeds along tape T1, the number of list entries that it encounters cannot
exceed the number of squares of T (S) that M(RA) has visited thus far. The number
of list entries is thus a lower bound on the number of steps that M(RA) has executed
thus far.

3. Say that M′ is seeking a list entry that begins with the coordinate string 〈x′,y′〉.
(This means, in particular, that this coordinate string is written on tape T2.) Con-
sider how M′ processes each list entry on tape T1 by focusing on one that begins
with the coordinate string 〈x′′,y′′〉. M′ moves its two read/write heads to the left
ends of 〈x′,y′〉 (on T2) and 〈x′′,y′′〉 (on T1). It then moves its two read/write heads
in tandem to check whether the two coordinate strings are identical. It can make
this determination within

min
(

�(x′)+ �(y′), �(x′′)+ �(y′′)
)

steps. (Either it gets interrupted by a mismatch in the two coordinate strings, or it
gets all the way across.)
This reckoning makes it clear that M′’s search for the coordinate string 〈x′,y′〉
takes time no longer than twice the length of the word currently written on T1.
(The extra factor of 2 results from the fact that M′ backs up to the left end of the
string 〈x′,y′〉 as it encounters each new list entry.)

Adding up all of the processes involved in the table-lookup approach to the simu-
lation, one finds that M′ spends O(t) steps to simulate the tth step of an arbitrary
computation by M(RA). The bound on simulation time follows.

A final question: Why bother with the computed-access simulation for dense com-
putations if the table-lookup simulation achieves the same performance bound? The
answer resides in the constant factors. When the computed-access simulation works
well, it works very well, with small constant factors. While the table-lookup simula-
tion never suffers the disastrous unbounded slowdown that can plague the computed-
access simulation, it does incur larger constant factors. ��

The “bottom line” is that even this most ambitious of our augmentations of the
OTM model can be simulated by an ordinary OTM with only polynomial slowdown.





PART IV
NONDETERMINISM

Your bill is $495.75.
That is $0.75 for turning the screw, and
$495.00 for knowing which screw to turn.

(punch line of old joke)

We turn finally to the third of our pillars, nondeterminism, a somewhat unntuitive
computational concept that plays a variety of fundamental roles in computation the-
ory. We defer our (brief) discussion of these roles until after Chapter 10, because it is
difficult to appreciate the computational benefits of nondeterminism without having
seen it.





Chapter 10
Nondeterministic Online Automata

We saw in Section 3.1 that one can view OAs as abstract representations of actual cir-
cuits or machines or programs. In contrast, the generalization of OAs that we present
now is a mathematical abstraction that cannot be realized directly from conventional
hardware or software elements. It is best to view this model either as a pure mathe-
matical convenience—whose utility we shall see imminently—or as a “computational
strategy” that we shall try to realize via sophisticated transformation of a program.

10.1 Nondeterministic OAs

Informal development. Here is how the abstraction works. One can view an OA—
deterministic or not—as “making a decision” regarding the choice of the next state
whenever it receives an input symbol. Nondeterminism endows an OA with the ability
to “hedge its bets” in this decision-making process. One way to look at this hedging
is that in the new abstraction, an OA can create “alternative universes,” making a
(possibly) distinct choice of next state in each universe. We noted earlier (Section 3.1)
that a computation by a (deterministic) OA M on a string σ0σ1σ2 · · ·σk can be viewed
as a linear sequence

q0
σ0−→ q1

σ1−→ q2
σ2−→ ·· · σk−→ qk+1.

The interpretation of the preceding sequence is that the OA M starts out in state q0; in
response to input symbol σ0, it moves to state q1; thence, in response to input symbol
σ1, it moves to state q2; and so on.

In contrast, in the more general, nondeterministic, setting, a “computation” must
be viewed as a forest, in order to allow the nondeterministic OA to split universes at
each step. A nondeterministic analogue of the computation depicted in (3.1), wherein
for convenience of presentation we always split universes in two, now has a form such
as the following:

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 211
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q0

σ0 ↙ ↘
q11 q12

σ1 ↙ ↘ ↙ ↘
q21 q22 q23 q24

...
...

...
...

...

q′0
↙ ↘

q′11 q′12
↙ ↘ ↙ ↘
q′21 q′22 q′23 q′24

...
...

...
...

(10.1)

The computation depicted in (10.1) is a forest, rather than a tree, because we allow the OA to
“hedge its bets” even before the computation starts—by beginning its computation in a set of
start states, rather than in a single start state.

In order to flesh out the generalized model, we must, of course, indicate when
a “nondeterministic” OA “accepts” a string. In the deterministic setting, accep-
tance resides in the fact that the terminal state, qk+1, in the computation depicted
in (3.1) is an accepting state (an element of F). In the generalized setting, after
reading an input string σ0σ1σ2 · · ·σk, the nondeterministic OA may be in differ-
ent terminal states in different universes: in the computation depicted in (10.1),
for instance, after reading σ0σ1, the nondeterministic OA is in up to eight states,
q21,q22,q23,q24,q′21,q

′
22,q

′
23,q

′
24 (which need not all be distinct) in its eight terminal

universes. By convention, we say that the OA accepts an input string if at least one
of the states that the string leads to is an accepting state. Nondeterminism as thus
construed is inherently built around an existential quantifier—”there exists a path to
an accepting state.”

Formal development. Formalizing the preceding discussion, a nondeterministic
online automaton (NOA, for short) is a system M = (Q,Σ ,δ ,Q0,F) where:

1. Q, Σ , and F play the same roles as with a deterministic OA (henceforth called a
DOA, for short);

2. Q0 is M’s set of initial states;
3. M’s state transitions take sets of states to sets of states.

We elaborate on the third of these points. We begin with

δ : Q×Σ →P(Q),

where, as usual, P(Q) denotes the power set of Q. We extend δ to sets of states, i.e.,
to a function

δ : P(Q)×Σ →P(Q),

in the natural way, via unions: For any subset Q′ ⊆ Q and σ ∈ Σ ,

δ (Q′,σ) =
⋃

q∈Q′
δ (q,σ).

There is a natural inductive extension of δ to P(Q)×Σ �. For any subset Q′ ⊆ Q,

δ (Q′,ε) = Q′,
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and for all σ ∈ Σ and x ∈ Σ �,

δ (Q′,σx) =
⋃

p∈δ (Q′,σ)

δ ({p},x).

We have just extended the state-transition function δ of an NOA twice, once to have it act
on sets of states, rather than individual states, and once to have it act on strings, rather than
individual symbols; each time we overloaded the symbol “δ” to accommodate the extended
domain. The reader should verify, using the same type of careful reasoning we went through
early in Section 3.1 (when extending δ to act on strings), that we have not jeopardized our
firm technical footing via these extensions and overloadings.

Acceptance of a string by an NOA is formalized by the following condition:

L(M) = {x ∈ Σ � | δ (Q0,x)∩F �= /0}.

You should make sure that you see the correspondence between the formal setting of
an NOA and its language, as just described, and our intuitive description preceding
the formalism.

10.2 Nondeterminism as Unbounded Search, 1

In this section and Section 12.3, we present two results that expose the inherent na-
ture of nondeterminism in two ways that appear to be quite distinct, yet in fact are
just different ways of characterizing any nondeterministic “computation” as a deter-
ministic computation that is accompanied by an unbounded search. It is traditional
and convenient—but certainly not necessary—to have the search precede the de-
terministic computation. Our first characterization—in this section—is algorithmic,
in the sense that it incorporates the search into the computation performed by an
NOA. Our second characterization—in Section 12.3—is logical, in the sense that
it incorporates the search into the specification (in logical notation) of the NOA’s
computation.

An algorithmic view of nondeterministic search. In the strict sense formalized
by the proof of the following theorem, nondeterminism does not enhance computation
theory at all, at least not in terms of what can be computed. Nondeterminism does,
however, have profound effects in terms of various measures of efficiency, as well as
in other respects that we discuss in Section 10.3.

Theorem 10.1. Every language L that is accepted by an NOA M is also accepted by
a DOA M′ whose structure is determined by M’s.

Proof. Consider the language L that is accepted by the NOA M = (Q,Σ ,δ ,Q0,F).
Our proof relies on the following intuition, which is discernible in an NOA’s accep-
tance criterion. Focus on a moment when M has thus far read the string x ∈ Σ � (and
has branched into some collection of independent universes). If we want to deter-
mine how having read x will influence M’s subsequent behavior as it reads possible
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new input symbols, all we need to know is the set of states δ (Q0,x) that M is in
within its various universes. Specifically, the number k of occurrences of a state q
in this set is immaterial—as long as k �= 0. It follows that we can deterministically
simulate the (nondeterministic) computation of M on any string z just by keeping
track of the successive sets of states that the successive symbols of z lead M to. The
generality of the OA model allows us to accomplish this with a deterministic OA
M′ = (Q′,Σ ,δ ′,q′0,F ′), which we construct as follows. Recall that our goal is for
the DOA M′ to simulate all of M’s computational universes simultaneously, so that
L(M′) = L(M).

Because M′ need only keep track of the sequence of sets of states that an input
string would lead M through, we can construct M′ via the following so-called subset
construction.

We repeat our earlier caveat about nondeterminstic “algorithms.” In its full generality, the
following construction is not an algorithm: it gives no hint about how to represent and ma-
nipulate the sets of M’s states. We shall see in Chapter 11 that when the OA is finite, then this
construction is easily converted into an algorithm.

We specify the various defining components of the DOA M′:

• Q′ = P(Q).
This says, informally, that M′ keeps track of sets of M’s states.

• For all R ∈P(Q) (which is another way of saying for all R⊆ Q) and all σ ∈ Σ ,

δ ′(R,σ) =
⋃

r∈R

δ (r,σ).

Thus, M′ follows M from one set of states S (which personifies one set of simul-
taneous universes) to the set S’s successor-set under input σ , as specified by M’s
state-transition function δ .

• q′0 = Q0.
Thus M′ begins correctly, by simulating M’s set of start states, Q0.

• F ′ = {R ∈P(Q) | R∩F �= /0}.
This definition captures the fact that M accepts a string iff that string leads M to a
set of states that contains one or more (accepting) states of F .

Our intuitive justifications for each component of M′ can be turned into a simple
inductive proof that L(M′) = L(M), which is left to the reader. ��

We shall illustrate the subset-construction conversion algorithm in Chapter 11
(right after Theorem 11.1), because it is easier to appreciate how and why the con-
struction works when the NOA in question is finite.

It is worth reflecting on what the proof of Theorem 10.1 tells us about the nature
of nondeterminism. In essence, the DOA M′ that replaces a given NOA M generates,
for each (nondeterministic) “computation” by M, a search tree whose structure em-
bodies the repeated nondeterministic ramifications by M. Indeed, the entire process
of simulating M deterministically involves searching the various levels of this tree
for the existence of accepting states. Of course, if we were to actually implement M′
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algorithmically, we would have to craft some regimen for performing the searches
through the search trees generated by M in response to the various input strings. We
thus see nondeterminism as a kind of shorthand for unbounded searches. This insight
will remain valid as we begin to study nondeterminism formally—especially in terms
of its impact on computational complexity.

10.3 An Overview of Nondeterminism in Computation Theory

Having seen nondeterminism in a very abstract guise in the preceding section, we
can begin to discuss the central role that nondeterminism plays in computation the-
ory. In the case of both the weakest and most powerful classes of OAs, namely finite
automata and Turing machines (or their equivalents), nondeterminism is just a conve-
nience. Deterministic FAs can simulate nondeterministic ones (Section 11.1)—albeit
at the cost of increased size—and deterministic TMs can simulate nondeterminis-
tic ones (Section 12.2)—albeit at the apparent cost of increased computing time.
(Nobody knows for sure whether the slowdown is inevitable.) Even in these cases,
though, we shall see that nondeterminism gives rise to simplified design algorithms
and succinct specifications for automata (and the algorithms they represent).

With many classes of OAs whose computing power is intermediate between that of
FAs and (unrestricted) TMs—whether the limitations on power arise from limitations
on computational resources, such as time or memory, or because of restricted access
to resources, as with so-called pushdown automata (see, e.g., [41])—it is best to view
nondeterminism either as a purely mathematical convenience or as a “strategy” that
we shall try to realize algorithmically via some sophisticated algorithmic transfor-
mation. The most important examples of this role of nondeterminism are found in
formal language theory—where they were discovered by Chomsky [12, 13]—and in
complexity theory—where they were discovered by Cook [18].

Within the domain of formal language theory, several families of languages that
are defined by related syntactic schemas (which are kin to the formal grammars of
Section 6.1.3) can actually be characterized as precisely the languages accepted by
certain special classes of nondeterministic OAs. To cite just the two most impor-
tant such families—important because of their roles in the formal study of both pro-
gramming languages and natural languages: context-free languages are precisely the
languages accepted by nondeterministic pushdown automata; and context-sensitive
languages are precisely the languages accepted by nondeterministic linear-bounded
automata. (A linear-bounded automaton is a Turing machine that, when computing
on an input word x, is not allowed to access more than �(x) squares of its worktape;
see Section 13.2.2.) The preceding equivalences between families of languages and
classes of automata originated in [12, 13]; texts such as [41] give a treatment that is
more accessible to the modern reader.

As we shall see in Chapter 13, within the domain of complexity theory, nonde-
terminism is one of several concepts that people have used to enrich deterministic
computation in a way that leads to significant, apparently new, classes of languages.
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(For most classes, it is not known whether the associated deterministic and nonde-
terministic classes are the same!) Most typically, the classes are defined by restrict-
ing the resources—mainly time and memory—available to the computational model,
usually as a function of the length of the input word being processed (as with the
just defined linear-bounded automaton). Also, most typically, some fixed computa-
tional model—often Turing machines—is used as the anchor for the resulting theory.
Within this theme, one of the—perhaps the—central questions in complexity theory
asks how much computational resource is needed to simulate nondeterminism de-
terministically. The most famous instance of the preceding question is the P-vs.-NP
problem that originated in [18] and that dominates our discussion of complexity the-
ory in Chapter 13.



Chapter 11
Nondeterministic FAs

11.1 Nondeterministic FAs vs. Deterministic FAs

The material in this section refines the development in Chapter 10 by restricting atten-
tion to NOAs whose set Q of states is finite. We call such an NOA a nondeterministic
finite automaton (NFA, for short).

We noted in Chapter 4 that one can view FAs as abstract representations of ac-
tual circuits or machines or programs. However, when the FA model is generalized
to allow nondeterminism, the resulting NFA model is a mathematical abstraction
that cannot be realized directly from conventional hardware or software elements—
although its intended behavior can be mimicked via simulation. In the theories of
finite automata and regular languages, nondeterminism was invented independently
and roughly contemporaneously by two pairs of researchers, Gene H. Ott and Neil
H. Feinstein [75] and Michael O. Rabin and Dana Scott [79], as a simplifying concep-
tual and algorithmic tool for proving the Kleene–Myhill theorem (which we develop
in Section 11.2).

Nondeterminism is indeed just a convenience! The original proof of the Kleene–Myhill the-
orem, in [51], did not employ nondeterminism. It is worth looking at this version in order to
appreciate the significance of nondeterminism in making the theorem’s proof accessible.

11.1.1 NFAs Are No More Powerful Than DFAs

We now verify formally that nondeterminism is no more than a convenience within
finite automata theory, by showing that it affords NFAs no more computing power that
DFAs already have. Specifically, we show that NFAs accept only regular languages.

Theorem 11.1. Every language accepted by an NFA is regular, i.e., is accepted by
some DFA.

Proof. This result is really just a corollary of Theorem 10.1, via the insight that if
a given NOA M = (Q,Σ ,δ ,Q0,F) is an NFA—because the set Q is finite—then
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the power set, P(Q), of Q is also finite. This means that the subset-construction
algorithm in the proof of Theorem 10.1 actually produces a DFA M′ that accepts the
same language, L(M), as M does. ��

We now present a couple of examples to illustrate the construction of Theo-
rem 11.1.

0,1

M’2:

M’1

A B C D
1 1 1 1

E

0,10,1

A B C
1

0,1

:

Fig. 11.1 Graph-theoretic representations of two simple NFAs.

M′
1 0 1

→ A {A} {A,B}
B {C} {C}
C /0 /0

M′
2 0 1

→ A {A} {A,B}
B /0 {C}
C /0 {D}
D /0 {E}
E {E} {E}

Table 11.1 Tabular representations of the NFAs of Figure 11.1.

Example 1. It is clear intuitively that the NFA M′
1 of Figure 11.1(top) and Ta-

ble 11.1(left) accepts the language L of binary strings that have a 1 as the next-to-last
symbol. Applying the subset construction of Theorem 11.1 to M′

1 produces the DFA
M′′

1 of Figure 11.2(right). An easy application of the state-minimization algorithm of
Section 5.2 shows that M′′

1 is minimal in number of states.
Example 2. It is clear intuitively that the NFA M′

2 of Figure 11.1(bottom) and
Table 11.1(right) accepts the language L of all binary strings that contain a run of
at least four consecutive 1’s. This is the language L(M2), where M2 is the DFA de-
picted in Figure 3.2 and Table 3.1. Applying the subset construction of Theorem 11.1



11.1 Nondeterministic FAs vs. Deterministic FAs 219

1

1

A B C
1

0,1

:

0,1

M"1

{A} {A,B}

{A,C}

{A,B,C}

:

0
1

0

0

1

1

0

M’

Fig. 11.2 The DFA M′′
1 that Theorem 11.1 produces from the NFA M′

1 of Figure 11.1.

0

M’2:

A B C D
1 1 1 1

E

0,10,1

{A} {A,B} {A,B,C} {A,B,C,D} {A,B,C,D,E} {A,E} {A,B,E}

{A,B,C,E}
M"2:

0

1 1 1 1

1

0

0

1

0

10
1

0,1

0 0

Fig. 11.3 The DFA M′′
2 that Theorem 11.1 produces from the NFA M′

2 of Figure 11.1.

to M′
2 produces the DFA M′′

2 of Figure 11.3(bottom). When the state-set of M′′
2 is

reduced using the state-minimization algorithm of Section 5.2, one finds that all of
the accepting states of M′′

2 can be merged—as we have done in the dashed box in
the figure—thereby producing a DFA that is identical to M2, aside from the different
names for the states.

11.1.2 Does the Subset Construction Waste DFA States?

Our proof of Theorem 11.1 uses the subset construction as the basis of an algo-
rithm that converts a given NFA to a DFA that accepts the same language. Because
the power set P(S) of a finite set S is exponentially larger than S—specifically,
|P(S)|= 2|S|—this proof strategy raises the specter that the DFA M′ produced by our
algorithm to replace an NFA M may have many more states than it needs—perhaps
exponentially more! Now, from one point of view, such profligacy would not matter in
the end, because one could employ the state-minimization algorithm of Section 5.2 to
replace M′ by an equivalent DFA M′′ of the proper size. From a more practical point of
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view, though, M′’s excessive size would explode the complexity of the NFA-to-DFA
algorithm by forcing the algorithm to deal unnecessarily with an enormous interme-
diate DFA. (The words “excessive” and “unnecessarily” in the preceding sentence
would be true if indeed M′ could always be replaced by a much smaller equivalent
DFA.)

This section is devoted to showing that, at least sometimes, the exponential blowup
in states that our algorithm suffers is inevitable! Moreover, we accomplish this
demonstration with a very simple family of (perforce, regular) languages that demon-
strate the inevitability of the blowup for NFAs of all possible sizes.

Proposition 11.1 For each positive integer n, define the language

L(n) =
{

x ∈ {0,1}� | the nth symbol from the end of x is 1
}

.

For all n:
(a) There is an (n+1)-state NFA M(n) such that L(n) = L(M(n)).
(b) Any DFA M that accepts L(n) has ≥ 2n states.

To be completely unambiguous in defining the languages L(n): we say that the
rightmost symbol of string x is the first (“1th”) symbol from the end. Thus, L(1) is
the set of binary strings that end with a 1, L(2) is the set of binary strings whose
penultimate symbol is a 1, and so on.

Proof. (a) The idea behind the construction of the NFAs M(n) is discernible in Figure
11.1(top) and Table 11.1(left), which, respectively, depict and specify the 3-state NFA
M(2). We extrapolate from this example to derive the generic (n+1)-state NFA M(n)

via the specification in Table 11.2. The start-state A0 of M(n) “temporizes” before
(nondeterministically) “identifying” (via a guess) the input position that will be the
nth symbol from the end of the input. Once having “identified” this position, M(n)

checks that the symbol at this position is a 1 and then uses the rest of its states to
verify (by counting) that the position it has “identified” is indeed the nth from the
end. The easy details are left to the reader.

M(n) 0 1

→ A0 {A0} {A0,A1}
A1 {A2} {A2}
A2 {A3} {A3}
...

...
...

An−1 {An} {An}
An /0 /0

Table 11.2 A tabular representation of M(n).

(b) We use the Myhill–Nerode theorem (Theorem 4.1) to show that any DFA Mn

that accepts L(n) must have at least 2n states. To this end, let x and y be two binary
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strings that differ in at least one position within their last n symbols. In other words,

x = ξ αnαn−1 · · ·α1 and y = ηβnβn−1 · · ·β1,

where

• ξ ,η ∈ {0,1}� are binary strings of possibly different lengths;
• each αi ∈ {0,1} and each β j ∈ {0,1};
• for at least one k ∈ {1,2, . . . ,n}, αk �= βk.

We claim that x �≡L(n) y, so that (by Theorem 4.1) x and y must lead Mn’s initial state
to distinct states. Once we establish this, we shall be done, because there are clearly
2n distinct length-n endings for binary strings.

We prove that x �≡L(n) y by supplying a continuation string z such that one of
xz and yz belongs to L(n), while the other does not. To this end, say that αk = 1
and βk = 0.

Because we use no properties of x and y other than the ones enumerated above, we lose no
generality by assuming that αk = 1, while βk = 0.

With this assumption, we choose z to be any binary string of length n− k: z ∈
{0,1}n−k. We then have

xz = ξ αnαn−1 · · ·αk+11αk−1 · · ·α1z,

while
yz = ηβnβn−1 · · ·βk+10βk−1 · · ·β1z.

By design, αk is the nth symbol from the end of string xz, while βk is the nth symbol
from the end of string yz. Therefore, our assumption about the values of αk and βk

ensures that xz ∈ L(n), while yz �∈ L(n). By definition, this means that x �≡L(n) y, as
claimed.

While the proof is now complete, I should not leave you in suspense about the
status of all short binary strings with regard to Mn. (Of course, the x’s and y’s of
our proof must have length at least n.) You can satisfy yourself that each binary
string v of length n− h, for h > 0, is in the same class of relation ≡L(n) as is the
length-n string 0hv. This means that Mn does not need to have more than 2n states—
so we now understand L(n)’s memory requirements (in the sense of Section 5.4)
exactly. ��

11.2 An Application: The Kleene–Myhill Theorem

11.2.1 A Convenient Enhancement of NFAs

Because NFAs accept only regular languages, nondeterminism is indeed only a math-
ematical convenience for us. Because we are being kind to ourselves by allowing
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ourselves this convenience, let us continue to be kind by making the NFA model even
easier to use within the context of the important Kleene–Myhill theorem. We do this
by enhancing NFAs to allow them to have so-called ε-transitions.

An ε-nondeterministic finite automaton (ε-NFA, for short) M = (Q,Σ ,δ ,Q0,F) is
an NFA whose state-transition function δ is extended to allow so-called ε-transitions,
under which M changes state spontaneously, without polling its input port. Formally,
M’s state-transition function now has an expanded domain:

δ : Q× (Σ ∪{ε})→P(Q).

By allowing M to change state on “input” ε—which is really the absence of an
input—we are able to simplify some of our constructions in Section 11.2.2’s proof
of the Kleene–Myhill theorem. First, though, we show that such transitions do not
augment the power of NFAs. This demonstration is crucial to our allegation that the
Kleene–Myhill theorem characterizes regular sets, rather than some variant thereof.

Theorem 11.2. Every language accepted by an ε-NFA M = (Q,Σ ,δ ,Q0,F) is regu-
lar.

Proof. For each state q ∈ Q, we define q’s ε-reachability set E(q) as follows:

E(q) def= {p ∈ Q | [p = q] or (∃p1, p2, . . . , pn ∈ Q)[q ε→ p1
ε→ p2

ε→ ·· · ε→ pn
ε→ p]}.

Essentially, E(q) is the set of states that state q can reach spontaneously, i.e., via ε-
transitions. (One sometimes sees E(q) called something like the “ε-closure” of state
q.)

Using this construct, we now present an NFA M′′ = (Q,Σ ,δ ′′,Q′′0 ,F ′′) that has
no ε-transitions and is equivalent to M in the sense of accepting the same language.
Here are the formal specifications of M′′’s defining components, δ ′′, Q′′0, and F ′′.
(Components Q and Σ are inherited from M.)

• Q′′0 =
⋃

q∈Q0
E(q);

• (∀σ ∈ Σ , Q′ ⊆ Q)
[

δ ′′(Q′,σ) =
⋃

p∈δ (Q′,σ) E(p)
]

;

• F ′′ = F ∪{q ∈ Q0 | F ∩E(q) �= /0}.
M′′ thus uses the sets E(q), for q∈Q, to systematically “trace through” and “collapse”
all of M’s ε-transitions. Specifically:

• by definition of Q′′0, M′′ starts out in all states that M does, either directly or via
ε-transitions;

• by definition of δ ′′, M′′ makes all state transtions that M does, either directly or
via ε-transitions;

• by definition of F ′′, M′′ accepts any string that M does, either directly or via ε-
transitions.

We leave the formal verification that L(M) = L(M′′) as an exercise. ��
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With the results of this section in our toolkit, we can henceforth wander freely
within the world of DFAs, NFAs, and ε-NFAs when studying regular languages. We
make extensive use of this freedom in the next section.

11.2.2 The Kleene–Myhill Theorem

The Myhill–Nerode theorem (Theorem 4.1) characterizes the regular languages by
exploiting (limitations on) DFAs’ abilities to make discriminations among input
strings. We shall see imminently that one can also characterize the regular languages
via three operations that suffice to build such languages up from the letters of the input
alphabet Σ . This characterization culminates in this section’s Kleene–Myhill theorem
(Theorem 11.3), which occupies a central role in both the theory and applications of
the finite automaton model. Theorem 11.3 also gives rise to a useful notation, called
regular expressions, for assigning operational names to each regular language.

Notes. (a) See Section 4.3.2 for a brief discussion of names that are operational.
(b) Our use of the plural “names” in our assertion that regular expressions assign operational
names to each regular language is no typo. We shall see as we develop the elements of regular
expressions that one weakness of this naming scheme for regular languages is that it can take
exponential computational resources to determine whether two given expressions denote the
same language.

The theorem appeared first in [51] and, in slightly modified form, in [19].
Three basic operations on languages. The Kleene–Myhill theorem describes a

sense in which three operations on languages explain the inherent nature of regular
languages over a given alphabet Σ . We review the definitions of the operations from
Sections 2.1, 2.4.1, and (especially) 6.2.

• The union of languages L1 and L2: the set-theoretic union L1∪L2.
• The concatenation of languages L1 and L2:

L1 ·L2
def= {xy ∈ Σ � | [x ∈ L1] and [y ∈ L2]}.

The following observation about the concatenation of languages is particularly
relevant in the context of this section. Because languages need not be “prefix-
free”—i.e., because all of the strings u1, u1u2, . . . , u1u2 · · ·uk may belong to L1—
recognizing concatenations is a “very nondeterministic” operation: each encoun-
tered prefix u1u2 · · ·ui in L1 could be the x that one is looking for (i.e., the first
factor of the concatenation), or it could be just a prefix of that x.

• For any language L and integer k ≥ 0,

L0 def= {ε} and, inductively, Lk+1 def= L ·Lk.

Clearly, L1 = L. We call each language Lk the kth power of language L—using the
word “power” as with exponentiation.
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Because every power Lk for k > 2 involves at least two concatenations of lan-
guages, recognizing such powers is “even more nondeterministic” a task than is
recognizing a single concatenation.

• The star-closure of a language L, denoted by L�, is the set

L� def=
∞
⋃

i=0

Li = {ε}∪L∪L2∪L3∪·· · .

Note the somewhat unintuitive fact that /0� = {ε}. (In fact, /0� is the only finite
star-closure language!)
Of course, the fact that the star-closure L� of a language L involves iterated con-
catenation makes it “even more nondeterministic” than any single fixed power Lk

of L.

We turn now to the reason for our interest in the operations of union, concatenation,
and star-closure.

Regular expressions. We now define a powerful notational mechanism that af-
fords us operational names for every regular language. We call this mechanism reg-
ular expressions. As you read on, always keep in mind that each regular expression
R is just a (finite) string! Expression R denotes—i.e., is the name of—a (possibly
infinite) language L, but expression R is not itself a language!

Table 11.3 presents the inductive definition of a regular expression R over a (finite)
alphabet Σ , accompanied by the “interpretation” of the expression, in terms of the
language L (R) that it denotes.

Atomic Regular Expressions
Regular Expression R Associated Language L (R)

/0 /0
ε {ε}

For σ ∈ Σ : σ {σ}
Composite Regular Expressions

For RE’s R1,R2: (R1 +R2) L (R1)∪L (R2)
For RE’s R1,R2: (R1 ·R2) L (R1) ·L (R2)
For any RE R: (R�) (L (R))�

Table 11.3 Inductive definition of regular expressions and the languages that they denote.

We sometimes try to enhance legibility by violating our formal rules and omitting
parentheses and dots, as when we write a�b� for ((a)�) · ((b)�). We shall always be
careful to avoid ambiguities when employing such abbreviations—and when we are
being formal, we shall never employ such abbreviations!

The Kleene–Myhill theorem. We now finally can develop the result that exposes
a sense in which regular expressions tell the entire story of regular languages. We
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state the theorem in two quite distinct ways in order to give you two sources of intu-
ition as we embark on the proof.

Theorem 11.3. (The Kleene–Myhill theorem) A language is regular if and only if it
is definable by a regular expression.
In other words, the family of regular languages over an alphabet Σ is the smallest
family of subsets of Σ � that contains all finite languages over Σ (including /0 and
{ε}) and that is closed under a finite number of applications of the operations of
union, concatenation, and star-closure.

We prove Theorem 11.3 via two lemmas. The first lemma shows that every lan-
guage that is denoted by a regular expression is a regular language.

Lemma 11.1. If the language L⊆ Σ � is denoted by a regular expression R, then L is
a regular language.
In other words, the family of regular languages contains all finite languages, and it is
is closed under the operations of union, concatenation, and star-closure.

Proof. We showed in Lemma 4.2 that every finite language is regular. Therefore,
we need focus only on the closure properties of the regular languages. We present
schematic intuitive arguments for these closure properties, that can easily be turned
into inductive proofs, and we augment these arguments with a simple running exam-
ple.

We present in Figure 11.4 the two schematic NFAs, M1 and M2, that we use
to present our schematic intuitive arguments. In Figure 11.5, we instantiate the

M 1 M 2

Fig. 11.4 A schematic depiction of NFAs M1 and M2. Small squares denote states; squares with
inscribed squares are accepting states. The dashed lines indicate that we make no assumptions about
the number of accepting states. The arrows point to the start states.

schematic NFAs of Figure 11.4 with two simple explicit NFAs, ̂M1 and ̂M2, that
we use to illustrate our schematic constructions. Both ̂M1 and ̂M2 have the in-
put alphabet Σ = {1}, and both accept single-string languages: L( ̂M1) = {11}, and
L( ̂M2) = {111}.

Union. We build an NFA M1+2 that accepts L(M1)∪L(M2), as follows. We take
M1 and M2 and “defrock” their start states: these states still exist, but they are no
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1

1 1

M 2

1 1 1

M

Fig. 11.5 The NFAs ̂M1 and ̂M2. Notational conventions follow Figure 11.4.

longer start states. We then endow M1+2 with a (single) new, nonaccepting, start state
whose only transitions are ε-transitions to the “defrocked” start states of M1 and M2;
we illustrate this construction schematically in Figure 11.6. Clearly, the only paths in

1+2 M 1

M 2

ε

ε

M

Fig. 11.6 A schematic depiction of the “union” NFA M1+2.

M1+2 from the (new) start state to an accepting state consist of the ε-transition from
the start state to the “defrocked” start state of either M1 or M2—say, without loss
of generality, M1—followed by a path from M1’s start state to a final state of M1. It
follows that M1+2 accepts a string if and only if either M1 or M2 does. Figure 11.7
illustrates the application of this construction to the NFAs ̂M1 and ̂M2 of Figure 11.5,
to produce the “union” NFA ̂M1+2; clearly, L( ̂M1+2) = {11,111}.

Concatenation. We build an NFA M1.2 that accepts L(M1) · L(M2) as follows.
We take M1 and M2 and “defrock” M2’s start state: it still exists, but it is no longer
a start state. The start state of M1 becomes M1.2’s start state. Next, we “defrock”
M1’s accepting states: these states still exist, but they are no longer accepting states.
Finally, we add ε-transitions from M1’s “defrocked” accepting states, to M2’s “de-
frocked” start state; see Figure 11.8. The net effect of this construction is that when-
ever M1.2 has read a string x that would lead M1 to one of its accepting states—so
that x belongs to L(M1)—M1.2 continues to process any continuation of x within
M1, but it also passes that continuation through M2. It follows that if there is any
way to parse the input to M into the form xy, where x ∈ L(M1) and y ∈ L(M2),
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1+2

M 2ε

ε

M 1

1 1

1 1 1

M

Fig. 11.7 Depicting the “union” NFA ̂M1+2.

M 1 M 2

M 1.2

ε

ε

Fig. 11.8 A schematic depiction of the “concatenation” NFA M1.2.

then M1.2 will find it—via the inserted ε-transition. Conversely, if that ε-transition
leads M1.2 to an accepting state, then the successful input must admit the desired de-
composition. Figure 11.7 illustrates the application of this construction to two copies

of the union NFA ̂M1+2 of Figure 11.7, producing the “concatenation” NFA ̂

̂M1.2;

clearly, L(̂̂M1.2) = {1111,11111,111111}= {14,15,16}.

1

M 1+2 M 1+2

M 1.2

ε

ε

1

1 1
ε

ε

1 1

1 1 1

ε

ε

1

Fig. 11.9 Depicting the “concatenation” NFA ̂

̂M1.2.

Star-Closure. We build an NFA M1,∗ that accepts the language (L(M1))�. The
only delicate issue here is that we must take care that M1,∗ accepts ε , as well as all
positive powers of L(M1). Taking care of this delicacy first, we give M1,∗ a new start
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state that is also an accepting state: M1’s start state stays around, but it is “defrocked”
as a start state. The sole transition from the new start state is an ε-transition to M1’s
(now “defrocked”) old start state. Next, we “defrock” all of M1’s accepting states, and
we add an ε-transition from each of these to M1,∗’s new start state (which, recall, is an
accepting state). See Figure 11.10. What we have accomplished via this construction

1,*

1

ε

ε

ε

M

M

Fig. 11.10 A schematic depiction of the “star-closure” NFA M∗.

is the following. If M1,∗ reads an input x that would be accepted by M1, then it hedges
its bets. On the one hand, M1,∗ keeps reading x, thereby seeking continuations of x
that also belong to L(M1); additionally, though, M1,∗ assumes that the continuation of
x is an independent string in (L(M1))�, so M1,∗ spawns a universe in which it starts
over, in the start state of M1.

Explained in another way, the NFA M1,∗ implements the following identity, which
holds for arbitrary languages L:

L� = {ε}∪L ·L�.

In order to observe this equation in the construction of M1,∗, note the following.

1. The new accepting start state that we have endowed M1,∗ with ensures that ε ∈
L(M1,∗).

2. The ε-transitions from M1’s (now “defrocked”) accepting states to M1,∗’s new start
state ensures that M1,∗ accepts every string in the concatenation of L and L�. The
former behavior holds because we have arrived at a state that is an accepting state
of M1; the latter behavior holds by induction, because M1,∗ is also (in another
universe) branching back to its start state.

We thus see that L(M1,∗) = (L(M1))�, as claimed. Figure 11.11 illustrates the applica-
tion of this construction to the “union” NFA ̂M1+2 of Figure 11.7, thereby producing

the “star-closure” NFA
̂

̂

̂M(1+2),∗.
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ε

M 1+2

M
(1+2),*

ε

ε

ε

1 1

1 1 1

ε

Fig. 11.11 Depicting the “star-closure” NFA
̂

̂

̂M(1+2),∗.

You should verify that if M1’s start state is an accepting state, then one can easily modify the
preceding construction so that one need not add a new start state to M1,∗.

The preceding constructions and explanations provide the intuition underlying a
formal proof of this lemma that is based on an induction on the length of the input
string. We leave the task of formalizing the induction as an exercise. ��

The second lemma shows that every regular language is denoted by some regular
expression.

Lemma 11.2. If the language L ⊆ Σ � is regular, then L is denoted by a regular ex-
pression RL.

Proof. We prove the lemma via a famous dynamic programming algorithm for con-
structing RL that originated in [63]. The reader should compare this algorithm with
the closely related Floyd–Warshall algorithm for computing transitive closures and
related path-oriented problems in graphs; this algorithm originated in [25, 105], and
it appears in major texts on algorithms such as [20].

Focus on an arbitrary DFA M = (Q,Σ ,δ ,q0,F), and let L = L(M). Let us (re)name
M’s states (which constitute the set Q) as an indexed sequence, s1,s2, . . . ,sn, with
s1 = q0. We use the indices of these state names to orchestrate the dynamic program
that we use to obtain a regular expression RL that denotes L(M). (Using our earlier
notation, as in Table 11.3, we could write L (RL) = L(M).) Note that the only aspect
of the way we (re)name M’s states that is relevant to our algorithm is our assigning
q0 the name “s1.” We do need to know q0’s name, because it tells us where—i.e.,
in which state—computations by M start. Other than that one piece of information,
we just need an indexing of M’s states that allows us to refer unambiguously to state
#1 (which is “s1” in our proposed naming scheme), state #2 (which is “s2” in the
scheme), and so on.

As the next step in developing our dynamic program, we need to derive a system-
atic sequence of sublanguages of L(M) that will allow us to build up increasingly
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complex regular expressions that will culminate in RL. We base this sequence on our
naming scheme for M’s states. For all triples of integers 1 ≤ i, j ≤ n and 0 ≤ k ≤ n,

define L(k)
i j to be the set of all strings x ∈ Σ � such that

1. δ (si,x) = s j;
2. every intermediate state encountered as x leads state si to state s j has the name s�

for some �≤ k.
Note that we are constraining only the intermediate states in this sequence, not si

or s j. Thus, if the computation by M on the input string σ1σ2 · · ·σ� ∈ Σ � describes
the following sequence of states of M,

si
σ0→ sh1

σ1→ sh2

σ2→ ·· · σ�−1→ sh�−1

σ�→ s j, (11.1)

then we are asserting that hm ≤ k for every m ∈ [1, �− 1], but we are making no
restriction on either i or j.

Let us consider the computational implications of the preceding conditions.
When k = 0, there is no intermediate state in the sequence (11.1), so that

L(0)
i j =

⎧

⎨

⎩

{σ | δ (si,σ) = s j} if i �= j,

{ε}∪{σ | δ (si,σ) = s j} if i = j.

Note that the first line of this definition implicitly specifies L(0)
i j to be the empty set /0

when i �= j and there is no σ such that δ (si,σ) = s j.

When k > 0, we can derive an exact expression for the set L(k)
i j in terms of sets

L(kc)
ab whose index c is strictly smaller than k, via the following intuition. The set L(k)

i j
consists of all strings that lead state si to state s j via a sequence of intermediate states,

each having an index no larger than k; L(k)
i j therefore consists of:

• the set L(k−1)
i j of all strings that lead state si to state s j via intermediate states whose

indices are strictly smaller than k, unioned with . . .

– the set L(k−1)
ik of all strings that lead state si to state sk via intermediate states

whose indices are strictly smaller than k, concatenated1 with . . .

– the set
(

L(k−1)
kk

)�
of all strings that lead state sk back to itself via intermediate

states whose indices are strictly smaller than k, repeated as many times as you
want, concatenated with . . .

– the set L(k−1)
k j of all strings that lead state sk to state s j via intermediate states

whose indices are strictly smaller than k.

Representing this recipe symbolically, we have

1 Because languages and sets of strings are the same things within computation theory, this operation
of concatenation has been defined in Section 6.2.
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L(k)
i j = L(k−1)

i j ∪ L(k−1)
ik ·

(

L(k−1)
kk

)� ·L(k−1)
k j .

Because M has n states in all, the set L(n)
i j comprises all strings that lead M from

state si to state s j. Finally, L is the union of the sublanguages that lead M from its
initial state s1 to some accepting state; i.e.,

L =
⋃

s�∈F

L(n)
1� .

This completes the proof, because we have now determined how to construct L
from (perforce, finite) subsets of Σ , via a finite number of applications of the op-
erations of union, concatenation, and star-closure. One can translate the recipe for
so constructing L directly into a regular expression RL, for one can view a regular
expression as precisely such a recipe.

Of course, the regular expression RL is finite, because there are only n3 +n2 sets L(k)
i j .

In order to concretize the message of Lemma 11.2, we present a sample invocation
of the dynamic programming algorithm that constitutes its proof, using the simple
DFA M1 of Figure 3.2. Table 11.4 presents the tableau produced by the dynamic
program, with regular expressions simplified to enhance readability. As the table (and
visual inspection because M1 is so simple) indicates,

L(M1) = L(3)
11 = (a3)�,

using a “pidgin” regular expression whose meaning should be clear.
The observant reader will recognize that no feature of the regular-expression-

producing algorithm of Lemma 11.2 demands that we start with a DFA; the algo-
rithm works also if one starts with an NFA. We illustrate this by starting with the
simple NFA M′

1 of Figure 11.1. Table 11.5 presents the tableau produced by the dy-
namic program, with regular expressions simplified to enhance readability. As the
table (and visual inspection because M′

1 is so simple) indicates,

L(M′
1) = L(3)

13 = (0+1)�1(0+1)(0+1)�,

using a “pidgin” regular expression whose meaning should be clear.
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k A regular expression for L(k)
i j

0 L(0)
11 = ε L(0)

22 = ε L(0)
33 = ε

L(0)
12 = a L(0)

23 = a L(0)
31 = a

L(0)
13 = /0 L(0)

21 = /0 L(0)
32 = /0

1 L(1)
11 = ε L(1)

22 = ε L(1)
33 = ε

L(1)
12 = a L(1)

23 = a L(1)
31 = a

L(1)
13 = /0 L(1)

21 = /0 L(1)
32 = a2

2 L(2)
11 = ε L(2)

22 = ε L(2)
33 = ε +a3

L(2)
12 = a L(2)

23 = a L(2)
31 = a

L(2)
13 = a2 L(2)

21 = /0 L(2)
32 = aa

3 L(3)
11 = ε +a2(ε +a3)�a L(3)

22 = ε +a(ε +a3)�a2 L(3)
33 = ε +(ε +a3)�a3

= (a3)� = (a3)� = (a3)�

L(3)
12 = a2(ε +a3)�a2 L(3)

23 = a(ε +a3)� L(3)
31 = (ε +a3)�a

= a(a3)� = a(a3)� = a(a3)�

L(3)
13 = a2(ε +a3)� L(3)

21 = a(ε +a3)�a L(3)
32 = (ε +a3)�a2

= a2(a3)� = a2(a3)� = a2(a3)�

Table 11.4 Executing the dynamic programming algorithm of Lemma 11.2 on the DFA M1 of Figure
3.2.

k A regular expression for L(k)
i j

0 L(0)
11 = (ε +0+1) L(0)

22 = ε L(0)
33 = (ε +0+1)

L(0)
12 = 1 L(0)

23 = (0+1) L(0)
31 = /0

L(0)
13 = /0 L(0)

21 = /0 L(0)
32 = /0

1 L(1)
11 = (0+1)� L(1)

22 = ε L(1)
33 = (ε +0+1)

L(1)
12 = (0+1)�1 L(1)

23 = (0+1) L(1)
31 = /0

L(1)
13 = /0 L(1)

21 = /0 L(1)
32 = /0

2 L(2)
11 = (0+1)� L(2)

22 = ε L(2)
33 = (ε +0+1)

L(2)
12 = (0+1)�1 L(2)

23 = (0+1) L(2)
31 = /0

L(2)
13 = (0+1)�1(0+1) L(2)

21 = /0 L(2)
32 = /0

3 L(3)
11 = (0+1)� L(3)

22 = ε L(3)
33 = (0+1)�

L(3)
12 = (0+1)�1 L(3)

23 = (0+1)(0+1)� L(3)
31 = /0

L(3)
13 = (0+1)�1(0+1)(0+1)� L(3)

21 = /0 L(3)
32 = /0

Table 11.5 Executing the dynamic programming algorithm of Lemma 11.2 on the NFA M′
1 of Figure

11.1.



Chapter 12
Nondeterminism in Computability Theory

12.1 Introduction

We begin our study of nondeterminism in computability theory by crafting a non-
deterministic version of the online Turing machine (OTM) of Section 3.3; we call
this enhanced model an NTM, for “nondeterministic Turing machine.” The NTM
model provides us a “bookend” to match our study of nondeterministic finite au-
tomata (NFAs) in Chapter 11. Whereas NFAs arise from adding nondeterminism
to the computationally weakest model in our study, namely FAs, NTMs arise from
adding nondeterminism to the computationally most powerful model in our study—
indeed, the computationally most powerful possible model, period, according to the
Church–Turing thesis.

The major lesson of this chapter is that just as nondeterminism does not enhance
the computational power of FAs (Theorem 11.1), it also does not enhance the compu-
tational power of TMs. The reasons for these conclusions are quite distinct, though.
We found in Theorem 11.1 that the FA model is so weak computationally that its non-
deterministic version can exploit only a bounded degree of nondeterminism—and one
can always use a bigger deterministic FA to simulate this degree of nondeterminism
without actually resorting to nondeterminism. (Quantifying the adjective “bigger” in
the preceding statement: we were always able to simulate the degree of nondetermin-
ism accessible to an n-state NFA M using a 2n-state DFA to simulate M.) In contrast,
we find in this chapter that the TM model is so powerful computationally that it can
simulate unbounded amounts of nondeterminism.

A word of warning is in order. In order to establish the ability of deterministic
TMs—or any of their computationally equivalent kin—to simulate nondeterministic
TMs, we need to modify the “online” feature of our online TM model, for techni-
cal reasons that we discuss in the next section. (In anticipation: online computation
is inherently a deterministic phenomenon: the formalism via which a nondetermin-
istic computational model accepts input strings is incompatible with the way online
computational models accept input strings.)

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 233
DOI 10.1007/978-0-387-09639-1 12, c© Springer Science+Business Media, LLC 2010
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12.2 Nondeterministic Turing Machines

12.2.1 The NTM Model

We describe the formal extension of OTMs to NTMs only sketchily, because so much
of the development parallels our extensions of OAs to NOAs and of FAs to NFAs.

Let M = (Qpoll,Qaut,Σ ,Γ ,δ ,q0,F) be a (deterministic) OTM, so that its state-
transition function δ associates a single element of the set Q×Γ ×{N,L,R} with
each element of the set

((

Qpoll×Σ
)∪Qaut

)×Γ . We render M nondeterministic, i.e.,
make it an NTM M′, by:

• letting M′ initiate its computations in a set Q0 of initial states, rather than in a
single state q0;

• replacing δ by an extended state-transition function δ ′ that maps each element of
the domain

((

Qpoll×Σ
)∪Qaut

)×Γ

to a (possibly empty) subset of

Q×Γ ×{N,L,R},

rather than to a single element of that set.

As with general NOAs, the extension of the state-transition function δ to the ex-
tended version, δ ′, affords us a formal mechanism for allowing M′ to spawn alter-
native universes (or equivalently, to make nondeterministic guesses) as M′ processes
an input string. This mechanism means that a “computation” by M′ can be viewed as
a tree of moves, analogous to an NOA’s computational tree of moves, as depicted in
(10.1). It is essential to stress the important differences between the trees of moves
that we encounter here with NTMs and the simpler trees of moves, as in (10.1), that
we encountered with NOAs; cf. Section 10.1.

1. The “state” associated with each node of the NTM M′’s tree of moves is one of
M′’s total states (or configurations), as defined in Section 3.3. As indicated in that
section, each such node has the form

C = 〈w, γ1 · · ·γmqγm+1 · · ·γn〉, (12.1)

indicating that as a result of the (nondeterministic) branches M′ has taken leading
to this node:

a. M′ has read the string w ∈ Σ � at its input port;
b. M′ is in (internal) state q;
c. M′’s read/write head is positioned on symbol γm+1 ∈ Γ ;
d. M’s tape is entirely blank, except possibly for the region delimited by the string

γ1 · · ·γmγm+1 · · ·γn ∈ Γ +.
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2. OTMs and NTMs have both polling and autonomous internal states; FAs and OAs
have only polling states. This fact has two consequences.

a. Whereas all nodes at each level � of an NFA’s tree of moves represent situations
in which the NFA has read �− 1 input symbols, there is no such synchrony or
uniformity at the levels of an NTM’s tree of moves.
A practical consequence of this difference is that the total states at the nodes
of an NTM’s tree of moves must record the portion of the input string that the
NTM has read to that point. As one can see in (10.1), this is not necessary with
an NFA’s or an NOA’s tree of moves, because all states at each tree level have
read the same portion of the input string as they progress from the root of the
tree to the current node.

b. Some or all branches of an NTM’s tree of moves may be infinite, representing
branches along which the NTM never halts.
Of course, this is related to the absence of level-by-level synchrony in NTMs’
trees of moves. NOAs’ and NFAs’ trees of moves process one input symbol per
tree level, so the trees are always finite.

As with our other nondeterministic models, we say that the NTM M′ accepts a
string x ∈ Σ � if it accepts x in at least one of the universes it spawns while processing
x. This means that some node in M′’s tree of moves contains a configuration of the
form (12.1) where the input string w is x, and where the internal state q is a polling,
accepting state. As usual, L(M′), the language accepted by M′, is the set of all input
strings that M′ accepts.

OAs vs. TMs. The reader may be wondering why we bother with troublesome models such
as TMs and NTMs, given that OAs and NOAs seem to behave so much more smoothly (as in
our discussion of trees of moves). The reason, simply, is that OAs and NOAs lack the structure
to tell us how to achieve the desired behavior on a real computer. Because of this lack of a
mechanism for specifying how any state transition is actually performed, either in hardware
or software, there is nothing that an OA cannot compute—but there is also nothing that an OA
can compute. What we observe from our development of computability theory (and, in the
next chapter, complexity theory) is that the world gets messy when you start worrying about
how to achieve specific behaviors. The work of Gödel and Turing tells us that this messiness
is inherent: we cannot avoid it just by fiddling with our (logical or computational) models.

In view of the preceding paragraph, why do we bother with the OA/NOA model at all? Pre-
cisely to understand what features of computational systems depend only on the fact that
they are state-transition systems! We thus get conceptually important—albeit too-abstract-to-
implement—versions of the Myhill–Nerode theorem (Theorem 3.1) and the NOA-OA subset
construction (Theorem 10.1) from our study of the OA/NOA model. But we cannot use this
abstract model to replace a computational model (such as TMs) that is based on real, imple-
mentable computation.
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12.2.2 Deterministic Simulation of Nondeterminism: NTMs
and OTMs

This section is devoted to the algorithmic details of our claim that nondeterminism
does not enhance the computational power of OTMs and their equivalently powerful
kin (cf. the Church–Turing thesis). We begin with the preparatory work needed to
determine carefully what such a result actually states!

As suggested in Section 12.1, the problem that we must confront is that nonde-
terministic computation is, in some senses, incompatible with (deterministic) online
computation. The incompatibility arises from a certain “sequentiality” that is inher-
ent in the notion of online computation. In detail, a central property of (deterministic)
online computation by some computing device M is that for all n, M must announce
its acceptance/rejection decision about the string comprising the first n letters of the
current input word before it reads the (n+1)th input letter. One discerns this regimen
with all of the online models we have discussed: OAs, FAs, and OTMs. For all of
these models, all of the accepting/rejecting states are polling states. (In fact, all states
of OAs and FAs are polling states.) It is impossible to enforce this type of “sequential-
ity” on a general computation by a nondeterministic TM M, because M may poll its
input port at different rates along different branches of its nondeterministic compu-
tation. Specifically, M will generally have both polling and autonomous states, and a
state transition that splits universes can send M into a polling state in one universe and
into an autonomous state in another universe. When this occurs, distinct nodes at the
same level of M’s tree of moves may have read different amounts of the current input
string. As a consequence, M may accept a string σ1σ2 · · ·σkσk+1 at level � along one
branch of its tree of moves—which means after �−1 nondeterministic steps—while it
accepts string σ1σ2 · · ·σk only at some level �′ % � along some other branch—which
means after �′ % � nondeterministic steps. The resulting asynchrony in the trees of
moves of an NTM thus robs the model of the “sequentiality” that is inherent to online
computation. So what can we do to compare these “apples and oranges”? We mention
a few options.

1. Banish autonomous states from our computational models.
In fact, two of the models we have been studying, OAs and FAs, have only polling
states. For both of these, the subset construction demonstrates that nondeterminism
does not enhance the model’s computing power; cf. Theorems 10.1 and 11.1.

2. Bound the asynchrony in the tree of moves of a nondeterministic computation.
The intention here is not to let different branches of a nondeterministic computa-
tion get “too far” out of synchrony. In the presence of such a bound, a deterministic
simulator can be sure that if the NTM has not accepted an input string by such and
such a time, then it will never accept the string. This allows a kind of online be-
havior with a bounded built-in delay.
This is done in our study of time-restricted computation in Chapter 13. We study
there OTMs and NTMs M that are embellished with timing functions. Each OTM
(resp., NTM) M has an associated timing function fM such that if M accepts
an input string x, then it does so within fM(�(x)) steps (resp., within fM(�(x))



12.2 Nondeterministic Turing Machines 237

nondeterministic steps, i.e., at some node that is at level ≤ fM(�(x)) in M’s “tree
of moves”). We present in Chapter 13 an analogue of Theorems 10.1 and 11.1 for
time-restricted TMs, as part of our buildup to the P-vs.-NP problem.

3. “Disable” the “sequentiality” inherent in online computation.
Let us consider again why an OTM’s need for “sequentiality” can be incompatible
with nondeterministic computation. Say that an OTM M is (perforce, determinis-
tically) simulating a computation by an NTM M′, and it discovers a node in M′’s
tree of moves in which M′ accepts a string x—but M has not yet discovered a node
in M′’s tree of moves in which M′ accepts some prefix x′ of x. Then M cannot ac-
cept string x, because it does not yet know how to make an accept/reject decision
about string x′. If there were some way to infer the proper decision about x′ from
the decision about x, then M’s dilemma would disappear!
We are going now to introduce a natural mechanism that “disables” the “sequen-
tiality” inherent in online computation in a way that allows us to compare deter-
ministic and nondeterministic computing devices. We then prove that in the pres-
ence of this mechanism, every NTM can be simulated by an OTM—which means
that nondeterminism does not enhance an OTM’s computing power.

Note that had we chosen to develop computation theory around Turing’s original Turing ma-
chine model [104], then we would never have run up against the “sequentiality” issue at
all—for his original model is not an online one. We have chosen to base our development on
online TMs in order to stress the essential unity of the models as one progresses from FAs
through OTMs to OAs.

A mechanism for “disabling” “sequentiality.” Let Σ be a finite alphabet that
contains a designated symbol • that we call a point. Say that a language L ⊆ Σ � is
pointed if every word in L contains precisely one occurrence of •, which occurs at the
end of the word. One can phrase this condition symbolically by asserting that each
word in L has the form x• for some x ∈ (Σ \{•})�, or equivalently:

L ⊆
(

Σ \{•}
)� · {•} =

{

x• | x ∈
(

Σ \{•}
)�}

.

Thus, the symbol • functions essentially as a period does in many natural languages
(such as English).

Theorem 12.1. For every nondeterministic Turing machine M that accepts a pointed
language, we can construct a (deterministic) online Turing machine M∗ such that
L(M∗) = L(M).
Moreover, there exists a constant cM > 1 such that if M accepts a length-n word
x ∈ L(M) within tx nondeterministic steps—ie., via a path of length ≤ tx in its tree of
moves—then M∗ accepts x via a computation that has ≤ ctx (deterministic) steps.

Proof. Say that the NTM M = (Qpoll,Qaut,Σ ,Γ ,δ ,Q0,F) accepts the pointed lan-

guage L(M) ⊆
(

Σ \ {•}
)� · {•}. We describe the algorithmic and representational

issues that allow a deterministic OTM M∗ to simulate M.
As discussed earlier, the nondeterministic computation by M in response to an

input string x ∈ Σ � can be viewed as M’s generating a tree of moves, each of whose
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nodes represents a configuration of M, of the form (12.1). A simulation of M by the
deterministic TM M∗ thus has two levels. At the higher level resides the question of
how M∗ represents each of M’s trees of moves and how M∗ uses this representation
to orchestrate its threading of a tree. At a lower level resides the detailed strategy
for how M∗ simulates each nondeterministic step by M; this step involves using each
node of M’s tree of moves to generate the successors of that node in the tree. We
discuss these two levels in turn.

Informally, our strategy is to have M∗ process an input string x by expanding—in
a breadth-first manner—the tree of moves that M generates while processing x. The
reader will note that this procedure is quite analogous to the way a computer plays a
game such as chess: each of M’s trees of moves (one for each input string) is a direct
analogue of a game tree.

The reader should begin to ponder why we insist that the simulating OTM M∗ expand M’s
trees of moves in a breadth-first manner. As a hint, what would happen if M∗ unfortunately
started following a branch along which M never halted? How does a breadth-first expansion
of a tree of moves prevent this?

How M∗ simulates each tree of moves. As M branches nondeterministically to gen-
erate its tree of moves, M∗ explicitly generates the tree, in a breadth-first fashion.
M∗ orchestrates this generation process by using a data structure that processes M’s
configurations in a first-in-first-out (FIFO) queue-like order.1 In what follows, we
represent a FIFO queue into which the elements a,b, . . . have been loaded, in that
order—so that a will be the first element to come out, b the second, etc.—as follows:

> .. . ,b,a >

(Of course, in our case, these elements are configurations of M.) M∗’s simulation
proceeds as follows.

1. M∗ begins the simulation by inserting M’s initial configuration,

C0 = 〈ε, B q0 B B 〉,

into the initially empty queue. Pictorially, the queue now appears as

> C0 > .

2. Inductively, a step of M∗’s simulation begins with the queue containing some se-
quence of configurations of M:

> Cm,Cm−1, . . . ,Ci+1,Ci > .

To aid exposition, we have indexed the configurations in the order in which they
were inserted into the queue—which (by definition of the queue data structure) is
also the order in which they will be extracted from the queue.

1 Our brief discussion of queues in Section 9.8.1.C should give the reader enough background for
the current discussion. Readers seeking more information should consult a text on algorithms, such
as [20].
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In the following, M∗ will perform the indicated tasks while in autonomous states—
except for the moves in which M∗ is explicitly polling the input port.

a. M∗ extracts the oldest configuration, Ci in our example, from the queue. Say
that

Ci = 〈w, γ1 · · ·γmqγm+1 · · ·γn〉. (12.2)

Recall that this configuration indicates that at the nondeterministic step being
simulated, M is in internal state q and is scanning symbol γm+1 ∈ Γ on its
worktape.

b. i. If q is an autonomous state of M, then M∗ consults M’s program to determine
δ (q,γm+1).

ii. If q is a polling state of M, then
A. If the input string w that M has already read is pointed, i.e., if w = u•

for some u ∈ (Σ \ {•})�, and if q is an accepting state, then M∗ enters
an accepting polling state.

B. If either of the preceding conditions does not hold, then M∗ enters a
nonaccepting polling state.

In either case, M∗ determines the next input symbol σ that M would see—we
detail later how M∗ does this. M∗ then consults M’s program to determine
δ (q,σ ,γm+1).

c. Having determined δ (q,γm+1) when q is an autonomous state or δ (q,σ ,γm+1)
when q is a polling state, M∗ now knows the set of k ≥ 0 new configurations

{Ci1, Ci2, . . . , Cik}

that M will spawn at this nondeterministic step. M∗ inserts these k new
configurations—in arbitrary order—into the FIFO queue, with the appropriate
time-indices:

> Cm+k, Cm+k−1, . . . , Cm+1, Cm, Cm−1, . . . , Ci+1 > .

The order in which the k new configurations are inserted into the queue is im-
material, because all we care is that they are all guaranteed to get processed.

3. M∗ then repeats the cycle of simulating the next nondeterminsitic step of M.

This completes the overview of how M∗ simulates one of M’s trees of moves. We turn
now to the details of how M∗ processes each node of the tree.
How M∗ processes nodes in M’s tree of moves. We endow M∗ with nine worktapes,
one of which is two-dimensional, in order to describe the detailed simulation perspic-
uously. Careful bookkeeping can certainly reduce this number. The reader seeking a
single-worktape version of M∗ can apply the techniques from Section 9.8.2 to convert
our realization of M∗ to one that uses only a single linear worktape.

M∗’s worktapes play the following roles.
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1. M∗ uses one two-dimensional worktape—the PROGRAM TAPE—to record M’s δ
function in tabular form. Each row of this table can be read as a case statement in
a program: For each polling state of M, this entry has the form

Case: STATE = q; INPUT = σ ; WORK-SYMBOL = γ::
NEW-STATE = q′;
NEW-WORK-SYMBOL = γ ′;
NEW-HEAD-DIRECTION = D ∈ {N, L, R}

The “new” entries come from the equation δ (q,σ ,γ) = 〈q′,γ ′,D).
For each autonomous state of M, this entry has the form

Case: STATE = q; WORK-SYMBOL =γ::
NEW-STATE = q′;
NEW-WORK-SYMBOL = γ ′;
NEW-HEAD-DIRECTION =D ∈ {N, L, R}

The “new” entries come from the equation δ (q,γ) = 〈q′,γ ′,D).
2. M∗ uses one worktape—the INPUT tape—to record the input string w ∈ Σ � that

it has read thus far. Note that w may be quite a bit longer than the input strings
that M has read in the configurations at many of the nodes of M’s tree of moves.
Specifically, M’s autonomous states may cause it to “lag” in reading the input
along certain branches.

3. M∗ uses one worktape—the QUEUE—to implement the FIFO queue that will con-
trol M∗’s threading of M’s tree of moves. The use of the QUEUE was described in
the high-level portion of our description of M∗’s simulation of M.

4. M∗ uses one worktape as the ASSEMBLY TABLE on which it assembles M’s k
new configurations, Ci1,Ci2, . . . ,Cik, from M’s current configuration, Ci, and M’s
current nondeterministic move, δ (q,γm+1) or δ (q,σ ,γm+1).

5. One worktape will serve as the SCRATCH TAPE on which M∗ will extract from
the configuration Ci of M that is currently being processed the arguments needed
to determine M’s next nondeterministic move. These arguments are M’s internal
state q, the worktape symbol γm+1 that M’s read/write head is currently scanning,
and—when q is a polling state—the new input symbol σ .

• M∗ transfers the oldest queue entry—which we have been calling Ci; cf. (12.2)—
from the queue onto the CONFIG-SCRATCH tape. M∗ then transfers the string w
from Ci to the INPUT-SCRATCH tape (which is distinct from the INPUT tape, as we
shall see momentarily), and it transfers both q and γm+1 to the WORK-SCRATCH

tape.
• If q is an autonomous state, then M∗ uses the pair 〈q,γm+1〉 from the WORK-

SCRATCH tape as an index into the PROGRAM tape, to determine δ (q,γm+1), whose
value it then records on the STATE-CHANGE scratch tape.

• If q is a polling state, then M∗ compares the contents w of the INPUT-SCRATCH

tape with the contents x of the INPUT tape. Either the two strings are identical or
w is a prefix of x; the latter occurs when autonomous states have caused M to lag
in reading the input on this branch of its tree of moves.
If w is a prefix of x, then M∗ determines the next letter that M would read at this
point; this is a letter σ ∈ Σ such that wσ is a (not necessarily proper) prefix of x.
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M∗ replaces the field “w” in Ci with “wσ ,” to indicate that after the step, M will
have read input wσ to this point.
If w = x, so that M is “up to date” on this branch, then M∗ enters a polling state and
awaits the next input symbol at the input port. If w = x is pointed, so that w = y•
for some y ∈ (Σ \ {•})�, then if q is an accepting state of M, then M∗ enters an
accepting polling state (so that it accepts w); if q is not an accepting state of M,
then M∗ enters a nonaccepting polling state (so that it does not accept w).
In either case, M∗ is now in a polling state, awaiting a new symbol at its input port.
If this symbol never comes, then the computation stalls—which is how online
computations generally halt. If a new symbol comes—call it σ—then M∗ replaces
the field “w” in Ci with “wσ ,” to indicate that after the step, M will have read input
wσ to this point.
In either of the preceding cases, M∗ now uses the triple 〈q,σ ,γm+1〉 from the
WORK-SCRATCH tape as an index into the PROGRAM tape, to determine δ (q,σ ,
γm+1), whose value it then records on the STATE-CHANGE scratch tape.

• M∗ uses the contents of both the STATE-CHANGE and SCRATCH tapes to assem-
ble the new configurations that M has spawned during this nondeterministic step.
Each entry on the STATE-CHANGE tape tells how to transform Ci into one of the
new configurations—by changing the internal state, rewriting the current worktape
symbol, and shifting the read/write head. (Note that if there had been a need to ex-
tend the current input string w, then this would have been done in the preceding
step of the simulation.

The preceding simulation algorithm seems to be rather complicated, but that im-
pression is due to our striving for a level of detail that will make it clear how a
Turing machine—rather than a real computer—can keep track of all necessary de-
tails and perform all necessary manipulations. The reader might well be able to
understand the simulation algorithm better from just the high-level portion of the
description.

A final note regarding simulation time. Note that all of M’s trees of moves have
node-degrees bounded above by c′M = 3|Q||Σ ||Γ |. (To see why, look carefully at the
state-transition function δ .) It follows that M∗’s breadth-first searches through these
trees takes time that is exponential in the length of M’s shortest path to an accepting
node. The base of this exponential is a simple function of c′M that accounts for the
time that M∗ needs to manage and manipulate each of M’s configurations. Details are
left to an exercise. ��

12.3 Nondeterminism as Unbounded Search, 2

This section complements Section 10.2’s algorithmic characterization of nondeter-
ministic “computation” with a characterization that is logical, in the sense that it
incorporates the search into the specification (in logical notation) of the NOA’s com-
putation.
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A logical view of nondeterministic search. Let us focus on an arbitrary semide-
cidable set/language A ⊆ Σ �, for some fixed finite alphabet Σ . By definition, A’s
semidecidability resides in the fact that its semicharacteristic function2 κ ′A is semi-
computable. Another way to look at this is that A’s semidecidability resides in the
existence of a program PA such that, for all x ∈ Σ �:

PA

{

halts on every input x that belongs to L,
loops forever on every input x that does not belong to L.

Any program that (semi)computes κ ′A operates in the prescribed manner.
The existence of programs such as PA means that we can actually define the

set/language A in terms of the behavior of such a program; namely,

A = {x ∈ Σ � | PA halts on input x}. (12.3)

The advantage of this manner of defining A is conceptual, not computational. To
see the latter point first, note that we know from our study of the halting problem
(Section 9.3) that there is no algorithm that will decide, for all programs PA and inputs
x ∈ Σ �, whether PA halts on input x.

If you need some refreshing on this topic in order to appreciate the preceding sentence, con-
sider the case that A = DHP, and x is the program PDHP that computes the semicharacteristic
function κ ′DHP of the diagonal halting problem DHP. We showed in the proof of Theorem 9.1
that there is no algorithm that will decide whether PDHP halts when run with a copy of itself
as input.

Thus, defining A via (12.3) cannot help us to decide membership in A. However, we
do derive a conceptual benefit, which we describe now.

Let x, y, and z be finite strings over some alphabet Σ . Recall that via encod-
ings, each such string may be viewed as an uninterpreted string, or as a program, or
(cf. Section 3.3) as a computation by by some given program. Compare the predicate

P1(x,y) ≡ program x halts on input y

with the predicate

P2(x,y;z) ≡ string z is the computation by program x on input y.

We begin the comparison with the simple observation that P2(x,y;z) implies P1(x,y).
This is because the existence of a finite computation by program x on input y
means that program x halts on input y. A bit subtler observation—but certainly
no less important—is the following fundamental computational difference between
the two predicates. Whereas predicate P1(x,y) will be semidecidable for any “rea-
sonable” computational model,3 it will not generally be decidable, for the halting-
problem-related reasons given a few sentences ago. In contrast, for any “reasonable”

2 Recall that for all x ∈ Σ �, κ ′A(x) = 1 when x ∈ A and is undefined otherwise.
3 See our discussion of “reasonable” models in Section 1.1.B.
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computational model, predicate P2(x,y;z) is always decidable! (One can always
check that the alleged computation is an actual one.)

Because we have assumed nothing about the set/language A that seeded our discus-
sion, other than A’s being semidecidable, we can infer from the preceding discussion
the following very important observation.

Theorem 12.2. For every semidecidable predicate Ps-d(x), there exists a decidable
predicate Pdec(x,y) such that for all x, Ps-d(x) ≡ (∃y)Pdec(x,y).

Proof. Let’s go through the chain of reasoning that proves the theorem, while refer-
ring back to the discussion that preceded the theorem.

We start with the semidecidable predicate Ps-d(x). We derive from it the semide-
cidable set/language

APs-d = {x ∈ Σ � | Ps-d(x)},
and from this set/language the program PAPs-d

that computes APs-d ’s semicharacteristic
function. We thereby derive the following alternative definition of APs-d :

APs-d = {x ∈ Σ � | program PAPs-d
halts on input x}.

Because of these two ways of defining the single set APs-d , we know that the two
defining predicates are logically equivalent:

(∀x ∈ Σ �)
[

Ps-d(x) ≡ [program PAPs-d
halts on input x]

]

.

We now define predicate ˜P via

(∀x ∈ Σ �)
[

˜P(x;y) ≡ [string y is the computation of program PAPs-d
on input x]

]

.

As discussed earlier, predicate ˜P is decidable. Moreover,

(∀x ∈ Σ �)
[

[program PAPs-d
halts on input x] ≡ (∃y)˜P(x;y)

]

.

We conclude from the preceding reasoning that

(∀x ∈ Σ �)
[

Ps-d(x) ≡ (∃y)˜P(x;y)
]

.

We have thus expressed the arbitrary semidecidable predicate Ps-d as an existential
quantification of the decidable predicate ˜P. ��

What does Theorem 12.2 say that is relevant to our study of nondeterminism?
It tells us that the essence of nondeterminism is the ability to make guesses (or to
“split universes”). This ability is equivalent computationally to the ability to per-
form unbounded searches that seek an appropriate value for a “hidden” variable.
Theorem 12.2 tells us that this searching ability is precisely what is needed to
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translate the world of the solvable/decidable/computable to the world of semisolv-
able/semidecidable/partially computable. This insight will have extremely important
consequences as we turn to complexity theory, in Chapter 13.



Chapter 13
Complexity Theory

13.1 Introduction

Perhaps the major—certainly the most dramatic—strength of computability theory
is its robustness across widely varying models, as expressed in the Church-Turing
thesis. Probably the major weaknesses of computability theory are:

• its accepting as “computable” many functions that we have no idea how to
compute—such as the run-of-7’s function discussed in Section 9.7,

• its accepting as “computable” many functions that although computable in an ide-
alized world of limitless resources, cannot be computed within the known uni-
verse: our sun will burn out, and all known matter will be exhausted, before the
computation is completed.

In the light of these weaknesses, we must view parts of computability theory as math-
ematical abstractions that can never be realized physically.

The preceding assessment is not intended to disparage or undervalue computabil-
ity theory. The theory provides invaluable insights into the nature of computation,
and it provides a conceptual framework for reasoning about computation that has
been rigorously tested and challenged for more than six decades. The assessment
suggests, though, that computability theory deals best with “big issues” and that it
needs to be refined if one wants to bring issues of practicality, or even feasibility, into
the discussion. We now embark on a study of the major underpinnings of complexity
theory, a field that can be viewed as refining the conceptual tools that computability
theory uses to expose the inherent nature of computation—just so issues of prac-
ticality or feasibility can be discussed. Complexity theory achieves its refinements
by embellishing many of the core notions of computability theory with efficiency-
exposing parameters. These parameters help to make you aware of the quantitative
consequences of your algorithmic decisions, so that you are less likely to uninten-
tionally dedicate to a single computation every atom in the universe or every moment
left to our sun.

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 245
DOI 10.1007/978-0-387-09639-1 13, c© Springer Science+Business Media, LLC 2010
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Note the qualifier “unintentionally”: no mathematical theory will prevent you from ignoring
the quantitative consequences of your allocation of computational resources. The most that
one can expect is that the theory will enable you to estimate these consequences.

Let us expand on the preceding discussion. If one had to select just one “big” is-
sue with which to justify the existence of computability theory, one would do well
to choose the issue of encoding, as embodied in the kindred notions of (mapping)
reduction and completeness. As we embark on our study of complexity theory, we
shall observe the fundamental role that parameterized versions of these notions play
in exposing and explaining the computational characteristics of myriad problems that
are as important to the practitioner as to the theorist. Let us prepare the ground for
these obervations via the following anecdotes.

By the early 1960s—not long after the development of “real” digital computers—
both theoreticians and practitioners involved in computational fields such as combi-
natorial optimization began looking for ways to enlist the new field of digital com-
puting in their quest for solutions to their computational problems. One of the most
influential practitioners in this regard was the renowned expert in combinatorial opti-
mization Jack Edmonds. Edmonds noticed that there were myriad computationally—
and economically—significant problems for which the only known algorithms took
time exponential in the size of the problem. We briefly describe just two of these
“computable but practically intractable” problems, in order to hint at how varied such
problems can be and to indicate informally how the indicated time bound manifests
itself in concrete situations. The list of such problems could easily be expanded into
the many thousands, and beyond.

1. The traveling salesman problem. One is given a set of n cities that the epony-
mous “salesman” must visit, along with a matrix C of intercity travel “costs.” Each
matrix entry C(i, j) is the “cost” of traveling from city i to city j. The “cost” could
be based on expenditures such as airfare or mileage or tolls or . . . . We put the word
“cost” in quotes because the measure used need not obey any specific “reasonable”
laws—such as the triangle inequality for distance-related costs.
To solve the problem: One must find a minimum-“cost” tour of the cities, begin-
ning and ending in the same city and visiting each intermediate city precisely once.
The “exponential size” of the known computations that solved the problem meant
that these computations would take 2Ω(n) steps in order to solve an n-city instance
of the problem.

2. The Boolean minimization problem. One is given a logical (or, Boolean) ex-
pression E that specifies a logic function F . To clarify terms here:

• E is a mathematical expression whose variables range over the set of logical,
or, Boolean, values {0,1}, whose constants come from this set, and whose op-
erations manipulate elements of this set.

• F is a function that maps {0,1}k → {0,1}, where k is the number of variables
in the expression E.

To solve the problem: One must find a shortest expression ̂E that is logically equiv-
alent to E, in the sense that it specifies the same logic function F .
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The “exponential size” of the known computations that solved the problem meant
that these computations would take 2Ω(n) steps in order to solve the problem for
an expression that had n variables.

The reader seeking immediate gratification, in the form of a long list of problems to add to
the two just presented, should consult the early encyclopedic compilation [28] by Michael
R. Garey and David S. Johnson.

From a quite different point of departure, at around the same time, a number of
mathematical logicians—whom we shall call computational logicians for reasons that
will be clear imminently—were making use of the new tool, the digital computer, to
extend what was known computationally about the propositional calculus.

The propositional calculus is the logical calculus that reasons about logical, or Boolean,
expressions that are built using just the Boolean operations/connectives—with no quantifiers
(such as ∃,∀). See Section 13.3.5 for a detailed definition.

Specifically, these logicians wanted to enlist this tool in the venture of determining,
given a logical expression E as input, whether E was a theorem of the propositional
calculus. The computation that made this determination would provide a proof of E
if it were a theorem and a refutation of E if it were not. It was known that one could,
in fact, make these determinations, because the set of theorems of the propositional
calculus is decidable. In fact, it had been known since roughly 1920—see [107]—
that one could make these determinations via a conceptually simple computation,
because (in contrast to the quantified logic of the predicate calculus) the propositional
calculus is semantically complete. In plain language, semantic completeness means
the following. Let E be a logical expression that contains k Boolean variables. Say that
you instantiate the variables in E with the logical constants 0,1 in every possible way.
(Of course, there are 2k distinct instantiations, each of which triggers an evaluation
of E with its variables appropriately instantiated.) The semantic completeness of the
propositional calculus means that E is a theorem of the propositional calculus if and
only if E evaluates to 1, or TRUE under all 2k instantiations.

Expressions that evaluate to TRUE under all instantiations of logical values for their vari-
ables are called tautologies. Thus, another way to define semantic completeness is to say that
the set of theorems of the propositional calculus is coextensive with, or equal to, the set of
tautologies.

As we discussed in Section 9.1, Gödel’s seminal work [30] showed that any (quantified) log-
ical system that can express even rather primitive facts about positive integers is incomplete.
This means, intuitively, that, in contrast to the propositional calculus, there are “true” state-
ments that cannot be proved.

Early discussions about the completeness of the propositional calculus were in the
“spirit” of computability theory, in that no promises were made about how hard it
would be computationally to prove or refute a candidate theorem. In fact, however,
it was easy to get an upper bound on the complexity of these computations, because
the proofs of completeness were constructive: If the k-variable expression E was a
theorem, then one could derive a proof of E from the computations that effected the
2k instantiations of logical values into E, and if E was not a theorem, then one could
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derive a refutation of E from these computations. That was the good news. The bad
news was that the constructions derived from the proof were exponential in the size of
the potential theorem—i.e., all known ways of performing the required instantiation-
plus-evaluation computations on a k-variable expression took 2Ω(k) steps on some ex-
pressions. And the news got even worse, because all of the (many!) proof/refutation
generators that were developed for the propositional calculus could be shown to suf-
fer from exponential worst-case time-complexity. Because this compexity severely
limited the size of candidate theorems that early digital computers could prove or re-
fute, the computational logicians kept trying to find efficient—meaning subexponen-
tial time—algorithms for proving or refuting candidate theorems in the propositional
calculus. To make a long story short, all of the computational logicians’ attempts were
running into the same problem as Edmonds was with his optimization algorithms: ev-
ery algorithm they crafted took, in the worst case, time exponential in the size of the
input.

So, we had two groups of unhappy (human) computers. Each was confronting
a class of computational problems that digital computers should, theoretically, help
with, yet both were frustrated by their inability to use computers to solve all but
unsatisfyingly small instances of their problems. Was there an inherent reason for the
apparent intransigence of the problems that these groups wanted to solve, or was it
just a lack of appropriate algorithmic insights on their parts?

Around 1970, Stephen A. Cook [18] took a giant step in explaining—albeit to date
not alleviating—the frustration of both the combinatorial optimizers and the compu-
tational logicians. In that source, Cook proposed a theoretical approach to studying
the complexity of a large range of computational problems that was based formally
on computability theory but that refined that theory by incorporating measures of the
time needed to compute a function (or, equivalently, solve a computational problem
or decide [membership in] a language). Essentially the same theory was discovered
independently, and roughly contemporaneously, by Leonid Levin [56], using an al-
gorithmic, rather than computability-theoretic, framework. Remarkably, Cook and
Levin, followed within a year by Richard M. Karp [48], and thereafter by a host
of other computation theorists, used the (computational) complexity theory that re-
sulted from Cook’s formalization to show that all of the problems mentioned in this
section—and myriad others—are, in a sense that we shall formalize, encodings of one
another.

Step #1 in the conceptual development of complexity theory can be viewed as the
following insight, by Cook, Levin, Karp, and their followers, about encodings.

If one restricts the computability-theoretic notion of reducibility by demanding
that the reducing function be efficiently computable, in terms of its time require-
ments,

and if one “paints with a sufficiently broad brush,” by measuring time coarsely,
focusing on polynomial time, rather than, say, on linear time or quadratic time,

then one finds that the combinatorial optimizers and the computational logicians
had, in fact, been working on encodings of the same computational problems!
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The time-restricted encodings that resulted from this insight thus allowed one to relate
computational problems that on the surface, had nothing to do with one another.

As we begin, in the following sections, to study reductions that relate specific problems, you
should ask yourself how the coarse measurement of time residing in the phrase “polynomial
time” helps.

Step #2 in the conceptual development of complexity theory is manifest in an in-
sight that is orthogonal to the preceding one and that may have emerged from Cook’s
initial focus on theorem provers for the propositional calculus. The challenge of de-
termining whether a k-variable Boolean expression E is a theorem (or equivalently,
a tautology) requires one to deal with a universal quantifier that ranges over a set of
cardinality 2k: E must evaluate to TRUE under every instantiation of its variables with
truth values. However, the calculation needed to process each individual instantiation
is simple, requiring, in fact, time that is linear in the size of expression E.

You should verify the preceding assertion about the complexity of evaluating E under a single
instantiation of its variables with truth values.

Perhaps, then, it would be computationally less onerous to try to answer the question
Is expression E a theorem?

indirectly, by focusing instead on the complementary question
Is expression E refutable?

(Expression E is refutable if there exists an instantiation of E’s variables with truth
values under which E evaluates to FALSE.) This indirection would convert the univer-
sal quantifier that characterizes tautology—TRUE under all instantiations—with an
existential quantifier—FALSE under some instantiation. What is exciting about this
change of focus is how it is impacted by the fact—see Section 12.3—that existen-
tial quantifiers in a computational setting betoken searches that can be represented
by allowing one’s computational platforms to be nondeterministic. In fact, it is easy
to verify that when viewed as a language—which is how we view all computational
problems; cf. Section 2.4.1—the set of refutable logic expressions can be accepted
by a nondeterministic Turing machine that operates in (nondeterministic) linear time:
The TM uses its nondeterminism to “guess” an instantiation that refutes E, and it then
deterministically evaluates E under that instantiation, to see whether its “guess” was
correct.

Combining Steps #1 and #2, subsequent work by Levin, Karp, and their fol-
lowers showed that an incredible variety of computational problems that had re-
sisted all quests for subexponential-time (deterministic) solution—including many
of Edmonds’s optimization-oriented problems—shared the following property with
propositional theorem-proving. A language-theoretic formulation of some version
of the problem could be solved efficiently by a nondeterministic Turing machine.
One might need to focus on “a version” of the problem—as with Cook’s shift of
focus from theorems to refutable expressions—and one might need to settle for “ef-
ficient” nondeterministic computation—not necessarily linear time—but the broad-
brush commonality was there to observe. Moreover, if one substituted the phrase
“time polynomial in the size of the problem” for “efficient,” then the preceding ob-
servation could be sharpened: The language-theoretic formulation of each problem
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could be solved by a nondeterministic Turing machine that operated in (perforce,
nondeterministic) polynomial time.

Thus arose the problem that many count as the premier unresolved problem in
computation theory, the now-famous P-vs.-NP problem. This is the problem of deter-
mining whether the family NP of all languages that can be recognized in polynomial
time by nondeterministic “algorithms” is coextensive with the corresponding family
P, which is defined in terms of deterministic algorithms.

If you prefer non-language-theoretic terminology, then the P-vs.-NP problem can be specified
via the following question. Can every nondeterministic “algorithm” that operates in polyno-
mial time be simulated by a deterministic algorithm that operates in polynomial time?

The P-vs.-NP problem dominates this chapter, in deference to its status as the preem-
inent open problem in today’s world of computation theory—perhaps even of today’s
world of computer science.

A final note is needed to round out this introduction. The phrase “albeit to date not
alleviating” used in introducing Cook’s seminal work on computational complexity
betokens the fact that computational researchers have yet to resolve the original fun-
damental question: Does there exist a (deterministic) polynomial-time algorithm that
solves any of the problems—such as the traveling salesman problem or the boolean
minimization problem or the problem of deciding theoremhood in the propositional
calculus—whose exponential-time algorithms motivated the invention of complexity
theory as we know it. What the researchers have accomplished, though, is of im-
mense conceptual importance! We know now that if a polynomial-time algorithm can
be found for any of these apparently intractable problems—or if one could prove that
no such algorithm exists—then this algorithm, or this proof, could be adapted to yield
a similar result for every one of these problems.

Once the conceptual benefits of the Cook–Levin–Karp formulation of complex-
ity theory was recognized (which was almost instantaneous!), it took no time (read:
mere months) for computational researchers to adapt the formulation to encompass a
number of measures of computational complexity other than time; over the ensuing
decades, today’s rich theory of computational complexity evolved. Because of the
(then-)new, improved conceptual settings, people were able to systematically study a
broad repertoire of complexity measures for a broad range of problems, instead of be-
ing restricted to ad hoc studies of limited scope, such as we reviewed in Sections 5.4
and 5.5. (Notably, the preceding two studies predated Cook’s work by only roughly
five years.)

As one can guess from the last sentences of the preceding paragraph, the work of Cook,
Levin, and Karp did not arise in a vacuum. People had been trying for several years to craft a
theory of computational complexity that would be embraced by both the computational theo-
rists (because it gave access to sophisticated theoretical results) and the computational prac-
titioners (because it either explained or—even better—alleviated some of the computational
intransigence of significant “real” problems). Decidedly nontrivial progress had been made
in crafting complexity theories that captured the interest of many computational theorists,
but none of these theories had achieved overwhelming success in the theoretical community
or anything beyond casual interest in the practical community. The Cook–Levin–Karp was
recognized almost instantaneously by both theorists and practitioners.
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Our introductory discussion reveals two biases that are shared by most “producers”
and “consumers” of complexity theory.

1. Among the various resources that one expends while computing, time is at (or
near) the top of the list in importance.
Any such general pronouncement must be examined in the light of real-world fac-
tors that either strengthen or weaken the thesis. In a dynamic field such as comput-
ing, such factors can appear and disappear quickly, due to technological changes.
Here are a few moderating factors relating to the importance of time complexity.

• Strengthening the pronouncement is the decreasing cost of many hardware re-
sources expended in computing—especially memory and storage.

• Strengthening the pronouncement is the fact that adding (cheap) extra mem-
ory to a computing system inevitably slows down a processor’s access to the
memory.

• Weakening the pronouncement is the growing importance of controlling power
consumption—as mobile computing becomes more prevalent.

• Weakening the pronouncement is the growing importance of overall work
completion amounts, rather than rates—as computational modalities such as
Internet-based computing allow one access to massive amounts of computing
power—cf. [54]—whose efficiency is of less importance than its effectiveness
(better late than never . . . ).

2. As one focuses on the theoretical aspects of time complexity, no question comes
closer to dominating the agenda than the question of how efficiently determin-
istic computing devices—which are physically realizable as specified—can sim-
ulate nondeterministic computing devices—which are idealized abstractions. As
we have seen in Sections 10.2 and 12.3, nondeterministic “algorithms”1 can of-
ten be used as a convenient abstraction and/or shorthand for specifying determin-
istic algorithms that are preceded by some kind of search. The key question is
how much computational resource the searches take, as compared to the determin-
istic algorithms that they introduce. The P-vs.-NP problem will be our primary
vehicle for studying the interaction between deterministic and nondeterministic
time-restricted computation. But the reader should be aware that the principles un-
derlying our study are relevant in a broad range of situations that go far beyond the
combinatorial and computation-logic problems that were the original motivation
for studying how efficiently deterministic computations can simulate nondeter-
ministic ones.

This chapter is devoted to developing the underpinnings of complexity theory.
Time complexity—and, more specifically, the important P-vs.-NP problem—
dominates our discussion. We do, however, briefly discuss also space (or memory)
as a complexity measure, both because of its intrinsic conceptual interest and to il-
lustrate by example how differently distinct complexity measures can behave. This

1 As we note in several places, these nondeterministic pseudoalgorithms are not really algorithms
because they cannot be realized physically as specified.
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approach allows us to introduce the principles underlying the most important issues
in complexity theory, while giving the reader a broader perspective that should afford
her access to the large, dynamic literature on the theory.

13.2 Time and Space Complexity

There are many ways to measure the complexity of computation. Some of these ways
are quite model-specific, such as measuring the consumption of power in battery-
powered computing devices. Other ways transcend the specific characteristics of the
device doing the computing: it is hard to imagine a computational medium that does
not have some accompanying notion of time and space. Because of our focus on
pervasive underlying principles, we restrict attention to time and space as measures
of computational complexity. These ubiquitous measures allow us to illustrate almost
all of the concepts and tools that one encounters in studying any measure.

Even having decided to focus solely on the time and space complexity measures,
we must spend some time discussing how to measure the consumption of these re-
sources, because, as we see in this section, model-specific details influence the formal
development.

The decisions that we must make regarding how to formalize our complexity mea-
sures become much more difficult when the computing devices of interest are nonde-
terministic. Our first decision is to base our study of complexity on the NTM model
introduced in Section 12.2. (This is a variant of the dominant model in the complex-
ity theory literature, hence positions the student well for accessing that literature.)
One can easily build on the robustness results for OTMs, in Section 9.8, to conjec-
ture that a version of complexity theory based on the NTM model will be robust
against a large variety of changes to the model. However, as one contemplates for-
mulating a theory of the complexity of NTM computations, one finds immediately
that the model’s nondeterminism—which is an essential feature if we are to study
the P–vs.–NP problem—leads to two behavioral characteristics that make it hard to
quantify how much resource (time and space in our study) an NTM has expended
during a computation. You can follow the details of the model in Section 12.2 as we
discuss two problems that we henceforth refer to as the nondeterministic-complexity
puzzle.

1. First, a rather minor problem. NTMs accept words but never reject them. This fact
introduces an asymmetry into the way one measures time or space consumption
that is largely absent in the deterministic case. Of course, the asymmetry is not
totally absent even with deterministic OTMs, which by never halting, can fail to
accept a word without rejecting it.

2. Second, a major problem. An NTM M can accept an input word x along many
branches of the computation tree T M(x) that it generates while processing in-
put x. (Recall that the branching in T M(x) corresponds to M’s spawning distinct
“universes” while processing x.) By definition, M accepts input x precisely when
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x leads M along at least one branch in T M(x) from the tree’s root node—which is
M’s initial total state—to an accepting node.
The problem arises because of the highlighted phrase “at least one.” M may accept
x along many branches, and distinct accepting branches may differ in lengths—
which (intuitively) measures time—and amount of memory used—which (intu-
itively) measures space. To phrase the problem differently, M may use different
amounts of time and space in different “universes.” The problem we must address
is, which branch of M’s computation is the most appropriate one for measuring
M’s time consumption while processing x? Which branch is most appropriate for
measuring M’s space consumption?

To this point we have often invited the reader to think about the simple cases of NFAs or
NOAs when trying to garner intuition about nondeterministic computation. This place is dif-
ferent! NFAs and NOAs give no intuition regarding the preceding two problems, because all
states of an NFA or NOA are polling states, so that all of the “universes” of an NFA or NOA
process inputs in lockstep.

Without further ado, we turn to our resolution of the several formulational chal-
lenges we have been discussing.

13.2.1 On Measuring Time Complexity

We are able to introduce the topic of deterministic time complexity at a quite general
level, by discussing OAs rather than more finely structured computational models. It
is only when we extend the topic to nondeterministic models that we must migrate to
the more structured NTM model.

A. The Basic Measure of Time Complexity

Let M be a (deterministic) OA that processes words over the input alphabet Σ , and
let t : N→ N be a nondecreasing total function that we employ as a time-bounding
function. We say that M operates within time t(n) if the following holds for all words
x ∈ Σ �. If M halts on input x—thereby either accepting or rejecting the input—then
its computation on input x consists of ≤ t(�(x)) steps. See Sections 3.1 and 9.8.

We turn now to the time-related version of the nondeterministic-complexity puzzle.
We resolve the puzzle’s two issues in what can be viewed as an “optimistic” way. We
measure an NTM M’s time consumption while processing an input word x only at the
accepting nodes in M’s computation tree T M(x). And, among competing accepting
nodes, we focus on a shallowest accepting node in the tree, i.e., an accepting node that
M has reached via the shortest (nondeterministic) computation, or, as fast as possible.
This leads us to the following definition.

Let M be an NTM that processes words over the input alphabet Σ ; let t : N→ N

be a total nondecreasing function. We say that M operates within (nondeterministic)
time t(n) if the following holds for all words x ∈ Σ �. If M accepts input x, then in
at least one of its accepting computations on input x, M reaches an accepting state
within t(n) (nondeterministic) steps, i.e., along a tree brach of length ≤ t(n).
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B. The Classes P and NP

The importance of the P-vs.-NP problem stands on two features of the problem.
Identifying “polynomial-time” as “efficient.” Computational practitioners such

as Edmonds and the earlier-referenced computational logicians were suffering with
seemingly unavoidable exponential-time (deterministic) algorithms for the problems
they wanted to compute. They proposed using polynomial-time complexity as the
desirable, “efficient,” counterpoint to the undesirable, “inefficient,” exponential time.
Of course, the now universally accepted focus on polynomial-time computation as the
exemplar of “efficient” computation is an imperfect one. As several researchers have
demonstrated, an exponential-time algorithm that operates within time t(n) = (1 +
10−13)n is almost always to be preferred to a polynomial-time algorithm that operates
within time t(n) = 1013 · n100. (We hyperbolize to make our point.) However, as a
first-order approximation to the truth, identifying “polynomial-time” as “efficient”
is a reasonable abstraction—as long as one recognizes that it is only a first-order
approximation to the truth.

As we have suggested earlier, the seminal work in [18], [56], [48], and myriad
subsequent studies allowed the practitioners referred to in the preceding paragraph to
refine the notion of “inefficient” that characterized their computational problems to
a much smaller class of problems than “exponential-time” ones. Specifically, these
sources showed that appropriate variants of their problems could be solved by nonde-
terministic “algorithms” that operate in (nondeterministic) polynomial time. Specif-
ically, language-theoretic versions of their problems belonged to the family NP of
languages that can be recognized in (nondeterministic) polynomial time. Importantly,
as we note in the next paragraph, the family NP is robust, in that membership in the
family is unaffected by a wide variety of structural changes to one’s nondeterministic
computational model.

Robustness and model independence. The study of time complexity is quite
model dependent, unless one paints with a “broad brush” by dealing with rather
coarse time classifications. To illustrate the point, if we were to study the family
of languages that can be recognized in time linear in the length of the input string,
then we would be studying quite distinct language families under the following com-
putational models:

• OTMs with 1 one-dimensional read/write worktape;
• OTMs with 2 one-dimensional read/write worktapes;
• OTMs with 1 two-dimensional read/write worktape;
• OTMs with 2 two-dimensional read/write worktapes;
• Off-line TMs with 1 one-dimensional tape. This is, essentially, Turing’s original

model [104]. It starts each computation with the input string as the sole contents
of its tape; it uses the tape both as a record of the input and as scratch memory.

Adding yet more worktapes and/or changing the dimensionalities of the worktapes,
or allowing, say, tree-structured worktapes would lead to yet other families. The
same type of model dependence would be observed with other “narrow” complex-
ity classes, such as quadratic time or cubic time. Indeed, the results developed in
Section 5.5 can be used to expose a variety of instances of this model’s sensitivity.
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On the other hand, if we paint with a rather broad metaphorical brush, by allow-
ing substantial variation in computation times, then we can regain quite a bit of the
model independence that is a compelling feature of computability theory (although
nowhere near the robustness that led to the Church–Turing thesis). Specifically, if we
allow polynomial variation in our timing functions, then all of the variants of the TM
mentioned in the preceding paragraph lead to the same time-restricted language fam-
ilies. (Instances of this robustness/invariance can be observed in our analyses of the
constructions of Section 9.8.) Thus, we find complexity theory populated with “poly-
nomial time” instead of, e.g., “linear time”; “exponential time” instead of, e.g., “time
2n”; and so on.

Recall once again computation theory’s long history of converting general com-
putational problems to language-theoretic problems that retain the salient structure of
the original problems. The level of model independence that one achieves by allowing
polynomial variation in a timing function has led to a strong identification of the fam-
ily P of languages that can be recognized within time polynomial in the length of the
input (say, on an OTM) as the family of languages that can be recognized efficiently.

We have come full circle, in a sense. The original focus on polynomial-time computa-
tion was an intuitive view of “polynomial-time” as a counterpoint to the inefficiency of
exponential-time computation. In light of the work by Cook, Levin, Karp, and their suc-
cessors, we now have technical reasons for identifying polynomial-time computation as “ef-
ficient” computation—because of the model independence that this choice affords us.

For the total range of features of the language families P and NP that we have
discussed in this introduction, the computational community—practitioners and the-
orists alike—now identify the formal problem known as “P-vs.-NP” with the informal
quest for efficient algorithms for the enormous collection of significant computational
problems that originated with Edmonds’s optimization problems.

Before leaving this topic, we should clarify that the identification of exponential
time-complexity as the enemy of efficiency has been refined, but not abandoned, by
our focus on the class NP as our computational target. As the following pair of corol-
laries of Theorem 12.1 indicate, NP is a subfamily of the family of languages that
can be recognized in (deterministic) exponential time. (We leave the straightforward
proofs of these corollaries to the reader.)

The first corollary of Theorem 12.1 quantifies the dramatic expansion of time re-
quirements if one deterministically simulates a nondeterministic TM M via the strat-
egy of breadth-first threadings of M’s computation trees.

Corollary 13.1 For every NTM M there is a constant cM > 1 for which the following
holds. If M accepts L(M) within (nondeterministic) time t(n), then there is a (deter-

ministic) OTM that accepts L(M) within (deterministic) time ct(n)
M .

The preceding result specializes to the following significant observation.

Corollary 13.2 The class NP is contained in the class of languages that are recog-
nized by OTMs that operate in exponential time.
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13.2.2 On Measuring Space Complexity

Contrasting with the model sensitivity that accompanies (plagues?) measures of time
complexity, space complexity is a rather model-robust measure. Indeed, it is this ro-
bustness that lends significance to the OA-based results of Section 5.4. Almost any
way of instantiating the abstract OA model with a concrete online computational
model, such as a variant of OTM, will change the results of Section 5.4 by only a
constant factor. As the preceding sentence suggests, the one major way of instanti-
ating the abstract OA model that does have a profound impact on space complexity
is to drop the online feature of OAs. This impact, which we observe in the proof of
Lemma 13.2, gives rise to the technical (rather than definitional) development in this
section.

One’s immediate reaction when faced with the task of defining the space complex-
ity of an OTM M is to count how many squares of worktape M uses when processing
an input string x, as a function of �(x). One quickly finds, though, that this approach
may not appropriately measure the complexity of deciding the language L(M), be-
cause it conflates two distinct uses of the worktape:

• as “passive” memory that records (portions of) the input for later reference,
• as memory that participates in the actual processing of an input string.

Instead of discussing these two roles of memory abstractly, we focus our discussion
around an illustrative specific example language.

A. The Pointed Palindromes as a Driving Example

We focus on a variant of an old linguistic friend (from Chapters 4, 5, and 6), the
language of palindromes. This language provides a dramatic example of the two roles
played by a TM’s worktapes and thereby helps us home in on a desirable formal
measure of space complexity. We focus here on a pointed version of the palindromes,
which will allow us to isolate more easily the “passive” use of memory, which is less
interesting, from the “active” use of memory, which is what we want our measure of
space complexity to capture.

The reader may recall the notion of a “pointed” language from Section 12.2.2. As in that
section, this notion allows us here to avoid certain technical inconveniences inherent in the
implicit demands of online computation.

Consider the language Lppal of pointed palindromes over the alphabet {0,1}. Each
word in Lppal has the form x•, where

1. x ∈ {0,1}�,
2. • /∈ {0,1},
3. x reads the same forward and backward, i.e., is a palindrome.

We know from Lemma 5.6 that any OA M that accepts the (unpointed) palin-
dromes must employ 2Ω(n) distinct states when processing input words of length n;
the proof of that lemma extends with only clerical changes to the pointed palindromes
Lppal.
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These changes are a valuable exercise to make sure that you understand the proof technique
of Lemma 5.6.

If M is, in fact, an OTM, rather than a generic OA, then this lower bound on the
number of states of M when M is viewed as an OA translates into a similar-size
lower bound—i.e., also of order 2Ω(n)—on the number of total states of M when M
is viewed as an OTM. (See Section 3.3 for a discussion of total states in OTMs.) This
latter lower bound, in turn, yields the lower bound Ω(n) for the number of squares of
worktape that M must employ when processing input words of length n.

Let us expand on the last of these lower bounds, since it relates intimately to how
we decide to measure space complexity. M’s total state includes both its internal state
and the contents of its worktape. (Let us use, as always, Q for M’s set of internal states
and Γ for M’s worktape alphabet.) If at some step of a computation, M’s worktape
has length l, then M can go through |Q| · l · |Γ |l distinct total states before it must
change this length. (The word recorded on the tape can be any of the |Γ |l length-l
words over the alphabet Γ , and M’s read/write head can reside on any of the tape’s l
squares.) This reckoning illustrates why the lower bound on M’s use of tape squares
during a computation is exponentially smaller than the lower bound on the number of
total states that M employs during the computation.

Now, M’s worktape is its only flexible memory: M can always use more squares
of worktape, if needed, but its state-set Q has fixed size. Therefore, we infer from
Lemma 5.6 the following bound on the space complexity of the language Lppal.

Lemma 13.1. Any OTM that recognizes the language Lppal must use Ω(n) squares of
worktape when processing input words of length n.

The unsatisfying aspect of the preceding conclusion is that almost all of the Ω(n)
required tape squares are used “passively,” just to record the portion of the input
word that has been read thus far at M’s input port. While this observation about
M’s tape usage is obvious at an intuitive level, we can actually verify a form of
the observation formally, as follows. Let us depart from the online TM model in a
way that presents a TM with a read-only record of the entire input word at no cost
in space complexity. This departure gives us a Turing machine model that we dub
the Input-Recording TM (IRTM, for short). An instance of the model is depicted in
Figure 13.1, wherein the IRTM has already read seven input symbols, which form
the string σ1σ2σ3σ4σ5σ6σ7.

The significance of the IRTM model is that it allows us to focus on the memory that
is used to process input strings—what we have called “active” memory—rather than
on the memory that is used to record the strings—what we have called “passive”
memory. The insights that one can gain from the discriminatory power afforded by
IRTMs is illustrated rather dramatically by the following counterpoint to Lemma 13.1.

Lemma 13.2. There exists an IRTM Mppal that recognizes the language Lppal while
using O(logn) squares of its read/write worktape when processing inputs of length n.

Proof. One can design the IRTM Mppal promised by the lemma so that it implements
a computational analogue of two “fingers” that point to successive pairs of symbols



258 13 Complexity Theory

Write−Once Input Record

σ

γ γ γ
1 3 4B B

σ σσ σ σ σ
1 2 3 5 6 7

8

TM   

Read/Write Worktape

Fig. 13.1 The IRTM, with a write-once input-recording tape and a conventional read/write worktape.

of x that must be identical if x is a palindrome. When processing inputs of length n,
the “fingers” must be able to point to one pair of symbols that are distance n−1 apart
in the input, one pair that are distance n−2 apart, and so on, down to distance 1 or 2
(depending on the parity of �(x)). Specifying either the absolute positions where the
“fingers” point or the relative positions determined by “interfinger” distances requires
Θ(logn) bits, whence Mppal’s space requirements. Let us now flesh out this strategy.

We design Mppal while viewing TM tapes as linear (i.e., one-dimensional) arrays
that are accessed via pointers (the read/write heads). We can simplify our design
of Mppal by viewing the IRTM as a real machine with real tapes, rather than as a
program with data structures. We simplify the description of how Mppal processes
an input word by describing first an IRTM M that has two read/write worktapes, on
each of which M uses �log2(n+1)� tape squares when processing inputs of length n.
We digress to establish the following proposition, which tells us how to convert this
IRTM M into the sought IRTM Mppal.

Proposition 13.1 Consider an IRTM M that has c read/write worktapes. Say that M
uses ≤ s squares on each tape while processing some input word x. One can replace
M by an IRTM M′ that has a single read/write worktape and uses O(s) bits on its
worktape while processing x.

(Note that the IRTM M may have a large worktape alphabet, but we insist that M′
have a 2-letter worktape alphabet; hence M uses “≤ s squares on each tape” while M′
uses “O(s) bits” on its tape.)

Proof (Sketch). We start with an IRTM M′′ whose single read/write worktape has c
tracks. As in Section 9.8.2, M′′ achieves the effect of having c tracks on its tape by
using a worktape alphabet

ΓM′′ = (ΓM×{ B ,�})×·· ·× (ΓM×{ B ,�}),
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where:

• Each track is encoded by one instance of the set product (ΓM×{ B ,�}). The ele-
ments of ΓM provide the contents of the worktape squares, and the special symbol
� provides a pointer to the square currently under scan. (Given the role of the
symbol � as a pointer, there will be just a single instance of � for each track.)

• There are c instances of the 2-set subproduct (ΓM×{ B ,�}) in the indicated 2c-
set product.

We design the IRTM M′ to emulate M′′ step by step, using an encoding of each letter
of ΓM′′ as a bit-string of length

(1+ �log2 |ΓM|�)c.

It should be clear that if M uses ≤ s squares of each of its c read/write worktapes,
then M′ uses ≤ (1+ �log2 |ΓM|�)cs bits on its single read/write worktape—because c
and |ΓM| are fixed constants. ��

We return to the lemma. We now set out to design the auxiliary IRTM M that
decides Lppal while using two read/write worktapes, call them T1 and T2. We then rely
on Proposition 13.1 to convert M into the desired IRTM Mppal.

M begins by recording its entire input x• on the worktape that serves as its write-
once input record. It accomplishes this by remaining in polling states (therefore, read-
ing the input) until it encounters the “point” •, which indicates that the input is com-
plete. (If there is any continuation of this string, then M enters a “dead” polling state,
because no continuation of x• can belong to Lppal.)

As M reads and records x• (on its input record), it uses one of its read/write work-
tapes, say T1, to count in binary from 0 to �(x). Of course, this uses O(log�(x))
squares of T1.

You probably know already that �log2(n+1)� bits are necessary and sufficient for represent-
ing the integer n in binary. As a valuable exercise, you should prove this useful “everyday”
fact, by induction on n.

M then checks whether x is a palindrome by checking, in turn, that the following
pairs of symbols of x match: the first and last symbols, the second and second-to-last
symbols, the third and third-to-last symbols, and so on. M orchestrates this sequence
of checks by noting that the first two symbols to be compared are �(x)− 1 squares
apart on the input record, the next two symbols to be compared are �(x)−3 squares
apart, and so on, until the final two symbols to be compared are either adjacent, i.e.,
1 apart (if �(x) is even) or 2 apart (if �(x) is odd). (When �(x) is odd, one obviously
does not have to waste time checking that the central symbol matches itself.) These
simply decreasing distances are easily—and compactly—computed using the binary
numeral that M has stored on tape T1, as follows.

Details of M’s check for palindromes. M decrements the numeral on read/write
worktape T1, so that it now contains �(x)− 1; it ensures that T2 contains 0; and it
executes the following process as long as T1 contains (the numeral of) a positive
integer. M initially performs an odd-numbered phase of the following process.
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• Odd-Numbered Phase

1. If T1 contains 0, then M halts and announces that the word x is a palindrome,
so that the input word xβ does belong to Lppal. Otherwise, M continues.

2. M stores the symbol σ that it finds in its current square on the input record in
its internal memory, i.e., in its internal state.

3. M moves rightward on the input record the number of squares specified by the
numeral stored on T1. Specifically, for each square of the input record that M
encounters in its rightward trajectory, M decrements the numeral on T1, simul-
taneously incrementing the numeral on T2 (in preparation for the next phase).
When T1 contains 0, M knows that it has completed its rightward journey on
the input record.
M now compares the symbol σ ′ that it finds on the current square of the input
record with the symbol σ that it has stored in its internal memory.

4. If σ ′ �= σ , then M halts and announces that the word x is not a palindrome, so
that the input word xβ does not belong to Lppal.
If σ ′ = σ , then x could be a palindrome, so M prepares for the next phase of its
computation, by:
a. subtracting 2 from the numeral currently on T2,
b. shifting one square to the left on the input record,
c. exchanging the contents of tapes T1 and T2; after this exchange, T2 will

contain 0, and T1 will contain (the numeral of) some integer of the form
�(x)−2k−1.

5. M now executes an even phase of this process.

• Even-Numbered Phase
An even phase is identical to an odd phase, with the following two changes:

– The roles of the read/write worktapes T1 and T2 are interchanged.
– The roles of “left” and “right” as directions for M’s movement on the input

record are interchanged.

We illustrate M’s operation by applying it to one even-length input word, 10001•,
and one odd-length input word, 1001•. (We illustrate the process on two pointed
palindromes because accommodating nonpalindromes is so simple.) The computa-
tions by M on these two inputs are virtually identical. In both cases, M begins by
reading the entire input and recording all but the • on its input record. M simulta-
neously initializes read/write worktape T1 to the appropriate binary numeral: 101 in
the case of input word 10001• (because 1012 = 5) and 100 in the case of input word
1001• (because 1002 = 4). In either case, it immediately decrements the numeral on
T1, and it initializes read/write worktape T2 to the binary numeral 0. We now describe
in detail the processing of input 10001•, leaving to the reader the almost identical
processing of input 1001•.
Phase 1. 1. M stores the initial symbol, 1, from (square 1 of) the input record in

its internal state.
2. Guided by T1’s numeral 100, M moves 4 (= 1002) squares to the right.
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3. M checks that the terminal symbol from the input record, 1, is identical to the
internally stored symbol 1.

At this point, T1 contains 0, and T2 contains the base-2 numeral 100.
M prepares for the next phase by decrementing T2 to 10 and moving one square
left on the input record.

Phase 2. 1. M stores the penultimate symbol, 0, from (square 4 of) the input
record in its internal state.

2. Guided by T2’s value 10, M moves 2 (= 102) squares to the left.
3. M checks that the second-from-left symbol from the input record, 0, is identical

to the internally stored symbol 0.
At this point, T1 contains the base-2 numeral 10, and T2 contains 0.
M prepares for the next phase by decrementing T1 to 0 and moving one square
right on the input record.

Phase 3. Having determined that T1 contains 0, M accepts the input word.

If M did not shortcut the processing of the input by checking whether the “guiding” work-
tape Ti contains 0, M would have to perform a useless subcomputation on the input string.
Specifically, on input 10001•, the 0 on T1 would have M perform the useless comparison of
the central 0 from 10001 with itself. On input 1001•, the 0 on T2 would have M perform a
virtual “negative” rightward move on the input record.

The IRTM M thus decides whether a length-n input string belongs Lppal using
O(logn) squares of read/write worktape. Using Proposition 13.1, we can now convert
M to the desired IRTM Mppal. ��

The space that language Lppal demands for processing input strings—the “active”
memory—is thus exponentially smaller than the total space—“active” memory plus
“passive” memory—that it demands from an OTM.

Lemma 13.2 allows us to reinterpret the bounds of Lemmas 5.6 and 13.1 in the following
way. The latter two lemmas tell us that any OA or OTM that decides Lppal must be able to
review input that it has read earlier. The online regimen that OAs and OTMs observe forces
them to explicitly commit memory resources in order to be able to review previously read
input.

We close this subsection by noting that the palindromes are but one language
among many that have quite different requirements in terms of the amounts of “ac-
tive” and “passive” memory that they demand. To cite just two languages that we
have visited earlier in the book, there are analogues of Lemmas 13.2 and 13.1 for:

• the language of “squares”

L =
{

xx | x ∈ {0,1}�
}

,

which we encountered as L4 in Application 4 of Section 5.1;
• the database language of Section 5.5:

LDB =
{

ξ1 : ξ2 : · · · : ξm :: η1 : η2 : · · · : ηn

}

, where, for some positive integer k:
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– every ξi and η j is a length-k binary string: ξi,η j ∈ {0,1}k;
– the symbols “:” and “::” do not belong to {0,1};
– m = 2k;
– ηn ∈ {ξ1,ξ2, . . . ,ξm}.

The fact that many such languages exist lends weight to the message of Lemmas 13.2
and 13.1 concerning the varied ways in which a computation can use memory.

B. Space Complexity: Deterministic and Nondeterministic

We have seen in subsection A that computational problems can demand space/memory
for two quite distinct reasons:

• to allow the computing device to remember the input string: what we are calling
“passive” memory,

• to assist the computing device in processing the input string: what we are calling
“active” memory.

Although both uses of memory can legitimately enter into one’s assessment of the
space complexity of a problem, most complexity theorists concentrate solely on the
“active” memory demanded by a problem. We shall follow that practice. Accordingly,
we employ IRTMs as the primary computational model underlying the study of space
complexity.

Let M be a (deterministic) IRTM with input alphabet Σ ; let M have a single
read/write worktape, in addition to its input record. We say that M operates within
space s(n) for a nondecreasing total function s : N→ N if the following holds for all
words x∈ Σ �. If M halts on input x—thereby either accepting or rejecting the input—
then its computation on input x uses no more than s(�(x)) squares of its read/write
worktape. When the function s(n) is used in this way, we call it a space-bounding
function.

As we saw in subsection A, our focus on IRTMs that have a single read/write worktape is—
within constant factors—just for convenience. Proposition 13.1 tells us that we increase the
space-bounding function by only a constant factor if we replace an IRTM that has multiple
read/write worktapes by one that has a single worktape.

As in our deliberations on time complexity, we resolve the nondeterministic-
complexity puzzle for space complexity “optimistically.” We measure a nondetermin-
istic IRTM M’s space consumption while processing input word x only at the ac-
cepting nodes in M’s computation tree T M(x). Among competing accepting nodes
in T M(x), we focus on a most compact one, i.e., an accepting node at which M has
used the smallest number of squares of its read/write worktape. This leads us to the
following definition.
Let M be a nondeterministic IRTM with input alphabet Σ ; let M have a single
read/write worktape, in addition to its input record. We say that M operates within
(nondeterministic) space s(n), for a nondecreasing total function s : N→ N, if the
following holds for all words x ∈ Σ �. If M accepts input x, then in at least one
of its accepting computations on input x, M uses no more than s(�(x)) squares of
its read/write worktape. In other words, there is a branch of T M(x) that ends at
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an accepting total state, along which M uses no more than s(�(x)) squares of its
read/write worktape.

13.3 Reducibility, Hardness, and Completeness in Complexity
Theory

The three notions that occupy us in this section need no introduction, since each is a
quantified version of the amply discussed analogous computability-theoretic concept
from Section 9.4 (reducibility) or Section 9.6 (Hardness and Completeness). As we
assert in Section 13.1, the importance of these notions to complexity theory is at least
as great as their importance to computability theory. The role of the pillar “ENCOD-
ING” in our understanding of the power and limits of digital computation cannot be
overstated!

In the next subsection, we lay the groundwork needed to craft quantified versions
of the three notions highlighted in this section.

13.3.1 A General Look at Resource-Bounded Computation

Let r : N→ N be a nondecreasing total resource-bounding function. As we have dis-
cussed earlier, although modern computing technology has given rise to a lengthy
list of computational resources that are both interesting and significant, the only re-
sources that we shall bound in our introductory study of complexity theory are time
and space. For the former of these, r(n) is a time-bounding function that we usually
label t(n); for the latter, r(n) is a space-bounding function that we usually label s(n).
Extrapolating from our discussion in Section 13.2, to which the reader should refer
now:

• Let M be a deterministic OA. We say that M operates within the resource bound
r(n) if the following holds for each input word x ∈ Σ �. If M halts on input x—
thereby either accepting or rejecting the input—then its computation consumes
≤ r(�(x)) units of the function r(n)’s associated resource.

• Let M be a nondeterministic OA. We say that M operates within the resource
bound r(n) if the following holds for each input word x ∈ Σ �. If M accepts in-
put x—i.e., if there is an accepting total state in T M(x)—then there is a branch
of T M(x) from M’s initial total state to an accepting total state along which M
consumes ≤ r(�(x)) units of the function r(n)’s associated resource.

For some computational resources, such as space, one will likely want to specialize
the preceding definitions to computational models such as the OTM or the IRTM that
have more detailed structure than do OAs.

We are now ready to present quantified versions of the three notions highlighted
in this section.
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13.3.2 Efficient Mapping Reducibility

A. Defining efficient mapping reducibility. Focus on a set R of resource-bounding
functions {r : N → N} and on a specific computational model that is appropriate
for the functions in R, in the sense of the comments at the end of the preceding
subsection. (For instance, we may use IRTMs as the underlying model when R con-
sists of space-bounding functions.) We call R a resource-bounding class (or some-
times, a resource bound, for short) if it is compositionally comprehensive,2 in the
following sense. Say that the function f1 : Σ � → Σ � is computable within the re-
source bound r1(n) ∈ R, and the function f2 : Σ � → Σ � is computable within the
resource bound r2(n) ∈ R. Then R is compositionally comprehensive if there ex-
ists a resource-bounding function r3(n) ∈ R such that the function f1 ◦ f2 : Σ � →
Σ �, which is the composition of functions f1 and f2, is computable within the
resource bound r3(n).

Language A⊆ Σ � is (mapping-)reducible to language B⊆ Σ � within resource-bound
R, written A≤R B, if and only if

there exists a total function f : Σ � → Σ � that is computable
within resource bound r(n) for some r(n) ∈ R

such that for all x ∈ Σ �, [x ∈ A] if and only if [ f (x) ∈ B].
As with unquantified mapping reducibility, we call the encoding function f a reduc-
tion function.

Given our focus on the P-vs.-NP problem, the following specialization of the pre-
ceding definition is central to our development of complexity theory.

Language A is polynomial-time (mapping-)reducible to language B, written A ≤poly

B, if and only if there exists a total function f : Σ � → Σ � that is computable within
time t(n) for some polynomial t(n) such that for all x ∈ Σ �, [x ∈ A] if and only if
[ f (x) ∈ B].

We often abbreviate the phrase “polynomial-time” by “poly-time.”
Of course, the preceding definition makes sense within our study only because the

set F of all polynomials that map N to N is closed under functional composition. This
closure means that when the functions in F are used as time-bounding functions, the
set F is indeed a resource bound.

The reader has surely noted our reluctance to remove the qualifier “mapping” from all terms
related to reductions and reducibility—although we do deemphasize the qualifier by paren-
thesizing it. The reason for this is that as with computability theory, there are genres of re-
ducibility, other than mapping reducibility, that are used in studying complexity theory. The
only alternative to m-reducibility that has received considerable attention in complexity the-
ory is Turing reducibility. Indeed, within complexity theory, mapping reducibility is often
called Karp reducibility because of its use in [48], one of the original sources of complexity
theory as we study it; and Turing reducibility is often called Cook reducibility because of its
use in [18], one of the other original sources.

2 The term “compositionally comprehensive” is not common. We introduce it here for the purpose
of unifying results that usually appear separately in the literature.
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In analogy with Lemma 9.3, we have the following exceedingly important techni-
cal lemmas whose proofs are left as exercises.

Lemma 13.3. The relation “is mapping-reducible to within resource-bound R,” which
we denote by ≤R, is transitive. In other words, for any three languages A,B,C ⊆ Σ �,
if A≤R B and B≤R C, then A≤R C.

By specializing the abstract resource bound R to poly-time computation, we obtain
the following corollary of Lemma 13.3.

Lemma 13.4. The relation “is polytime mapping-reducible to,” which we denote by
≤poly, is transitive. In other words, for any three languages A,B,C ⊆ Σ �, if A≤poly B
and B≤poly C, then A≤poly C.

As a final commentary on our definition of quantified mapping reducibility, we
present the following analogue of Lemma 9.2, which plays the same role for com-
plexity theory as Lemma 9.2 plays for computability theory: Both lemmas show that
the appropriate version of m-reducibility does capture essential components of the
intuition that the ability to decide language B effectively (for computability theory)
or efficiently (for complexity theory) “helps” one decide language A effectively or
efficiently. One can easily adapt the following lemma to many resource bounds other
than poly-time computation.

Lemma 13.5. Let A and B be languages over the alphabet Σ , and say that A ≤poly

B.
(a) If B ∈ NP (resp., B ∈ P), then A ∈ NP (resp., A ∈ P).
(b) Contrapositively, if A �∈ NP (resp., A �∈ P), then B �∈ NP (resp., B �∈ P).

B. Exemplifying efficient mapping reducibility. We present a simple but illustrative
quantified m-reduction that shows the concept “in action.” We need a few definitions.

The (CNF) satisfiability problem, SAT. We focus on the set of logical expres-
sions that are in conjunctive normal form (CNF, for short). As the following three
examples suggest, these are logical expressions that have the form of a logical prod-
uct (conjunction) of logical sums (disjunctions) of logical variables, i.e., variables
that range over the set {0,1} (which are used here as truth values):

E1 = P∧Q∧R,

E2 = (A∨B∨C)∧D∧ (A∨B),
E3 = (X ∨Y )∧ (X ∨Y ).

Note that each expression is constructed using (logical analogues of the) Boolean
operations to interconnect literals. Each literal is an occurrence of a logical variable—
say, for illustration, the variable X that appears in expression E3—in either its true
form, i.e., the form X , or its complemented form, i.e., the negated form X . (Note that
variable X appears in both its true form and its complemented form in E3.)
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A satisfying assignment for a logical CNF expression E is an instantiation of truth
values for the variables in E—and thereby by inheritance, to the literals that appear
in E—under which E evaluates to 1, or TRUE. Let us illustrate these concepts with
expression E3. Consider the assignment

Assignment to variables: X ← 1; Y ← 0

to the two variables that appear in E3. This variable assignment induces the following
assignment to the four literals that appear in E3:

Assignment to literals: X ← 1; Y ← 0; X ← 0; Y ← 1

Under this assignment, expression E3 evaluates to the constant expression

(1∨0)∧ (0∨1) ≡ 1,

so that this is indeed a satisfying assignment for E3. The reader should verify that the
assignment

Assignment to variables: X ← 0; Y ← 1

is also a satisfying assignment for E3, but that the other two possible assignments,
under which both variables get the same truth value, are not satisfying assignments
for E3.

For reasons suggested by the nature of the satisfying and unsatisfying assignments for E3, the
Boolean function specified by the expression is called exclusive or and is usually denoted by
xor. The reader can verify that this function is just (mod2) addition of the variables X and
Y , when they are viewed as ranging over the base-2 digits.

We say that an expression E is satisfiable if it admits a satisfying assignment; other-
wise, E is unsatisfiable. We have just shown that expression E3 is satisfiable.
The (CNF) satisfiability problem, which is generally referred to by the nickname SAT,
is the following set of logical expressions in conjunctive normal form

SAT
def= {x | x is a CNF formula that admits a satisfying assignment}.

The CLIQUE problem. A clique in an undirected graph G is a set of nodes S
every two of which are connected by an edge; |S| is the size of the clique.
The problem CLIQUE is to decide, of a given graph G and integer k ∈ N, whether G
contains a clique of size k.

Lemma 13.6. SAT ≤poly CLIQUE.

Proof. Let us be given an arbitrary CNF expression

E = D1∧D2∧·· ·∧Dm,

where each Di is a disjunction of literals

Di = �
(i)
1 ∨ �

(i)
2 ∨·· ·∨ �

(i)
ki

.
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We use the structure of expression E to generate a graph G E with the following two
properties.

1. One can produce G E from E in time polynomial in the size of E, as measured by
the number of bits required to write E as a binary string.

2. Expression E is satisfiable if and only if graph G E has a clique of size m. (Note
that m is the number of disjuncts—or logical sums—that make up E.)

We begin by specifying G E ’s structure, i.e., its nodes and edges.

• We give G E a node v(i)
j for each literal �

(i)
j that appears in E. G E thus has k1 +k2 +

· · ·+ km nodes.
• We given G E an edge (v(a)

b ,v(c)
d ) for every pair of literals �

(a)
b , �

(c)
d that appear in E

such that

1. a �= c

This means that literals �
(a)
b and �

(c)
d appear in different disjuncts of E.

2. �
(a)
b �= �

(c)
d

This means that one can simultaneously satisfy �
(a)
b and �

(c)
d ; i.e., there is an

instantiation of truth values for the variables in E under which both �
(a)
b and �

(c)
d

map to 1.

A standard technique for representing a graph such as G E is via its adjacency ma-
trix. This is a (k1 + k2 + · · ·+ km)× (k1 + k2 + · · ·+ km) matrix of 0’s and 1’s that
is built as follows. We first (re)name the nodes of G E by the set of positive integers
{1, 2, . . . , (k1 + k2 + · · ·+ km)}. We then populate the matrix with 0’s and 1’s by
placing 1 in matrix-entry (i, j) just when there is an edge in G E between nodes i and
j; we place a 0 in this entry if the edge does not exist. The reader should be able to
verify that given expression E, we can construct an adjacency matrix for G E in time
polynomial in the size of E. The procedure that accomplishes this construction is the
reduction function for the poly-time reduction we are now providing. We have thus
achieved the first of our two goals.

We now correlate the satisfiability of E with the presence of cliques in G E .
Say first that expression E is satisfiable. E’s satisfiability means that there exists

a subset of the literals that appear in E, one from each of E’s m disjuncts, that can
all be mapped to 1 simultaneously by some single instantiation of the variables that
appear in E. (Perhaps several such subsets exist, but at least one does.) Let Slit =
{�(1)

i1
, �

(2)
i2

, . . . , �
(m)
im
} be such a subset. By the way we have specified the edge-set of

G E , there must be an edge between every pair of nodes that correspond to the literals
in Slit. (Distinct literals in Slit come from distinct disjuncts of E, and every pair of
literals in the set can simultaneously be satisfied.) The set of edges of G E that we
have just described is a clique of size m within G E .

Say next that graph G E has a clique of size m. This means that there exists a set
of nodes Snode = {v(1)

i1
, v(2)

i2
, . . . , v(m)

im
} of G E for which there is an edge between

every two nodes in the set. By the way we have constructed G E , this means that the
set of literals that correspond to the nodes in Snode betokens the existence of a set
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of literals in E, with one literal per disjunct, that are simultaneously satisfiable. The
set of literals in E that we have just described admits a satisfying assignment for
E—which means that E is satisfiable.

The reduction is now complete. ��

13.3.3 Hard Problems and Complete Problems

A quantified notion of mapping reducibility that is based on a well-conceived resource
bound R can sometimes expose valuable information about a significant family F of
languages. We have already observed one instance of this assertion in our study of
computability theory. In Chapter 9, we saw how the kindred notions of m-reducibility,
Hard languages, and Complete languages immeasurably enhance our understanding
of decidability and semidecidability. The kindred quantified versions of these three
notions play at least as important a role within complexity theory.

One could argue that the complexity-theoretic versions of these notions are more important
than their computability-theoretic cousins because of the implications of the former for a
broad range of practical computational problems (such as the combinatorial optimization
problems that we discussed in Section 13.1).

Let F be a family of languages, and let R be a resource bound. A language/problem
A is:

• F-Hard (with respect to resource bound R) if every language B ∈ F is mapping-
reducible to A within resource bound R; symbolically, B≤R A.

• F-Complete (with respect to resource bound R) if

– A is F-Hard with respect to resource bound R,
and

– A ∈ F.

Thus, one can view every F-Complete language as being (one of) the computationally
hardest languages within the family F, at least with respect to the resource bound R.
Specifically, for every language B ∈ F, there is an encoding of instances of B as
instances of A via an encoding function that is “efficient” with respect to resource
bound R.

The concrete instantiation of the preceding notions that likely has the longest reach
into the world of practical computing is the one in which:

• F is the family NP of languages that are accepted by nondeterministic Turing
machines that operate within time that is polynomial in the size of the input;

• the resource bound R comprises the set of polynomial timing functions, so that the
associated mapping reducibility is ≤poly.

Specialized to this situation, Hardness and Completeness are defined as follows.
A language A⊆ Σ � is:
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• NP-Hard if every language B ∈ NP is poly-time reducible to A; symbolically,
B≤poly A.

• NP-Complete if

– A is NP-Hard

and

– A ∈ NP.

The informal assertion that the NP-Complete languages are the “hardest” ones in
the class NP is justified, via Lemma 13.5, by the fact that:

If any NP-Complete language A were in P (i.e., were poly-time decidable),
then every language in NP would be in P (i.e., would be poly-time decidable).

13.3.4 An NP-Complete Version of the Halting Problem

Just as it was not clear a priori (in Section 9.6) that mapping-Complete languages ex-
isted, it is not clear a priori that there exist NP-Complete languages. In fact, though, a
time-restricted version of the halting problem HP turns out to be a “hardest” language
in the class NP.

Before proceeding, a word of caution is in order. We must proceed carefully when
discussing the classes P and NP because the constitution of these classes depends on
the computational model being used. As discussed in several places earlier, we cannot
be as free in thinking about an arbitrary “reasonable” abstract computational model
when developing complexity theory as we could when developing computability the-
ory. Specifically, polynomial variation in timing functions is not a “broad enough
brush” to allow us to develop a theory of computational complexity that admits a full-
blown analogue of the Church-Turing thesis. To suggest what the problem is, consider
two rather different abstract computational models that we discussed in Section 9.8:
the OTM, which performs all of its calculations by manipulating strings symbol by
symbol, and the register machine (RM), which performs all of its calculations by per-
forming arithmetic on (arbitrary-size) integers. As we noted in Section 9.8, OTMs and
RMs are equivalent in computing power: they compute the same class of functions;
they decide the same class of languages; they semidecide the same class of languages.
However, if we assess the time that OTMs and RMs take to perform their computa-
tions using measures that are natural for each model’s native data type—strings for
OTMs and integers for RMs—then we are unintentionally favoring RMs by an expo-
nential variation. This is because an RM can “magically” act on enormous integers
in a single step, while an OTM—or any equivalent string-processing computational
model—must operate digit-by-digit on numerals that represent these integers. The
problem is highlighted most easily via an example.

Recall the subset-sum problem that we discussed briefly in Section 1.1.2.
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The subset-sum problem.
Generic instance: n positive integers, m1,m2, . . . ,mn, plus a target integer t
To decide: Is there a subset of the integers mi that sum to t?

Say that we discover an algorithm A for the subset-sum problem that makes the required
decision on an arbitrary instance of the problem, 〈m1,m2, . . . ,mn; t〉, within O(nt) steps. (One
finds such an algorithm in Section VI.6.1 of [65].) What is the time complexity of this algo-
rithm? It depends on one’s computational model!

If one implements algorithm A on an RM, then a natural measure of the size of the problem
instance 〈m1,m2, . . . ,mn; t〉would be Θ(n ·max{m1,m2, . . . ,mn, t}). The reasoning is that inte-
gers are the natural data type for the RM, and this instance can be specified by n integers, each
of size ≤max{m1,m2, . . . ,mn, t}. When size is measured in this way, the time-complexity of
algorithm A is quadratic in the size of the problem instance.

If one implements algorithm A on an OTM, then a natural measure of the size of the problem
instance 〈m1,m2, . . . ,mn; t〉 would be Θ(n · log(max{m1,m2, . . . ,mn, t})). The reasoning is
that strings, or numerals, are the natural data type for the OTM, and this instance can be
specified by n numerals, each of size ≤ log(max{m1,m2, . . . ,mn, t}). When size is measured
in this way, the time-complexity of algorithm A is exponential in the size of the problem
instance.

The problem illustrated by the preceding story arises because the natural notion of
size for an integer N is N’s magnitude, while the natural notion of size for a string x
is �(x), x’s length. Thus, if one measures time or space for a given model in terms that
are natural for that model’s natural data type, then polynomial variation in resource-
bounding functions is not adequate to “level the playing field” for models as different
as OTMs and RMs. This fact would force us to study the complexity of computations
by the two models using different (but parallel) theories.

How then do we formulate a single theory of computational complexity that will
handle all computational models? The convention that mainstream complexity theory
has used since its invention in 1971 [18] is to mandate that
We measure time and space complexity as a function of the size of the input problem
instance to our computational model, as measured by the number of bits needed to
write down the input.
This measure deprives RMs of the advantage that accrues when they operate on large
integers in single steps.

We noted in Section 9.8 that even the preceding, apparently narrow, convention
does allow a fair amount of flexibility; e.g., we can endow a TM with any fixed num-
ber of tapes of any fixed dimensionality without altering the theory we are developing.

On to our first NP-Complete language/problem!
The poly-time halting problem, HP(poly), is the set of ordered triples of strings of

the form3

〈x, y, 0t〉 (13.1)

such that

• both x and y are binary strings: x,y ∈ {0,1}�;

3 Note that “0t” in this context denotes a string of t instances of 0; exponentiation thus denotes
iterated concatenation here, not iterated multiplication.
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• t ∈ N; i.e., t is a nonnegative integer;4

• the NTM (encoded by) x—note that x is nondeterministic—accepts input y in ≤ t
nondeterministic steps.

As usual, we use a computationally efficient pairing function to turn HP(poly) into a set
of strings, rather than a set of triples of strings—so that HP(poly) becomes a legitimate
language.

We could accomplish this conversion of triples to strings in a variety of ways. The simplest
would probably be to encode HP(poly)’s constituent triples (13.1) as binary strings, via a simple
string-oriented encoding such as the following. We could encode

0 as 000
1 as 010
, as 0110
〈 as 01110
〉 as 011110

and thereby encode each triple of the form (13.1) as a uniquely—and easily—decipherable
binary string. Under this encoding, the triple

〈0101, 00111, 0000000〉

would be encoded as the binary string (with spaces inserted to enhance legibility)

01110 000 010 000 010 0110 000 000 010 010 010 0110 000 000 000 000 000 000 000 011110

We now verify our claim that HP(poly) is NP-Complete.

Theorem 13.1. The poly-time halting problem HP(poly) is NP-Complete.

Proof. We consider in turn the two conditions needed for NP-Completeness.

HP(poly) is NP-hard. Somewhat surprisingly, this part of the proof is quite straightfor-
ward, especially after seeing Theorem 9.6. Let A ⊆ {0,1}� be an arbitrary language
in NP. There exist, by definition, an NTM x and a (timing) polynomial p such that
for all y ∈ {0,1}�,

[y ∈ A] ⇔ [x accepts input y in ≤ p(�(x)) nondeterministic steps]. (13.2)

By definition of HP(poly), the righthand assertion in (13.2) is equivalent to the asser-
tion that

〈x, y, 0p(�(x))〉 ∈ HP(poly).

If the language A is specified and presented via its accepting NTM x, then the trans-
formation that converts x and y into the string 〈x, y, 0p(�(x))〉 is a total poly-time
computable function. We conclude, therefore, that A≤(poly) HP(poly). Since A was an
arbitrary language in NP, this half of the proof is done.

HP(poly) belongs to NP. We begin this more-complicated half of the proof by review-
ing what we need to show. The language HP(poly) belongs to NP if and only if there

4 An encoding of integer t by a string of t letters, such as 0t , is called a tally encoding or a unary
representation of integers.
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is an NTM M that accepts the language. If this NTM M existed, then in response to an
input triple of strings 〈x, y, 0t〉, M would proceed nondeterministically—don’t forget
that M is itself nondeterministic—to an accepting state if and only if when process-
ing the input y, NTM x proceeds nondeterministically to an accepting state within t
nondeterministic steps. We thus have two nondeterministic processes going on here:

1. the time-restricted process via which NTM x accepts its input string y,
2. the process via which NTM M simulates x in order to decide whether to accept its

input triple 〈x, y, 0t〉.
In order to demonstrate the existence of NTM M in a perspicuous manner, we are

going to invoke some of the poly-time robustness of (N)TMs that we demonstrated in
Section 9.8. Specifically, we showed there that:

Every (N)TM that uses several worktapes of any fixed dimensionalities can be simulated in
poly-time by an (N)TM that uses a single worktape that is one-ended and one-dimensional
(i.e., linear).

We exploit this flexibility in the (N)TM model by:

• allowing M to have two worktapes, one two-dimensional and one linear, and
• insisting that the x component of every triple 〈x, y, 0t〉 that is a candidate for

membership in HP(poly) specify an NTM that uses a one-ended one-dimensional
worktape.

The computation of M on an input triple 〈x, y, 0t〉 proceeds as follows. Say that x

specifies the NTM x = (Q(x),Σ (x),Γ (x),δ (x),Q(x)
0 ,{q(x)

acc,q
(x)
rej }).

A. M begins by creating a (t + 1)× (t + 3) array that we call a (computation)
tableau (plural: tableaux). M constructs the tableau by nondeterministically specify-
ing, in each of the t + 1 rows of the tableau, a string that has the form of a length-
(t +1) total state of NTM x, flanked on both ends by the special end-denoting delim-
iter symbol #, which does not belong to Γ (x). In more detail, M constructs the tableau
by

• “guessing” (by splitting universes) one symbol at a time,
• using the “0t” component of its input to regulate both the number of rows in the

tableau and the number of symbols in each row,
• using its finite-state control to ensure that each row of the tableau belongs to the

set #Γ kQΓ t−k# for some integer k ∈ N, i.e., that each row

– begins and ends with an occurrence of the special symbol #,
– contains exactly one state-symbol q ∈ Q(x).

Note that the uniform length of the rows in the tableau—which greatly simplifies M’s
computation—may force M to violate the formal syntax of “total state” mandated in
Section 3.3, by padding some rows of a tableau with occurrences of the blank symbol
B , in order to achieve the desired uniform row-length of t +1 symbols. A “typical”

row of a tableau thus has the form

# γ1 · · · γi q γi+1 · · · γk B · · · B # (13.3)
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where each symbol γi belongs to x’s worktape alphabet Γ (x), and q belongs to x’s
state-set Q(x).

Note: it is possible that a given row of a tableau never appears in any actual computation by x,
despite the fact that the row belongs to the set #Γ kQΓ t−k# for some integer k ≥ 0, hence has
the form required of a total state. M checks for this possibility as it processes its way through
the tableau.

M records the tableau it has been generating nondeterministically on its
two-dimensional tape; it uses its one-dimensional tape to record the NTM-program x.
Note that M has been splitting universes at every step throughout the dual
process—namely, copying x onto its linear tape and creating the tableau on its
two-dimensional tape—so that the process ends with each universe having its own
tableau and each tableau occurring in some universe.

(a) Throughout, we describe the tableau as though the states of NTM x and the symbols in
both its input alphabet Σ (x) and worktape alphabet Γ (x) were atomic symbols. In fact, because
NTM M must be “universal,” in the sense of being able to simulate any NTM x on any of its
valid input strings y, we leave unspecified—but always within our awareness—some standard
encoding that M uses to specify the programs that we are calling (N)TMs. There is nothing
sophisticated going on here; it is just another instance of our encoding everything as binary
strings. One could imagine, for instance, that the states of an (N)TM are encoded by strings in
the set 110�11, while the letters of an (N)TM’s worktape alphabet are encoded by strings in
the set 0�1. Such an encoding will allow the strings that represent total states of every (N)TM
to be parsed easily into their semantically meaningful constituents.

(b) The fact that M ends up with exponentially many universes does not jeopardize our ar-
gument, because M has proceeded for only O(t2) nondeterministic steps, and it has created
a bounded number of new universes at each step. Specifically: M never creates more than
|Γ (x)|+1 new universes at a step.

B. Focus on an individual universe.

This request is assuring you that the computation we describe here happens independently in
each universe—as mandated by the notion of nondeterminism.

M wants to check whether the successive rows of this universe’s populated tableau
represent a sequence of total states C0,C1, . . . ,Ct of NTM x on input y that forms an
accepting computation. What does this mean? By definition of “accepting computa-
tion,” the following conditions must hold simultaneously.

1. C0 is a valid initial total state of NTM x.
This means that C0 is of the form #q B B · · · B #, where q ∈ Q(x)

0 is one of x’s
initial states, and there are t occurrences of B . C0 must have this form because
x’s worktape is blank at the beginning of every computation.

2. Ct is a valid accepting total state of NTM x.

This means that Ct has the form #ξ q(x)
accη#, where (i) ξ ,η ∈ (Γ (x))�; (ii) �(ξ )+

�(η) = t; (iii) q(x)
acc is the halt-and-accept state of NTM x.

3. Each total state Ci+1, where i ∈ [0, t], is a valid successor of Ci in a (nondetermin-
istic) computation of input string y by NTM x.
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The exact meanings of the relevant notions, such as “accept state” and “successor total
state,” can be gleaned from the definition of a computation by a TM, in Section 3.3,
and of a computation by an NTM, in Section 12.2.

Let us flesh out the process of checking condition #3. Recall that each row has
precisely one state symbol (from x’s state-set Q(x)) and precisely t worktape symbols
(from x’s worktape alphabet Γ (x)). Say that in the universe we are focusing on, M is
simulating NTM x on input y. Consider an arbitrary row r ∈ [0, t] of the tableau that
M created within this universe. Focus on the 3-symbol substring of row r “where the
action is”: the state symbol q ∈ Q(x), the symbol d immediately to q’s left, and the
symbol e immediately to q’s right. Next, focus on the 3-symbol substring, call it abc,
of row r+1 that corresponds to the 3-symbol substring dqe of row r. In order to study
how these two 3-symbol substrings interact in x’s computation, we look carefully at
the 2×3 subtableau of M’s tableau created by the substrings dqe and abc:

row r +1 : a b c,
row r : d q e.

(13.4)

Keep in mind that:

• q ∈ Q(x),
• d,e ∈ (Γ (x)∪{#}),
• a,b,c ∈ (Q(x)∪Γ (x)∪{#}), with precisely one of the three symbols in Q(x).

Under what conditions can this subtableau appear as part of a valid computation by
NTM x on input y? We branch on the nature of state q to answer this question.

(1) q = q(x)
acc.

In this case, we must have a = d, b = q, and c = e. This convention allows us to
meaningfully fill out the tableau, even when some of x’s nondeterministic universes
terminate before a full t steps.

For the other two categories of states of x, we consult x’s state-transition function,
δ (x). Because # /∈ Γ (x), M aborts its simulation in this universe if e = #: this value for
e cannot correspond to any situation that x would encounter in a computation having
t or fewer (nondeterministic) steps. (More technically, the case e = # is prohibited
by the fact that δ (x) is not defined on the set Q(x)×{#}.) We continue our analysis,
therefore, under the assumption that e ∈ Γ (x).

(2) q is an autonomous state.
In this case, the possible (nondeterministic) behaviors of x depend only on the con-
tents of the subtableau. Say that for some direction D ∈ {N,L,R},

〈q′,e′,D〉 ∈ δ (x)(q,e). (13.5)

This means that when NTM x is in (the autonomous) state q and is reading symbol
e ∈ Γ (x) on its worktape, one of x’s possible moves involves transitioning to state q′,
rewriting symbol e on the worktape by symbol e′ ∈ Γ (x), and moving the worktape’s
read/write head (one square) in direction D. Then the subtableau (13.4)—focus on
the row-(r +1) portion—must have a form mandated in the following table:
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row r +1 : d q′ e′ if D = N
row r : d q e
row r +1 : q′ d e′ if D = L
row r : d q e
row r +1 : d e′ q′ if D = R
row r : d q e

(13.6)

(3) q is a polling state.
The analysis when q is a polling state differs from the (preceding) analysis of the case
in which q is an autonomous state only in the determination of x’s valid options as it
transitions from total state Cr to total state Cr+1. Say that the input y to NTM x has
the form

y = σ1σ2 · · ·σn,

where each σi belongs to Σ (x). Say that p of the r−1 internal states of x that appear in
the sequence C0, C1, . . . , Cr−1 of total states are polling states. This means that when
x is in internal state q within total state Cr, it is reading the (p + 1)th symbol, σp+1,
of y. This, in turn, means that the potential moves of x in this situation are specified
precisely by the set δ (x)(q,σp+1,e). It follows that the valid row-(r + 1) successors
of the row-r subtableau d,q,e in (13.4) are delimited by the following condition,

〈q′,e′,D〉 ∈ δ (x)(q,σp+1,e),

rather than by (13.5). The remainder of the analysis mirrors the case in which q is an
autonomous state, hence is left to the reader.

The issue of timing. We turn finally to the critical matter of verifying that M
operates within nondeterministic polynomial time. Because M clearly takes O(t2)
nondeterministic steps to construct the tableaux corresponding to input 〈x, y, 0t〉, we
focus our analysis only on the checking that M must perform on each tableau (within
that tableau’s universe). We organize our analysis around the three conditions that M
must check.

Checking the first two enumerated conditions (the “start” condition and the “ac-
cept” condition) takes M (nondeterministic) time O(t ·�(x)), because it requires only a
scan of two of the tableau’s rows. The constant factor hidden by the big-O is explained
thus: the quantity O(�(x)) includes the time M spends dealing with its encoding of
x’s states and worktape symbols; the quantity O(t) accounts for the time M spends
scanning both rows 0 and t of the tableau. Each of the t checks M performs for the
third condition (the “consecutiveness” condition) takes time O(t2 ·�(x)). To wit, all of
the “action” in each Ci →Ci+1 check involves at most three consecutive positions in
each total state: the state symbol and its successor, and possibly also its predecessor.
The valid transformations of each such pair of 3-symbol substrings are delimited by
the NTM-program encoded by string x. M’s tasks for each of the t necessary consec-
utiveness checks consist of the following subprocesses.

• M identifies the relevant 3-symbol substrings for both Ci and Ci+1, by scanning
along the then-current row r; this takes nondeterministic time O(t · �(x)).
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• By scanning NTM-program x on its linear tape, M verifies, in nondeterministic
time O(�(x)), that the 3-symbol substrings represent a valid Ci →Ci+1 transition
under NTM-program x.

• M verifies, in nondeterministic time O(t · �(x)), that the portions of total states Ci

and Ci+1 to the left of the 3-symbol substrings are identical, as are the portions of
total states Ci and Ci+1 to the right of the 3-symbol substrings.

Because the preceding process is executed t times, the total nondeterministic time for
M’s simulation of NTM x on input y is O(t2 ·�(x)), which is indeed polynomial in the
length, �(x)+ �(y)+ t, of input 〈x, y, 0t〉.

It follows that HP(poly) ∈ NP, completing the proof. ��
We have thus found an NP-Complete problem, but a very abstract one. What led

to the explosive growth in the development of and the appreciation for complexity
theory was the discovery of NP-Complete problems that related to computational
problems that were important in the “real world.” We turn now to the historically first
discovered of these.

13.3.5 The Cook-Levin Theorem: The NP-Completeness of SAT

If HP(poly) were the only known NP-Complete problem, it is a fair guess that the the-
ory of NP-completeness would not have caused much of a ripple outside the confines
of the theoretical computer science community.

NP-Completeness theory would certainly have found its place of honor within the community
even if it did not have implications for “practical” computational problems. Nondeterminism
had been known for years to explain important aspects of computational structure in terms
of unbounded search (cf. Sections 10.2 and 12.3). The theory of NP-Completeness demon-
strates that nondeterminism can play a similar role in explaining complexity-related aspects
of computational structure in terms of resource-bounded search.

However, in the space of barely six months in 1971–1972, two seminal studies
demonstrated via a large number of examples that the importance of NP-completeness
to our understanding of “real” computation would be hard to overstate. In the first of
these pioneering works [18], Stephen A. Cook established the fundamental notions
of the theory of NP-Completeness and exhibited the first examples of “real” com-
putational problems that are NP-Complete. In the second of the works [48], Richard
M. Karp augmented Cook’s list of “real” NP-Complete problems with a broad, varied
repertoire of practically significant combinatorial problems. (A third, roughly con-
temporaneous, pioneering study of NP-completeness [56] by Leonid Levin, which is
of no less scientific importance than the two others, became known in Europe and
North America somewhat later.) These studies showed that the property of being NP-
Complete is shared by variants of myriad problems of indisputed “real,” “practical,”
importance. These problems belong to a broad range of domains, from scheduling,
to logic design, to constraint satisfaction, to resource allocation, to theorem proving,
and on and on. One major shared “behavioral” characteristic of these problems is
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that no one knows—to this day!—how to solve large instances of any of them in time
that grows slower than exponentially in the sizes of the instances.

We reiterate from earlier sections that the “size” of a problem is the number of bits required
to write down (i.e., specify, or, describe) an instance of the problem.

This section is devoted to establishing the NP-Completeness of the historically first
of these “real” problems, the CNF-satisfiability problem, SAT.

A bit of historical background may lend some perspective to Cook’s original for-
mulation of the notion of NP-Completeness and of his identification of SAT as being
NP-Complete. In Section 9.1, we briefly discussed Gödel’s incompleteness theorem
and its devastating impact on the quest for algorithms that would automatically prove
theorems in even simple logical systems: in short, no such algorithms can exist! There
is, however, one significant logical system, the propositional calculus (a quantifier-
free logical system), for which theorem-proving algorithms do exist. The proposi-
tional calculus enjoys a property that broadens the class of algorithms that one can
use to establish or refute the theoremhood of sentences: The calculus is semantically
complete, meaning that its theorems are precisely the tautologies, i.e., the sentences
that are true under all assignments of truth values to variables. This means that the
aspects of the propositional calculus that are relevant to this section can be formulated
“semantically,” by analyzing the truth-oriented behavior of logical sentences, rather
than “syntactically,” by means of proofs crafted in some deduction-oriented logical
system.5 We now flesh out the relevant details of the “semantic” approach we shall
use here. This requires a short digression, to provide definitions.
The propositional calculus. Let P,Q,R, . . ., be propositional variables, i.e., abstract
variables that range over the set {0,1} of truth values (which we represent by 0 and
1). Consider any logical expression E that is formed from variables and truth values,
using the three traditional logical connectives or (denoted by ∨), and (denoted by
∧), and not (denoted by an overline, as in X); cf. Section 2.1. The completeness of
the propositional calculus allows us to define “theorem” in terms of the “semantic”
notion of tautology (as defined in Section 13.1).

Lemma 13.7. A logical expression E of the propositional calculus is a theorem if and
only if E evaluates to 1 under every instantiation of truth values for the propositional
variables in E, i.e., if and only if E is a tautology.

By historical convention, when discussing theoremhood in the propositional calcu-
lus, one usually restricts attention to logical expressions that are written in Disjunctive
Normal Form (DNF, for short), meaning, as a logical sum (or disjunction) of logical
products (or conjunctions). Here are a few examples of DNF expressions.

P∨Q∨R,
(A∧B∧C)∨D∨ (A∧B),

(X ∧Y )∨ (X ∧Y ).

5 There are many excellent introductions to mathematical logic that employ the classical deductive
(“syntactic”) approach to the material. I recommend [15] for a classical, “pure,” approach to the
topic, and [89] for a very interesting approach that is tailored to a mathematician’s way of “thinking
logically.”
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A word about the logical connectives and (conjunction) and or (disjunction) is in order here.
In the world of mathematics, we are usually quite pragmatic about the constructs that we use
to express our (mathematical) thoughts. We use quantifiers—typically the universal quantifier
for all (∀) and the existential quantifier there exists (∃)—without even considering that when
the domains over which the quantifiers range are finite, we can replace a universally quanti-
fied statement by a quantifier-free conjunction, and an existentially quantified statement by a
quantifier-free disjunction. As a trivial but illustrative example, if the propositional variable
X always assumes either the value 1 or the value 2 (so that it ranges over the set {1,2}), then
the quantified expressions

(∀X)P(X) and (∃X)Q(X)

are, respectively, logically equivalent to the quantifier-free expressions

[P(1) and P(2)] and [Q(1) or Q(2)].

This translation from quantified to logically equivalent quantifier-free expressions is “trans-
parent” to day-to-day mathematics, but it lies at the crux of (the proof of) the main result of
this section.

Lemma 13.7 makes it clear that there is a conceptually simple algorithm for deciding
whether a given logical expression E is a theorem of the propositional calculus. Let
E contain n propositional variables and have length O(n), with the constant factor in
the big-O accounting for all literals, logical connectives, and grouping symbols that
occur in E. Then one can determine whether E is a theorem by instantiating all 2n

truth values for the variables in E and evaluating each of the resulting variable-free
expressions. In accord with the lemma, one can accept (as a theorem) every expres-
sion E that never evaluates to 0, and one can reject those expressions that ever do. The
problem with the preceding algorithm is complexity-oriented rather than conceptual.
The algorithm always works, but it takes time Ω(2n) to decide the theoremhood (or
lack thereof) of expression E, even though E has size O(n). While the reason for the
exponential time bound is clear with this naive algorithm—there are exponentially
many truth-value assignments—it turns out that every known algorithm for deciding
the theoremhood of sentences in the propositional calculus suffers the same ineffi-
ciency: all of them take exponential time in dealing with sufficiently long sentences.
Is this inevitable? If so, why?

Cook [18] had the following wonderful insight. The universal quantifier in the
definition of “theorem” (really of tautology)—“E evaluates to 1 under every one of
the exponentially many instantiations of truth values for the variables in E”—could
conceivably condemn every theorem-proving algorithm to having exponential time
complexity just because there are exponentially many instantiations to check. Cook
decided, therefore, to focus instead on algorithms that identify the class of refutable
logical expressions, i.e., the nontheorems! One thus changed one’s focus to expres-
sions E that satisfy the following.

Lemma 13.8. A logical expression E is a nontheorem of the propositional calculus—
i.e., is refutable—if and only if its negation E evaluates to 1 under some instantiation
of truth values to the propositional variables in E.
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We call an instantiation of truth values to the variables that causes E to evaluate to
1 a satisfying assignment for E. Thus, the language SAT is the set of CNF sentences
that are negations of nontheorems. The “practical” importance of SAT is attested to
by the myriad computational problems that have some form of constraint-satisfaction
as a significant component of their solutions.

As we shift our focus from logical expressions E in DNF to the negations E of
these expressions, we:

1. flip the governing quantifier from a universal one to an existential one.
Instead of needing E to evaluate to 1 under every instantiation of truth values, we
now need E to evaluate to 1 under some instantiation of truth values.

2. shift our focus from expressions in DNF, i.e., logical sums (disjunctions) of logical
products (conjunctions) to expressions in CNF (conjunctive normal form), i.e.,
logical products of logical sums, as in the following examples:

P∧Q∧R,
(A∨B∨C)∧D∧ (A∨B),

(X ∨Y )∧ (X ∨Y ).

While the second of the preceding changes is just a matter of convenience—De Mor-
gan’s laws allow us to translate from expression E in DNF to its negation E in CNF in
a single linear-time sweep—the first change is exceedingly important conceptually.
We have discussed earlier—see Section 12.3—how to translate an existential quan-
tifier in the specification of a computational problem as a nondeterministic search.
With respect to the notion “refutable,” this translation tells us that the procedure for
showing that an expression ˜E in CNF is not a theorem of the propositional calculus
can be organized as a two-step process:

1. a search for a refuting assignment for the variables in ˜E.
This search takes linear nondeterministic time, via a sequence of “guessed” truth
values for the variables in ˜E; no one knows how fast the search can be done deter-
ministically.

2. a check to verify that the chosen assignment does indeed refute expression ˜E.
The check takes linear deterministic time, via a linear pass over the constant ex-
pression obtained from ˜E by instantiating the truth values mandated by the assign-
ment.

But we are getting ahead of ourselves.

Theorem 13.2 ([18]). The language SAT is NP-Complete.

Proof. In contrast to Theorem 13.1, the proof that the target language—namely, SAT
here and HP(poly) in that theorem—belongs to NP is rather easy here, while the proof
that the language is NP-Hard has some complication. Let us focus in turn on the two
conditions for NP-Completeness.

SAT belongs to NP. Focus on a CNF expression E that contains occurrences
of n propositional variables, comprising the set P = {P1,P2, . . . ,Pn}. Earlier, we
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described a time-O(2n) algorithm that would decide whether E ∈ SAT, by (i) gen-
erating all possible truth assignments for the variables in P , then (ii) checking each
assignment to see whether it is a satisfying assignment for E. Although this naive ap-
proach appears to be quite inefficient when executed deterministically (as described),
it actually yields the following efficient nondeterministic “algorithm.”

1. The “algorithm” assigns a truth value to each propositional variable in turn, first
to P1, then to P2, and so on. Thus, the “algorithm” spends nondeterministic time
O(1) generating a truth assignment for each variable, so it takes nondeterministic
time O(n) to generate the entire truth assignment to the variables in P .
In more detail: starting with the first propositional variable, P1, the “algorithm”
spawns one universe in which P1 gets the truth value 1 and another universe in
which P1 gets the truth value 0. (There are now two universes in all.) In each
of these universes, the “algorithm” turns to the second propositional variable, P2.
It spawns one universe in which P2 gets the truth value 1 and another universe in
which P2 gets the truth value 0. (There are now four universes in all.) In all of these
universes, the “algorithm” turns to the third propositional variable, P3, then the
fourth, and so on. Once it has run through all of the n propositional variables in P ,
the “algorithm” nondeterministically resides in 2n universes, each one containing
a unique assignment of truth values to the variables in P . This entire process
takes O(2n) nondeterministic steps, because the processing of each variable Pi

consists entirely of (nondeterministically) assigning Pi a truth value, hence takes
O(1) nondeterministic steps.

2. In each distinct universe, the “algorithm” checks whether that universe’s truth as-
signment is a satisfying assignment for E, i.e., whether E evaluates to 1 under
that assignment. Given an assignment, this determination can be done in (deter-
ministic!) time linear in the number of symbols in formula E. The “algorithm”
just replaces each literal in E with the truth value mandated by the assignment
that is associated with the current universe, and it evaluates the resulting constant
expression.
We leave as an exercise the verification that this process can, in fact, be accom-
plished in deterministic linear time. We note only that there is a charming algo-
rithm that employs a single stack to do the evaluation.

In summation, the “algorithm” nondeterministically tests whether expression E be-
longs to SAT in (nondeterministic) time that is linear in the number of symbols in
E. (Note that the “algorithm” does not decide whether E ∈ SAT; it looks only for
positive outcomes.)

SAT is NP-Hard. We prove that SAT is NP-Hard by means of a poly-time reduc-
tion from HP(poly). This strategy works because HP(poly) is NP-Hard (Theorem 13.1)
and poly-time reducibility is a transitive relation (Lemma 13.4).

The reduction we present is, essentially, a demonstration that one can craft, for
any valid computational tableau as described in the proof of Theorem 13.1, a CNF
expression that describes the tableau; moreover, the CNF expression uses roughly the
same number of symbols as occur in the tableau. (Of course, the tableau is a two-
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dimensional structure, whereas the formula is one-dimensional, but the translation
from one format to the other will be a simple one.)

Recall that the tableau corresponding to a potential element, 〈x, y, 0t〉, of HP(poly)

is a (t +1)× (t +3) two-dimensional array. The contents of the tableau correspond in
the following way to the computation that NTM x has performed on input y within one
of its universes. By assumption, x executes t nondeterministic steps as it tests whether
it wants to accept input y. Each branch—i.e., root-to-leaf path—of the computation
tree T x(y) that x generates as it processes input y thus passes through t +1 total states
of x. Each of these total states is a row of the tableau.

• Using the conventions of Section 3.3, each total state can be written using ≤ t +1
symbols. One symbol represents x’s current state; the others represent the contents
of the ≤ t squares of its (linear) worktape that x may visit within any individual
universe in its nondeterministic computation. The t + 3 columns of the tableau
thus arise (a) from our padding out short total-state strings with instances of the
blank symbol, to make all total-state strings have uniform length t + 1; (b) from
our delimiting each total-state string with an initial and a terminal occurrence of
the end-symbol #. See (13.3).

• The sequence of t +1 total states is the sequence of rows of the tableau.

Given the shape and contents of the tableau, we can describe its contents using t2 +3t
skeletal variables. For each integer i ∈ [0, t], each integer j ∈ [0, t + 2], and each
symbol ζ ∈ (Q(x)∪Γ (x)∪{#}), the variable X [i, j,ζ ] is TRUE (i.e., assumes the truth
value 1) precisely when the symbol ζ resides in position (i, j) of the tableau.

The careful reader will note that in the hope of simplifying the exposition a bit, we are being
a bit wasteful here, by allowing more variables than we shall actually use. When we do our
accounting later in the proof, we shall see that our profligacy does not jeopardize any of the
polynomial-size bounds that our poly-time reduction demands.

As our final preparation for describing the reduction of HP(poly) to SAT, we introduce
the following shorthand notation. Given a set of logical variables {Y1,Y2, . . . ,Yk}:

k
∨

i=1

Yi is shorthand for Y1∨Y2∨·· ·∨Yk,

k
∧

j=1

Yj is shorthand for Y1∧Y2∧·· ·∧Yk.

Thus, the symbols
∨k

i=1 and
∧k

j=1 play the same roles for logical sum and product,
respectively, as the symbols Σ k

i=1 and Π k
j=1 do for arithmetic sum and product, re-

spectively.

Now, finally, on to the reduction! Let x = (Q(x),Σ ,Γ (x),δ (x),Q(x)
0 ,q(x)

acc) be an NTM.
We produce a function Φ that transforms each triple ξ = 〈x, y, 0t〉, where x,y ∈
{0,1}� and t ∈ N, into a CNF expression Φ(ξ ) that has the following properties.
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1. The size of Φ(ξ ) is polynomial in the size of ξ . (As mandated by our convention,
the “size” of ξ is �(x)+�(y)+ t.) The degree of the polynomial must be fixed over
all possible triples ξ .

2. Expression Φ(ξ ) is satisfiable if and only if NTM x accepts input y in t nondeter-
ministic steps. In other words, ξ and Φ(ξ ) obey the relation

[ξ ∈ HP(poly)] if and only if [Φ(ξ ) ∈ SAT]

Let us focus on a specific but arbitrary triple ξ = 〈x, y, 0t〉 and construct its associ-
ated CNF expression Φ(ξ ). Informally, Φ(ξ ) asserts that the tableau corresponding
to ξ describes a t-step accepting branch of a nondeterministic computation by NTM
x on input y.

Φ(ξ ) is the conjunction of the following logical expressions.

• The following conditions collectively ensure that the tableau is well formed, in
that each row is a potential total state of x.

–
t
∧

i=0

X [i,0,#] ∧
t
∧

i=0

X [i, t +2,#]

This condition asserts that every row of the tableau is bounded on the left and
the right by the delimiter #.

–
t
∧

i=0

t+1
∧

j=1

∨

ζ∈(Q(x)∪Γ (x))

X [i, j,ζ ]

This condition asserts that the delimiter # occurs only at the left and right ends
of the rows of the tableau.

–
t
∧

i=0

t+1
∨

j=1

∨

q∈Q(x)

X [i, j,q]

This condition asserts that every row of the tableau contains a state of x.

–
t
∧

i=0

t+1
∧

j=1

t+1
∧

k= j+1

∧

q∈Q(x)

∧

q′∈Q(x)\{q}

(

X [i, j,q]∨X [i,k,q′]
)

This condition asserts that only one position in each row contains a state sym-
bol.

• The following condition ensures that row 0 of the tableau contains a valid initial
total state of NTM x, meaning an initial state followed by all blanks.

–
∨

q∈Q(x)
0

X [0,1,q] ∧
t+1
∧

j=2

X [0, j, B ]

• The following condition ensures that row t of the tableau contains a valid accepting
total state of NTM x, meaning that the halt-and-accept state qacc occurs in the
row.
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–
t+1
∨

j=1

X [t, j,qacc]

• Our final task is to ensure that the total state at each row r+1 of the tableau, where
r ∈ [0, t−1], is a valid successor of the total state at row r of the tableau. As one
can gather from the proof of Theorem 13.1, this is substantially more complicated
than expressing the other required conditions. We need to say that (a) every 2×3
window in the tableau whose first row contains a state symbol at its center has a
second row that is consistent with x’s state-transition function δ (x); (b) every pair
of vertically aligned symbols in the tableau that do not reside in one of these win-
dows are identical. We proceed as follows. To enhance legibility, we reverse our
earlier approach and present the English explanation before the logical sentence.
Let us refer to the just-mentioned 2× 3 windows as consistency windows. Focus
on an arbitrary row r ∈ [0, t−1].
If none of positions j−1, j, j + 1 of row r contains a state symbol, then position
j does not reside in the 2×3 consistency window for rows r and r +1. Therefore,
the symbol in position j of row r + 1 must be identical to the symbol in position
j of row r. This fact can be stated, albeit somewhat awkwardly, as the following
CNF formula.

∧

r ∈ {0,1, . . . , t−1}
j ∈ {1,2, . . . , t +1}

∨

σ1 ∈ (Γ (x) ∪{#,qacc})
σ2 ∈ (Γ (x) ∪{#,qacc})
σ3 ∈ (Γ (x) ∪{#,qacc})

(

X [r, j−1,σ1]∨X [r, j,σ2]∨X [r, j +1,σ3]∨X [r +1, j,σ2]
)

The preceding CNF formula can be understood a bit better if one recalls that the logical
connective implies, as in

A implies B,

is defined as being logically equivalent to the formula A∨B.

If position j of row r does contain a state symbol, then position j is the bottom-
center position in the 2× 3 consistency window for rows r and r + 1, which is
formed from positions j− 1, j, j + 1 of rows r and r + 1. This window must be
consistent with the function δ (x), in the sense spelled out in Table (13.6) in the
proof of Theorem 13.1. This table indicates that the consistency condition has the
following form:

[

X [r, j−1,σ1]∧X [r, j,σ2]∧X [r, j +1,σ3]
]

implies

[

X [r +1, j−1,σ ′1]∧X [r +1, j,σ ′2]∧X [r +1, j +1,σ ′3]
]

∨·· ·

∨
[

X [r +1, j−1,σ ′′1 ]∧X [r +1, j,σ ′′2 ]∧X [r +1, j +1,σ ′′3 ]
]

.
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The number of alternatives after the implication, and their specific identities, de-
pend, of course, on the function δ (x).
By our earlier comment, we can convert the preceding implication to the following
disjunction:

X [r, j−1,σ1] ∨ X [r, j,σ2] ∨ X [r, j +1,σ3] ∨
[

X [r +1, j−1,σ ′1]∧X [r +1, j,σ ′2]∧X [r +1, j +1,σ ′3]
]

∨·· ·

∨[X [r +1, j−1,σ ′′1 ]∧X [r +1, j,σ ′′2 ]∧X [r +1, j +1,σ ′′3 ]
]

.

We can now transform this expression to CNF by repeatedly invoking the fact that
and distributes over or in the propositional calculus.6 This distribution at worst
squares the size of the original expression.

We have completed the reduction. The proof that it is, in fact a reduction, meaning
that a triple ξ belongs to HP(poly) if and only if [Φ(ξ ) ∈ SAT], follows from the same
reasoning as we used to prove Theorem 13.1, so we leave this exercise to the reader.

It remains only to prove that this reduction can be computed in time that is polyno-
mial in the size of the input triple ξ . Because we can simply “read off” the expression
Φ(ξ ) from our tableau, it will suffice to show that the size of Φ(ξ ) is polynomial
in the size of the input triple ξ . To this end, note the following very conservative
reckoning.

• As noted earlier, the size, in bits, of the tableau that represents a putative t-step
accepting computation of NTM x on input y is bounded above by O(t2 · �(x)). To
wit, the tableau has O(t2) cells, each of which contains an encoded symbol whose
length is patently O(�(x)), since x’s program contains all possible symbols (hence
cannot be short).

• The conditions that ensure the well-formedness of the computational tableau com-
prise O(t) conditions—one for each row of the tableau. The conditions within
each row have size O(t2 ·�(x)), the longest ones being those that prohibit two state
symbols in one row. The aggregate size of these conditions is thus O(t3 · �(x)).

• The condition that ensures a valid initial total state has size O(t + �(x)).
• The condition that ensures a valid terminating total state has size O(t).
• Finally, there are the conditions that ensure that each total state in the tableau is a

valid successor of its predecessor.
The first of these guarantees the upward persistence of symbols that cannot be
changed at a given step. This condition has size O(t2 · (�(x))3).
The second of these guarantees that the second row of each 2× 3 consistency
window is consistent with the first row. There are t such conditions, each of size
O((�(x))2), for an aggregate size of O(t · (�(x))2).

6 The propositional calculus obeys the following distributive law: (A∧B)∨C∨D = (A∧(C∨D))∨
(B∧ (C∨D)).
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Adding up the contributions of all of the conditions expressed by Φ(ξ ), we obtain a
grand total of O(t2 ·(�(x))3), which is indeed polynomial in the size of the input triple
ξ .

We thus have a poly-time reduction of HP(poly) to SAT, whence the latter language
is NP-Hard because the former one is.

We have thus shown both that SAT belongs to NP and that SAT is NP-Hard. We
conclude that SAT is NP-Complete. ��

13.4 Nondeterminism and Space Complexity

We now embark on a short excursion into the world of space complexity—the study of
the memory requirements of deterministic and nondeterministic IRTMs. Our excur-
sion’s main focus is on illustrating how differently space complexity behaves from
time complexity, both quantitatively and qualitatively. We accomplish this by de-
veloping a landmark theorem by Walter J. Savitch that relates the families of lan-
guages accepted by deterministic and nondeterministic IRTMs that operate under
space bounds. As we develop this theorem, in Section 13.4.1, we contrast its message
and proof strategy with the current state of knowledge about the analogous issues for
families that are defined via time bounds. Our contrast has both a quantitative aspect
and a qualitative one, both arising from the challenge of deterministically implement-
ing the search that is inherent in every computation that is truly nondeterministic.

We have noted twice—in Sections 10.2 and 12.3—that the essential difference
between deterministic and nondeterministic computation resides in the latter’s pre-
scribing an unbounded search, in addition to the “core” computation. The challenge
of incorporating this search into a deterministic simulation of a nondeterministic com-
putation resides in two facts.

1. As we assess the nondeterministic computation’s consumption of resources—both
time and space—we do not charge the computation for the resources required to
perform the search. But we do charge any deterministic simulation of the nonde-
terministic computation for performing the search! The quantitative side of our
comparison of space vs. time complexity resides in noting how the cost of per-
forming nondeterminism’s search deterministically expands the space complexity
of a computation vs. how it expands the time complexity.

2. A nondeterministic computation offers no prescription for actually executing the
search: nondeterminism permits searching via “guessing,” an extra-algorithmic
notion. The question of how to convert “guessing” to an algorithmic procedure
underlies the qualitative side of our comparison of space vs. time complexity.

We now develop our comparison of space vs. time complexity a bit more, to prepare
the reader for what to focus on as we develop Savitch’s theorem.

Our quantitative comparison of space vs. time complexity is based on the demon-
stration in Savitch’s theorem (Theorem 13.3) that a deterministic simulation of a
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nondeterministic IRTM computation need never do worse than square the space
required for the latter computation. This contrasts with our current inability to
avoid exponentiating the time requirements of a nondeterministic “algorithm” as we
simulate it deterministically; cf. Corollary 13.1.

Notes. (a) The phrase “current inability” in the preceding sentence emphasizes our current
ignorance of the inherent cost in time of simulating nondeterministic computation determin-
istically. (b) Savitch’s theorem builds on insights from [98], the first systematic study of the
space complexity of TM computations.

Our qualitative comparison of space complexity vs. time complexity is based on
the search-via-counting strategy that underlies the proof of Savitch’s Theorem. This
ingenious strategy implements a nondeterministic search through a space of potential
solutions via the following two steps.

1. The strategy represents the potential solutions to the problem being solved via the
nondeterministic computation as strings over an alphabet that is appropriate to the
problem.
Two illustrations. (a) A potential solution to an n-variable instance of SAT could
be represented as a length-n binary string whose kth bit is the candidate truth value
for the kth variable in the CNF formula. (b) A potential solution to an instance of
CLIQUE that has an n-node graph and a target clique size k could be represented
as a sequence of k nodes of the graph, which constitute a potential clique. If the
graph’s nodes are represented as binary strings, then the potential solution could
be a length-(k log2 n) string constituted from the symbols “0” “1” “,” “(“ “)”. (We
write the alphabet without commas to avoid ambiguity.)

2. The strategy searches through the space of potential solutions by “counting”—
in the number base formed by imposing a linear order on the alphabet used to
represent the solutions—from 0 through the largest relevant representable number,
call it N. We say that N is “relevant” if the numerals corresponding to the potential-
solution strings all represent numbers ≤ N. (In other words, the strategy counts
only as high as it needs to in order to search the entire space of potential solutions.)
(a) In the case of SAT in the preceding item, there is already a natural order on
the alphabet {0,1}. Accordingly, the simulator would search through the space of
potential solutions by counting in base 2 from 0 to 2n+1− 1. (b) In the case of
CLIQUE in the preceding item, there is no natural order on the suggested five-
letter alphabet, so the simulator would impose one by somehow associating the
letters with the base-4 numerals {0,1,2,3,4}. The simulator would search through
the space of potential solutions by counting in base 5 from 0 to 5(k log2 n)+1− 1
(which is the largest integer that one can represent with a base-5 numeral of length
k log2 n.

While often wasteful of time—a more directed search could take many fewer steps—
the described strategy is very compact in its consumption of space.

We say that the strategy is seemingly wasteful of time because it could be that all deterministic
search strategies use exponential time, in which case, Savitch’s strategy consumes time but
does not waste it.
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13.4.1 Simulating Nondeterminism Space-Efficiently: Savitch’s
Theorem

This section is devoted to developing the main ideas about space-compact simula-
tions of nondeterministic IRTMs by deterministic online IRTMs. The development
culminates in the landmark result known as “Savitch’s theorem” (Theorem 13.3). We
begin our excursion into space complexity by explaining why we cannot just carry
over the ideas that we used in discussing time complexity.

When faced with the challenge of determining deterministically whether a given
nondeterministic IRTM M = (Q,Σ ,Γ ,δ ,Q0,F) accepts a given input word x, we re-
sorted, in the proof of Theorem 12.1, to a breadth-first traversal of the computation
tree T M(x) that M generates while processing x. As noted within that proof, this
algorithmic strategy is well suited for this task, because in general one has no way
to bound from above how deep in the computation tree T M(x) one must search in
order to find an accepting state of M. Of course, a simulation of M that is based on
a breadth-first traversal of T M(x) consumes a lot of space. Specifically, as the sim-
ulation is processing level l of T M(x), the queue that orchestrates the traversal can
contain as many as (3|Q||Γ |)l total states of M, because M could branch to as many
as 3|Q||Γ | distinct total states at every (nondeterministic) state transition. And, each
of M’s total states at level � of T M(x) could employ l squares of M’s read/write
worktape. It follows that even if M operates within space s(n), the breadth-first simu-

lation strategy could use as many as cs(�(x))
M bits of storage/memory, for some constant

cM > 1, to determine whether M accepts a string x. Savitch found a way to avoid
using exponential space by developing a nonobvious way to search for the (possible)
presence of an accepting total state in T M(x).

Savitch’s simulation strategy begins with the following derivation of an upper
bound on the depth one needs to probe in T M(x) in order to determine whether
M accepts x. Note that this bound allows one to reject words that M does not accept,
as well as to accept words that M accepts. The general simulation of Theorem 12.1
accomplishes only the positive (acceptance) half of this duo.

A nondecreasing function a : N→ N is an acceptance bounding function (accep-
tance bound, for short) for a nondeterministic IRTM M if the following holds for
every word x ∈ Σ �. If M accepts the input word x, then there is an accepting total
state-node at depth ≤ a(�(x)) of the computation tree T M(x).

Lemma 13.9. Let M be a nondeterministic IRTM that operates within space s(n).
There exists an absolute constant cM such that M admits the acceptance bound

a(n) = 2cM ·s(n). (13.7)

Proof. Say that we are guaranteed that M accepts a word x via a branch of its (nonde-
terministic) computation tree T M(x) that uses ≤ s(�(x)) squares of read/write work-
tape. We claim that the length of this short accepting branch cannot exceed

cM · s(�(x)) · |Γ |s(�(x)),
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for some constant cM that depends only on M, i.e., that is independent of the length
of x. Let us verify this bound.

We note first that M cannot repeat a total state along a shortest branch of T M(x).
This is because—precisely in the manner of pumping within the derivation trees asso-
ciated with context-free grammars; cf. Section 6.1.3—one could remove any repeat-
ing segment of the branch to obtain a shorter branch.

We next see how long M can compute along a branch of T M(x) before it must
increase the effective size of the worktape. We claim that while M is using m squares
of worktape, it can proceed for no more than |Q|m|Γ |m steps—or else it will repeat a
total state. To see this, note that for each branch, M can do no more than cycle through
all of the |Γ |m possible m-symbol configurations of its worktape, and for each total
state, cycle through all of its |Q| internal states, and for each (tape configuration)–
(internal state) pair, cycle through all m possible positions for its read/write head. If
M were to proceed for even one more step, it would have to repeat a total state along
that branch.

Summing up, if M never uses more than s = s(�(x)) squares of worktape along a
shortest accepting branch of T M(x), then each such shortest branch can be no longer
than

T =
s

∑
m=1
|Q|m|Γ |m

= |Q|
( s

∑
m=1

m|Γ |m
)

=
|Q||Γ |
|Γ |−1

(

s|Γ |s +
|Γ |s−1
|Γ |−1

)

.

There are numerous excellent texts that show in detail how to evaluate geometric sums such
as ∑s

m=1 m|Γ |m. I am partial to a beautiful recursive technique described in [53].

Noting that both |Q| and |Γ | are absolute constants—i.e., they depend on the structure
of M but are independent of the length of x—we conclude that there exists an absolute
constant cM such that M admits the claimed acceptance bound (13.7). ��

We now exploit the bound (13.7) of Lemma 13.9 to develop a space-efficient strat-
egy for determining whether an NTM M’s computation tree T M(x) contains an ac-
cepting node. The only extrinsic requirement that our space-efficient strategy imposes
on the space-bounding function s(n) for M upon which we develop the simulation
strategy is that s(n) be constructible. This means that there exists an IRTM M# such
that if we feed M# any input string of length n, then:

• M# can “lay out” a string of s(n) consecutive squares on its read/write worktape.
By “lay out,” we mean somehow mark these squares to distinguish them from all
other squares of the worktape.

• M# can accomplish the “laying out” process while using no more than s(n) squares
of its read/write worktape.
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The second, space-bounding, condition is crucial in the coming proof, because it
allows the simulating IRTM to “lay out” a work region on its read/write worktape.
We use this facility in line 1 (the initialization step) of the upcoming Program [Does-
M-accept?].

Keep in mind, as you proceed to Theorem 13.3, that the overriding challenge in de-
terministically deciding the language L(M) space efficiently is that we cannot afford
the space that would be needed to generate and lay out the computation tree T M(x):
that would require space exponential in s(n), rather than the space quadratic in s(n)
that the theorem actually achieves. Roughly speaking, we are able to use space that is
only quadratic in s(n) by generating only small portions of one branch of T M(x) at
a time, and reusing space from one portion to the next.

Theorem 13.3 ([92]). Let M be a nondeterministic IRTM that operates within space
s(n) and that accepts a language L. If the space-bounding function s(n) is con-
structible, then there exists a deterministic, online IRTM M′ that decides language
L and that operates within space (s(n))2.

Note that the nondeterministic IRTM M only accepts the language L: it accepts all
words that belong to L but never rejects any input word. In contrast, the deterministic
online IRTM M′ decides L: it accepts all strings that belong to L and rejects all strings
that do not.

Proof. We begin with an overview of the simulation strategy, then supply algorithmic
details, and end with an analysis of the detailed algorithm.
Overview. Focus on a moment when the nondeterministic IRTM M has read some
input x ∈ Σ �, and consider the computation tree T M(x) that M generates while pro-
cessing x. We develop a space-compact (specifically, space O((s(�(x)))2)) determin-
istic online IRTM M′ for deciding whether M accepts x. Our IRTM searches within
T M(x) for an accepting total state C of M, i.e., a total state whose internal state is an
accepting state. Let C0 denote the initial total state of M, which is the root of T M(x).
Using the language and notation of Section 2.5, our strategy seeks an accepting total
state C such that C0 ⇒C.

Because of M’s space bound, all of the total states along the branch from C0 to C
are strings of length ≤ s(�(x))+ 1; the “+1” accounts for the internal-state symbol
that occurs (precisely once) in each total state. This fact allows us to enlist the notion
of computational tableau that appears in the proof of Theorem 13.1.

To simplify our task, we note, via Lemma 13.9, that if M accepts the word x, then
it does so along some branch of T M(x) whose length is no greater than 2cM ·s(�(x)),
where cM is the absolute constant guaranteed by the lemma. This means that we can
restrict our search for total state C to the prefix of T M(x) obtained by truncating all
branches at depth 2cM ·s(�(x)); call the resulting prefix ̂T M(x). If ̂T M(x) contains the
sought accepting total state, then, by definition, M accepts x; if ̂T M(x) contains no
such total state, then Lemma 13.9 assures us that T M(x) also contains no such total
state, so that M does not accept x.

It is convenient for the development of our space-compact simulation algorithm
to refine the tree-related (ancestor–descendant) relation “⇒” from Section 2.5 in the



290 13 Complexity Theory

following way. Within the context of a computation tree ̂T M(x), the notation Ci⇒Cj

means that node Cj is a descendant of node Ci within ̂T M(x). In computational terms:
there is a branch of the (nondeterministic) computation by M on input x along which
M arrives at total state Ci, and after some additional number of (nondeterministic)
steps—perhaps 0 steps—M arrives at total state Cj. The refinement that we adopt
now embellishes the notation “⇒” with an integer d ∈ N, as in

Ci
d⇒ Cj, (13.8)

to indicate how many steps M must execute in order to reach total state Cj from total
state Ci. In more detail, the notation (13.8) betokens the existence of a length-d path
of total states in ̂T M(x),

(Ci = Ck0),Ck1 ,Ck2 , . . . ,Ckd−3 ,Ckd−2 ,(Ckd−1 = Cj).

Note that, by definition of “rooted tree,” each node Cka in this path is the parent of its
successor, node Cka+1 .

Summing up thus far, we determine whether M accepts input x by determining
whether ̂T M(x) contains an accepting total state C∗ such that

C0
d⇒C∗ for some d ≤ d∗ = 2cM ·s(�(x)). (13.9)

Detailed algorithmics. We begin with the simple “envelope” Program MasterM that
embodies the online portion of our simulation. In conformity to the phrasing of the
theorem, MasterM has M’s (nondeterministic) program built in—meaning that we
craft a distinct deterministic simulator for every nondeterministic IRTM M. One could
craft a stronger, but notationally much more complicated, version of the theorem, in
which there is a single “universal” simulator that takes M as an argument.

Our detailed simulation is invoked by a call to Program MasterM. We assume that
both of the simulator’s tapes—its input record and its read/write worktape—are blank
at the moment of this invocation.

We now specify how to determine deterministically and space-compactly whether
M accepts the input word x ∈ Σ � that Program MasterM has received thus far at its
input port (and has recorded on its input record). The remaining procedures in our
suite answer the question,

“Does M accept x?”

by determining whether there exists an accepting total state C∗ in T M(x) that satisfies
(13.9). As you study the suite of procedures, you should pay special attention to the
following two algorithmically interesting issues: How we

1. translate the existential quantifier in the preceding question into a search for the
the total state C∗,

2. execute the search in a nonobvious way, by counting in a nonstandard number
base.
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Program MasterM

Input obtained via exterior port
/*Simulate M’s behavior on the provided input: accept an input word

x ∈ Σ � if M accepts it; reject x if M does not accept it*/

1. Search for an accepting total state of M in ̂T M(ε)
/*̂T M(ε) is a fixed finite tree, of depth ≤ 2cM ·s(0), so we can

perform this search in constant space*/
2. if an accepting total state exists
3. then return ACCEPT ε
4. else return REJECT ε
5. poll input port for next input symbol
6. if input port← σ

/*A new input symbol σ ∈ Σ is detected at the input port*/
7. then Append σ to the current word on the input record
8. Invoke Program [Does-M-accept?] (word on input record)
9. if Program [Does-M-accept?] returns ACCEPT

10. then return ACCEPT (word on input record)
11. else if Program [Does-M-accept?] returns REJECT
12. then return REJECT (word on input record)
13. goto line 5

The following program “manages” the process of answering our question about
input word x.

Program [Does-M-accept?] x
Input x
/*Determine whether M accepts input x*/

1. C← a string of s(�(x))+1 occurrences of B

/*Initialize the process of generating candidate accepting total
states via which M accepts x. Note: This initialization is
possible only because s(n) is constructible.*/

2. C← Generate-Next(C, ON)
/*Generate next candidate accepting total state*/

3. if no more candidate accepting total states exist
/*Program Generate-Next with the ON option supplies this

information*/
4. then return REJECT
5. else forall d ≤ 2cM ·s(�(x))

/*For all valid numbers d of (nondeterministic) steps*/

6. Test [C0
d⇒C]

/*Is accepting total state C accessible from C0 in d steps?*/
7. if Program Test returns ACCEPT
8. then return ACCEPT
9. else goto line 2
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In order to complement Program [Does-M-accept?] x so that it can answer the ques-
tion in its name, we have to deal with two issues.

1. How do we determine deterministically whether a proposed candidate C satisfies
condition (13.9)?
We answer this question by specifying the procedure

Test [C0
d⇒C]

that is invoked in line 6 of Program [Does-M-accept?].
2. How do we generate the successive candidate accepting total states?

We answer this question by specifying the procedure
Generate-Next(C, ON)

that is invoked in line 2 of Program [Does-M-accept?]. We thus implement the
existential question, “Does total state C∗ exist?” via a procedure for generating all
possible candidate total states C one at a time and testing each for being the sought
total state C∗.
Our regimen of

(generate one new candidate)–(test this candidate)
is critical in our quest to conserve space.
We actually need two versions of Program Generate-Next. One version, namely
Program Generate-Next with the ON option, implements our search for the ac-
cepting total state C∗. The other version has the OFF option; it satisfies the needs
of Program Test, which is invoked in line 6, for intermediate total states that M
encounters on the branch (if it exists) from C0 to C∗ that are not-necessarily-
accepting.

We deal with the preceding two issues in turn.

1. Vetting candidates for C∗. We focus on vetting a single candidate—call it C∗0—
for the sought total accepting state C∗. Using our quantified ancestor–descendant no-

tation “
d⇒” this amounts to determining whether

[C0
d∗⇒ C∗0 ].

The fact that we can delimit the search for C∗0 via the numerical parameter d∗ suggests

that we can employ a recursive procedure for searching through ̂T M(x). Specifically,

the relation C0
d∗⇒ C∗0 holds if and only if there exists a (not necessarily accepting)

total state C∗1 such that both of the following relations hold:

[C0
�d∗/2�
=⇒ C∗1 ] and [C∗1

�d∗/2�
=⇒ C∗0 ].

The intuition that leads to this insight is that if there is a length-d∗ branch from
C0 to C∗ in ̂T M(x), then there must be some total state—call it C∗1—halfway (to
within rounding) along the branch from C0 to C∗0 . How do we generate candidates for
C∗1? We invoke the same (time-profligate but space-conservative) recipe that we used
to generate C∗0—but we do it now for worktape configurations of lengths ≤ �d∗/2�
and ≤ �d∗/2�, the former length for the branch from C0 to C∗1 and the latter length
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for the branch from C∗1 to C∗0 . We then recursively invoke the fact that each of the
relations governed by parameter d∗/2 (to within rounding) holds if and only if two
analogous relations that are governed by parameter d∗/4 (to within rounding) hold;
to be specific for relation

[C0
�d∗/2�
=⇒ C∗1 ],

for instance—the other relation is treated similarly—the derived pair of relations have
the form

[C0
��d∗/4��
=⇒ C∗2 ] and [C∗2

��d∗/2��
=⇒ C∗1 ].

Without further ado, we jump from the preceding reasoning to the desired recursive
vetting procedure, Program Test.

Program Test [C1
d⇒C2]

Input d, C1, C2

/*Determine whether the argument relation holds with the parameter
d ∈ N and the total states C1 and C2*/

1. if d = 1
2. then if C2 is a valid successor of C1 in NTM M
3. then return “YES: THE BRANCH EXISTS”
4. else return “NO SUCH BRANCH EXISTS”

/*Test directly for parent–child relation C1 →C2*/
5. else C← a string of 2cM ·s(�(x)) occurrences of B

/*Initialize the process of generating candidate total
states that could occur halfway between C1, C2*/

6. C←Generate-Next(C, OFF)
/*Search for a total state halfway between C1, C2*/

7. if no more candidate total states exist
/*Program Generate-Next, with the OFF option, supplies this

information*/
8. then return “NO SUCH BRANCH EXISTS”

9. else Test [C1
�d/2�
=⇒ C]; Test [C

�d/2�
=⇒ C2]

/*Does the candidate intermediate node C work?*/
10. if both calls to Program Test return “YES”
11. then return “YES: THE BRANCH EXISTS”

/*The candidate intermediate node C works*/
12. else goto line 5

Program Test directly implements the recursive vetting procedure while using Pro-
gram Generate-Next (with the OFF option) to implement the search for intermediate
nodes along the sought branch of ̂T (x).

2. Searching for candidate total states. Because M operates within space s(n),
we can restrict our search for the sought accepting total state C∗ to total states that
have length ≤ s(�(x))+ 1. Since we do not care how long it takes us to run through
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all possible candidates, we can accomplish this search compactly via the following
“trick.”

Recall that every total state of M is a string over the alphabet Γ ∪Q. Ignore, for
simplicity, that total states are very special strings over this alphabet (cf. (3.5)). In-
corporating this fact into our algorithms would save us time—which is of no interest
here—but would not affect space—which is our only concern. We view the set Γ ∪Q
as the set of digits in the number base |Γ |+ |Q|. It will simplify the detailed algorith-
mics to use the blank symbol B ∈ Γ as the symbol for 0, for this allows us always
to ignore “leading” blanks. We count in base |Γ |+ |Q|, from the smallest integer that
can be represented by a length-(s(�(x))+1) numeral to the largest integer that can be
represented by a length-(s(�(x))+ 1) numeral. The former number is 0, which is the
value of the numeral B B · · · B ; the latter number is

(|Γ |+ |Q|)s(�(x))+2−1,

which is the value of the numeral ββ · · ·β , where β denotes the largest digit in the set
Γ ∪Q; both of the indicated numerals contain s(�(x))+1 digits. This counting process
automatically enumerates all of the length-(s(�(x))+1) strings over the alphabet Γ ∪
Q; thereby, the process also automatically enumerates all of the total states of M that
could conceivably be the sought total state. Of course, the process also generates a
lot of “garbage” strings, i.e., strings that because of their structures, do not represent
valid total states of M. However:

• our string-generation procedure can weed out these useless strings before returning
any result to the calling procedure—so the calling procedure receives only valid
total states;

• we are allowed to waste time without limit, as long as we stay within the prescribed
number of squares of worktape.

We now flesh out the preceding informally specified procedure to obtain the fol-
lowing program for generating “the next” total state. As noted earlier, we actually
need two programs, because we are sometimes called upon to return “the next” to-
tal state and sometimes to return “the next” accepting total state. We implement this
need by means of a toggle bit ACC∈{ON, OFF} that when set to ON, filters out all
nonaccepting total states; of course, the program always filters out all “garbage”
strings.

Analyzing the algorithm. We have amply documented the effectiveness of our suite
of simulation procedures, so we concentrate now just on proving that the procedures
stay within the advertised space bound of O((s(n))2). We consider in turn each of the
four procedures in the suite.
(1) Program MasterM uses space O(1). The program does not directly touch the sim-
ulator’s read/write worktape. The one “large” item that it processes is the computation
tree ̂T M(ε) that M generates when processing the null input. Because that compu-
tation tree is fixed, Program MasterM can use its internal memory—i.e., its internal
states—to process it.
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Program Generate-Next(C, ACC)
Input C (total state); ACC (toggle bit)
/*When ACC is OFF, return the length-(s(�(x))+1) total state that “follows”

C numerically. When ACC is ON, return the next accepting total state*/

1. C ← C +1, as a numeral base |Γ |+ |Q|
2. if length(C) exceeds s(�(x))+1

/*C is viewed here as a numeral, i.e., a string*/
3. then return “NO MORE CANDIDATE TOTAL STATES EXIST”
4. else if ACC is OFF

5. then if C is a valid total state of M
/*Recall that C is a valid total state precisely when C ∈ Γ +QΓ + B ;

cf. (3.5)*/
6. then return C
7. else goto line 1
8. else if C is a valid accepting total state of M

/*Recall that a valid total state C is accepting if its internal state is*/
9. then return C

10. else goto line 1

(2) Program [Does-M-accept?] uses space O(s(�(x))). The program uses the simu-
lator’s read/write worktape in two ways, and always only sparingly.

1. When the program is first invoked, it “constructs” a string of s(�(x))+ 1 blanks
on the worktape. Because the space-bounding function s(n) is constructible, this
process utilizes only O(s(�(x))) squares of worktape.

2. As the program searches through candidates for an accepting total state that is a de-
scendant of C0 in ̂T M(x), it writes only one total state at a time on the worktape—
and it writes this total state over the previous one.

(3) Program Test uses space O((s(�(x)))2). This is the program that uses most of the
space. In order to appreciate how the space usage evolves, let us briefly illustrate the
program in action. Say that one wants to determine whether the following relation
holds for some total states C(0) and C(1) and some d ∈ N:

[C(0) d⇒ C(1)].

To simplify notation by avoiding floors and ceilings, let us assume that d is a power
of 2. Now, the preceding relation on total states holds if and only if there exists a total
state C(2) such that both of the following relations hold:

[C(0) d/2⇒ C(2)] and [C(2) d/2⇒ C(1)].

The reasoning is that there must be some total state—call it C(2)—one-half of the way
along the branch from C(0) to C(1).

Continuing this reasoning, if the preceding two relations hold between C(0) and
C(2) and between C(2) and C(1), then there must be a total state C(3) such that all three
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of the following relations hold:

[C(0) d/4⇒ C(3)] and [C(3) d/4⇒ C(2)] and [C(2) d/2⇒ C(1)]

The reasoning is that there must be some total state—call it C(3)—one-half of the way
along the branch from C(0) to C(2), i.e., one-quarter of the way along the branch from
C(0) to C(1).

We’ll do just one more step before making our leap, to make sure that the pattern
is clear. If the preceding three relations hold between C(0) and C(3) and between C(3)

and C(2) and between C(2) and C(1), then there must be a total state C(4) such that all
four of the following relations hold:

[C(0) d/8⇒ C(4)] and [C(4) d/8⇒ C(3)] and [C(3) d/4⇒ C(2)] and [C(2) d/2⇒ C(1)]

The reasoning is that there must be some total state—call it C(4)—one-half of the
way along the branch from C(0) to C(3), i.e., one-eighth of the way along the branch
fromC(0) to C(1).

Now we make the leap! What is really going on here? The pair of recursive invo-
cations of Program Test at line 9 of Program Test actually push instances of relations
of the form

[C(i) d/2k

⇒ C( j)]

onto a recursion stack7 for later processing. The case d = 1 at the beginning of Pro-
gram Test pops one relation instance from the then-current stack. It is this stack that
consumes the lion’s share of the space on the simulator’s worktape. How much space
can the stack consume when processing an input word x ∈ Σ �?

• Each entry on the stack is (essentially) a pair of total states of M, plus a numeral
(the d-parameter). Because of M’s space bound, the two total states consume space
O(s(�(x))). Because the maximum value of the parameter d is d∗ = 2O(s(�(x)))

(cf. (13.9)), the numeral for d can be written in O(s(�(x))) bits. It follows that
each stack entry consumes space O(s(�(x))).

• – Each recursive invocation of Program Test replaces one entry of the stack by
two new ones—but these new ones have a d-parameter that is (to within round-
ing) one-half of the parameter of the entry that they replace.

– When the top stack entry has a d-parameter d = 1, then that entry is removed
from the stack, so that the stack loses an entry.

Because of the value of d∗, and because each new top entry in the stack halves the
value of the d-parameter of the preceding top entry, the stack never contains more
than log2 d∗ = O(s(�(x))) entries.

Thus, the stack contains O(s(�(x))) entries, each of size O(s(�(x))). It follows that
Program Test uses space O((s(�(x)))2).
(4) Program Generate-Next uses space O(s(�(x))). The program adds 1 to a length-
(s(�(x)) + 1) numeral, thereby increasing the numeral’s length by at most 1. When

7 See Section 9.8.1.B for details about the stack data structure.
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such an increase occurs, this branch of the simulation is terminated—so no further
increase occurs.

Summing up, we find that our entire simulation uses space O((s(�(x)))2) when
processing the input word x ∈ Σ �. The worktape is reinitialized to O(s(�(x))) blanks
as each new input word x begins to be processed. The space bound of O((s(n))2)
claimed in the theorem is thus validated. ��

We thus see that “determinizing” nondeterministic computations forces us to ex-
pand space requirements to a much smaller measure than time requirements—as far
as we know.

13.4.2 Beyond Savitch’s Theorem

The reader who is intrigued by the search-via-counting strategy will enjoy seeing
the strategy exercised vigorously by Neil Immerman and Róbert Szelepcsényi. In
[100] and [43], these authors independently, and roughly contemporaneously, proved
that every family of languages F that is defined via a nondeterministic space bound
s(n) ≥ log2 n is closed under complementation. That is, for every language L ⊆ Σ �

that belongs to F, the complementary language L = Σ � \L also belongs to F.

One finds in texts such as [40, 76, 97], which go beyond introductory material on complexity
theory, proofs of the Immerman–Szelepcsényi theorem that are “gentler” in exposition than
one can expect from research publications such as [100] and [43].

Fleshing out details a bit: The family of languages F is defined via a nondeterministic
space bound s(n) if F is the set of all languages that are accepted by a nondeterminis-
tic IRTM that operates within space s(n). Two important such space-defined families
are:

• NPSPACE, the family of languages that are accepted by nondeterministic IRTMs
that operate within space s(n) for some polynomial s(n);

• the context-sensitive languages, the family of languages that are accepted by non-
deterministic TMs that operate within space s(n) = n.

Regarding the second example: When s(n)≥ n, we no longer need the IRTM model, because
a TM has access to enough squares of read/write worktape to record the input it has read thus
far.

The result by Immerman and Szelepcsényi, which dates to the late 1980s, settled
(in the affirmative) the question whether the family of context-sensitive languages is
closed under complementation, a question that had been open since the 1960s.

With respect to our comparison of time and space complexity, it is notable that no
analogue of the Immerman–Szelepcsényi theorem exists for time complexity, even for
most individual time-complexity classes. As an important specific instance: no one
has yet been able to show whether the family NP is closed under complementation—
the NP-vs.-coNP problem.





PART V
SAMPLE EXERCISES

Multiplication is vexation,
Division is bad;
The rule of three doth puzzle me,
And practice drives me mad.

(Elizabethan MS [1570])

Everyone who teaches this course will bring a unique style and philosophy and per-
spective to the subject. Each time I taught the course, I added to the list of problems
and exercises that I assigned to the students in an attempt to elucidate the material
that I was covering and to get the students thinking about computation mathemat-
ically. While I often garnered inspiration from the problem sets that I discovered
in the many texts that I consulted when teaching the course, I seldom found that the
questions formulated by others, no matter how expert in the field, captured exactly the
tone that I was trying to set for the course. Not surprisingly, this was particularly true
regarding the topics that I always included in the course that did not appear in many—
often, in any—other texts. Recognizing that instructors who use this book will react
to my favorite problems in much the way that I reacted to those of others, I include
here a list of some of my favorites in the spirit of suggestions that I hope will inspire
my readers. Please note that while I have attempted to include in this list all of the
exercises that I have “left to the reader” in the text, I have undoubtedly missed some.

I hope that you and your students will find that all of the following problems
elucidate the material in the text, and that (at least) some of them are interesting and
even “inspiring.”
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1. Prove that all three Boolean operations can be expressed using just the single
operation set-difference. In other words, find ways of expressing S, S∩ T , and
S∪T using only expressions of the form S\T .

2. Consider the operation of composition on binary relations, as defined in Sec-
tion 2.2.1. Prove that this operation is associative. That is, if we denote by P◦P′
the composition of binary relations P and P′, then prove that for all binary rela-
tions P1,P2,P3,

P1 ◦ (P2 ◦P3) = (P1 ◦P2)◦P3.

3. Prove in detail the fact alluded to in Section 2.2.2 that an equivalence relation on
a set S and a partition of S are just two ways to look at the same notion.

4. Prove that the composition of injections is an injection. Is the composition of
surjections necessarily a surjection?

5. Prove that the set Σ � is infinite whenever Σ is not empty.
6. Establish a one-to-one correspondence between the following two sets. S1 is the

set of finite rooted binary trees in which each nonleaf has two children. S2 is the
set of completely balanced strings of parentheses. The set S2 is defined induc-
tively as follows.

• The string () belongs to S2.
• For any strings x1,x2 ∈ S2, the string (x1x2) belongs to S2.
• No other strings belong to S2.

7. Evaluate the sum

S(n) =
n

∑
k=1

k2k.

8. Prove that the shortest binary numeral for the integer n has length

�log2(n+1)� = 1+ �log2 n�.

9. Prove Lemma 2.1: For all alphabets Σ and all languages L⊆ Σ �, the equivalence
relation ≡L is right-invariant.

A.L. Rosenberg, The Pillars of Computation Theory, Universitext, 301
DOI 10.1007/978-0-387-09639-1, c© Springer Science+Business Media, LLC 2010
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10. Using first addition and then multiplication as the function in (2.3), present ten
strings in the language Lg.

11. Give DFAs that accept the following languages over the alphabet {0,1}.
a. The set of all strings that end in 00.
b. the set of all strings that contain the substring 000 somewhere (not necessarily

at the end);
c. the set of all strings that contain the symbols 011, in that order, but not neces-

sarily consecutively.

12. Prove (3.3). As noted in the text, this can be accomplished via an explicit induc-
tion on the length of the input string.

13. Prove that the DOA M′ constructed in the proof of Theorem 10.1 accepts the
same language as the NOA M from which M′ is constructed. The annotations in
the construction contain hints for the formal proof.

14. Prove that the following languages are not regular.

a. L = {an | n is a power of 2};
b. L = {anbm | n≤ m};
c. The language L5 of Lemma 6.2.

15. Use the TRIE (digital search tree) data structure to prove Lemma 4.2: Every finite
set of words over any finite alphabet Σ (i.e., every finite subset of Σ �) is a regular
language.
See a text on data structures or algorithms, such as [53] or [20], for information
on the simple, but useful, TRIE data structure.

16. Prove that there exist three languages L1 ⊂ L2 ⊂ L3, all over the alphabet Σ =
{a,b}, such that:

• L1 and L3 are regular;
• L2 is not regular.

Message: The properties of subsets and supersets cannot be used to prove regu-
larity or nonregularity.

17. Prove, by specifying a finite automaton and arguing that it accepts the desired
language, that the following languages are regular.

a.
L1 = {x ∈ {0,1}� | x has a 1 as the third symbol from its end}

= {y1ab | x ∈ {0,1}� and {a,b} ⊆ {0,1}}.

b. L2 is the set of all strings 〈x,y〉 ∈ ({0,1}×{0,1})� that satisfy the following. If
you interpret x and y as binary numerals in reverse order—so that the leftmost
symbols of x and y are the low-order bits of the numerals—then the high-order
bit of the sum of x and y is 1.
Just as a notational matter: if 〈x,y〉 ∈ ({0,1}×{0,1})�, then x and y are equal
in length.
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18. Prove—using the (fooling set)–(continuation lemma) argument—that the follow-
ing languages are not regular.

a. L3 consists of ordered pairs of equal-length binary numerals, in the same man-
ner as L2 does. A pair 〈x,y〉 of length-n numerals belongs to L3 iff the nth bit of
the product of x and y is 1.

b. L4 ⊆ {0,1,2} consists of strings of the form x2y, where x and y are reverse
binary numerals (i.e., the left ends of x and y are the low-order ends). A string
x2y, where x is of length n, belongs to L4 just when the nth bit of the sum of x
and y is 1.
Thus, whereas the language L2 of the preceding problem represents the addition
operation when numerals are presented in parallel, L4 represents the addition
operation when numerals are presented serially.

19. Prove that the language {anbncn | n≥ 0} is not regular:

a. using the “ordinary” form of the pumping lemma (Lemma 6.1);
b. using the “fooling argument” based on the finite-index lemma.

20. Prove that if an n-state FA M accepts any string—i.e., L(M) �= /0—then it accepts
a string of length < n.

21. In the [(3)⇒ (1)] portion of the proof of the Myhill–Nerode theorem, we need to
show that for all strings x ∈ Σ �, δ ([ε],x) = [x]. Prove that these equations hold.

22. Compute the minimum-state FA that is equivalent to the following one.

M q δ (q,0) δ (q,1) q ∈ F?

→ a b a /∈ F
b a c /∈ F
c d b /∈ F
d d a ∈ F
e d f /∈ F
f g e /∈ F
g f g /∈ F
h g d /∈ F

23. Consider the (allegedly) minimal-state FA ̂M constructed in Section 5.2 from the
FA M.

a. Prove that ̂M is well defined, i.e., that it is indeed an FA.
b. Prove that ̂M accepts the same language as does M, i.e., that L( ̂M) = L(M).
c. Prove that no FA having fewer states than ̂M accepts L(M).

(Much of this is just summarizing what we prove in the text.)
24. Prove the following assertions, which point out a technically significant differ-

ence between DFAs and NFAs.

a. There is no integer k such that every regular set is accepted by a DFA having
≤ k accepting states.
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b. Every nonempty regular set is accepted by some NFA that has just one accept-
ing state, even when NFAs are not allowed to have ε-transitions.

25. How many distinct regular sets over the alphabet {a} are accepted by a DFA
having n states and one accepting state? You should restrict attention to languages
that are not accepted by any DFA having fewer than n states.

26. Prove that the 4-state FA below adds binary integers, in the following sense. We
view the FA as emitting the bit 1 whenever it enters an accepting state, and as
emitting the bit 0 whenever it enters a rejecting state. We then design an FA that
on any input string over the 4-symbol alphabet {0,1}×{0,1}, say

〈α0,β0〉〈α1,β1〉 · · · 〈αn,βn〉,

emits the bit-string
γ0γ1 · · ·γn

just when the bit-string γnγn−1 · · ·γ0 comprises the low-order n+1 bits of the sum
of

αnαn−1 · · ·α0 and βnβn−1 · · ·β0.

Note the reversed order of the input and output strings of the FA. The adding FA
has four states, {q0,q1,q2,q3}; q0 is the start state; q1 and q3 are the accepting
states. The state-table for the FA is the following:

δ 〈0,0〉 〈0,1〉 〈1,0〉 〈1,1〉
q0 q0 q1 q1 q2

q1 q0 q1 q1 q2

q2 q1 q2 q2 q3

q3 q1 q2 q2 q3

Hint: Interpret the states via outputs and carries.
27. Using the same formal framework as in the preceding problem, prove that finite

automata cannot multiply. That is, there is no FA that, on every input string

〈α0,β0〉〈α1,β1〉 · · · 〈αn,βn〉 ∈ ({0,1}×{0,1})�

emits the bit-string
γ0γ1 · · ·γn

that comprises (in reverse order) the low-order n+1 bits of the product of

αnαn−1 · · ·α0 and βnβn−1 · · ·β0.

Hint: Note that we allow leading 0’s in the input.
28. Prove that the following language is regular:

{

a�bmcn | m can be written as m = h+ k for some h �= � and k �= n
}

.
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29. Consider two FAs, Mm and Mn, that share the one-letter input alphabet {a} and
that accept, respectively, the set of all strings whose length is divisible by m and
the set of all strings whose length is divisible by n.

a. Use the direct-product construction on Mm and Mn to produce a DFA that ac-
cepts the set of all strings whose length is divisible by the least common multi-
ple of m and n.

b. Prove that when m and n are relatively prime—i.e., have unit greatest common
divisor—then the DFA you just produced from Mm and Mn is the smallest DFA
(in number of states) that accepts this set.

30. Explain why there is no analogue of the Myhill–Nerode theorem for NFAs. In
particular, why can one not identify the “states” of an NFA as the classes of
an equivalence relation? Your answer should be short and to the point, not a
rambling essay.
(The answer is not abstruse. Look at some sample NFAs, and think about what
the various terms in this question mean.)

31. Prove that every ε-free NFA M for which ε �∈ L(M) can be converted to an equiv-
alent ε-free NFA M′ that has only one accepting state. (It is easy to prove that
this is not possible in general for DFAs.)

32. Prove that an ε-free NFA that is allowed to have multiple start states can be
converted to an equivalent ε-free NFA M′ that has only one start state.

33. We showed in Section 11.1.2 that there exist languages whose smallest accepting
DFA is exponentially larger than their smallest accepting NFA. What can you say
in this regard about languages over a 1-letter alphapet? That is, if M is an NFA
with input alphabet {a}, what can you say about the size of the smallest DFA
that accepts L(M)?

34. Recall the NFA M that accepts all strings over {a,b} whose penultimate letter is
a. When we converted M to an equivalent DFA M′, we generated the states of M′
in a lazy manner—since only states accessible from {q0} are of interest. List the
states that we did not generate.

35. We have shown that the language L = {ak | k is a perfect square} is not regular. It
follows that the Myhill–Nerode relation≡L has infinitely many classes. Describe
all of the classes.

36. Prove whether each of the following sets is regular.

a. {x ∈ {0,1}� | �(x) is the sum of two perfect squares}
(Hint: Consult any standard number theory book to see which integers are sums
of so-and-so many squares.)

b. {x ∈ {0,1}� | x begins with a palindrome of length ≥ 3}.
c. {x ∈ {0,1}� | x contains a subword that is a palindrome}.
d. {ambn | m = n2}.
e. {ambn | m≡ n2 (mod 7)}.

37. Consider the following family of finite (hence, regular) languages: L �= = {L �=i | i∈
N}. For each n ∈ N,
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L �=n = {xy | x,y ∈ {0,1}n and x �= y} .

Prove the following assertions.

a. For all n, there is an NFA M, having O(n2) states, such that L(M) = L �=n .
(You may describe M in English, but be sure that you describe in detail the
states of M and the transitions among them.)

b. Any deterministic FA that accepts L �=n must have at least 2n states.

38. Contrast the family L �= of the preceding problem with the family of finite
(hence, regular) sets L = = {L=

i | i ∈ N}, where for each n ∈ N,

L=
n = {xy | x,y ∈ {0,1}n and x = y} .

Prove that any NFA that accepts L=
n must have at least 2n states.

39. Present algorithms that decide, of given FAs M1 and M2 that share the input
alphabet Σ , whether:

a. L(M1) = /0;
b. L(M1) = Σ �;
c. L(M1) = L(M2);
d. L(M1)⊆ L(M2).

40. Prove that the following language L1 is not context free, but that language L2 is
context free:

L1 = {xy ∈ {0,1}� | x = y};
L2 = {xy ∈ {0,1}� | �(x) = �(y) and x �= y}

41. Use pumping arguments to prove the following assertions.

a. The following language of perfect squares under concatenation is not context-
free:

L = {xx | x ∈ {a,b}�} .
Each string in L consists of a string of a’s and b’s, followed by an identical copy
of the same string.

b. The set of strings over the alphabet {a} whose length is a power of 2 is not
regular.

c. The set of strings over the alphabet {a} whose length is a power of 2 is not
context-free.

d. The following language is not regular:

L = {aib jck | i = j or j = k}.

42. Prove Theorem 6.3.
43. You are given two DFAs, M1 and M2. Present—and justify—an algorithm that

decides whether L(M1) = L(M2).
Do this problem in the following two distinct ways.
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a. Use the Myhill–Nerode theorem to argue that there is a unique smallest DFA
equivalent to each DFA Mi. Then use the preceding fact to craft an algorithm
that decides whether L(M1) = L(M2).
Remark. The “uniqueness” of the smallest DFA is only up to possible renam-
ings of the states. Your algorithm should take this into account.

b. Use the fact that the regular languages are closed under the Boolean operations
to reduce the equivalence problem to an easier decision problem that is phrased
in terms of such operations.

44. Use the direct-product DFA M⊗
1,2 from the proof of the closure of regular lan-

guages under Boolean operations to prove that the regular languages are closed
under the set-theoretic operation of symmetric difference ⊕ defined as follows.
L1⊕L2 is the set of all strings that belong either to L1 or to L2, but not to both.

45. Present—and justify—an algorithm that decides of a given FA M = (Q,Σ ,δ ,
q0,F) whether L(M) = Σ �. Your algorithm should run in time O(|Q|× |Σ |).

46. Repeat our lower-bound argument for the database language of Section 5.5, for
an OTM that has one two-dimensional tape (with move repertoire UP, DOWN,
LEFT, RIGHT, NO-MOVE).

47. Let L be the following “unary” version of the database language of Section 5.5.
Each w ∈ L has the form

w = 0n1 10n2 1 · · ·10nr 20m1 10m2 1 · · ·10ms ,

where

• each mi,ni ≥ 1,
• ms ∈ {n1,n2, · · · ,nr}.

Find (and verify) upper and lower bounds on the time required for an online TM
with one linear worktape to accept L. For full credit, your bounds should be only
a constant factor apart.

48. Prove Lemma 7.1. The proof builds directly on our definition of “≤” in terms of
injections.

49. This problem considers pairing functions, i.e., bijections

f (x,y) = N×N→ N,

that are additive, in the following sense. For each x ∈ N, there exists a positive
integer “stride” sx such that for all y ∈ N,

f (x,y+1) = f (x,y)+ sx.

Prove that there do not exist additive pairing functions for which all of the
“strides” sx are equal.

50. Prove that the set of square matrices whose entries are positive integers is count-
able.
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51. Prove that the uncountability of the set of 0-1-valued functions, { f : N→{0,1}},
implies the uncountability of the set of integer-valued functions, { f : N→ N}.

52. Prove Corollary 7.2. You may want to attempt this by focusing first on the fol-
lowing simpler version. of the problem.
Prove that there are functions f : N→N that are not computed by any C program,
even if one can employ arbitrarily long numerals in the program.

53. Say that a language L is recursively enumerable if there is a surjective total re-
cursive function f : N→ L. (Note that f (N) ⊆ L.) Prove that a language L is
recursively enumerable if and only if it is semidecidable. (One direction is rather
challenging.)

54. Prove Theorem 9.4. You should frame your response in terms of some program-
ming language (of your choice), indicating how the theorem alters a given pro-
gram and arguing that after this alteration, the old and new programs will com-
pute the same values.

55. Say that the language L⊆ Σ � is enumerable in increasing order, in the following
sense. There is a surjective total recursive function f : N→ L such that for all
integers i, f (i + 1) > f (i) when the strings f (k) are interpreted as numerals (in
base |Σ |). (Note that f (N)⊆ L.) Prove that L is decidable.

56. Prove that every infinite semidecidable language L contains an infinite decidable
subset.

57. The relation “is mapping-reducible to” (symbolically, ≤m) satisfies the follow-
ing. For any sets A and B, [A≤m B] iff [Ā≤m B̄].

58. If A is decidable and B �∈ { /0,N}, then A≤m B.
(Intuitively, a set that needs no “help” is “helped” by any set.)

59. Prove the following theorem. Every nontrivial property of functions that contains
a program for the empty function—i.e., a program that never halts on any input—
is not semidecidable.

60. Prove that the following set is not semidecidable: {〈x,y〉 | program x ≡
program y}. The defining condition here is that programs x and y compute the
same function.

61. Prove that for every finite alphabet Σ , there is a computable injection F : Σ �×
Σ � → Σ �.

62. State—with a justifying proof—whether each of the following sets is semidecid-
able, decidable, or neither.

a. The set S1 of programs that halt when started with the null string as input.
b. The set S2 of programs that halt when the input is the reversal of their descrip-

tions.
c. The set S3 of strings that are (halting) computations by a Turing machine (TM).
d. The set S4 = {〈x,y〉 | x and y are equivalent finite automata}.
e. The set S5 = {〈w,x,y,z〉} such that:
• y is the inital configuration of program w on input x;
• z is a terminal (i.e., halting) configuration of program w when w is presented

with input x.
Consider carefully the implications of any ordered quadruple 〈w,x,y,z〉’s mem-
bership in S5.
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63. Classify—with proofs—the following languages as being (i) decidable or (ii)
semidecidable but not decidable or (iii) not semidecidable.

a. The language {x | program x never halts on any input}.
b. The language {x | program x halts on at least one input}.
c. The language {x | program x halts on infinitely many inputs}.

Hint. Prove that one can reduce DHP to L.

64. Classify—with proofs—the following languages as being (i) decidable or (ii)
semidecidable but not decidable or (iii) not semidecidable.

a. The language {〈x,y〉 | programs x and y halt on precisely the same inputs}.
Hint. Can you think of any specific programs y for which this problem is unde-
cidable?

b. The language {x | program x halts on the blank input tape}.
65. We noted in Corollary 7.2 that one could infer the existence of noncomputable

functions f : N→ {0,1} from the fact that the class F of such functions is un-
countable, while the set P of programs in any programming language is count-
able. Present a standalone (direct) proof of the existence of noncomputable such
functions. What you need to present is a formal proof that there is no injection
from F into P.

66. Prove that the “complementary halting problem” HP is not semidecidable.
67. Prove the following theorem.

Say that the language A is mapping-complete (= m-complete), and say that the
language B is decidable. Then it is not possible that A≤m B.
You should supply a complete proof of this fact, from definitions and first princi-
ples. For instance, it is not adequate for you to invoke vague intuitive principles
such as “Good things travel up; bad things travel down.”

68. a. Present an infinite family S of sets such that S≤ S̄ for each S ∈ S.
b. Is every semidecidable set m-reducible to TOT?
c. Prove that TOT is productive, in the following sense. There is a total com-

putable function f with the following property. For every program x whose
domain is a subset of TOT, we have

f (x) ∈ TOT\domain(program x).

(This problem is not as hard as it looks if you get beyond the formalism.)
69. We remarked in Section 13.3.4 that there exists an efficient algorithm for the

subset-sum problem. Recall that each instance of this problem consists of n pos-
itive integers, m1,m2, . . . ,mn, plus a target integer t. Given such an instance, one
must decide whether there is a subset of the integers mi that sum to t. The efficient
algorithm A makes this decision concerning the instance 〈m1,m2, . . . ,mn; t〉
within O(nt) steps.
Describe and validate an algorithm that solves the subset-sum problem with effi-
ciency O(nt).

70. Prove that the following sets are in NP:
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a. The set of binary representations of composite (i.e., nonprime) integers.
b. The set of state-transition tables of DFAs that accept at least one string.

71. Prove: The relation “is polynomial-reducible to” (≤poly) is reflexive and transi-
tive.

72. As usual, call a set A nontrivial if A �∈ { /0,N}. Prove: If there is a nontrivial set A
that is not NP-Hard, then P �= NP.
Hint: Prove and then use the following fact: If A ∈ P and B is nontrivial, then
A≤poly B. (This fact is a complexity-theoretic instance of the intuition that a set
that needs no “help” is “helped” by any set.)

73. As usual, let co-NP denote the class of languages whose complements are in NP.
Prove: If co-NP contains an NP-Complete set, then NP = co-NP.

74. Prove: For any sets A and B, [A≤poly B] if and only if [A≤poly B].
75. Prove that the language HP is NP-Hard.
76. a. What is the “size” (in the complexity-theoretic sense of the term) of a 3-CNF

formula that has n clauses and m literals?
b. What is the size of a graph that has n vertices and m edges? (There are at least

two correct answers.)
Hint. How would you design a TM that could process any 3-CNF formula or any
graph? The only “tough” issue is how to represent “names.” You should use the
most compact (to within constant factors) fixed-length encoding of “names.”

77. Prove: For any pair of languages A and B such that neither B nor B is empty: If
A ∈ P, then A≤poly B.

78. Prove: A language L is accepted by an IRTM that operates in space S(n) = O(1)
if and only if L is regular.

79. Prove: The following space functions are constructible. (You may describe your
construction algorithms via English-language descriptions.)

S(n) = �log2 n�;
S(n) = n2;

S(n) = 2n.

80. Let t(n) ≥ n be any nondecreasing integer function. Prove that any offline TM
M that operates in time t(n) can be simulated by an online TM M′ that has the
same worktape repertoire (number and structure) as M and that operates in time
t ′(n)≤ t2(n).

81. Let ϕ be a propositional formula in CNF. Let us be given an arbitrary assignment
of truth values to the propositional variables in ϕ . Prove that one can (determinis-
tically) determine in time linear in the number of symbols in formula ϕ whether
this assignment is a satifying one for ϕ , i.e., causes ϕ to evaluate to 1.
Try to solve this problem using a single stack to “evaluate” formula ϕ .
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T : set complement, 16
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T M(x): nondeterministic computation tree, 287
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ε-transition, 222
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NP-completeness of, 271
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languages, 254
NP: nondeterministic polynomial-time
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Allen, Frances E., 52
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an information-retrieval problem as a language,
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Anderson, David, 126, 139
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base-b logarithm, 27
behavior
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behavior of an OA, an FA, a TM, 35
Bernstein, Felix, 115
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binary strings: strings of 0’s and 1’s, 14
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bivariate function, 154
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Boole, George, 16
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Boolean operations
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Cantor’s diagonalization argument, 121
Cantor, Georg, 5, 112, 113, 119, 148
cardinality of P(S), 14
cardinality of a finite set, 14
carry-ripple adder, 51, 53
Cauchy, Augustin, 119
ceiling (of a number), 27
ceiling of number x: �x�, 27
CFG: context-free grammar, 96
CFL: context-free language, 98
characteristic function, 24

and (un)decidability, 151
characteristic vector, 15, 117, 122
child (node) in a rooted tree, 26
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CLIQUE problem, 266
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CNF satisfiability problem, 266
CNF: conjunctive normal form, 265
Cocke, John, 52
combinatory logic, 149
compact pairing function, 133
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in complexity theory, 268
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complexity theory, 215, 245, 248
computability theory, 148
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computation
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