

Codes and Automata

This major revision of Berstel and Perrin’s classic Theory of Codes has been
rewritten with a more modern focus and a much broader coverage of the subject.
The concept of unambiguous automata, which is intimately linked with that of
codes, now plays a significant role throughout the book, reflecting developments of
the last 20 years. This is complemented by a discussion of the connection between
codes and transducers, and new material from the field of symbolic dynamics. The
authors have also explored links with more practical applications, including data
compression and text processing. The treatment remains self-contained: there is
background material on discrete mathematics, algebra and theoretical computer
science. The wealth of exercises and examples make it ideal for self-study or
courses. In sum this is a comprehensive reference on the theory of variable-length
codes and their relation to unambiguous automata.

Jean Berstel is Emeritus Professor of Computer Science at the Université
Paris-Est.

Dominique Perrin is Professor in Computer Science at the Université
Paris-Est, and director of ESIEE Paris.

Christophe Reutenauer is Professor of Mathematics in the Combinatorics
and Mathematical Computer Science Laboratory (LaCIM) at the University of
Québec, Montréal.

Encyclopedia of Mathematics and its Applications

All the titles listed below can be obtained from good booksellers or from Cambridge
University Press. For a complete series listing visit

http://www.cambridge.org/uk/series/sSeries.asp?code=EOM

70 A. Pietsch and J. Wenzel Orthonormal Systems and Banach Space Geometry
71 G. E. Andrews, R. Askey and R. Roy Special Functions
72 R. Ticciati Quantum Field Theory for Mathematicians
73 M. Stern Semimodular Lattices
74 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations I
75 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations II
76 A. A. Ivanov Geometry of Sporadic Groups I
77 A. Schinzel Polynomials with Special Regard to Reducibility
78 T. Beth, D. Jungnickel and H. Lenz Design Theory II, 2nd edn
79 T. W. Palmer Banach Algebras and the General Theory of *-Algebras II
80 O. Stormark Lie’s Structural Approach to PDE Systems
81 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables
82 J. P. Mayberry The Foundations of Mathematics in the Theory of Sets
83 C. Foias, O. Manley, R. Rosa and R. Temam Navier–Stokes Equations and Turbulence
84 B. Polster and G. F. Steinke Geometries on Surfaces
85 R. B. Paris and D. Kaminski Asymptotics and Mellin–Barnes Integrals
86 R. McEliece The Theory of Information and Coding, Student edition
87 B. A. Magurn An Algebraic Introduction to K-Theory
88 T. Mora Solving Polynomial Equation Systems I
89 K. Bichteler Stochastic Integration with Jumps
90 M. Lothaire Algebraic Combinatorics on Words
91 A. A. Ivanov and S. V. Shpectorov Geometry of Sporadic Groups II
92 P. McMullen and E. Schulte Abstract Regular Polytopes
93 G. Gierz et al. Continuous Lattices and Domains
94 S. R. Finch Mathematical Constants
95 Y. Jabri The Mountain Pass Theorem
96 G. Gasper and M. Rahman Basic Hypergeometric Series, 2nd edn
97 M. C. Pedicchio and W. Tholen (eds.) Categorical Foundations
98 M. E. H. Ismail Classical and Quantum Orthogonal Polynomials in One Variable
99 T. Mora Solving Polynomial Equation Systems II

100 E. Olivieri and M. Eulália Vares Large Deviations and Metastability
101 A. Kushner, V. Lychagin and V. Rubtsov Contact Geometry and Nonlinear Differential Equations
102 L. W. Beineke and R. J. Wilson (eds.) with P. J. Cameron Topics in Algebraic Graph Theory
103 O. J. Staffans Well-Posed Linear Systems
104 J. M. Lewis, S. Lakshmivarahan and S. K. Dhall Dynamic Data Assimilation
105 M. Lothaire Applied Combinatorics on Words
106 A. Markoe Analytic Tomography
107 P. A. Martin Multiple Scattering
108 R. A. Brualdi Combinatorial Matrix Classes
110 M.-J. Lai and L. L. Schumaker Spline Functions on Triangulations
111 R. T. Curtis Symmetric Generation of Groups
112 H. Salzmann, T. Grundhöfer, H. Hähl and R. Löwen The Classical Fields
113 S. Peszat and J. Zabczyk Stochastic Partial Differential Equations with Lévy Noise
114 J. Beck Combinatorial Games
115 L. Barreira and Y. Pesin Nonuniform Hyperbolicity
116 D. Z. Arov and H. Dym J-Contractive Matrix Valued Functions and Related Topics
117 R. Glowinski, J.-L. Lions and J. He Exact and Approximate Controllability for Distributed Parameter

Systems
118 A. A. Borovkov and K. A. Borovkov Asymptotic Analysis of Random Walks
119 M. Deza and M. Dutour Sikirić Geometry of Chemical Graphs
120 T. Nishiura Absolute Measurable Spaces
121 M. Prest Purity, Spectra and Localisation
122 S. Khrushchev Orthogonal Polynomials and Continued Fractions
123 H. Nagamochi and T. Ibaraki Algorithmic Aspects of Graph Connectivity
124 F. W. King Hilbert Transforms I
125 F. W. King Hilbert Transforms II
126 O. Calin and D.-C. Chang Sub-Riemannian Geometry
127 M. Grabisch et al. Aggregation Functions
128 L. W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker Topics in Topological Graph

Theory
129 J. Berstel, D. Perrin and C. Revtenaver Codes and Automata
130 T. G. Faticoni Modules over Endomorphism Rings

Codes and Automata

JEAN BERSTEL

DOMINIQUE PERRIN
Université Paris-Est

CHRISTOPHE REUTENAUER
Université du Québec à Montréal

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521888318

C© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-88831-8 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

Contents

Preface page ix

1 Preliminaries 1
1.1 Notation 1
1.2 Monoids 2
1.3 Words 4
1.4 Automata 11
1.5 Transducers 19
1.6 Semirings and matrices 20
1.7 Formal series 23
1.8 Power series 26
1.9 Nonnegative matrices 28
1.10 Weighted automata 32
1.11 Probability distributions 39
1.12 Ideals in a monoid 41
1.13 Permutation groups 48
1.14 Notes 52

2 Codes 55
2.1 Definitions 55
2.2 Codes and free submonoids 60
2.3 A test for codes 67
2.4 Codes and Bernoulli distributions 71
2.5 Complete sets 75
2.6 Composition 86
2.7 Prefix graph of a code 93
2.8 Exercises 100
2.9 Notes 103

3 Prefix codes 107
3.1 Prefix codes 107
3.2 Automata 113

vi Contents

3.3 Maximal prefix codes 120
3.4 Operations on prefix codes 123
3.5 Semaphore codes 131
3.6 Synchronized codes 137
3.7 Recurrent events 145
3.8 Length distributions 152
3.9 Optimal prefix codes 158
3.10 Exercises 170
3.11 Notes 174

4 Automata 177
4.1 Unambiguous automata 177
4.2 Flower automaton 182
4.3 Decoders 191
4.4 Exercises 197
4.5 Notes 198

5 Deciphering delay 199
5.1 Deciphering delay 199
5.2 Maximal codes 203
5.3 Weakly prefix codes 213
5.4 Exercises 219
5.5 Notes 223

6 Bifix codes 225
6.1 Basic properties 226
6.2 Maximal bifix codes 231
6.3 Degree 237
6.4 Kernel 248
6.5 Finite maximal bifix codes 254
6.6 Completion 263
6.7 Exercises 269
6.8 Notes 273

7 Circular codes 275
7.1 Circular codes 275
7.2 Limited codes 281
7.3 Length distributions 286
7.4 Exercises 297
7.5 Notes 298

8 Factorizations of free monoids 301
8.1 Factorizations 301
8.2 Finite factorizations 313
8.3 Exercises 323
8.4 Notes 325

Contents vii

9 Unambiguous monoids of relations 327
9.1 Unambiguous monoids of relations 328
9.2 The Schützenberger representations 336
9.3 Rank and minimal ideal 343
9.4 Very thin codes 349
9.5 Group and degree of a code 358
9.6 Interpretations 360
9.7 Exercises 363
9.8 Notes 370

10 Synchronization 373
10.1 Synchronizing pairs 373
10.2 Uniformly synchronized codes 377
10.3 Locally parsable codes and local automata 382
10.4 Road coloring 388
10.5 Exercises 394
10.6 Notes 395

11 Groups of codes 397
11.1 Groups and composition 397
11.2 Synchronization of semaphore codes 404
11.3 Group codes 410
11.4 Automata of bifix codes 412
11.5 Depth 416
11.6 Groups of finite bifix codes 418
11.7 Examples 425
11.8 Exercises 430
11.9 Notes 433

12 Factorizations of cyclic groups 435
12.1 Factorizations of cyclic groups 435
12.2 Bayonets 439
12.3 Hooks 445
12.4 Exercises 447
12.5 Notes 449

13 Densities 451
13.1 Probability 451
13.2 Densities 460
13.3 Entropy 467
13.4 Probabilities over a monoid 470
13.5 Strict contexts 480
13.6 Exercises 489
13.7 Notes 490

viii Contents

14 Polynomials of finite codes 493
14.1 Positive factorizations 493
14.2 The factorization theorem 497
14.3 Noncommutative polynomials 499
14.4 Proof of the factorization theorem 505
14.5 Applications 509
14.6 Commutative equivalence 512
14.7 Complete reducibility 520
14.8 Exercises 530
14.9 Notes 534

Solutions of exercises 535

Appendix: Research problems 591

References 594

Index of notation 609

Index 611

Preface

This book presents a comprehensive study of the theory of variable length codes. It is
a complete reworking of the book Theory of Codes published by the first two authors
more than twenty years ago. The present text includes many new results and also
contains several additional chapters. Its focus is also broader, in the sense that more
emphasis is given to algorithmic questions and to relations with other fields.

The theory of codes takes its origin in the theory of information devised by Shannon
in the 1950s. As presented here, it makes use more of combinatorial and algebraic
methods than of information theory. Due to the nature of the questions that are raised
and solved, this theory has now become clearly a part of theoretical computer science
and is strongly related to combinatorics on words, automata theory, formal languages,
and the theory of semigroups.

The object of the theory of codes is, from an elementary point of view, the study
of the properties concerning factorizations of words into sequences of words taken
from a given set. One of the basic techniques used in this book is constructing special
automata that perform this kind of parsing. We will show how properties of codes are
reflected in combinatorial or algebraic properties of the associated devices.

It is quite remarkable that the problem of encoding as treated here admits a rather
simple mathematical formulation: it is the study of embeddings of a free monoid into
another. This may be considered to be a basic problem of algebra. There are related
problems in other algebraic structures. For instance, if we replace free monoids
by free groups, the study of codes reduces to that of subgroups of a free group.
However, the situation is quite different at the very beginning since, according to
the Nielsen–Schreier theorem, any subgroup of a free group is itself free, whereas
the corresponding statement is false for free monoids. Nevertheless the relationship
between codes and groups is more than an analogy, and we shall see in this book how
the study of a group associated with a code can reveal some of its properties. It was
M.-P. Schützenberger’s discovery that coding theory is closely related to classical
algebra. He has been the main architect of this theory. The main basic results are due
to him and most further developments were stimulated by his conjectures.

The aim of the theory of codes is to give a structural description of codes in a
way that allows their construction. This is easily accomplished for prefix codes, as
shown in Chapter 3. The case of bifix codes is already much more difficult, and
the complete structural description given in Chapter 6 is one of the highlights of

x Preface

the theory. However, the structure of general codes (neither prefix nor suffix) still
remains unknown to a large extent. For example, no systematic method is known for
constructing all finite codes. The result given in Chapter 14 about the factorization
of the polynomial of a code must be considered (despite the difficulty of its proof) as
an intermediate step toward the understanding of codes.

Many of the results given in this book are concerned with extremal properties,
the interest in which comes from the interconnection that appears between different
concepts. But it also goes back to the initial investigations on codes considered
as communication tools. Indeed, these extremal properties in general reflect some
optimization in the encoding process. Thus a maximal code uses, in this sense, the
whole capacity of the transmission channel.

Primarily, two types of methods are used in this book: direct methods on words on
one hand, and automata and semigroups on the other hand. Direct methods consist
of a more or less refined analysis of the sequencing of letters and factors within a
word as it occurs in combinatorics on words. Automata and semigroups as used in
Chapters 9–14, include the study of special automata associated with codes, called
unambiguous automata and of the corresponding monoids of relations (unambiguous
monoids of relations).

There are also many connections between the field of codes and automata and
the field of symbolic dynamics. This aspect was not covered in Theory of Codes,
and it is one of the new features of this volume. Symbolic dynamics focuses on the
study of symbolic dynamical systems and, in particular of those defined by finite
automata. The main point of intersection with codes is the notion of unambiguous
automaton which coincides with the notion of finite-to-one map between symbolic
systems. This relation is spread over several chapters. For example, the solution of
the road coloring problem is presented in Chapter 10 and the notion of topological
entropy is introduced in Chapter 13. The connections are explained in each chapter
in the Notes section.

Codes and automata are related to algorithms on words and graphs. The compu-
tational complexity of algorithms related to codes is one of the topics of the book
and is considered at various places in the text. We consider in particular algorithms
related to tests for codes and to the construction of optimal prefix codes for several
criteria.

The degree of generality of the exposition was influenced by the observation that
many facts that hold for finite codes remain true for recognizable codes and even for
the larger class of thin codes. In general, the transition from finite to recognizable
codes does not imply major changes in the proof. However, changing to thin codes
may imply some rather delicate computations. This is clearly demonstrated in Chap-
ters 9 and 13, where the summations to be made become infinite when the codes
are no longer recognizable. But this approach leads to a greater generality and, as
we believe, to a better understanding by focusing attention on the main argument.
Moreover, the characterization of the monoids associated with thin codes given in
Chapter 9 may be considered to be a justification of our choice.

The organization of the book is as follows: A preliminary chapter (Chapter 1) is
intended mainly to fix notation and should be consulted only when necessary. The

Preface xi

book is composed of two major parts: part one consisting of Chapters 2–8 and part
two formed of Chapters 9–14.

Chapters 2–8 constitute an elementary introduction to the theory of codes in the
sense that they primarily make use of direct methods. Chapter 2 contains the definition,
the relationship with submonoids, the first results on Bernoulli distributions, and the
introduction of the notions of complete, maximal, and thin codes.

Chapter 3 is devoted to a systematic study of prefix codes, developed at an ele-
mentary level. Indeed, this is the most intuitive and easy part of the theory of
codes and certainly deserves considerable discussion. We believe that its inter-
est largely goes beyond the theory of codes. We consider optimal prefix codes
under various constraints. In particular, we give a full proof of the Garsia–Wachs
algorithm.

Chapter 4 describes the automata used for representing codes, and for encoding
and decoding words. The flower automaton is the basic tool for a syntactic study of
codes. It is also helpful in an efficient algorithm for testing whether a rational set of
words is a code. Encoders and decoders are transducers. We show how to construct
deterministic transducers whenever it is possible.

Chapter 5 introduces the deciphering delay, the family of weakly prefix codes and
their relation with weakly deterministic automata. The chapter contains the well-
known theorem on maximal codes with finite deciphering delay.

Chapter 6 also is elementary, although it is more dense. Its aims are to describe the
structure of maximal bifix codes and to give methods for constructing the finite ones.
The use of formal power series is here of great help.

Chapter 7 is combinatorial in nature. It contains a description of length distributions
of circular codes which is related to classical enumerative combinatorics. It contains
also a systematic theory that leads to the study of the well-known comma-free codes.

Chapter 8 introduces the factorizations of a free monoid and more importantly of
the characterization of the codes that may appear as factors. We present complete
descriptions of finite factorizations for up to five factors.

The next five chapters contain what is known about codes but can be proved only
by syntactic methods.

Chapter 9 is devoted to these techniques, using a more systematic treatment. Instead
of the frequently encountered monoids of functions we study unambiguous monoids
of relations which do not favor left or right. Chapter 9 contains an important result,
already mentioned above: the characterization of thin maximal codes by a finiteness
condition on the transition monoid of an unambiguous automaton.

Chapter 10 presents several results linked to the notion of synchronized codes. The
notion of locally parsable code is related to that of local automaton. It contains also
a proof of the road coloring problem, which has been recently solved. Chapter 11
deals with the groups of codes. It contains in particular the proof of the theorem of
synchronization of semaphore codes announced in Chapter 3. Several results on the
groups of finite maximal bifix codes are proved.

Chapter 12 presents elements of the theory of factorizations of cyclic groups.
Several particular classes of these factorizations are described, such as those due to
Hajós and Rédei. The relation with codes is developed.

xii Preface

Chapter 13 starts with a presentation of basics on probability spaces, and contains
a proof of Kolmogorov’s extension theorem. Next, it shows how to compute the
density of the submonoid generated by a code by transferring the computation into
the associated unambiguous monoid of relations. The formula of densities, linking
together the density of the submonoids, the degree of the code, and the densities of
the contexts, is the most striking result.

Chapter 14 contains the proof and discussion of the theorem of the factorization
of the polynomial of a finite maximal code. Many of the results of the preceding
chapters are used in the proof of this theorem, which contains the most current
detailed information about the structure of general codes. The book ends with the
connection between maximal bifix codes and semisimple algebras.

In an appendix, we gather, for the convenience of the reader, the conjectures
mentioned in the book and present some additional open problems.

The book is written at an elementary level. In particular, the knowledge required is
covered by a basic mathematical culture. Complete proofs are given and the necessary
results of automata theory or theory of semigroups are presented in Chapter 1. Many
examples are given which come from practical applications and illustrate the notions.

Each chapter is followed by a section of exercises. These frequently complement
the material covered in the text. Solutions for this set of some 200 exercises are
proposed at the end of the book. Each chapter ends with notes containing references,
bibliographic discussions, complementary material, and references for the exercises.

It seems impossible to cover the whole text in a one-year course. However, the
book contains enough material for several courses, at various levels, in undergraduate
or graduate curricula.

A one-semester course at graduate level in discrete mathematics may be composed
of Chapter 2, Chapter 3, Chapter 6, and Chapter 4. A one-semester course at under-
graduate level may be composed of Chapter 2, Chapter 3 without the last section, and
Chapter 4.

Several chapters are largely independent and can be lectured on separately. As
an example, a course based solely on Chapter 7 has been taught by one of us. A
course based on algorithms may contain the beginning of Chapter 2, the last section
of Chapter 3, and Chapter 4.

Because of the extensive use of trees and of the algorithms described there, Chap-
ter 3 by itself might constitute an interesting complement to a programming course.

Chapters 9 and 11, which rely on the structure of unambiguous monoids of rela-
tions, are an excellent illustration for a course in algebra. Similarly, Chapter 13 can
be used as an adjunct to a course on probability theory.

The present volume is a new version of Theory of Codes, for which we have
received help and collaboration from many people. It is a pleasure for us to renew
our thanks to people who helped us during the preparation of the ancestor book:
Aldo De Luca, Georges Hansel, Maurice Nivat, Jean-Eric Pin, Antonio Restivo,
Stuart W. Margolis and Paul E. Schupp. The authors are greatly indebted to M.-P.
Schützenberger (1920–1996). The project of writing the book stems from him and
he has encouraged us constantly in many discussions.

Preface xiii

The authors wish to thank, for help and comments on the present text, Marie-
Pierre Béal, Jean-Marie Boë, Véronique Bruyère, Arturo Carpi, Christian Choffrut,
Clelia De Felice, Sylvain Lavallée, Aaron Lauve, Yun Liu, Roberto Mantaci, Brian
H. Marcus, Wojciek Plandowski, Jacques Sakarovitch, Alessandra Savelli, Paul H.
Siegel, Sandor Szabó, Stephanie van Willigenburg and Ken Zeger. Special thanks are
due to Jean Néraud who has carefully read all exercises and solutions.

1

Preliminaries

In this preliminary chapter, we give an account of some basic notions which will be
used throughout the book. This chapter is not designed for a systematic reading but
rather as a reference.

The first three sections contain notation and basic vocabulary. Each of the subse-
quent sections is an introduction to a topic which is not completely treated in this book.
These sections are concerned mainly with the theory of automata. Kleene’s theorem
is given and we show how to construct a minimal automaton from a given automaton.
Syntactic monoids are defined. These concepts and results will be discussed in another
context in Chapter 9. We introduce formal power series and weighted automata. We
give some basic properties and prove parts of Perron–Frobenius theorem.

1.1 Notation

As usual, N, Z, Q, R, and C denote the sets of nonnegative integers, integers, and
rational, real, and complex numbers, respectively. By convention, 0 ∈ N. We set

R+ = {x ∈ R | x ≥ 0}.

Next, (
n

p

)
= n!

p!(n − p)!

denotes the binomial coefficient of n and p.
For real numbers x ≤ y, we denote by [x, y) the set of real numbers z such that

x ≤ z and z < y. In particular, if x = y this set is empty.
Given two subsets X, Y of a set Z, we define

X \ Y = {z ∈ Z | z ∈ X, z �∈ Y }.

Frequently, X will be used to denote the complement of a subset X of some set Z.
An element x and the singleton set {x} will usually not be distinguished. The set of
all subsets of a set X is denoted by P(X).

2 1 Preliminaries

The function symbols are usually written on the left of their arguments but with
some exceptions: When we consider the composition of actions on a set, the action
is written on the right. In particular, permutations are written on the right.

A partition of a set X is a family (Xi)i∈I of nonempty subsets of X such that

(i) X =⋃i∈I Xi ,
(ii) Xi ∩ Xj = ∅, (i �= j).

We usually define a partition as follows: “Let X =⋃i∈I Xi be a partition of X”.
We denote the cardinality of a set X by Card(X).

1.2 Monoids

A semigroup is a set equipped with an associative binary operation. The operation is
usually written multiplicatively.

A monoid is a semigroup which, in addition, has a neutral element. The neutral
element of a monoid M is unique and is denoted by 1M or simply by 1.

For any monoid M , the set P(M) is given a monoid structure by defining, for
X, Y ⊂ M ,

XY = {xy | x ∈ X, y ∈ Y }.
The neutral element is {1}.

A submonoid of M is a subset N which is stable under the operation and which
contains the neutral element of M , that is 1M ∈ N and

NN ⊂ N. (1.1)

Note that a subset N of M satisfying (1.1) does not always satisfy 1M = 1N and
therefore may be a monoid without being a submonoid of M .

A morphism from a monoid M into a monoid N is a function ϕ : M → N which
satisfies, for all m,m′ ∈ M ,

ϕ(mm′) = ϕ(m)ϕ(m′),

and furthermore

ϕ(1M) = 1N .

The notions of subsemigroup and semigroup morphism are then defined in the
same way as the corresponding notions for monoids.

A congruence on a monoid M is an equivalence relation θ on M such that, for all
m,m′ ∈ M , u, v ∈ M

m ≡ m′ mod θ ⇒ umv ≡ um′v mod θ.

Let ϕ be a morphism from M onto N . The equivalence θ defined by m ≡ m′ mod θ

if and only if ϕ(m) = ϕ(m′) is a congruence.It is called the nuclear congruence

1.2 Monoids 3

induced by ϕ. Conversely, if θ is a congruence on the monoid M , the set M/θ of
the equivalence classes of θ is equipped with a monoid structure, and the canonical
function from M onto M/θ is a monoid morphism.

An idempotent of a monoid M is an element e of M such that

e = e2.

For each idempotent e of a monoid M , the set eMe is a monoid contained in M . It is
easily seen that it is the largest monoid contained in M having e as a neutral element.
It is called the monoid localized at e.

An element 0 of a monoid M is a zero if 0 �= 1 and for all m ∈ M

0m = m0 = 0.

If M contains a zero it is unique.
Let M be a monoid. The set of (left and right) invertible elements of M is a group

called the group of units of M .
A cyclic monoid is a monoid with just one generator, that is,

M = {an | n ∈ N}
with a0 = 1. If M is infinite, it is isomorphic to the additive monoid N of nonnegative
integers. If M is finite, the index of M is the smallest integer i ≥ 0 such that there
exists an integer r ≥ 1 with

ai+r = ai. (1.2)

The smallest integer r such that (1.2) holds is called the period of M . The pair
composed of index i and period p determines a monoid having i + p elements,

Mi,p = {1, a, a2, . . . , ai−1, ai, . . . , ai+p−1}.
Its multiplication is conveniently represented in Figure 1.1.

The monoid Mi,p contains two idempotents (provided i ≥ 1). Indeed, assume that
aj = a2j . Then either j = 0 or j ≥ i and j and 2j have the same residue mod p,
hence j ≡ 0 mod p. Conversely, if j ≥ i and j ≡ 0 mod p, then aj = a2j .

1 a a2 · · · ai

ai+1

ai+p−1

a a a a

a

a

a

a

Figure 1.1 The monoid Mi,p.

4 1 Preliminaries

Consequently, the unique idempotent e �= 1 in Mi,p is e = aj , where j is the unique
integer in {i, i + 1, . . . , i + p − 1} which is a multiple of p.

Let M be a monoid. For x, y ∈ M , we define

x−1y = {z ∈ M | xz = y} and xy−1 = {z ∈ M | x = zy}.
For subsets X, Y of M , this notation is extended to

X−1Y =
⋃
x∈X

⋃
y∈Y

x−1y and XY−1 =
⋃
x∈X

⋃
y∈Y

xy−1.

The set X−1Y is called a left residual of Y . The following identities hold for subsets
X, Y,Z of M:

(XY)−1Z = Y−1(X−1Z) and X−1(YZ−1) = (X−1Y)Z−1.

The notation X−1Y should not be confused with the product of the inverse of an
element with another in some group. There is a case where the confusion could arise,
in Chapter 14, where a due “caveat” will be found.

Given a subset X of a monoid M , we define

F (X) = M−1XM−1

to be the set of factors of elements in X. We have

F (X) = {m ∈ M | ∃u, v ∈ M : umv ∈ X}.
We sometimes use the notation F (X) to denote the complement of F (X) in M ,

F (X) = M \ F (X).

A relation m over a set Q is a subset of Q × Q. The product of two relations m

and n over Q is the relation mn defined by

(p, r) ∈ mn ⇐⇒ ∃q ∈ Q : (p, q) ∈ m and (q, r) ∈ n.

The set P(Q × Q) of relations over a set Q is a monoid for this product. Two
remarkable relations are the identity relation idQ and the null relation, which is the
empty subset of Q × Q. The identity relation idQ is the neutral element of P(Q × Q).
The null relation is a zero of this monoid.

A monoid of relations over some nonempty set Q is a submonoid of the monoid
P(Q × Q). A monoid M of relations over Q is said to be transitive if for all p, q ∈ Q,
there exists m ∈ M such that (p, q) ∈ m.

1.3 Words

Let A be a set, which we call an alphabet. A word w on the alphabet A is a finite
sequence of elements of A

w = (a1, a2, . . . , an), ai ∈ A.

1.3 Words 5

The set of all words on the alphabet A is denoted by A∗ and is equipped with the
associative operation defined by the concatenation of two sequences

(a1, a2, . . . , an)(b1, b2, . . . , bm) = (a1, a2, . . . , an, b1, b2, . . . , bm).

This operation is associative. This allows us to write

w = a1a2 · · · an

instead of w = (a1, a2, . . . , an), by identifying each element a ∈ A with the sequence
(a). An element a ∈ A is called a letter. The empty sequence is called the empty word
and is denoted by 1 or ε. It is the neutral element for concatenation. Thus the set A∗

of words is equipped with the structure of a monoid. The monoid A∗ is called the
free monoid on A. The set of nonempty words on A is denoted by A+. We therefore
have A+ = A∗ \ 1.

The length |w| of the word w = a1a2 . . . an with ai ∈ A is the number n of letters in
w. Clearly, |1| = 0. The function w �→ |w| is a morphism from A∗ onto the additive
monoid N. For n ≥ 0, we use the notation

A(n) = {w ∈ A∗ | |w| ≤ n − 1}

and also

A[n] = {w ∈ A∗ | |w| ≤ n}.

In particular, A(0) = ∅ and A[0] = {1}.
For a subset B of A, we denote by |w|B the number of letters of w which are in B.

Thus

|w| =
∑
a∈A

|w|a.

For a word w ∈ A∗, the set

alph(w) = {a ∈ A | |w|a > 0}

is the set of all letters occurring at least once in w. For a subset X of A∗, we set

alph(X) =
⋃
x∈X

alph(x).

A word w ∈ A∗ is a factor of a word x ∈ A∗ if there exist u, v ∈ A∗ such that
x = uwv. The relation is a factor of is a partial order on A∗. A factor w of x is proper
if w �= x.

A word w ∈ A∗ is a prefix of a word x ∈ A∗ if there is a word u ∈ A∗ such that
x = wu. The factor w is called proper if w �= x. The relation is a prefix of is again
a partial order on A∗ called the prefix order. We write w ≤ x when w is a prefix of
x and w < x whenever w ≤ x and w �= x. This orderhas the following fundamental

6 1 Preliminaries

property. If, for some x,

w ≤ x, w′ ≤ x,

then w and w′ are comparable, that is, w ≤ w′ or w′ ≤ w. In other words, if wu =
w′u′, then either there exists s ∈ A∗ such that w = w′s (and also su = u′) or there
exists t ∈ A∗ such that w′ = wt (and then u = tu′).

In an entirely symmetric manner, we define a suffix w of a word x by x = vw for
some v ∈ A∗. A set P ⊂ A∗ is called prefix-closed if it contains the prefixes of its
elements: uv ∈ P ⇒ u ∈ P . A suffix-closed set is defined symmetrically.

Consider a totally ordered alphabet A. The lexicographic or alphabetic order on
A∗ is defined by setting u ≺ v if u is a proper prefix of v, or if u = ras, v = rbt ,
a < b for a, b ∈ A and r, s, t ∈ A∗. The lexicographic order has the property

u ≺ v ⇔ wu ≺ wv

for any u, v,w ∈ A∗. Similarly, the radix order on A∗ is defined by setting u < v if
|u| < |v| or if |u| = |v| and u ≺ v in the lexicographic order.

The reversal w of a word w = a1a2 · · · an, with ai ∈ A, is the word

w̃ = an · · · a2a1.

The notations w̃ and w˜are equivalent. Note that for all u, v ∈ A∗,

(uv)˜= ṽũ.

The reversal X̃ of a set X ⊂ A∗ is the set X̃ = {x̃ | x ∈ X}.
A factorization of a word w ∈ A∗ is a sequence {u1, u2, . . . , un} of n ≥ 0 words

in A∗ such that

w = u1u2 · · · un.

For a subset X of A∗, we denote by X∗ the submonoid generated by X,

X∗ = {x1x2 · · · xn | n ≥ 0, xi ∈ X}.

Similarly, we denote by X+ the subsemigroup generated by X,

X+ = {x1x2 · · · xn | n ≥ 1, xi ∈ X}.

We have

X+ =
{

X∗ \ 1 if 1 /∈ X,

X∗ otherwise.

By definition, each word w in X∗ admits at least one factorization (x1, x2, . . . , xn)
whose elements are all in X. Such a factorization is called an X-factorization. We
frequently use the pictorial representation of an X-factorization given in Figure 1.2.

1.3 Words 7

x1 x2 xn

w

Figure 1.2 An X-factorization of w.

u v u

y

x

Figure 1.3 Two conjugate words x and y.

A word x ∈ A∗ is called primitive if it is not a power of another word. Thus x is
primitive if and only if x = yn with n ≥ 0 implies x = y. Observe that the empty
word is not primitive.

Two words x, y are called conjugate if there exists words u, v such that x =
uv, y = vu. (See Figure 1.3.) We frequently say that y is a conjugate of x. Two
conjugate words are obtained from each other by a cyclic permutation. More precisely,
let γ be the function from A∗ into itself defined by

γ (1) = 1 and γ (av) = va (1.3)

for a ∈ A, v ∈ A∗. It is clearly a bijection from A∗ onto itself. Two words x and y

are conjugate if and only if there exists an integer n ≥ 0 such that

x = γ n(y).

This easily implies that the conjugacy relation is an equivalence relation. A conjugacy
class is a class of this equivalence relation. A conjugacy class is also called a necklace.
The length of a necklace is the length of the words in the conjugacy class. A necklace
is primitive if each word in the conjugacy class is primitive.

Proposition 1.3.1 Each nonempty word is a power of a unique primitive word.

Proof. Let x ∈ A+ and δ be the restriction of the function γ defined by (1.3) to the
conjugacy class of x. Then δk = 1 if and only if x is a power of a word of length
dividing k.

Let p be the order of δ, that is, the gcd of the integers k such that δk = 1. Since
δp = 1, there exists a word r of length p such that x = re with e ≥ 1. The word r is
primitive, otherwise there would be a word s of length q dividing p such that r ∈ s∗,
which in turn implies that x ∈ s∗, contrary to the definition of p. This proves the
existence of the primitive word. To show uniqueness, consider a word t ∈ A∗ such
that x ∈ t∗ and let k = |t |. Since δk = 1, the integer k is a multiple of p. Consequently
t ∈ r∗. Thus, if t is primitive, we have t = r . �

8 1 Preliminaries

Table 1.1 The number �n(k) of primitive conjugacy classes over a k-letter
alphabet.

n 1 2 3 4 5 6 7 8 9 10 11 12

�n(2) 2 1 2 3 6 9 18 30 56 99 186 335
�n(3) 3 3 8 18 48 116 312 810
�n(4) 4 6 20 60 204 670
�n(5) 5 10 40 150 624

Let x ∈ A+. The unique primitive word r such that x = rn for some integer n is
called the root of x. The integer n is the exponent of x.

Proposition 1.3.2 Two nonempty conjugate words have the same exponent and their
roots are conjugate.

Proof. Let x, y ∈ A+ be two conjugate words, and let i be an integer such that
y = γ i(x). Set r and s be the roots of x and y respectively and let n be the exponent
of x. Then

y = γ i(rn) = (γ i(r))n.

This shows that γ i(r) ∈ s∗. Interchanging the roles of x and y, we have γ j (s) ∈ r∗.
It follows that γ i(r) = s and γ j (s) = r . Thus r and s are conjugate and consequently
x and y have the same exponent. �

Proposition 1.3.3 All words in a conjugacy class have the same exponent. If C is a
conjugacy class of words of length n with exponent e, then

Card(C) = n/e.

Proof. Let x ∈ An and C be its conjugacy class. Let δ be the restriction of γ to C and
p be the order of δ. The root of x is the word r of length p such that x = re. Thus
n = pe. Now C = {x, δ(x) . . . , δ p−1(x)}. These elements are distinct since p is the
order of δ. Thus Card(C) = p. �

We now compute the number of conjugacy classes of words of given length over
a finite alphabet. Let A be an alphabet with k letters. For all n ≥ 1, the number of
conjugacy classes of primitive words in A∗ of length n is denoted by �n(k). The
notation is justified by the fact that this number depends only on k and not on A.

The first values of this function, for k = 2, 3, 4, are given in Table 1.1. Clearly
�n(1) = 1 if n = 1, and �n(1) = 0 otherwise. Now for n ≥ 1

kn =
∑
d|n

d �d (k), (1.4)

where d runs over the divisors of n. Indeed, every word of length n belongs to exactly
one conjugacy class of wordsof length n. Each class has d = n/e elements, where

1.3 Words 9

e is the exponent of its words. Since there are as many classes whose words have
exponent n/e as there are classes of primitive words of length d = n/e, the formula
follows.

We can obtain an explicit expression for the numbers �n(k) by using the classical
technique of Möbius inversion which we now recall.

The Möbius function is the function µ : N \ 0 → N defined by µ(1) = 1 and

µ(n) =
{

(−1)i if n is the product of i distinct prime numbers,

0 otherwise.

Proposition 1.3.4 (Möbius inversion formula) Let α, β be two functions from N \ 0
into N. Then

α(n) =
∑
d|n

β(d) (n ≥ 1) (1.5)

if and only if

β(n) =
∑
d|n

µ(d)α(n/d) (n ≥ 1). (1.6)

Proof. Let S be the set of functions from N \ 0 into N. Define a product on S by
setting, for f, g ∈ S

f ∗ g(n) =
∑
n=de

f (d)g(e).

It is easily verified thatS is a commutative monoid for this product. Its neutral element
is the function I taking the value 1 for n = 1 and 0 elsewhere.

Let ι ∈ S be the constant function with value 1. Let us verify that

ι ∗ µ = I. (1.7)

Indeed ι ∗ µ(1) = 1; for n ≥ 2, let n = p
k1
1 p

k2
2 · · ·pkm

m be the prime decomposition of
n. If d divides n, then µ(d) �= 0 if and only if

d = p
�1
1 p

�2
2 . . . p�m

m

with all �i = 0 or 1. Then µ(d) = (−1)t with t =∑m
i=1 �i . It follows that

ι ∗ µ(n) =
∑
d|n

µ(d) =
m∑

t=0

(−1)t
(

m

t

)
= 0.

Now let α, β ∈ S. Then Formula (1.5) is equivalent to α = ι ∗ β and Formula (1.6)
is equivalent to β = µ ∗ α. By (1.7) these two formulas are equivalent. �

10 1 Preliminaries

Proposition 1.3.5 The number of conjugacy classes of primitive words of length n

over an alphabet with k letters is

�n(k) = 1

n

∑
d|n

µ(n/d)kd .

Proof. This is immediate from Formula (1.4) by Möbius inversion. �

A word w ∈ A+ is called unbordered if no proper nonempty prefix of w is a suffix
of w. In other words, w is unbordered if and only if w ∈ uA+ ∩ A+u implies u = 1.
If w is unbordered, then

wA∗ ∩ A∗w = wA∗w ∪ w.

The following property holds.

Proposition 1.3.6 Let A be an alphabet with at least two letters. For each word
u ∈ A+, there exists v ∈ A∗ such that uv is unbordered.

Proof. Let a be the first letter of u, and let b ∈ A \ a. Let us verify that the word
w = uab|u| is unbordered. A nonempty prefix t of w starts with the letter a. It cannot
be a suffix of w unless |t | > |u|. But then we have t = sab|u| for some s ∈ A∗, and
also t = uab|s|. Thus |s| = |u|, hence t = w. �

Let A be an alphabet. The free group A� on A is defined as follows: Let Ā be
an alphabet in bijection with A and disjoint from A. Denote by a �→ ā the bijection
from A onto Ā. This notation is extended by setting, for all a ∈ A ∪ Ā, ¯̄a = a. Let δ

be the symmetric relation defined for u, v ∈ (A ∪ Ā)∗ and a ∈ A ∪ Ā by

uaāv ≡ uv mod δ.

Let ρ be the reflexive and transitive closure of δ. Then ρ is a congruence. The quotient
monoid A� = (A ∪ Ā)∗/ρ is a group. Indeed, for all a ∈ A ∪ Ā,

aā ≡ 1 mod ρ.

Thus the images of the generators are invertible in A�. This shows that all elements
in A� are invertible.

Let A be an alphabet. The free commutative monoid A⊕ on A is the quotient
of A∗ by the congruence generated by the pairs (ab, ba) for a, b ∈ A, a �= b. If
A = {a1, . . . , ak}, then the monoid A⊕ can be identified with the additive monoid Nk

through the map a
n1
1 a

n2
2 · · · ank

k �→ (n1, n2, . . . , nk).
We denote by α(w) the commutative image of a word w ∈ A∗. It is the element of

A⊕ defined by

α(w) =
∏
a∈A

a|w|a .

Observe that α is a monoid morphism from A∗ onto A⊕.

1.4 Automata 11

1.4 Automata

Let A be an alphabet. An automaton over A is composed of a set Q (the set of states),
a subset I of Q (the initial states), a subset T of Q (the terminal or final states), and
a set

E ⊂ Q × A × Q

called the set of edges. The automaton is denoted by

A = (Q, I, T).

The automaton is finite when the set Q is finite.
A path in the automaton A is a sequence c = (f1, f2, . . . , fn) of consecutive edges

fi = (qi, ai, qi+1), 1 ≤ i ≤ n.

The integer n is called the length of the path c. The word w = a1a2 · · · an is the label
of the path c. The state q1 is the origin of c, and the state qn+1 the end of c. A useful
notation is

c : q1
w−→ qn+1.

By convention, there is, for each state q ∈ Q, a path of length 0 from q to q. Its label
is the empty word.

A path c : i → t is successful if i ∈ I and t ∈ T . The set recognized by A, denoted
by L(A), is defined as the set of labels of successful paths.

A state q ∈ Q is accessible (resp. coaccessible) if there exists a path c : i → q

with i ∈ I (resp. a path c : q → t with t ∈ T). An automaton is trim if each state
is both accessible and coaccessible. Let P be the set of accessible and coaccessible
states, and let A0 = (P, I ∩ P, T ∩ P). Then it is easy to see that A0 is trim and
L(A) = L(A0). The automaton A0 is the trim part of A.

An automaton can be viewed as a labeled multigraph equipped with two distin-
guished subset of vertices, the initial and the terminal states. The multigraph having
Q as set of vertices, and E as set of edges, is called the underlying graph of the
automaton. An automaton is called strongly connected if its underlying graph is
strongly connected, that is if for any pair (p, q) of states (vertices), there is a path
from p to q.

Let A = (Q, I, T) be an automaton over A. For each word w, we denote by ϕA(w)
the relation over Q defined by

(p, q) ∈ ϕA(w) ⇐⇒ p
w−→ q.

It follows from the definition that ϕA is a morphism from A∗ into the monoid of
relations over Q. The submonoid ϕA(A∗) is called the transition monoid of the
automaton A.

Clearly, an automaton is strongly connected if and only if its transition monoid is
transitive.

12 1 Preliminaries

An automaton A = (Q, I, T) is deterministic if Card(I) = 1 and if

(p, a, q), (p, a, r) ∈ E ⇒ q = r.

Thus for each p ∈ Q and a ∈ A, there is at most one state q in Q such that p
a→ q.

For p ∈ Q, and a ∈ A, define

p · a =
{

q if (p, a, q) ∈ E,

∅ otherwise.

The partial function from Q × A into Q defined in this way is extended to words by
setting p · 1 = p for all p ∈ Q, and, for w ∈ A∗ and a ∈ A,

p · wa = (p · w) · a.

It follows easily that for words u, v,

p · uv = p · u · v. (1.8)

This function is called the transition function or next-state function of A. With this
notation, we have with I = {i},

L(A) = {w ∈ A∗ | i · w ∈ T }.
An automaton is complete if for all p ∈ Q, a ∈ A, there exists at least one q ∈ Q

such that p
a−→ q.

Proposition 1.4.1 For each automaton A, there exists a complete deterministic
automaton B such that

L(A) = L(B).

If A is finite, then B can be chosen to be finite.

Proof. Set A = (Q, I, T). Define B = (R, u, V) by setting R = P(Q), u = I ,

V = {S ⊂ Q | S ∩ T �= ∅}.
Define the transition function of B, for S ∈ R, a ∈ A by

S · a = {q ∈ Q | ∃s ∈ S : s
a−→ q}.

The automaton B is complete and deterministic. It is easily seen that L(A) = L(B).
�

Example 1.4.2 Figure 1.4 gives, on the left, a nondeterministic automaton recogniz-
ing all words over A = {a, b} having the suffix aba. The deterministic automaton on
the right is obtained by the construction given in the proof of Proposition 1.4.1. It
happens that both automata have the same number of states.

1.4 Automata 13

1

a, b

2a 3b 4a

(a)

1

b

12a

a

13b

a
14a

a

b

(b)

Figure 1.4 (a) A nondeterministic automaton recognizing the set of words X = {a, b}∗aba,
and (b) a deterministic automaton recognizing this set.

Let A = (Q, i, T) be a deterministic automaton. For each q ∈ Q, let

Lq = {w ∈ A∗ | q · w ∈ T }.

Two states p, q ∈ Q are called inseparable if Lp = Lq , and separable otherwise. A
deterministic automaton is reduced if two distinct states are always separable.

Let X be a subset of A∗. We define a special automaton A(X) in the following
way. The states of A(X) are the nonempty sets u−1X for u ∈ A∗. The initial state is
X = 1−1X, and the final states are those containing the empty word. The transition
function is defined for a state Y = u−1X and a letter a ∈ A by

Y · a = a−1Y.

Observe that this defines a partial function. We have

L(A(X)) = X.

An easy induction shows that X · w = w−1X for w ∈ A∗. Consequently

w ∈ L(A(X)) ⇔ 1 ∈ X · w ⇔ 1 ∈ w−1X ⇔ w ∈ X.

The automaton A(X) is reduced. Indeed, for Y = u−1X,

LY = {v ∈ A∗ | Y · v ∈ T } = {v ∈ A∗ | uv ∈ X}.

Thus LY = Y .
The automaton A(X) is called the minimal automaton of X. This terminology is

justified by the following proposition.

Proposition 1.4.3 Let A = (Q, i, T) be a trim deterministic automaton and let X =
L(A). Let A(X) = (P, j, S) be the minimal automaton of X. The function ϕ from
Q into P defined by ϕ(q) = Lq is surjective and satisfies ϕ(i) = j , ϕ(T) = S and
ϕ(q · a) = ϕ(q) · a.

Proof. Let q ∈ Q and let u ∈ A∗ be such that i · u = q. Then

Lq = {w ∈ A∗ | q · w ∈ T } = u−1X.

14 1 Preliminaries

Since A is trim, Lq �= ∅. This shows that Lq ∈ P . Thus ϕ is a function from Q

into P . Next, let us show that ϕ is surjective. Let u−1X ∈ P . Then u−1X �= ∅.
Therefore i · u �= ∅ and setting q = i · u, we have Lq = u−1X = ϕ(q). Consequently
ϕ is surjective.

Finally, for q = i · u, one has ϕ(q · a) = Lq·a = (ua)−1X = (u−1X) · a = Lq · a.
�

Assume furthermore that the automaton A in the proposition is reduced. Then the
function ϕ is a bijection, which identifies A with the minimal automaton. In this
sense, there exists just one reduced automaton recognizing a given set.

Let A = (Q, i, T) be a deterministic automaton. An equivalence relation ρ on the
set Q is a congruence if for all states p, q and for all letters a, if p ≡ q mod ρ and
p · a and q · a are defined, then p · a ≡ q · a mod ρ.

The quotient automaton of A by the congruence ρ, denoted A/ρ, has as states the
classes of ρ, its initial state is the class of the initial state of A, its final states are the
classes of final states of A. The transition function is defined as follows. If q is a state
of A/ρ and a is a letter, then q · a is defined if there is a state p in the class q such
that p · a is defined, and in this case q · a is the class of the state p · a. The definition
is sound because ρ is a congruence.

For example, the equivalence on the states of a deterministic automaton A defined
by p ≡ q if p and q are inseparable is a congruence. If the automaton is trim, the
quotient is the minimal automaton of L(A).

Let A = (Q, i, T) be a deterministic automaton. Consider the set F of partial
functions from Q into Q. These functions are written on the right: if q ∈ Q and
m ∈ F , then the image of q by m is denoted by qm. Composition is defined by

q(mn) = (qm)n.

Thus F has a monoid structure.
Let ϕ be the function which to a word w ∈ A∗ associates the partial function from

Q into Q defined by

qϕ(w) = q · w.

The function ϕ is a morphism from A∗ into the monoid F . The submonoid ϕ(A∗)
of F is called the transition monoid of the automaton A. This is consistent with
the terminology for general automata since partial functions are a particular case of
binary relations.

Observe that, setting X = L(A), we have

ϕ−1ϕ(X) = X. (1.9)

Indeed w ∈ ϕ−1ϕ(X) if and only if ϕ(w) ∈ ϕ(X) which is equivalent to iϕ(w) ∈ T ,
that is to w ∈ X.

A morphism ϕ from a monoid M onto a monoid N is said to recognize a subset X

of M if

ϕ−1ϕ(X) = X.

1.4 Automata 15

A subset X of M is recognizable if it is recognized by a morphism onto a finite
monoid.

Let X be a subset of A∗. For w ∈ A∗, a pair (u, v) of words such that uwv ∈ X is
a context of w in X. We denote by �(w) the set of contexts of w, defined by

�(w) = {(u, v) ∈ A∗ × A∗ | uwv ∈ X}.
The syntactic congruence of X is the equivalence relation ∼X on A∗ defined by

w ∼X w′ ⇐⇒ �(w) = �(w′).

It is easily verified that∼X is a congruence. The quotient of A∗ by∼X is, by definition,
the syntactic monoid of X. We denote it by M(X), and we denote by ϕX the canonical
morphism from A∗ onto M(X). Note that ϕX recognizes X.

Proposition 1.4.4 Let X be a subset of A∗, and let ϕ : A∗ → M be a surjective
morphism. If ϕ recognizes X, then there exists a morphism ψ from M onto the
syntactic monoid M(X) such that

ϕX = ψ ◦ ϕ.

Proof. It suffices to show that

ϕ(w) = ϕ(w′) =⇒ ϕX(w) = ϕX(w′). (1.10)

Indeed, if (1.10) holds, then for an element m ∈ M , ψ(m) is defined as the
unique element in ϕX(ϕ−1(m)). To show (1.10), we consider (u, v) ∈ �(w).
Then uwv ∈ X. Thus ϕ(u)ϕ(w)ϕ(v) ∈ ϕ(X). From ϕ(w) = ϕ(w′), it follows that
ϕ(u)ϕ(w′)ϕ(v) ∈ ϕ(X). Since ϕ recognizes X, this implies that uw′v ∈ X, showing
that (u, v) ∈ �(w′). �

Proposition 1.4.5 Let X be a subset of A∗. The syntactic monoid of X is isomorphic
to the transition monoid of the minimal automaton A(X).

Proof. Let M be the transition monoid of the automaton A(X) = (Q, i, T) and let
ϕ : A∗ → M be the canonical morphism. By (1.9), the morphism ϕ recognizes X.
By Proposition 1.4.4, there exists a morphism ψ from M onto the syntactic monoid
M(X) such that ϕX = ψ ◦ ϕ.

It suffices to show that ψ is injective. For this, consider m,m′ ∈ M such that
ψ(m) = ψ(m′). Let w,w′ ∈ A∗ such that ϕ(w) = m,ϕ(w′) = m′. Then ϕX(w) =
ϕX(w′). To prove that ϕ(w) = ϕ(w′), we consider a state p ∈ Q, and let u ∈ A∗ be
such that p = u−1X. Then

pϕ(w) = p · w = (uw)−1X = {v ∈ A∗ | (u, v) ∈ �(w)}.
Since �(w) = �(w′), we have pϕ(w) = pϕ(w′). Thus ϕ(w) = ϕ(w′), that is m = m′.

�

We now give a summary of properties which are specific to finite automata.

16 1 Preliminaries

Theorem 1.4.6 Let X ⊂ A∗. The following conditions are equivalent.

(i) The set X is recognized by a finite automaton.
(ii) The minimal automaton A(X) is finite.

(iii) The family of sets u−1X, for u ∈ A∗, is finite.
(iv) The syntactic monoid M(X) is finite.
(v) The set X is recognizable.

Proof. (i) ⇒ (ii). Let A be a finite automaton recognizing X. By Proposition 1.4.1,
we can assume that A is deterministic. By Proposition 1.4.3, the minimal automaton
A(X) also is finite.

(ii) ⇔ (iii) is clear.
(ii) ⇒ (iv) holds by Proposition 1.4.5 and by the fact that the transition monoid of

a finite automaton is always finite.
(iv) ⇒ (v) is clear.
(v)⇒ (i). Let ϕ : A∗ → M be a morphism onto a finite monoid M , and suppose that

ϕ recognizes X. LetA = (M, 1, ϕ(X)) be the deterministic automaton with transition
function defined by m · a = mϕ(a). Then 1 · w ∈ ϕ(X) if and only if ϕ(w) ∈ ϕ(X),
thus if and only if w ∈ X. Consequently L(A) = X. �

Proposition 1.4.7 The family of recognizable subsets of A∗ is closed under all
Boolean operations: union, intersection, complement.

Proof. Let X, Y ⊂ A∗ be two recognizable subsets of A∗. Let A = (P, i, S) and
B = (Q, j, T) be complete deterministic automata such that X = L(A), Y = L(B).
Let

C = (P × Q, (i, j), R)

be the complete deterministic automaton defined by

(p, q) · a = (p · a, q · a).

For R = (S × Q) ∪ (P × T), we have L(C) = X ∪ Y . For R = S × T , we have
L(C) = X ∩ Y . Finally, for R = S × (Q \ T), we have L(C) = X \ Y . �

Proposition 1.4.8 Let α : A∗ → B∗ be a morphism. If Y is a recognizable subset of
B∗, then X = α−1(Y) is a recognizable subset of A∗.

Proof. Since Y is recognizable, one has Y = ϕ−1(ϕ(Y)), where ϕ is a morphism from
B∗ onto a finite monoid M . Defining the function ψ from A∗ into M by ψ = ϕ ◦ α,
it follows that X = ψ−1(ψ(X)). �

Proposition 1.4.9 If X ⊂ A∗ is recognizable, then Y−1X is recognizable for any
subset Y of A∗.

Proof. One has u−1(Y−1X) =⋃y∈Y (yu)−1X. Since X is recognizable, there are
finitely many sets of the form (yu)−1X, and thus of the form u−1(Y−1X). This shows
that Y−1X is recognizable. �

1.4 Automata 17

Consider now a slight generalization of the notion of automaton. An asynchronous
automaton on A is an automaton A = (Q, I, T), the edges of which may be labeled
by either a letter or the empty word. Therefore the set of its edges satisfies

F ⊂ Q × (A ∪ 1) × Q.

The notions of a path or a successful path extend in a natural way so that the notion
of the set recognized by the automaton is clear.

Proposition 1.4.10 For any finite asynchronous automaton A, there exists a finite
automaton B such that L(A) = L(B).

Proof. Let A = (Q, I, T) be an asynchronous automaton. Let B be the automaton
obtained from A by replacing its edges by the triples (p, a, q) such that there exists
a path p

a−→ q in A. We have

L(A) ∩ A+ = L(B) ∩ A+.

If I ∩ T �= ∅, both sets L(A) and L(B) contain the empty word and are therefore
equal. Otherwise, the sets are equal up to the empty word and the result follows from
Proposition 1.4.7 since the set {1} is recognizable. �

The notion of an asynchronous automaton is useful to prove the following result.

Proposition 1.4.11 If X ⊂ A∗ is recognizable, then X∗ is recognizable. If X, Y ⊂ A∗

are recognizable, then XY is recognizable.

Proof. Let A = (Q, I, T) be a finite automaton recognizing X. Let E be the set of
its edges. Let B be the asynchronous automaton obtained from A by adding to E the
triples (t, 1, i), for t ∈ T , i ∈ I . Then L(B) = X+. In fact, the inclusion X+ ⊂ L(B)
is clear. Conversely, let c : i

w−→ j be a nonempty successful path in B. By the
definition of B, this path has the form

c : i1
w1−→ t1

1−→ i2
w2−→ t2 · · · 1−→ in

wn−→ tn

with i = i1, j = tn and where no path ck : ik
wk−→ tk contains an edge labeled by the

empty word. Then w1, w2, . . . , wn ∈ X and therefore w ∈ X+. This proves that X+

is recognizable and thus also X∗ = X+ ∪ {1}.
Now let A = (P, I, S) and B = (Q,J, T) be two finite automata with sets of

edges E and F , respectively. Let X = L(A) and let Y = L(B). One may assume that
P ∩ Q = ∅. Let C = (P ∪ Q, I, T) be the asynchronous automaton with edges

E ∪ F ∪ (S × {1} × J).

Then L(C) = XY as we may easily check. �

We shall now give another characterization of recognizable subsets of A∗. Let M

be a monoid. The family of rational subsets of M is the smallest family R of subsets
of M such that

18 1 Preliminaries

(i) any finite subset of M is in R,
(ii) if X, Y ∈ R, then X ∪ Y ∈ R, and XY ∈ R,

(iii) if X ∈ R, then X∗ ∈ R.

The third of these operations, namely X �→ X∗, is called the star operation. Union,
product, and star are called the rational operations.

Proposition 1.4.12 Let α : A∗ → B∗ be a morphism. If X is a rational subset of A∗,
then α(X) is a rational subset of B∗.

Proof. The conclusion clearly holds if X is finite, and if it holds for two subsets X1

and X2 of A∗, it holds for their union, their product, and the star. So it holds for every
rational subset of A∗. �

Theorem 1.4.13 (Kleene) Let A be a finite alphabet. A subset of A∗ is recognizable
if and only if it is rational.

Proof. Denote by Rec(A∗) the family of recognizable subsets of A∗ and by Rat(A∗)
that of rational subsets of A∗. Let us first prove the inclusion Rat(A∗) ⊂ Rec(A∗). In
fact, any finite subset X of A∗ is clearly recognizable. Moreover, Propositions 1.4.7
and 1.4.11 show that the family Rec(A∗) satisfies conditions (ii) and (iii) of the
definition of Rat(A∗). This proves the inclusion.

To show that Rec(A∗) ⊂ Rat(A∗), let us consider a recognizable subset X of A∗.
Let A = (Q, I, T) be a finite automaton recognizing X. Set Q = {1, 2, . . . , n} and
for 1 ≤ i, j ≤ n,

Xi,j = {w ∈ A∗ | i
w−→ j}.

We have

X =
⋃
i∈I

⋃
j∈T

Xi,j .

It is therefore enough to prove that each Xi,j is rational. For k ∈ {0, 1, . . . , n}, denote

by X
(k)
i,j the set of those w ∈ A∗ such that there exists a path c : i

w−→ j passing only

through states � ≤ k except perhaps for i, j . In other words we have w ∈ X
(k)
i,j if and

only if w = a1a2 · · · am with

c : i
a1−→ i1

a2−→ i2 → · · · im−1
am−→ j

and i1 ≤ k, . . . , im−1 ≤ k. We have the formulas

X
(0)
i,j ⊂ A ∪ 1, (1.11)

X
(n)
i,j = Xi,j , (1.12)

X
(k+1)
i,j = X

(k)
i,j ∪ X

(k)
i,k+1(X(k)

k+1,k+1)∗X(k)
k+1,j , (0 ≤ k < n). (1.13)

1.5 Transducers 19

Since A is finite, X(0)
i,j ∈ Rat(A∗) by (1.11). Then (1.13) shows by induction on k ≥ 0

that X
(k)
i,j ∈ Rat(A∗). Therefore Xi,j ∈ Rat(A∗) by (1.12). �

In the case of an infinite alphabet, recognizable sets need not to be rational: for
instance the alphabet itself is recognizable but not rational. However, any recognizable
set is the inverse image, by a length preserving morphism, of a recognizable set X

over a finite alphabet. Indeed, this morphism identifies letters with the same image
in the syntactic monoid of X. The common usage is to call regular a recognizable
subset of A∗. The previous theorem states that regular sets and rational sets are the
same for finite alphabets.

Corollary 1.4.14 The family of regular sets over finite alphabets is closed under
Boolean operations, rational operations, morphisms and inverse morphisms, and left
and right quotient by arbitrary sets. �

A description of a rational set by union, product, and star is called a rational
expression or a regular expression. For instance, the set X of all words over {a, b}
that contain an even number of occurrences of the letter a has the rational expression
X = (b ∪ ab∗a)∗. Equations (1.11)–(1.13) provide an effective procedure to compute
a rational expression for the set recognized by some finite automaton.

Example 1.4.2 (continued) The set X of words with suffix aba over the alphabet
A = {a, b} has the regular expression A∗aba. The equations (1.11)–(1.13), applied
to the automaton on the right of Figure 1.4, lead for the same set of words to the
regular expression b∗a(a ∪ b(ab)∗a ∪ b(ab)∗aa)∗b(ab)∗a.

1.5 Transducers

A transducer T = (Q, I, T) over an input alphabet A and an output alphabet B is
composed of a set Q of states, together with two distinguished subsets I and T of Q

called the sets of initial and terminal states, and a set E of edges which are tuples
(p, u, v, q) where p and q are states, u is a word over A and v is a word over B. An

edge is also denoted by p
u|v→ q. A transducer is finite if its set of states is finite.

As in automata, a path in a transducer T is a sequence c = (f1, f2, . . . , fn) of
consecutive edges

fi = (qi, ui, vi, qi+1), 1 ≤ i ≤ n.

The integer n is called the length of the path c. The word w = u1u2 · · · un is the input
label of the path c and z = v1v2 · · · vn is its output label. The state p = q1 is the

origin of c, and the state q = qn+1 the end of c. A useful notation is c : p
w|z−→ q. A

path i
x|y−→ t is successful if i is an initial state and t is a terminal state.

A transducer T defines a binary relation between words on the two alphabets as
follows. A pair (x, y) is in the relation if it is the label of a successful path. This is
called the relation realized by T . It can be viewed as a multi-valued mapping from

20 1 Preliminaries

0

1 0

12

0 0

1 1

0 1

1 01

Figure 1.5 A transducer that adds 1 to a number, given by its binary expansion, with bit of
highest weight on the right.

the input words into the output words, and also as a multi-valued mapping from the
output words into the input words.

A transducer is called literal if each input label is a single letter. A transducer is
input-simple if for any pair of edges (p, u, v, q), (p, u′, v′, q) with the same origin
and the same end, u = u′ implies v = v′. This guarantees that when the output labels
are erased, there are no multiple edges.

A literal transducer which is input-simple defines naturally an automaton over its
input alphabet, called its input automaton, obtained by forgetting the output labels.

Example 1.5.1 The transducer given in Figure 1.5 has two final states 1 and 2. The
only successful paths from 0 to 2 have the labels (1n, 0n1), and the successful paths
from 0 to 1 have the labels (1n0w, 0n1w) for some integer n ≥ 0 and some word w.
Thus the transducer transforms the binary representation of a positive integer N into
the binary representation of N + 1. This transducer is literal and input-simple.

1.6 Semirings and matrices

A semiring K is a set equipped with two operations denoted + and · satisfying the
following axioms:

(i) The set K is a commutative monoid for + with a neutral element denoted by 0.
(ii) The set K is a monoid for multiplication with a neutral element denoted by 1.

(iii) Multiplication is distributive on addition.
(iv) For all x ∈ K , 0 · x = x · 0 = 0.

Clearly, any ring with unit is a semiring. Other examples of semirings are as follows.
The set N of natural integers is a semiring and so is the set R+ of nonnegative real
numbers.

The Boolean semiring B is composed of two elements 0 and 1. The axioms imply

0 + 0 = 0, 0 + 1 = 1 + 0 = 1,

0 · 1 = 1 · 0 = 0 · 0 = 0.

1.6 Semirings and matrices 21

The semiring B is specified by

1 + 1 = 1.

The other possibility for addition is 1 + 1 = 0, and it defines the field Z/2Z.
More generally, for any integer d ≥ 0, consider the set B(d) = {0, 1, . . . , d + 1}.

It becomes a semiring for integer addition and multiplication defined, for i, j ∈ B(d),
respectively by min(i + j, d + 1) and min(ij, d + 1). In particular, B(0) = B.

For any monoid M , the set P(M) is a semiring for the operations of union and set
product.

A semiring K is called ordered if it is given with a partial order ≤ satisfying the
following properties:

(i) 0 is the smallest element of K;
(ii) the following implications hold:

x ≤ y ⇒ x + z ≤ y + z,

x ≤ y ⇒ xz ≤ yz, zx ≤ zy.

The semirings B, N, R+ are ordered by the usual ordering

x ≤ y ⇐⇒ x = y + z.

An ordered semiring is said to be complete if any subset X of K admits a least upper
bound in K . It is the unique element k of K such that

(i) x ∈ X ⇒ x ≤ k,
(ii) if x ≤ k′ for all x ∈ X, then k ≤ k′.

We write k = sup(X) or k = sup{x | x ∈ X} or k = supx∈X(x). The semiring B is
complete. The semirings N, R+ are not complete, and may be completed as follows.
For K = N or K = R+, we set

K = K ∪ ∞,

where ∞ �∈ K . The operations of K are extended to K by setting for x ∈ K ,

(i) x +∞ = ∞ + x = ∞,
(ii) if x �= 0, then x ∞ = ∞ x = ∞,

(iii) ∞∞ = ∞, 0∞ = ∞ 0 = 0.

Extending the order of K to K by x ≤ ∞ for all x ∈ K , the set K becomes a totally
ordered semiring. It is a complete semiring because any subset has an upper bound
and therefore also a least upper bound. We define

N = N ∪∞, R+ = R+ ∪∞

22 1 Preliminaries

to be the complete semirings obtained by applying this construction to N and R+
respectively. If K is a complete semiring, the sum of an infinite family (xi)i∈I , of
elements of K is defined by∑

i∈I

xi = sup
{∑

j∈J

xj | J ⊂ I, J finite
}
. (1.14)

In the case of the semiring R+, this gives the usual notion of a summable family: A
family (xi)i∈I of elements in R+ is summable if the sum (1.14) is finite.

In particular, for a sequence (xn)n≥0 of elements of a complete semiring, we have∑
n≥0

xn = sup
n≥0

{∑
i≤n

xi

}
, (1.15)

since any finite subset of N is contained in some interval {0, 1, . . . , n}. Moreover, if
I =⋃j∈J Ij is a partition of I , then∑

i∈I

xi =
∑
j∈J

(∑
i∈Ij

xi

)
. (1.16)

Let P,Q be two sets and let K be a semiring. A P × Q-matrix with coefficients
in K is a mapping

m : P × Q → K.

We denote indistinctly by

(p,m, q) or mp,q

the value of m on (p, q) ∈ P × Q. We also say that m is a K-relation between P

and Q. If P = Q, we say that it is a K-relation over Q. The set of all K-relations
between P and Q is denoted by KP×Q.

Let m ∈ KP×Q be a K-relation between P and Q. For p ∈ P , the row of index p

of m is denoted by mp∗. It is the element of KQ defined by

(mp∗)q = mpq.

Similarly, the column of index q of m is denoted by m∗q . It is an element of KP .
Let P,Q,R be three sets and let K be a complete semiring. For m ∈ KP×Q and
n ∈ KQ×R , the product mn is defined as the following element of KP×R . Its value
on (p, r) ∈ P × R is

(mn)p,r =
∑
q∈Q

mp,qnq,r .

When P = Q = R, we thus obtain an associative multiplication which turns KQ×Q

into a monoid. Its identity is denoted idQ or IQ.
A monoid of K-relations over Q is a submonoid of KQ×Q. It contains in particular

the identity idQ.

1.7 Formal series 23

1.7 Formal series

Let A be an alphabet and let K be a semiring. A formal series (or just series) over A

with coefficients in K is a mapping

σ : A∗ → K.

The value of σ on w ∈ A∗ is denoted (σ,w). We indifferently denote by KA∗
or

K〈〈A〉〉 the set of formal series over A. We denote by K〈A〉 the set of formal series
σ ∈ K〈〈A〉〉 such that (σ,w) = 0 for all but a finite number of w ∈ A∗. An element
of K〈A〉 is called a polynomial. The degree of a polynomial p �= 0, denoted deg(p),
is the maximal length of a word w such that (p,w) �= 0. The degree of the null
polynomial is −∞.

A series σ ∈ K〈〈A〉〉 can be extended to a linear function from K〈A〉 into K by
setting, for p ∈ K〈A〉,

(σ, p) =
∑
w∈A∗

(σ,w)(p,w).

This definition makes sense because p is a polynomial. Let σ, τ ∈ K〈〈A〉〉 and k ∈ K .
We define the formal series σ + τ , στ , and kσ by

(σ + τ,w) = (σ,w) + (τ,w), (1.17)

(στ,w) =
∑
uv=w

(σ, u)(τ, v), (1.18)

(kσ,w) = k(σ,w). (1.19)

In (1.18), the sum runs over the 1 + |w| pairs (u, v) such that w = uv. It is therefore
a finite sum. The set K〈〈A〉〉 contains two special elements denoted 0 and 1 defined
by

(0, w) = 0, (1, w) =
{

1 if w = 1,

0 otherwise.

As usual, we denote σn = σσ · · · σ (n times) and σ 0 = 1. With the operations defined
by (1.17) and (1.18) the set K〈〈A〉〉 is a semiring. It may be verified that when K is
complete K〈〈A〉〉 is also complete.

The support of a series σ ∈ K〈〈A〉〉 is the set

supp(σ) = {w ∈ A∗ | (σ,w) �= 0}.

The mapping σ �→ supp(σ) is an isomorphism from B〈〈A〉〉 onto P(A∗).
A family (σi)i∈I of series is said to be locally finite if for all w ∈ A∗, the set

{i ∈ I | (σi, w) �= 0} is finite. In this case, a series σ denoted

σ =
∑
i∈I

σi

24 1 Preliminaries

can be defined by

(σ,w) =
∑
i∈I

(σi, w). (1.20)

This notation makes sense because in the sum (1.20) all but a finite number of terms
are different from 0. We easily check that for a locally finite family (σi)i∈I of elements
of K〈〈A〉〉 and any τ in K〈〈A〉〉, we have

τ
(∑

i∈I

σi

)
=
∑
i∈I

τσi .

Let σ ∈ K〈〈A〉〉 be a series. The constant term of σ is the element (σ, 1) of K . If σ

has zero constant term, then the family (σn)n≥0 is locally finite, because the support
of σn does not contain words of length less than n. We denote by σ ∗ and by σ+ the
series

σ ∗ =
∑
n≥0

σn, σ+ =
∑
n≥1

σn.

The series σ ∗ is called star of σ . Note that σ ∗ = 1 + σ+ and σ ∗σ = σσ ∗ = σ+.

Proposition 1.7.1 Let K be a ring with unit and let σ ∈ K〈〈A〉〉 be a series such that
(σ, 1) = 0. Then 1 − σ is invertible and

σ ∗ = (1 − σ)−1. (1.21)

Proof. We have

1 = σ ∗ − σ+ = σ ∗ − σ ∗σ = σ ∗(1 − σ).

Symmetrically, 1 = (1 − σ)σ ∗, hence the result. �

For X ⊂ A∗, we denote by X the characteristic series of X defined by

(X, x) =
{

1 if x ∈ X,

0 otherwise.

We consider the characteristic series X of X as an element of N〈〈A〉〉. When X = {x}
we usually write x instead of x. In particular, since the family (x)x∈X is locally finite,
we have X =∑x∈X x. More generally, we have for any series σ ∈ K〈〈A〉〉,

σ =
∑
w∈A∗

(σ,w)w.

Proposition 1.7.2 Let X, Y ⊂ A∗. Then

(X + Y ,w) =

0 if w �∈ X ∪ Y ,

1 if w ∈ (X \ Y) ∪ (Y \ X),

2 if w ∈ X ∩ Y .

1.7 Formal series 25

In particular, with Z = X ∪ Y ,

X + Y = Z if and only if X ∩ Y = ∅. �

Given two sets X, Y ⊂ A∗, the product XY is said to be unambiguous if any word
w ∈ XY has only one factorization w = xy with x ∈ X, y ∈ Y .

Proposition 1.7.3 Let X, Y ⊂ A∗. Then

(X Y,w) = Card{(x, y) ∈ X × Y | w = xy}.
In particular, with Z = XY ,

Z = X Y

if and only if the product XY is unambiguous. �

The following proposition approaches very closely the main subject of this book.
It describes the coefficients of the star of a characteristic series.

Proposition 1.7.4 For X ⊂ A+, we have

((X)∗, w) = Card{(x1, . . . , xn) | n ≥ 0, xi ∈ X,w = x1x2 · · · xn}. (1.22)

Proof. By the definition of (X)∗ we have

((X)∗, w) =
∑
k≥0

((X)k, w).

Applying Proposition 1.7.3, we obtain

((X)k, w) = Card{(x1, x2, . . . , xk) | xi ∈ X,w = xlx2 . . . xk}
whence Formula (1.22). �

Example 1.7.5 The series A∗ and A∗A∗ satisfy

A∗ = (1 − A)−1 =
∑
w∈A∗

w, (A∗A∗, w) = 1 + |w|.

We now define the Hadamard product of two series σ, τ ∈ K〈〈A〉〉 as the series
σ � τ given by

(σ � τ,w) = (σ,w)(τ,w).

This product is distributive over addition, that is σ � (τ + τ ′) = σ � τ + σ � τ ′. If
the semiring K satisfies xy = 0 ⇒ x = 0 or y = 0, then

supp(σ � τ) = supp(σ) ∩ supp(τ).

26 1 Preliminaries

In particular, for X, Y ⊂ A∗ and Z = X ∩ Y ,

Z = X � Y .

Given two series σ, τ ∈ Z〈〈A〉〉 we write σ ≤ τ when (σ,w) ≤ (τ,w) for all w ∈ A∗.
Let A be an alphabet and let K be a semiring. We denote by K[[A]] the set of

formal power series in commutative variables in A with coefficients in K . It is the set
of mappings from the free commutative monoid A⊕ into K .

The canonical morphism α from A∗ onto A⊕ extends by linearity to a morphism
from K〈〈A〉〉 onto K[[A]]. The image by α of a series σ ∈ K〈〈A〉〉 is defined, for
w ∈ A⊕, by

(α(σ), w) = (σ, α−1(w)) =
∑

α(v)=w

(σ, v).

The set of commutative polynomials is denoted by K[A].

1.8 Power series

The power series in the variable t associated to a sequence an of real numbers is the
formal sum

f (t) =
∑
n≥0

ant
n.

Given a real number r , the series is said to converge for the value r of t if the
sum

∑
n≥0 anr

n is well defined and finite. Otherwise, f (t) is said to diverge for
t = r . The radius of convergence of f (t) is infinite if f (t) converges for all real
numbers r . Otherwise, it is the nonnegative real number ρ such that f (t) converges
for 0 ≤ r < ρ and diverges for r > ρ. It can be shown that ρ = lim inf |an|1/n. The
series may converge or diverge for t = ρ.

For 0 ≤ r < ρ, the series converges. This defines a function from the interval [0, ρ)
into the nonnegative reals. For example,

∑
n≥0 tn defines on the interval [0, 1) the

rational function t �→ 1/(1 − t).

Example 1.8.1 The series
∑

tn/nα has radius of convergence 1 for any positive real
α. It is known to diverge for t = 1 when α < 2 and to converge when α ≥ 2.

Power series, as considered here, are a special case of formal series considered in
Section 1.7, when the alphabet is a singleton. In particular, the usual operations of
sum, product, and star hold also in this case.

Given a set X of words over an alphabet A, the generating series of X is the power
series

fX(t) =
∑
n≥0

Card(X ∩ An)tn.

1.8 Power series 27

Since for all n ≥ 0, one has Card(X ∩ An) ≤ kn, with k = Card(A), it follows that
the radius of convergence of fX is at least 1/k. The sequence (un)n≥0 where un =
Card(X ∩ An) is called the length distribution of the set X.

Proposition 1.8.2 Let f (t) =∑ ant
n be a power series with nonnegative real coef-

ficients, and with finite radius of convergence ρ, and let g(t) : [0, ρ) → R+ be the
function defined for r ∈ [0, ρ) by g(r) =∑ anr

n. Then f (ρ) = limr→ρ,r<ρ g(r). In
particular, both quantities are simultaneously finite or infinite.

Proof. Suppose first that f (t) converges for t = ρ, and set s = f (ρ). Given ε, there
exists an integer N such that sN = a0 + a1ρ + · · · + aNρN satisfies the inequality
s ≥ sN > s − ε/2. Set p(t) = a0 + a1t + · · · + ant

N . There exists a real r with r < ρ

such that sN ≥ p(r) > sN − ε/2. For r ≤ x < ρ, one has f (ρ) ≥ f (x) = g(x) ≥
g(r) > p(r) > sN − ε/2 ≥ f (ρ) − ε. This shows that g(x) tends to f (ρ) when x

tends to ρ.
Next, if f (ρ) is infinite, for each M > 0 there exists an integer N such that

sN = a0 + a1ρ + · · · + aNρN satisfies the inequality sN > 2M . Set again p(t) =
a0 + a1t + · · · + ant

N . There exists a real r with r < ρ such that p(r) > sN/2. For
r ≤ x < ρ, one has f (x) = g(x) ≥ g(r) > p(r) > sN/2 ≥ M . This shows that g(x)
tends to infinity when x tends to ρ. �

Thus, for a power series f (t) =∑n ant
n with nonegative coefficients and radius of

convergence ρ, we can denote, by the expression f (r), for 0 ≤ r ≤ ρ, indifferently
the sum

∑
n anr

n and the value of the function defined by f for t = r , with the
property that both values are simultaneously finite or infinite.

Note that this statement only holds because the an are nonnegative. Indeed, consider
for example f (t) =∑(−1)ntn. Here the radius of convergence is 1, and g(t) =
1/(1 + t). We have g(1) = 1/2, although f (t) diverges for t = 1.

A power series f (t) =∑n≥0 ant
n with real coefficients can be derivated formally.

The result is the series
∑

n≥0 nant
n, denoted by f ′(t). Let ρ be the radius of conver-

gence of f . For r < ρ, f ′(r) is equal to the value at r of the derivative of the function
defined by f .

Proposition 1.8.3 Let f (t) be a power series with nonnegative real coefficients. Let
ρ be the radius of convergence of f . Then f ′(ρ) =∑n≥0 nanρ

n.

Proof. This results directly from Proposition 1.8.2. �

The next proposition gives a method for computing the radius of convergence of
the star of a power series.

Proposition 1.8.4 Let f (t) =∑n≥0 ant
n be a power series with nonnegative real

coefficients and with constant term zero. Consider the power series

g(t) = 1

1 − f (t)
=

∞∑
n=0

f (t)n

28 1 Preliminaries

which is the star of f (t), and denote by ρf and ρg the radius of convergence of f

and g respectively. Then ρg ≤ ρf , and if ρg < ρf , then ρg is the unique positive real
number such that f (ρg) = 1.

Proof. The coefficients of g(t) are greater than or equal to those of f (t), so
ρg ≤ ρf . Assume now that ρg < ρf . Then the series f (t) converges for r = ρg .
We use the fact that f (t) defines a continuous function inside its interval of
convergence.

Suppose first that f (r) < 1. Then there exists a real number s with r < s < ρf

such that f (s) < 1. This implies that g(s) < ∞, contradicting the fact that s > ρg .
Suppose next that f (r) > 1. There exists a real number s with 0 < s < r such that

f (s) > 1. This implies that g(s) = ∞, contradicting the fact that s < ρg .
Thus f (r) = 1. �

1.9 Nonnegative matrices

We now consider properties of nonnegative matrices. Let Q be a set of indices. For
two Q-vectors v,w with real coordinates, one writes v ≤ w if vq ≤ wq for all q ∈ Q

and v < w if vq < wq for all q ∈ Q. A vector v is said to be nonnegative (resp.
positive) if v ≥ 0 (resp. v > 0). Here and below, we denote by 0 the null vector or the
null matrix of appropriate size. In the same way, for two Q × Q-matrices M,N with
real coefficients, one writes M ≤ N when Mp,q ≤ Np,q for all p, q ∈ Q and M < N

when Mp,q < Np,q for all p, q ∈ Q. The Q × Q-matrix M is said to be nonnegative
(resp. positive) if M ≥ 0 (resp. M > 0). We shall use often the elementary fact that
if M > 0 and v ≥ 0 with v �= 0, then Mv > 0.

A complex number λ is an eigenvalue of M if the matrix λI − M is not invertible.
In this case there exist vectors v,w �= 0 such that Mv = λv and wM = λw. The
vectors w, r are left and right eigenvectors corresponding to the eigenvalue λ. The
spectral radius of a matrix is the maximal modulus of its eigenvalues.

A nonnegative matrix M is said to be stochastic if the sum of its elements on each
row is 1. Equivalently M is stochastic if the vector v with all components equal to 1
is a (right) eigenvector for the eigenvalue 1.

Proposition 1.9.1 The spectral radius of a stochastic matrix is equal to 1.

Proof. Let λ be an eigenvalue of the n × n stochastic matrix M . Let v be a corre-
sponding right eigenvector. Dividing all components of v by the maximum of their
modulus, we may assume that |vj | ≤ 1 for 1 ≤ j ≤ n and |vi | = 1 for some i. Then
λvi =

∑n
i=1 Mijvj implies |λ| ≤∑n

i=1 Mij |vj | ≤
∑n

i=1 Mij = 1. �

The adjacency matrix of a finite deterministic automaton A over the alphabet A

with set of states Q is the Q × Q-matrix M with coefficients

Mp,q = Card{a ∈ A | p · a = q}.
Let k = Card A. The matrix M/k is stochastic. A corresponding right eigenvector
is the vector with all components equal to 1. It is also an eigenvector of M for the

1.9 Nonnegative matrices 29

eigenvalue k. By Proposition 1.9.1, the spectral radius of M/k is 1, and therefore the
spectral radius of M is k.

If M is the adjacency matrix of a graph G, a useful way to think about an eigenvector
v of M is that it assigns a weight vq to each vertex q. The equality Mv = λv

corresponds to the condition that for each vertex p, if we add up the weights of the
ends of all edges starting at p, the sum is λ times the weight of p.

A nonnegative matrix M is said to be irreducible if for all indices p, q, there is an
integer k such that Mk

p,q > 0, where Mk denotes the k-th power of M . Otherwise, it is
called reducible. It is easy to verify that M is irreducible if and only if (I + M)n > 0
where n is the dimension of M . It is also easy to prove that M is reducible if there is
a reordering of the indices such that M is block triangular, that is of the form

M =
[
U V

0 W

]
(1.23)

with U,W of dimension > 0.
The following result is part of a theorem known as the Perron–Frobenius theorem.

It says in particular that the spectral radius of a nonnegative matrix is an eigenvalue.

Theorem 1.9.2 (Perron–Frobenius) Any nonnegative matrix M has a real eigenvalue
ρM such that |λ| ≤ ρM for any eigenvalue λ of M , and there corresponds to ρM a
nonnegative eigenvector v. If M is irreducible, there corresponds to ρM a positive
eigenvector v.

Observe that the same result holds both for right and for left eigenvectors.
Before the proof, we state a result of independent interest which will be used

in the proof. A sequence (Mn)n≥0 of real m × m-matrices is said to converge
if, setting Mn = (a(n)

p,q), each of the real sequences (a(n)
p,q)n≥0 converges. A series∑

Mn of matrices converges if the sequence (Sm)m≥0 defined by Sm =∑n≤m Mn

converges.

Proposition 1.9.3 Let M be an m × m-matrix with real coefficients. If the spectral
radius ρ of M satisfies ρ < 1, then

∑
n Mn converges.

Proof. Set N (z) = I − Mz, where I is the identity matrix and z is a variable. The
polynomial N (z) can be considered both as a polynomial with coefficients in the
ring of m × m-matrices or as an m × m-matrix with coefficients in the ring of real
polynomials in the variable z. The polynomial N (z) is invertible in both structures,
and its inverse N (z)−1 = (I − Mz)−1 can in turn be viewed as a power series with
coefficients in the ring of m × m-matrices or as a matrix whose coefficients are
rational fractions in the variable z. The radius of convergence of N (z)−1, viewed as
a power series in z with matrix coefficients, is equal to the minimum of the radius of
convergence of the elements of N (z)−1, viewed as a matrix of power series expansions
of rational fractions. All these rational fractions have denominator det(I − Mz). Thus
the radius of convergence of the expansion of each rational fraction is at least 1/ρ.
Consequently the radius of convergence of N (z)−1 is at least 1/ρ. �

30 1 Preliminaries

Proof of Theorem 1.9.2. Let us first show that one may reduce to the case where
M is irreducible. Indeed, if M is reducible, we may consider a triangular decom-
position as in Equation (1.23) above. Applying by induction the theorem to U and
W , we obtain nonnegative eigenvectors u and v for the eigenvalues ρU and ρV of
U and V . We prove that max(ρU, ρV) is an eigenvalue of M with some nonnegative
eigenvector.

If ρU ≥ ρV , then ρU is an eigenvalue of M with the corresponding eigenvector[
u

0

]
. If ρU < ρV , then we show that ρV is an eigenvalue of M for the eigenvector

[
u′
v

]
,

where

u′ =
(∑

n≥0

Unρ−n
V

)
v = (I − U/ρV)−1v.

Since ρU < ρV , the series
∑

n≥0 Unρ−n
V converges in view of Proposition 1.9.3, and it

converges to a matrix with nonnegative coefficients because each Un has nonnegative
coefficients. If follows that u′ has nonnegative coefficients. Moreover

V v = ρV v = ρV (I − U/ρV)u′ = ρV u′ − Uu′,

showing that M
[
u′
v

] = ρV

[
u′
v

]
. This shows that ρM ≥ max(ρU, ρV). Conversely, if λ

is an eigenvalue of M with corresponding eigenvector
[
u

v

]
, then λ is an eigenvalue of

W if v �= 0, and is an eigenvalue of U if v = 0. This proves that ρM = max(ρU, ρV).
We suppose from now on that M is irreducible. For any nonnegative Q-vector

v �= 0, let

rM (v) = min{(Mv)i/vi | 1 ≤ i ≤ n, vi �= 0}.

Thus rM (v) is the largest real number r such that Mv ≥ rv. One has rM (λv) =
rM (v) for any real number λ �= 0. Moreover, the mapping v �→ rM (v) is continuous
on the set of nonnegative nonzero vectors.

The set X of nonnegative vectors v such that ‖v‖ = 1 is compact. Define ρM by
ρM = max{rM (w) | w ∈ X}. Since a continuous function on a compact set reaches its
maximum on this set, there is an x ∈ X such that rM (x) = ρM . Since rM (v) = rM (λv)
for λ �= 0, we have ρM = max{rM (w) | w ≥ 0, w �= 0}.

We show that Mx = ρMx. By the definition of the function rM , we have Mx ≥
ρMx. Set y = Mx − ρMx. Then y ≥ 0. Assume Mx �= ρMx. Then y �= 0. Since
(I + M)n > 0, this implies that the vector (I + M)ny is positive. But

(I + M)ny = (I + M)n(Mx − ρMx) = M(I + M)nx − ρM (I + M)nx = Mz − ρMz,

with z = (I + M)nx. This shows that Mz > ρMz, which implies that rM (z) > ρM , a
contradiction with the definition of ρM . This shows that ρM is an eigenvalue with a
nonnegative eigenvector.

Let us show that ρM ≥ |λ| for each real or complex eigenvalue λ of M . Indeed, let
v be an eigenvector corresponding to λ. Then Mv = λv. Let |v| be the nonnegative
vector with coordinates |vi |. Then M|v| ≥ |λ||v| by the triangular inequality. By the
definition of the function rM , this implies rM (|v|) ≥ |λ| and consequently ρM ≥ |λ|.

1.9 Nonnegative matrices 31

We have already seen that there corresponds to ρM a nonnegative eigenvector x.
Let us now verify that x > 0. But this is easy since (I + M)nx = (1 + ρM)nx, which
implies that (1 + ρM)nx > 0 and thus x > 0. �

Example 1.9.4 Let M =
[

1 1
1 0

]
. The eigenvalues of M are ϕ = 1+√

5
2 and ϕ′ =

1−√
5

2 which are the root of z2 − z − 1 = 0. There corresponds to ϕ the nonnegative
left eigenvector [ϕ 1].

As an example of application of Theorem 1.9.2, we obtain the following result.

Proposition 1.9.5 Each stochastic matrix has a nonnegative left eigenvector for the
eigenvalue 1.

Proof. Let M be a stochastic matrix. By Proposition 1.9.1, its spectral radius is 1. By
Theorem 1.9.2, there exists a corresponding nonnegative left eigenvector. �

Recall that the adjacency matrix of a deterministic automaton over a k-letter
alphabet has radius of convergence k and has a corresponding right eigenvector with
all components equal to 1. By Theorem 1.9.2, it has also a left eigenvector with
nonnegative components corresponding to the eigenvalue k.

Let k be an integer. A k-approximate eigenvector of a nonnegative matrix M is, by
definition, a vector v �= 0 with integer nonnegative components such that

Mv ≤ kv.

Again, if one assumes that M is the adjacency matrix of a graph G, then an approxi-
mate eigenvector of M assigns a nonnegative integer weight vq to each vertex q and
the vector inequality Mv ≤ kv corresponds to the condition that for each vertex p,
the sum of the weights of the ends of all edges starting at p is at most k times the
weight of p. We will use the following result.

Proposition 1.9.6 An irreducible nonnegative and integral matrix M with spectral
radius λ admits a positive k-approximate eigenvector if and only if k ≥ λ.

Proof. Suppose first that k > λ. Consider the matrix N = kI − M . Since k > λ, we
have det(N) > 0 and therefore N is invertible. Moreover, since N−1 = (I + M/k +
M2/k2 + · · ·)/k, and since M is irreducible, the matrix N−1 is positive. Let v be a
column of N−1. We have Nv ≥ 0 and thus Mv ≤ kv. Any column of N−1 is then a
positive k-approximate eigenvector of M .

If k = λ, there is by Theorem 1.9.2, a positive vector v such that Mv = kv. Since
λ is an integer, the coefficients of v can be chosen to be integers.

Let us finally prove that conversely, if M admits a positive k-approximate eigenvec-
tor v, then k ≥ λ. Consider the matrix N = 1

λ
M . By Theorem 1.9.2, there is a positive

vector w such that Nw = w. We have Nv ≤ (k/λ)v, implying that Nnv ≤ (k/λ)nv
for all n ≥ 1. If λ > k, the right-hand side tends to 0 as n → ∞, thus Nn tends to the
zero matrix, a contradiction with the fact that Nnw = w with w > 0. �

32 1 Preliminaries

Example 1.9.7 Let M =
[

1 1
1 0

]
. The spectral radius of M is strictly less than 2

and a 2-approximate eigenvector is
[1

1

]
.

1.10 Weighted automata

Let A be an alphabet. With each automaton A = (Q, I, T) over A with set of edges
E is associated a function denoted by µA

µA : A → NQ×Q

defined by

(p,µA(a), q) =
{

1 if (p, a, q) ∈ E,

0 otherwise.

This function extends into a morphism, still denoted µA, from A∗ into the monoid
NQ×Q of N -relations over Q (see Section 1.6). In particular, we have

µA(1) = IQ,

where IQ is the identity relation over Q, and for u, v ∈ A∗

(p,µA(uv), q) =
∑
r∈Q

(p,µA(u), r)(r, µA(v), q).

The morphism µA is called the representation associated withA. The correspondence
between µA and the morphism ϕA defined in Section 1.4 is given by:

(p, q) ∈ ϕA(w) ⇐⇒ (p,µA(w), q) �= 0.

Proposition 1.10.1 Let A = (Q, I, T) be an automaton over A. For all p, q ∈ Q

and w ∈ A∗, (p,µA(w), q) is the (possibly infinite) number of paths from p to q with
label w. �

A path c : i → t is called successful if i ∈ I and t ∈ T . The behavior of the
automaton A = (Q, I, T) is the formal power series denoted |A| and defined by

(|A|, w) =
∑

i∈I,t∈T

(i, µA(w), t). (1.24)

The set recognized byA is the support of |A|. It is just the set of all labels of successful
paths. It is denoted by L(A), as in Section 1.4.

Proposition 1.10.2 Let A = (Q, I, T) be an automaton over A. For all w ∈ A∗,
(|A|, w) is the (possibly infinite) number of successful paths labeled by w. �

A more compact writing of Formula (1.24) consists in

(|A|, w) = IµA(w)T . (1.25)

1.10 Weighted automata 33

1 2a

a

a

Figure 1.6 The Fibonacci automaton.

Here, the element I ∈ NQ is considered as a row vector and T ∈ NQ as a column
vector, both with coefficients 0 and 1.

Example 1.10.3 Let A be the automaton given by Figure 1.6, with I = T = {1}. Its
behavior is the series

|A| =
∑
n≥0

fn+1a
n,

where fn is the n-th Fibonacci number. These numbers are defined by f0 = 0, f1 = 1,
and

fn+1 = fn + fn−1, (n ≥ 1).

For n ≥ 1, we have

µA(an) =
[
fn+1 fn

fn fn−1

]
.

Proposition 1.10.4 LetA = (Q, I, T) be a finite automaton over A. For each integer
d, the set {w ∈ A∗ | (|A|, w) = d} is regular.

Proof. Let M be the monoid of Q × Q-matrices over the semiringB(d). For each word
w, let α(w) be the Q × Q-matrix over B(d) obtained from µA(w) by replacing each
entry µA(w)p,q by min(d + 1, µA(w)p,q). Since such a replacement is a morphism
from N onto B(d), the mapping α is a morphism from A∗ into M . The set {w ∈ A∗ |
(|A|, w) = d} is recognized by α; it is indeed the set of words w such that Iα(w)T
(computed in B(d)) equals d. �

To each automaton A = (Q, I, T), we associate an automaton denoted A∗ and
called the star of the automaton A by a canonical construction consisting of the two
following steps. Let ω �∈ Q be a new state, and let

B = (Q ∪ ω,ω,ω) (1.26)

be the automaton with edges

F = E ∪ Î ∪ T̂ ∪ Ô,

34 1 Preliminaries

where E is the set of edges of A, and

Î = {(ω, a, q) | ∃i ∈ I : (i, a, q) ∈ E}, (1.27)

T̂ = {(q, a, ω) | ∃t ∈ T : (q, a, t) ∈ E}, (1.28)

Ô = {(ω, a, ω) | ∃i ∈ I, t ∈ T : (i, a, t) ∈ E}. (1.29)

By definition, the automaton A∗ is the trim part of B.
The following terminology is convenient for automata of the form A = (Q, 1, 1)

having just one initial state which is also the unique final state.
A path

c : p
w−→ q

is called simple if it is not the null path (that is w ∈ A+) and if for any factorization

c : p
u−→ r

v−→ q

of the path c into two nonnull paths, we have r �= 1.
Any path c from p to q either is the null path or is simple or decomposes in a

unique manner as

c : p
u−→ 1

x1−→ 1
x2−→ 1 · · · 1

xn−→ 1
v−→ q,

where each of these n + 2 paths is simple.

Proposition 1.10.5 Let X ⊂ A+, and let A be an automaton such that |A| = X.
Then

|A∗| = (X)∗. (1.30)

Proof. Since A∗ is the trim part of the automaton B defined by Formula (1.26), it
suffices to show that |B| = |A|∗.

Let S be the power series defined as follows: for all w ∈ A∗, (S,w) is the number
of simple paths from ω to ω labeled with w. By the preceding remarks, we have

|B| = S∗.

Thus it remains to prove that

S = X.

Let w ∈ A∗. If w = 1, then

(S, 1) = (X, 1) = 0,

since a simple path is not null. If w = a ∈ A, then (S, a) = 1 if and only if a ∈ X,
according to Formula (1.29). Assume now |w| ≥ 2. Set w = aub with a, b ∈ A and
u ∈ A∗. Each simple path c : ω

w−→ ω factorizes uniquely into

c : ω
a−→ p

u−→ q
b−→ ω

1.10 Weighted automata 35

1 3

2
a a

a

Figure 1.7 An automaton with behavior X, for X = {a, aa}.

1

2

3

4

a

b

a

a, b

a, b

Figure 1.8 An automaton with behavior X, for X = {aa, ba, baa, bb, bba}.

for some p, q ∈ Q. There exists at least one successful path

i
a−→ p

u−→ q
b−→ t

in A. This path is unique because the behavior of A is a characteristic series. If there
is another simple path c′ : ω

w−→ ω in B, then there is also another successful path
labeled w in A; this is impossible. Thus there is at most one simple path c : ω

w−→ ω

in B and such a path exists if and only if w ∈ X. Consequently, S = X, which was
to be proved. �

Example 1.10.6 Let X = {a, a2}. Then X = |A| for the automaton given in
Figure 1.7, with I = {1}, T = {3}. The automaton A∗ is the automaton of Figure 1.6
up to a renaming of ω. Consequently, for n ≥ 0

((X)∗, an) = fn.

Example 1.10.7 Let X = {aa, ba, baa, bb, bba}. We have X = |A| for the automa-
ton A of Figure 1.8, with I = {1}, T = {4}. The corresponding automaton A∗ is
given in Figure 1.9.

We now extend the previous definitions to the more general case where the labels
of the edges of an automaton may be weighted. Let A be an alphabet and let K be a
semiring. A finite weighted automaton A = (Q, I, T) over the alphabet A and with
weights in K is given by a finite set Q with two mappings I, T : Q → K and by a
mapping

E : Q × A × Q → K.

36 1 Preliminaries

ω 3

2

a

b

a a, b

a, b

Figure 1.9 An automaton recognizing X∗, for X = {aa, ba, baa, bb, bba}.

If E(p, a, q) = k �= 0, then we say that (p, a, q) is an edge with label a and weight

k and we write p
ka−→ q. If c is the path

p
k1a1−−→ q1 → · · · → qn−1

knan−−→ q

then its label is x = a1 · · · an and its weight is the product |c| = k1 · · · kn. We write
c : p

x−→ q for denoting such a path. The behavior of A is the series denoted |A| and
defined by

(|A|, x) =
∑

c:p
x−→q

I (p)|c|T (q).

Since for each x ∈ A∗, there are only finitely many paths with label x, the sum is well
defined. The behavior is also called the series recognized by the weighted automaton.
A series u is called K-rational if it is the behavior of a weighted automaton with
weights in the semiring K . We will be particularly interested in N-rational series.

There is an alternative form of the series recognized by a weighted automaton
A = (Q, I, T). Define a morphism µ from A∗ into the multiplicative monoid of
Q × Q-matrices with coefficients in K by setting, for a ∈ A,

µ(a)pq = E(p, a, q).

Then, for any x ∈ A∗, we have

(|A|, x) = Iµ(x)T ,

with I considered as a row vector and T considered as a column vector. The morphism
µ is called the matrix representation of A.

Example 1.10.8 Any automaton can be considered as a weighted automaton with
weights in the Boolean semiring B, or in the semiring N. In the latter case, the
behavior is the number of successful paths.

1.10 Weighted automata 37

1

2

3

2

Figure 1.10 A weighted automaton over a single letter alphabet.

Example 1.10.9 The weighted automaton of Figure 1.10 has integer weights and a
one letter alphabet. For simplicity, the letter is not specified, and the weight of an
edge is not indicated if it is 1. The value of the behavior on the word of length n is
n2.

Indeed, denote by un, vn, wn the sum of the weights of the paths of length n ending
in 3 and starting in 1, 2, 3 respectively. We have wn = 1 for all n ≥ 0. Next, the
form of the automaton shows that vn+1 = vn + wn for n ≥ 0, whence vn = n. Finally
un+1 = un + 2vn + wn, and thus un = n2 for n ≥ 0.

LetA = (Q, I, T) be a weighted automaton. When I is a singleton, that is I (i) = 1
for some i ∈ Q, and I (q) = 0 for q �= i, we write i instead of I . The same convention
holds for T .

A weighted automaton A = (Q, i, t) is said to be trim if for each vertex q, there is
a path from i to q and a path from q to t . It is said to be normalized if no edge enters
i, no edge leaves t , and i �= t .

Proposition 1.10.10 Any N-rational series with zero constant term can be recognized
by a normalized weighted automaton.

Proof. Let A = (Q, I, T) be a weighted automaton recognizing a series with zero
constant term, with edge mapping E : Q × A ××Q → K . Let i and t be two states
not in Q, and define a weighted automaton B = (Q′, i, t) with Q′ = Q ∪ {i, t} and
edge mapping F : Q′ × A × Q′ → K by

F (p, a, q) = E(p, a, q) for p, q ∈ Q,

F (i, a, q) =
∑
p∈Q

I (p)E(p, a, q) for q ∈ Q,

F (p, a, t) =
∑
q∈Q

E(p, a, q)T (q) for p ∈ Q,

F (i, a, t) =
∑

p,q∈Q

I (p)E(p, a, q)T (q).

The matrix representation ν of B is related to the matrix representation µ of A by

ν(a) =
0 Iµ(a) Iµ(a)T

0 µ(a) µ(a)T
0 0 0

38 1 Preliminaries

where i and t are reported as the first and the last index respectively. It is easily
checked that the same form holds for any word w ∈ A+, and thus ν(w)i,t = Iµ(w)T .
This holds also for w = 1 because i �= t and Iµ(w)T = 0 by assumption. This proves
that A and B recognize the same series. �

We now consider power series, that is series in one variable.

Proposition 1.10.11 For any rational subset X of A∗, the generating series fX(z) is
N-rational.

Proof. Let A be a deterministic finite automaton recognizing X, and let B be the
weighted automaton obtained by replacing all labels in A by the symbol z. Clearly
B recognizes the series

∑
n≥0 Card(X ∩ An)zn. �

Given a series u(z) =∑n≥0 unz
n with integer coefficients and with zero constant

term u0 = 0, we recall that u∗(z) denotes the series defined by u∗(z) = 1/(1 − u(z)).

Proposition 1.10.12 Let u(z) =∑n≥0 unz
n be an N-rational series with zero con-

stant term. Let A = (Q, i, t) be a normalized weighted automaton recognizing u(z).
Let Q = Q \ t and let A = (Q, i, i) be the weighted automaton obtained by merging
i and t . The behavior of A is the series u∗(z).

Proof. Recall that a path from i to i is simple if it does not go through i inbetween.
For each n > 0, un is the sum of the weights of the simple paths of length n from i to
i in A. Indeed, since A is normalized, to each simple path c : i → i in A corresponds
a unique path from i to t in A, and conversely.

Next, for r ≥ 1, let u(r)
n be the sum of the weights of the paths from i to i that go

exactly (r − 1) times through i inbetween. Set u(r)(z) =∑n≥0 u(r)
n zn and u(0)(z) = 1.

The series u(∗)(z) =∑r≥0 u(r)(z) is the behavior of A.
Next, u(r)(z) = u(z)r for r ≥ 0. Since u∗(z) =∑r≥0 u(z)r , we obtain u∗(z) =

u(∗)(z). �

Observe that this proposition is related to Proposition 1.10.5 which can be used to
give an alternative proof. Indeed, if A = (Q, i, t) is a normalized automaton, then, in
the automaton A∗, state i is no longer accessible and state t is no longer coaccessible.
Thus the trimmed automaton is identical with A.

Example 1.10.13 Let u(z) = z + z2. The weighted automaton A with A given on
the left of Figure 1.11 recognizes u with i = 1 and t = 3. The weighted automaton
A is represented on the right.

The following statement relates weighted automata with weights in N with nonneg-
ative matrices. We extend the definition of adjacency matrix to weighted automata.
For a weighted automaton A = (Q, I, T), it is the Q × Q matrix M defined by

Mp,q =
∑
a∈A

E(p, a, q),

where E(p, a, q) is the weight of the edge (p, a, q).

1.11 Probability distributions 39

1 2 3 1 2

Figure 1.11 Weighted automata recognizing z + z2 and 1/(1 − z − z2).

1 2 3

Figure 1.12 A weighted automaton recognizing (1 − z2)/(1 − 2z2).

Proposition 1.10.14 Let u(z) =∑n≥0 unz
n be an N-rational series recognized by

a trim weighted automaton and let M be the adjacency matrix of A. The radius of
convergence of the series u(z) is the inverse of the maximal eigenvalue of M .

Proof. Let λ be the maximal eigenvalue of M , which exists and is positive by the
Perron–Frobenius Theorem 1.9.2. Let ρ be the radius of convergence of the series u(z)
and, for each p, q ∈ Q, let ρp,q be the radius of convergence of the series up,q (z) =∑

n Mn
p,qz

n. Then 1/λ = min ρp,q since
∑

n≥0 Mnzn converges for |z| < 1/λ. Next,
since A is trim, the series up,q(z) converges whenever u(z) converges; thus ρp,q ≥ ρ

for all p, q ∈ Q. On the other hand ρ ≥ min ρp,q since u is a nonnegative linear
combination of the series sp,q . This implies that ρ = min ρp,q , which concludes the
proof. �

Example 1.10.15 The weighted automaton A of Figure 1.12 recognizes the series

u(z) = 1

1 − z2

1−z2

= 1 − z2

1 − 2z2
= 1 + z2 + 2z4 + 3z6 + 4z8 + · · ·

The radius of convergence of u(z) is
√

2/2. The adjacency matrix of A is0 1 0
1 0 1
0 1 0

 .

The eigenvalues are 0 and ±√
2.

1.11 Probability distributions

Given an alphabet A, a function π : A∗ → [0, 1] such that π (1) = 1 and∑
a∈A

π (wa) = π (w) (1.31)

40 1 Preliminaries

for all w ∈ A∗ is called a probability distribution or distribution for short on A∗.
Condition (1.31) is called the coherence condition. It implies that, for each n ≥ 0∑

x∈An

π (x) = 1.

Indeed, this holds for n = 0, and for n > 0, one has∑
x∈An

π (x) =
∑

y∈An−1

∑
a∈A

π (ya) =
∑

y∈An−1

π (y) = 1,

where the next-to-last equality holds by the coherence condition and the last equality
holds by induction. A distribution is positive if π (w) > 0 for all words w.

These notions are related to usual probability theory. This will be described in
Chapter 13. In particular, the coherence condition (1.31) allows to interpret a distri-
bution as a probability corresponding to a sequence of random choices of the letters
of a word from left to right.

As a particular case, a Bernoulli distribution is a morphism from A∗ into [0, 1] such
that
∑

a∈A π (a) = 1. Clearly, a Bernoulli distribution is a probability distribution. It is
positive if and only if π (a) > 0 for all letters a. A Bernoulli distribution corresponds to
a sequence of independent trials all with the same probability. The uniform Bernoulli
distribution is defined by π (a) = 1/ Card(A) for all a ∈ A.

Given a probability distribution π on A∗, we set for any subset X of A∗,

π (X) =
∑
x∈X

π (x).

This may be finite or infinite. The probability generating series of a set X ⊂ A∗ is
the series

FX(t) =
∑
n≥0

π (X ∩ An)tn.

In particular, FX(1) = π (X). In the case of a uniform Bernoulli distribution, the
probability generating series is linked with the (ordinary) generating series by

fX(t) = FX(kt), (1.32)

where k = Card(A). Indeed, in this case Card(X ∩ An) = knπ (X ∩ An).
A weighted automaton can be used to define a probability distribution on A∗.

Recall that the adjacency matrix of a weighted automaton A = (Q, I, T) is the
Q × Q-matrix P defined by

Pp,q =
∑
a∈A

E(p, a, q).

Consider a weighted automaton A = (Q, I, T) with nonnegative real weights. It
is called a stochastic automaton if

∑
p∈Q I (p) = 1 and T (q) = 1 for all q ∈ Q and

if its adjacency matrix P is stochastic.

1.12 Ideals in a monoid 41

1 2a 1
2a,

1
2b

Figure 1.13 A stochastic automaton.

For a stochastic automaton A, the mapping π defined by π (x) = (|A|, x) is a
probability distribution, called the probability distribution defined by A. Indeed
π (1) =∑p∈Q I (p) = 1. Next, let µ be the matrix representation of A. The adja-
cency matrix of A is P =∑a∈A µ(a). Then PT = T and∑

a∈A

π (xa) =
∑
a∈A

Iµ(xa)T = Iµ(x)(
∑
a∈A

µ(a)T) = Iµ(x)PT = Iµ(x)T = π (x),

which shows that π satisfies the coherence condition. A probability distribution
defined by a stochastic automaton is often called a hidden Markov chain.

A particular case of a stochastic automata occurs when the end state of an edge
is in bijection with its label. In other terms, this holds if, for edges E(p, a, q) �= 0,
E(p′, a′, q ′) �= 0

a = a′ ⇐⇒ q = q ′.

In this case, the set of end states of edges can be identified with the alphabet. The
probability distribution defined by such a stochastic automaton is called a Markov
chain.

Example 1.11.1 Let A = {a, b}. The probability distribution on A∗ defined by π (ax)
= 2−|x|, π (bx) = 0 for all x ∈ A∗ is defined by the stochastic automaton represented
in Figure 1.13, with I = [1 0]. The matrix representation is given by

µ(a) =
[

0 1
0 1/2

]
, µ(b) =

[
0 0
0 1/2

]
.

It is not a Markov chain because state 2 is the end of edges labeled a and b.

1.12 Ideals in a monoid

Let M be a monoid. A right ideal of M is a nonempty subset R of M such that

RM ⊂ R

or equivalently such that for all r ∈ R and all m ∈ M , we have rm ∈ R. Since M is
a monoid, we then have RM = R because M contains a neutral element. A left ideal
of M is a nonempty subset L of M such that ML ⊂ L. A two-sided ideal (also called
an ideal) is a nonempty subset I of M such that

MIM ⊂ I.

42 1 Preliminaries

A two-sided ideal is therefore both a left and a right ideal. In particular, M itself is
an ideal of M .

If M contains a zero, the set {0} is a two-sided ideal which is contained in any ideal
of M .

An ideal I (resp. a left, right ideal) is called minimal if for any ideal J (resp. left,
right ideal)

J ⊂ I ⇒ J = I.

If M contains a minimal two-sided ideal, it is unique because any nonempty intersec-
tion of ideals is again an ideal. If M contains a 0, the set {0} is the minimal two-sided
ideal of M . An ideal I �= 0 (resp. a left, right ideal) is then called 0-minimal if for
any ideal J (resp. left, right ideal)

J ⊂ I ⇒ J = 0 or J = I.

For any m ∈ M , the set

R = mM

is a right ideal. It is the smallest right ideal containing m. In the same way, the set
L = Mm is the smallest left ideal containing m and the set I = MmM is the smallest
two-sided ideal containing m.

We now define in a monoid M four equivalence relations L,R,J , and H as

mRm′ ⇐⇒ mM = m′M,

mLm′ ⇐⇒ Mm = Mm′,

mJm′ ⇐⇒ MmM = Mm′M,

mHm′ ⇐⇒ mM = m′M and Mm = Mm′.

Therefore, we have for instance, mRm′ if and only if there exist u, u′ ∈ M such that

m′ = mu, m = m′u′.

We have R ⊂ J , L ⊂ J , and H = R ∩ L.

Proposition 1.12.1 The two equivalences R and L commute: RL = LR.

Proof. Let m, n ∈ M be such that mRLn. There exists p ∈ M such that mRp, pLn

(see Figure 1.14). There exist by the definitions, u, u′, v, v′ ∈ M such that p = mu,
m = pu′, n = vp, p = v′n. Set q = vm. We then have

q = vm = v(pu′) = (vp)u′ = nu′, n = vp = v(mu) = (vm)u = qu.

This shows that qRn. Furthermore, we have

m = pu′ = (v′n)u′ = v′(nu′) = v′q.

1.12 Ideals in a monoid 43

q

m

n

p

u

v

u

v

Figure 1.14 The relation RL = LR.

R1

R2

R3

...

L1 L2 · · ·

Figure 1.15 A D-class.

Since q = vm by the definition of q, we obtain mLq. Therefore mLqRn and con-
sequently mLRn. This proves the inclusion RL ⊂ LR. The proof of the converse
inclusion is symmetrical. �

Since R and L commute, the relation D defined by

D = RL = LR

is an equivalence relation. We have the inclusions

H ⊂ R,L ⊂ D ⊂ J .

The classes of the relation D, called D-classes, can be represented by a schema called
an “egg-box” as in Figure 1.15.

The R-classes are represented by rows and the L-classes by columns. The squares
at the intersection of an R-class and an L-class are the H-classes.

We denote by L(m), R(m),D(m),H (m), respectively, the L, R, D, and H-class
of an element m ∈ M . We have

H (m) = R(m) ∩ L(m) and R(m), L(m) ⊂ D(m).

44 1 Preliminaries

q

m

q

m

u

v

u

v

Figure 1.16 The reciprocal bijections.

Proposition 1.12.2 Let M be a monoid. Let m,m′ ∈ M be R-equivalent. Let u, u′ ∈
M be such that

m = m′u′, m′ = mu.

The mappings

ρu : q → qu, ρu′ : q ′ → q ′u′

are bijections from L(m) onto L(m′) inverse to each other which map an R-class
onto itself.

Proof. We first verify that ρu maps L(m) into L(m′). If q ∈ L(m), then Mq = Mm

and therefore Mqu = Mmu = Mm′. Hence qu = ρu(q) is in L(m′). Analogously,
ρu′ maps L(m′) into L(m).

Let q ∈ L(m) and compute ρu′ρu(q). Since qLm, there exist v, v′ ∈ M such that
q = vm,m = v′q (see Figure 1.16). Since muu′ = m′u′ = m, we have

ρu′ρu(q) = quu′ = vmuu′ = vm = q.

This proves that ρu′ρu is the identity on L(m). One shows in the same way that ρuρu′

is the identity on L(m′).
Finally, since quu′ = q for all q ∈ L(m), the elements q and ρu(q) are in the same

R-class. �

Proposition 1.12.2 has the following consequence which justifies the regular shape
of Figure 1.15.

Proposition 1.12.3 Any two H-classes contained in the same D-class have the same
cardinality. �

We now address the problem of locating the idempotents in an ideal. The first
result describes the H-class of an idempotent.

1.12 Ideals in a monoid 45

Proposition 1.12.4 Let M be a monoid and let e ∈ M be an idempotent. The H-class
of e is the group of units of the monoid eMe.

Proof. Let m ∈ H (e). Then, we have for some u, u′, v, v′ ∈ M

e = mu, m = eu′, e = vm, m = v′e.

Therefore em = e(eu′) = eu′ = m and in the same way me = m. This shows that
m ∈ eMe. Since

m(eue) = mue = e, (eve)m = evm = e,

the element m is both right and left invertible in M . Hence, m belongs to the group
of units of eMe. Conversely, if m ∈ eMe is right and left invertible, we have mu =
vm = e for some u, v ∈ eMe. Since m = em = me, we obtain mHe. �

Proposition 1.12.5 An H-class of a monoid M is a group if and only if it contains
an idempotent.

Proof. Let H be an H-class of M . If H contains an idempotent e, then H = H (e) is
a group by Proposition 1.12.4. The converse is obvious. �

Proposition 1.12.6 Let M be a monoid and m, n ∈ M . Then mn is in R(m) ∩ L(n)
if and only if R(n) ∩ L(m) contains an idempotent.

Proof. If R(n) ∩ L(m) contains an idempotent e, then

e = nu, n = eu′, e = vm, m = v′e

for some u, u′, v, v′ ∈ M . Hence

mnu = m(nu) = me = (v′e)e = v′e = m,

so that mnRm. We show in the same way that mnLn. Thus mn ∈ R(m) ∩ L(n).
Conversely, if mn ∈ R(m) ∩ L(n), then mnRm and nLmn. By Proposition 1.12.2
the multiplication on the right by n is a bijection from L(m) onto L(mn). Since
n ∈ L(mn), this implies the existence of e ∈ L(m) such that en = n. Since the multi-
plication by n preserves R-classes, we have additionally e ∈ R(n). Hence there exists
u ∈ M such that e = nu. Consequently

nunu = enu = nu

and e = nu is an idempotent in R(n) ∩ L(m). �

Proposition 1.12.7 Let M be a monoid and let D be a D-class of M . The following
conditions are equivalent.

(i) D contains an idempotent.
(ii) Each R-class of D contains an idempotent.

(iii) Each L-class of D contains an idempotent.

46 1 Preliminaries

R n

e m

vv

Figure 1.17 Finding an idempotent in R.

Proof. Obviously, only (i) implies (ii) requires a proof. Let e ∈ D be an idempotent.
Let R be an R-class of D. The H-class H = L(e) ∩ R is nonempty. Let n be an
element of H (See Figure 1.17). Since nLe, there exist v, v′ ∈ M such that

n = ve, e = v′n.

Let m = ev′. Then mn = e because

mn = (ev′)n = e(v′n) = ee = e.

Moreover, we have mRe since mn = e and m = ev′. Therefore, e = mn is in R(m) ∩
L(n). This implies, by Proposition 1.12.6, that R = R(n) contains an idempotent. �

A D-class satisfying one of the conditions of Proposition 1.12.7 is called regular.

Proposition 1.12.8 Let M be a monoid and let H be an H-class of M . The two
following conditions are equivalent.

(i) There exist h, h′ ∈ H such that hh′ ∈ H .
(ii) H is a group.

Proof. (i) =⇒ (ii). If hh′ ∈ H , then by Proposition 1.12.6 H contains an idempotent.
By Proposition 1.12.5, it is a group. The implication (ii) =⇒ (i) is obvious. �

We now study the minimal and 0-minimal ideals in a monoid. Recall that if M

contains a minimal ideal, it is unique. However, it may contain several 0-minimal
ideals.

Let M be a monoid containing a zero. We say that M is prime if for any m, n ∈
M \ 0, there exists u ∈ M such that mun �= 0.

Proposition 1.12.9 Let M be a prime monoid.

1. If M contains a 0-minimal ideal, it is unique.
2. If M contains a 0-minimal right (resp. left) ideal, then M contains a 0-minimal

ideal; this ideal is the union of all 0-minimal right (resp. left) ideals of M .
3. If M both contains a 0-minimal right ideal and a 0-minimal left ideal, its 0-minimal

ideal is composed of a regular D-class and zero.

Proof. 1. Let I, J be two 0-minimal ideals of M . Let m ∈ I \ 0 and let n ∈ J \ 0.
Since M is prime, there exist u ∈ M such that mun �= 0. Then mun ∈ J implies
I ∩ J �= {0}. Since I ∩ J is an ideal, we obtain I ∩ J = I = J .

1.12 Ideals in a monoid 47

2. Let R be a 0-minimal right ideal. We first show that for all m ∈ M , either
mR = {0} or the set mR is a 0-minimal right ideal. In fact, mR is clearly a right
ideal. Suppose mR �= {0} and let R′ �= {0} be a right ideal contained in mR. Set
S = {r ∈ R | mr ∈ R′}. Then R′ = mS and S �= {0} since R′ �= {0}. Moreover, S is
a right ideal because R′ is a right ideal. Since S ⊂ R, the fact that R is a 0-minimal
right ideal implies the equality S = R. This shows that mR = R′ and consequently
that mR is a 0-minimal right ideal.

Let I be the union of all the 0-minimal right ideals. It is a right ideal, and by the
preceding discussion, it is also a left ideal. Let J �= {0} be an ideal of M . Then for
any 0-minimal right ideal R of M ,

RJ ⊂ R ∩ J ⊂ R.

We have RJ �= {0} since for any r ∈ R \ 0 and m ∈ J \ 0, there exists u ∈ M such
that rum �= 0 whence rum ∈ RJ \ 0. Since R is a 0-minimal right ideal and R ∩ J

is a right ideal distinct from {0}, we have R ∩ J = R. Thus R ⊂ J . This shows that
I ⊂ J . Hence I is contained in any nonzero ideal of M and therefore is the 0-minimal
ideal of M .

3. Let I be the 0-minimal ideal of M . Let m, n ∈ I \ 0. By 2, the right ideal mM

and the left ideal Mn are 0-minimal. Since M is prime, there exists u ∈ M such
that mun �= 0. The right ideal mM being 0-minimal, we have mM = munM and
therefore mRmun. In the same way, munLn. It follows that mDn. This shows that
I \ 0 is contained in a D-class. Conversely, if m ∈ I \ 0, n ∈ M and mDn, there
exists a k ∈ M such that mM = kM and Mk = Mn. Consequently I = MmM =
MkM = MnM and this implies n ∈ I \ 0. This shows that I \ 0 is a D-class.

Let us show that I \ 0 is a regular D-class. By Proposition 1.12.7, it is enough to
prove that I \ 0 contains an idempotent. Let m, n ∈ I \ 0.

Since M is prime, there exists u ∈ M such that mun �= 0. Since the right
ideal mM is 0-minimal and since mun �= 0, we have mM = muM = munM .
Thus mun ∈ R(m). Symmetrically, since Mn is a 0-minimal left ideal, we have
Mn = Mun = Mmun, whence mun ∈ L(n). Therefore mun ∈ R(m) ∩ L(n) and by
Proposition 1.12.6, this implies that R(n) ∩ L(m) contains an idempotent. This idem-
potent belongs to the D class of n and therefore to I \ 0. �

Corollary 1.12.10 Let M be a prime monoid. If M contains a 0-minimal right ideal
and a 0-minimal left ideal, then M contains a unique 0-minimal ideal I which is
the union of all the 0-minimal right (resp. left) ideals. This ideal is composed with a
regular D class and 0. Moreover, we have the following computational rules.

1. For m ∈ I \ 0 and n ∈ M such that mn �= 0, we have mRmn.
2. For m ∈ I \ 0 and n ∈ M such that nm �= 0, we have mLnm.
3. For any H class H ⊂ I \ 0 we have H 2 = H or H 2 = {0}.

Proof. The first group of statements is an easy consequence of Proposition 1.12.9. Let
us prove 1. We have mnM ⊂ mM . Since mM is a 0-minimal right ideal and mn �= 0,
this forces the equality mnM = mM . The proof of 2 is symmetrical. Finally, to prove

48 1 Preliminaries

3, let us suppose H 2 �= {0}. Let h, h′ ∈ H be such that hh′ �= 0. Then, by 1 and 2,
hRhh′ and h′Lhh′. Since hLh′ and h′Lhh′, we have hLhh′. Therefore hh′ ∈ H and
H is a group by Proposition 1.12.8. �

We now give the statements that correspond to Proposition 1.12.9 and Corollary
1.12.10 for minimal ideals instead of 0-minimal ideals. This is of course of interest
only in the case where the monoid does not have a zero.

Proposition 1.12.11 Let M be a monoid.

1. If M contains a minimal right (resp. left) ideal, then M contains a minimal ideal
which is the union of all the minimal right (resp. left) ideals.

2. If M contains a minimal right ideal and a minimal left ideal, its minimal ideal I

is a D-class. All the H-classes in I are groups.

Proof. Let 0 be an element that does not belong to M and let M0 = M ∪ 0 be the
monoid whose law extends that of M in such a way that 0 is a zero. The monoid M0

is prime.
An ideal I (resp. a right ideal R, a left ideal L) of M is minimal if and only if

I ∪ 0 (resp. R ∪ 0, L ∪ 0) is a 0-minimal ideal (resp. right ideal, left ideal) of M0.
Moreover the restriction to M of the relations R,L,D,H in M0 coincide with the
corresponding relations in M . Therefore statements 1 and 2 can be deduced from
Proposition 1.12.9 and Corollary 1.12.10. �

Corollary 1.12.12 Let M be a monoid containing a minimal right ideal and a mini-
mal left ideal. Then M contains a minimal ideal which is the union of all the minimal
right (resp. left) ideals. This ideal is a D-class and all its H-classes are groups. �

1.13 Permutation groups

In this section we give some elementary results and definitions concerning permuta-
tion groups. Let G be a group and let H be a subgroup of G. The right cosets of H in
G are the sets Hg for g ∈ G. The equality Hg = Hg′ holds if and only if gg′−1 ∈ H .
Hence the right cosets of H in G are a partition of G.

When G is finite, [G : H] denotes the index of H in G. This number is both equal
to Card(G)/ Card(H) and to the number of right cosets of H in G.

Let Q be a set. The symmetric group over Q composed of all the permutations
of Q is denoted by SQ. For Q = {1, 2, . . . , n} we write Sn instead of S{1,2,...,n}. A
permutation is written to the right of its argument. Thus for g ∈ SQ and q ∈ Q the
image of q by g is denoted by qg.

A permutation group over Q is any subgroup of SQ. For instance, the alternating
group over {1, 2, . . . , n}, denoted by An is the permutation group composed of all
even permutations, that is permutations which are products of an even number of
transpositions.

1.13 Permutation groups 49

Let G be a permutation group over Q. The stabilizer of q ∈ Q is the subgroup of
G composed of all permutations of G fixing q,

H = {h ∈ G | qh = q}.

A permutation group over Q is called transitive if for all p, q ∈ Q, there exists g ∈ G

such that pg = q.

Proposition 1.13.1 Let G be a group and let H be a subgroup of G. Let Q be the set
of right cosets of H in G. Let ϕ be the mapping from G into SQ defined for g ∈ G

and Hk ∈ Q by

(Hk)ϕ(g) = H (kg).

The mapping ϕ is a morphism from G into SQ and the permutation group ϕ(G) is
transitive. Moreover, the subgroup ϕ(H) is the stabilizer of the point H ∈ Q.

Conversely, let G be a transitive permutation group over Q, let q ∈ Q and let H

be the stabilizer of q. The mapping γ from G into Q defined by

γ : g �→ qg

induces a bijection α from the set of right cosets of H onto Q and for all k ∈ G,
g ∈ G,

α(Hk)g = α(Hkg).

Proof. We first prove the direct part. The mapping ϕ is well defined because Hk = Hk′

implies Hkg = Hk′g. It is a morphism since ϕ(1) = 1 and

(Hk)ϕ(g)ϕ(g′) = (Hkg)ϕ(g′) = Hkgg′ = (Hk)ϕ(gg′).

The permutation group ϕ(G) is transitive since for k, k′ ∈ G, we have

(Hk)ϕ(k−1k′) = Hk′.

Finally, for all h ∈ H , ϕ(h) fixes the coset H and conversely, if ϕ(g), with g ∈ G,
fixes H , then Hg = H , thus g ∈ H .

We now prove the converse. Assume that Hg = Hg′. Then gg′−1 ∈ H , and there-
fore qgg′−1 = q, showing that qg = qg′, whence γ (g) = γ (g′). This shows that we
can define a function α by setting α(Hg) = γ (g). Since G is transitive, γ is sur-
jective and therefore also α is surjective. To show that α is injective, assume that
α(Hg) = α(Hg′). Then qg = qg′, whence qgg−1 = q. Thus gg−1 fixes q. Conse-
quently gg′−1 ∈ H , whence Hg = Hg′.

The last formula is a direct consequence of the fact that both sides are equal to
qkg. �

Let G be a transitive permutation group over a finite set Q. By definition, the degree
of G is the number Card(Q).

50 1 Preliminaries

Proposition 1.13.2 Let G be a transitive permutation group over a finite set Q. Let
q ∈ Q and let H be the stabilizer of q. The degree of G is equal to the index of H in
G.

Proof. The function α : Hg �→ qg of Proposition 1.13.1(2) is a bijection from the set
of right cosets of H onto Q. Consequently Card(Q) = [G : H]. �

Two permutation groups G over Q and G’ over Q′ are called equivalent if there
exists a bijection α from Q onto Q′ and an isomorphism ϕ from G onto G′ such that
for all q ∈ Q and g ∈ G,

α(qg) = α(q)ϕ(g)

or equivalently, for q ′ ∈ Q’ and g ∈ G,

q ′ϕ(g) = α((α−1(q ′))g).

As an example, consider a permutation group G over Q and let H be the stabilizer
of some q in Q. According to Proposition 1.13.1(2) this group is equivalent to the
permutation group over the set of right cosets of H obtained by the action of G on
the cosets of H .

Another example concerns any two stabilizers H and H ′ of two points q and q ′ in a
transitive permutation group G over Q. Then H and H ’ are equivalent. Indeed, since
G is transitive, there exists g ∈ G such that qg = q ′. Then g defines a bijection α

from Q onto itself by α(p) = pg. The function ϕ : H → H ′ given by ϕ(h) = g−1hg

is an isomorphism and for all p ∈ Q, h ∈ H ,

α(ph) = α(p)ϕ(h).

Let G be a transitive permutation group over Q. An imprimitivity equivalence of G

is an equivalence relation θ over Q that is stable for the action of G. Equivalently,
for all g ∈ G,

p ≡ q mod θ ⇒ pg ≡ qg mod θ.

The partition associated with an imprimitivity equivalence is called an imprimitivity
partition.

Let θ be an imprimitivity equivalence of G. The action of G on the classes of θ

defines a transitive permutation group denoted by Gθ called the imprimitivity quotient
of G for θ .

For any element q in Q, denote by [q] the equivalence class of q mod θ , and let
Kq be the transitive permutation group over [q] formed by the restrictions to [q] of
the permutations g that globally fix [q], that is verifying [q]g = [q].

The group Kq is the group induced by G on the class [q].
We prove that the groups Kq , q ∈ Q all are equivalent. Indeed let q, q ′ ∈ Q

and g ∈ G be such that qg = q ′. The restriction α of g to [q] is a bijection from
[q] onto [q ′]. Clearly, α is injective. It is surjective since if p ≡ q ′ mod θ , then

1.13 Permutation groups 51

pg−1 ≡ q mod θ and α(pg−1) = p. Let ϕ be the isomorphism from Kq onto Kq ′

defined for k ∈ Kq by p′ϕ(k) = α(α−1(p′)k). This shows that the groups Kq and Kq ′

are equivalent. In particular, all equivalence classes mod θ have the same number of
elements.

Any of the equivalent transitive permutation groups Kq is called the induced group
of G on the classes of θ and is denoted by Gθ .

Let d = Card(Q) be the degree of G, e the degree of Gθ , and f the degree of Gθ .
Then

d = ef.

Indeed, e is the number of classes of θ and f is the common cardinality of each of
the classes mod θ .

Let G be a transitive permutation group over Q. Then G is called primitive if
the only imprimitivity equivalences of G are the equality relation and the universal
relation over Q.

Proposition 1.13.3 Let G be a transitive permutation group over Q. Let q ∈ Q and
H be the stabilizer of q. Then G is primitive if and only if H is a maximal subgroup
of G.

Proof. Assume first that G is primitive. Let K be a subgroup of G such that H ⊂
K ⊂ G. Consider the family of subsets of Q having the form qKg for g ∈ G. Any
two of these subsets are either disjoint or identical. Suppose indeed that for some
k, k′ ∈ K and g, g′ ∈ G, we have qkf = qk′g′. Then qkgg′−1k′−1 = q, showing
that kgg′−1k′−1 ∈ H ⊂ K . Thus gg′−1 ∈ K , whence Kg = Kg′ and consequently
qKg = qKg’. Consequently the sets qKg form a partition of Q which is clearly
an imprimitivity partition. Since G is primitive this implies that either qK = {q} or
qK = Q. The first case means that K = H . In the second case, K = G since for
any g ∈ G there is some k ∈ K with qk = qg showing that gk−1 ∈ H ⊂ K which
implies g ∈ K . This proves that H is a maximal subgroup.

Conversely, let H be a maximal subgroup of G and let θ be an imprimitivity
equivalence of G. Let K be the subgroup

K = {k ∈ G | qk ≡ q mod θ}.

Then H ⊂ K ⊂ G, which implies that K = H or K = G. If K = H , then the class
of q is reduced to q and θ is therefore reduced to the equality relation. If K = G, then
the class of q is equal to Q and θ is the universal equivalence. Thus G is primitive. �

Let G be a transitive permutation group on Q. Then G is said to be regular
if all elements of G \ 1 have no fixed point. It is easily verified that in this case
Card(G) = Card(Q).

Proposition 1.13.4 Let G be a transitive permutation group over Q and let q ∈ Q.
The group G is regular if and only if the stabilizer of q is a singleton.

52 1 Preliminaries

Let k ≥ 1 be an integer. A permutation group G over Q is called k-transitive if for
all k-tuples (p1, p2, . . . , pk) ∈ Qk and (q1, q2, . . . , qk) ∈ Qk composed of distinct
elements, there is a g ∈ G such that p1g = q1, p2g = q2, . . . , pkg = qk .

The 1-transitive groups are just the transitive groups. Any k-transitive group for
k ≥ 2 is clearly also (k − 1) transitive. The group Sn is n-transitive.

Proposition 1.13.5 Let k ≥ 2 be an integer. A permutation group over Q is k-
transitive if and only if it is transitive and if the restriction to the set Q \ q of
the stabilizer of q ∈ Q is (k − 1)-transitive.

Proof. The condition is clearly necessary. Conversely assume that the condi-
tion is satisfied by a permutation group G and let (p1, p2, . . . , pk) ∈ Qk and
(q1, q2, . . . , qk) ∈ Qk be k-tuples composed of distinct elements. Since G is tran-
sitive, there exists a g ∈ G such that p1g = q1. Let H be the stabilizer of q1. Since
the restriction of H to the set Q \ q1 is (k − 1)-transitive, there is an h ∈ H such
that p2gh = q2, . . . , pkgh = qk . Since p1gh = q1, the permutation g′ = gh satisfies
p1g

′ = q1, p2g
′ = q2, . . . , pkg

′ = qk . This shows that G is k-transitive. �

A 2-transitive group is also called doubly transitive.

Proposition 1.13.6 A doubly transitive permutation group is primitive.

Proof. Let G be a doubly transitive permutation group over Q and consider an
imprimitivity equivalence θ of G. If θ is not the equality on Q, then there are two
distinct elements q, q ′ ∈ Q such that q ≡ q ′ mod θ . Let q ′′ ∈ Q be distinct from q.
Since G is 2-transitive, there exist g ∈ G such that qg = q and q ′g = q ′′. Since θ is
an imprimitivity equivalence we have q ≡ q ′′ mod θ . Thus θ is the universal relation
on Q. This shows that G is primitive. �

The converse of Proposition 1.13.6 is false. Indeed, for any prime number p, the
cyclic group generated by the permutation (12 · · ·p) is primitive but is not doubly
transitive. An interesting case where the converse of Proposition 1.13.6 is true is
described in a famous theorem of Schur (Theorem 11.6.7) that will be stated in
Chapter 11.

1.14 Notes

Each of the subjects treated in this chapter is part of a theory that we have considered
only very superficially. A more complete exposition about words can be found in
Lothaire (1997). For automata (Section 1.4) we follow the notation of Eilenberg
(1974). Theorem 1.4.13 is due to S. Kleene.

Our definition of a complete semiring is less general than that of Eilenberg (1974)
but it will be enough for our purposes. The full statement of the Perron–Frobenius
theorem (Theorem 1.9.2) includes additional statements, including the description of
the eigenvalues with maximal modulus (see Gantmacher (1959)). The function rM is
sometimes known as the Wielandt function.

1.14 Notes 53

Our presentation of ideals in monoids (Section 1.12) is developed with more details
in Clifford and Preston (1961) or Lallement (1979). The notion of a prime monoid is
not classical but it is well fitted to the situation that we shall find in Chapter 9. The 0-
minimal ideals of prime monoids are usually called completely 0-simple semigroups.
For semirings and formal series see Eilenberg (1974) or Berstel and Reutenauer
(1988).

A classical textbook on permutation groups is Wielandt (1964).

2

Codes

The first two sections contain several equivalent definitions of codes and free sub-
monoids. In Section 2.3 we give a method for verifying that a given set of words is a
code.

In Section 2.4 we use Bernoulli distributions to give a necessary condition for a
set to be a code (Theorem 2.4.5). The questions about probabilities raised in this and
in the following section will be developed in more depth in Chapter 13.

Section 2.5 introduces the concept of a complete set. This is in some sense a notion
dual to that of a code. The main result of this chapter (Theorem 2.5.16) describes
complete codes by using results on Bernoulli distributions developed previously. In
Section 2.6, the operation of composition of codes is introduced and several properties
of this operation are established. The last section introduces the prefix graph of a code
as a tool for the description of an efficient algorithm testing whether a finite set is a
code.

2.1 Definitions

This section contains the definitions of the notions of code, prefix (suffix, bifix) code,
maximal code, and coding morphism and gives examples.

Let A be an alphabet. A subset X of the free monoid A∗ is a code over A if for all
n,m ≥ 0 and x1, . . . , xn, x

′
1, . . . , x

′
m ∈ X, the condition

x1x2 · · · xn = x ′
1x

′
2 · · · x ′

m (2.1)

implies

n = m and xi = x ′
i for i = 1, . . . , n. (2.2)

In other words, a set X is a code if any word in X∗ can be written uniquely as a
product of words in X, that is, has a unique factorization in words in X. In particular,
a code never contains the empty word 1. It is clear that any subset of a code is a code.
In particular, the empty set is a code. An element of a code is sometimes called a
codeword.

56 2 Codes

The definition of a code can be rephrased as follows:

Proposition 2.1.1 If a subset X of A∗ is a code, then any bijection from some alphabet
B onto X extends to an injective morphism from B∗ into A∗. Conversely, if there exists
an injective morphism β : B∗ → A∗ such that X = β(B), then X is a code.

Proof. Let β : B∗ → A∗ be a morphism such that β is a bijection of B onto X.
Let u, v ∈ B∗ be words such that β(u) = β(v). Set u = b1 · · · bn, v = b′

1 · · · b′
m, with

n,m ≥ 0, b1, . . . , bn, b
′
1, . . . , b

′
m ∈ B. Since β is a morphism, we have

β(b1) · · ·β(bn) = β(b′
1) · · ·β(b′

m).

But X is a code and β(bi), β(b′
j) ∈ X. Thus n = m and β(bi) = β(b′

i) for i =
1, . . . , n. Now β is injective on B. Thus bi = b′

i for i = 1, . . . , n, and u = v. This
shows that β is injective.

Conversely, if β : B∗ → A∗ is an injective morphism, and if

x1 · · · xn = x ′
1 · · · x ′

m (2.3)

for some n,m ≥ 1 and x1, . . . , xn, x
′
1, . . . , x

′
n ∈ X = β(B), then we consider the

letters bi, b
′
j in B such that β(bi) = xi , β(b′

j) = x ′
j , i = 1, . . . , n, j = 1, . . . , m.

Since β is injective, Equation (2.3) implies that b1 · · · bn = b1 · · · b′
m. Thus n = m

and bi = b′
i , whence xi = x ′

i for i = 1, . . . , n. �

A morphism β : B∗ → A∗ which is injective and such that X = β(B), is called a
coding morphism for X. For any code X ⊂ A∗, the existence of a coding morphism
for X is straightforward: it suffices to take any bijection of a set B onto X and to
extend it to a morphism from B∗ into A∗. In this context, the alphabet B is called the
source alphabet, and the alphabet A is the channel alphabet.

Proposition 2.1.1 is the origin for the terminology since the words in X encode the
letters of the set B. The coding procedure consists of associating to a word b1b2 · · · bn

(bi ∈ B) which is the source text an encoded message β(b1) · · ·β(bn) over the channel
alphabet by the use of the coding morphism β. The fact that β is injective ensures
that the coded text is uniquely decipherable, in order to get the original text back.

Example 2.1.2 For any alphabet A, the set X = A is a code. More generally, if p ≥ 1
is an integer, then X = Ap is a code called the uniform code of words of length p.
Indeed, if elements of X satisfy Equation (2.1), then the constant length of words in
X implies the conclusion (2.2).

Example 2.1.3 Over an alphabet consisting of a single letter a, a nonempty subset
of a∗ is a code if and only if it is a singleton distinct from 1.

Example 2.1.4 The set X = {aa, baa, ba} over A = {a, b} is a code. Indeed, sup-
pose the contrary. Then there exists a word w in X+, of minimal length, that has two
distinct factorizations,

w = x1x2 · · · xn = x ′
1x

′
2 · · · x ′

m

2.1 Definitions 57

x1 x2

x1 x2

b a a a a

Figure 2.1 A double factorization starting.

(n,m ≥ 1, xi, x
′
j ∈ X). Since w is of minimal length, we have x1 �= x ′

1. Thus x1 is
a proper prefix of x ′

1 or vice versa. Assume that x1 is a proper prefix of x ′
1 (see

Figure 2.1). By inspection of X, this implies that x1 = ba, x ′
1 = baa. This in turn

implies that x2 = aa, x ′
2 = aa. Thus x ′

1 = x1a, x ′
1x

′
2 = x1x2a, and if we assume that

x ′
1x

′
2 · x ′

p = x1x2 · · · xpa, it necessarily follows that xp+1 = aa and x ′
p+1 = aa. Thus

x ′
1x

′
2 · · · xp+1 = x1x2 · · · xp+1a. But this contradicts the existence of two factoriza-

tions.

Example 2.1.5 The set X = {a, ab, ba} is not a code since the word w = aba has
two distinct factorizations

w = (ab)a = a(ba).

The following corollary to Proposition 2.1.1 is useful.

Corollary 2.1.6 Let α : A∗ → C∗ be an injective morphism. If X is a code over A,
then α(X) is a code over C. If Y is a code over C, then α−1(Y) is a code over A.

Proof. Let β : B∗ → A∗ be a coding morphism for X. Then α(β(B)) = α(X) and
since α ◦ β : B∗ → C∗ is an injective morphism, Proposition 2.1.1 shows that α(X)
is a code.

Conversely, let X = α−1(Y), let n,m ≥ 1, x1, . . . , xn, x
′
1, . . . , x

′
m ∈ X be such that

x1 · · · xn = x ′
1 · · · x ′

m.

Then

α(x1) · · ·α(xn) = α(x ′
1) · · ·α(x ′

m).

Now Y is a code; therefore n = m and α(xi) = α(x ′
i) for i = 1, . . . , n. The injectivity

of α implies that xi = x ′
i for i = 1, . . . , n, showing that X is a code. �

Corollary 2.1.7 If X ⊂ A∗ is a code, then Xn is a code for all integers n > 0.

Proof. Let β : B∗ → A∗ be a coding morphism for X. Then Xn = β(Bn). But Bn is
a code. Thus the conclusion follows from Corollary 2.1.6. �

58 2 Codes

Example 2.1.8 We show that the product of two codes is not a code in general.
Consider the sets X = {a, ba} and Y = {a, ab} which are easily seen to be codes
over the alphabet A = {a, b}. Set Z = XY . Then

Z = {aa, aab, baa, baab}.
The word w = aabaab has two distinct factorizations,

w = (aa)(baab) = (aab)(aab).

Thus Z is not a code.

An important class of codes is the class of prefix codes to be introduced now. A
subset X of A∗ is prefix if no element of X is a proper prefix of another element in
X. In an equivalent manner, X is prefix if for all x, x ′ in X,

x ≤ x ′ ⇒ x = x ′. (2.4)

This may be rephrased as: two distinct elements in X are incomparable in the prefix
ordering.

It follows immediately from (2.4) that a prefix set X containing the empty word
just consists of the empty word. Suffix sets are defined in a symmetric way. A subset
X of A∗ is suffix if no word in X is a proper suffix of another word in X. A set is
bifix if it is both prefix and suffix. Clearly, a set of words X is suffix if and only if its
reversal X̃ is prefix.

Proposition 2.1.9 Any prefix (suffix, bifix) set of words X �= {1} is a code.

Proof. Since X �= {1}, it does not contain the empty word. If X is not a code, then
there is a word w of minimal length having two factorizations

w = x1x2 · · · xn = x ′
1x

′
2 · · · x ′

m (xi, x
′
j ∈ X).

Both x1, x
′
1 are nonempty, and since w has minimal length, x1 �= x ′

1. But then x1 < x ′
1

or x ′
1 < x1 contradicting the fact that X is prefix. Thus X is a code. The same argument

holds for suffix sets. �

A prefix code (suffix code, bifix code) is a prefix set (suffix, bifix set) which is a
code, that is distinct from {1}.

Example 2.1.10 Uniform codes are bifix. The sets X and Y of Example 2.1.8 are a
prefix and a suffix code.

Example 2.1.11 The sets X = a∗b and Y = {anbn | n ≥ 1} over A = {a, b} are pre-
fix, thus prefix codes. The set Y is suffix, thus bifix, but X is not. This example shows
the existence of infinite codes over a finite alphabet.

Example 2.1.12 The Morse code associates to each alphanumeric character a
sequence of dots and dashes. For instance, A is encoded by “. -” and J is encoded by

2.1 Definitions 59

“. - - -”. Provided each codeword is terminated with an additional symbol (usually
a space, called a “pause”), the Morse code becomes a prefix code.

A code X is maximal over A if X is not properly contained in any other code over
A, that is, if

X ⊂ X′, X′ code ⇒ X = X′.

The maximality of a code depends on the alphabet over which it is given. Indeed, if
X ⊂ A∗ and A � B, then X ⊂ B∗ and X is certainly not maximal over B, even if it
is a maximal code over A. The definition of a maximal code gives no algorithm that
allows us to verify that it is satisfied. However, maximality is decidable, at least for
recognizable codes (see Section 2.5).

Example 2.1.13 Uniform codes An are maximal over A. Suppose the contrary. Then
there is a word u ∈ A+ \ An such that Y = An ∪ {u} is a code. The word w =
un belongs to Y ∗, and it is also in (An)∗ because its length is a multiple of n.
Thus w = un = x1x2 · · · x|u| for some x1, . . . , x|u| ∈ An. Now u �∈ An. Thus the two
factorizations are distinct, Y is not a code and An is maximal.

Proposition 2.1.14 Any code X over A is contained in some maximal code over A.

Proof. Let F be the set of codes over A containing X, ordered by set inclusion. To
show that F contains a maximal element, it suffices to demonstrate, in view of Zorn’s
lemma, that any chain C (that is, any totally ordered subset) in F admits a least upper
bound in F .

Consider a chain C of codes containing X. Then

Ŷ =
⋃
Y∈C

Y

is the least upper bound of C. It remains to show that Ŷ is a code. For this, let n,m ≥ 1,
and y1, . . . , yn, y

′
1, . . . , y

′
m ∈ Ŷ be such that

y1 · · · yn = y ′
1 · · · y ′

m.

Each of the yi, y
′
j belongs to a code of the chain C and this determines n + m

elements (not necessarily distinct) of C. One of them, say Z, contains all the others.
Thus y1, . . . , yn, y

′
1 . . . , y ′

m ∈ Z, and since Z is a code, we have n = m and yi = y ′
i

for i = 1, . . . , n. This shows that Ŷ is a code. �

Proposition 2.1.14 is no longer true if we restrict ourselves to finite codes. There
exist finite codes which are not contained in any finite maximal code. An example of
such a code will be given in Section 2.5 (Example 2.5.7).

The fact that a set X ⊂ A∗ is a code admits a very simple expression in the
terminology of formal power series.

Proposition 2.1.15 Let X be a subset of A+, and let M = X∗ be the submonoid
generated by X. Then X is a code if and only if M = (X)∗ or equivalently M =
(1 − X)−1.

60 2 Codes

Proof. According to Proposition 1.7.4, the coefficient ((X)∗, w) of a word w in (X)∗

is equal to the number of distinct factorizations of w in words in X. By definition, X

is a code if and only if this coefficient takes only the values 0 and 1 for any word in
A∗. But this is equivalent to saying that (X)∗ is the characteristic series of its support,
that is, (X)∗ = M . �

2.2 Codes and free submonoids

The submonoid X∗ generated by a code X is sometimes easier to handle than the code
itself. The fact that X is a code (prefix code, bifix code) is equivalent to the property
that X∗ is a free monoid (a right unitary, biunitary monoid). These properties may be
verified directly on the submonoid without any explicit description of its base. Thus
we can prove that sets are codes by knowing only the submonoid they generate.

We start with a general property. Let A be an alphabet.

Proposition 2.2.1 Any submonoid M of A∗ has a unique minimal set of generators
X = (M \ 1) \ (M \ 1)2.

Proof. Set Q = M \ 1. First, we verify that X generates M , that is, that X∗ = M .
Since X ⊂ M , we have X∗ ⊂ M . We prove the opposite inclusion by induction on the
length of words. Of course, 1 ∈ X∗. Let m ∈ Q. If m �∈ Q2, then m ∈ X. Otherwise
m = m1m2 with m1,m2 ∈ Q both strictly shorter than m. Therefore m1,m2 belong
to X∗ by the induction hypothesis and m ∈ X∗.

Now let Y be a set of generators of M . We may suppose that 1 �∈ Y . Then each
x ∈ X is in Y ∗ and therefore can be written as x = y1y2 · · · yn with yi ∈ Y and n ≥ 0.
The facts that x �= 1 and x �∈ Q2 force n = 1 and x ∈ Y . This shows that X ⊂ Y .
Thus X is a minimal set of generators and such a set is unique. �

Example 2.2.2 Let A = {a, b} and let M = {w ∈ A∗ | |w|a ≡ 0 mod 2}. Then we
compute X = (M \ 1) \ (M \ 1)2 = b ∪ ab∗a.

We now turn to the study of the submonoid generated by a code. By definition, a
submonoid M of A∗ is free if there exists an isomorphism

α : B∗ → M

of a free monoid B∗ onto M .

Proposition 2.2.3 If M is a free submonoid of A∗, then its minimal set of generators
is a code. Conversely, if X ⊂ A∗ is a code, then the submonoid X∗ of A∗ is free and
X is its minimal set of generators.

Proof. Let α : B∗ → M be an isomorphism. Then α, considered as morphism from
B∗ into A∗, is injective. By Proposition 2.1.1, the set X = α(B) is a code. Next
M = α(B∗) = (α(B))∗ = X∗. Thus X generates M . Furthermore B = B+ \ B+B+

and α(B+) = M \ 1. Consequently X = (M \ 1) \ (M \ 1)2, showing that X is the
minimal set of generators of M .

2.2 Codes and free submonoids 61

Conversely, assume that X ⊂ A∗ is a code and consider a coding morphism α :
B∗ → A∗ for X. Then α is injective and α is a bijection from B onto X. Thus α is a
bijection from B∗ onto α(B∗) = X∗. Consequently X∗ is free. Now α is a bijection,
thus B = B+ \ B+B+ implies X = X+ \ X+X+, showing by Proposition 2.2.1 that
X is the minimal set of generators of M . �

The code X which generates a free submonoid M of A∗ is called the base of M .

Corollary 2.2.4 Let X and Y be codes over A. If X∗ = Y ∗, then X = Y .

Example 2.2.2 (continued) The set X is a (bifix) code, thus M is a free submonoid
of A∗.

According to Proposition 2.2.3, we can distinguish two cases where a set X is not
a code. First, when X is not the minimal set of generators of M = X∗, that is, there
exists an equality

x = x1x2 · · · xn

with x, xi ∈ X and n ≥ 2. Note that despite this fact, M might be free. The other case
holds when X is the minimal set of generators, but M is not free (this is the case of
Example 2.1.5).

We now give a characterization of free submonoids of A∗ which is intrinsic in the
sense that it does not rely on the bases. Another slightly different characterization is
given in Exercise 2.2.3.

Let M be a monoid. A submonoid N of M is stable (in M) if for all u, v,w ∈ M ,

u, v, uw,wv ∈ N ⇒ w ∈ N. (2.5)

The hypotheses of (2.5) may be written as

w ∈ N−1N ∩ NN−1,

thus the condition for stability becomes

N−1N ∩ NN−1 ⊂ N

or simply

N−1N ∩ NN−1 = N (2.6)

since 1 ∈ N and therefore N ⊂ N−1N ∩ NN−1.
Figure 2.2 gives a pictorial representation of condition (2.5) when the elements u,

v,w are words. The membership in N is represented by an arch.
Stable submonoids appear in almost all of the chapters in this book. A reason for

this is Proposition 2.2.5 which gives a remarkable characterization of free submonoids
of a free monoid. As a practical application, the proposition is used to prove that some
submonoids are free and consequently that their bases are codes.

62 2 Codes

u w v

Figure 2.2 Representation of stability.

Proposition 2.2.5 A submonoid N of A∗ is stable if and only if it is free.

Proof. Assume first that N is stable. Set X = (N \ 1) \ (N \ 1)2. To prove that X is
a code, suppose the contrary. Then there is a word z ∈ N of minimal length having
two distinct factorizations in words of X,

z = x1x2 · · · xn = y1y2 · · · ym

with x1, . . . , xn, y1, . . . , ym ∈ X. We may suppose |x1| < |y1|. Then y1 = x1w for
some nonempty word w. It follows that

x1, y2 · · · ym, x1w = y1, wy2 · · · ym = x2 · · · xn

are all in N . Since N is stable, w is in N . Consequently y1 = x1w �∈ X, which gives
the contradiction. Thus X is a code.

Conversely, assume that N is free and let X be its base. Let u, v,w ∈ A∗ and
suppose that u, v, uw,wv ∈ N . Set

u = x1 · · · xk, wv = xk+1 · · · xr, uw = y1 · · · y�, v = y�+1 · · · ys,

with xi, yj in X. The equality u(wv) = (uw)v implies

x1 · · · xkxk+1 · · · xr = y1 · · · y�y�+1 · · · ys.

Thus r = s and xi = yi (i = 1, . . . , s) since X is a code. Moreover, � ≥ k because
|uw| ≥ |u|, showing that

uw = x1 · · · xkxk+1 · · · x� = uxk+1 · · · x�,

hence w = xk+1 · · · x� ∈ N . Thus N is stable. �

Submonoids which are generated by prefix codes can also be characterized by
a condition which is independent of the base. Let M be a monoid and let N be a
submonoid of M . Then N is right unitary in M if for all u, v ∈ M ,

u, uv ∈ N ⇒ v ∈ N.

In a symmetric way, N is left unitary if for all u, v ∈ M ,

u, vu ∈ N ⇒ v ∈ N.

The conditions may be rewritten as follows: N is right unitary if and only if N−1N =
N , and N is left unitary if and only if NN−1 = N .

The submonoid N of M is biunitary if it is both left and right unitary.

2.2 Codes and free submonoids 63

The four properties stable, left unitary, right unitary, and biunitary are of the same
nature. Their relationships can be summarized as

stable : N−1N ∩ NN−1 = N

⇒ ⇒

left unitary : NN−1 = N N−1N = N : right unitary

⇒ ⇒
biunitary : NN−1 = N−1N = N

Example 2.2.2 (continued) The submonoid M is biunitary. Indeed, if u, uv ∈ M

then |u|a and |uv|a = |u|a + |v|a are even numbers; consequently |v|a is even and
v ∈ M . Thus M is right unitary.

Example 2.2.6 In group theory, the concepts stable, unitary, and biunitary collapse
and coincide with the notion of subgroup. Indeed, let H be a stable submonoid of a
group G. For all h ∈ H , both hh−1 and h−1h are in H . Stability implies that h−1 is in
H . Thus H is a subgroup. If H is a subgroup, then conversely HH−1 = H−1H = H ,
showing that H is biunitary.

The following proposition shows the relationship between the submonoids we
defined and codes.

Proposition 2.2.7 A submonoid M of A∗ is right unitary (resp. left unitary, biunitary)
if and only if its minimal set of generators is a prefix code (suffix code, bifix code). In
particular, a right unitary (left unitary, biunitary) submonoid of A∗ is free.

Proof. Let M ⊂ A∗ be a submonoid, Q = M \ 1 and let X = Q \ Q2 be its minimal
set of generators. Suppose M is right unitary.

To show that X is prefix, let x, xu be in X for some u ∈ A∗. Then x, xu ∈ M

and thus u ∈ M . If u �= 1, then u ∈ Q; but then xu ∈ Q2 contrary to the assumption.
Thus u = 1 and X is prefix.

Conversely, suppose that X is prefix. Let u, v ∈ A∗ be such that u, uv ∈ M = X∗.
Then

u = x1 · · · xn, uv = y1 · · · ym

for some x1, . . . , xn, y1, . . . , ym ∈ X. Consequently

x1 · · · xnv = y1 · · · ym.

Since X is prefix, neither x1 nor y1 is a proper prefix of the other. Thus x1 = y1, and for
the same reason x2 = y2, . . . , xn = yn. This shows that m ≥ n and v = yn+1 · · · ym

belongs to M . Thus M is right unitary. �

Let M be a free submonoid of A∗. Then M is maximal if M �= A∗ and M is not
properly contained in any other free submonoid excepted A∗.

64 2 Codes

Proposition 2.2.8 If M is a maximal free submonoid of A∗, then its base X is a
maximal code.

Proof. Let Y be a code on A with X � Y . Then X∗ ⊂ Y ∗ and X∗ �= Y ∗ since oth-
erwise X = Y by Corollary 2.2.4. Now X∗ is maximal. Thus Y ∗ = A∗ and Y = A.
Thus X � A. Let b ∈ A \ X. The set Z = X ∪ b2 is a code and M � Z∗ � A∗.
Both inclusions are strict since b2 �∈ M and b �∈ Z∗. This contradicts the maximality
of M . �

Note that the converse of the proposition is false since uniform codes An (n ≥ 1)
are maximal. But if k, n ≥ 2, we have (Akn)∗ � (An)∗ � A∗, showing that (Ank)∗ is
not maximal.

We now introduce a family of bifix codes called group codes which have interesting
properties. Before we give the definition, let us consider the following situation.

Let G be a group, H be a subgroup of G, and

ϕ : A∗ → G (2.7)

be a morphism. The submonoid

M = ϕ−1(H) (2.8)

is biunitary. Indeed, if, for instance, p, pq ∈ M , then ϕ(p), ϕ(pq) ∈ H , therefore
ϕ(p)−1ϕ(pq) = ϕ(q) ∈ H and q ∈ M . The same proof shows that M is left unitary.
Thus the base, say X, of M is a bifix code.

The definition of the submonoid M in (2.8) is equivalent to a description as the
intersection of A∗ with a subgroup of the free group A� on A. Indeed, the morphism
ϕ in (2.7) factorizes in a unique way in

A∗

A

G
ϕ

ι ψ

with ι the canonical injection. Setting Q = ψ−1(H), we have

M = Q ∩ A∗.

Conversely if Q is a subgroup of A� and M = Q ∩ A∗, then

M = ι−1(Q).

A group code is the base X of a submonoid M = ϕ−1(H), where ϕ is a morphism
given by (2.7) which, moreover, is supposed to be surjective. Then X is a bifix code
and X is a maximal code. Indeed, if M = A∗, then X = A is maximal. Otherwise

2.2 Codes and free submonoids 65

take w ∈ A∗ \ M and setting Y = X ∪ w, let us verify that Y is not a code. Set
m = ϕ(w). Since ϕ is surjective, there is a word w̄ ∈ A∗ such that ϕ(w̄) = m−1. The
words u = ww̄, v = w̄w both are in M , and ww̄w = uw = wv ∈ Y ∗. This word has
two distinct factorizations in words in Y , namely, uw formed of words in X followed
by a word in Y , and wv which is composed the other way round. Thus Y is not a code
and X is maximal.

We give now three examples of group codes.

Example 2.2.9 Let A = {a, b} and consider the set

M = {w ∈ A∗ | |w|a ≡ 0 mod 2}

of Example 2.2.2. We have M = ϕ−1(0), where

ϕ : A∗ → Z/2Z

is the morphism given by ϕ(a) = 1, ϕ(b) = 0. Thus the base of M , namely the code
X = b ∪ ab∗a, is a group code, hence maximal.

Example 2.2.10 The uniform code Am over A is a group code. The monoid (Am)∗

is indeed the kernel of the morphism of A∗ onto Z/mZ mapping all letters on the
number 1.

Example 2.2.11 Let A = {a, b}, and consider now the submonoid

{w ∈ A∗ | |w|a = |w|b} (2.9)

composed of the words on A having as many a’s as b’s. Let

δ : A∗ → Z

be the morphism defined by δ(a) = 1, δ(b) = −1. Clearly

δ(w) = |w|a − |w|b
for all w ∈ A∗. Thus the set (2.9) is equal to δ−1(0). The base of δ−1(0) is denoted by
D or D1, the submonoid itself by D∗ or D∗

1 . Words in D are called Dyck-primes, D

is the Dyck code over A. The set D∗ is the Dyck set over A.

Example 2.2.12 More generally, let A = B ∪ B̄ (B ∩ B̄ = ∅) be an alphabet with
2n letters, and let δ : A∗ → B� be the morphism of A∗ onto the free group B�

defined by δ(b) = b, δ(b̄) = b−1 for b ∈ B, b̄ ∈ B̄. The base of the submonoid δ−1(1)
is denoted by Dn and is called the Dyck code over A or over n letters.

We now turn to a slightly different topic and consider the free submonoids of A∗

containing a given submonoid. We start with the following observation which easily
follows from Proposition 2.2.5.

66 2 Codes

Proposition 2.2.13 The intersection of an arbitrary family of free submonoids of A∗

is a free submonoid.

Proof. Let (Mi)i∈I be a family of free submonoids of A∗, and set M = ∩i∈IMi .
Clearly M is a submonoid, and it suffices to show that M is stable. If

u, vw, uv,w ∈ M

then these four words belong to each of the Mi . Each Mi being stable, w is in Mi for
each i ∈ I . Thus w ∈ M . �

Proposition 2.2.13 leads to the following considerations. Let X be a subset of A∗.
As we have just seen, the intersection of all free submonoids of A∗ containing X is
again a free submonoid. It is the smallest free submonoid of A∗ containing X. We
call it the free hull of X. If X∗ is a free submonoid, then it coincides of course with
its free hull.

Let X be a subset of A∗, let N be its free hull and let Y be the base of N . If X is
not a code, then X �= Y . The following result, known as the defect theorem gives an
interesting relationship between X and Y .

Theorem 2.2.14 Let X be a subset of A∗, and let Y be the base of the free hull of X.
If X is not a code, then

Card(Y) ≤ Card(X) − 1.

The following result is a consequence of the theorem. It can be proved directly as
well (Exercise 2.2.1).

Corollary 2.2.15 Let X = {x1, x2}. Then X is a code if and only if x1 and x2 are not
powers of the same word. �

Note that this corollary entirely describes the codes with two elements. The case
of sets with three words is already much more complicated. See also Exercises 2.6.2
and 2.6.3.

For the proof of Theorem 2.8, we first show the following result.

Proposition 2.2.16 Let X ⊂ A∗ and let Y be the base of the free hull of X. Then

Y ⊂ X(Y ∗)−1 ∩ (Y ∗)−1X,

that is each word in Y appears as the first (resp. last) factor in the factorization of
some word x ∈ X in words belonging to Y .

Proof. Suppose that a word y ∈ Y is not in (Y ∗)−1X. Then X ⊂ 1 ∪ Y ∗(Y \ y). Setting

Z = y∗(Y \ y)

2.3 A test for codes 67

we have Z+ = Y ∗(Y \ y), thus X ⊂ Z∗. Now Z∗ is free. Indeed, any word z ∈ Z∗

has a unique factorization

z = y1y2 · · · yn, y1, . . . , yn ∈ Y, yn �= y

and therefore can be written uniquely as

z = yp1z1y
p2z2 · · · ypr zr , z1, . . . , zr ∈ Y \ y, pi ≥ 0.

Now X ⊂ Z∗ � Y ∗, showing that Y ∗ is not the free hull of X. This gives the contra-
diction. �

Proof of Theorem 2.2.14. If X contains the empty word, then X and X′ = X \ 1
have the same free hull Y ∗. If the result holds for X′, it also holds for X, since if
X′ is a code, then Y = X′ and Card(Y) = Card(X) − 1, and otherwise Card(Y) ≤
Card(X′) − 1 ≤ Card(X) − 2. Thus we may assume that 1 �∈ X. Let α : X → Y be
the mapping defined by

α(x) = y if x ∈ yY ∗.

This mapping is uniquely defined since Y is a code; it is everywhere defined since
X ⊂ Y ∗. In view of Proposition 2.2.16, the function α is surjective. If X is not a code,
then there exists a relation

x1x2 · · · xn = x ′
1x

′
2 · · · x ′

m, xi, x
′
j ∈ X (2.10)

with x1 �= x ′
1. However, Y is a code, and by (2.10) we have

α(x1) = α(x ′
1).

Thus α is not injective. This proves the inequality. �

2.3 A test for codes

It is not always easy to verify that a given set of words is a code. The test described
in this section is not based on any new property of codes but consists merely in a
systematic organization of the computations required to verify that a set of words
satisfies the definition of a code.

In the case where X is finite, or more generally if X is recognizable, the amount
of computation is finite. In other words, it is effectively decidable whether a finite or
recognizable set is a code.

Before starting the description of the algorithm, let us consider an example.

Example 2.3.1 Let A = {a, b}, and X = {b, abb, abbba, bbba, baabb}. This set is
not a code. For instance (abb)(baabb) = (abbba)(abb). We consider the word

w = abbbabbbaabb

68 2 Codes

a b b b a b b b a a b b

Figure 2.3 Two factorizations of the word abbbabbbaabb.

which has the two factorizations (see Figure 2.3)

w = (abbba)(bbba)(abb) = (abb)(b)(abb)(baabb).

These two factorizations define a sequence of prefixes of w, each one corresponding
to an attempt at a double factorization. We give this list, together with the attempt at
a double factorization:

(abbba) = (abb)ba

(abbba) = (abb)(b)a

(abbba)bb = (abb)(b)(abb)

(abbba)(bbba) = (abb)(b)(abb)ba

(abbba)(bbba)abb = (abb)(b)(abb)(baabb)

(abbba)(bbba)(abb) = (abb)(b)(abb)(baabb).

Each but the last one of these attempts fails because of the underlined suffix, which
remains after the factorization.

The algorithm presented here computes all the remainders in all attempts at a
double factorization. It discovers a double factorization by the fact that the empty
word is one of the remainders.

Formally, the computations are organized as follows. Let X be a subset of A+, and
let

U1 = X−1X \ 1,

Un+1 = X−1Un ∪ U−1
n X (n ≥ 1). (2.11)

Then we have the following result:

Theorem 2.3.2 The set X ⊂ A+ is a code if and only if none of the sets Un defined
above contains the empty word.

If X ⊂ A+ is prefix (thus a code), then U1 = X−1X \ 1 = ∅. Thus the algorithm
ends immediately for such codes.

Example 2.3.1 (continued) The word ba is in U1, next a ∈ U2, then bb ∈ U3 and
ba ∈ U4, finally abb ∈ U5 and since 1 ∈ U6, the set X is not a code, according to
Theorem 2.3.2

The proof of Theorem 2.3.2 is based on the following lemma.

2.3 A test for codes 69

Lemma 2.3.3 Let X ⊂ A+ and let (Un)n≥1 be defined as above. For all n ≥ 1, one
has w ∈ Un if and only if there exist integers p, q ≥ 1 with p + q = n + 1 and words
x1, . . . , xp, y1, . . . , yq in X with x1 �= y1 and w suffix of yq such that

x1 · · · xpw = y1 · · · yq. (2.12)

Proof. We show that for w ∈ Un, words satisfying (2.12) exist, by induction on n.
First, if w ∈ U1, then by definition of U1, one has xw = y for some x, y ∈ X with
x �= y, and w is a suffix of y, so the assertion holds for n = 1.

Let w ∈ Un, with n > 1. Then either xw = v or vw = x for some x ∈ X and
v ∈ Un−1. By induction,

x1 · · · xpv = y1 · · · yq,

for integers p, q ≥ 1 with p + q = n and x1, . . . , xp, y1, . . . , yq in X with x1 �= y1

and v suffix of yq . If xw = v, then

x1 · · · xpxw = y1 · · · yq,

showing that the condition is satisfied by x1, . . . , xp, xp+1, y1, . . . , yq with xp+1 = x,
since w is a suffix of yq . On the other side, if vw = x then

x1 · · · xpx = y1 · · · yqw,

showing that the condition is satisfied by y1, . . . , yq, x1, . . . , xp, xp+1 with xp+1 = x,
since w is a suffix of x.

Conversely, we prove by induction on n ≥ 1 that if, for p, q ≥ 1 with p + q =
n + 1, there are words x1, . . . , xp, y1, . . . , yq in X with x1 �= y1 and w suffix of yq ,
such that

x1 · · · xpw = y1 · · · yq,

then w ∈ Un.
The property is clearly true for n = 1. Assume n > 1. Since w is a suffix of yq , we

have yq = vw for some word v, and the equation becomes

x1 · · · xp = y1 · · · yq−1v.

Set v = v′xr+1 · · · xp with v′ suffix of xr for some r such that 1 ≤ r ≤ p. Then
x1 · · · xr = y1 · · · yq−1v

′ and thus v′ is in Ur+q−2 by induction hypothesis.
Since yq = v′xr+1 · · · xpw, one has xr+1 · · · xpw ∈ U−1

r+q−2X ⊂ Ur+q−1. Then we
show by induction on i that for 1 ≤ i ≤ p − r , we have xr+i · · · xpw ∈ Ur+q+i−2.

This holds for i = 1, and since xr+i is in X, xr+i · · · xpw ∈ Ur+q+i−2 implies
xr+i+1 · · · xpw ∈ Ur+q+i−1. Thus, we obtain xpw ∈ Up+q−2 and finally w ∈ Up+q−1.
This concludes the proof. �

Proof of Theorem 2.3.2. If X is not a code, then there is a relation

x1x2 · · · xp = y1y2 · · · yq, xi, yj ∈ X, x1 �= y1. (2.13)

70 2 Codes

By the lemma, the empty word is in Up+q−1. Conversely, if 1 ∈ Un, there is a factor-
ization (2.13) with p + q − 1 = n, showing that X is not a code. This establishes the
theorem. �

Example 2.3.1 (continued) For X = {b, abb, abbba, bbba, baabb}, we obtain

U1 = {ba, bba, aabb}, X−1U1 = {a, ba}, U−1
1 X = {abb},

U2 = {a, ba, abb}, X−1U2 = {a, 1}, U−1
2 X = {bb, bbba, abb, 1, ba}.

Thus 1 ∈ U3 and X is not a code.

Example 2.3.4 Let X = {a, ab, ba} and A = {a, b}. We have

U1 = {b}, U2 = {a}, U3 = {1, b}, U4 = X, U5 = U3.

The set U3 contains the empty word. Thus X is not a code.

Example 2.3.5 Let X = {aa, ba, bb, baa, bba} and A = {a, b}. We obtain U1 =
{a}, U2 = U1. Thus Un = {a} for all n ≥ 1 and X is a code.

The next proposition shows that Theorem 2.3.2 provides an algorithm for testing
whether a recognizable set is a code.

Proposition 2.3.6 If X ⊂ A+ is a recognizable set, then the set of all Un (n ≥ 1) is
finite.

This statement is straightforward when the set X is finite, since each Un is composed
of suffixes of words in X.

Proof. Recall that ∼X denotes the syntactic congruence of X.
Let µ be the congruence of A∗ with the two classes {1} and A+. Let ι =∼X ∩µ.

We use the following general fact.
If L ⊂ A∗ is a union of equivalence classes of a congruence θ , then for any subset

Y of A∗, Y−1L is a union of congruence classes mod θ . (Indeed, let z ∈ Y−1L and
z′ ≡ z mod θ . Then yz ∈ L for some y ∈ Y , whence yz′ ∈ L. Thus z′ ∈ Y−1L).

We prove that each Un is a union of equivalence classes of ι by induction on n ≥ 1.
For n = 1, X is a union of classes of ∼X, thus X−1X also is a union of classes for
∼X, and finally X−1X \ 1 is a union of classes of ι. Next, if Un is a union of classes
of ι, then by the previous fact both U−1

n X and X−1Un are unions of classes of ι. Thus
Un+1 is a union of classes of ι. The fact that X is recognizable implies that ι has finite
index. The result follows. �

Example 2.3.7 Let A = {a, b} and X = ba∗. Then X is a recognizable suffix code.
Indeed, U1 = a+ and U2 = ∅. Thus the sequence (Un) has two distinct elements.

2.4 Codes and Bernoulli distributions 71

2.4 Codes and Bernoulli distributions

In this section, we consider Bernoulli distributions. Recall that for a Bernoulli distri-
bution π on A∗ and a set X ⊂ A∗, we set

π (X) =
∑
x∈X

π (x).

The value π (X) is a nonnegative number or +∞. For any family (Xi)i≥0, of subsets
of A∗, one has

π
(⋃

i≥0

Xi

)
≤
∑
i≥0

π (Xi), (2.14)

with equality if the sets Xi are pairwise disjoint.

Example 2.4.1 Let A = {a, b} and X = {a, ba, bb}. Let π be a Bernoulli distribution
on A∗. Setting p = π (a), q = π (b), we get π (X) = p + pq + q2 = p + pq + (1 −
p)q = p + q = 1.

For a Bernoulli distribution π , and a set X, recall that the probability generating
series of X is

FX(t) =
∑
n≥0

π (X ∩ An)tn.

Since π (X ∩ An) ≤ 1, the radius of convergence of FX(t) is at least 1 and π (X) =
FX(1).

Lemma 2.4.2 Let π be a Bernoulli distribution on A∗. For subsets X, Y ⊂ A+, one
has

FX∪Y (t) = FX(t) + FY (t) if X ∩ Y = ∅,

and

FXY (t) = FX(t)FY (t) if the product XY is unambiguous.

Proof. The first equality is clear. For the second, observe that for all n,

XY ∩ An =
⋃

i+j=n

(X ∩ Ai)(Y ∩ Aj).

The above union is disjoint when the product XY is unambiguous. Thus, from the
first equality, it follows that

π (XY ∩ An) =
∑

i+j=n

π ((X ∩ Ai)(Y ∩ Aj)),

and since clearly π ((X ∩ Ai)(Y ∩ Aj)) = π (X ∩ Ai)π (Y ∩ Aj), the formula follows.
�

72 2 Codes

We observe that

FX1···Xm
(t) = FX1 (t) · · ·FXm

(t)

provided every word in X1 · · ·Xm has a unique factorization as a product of words
in X1, . . . , Xm.

Proposition 2.4.3 Let X ⊂ A+ be a code and let π be a Bernoulli distribution on
A∗. Then

FX∗(t) = 1

1 − FX(t)
.

Proof. Since FX(0) = 0, we have 1/(1 − FX(t)) =∑n≥0 FX(t)n. Since X is a code,
the products Xn are unambiguous, that is every word in Xn has a unique factorization
as a product of n words in X. By Lemma 2.4.2, this implies that FXn(t) = FX(t)n.
Since moreover the sets Xn are pairwise disjoint, we have FX∗ (t) = F⋃

n≥0 Xn(t) =∑
n≥0 FXn (t). Finally we obtain 1/(1 − FX(t)) =∑n≥0 FX(t)n =∑n≥0 FXn(t) =

FX∗ (t). �

In the case of the uniform Bernoulli distribution, we get the following corollary
relating the ordinary generating functions fX(t) and fX∗ (t) of X and X∗ respectively.

Corollary 2.4.4 Let X be a code over a finite alphabet A. Then

fX∗ (t) = 1

1 − fX(t)
.

Proof. Indeed, by Equation (1.32) we have, for the uniform Bernoulli distribution,
fX(t) = FX(kt) and fX∗ (t) = FX∗ (kt), where k = Card(A). So the corollary follows
from Proposition 2.4.3. �

Theorem 2.4.5 If X is a code over A, then π (X) ≤ 1 for all Bernoulli distributions
π on A∗.

Proof. Suppose first that X is finite. Then π (X) is finite. Assume by contradiction
that π (X) > 1. Then FX(1) > 1, and therefore there is a number r < 1 such that
FX(r) = 1. Since X is a code, one has FX∗ (t) = 1/(1 − FX(t)) by Proposition 2.4.3.
Then FX∗ (t) diverges for t = r and thus the radius of convergence of FX∗ (t) is strictly
smaller than 1, a contradiction for probability generating series.

Since π (X) is the upper bound of the values for its finite subsets, the result follows.
�

In the case where the alphabet A is finite and where the distribution π is uniform,
we obtain

Corollary 2.4.6 Let X be a code over an alphabet with k letters. Then∑
x∈X

k−|x| ≤ 1. �

2.4 Codes and Bernoulli distributions 73

Example 2.4.7 Let A = {a, b}, and X = {b, ab, ba}. Define π by π (a) = 1/3,
π (b) = 2/3. Then

π (X) = 2

3
+ 2

9
+ 2

9
= 10

9
thus X is not a code. Note that for π (a) = π (b) = 1/2, we get π (X) = 1. Thus it is
impossible to conclude that X is not a code from the second distribution.

The following example shows that the converse of Theorem 2.4.5 is false.

Example 2.4.8 Let A = {a, b}, and X = {ab, aba, aab}. The set X is not a code
since

(aba)(ab) = (ab)(aab).

However, any Bernoulli distribution π gives π (X) < 1. Indeed, set p = π (a), q =
π (b). Then

π (X) = pq + 2p2q.

It is easily seen that we always have pq ≤ 1
4 and also p2q ≤ 4

27 , since p + q = 1.
Consequently

π (X) ≤ 1

4
+ 8

27
< 1.

This example gives a good illustration of the limits of Theorem 2.4.5 in its use for
testing whether a set is a code. Indeed, the set X of Example 2.4.8, where the test
fails, is obtained from the set of Example 2.4.7, where the test is successful, simply by
replacing b by ab. This shows that the counting argument represented by a Bernoulli
distribution takes into account the lengths as well as the number of words. In other
terms, Theorem 2.4.5 allows us to conclude that X is not a code only if there are “too
many too short words”.

Proposition 2.4.9 Let X be a code over A. If there exists a positive Bernoulli distri-
bution π on A∗ such that π (X) = 1, then the code X is maximal.

Proof. Suppose that X is not maximal. Then there is some word y �∈ X such that
Y = X ∪ y is a code. By Theorem 2.4.5, we have π (Y) ≤ 1. On the other hand,

π (Y) = π (X) + π (y) = 1 + π (y).

Thus π (y) = 0, which is impossible since π is positive. �

Proposition 2.4.9 is very useful for proving that a code is maximal. The direct
method for proving maximality, based on the definition, indeed is usually much
more complicated than the verification of the conditions of the proposition. A more
precise statement, holding for a large class of codes, will be given in the next section
(Theorem 2.5.16).

Example 2.4.1 (continued) Since π (X) = 1 and X is prefix, X is a maximal code.

74 2 Codes

Example 2.4.10 We consider again the Dyck code D over A = {a, b} described in
Example 2.2.11. Let π be a positive Bernoulli distribution on A∗, and set p = π (a),
q = π (b).

Let Da = D ∩ aA∗ and Db = D ∩ bA∗. Note that Da is formed of the words x on
A such that |u|a − |u|b > 0 for each nonempty proper prefix u of x or equivalently
|v|a − |v|b < 0 for each nonempty proper suffix v of x. In particular Da = D̃b since
the same holds for Db with b and a interchanged. Let us show that

Da = aD∗
ab, Db = bD∗

ba. (2.15)

Let indeed x be a word of Da . Clearly x = ayb for some y ∈ A∗. Since |x|a = |x|b,
we have |y|a = |y|b and thus y ∈ D∗. Set y = y1y2 · · · yn with yi ∈ D. Then each
yi is in Da . Indeed, if yi is in Db, then ay1 · · · yi−1b is a prefix of x which belongs
to Da , a contradiction with the fact that D is a prefix code. Conversely, any word in
aD∗

ab is clearly in Da . This shows that Da = aD∗
ab. The second equality is proved

in an analogous way.
Since all products in (2.15) are unambiguous, we obtain FDa

(t) =
Fa(t)FD∗

a
(t)Fb(t). Since Da is a code, we have FD∗

a
(t) = 1/(1 − FDa

(t)). Thus FDa
(t)

is one of the two solutions of the quadratic equation

Y (t)2 − Y (t) + pqt2 = 0.

This equation has two solutions (1 ±
√

1 − 4pqt2)/2. For the series FDa
(t), the

correct sign is the minus sign because FDa
(0) = 0. Thus

FDa
(t) = 1 −

√
1 − 4pqt2

2
.

Since Da = D̃b, we have FDa
(t) = FDb

(t). Thus FD(t) = 2FDa
(t) which gives finally

FD(t) = 1 −
√

1 − 4pqt2.

Thus π (D) = 1 − √
1 − 4pq or equivalently π (D) = 1 − |p − q| since (p − q)2 =

(p + q)2 − 4pq = 1 − 4pq.
For π (a) = π (b) = 1/2, we have π (D) = 1. This gives another proof that D

is a maximal code (Example 2.2.11). Note that π (D) < 1 for any other Bernoulli
distribution.

Example 2.4.11 The set X =⋃n≥0 anbAn is prefix, and therefore is a code over
A = {a, b}. It is a maximal code. Let indeed π be a positive Bernoulli distribution,
and set p = π (a). Then

π (anbAn) = pn(1 − p)

hence

π (X) =
∑
n≥0

pn(1 − p) = (1/(1 − p))(1 − p) = 1.

2.5 Complete sets 75

We now give a statement which proves that the inequality of Corollary 2.4.6 is
actually tight.

Theorem 2.4.12 (Kraft–McMillan) Given a sequence (un)n≥1 of integers, there exists
a code X over an alphabet A of k symbols such that un = Card(X ∩ An) if and only
if ∑

n≥1

unk
−n ≤ 1. (2.16)

Moreover, the code X can be chosen to be prefix.

Inequality (2.16) is called the Kraft inequality.
Proof. The necessity of the condition follows from Corollary 2.4.6. Conversely,
observe first that by the inequality, one has also

∑
1≤i≤n uik

−i ≤ 1 or equivalently,
multiplying both sides by kn,

∑
1≤i≤n uik

n−i ≤ kn for all n ≥ 1. Let us prove by
induction on n ≥ 1 that there exists a prefix code Xn on an alphabet A of k symbols
such that Card(Xn ∩ Ai) = ui for 1 ≤ i ≤ n.

This is true for n = 1 since u1 ≤ k. Next, suppose that the property holds for n.
The set of words of length n + 1 with a prefix in Xn is

⋃
1≤i≤n(Xn ∩ Ai)An+1−i .

Consequently, the number of words of length n + 1 with a prefix in Xn is

s =
∑

1≤i≤n

uik
n+1−i .

Since s + un+1 ≤ kn+1, we can choose a set Y of un+1 words of length n + 1 without
a prefix in Xn. In this way, the set Xn+1 = Xn ∪ Y is a prefix code with length
distribution (ui)1≤i≤n+1. �

2.5 Complete sets

Any subset of a code is itself a code. Consequently, it is important to know the
structure of maximal codes. Many of the results contained in this book are about
maximal codes.

The notion of complete sets introduced in this section is in some sense dual to that
of a code. For instance, any set containing a complete set is itself complete. Even if
the duality is not perfectly balanced, it allows us to formulate maximality in terms of
completeness, thus replacing an extremal property by a combinatorial one.

Let M be a monoid and let P be a subset of M . An element m ∈ M is completable
in P if there exist u, v in M such that umv ∈ P . It is equivalent to say that P meets
the two-sided ideal MmM ,

MmM ∩ P �= ∅
or, in other words, that

m ∈ F (P) = M−1PM−1.

76 2 Codes

A word which is not completable in P is incompletable. The set of words completable
in P is of course F (P); the set F̄ (P) = M \ F (P) of incompletable words is a two-
sided ideal of M which is disjoint from P .

A subset P of M is dense in M if all elements of M are completable in P , thus if
F (P) = M or, in an equivalent way, if P meets all (two-sided) ideals in M . Clearly,
each superset of a dense set is dense.

The use of the adjective dense is justified by the fact that dense subsets of M are
exactly the dense sets relative to some topology on M (see Exercise 2.5.2).

Example 2.5.1 Let A = {a}. The dense subsets of A∗ are the infinite subsets.

Example 2.5.2 In a group G, any nonempty subset is dense, since GmG = G for m

in G.

Example 2.5.3 The Dyck code D over A = {a, b} is dense in A∗. Indeed, if w ∈ A∗,
then v = a2|w|bwb|w| is easily seen to be in D∗. Furthermore, no proper nonempty
prefix of v is in D∗. Thus v is in D, showing that w is completable in D.

It is useful to have a special term for codes X such that the submonoid X∗ is dense.
A subset P of M is called complete in M if the submonoid generated by P is dense.
Every dense set is also complete. Next, a subset X of A∗ is complete if and only if
F (X∗) = A∗.

Example 2.5.4 Any nonempty subset of a+ is complete, since it generates an infinite
submonoid.

Theorem 2.5.5 Any maximal code is complete.

The theorem is a direct consequence of the following proposition.

Proposition 2.5.6 Let X ⊂ A+ be a maximal code. For any word w ∈ A∗, one has

X∗wA∗ ∩ X∗ �= ∅.

Proof. The result is clear if Card(A) = 1 or if w is the empty word. Otherwise,
by Proposition 1.3.6, there is a word w′ ∈ A+ such that y = ww′ is unbordered.
Set Y = X ∪ y. It suffices to prove that X∗yA∗ ∩ X∗ �= ∅. Since Y is not a code,
we have x1 · · · xn = y1 · · · ym with n,m ≥ 1, xi, yj ∈ Y and x1 �= y1. Since X is
a code, at least one of the xi, yj is equal to y. Consider the leftmost occurrence
of y among the xi, yj . We may assume that it occurs among the xi , say at index
k. Thus x1, . . . , xk−1 ∈ X, xk = y. Let � be the least index such that x1 · · · xk is a
prefix of y1 · · · y�. Set z = x1 · · · xku = y1 · · · y�. Clearly z ∈ X∗yA∗ (see Figure 2.4).
We prove that z ∈ X∗ by showing that y1, . . . , y� ∈ X. Let p be the least index
such that x1 · · · xk−1 is a prefix of y1 · · · yp. Set x1 · · · xk−1v = y1 · · · yp, with v not
empty because X is a code. Thus xku = vyp+1 · · · y�. One has y1, . . . , yp ∈ X by the
minimality of k. Next, yp+1, . . . , y�−1 are proper factors of xk = y and therefore are
also in X. Finally, y� �= y since y is unbordered. So y� ∈ X and z ∈ X∗. �

2.5 Complete sets 77

x1 xk−1 xk = y

y1 yp y

u

Figure 2.4 Showing that z ∈ X∗yA∗ ∩ X∗.

y y

bm a4+5m bm

Figure 2.5 The factorization of bma4+5mbm in words in Y .

Example 2.5.7 We are able now to verify one of the claims made in Section 2.1,
namely that there do exist finite codes which are not contained in a maximal finite
code.

Let X = {a5, ba2, ab, b}. It is a code over A = {a, b}. Any maximal code contain-
ing X is infinite. Indeed, let Y be a maximal code over A containing X, and assume
Y finite. Set m = max{|y| | y ∈ Y } and let

u = bma4+5mbm.

Since Y is maximal, it is complete. Thus u is a factor of a word in Y ∗. Neither bm

nor a4+5m can be proper factors of a word in Y . Thus there exist y, y ′ ∈ Y ∪ 1 and
integers p, q, r ≥ 0 such that

u = bpyaqy ′br

with aq ∈ Y ∗ (see Figure 2.5). The word a5 is the only word in Y which does not
contain b; thus q is a multiple of 5; this implies that |y|a + |y ′|a ≡ 4 mod 5.
Let y = bha5s+i and y ′ = aj+5t bk with 0 ≤ i, j ≤ 4. We have i + j ≡ 4 mod 5
whence i + j = 4. We will show that any choice of i, j leads to the conclusion
that Y is not a code. This yields the contradiction.

If i = 0, j = 4, then k ≥ 1 and we have ba2 · a5t+4bk = b · a5(t+1) · ab · bk−1.
If i = 1, j = 3, then bha5s+1 · b = bh · a5s · ab.
If i = 2, j = 2, then b · a2+5t bk = ba2 · a5t · bk .
If i = 3, j = 1, then h ≥ 1 and bha5s+3 · b = bh−1 · ba2 · a5s · ab.
Finally, if i = 4, j = 0, then bha5s+4 · ab = bh · a5(s+1) · b.

This example is a particular case of a general construction (see Proposition 12.3.3).
The converse of Theorem 2.5.5 is false (see Example 2.5.9). However, it is true

under an additional assumption that relies on the following definition.
A subset P of a monoid M which is not dense is called thin. If P is thin, there

is at least one element m in M which is incompletable in P , that is such that
MmM ∩ P = ∅, or equivalently F (P) �= M .

78 2 Codes

The use of the adjective thin is justified by results like Proposition 2.5.8 or 2.5.12.

Proposition 2.5.8 Let M be a monoid and P,Q,R ⊂ M . Then the set P ∪ Q is thin
if and only if P and Q are thin. If R is dense and P is thin, then R \ P is dense.

Proof. If P and Q are thin, then there exist m, n ∈ M such that

MmM ∩ P = ∅, MnM ∩ Q = ∅.

Then mn is incompletable in P ∪ Q and therefore P ∪ Q is thin. Conversely if
P ∪ Q is thin, there exists m ∈ M which is incompletable in P ∪ Q and therefore
incompletable in P and also in Q. Hence P and Q are thin. If R is dense in M and
P is thin, then R \ P cannot be thin since otherwise R = (R \ P) ∪ P would also be
thin by the above statement. �

Thin subsets of a free monoid have additional properties. In particular, any finite
subset of A∗ is clearly thin. Furthermore, if X, Y are thin subsets of A∗ then the set
XY is thin. In fact, if u �∈ F (X), v �∈ F (Y), then uv �∈ F (XY).

Example 2.5.9 The Dyck code D over A = {a, b} is dense (See Example 2.5.3). It
is a maximal code since it is a group code (see Example 2.2.11). For each x ∈ D, the
code D \ x remains dense, in view of Proposition 2.5.8, and thus remains complete.
But of course D \ x is no more a maximal code. This example shows that the converse
of Theorem 2.5.5 does not hold in general.

Theorem 2.5.5 admits a converse in the case of codes which are both thin and
complete. Before going on to prove this, we give some useful properties of these sets.

Proposition 2.5.10 Let X ⊂ A∗ be a thin and complete set. Let w be a word incom-
pletable in X. Then

A∗ =
⋃

d∈D,g∈G

d−1X∗g−1 = D−1X∗G−1, (2.17)

where D and G are the sets of suffixes (resp. prefixes) of w.

Proof. Let z ∈ A∗. Since X∗ is dense, the word wzw is completable in X∗, thus for
some u, v ∈ A∗

uwzwv ∈ X∗.

Now w is not a factor of a word in X. Thus there exist two factorizations w = g1d =
gd1 such that

ug1, dzg, d1v ∈ X∗.

This shows that z ∈ d−1X∗g−1. �

2.5 Complete sets 79

Proposition 2.5.11 Let X be a thin and complete subset of A∗. For any positive
Bernoulli distribution π on A∗, we have

π (X) ≥ 1.

Proof. We have π (A∗) = ∞. Since the union in Equation (2.17) is finite, there exists
a pair (d, g) ∈ D × G such that π (d−1X∗g−1) = ∞. Now

d(d−1X∗g−1)g ⊂ X∗.

This implies

π (d)π (d−1X∗g−1)π (g) ≤ π (X∗).

The positivity of π shows that π (dg) �= 0. Thus π (X∗) = ∞. Now

π (X∗) ≤
∑
n≥0

π (Xn) ≤
∑
n≥0

(π (X))n.

Assuming π (X) < 1, we get π (X∗) < ∞. Thus π (X) ≥ 1. �

Note the following property showing, as already claimed before, that a thin set has
only few words.

Proposition 2.5.12 Let X ⊂ A∗ be a thin set. For any positive Bernoulli distribution
on A∗, we have

π (X) < ∞.

Proof. Let w be a word which is not a factor of a word in X: w �∈ F (X). Set n = |w|.
We have n ≥ 1. For 0 ≤ i ≤ n − 1, consider

Xi = {x ∈ X | |x| ≡ i mod n}.
It suffices to show that π (Xi) is finite for i = 0, . . . , n − 1. Now

Xi ⊂ Ai(An \ w)∗.

Since An \ w is a code, we have

π [(An \ w)∗] =
∑
k≥0

(π (An \ w))k =
∑
k≥0

(1 − π (w))k.

The positivity of π implies π (w) > 0 and consequently

π [(An \ w)∗] = 1

π (w)
.

Thus π (Xi) ≤ 1/π (w). �

We are now ready to prove

80 2 Codes

Theorem 2.5.13 Any thin and complete code is maximal.

Proof. Let X be a thin, complete code and let π be a positive Bernoulli distribution.
By Proposition 2.5.11, π (X) ≥ 1, and by Theorem 2.4.5, we have π (X) ≤ 1. Thus
π (X) = 1. But then Proposition 2.4.9 shows that X is maximal. �

Theorems 2.5.5 and 2.5.13 can be grouped together to give

Theorem 2.5.14 Let X be a code over A. Then X is complete if and only if X is
dense or maximal.

Proof. Assume X is complete. If X is not dense, then it is thin, and consequently
X is maximal by the previous theorem. Conversely, a dense set is complete, and a
maximal code is complete by Theorem 2.5.5. �

Before giving other consequences of these statements, let us present a first appli-
cation of the combinatorial characterization of maximality.

Proposition 2.5.15 Let X ⊂ A∗ be a finite maximal code. For any nonempty subset
B of A, the code X ∩ B∗ is a maximal code over B. In particular, for each letter
a ∈ A, there is an integer n such that an ∈ X.

Proof. The second claim results from the first one by taking B = {a}. Let n =
max{|x| | x ∈ X} be the maximal length of words in X, and let ∅ �= B ⊂ A. To
show that Y = X ∩ B∗ is a maximal code over B, it suffices to show, in view of
Theorem 2.5.13, that Y is complete (in B∗). Let w ∈ B∗ and b ∈ B. Consider the
word

w′ = bn+1wbn+1.

The completeness of X gives words u, v ∈ A∗ such that

uw′v = x1x2 · · · xk

for some x1, x2, . . . , xk ∈ X. But by the definition of n, there exist two integers i, j

(1 ≤ i < j ≤ k) such that

xixi+1 · · · xj = brwbs

for some r, s ∈ {1, . . . , n} (see Fig. 2.6). But then xi, xi+1, . . . , xj ∈ X ∩ B∗ = Y .
This shows that w is completable in Y ∗. �

Let X ⊂ A+ be a finite maximal code, and let a ∈ A be a letter. The (unique)
integer n such that an ∈ X is called the order of a relative to X.

Theorem 2.5.16 Let X be a thin code. The following conditions are equivalent:

(i) X is a maximal code.
(ii) There exists a positive Bernoulli distribution π with π (X) = 1.

(iii) For any positive Bernoulli distribution π , we have π (X) = 1.
(iv) X is complete.

2.5 Complete sets 81

xi xj

u bn+1 w bn+1 v

Figure 2.6 The factorization of ubn+1wbn+1v.

Proof. (i) ⇒ (iv) is Theorem 2.5.5. (iv) ⇒ (iii) is a consequence of Theorem 2.4.5 and
Proposition 2.5.11. (iii) ⇒ (ii) is not very hard, and (ii) ⇒ (i) is Proposition 2.4.9. �

Theorem 2.5.16 gives a surprisingly simple method to test whether a thin code
X is maximal. It suffices to take any positive Bernoulli distribution π and to check
whether π (X) = 1.

Example 2.5.17 The Dyck code D over A = {a, b} is maximal and complete, but
satisfies π (D) = 1 only for one Bernoulli distribution (see Example 2.4.10). Thus
the conditions (i) + (ii) + (iv) do not imply (iii) for dense codes.

Example 2.5.18 The prefix code X =⋃n≥0 anbAn over A = {a, b} is dense since
for all w ∈ A∗, a|w|bw ∈ X. It satisfies (iii), as we have seen in Example 2.4.11. Thus
X satisfies the four conditions of the theorem without being thin.

Theorem 2.5.19 Let X be a thin subset of A+, and let π be a positive Bernoulli
distribution. Any two among the three following conditions imply the third:

(i) X is a code.
(ii) π (X) = 1.

(iii) X is complete.

Proof. (i) + (ii) ⇒ (iii). The condition π (X) = 1 implies that X is a maximal code,
by Proposition 2.4.9. Thus by Theorem 2.5.5, X is complete.

(i) + (iii) ⇒ (ii) Theorem 2.4.5 and condition (i) imply that π (X) ≤ 1. Now X is
thin and complete; in view of Proposition 2.5.11, we have π (X) ≥ 1.

(ii) + (iii)⇒ (i) Let n ≥ 1 be an integer. First, we verify that Xn is thin and complete.
To see completeness, let u ∈ A∗, and let v,w ∈ A∗ be such that vuw ∈ X∗. Then
vuw ∈ Xk for some k ≥ 0. Thus (vuw)n ∈ (Xn)k ⊂ (Xn)∗. This shows that u is
completable in (Xn)∗. Further, since X is thin and because the product of two thin
sets is again thin, the set Xn is thin.

Thus, Xn is thin and complete. Consequently, π (Xn) ≥ 1 by Proposition 2.5.11.
On the other hand, we have π (Xn) ≤ π (X)n and thus π (Xn) ≤ 1. Consequently
π (Xn) = 1. Thus for all n ≥ 1

π (Xn) = π (X)n.

Proposition 2.4.3 shows that X is a code. �

82 2 Codes

Thin codes constitute a very important class of codes. They will be characterized
by some finiteness condition in Chapter 11. We anticipate these results by proving a
particular case which shows that the class of thin codes is quite a large one.

Proposition 2.5.20 Any recognizable code is thin.

Proof. Let X ⊂ A∗ be a recognizable code, and let A = (Q, i, T) be a deterministic
complete automaton recognizing X. Associate to a word w, the number

ρ(w) = Card(Q · w) = Card{q · w | q ∈ Q}.
We have ρ(w) ≤ Card(Q) and ρ(uwv) ≤ ρ(w) for all words u, v.

Let J be the set of words w in A∗ with minimal ρ(w). The previous inequality
shows that J is a two-sided ideal of A∗.

Let w ∈ J , and let P = Q · w. Then P · w = P . Indeed P · w ⊂ Q · w = P ,
and on the other hand, P · w = Q · w2. Thus Card(P · w) = ρ(w2). Since ρ(w) is
minimal, ρ(w2) = ρ(w), whence the equality. This shows that the mapping p �→
p · w from P onto P is a bijection. It follows that there is some integer n such that
the mapping p �→ p · wn is the identity mapping on P .

Since P = Q · w, we have q · w = q · wn+1 for all q ∈ Q. To show that X is thin,
it suffices to show that X does not meet the two-sided ideal J . Assume that J ∩ X �= ∅
and let x ∈ X ∩ J . Then i · x = t ∈ T . Next x ∈ J and, by the previous discussion,
there is some integer n ≥ 1 such that i · xn+1 = t . This implies that xn+1 ∈ X. But
this is impossible, since X is a code. �

The converse of Proposition 2.5.20 is false, as shown by the following example.

Example 2.5.21 The code X = {anbn | n ≥ 1} is thin (for example, ba is not a factor
of X), but X is not recognizable.

Example 2.5.22 In one interesting case, the converse of Proposition 2.5.20 holds:
Any thin group code is recognizable. Indeed let X ⊂ A∗ be a group code. Let ϕ :
A∗ → G be a surjective morphism onto a group G, and let H be a subgroup of G such
that X∗ = ϕ−1(H). By assumption, X is thin. Let m be a word that is incompletable
in X. We show that H has finite index in G, and more precisely that

G =
⋃
p≤m

Hϕ(p)−1,

(where p runs over the prefixes of m). Indeed let g ∈ G and w ∈ ϕ−1(g). Let u ∈ A∗

be such that ϕ(u) is the group inverse of gϕ(m). Then ϕ(wmu) = gϕ(m)ϕ(u) = 1,
whence wmu ∈ X∗. Now m is incompletable in X. Thus m is not factor of a word in
X and consequently there is a factorization m = pq such that wp, qu ∈ X∗. But then
h = ϕ(wp) ∈ H . Since h = gϕ(p), we have g ∈ Hϕ(p)−1. This proves the formula.

The formula shows that there are finitely many right cosets of H in G. Thus the
representation of G by permutations on the right cosets of H is also finite. Denote
it by K . Let α : G → K be the canonical morphism defined by Hrα(g) = Hrg

2.5 Complete sets 83

(see Section 1.13). Then, setting N = {σ ∈ K | Hσ = H }, we have H = α−1(N) =
α−1(α(H)). Thus X∗ = ψ−1ψ(X∗), where ψ = α · ϕ. Since K is finite, this shows
that X∗ is recognizable. Consequently, X is also recognizable (Exercise 2.2.7).

Remark 2.5.23 We have used in the preceding paragraphs arguments which rely
basically on two techniques: probabilities on the one hand which allowed us to prove
especially Theorem 2.5.13 and direct combinatorial arguments on words on the other
(as in the proof of Theorem 2.5.5).

It is interesting to note that some of the proofs can be completed by using just one of
the two techniques. A careful analysis shows that all the preceding statements with the
exception of those involving maximality can be established by using only arguments
on probabilities. As an example, the implication (ii) ⇒ (iv) in Theorem 2.5.16 can
be proved as follows without using the maximality of X. If X is not complete, then
X∗ is thin. Thus, by Proposition 2.5.12, π (X∗) < ∞ which implies π (X) < 1 by
Proposition 2.4.3.

Conversely, there exist, for some of the results given here, combinatorial proofs
which do not rely on probabilities. This is the case for Theorem 2.5.13, where the
proof given relies heavily on arguments about probabilities. Another proof of this
result will be given in Chapter 9 (Corollary 9.4.6). This proof is based on the fact that
if X ⊂ A+ is a thin complete code, then all words w ∈ A∗ satisfy

(X∗wX∗)+ ∩ X∗ �= ∅.

This implies Theorem 2.5.13, because according to this formula, X ∪ w is not a code
for w �∈ X and thus X is a maximal code.

Example 2.5.7 shows that a finite code is not always contained in a finite maximal
code. The inclusion problem, for a finite code X, is the existence of a finite maximal
code containing X. The inclusion conjecture claims that the inclusion problem is
decidable.

We prove the following remarkable property.

Theorem 2.5.24 (Ehrenfeucht–Rozenberg) Every rational code is contained in a
maximal rational code.

The proof relies on the following result.

Proposition 2.5.25 Let X ⊂ A+ be a code. Let y ∈ A∗ be an unbordered word such
that A∗yA∗ ∩ X∗ = ∅. Let

U = A∗ \ (X∗ ∪ A∗yA∗). (2.18)

Then the set

Y = X ∪ y(Uy)∗ (2.19)

is a complete code.

84 2 Codes

Proof. Set V = A∗ \ A∗yA∗. Then by assumption X∗ ⊂ V and U = V \ X∗. Let us
first observe that the set Z = Vy is a prefix code.

Assume indeed that vy < v′y for two words v and v′ in V . Since y is unbordered,
vy must be a prefix of v′. But then v′ is in A∗yA∗, a contradiction. Thus Z is prefix.

Now we show that Y is a code. Assume the contrary and consider a relation

y1y2 · · · yn = y ′
1y

′
2 · · · y ′

m

with y1, . . . , y
′
m ∈ Y and y1 �= y ′

1. The set X being a code, one of these words must
be in Y \ X. Assume that one of y1, . . . , yn is in Y \ X, and let p be the smallest
index such that yp ∈ y(Uy)∗. From y �∈ F (X∗) it also follows that yp �∈ F (X∗).
Consequently one of y ′

1, . . . , y
′
m is in y(Uy)∗. Let q be the smallest index that

y ′
q ∈ y(Uy)∗. Then

y1 · · · yp−1y, y ′
1y

′
2 · · · y ′

q−1y ∈ Z

whence y1 · · · yp−1 = y ′
1 · · · y ′

q−1 since Z is prefix. The set X is a code, thus from
y1 �= y ′

1 it follows that p = q = 1. Set

y1 = yu1y · · · yuky, y ′
1 = yu′

1y · · · yu′
ly,

with u1, . . . , uk, u
′
1, . . . , u

′
l ∈ U . Assume y1 < y ′

1. Since Z is prefix, the set Z∗ is
right unitary. From U ⊂ V , it follows that each uiy, u′

iy is in Z. Consequently

u1 = u′
1, . . . , uk = u′

k.

Let t = u′
k+1y · · · yu′

ly. We have

y2 · · · yn = ty ′
2 · · · y ′

m.

The word y is a factor of t , and thus occurs also in y2 · · · yn. This shows that one of
y2, . . . , yn, say yr , is in y(Uy)∗. Suppose r is chosen minimal. Then y2 · · · yr−1y ∈ Z

and u′
k+1y ∈ Z are prefixes of the same word. With the set Z being prefix, we have

u′
k+1 = y2 · · · yr−1.

Thus u′
k+1 ∈ X∗, in contradiction with the hypothesis u′

k+1 ∈ U . This shows that Y

is a code.
Finally, let us show that Y is complete. Let w ∈ A∗ and set

w = v1yv2y · · · yvn−1yvn

with n ≥ 1 and vi ∈ A∗ \ A∗yA∗. Then ywy ∈ Y ∗. Indeed let vi1 , vi2 , . . . , vik be those
vi’s which are in X∗. Then

ywy = (yv1y · · · yvi1−1y)vi1 (yvi1+1y · · · yvi2−1y) · · · vik (yvik+1y · · · yvny).

Each of the parenthesized words is in Y . Thus the whole word is in Y ∗. �

2.5 Complete sets 85

0

1

2

3

4

5

a

a

b

b

a

b

a
b

a

b

b

Figure 2.7 An automaton recognizing U .

Proof of Theorem 2.5.24. Since X is rational, the set U defined in Equation (2.18) is
also rational. Thus Y is a rational code. By Proposition 2.5.20, the set Y is thin. By
Theorem 2.5.13, it follows that Y is a maximal code. �

Example 2.5.26 Let A = {a, b} and X = {a, ab}. The word y = bba is unbordered
and is incompletable in X∗. A deterministic automaton recognizing U = A∗ \ (X∗ ∪
A∗yA∗) is given in Figure 2.7. Accordingly, we obtain, after some rewriting the
expression

U = b+ ∪ X∗abb+ ∪ bX∗ab∗.

Consider a Bernoulli distribution π on A∗ and set p = π (a), q = π (b). Then an easy
computation shows that π (U) = 1/pq and thus π (Y) = 1 for Y defined by (2.18),
which implies that Y is maximal.

Example 2.5.27 Let A = {a, b} and X = {bb, bbab, babb}. The word y = aba is
incompletable in X∗. However, X ∪ y is not a code, since

(bb)(aba)(babb) = (bbab)(aba)(bb).

This example shows that Proposition 2.5.25 is false without the assumption that y is
unbordered.

The following proposition shows how the property of being a complete code is
reflected in an automaton.

Proposition 2.5.28 Let X ⊂ A+, and let A = (Q, 1, 1) be a trim automaton recog-
nizing X∗. Then X is complete if and only if the transition monoid of A does not
contain the null relation.

Proof. If X is complete, then there exist, for each w ∈ A∗, two words u, v ∈ A∗ such
that uwv ∈ X∗. Then there exists a path 1

u−→ p
w−→ q

v−→ 1. This implies that
(p, q) is in ϕ(w) and consequently ϕA(w) is not null.

86 2 Codes

Conversely, if ϕA(A∗) does not contain the null relation, then for each w ∈ A∗,
there exists at least one path p

w−→ q. Since A is trim, there exist two paths 1
u−→ p

and q
v−→ 1. Then uwv ∈ X∗. Thus X is complete. �

For a (commutative) polynomial p ∈ Q[A], and a Bernoulli distribution π on the
alphabet A we denote by π (p) the number obtained by substituting π (a) to the letter
a, for all a ∈ A. More precisely, setting A = {a1, . . . , an} and p = p(a1, . . . , an), the
number π (p) is π (p) = p(π (a1), . . . , π (an)).

Proposition 2.5.29 Let p ∈ Q[A] be a polynomial and let a ∈ A be a letter. The
following conditions are equivalent:

(i) p is divisible by the polynomial 1 −∑a∈A a.
(ii) π (p) = 0 for each positive Bernoulli distribution.

Proof. The implication (i) ⇒ (ii) is clear.
To prove (ii)⇒ (i), fix a letter a ∈ A, and set B = A \ a. Consider p as a polynomial

in the variable a with coefficients in Q[B]. Similarly, consider
∑

a∈A a − 1 = a + u

as a linear polynomial in a with constant term u where u =∑b∈B b − 1.
The Euclidean division of p by a + u gives p = q(a + u) + r where q ∈ Q[A] and

r ∈ Q[B]. Since π (p) = 0 and π (a + u) = 0 for each positive Bernoulli distribution
π , the polynomial r vanishes at all points z = (z1, . . . , zn−1) ∈ Qn−1 such that zi > 0
and z1 + · · · + zn−1 ≤ 1. It follows that r vanishes and consequently 1 −∑a∈A a

divides p. �

Recall that α denotes the canonical morphism from Q〈〈A〉〉 onto Q[[A]].

Theorem 2.5.30 Let X be a finite maximal code on the alphabet A. Then α(X) − 1
is divisible by α(A) − 1.

Proof. Let π be a positive Bernoulli distribution on A∗. By Theorem 2.5.16, we have
π (X) = 1. By Proposition 2.5.29, this implies the conclusion. �

Example 2.5.31 For the code X = {aa, ba, bb, baa, bba} of Example 4.1.7, one has

α(X) − 1 = (b + 1)(a + b − 1)(a + 1).

2.6 Composition

We now introduce a partial binary operation on codes called composition. This
operation associates to two codes Y and Z satisfying a certain compatibility condition
a third code denoted by Y ◦ Z.

There is a twofold interest in this operation. First, it gives a useful method for
constructing more complicated codes from simple ones. For example, we will see
that the composition of a prefix and a suffix code can result in a code that is neither
prefix nor suffix.

Second, and this constitutes the main interest for composition, the converse notion
of decomposition allows us to study the structure of codes. If a code X decomposes
into two codes Y and Z, then these codes are generally simpler.

2.6 Composition 87

Let Z ⊂ A∗ and Y ⊂ B∗ be two codes with B = alph(Y). Then the codes Y and
Z are composable if there is a bijection from B onto Z. If β is such a bijection, then
Y and Z are called composable through β. Then β defines a morphism from B∗ into
A∗ which is injective since Z is a code (Proposition 2.1.1). The set

X = β(Y) ⊂ Z∗ ⊂ A∗ (2.20)

is obtained by composition of Y and Z (by means of β). We denote it by

X = Y ◦β Z,

or by X = Y ◦ Z when the context permits it. Since β is injective, X and Y are related
by bijection, and in particular Card(X) = Card(Y). The words in X are obtained just
by replacing, in the words of Y , each letter b by the word β(b) ∈ Z. The injectivity
of β, the Corollary 2.1.6 and (2.20) give the following result.

Proposition 2.6.1 If Y and Z are two composable codes, then X = Y ◦ Z is a code.
�

Example 2.6.2 Let A = {a, b}, B = {c, d, e} and

Z = {a, ba, bb} ⊂ A∗, Y = {cc, d, dc, e, ec} ⊂ B∗.

The code Z is prefix, and Y is suffix. Further Card(B) = Card(Z). Thus Y and Z are
composable, in particular by means of the morphism β : B∗ → A∗ defined by

β(c) = a, β(d) = ba, β(e) = bb.

Then X = Y ◦ Z = {aa, ba, baa, bb, bba}. The code X is neither prefix nor suffix.
Now define β ′ : B∗ → A∗ by

β ′(c) = ba, β ′(d) = a, β ′(e) = bb.

Then X′ = Y ◦β ′ Z = {baba, a, aba, bb, bbba}. This example shows that the com-
posed code Y ◦β Z depends essentially on the mapping β.

The two expressions X = X ◦ A and X = B ◦ X are exactly the particular cases
obtained by replacing one of the two codes by the alphabet in the expression

X = Y ◦ Z.

Indeed, if Y = B, then Z = β(B) = X; if now Z = A, then B can be identified with
A, and Y can be identified with X. These examples show that every code is obtained
in at least two ways as a composition of codes.

Notice also the formula

X = Y ◦β Z =⇒ Xn = Yn ◦β Z n ≥ 2.

88 2 Codes

Indeed, Yn is a code (Corollary 2.1.7) and

Yn ◦ Z = β(Yn) = Xn.

Proposition 2.6.3 Let X ⊂ C∗, Y ⊂ B∗, and Z ⊂ A∗ be three codes, and assume
that X and Y are composable through γ and that Y and Z are composable through
β. Then

(X ◦γ Y) ◦β Z = X ◦βγ (Y ◦β Z).

Proof. We may suppose that C = alph(X), B = alph(Y). By hypothesis the injective
morphisms γ : C∗ → B∗ and β : B∗ → A∗ satisfy

γ (C) = Y, β(B) = Z.

Let δ : D∗ → C∗ be a coding morphism for X; thus δ(D) = X. Then

D∗ δ−→ C∗ γ−→ B∗ β−→ A,

and βγ δ(D) = βγ (X) = X ◦βγ βγ (C) = X ◦βγ (Y ◦β Z), and also βγ δ(D) =
β(γ δ(D)) = γ δ(D) ◦β β(B) = (X ◦γ Y) ◦ Z. �

Some of the properties of codes are preserved under composition.

Proposition 2.6.4 Let Y and Z be composable codes, and let X = Y ◦ Z.

1. If Y and Z are prefix (suffix) codes, then X is a prefix (suffix) code.
2. If Y and Z are complete, then X is complete.
3. If Y and Z are thin, then X is thin.

The proof of 3 uses Lemma 2.6.5 which cannot be established before Chapter 9
(Lemma 9.4.8), where more powerful tools will be available.

Lemma 2.6.5 Let Z be a thin complete code over A. For each word u ∈ Z∗ there
exists a word w ∈ Z∗uZ∗ having the following property. If mwn ∈ Z∗, then there
exists a factorization w = sut with ms, tn ∈ Z∗.

Proof of Proposition 2.6.4. Let Y ⊂ B∗, Z ⊂ A∗, and let β : B∗ → A∗ be an injective
morphism with β(B) = Z. Thus X = β(Y) = Y ◦β Z.

1. Assume Y and Z are prefix codes. Consider x, xu ∈ X with u ∈ A∗. Since
X ⊂ Z∗, we have x, xu ∈ Z∗ and since Z∗ is right unitary, this implies u ∈ Z∗.
Let y = β−1(x), v = β−1(u) ∈ B∗. Then y, yv ∈ Y and Y is prefix; thus v = 1 and
consequently u = 1. This shows that X is prefix. The case of suffix codes is handled
in the same way.

2. Let w ∈ A∗. The code Z is complete, thus uwv ∈ Z∗ for some u, v ∈ A∗. Let
h = β−1(uwv) ∈ B∗. There exist, by the completeness of Y , two words ū, v̄ ∈ B∗

with ūhv̄ ∈ Y ∗. But then β(ū)uwvβ(v̄) ∈ X∗. This proves the completeness of X.

2.6 Composition 89

3. If Z is not complete, then F (X) ⊂ F (Z∗) �= A∗ and X is thin. Assume now that
Z is complete. The code Y is thin. Consequently F (Y) �= B∗. Let ū ∈ B∗ \ F (Y),
and u = β(ū). Let w be the word associated to u in Lemma 2.6.5. Then w �∈ F (X).
Indeed, assuming the contrary, there exist words m, n ∈ A∗ such that

x = mwn ∈ X ⊂ Z∗.

In view of Lemma 2.6.5,

x = msutn, with ms, tn ∈ Z∗ = β(B∗).

Setting p = β−1(ms), q = β−1(tn), we have pūq ∈ Y . Thus ū ∈ F (Y), contrary to
the assumption. This shows that w is not in X, and thus X is thin. �

We now consider the second aspect of the composition operation, namely the
decomposition of a code into simpler ones. For this, it is convenient to extend the
notation alph in the following way: let Z ⊂ A∗ be a code, and X ⊂ A∗. Then

alphZ(X) = {z ∈ Z | ∃u, v ∈ Z∗ : uzv ∈ X}.
In other words, alphZ(X) is the set of words in Z which appear at least once in a
factorization of a word in X as a product of words in Z. Of course, alphA = alph. The
following proposition describes the condition for the existence of a decomposition.

Proposition 2.6.6 Let X,Z ⊂ A∗ be codes. There exists a code Y such that X =
Y ◦ Z if and only if

X ⊂ Z∗ and alphZ(X) = Z. (2.21)

The second condition in (2.21) means that all words in Z appear in at least one
factorization of a word in X as product of words in Z.

Proof. Let X = Y ◦β Z, where β : B∗ → A∗ is an injective morphism, Y ⊂ B∗ and
B = alph(Y). Then X = β(Y) ⊂ β(B∗) = Z∗ and further β(B) = alphβ(B)(β(Y)),
that is, Z = alphZ(X).

Conversely, let β : B∗ → A∗ be a coding morphism for Z, and set Y = β−1(X).
Then X ⊂ β(B∗) = Z∗ and β(Y) = X. By Corollary 2.1.6, Y is a code. Next
alph(Y) = B since Z = alphZ(X). Thus Y and Z are composable and X = Y ◦β Z.

�

We have already seen that there are two obvious decompositions of a code X ⊂ A∗

as X = Y ◦ Z, namely X = B ◦ X and X = X ◦ A. They are obtained by taking
Z = X and Z = A in Proposition 2.6.6 and assuming A = alph(X). These decom-
positions are not interesting. We will call indecomposable a code which has no other
decompositions. Formally, a code X ⊂ A∗ with A = alph(X) is called indecompos-
able if X = Y ◦ Z and B = alph(Y) imply Y = B or Z = A. If X is decomposable,
and if Z is a code such that X = Y ◦ Z, and Z �= X, Z �= A, then we say that X

decomposes over Z.

90 2 Codes

Example 2.6.2 (continued) The code X decomposes over Z. On the contrary, the
code Z = {a, ba, bb} is indecomposable. Indeed, let T be a code such that Z ⊂ T ∗,
and suppose T �= A. Necessarily, a ∈ T . Thus b �∈ T . But then ba, bb ∈ T , whence
Z ⊂ T . Now Z is a maximal code (Example 2.4.1), thus Z = T .

Proposition 2.6.7 For any finite code X, there exist indecomposable codes
Z1, . . . , Zn such that

X = Z1 ◦ · · · ◦ Zn.

To prove this proposition, we introduce a notation. Let X be a finite code, and let

�(X) =
∑
x∈X

(|x| − 1) =
∑
x∈X

|x| − Card(X).

For each x ∈ X, we have |x| ≥ 1. Thus �(X) ≥ 0, and moreover �(X) = 0 if and only
if X is a subset of the alphabet.

Proposition 2.6.8 If X,Z ⊂ A∗ and Y ⊂ B∗ are finite codes such that X = Y ◦ Z,
then �(X) ≥ �(Y) + �(Z).

Proof. Let β : B∗ → A∗ be the injective morphism such that X = Y ◦β Z. From
Card(X) = Card(Y) it follows that

�(X) − �(Y) =
∑
x∈X

|x| −
∑
y∈Y

|y| =
∑
y∈Y

(|β(y)| − |y|).

Now |β(y)| =∑b∈B |β(b)||y|b. Thus

�(X) − �(Y) =
∑
y∈Y

(∑
b∈B

(|β(b)||y|b − |y|b)
)
=
∑
y∈Y

(∑
b∈B

(|β(b)| − 1)|y|b
)

=
∑
b∈B

(|β(b)| − 1)
(∑

y∈Y

|y|b
)
.

By assumption B = alph(Y), whence
∑

y∈Y |y|b ≥ 1 for all b in B. Further |β(b)| ≥ 1
for b ∈ B by the injectivity of β. Thus

�(X) − �(Y) ≥
∑
b∈B

(|β(b)| − 1) =
∑
z∈Z

(|z| − 1) = �(Z). �

Proof of Proposition 2.6.7. The proof is by induction on �(X). If �(X) = 0, then X is
composed of letters, and thus is indecomposable. If �(X) > 0 and X is decomposable,
then X = Y ◦ Z for some codes Y,Z. Further Y and Z are not formed of letters
only, and thus �(Y) > 0, �(Z) > 0. By Proposition 2.6.8, we have �(Y) < �(X) and
�(Z) < �(X). Thus Y and Z are compositions of indecomposable codes. Thus X also
is such a composition. �

Proposition 2.6.7 shows the existence of a decomposition of codes. This decom-
position need not be unique. This is shown in the following example.

2.6 Composition 91

Example 2.6.9 Consider the codes

X = {aa, ba, baa, bb, bba}, Y = {cc, d, dc, e, ec}, Z = {a, ba, bb}
of Example 2.6.2. As we have seen, X = Y ◦ Z. There is also a decomposition

X = Y ′ ◦γ Z′

with

Y ′ = {cc, d, cd, e, ce}, Z′ = {aa, b, ba}
and γ : B∗ → A∗ defined by

γ (c) = b, γ (d) = aa, γ (e) = ba.

The code Z is indecomposable, the code Z′ is obtained from Z by interchanging a and
b, and by taking then the reverse. These operations do not change indecomposability.

Example 2.6.10 This example shows that in decompositions of a code in indecom-
posable codes, even the number of components need not be unique. For X = {a3b},
we have

X = {cd} ◦ {a2, ab} = {cd} ◦ {u2, v} ◦ {a, ab}
and also

X = {cd} ◦ {a3, b}.
This gives two decompositions of length 3 and 2, respectively.

The code X in Example 2.6.9 is neither prefix nor suffix, but is composed of such
codes. We may ask whether any (finite) code can be obtained by composition of
prefix and suffix codes. This is not the case, as shown in the following example, see
also Exercise 2.6.3.

Example 2.6.11 The code X = {b, ba, a2b, a3ba4} does not decompose over a prefix
or a suffix code.

Assume the contrary. Then X ⊂ Z∗ for some prefix (or suffix) code Z �= A. Thus
Z∗ is right unitary (resp. left unitary). From b, ba ∈ Z∗, it follows that a ∈ Z∗,
whence A = {a, b} ⊂ Z∗ and A = Z. Assuming Z∗ left unitary, b, a2b ∈ Z∗ implies
a2 ∈ Z∗. It follows that a3b ∈ Z∗, whence a3 ∈ Z∗ and finally a ∈ Z∗. Thus again
Z = A.

We now give a list of properties of codes which are inherited by the factors of a
decomposition. Proposition 2.6.12 is in some sense dual to Proposition 2.6.4.

Proposition 2.6.12 Let X, Y,Z be codes with X = Y ◦ Z

1. If X is prefix (suffix), then Y is prefix (suffix).
2. If X is maximal, then Y and Z are maximal.
3. If X is complete, then Z is complete.
4. If X is thin, then Z is thin.

92 2 Codes

Proof. We assume that X,Z ⊂ A∗, Y ⊂ B∗, β : B∗ → A∗ an injective morphism
with β(B) = Z, β(Y) = X.

1. Let y, yu ∈ Y . Then β(y), β(y)β(u) ∈ X, and since X is prefix, β(u) = 1. Now
β is injective, whence u = 1.

2. If Y is not maximal, let Y ′ = Y ∪ y be a code for some y �∈ Y . Then β(Y ′) =
β(Y) ∪ β(y) is a code which is distinct from X by the injectivity of β. Thus X is not
maximal.

Assume now that Z is not maximal. Set Z′ = Z ∪ z for some z �∈ Z such that Z′ is
a code. Extend B to B ′ = B ∪ b (b �∈ B) and define β over B ′∗ by β(b) = z. Then β

is injective by Proposition 2.1.1 because Z′ is a code. Further Y ′ = Y ∪ b is a code,
and consequently β(Y ′) = X ∪ z is a code, showing that X is not maximal.

3. is clear from X∗ ⊂ Z∗.
4. Any word in Z is a factor of a word in X. Thus F (Z) ⊂ F (X). By assumption,

F (X) �= A∗. Thus F (Z) �= A∗ and Z is thin. �

Proposition 2.6.13 Let X, Y,Z be three codes such that X = Y ◦ Z. Then X is thin
and complete if and only if Y and Z are thin and complete.

Proof. By Proposition 2.6.4, the code X is thin and complete, provided Y and Z

are. Assume conversely that X is thin and complete. Proposition 2.6.12 shows that
Z is thin and complete. In view of Theorem 2.5.14, X is a maximal code. By
Proposition 2.6.12, Y is maximal, and thus Y is complete (Theorem 2.5.5). It remains
to show that Y is thin. With the notations of the proof of Proposition 2.6.12, consider
a word u �∈ F (X). Since Z∗ is dense, sut ∈ Z∗ for some words s, t ∈ A∗. Thus
sut = β(w) for some w ∈ B∗. But now w is not completable in Y , since otherwise
hwk ∈ Y for some h, k ∈ B∗, giving β(h)sutβ(k) ∈ X, whence u ∈ F (X). Thus Y

is thin. �

By Proposition 2.6.13, for thin codes Y,Z, the code Y ◦ Z is maximal if and only if
Y and Z are maximal. We have no example showing that this becomes false without
the assumption that Y and Z are thin.

Proposition 2.6.14 Let X be a maximal code over A. For any code Z ⊂ A∗, the code
X decomposes over Z if and only if X∗ ⊆ Z∗. In particular, X is indecomposable if
and only if X∗ is a maximal free submonoid of A∗.

Proof. If X decomposes over Z, then X∗ ⊂ Z∗. Conversely, if X∗ ⊂ Z∗, let Z̄ =
alphZ(X). Then X ⊂ Z̄∗, and of course Z̄ = alphZ̄(X). By Proposition 2.6.6, X

decomposes over Z̄. In view of Proposition 2.6.12, the code Z̄ is maximal. By
Z̄ ⊂ Z, we have Z̄ = Z. �

Example 2.6.15 Let A be an alphabet. We show that the uniform code An decom-
poses over Z if and only if Z = Am and m divides n. In particular, An is indecom-
posable for n prime and for n = 1.

Indeed, let An = X = Y ◦β Z, where Y ⊂ B∗ and β : B∗ → A∗. The code X is
maximal and bifix, and thus Y also is maximal and bifix and Z is maximal. Let
y ∈ Y be a word of maximal length, and set y = ub with b ∈ B. Then Y ∪ uB

2.7 Prefix graph of a code 93

s t

x

s x

t

Figure 2.8 The two types of edges in a prefix graph.

y s

y x

z

z t

y s

y t

z

z x

Figure 2.9 The two ways of continuing a double factorization ys = z. On the left, it is
extended to yx = zt , and on the right to yt = zx.

is prefix. Let indeed y ′ = ub′, b′ ∈ B. Any proper prefix of y ′ is also a proper
prefix of y, and therefore is not in Y ∪ uB. Next if y ′ is a prefix of some y ′′ in
Y ∪ uB, then by the maximality of the length of y, we have |y ′| = |y ′′| and y ′ = y ′′.
Thus Y ∪ uB is a code. Hence Y ∪ uB = Y , because Y is maximal. It follows that
β(uB) = β(u)Z ⊂ X. Now X is a uniform code, thus all words in Z have the same
length, say m. Since Z is maximal, Z = Am. It follows that n = m|y|.

2.7 Prefix graph of a code

The prefix graph is used to give an efficient test whether a set X is a code. The graph
can also answer some other questions on the set X, by applying standard techniques
for graph traversal. This will be detailed in later chapters (Exercises 5.1.1 and 5.1.2).

Let X be a finite set of words over some alphabet A. We define a graph GX for X,
called the prefix graph of X as follows. The vertices of GX are the nonempty prefixes
of words in X, and there is an edge from s to t if and only if one of the two following
situations occurs: either st ∈ X or sx = t for some x ∈ X, see Figure 2.8.

Edges of the first type are called crossing, those of the second type extending. A
crossing edge (s, t) is labeled with the word t , an extending edge (s, t) with sx = t

is labeled with x. As usual, the label of a path is the product of the label of its edges.
In the case where sx = t and x, t are in X, then (s, t) is an extending edge labeled
with x, and (s, x) is a crossing edge, also labeled with x.

A vertex s is intended to represent a prefix that has been constructed in the process
of trying to build a double factorization, say ys = z, for y, z ∈ X∗. A crossing edge
(s, t), with st = x ∈ X, gives the factorization yx = zt , and the prefix t swapped to
the other side of the equation, whereas an extending edge (s, t) with sx = t merely
replaces the factorization by yt = zx, extending the current prefix from s to t . See
Figure 2.9.

Example 2.7.1 Let X = {a, bb, abbba, babab} over the alphabet A = {a, b}. The
nonempty prefixes, in addition to the words in X, are the words b, ab, ba, abb,

94 2 Codes

a

b

ab

babb abb

bab

abbb

baba

abbba

babab

b

ba

a

bab

ab

b
bb

a

bb

a

a

Figure 2.10 The prefix graph GX for the set X = {a, bb, abbba, babab}. A crossing edge is
drawn dashed, an extending edge is drawn filled. The label of a crossing edge is the name of

its endpoint. The label of an extending edge (s, t) is the word x in X for which sx = t .

bab, abbb, and baba, so the graph has 11 vertices. The prefix graph GX is given in
Figure 2.10.

We will prove that the set X is a code if and only if there is no path in the prefix
graph GX from a vertex in X to a vertex in X. In our example, there is a path from a

to itself, or to abbba, so the set is not a code.
We start with a lemma describing paths in the prefix graph GX. First, we need a

definition. Two factorizations (x1, . . . , xn) and (y1, . . . , ym) of a word are disjoint if
x1 · · · xi �= y1 · · · yj for 1 ≤ i < n, 1 ≤ j < m. We say simply that

x1 · · · xn = y1 · · · ym

is a disjoint double factorization when the two factorizations (x1, . . . , xn) and (y1,

. . . , ym) of the same word are disjoint.

Lemma 2.7.2 There is a path of length n ≥ 1 from s to t in the prefix graph of X if
and only if there exist x1, . . . , xk , y1, . . . , y� in X such that

sy1 · · · y�t = x1 · · · xk or sy1 · · · y� = x1 · · · xkt

are disjoint factorizations with k + � = n, and moreover s is a prefix of x1 (resp. a
prefix of t if k = 0). The label of the path is y1 · · · y�t in the first case and y1 · · · y�

in the second case. The first (second) case occurs if and only if the path contains an
odd (even) number of crossing edges.

Example 2.7.3 Consider as an example the path

abb
ba−→ ba

bab−→ bab
ab−→ ab

bb−→ abbb

in the previous graph. It is represented in the following picture.

2.7 Prefix graph of a code 95

b a b a b

a b b b a b a b a b b b

This path has length 4, the first 3 edges are crossing edges, the last one is an
extending edge. It corresponds to the disjoint factorizations abb|babab|abbb =
abbba|babab|bb. Here � = 1, k = 3, and the product of labels is babababbb. The
path

a
bb−→ abb

ba−→ ba
bab−→ bab

ab−→ ab
bb−→ abbbb

a−→ a

has two more edges.

a b b b a b a b a b b b a

a b b b a b a b a b b b a

It corresponds to the disjoint factorizations a|bb|babab|abbba = abbba|babab|bb|a
which shows that X is not a code.

Proof of Lemma 2.7.2. Assume first that there is a path of length n ≥ 1 from s to t . If
n = 1, then either st = x, or sx = t with x ∈ X. Thus there is a double factorization
of the desired form for n = 1.

Assume now n ≥ 1, and that there is edge from t to u. By induction, sy1 · · · y�t =
x1 · · · xk or sy1 · · · y� = x1 · · · xkt , and either tu = x ∈ X or tx = u for some x ∈
X, u /∈ X. So there are four cases to check.

If sy1 · · · y�t = x1 · · · xk and tu = x ∈ X, then sy1 · · · y�x = x1 · · · xku, and these
factorizations are again disjoint because u is a proper suffix of x.

If sy1 · · · y�t = x1 · · · xk and tx = u for some x ∈ X, then sy1 · · · y�u = x1 · · · xkx

and again the factorizations are disjoint because u is a proper suffix of t , so of xk .
If sy1 · · · y� = x1 · · · xkt and tu = x ∈ X, then sy1 · · · y�u = x1 · · · xkx and the

factorizations are disjoint because u is a proper suffix of x. Moreover, if k = 0 then
s is a prefix of x because s is a prefix of t and t is a prefix of x.

Finally, if sy1 · · · y� = x1 · · · xkt and tx = u for some x ∈ X, then sy1 · · · y�x =
x1 · · · xku. The factorizations are again disjoint. If k = 0, then s is a prefix of t and t

is a prefix of u, so the word s is a prefix of u.
Conversely, assume that there is a double factorization sy1 · · · y�t = x1 · · · xk or a

double factorization sy1 · · · y� = x1 · · · xkt , with k + � = n. If n = 1, then k = 1, � =
0 in the first case, and k = 0, � = 1 in the second case. Indeed, the value k = 1, � = 0
in the second case is ruled out by the condition that s is a prefix of x1. Thus, there is
a crossing edge (s, t) in the first case, and an extending edge (s, t) in the second case.

Assume n > 1 and sy1 · · · y�t = x1 · · · xk . Since t �= xk one of these words is a
proper suffix of the other. Suppose first that t is a proper suffix of xk , and set xk = ut .
Then there is an edge from u to t in GX and moreover sy1 · · · y� = x1 · · · xk−1u. If

96 2 Codes

k = 1, then s is a proper prefix of u, otherwise s remains a proper prefix of x1. Thus
the induction applies and there is a path from s to u of length n − 1, whence a path of
length n from s to t . Assume next that xk is a suffix of t and set t = uxk . This defines
an extending edge (u, t). Thus sy1 · · · y�u = x1 · · · xk−1. Since the left-hand side is
not empty, s is a prefix of x1. The conclusion again follows by induction.

If the double factorization is sy1 · · · y� = x1 · · · xkt , then since s is a proper prefix
of the right-hand side, one has � > 0.

If y� is a proper suffix of t , then t = uy� for some u and there is an extending edge
(u, t). Replacing t by uy� gives sy1 · · · y�−1 = x1 · · · xku. Either s is a prefix of x1, or
k = 0, and then s is a proper prefix of u if � > 1 or s = u if � = 1. In the first case,
there is a path from s to u, in the second case there is just the edge (s, t).

Finally, suppose that t is a proper suffix of y�. Then y� = ut and thus there is a
crossing edge (u, t). Next, sy1 · · · u = x1 · · · xk , so k ≥ 1 and s remains a prefix of
x1. There is again a path from s to u of length n − 1 by induction. This completes
the proof. �

Theorem 2.7.4 A set X of nonempty words is a code if and only if there is no path
in its prefix graph from a vertex in X to a vertex in X.

Proof. Assume there is a path from s ∈ X to t ∈ X in the prefix graph GX. Then there
exists a disjoint double factorization of one of the forms described in Lemma 2.7.2.
In both cases, this gives a double factorization of a word as a product of words in X.

Conversely, assume that X is not a code, and consider a shortest word w in X+

that has two distinct factorizations

w = x1 · · · xn = y1 · · · ym

with x1, . . . , xn, y1, . . . , ym in X. We may assume that x1 is a proper prefix of y1.
Then there exists a path from x1 to ym of length m + n − 2 in GX. �

Given a finite graph G, many properties of G can be checked in linear time with
respect to the size of G, where the size is the total number of vertices and edges of G.
Among these properties are the existence of cycles, the existence of paths between
distinguished sets of nodes, and so on. All properties described in the previous section
are of these kind. This requires to estimate the size of the graph GX of X.

Proposition 2.7.5 Let X be a finite set of words with n elements, and let N =∑
x∈X |x| be the sum of the lengths of the words in X. The prefix graph GX has at

most N vertices and at most nN edges.

Proof. The vertices of GX are the nonempty prefixes of words in X; there are at most
N − 1 of them. Next, consider a vertex t and an edge (s, t) entering t . If (s, t) is a
crossing edge, then st ∈ X is longer than t , and if t = sx for some x ∈ X, then x is
shorter than t . So a word x in X either contributes at most one crossing edge, or it
contributes at most one extending edge. So the total number of edges entering t is at
most n, and the total number of edges in GX is at most nN . �

2.7 Prefix graph of a code 97

Corollary 2.7.6 Given the prefix graph GX of a set X of n words of total length N ,
it can be checked in time O(nN) whether X is a code.

Proof. This is a direct consequence of the previous discussion. �

It remains to show how to construct the prefix graph GX of a finite set X in linear
time with respect to its size, that is with respect to nN , where n is the number of
words in X, and N is the sum of the lengths of the words in X.

The construction is in three steps. First, a simple automaton recognizing X is
constructed. This automaton is deterministic but not complete, and has the shape of
a tree. Such an automaton is usually called a trie. The vertices of GX are among
the states of this automaton. Next, the automaton is converted into what is called a
pattern matching machine. This is done in equipping the trie with a failure function.
The role of this function is to provide, in the case a transition does not exist for some
letter in some state, another state where one can look for a possible transition. As a
result, the pattern matching machine recognizes, with the aid of the failure function,
the set A∗X of words ending in a word in X.

These two preliminary steps are used, in the final step, to compute efficiently the
edges of the graph GX.

Given a finite set X of words over the alphabet A, the trie of X is the automaton
whose set of states is the set P of prefixes of words in X. The initial state is the empty
word, the end states are the words in X. The next state function is defined for p ∈ P

and a ∈ A if and only if pa is in P , and then p · a = pa.
The trie of X can be constructed very simply by inserting the words of X into a

tree that is initially reduced to the empty word.

Trie(X)

1 T ← New Automaton()
2 for x ∈ X do
3 p ← ε

4 for i ← 1 to |x| do
5 a ← x[i]
6 if p · a exists then
7 p ← p · a
8 else q ← New State()
9 p · a ← q

10 p ← q

11 SetTerminal(p)
12 return T

This algorithm clearly computes the trie in time O(N), where N is the sum of the
lengths of the words in X.

Example 2.7.7 The trie of X = {a, bb, abbbba, babab} is given in Figure 2.11.

98 2 Codes

a

b

b

b

a

b

b

b

a

a

b

Figure 2.11 The trie of X = {a, bb, abbbba, babab}. Viewed as an automaton, it accepts
words in X.

Given a finite set X of words over the alphabet A, the failure function is intended
to be used when the next-state function p · a is undefined in the trie of X. It gives a
state q where a new trial for the computation of the next state should be started.

The failure function f of X is defined on the set of nonempty prefixes of X. For
p ∈ P , p �= ε, f (p) is the longest proper suffix of p which is in P . For the empty
word, f (ε) = ε.

The pattern matching machine of X is the automaton derived from the trie of X

by extending the next-state function on P by

p · a =
{

pa if pa ∈ P ,

f (p) · a otherwise.

Moreover, the state p is terminal if f (p) is terminal. The function ComputeFail-
ure(T) computes the failure function for the trie T .

ComputeFailure(T)

1 f (ε) ← ε

2 F ← New Queue()
3 for a ∈ A such that ε · a is defined do
4 f (ε · a) ← ε

5 Add(F, ε · a)
6 while F �= ∅ do
7 p ← Get(F)
8 if IsTerminal(f (p)) then
9 SetTerminal(p)

10 for a ∈ A such that p · a is defined do
11 q ← f (p)
12 while q · a is undefined do
13 q ← f (q)
14 f (p · a) ← q · a
15 Add(F, p · a)

The pattern matching machine is obtained by constructing first the trie, and then
the failure function.

2.7 Prefix graph of a code 99

a

b

b

b

a

b

b

b

a

a

b

Figure 2.12 The pattern matching machine of X = {a, bb, abbbba, babab}. Viewed as an
automaton, it accepts words in A∗X. Its accepting states are in gray. The failure function is

represented by dotted edges.

Example 2.7.8 The pattern matching machine of X = {a, bb, abbbba, babab} is
given in Figure 2.12.

A state p is terminal for the pattern matching machine if it is a word in A∗X. It
appears useful to know the longest suffix of the state p that is in X. Call this σ (p).
The function σ is undefined on non terminal states, and for terminal states, is is given
by

σ (p) =
{

f (p) if f (p) is in X,

σ (f (p)) otherwise.

This shows that, provided we remember those states that are in X, is is quite easy,
and linear with respect to the number of states, to compute the function σ .

We are now ready to compute the edges of the graph GX. Each word x in X may
produce several crossing edges (s, t). This is a crossing edge provided the suffix t is
also a prefix of a word in X. All these suffixes are enumerated by the failure function.
Thus one gets the following function for computing the crossing edges:

CrossingEdges(X)

1 for x ∈ X do
2 t ← f (x)
3 while t �= ε do
4 s ← xt−1

5 AddCrossingEdge(s, t)
6 t ← f (t)

The only tricky line is the computation of the vertex corresponding to the word
xt−1. This may be done by maintaining, for each x in X, an array of pointers to the
vertices of its prefixes, indexed by their length. So, from the length of x and the length
of t one obtains the length of s, thus s in constant time.

The computation of extending edges is quite similar. Given a suffix t , we look for
all suffixes x of t . Each of these suffixes gives an extending edge (s, t), with sx = t .
To loop through the suffixes of t which are in X, one iterates the function σ . Thus
the function is

100 2 Codes

ExtendingEdges(X)

1 for t terminal states do
2 x ← σ (t)
3 while x �= ε do
4 s ← tx−1

5 AddExtendingEdge(s, t)
6 x ← σ (x)

Again, the tricky point is the computation of s = tx−1. To do this, one maintains
for each vertex p a pointer to the longest word in X for which p is a prefix. In the
present case, s is a prefix of t , so they share the same longest word in X, and the trick
of the array used previously applies again to give the vertex of s in constant time.

Altogether, the following function computes the prefix graph of the set X.

PrefixGraph(X)

1 T ← Trie(X)
2 ComputeFailure(T)
3 CrossingEdges(X)
4 ExtendingEdges(X)

We can finally state the following result as a consequence of the preceding con-
structions.

Proposition 2.7.9 Given a set X of n words over some alphabet A, of total length
N =∑x∈X |x|, the prefix graph GX can be constructed in time and space O(nN).

�

2.8 Exercises

Section 2.1

2.1.1 Let n ≥ 1 be an integer. Let I, J be two sets of nonnegative integers such that
for i, i ′ ∈ I and j, j ′ ∈ J ,

i + j ≡ i ′ + j ′ mod n

implies i = i ′, j = j ′. Let Y = {aibaj | i ∈ I, j ∈ J } and X = Y ∪ an. Show that
X is a code.

Section 2.2

2.2.1 Show directly (that is without using Theorem 2.2.14) that a set X = {x, y} is a
code if and only if x and y are not powers of a single word. (Hint: Use induction on
|x| + |y|.)
2.2.2 Let K be a field and A an alphabet. Let X ⊂ A+ be a code and let K〈X〉 be
the subsemiring of K〈A〉 generated by the elements of X. Show that K〈X〉 is free
in the following sense: Let β : B∗ → A∗ be a coding morphism for X. Extend β

by linearity to a morphism from the semiring K〈B〉 into K〈A〉. Show that β is an
isomorphism between K〈B〉 and K〈X〉.

2.8 Exercises 101

2.2.3 Show that a submonoid N of a monoid M is stable if and only if for all
m, n ∈ M we have

nm, n,mn ∈ N ⇒ m ∈ N.

2.2.4 Let M be a commutative monoid. Show that a submonoid of M is stable if and
only if it is biunitary.

2.2.5 For X ⊂ A+ let Y be the base of the smallest right unitary submonoid contain-
ing X.

(a) Show that Y ⊂ (Y ∗)−1X.
(b) Deduce that Card(Y) ≤ Card(X), and give an example showing that equality

might hold.

2.2.6 Let X be a subset of A+. Define a sequence (Sn)n≥0 of subsets of A∗ by setting

S0 = X∗, Sn+1 = (S−1
n Sn ∩ SnS

−1
n)∗.

Set S(X) =⋃n≥0 Sn. Show that S(X) is the free hull of X. Show that when X is
recognizable, the free hull of X is recognizable.

2.2.7 Let M be a submonoid of A∗ and let X = (M \ 1) \ (M \ 1)2 be its minimal
set of generators. Show that X is recognizable if and only if M is recognizable.

2.2.8 Let M be a monoid. Show that M is free if and only if it satisfies the following
conditions:

(i) there is a morphism λ : M → N into the additive monoid N such that λ−1(0)
= 1,

(ii) for all x, y, z, t ∈ M , the equation xy = zt holds if and only if there exists
u ∈ M such that xu = z, y = ut or x = zu, uy = t .

Section 2.3

2.3.1 Let X be a subset of A+ such that X ∩ XX+ = ∅. Define a relation ρ ⊂
A∗ × A∗ by (u, v) ∈ ρ if and only if there exists x ∈ X∗ such that

uxv ∈ X, ux �= 1, uv �= 1, xv �= 1.

Show that X is a code if and only if (1, 1) �∈ ρ+, where ρ+ denotes the transitive
closure of ρ.

Section 2.4

2.4.1 Let n ≥ 1 be an integer and I, J be two subsets of {0, 1, . . . , n − 1} such that
for each integer p in {0, 1, . . . , n − 1} there exist a unique pair (i, j) ∈ I × J such
that

p ≡ i + j mod n.

Let V = {i + j − n | i ∈ I, j ∈ J, i + j ≥ n}. For a set K of integers, set aK =
{ak | k ∈ K}. Let X ⊂ {a, b}∗ be the set defined by

X = aI (baV)∗baJ ∪ an.

Show that X is a maximal code.

102 2 Codes

a b b a b b b b b b b b a

b b b b a b b b b a a b b

Figure 2.13 This pair of words in U is the product of three words of Y which are
(a, b)(b2, b2)(a, b), (b, a)(b2, b2)2(b, a) and (ba)(b, b)(a, b).

2.4.2 The Motzkin code is the prefix code M on the alphabet A = {a, b, c} formed
of the words w ∈ A∗ such that |w|a − |w|b = 0 but |u|a − |u|b > 0 for any proper
nonempty prefix of w. Show that the generating series of M and M∗ are

fM (t) = 1 + t − √
1 − 2t − 3t2

2
, fM∗(t) = 1 − t −√

1 − 2t − 3t2

2t2

(Hint: Use the fact that M = c ∪ P where P = M ∩ aA∗ and P = aM∗b.)

2.4.3 Let A = {a1, ā1, . . . , an, ān}. Let D be the Dyck code on A. Show that for the
uniform Bernoulli distribution on A∗, one has

π (D) = 1

2n − 1
.

(Hint: Set Da = D ∩ aA∗ for a ∈ A. Show that Da = a(D − Da)∗ā.)

2.4.4 Let A = {a, b, c}, B = A × A and X = {a, b2}. We identify the set of pairs
of words (x, y) of A∗ × A∗ of equal length with their representation as words over
B, that is we identify (a1a2 · · · an, b1b2 · · · bn) with (a1, b1)(a2, b2) · · · (an, bn). Here
a1, . . . , an, b1, . . . , bn ∈ A. Show that the set

U = {(x, y) ∈ X∗ × X∗ | |x| = |y|}

is a free submonoid of B∗ generated by a bifix code Y . See Figure 2.13 for an example.
Use this to prove the identity∑

n≥0

f 2
n+1t

n = 1 − t

(1 + t)(1 − 3t + t2)

where fn is the n-th Fibonacci number defined by f0 = 0, f1 = 1 and fn+1 =
fn + fn−1 for n ≥ 1. (Hint: Show that U is generated by Y = (a, a) ∪
(b2, b2) ∪ (a, b)(b2, b2)∗(a, b) ∪ (a, b)(b2, b2)∗(b2, ba) ∪ (b, a)(b2, b2)∗(b, a) ∪
(b, a)(b2, b2)∗(ba, b2).)

Section 2.5

2.5.1 Show that the set X = {a3, b, ab, ba2, aba2} is complete and that no proper
subset of X is complete. Show that X is not a code.

2.9 Notes 103

2.5.2 Let M be a monoid. Let F be the family of subsets of M which are two-sided
ideals of M or empty.

(a) Show that there is a topology on M for which F is the family of open sets.
(b) Show that a subset P of M is dense in M with respect to this topology if

and only if F (P) = M , that is if P is dense in the sense of the definition given in
Section 2.5.

2.5.3 With the notations of Proposition 2.5.25, and V = A∗ \ A∗yA∗, show succes-
sively that

A∗ = (V y)∗V = (U y)∗(X∗y(U y)∗)∗V)

= (U y)∗V + (U y)∗(Y)∗y(U y)∗V .

(Use the identity (σ + τ)∗ = τ ∗(στ ∗)∗ = (σ ∗τ)∗σ ∗ for two power series σ, τ having
no constant term.) Derive directly from these equations the fact that Y is a code and
that Y is complete.

2.5.4 Show that each thin code is contained in a maximal thin code.

Section 2.6

2.6.1 Let ψ : A∗ → G be a morphism from A∗ onto a group G. Let H be a sub-
group of G and let X the group code defined by X∗ = ψ−1(H). Show that X is
indecomposable if and only if H is a maximal subgroup of G.

2.6.2 Show that any code X = {x, y} with two elements is composed of prefix and
suffix codes.

2.6.3 Show that the code X = {a, aba, babaab} is not obtained by composition of
prefix and suffix codes. Show that it is contained in the finite maximal code Y given
by

Y − 1 = (1 + b + baba(1 + a + b))(a + b − 1)(1 + ba).

Show that Y belongs to the family of finite maximal codes defined in Exercise 14.1.7.

2.9 Notes

Codes are frequently called uniquely decipherable codes or UD-codes. The notion
of a code originated in the theory of communication initiated by C. Shannon in
the late 1940s. The work of Shannon introduced a new scientific domain with
many branches and domains of applications. These include data compression, error-
correction and cryptography. A comprehensive account of these topics can be found
in Pless et al. (1998). The development of coding theory lead to a detailed study
of constant length codes in connection with problems of error detection and correc-
tion. An exposition of this research can be found in MacWilliams and Sloane (1977)

104 2 Codes

or van Lint (1982). The special class of convolution codes, which have close rela-
tion with finite automata as presented here, is treated in some detail in McEliece
(2004). An early standard book on information and communication theory is
Ash (1990).

Variable-length codes were investigated in depth for the first time by
Schützenberger (1955) and also by Gilbert and Moore (1959). The direction followed
by Schützenberger consists in linking the theory of codes with classical noncommu-
tative algebra. The results presented in this book represent this point of view. An early
account of it can be found in Nivat (1966). Since codes are bases of free submonoids
of a free monoid, codes are also related with bases of free algebras or of free groups
since the free semigroup may be embedded in both structures. For an exposition of
free algebras, see Cohn (1985). For an introduction to the theory of free groups,
see Magnus et al. (2004).

Connections between variable-length codes and automata, and several of the appli-
cations mentioned above are presented in Béal (1993) or Béal et al. (2009).

The notion of a stable submonoid appears for the first time in Schützenberger (1955)
which contains Proposition 2.2.5. The same result is also given in Shevrin (1960),
Cohn (1962) and Blum (1965). Proposition 2.2.13 appears in Tilson (1972). The
defect theorem (Theorem 2.2.14) has been proved in several formulations in Lentin
(1972), Makanin (1976), and Ehrenfeucht and Rozenberg (1978). Some generaliza-
tions are discussed in Berstel et al. (1979), see also Lothaire (2002). For related
questions see also Spehner (1976).

The test for codes given in Section 2.3 goes back to Sardinas and Patterson (1953)
and is in fact usually known as the Sardinas and Patterson algorithm. The proof of
correctness is surprisingly involved and has motivated a number of papers Bandy-
opadhyay (1963), Levenshtein (1964), Riley (1967), and de Luca (1976). The design
of an efficient algorithm is described in Spehner (1976). See also Rodeh (1982) and
Apostolico and Giancarlo (1984). The problem of testing whether a recognizable set
is a code is a special case of a well-known problem in automata theory, namely testing
whether a given rational expression is unambiguous. Standard decision procedures
exist for this question, see Eilenberg (1974) and Aho et al. (1974). These techniques
will be used in Chapter 4. The connection between codes and rational expressions
has been pointed out in Brzozowski (1967). Further, a characterization of those codes
whose coding morphism preserves the star height of rational expressions is given in
Hashiguchi and Honda (1976a).

The results of Section 2.4 are well known in information theory. Corollary 2.4.6
with its converse stated in Theorem 2.4.12 are known as the Kraft–McMillan theorem
(McMillan (1956)).

The main results of Section 2.5 are from Schützenberger (1955). Our presentation is
slightly more general. Proposition 2.5.25 and Theorem 2.5.24 are due to Ehrenfeucht
and Rozenberg (1983). They answer a question of Restivo (1977). Theorem 2.5.19
appears in Boë et al. (1980). Example 2.5.7 is a special case of a construction due to
Restivo (1977), Exercise 2.2.6 is from Berstel et al. (1979), Exercise 2.2.8 is known
as Levi’s lemma (Levi (1944)), Exercise 2.3.1 is from Spehner (1975).

2.9 Notes 105

We follow Aho and Corasick (1975) for the construction of a trie equipped with
a failure function. The resulting structure is called the pattern matching machine.
The presentation of the algorithm follows closely the description given in Hoffmann
(1984), see also Capocelli and Hoffmann (1985). These papers contain the transcrip-
tion to prefixes of the implementation of Apostolico and Giancarlo (1984). Similar
implementation to Hoffmann (1984) are given in Head and Weber (1993, 1995).
The implementation proposed in Rodeh (1982) gives the same bounds but is more
involved. It is based on the suffix tree, that is a compact tree representing all suffixes
of a finite set of words.

The exact complexity of testing unique decipherability is still unknown, see Galil
(1985) and Hoffmann (1984) for discussion and partial results.

The basic properties of codes have also been investigated in structures which
are more general than free monoids, namely free partially commutative monoids.
Given a symmetric relation I ⊂ A × A over an alphabet A, the free partially
commutative monoid M(A, I) is the monoid generated by A subject to the rela-
tions ab = ba for all pairs a, b ∈ I . Two problems have been investigated. First,
given a homomorphism f : M → N between free partially commutative monoids
M,N , can one decide whether f is injective? This was shown to be undecid-
able even when M is free (see the survey by Diekert and Muscholl (1996) for
details and references). Next, given partially commutative monoids M,N , when
does there exist an injective morphism from M into N? This problem, known as
the trace coding problem, was also shown to be undecidable in general by Kunc
(2004). Several particular cases where these problems are decidable were also
described.

The notion of code has also been generalized to codes in symbolic dynamical
systems, by Reutenauer (1986) and later by Restivo (1990). Let G be a finite directed
multigraph with edges labeled by letters from an alphabet A (the set of labels of
bi-infinite paths form what is called the sofic system defined by G). Let S(G) be the
set of finite words which are the label of a path in G. A subset X of S(G) is a code
over G if any element of S(G) has at most one factorization in elements of X. Thus a
code in the usual sense corresponds to the case where S(G) = A∗. A set X ⊂ S(G)
is complete over G if any element of S(G) is a factor of a word of X∗. It is shown
in Béal and Perrin (2006) that any maximal code over G is complete over G. This
generalizes Theorem 2.5.5. The converse is not true, even for finite codes, and thus
there is no generalization of Theorem 2.5.13. Other results for codes over graphs are
given in Béal and Perrin (2005) and Reutenauer (1986).

Other structures for which the notion of codes have been considered include
trees. Labeled trees are a natural generalization of words, for which the notion
of automaton has been introduced a long time ago. Tree codes have been intro-
duced in Nivat (1992) and its study has been further developed, for instance in
Mantaci and Restivo (2001).

Dyck codes are named after the German mathematician Walther von Dyck (see
also Berstel and Perrin (2007)). Motzkin codes of Exercise 2.4.2 are named after
Motzkin paths (see for instance Goulden and Jackson (2004)).

106 2 Codes

The combinatorial proof for the expression of the generating series of the squares of
the Fibonacci numbers given in Exercise 2.4.4 is from Shapiro (1981), see also Stanley
(1997), Example 4.7.14, and Foata and Han (1994).

Exercise 2.6.3 is from Derencourt (1996). It is a counterexample to a conjecture
in Restivo et al. (1989) asserting that every three-word code is composed of prefix
and suffix codes. It is not known whether any three-word code is contained in a finite
maximal code.

3

Prefix codes

Undoubtedly the prefix codes are the easiest to construct. The verification that a given
set of words is a prefix code is straightforward. However, most of the interesting
problems on codes can be raised for prefix codes. In this sense, these codes form a
family of models of codes: frequently, it is easier to gain intuition about prefix codes
rather than general codes. However, we can observe that the reasoning behind prefix
codes is often valid in the general case.

For this reason we now present a chapter on prefix codes. In the first section, we
comment on their definition and give some elementary properties. We also show how
to draw the picture of a prefix code as a tree (the literal representation of prefix codes).

In Section 3.2, a construction of the automata associated to prefix codes is given.
These automata are deterministic, and we will see in Chapter 9 how to extend their
construction to general codes.

The third section deals with maximal prefix codes. Characterizations in terms of
completeness are given. Section 3.4 presents the usual operations on prefix codes.
Most of them have an easy interpretation as operations on trees.

An important family of prefix codes is introduced in Section 3.5. They have
many combinatorial properties which illustrate the notions presented previously.
The synchronization of prefix codes is defined in Section 3.6. In fact, this notion will
be generalized to arbitrary codes in Chapter 9 where the relationship with groups will
be established. The relation between codes and Bernoulli distribution can be extended
to probability distributions in the case of prefix codes. This is done in Section 3.7,
where the notion of reccurrent event is introduced. The generating series of a rational
prefix code is N-rational and satisfies the Kraft inequality. We show in Section 3.8 a
converse.

3.1 Prefix codes

This introductory section contains equivalent formulations of the definition of a prefix
code together with the description of the tree associated to a prefix code. We then
show how any prefix code induces in a natural way a factorization of the free monoid.
Of course, all results in this chapter transpose to suffix codes by using the reverse
operation.

108 3 Prefix codes

Recall that for words x, y, we denote by x ≤ y (resp. x < y) the fact that x is a
prefix (resp. a proper prefix) of y. The order defined by ≤ is the prefix order. We write
x ≥ y (resp. x > y) whenever y ≤ x (resp. y < x). Two words x, y are incomparable
for the prefix order, and we write x �� y, if neither x is a prefix of y nor y is a prefix
of x.

A subset X of A∗ is prefix if any two distinct words in X are incomparable for the
prefix order. If a prefix subset X contains the empty word 1, then X = {1}. In the
other cases, X is a code (Proposition 2.1.9).

Example 3.1.1 The usual binary representation of positive integers is exponentially
more succinct than the unary representation, and thus is preferable for efficiency.
However, it is not adapted to representation of sequences of integers, since it is
not uniquely decipherable: for instance, 11010 may represent the number 26, or the
sequence 6, 2, or the sequence 1, 2, 2. The Elias code of a positive integer is composed
of its binary representation preceded by a number of zeros equal to the length of this
representation minus one. For instance, the Elias code of 26 is 000011010. It is easily
seen that the set of Elias encodings of positive integers is a prefix code. In fact, it is
the same as the code of Example 2.4.11, with a replaced by 0 and b replaced by 1.

It is convenient to have a shorthand for the proper prefixes (resp. proper suffixes)
of the words of a set X. For this we use

XA− = X(A+)−1 and A−X = (A+)−1X.

Thus u ∈ XA− if and only if u < x for some x ∈ X. Symmetrically, u ∈ XA+ if and
only if u > x for some x ∈ X.

There is a series of equivalent definitions for a set to be prefix, all of which will be
useful. The set X is prefix if and only if one of the following properties hold.

(i) X ∩ XA+ = ∅.
(ii) X ∩ XA− = ∅.

(iii) XA−, X, XA+ are pairwise disjoint.
(iv) If x, xu ∈ X, then u = 1.
(v) If xu = x ′u′ with x, x ′ ∈ X, then x = x ′ and u = u′.

The following proposition can be considered as describing a way to construct prefix
codes. It also shows a useful relationship between prefix codes and right ideals.

Proposition 3.1.2 For any subset Y of A∗, the set X = Y \ YA+ is prefix. Moreover
XA∗ = YA∗, that is X and Y are both empty or generate the same right ideal, and
X is the minimal set with this property.

Proof. Let X = Y \ YA+. From X ⊂ Y , it follows that XA+ ⊂ YA+, whence X ∩
XA+ ⊂ X ∩ YA+ = ∅. This proves that X is a prefix set. Next XA∗ ⊂ YA∗. For
the converse, let u ∈ Y and let v be its shortest prefix in Y . Then v ∈ X, whence
u ∈ XA∗. Thus Y ⊂ XA∗ and YA∗ = XA∗.

3.1 Prefix codes 109

X

R I

X XA∗

I I\IA+

X A∗\XA∗

R (1 ∪RA)\R

R A∗\R

I A∗\I

Figure 3.1 The bijections between the three families X , R and I.

Let Z be a minimal set of generators of YA∗, that is ZA∗ = YA∗. We show that
X ⊂ Z. Let indeed x be a word in X. Then x = zu for some u ∈ A∗ and z ∈ Z. Since
X also generates YA∗, z = x ′u′ for some x ′ ∈ X, u′ ∈ A∗. Thus x = zu = x ′u′u, and
since X is prefix, uu′ = 1. This shows that X ⊂ Z. Thus X = Z. �

The set X = Y \ YA+ is called the initial part of Y or also the base of the right
ideal YA∗.

The following statements describe natural bijections between the following fami-
lies of subsets of A∗:

1. the family X of prefix subsets,
2. the family I composed of the right ideals of A∗ together with the empty set,
3. the family R of prefix-closed subsets.

We describe here these three bijections.

Proposition 3.1.3 The following bijections hold.

(i) The map X �→ XA∗ is a bijection from X onto I, and the map I �→ I \ IA+ is
its inverse bijection from I onto X .

(ii) Set complementation maps bijectively R onto I.
(iii) The map X �→ A∗ \ XA∗ is a bijection from X onto R, and the map R �→

(1 ∪ RA) \ R is its inverse bijection from R onto X .

Proof. (i) For any nonempty subset X of A∗, the set XA∗ is a right ideal. Conversely,
for any subset I of A∗, the set X = I \ IA+ is prefix. Indeed, a proper prefix of an
element of X is not in I and therefore not in X. Thus the two maps are well defined.
Let us show that they are inverse to each other.

Let X be a prefix subset of A∗ and let I = XA∗. Then X = I \ IA+.
Indeed I \ IA+ = XA∗ \ XA+ = (X ∪ XA+) \ XA+ = X \ XA+ = X because
X ∩ XA+ = ∅.

Finally, let I be a right ideal of A∗ and let X = I \ IA+. By Proposition 3.1.2,
XA∗ = IA∗ = I .

110 3 Prefix codes

(ii) If w is not in the right ideal I , then none of its prefixes is in I . Thus R = A∗ \ I

is prefix-closed. Conversely, the complement of a prefix-closed set is a right ideal or
is empty.

(iii) The map sends ∅ to A∗. For a nonempty prefix code X, the bijection of (i)
sends it to the right ideal I = XA∗ �= A∗. Taking the complement sends it bijectively
to the nonempty prefix-closed set R = A∗ \ I = A∗ \ XA∗ by (ii). This shows the
first assertion.

By (i) and (ii), the inverse maps R to X = I \ IA+ with I = A∗ \ R = XA∗. Let
Y = RA \ R. A word x of X is not in R. Set x = ua with u ∈ A∗ and a ∈ A. Since
u is not in I , it is in R. Thus x is in Y . Conversely, let y be a word in Y . Then y is not
in R and thus y is in I . Since y ∈ RA, any proper prefix of y is in R. Thus y has no
proper prefix in I , that is y �∈ IA+. This proves that y ∈ X. �

Note that these bijections, with almost the same proofs, hold in any ordered set.

Example 3.1.4 Let A = {a, b} and let Y = A∗aA∗ be the set of words containing at
least one occurrence of the letter a. Then

X = Y \ YA+ = b∗a.

Example 3.1.5 Let A = {a, b}. The set I = A∗abA∗ is the set of words containing
a factor ab. It is a right ideal. The complement of I is the prefix-closed set R = b∗a∗.
The prefix code X = I \ IA+ is X = b∗a∗ab. This code, as the previous one, belongs
to the family of semaphore codes studied in Section 3.5.

The preceding bijections have the following counterpart as relations between for-
mal series.

Proposition 3.1.6 Let X be a prefix code over A and let R = A∗ \ XA∗. Then

X − 1 = R(A − 1), and A∗ = X∗R. (3.1)

Proof. We show first that the two equations are equivalent. By Proposition 2.6.1,
X∗ = (1 − X)−1. From this and from (1 − A)−1 = A∗ we get, by multiplying 1 −
X = R(1 − A) on the left by X∗ and on the right by A∗ the equation A∗ = X∗R.
The converse operations, that is multiplying on the left by 1 − X and on the right by
1 − A, give the first equation back.

The product of X and A∗ is unambiguous by the property (v) of prefix codes listed
above. Thus, XA∗ = X A∗, and

R = A∗\XA∗ = A∗ − X A∗ = (1 − X)A∗.

Multiplying both sides by 1 − A on the right, we get R(1 − A) = 1 − X. This proves
the formula. �

Note the following combinatorial interpretations of Formulas (3.1). The first can
be rewritten as R A + 1 = X + R and says that a word in R followed by a letter is

3.1 Prefix codes 111

1

a

aa
aaa

ab

b

ba

bb

bbb

1

a

aa

ab

ac

b

ba

bb

bc

c

ca

cb

cc

Figure 3.2 The literal representations of {a, b}∗ and of {a, b, c}∗.

either in R or in X and that each word in X is composed of a word in R followed by a
letter. The second formula says that each word w ∈ A∗ admits a unique factorization

w = x1x2 · · · xnu, x1, . . . , xn ∈ X, u ∈ R.

Example 3.1.7 Let A = {a, b} and X = a∗b as in Example 3.1.4. Then R = a∗.
Proposition 3.1.6 gives

X − 1 = R(A − 1) = a∗(a + b − 1) = a∗b − 1.

We single out the following corollary, which is also contained in Proposition 3.1.3,
for ease of reference.

Corollary 3.1.8 Let X and Y be prefix subsets of A∗. If XA∗ = YA∗, then X = Y .
�

Observe that there is a straightforward proof by series, since XA∗ = YA∗ implies
XA∗ = YA∗, from which the equality follows by simplifying by A∗.

We now give a useful graphical representation of prefix codes. It consists of
associating a tree with each prefix code in such a way that the leaves of the tree
represent the words in the code.

First, we associate an infinite tree with the set A∗ of words over an alphabet A

as follows. The alphabet is totally ordered, and words of equal length are ordered
lexicographically. Each node of the tree represents a word in A∗. Words of small
length are to the left of words of greater length, and words of equal length are
disposed vertically according to lexical ordering. There is an edge from u to v if
and only if v = ua for some letter a ∈ A. The tree obtained in this way is the literal
representation of A∗ also called the Cayley graph of A∗ (see Figure 3.2).

To a given subset X of A∗ we associate a subtree of the literal representation of
A∗ as follows. We keep just the nodes corresponding to the words in X and all the
nodes on the paths from the root to these nodes. Nodes corresponding to words in X

are marked if necessary. The tree obtained in this way is the literal representation of
X. Figures 3.3–3.4 give several examples.

112 3 Prefix codes

a

ba

baa

Figure 3.3 Literal representations of X = {a, ba, baa} with explicit labeling and with
implicit labeling.

Figure 3.4 Literal representation of X = a∗b. On the left, the left-to-right representation, and
on the right the top-down drawing.

4 5 6 7

2 3

1

Figure 3.5 The Elias code.

An alternative graphical representation draws the tree from top to bottom instead
of from left to right. In this case, words of equal length are disposed horizontally from
left to right according to their lexicographic order. See Figure 3.4 for an example.

It is easily seen that a code X is prefix if and only if in the literal representation of
X, the nodes corresponding to words in X are all leaves of the tree.

Example 3.1.1 (continued) Figure 3.5 is the graphical representation of the Elias
code.

The advantage of the literal representation, compared to simple enumeration, lies
in the easy readability. Contrary to what might seem to happen, it allows a compact
representation of rather big codes (see Figure 3.6).

Example 3.1.9 Let X = {a, baa, bab, bb} be the code over A = {a, b} represented
in Figure 3.7(a). Here R = {1, b, ba} = XA−, and X − 1 = (1 + b + ba)(A − 1).
The equality between R and XA− characterizes maximal prefix codes, as we will see
in Section 3.3.

3.2 Automata 113

Figure 3.6 A code with 26 elements.

(a) (b)

Figure 3.7 Two prefix codes: (a) the code {a, baa, bab, bb} and (b) the code (b2)∗{a2b, ba}.

Example 3.1.10 Let X = (b2)∗{a2b, ba}, as given in Figure 3.7(b). Here R = R1 ∪
R2, where R1 = XA− = (b2)∗(1 ∪ a ∪ b ∪ a2) is the set of proper prefixes of X and
R2 = XA+ − X − XA− = (b2)∗(abA∗ ∪ a3A∗). Thus Equation (3.1) now gives

X − 1 = (b2)∗(1 + a + b + a2 + abA∗ + a3A∗)(A − 1).

3.2 Automata

The literal representation gives an easy method for verifying whether a word w is
in X∗ for some fixed prefix code X. It suffices to follow the path starting at the root
through the successive letters of w. Whenever a leaf is reached, the corresponding
factor of w is split away and the procedure is restarted.

We will consider several automata derived from the literal representation and relate
them to the minimal automaton. The particular case of prefix codes is interesting in
itself because it is the origin of most of the general results of Chapter 9.

Recall (Chapter 1) that for any subset X ⊂ A∗, we denote by A(X) the minimal
deterministic automaton recognizing X.

Proposition 3.2.1 Let X be a subset of A∗. The following conditions are equivalent:

(i) X is prefix.
(ii) The minimal automaton A(X) is empty or has a single final state t and t · A = ∅.

(iii) There exist a deterministic automatonA = (Q, i, T) recognizing X with T · A =
∅.

114 3 Prefix codes

)b()a(

a b

b a

b

a

Figure 3.8 (a) Literal representation of X, (b) Literal automaton of X.

Proof. (i) =⇒ (ii). Suppose that X is nonempty. Set A(X) = (Q, i, T). First, we
claim that for q ∈ T , we have {w ∈ A∗ | q · w ∈ T } = {1}. Indeed let x ∈ X and
w ∈ A∗ be words such that i · x = q (remember that q ∈ T) and q · w ∈ T . Then
xw ∈ X, whence w = 1. This shows the claim.

Thus, two final states are not separable and from the minimality of A(X), it follows
that A(X) has just one final state, say t . Assume that t · A �= ∅, and that t · a = p for
some letter a ∈ A and some state p. Since p is coaccessible, we have p · v = t for
some v ∈ A∗. Thus t · av = t , whence av = 1, a contradiction.

(ii) =⇒ (iii) is clear.
(iii) =⇒ (i). From T · A = ∅, it follows that T · A+ = ∅. Thus, if x ∈ X, and

w ∈ A+ then i · xw = ∅ and xw /∈ X. Thus X ∩ XA+ = ∅. �

It is easy to construct an automaton for a prefix code by starting with the literal
representation. This automaton, call it the literal automaton of a prefix code X, is the
deterministic automaton

A = (XA− ∪ X, 1, X)

defined by

u · a =
{

ua if ua ∈ XA− ∪ X,

∅ otherwise.

Since XA− ∪ X is prefix-closed, we immediately see that 1 · u ∈ X if and only if u ∈
X, that is L(A) = X. The pictorial representation of a literal automaton corresponds,
of course, to the literal representation of the code.

Example 3.2.2 The code X = {ab, bab, bb} over A = {a, b} has the literal repre-
sentation given in Figure 3.8(a) and the literal automaton given in Figure 3.8(b).

The literal automaton A of a prefix code X is trim but is not minimal in general.
For infinite codes, it is always infinite. Let us consider two states of A. It is equivalent
to consider the two prefixes of words of X, say u and v, leading to these states. These
two states are inseparable if and only if

u−1X = v−1X.

3.2 Automata 115

a b

b
a b

Figure 3.9 The minimal automaton of X = {ab, bab, bb}.

a

a b

b

a

b

a

a

b

b

a

b

Figure 3.10 The literal automaton of the prefix code X = (b2)∗{a2b, ba}.

Note that this equality means on the literal representation of X that the two subtrees
with roots u and v, respectively, are the same. This provides an easy procedure for
the computation of the minimal automaton: first, all final states are labeled, say with
label 0. If labels up to i are defined we consider subtrees such that all nodes except
the roots are labeled. Then roots are labeled identically if the (labeled) subtrees
are isomorphic. Taking the labels as states, we obtain the minimal automaton. The
procedure is described in Examples 3.2.2–3.2.4.

Example 3.2.2 (continued) In view of Proposition 3.2.1, the three terminal states are
inseparable. The states a and ba are inseparable because a−1X = (ba)−1X = b. No
other relation exists. Thus the minimal automaton is as given in Figure 3.9.

Example 3.2.3 The literal automaton of X = (b2)∗(a2b ∪ ba) is given in Figure 3.10.
Clearly the final states are equivalent, and also the predecessors of final states and
their predecessors. On the main diagonal, however, the states are only equivalent with
a step 2. This gives the minimal automaton of Figure 3.11.

Example 3.2.4 In Figure 3.12 the labeling procedure has been carried out for the
26 element code of Figure 3.6. This gives the subsequent minimal automaton of
Figure 3.13.

We now consider automata recognizing the submonoid X∗ generated by a prefix
code X. Recall that X∗ is right unitary (Proposition 2.2.7). Proposition 3.2.5 is the
analogue of Proposition 3.2.1.

116 3 Prefix codes

a

a b

b

b

a

Figure 3.11 Minimal automaton corresponding to Figure 3.10.

9

7

6

0

5

2
0

1
0

0

4

3

2
0

1
0

0

1
0

0

1
0

0

0

8

6

0

5

2
0

1
0

0

4

3

2
0

1
0

0

1
0

0

1
0

0

4

3

2
0

1
0

0

1
0

0

1
0

0

Figure 3.12 The computation of a minimal automaton.

Proposition 3.2.5 Let P be a subset of A∗. The following conditions are equivalent:

(i) P is a right unitary submonoid.
(ii) The minimal automaton A(P) has a unique final state, namely the initial state.

(iii) There exists a deterministic automaton recognizing P having the initial state as
unique final state.

Proof. (i) =⇒ (ii). The states in A(P) are the nonempty sets u−1P , for u ∈ A∗. Now
if u ∈ P , then u−1P = P because uv ∈ P if and only if v ∈ P .

3.2 Automata 117

9

7

8

5

6

4 3 2 1 0

a

b
a

b

a

b

b

a

b

a

a

b

a

b

b

a

a, b

Figure 3.13 A minimal automaton.

Thus, there is only one final state in A(P), namely P which is also the initial state.
(ii) =⇒ (iii) is clear.
(iii) =⇒ (i). Let A = (Q, i, i) be the automaton recognizing P . The set P then

is a submonoid since the final state and the initial state are the same. Further let
u, uv ∈ P . Then i · u = i and i · uv = i. This implies that i · v = i because A is
deterministic. Thus, v ∈ P , showing that P is right unitary. �

If A = (Q, i, T) is any deterministic automaton over A, the stabilizer of a state q

is the submonoid

Stab(q) = {w ∈ A∗ | q · w = q}.

Proposition 3.2.6 The stabilizer of a state of a deterministic automaton is a right
unitary submonoid. Every right unitary submonoid is the stabilizer of a state of some
deterministic automaton.

Proof. It is an immediate consequence of the proof of Proposition 3.2.5. �

This proposition shows the importance of right unitary submonoids and of prefix
codes in automata theory. Proposition 3.2.7 presents a method for deriving the min-
imal automaton A(X∗) of X∗ from the minimal automata A(X) of the prefix code
X.

Proposition 3.2.7 Let X be a nonempty prefix code over A, and let A(X) = (Q, i, t)
be the minimal automaton of X. Then the minimal automaton of X∗ is

A(X∗) =
{

(Q, t, t) if Stab(i) �= 1,

(Q \ i, t, t) if Stab(i) = 1.

(3.2)

(3.3)

and the action of A(X∗), denoted by ◦, is given by

q ◦ a = q · a for q �= t (3.4)

t ◦ a = i · a (3.5)

118 3 Prefix codes

a

b

b a

b

Figure 3.14 The minimal automaton of X∗ with X = {ab, bab, bb}.

Proof. Let B = (Q, t, t) be the automaton obtained from A(X), defining the action ◦
by (3.4) and (3.5). Then clearly

L(B) = {w | t ◦ w = t} = X∗.

Let us verify that the automaton B is reduced. For this, consider two distinct states
p and q. Since A(X) is reduced, there is a word u in A∗ separating p and q, that is
such that, say

p · u = t, q · u �= t. (3.6)

It follows that p ◦ u = t , and furthermore p ◦ v �= t for all v < u. If q ◦ u �= t , then
u separates p and q in the automaton B also. Otherwise, there is a smallest prefix v

of u such that q ◦ v = t . For this v, we have q · v = t . In view of (3.6), v �= u. Thus
v < u. But then q ◦ u = t and p ◦ v �= t , showing that p and q are separated by v.

Each state in B is coaccessible because this is the case in A(X). From 1 �= X,
we have i �= t . The state i is accessible in B if and only if the set {w | t ◦ w = i} is
nonempty, thus if and only if Stab(i) �= 1. If this holds, B is the minimal automaton
of X∗. Otherwise, the accessible part of B is its restriction to Q \ i. �

The automaton A(X∗) always has the form given by (3.3) if X is finite. In this
case, it is obtained by identifying the initial and the final state. For a description of
the general case, see Exercise3.2.2.

Example 3.2.2 (continued) The minimal automaton of X∗ is given in Figure 3.14.
The code X is finite and A(X∗) is given by (3.3).

Example 3.2.3 (continued) The automaton A(X∗) is obtained without removing the
initial state of A(X), and is given by (3.2). See Figure 3.15.

Example 3.2.8 Consider the code X = ba∗b over A = {a, b}. Its minimal automaton
is given in Figure 3.16(a). The stabilizer of the initial state is just the empty word 1.
The minimal automaton A(X∗) given in Figure 3.16(b) is derived from Formula (3.3).

3.2 Automata 119

a

a b

a

b

b

a

b

Figure 3.15 The minimal automaton of X∗, with X = (b2)∗(a2b ∪ ba).

b

a

b

(a)

b

a

b

(b)

Figure 3.16 (a) The minimal automaton of X = ba∗b, and (b) the minimal automaton of X∗.

A construction which is analogous to that of Proposition 3.2.7 allows us to define
the literal automaton of X∗ for a prefix code X. It is the automaton

A = (XA−, 1, 1)

whose states are the proper prefixes of words in X, and with the action given by

u · a =

ua if ua ∈ XA−,

1 if ua ∈ X,

∅ otherwise.

(3.7)

This automaton is obtained from the literal automaton for X by identifying all final
states of the latter with the initial state 1. It is immediate that this automaton recognizes
X∗.

The following property of rational prefix codes will be useful later (Section 6.6).

Proposition 3.2.9 For any rational prefix code X over A, there exists an integer N

such that the length of any strictly increasing sequence of suffixes of words of X for
the prefix order is bounded by N .

Proof. Let A = (Q, i, T) be a finite automaton with N states recognizing X, and
assume there is a sequence of N + 1 suffixes s0, . . . , sN of words of X such that each
sj is a proper prefix of sj+1. Each sj is the label of a path from some state qj into a
final state tj in A. Moreover there is, for each j , a word pj that is the label of a path
from i to qj . Note that pjsj is in X for each j . By the definition of N , there exist j, k

with 0 ≤ j < k ≤ N such that qj = qk . Thus both pj sj and pjsk are in X, and pj sj

is a proper prefix of pj sk , contradicting the fact that X is prefix. �

120 3 Prefix codes

Example 3.2.10 Consider the prefix code X = A∗aba \ A+aba over A = {a, b}.
The sequences of maximal length of strictly increasing sequences of suffixes, for the
prefix order, are ε, a, anaba with n ≥ 1. Another sequence is ε, ba.

3.3 Maximal prefix codes

A prefix subset X of A∗ is maximal if it is not properly contained in any other prefix
subset of A∗, that is, if X ⊂ Y ⊂ A∗ and Y prefix imply X = Y .

As for maximal codes, a reference to the underlying alphabet is necessary for the
definition to make sense.

The set {1} is a maximal prefix set. Every other maximal prefix set is a code. A
maximal code which is prefix is always maximal prefix. The converse does not hold:
there exist maximal prefix codes which are not maximal as codes. However, under
mild assumptions, namely for thin codes, we will show that maximal prefix codes are
maximal codes.

The study of maximal prefix codes uses a left-to-right oriented version of dense
and complete codes.

Let M be a monoid, and let N be a subset of M . An element m ∈ M is right
completable in N if mw ∈ N for some w in M . It is equivalent to say that N meets
the right ideal mM . A subset N is right dense if every m ∈ M is right completable
in N , that is if N meets all right ideals. The set N is right complete if the submonoid
generated by N is right dense. The set N is right thin if it is not right dense. Of
course, all these definitions make sense if right is replaced by left.

The following implications hold for a subset N of a monoid M:

N right dense =⇒ N dense
N right complete =⇒ N complete

N thin =⇒ N right thin.

In the case of a free monoid A∗, a subset N of A∗ is right dense if and only if every
word in A∗ is a prefix of some word in N . Thus every (nonempty) left ideal is right
dense. Similarly, N is right complete if every word w in A∗ can be written as

w = m1m2 · · ·mrp

for some r ≥ 0, m1, . . . , mr ∈ N , and p a prefix of some word in N .

Proposition 3.3.1 For any subset X ⊂ A∗ the following conditions are equivalent:

(i) XA∗ is right dense.
(ii) A∗ = XA− ∪ X ∪ XA+.

(iii) For all w ∈ A∗, there exist u, v ∈ A∗, x ∈ X with wu = xv.

Proof. (i) =⇒ (iii). Let w ∈ A∗. Since XA∗ is right dense, it meets the right ideal
wA∗. Thus wu = xv for some u, v ∈ A∗, and x ∈ X.

(iii) =⇒ (ii). If wu = xv, then w ∈ XA−, w ∈ X or w ∈ XA+ according to
w < x, w = x, or w > x.

(ii) =⇒ (i). The set of prefixes of XA∗ is XA− ∪ X ∪ XA+. �

3.3 Maximal prefix codes 121

Proposition 3.3.2 Let X ⊂ A+ be a subset that does not contain the empty word.
Then XA∗ is right dense if and only if X is right complete.

Proof. Suppose first that XA∗ is right dense and consider a word w ∈ A∗. If w ∈
XA− ∪ X then wu ∈ X for some u ∈ A∗. Otherwise w ∈ XA+ by Proposition 3.3.1.
Thus, w = xw′ for some x ∈ X, w′ ∈ A+. Since x �= 1, we have |w′| < |w|. Arguing
by induction, w′u ∈ X∗ for some u in A∗. Thus, w is a prefix of some word in X∗.

Conversely, let w ∈ A∗, and assume that wu ∈ X∗ for some u ∈ A∗. Multiplying if
necessary by some word in X, we may assume that wu �= 1. Then wu ∈ X+ ⊂ XA∗.

�

Note that Proposition 3.3.2 does not hold for X = {1}. In this case, XA∗ = A∗ is
right dense, but X∗ = {1} is, of course, not.

The next statement describes natural bijections between the following families of
subsets of A∗:

1. the family M of maximal prefix sets,
2. the family D of right ideals which are right dense,
3. the family P of prefix-closed subsets which do not contain a right ideal.

These bijections are actually restrictions of the bijections of Proposition 3.1.2.

Proposition 3.3.3 The following bijections hold.

(i) The map X �→ XA∗ is a bijection from M onto D, and the map I �→ I \ IA+

is its inverse.
(ii) Set complementation maps bijectively P onto D.

(iii) The map X �→ XA− is a bijection from M onto P and the map P �→ PA \ P

is its inverse.

Proof. (i) Let X be a maximal prefix set. Any word u ∈ A∗ is comparable with a word
of X since otherwise X ∪ u would be a prefix, a contradiction with the hypothesis.
Thus XA∗ is right dense. The converse holds for the same reason.

(ii) is a translation of the fact that a set is right dense if and only if its complement
does not contain a right ideal.

(iii) If X is a maximal prefix subset of A∗, then XA∗ is right dense. Thus A∗ \
XA∗ = XA− by Proposition 3.3.1. �

The following corollary appears to be useful.

Corollary 3.3.4 Let L ⊂ A+ and let X = L \ LA+. Then L is right complete if and
only if X is a maximal prefix code.

Proof. L is right complete if and only if LA∗ is right dense (Proposition 3.3.2). From
XA∗ = LA∗ (Proposition 3.1.2) and from Proposition 3.3.3, the statement follows.

�

A special case of the corollary is the following important statement.

122 3 Prefix codes

Theorem 3.3.5 Let X ⊂ A+ be a prefix code. Then X is right complete if and only
if X is a maximal prefix code.

Proof. This results from the previous corollary by taking for L a prefix code X. �

We now give the statement corresponding to Proposition 3.1.6 for maximal prefix
codes.

Theorem 3.3.6 Let X be a prefix code over A, and let P = XA− be the set of proper
prefixes of words in X. Then X is maximal prefix if and only if one of the following
equivalent conditions hold:

X − 1 = P (A − 1), and A∗ = X∗P . (3.8)

Proof. Set R = A∗ \ XA∗. If X is maximal prefix, then XA∗ is right dense and R = P

by Proposition 3.3.1. The conclusion then follows directly from Proposition 3.1.6.
Conversely, if X − 1 = P (A − 1), then by Equation (3.1)

P (A − 1) = R(A − 1).

Since A − 1 is invertible we get P = R, showing that XA∗ is right dense. �

Corollary 3.3.7 Let X be a finite maximal prefix code with n elements over a k letter
alphabet A, let p = Card(XA−) be the number of proper prefixes of words in X.
Then n − 1 = p(k − 1). �

In the case of a finite maximal prefix code, the equations of Theorem 3.3.6 give a
factorization of X − 1 into two polynomials. Again, there is a formula derived from
Formula (3.8), namely 1 + P A = P + X, which has an interpretation on the literal
representation of a code X which makes the verification of maximality very easy: if
p is a node which is not in X, then for each a ∈ A, there must exist a node pa in the
literal representation of X.

We now show that for thin sets, a maximal prefix code is also a maximal code.

Theorem 3.3.8 Let X be a thin subset of A+. The following conditions are equivalent.

(i) X is a maximal prefix code.
(ii) X is prefix and a maximal code.

(iii) X is right complete and a code.

Proof. The implication (ii) =⇒ (i) is clear. (i) =⇒ (iii) follows from Propo-
sition 3.3.3 (i) and Proposition 3.3.2. It remains to prove (iii) =⇒ (ii). Let
Y = X \ XA+. By Proposition 3.1.2, YA∗ = XA∗. Thus Y is right complete. Con-
sequently Y is complete. The set Y is also thin, since Y ⊂ X. Thus Y is a maximal
code by Theorem 2.5.13. From the inclusion Y ⊂ X, we have X = Y . �

The following example shows that Theorem 3.3.8 does not hold without the
assumption that the code is thin.

3.4 Operations on prefix codes 123

Example 3.3.9 Let X = {uba|u| | u ∈ A∗}, with A = {a, b}. This is the reversal of
the code given in Example 2.4.11. It is a maximal code which is right dense, whence
right complete. However, X is not prefix. From Corollary 3.3.4, it follows that
Y = X \ XA+ is a maximal prefix code. Of course, Y �= X, and thus, Y is not
maximal.

Proposition 3.3.10 Let X be a thin subset of A+. The following conditions are
equivalent.

(i) X is a maximal prefix code.
(ii) X is prefix, and there exists a positive Bernoulli distribution π with π (X) = 1.

(iii) X is prefix, and π (X) = 1 for all positive Bernoulli distributions π .

Proof. It is an immediate consequence of Theorem 3.3.8 and of Theorem 2.5.16. �

In the previous section, we gave a description of prefix codes by means of the
bases of the stabilizers in a deterministic automaton. Now we consider maximal
prefix codes. Let us introduce the following definition. A state q of a deterministic
automaton A = (Q, i, T) over A is recurrent if for all u ∈ A∗, there is a word v ∈ A∗

such that q · uv = q. This implies in particular that q · u �= ∅ for all u in A∗.

Proposition 3.3.11 Let X be a prefix code over A. The following conditions are
equivalent.

(i) X is maximal prefix.
(ii) The minimal automaton of X∗ is complete.

(iii) All states of the minimal automaton of X∗ are recurrent.
(iv) The initial state of the minimal automaton of X∗ is recurrent.
(v) X∗ is the stabilizer of a recurrent state in some deterministic automaton.

Proof. (i) =⇒ (ii). Let A(X∗) = (Q, i, i) be the minimal automaton of X∗. Let
q ∈ Q, a ∈ A. There is some word u ∈ A∗ such that i · u = q. The code X being
right complete, uav ∈ X∗ for some word v. Thus i = i · uav = (q · a) · v, showing
that q · a �= ∅. Thus A(X∗) is complete.

(ii) =⇒ (iii). Let q ∈ Q, u ∈ A∗; then q ′ = q · u �= ∅ since A(X∗) is complete.
A(X∗) being minimal, q ′ is coaccessible, and q is accessible. Thus q ′ · v = q, for
some v ∈ A∗, showing that q is recurrent.

The implications (iii) =⇒ (iv) =⇒ (v) are clear.
(v) =⇒ (i). Let A = (Q, i, T) be a deterministic automaton and q ∈ Q be a

recurrent state such that X∗ = Stab(q). For all u ∈ A∗ there is a word v ∈ A∗ with
q · uv = q, thus uv ∈ X∗. This shows that X is right complete. The set X being
prefix, the result follows from Theorem 3.3.8. �

3.4 Operations on prefix codes

Prefix codes are closed under some simple operations. We start with a general result
which will be used several times.

124 3 Prefix codes

Proposition 3.4.1 Let X and (Yi)i∈I be nonempty subsets of A∗, and let (Xi)i∈I be a
partition of X. Set

Z =
⋃
i∈I

XiYi.

1. If X and the Yi’s are prefix (maximal prefix), then Z is prefix (maximal prefix).
2. If Z is prefix, then all Yi are prefix.
3. If X is prefix and Z is maximal prefix, then X and the Yi’s are maximal prefix.

Proof. 1. Assume that z, zu ∈ Z. Then z = xy, zu = x ′y ′ for some i, j ∈ I , x ∈ Xi ,
y ∈ Yi , x ′ ∈ Xj , y ′ ∈ Yj . From the relation xyu = x ′y ′ it follows that x = x ′ because
X is prefix, whence i = j and y = y ′. Thus, u = 1 and Z is prefix. Assume now that
XA∗ and the YiA

∗ are right dense. Let w ∈ A∗. Then ww′ = xv for some w′, v ∈ A∗,
x ∈ X. Let x belong to Xi . Since YiA

∗ is right dense, vv′ ∈ YiA
∗ for some v′ ∈ A∗.

Thus ww′v′ ∈ XiYiA
∗, whence ww′v′ ∈ ZA∗. Thus Z is maximal prefix.

2. Let y, yu ∈ Yi and x ∈ Xi . Then xy, xyu ∈ Z, implying that u = 1.
3. From ZA∗ ⊂ XA∗ we get that XA∗ is right dense. Consequently X is maximal

prefix. To show that YiA
∗ is right dense, let w ∈ A∗. For any x ∈ Xi , xw is right-

completable in ZA∗. Thus, xw = zw′ for some z ∈ Z. Setting z = x ′y ′ with x ′ ∈
Xj , y ′ ∈ Yj gives xw = x ′y ′w′. The code X being prefix, we get x = x ′, whence
w = y ′w′, showing that w is in YiA

∗. �

For Card(I) = 1, we obtain, in particular,

Corollary 3.4.2 If X and Y are prefix codes (maximal prefix), then XY is a prefix
code (maximal prefix). �

The converse of Corollary 3.4.2 holds only under rather restrictive conditions and
will be given in Proposition 3.4.13.

Example 3.4.3 The Golomb code of order m ≥ 1 over the alphabet {0, 1} is the
maximal infinite prefix code

Gm = 1∗0Rm,

where R1 = {ε} and, for m ≥ 2, Rm is the finite maximal prefix code defined below.
Thus, each Gm is the product of the maximal prefix codes 1∗0 and Rm.

If m = 2k for some integer k, then Rm is the set of all binary words of length
k. Otherwise, the rule is more involved. Set m = 2k + �, with 0 < � < 2k . Setting
n = 2k−1,

Rm =
{

0R� ∪ 1R2n if � ≥ n,

0Rn ∪ 1Rn+� otherwise.

The set R1 and the codes Rm for m = 2, . . . , 7 are represented in Figure 3.17. Note
that, in particular, the lengths of the codewords differ at most by one.

3.4 Operations on prefix codes 125

Figure 3.17 The sets R1 to R7.

0

1

2

0 1

2 3

4 5

0

1 2 3

4 5 6

7 8

Figure 3.18 The Golomb codes of orders 1, 2, 3.

0

1

2

0 1

2 3

4 5

0 1 2 3

4 5 6 7

8 9 10 11

Figure 3.19 The Golomb–Rice codes of orders 0, 1, and 2.

The Golomb codes of order 1, 2, 3 are represented in Figure 3.18. Note that, except
possibly for the first level, there are exactly m words of each length. The Golomb
codes are used to represent integers as indicated in Figure 3.18. It can be shown that
they are optimal for some probability distributions, see Exercise 3.9.1.

Example 3.4.4 The Golomb–Rice code of order k is the particular case of the Golomb
code for m = 2k . Its structure is especially simple and allows an easy explicit descrip-
tion of the encoding of an integer: The encoding assigns to an integer n ≥ 0 two binary
words, the base and the offset. The base is the unary expansion of �n/2k� followed by
a 0. The offset is the rest of the division written in binary on k bits. Thus, for k = 2,
the integer n = 9 is coded by 110|01. The binary trees representing the Golomb–Rice
code of orders 0, 1, 2 are represented in Figure 3.19.

Another expression of the Golomb–Rice code of order k is given by the regular
expression

GRk = 1∗0(0 + 1)k. (3.9)

126 3 Prefix codes

0

1 2

0 1

2 3 4 5

0 1 2 3

4 5 6 7 8 9 10 11

Figure 3.20 The exponential Golomb codes of orders 0, 1, 2.

It expresses the fact that the binary words forming the code are composed of a base
of the form 1i0 for some i ≥ 0 and an offset which is an arbitrary binary sequence of
length k.

Example 3.4.5 The exponential Golomb codes form a family depending on an integer
k with a length distribution better suited for some probability distributions than the
Golomb–Rice codes. The case k = 0 is closely related to the Elias code already
mentioned in Example 3.1.1.

The base of the codeword for an integer n is obtained as follows. Let x be the binary
representation of 1 + �n/2k� and let i be its length. The base is made of the unary
representation of i − 1 followed by x with its initial 1 replaced by a 0. The offset
is, as before, the binary representation of the rest of the division of n by 2k , written
on k bits. Thus, for k = 1, the codeword for 9 is 11001|1. Figure 3.20 represents the
binary trees of the exponential Golomb codes of orders 0, 1, and 2.

An expression describing the exponential Golomb code is

EGk =
⋃
i≥0

1i0(0 + 1)i+k,

and we have the simple relation

EGk = EG0(0 + 1)k.

Corollary 3.4.6 Let X ⊂ A+, and n ≥ 1. Then X is (maximal) prefix if and only if
Xn is (maximal) prefix.

Proof. By Corollary 3.4.2, Xn is maximal prefix for a maximal prefix code X.
Conversely, setting Z = Xn = Xn−1X, it follows from Proposition 3.4.1(2) that X is
prefix. Writing Z = XXn−1, we see by Proposition 3.4.1(3) that X (and Xn−1) are
maximal prefix if Z is. �

Corollary 3.4.6 is a special case of Proposition 3.4.11, to be proved later.

Corollary 3.4.7 Let X and Y be prefix codes, and let X = X1 ∪ X2 be a partition.
Then Z = X1 ∪ X2Y is a prefix code and Z is maximal prefix if and only if X and Y

are maximal prefix.

Proof. With Y ′ = {1}, we have Z = X1Y
′ ∪ X2Y . The result follows from Proposition

3.4.1 because Y ′ is maximal prefix. �

3.4 Operations on prefix codes 127

X Y Z = (X \ x) ∪ xY

•
x

Figure 3.21 Combining codes X and Y .

Yp
•
p

Z

•

X = (Z \ pYp) ∪ p

Figure 3.22 Separating Z and Yp .

There is a special case of this corollary which deserves attention. It constitutes an
interesting operation on codes viewed as trees.

Corollary 3.4.8 Let X and Y be prefix codes, and x ∈ X. Then

Z = (X \ x) ∪ xY

is prefix and Z is maximal prefix if and only if X and Y are. �

The operation performed on X and Y is sketched in Figure 3.21. We now turn to
the converse operation.

Proposition 3.4.9 Let Z be a prefix code, and let p ∈ ZA−. Then

Yp = p−1Z and X = Z \ pYp ∪ {p} (3.10)

are prefix sets. Further if Z is maximal prefix, then Yp and X are maximal prefix also.

The operation described in (3.10) can be drawn as shown in Figure 3.22. Proposition
3.4.9 is a special case of the following result.

Proposition 3.4.10 Let Z be a prefix code, and let Q be a prefix subset of ZA−. For
each p ∈ ZA−, the set Yp = p−1Z is a prefix code; further

X = Q ∪
(
Z \
⋃
p∈Q

pYp

)
is a prefix set. If Z is maximal prefix, then X and the Yp (p ∈ Q) are maximal prefix.

128 3 Prefix codes

Proof. Set X0 = Z \⋃p∈Q pYp, Y0 = {1}, Xp = {p}. Then

Z = X0Y0 ∪
⋃
p∈Q

XpYp.

Thus, to derive the result from Proposition 3.4.1, it suffices to show that X is prefix.
Let x, xu ∈ X with u ∈ A+. These words cannot both be in the prefix set Z nor

can they both be in the prefix set Q. Since Q ⊂ ZA−, we have x ∈ Q, xu ∈ Z. Thus
u ∈ Yx and xu is not in X. �

Propositions 3.4.1 and 3.4.10 can be used to enumerate maximal prefix sets. Let
us illustrate the computation in the case of A = {a, b}. If Z is maximal prefix and
Z �= 1, then both

X = a−1Z, Y = b−1Z

are maximal prefix and

Z = aX ∪ bY. (3.11)

Conversely, if X and Y are maximal prefix, then so is Z. Thus, Equation (3.11) defines
a bijection from maximal prefix codes onto pairs of maximal prefix sets. Further

Card(Z) = Card(X) + Card(Y).

Let αn be the number of maximal prefix sets with n elements. Then by Equation (3.11),
for n ≥ 2,

αn =
∑

k+�=n

αkα�. (3.12)

Let α(t) =∑n≥0 αnt
n. Then by (3.12)

α(t)2 − α(t) + t = 0.

The equation has the solutions (1 ±√
1 − 4t)/2. Since α(0) = 0, one has α(t) =

(1 −√
1 − 4t)/2. Using the binomial formula, we get for n ≥ 1

αn = −1

2
(−4)n

(
1/2

n

)
= −1

2
(−4)n

1/2(1/2 − 1) · · · (1/2 − n + 1)

n!

= −1

2
(−4)n

1

2n

1(1 − 2) · · · (1 − 2n + 2)

n!

= −1

2
(−1)n2n(−1)n−1 1 · 3 · · · (2n − 3)

n!

= 2n−1 (2n − 2)!

n!(n − 1)!2n−1
= 1

n

(
2n − 2

n − 1

)
.

3.4 Operations on prefix codes 129

Table 3.1 The first Catalan numbers.

n 1 2 3 4 5 6 7 8

αn 1 1 2 5 14 42 132 429

Thus

αn+1 = 1

n + 1

(
2n

n

)
. (3.13)

These numbers are called the Catalan numbers. See Exercise 3.4.1 for another proof
and for the case of more than two letters. No such closed expression is known for the
number of finite maximal codes. Table 3.1 gives the first Catalan numbers.

Proposition 3.4.11 Let Y,Z be composable codes and X = Y ◦ Z. Then X is a
maximal prefix and thin code if and only if Y and Z are maximal prefix and thin
codes.

Proof. Assume first that X is thin and maximal prefix. Then X is right complete by
Theorem 3.3.8. Thus X is thin and complete. By Proposition 2.6.13, both Y and Z are
thin and complete. Further Y is prefix by Proposition 2.6.12(1). Thus Y , being thin,
prefix, and complete, is a maximal prefix code. Next X is right dense and X ⊂ Z∗.
Thus Z is right dense. Consequently Z is a right complete, thin code. By Theorem
3.3.8, Z is maximal prefix.

Conversely, Y and Z being prefix, X is prefix by Proposition 2.6.4, and Y,Z being
both thin and complete, X is also thin and complete by Proposition 2.6.13. Thus X

is a maximal prefix code. �

Proposition 3.4.12 Let Z be a prefix code over A, and let Z = X ∪ Y be a partition.
Then T = X∗Y is a prefix code, and further T is maximal prefix if and only if Z is a
maximal prefix code.

Proof. Let B be an alphabet bijectively associated to Z, and let B = C ∪ D be the
partition of B induced by the partition Z = X ∪ Y . Then

T = C∗D ◦ Z.

The code C∗D clearly is prefix. Thus, T is prefix by Proposition 2.6.4. Next, T ∗ =
1 ∪ Z∗Y showing that T is right complete if and only if Z is right complete. The
second part of the statement thus results from Proposition 3.3.3. �

We conclude this section by the proof of a converse to Corollary 3.4.2.

Proposition 3.4.13 Let X and Y be finite nonempty subsets of A∗ such that the
product XY is unambiguous. If XY is a maximal prefix code, then X and Y are
maximal prefix codes.

The following example shows that the conclusion fails for infinite codes.

130 3 Prefix codes

Example 3.4.14 Consider X = {1, a} and Y = (a2)∗b over A = {a, b}. Here X is
not prefix, and Y is not maximal prefix. However, XY = a∗b is maximal prefix and
the product is unambiguous.

Proof of Proposition 3.4.13. Let Z = XY and n = max{|y| | y ∈ Y }. The proof is
by induction on n. For n = 0, we have Y = {1} and Z = X. Thus, the conclusion
clearly holds. Assume n ≥ 1 and set

T = {y ∈ Y | |y| = n}, Q = {q ∈ YA− | qA ∩ T �= ∅}.

By construction, T ⊂ QA. In fact T = QA. Indeed, let q ∈ Q, a ∈ A and let x ∈ X

be a word of maximal length. Then xq is a prefix of a word in Z, and xqa is right-
completable in ZA∗. The code Z being prefix, no proper prefix of xqa is in Z.
Consequently

xqav = x ′y ′

for some x ′ ∈ X, y ′ ∈ Y , and v ∈ A∗.
Now n = |qa| ≥ |y ′|, and |x| ≥ |x ′|. Thus x = x ′, y ′ = qa, v = 1. Consequently

qa ∈ Y and T = QA. Now let

Y ′ = (Y \ T) ∪ Q, Z′ = XY ′.

We verify that Z′ is prefix. Assume the contrary. Then

xy ′u = x ′y ′′

for some x, x ′ ∈ X, y ′, y ′′ ∈ Y ′, u �= 1. Let a be the first letter of u. Then either y ′ or
y ′a is in Y . Similarly either y ′′ or y ′′b (for any b in A) is in Y . Assume y ′ ∈ Y . Then
xy ′ ∈ Z is a proper prefix of x ′y ′′ or x ′y ′′b, one of them being in Z. This contradicts
the fact that Z is prefix. Thus y ′a ∈ Y . As before, xy ′a is not a proper prefix of x ′y ′′

or x ′y ′′b. Thus necessarily u = a and y ′′ ∈ Y , and we have

xy ′a = x ′y ′′

with y ′a, y ′′ ∈ Y . The unambiguity of the product XY shows that x = x ′, y ′a = y ′′.
But then y ′′ /∈ Y ′. This gives the contradiction.

To see that Z′ is maximal prefix, observe that Z ⊂ Z′ ∪ Z′A. Thus ZA∗ ⊂ Z′A∗

and the result follows from Proposition 3.3.3. Finally, it is easily seen that the
product XY ′ is unambiguous: if xy ′ = x ′y ′′ with x, x ′ ∈ X, y ′, y ′′ ∈ Y ′, then either
y ′, y ′′ ∈ Y \ T or y ′, y ′′ ∈ Q, the third case being ruled out by the prefix character of
Z.

Of course, max{|y| | y ∈ Y ′} = n − 1. By the induction hypothesis, X and Y ′ are
maximal prefix. Since

Y = (Y ′ \ Q) ∪ QA,

the set Y is maximal prefix by Corollary 3.4.7. �

3.5 Semaphore codes 131

It is also possible to give a completely different proof of Proposition 3.4.13 using
the fact that, under the hypotheses of this proposition, we have π (X)π (Y) = 1 for all
Bernoulli distributions π , see Exercise 3.4.2.

3.5 Semaphore codes

This section contains a detailed study of semaphore codes which constitute an inter-
esting subclass of the prefix codes. This investigation also illustrates the techniques
introduced in the preceding sections.

Proposition 3.5.1 For any nonempty subset S of A+, the set

X = A∗S \ A∗SA+ (3.14)

is a maximal prefix code.

Proof. The set L = A∗S is a left ideal, and thus, is right dense. Consequently, L is
right complete, and by Corollary 3.3.4, the set X = L \ LA+ is maximal prefix. �

A code X of the form given in Equation (3.14) is called a semaphore code, the
set S being a set of semaphores for X. The terminology stems from the following
observation: a word is in X if and only if it ends with a semaphore, but none of its
proper prefixes end with a semaphore. Thus, reading a word from left to right, the
first appearance of a semaphore gives a “signal” indicating that what has been read
up to now is in the code X.

Example 3.5.2 Let A = {a, b} and S = {a}. Then X = A∗a \ A∗aA+ whence X =
b∗a.

Example 3.5.3 For A = {a, b} and S = {aa, ab}, we have A∗S = A∗aA. Thus
A∗S \ A∗SA+ = b∗aA.

The following proposition characterizes semaphore codes among prefix codes.

Proposition 3.5.4 Let X ⊂ A+. Then X is a semaphore code if and only if X is prefix
and

A∗X ⊂ XA∗. (3.15)

Proof. Let X = A∗S \ A∗SA+ be a semaphore code. Then X is prefix and it remains
to show (3.15). Let w ∈ A∗X. Since w ∈ A∗S, w has a factor in S. Let w′ be the
shortest prefix of w which is in A∗S. Then w′ is in X. Consequently w ∈ XA∗.

Conversely, assume that a prefix code X satisfies (3.15). Set M = XA∗. In view
of Proposition 3.1.2 and by the fact that X is prefix, we have X = M \ MA+.
Equation (3.15) implies that

A∗M = A∗XA∗ ⊂ XA∗ = M,

thus, M = A∗M and X = A∗M \ A∗MA+. �

132 3 Prefix codes

y

x

p

u

Figure 3.23 Proof of Corollary 3.5.7.

Example 3.5.5 The code Y = {a2, aba, ab2, b} is a maximal prefix code over A.
However, Y is not a semaphore code, since ab ∈ A∗Y but ab /∈ YA∗.

A semaphore code is maximal prefix, thus right complete. The following proposi-
tion describes those right complete sets which are semaphore codes.

Proposition 3.5.6 Let X ⊂ A+. Then X is a semaphore code if and only if X is right
complete and

X ∩ A∗XA+ = ∅. (3.16)

Proof. A semaphore code is maximal prefix, thus also right complete. Further, in view
of (3.15),

A∗XA+ ⊂ XA+,

thus

X ∩ A∗XA+ ⊂ X ∩ XA+ = ∅,

showing Equation (3.16).
Conversely, if a set X satisfies (3.16), then X is prefix. To show that X is a

semaphore code, we verify that (3.15) holds. Let w = ux ∈ A∗X with u ∈ A∗, x ∈ X.
The code X being right complete, we have uxv = x ′y for some x ′ ∈ X, y ∈ X∗,
v ∈ A∗. Now Equation (3.16) shows that ux is not a proper prefix of x ′. Thus
ux ∈ x ′A∗. �

Corollary 3.5.7 Let X ⊂ A+ be a semaphore code and let P = XA−. Then PX ⊂
XP ∪ X2.

Proof. (See Figure 3.23) Let p ∈ P , x ∈ X. By Equation (3.15), px = yu for some
y ∈ X, u ∈ A∗. The code X is prefix, thus |p| < |y|. Consequently, u is suffix of x,
and by (3.16), u /∈ XA+. The code X is maximal prefix, therefore u ∈ XA− ∪ X. �

Formula (3.16) expresses a property of semaphore codes which is stronger than
the prefix condition: for a semaphore code X, and two elements x, x ′ ∈ X, the only
possible way for x to occur as a factor in x ′ is to be a suffix of x ′. We now use this
fact to characterize semaphore codes among maximal prefix codes.

3.5 Semaphore codes 133

Proposition 3.5.8 Let X ⊂ A+, and let P = XA− be the set of proper prefixes of
words in X. Then X is a semaphore code if and only if X is a maximal prefix code
and P is suffix-closed.

Of course, P is always prefix-closed. Thus P is suffix-closed if and only if it
contains the factors of its elements.

Proof. Let X be a semaphore code. Then X is a maximal prefix code (Proposi-
tion 3.5.1). Next, let p = uq ∈ P with u, q ∈ A∗. Let v ∈ A+ be a word such that
pv ∈ X. Then q /∈ XA∗, since otherwise pv = uqv ∈ X ∩ A∗XA+, violating Propo-
sition 3.5.6. Thus q ∈ XA− = P .

Conversely assume that X is maximal prefix and that P is suffix-closed. Suppose
that X ∩ A∗XA+ �= ∅. Let x ∈ X ∩ A∗XA+. Then x = ux ′v for some u ∈ A∗, x ′ ∈
X, v ∈ A+. It follows that ux ′ ∈ P , and since P is suffix-closed, also x ′ ∈ P which
is impossible. Thus X is a semaphore code by Proposition 3.5.6. �

Another consequence of Proposition 3.5.6 is the following result.

Proposition 3.5.9 Any semaphore code is thin.

Proof. By Formula (3.16), no word in XA+ is a factor of a word in X. �

Corollary 3.5.10 Any semaphore code is a maximal code.

Proof. A semaphore code is a maximal prefix code and thin by Propositions 3.5.1
and 3.5.9. Thus by Theorem 3.3.8 such a code is a maximal code. �

Now we determine the sets of semaphores giving the same semaphore code.

Proposition 3.5.11 Two nonempty subsets S and T of A+ define the same semaphore
code if and only if A∗SA∗ = A∗T A∗. For each semaphore code X, there exists a
unique minimal set of semaphores, namely T = X \ A+X.

Proof. Let X = A∗S \ A∗SA+, Y = A∗T \ A∗T A+. By Proposition 3.1.2, we have
XA∗ = A∗SA∗, YA∗ = A∗T A∗, and by Corollary 3.1.8, X = Y if and only if
A∗SA∗ = A∗T A∗.

Next, let X = A∗S \ A∗SA+ be a semaphore code. By the definition of T =
X \ A+X, we may apply to T the dual of Proposition 3.1.2. Thus, A∗T = A∗X.
Since A∗T A∗ = A∗XA∗ = A∗SA∗, the sets S and T define the same semaphore
code. Thus X = A∗T \ A∗T A+.

Finally, let us verify that T ⊂ S. Let t ∈ T . Since A∗T A∗ = A∗SA∗, one has
t = usv for some u, v ∈ A∗, s ∈ S, and s = u′t ′v′ for some u′, v′ ∈ A∗, t ′ ∈ T .
Thus, t = uu′t ′v′v. Note that T ⊂ X. Thus, Formula (3.16) applies, showing that
v′v = 1. Since T is a suffix code, we have uu′ = 1. Thus, t = s and t ∈ S. �

We now study some operations on semaphore codes.

Proposition 3.5.12 If X and Y are semaphore codes, then XY is a semaphore code.
Conversely, if XY is a semaphore code and if X is a prefix code, then X is a semaphore
code.

134 3 Prefix codes

x x

u

u

x y

Figure 3.24 Proof of Proposition 3.5.12.

Figure 3.25 The code a∗b{a2, aba, ab2, b}.

Proof. If X, Y are semaphore codes, then by Corollary 3.4.2, XY is a prefix code.
Further by Proposition 3.5.4,

A∗XY ⊂ XA∗Y ⊂ XYA∗,

thus XY is a semaphore code.
Assume now that XY is a semaphore code, and that X is a prefix code. We show

that A∗X ⊂ XA∗. For this, let w = ux ∈ A∗X, with u ∈ A∗, x ∈ X, and let y be a
word in Y of minimal length. Then

wy = uxy = x ′y ′u′

for some x ′ ∈ X, y ′ ∈ Y , u′ ∈ A∗ (see Figure 3.24). By the choice of y, we have
|y| ≤ |y ′| ≤ |y ′u′|, thus |ux| ≥ |x ′|, showing that ux ∈ XA∗. �

The following example shows that if XY is a semaphore code, then Y need not be
semaphore, even if it is maximal prefix.

Example 3.5.13 Over A = {a, b}, let X = a∗b, and Y = {a2, aba, ab2, b}. Then X

is a semaphore code, and Y is a maximal prefix code. However, Y is not semaphore
(Example 3.5.5). On the other hand the code Z = XY is semaphore. Indeed, Z is
maximal prefix, and the set

P = ZA− = a∗{1, b, ba, bab}

is suffix-closed. The conclusion follows from Proposition 3.5.7 (see Figure 3.25).

3.5 Semaphore codes 135

Figure 3.26 The code X = {a, baa, baba, bab2, b2}.

Corollary 3.5.14 For any X ⊂ A+ and n ≥ 1, the set X is a semaphore code if and
only if Xn is a semaphore code.

Proof. If Xn is a semaphore code, then X is a prefix by Corollary 3.4.6 and X is
a semaphore code by Proposition 3.5.12. The converse is a direct consequence of
Proposition 3.5.12. �

Example 3.5.15 The code X = {a, baa, baba, bab2, b2} represented in Figure 3.26
is a maximal prefix code but not semaphore. Indeed, the word a has an inner
occurrence in bab2, contradicting Formula (3.16). However, X decomposes into
two semaphore codes

X = Y ◦ Z,

with Y = {c, dc, d2, de, e} and Z = {a, ba, b2}.

Given a semaphore code

X = A∗S \ A∗SA+,

it is natural to consider

Y = SA∗ \ A+SA∗.

The code Y is a maximal suffix code. Its reversal Ỹ = A∗S̃ \ A∗S̃A+ is a semaphore
code with semaphores S̃. The following result shows a strong relation between X

and Y .

Proposition 3.5.16 Let S ⊂ A+. There exists a bijection β from X = A∗S \ A∗SA+

onto Y = SA∗ \ A+SA∗ such that, for each x ∈ X, β(x) is a conjugate of x.

Proof. First, consider the two-sided ideal J = A∗SA∗. One has

X = J \ JA+, Y = J \ A+J.

Indeed, A∗JA∗ = A∗SA∗ and by Proposition 3.5.11, X = A∗J \ JA+. The formula
for X follows because A∗J = J . A symmetric argument holds for Y .

Now we define, for each x ∈ X,

D(x) = {d ∈ A+ | there is some g ∈ A∗ with x = gd and dg ∈ J }.
Thus, D(x) is composed of nonempty suffixes of x. Further D(x) is nonempty since
x is in D(x). Thus, each D(x) contains some shortest element. This will be used to

136 3 Prefix codes

define β as follows. For x ∈ X,

β(x) = dg, (3.17)

where d is the shortest word in D(x) and g is such that

x = gd. (3.18)

Thus, β(x) is a conjugate of x, and β(x) ∈ J . We show that

β(x) ∈ J \ A+J = Y.

Assume the contrary. Then

β(x) = dg = uj (3.19)

for some u ∈ A+, j ∈ J .
Next g is a proper prefix of x. Consequently, g /∈ J . Indeed, if g ∈ J , then g would

have a prefix in X, contradicting the fact that X is prefix. This shows that |g| < |j |,
since otherwise g would belong to the ideal generated by j , thus g ∈ J .

It follows from this and from (3.19) that |d| > |u|, thus, d = ud ′ for some d ′ ∈ A+.
Moreover d ′ ∈ D(x), since d ′(gu) = ju ∈ J and (gu)d ′ = gd = x ∈ X. This gives
a contradiction by the fact that d ′ is strictly shorter than d. Thus, β(x) ∈ Y .

Consider the converse mapping γ from Y into X defined by considering, for y

in Y , the set

G(y) = {e ∈ A+ | y = eh and he ∈ J },
and by setting γ (y) = he, with e ∈ G(y) of minimal length.

If y = β(x) = dg is given by (3.17) and (3.18) and if γ (y) = he with e ∈ G(y),
eh = y, then

dg = β(x) = eh. (3.20)

Note that gd ∈ J . Thus, d ∈ G(y). Consequently, |d| ≥ |e|. Now the word e is not a
proper prefix of d. Otherwise, setting d = eu, ug = h in (3.20) with u ∈ A+, we get

geu = gd = x, uge = he ∈ J,

showing that u ∈ D(x) and contradicting the minimality of |d|. Thus d = e, g = h,
and γ (β(x)) = x. An analogous proof shows that β(γ (y)) = y for y in Y . Thus, β

and γ are reciprocal bijections from X onto Y . �

Example 3.5.17 Let us illustrate the construction of Proposition 3.5.16 by consider-
ing, over A = {a, b}, the set of semaphores S = {a2, ba, b2}. Then

X = A∗S \ A∗SA+ = {a2, ba, b2, aba, ab2},
Y = SA∗ \ A+SA∗ = {a2, a2b, ba, bab, b2}.

3.6 Synchronized codes 137

Table 3.2 The correspondence
between X and Y .

X D Y

aa a, aa aa

aba a, ba, aba aab

abb b, bb, abb bab

ba ba ba

bb b, bb bb

Table 3.2 lists on each row an element x ∈ X, the corresponding set D(x) and the
element β(x) ∈ Y .

Proposition 3.5.16 shows that any semaphore code can be transformed into a suffix
code by a bijection which exchanges conjugate words. This property does not hold
for arbitrary prefix codes, as shown by the following example.

Example 3.5.18 Let X = {ab, ba, c, ac, bca}. Assume that there exists a conjugacy
preserving bijection β which maps X onto a suffix code Y . Then Y necessarily
contains c, and ab, ba. Further Y contains ca (with c and ac, Y would not be suffix!).
All the words conjugate to bca now have a suffix equal to one of c, ab, ba, ca. Thus,
Y is not suffix.

In fact, X cannot be completed into a semaphore code, since c is a factor of bca.
We end this section with the following result which shows that bifix codes are not

usually semaphore codes.

Proposition 3.5.19 Let X be a bifix semaphore code. Then X = An for some n ≥ 1.

Proof. It is sufficient to show that X ⊂ An for some n. Let x, y ∈ X. For each suffix
q of x, we have qy ∈ A∗X ⊂ XA∗. Thus there is, in view of Propositions 3.5.4
and 3.5.6, a prefix p of y such that qp ∈ X.

In this way we define a mapping from the set of suffixes of X into the set of prefixes
of y. The set X being suffix, the mapping is injective. Indeed, if qp and q ′p are in X

for two suffixes q, q ′ of x, then q = q ′. It follows that |x| ≤ |y|. Interchanging x and
y, we get |y| ≤ |x|. Thus, all words in X have the same length. �

3.6 Synchronized codes

Let X be a prefix code over A. A word w ∈ A∗ is said to be synchronizing for X if
for any u, v ∈ A∗, we have

uwv ∈ X∗ =⇒ uw,wv ∈ X∗.

Observe that if this holds, then v also is in X∗ since X∗ is right unitary. If w is
synchronizing, then xwy is synchronizing for any x, y ∈ X∗.

138 3 Prefix codes

The definition takes a simpler form for a synchronizing word which is in X∗. This
is the case we will in general be interested in. A word w of X∗ is synchronizing if
and only if for any u, v ∈ A∗, we have

uwv ∈ X∗ =⇒ uw ∈ X∗.

A prefix code X is synchronized if there exists a word in X∗ which is synchronizing
for X. We will see later (Chapter 10) a definition of synchronized codes for general
codes.

Example 3.6.1 The prefix code X = {ab, ba} is synchronized. Indeed, abba is a
synchronizing word for X, since uabbav ∈ X∗ implies uab, bav ∈ X∗ and thus
uabba ∈ X∗.

If X is a maximal prefix code, then w is synchronizing for X if and only if

A∗w ⊂ X∗. (3.21)

Indeed, let w be a synchronizing word. For any u in A∗, since X∗ is right dense, there
exists a word v such that uwv ∈ X∗. Then uw ∈ X∗. This shows that (3.21) holds.
Conversely, if (3.21) holds, then uw ∈ X∗ for all u ∈ A∗, and thus w is synchronizing.

Observe that if X is a maximal prefix code, then by (3.21) every synchronizing
word is in X∗.

Example 3.6.2 The code X = b∗a is synchronized. Indeed, a is a synchronizing
word, since A∗a ⊂ X∗.

Example 3.6.3 A maximal bifix code X over A is never synchronized unless X = A.
Assume indeed that w ∈ A∗ is synchronizing. For any u ∈ A∗ we have uw ∈ X∗. The
monoid X∗ being left unitary, it follows that u ∈ X∗. Thus A∗ = X∗.

The terminology is derived from the following observation: let w be a word which
has to be factored into words of some prefix code X. The appearance, in the middle
of the word w, of some synchronizing word x in X∗, that is the existence of a
factorization

w = uxv

implies that ux is in X∗. Thus we may start the decoding at the beginning of the
word v. Since X∗ is right unitary we have indeed w ∈ X∗ if and only if v ∈ X∗. This
means that the whole word is in X∗ if and only if the final part can be decoded.

Note that any code X over A satisfying (3.21) is maximal prefix. Indeed, let
y, yu ∈ X. Then uw ∈ X∗, and y(uw), (yu)w are two X-factorizations which are
distinct if u �= 1. Thus u = 1. Next, (3.21) shows that X is right complete.

Any synchronized prefix code is thin. Indeed, if x is a nonempty synchronizing
word for a prefix code X, then x2 is not a factor of a word in X, since otherwise
uxxv ∈ X for some u, v ∈ A∗. From ux ∈ X+, it would follow that X is not prefix.

3.6 Synchronized codes 139

The fact that a prefix code X is synchronized is well reflected by the automata rec-
ognizing X∗. Let us give a definition. Let A = (Q, i, T) be a deterministic automaton
on A. The rank of a word x ∈ A∗ in A, denoted by rankA(x), is defined by

rankA(x) = Card(Q · x).

It is an integer or +∞. Clearly

rankA(uxv) ≤ rankA(x).

A word w ∈ A∗ is a synchronizing in A if rankA(w) = 1. The automaton A is
synchronized if there exists a word which is synchronizing in A.

Proposition 3.6.4 Let X be a prefix code over A. The following conditions are
equivalent:

(i) X is synchronized.
(ii) The literal automaton of X∗ is synchronized.

(iii) The minimal automaton A(X∗) is synchronized.
(iv) There exists a trim synchronized deterministic automaton recognizing X∗.

Proof. (i) =⇒ (ii). Let P be the set of prefixes of X and let A = (P, 1, 1) be the
literal automaton of X∗. Let x ∈ X∗ be a synchronizing word for X. Then 1 is in
the set P · x, so x has positive rank. Next, let p ∈ P . If p · x exists, there is a word
s such p · xs = 1. Then pxs ∈ X∗ and px ∈ X∗ since x is synchronizing, showing
that p · x = 1. This shows that x has rank 1 in A.

(ii) =⇒ (iii). A synchronizing word in the literal automaton of X∗ is also synchro-
nizing in A(X∗). In fact, any quotient of a synchronized automaton is synchronized.

The implication (iii) =⇒ (iv) is clear.
(iv) =⇒ (i). Let A = (Q, i, T) be trim, let w ∈ A∗ be such that rankA(w) = 1.

There exists a path p
w→ q in A, and since A is trim, p is accessible and q is

coaccessible. Thus there are words z, y such that x = zwy ∈ X∗. We show that x is
a synchronizing word for X.

Let indeed u, v be words such that uxv ∈ X∗. Then i · ux is defined and since x

has rank 1, i · ux = i · x. Thus i · ux ∈ T and ux ∈ X∗. �

Two states p, q are said to be synchronizable if there exists a word w such that
Card{p · w, q · w} = 1. The next result is the basis of an algorithm for computing a
synchronizing word (see Exercise 3.6.2).

Proposition 3.6.5 Let A be a strongly connected deterministic automaton for which
there is a word of finite nonnull rank. Then A is synchronized if and only if any two
states of A are synchronizable.

Proof. Let Q be the set of states of A. Assume first that A is synchronized. Let x

be a word of rank 1, and let r, s be two states in Q such that r · x = s. Let p, q be
a pair of states in Q. Since A is strongly connected, there exists a word y such that

140 3 Prefix codes

p · y = r , whence p · yx = s. If q · yx is defined, then it is equal to s, thus p and q

are synchronizable.
Conversely, let x be a word of minimal nonzero rank inA. By assumption, this rank

is finite. We prove that Card Q · x = 1. Assume that there exist p, q ∈ Q · x with p �=
q. Since p and q are synchronizable, there is a word y such that Card{p · y, q · y} = 1.
Then 0 < rankA(xy) because p · y or q · y is nonempty. Next, rankA(xy) < rankA(x)
because p �= q, a contradiction with the minimality of the rank of the word x. This
shows that Card Q · x = 1 and thus that A is synchronized. �

Proposition 3.6.6 Let X be a thin maximal prefix code over A, and let P = XA−.
Then X is synchronized if and only if for all p ∈ P , there exists x ∈ X∗ such that
px ∈ X∗.

Proof. The condition is necessary. Indeed, let x ∈ X∗ be a synchronizing word for X.
Then it follows from Equation (3.21) that Px ⊂ X∗.

The condition is also sufficient. Let A = (P, 1, 1) be the literal automaton of X∗.
The automaton is complete because X is maximal. Since X is thin and maximal, the
set F̄ (X) ∩ X∗ is nonempty. Let w ∈ F̄ (X) ∩ X∗. We show that w has finite positive
rank. Clearly, 1 ∈ P · w, so this set is nonempty. Next, P · w is composed of suffixes
of w. Thus it is finite and w has finite rank.

In view of using Proposition 3.6.5, let p, q be two states in P . There exists a
word u such that pu ∈ X. Let r = q · u. By hypothesis, there is a word x in X∗

such that rx ∈ X∗. Thus p · ux = 1 and q · ux = r · x = 1, showing that p and q are
synchronizable. �

Proposition 3.6.7 Let X, Y,Z be maximal prefix codes with X = Y ◦ Z. Then X is
synchronized if and only if Y and Z are synchronized.

Proof. Let Y ⊂ B∗, X,Z ⊂ A∗, and β : B∗ → A∗ be such that

X = Y ◦β Z.

First, assume that Y and Z are synchronized, and let y ∈ Y ∗, z ∈ Z∗ be synchronizing
words. Then B∗y ⊂ Y ∗ and A∗z ⊂ Z∗, whence

A∗zβ(y) ⊂ Z∗β(y) = β(B∗y) ⊂ β(Y ∗) = X∗,

showing that zβ(y) is a synchronizing word for X. Conversely, assume that A∗x ⊂ X∗

for some x ∈ X∗. Then x ∈ Z∗ and X∗ ⊂ Z∗; thus, x is also synchronizing for Z.
Next, let y = β−1(x) ∈ Y ∗. Then

β(B∗y) = Z∗x ⊂ A∗x ⊂ X∗ = β(Y ∗).

The mapping β being injective, it follows that B∗y ⊂ Y ∗. Consequently Y is syn-
chronized. �

Example 3.6.8 The code X = (A2 \ b2) ∪ b2A2 is not synchronized, since it decom-
poses over the code A2 which is not synchronized (Example 3.6.3). It is also directly
clear that a word x ∈ X∗ can never synchronize words of odd length.

3.6 Synchronized codes 141

Example 3.6.9 For any maximal prefix code Z and n ≥ 2, the code X = Zn is not
synchronized. Indeed, such a code has the form X = Bn ◦ Z for some alphabet B,
and Bn is synchronized only for n = 1 (Example 3.6.3).

We now give a result on prefix codes which will be generalized when other tech-
niques will be available (Theorem 9.2.1). The present proof is elementary. Recall
from Chapter 2 that for a finite code X, the order of a letter a is the integer n such
that an is in X.

The existence of the order of a results from Proposition 2.5.15. Note that for a finite
maximal prefix code, it is an immediate consequence of the inclusion a+ ⊂ X∗P ,
with P = XA−.

Theorem 3.6.10 Let X ⊂ A+ be a finite maximal prefix code. If the orders of the
letters a ∈ A are relatively prime, then X is synchronized.

Proof. Let P = XA− and let A = (P, 1, 1) be the literal automaton of X∗. This
automaton is complete since X is maximal prefix. Recall that its action is given by

p · a =
{

pa if pa ∈ P ,

1 if pa ∈ X.

For all w ∈ A∗, set Q(w) = P · w. Then for w,w′ ∈ A∗,

Q(w′w) ⊂ Q(w), Card Q(w′w) ≤ Card Q(w′). (3.22)

Observe that for all w ∈ A∗, Card(Q(w)) = rankA(w).
Let u ∈ A∗ be a word such that Card(Q(u)) is minimal. The code X being right

complete, there exists v ∈ A∗ such that w = uv ∈ X+. By (3.22), Card(Q(w)) is
minimal. Further w ∈ X+ implies

1 ∈ Q(w). (3.23)

We will show that Card(Q(w)) = 1. This proves the theorem in view of Proposi-
tion 3.6.4.

Let a ∈ A be a fixed letter, and let n be the positive integer such that an ∈ X. We
define two sets of integers I and K by

I = {i ∈ N | Q(w)ai ∩ X �= ∅},
K = {k ∈ {0, . . . , n − 1} | akw ∈ X∗}.

First, we show that

Card I = Card Q(w). (3.24)

Indeed, consider a word p ∈ Q(w) ⊂ P . There is an integer i such that pai ∈ X,
since X is finite and maximal. This integer is unique since otherwise X would not
be prefix. Thus there is a mapping which associates to each p in Q(w) the integer i

142 3 Prefix codes

such that pai ∈ X. This is clearly a surjective mapping onto I . We verify that it is
also injective. Assume the contrary. Then pai ∈ X and p′ai ∈ X for p, p′ ∈ Q(w),
p �= p′. This implies Card(Q(wai)) < Card(Q(w)), contradicting the minimality of
Card(Q(w)). Thus the mapping is bijective. This proves (3.24). Next set

m = max{i + k | i ∈ I, k ∈ K}.

Clearly m = max I + max K ≤ max I + n − 1. Let

R = {m,m + 1, . . . , m + n − 1}.

We shall find a bijection from I × K onto R. For this, let r ∈ R and for each
p ∈ Q(w), let

ν(p) = p · arw.

Then

ν(p) = (p · ar) · w ∈ P · w = Q(w).

Thus ν(Q(w)) ⊂ Q(w) and ν(Q(w)) = (P · w) · arw = P · warw = Q(warw),
thus ν(Q(w)) = Q(w) by the minimality of Q(w). Thus ν is a bijection from
Q(w) onto itself. It follows by (3.23) that there exists a unique pr ∈ Q(w) such
that pra

rw ∈ X∗. Let ir be the unique integer such that pra
ir ∈ X. Such an integer

exists because X is a finite maximal prefix code. Then ir ∈ I whence ir ≤ m ≤ r . Set

r = ir + λn + kr , (3.25)

with λ ∈ N and 0 ≤ kr < n. This uniquely defines kr and we have

pra
rw = (pra

ir)(an)λ(akr w).

Since pra
ir ∈ X and X∗ is right unitary, we have (an)λ(akr w) ∈ X∗ and also

akr w ∈ X∗. Thus, kr ∈ K . The preceding construction defines a mapping

R → I × K, r �→ (ir , kr) (3.26)

first by determining ir , then by computing kr by means of (3.25). This mapping is
injective. Indeed, if r �= r ′, then either ir �= ir ′ , or it follows from (3.25) and from
r �≡ r ′ mod n that kr �= kr ′ .

We now show that the mapping (3.26) is surjective. Let (i, k) ∈ I × K , and let
λ ∈ N be such that

r = i + λn + k ∈ R.

By definition of I , there is a unique q ∈ Q(w) such that qai ∈ X, and by the definition
of K , we have

qarw ∈ X∗.

3.6 Synchronized codes 143

Table 3.3 The transitions of A(X∗).

Q 1 2 3 4 5 6 7 8 9

a 2 3 1 1 3 8 9 3 1
b 4 6 7 5 1 4 1 5 1

Thus, q = pr , i = ir , k = kr , showing the surjectivity.
It follows from the bijection that

n = Card(R) = Card(I) Card(K).

This in turn implies, by (3.24), that Card Q(w) divides the integer n. Thus Card Q(w)
divides the order of each letter in the alphabet. Since these orders are relatively prime,
necessarily Card(Q(w)) = 1. The proof is complete. �

Example 3.6.11 Let A = {a, b} and let X = (A2 \ b2) ∪ b2A. The order of A is 2
and the order of b is 3. Thus X is synchronized by Theorem 3.6.10 and indeed the
word abba is synchronizing.

We will prove later (Section 11.2) the following important theorem.

Theorem 3.6.12 (Schützenberger) Let X be a semaphore code. Then there exists a
synchronized semaphore code Z and an integer d such that

X = Zd.

This result admits Proposition 3.5.19 as a special case. Consider indeed a bifix
semaphore code X ⊂ A+. Then according to Theorem 3.6.12, we have X = Zd with
Z synchronized. The code X being bifix, Z is also bifix (Proposition 3.4.12); but a
bifix synchronized code is trivial by Example 3.6.3. Thus, Z = A and X = Ad .

Theorem 3.6.12 describes in a simple manner the structure of semaphore codes
which are not synchronized.

We may ask whether such a description exists for general maximal prefix codes: is
it true that an indecomposable maximal prefix code X is either bifix or synchronized?
Unfortunately, it is not the case, even when X is finite, as shown by the following
example.

Example 3.6.13 Let A = {a, b}, and let X be the prefix code with automatonA(X) =
(Q, 1, 1) whose transitions are given in Table 3.3. The automaton A(X∗) is complete,
thus X is maximal prefix. In fact, X is finite and it is given in Figure 3.27.

To show that X is not synchronized, observe that the action of the letters a and b

preserves globally the sets of states

{1, 2, 3}, {1, 4, 5}, {4, 6, 7}, {1, 8, 9}
as shown in Figure 3.28. This implies that X is not synchronized. Assume indeed that
x ∈ X∗ is a synchronizing word. Then by definition A∗x ⊂ X∗, whence q · x = 1 for
all states q ∈ Q. Thus for each three element subset I , we would have I · x = {1}.

144 3 Prefix codes

1

2

3

7

9

6

8

3

7

9

5

3

7

9

4

5

3

7

9

4

5

3

7

9

Figure 3.27 An indecomposable code which is not synchronized.

1, 2, 3

1, 8, 9

4, 6, 7 1, 4, 5

a b

b b

a

a b

a

Figure 3.28 The action of the letters a and b.

Further X is not bifix since b3, ab4 ∈ X. Finally, the inspection of Figure 3.27
shows that X is indecomposable.

We define a canonical decomposition of a prefix code called its maximal decom-
position. This is used to show in Chapter 11 that only maximal prefix codes may
produce nontrivial groups by composition.

Proposition 3.6.14 Let X ⊂ A+ be a prefix code. Let D = X∗(A∗)−1 be the set of
prefixes of X∗. The set

U = {u ∈ A∗ | u−1D = D}
is a right unitary submonoid of A∗. Let Z be the prefix code generating U . The code
X decomposes as

X = Y ◦ Z (3.27)

where Y is a maximal prefix code.

3.7 Recurrent events 145

Proof. Note first that U ⊂ D: Let u ∈ U . Since 1 ∈ D, we have 1 ∈ u−1D, whence
u ∈ D.

The set U is a submonoid. Let indeed u, v ∈ U . Then (uv)−1D = v−1u−1D =
v−1D = D showing that uv ∈ U . Assume next that u, uv ∈ U . Then u−1D = D,
and v−1D = v−1u−1D = (uv)−1D = D. Thus U is right unitary.

We have X∗ ⊂ Z∗ = U . Indeed, X∗ is right unitary. Thus for all x ∈ X∗, x−1X∗ =
X∗. It follows that

x−1D = x−1(X∗(A∗)−1) = (x−1X∗)(A∗)−1

= X∗(A∗)−1 = D.

We verify that for u ∈ U , there exists v ∈ U such that uv ∈ X∗. Indeed, let u ∈ U .
Then u ∈ D, and therefore uv ∈ X∗ for some v ∈ A∗. Since X∗ ⊂ U , we have u, uv ∈
U , and consequently v ∈ U (U is right unitary). The claim shows that X decomposes
over Z. Let Y be such that X = Y ◦ Z. Then Y is prefix by Proposition 2.6.12. The
claim also shows that Y is right complete, hence Y is prefix maximal. �

It can be shown (Exercise 3.6.5) that for any other decomposition X = Y ′ ◦ Z′

with Z′ prefix and Y ′ maximal prefix, we have Z′∗ ⊂ Z∗. This justifies the name of
maximal decomposition of the prefix code X given to the decomposition (3.27).

In the case where X is a maximal prefix code, the set D defined above is A∗.
Thus U = A∗ and Z = A in (3.27). Thus the maximal decomposition, in this case,
is trivial.

Example 3.6.15 Let A = {a, b} and X = {aa, aba, ba}. The maximal decomposi-
tion of X is X = Y ◦ Z, with Y = {uu, uv, v} ⊂ B+, B = {u, v} and Z = {a, ba}.

3.7 Recurrent events

The results of Chapter 2 concerning Bernoulli distributions apply of course to prefix
codes. However, for these codes, considerable extensions exist in two directions.
First, the properties proved in Chapter 2 hold for probability distributions which are
much more general than Bernoulli distributions. Second, there exists a remarkable
combinatorial interpretation of the average length of a prefix code by means of the
sum of the probabilities of its proper prefixes (Proposition 3.7.11).

The following result shows that for prefix codes, Theorem 2.4.5 holds for arbitrary
probability distributions.

Proposition 3.7.1 Let π be a probability distribution on A∗. For any prefix code X,
we have π (X) ≤ 1.

Proof. Recall that A[n] denotes the set of words of length at most n. For x ∈ X ∩ A[n],
one has π (x) = π (xAn−|x|) by the coherence condition. Next, the sets xAn−|x| for
x ∈ X ∩ A[n] are pairwise disjoint because X is prefix. Consequently∑

x∈X∩A[n]

π (xAn−|x|) = π (
⋃

x∈X∩A[n]

xAn−|x|) ≤ π (An) = 1.

146 3 Prefix codes

It follows that for n ≥ 0, we have

π (X ∩ A[n]) =
∑

x∈X∩A[n]

π (x) =
∑

x∈X∩A[n]

π (xAn−|x|) ≤ π (An) = 1.

Thus π (X ∩ A[n]) ≤ 1 for all n ≥ 0. Taking the limit for n → ∞, we obtain π (X) ≤
1. �

Proposition 3.7.2 Let π be a probability distribution on A∗. For any finite maximal
prefix code X, we have π (X) = 1.

Proof. Let n be greater than the maximal length of the words in X. Since X is
maximal, it is right complete, and thus any word of length n has a unique prefix in
X. It follows that

π (X) =
∑
x∈X

π (x) =
∑
x∈X

π (xAn−|x|) = π (An) = 1. �

The following computation rule appears to be useful.

Lemma 3.7.3 Let X ⊂ A+ be a prefix code. For any probability distribution π

on A∗ such that
∑

x∈X π (x) = 1, and for any prefix p of a word of X, one has
π (p) = π (pA∗ ∩ X).

Proof. Suppose first that π (p) = 0. Then, using the coherence condition, we obtain
that π (x) = 0 for each x ∈ pA∗ ∩ X. Thus the conclusion holds. Otherwise, set
Y = p−1X and Z = X \ pY . It is easy to verify that the function ρ defined on A∗ by
ρ(u) = π (pu)/π (p) is a probability distribution. Since Y and Z ∪ p are prefix codes,
we have ρ(Y) ≤ 1 and π (p) + π (Z) ≤ 1, by Proposition 3.7.1. Since X = pY ∪ Z,
we have 1 = π (pY) + π (Z) ≤ π (p) + π (Z) ≤ 1. Thus π (pY) = π (p). �

A recurrent event on the alphabet A is a pair composed of a prefix code X on the
alphabet A and a probability distribution π on A∗ which is multiplicative on X∗, that
is such that π (xy) = π (x)π (y) for all x, y ∈ X∗. For example, the pair of a prefix
code and a Bernoulli distribution is a recurrent event.

The terminology comes from probability theory. The event considered is the mem-
bership in X∗ of the prefixes of a word obtained by a succession of trials defining its
letters from left to right according to the probability π . A more precise formulation
will be given in Chapter 13.

A recurrent event (X,π) is called persistent if π (X) = 1 and transient otherwise. In
terms of probability, the event is persistent if it occurs at least once with probability 1.

Proposition 3.7.2 shows that (X,π) is persistent whenever X is a finite maximal
prefix code.

Example 3.7.4 Let π be a positive Bernoulli distribution on A∗ and let X be a thin
maximal prefix code. Then (X,π) is persistent by Theorem 2.5.16.

3.7 Recurrent events 147

Example 3.7.5 Let D be the Dyck code of Example 2.4.10 and let π be a Bernoulli
distribution on {a, b}∗. Set p = π (a) and q = π (b). Then π (X) = 1 − |p − q|. Thus
(D,π) is transient when p �= q and is persistent for p = q.

Let β : B → X be a coding morphism for a prefix code X, that is a bijection
between a source alphabet B and the code X extended to a injective morphism from
B∗ into A∗. A persistent recurrent event (X,π) defines a Bernoulli distribution µ on
B∗ by setting µ(b) = π (β(b)) for any b ∈ B. Since π is multiplicative on X∗, we then
have µ(w) = π (β(w)) for any w ∈ B∗. The following result shows that conversely,
a Bernoulli distribution on the source alphabet defines in a unique way a recurrent
event.

Proposition 3.7.6 Let X be a prefix code and let σ : X → [0, 1] be a mapping such
that

∑
x∈X σ (x) = 1. Then there exists a unique probability distribution π on A∗

which coincides with σ on X and such that the pair (X,π) is a recurrent event.
Moreover, we have π (xw) = π (x)π (w) for any x ∈ X∗ and w ∈ A∗.

Proof. Let P = A∗ \ XA∗. We first prove the existence of π . For x1, . . . , xn in X

and p ∈ P , we set π (x1 · · · xnp) = σ (x1) · · · σ (xn)σ (pA∗ ∩ X). Since A∗ = X∗P
and the factorization is unambiguous, this defines a function π on A∗. The last two
formulas are a direct consequence of the definition, since for w = yp with y ∈ X∗

and p ∈ P , one has π (xw) = π (xyp) = π (x)π (y)π (p) = π (x)π (w).
Then π is by definition multiplicative on X∗ and coincides with σ on X. We prove

now that π satisfies the coherence condition. For any p in P , we have pA∗ ∩ X =
pAA∗ ∩ X =⋃a∈A paA∗ ∩ X because p is not in X, and thus π (p) = σ (pA∗ ∩
X) =∑a∈A σ (paA∗ ∩ X) =∑a∈A π (pa). This shows that π (w) =∑a∈A π (wa)
for any w ∈ A∗. This proves that π is a probability distribution.

To prove uniqueness, let π ′ be a probability distribution such that π ′(x) = σ (x)
for all x ∈ X and which is multiplicative on X∗. Observe first that π and π ′ coincide
on X∗ since both are multiplicative on X∗ and coincide on X.

Consider a word w ∈ A∗ and let w = xp with x ∈ X∗ and p ∈ P . Let n ≥ 0 be
such that x ∈ Xn. Then, applying Lemma 3.7.3 to the prefix code Xn+1 and the
probability distribution π ′, we obtain π ′(wA∗ ∩ Xn+1) = π ′(w). Since π ′(wA∗ ∩
Xn+1) = π (wA∗ ∩ Xn+1) = π (w), we conclude that π (w) = π ′(w). �

Example 3.7.7 Let A = {a, b} and X = {a, ba}. Let p, q ≥ 0 be such that p + q =
1 and let σ be defined by σ (a) = p and σ (ba) = q. The unique probability distribution
which is multiplicative on X∗ and coincides with σ on X satisfies π (aw) = pπ (w),
π (baw) = qπ (w) and π (b2w) = 0 for all w ∈ A∗. Note that π (b) = q since π (bA∗ ∩
X) = π (ba).

Proposition 3.7.8 For any persistent recurrent event (X,π) over A such that π (x) >

0 for x ∈ X, there exists a stochastic automaton whose set of states is the set of prefixes
of X which defines π .

Proof. Let Q be the set of proper prefixes of X, and let A = (Q, 1, 1) be the literal
automaton of X∗. We convert it into a weighted automaton (Q, I, T) by setting

148 3 Prefix codes

I (1) = 1 and I (q) = 0 for q �= 1 and T (q) = 1 for all q ∈ Q. The associated matrix
representation is defined by

µ(a)p,q =
{

π (pa)/π (p) if p · a = q

0 otherwise.

One has
∑

a∈A µ(a)p,q = 1
π(p)

∑
a∈A π (pa) = 1 by the coherence condition. Thus

the automaton is stochastic. We prove that

µ(w)p,q =
{

π (pw)/π (p) if p · w = q,

0 otherwise,

by induction on the length of w. The case of |w| = 0 is clear. Next, let a ∈ A and
w ∈ A∗. For p ∈ Q such that p · aw is defined, set r = p · a and q = r · w. Then
µ(aw)p,q = µ(a)p,rµ(w)r,q . Consequently

µ(aw)p,q = π (pa)

π (p)

π (rw)

π (r)
.

If r �= 1, one has r = pa and µ(aw)p,q = π (paw)/π (p). If r = 1, then pa ∈ X and
µ(aw)p,q = π (pa)π (w)/π (p). Since π (pa)π (w) = π (paw) by Proposition 3.7.6,
the formula holds also in this case. It follows that

(|A|, w) = Iµ(w)T =
∑
q∈Q

µ(w)1,q = µ(w)1,1·w = π (w). �

Example 3.7.7 (continued) The probability distribution π is defined by the matrices

µ(a) =
[
p q

1 0

]
, µ(b) =

[
0 q

0 0

]
.

Let (X,π) be a recurrent event on the alphabet A. Recall from Chapter 1 that
FX(t) =∑n≥0 π (X ∩ An)tn and FX∗ (t) =∑n≥0 π (X∗ ∩ An)tn are the probability
generating series of X and of X∗. The next result has been proved for arbitrary codes
in Chapter 2 (Proposition 2.4.3) in the case of Bernoulli distributions.

Proposition 3.7.9 For any recurrent event (X,π), one has

FX∗(t) = 1

1 − FX(t)
.

Proof. Since the sets Xk for k ≥ 0 are pairwise disjoint, FX∗ (t) =∑n≥0 π (X∗ ∩
An)tn =∑n≥0

∑
k≥0 π (Xk ∩ An)tn. It follows that FX∗ (t) =∑k≥0

∑
n≥0 π (Xk ∩

An)tn =∑k≥0 FXk (t). Since π is multiplicative on X∗, one has π (Xn) = π (X)n,
and it follows that FXn(t) = FX(t)n, by the same argument as in the proof of Propo-
sition 2.4.3. Thus FX∗ (t) =∑n≥0 FX(t)n. This implies the formula. �

3.7 Recurrent events 149

Given a set K of words and a probability distribution π such that π (K) = 1, the
average length of K with respect to π is defined by

λ(K) =
∑
x∈K

|x|π (x).

It is a nonnegative real number or infinite. The context always indicates which is
the underlying probability distribution. We therefore omit the reference to it in the
notation.

The quantity λ(K) is in fact the mean of the random variable assigning to each
x ∈ K its length |x|.

Since λ(K) =∑n≥0 nπ (K ∩ An) we have the following useful formula for per-
sistent events.

Proposition 3.7.10 Let (X,π) be a persistent recurrent event. Then

λ(X) = F ′
X(1). �

Proposition 3.7.11 Let (X,π) be a persistent recurrent event and let P = XA− be
the set of proper prefixes of elements of X. Then λ(X) = π (P).

Proof. By Proposition 3.7.6, for each p ∈ P we have π (pA∗ ∩ X) = π (p). Then we
have

π (P) =
∑
p∈P

π (pA∗ ∩ X) =
∑
x∈X

∑
p<x

π (x) =
∑
x∈X

π (x)|x|,

the last equality resulting from the fact that each term π (x) appears exactly |x| times
in the sum. �

Corollary 3.7.12 Let X be a finite maximal prefix code and P = XA−. For any
probability distribution π on A∗, one has λ(X) = π (P).

Proof. This follows from the preceding proposition and Proposition 3.7.2. �

For a Bernoulli distribution, the finiteness condition can be replaced by the condi-
tion to be thin.

Corollary 3.7.13 Let X be a thin maximal prefix code, and P = XA−. For any
positive Bernoulli distribution π on A∗, the recurrent event (X,π) is persistent and
one has λ(X) = π (P). Further, the average length λ(X) is finite.

Proof. The code X being maximal, Theorem 2.5.16 shows that π (X) = 1. Thus,
(X,π) is persistent and the equality λ(X) = π (P) follows from Proposition 3.7.11.
Moreover, P is thin since each factor of a word in P is also a factor of a word in X.
By Proposition 2.5.12, π (P) is finite. �

We shall see in Chapter 13 that the average length is still finite in the more general
case of thin maximal codes.

150 3 Prefix codes

Example 3.7.14 Let A = {a, b} and X = a∗b. Let π be a positive Bernoulli distri-
bution. Then λ(X) = π (a∗) = 1/π (b).

Example 3.7.15 Let D be the Dyck code over A = {a, b} (see Example 2.4.10). We
have seen that for a uniform Bernoulli distribution, one has

FD(t) = 1 −
√

1 − t2.

We have

F ′
D(t) = 2t√

1 − t2
.

Thus, for a uniform Bernoulli distribution, the Dyck code defines a persistent recurrent
event but the average length is infinite.

Example 3.7.16 Recall from Example 3.4.4 that the Golomb–Rice code of order k

is given by the regular expression

GRk = 1∗0(0 + 1)k. (3.28)

For the Bernoulli distribution π with π (0) = p and π (1) = q, the corresponding

probability generating series is FGRk
(t) =∑n≥0

ptk+1

1 − qt
. Thus π (GRk) = FGRk

(1) =
1. The average length can be computed directly as F ′

GRk
(1) = k + 1/p. One may also

obtain this value by computing π (P), where P is the set of proper prefixes of GRk .

One has P = 1∗ ∪ 1∗0
(⋃

0≤i<k{0, 1}i
)

. Since π (1∗) = 1/p and π (1∗0) = 1, one has

π (P) = 1/p +∑0≤i<k π (1∗0)π ({0, 1}i) = 1/p + k.

We now consider the computation of the average length of semaphore codes. We
start with an interesting identity.

Proposition 3.7.17 Let X ⊂ A+ be a semaphore code, P = XA− and let S be the
minimal set for which X = A∗S \ A∗SA+. For s, t ∈ S, let

Xs = X ∩ A∗s, Rs,t = {w ∈ A∗ | sw ∈ A∗t and |w| < |t |}.

Then, for all t ∈ S,

P t =
∑
s∈S

XsRs,t . (3.29)

Proof. First, we observe that each product XsRs,t is unambiguous, since Xs is prefix.
Further any two terms of the sum are disjoint, since X =⋃Xs is prefix. Thus, it
suffices to show that

P t =
⋃
s∈S

XsRs,t .

3.7 Recurrent events 151

u w

p t

s

x

Figure 3.29 Factorizations of pt .

First let p ∈ P , and let x be the shortest prefix of pt which is in A∗S. Then x ∈ X

and

pt = xw

for some w ∈ A∗. Next x ∈ Xs for some s ∈ S. Set x = us. The word p being in P we
have |p| < |x|, whence |w| < |t | (see Figure 3.29). Now p cannot be a proper prefix
of u, since otherwise s would be a proper factor of t , contradicting Proposition 3.5.11
and the minimality of S. Thus, u is a prefix of p and sw ∈ A∗t , showing that
w ∈ Rs,t .

Conversely, let x ∈ Xs and w ∈ Rs,t for some s, t ∈ S. Then x = us and sw = �t

for a proper prefix � of s. Then u� is a proper prefix of us = x; thus, u� ∈ P and
xw = u�t ∈ P t . �

Corollary 3.7.18 With the notation of Proposition 3.7.17, we have for any Bernoulli
distribution π , the following system of equations:

λ(X)π (t) =
∑
s∈S

π (Xs)π (Rs,t), (t ∈ S), (3.30)

∑
s∈S

π (Xs) = 1. (3.31)

Proof. Equation (3.30) follows from Equation (3.29) by applying π to both sides and
observing that λ(X) = π (P). Equation (3.31) comes from the fact that X is a disjoint
union of the codes Xs and is itself a thin maximal code. �

In the case of a finite set S, the system (3.30) and (3.31) is a set of 1 + Card(S)
linear equations in the 1 + Card(S) unknown variables π (Xs) and λ(X). This gives a
method to compute λ(X). In the special case where S is a singleton, we get

Corollary 3.7.19 Let s ∈ A+, let X = A∗s \ A∗sA+ and R = {w ∈ A∗ | sw ∈
A∗s and |w| < |s|}. Then for any positive Bernoulli distribution π , we have

λ(X) = π (R)/π (s). �

Example 3.7.20 Let A = {a, b} and consider s = aba. The corresponding set R

is R = {1, ba}. Setting p = π (a) and q = π (b) = 1 − p, we get for X = A∗aba \

152 3 Prefix codes

A∗abaA+

λ(X) = 1 + pq

p2q
.

Now, choose s ′ = baa. The corresponding R′ is the set R′ = {1}. Thus, for X′ =
A∗baa \ A∗baaA+, we have

λ(X) = 1

qp2
.

For p = q = 1/2, this gives λ(X) = 10, λ(X′) = 8. This is an interesting paradox:
we have to wait longer for the first appearance of aba than for the first appearance of
baa!

3.8 Length distributions

Let X be a prefix code on the alphabet A with k letters. Let fX(z) =∑n≥0 unz
n with

un = Card(X ∩ An). Recall that the sequence (un) is the length distribution of X and
fX is the generating series of X.

By Theorem 2.4.12, one has fX(1/k) =∑n≥0 unk
−n ≤ 1. Conversely, if u(z) =∑

n≥0 unz
n is a series with nonnegative coefficients then, in view of Theorem 2.4.12,

if u(1/k) ≤ 1, there exists a prefix code X on k letters such that u(z) = fX(z).
If X is a thin maximal prefix code, then by Theorem 2.5.16, fX(1/k) = 1.

Conversely, if u(z) =∑n≥0 unz
n is a series with nonnegative coefficients, and

u(1/k) = 1, then there exists a prefix code X on k letters such that fX(z) = u(z).
This code is clearly a maximal code, hence a maximal prefix code.

Example 3.8.1 It follows from Formula (3.9) that the generating series of the Go-
lomb–Rice code of order k is

fGRk
(z) = 2kzk+1

1 − z
=
∑

i≥k+1

2kzi .

Let X be a rational prefix code. The generating series fX(z) is N-rational by
Proposition 1.10.11. The following statement proves the converse.

Theorem 3.8.2 A series u(z) =∑n≥0 unz
n is the generating series of a rational

prefix code on k letters if and only if it is N-rational, u0 = 0 and it satisfies the
inequality u(1/k) ≤ 1.

The conditions are obviously necessary. To prove that they are sufficient, we prove
several intermediary results. We assume from now on that u is an N-rational series and
that u(1/k) ≤ 1. Since u0 = 0, there is a normalized weighted automaton recognizing
u by Proposition 1.10.10. We assume that u is not the null series.

3.8 Length distributions 153

The following lemma is the first step of the proof.

Lemma 3.8.3 If A = (Q, i, t) is a normalized weighted automaton recognizing u,
the adjacency matrix of A has a k-approximate eigenvector w which is positive and
such that wi = wt .

Proof. Let A = (Q, i, t) be a normalized weighted automaton recognizing u. Let A
be the weighted automaton on the set of states Q = Q \ t obtained by merging i

and t . Let M be the adjacency matrix of A and let M be the adjacency matrix of
A. Since A is trim, M is irreducible. By Proposition 1.10.12, (Q, i, i) recognizes
u∗(z) = 1/(1 − u(z)). Since u(1/k) ≤ 1, the radius of convergence ρ of u∗ satisfies
ρ ≥ 1/k. By Proposition 1.10.14 the spectral radius λ of M is 1/ρ. Thus λ ≤ k and
by Proposition 1.9.6, there is a positive k-approximate eigenvector w̄ of M . Let w

be the Q-vector defined by wq = wq for every q �= t and wt = w̄i . By definition
wi = w̄i = wt . Let us show that w is a positive k-approximate eigenvector of M .
We have to prove that

∑
q∈Q Mpqwq ≤ kwp for all p ∈ Q. Since A is normalized,

Mp,i = 0 for all p ∈ Q. Next, for p ∈ Q̄, we have∑
q∈Q

Mpqwq =
∑

q∈Q\{i,t}
Mpqwq + Mptwt =

∑
q∈Q̄\i

M̄pqw̄q + M̄piw̄i

=
∑
q∈Q̄

M̄pqw̄q ≤ kw̄p = kwp.

Moreover, since Mtq = 0 for all q ∈ Q, the inequality holds trivially for p = t

because wt ≥ 0. �

We will use the following two combinatorial lemmas of some independent interest.
These will be used in the proof of Lemma 3.8.6. For a Q-vector x = (xq)q∈Q, we
denote by d(x) the sum of its coefficients d(x) =∑q∈Q xq and for two Q-vectors
x = (xq)q∈Q and y = (yq)q∈Q, we denote by x · y their scalar product defined by
x · y =∑q∈Q xqyq .

The first combinatorial lemma is a variant of the pigeon-hole principle.

Lemma 3.8.4 For any integer m ≥ 1 and any Q-vectors z,w ∈ NQ such that d(z) =
m, there is a Q-vector z′ such that 0 < z′ ≤ z and z′ · w ≡ 0 mod m.

Proof. Since d(z) = m, there exists a sequence x(1), x(2), . . . , x(m) of Q-vectors such
that 0 < x(1) < x(2) < · · · < x(m) = z. Indeed, this is clear if m = 1. Assume m > 1.
There exists an index k such that zk > 0. Define a Q-vector u by ui = zi for i �= k

and uk = zk − 1. Then d(u) = m − 1 ≥ 1, and by induction there exists a sequence
x(1), x(2), . . . , x(m−1) of Q-vectors such that 0 < x(1) < x(2) < · · · < x(m−1) = u. Set-
ting x(m) = z, we obtain the desired sequence because u < z.

Consider the sequence x(1), x(2), . . . , x(m). If all residues x(i) · w modulo m are
distinct, then there is an index i with 1 ≤ i ≤ m such that x(i) · w ≡ 0 mod m. In
this case, we set z′ = x(i). Otherwise, there exist indices i, j with 1 ≤ i < j ≤ m

154 3 Prefix codes

such that x(i) · w ≡ x(j) · w mod m. In this case, we set z′ = x(j) − x(i). Observe that
0 < z′ < x(j) ≤ z. Consequently, in both cases, z ≥ z′ > 0 and z′ · w ≡ 0 mod m.

�

Lemma 3.8.5 For any integer m ≥ 1 and y,w ∈ NQ, there exist n ≥ 0 and n + 1
vectors v(0), v(1), . . . , v(n) ∈ NQ such that y =∑n

j=0 v(j), with

(i) d(v(j)) ≤ m for 0 ≤ j ≤ n, and
(ii) v(j) · w ≡ 0 mod m for 1 ≤ j ≤ n.

Proof. We proceed by induction on d(y). If d(y) ≤ m, then the properties hold
with n = 0 and v(0) = y. Indeed condition (ii) is vacuous for n = 0. Otherwise,
we write y = z + y ′ with d(z) = m. By Lemma 3.8.4, there is a Q-vector z′ such
that 0 < z′ ≤ z and z′ · w ≡ 0 mod m. We write z = z′ + s. Then y = z′ + y ′′ with
y ′′ = s + y ′. Since z′ > 0, we have d(y ′′) < d(y) and we can apply the induction
hypothesis to y ′′. The set of vectors for y ′′ together with z′ gives the desired result
for y since d(z′) ≤ d(z) ≤ m. �

Lemma 3.8.6 There exists a normalized weighted automaton A = (Q, i, t) recog-
nizing u such that the adjacency matrix ofA has a positive k-approximate eigenvector
w satisfying wi = wt = 1.

Proof. We start with a normalized weighted automaton A = (Q, i, t) recognizing
u. Let M be the adjacency matrix of A. By Lemma 3.8.3, there is a positive k-
approximate eigenvector w of M such that wi = wt . Set m = wi = wt . Let I be the
characteristic Q-vector of i defined by Ii = 1 and Iq = 0 for q �= i and let T be the
characteristic Q- vector T of t , defined similarly. Let K = {r ∈ NQ | d(r) ≤ m, rt =
0}, and let R = K ∪ {T }. Since i �= t , and d(I) = 1, the vector I is in K .

We define a weighted automaton B = (R, I, T) by defining its adjacency matrix
N as follows.

Consider r in R and set z = rM and y = z − ztT . Thus yt = 0. We apply
Lemma 3.8.5 to the pair of vectors y, w, where w and m = wi = wt are as defined
above. The lemma gives a decomposition y =∑n

j=0 v(j), where each v(j) is in K

because yt = 0. We set

Nr,s =
{

Card{j | 0 ≤ j ≤ n and v(j) = s} if s �= T ,

zt otherwise.

Since rM = y + ztT , we have

rM =
∑
s∈R

Nr,ss. (3.32)

Note that whenever Nr,s �= 0 in the right-hand side, then s · w ≡ 0 mod m except
possibly for one value of s for which Nr,s = 1, corresponding to the vector v(0).
Indeed, this is true for s �= T by condition (ii) of Lemma 3.8.5, and it holds also for
s = T since T · w = wt = m.

3.8 Length distributions 155

We will verify that B recognizes u and that its adjacency matrix N has a positive
k-eigenvector w′ satisfying w′

I = w′
T = 1.

Let U be the R × Q-matrix defined by Ur,q = rq for q ∈ Q. Thus the row of index
r of U is the Q-vector r itself. It follows that for each Q-vector z, one has (Uz)r =∑

q∈Q Ur,qzq = r · z. Observe also that by construction UM = NU , since the row
of index r in UM is rM , and (NU)r,p =∑s∈R Nr,sUs,p =∑s∈R Nr,ssp = (rM)p by
(3.32), showing that the row of index r in NU is rM .

Let I ′ (resp. T ′) be the characteristic R-vector of the state I (resp. of the state T).
We obtain, considering I, I ′ as row vectors and T , T ′ as column vectors the equalities
I ′U = I and UT = T ′. Indeed, (I ′U)p =∑r∈R I ′

rUr,p = I ′
IUI,p = UI,p = Ip, and

for r ∈ R, (UT)r =∑p∈Q Ur,pTp = Ur,t = rt . This shows that UT = T ′ since rt =
0 for all r ∈ R except for r = T .

Since UMn = NnU for all n ≥ 1, we have

un = IMnT = I ′UMnT = I ′NnUT = I ′NnT ′.

This shows that u is recognized by B. We also have NUw = UMw ≤ kUw and thus
w′ = Uw is a k-approximate eigenvector of N . Note that w′

I = w′
T = m. Indeed,

w′
I = I ′ · w′ = I ′ · Uw = I ′U · w = I · w = wi,

and, since the row of index T of U is the Q-vector T ,

w′
T = (Uw)T = T · w = wt .

For each r ∈ R, we have ∑
s∈R

Nr,sw
′
s ≤ kw′

r .

Since w′
s = (Uw)s = s · w, we have w′

s ≡ 0 mod m for all s except possibly for
one index s0 for which Nr,s0 = 1. We rewrite the inequality as∑

s �=s0

Nr,sw
′
s + Nr,s0w

′
s0

≤ kw′
r .

Dividing both sides by m gives∑
s �=s0

Nr,sw
′
s/m + Nr,s0w

′
s0
/m ≤ kw′

r/m.

Taking the ceiling of both sides gives⌈∑
s �=s0

Nr,sw
′
s/m + Nr,s0w

′
s0
/m
⌉
≤ kw′

r/m!.

156 3 Prefix codes

Since on the left-hand side, all terms are integers except possibly the last one, and
since Nr,s0 = 1, this implies∑

s �=s0

Nr,sw
′
s/m + Nr,s0 w′

s0
/m! ≤ kw′

r/m! ≤ k w′
r/m!.

This shows that the vector w′′ defined by w′′
r = w′

r/m! is a positive k-approximate
eigenvector such that w′′

i ′ = w′′
t ′ = 1. �

Proof of Theorem 3.8.2. We first show that there exists a normalized weighted
automaton recognizing u such that each state has at most k outgoing edges.

According to Lemma 3.8.6, we start with a normalized weighted automaton A =
(Q, i, t) recognizing u with state set Q such that the adjacency matrix M of A has
a positive k-approximate eigenvector w with wi = wt = 1. We are going to define a
weighted automaton A′ = (R, i ′, t ′) by its adjacency matrix N . This matrix will have
the property that there exists a nonnegative matrix U such that

MU = UN.

By construction, the sum of each row of the matrix N will be at most k.
The set R contains wq copies of each state q in Q. Since wi = 1, the set R

contains only one copy of the initial state i. Formally, R is the set of pairs (q, j) for
q ∈ Q and 1 ≤ j ≤ wq . For given p, q ∈ Q, we define N(p,i),(q,j) for 1 ≤ i ≤ wp

and 1 ≤ j ≤ wq in the following way.
For p ∈ Q, let X(p) = {(q, j,m) | q ∈ Q, 1 ≤ j ≤ wq, 1 ≤ m ≤ Mp,q}. Thus

X(p) contains Mp,q copies of each state (q, j) ∈ R. The set X(p) has by defini-
tion
∑

q∈Q Mp,qwq elements. Since
∑

q∈Q Mp,qwq ≤ kwp, we may partition the set
X(p) into wp sets Xp,1, . . . , Xp,wp

having each at most k elements. We denote by
Xp,�,q,j the subset of the set Xp,� composed of the elements of the form (q, j,m) for
some m. We then define N(p,�),(q,j) = Card(Xp,�,q,j). Since N is the adjacency matrix
of the automaton under construction, N(p,�),(q,j) is the weight of the edge from (p, �)
to (q, j). The sum of the weights of the edges going out of each state (p, �) is the
cardinality of Xp,�, and thus at most k. Note also that

∑
1≤�≤wp

N(p,�),(q,j) = Mp,q

since the sum is the number of elements of the set X(p) of the form (q, j,m) for
some m, that is precisely Mp,q .

Define the Q × R-matrix U by Uq,(q,j) = 1 for 1 ≤ j ≤ wq , the other
components being 0. Then we have MU = UN . Indeed, MUp,(q,j) =∑

s∈Q Mp,sUs,(q,j) = Mp,qUq,(q,j)Mp,q and UNp,(q,j) =
∑

r∈R Up,rNr,(q,j) =∑
1≤�≤wp

Up,(p,�)N(p,�),(q,j) = Mp,q .
Let A′ = (R, i ′, t ′) be the weighted automaton with adjacency matrix N and with

i ′ = (i, 1) and t ′ = (t, 1). By construction, this automaton is normalized. Then A′

recognizes u. Indeed, let I (resp. T) be the characteristic Q-vector of i (resp. of t).
Since the automaton A recognizes u, we have for n ≥ 0, un = IMnT . Let similarly
I ′ (resp T ′) be the characteristic R-vector of i ′ (resp. of t ′). By definition of i ′ and t ′,
we have IU = I ′ and T = UT ′. Since MU = UN , we have also MnU = UNn for
all n ≥ 0 and thus I ′NnT ′ = IUNnT ′ = IMnUT ′ = IMnT = un.

3.8 Length distributions 157

1 2

3

4

3 2

1

3
3 1000 0300

0030

0001

1 2

1

1
3

Figure 3.30 A trim normalized weighted automaton of u and the first transformation.

1

2, 1

2, 2

3

4

2

1

2

3

4

5

a

b

bb

a

a

b

a

Figure 3.31 The second transformation and the final result.

By construction, the sum on each row of N is at most k and thus A′ satisfies the
required property.

We now label the edges going out of each state with different letters. Since there
is only one initial state and no edge going out of the terminal state, the automaton
obtained recognizes a prefix code with generating series u. �

Example 3.8.7 Let u(z) = 3z2/(1 − z2). We have u(1/2) = 1. The series u is rec-
ognized by the trim normalized weighted automaton of the left of Figure 3.30. The
result of the transformation realized in the proof of Lemma 3.8.6 is represented on
the right. The coordinates of the 2-approximate eigenvector in both cases is indicated
in a square.

We compute only the accessible part of the automatonB. This gives the four vectors
shown in the states of the automaton on the right of Figure 3.30. The matrices M , N ,
and U of the proof of Lemma 3.8.6 are

M =

0 3 0 0
0 0 1 1
0 1 0 0
0 0 0 0

 , N =

0 1 0 0
0 0 1 3
0 1 0 0
0 0 0 0

 , U =

1 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

 .

The second transformation (proof of the theorem) gives the weighted automaton of
Figure 3.31 on the left. Note that the state with weight 2 is a split in two states (2, 1)
and (2, 2) and that its output is distributed amongst them. The matrices M , N , and U

158 3 Prefix codes

of the proof are

M =

0 1 0 0
0 0 1 3
0 1 0 0
0 0 0 0

 , N =

0 1 1 0 0
0 0 0 0 2
0 0 0 1 1
0 1 1 0 0
0 0 0 0 0

 , U =

1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

A deterministic labeling gives the automaton represented on the right. It recognizes
the regular prefix code X = (b2)∗{aa, ab, ba}. A final minimization would merge 1
and 4. The code X is maximal, which is not surprising because u(1/2) = 1.

3.9 Optimal prefix codes

Let X be a code over some alphabet A, and assume that each letter a ∈ A has a cost
c(a) associated with it. The cost of a word w is by definition the sum of the costs of
its letters.

Assume next that each codeword x ∈ X has a weight p(x) associated with it. The
weighted cost of X is

CX =
∑
x∈X

p(x)c(x).

The prefix coding problem is to find a prefix code X with minimal weighted cost, for
given weights. In what follows, weights and costs are positive numbers.

As usual, the code X can be viewed through a coding morphism, that is a bijection
β : B → X for some alphabet B which extends into an injective morphism from B∗

into A∗. With this in mind, the weight of a word x ∈ C is in fact the weight of the
letter b ∈ B such that x = β(b). So the weighted cost of X is also

CX =
∑
b∈B

p(b)c(β(b)).

In the case where all letters a ∈ A have equal cost, the cost of a word over A is merely
its length. In this case, the prefix coding problem reduces to the construction of a
prefix code which minimizes

CX =
∑
x∈X

p(x)|x|.

In the case
∑

x p(x) = 1, the number CX is just the average length of the words of X.
An encoding β which solves the optimal prefix problem for equal letter costs is

called a Huffman encoding. The following greedy algorithm computes a solution in
the binary case in time O(n log n), and in time O(n) if the weights are available in
increasing order. Let A = {0, 1}, and let p : B → R be the weight function.

If B has just one element c, set β(c) = 1; otherwise, select two elements c1, c2 in
B of minimal weight, that is such that p(c1), p(c2) ≤ p(c) for all c ∈ B \ {c1, c2}.

3.9 Optimal prefix codes 159

4

2
a

2
b

7

4

2
a

2
b

3
c

6

3
d

3
e

11

6

3
d

3
e

5
f

18

7

4

2
a

2
b

3
c

11

6

3
d

3
e

5
f

Figure 3.32 Computing an optimal Huffman encoding by combining trees.

Let

B ′ = (B \ {c1, c2}) ∪ {d},
where d is a new symbol not in B, and define p′ : B ′ → R+ by p′(c) = p(c) for all
c �= d and p′(d) = p(c1) + p(c2).

Let β ′ be a Huffman encoding of (B ′, p′) and define β : B → A∗ by

β(c) = β ′(c) for c ∈ B \ {c1, c2}, β(c1) = β ′(d)0, β(c2) = β ′(d)1.

Let us verify that β is a Huffman encoding of (B,p). For this, we show that there
is an optimal encoding β such that β(c1), β(c2) are words of maximal length differing
only by the last letter. This will prove the claim.

Consider a prefix code X = β(B) such that CX is minimal. Let c1, c2 ∈ B be letters
with lowest weights p(c1), p(c2). Let x, y ∈ X be two words of maximal length which
differ only by their last letter. Let c, d ∈ B be such that β(c) = x, β(d) = y. Define
the encoding β ′ derived from β by exchanging the values of c1, c2 with the values of
c, d, and set X′ = β ′(B). One gets CX′ ≤ CX and thus CX′ = CX.

Example 3.9.1 Consider the alphabets B = {a, b, c, d, e, f } and A = {0, 1}, and the
weights given in the table

a b c d e f

p 2 2 3 3 3 5

The steps of the algorithm are presented in the sequence of trees given in Figure 3.32.

In the case where the letters used for the encoding have unequal costs, less is
known on the prefix coding problem. The problem is motivated by coding morphisms
where different characters may have different transmission times. One example is the
telegraph channel, in which the dash “-” has twice the cost of a dot “·”. Another
example is the family of binary run-length limited codes, where two consecutive
symbols 1 must be separated by at least a and at most b adjacent 0’s. In this model,
each word 0k1 with a ≤ k ≤ b may be replaced by a single symbol in a new alphabet,
and the cost of this symbol is k + 1.

The prefix coding problem with unequal letter costs has been considered mainly
in the case where the costs are integers. A special case is known as the Varn coding

160 3 Prefix codes

0 0

2 4 5

0

2

4 6 7

4 5

0

2

4 6 7

4

6 8 9

5

0

2

4

6 8 9

6 7

4 5

Figure 3.33 Varn’s algorithm for 7 words and a 3-letter channel alphabet. At each step, a leaf
of minimal cost is replaced by a node with 3 leaves. There are two choices for the last step.

Both give an optimal tree.

problem. This is the prefix coding problem when all the weights of the codewords
are equal. This problem has an amazingly simple O(n log n) time solution.

Assume that all n codewords have weight equal to 1. An optimal code minimizes
the cost

CX =
∑
x∈X

c(x),

where the cost c(x) is the sum of the costs of its letters, that is

c(x) =
∑
a∈A

c(a)|x|a.

We construct an optimal code over a k-letter alphabet A, assuming that n = q(k −
1) + 1 for some integer q. So the prefix code obtained is complete and its tree
is complete with q internal nodes and n leaves. The algorithm starts with a tree
composed solely of its root, and iteratively replaces the leaf of minimal cost by an
internal node which has k leaves, one for each letter. The number of leaves increases
by k − 1, so in q steps one gets a tree with n leaves.

Example 3.9.2 Assume we are looking for a code with seven words over the ternary
alphabet {a, b, c}, and that the cost for letter a is 2, for letter b is 4, and for letter c

is 5. We start with a tree composed of a single leaf, and then build the tree by applying
the algorithm. There are two solutions, both of cost 45, given in Figure 3.33. The left
tree defines the prefix code {aa, ab, ac, ba, bb, bc, c}, and the right tree gives the
code {aaa, aab, aac, ab, ac, b, c}.

In order to get complexity O(n log n) for the construction, the leaves of the tree
are managed through a priority queue: then insertion of a leaf is done in O(log n)

3.9 Optimal prefix codes 161

operations, and the same time complexity holds for retrieval of a leaf with minimal
cost. For a proof of correctness, see Exercise 3.9.2.

VarnCoding()

1 T ← root
2 (By definition, the cost of the root is 0
3 Q ← PriorityQueue()
4 Add(Q, root)
5 while the number of leaves is �= n do
6 f ← ExtractMin(Q)
7 for each a ∈ A do
8 c ← makeChild(f)
9 cost(c) ← cost(f) + cost(a)

10 Add(Q, c)
11 return T

A special case of prefix coding is a coding which is compatible with a given
ordering of the input alphabet. Consider a coding morphism β : B∗ → A∗, where
A and B are alphabets equipped with an order. Then β is an ordered coding or
alphabetic coding if

b < b′ =⇒ β(b) < β(b′),

where the order in A∗ is the lexicographic order induced by the order on A. If β is
a prefix coding, and if the prefix code X = β(B) is viewed as a tree, this means that
the leaves of the tree, read from left to right, correspond to the encoding of the input
letters in B, read in alphabetic order. Such a tree is called ordered or alphabetic. The
ordered prefix code problem is to find an ordered coding that with minimal weighted
cost

CX =
∑
b∈B

p(b)|β(b)|,

where p(b) is the weight of b.

Example 3.9.3 Consider the alphabet B = {a, b, c}, with weights p(a) = p(c) = 1
and p(b) = 4. Figure 3.34 shows on the left an optimal tree for these weights, and
on the right an optimal ordered tree. This example shows that Huffman’s algorithm
does not give the optimal ordered tree.

Example 3.9.4 Consider the sequence of weights (4, 3, 3, 4). An optimal tree is
given in Figure 3.35. It shows that in an optimal ordered tree, leaves with minimal
weight need not be adjacent.

Let B = {b1, . . . , bn} be an ordered alphabet with n letters, and let pi be the weight
of letter bi . We present an algorithm for computing an optimal ordered tree due to

162 3 Prefix codes

8

2

1
a

1
c

4
b

11

5

1
a

4
b

1
c

Figure 3.34 Two trees for the given weights. The left tree has weighted cost 8, it is optimal
but not ordered. The right tree is ordered and has weighted cost 11.

28

7

4
a

3
b

7

3
c

4
d

Figure 3.35 The optimal ordered tree for weights (4, 3, 3, 4).

81

47

25
a

22

12
c

10
d

34

20
b

14
e

81

45

25
a

20
b

36

22

12
c

10
d

14
e

Figure 3.36 The two steps of the algorithm: On the left the unordered tree obtained in the
combination phase, and on the right the ordered tree, obtained by recombination.

Garsia and Wachs (see Notes). The idea is to use a variant of Huffman’s algorithm
by grouping together pairs of elements with minimal weights which are consecutive
in the ordering. The algorithm can be implemented to run in time O(n log n).

The algorithm is composed of three parts. In the first part, called the combination
part, one starts with the sequence of weights p = (p1, . . . , pn) and constructs an
optimal binary tree T ′ for a permutation bσ (1), . . . , bσ (n) of the alphabet. The leaves,
from left to right, have weights pσ (1), . . . , pσ (n). In general, this permutation is not
the identity, so the tree is not ordered, see Figure 3.36. Here the number in a node is
its weight, that is the sum of the weights of the leaves of its subtree. In the second
part, called the level assignment, one computes the levels of the leaves. In the last
part, called the recombination part, one constructs a tree T which has the weights
p1, . . . , pn associated to its leaves from left to right, and where each leaf with weight

3.9 Optimal prefix codes 163

pi appears at the same level as in the tree T ′. This tree is ordered by construction (see
Figure 3.36). Since the leaves have the same level in T and in T ′, the corresponding
codewords have the same length, and therefore the trees T and T ′ have the same cost.
Thus T is an optimal ordered tree.

We now give the details of the algorithm. For ease of description, we introduce
the following terminology. A sequence (p1, . . . , pk) of numbers is 2-descending if
pi > pi+2 for 1 ≤ i ≤ k − 2. Clearly a sequence is 2-descending if and only if the
sequence of “two-sums” (p1 + p2, . . . , pk−1 + pk) is strictly decreasing.

Let p = (p1, . . . , pn) be a sequence of (positive) weights. We extend it by set-
ting p0 = pn1 = ∞. The left minimal pair or simply minimal pair of p is the pair
(pk−1, pk), where (p1, . . . , pk) is the longest 2-descending chain that is a prefix of p.
The index k is the position of the pair. In other words, k is the integer such that

pi−1 > pi+1 (1 < i < k) and pk−1 ≤ pk+1.

Observe that the left minimal pair can be defined equivalently by the conditions

pi−1 + pi > pi + pi+1 (1 < i < k) and pk−1 + pk ≤ pk + pk+1.

The target is the index j with 1 ≤ j < k such that

pj−1 ≥ pk−1 + pk > pj , . . . , pk.

Example 3.9.5 For (14, 15, 10, 11, 12, 6, 8, 4), the left minimal pair is (10, 11) and
the target is 1, whereas for the sequence (28, 8, 15, 20, 7, 5), the left minimal pair is
(15, 20) and the target is 2.

The pair (j, k) composed of the position of the left minimal pair and of its target
is called the scope of the sequence p. Observe that the sequence (pj−1, pk−1 +
pk, pj , . . . , pk−2) is 2-descending since pj−1 ≥ pk−1 + pk > pj , pj+1.

The three phases of the algorithm work as follows.

Combination Associate a singleton tree to each weight. Repeat the following steps
as long as the sequence of weights has more than one element.

(i) Compute the left minimal pair (pk−1, pk).
(ii) Compute the target j .

(iii) Remove the weights pk−1 and pk .
(iv) Insert pk−1 + pk between pj−1 and pj .
(v) Associate to pk−1 + pk a new tree with weight pk−1 + pk , and which has, as left

and right subtrees, the tree for pk−1 and for pk respectively.

Level assignment Compute, for each letter b in B, the level of its leaf in the tree T ′.

Recombination Construct an ordered tree T in which the leaves of the letters have
the levels computed by the level assignement.

164 3 Prefix codes

25
a

20
b

12
c

10
d

14
e

Figure 3.37 The initial sequence of trees.

25
a

22

12
c

10
d

20
b

14
e

34

20
b

14
e

25
a

22

12
c

10
d

Figure 3.38 The next two steps.

47

25
a

22

12
c

10
d

34

20
b

14
e

81

47

25
a

22

12
c

10
d

34

20
b

14
e

Figure 3.39 The two last steps of the combination part.

Example 3.9.6 Consider the following weights for an alphabet of five letters.

a b c d e

p 25 20 12 10 14

The initial sequence of trees is given in Figure 3.37. The left minimal pair is 12, 10,
its target is 2, so the leaves for c and d are combined into a tree which is inserted
just to the right of the first tree. Now the minimal pair is (20, 14) (there is an infinite
weight at the right end), so the leaves for letters b and e are combined, and inserted
at the beginning. This gives the two sequences of Figure 3.38.
Next the two last trees are combined and inserted at the beginning as shown on the
left of Figure 3.39, and finally, the two remaining trees are combined, as shown on
the right.

The tree T ′ obtained at the end of the first phase is not ordered. The prescribed
levels for the letters of the example are:

a b c d e

level 2 2 3 3 2

The optimal ordered tree with these levels is given by recombination. It is the tree
given on the right of Figure 3.36. The weighted cost of this tree is 184.

3.9 Optimal prefix codes 165

i − 1

i

i+1

x

L

λi

λi+1

L

λi λi+1

Figure 3.40 Reorganizing leaves in Lemma 3.9.8.

We now give a proof of the algorithm. Let T be some binary tree with n leaves
labelled by the letters b1, . . . , bn of the alphabet B, with weights p1, . . . , pn. We
denote by �T

i (or simply �i) the level of the leaf of bi in T , that is the length of the
codeword coding the letter bi . Each of the partial trees constructed in the algorithm
will be identified with its root, considered as a leaf. The leaf corresponding to the
letter bi will be denoted by λi .

We first state two simple lemmas.

Lemma 3.9.7 Let T be some binary tree. If �i > �i+1, then λi is a right leaf. Sym-
metrically, if �i < �i+1, then λi is a left leaf.

Proof. Assume indeed that λi is a left leaf. Then its right sibling is a tree containing
the leaf λi+1. Thus �i ≤ �i+1. �

The following statement is a first step to the proof of the correctness of the
algorithm.

Lemma 3.9.8 If pi−1 > pi+1, then �i ≤ �i+1 in every optimal ordered tree. If pi−1 =
pi+1, then �i ≤ �i+1 in some optimal ordered tree.

Proof. Suppose pi−1 ≥ pi+1, and consider a tree T with �i > �i+1. In this tree, the
leaf λi is a right child by Lemma 3.9.8, and its left sibling is a tree L with weight
p(L) ≥ pi−1, see Figure 3.40. Build a new tree T ′ as follows: replace the parent of
L by L itself, replace the leaf of λi+1 by a node having as children the leaves λi and
λi+1. The difference of the costs is

CT ′ − CT = −p(L) + pi+1 − pi(�i − �i+1 − 1) ≤ pi+1 − pi−1

because �i ≥ �i+1 + 1. If pi−1 > pi+1, then this expression is < 0 and T is not
optimal. If pi−1 = pi+1 and if T is optimal, then T ′ is also optimal, and �T ′

i = �T
i .

�

Observe that the symmetric statement also holds.

Corollary 3.9.9 If pi−1 < pi+1, then �i−1 ≥ �i in every optimal ordered tree. If
pi−1 = pi+1, then �i−1 ≥ �i in some optimal ordered tree.

166 3 Prefix codes

s

s+1

t−1

t t+1

s s+1 s+2

t t+1

Figure 3.41 Proof of Proposition 3.9.11. On the left before the shift, on the right after
the shift.

We use Lemma 3.9.8 in the following form.

Corollary 3.9.10 If the subsequence (pj−1, . . . , pk) is 2-descending, then �j ≤
· · · ≤ �k in every optimal ordered tree. �

We now show that we always may assume that the minimal tree for a sequence p

has some special form. Such a tree will be called flat.

Proposition 3.9.11 Let (j, k) be the scope of the sequence p = (p1, . . . , pn). There
exists a minimal tree for p satisfying �k−1 = �k and one of the two conditions

(a) �k = �j + 1 or
(b) �k = �j and λj is a left leaf.

Proof. Since the sequence (p1, . . . , pk) is 2-descending (and p0 = +∞), one has
�1 ≤ �2 ≤ · · · ≤ �k in every minimal tree by Corollary 3.9.10. Next pk−1 ≤ pk+1. If
pk−1 < pk+1 then �k−1 ≥ �k in every minimal tree, and if pk−1 = pk+1 then �k−1 ≥ �k

in some minimal tree. Thus �k−1 = �k in some minimal tree.
Consider this tree. We prove that �j = �k or �j = �k − 1. Assume the contrary.

Then �j ≤ �k − 2. Let s be the greatest index such that �s ≤ �k − 2. Then s < k − 1
because �k−1 = �k . Let t be the smallest index such that �t = �k . Then

�j ≤ · · · ≤ �s < �s+1 ≤ · · · ≤ �t−1 < �t = · · · = �k.

It is quite possible that s + 1 = t . Observe that λs+1 is left leaf by Lemma 3.9.8
because �s < �s+1. Similarly, λt is a left leaf, and λt and λt+1 are siblings. We now
make the following transformation, see Figure 3.41. Leaf λs is replaced by a node with
the two siblings λs and λs+1. Each of the leaves λs+2, . . . , λt−1 is shifted to the left.
The leaf λt replaces λt−1, and the parent of λt+1 is replaced by λt+1 itself. The extra
cost of this transformation is at most ps − pt − pt+1 because the level of λs increases
by 1, the level of λs+1 does not increase, the levels of λt and λt+1 decrease by 1.
Now ps − pt − pt+1 ≤ ps − pk−1 − pk because pt + pt+1 ≥ pk−1 + pk (equality
is possible because one might have t = k − 1, and the extra cost is < 0 because
j > s and therefore ps < pk−1 + pk). This gives a contradiction and shows that
�j ≥ �k − 1.

It remains to consider the case where �j = �k . Arguing by contradiction, assume
that λj is a right leaf. Then, since �j−1 ≤ �j , the leaf λj−1 is a left leaf and is the sibling

3.9 Optimal prefix codes 167

j−1 j k

j−1

j k−2

k−1 k

Figure 3.42 Second transformation in Proposition 3.9.11. Before the transformation on the
left, and after the transformation on the right

j k−1 k k−1 k j k−2

Figure 3.43 The case �j = �k . Before and after the circular shift.

j s

s+1 k−1 k

j s

k−1 k s+1 k−2

Figure 3.44 The case �j = �k − 1: A circular shift. Before and after the first shift.

of λj . Then make the following transformation, see Figure 3.42. Replace the common
parent of λj−1 and λj by λj−1, shift λj , . . . , λk−2 one position to the right, and replace
the leaf λk by a node with children λk−1 and λk . Since the leaves λj−1, . . . , λk have
the same level before the transformation, the extra cost is −pj−1 + pk−1 + pk . This
value is ≤ 0 by the definition of the target. Since the tree was minimal before the
transformation, the tree after transformation has the same cost. In this new tree, one
has indeed �k = 1 + �j . �

A tree T for p is k-minimal if it is minimal among all trees where the leaves for
pk−1 and pk are siblings.

A level preserving permutation σ of tree T is a tree T σ that has the same leaves as
T at the same levels. By definition, the cost of T σ is equal to the cost of T .

Lemma 3.9.12 Let p = (p1, . . . , pn) be a sequence of weights with scope (j, k) and
let T be an optimal flat tree for p. Let

p′ = (p1, . . . , pj−1, pk−1, pk, pj , pj+1, . . . , pk−2, pk+1, . . . , pn).

There exists a level preserving permutation that transforms T into a tree T ′ for p′

such that the leaves for pk−1 and pk are siblings.

Proof. Since T is flat, �j = �k or �j = �k − 1. If �j = �k , one makes a circular shift
of the leaves λj , . . . , λk two positions to the right. Since λj was a left child before
the shift, the leaves λk−1 and λk are siblings after the shift, see Figure 3.43.

If �j = �k − 1, let s be such that �s = �j , �s+1 = �k . Then one first makes a circular
shift of the leaves λs+1, . . . , λk two positions to the right, as before, see Figure 3.44.

168 3 Prefix codes

j s

k−1 k

j s

k−1 k

Figure 3.45 The case �j = �k − 1: Before and after the second shift.

x

k−1 k

j k−2 j k−2 x

k−1 k

Figure 3.46 The case �x = �k−2 in Theorem 3.9.13: Before and after the shift.

Then one applies a circular shift, one position to the right, of the sequence
λj , . . . , λ − s, x, where x is the parent node of λk−1 and λk , see Figure 3.45. This is
a transformation that preseves levels of leaves and therefore the resulting tree has the
same cost as the tree T we started with. �

Theorem 3.9.13 Let p = (p1, . . . , pn) be a sequence of weights with scope (j, k)
and let p̂ = (p1, . . . , pj−1, pk−1 + pk, pj , pj+1, . . . , pk−2, pk+1, . . . , pn). Let T̂ be
a minimal tree for p̂, and let T ′ be the tree obtained by substituting a tree with
two leaves λk−1 and λk to the leaf corresponding to pk−1 + pk in T̂ . There exists a
minimal tree T for p of cost c(T) = c(T ′) which is obtained by a level preserving
permutation of T ′.

Proof. Let T̂ be an optimal tree for p̂. Since c(T ′) = c(T̂) + pk−1 + pk , the tree T ′

is k-minimal for

p′ = (p1, . . . , pj−1, pk−1, pk, pj , pj+1, . . . , pk−2, pk+1, . . . , pn).

If j − 1 = k − 2, then p′ = p and there is nothing to prove. Otherwise, observe that
sequence

pj−1, pk−1 + pk, pj , pj+1, . . . , pk−2

is a 2-descending factor of the sequence p̂ because pj−1 ≥ pk−1 + pk > pj and
pk−1 + pk > pj+1. Therefore, denoting by x the leaf in T̂ with weight pk−1 + pk ,
one has �T̂

x ≤ �T̂
j ≤ · · · ≤ �T̂

k−2 by Corollary 3.9.10. The node x is also the parent

node of the leaves for pk−1 and pk in T ′, and since �T̂ = �T ′
for all nodes of T̂ , one

has �x ≤ �j ≤ · · · ≤ �k−2 in T ′.
We distinguish two cases. If �x = �k−2 then one makes the following transfor-

mation: the nodes x, λj , . . . , λk−2 are cyclically permuted one position to the left,
giving the nodes λj , . . . , λk−2, x and therefore the leaves λj , . . . , λk−2, λk−1, λk , see
Figure 3.46. The resulting tree S verifies c(T) = c(T ′) and the permutation is level
preserving.

If �x < �k−2, let s such that �x = �s < �s+1. Then a first transformation (see
Figure 3.47) similar to the previous one but on x, . . . , λs gives a tree where

3.9 Optimal prefix codes 169

x

k−1 k

j s

k−2

j s

s+1
k−2

x

k−1 k

Figure 3.47 The case �x < �k−2: first transformation. Before the first shift on the left, after
this shift on the right.

x

k−1 k s+1
k−2

x

s+1 s+2 s+3
k

Figure 3.48 The case �x < �k−2: second transformation. Before the first shift on the left, after
this shift on the right.

the leaf sequence is λj . . . , λs−1, λk−1, λk, λs+1, . . . , λk−2. One has �k−1 = �k ≤
�s+1� · · · ≤ �k−2. A circular permutation by two positions to the left of the
leaves λk−1, λk, λs+1, . . . , λk−2 gives the sequence λs+1, . . . , λk−2, λk−1, λk , see Fig-
ure 3.48.

By Lemma 3.9.14 below, the cost of the resulting tree S is less than the cost of
T ′ unless �k−2 = �k . But in view of Lemma 3.9.12, c(S) cannot be strictly less than
c(T ′). �

Lemma 3.9.14 Let m ≥ 3, let �1 = �2 ≤ · · · ≤ �m be integers and let (p1, p2, . . . ,

pm) be a 2-descending chain. Set

c = pm−1�1 + pm�2 + p1�3 + · · · + pm−2�m,

c′ = p1�1 + p2�2 + · · · + pm�m.

Then c′ ≤ c, and equality holds only if �m = �1.

Proof. If m = 3, then c′ − c = (p1 − p3)(�1 − �3) ≤ 0 and indeed c′ = c only if
�1 = �3.

If m ≥ 4, then

c′ − c = p1(�1 − �3) + p2(�2 − �4) + · · · + pm−2(�m−2 − �m)

+ pm−1(�m−1 − �1) + pm(�m − �2).

Since (p1, p2, . . . , pm) is 2-descending, the m − 2 first terms of this sum may be
grouped and bounded. If m is even

c′ − c ≤ pm−3(�1 − �m−1) + pm−2(�2 − �m) + pm−1(�m−1 − �1) + pm(�m − �2)

= (pm−3 − pm−1)(�m−1 − �1) + (pm−2 − pm)(�m − �2) ≤ 0

170 3 Prefix codes

and equality holds only if �m−1 = �1 and �m = �2, so only if �1 = · · · = �m. Similarly,
if m is odd, and because �1 = �2, one gets

c′ − c ≤ pm−2(�1 − �m) + pm−3(�2 − �m−1) + pm−1(�m−1 − �1) + pm(�m − �2)

= (pm−3 − pm−1)(�1 − �m−1) + (pm−2 − pm)(�1 − �m) ≤ 0

Again, equality holds only if �1 = · · · = �m. �

3.10 Exercises

Section 3.1

3.1.1 Let A be a finite alphabet, and let P be a prefix-closed subset of A∗. Show that
P is infinite if and only if there exists an infinite sequence (pn)n≥1 of elements in P

such that

p1 < p2 < p3 < · · ·

3.1.2 Let A be a finite alphabet of k letters and let X ⊂ A+ be a prefix code. For
n ≥ 1, let αn = Card(X ∩ An). Show that Card(XA∗ ∩ An) =∑n

i=1 αik
n−i and∑

n≥1

αnk
−n ≤ 1.

(This gives an elementary proof of Corollary 2.4.6 for prefix codes. See also Propo-
sition 3.7.1)

Section 3.2

3.2.1 Let X ⊂ A+ be a prefix code. Let P = XA− and letA = (P, 1, 1) be the literal
automaton of X∗. Consider an automaton B = (Q, i, i) which is deterministic, trim,
and such that X∗ = Stab(i). Show that there is a surjective function ρ : P → Q with
ρ(1) = i and such that for a ∈ A, ρ(p · a) = ρ(p) · a.

3.2.2 A prefix code X is a chain if there exist disjoint nonempty sets Y,Z such that
Y ∪ Z is prefix and X = Y ∗Z.

Let X be a nonempty prefix code over A, and let A(X) = (Q, i, t) be the minimal
automaton of X. Show that the following conditions are equivalent:

(i) Stab(i) �= 1.
(ii) X is a chain.

(iii) There exists a word u ∈ A+ such that u−1X = X.

Section 3.3

3.3.1 Let A be an alphabet, and let M(A) be the monoid of prefix subsets of A∗

equipped with the induced product. Show that M(A) is a free monoid and that the
set of maximal (resp. recognizable) prefix sets is a right unitary submonoid of M(A).
(Hint: Use Exercise 2.2.8 and set λ(X) = minx∈X |x|.)

3.10 Exercises 171

Section 3.4

3.4.1 Show that the number of prefix-closed sets with n elements on a k-letter
alphabet is

1

kn + 1

(
kn + 1

n

)
= 1

(k − 1)n + 1

(
kn

n

)
.

For this, let L be the unique set of words on {a, b} such that L = aLk ∪ b. Set
‖w‖ = (k − 1)|w|a − |w|b. Prove that

(i) L is the set of words w such that ‖w‖ = −1 and ‖u‖ ≥ 0 for any proper prefix
u of w.

(ii) Any word w on {a, b} such that ‖w‖ = −1 has exactly one conjugate in the set
L.

(iii) There exists a bijection between prefix-closed sets on a k-letter alphabet and
words of L.

3.4.2 Let X and Y be finite nonempty subsets of A∗ such that the product XY is
unambiguous. Show that if XY is a maximal prefix code, then X and Y are maxi-
mal prefix codes. (Hint: Use the fact that π (X)π (Y) = 1 for any positive Bernoulli
distribution on A and use Proposition 2.5.29.)

3.4.3 Let X and Y be two prefix codes over A, and

P = A∗ \ XA∗, Q = A∗ \ YA∗.

Set R = P ∩ Q. Show that there exists a unique prefix code Z such that

Z = RA \ R.

Show that

Z = (X ∩ Q) ∪ (X ∩ Y) ∪ (P ∩ Y).

Show that if X and Y are maximal prefix sets, then so is Z.

3.4.4 Let A be a finite alphabet. Show that the family of recognizable maximal prefix
codes is the least family F of subset of A∗ such that

(i) A ∈ F ,
(ii) if X, Y ∈ F and if X = X1 ∪ X2 is a partition in recognizable sets X1, X2, then

Z = X1 ∪ X2Y ∈ F ,

(iii) if X ∈ F and if X = X1 ∪ X2 is a partition in recognizable sets, then

Z = X∗
1X2 ∈ F .

172 3 Prefix codes

(Hint: Use an induction on the number of edges of the minimal deterministic automa-
ton of an element of F .)

Section 3.5

3.5.1 Let X ⊂ A∗ be a prefix code. Show that the following conditions are equivalent.

(i) A∗X = X+.
(ii) X is a semaphore code, and the minimal set of semaphores S = X \ A+X satisfies

SA∗ ∩ A∗S = SA∗S ∪ S.

Note that for a code X = A∗w \ A∗wA+, the conditions are satisfied provided w is
unbordered.

3.5.2 Let J ⊂ A+ be a two-sided ideal. For each x ∈ J , denote by ‖x‖ the greatest
integer n such that x ∈ J n, and set ‖x‖ = 0 for x /∈ J . Show that, for all x, y ∈ A∗,

‖x‖ + ‖y‖ ≤ ‖xy‖ ≤ ‖x‖ + ‖y‖ + 1.

Section 3.6

3.6.1 Let X ⊂ A+ be a finite maximal prefix code. Show that if X contains a letter
a ∈ A, then there is an integer n ≥ 1 such that an is synchronizing.

3.6.2 Let A be a complete deterministic automaton with n states. Show that if A is
synchronized, there exists a synchronizing word of length at most n3 in A.

3.6.3 Let n ≥ 1 be an integer and let M be the monoid of mappings from Q = Z/nZ
into itself generated by the two maps a, b defined for i ∈ Q by ia = i + 1 and

ib =
{

j > i + 1 (0 ≤ i < n − t),

i + 1 (n − t ≤ i < n)

for some integer t with 1 ≤ t ≤ n. The aim of this exercise is to show that the minimal
rank d of the elements of M divides n, and that ib ≡ i + 1 mod d for all i ∈ Q.

For each e, f with 0 ≤ e < f ≤ n, let Ie,f = {e, e + 1, . . . , f − 1} and let Me,f =
{m ∈ M | Qm = Ie,f and im = i for all i ∈ Ie,f }.
(a) Show that for each j ∈ Q

Ie,f aj = Ie+j,f+j and a−jMe,f aj = Me+j,f+j .

(b) Show that M0,t is not empty. (Hint: Show that ba−1 has a power in Mn−t,n.)
(c) Let d be the least integer such that M0,d is not empty. Show that M0,d is formed of
one element m such that im ≡ i mod d for all i ∈ Q. (Hint: Arguing by contradiction,
let j be the least integer such that jm �≡ j mod d. Use aj−dm to show that one may
reduce to the case j = d. Then show that some power of ma fixes an interval of less
than d elements.)
(d) Show that d divides n. (Hint: Let n = dq + r with q ≥ 1 and 0 ≤ r < d. Show
that some power of an−rm is in Mr .)
(e) Show that ib ≡ i + 1 mod d for each i ∈ Q.

3.10 Exercises 173

3.6.4 Let X be a maximal prefix code on the alphabet A = {a, b}. Let an ∈ X and
let Y = X ∩ a∗ba∗. Set Y = {y0, y1, . . . , yn−1} with yi = aibaj . Suppose that

(i) there is an integer m ≥ 1 such that am is not a factor of a word in X,
(ii) for each i, we have |yi | ≤ n with equality if and only if n − t ≤ i ≤ n − 1,

(iii) the lengths of the words of Y are relatively prime.

Show that the code X is synchronized. (Hint: Use Exercise 3.6.3.)

3.6.5 Let X ⊂ A+ be a prefix code and let X = Y ◦ Z be its maximal decomposition.
Show that if X = Y ′ ◦ Z′ with Z′ prefix and Y ′ maximal prefix, then Z′∗ ⊂ Z∗.

Section 3.7

3.7.1 Let X ⊂ A+ be a thin maximal code and let π : X →]0, 1] be a function such
that

∑
x∈X

π (x) = 1.

Define the entropy of X (relative to π) by

H (X) = −
∑
x∈X

π (x) logk π (x),

where k = Card(A). Set λ(X) =∑x∈X |x|π (x).
Show that H (X) ≤ λ(X) and that the equality holds if and only if π (x) = k−|x| for

x ∈ X.
Show that if X is finite and has n elements, then H (X) ≤ logk n.

Section 3.8

3.8.1 Show that u(z) =∑n unz
n is the generating series of a thin maximal prefix

code on k letters if and only if

(i)
∑
n≥1

unk
−n = 1,

(ii) there is an integer p ≥ 1 such that the series v(z) =∑n vnz
n defined by u(z) −

1 = v(z)(kz − 1) satisfies vn+p ≤ vn(kp − 1) for all n ≥ 1.

(Hint: Show that if condition (ii) is satisfied, then u is the length distribution of a
maximal prefix code X such that a2p is not a factor of the words of X.)

3.8.2 Let X be a thin maximal prefix code such that the gcd of the length of the
words in X is 1. Show that there exists a code with the same length distribution which
is thin, maximal, and synchronized. (Hint: Use Exercise 3.6.4.)

174 3 Prefix codes

Section 3.9

3.9.1 The aim of this exercise is to show that the Golomb codes of Example 3.4.3 are
optimal prefix codes for a source of integers with the geometric distribution given by

π (n) = pnq (3.33)

for positive real numbers p, q with p + q = 1.
Show that there is a unique integer m such that

pm + pm+1 ≤ 1 < pm−1 + pm. (3.34)

Show that the application of the Huffman algorithm to a geometric distribution
given by (3.33) produces a code with the same length distribution as the Golomb code
of order m where m is defined by (3.34). This shows the optimality of the Golomb
code. (Hint: Operate on a truncated, but growing source since Huffman’s algorithm
works only on finite alphabets.)

3.9.2 Prove that the code produced by Varn’s algorithm is indeed optimal. (Hint:
Consider a complete prefix code X1 built by the algorithm and assume it is not
optimal, and consider a complete prefix code X2 which is optimal. Show that there
is a word x1 in X1 which is in X2A

−, and there is a word x2 in X2 which is in X1A
−.

Consider a word p in X2 which has x1 as a prefix and such that pA ⊂ X2 are leaves,
and build X3 = X2 \ (pA ∪ x2) ∪ p ∪ x2A. Show that X3 has cost less or equal to
the cost of X2 and is closer to X1 in the sense that Card(X1 ∪ X1A

−) ∩ (X3 ∪ X3A
−)

is greater than Card(X1 ∪ X1A
−) ∩ (X2 ∪ X2A

−).)

3.11 Notes

The results of the first four sections belong to folklore, and they are known to
readers familiar with automata theory or with trees. The Elias code (Example 3.1.1)
is introduced in Elias (1975).

Some particular codes are used for compression purposes to encode numerical data
subject to known probability distribution. They appear in particular in the context
of digital audio and video coding. The data encoded are integers and thus these
codes are infinite. Example 3.4.3 presents the Golomb codes introduced in Golomb
(1966). Golomb–Rice codes were introduced in Rice (1979). Exponential Golomb–
Rice codes are introduced in Teuhola (1978), see also Salomon (2007). Exponential
Golomb codes are used in practice in digital transmissions. In particular, they are a part
of the video compression standard technically known as H.264/MPEG-4 Advanced
Video Coding (AVC), see for instance Richardson (2003).

The hypothesis of unambiguity is necessary in Proposition 3.4.13, as shown by
Bruyère (1987).

Semaphore codes were introduced in Schützenberger (1964) under the name of J
codes. All the results presented in Section 3.5 can be found in that paper which also
contains Theorem 3.6.12 and Proposition 3.7.17.

3.11 Notes 175

The notion of synchronized prefix code has been extensively studied in the context
of automata theory. The significance of synchronized prefix codes for error recovery
has been emphasized in Capoceli et al. (1992). In Freiling et al. (2003), it is proved
that almost all finite maximal binary prefix codes are synchronized. This means that
if σ (n) denotes the number of synchronized maximal binary prefix codes with n

elements, and α(n) denotes the total number of maximal binary prefix codes with n

elements, then σ (n)/α(n) tends to 1. Recall from (3.13) that α(n) is the nth Catalan
number. In Biskup (2008), it is proved that a synchronized maximal binary prefix
code with n elements has a synchronizing word of length at most O(hn log n) where
h is the maximal length of the words of X.

Let us mention Černý’s problem: given a complete deterministic automaton with
n states which is synchronized, what is the least upper bound to the length of a syn-
chronizing word as a function of n? Černý’s conjecture asserts that any synchronized
strongly connected deterministic automaton has a synchronizing word of length at
most (n − 1)2. See Exercise 3.6.2, Moore (1956), Černý (1964), Pin (1978) and the
section on research problems. Example 3.6.13 is obtained by a construction of Perrin
(1977a) (see Exercise 14.1.9). Exercise 3.6.4 is due to Schützenberger (1967). The
maximal decomposition of prefix codes and Propositions 3.6.14, is due to Perrot
(1972).

The results of Section 3.7 are given in another terminology in Feller (1968).
Theorem 3.8.2 is from Bassino et al. (2000). The method of state splitting used in

the proof of Lemma 3.8.6 is inspired from symbolic dynamics (see Marcus (1979)
or Adler et al. (1983)). The transformations between the various weighted automata
recognizing a given series used in the proof of the theorem have been systematically
studied in Béal et al. (2005).

Huffman’s algorithm originally described in Huffman (1952), is presented in most
textbooks on algorithms. It has numerous applications in data compression, and
variations such as the adaptative Huffman algorithm have been developed, see Knuth
(1985).

Run-length limited codes have applications in practical coding, see Lind and
Marcus (1995).

The case of codewords with equal weights and unequal letter cost has been solved
by Varn (1971). Another algorithm is in Perl et al. (1975).

Karp (1961) gave the first algorithm providing a solution of the general problem
with integer costs. His algorithm reduces to a problem in integer programming.

Another approach by Golin and Rote (1998) uses dynamic programming. Their
algorithm produces the solution in time O(nκ+2), where n is the number of codewords
and κ is the greatest of the costs of the letters of A. This algorithm has been improved
to O(nκ) in the case of a binary alphabet in Bradford et al. (2002).

Ordered prefix codes are usually called alphabetic trees. The use of dynamic
programming technique for the construction of optimal alphabetic trees goes back
to Gilbert and Moore (1959). Their algorithm is O(n3) in time and O(n2) in space.
Knuth (1971) reduces time to O(n2).

We follow Knuth (1998) for the exposition and the proof of the Garsia–Wachs
algorithm (see also Garsia and Wachs (1977); Kingston (1988)). The Garsia–Wachs

176 3 Prefix codes

algorithm is simpler than a previous algorithm given in Hu and Tucker (1971) which
was also described in the first edition of Knuth’s book. For a proof and a detailed
description of the Hu–Tucker algorithm, and complements see Hu and Shing (2002);
Hu and Tucker (1998).

There is no known polynomial time algorithm for the general problem, nor is the
problem known to be NP-hard. A polynomial time approximation scheme, that is an
algorithm that produces a solution which is optimal up to 1 + ε in time O(n log n

exp(O(1
ε2 log 1

ε2))) is given by Golin et al. (2002).
An algorithm in cubic time for solving the optimal alphabetic prefix problem with

unequal letter cost has been given in Itai (1976).
The results of Problems 3.8.1 and 3.8.2 are due to Schützenberger (1967). There

is a strong relation with the road coloring theorem proved in Chapter 10.
The monoid of prefix subsets defined in Exercise 3.3.1 has been further studied by

Lassez (1973). Exercise 3.4.1 is a well-known result in combinatorics, see Lothaire
(1997). Exercises 9.5.3, 9.5.4 and 9.5.5 are from Bruyère et al. (1998). Exercise 3.9.1
follows Gallager and van Voorhis (1975). The geometric distribution of this exercise
arises from run-length encoding where a sequence of 0n1 is encoded by n. If the
source produces 0’s and 1’s independently with probability p and q, the probability
of 0n1 is precisely π (n). This is of practical interest if p is large since then long runs
of 0’s are expected and the run-length encoding realizes a logarithmic compression.

4

Automata

In this chapter, we study unambiguous automata. The main idea is to replace com-
putations on words by computations on paths labeled by words. This is a technique
which is well known in formal language theory. It will be used here in a special form
related to the characteristic property of codes.

Within this frame, the main fact is the equivalence between codes and unambigu-
ous automata. The uniqueness of paths in unambiguous automata corresponds to
the uniqueness of factorizations for a code. Unambiguous automata appear to be a
generalization of deterministic automata in the same manner as the notion of a code
extends the notion of a prefix code.

We present devices for encoding and decoding, using transducers. A special class of
transducers, called sequential transducers, is introduced. It will be shown in Chapter 5
to be related to the deciphering delay.

The chapter is organized as follows.
In the first section, we study unambiguous automata in connection with codes.

In the next section, the flower automaton is defined. We show that it is a universal
automaton in the sense that any unambiguous automaton associated with a code can
be obtained by a reduction of the flower automaton of this code. We also show how
to decompose the flower automaton of the composition of two codes.

In the last section, we use transducers. We introduce an algorithm to transform a
transducer realizing a function into a sequential (possibly infinite) transducer.

4.1 Unambiguous automata

An automaton A = (Q, I, T) over A is unambiguous if for all p, q ∈ Q and w ∈ A∗,
there is at most one path from p to q with label w in A.

Recall from Section 1.10 that |A| denotes the behavior of A. For each word u, the
coefficient (|A|, u) is the number of successful paths labeled by u in A.

Proposition 4.1.1 Let A = (Q, i, t) be a trim automaton with a unique initial and a
unique final state. Then A is unambiguous if and only if |A| is a characteristic series.

Proof. If A is unambiguous, then clearly |A| is a characteristic series. Conversely,
if there are two distinct paths from p to q labeled with w for some p, q ∈ Q and

178 4 Automata

w ∈ A∗, then choosing paths i
u−→ p and q

v−→ t , we have

(|A|, uwv) ≥ 2. �

Proposition 4.1.2 Let X ⊂ A+ and let A be an automaton such that |A| = X. Then
X is a code if and only if the star A∗ of A is an unambiguous automaton.

Recall from Section 1.10 that the star A∗ associated with an automaton A is such
that |A∗| = |A|∗.

Proof. According to Proposition 1.10.5, we have |A∗| = (X)∗. Since A∗ is trim,
Proposition 4.1.1 shows that A∗ is unambiguous if and only if |A∗| is a characteristic
series. Since L(A∗) = X∗, this means that A∗ is unambiguous if and only if X∗ =
(X)∗. Thus we get the proposition from Proposition 2.6.1. �

In view of Proposition 4.1.2, we can determine whether a set X given by an
unambiguous automaton A is a code, by computing A∗ and testing whether A∗ is
unambiguous. For doing this, we may use the following method.

Let A = (Q, I, T) be an automaton over A. The square S of A is the automaton

S(A) = (Q × Q, I × I, T × T)

constructed by defining

(p1, p2)
a−→ (q1, q2)

to be an edge of S(A) if and only if

p1
a−→ q1 and p2

a−→ q2

are edges of A.

Proposition 4.1.3 An automaton A = (Q, I, T) is unambiguous if and only if there
is no path in S(A) of the form

(p, p)
u−→ (r, s)

v−→ (q, q) (4.1)

with r �= s.

Proof. The existence of a path of the form (4.1) in S(A) is equivalent to the existence
of the pair of paths

p
u−→ r

v−→ q and p
u−→ s

v−→ q

with the same label uv in A. �

To decide whether a recognizable set X given by an unambiguous finite automaton
A is a code, it suffices to compute A∗ and to test whether A∗ is unambiguous by
inspecting the finite automaton S(A∗), looking for paths of the form (4.1).

4.1 Unambiguous automata 179

ω 3

2

a

b

a a, b

a, b

ω, ω 3, 3

2, 2

a
a

b

a, b

a, b

2, ω

ω, 2

a, b

a, b

a, b

a, b

Figure 4.1 An unambiguous automaton, and part of the square of this automaton.

Example 4.1.4 Consider again the automaton A∗ of Example 1.10.7 repeated here
for convenience on the left of Figure 4.1. The automaton S(A∗) is given on the right
of this figure, where only the part accessible from the states (q, q) is drawn. It shows
that A∗ is unambiguous.

The following proposition is a complement to Proposition 4.1.2.

Proposition 4.1.5 Let A = (Q, 1, 1) be an unambiguous automaton over A with a
single initial and final state. Then its behavior |A| is the characteristic series of some
free submonoid of A∗.

Proof. Let M ⊂ A∗ be such that |A| = M . Clearly the set M is a submonoid of A∗.
We shall prove that M is a stable submonoid. For this, suppose that

u,wv, uw, v ∈ M.

Then there exist in A paths

1
u−→ 1, 1

wv−→ 1, 1
uw−→ 1, 1

v−→ 1.

The two middle paths factorize as

1
w−→ p

v−→ 1, 1
u−→ q

w−→ 1

for some p, q ∈ Q. Thus there exist two paths

1
u−→ 1

w−→ p
v−→ 1

1
u−→ q

w−→ 1
v−→ 1.

Since A is unambiguous, these paths coincide, whence 1 = p = q. Consequently
w ∈ M . Thus M is stable, and by Proposition 2.2.5, M is free. �

The next result concerns the determinant of a matrix which is associated in a natural
way with an automaton. It is of independent interest, and it will be useful later, in
Chapter 7. Recall that we denote by α(w) the commutative image of a word w ∈ A∗

and by α(σ) the commutative image of the formal series σ . Formula (4.2) gives an
expression of the polynomial 1 − α(X) for a finite code X.

180 4 Automata

Proposition 4.1.6 Let X ⊂ A+ be a finite code and letA = (Q, 1, 1) be a unambigu-
ous trim finite automaton recognizing X∗. Let M be the Q × Q-matrix with elements
in Q[A] such that Mp,q is the sum of the elements of the set

Apq = {a ∈ A | p
a→ q}.

Then

1 − α(X) = det(I − M). (4.2)

Proof. Any path q
w−→ q with q �= 1 and w ∈ A+ passes through state 1. Otherwise

uw∗v ⊂ X for words u, v such that 1
u−→ q

v−→ 1, contradicting the finiteness of X.
Thus we can set Q = {1, 2, . . . , n} in such a way that whenever i

a−→ j for a ∈ A,
j �= 1, then i < j . Define for i, j ∈ Q, an element of Q〈A〉 by

rij = δij − Aij (4.3)

where δij is the Kronecker symbol. Let � be the polynomial

� =
∑

σ∈Sn

(−1)ε(σ)r1,1σ r2,2σ · · · rn,nσ ,

where ε(σ) = ±1 denotes the signature of the permutation σ . By definition, ε(σ) = 1
if σ is an even permutation, and ε(σ) = −1 otherwise. According to the well-known
formula for determinants we have

det(I − M) = α(�).

Thus it suffices to show that

� = 1 − X. (4.4)

For this, let

�σ = r1,1σ r2,2σ · · · rn,nσ,

so that

� =
∑

σ∈Sn

(−1)ε(σ)�σ .

Consider a permutation σ ∈ Sn such that �σ �= 0. If σ �= 1, then it has at
least one cycle (i1, i2, . . . , ik) of length k ≥ 2. Since �σ �= 0, by (4.3) the sets
Ai1i2 , Ai2i3 , . . . , Aiki1 are nonempty. This implies that the cycle (i1, . . . , ik) contains
state 1. Consequently each permutation σ with �σ �= 0 is composed of fixed points
and of one cycle containing 1. If this cycle is (i1, i2, . . . , ik) with i1 = 1, then

1 < i2 < · · · < ik

4.1 Unambiguous automata 181

by the choice of the ordering of states in A. Set Xσ = A1i2Ai2i3 · · ·Aik,1. Then �σ =
(−1)kXσ and also (−1)ε(σ) = (−1)k+1 since a cycle of length k has the same parity
as k + 1.

The set Xσ is composed of words a1a2 · · · ak with ai ∈ A and such that

1
a1−→ i2

a3−→ i3 −→ · · · −→ ik
ak−→ 1.

These words are in X. Denote by S the set of permutations σ ∈ S \ 1 having just
one nontrivial cycle, namely, the cycle containing 1. Then X =∑σ∈S Xσ since each
word in X is the label of a unique path (1, i2, . . . , ik, 1) with 1 < i2 < · · · < ik . It
follows that

� = 1 +
∑
σ∈S

(−1)ε(σ)�σ = 1 −
∑
σ∈S

Xσ = 1 − X. �

Example 4.1.7 Let X = {aa, ba, bb, baa, bba}. This is the code of Example 2.3.5.
The unambiguous automaton given on the left of Figure 4.1 recognizes X∗. The
matrix M is here

M =
 0 a b

a 0 0
a + b a + b 0

and one easily checks that indeed det(I − M) = 1 − α(X).

The unambiguous rational operations on sets of words are

(i) disjoint union,
(ii) unambiguous product,

(iii) star operation of a code.

Recall that the product XY is unambiguous if xy = x ′y ′ with x, x ′ ∈ X, y, y ′ ∈ Y

implies x = x ′ and y = y ′. The star of a code is of course a free submonoid.
The family of unambiguous rational subsets of A∗ is the smallest family of subsets

of A∗ containing the finite sets and closed under unambiguous rational operations.
A description of a rational set by unambiguous rational operations is called an
unambiguous rational expression or an unambiguous regular expression.

Proposition 4.1.8 Every rational set is unambiguous rational.

Proof. By Proposition 1.4.1, every rational set is recognized by a finite deterministic
automaton. In this case, Formulas (1.11)–(1.13) provide an unambiguous rational
expression for this set. �

Example 4.1.9 Let A = {a, b}. An unambiguous rational expression for the set
A∗bA∗ is a∗bA∗ (or A∗ba∗).

182 4 Automata

1, x · · · x, 1
a1 a2 an

Figure 4.2 The edges of AD(X) for x = a1a2 · · · an.

4.2 Flower automaton

We describe in this section the construction of a “universal” automaton recognizing
a submonoid of A∗.

Let X be an arbitrary subset of A+. We define an automaton

AD(X) = (Q, I, T)

by

Q = {(u, v) ∈ A∗ × A∗ | uv ∈ X}, I = 1 × X, T = X × 1,

with edges (u, v)
a−→ (u′, v′) if and only if ua = u′ and v = av′. In other words, the

edges of AD are

(u, av)
a−→ (ua, v), uav ∈ X.

It is equivalent to say that the set of edges of the automaton AD is the disjoint union
of the sets of edges given by Figure 4.2 for each x = a1a2 · · · an in X. The automaton
AD(X) is unambiguous and recognizes X, that is,

|AD(X)| = X.

The flower automaton of X is by definition the star of the automaton AD(X), as
obtained by the construction described in Section 1.10. It is denoted by A∗

D(X) rather
than (AD(X))∗. We denote by ϕD the associated representation. Thus, following
the construction of Section 1.10, the automaton A∗

D(X) is obtained in two steps as
follows. Starting with AD(X), we add a new state ω, and the edges

ω
a−→ (a, v) for av ∈ X,

(u, a)
a−→ ω for ua ∈ X,

ω
a−→ ω for a ∈ X.

This automaton is now trimmed. The states in 1 × X and X × 1 are no longer
accessible or coaccessible and consequently disappear. Usually, the state ω is denoted
by (1, 1). Then A∗

D(X) takes the form

A∗
D(X) = (P, (1, 1), (1, 1)),

with

P = {(u, v) ∈ A+ × A+ | uv ∈ X} ∪ {(1, 1)},

4.2 Flower automaton 183

1, 1

b, aa

ba, a

b, ba bb, a

a, a

b, a

b, b

b

a

a

b

b

a

a
a

ba
bb

Figure 4.3 The flower automaton of X = {aa, ba, bb, baa, bba}.

and there are four types of edges

(u, av)
a−→ (ua, v) for uav ∈ X, (u, v) �= (1, 1),

(1, 1)
a−→ (a, v) for av ∈ X, v �= 1,

(u, a)
a−→ (1, 1) for ua ∈ X, u �= 1,

(1, 1)
a−→ (1, 1) for a ∈ X.

The terminology is inspired by the graphical representation of this automaton. Indeed
each word x ∈ X defines a simple path

(1, 1)
x−→ (1, 1)

in A∗
D(X). If x = a ∈ A, it is the edge

(1, 1)
a−→ (1, 1).

If x = a1a2 · · · an with n ≥ 2, it is the path

(1, 1)
a1−→ (a1, a2 · · · an)

a2−→ (a1a2, a3 · · · an) → · · · → (a1a2 · · · an−1, an)
an−→ (1, 1).

Example 4.2.1 Let X = {aa, ba, bb, baa, bba}. The flower automaton is given in
Figure 4.3.

Theorem 4.2.2 Let X be a subset of A+. The following conditions are equivalent:

(i) X is a code.
(ii) For any unambiguous automaton A recognizing X, the automaton A∗ is unam-

biguous.
(iii) The flower automaton A∗

D(X) is unambiguous.

184 4 Automata

(iv) There exists an unambiguous automaton A = (Q, 1, 1) recognizing X∗ and X

is the minimal set of generators of X∗.

Proof. (i) =⇒ (ii) is Proposition 4.1.2. The implication (ii) =⇒ (iii) is clear. To prove
(iii) =⇒ (iv), it suffices to show that X is the minimal generating set of X∗. Assume
the contrary, and let x ∈ X, y, z ∈ X+ be words such that x = yz. Then there exists in

A∗
D(X) a simple path (1, 1)

x−→ (1, 1) and a path (1, 1)
y−→ (1, 1)

z−→ (1, 1) which
is also labeled by x. These paths are distinct, so A∗

D(X) is ambiguous. Finally, for
(iv) =⇒ (i), observe that by Proposition 4.1.5, X∗ is free. Thus X is a code. �

We shall now describe explicitly the paths in the flower automaton of a code.

Proposition 4.2.3 Let X ⊂ A+ be a code. The following conditions are equivalent
for all words w ∈ A∗ and all states (u, v), (u′, v′) in the automaton A∗

D(X):

(i) There exists in A∗
D(X) a path c : (u, v)

w−→ (u′, v′).
(ii) w ∈ vX∗u′ or (uw = u′ and v = wv′).

(iii) uw ∈ X∗u′ and wv′ ∈ vX∗.

Proof. (i) =⇒ (ii). If c is a simple path, then it is a path inAD . Consequently, uw = u′

and v = wv′ (Figure 4.4(a)). Otherwise c decomposes into

c : (u, v)
v−→ (1, 1)

x−→ (1, 1)
u′−→ (u′, v′)

with w = vxu′ and x ∈ X∗ (Figure 4.4(b)).
(ii) =⇒ (iii). If w ∈ vX∗u′, then uw ∈ uvX∗u′ ⊂ X∗u′ and w ∈ vX∗u′v′ ⊂ vX∗,

since uv, u′v′ ∈ X ∪ 1. If uw = u′ and v = wv′, then the formulas are clear.
(iii) =⇒ (i). By hypothesis, there exist x, y ∈ X∗ such that uw = xu′, wv′ = vy.

Let z = uwv′. Then

z = uwv′ = xu′v′ = uvy ∈ X∗.

Each of these three factorizations determines a path in A∗
D(X) (see Figure 4.4):

c : (1, 1)
u−→ (ū, v̄)

w−→ (ū′, v̄′)
v′−→ (1, 1),

c′ : (1, 1)
x−→ (1, 1)

u′−→ (u′, v′)
v′−→ (1, 1),

c′′ : (1, 1)
u−→ (u, v)

v−→ (1, 1)
y−→ (1, 1),

(The paths (1, 1)
u−→ (u, v)

v−→ (1, 1) and (1, 1)
u′−→ (u′, v′)

v′−→ (1, 1) may have
length 0.) Since X is a code, the automaton A∗

D(X) is unambiguous and consequently
c = c′ = c′′. We obtain that (u, v) = (ū, v̄) and (u′, v′) = (ū′, v̄′). Thus

(u, v)
w−→ (u′, v′). �

The flower automaton of a code has “many” states. In particular, the flower automa-
ton of an infinite code is infinite, even though there exist finite unambiguous automata

4.2 Flower automaton 185

w v

u

(a)

u

v
x

u

v(b)

Figure 4.4 Paths in the flower automaton.

recognizing X∗ when the code X is recognizable. We show that A∗
D(X) is universal

among the automata recognizing X∗, in the following sense.
Consider two unambiguous automata

A = (P, 1, 1) and B = (Q, 1, 1),

and their associated representations ϕA and ϕB. A function ρ : P → Q is a reduction
of A onto B if it is surjective, ρ(1) = 1 and if, for all w ∈ A∗,

(q, ϕB(w), q ′) = 1

if and only if there exist p, p′ ∈ P with

(p, ϕA(w), p′) = 1, ρ(p) = q, ρ(p′) = q ′.

The definition means that if p
w−→ p′ is a path in A, then ρ(p)

w−→ ρ(p′) is a
path in B. Conversely, a path q

w−→ q ′ can be “lifted” in some path p
w−→ p′ with

p ∈ ρ−1(q), p′ ∈ ρ−1(q ′).
Another way to see the definition is the following. The matrix ϕB(w) can be

obtained from ϕA(w) by partitioning the latter into blocks indexed by a pair of
classes of the equivalence defined by ρ, and then by replacing null blocks by 0, and
nonnull blocks by 1.

Observe that if ρ is a reduction of A onto B, then for all w,w′ ∈ A∗, the following
implication holds:

ϕA(w) = ϕA(w′) =⇒ ϕB(w) = ϕB(w′).

Thus there exists a unique surjective morphism

ρ̂ : ϕA(A∗) → ϕB(A∗)

such that ϕB = ρ̂ ◦ ϕA. The morphism ρ̂ is called the morphism associated with the
reduction ρ.

186 4 Automata

Proposition 4.2.4 Let A = (P, 1, 1) and B = (Q, 1, 1) be two unambiguous trim
automata. Then there exists at most one reduction of A onto B. If ρ : P → Q is a
reduction, then

1. |A| ⊂ |B|,
2. |A| = |B| if and only if ρ−1(1) = 1.

Proof. Let ρ, ρ ′ : P → Q be two reductions of A onto B. Let p ∈ P , and let q =
ρ(p), q ′ = ρ ′(p). Let u, v ∈ A∗ be words such that 1

u−→ p
v−→ 1 in the automaton

A. Then we have, in the automaton B, the paths

1
u−→ q

v−→ 1, 1
u−→ q ′ v−→ 1.

Since B is unambiguous, q = q ′. Thus ρ = ρ ′.
1. If w ∈ |A|, there exists a path 1

w−→ 1 in A; thus there is a path 1
w−→ 1 in B.

Consequently w ∈ |B|.
2. Let w ∈ |B|. Then there is a path p

w−→ p′ in A with ρ(p) = ρ(p′) = 1. If
1 = ρ−1(1), then this is a successful path in A and w ∈ |A|. Conversely, let p �= 1.
Let 1

u−→ p
v−→ 1 be a simple path in A. Then uv ∈ X, where X is the base of |A|.

Now in B, we have 1
u−→ ρ(p)

v−→ 1. Since |A| = |B|, we have ρ(p) �= 1. Thus
ρ−1(1) = 1. �

Proposition 4.2.5 Let X ⊂ A+ be a code, and let A∗
D(X) be its flower automaton.

For each unambiguous trim automaton A = (Q, 1, 1) recognizing X∗, there exists a
reduction of A∗

D(X) onto A.

Proof. Let A∗
D(X) = (P, (1, 1), (1, 1)). Define a function ρ : P → Q as follows. Let

p = (u, v) ∈ P . If p = (1, 1), then set ρ(p) = 1. Otherwise uv ∈ X, and there exists
a unique path c : 1

u−→ q
v−→ 1 in A. Then set ρ(p) = q.

The function ρ is surjective. Let indeed q ∈ Q, q �= 1. Let

c1 : 1
u−→ q, c2 : q

v−→ 1

be two simple paths in A. Then uv ∈ X, and p = (u, v) ∈ P satisfies ρ(p) = q.
We now verify that ρ is a reduction. For this, assume first that for a word w ∈ A∗,

and q, q ′ ∈ Q, there is a path in A from q to q ′ labeled by w. Consider two simple

paths in A, e : 1
u−→ q, e′ : q ′ v′−→ 1. Then in A, there is a path

1
u−→ q

w−→ q ′ v′−→ 1.

Consequently uwv′ ∈ X∗. Thus for some xi ∈ X, uwv′ = x1x2 · · · xn. Since e is
simple, u is a prefix of x1, and similarly v′ is a suffix of xn. Setting x1 = uv,
xn = u′v′, we have

uwv′ = uvx2 · · · xn = x1 · · · xn−1u
′v′,

whence uw ∈ X∗u′, wv′ ∈ uX∗. In view of Proposition 4.2.3,
((u, v), ϕD(w), (u′, v′)) = 1.

4.2 Flower automaton 187

Suppose now conversely that

(p, ϕD(w), p′) = 1 (4.5)

for some p = (u, v), p′ = (u′, v′), and w ∈ A∗. Let q = ρ(p), q ′ = ρ(p′). By con-
struction, there are in A paths

1
u−→ q

v−→ 1 and 1
u′−→ q ′ v′−→ 1. (4.6)

In view of Proposition 4.2.3, Formula (4.5) is equivalent to

{uw = u′ and v = wv′} or {w = vxu′ for some x ∈ X∗}.

In the first case, uv = uwv′ = u′v′. Thus the two paths (4.6) coincide, giving the
path in A,

1
u−→ q

w−→ q ′ v′−→ 1.

In the second case, there is in A a path

q
v−→ 1

x−→ 1
u′−→ q ′,

Thus, (q, ϕA(w), q ′) = 1 in both cases. �

Example 4.2.6 For the code X = {aa, ba, bb, baa, bba}, the flower automaton is
given in Figure 4.5.

1

7

3

8 4

2

5
6

1, 1

b, aa

ba, a

b, ba bb, a

a, a

b, a

b, b

b

a

a

b

b

a

a
a

ba
bb

Figure 4.5 The flower automaton of X with its states renumbered.

188 4 Automata

1 3

2

a

b

a a, b

a, b

Figure 4.6 Another automaton recognizing X∗.

Consider the automaton given in Figure 4.6. The function ρ : P → {1, 2, 3} is
given by

ρ((a, a)) = ρ((ba, a)) = ρ((bb, a)) = 2,

ρ((b, a)) = ρ((b, b)) = ρ((b, aa)) = ρ((b, ba)) = 3,

ρ((1, 1)) = 1.

The matrices of the associated representations (with the states numbered as indicated
in Figures. 4.5 and 4.6) are

ϕD(a) =

1
2
3
4
5
6
7
8

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

, ϕ(a) =

0 1 0
1 0 0
1 1 0

 ,

ϕD(b) =

1
2
3
4
5
6
7
8

0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

, ϕ(b) =

0 0 1
0 0 0
1 1 0

 .

The concept of a reduction makes it possible to indicate a relation between the
flower automata of a composed code and those of its components.

Proposition 4.2.7 Let Y ⊂ B+, Z ⊂ A+ be two composable codes and let X =
Y ◦β Z. If Y is complete, then there exists a reduction of A∗

D(X) onto A∗
D(Z).

4.2 Flower automaton 189

1, 1 u,v

u

v

z

z̄

r

s

Figure 4.7 Decomposing a petal.

Moreover, A∗
D(Y) can be identified, through β with the restriction of A∗

D(X) to
the states in Z∗ × Z∗.

Proof. Let P and S be the sets of states of A∗
D(X) and A∗

D(Z) respectively, and let
ϕX and ϕZ be the representations associated to A∗

D(X) and A∗
D(Z).

We define the function ρ : P → S as follows. First, let ρ((1, 1)) = (1, 1). Next,
consider (u, v) ∈ P \ (1, 1). Then uv ∈ Z+. Consequently, there exist unique z, z̄ ∈
Z∗, and (r, s) ∈ S such that

u = zr, v = sz̄

(see Figure 4.7). Then let ρ(u, v) = (r, s). The function ρ is surjective. Indeed, each
word in Z appears in at least one word in X; thus each state in S is reached in a
refinement of a state in P .

To show that ρ is a reduction, suppose that

((u, v), ϕX(w), (u′, v′)) = 1.

Let (r, s) = ρ((u, v)), (r ′, s ′) = ρ((u′, v′)), and let z, z̄, z′, z̄′ ∈ Z∗ be such that

u = zr, v = sz̄, u′ = z′r ′, v′ = s ′z̄′.

By Proposition 4.2.3, uw ∈ X∗u′, wv′ ∈ vX∗. Thus zrw ∈ Z∗r ′, ws ′z̄′ ∈ sZ∗, imply-
ing that zrws ′ ∈ Z∗ and rws ′z̄ ∈ Z∗. This in turn shows, in view of the stability of
Z∗, that rws ′ ∈ Z∗. Set zrw = ẑr ′, with ẑ ∈ Z∗. Then

ẑ(r ′s ′) = z(rws ′),

and each of the four factors in this equation is in Z∗. Thus Z being a code, either
ẑ = zt or z = ẑt for some t ∈ Z∗. In the first case, we get tr ′s ′ = rws ′, whence rw ∈
Z∗r ′. The second case implies r ′s ′ = trws ′. Since r ′s ′ ∈ 1 ∪ Z, this forces t = 1 or
rws ′ = 1. In both cases, rw ∈ Z∗r ′. Thus rw ∈ Z∗r ′, and similarly ws ′ ∈ sZ∗. By
Proposition 4.2.3,

((r, s), ϕZ(w), (r ′, s ′)) = 1.

190 4 Automata

m :

t r s r s t

x1 xn

u v u v

w

(a)

m :

t r s r s t

vu

u v

w

(b)

Figure 4.8 The cases of (a) n > 1 and (b) n = 1.

Assume conversely that

((r, s), ϕZ(w), (r ′, s ′)) = 1.

Then by Proposition 4.2.3

rw = zr ′, ws ′ = sz′

for some z, z′ ∈ Z∗. Then rws ′ ∈ Z∗, and Y being complete, there exist t, t ′ ∈ Z∗

such that m = trws ′t ′ ∈ X∗. Let

m = trws ′t ′ = trsz′t ′ = tzr ′s ′t ′ = x1 · · · xn

with n ≥ 1, x1, . . . , xn ∈ X. We may assume that t and t ′ have been chosen of minimal
length, so that t is a proper prefix of x1 and t ′ is a proper suffix of xn. But then, since
m ∈ Z∗ and also trs ∈ Z∗, trs is a prefix of x1 and r ′s ′t ′ is a suffix of xn (Figure 4.8).
Define

x1 = uv with u = tr, v ∈ sZ∗,
xn = u′v′ with u′ = t ′r ′, v′ ∈ s ′Z∗.

Then (u, v) and (u′, v′) are states of A∗
D(X), and moreover

ρ((u, v)) = (r, s), ρ((u′, v′)) = (r ′, s ′),

and

m = uwv′ = uvx2 · · · xn = x1 · · · xn−1u
′v′.

4.3 Decoders 191

1

6

7

1, 1

b, a

b, b

a

b

b

b

a

Figure 4.9 The flower automaton of Z.

Thus

uw ∈ X∗u′ and wv′ ∈ vX∗.

Finally, consider the set R of states of A∗
D(Y). Then R can be identified with

R′ = {(u, v) ∈ P | u, v ∈ Z∗}.
The edges of A∗

D(Y) correspond to those paths (u, v) → (u′, v′) of A∗
D(X) with

endpoints in R′, and with label in Z. �

Example 4.2.8 Recall from Chapter 2 that the code X = {aa, ba, bb, baa, bba} is
a composition of Y = {cc, d, e, dc, ec} and Z = {a, ba, bb}. The flower automaton
A∗

D(X) is given in Figure 4.5. The flower automaton A∗
D(Z) is given in Figure 4.9. It

is obtained from A∗
D(X) by the reduction

ρ(1) = ρ(2) = ρ(3) = ρ(4) = 1̄,

ρ(6) = ρ(8) = 6̄,

ρ(5) = ρ(7) = 7̄.

The flower automaton A∗
D(Y) is given in Figure 4.10.

4.3 Decoders

Let X ⊂ A+ be a code and let β : B∗ → A∗ be a coding morphism for X. Since β is
injective, there exists a partial function,

γ : A∗ → B∗

with domain X∗ and such that γ (β(u)) = u for all u ∈ B∗. We say that γ is a decoding
function for X.

192 4 Automata

1, 1

e, c

d, c c, cc

d

ce

c

c

e d

Figure 4.10 The flower automaton of Y .

b|1

a|00

c|01

Figure 4.11 A simple encoder.

A coding morphism β : B∗ → A∗ can be realized by a one-state literal transducer,
with the set of labels of edges being simply the pairs (b, β(b)) for b in B.

Example 4.3.1 Consider the encoding defined by γ (a) = 00, γ (b) = 1, and γ (c) =
01. The corresponding encoding transducer is given in Figure 4.11

Transducers for decoding are more interesting. For the purpose of coding and
decoding, we are concerned with transducers which define single-valued mappings
in both directions. We need two additional notions.

A literal transducer is called deterministic (resp. unambiguous) if its associated
input automaton is deterministic (resp. unambiguous).

Clearly, the relation realized by a deterministic transducer is a function. Whenever

there is a path p
u|w−→ q starting in p with input label u and output label w, we write

p · u for q and p ∗ u for w. Observe that p · uv = p · u · v. This is Equation (1.8).
Also,

p ∗ uv = (p ∗ u)(p · u ∗ v). (4.7)

4.3 Decoders 193

ε 01|b

0|−

0|a, 1|c

Figure 4.12 A deterministic decoder for X = {1, 00, 01}. A dash means no output. Here ε

denotes the empty word.

Indeed, if there is a path starting in p with input label uv, then it is of the form

p
u|w−→ q

v|z−→ r for states q = p · u and r = q · v and output labels w = p ∗ u and
z = q ∗ v. It follows that wz = (p ∗ u)(p · u ∗ v) as claimed.

Let β : B∗ → A∗ be a coding morphism with finite alphabets A and B, and let
X = β(B). The prefix transducer T over B and A associated to β has as states the
set of proper prefixes of words in X. The state corresponding to the empty word

1 is the initial and terminal state. There is an edge p
a|−−−→ pa, where the dash (−)

represents the empty word, for each prefix p and letter a such that pa is a prefix,

and an edge p
a|b−→ 1 for each p and letter a with pa = β(b) ∈ X. Note that for each

edge p
a|v−→ q of the prefix transducer, one has

pa = β(v)q. (4.8)

Note also that the prefix transducer is finite when B is finite, and thus when the code
X is finite.

Proposition 4.3.2 For any coding morphism β : B∗ → A∗, the prefix transducer T
associated to β is unambiguous and realizes the decoding function. When the code
β(B) is prefix, then the transducer T is deterministic.

Proof. Let A be the input automaton of T . Then A = B∗, where B is the automaton
whose states are the prefixes of the words in X. By Proposition 4.1.2, the automaton
A is unambiguous. Moreover, each simple path 1 → 1 is labeled by construction with
(β(b), b) for some letter b ∈ B. Thus T realizes the associated decoding function.
When the code is prefix, the decoder is deterministic. �

Example 4.3.3 The decoder corresponding to the prefix code X = {1, 00, 01} is
represented in Figure 4.12.

Example 4.3.4 Consider the code X = {00, 10, 100}. The decoder given by the con-
struction is represented in Figure 4.13.

Observe that the transducer constructed in the proof is finite (that is has a finite
number of states) whenever the code is finite.

Assume now that the code X is finite. As a consequence of the proposition, decoding
can always be realized in linear time with respect to the length of the encoded string

194 4 Automata

ε0

1

10

0|−

0|a

1|−

0|b 0|−
0|c

Figure 4.13 A unambiguous decoder for the code X = {00, 10, 100} which is not prefix.
Again ε denotes the empty word.

ε 1 ε

10

0

ε

ε

0

1 ε

10

1 ε

10

0

ε

ε

0

0

ε

1 0
0

0

0

0

0

1 0
0

1 0
0

0

0

0

0

0

0

Figure 4.14 The decoding of 10001010000. Here also ε denotes the empty word.

(considering the number of states of the transducer as a constant). Indeed, given a
word w = a1 · · · an of length n to be decoded, one computes the sequence of sets
Si of states accessible from the initial state for each prefix a1 · · · ai of length i of
w, with the convention S0 = {ε}. Of course the terminal state ε is in Sn. Working
backwards, we set qn = ε and we identify in each set Si the unique state qi such that
there is an edge qi

ai−→ qi+1 in the input automaton. The uniqueness comes from the
unambiguity of the transducer. The corresponding sequence of output labels gives
the decoding.

Example 4.3.5 Consider again the code C = {00, 10, 100}. The decoding of the
sequence 10001010000 is represented in Figure 4.14. Working from left to right
produces the tree of possible paths in the decoder of Figure 4.13. Working backwards
from the state ε in the last column produces the successful path indicated in boldface.

The notion of deterministic transducer is too constrained for the purpose of coding
and decoding because it does not allow a lookahead on the input or equivalently a
delay on the output. The notion of sequential transducer to be introduced now fills
this gap.

A sequential transducer over the input alphabet A and the output alphabet B is
composed of a deterministic transducer over A and B and of an output function.
This function maps the terminal states of the transducer into words on the output
alphabet B. The function f : A∗ → B∗ realized by a sequential transducer is obtained
by appending, to the value of the deterministic transducer, the image of the output
function on the arrival state. Formally, the value on the input word x ∈ A∗ is

f (x) = g(x)σ (i · x),

4.3 Decoders 195

0 1
a|−

a|a

b|b

a

Figure 4.15 A sequential transducer realizing a cyclic shift on words starting with the letter a.

where g(x) ∈ B∗ is the value of the deterministic transducer on the input word x,
i · x is the state reached from the input state i by the word x, and σ is the output
function. This is defined only if the state i · x is a terminal state.

Deterministic transducers are a special case of sequential transducers. They are
obtained when the output function takes always the value 1.

Example 4.3.6 The automaton given in Figure 4.15 computes, for each input word
of the form aw, the output word wa. It is undefined on input words that do not start
with the letter a. The initial state is 0 and the state 1 is terminal. The output function
σ satisfies σ (1) = a (the value of σ is indicated on the figure as the label of the
outgoing edge).

Contrary to automata, it is not always true that a finite transducer is equivalent to a
finite sequential transducer. Nonetheless, there is a procedure to compute a (possibly
infinite) sequential transducer S that is equivalent to a given literal transducer T
realizing a function.

Let T = (Q, I, T) be a literal transducer realizing a function A∗ → B∗. We define
a sequential transducer S as follows. The states of S are sets of pairs (u, p). Each
pair (u, p) is composed of an output word u ∈ B∗ and a state p ∈ Q of T .

The edges of S are the following. For a state s of S and an input letter a ∈ A, one
first computes the set s̄ of pairs (uv, q) such that there is a pair (u, p) in s and an

edge p
a|v−→ q in T . In a second step, one chooses the longest common prefix z of all

words uv, and one defines a set t by t = {(w, q) | (zw, q) ∈ s̄}. The set t is a state of
S. This defines an edge from state s to state t labeled with (a, z). The initial state is
{(1, i) | i ∈ I }. The terminal states are the sets t containing a pair (u, q) with q ∈ T

terminal in T . Since T realizes a function, two pairs (u, q) and (u′, q ′) in the same
terminal state t with q, q ′ ∈ T satisfy u = u′.

The output function σ of S is defined on the state t of S by σ (t) = u, where u is
the unique word such that (u, q) is in t for some q ∈ T . The states of S are the sets
of pairs which are accessible from the initial state of S. The words u appearing as
first components in the pairs (u, p) will be called remainders.

The process of building new states of S will not halt if the lengths of the remainders
is not bounded. There exist a priori bounds for the maximal length of the remainders
whenever the determinization is possible. This makes the procedure effective in this
case.

196 4 Automata

p q

a|b
a|a b|b

b|a

Figure 4.16 Another transducer realizing a cyclic shift on words starting with the letter a.

Example 4.3.7 Consider the transducer given in Figure 4.16. The result of the deter-
minization algorithm is the transducer of Figure 4.15. State 0 is composed of the pair
(1, p), and state 1 is formed of the pairs (a, p) and (b, q).

Let S = (P, I, S) be a literal transducer over the alphabets A,B and let T =
(Q,J, T) be a literal transducer over the alphabets B,C. We denote by S ◦ T the
literal transducer U over the alphabets A,C given by U = (P × Q, I × J, S × T)
with edges

(p, q)
a|w−→ (r, s)

for all edges p
a|v−→ r in S and paths q

v|w−→ s in T . The transducer U = S ◦ T is the
transducer composed of S and T .

Proposition 4.3.8 The relation realized by the composed transducer S ◦ T is the
composition of the relations realized by S and T .

Proof. There is a path (p, q)
u|w−→ (r, s) in U = S ◦ T if and only if there is a path

p
u|v−→ r in S and a path q

v|w−→ s in T . Thus (u,w) ∈ A∗ × C∗ is an element of the
relation realized by U if and only if there exists v ∈ B∗ such that (u, v) is an element
if the relation realized by S and (v,w) belongs to the relation realized by T . �

Proposition 4.3.9 If S and T are unambiguous, then S ◦ T is unambiguous.

Proof. Let u = a1a2 · · · an be a word with ai ∈ A and n ≥ 0. Suppose that there are
two paths in U = S ◦ T with the same input label u and the same starting and ending
states. More precisely, assume that in U , there are paths

(p0, q0)
a1|w1−→ (p1, q1) · · · (pn−1, qn−1)

an|wn−→ (pn, qn),

(p′
0, q

′
0)

a1|w′
1−→ (p′

1, q
′
1) · · · (p′

n−1, q
′
n−1)

an|w′
n−→ (p′

n, q
′
n)

with (p0, q0) = (p′
0, q

′
0) and (pn, qn) = (p′

n, q
′
n). Then there exist in the transducer S

two paths p0
a1|v1−→ p1 · · ·pn−1

an|vn−→ pn and p′
0

a1|v′
1−→ p′

1 · · ·p′
n−1

an|v′
n−→ p′

n for appro-

priate words v1, . . . , vn, v
′
1, . . . , v

′
n and, in the transducer T , two paths q0

v1|w1−→
q1 · · · qn−1

vn|wn−→ qn and q ′
0

v′
1|w′

1−→ q ′
1 · · · q ′

n−1

v′
n|w′

n−→ q ′
n. Since S is unambiguous, the two

paths coincide and thus pi = p′
i and vi = v′

i . Since T is unambiguous and the two

4.4 Exercises 197

1

a|ā

b

b|−

a|b̄, b|c̄

1

b̄|d, c̄|f

a

¯

¯

a|c, b̄|e
c̄|g

ā|−

1, 1 1, ā

a|c

a|−

b, 1

b|−a|d
b|f

a|e, b|g

Figure 4.17 The transducers T , S and S ◦ T .

paths have the same input label, they coincide. Therefore qi = q ′
i and wi = w′

i . Thus
the two paths in U coincide. �

Corollary 4.3.10 Let X = Y ◦ Z be a code over A composed of the code Y over
B and the code Z over A, and let γ : B∗ → C∗ and δ : A∗ → B∗ be the decoding
functions for Y and Z. If S and T are unambiguous transducers realizing γ and δ,
then T ◦ S realizes the decoding function γ ◦ δ : A∗ → C∗. �

Example 4.3.11 Let X = {aa, ba, baa, bb, bba}, Y = {āā, b̄, b̄ā, c̄, c̄ā}, and Z =
{a, ba, bb}. Then X = Y ◦β Z with B = {ā, b̄, c̄} and β(ā) = a, β(b̄) = ba and
β(c̄) = bb. The prefix transducer S of Z, the suffix transducer T of Y and their
composition are shown in Figure 4.17, with C = {c, d, e, f, g}.

Proposition 4.3.12 If S and T are deterministic, then S ◦ T is deterministic.

Proof. Let (p, q)
a|w−→ (r, s) and (p, q)

a|w′
−→ (r ′, s ′) be two edges of U = S ◦ T . Then

there exist edges p
a|v−→ r and p

a|v′
−→ r ′ in S and paths q

v|w−→ s and q
v′|w′
−→ s ′ in T .

Since S is deterministic, v = v′ and r = r ′. Since T is deterministic, this in turn
implies that w = w′ and s = s ′. Thus the two edges in U coincide. �

4.4 Exercises

Section 4.1

4.1.1 Show that a submonoid M of A∗ is recognizable and free if and only if there
exists an unambiguous trim finite automaton A = (Q, 1, 1) that recognizes M .

Section 4.2

4.2.1 Let X be a subset of A+ and let A∗
D(X) = (P, (1, 1), (1, 1)) be the flower

automaton of X. Let ϕ be the associated representation. Show that for all
(p, q), (r, s) ∈ P and w ∈ A∗ we have

((p, q), ϕ(w), (r, s)) = (q(X)∗r, w) + (pw, r)(q,ws).

4.2.2 Let A = (P, i, T) and B = (Q, j, S) be two automata, and let ρ : P → Q be
a reduction from A on B such that i = ρ−1(j). Show that if A is deterministic, then
so is B.

198 4 Automata

4.5 Notes

Unambiguous automata and their relation to codes appear in Schützenberger (1961d,
1965b). They appear also under the name of information lossless machines in Huff-
man (1959), see also Kohavi (1978).

Unambiguous automata are closely related to the notion of finite-to-one maps used
in symbolic dynamics (see Lind and Marcus (1995)). The connection is the fact that
in a finite unambiguous automaton, any word is the label of a finite number of paths.
This number is bounded by the square of the number of states of the automaton.
Indeed, for any pair p, q of states of A and any word w, there is at most one path
p

w→ q.
Proposition 4.1.6 appears in Schützenberger (1965b). Formula (4.2) can be written

in noncommutative variables using the notion of quasideterminant (see Gel′fand and
Retakh (1991)).

For a comprehensive presentation of transducers, one may consult Eilenberg (1974)
or Berstel (1979). For a recent exposition, see Sakarovitch (2009).

For the determinization algorithm of transducers, see Lothaire (2005). The decod-
ing in linear time with the help of an unambiguous transducer is based on the
Schützenberger covering of an unambiguous automaton, see Sakarovitch (2008).

5

Deciphering delay

This chapter is devoted to codes with finite deciphering delay. Intuitively, codes with
finite deciphering delay can be decoded, from left to right, with a finite lookahead.
There is an obvious practical interest in this condition. Codes with finite deciphering
delay form a family intermediate between prefix codes and general codes. There are
two ways to define the deciphering delay, counting either codewords or letters. The
first one is called verbal delay, or simply delay for short, and the second one literal
delay.

The first section is devoted to codes with finite verbal deciphering delay. We
present first some preliminary material. In particular we prove a characterization of
the deciphering delay in terms of simplifying words.

In the second section, we prove Schützenberger’s theorem (Theorem 5.2.4) saying
that a finite maximal code with finite deciphering delay is prefix. We prove that any
rational code with finite deciphering delay is contained in a maximal rational code
with the same delay (Theorem 5.2.9).

The next section considers the literal deciphering delay, that is the deciphering
delay counted in terms of letters instead of words of the code. A code with finite
literal deciphering delay is called weakly prefix. We introduce the notion of automata
with finite delay, also called weakly deterministic. We prove the equivalence between
weakly prefix codes and weakly deterministic automata (Proposition 5.3.4). We use
this characterization to give yet another proof of Schützenberger’s theorem. Next,
we show that a rational completion with the same literal deciphering delay exists
(Theorem 5.3.7).

5.1 Deciphering delay

A subset X of A+ is said to have finite verbal deciphering delay if there exists
an integer d ≥ 0 such that the following condition holds: For x, x ′ ∈ X, y ∈ Xd ,
y ′ ∈ X∗,

xy ≤ x ′y ′ implies x = x ′. (5.1)

(Recall that we write u ≤ u′ to express that u is a prefix of u′.) If this condition holds
for an integer d, we say that X has verbal deciphering delay d. We omit the term
verbal when possible.

200 5 Deciphering delay

x y

x y

Figure 5.1 Forbidden configuration for finite deciphering delay.

The definition can be rephrased as follows. Let w ∈ A∗ be a word having two
prefixes in X+, and such that the shorter one is in X1+d . Then the two prefixes start
with the same word in X.

If X has deciphering delay d, it also has deciphering delay d ′ for d ′ ≥ d. The
smallest integer d satisfying (5.1) is called the minimal deciphering delay of X. If no
such integer exists, the set X has infinite deciphering delay.

This notion of deciphering delay is clearly oriented from left to right. It is straight-
forward to define a dual notion (working from right to left). The terminology is
justified by the following consideration: During a left-to-right parsing of an input
word, the delay between the moment when a possible factor of an X-factorization is
discovered, and the moment when these factors are definitively valid, is bounded by
the deciphering delay.

If the deciphering delay of X is infinite, then there exist x, x ′ ∈ X with x �= x ′

and y1, y2, . . . , y
′
1, y

′
2, . . . ∈ X such that for all n ≥ 1, xy1y2 · · · yn is a prefix of

x ′y ′
1y

′
2 · · · y ′

n or vice versa.
It follows from the definition that the sets with delay d = 0 are the prefix codes.

This is the reason why prefix codes are also called instantaneous codes. In this sense,
codes with finite delay are a natural generalization of prefix codes.

Proposition 5.1.1 A subset X of A+ which has finite deciphering delay is a code.

Proof. Let X have deciphering delay d. We may suppose X �= ∅. Assume there is an
equality

w = x1x2 · · · xn = y1y2 · · · ym,

with n,m ≥ 1, x1, . . . , xn, y1, . . . , ym ∈ X. Let z ∈ X. Then wzd ∈ y1X
∗. By (5.1),

we have x1 = y1, x2 = y2 and so on. Thus, X is a code. �

Example 5.1.2 The suffix code X = {aa, ba, b} has infinite deciphering delay.
Indeed, for all d ≥ 0, the word b(aa)d ∈ X1+d is a prefix of y(aa)d with y = ba �= b.

For a set X ⊂ A+, define, as in Section 2.3, a sequence (Un)n≥0 of subsets of A∗

by setting

U1 = X−1X \ 1 Un+1 = X−1Un ∪ U−1
n X, n ≥ 1.

Proposition 5.1.3 The set X has finite deciphering delay if and only if the set Un is
empty for some n.

5.1 Deciphering delay 201

Proof. By Lemma 2.3.3, for n ≥ 1 one has u ∈ Un if and only if there are x1, . . . , xi ,
y1, . . . yj ∈ X with x1 �= y1, i + j = n + 1 and u suffix of yj such that x1 · · · xiu =
y1y2 · · · yj . We first verify that if X has deciphering delay d then U2d+1 = ∅. Sup-
pose the contrary. Let x1, . . . , xi, y1, . . . yj ∈ X be such that x1 · · · xiu = y1y2 · · · yj

with i + j = 2d + 2, u suffix of yj and x1 �= y1. Then i − 1 ≤ d − 1 since
otherwise x1 = y1. Similarly, j − 2 ≤ d − 1 since otherwise, with yj = vu, we
have y1y2 · · · yj−1v = x1 · · · xi and thus x1 = y1 again. Thus i + j ≤ 2d + 1, a
contradiction.

Conversely we show that if Un = ∅, then X has deciphering delay n − 1. Let
indeed x, x ′ ∈ X, y ∈ Xn−1, y ′ ∈ Xj for j ≥ 0 and u ∈ A∗ be such that xyu = x ′y ′.
If x �= x ′, then u ∈ Um for some m ≥ n, a contradiction. This forces x = x ′ proving
that X has deciphering delay n − 1. �

Example 5.1.4 The set X = {a, ab, bc, cd, de} has deciphering delay 2. We obtain
U1 = {b}, U2 = {c}, U3 = {d}, U4 = {e}, U5 = ∅.

We reformulate the definition of deciphering delay as follows. Let X be a code. A
word s ∈ A∗ is said to be simplifying for X if for all x ∈ X∗ and v ∈ A∗,

xsv ∈ X∗ ⇒ sv ∈ X∗.

Proposition 5.1.5 A code X has deciphering delay d if and only if all words of Xd

are simplifying.

Proof. Let us first suppose that X has delay d. Let x ∈ Xd , x1, . . . , xp ∈ X and v ∈ A∗

be such that x1 · · · xpxv ∈ X∗. Thus

x1 · · · xpxv = y1 · · · yq

for some y1, . . . , yq ∈ X. Since X has delay d, it follows that x1 = y1, . . . , xp = yp,
whence q ≥ p and xv = yp+1 · · · yq . Thus xv ∈ X∗. This shows that x is simplifying.

Conversely, suppose y ∈ Xd . Let x, x ′ ∈ X and u ∈ A∗ be such that xyu ∈ x ′X∗.
Then yu ∈ X∗. Since X is a code, this implies x = x ′. Thus X has deciphering
delay d. �

The following statement characterizes the decoders of codes with finite deciphering
delay in terms of sequential transducers introduced in Section 4.3.

Proposition 5.1.6 Let X ⊂ A+ be a finite code, and let β : B∗ → A∗ be a coding
morphism for X. The corresponding decoding function A∗ → B∗ is realizable by a
finite sequential transducer if and only if X has finite verbal deciphering delay.

Proof. Suppose first that X has verbal deciphering delay d. By Proposition 4.3.2, the
prefix transducer T associated with β realizes the corresponding decoding function γ

from A∗ to B∗. Let S be the sequential transducer obtained from T = (Q, 1, 1) by the
determinization procedure described in Section 4.3. Let U be the set of remainders,
that is of words u ∈ B∗ such that (u, p) belongs to a state of S for some state p of

202 5 Deciphering delay

Table 5.1 States and output function
for the sequential transducer S.

state 1 2 3

pairs (1, 1)
(ā, 1)
(1, a)

(ab, 1)
(1, ab)

output 1 ā āb

T . We show that any u ∈ U has length at most d. This will prove that S is finite, and
thus that the decoding function is realizable by a finite sequential transducer.

For this, we observe that if two pairs (w, q), (w′, q ′) ∈ B∗ × Q belong to the same
state of S, then β(w)q = β(w′)q ′. This is true for the initial state (1, 1) ∈ B∗ × Q

(here the second 1 is the initial state of T). Next, if (w, q), (w′, q ′) ∈ t are two pairs
belonging to some state t �= (1, 1) of S, then there is, by definition of S, and edge
s

a,z→ t in S for some a ∈ A, z ∈ B∗. Thus there are two pairs (u, p), (u′, p′) in s and

two edges p
a|v−→ q and p′ a|v′

−→ q ′ in T such that uv = zw and u′v′ = zw′. We argue
by induction on the length of the path from the initial state to t in S. Thus we may

assume that β(u)p = β(u′)p′. Since p
a|v−→ q and p′ a|v′

−→ q ′ are edges in T , we have
by (4.8), pa = β(v)q and p′a = β(v′)q ′. This implies in turn β(uv)q = β(u′v′)q ′.
Simplifying both sides by β(z) gives β(w)q = β(w′)q ′.

Consider now a pair (u, p) ∈ B+ × Q which belongs to a state of S. Since the
word u is nonempty, by definition of S, there is another pair (u′, p′) in the same state
of S such that u, u′ have no nonempty common prefix. By the above observation,
we have β(u)p = β(u′)p′. Since p′ is a prefix of some codewords, the word β(u) is
a prefix of a word β(u′b) for some b ∈ B. Now set β(u) = xy, β(u′b) = x ′y ′ with
x, x ′ ∈ X, y, y ′ ∈ X∗. Since u and u′ start with distinct letters, one has x �= x ′. By the
definition of the deciphering delay, this implies that |u| ≤ d, completing the proof of
the first implication.

Conversely, suppose that S = (Q, i, σ) is a sequential transducer with output
function σ realizing γ . Let d be the maximal length of the words σ (p) for p ∈ Q.
In view of applying again Equation (5.1), let x, x ′ ∈ X and y, y ′ ∈ X∗ be such that
xy ≤ x ′y ′ with x �= x ′. We show that y ∈ Xd ′

with d ′ < d. Let p be the state reached
from the initial state i by reading x. There is no output along this reading because xy

is a prefix of x ′y ′ and, since x �= x ′, it cannot be decided whether to output γ (x) or

γ (x ′). Thus we have i
xy|1−→ p. Moreover, if u is defined by β(u) = xy, then σ (p) = u.

Since |u| ≤ d and β(u) ∈ X1+d ′
, one has 1 + d ′ ≤ d, and thus d ′ < d. Thus X has

verbal deciphering delay d. �

Example 5.1.7 Consider the code X = {a, b, abc} on the alphabet A = {a, b, c},
with B = {ā, b̄, c̄} and coding morphism given by ā �→ a, b̄ �→ b, c̄ �→ abc. It has
deciphering delay 2. The prefix transducer T and the sequential transducerS obtained
by determinization are shown in Figure 5.2. The states of S are renumbered 1, 2, 3,
and the correspondence with the states obtained by the determinization procedure,
and the output function σ are given in Table 5.1.

5.2 Maximal codes 203

1

a

ab

a|ā

b|b̄

a|−

b|−

c|c̄
1 2 3

b|b̄
a|ā

a|− b|−

a|ab

b | abb

c|c̄

Figure 5.2 The transducers T and S.

5.2 Maximal codes

We now study maximal codes with finite deciphering delay. The following result is
similar to Proposition 2.2.5.6.

Proposition 5.2.1 Let X be a subset of A+ which has finite deciphering delay. If
y ∈ A+ is an unbordered word such that

X∗yA∗ ∩ X∗ = ∅,

then Y = X ∪ y has finite deciphering delay.

Proof. Consider the set V = X∗y. It is a prefix code. Indeed, assume that v = xy and
v′ = x ′y with x, x ′ ∈ X∗, and v < v′. Then necessarily v ≤ x ′ since y is unbordered.
But then x ′ ∈ X∗yA∗, a contradiction. Note also that

V +A∗ ∩ X∗ = ∅
since V +A∗ ⊂ V A∗.

Let X have deciphering delay d and let e = d + |y|. We show that Y has decipher-
ing delay e. For this, let us consider a relation

w = y1y2 · · · ye+1u = y ′
1y

′
2 · · · y ′

n

with y1, . . . , ye+1, y
′
1, . . . y

′
n ∈ Y , u ∈ A∗ and, arguing by contradiction, assume that

y1 �= y ′
1.

First, let us verify that one of y1, . . . , ye+1 is equal to y. Assume the contrary. Then
y1 · · · yd+1 ∈ Xd+1. Let q be the smallest integer such that (Figure 5.3)

y1 · · · yd+1 ≤ y ′
1 · · · y ′

q .

The delay of X being d, and y1 �= y ′
1, one among y ′

1, . . . , y
′
q must be equal

to y. We cannot have y ′
i = y for an index i < q, since otherwise y1 · · · yd+1 ∈

V +A∗ ∩ X∗. Thus y ′
q = y and y ′

1 · · · y ′
q ∈ V . Note that y ′

1 · · · y ′
q−1 ≤ y1 · · · yd+1.

Next, |yd+2 · · · ye+1| ≥ e − d = |y|. It follows that

y ′
1 · · · y ′

q ≤ y1 · · · ye+1.

204 5 Deciphering delay

y1 yd+1 ye+1

y1 yq yn

Figure 5.3 Two factorizations of the word w.

But then y1 · · · ye+1 ∈ X∗ ∩ X∗yA∗, which is impossible. This shows the claim,
namely, that one of y1, . . . , ye+1 is equal to y.

It follows that w has a prefix y1y2 · · · yp in V with y1, . . . , yp−1 ∈ X and yp = y.
By the hypothesis, one of y ′

1, . . . , y
′
n must be equal to y. Thus w has also a prefix

y ′
1y

′
2 · · · y ′

q in V with y ′
1, . . . , y

′
q−1 ∈ X and y ′

q = y. The code V being prefix, we
have

y1y2 · · · yp−1 = y ′
1y

′
2 · · · y ′

q−1.

Since X is a code, this and the assumption y1 �= y ′
1 imply that p = q = 1. But then

yp = y = y ′
q . This gives the final contradiction. �

Proposition 5.2.1 has the following interesting consequence.

Theorem 5.2.2 Let X be a thin subset of A+. If X has finite deciphering delay, then
the following conditions are equivalent:

(i) X is a maximal code.
(ii) X is maximal in the family of codes with finite deciphering delay.

Proof. The case where A has just one letter is clear. Thus, we suppose that Card(A) ≥
2. It suffices to prove (ii) =⇒ (i). For this, it is enough to show that X is complete.
Assume the contrary and consider a word u which is not a factor of a word in X∗.
According to Proposition 1.1.3.6, there exists v ∈ A∗ such that y = uv is unbordered.
But then A∗yA∗ ∩ X∗ = ∅ and by Proposition 5.2.1, X ∪ y has finite deciphering
delay. This gives the contradiction. �

A word p is strongly right completable (for X) if, for all u ∈ A∗, there exists v ∈ A∗

such that puv ∈ X∗. Clearly, a strongly right completable word is right completable.
The set of strongly right completable words is denoted by E(X).

The following statement is the counterpart of Theorem 2.5.5 for codes with finite
deciphering delay since it shows that maximal codes with finite deciphering delay
satisfy a condition which is stronger than being complete.

Proposition 5.2.3 Let X ⊂ A+ be a maximal code with deciphering delay d. Then
for any x ∈ Xd and u ∈ A∗ there exists a word v ∈ A∗ such that xuv ∈ X∗. In other
words Xd ⊂ E(X).

Proof. The case of a one letter alphabet is clear. Thus, assume that Card(A) ≥ 2.
Let x ∈ Xd and u ∈ A∗. By Proposition 1.1.3.6, there is a word v ∈ A∗ such that

5.2 Maximal codes 205

x

y

u

t

Figure 5.4 An element t of T .

y = xuv is unbordered. This implies that

X∗yA∗ ∩ X∗ �= ∅.

Indeed, otherwise X ∪ y would be a code by Proposition 5.2.1 and Proposition 5.1.1,
contradicting the maximality of X.

Consequently, there exist z ∈ X∗, w ∈ A∗ such that zyw ∈ X∗. By Proposi-
tion 5.1.5, x is simplifying. Thus, zyw = zxuvw ∈ X∗ implies xuvw ∈ X∗. This
shows that x is strongly right completable. �

We now state and prove an important result.

Theorem 5.2.4 (Schützenberger) A finite maximal code with finite deciphering delay
is prefix.

In an equivalent manner, a maximal finite code is either prefix or has infinite
deciphering delay.
Proof. We argue by contradiction and suppose that X is not a prefix code. Denote by
P the set of prefixes of the words in X∗. Define (see Figure 5.4)

T = {t ∈ P | ∃x, y ∈ X, x �= y and xtA∗ ∩ yX∗ �= ∅}.

We first observe that T contains the empty word. Indeed, since X is not a prefix code,
there exist x, y ∈ X with y = xu for some u ∈ A+. Thus xA∗ ∩ {y} is nonempty.
This shows that 1 ∈ T . Thus T is not empty.

We next show that T is finite. Let L be the maximum length of the words in X.
Suppose that there exists t ∈ T of length |t | ≥ dL, where X has deciphering delay d.
Since t ∈ T , one has t = x1 · · · xdt

′ for some codewords x1, . . . , xd ∈ X and some
t ′ ∈ P .

Let x, y ∈ X, x �= y be words such that xtA∗ ∩ yX∗ is nonempty. We have xtu =
yw for some word w ∈ X∗. Consequently xx1 · · · xdt

′u = yw, and since X has delay
d, we obtain x = y, a contradiction. Therefore t cannot be in T . This shows that all
words in T have length < dL, and thus T is finite.

We consider now some t in T of maximal length. We have, for some x, y ∈ X, x �=
y, that xtA∗ ∩ yX∗ is nonempty. Hence xtu ∈ yX∗ for some word u, and we may
suppose that u ∈ A+. Indeed, if u = 1, we replace u by any word of X. Set u = au′,
where a is the first letter of u. We are going to show that ta ∈ P , which implies
ta ∈ T , a contradiction.

206 5 Deciphering delay

x1 xn z t

a v

y1 ym

Figure 5.5 A completion of w = zta.

z t

a v

y1 ym
t1

Figure 5.6 A consequence y1 �= z is that zt = y1t1.

Set w = zta, where z is a word of maximal length in the (finite) code X. By Propo-
sition 2.5.6, X∗wA∗ ∩ X∗ is nonempty. Therefore there are x1, . . . , xn, y1, . . . , ym in
X and v in A∗ such that (see Figure 5.5) x1 · · · xn ztav = y1 · · · ym.

Take n minimal. If n ≥ 1, we have x1(x2 · · · xnzt)av = y1 · · · ym and t ′ =
x2 · · · xnzt ∈ P , since t ∈ P . Thus x1t

′A∗ intersects y1X
∗, and since t ′ �∈ T , we must

have x1 = y1. Thus x2 · · · xnztav = y2 · · · ym and this contradicts the minimality of
n. Hence n = 0 and ztav = y1 · · · ym (see Figure 5.6).

Note that, since z is of maximal length, y1 is a prefix of z. Suppose by contradiction
that y1 �= z. Then for some prefix t1 of y2 · · · ym, we have y1t1 = zt . Since t ∈ P ,
the set y1t1A

∗ intersects zX∗ and we conclude that t1 ∈ T , a contradiction since
|y1| < |z| ⇒ |t1| > |t |.

Thus y1 = z and tav = y2 · · · ym. Hence ta ∈ P , as claimed. This concludes the
proof. �

The following examples show that Theorem 5.2.4 is optimal in several directions.

Example 5.2.5 The suffix code X = {aa, ba, b} is a finite maximal code and has
infinite deciphering delay.

Example 5.2.6 The code {ab, abb, baab} has minimal deciphering delay 1. It is
neither prefix nor maximal : indeed, the word bbab, for instance, can be added to it.

Example 5.2.7 The code X = ba∗ is maximal and suffix. It has minimal deciphering
delay 1. It is not prefix, but it is infinite.

The rest of this section is devoted to the proof of an analogue of Theorem 2.5.24 for
codes with finite deciphering delay. The following example shows that the construc-
tion used in the proof of Theorem 2.5.24 does not apply in this context.

Example 5.2.8 Let X = {a, ab}, A = {a, b} and y = bba as in Example 2.5.26.
The set Y = X ∪ y(Uy)∗ with U = A∗ \ (X∗ ∪ A∗yA∗) constructed in the proof of

5.2 Maximal codes 207

Theorem 2.5.24 is a maximal code but it has infinite deciphering delay. Indeed, the
word y ′ = yadbby is in Y for any d ≥ 0, and has the proper prefix yad in Y d+1.

Theorem 5.2.9 Each rational code having deciphering delay d may be embedded
into a maximal one with the same delay d.

Let X be a nonempty code with deciphering delay d. If d = 0, X is prefix and the
result is easy: let L be the set of proper prefixes of words in X, and let L̄ = A∗ \ L be
its complement. Let X′ = L̄ \ L̄A+. Then Y = X ∪ X′ is easily seen to be a maximal
prefix code containing X. If X is rational, then Y is rational.

We assume in what follows that d ≥ 1. Let Q be the set of words having no prefix
in X and which are not a factor of any word in X. Now, let P be the set of words
in Q which are minimal for the prefix order: P = Q \ QA+. Note that P is a prefix
code. Moreover, words in P and X are incomparable for the prefix order.

We say that a pair (w,p) ∈ X∗ × P is good if w is the longest prefix in X∗ of wp.
Note that if (w,p) is good, then this pair is completely determined by the word wp.
Note also that any pair (1, p) for p ∈ P is good.

We say that the pair (w,p) ∈ X∗ × P is very good if (uw, p) is good for any
u ∈ X∗. Note that if (w,p) is very good, then so is (uw, p) for any u ∈ X∗.

We let S ′ be the set of words v of the form v = wp with (w,p) good but not very
good. Then we define S = P ∪ S ′. Note that P ∩ S ′ may be nonempty, and that any
element in S ′ \ P is of the form wp, with (w,p) good but not very good and w ∈ X+.
Moreover, let R be the set of words v of the form v = xwp with x ∈ X, w ∈ X∗,
(xw, p) very good, and wp ∈ S with (w,p) good. Then we define

Y = X ∪ RS∗. (5.2)

Proposition 5.2.10 Y is a code with deciphering delay d.

The proof relies on a series of lemmas.

Lemma 5.2.11 If (m,p) is good but not very good, there exists x ′ �= x ′′ in X, a
factorization p = p1p2 with p1 �= ε, and w, v ∈ X∗ such that x ′wmp = x ′′vp2.

Proof. Since (m,p) is not very good, we may find w′, v′ ∈ X∗ and a factorization
p = p1p2 with p1 �= ε such that w′mp = v′p2. Choose such a relation of shortest
length. Then w′ is nonempty, since (m,p) is good, and v′ is nonempty because
|p| > |p2|. Thus (see Figure 5.7) w′ = x ′w, v′ = x ′′v with w, v ∈ X∗, x ′, x ′′ ∈ X.
Necessarily, x ′ �= x ′′ by minimality. �

Lemma 5.2.12 The set S ∩ XdA∗ is empty.

Proof. Suppose that s = ut with s ∈ S, u ∈ Xd , and t ∈ A∗. Note that s is not in P

since it has prefix in X. Hence s = mp, with (m,p) good but not very good. We have
mp = ut and u cannot be longer than m, since (m,p) is good. Thus m = um′ with
m′ ∈ A∗. Next, we can find, by Lemma 5.2.11, two words x ′, x ′′ in X with x ′ �= x ′′,
a factorization p = p1p2 with p1 �= ε, and w, v ∈ X∗ such that x ′wmp = x ′′vp2.

208 5 Deciphering delay

x w m

p

x v

p2

Figure 5.7 A good pair which is not a very good pair.

Thus x ′′vp2 = x ′wum′p1p2 and it follows that x ′′v = x ′wum′p1, which contra-
dicts the fact that X has deciphering delay d, since v ∈ X∗ and u ∈ Xd . �

Lemma 5.2.13 Let u, v ∈ X∗, r = mp ∈ R with (m,p) very good.

(i) ur cannot be a prefix of v. In other words, X∗RA∗ ∩ X∗ is empty.
(ii) If v is a prefix of ur , not shorter than um, then v = um.

(iii) If um is a prefix of v and if ur and v are comparable for the prefix order, then
um = v.

Proof. (i) Suppose that urt = v for some t ∈ A∗. Then umpt = v. Since p is not a
factor of any word in X, we find, by decoding v ∈ X∗, that p = p1p2 with p1, p2 �= ε

and ump1 ∈ X∗, a contradiction with the fact that (m,p) is very good.
(ii) We have ump = ur = vt with t ∈ A∗. Since |um| ≤ |v|, v ends in p: there is
a factorization p = p1p2 such that ump1 = v. Since (m,p) is very good, we must
have p1 = ε and v = um.
(iii) Since ur and v are comparable, one of them is a prefix of the other. By (i), v is a
prefix of ur . Since um is a prefix of v, (ii) applies, and we find v = um. �

Lemma 5.2.14 Let v ∈ X∗ and let s = mp ∈ S with (m,p) good.

(i) s cannot be a prefix of v. In other words, SA∗ ∩ X∗ = ∅.
(ii) If v is a prefix of s, not shorter than m, then v = m.

(iii) If m is a prefix of v and s, v are comparable for the prefix order, then m = v.

Proof. (i) Suppose that v = st for some t ∈ A∗. Then v = mpt . Since p is not a factor
of any word in X, we have p = p1p2 with p1, p2 �= ε and v = mp1. This contradicts
the fact that (m,p) is good.
(ii) Suppose that mp = s = vt for some t ∈ A∗. Since |m| ≤ |v|, we obtain p = p1p2

with v = mp1. Since (m,p) is good, we must have p1 = 1 and v = m.
(iii) One of s and v is a prefix of the other. By (i), it must be v which is a prefix of s.
Since m is a prefix of v, (ii) applies and we find m = v. �

Lemma 5.2.15 The sets X∗R and S are prefix codes.

Proof. We first consider X∗R. Suppose that u, u′ ∈ X∗, r, r ′ ∈ R, and ur is a prefix of
u′r ′. We write r = mp, r ′ = m′p′, where (m,p), (m′, p′) are very good. Then ump

is a prefix of u′m′p′. Hence um is a prefix of u′m′ or conversely. Moreover, ur and
u′m′ are comparable, and so are u′r ′ and um (since all these four words are prefixes

5.2 Maximal codes 209

u′r ′). Hence, we find by Lemma 5.2.13 (iii) that um = u′m′. Thus p is a prefix of p′.
Hence p = p′, since P is a prefix code. This shows that ur = u′r ′ and thus X∗R is a
prefix code.

We have S = S ′ ∪ P . Since the words in P and X are incomparable for the prefix
order, since S ′ \ P is contained in X+P , and since P is itself prefix, we are reduced
to show that S ′ is prefix. Let u, u′ be in S ′, and set u = wp, u′ = w′p′, where (w,p),
(w′, p′) are good pairs. Suppose that wp ≤ w′p′. If w = w′, then p = p′ and the
pairs are equal. We assume w �= w′.

One has w < w′ because otherwise w′ < w and since w is a prefix of w′p′, the
pair (w′, p′) would not be good. In fact, wp ≤ w′ because otherwise w < w′ ≤ wp

and (w,p) would not be a good pair.
Thus, wp is a prefix of w′. Since p is not a factor of a word in X, there is a

factorization p = p1p2, with p1, p2 �= 1, such that wp1 is in X∗, which contradicts
the fact that (w,p) is a good pair. �

Lemma 5.2.16 We have

(i) SA∗ ∩ X∗RA∗ = ∅.
(ii) SA∗ ∩ Y ∗ = ∅.

Proof. Let s ∈ S, r ∈ R, and v ∈ X∗ be such that s and vr are comparable for
the prefix order. We cannot have s ∈ P since vr ∈ X+A∗. Write s = mp, r = m′p′

where (m,p) is good but not very good and (m′, p′) is very good. Then m and vm′

are comparable.
If vm′ is a prefix of m, since vr and m are comparable, Lemma 5.2.13 (iii) shows

that vm′ = m. If, on the contrary, m is a prefix of vm′, since s and vm′ are comparable,
Lemma 5.2.14 (iii) shows that m = vm′. So, we obtain that m = vm′ in both cases.
Since s = mp, vr = vm′p′, we find that p, p′ are comparable. Thus p = p′, since P

is a prefix code. We conclude that s = vr .
Since (vm′, p) = (m,p) is not very good, we reach a contradiction with the fact

that (m′, p′) = (m′, p) is very good.
(ii) By Lemma 5.2.14 (i), SA∗ ∩ X∗ = ∅. Since Y = X ∪ RS∗, we see that Y ∗ ⊂
X∗ ∪ X∗RA∗, so that (i) shows that SA∗ ∩ Y ∗ = ∅ �

Proof of Proposition 5.2.10. We only have to show that Y has deciphering delay d,
since it is then necessarily a code by Proposition 5.1.1. By contradiction, suppose that
Y does not have deciphering delay d. We may find words y1, . . . , yd+1, z1, . . . , zn in
Y , w ∈ A∗ such that

y1y2 · · · yd+1w = z1 · · · zn (5.3)

with y1 �= z1. Without loss of generality, we may assume that |w| < |zn| (otherwise,
zn is a suffix of w and we may shorten the relation by simplifying by zn).

Since X has deciphering delay d, not all of y1, . . . , yd+1, z1, . . . , zn are in X. Thus,
if the zj are all in X, then some yi is in Y \ X, hence in RA∗. Then y1 · · · yd+1w ∈
X∗RA∗ and z1 · · · zn ∈ X∗. This contradicts Lemma 5.2.13 (i). We conclude that
some zj is in Y \ X.

210 5 Deciphering delay

Suppose now that all yi are in X. By the length assumption on w, the word
y1 · · · yd+1 is in z1 · · · zn−1A

∗. If one of z1, . . . , zn−1 is in Y \ X, then y1 · · · yd+1 ∈
X∗ ∩ X∗RA∗, which contradicts Lemma 5.2.13 (i). Thus z1, . . . , zn−1 ∈ X and zn ∈
Y \ X. Since zn ∈ RS∗, we may write zn = xupm, with x ∈ X, u ∈ X∗, m ∈ S∗,
(xu, p) a very good pair, and up ∈ S, (u, p) good.

We have y1 · · · yd+1w = z1 · · · zn−1xupm. Therefore, z1 · · · zn−1xup and
y1 · · · yd+1 are comparable for the prefix order. If z1 · · · zn−1xu is a prefix
of y1 · · · yd+1, then by Lemma 5.2.13 (iii), they are equal. But y1 · · · yd+1 =
z1 · · · zn−1xu implies y1 = z1 since X is a code, a contradiction.

Thus y1 · · · yd+1 is a prefix of z1 · · · zn−1xu. Since y1 �= z1, and since X has deci-
phering delay d, we must have n = 1 and y1 = x. Thus y1 · · · yd+1 is a prefix of xu,
hence y2 · · · yd+1 is a prefix of u, hence of up ∈ S, which contradicts Lemma 5.2.12.

All this shows that some yi and some zj are not in X, hence are in RS∗. Take i

and j minimal. Then yi = ru, zj = r ′u′ with r, r ′ ∈ R. Moreover y1 · · · yi−1r and
z1 · · · zj−1r

′ are comparable by Equation (5.3). We deduce then from Lemma 5.2.15
that y1 · · · yi−1r = z1 · · · zj−1r

′. We may write r = xmp, r ′ = x ′m′p′, where (xm, p),
(x ′m′, p′) are very good pairs and (m,p), (m′, p′) are good and mp,m′p′ ∈ S. Then
the equation y1 · · · yi−1xmp = z1 · · · zj−1x

′m′p′ forces by the definition of a very
good pair p = p′ since y1, . . . , yi−1, z1, . . . , zj−1, x, x ′,m,m′ are all in X∗. Thus
y1 · · · yi−1xm = z1 · · · zj−1x

′m′. If i, j ≥ 2, then y1 = z1 since X is a code, a con-
tradiction.

It follows from this that we must have i = 1 or j = 1, that is y1 or z1 is in
RS∗. Suppose that i = 1 and j > 1. Then we obtain xm = z1 · · · zj−1x

′m′, which
shows that x = z1 and m = z2 · · · zj−1x

′m′. Note that m �= 1. We know that the pair
(x ′m′, p) is very good. Hence (z2 · · · zj−1x

′m′, p) is also very good. Now this pair is
equal to (m,p), which is not very good, a contradiction.

Thus, we cannot have i = 1 and j > 1. Similarly, we cannot have i > 1 and
j = 1. Thus, we have i = j = 1, that is y1, z1 ∈ RS∗. Since R and S are prefix codes
by Lemma 5.2.15, we have either y1 = rs1s2, z1 = rs1 or y1 = rs1, z1 = rs1s2 with
r ∈ R, s1, s2 ∈ S∗, s2 �= ε. In the first case, we have by Equation (5.3) and upon simpli-
fication by z1, z2 · · · zn = s2y2 · · · yd+1w which contradicts Lemma 5.2.16 (ii). Thus
the second case holds. Again by Equation (5.3), we have y2 · · · yd+1w = s2z1 · · · zn.
To avoid the same contradiction, we must have that y2 · · · yd+1 is a proper prefix of
s2. We deduce from Lemma 5.2.16 (i) that y2, . . . , yd+1 are all in X.

We may write s2 = ss3, where s ∈ S, s3 ∈ S∗. Since y2 is a prefix of s2 (because
d ≥ 1), y2 is a prefix of s or vice-versa. Hence s /∈ P and thus s ∈ S ′. We deduce
that we may write s = mp for some good but not very good pair (m,p), and by
Lemma 5.2.11, the existence of f, n ∈ X∗, x, x ′ ∈ X with x �= x ′ such that xnmp =
x ′f q with |q| < |p|.

We know that y2 · · · yd+1 is a proper prefix of s2 = mps3. Now, m is not
a prefix of y2 · · · yd+1 (otherwise, by Lemma 5.2.14 (iii), we deduce m =
y2 · · · yd+1 and mp ∈ S has a prefix in Xd , contradicting Lemma 5.2.12). Thus
y2 · · · yd+1 is a prefix of m. Let m = y2 · · · yd+1g. Then xny2 · · · yd+1gp = x ′f q

and because |q| < |p| and n, f ∈ X∗, this contradicts the fact that X has deciphering
delay d. �

5.2 Maximal codes 211

p1

p

y1 yi yj yn

Figure 5.8 A factorization of y1 · · · ynp with yi, . . . , yn ∈ X and yj · · · ynp1 ∈ X∗.

Proposition 5.2.17 The set Y is a complete code.

If X is dense, then Y is dense and therefore is complete. So, we may assume that
X is a thin code. The proof of Proposition 5.2.17 relies on the following lemma.

Lemma 5.2.18 If X is a thin code, then the set P ∪ (X \ XA+) is a maximal prefix
code.

Proof. Let Z = P ∪ (X \ XA+). The two terms of this union are prefix codes. More-
over, any word in P is incomparable (for the prefix order) with any word of X. Hence
Z is a prefix code (since 1 /∈ Z because X �= ∅ by assumption).

We show that Z is right complete. Let w ∈ A∗. Suppose that w is not comparable
with X. Choose some word u which is factor of no word in X (such a word exists
since X is thin). Then wu is not a factor of any word in X, and has no prefix in X.
Therefore, wu has a prefix in P and we conclude that wA∗ ∩ ZA∗ is nonempty. �

Proof of Proposition 5.2.17. Choose some word v ∈ Xd . We show that for any word
w, vwA∗ ∩ Y ∗ is nonempty (this will imply that Y is complete). By contradiction,
suppose that

vwA∗ ∩ Y ∗ = ∅. (5.4)

We may write vw = y1 · · · ynu with yi ∈ Y and with u of minimal length among all
such factorizations. Note that since v is in Xd ⊂ Y ∗, the word v is necessarily a prefix
of y1 · · · yn. By Lemma 5.2.18, we find p in P ∪ (X \ XA+) such that p and u are
comparable.

We claim that if p1 is a nonempty prefix of p, then y1 · · · ynp1 /∈ Y ∗. Indeed,
if y1 · · · ynp1 ∈ Y ∗, then since p and u are comparable, either p1 is a prefix of
u, contradicting the minimality of u, or u is a prefix of p1, and this contradicts
Equation (5.4).

By the claim, p is not in X, hence p is in P . Choose now i ∈ {1, . . . , n + 1}
minimal such that yi , yi+1, . . . , yn are in X (i = n + 1 means yn /∈ X). Then for any
j with i ≤ j ≤ n, the pair (yjyj+1 · · · yn, p) is good: indeed, if not, then p = p1p2

with p1 �= 1 and yj · · · ynp1 ∈ X∗, contradicting the claim (see Figure 5.8).
Take n + 1 ≥ j ≥ i minimum such that yjyj+1 · · · ynp ∈ S (j exists since p ∈ S).

If j > i, then yj−1yj · · · ynp ∈ R (indeed (yj−1yj · · · yn, p) is a very good pair).
Since R ⊂ Y , this contradicts the claim.

212 5 Deciphering delay

Hence j = i. If i > 1, then yi−1 is not in X, hence is in RS∗. Then yi−1yi · · · ynp ∈
RS∗ (since yi · · · ynp ∈ S), and we find a contradiction with the claim.

Thus we are reduced to i = 1 and y1 · · · ynp ∈ S. This implies that (y1 · · · yn, p)
is a good pair which is not very good because y1 · · · yn �= 1. Thus by Lemma 5.2.11,
we find x, x ′ in X distinct, such that xX∗y1 · · · ynp ∩ x ′X∗p2 is not empty, for some
factorization p = p1p2, p1 �= ε. Since v is a prefix of y1 · · · yn, this contradicts the
fact that X has delay d. �

The above proof implies the following property: if a thin code X ⊂ A+ with
deciphering delay d is complete, then for any x ∈ Xd and u ∈ A∗ there is a v ∈ A∗

such that xuv ∈ X∗. Indeed, a thin complete code is maximal by Theorem 2.5.13 and
thus X = Y . Note that this property is also a consequence of Proposition 5.2.3.

Proposition 5.2.19 If the code X is rational, then Y is a rational code.

Proof. Since X is rational, the set F (X) of its factors is rational. Consequently,
Q = A∗ \ (F (X) ∪ XA∗) is rational. Since, P = Q \ QA+, the set P is also rational.

Let c be a new letter not in A and let π : (A ∪ c)∗ → A∗ be the projection that
erases c. For u, p ∈ A∗, we say that the word ucp is good (resp. very good) if so is
the pair (u, p). We denote by S0 (resp S1) the sets of these words.

Let L = (π−1(X∗) ∩ A∗cA+)A∗. Thus L is the set of words starting with a word
z = ucw with w �= ε and uw ∈ X∗. The set L is rational. We claim that S0 = X∗cP \
L, which implies that S0 is rational.

In order to prove the claim, let ucp ∈ S0. Then evidently u ∈ X∗ and p ∈ P .
Moreover, suppose ucp ∈ L, then there is a factorization p = ww′ such that w �= ε

and uw ∈ X∗, contradicting the fact that (u, p) is good. Conversely, if u ∈ X∗, p ∈ P ,
and ucp /∈ L, there is no prefix of up in X∗ strictly longer than u. Thus (u, p) is good
and ucp ∈ S0.

Similarly ucp ∈ S1 if and only if u ∈ X∗, p ∈ P , and X∗ucp ∩ L = ∅. This implies
that S1 = X∗cP \ (X∗)−1L is rational.

Let R0 be the set of words of the form xucp, with x ∈ X, u ∈ X∗, which are
very good and such that u = 1 or ucp is good but not very good. In other words,
R0 = S1 ∩ X(P ∪ (S0 \ S1)). This shows that R0 is rational. Clearly R = π (R0).
Recall that S ′ is the set of words of the form up with (u, p) good but not very good.
Consequently S ′ = π (S0 \ S1).

This shows that S ′ and R are rational. Thus S = P ∪ S ′ and Y = X ∪ RS∗ are
rational. �

Proof of Theorem 5.2.9. Let X be a rational code with deciphering delay d. Then
the code Y defined by Equation 5.2 has delay d by Proposition 5.2.10. By Proposi-
tions 5.2.17 and 5.2.19 it is a rational complete code. Since a rational code is thin by
Proposition 2.5.20, and since a thin and complete code is maximal by Theorem 2.5.13,
the conclusion follows. �

Note that if X is thin, then Y also is thin (Exercise 5.1.10). Thus, any thin code
with deciphering delay d is contained in a maximal one with the same delay.

5.3 Weakly prefix codes 213

1 2 3 4 5

a

a

b
b b

a, b

a, b

b

Figure 5.9 An automaton recognizing Y ∗.

x

x y

u

Figure 5.10 A forbidden configuration for weakly prefix codes.

Example 5.2.20 The finite code X = {a, ab} has delay 1. We have P = {ba, bb}.
The good pairs are those of the form (x, bb) and (x, ba) with x ∈ X∗ab ∪ 1. They
are also very good except when x = 1. Thus S = P and R = {ab3, ab2a}. Finally
Y = {a, ab} ∪ {ab3, ab2a}{bb, ba}∗ is a complete code with deciphering delay 1
containing X. An automaton recognizing Y ∗ is represented on Figure 5.9.

Observe that there is a much simpler complete code with delay 1 containing X,
namely the code ab∗. It would be interesting to have a completion procedure which
gives this code directly. We will see in the next section a procedure which gives this
code, but for a different definition of the delay (see Example 5.3.9).

5.3 Weakly prefix codes

There is another definition, close to the previous one where one counts the delay in
letters instead of words of the code. A set X ⊂ A+ is said to be weakly prefix if there
exists an integer d ≥ 0 such that the following condition holds: If xu is a prefix of
x ′y ′ with x, x ′ ∈ X, u a prefix of a word in X∗, and y ′ ∈ X∗, then |u| ≥ d implies
x = x ′. If this holds, we also say that X has literal deciphering delay d.

The least integer d such that the implication above holds is called the minimal literal
deciphering delay. If no such integer exists, the set has infinite literal deciphering
delay.

Proposition 5.3.1 Let X be a set with minimal verbal deciphering delay d and
minimal literal deciphering delay e. Then

d ≤ e ≤ d max{|x| | x ∈ X}.
Proof. Indeed, assume that X has literal deciphering delay e, and consider x, x ′ ∈ X,
y ∈ Xe, and y ′ ∈ X∗ such that xy ≤ x ′y ′. Since |y| ≥ e, one has x = x ′, showing
that X has verbal deciphering delay e.

214 5 Deciphering delay

Conversely, assume that X has verbal deciphering delay d. Let x, x ′ ∈ X and u a
prefix of a word in X∗ and y ′ ∈ X∗ such that xu ≤ x ′y ′ with |u| ≥ d max{|x| | x ∈ X}.
By the condition on the length, there is a word y ∈ Xd which is a prefix of u. Thus
xy ≤ xu ≤ x ′y ′. Since X has verbal deciphering delay d, we obtain x = x ′. �

Thus a finite set has simultaneously finite delay for both notions, but the example
of X = b ∪ ba∗c ∪ a∗d shows that the definitions differ when X is infinite. Indeed
this set X has verbal deciphering delay 1, but has infinite literal deciphering delay
since for all n, the condition of the definition is not satisfied with x = b, u = an,
x ′ = banc, y ′ = 1.

Proposition 5.3.2 A weakly prefix set is a code.

Proof. Let X have literal deciphering delay d. By Proposition 5.3.1, it has verbal
deciphering delay d. By Proposition 5.1.1, the set X is a code. �

An automaton A is said to have delay d ≥ 0 if for any pair of paths

p
a−→ q

z−→ r, p
a−→ q ′ z−→ r ′,

if |z| = d then q = q ′. Thus a deterministic automaton has delay 0. An automaton
with finite delay is also called weakly deterministic. Observe that if A has delay d,
then for any word w, and for any pair of paths

p
w−→ q

z−→ r, p
w−→ q ′ z−→ r ′,

with |z| = d, the paths p
w−→ q and p

w−→ q ′ are equal.

Proposition 5.3.3 A strongly connected weakly deterministic automaton is unam-
biguous.

Proof. Indeed, let c : p
w→ q and c′ : p

w→ q be two paths from p to q with the same
label w. Since the automaton is strongly connected, there exists, for any d ≥ 0, a path
q

z→ r with |z| = d. It follows that c = c′. �

The following result proves that a code X is weakly prefix if and only if X∗ is
recognized by some weakly deterministic automaton A = (Q, 1, 1).

Proposition 5.3.4 Let X be a code and A = (Q, 1, 1) be an automaton with delay d

recognizing X∗. Then X has literal deciphering delay d. Conversely, if X has finite
literal deciphering delay, the automaton can be chosen to have the same delay as X.

Proof. Let us first suppose that X∗ is recognized by A = (Q, 1, 1) with delay d. We
show that X has delay d. Let x, x ′ ∈ X, let u ∈ A∗ be a prefix of a word in X∗ with
|u| = d and y ′ ∈ X∗ such that xu ≤ x ′y ′. Since A recognizes X∗, there are paths

c : 1
x→ 1

u→ p and c′ : 1
x ′→ 1

y ′
→ 1. Since xu is a prefix of x ′y ′, the path c′ has a

decomposition c′ : 1
x→ q

u→ p′ w→ 1 for some states q, p′ and some word w. Since
|u| = d, the two paths c and c′ have the same prefix of length |x|, and therefore q = 1.

5.3 Weakly prefix codes 215

ω pw

ω

q

a

a

r

r

z

z ωv

Figure 5.11 Two paths in the automaton A∗.

Assume that x is a prefix of x ′. Then x ′ = xz for some z ∈ A∗, and the path 1
x ′→ 1

decomposes into 1
x→ 1

z→ 1. This shows that z ∈ X∗ and thus z = 1. Thus x = x ′.
The other case is handled symmetrically.

Conversely, let X have literal delay d and let A = (Q, i, T) be a trim deterministic
automaton recognizing X and let A∗ = (Q ∪ ω,ω,ω) be the star of the automaton
A. We show that A∗ has delay d. Assume that

p
a−→ q

z−→ r, p
a−→ q ′ z−→ r ′

with |z| = d. Then, by construction of A∗ one of q, q ′ is ω. Let for example q = ω.
Since A∗ is trim, there is a path ω

w−→ p and we may suppose that this path does
not pass by state ω inbetween. We also have a path r ′

v−→ ω (see Figure 5.11).
Then wa ∈ X and wazv ∈ X∗. Let x = wa and let wazv = x ′y ′ with x ′ ∈ X and
y ′ ∈ X∗. Since X has literal deciphering delay d, we have x = x ′. Consequently

y = zv. Thus there are in A∗ the paths ω
x ′−→ q ′ y ′

−→ ω and ω
x ′−→ ω

y ′
−→ ω. Since

A∗ is unambiguous, this implies q ′ = ω. Thus A∗ has delay d. �

We may observe that the automaton A∗ above can be used to check whether a code
is weakly prefix, and to compute its minimal literal deciphering delay.

We now turn to maximal weakly prefix codes. The following result is the counter-
part of Proposition 5.2.3.

Proposition 5.3.5 Let X be a maximal code with literal deciphering delay d. Then
any right completable word u ∈ A∗ of length d is strongly right completable.

Proof. Let v ∈ A∗. By Proposition 1.3.6 there exists a word w ∈ A∗ such that uvw is
unbordered. By Proposition 5.2.1, there exist x ∈ X∗ and t ∈ A∗ such that xuvwt ∈
X∗. Since X has literal deciphering delay d, and since the word u is right completable,
this word is simplifying. Thus uvwt ∈ X∗, showing that uv is right completable. �

An automaton A is said to be weakly complete or d-complete if for any path
p

w−→ q with |w| = d, there is a path p
wa−→ q ′ for each letter a ∈ A. Observe that

this path is not required to start with the path p
w−→ q.

If A is d-complete, then by induction for any path p
w−→ q with |w| = d, and for

any word x, there is a path p
wx−→ q ′.

Proposition 5.3.6 Let X be a thin code with literal deciphering delay d and let
A = (Q, 1, 1) be a trim automaton with delay d recognizing X∗. The code X is
complete if and only if A is d-complete.

216 5 Deciphering delay

1

p

p

u

u

qw

q
wa

Figure 5.12 Showing that A is d-complete.

Proof. Suppose first that X is complete. Let p
w−→ q be a path in A with |w| = d

and let a ∈ A be a letter. Since A is trim, there is a path 1
u−→ p. Since X is thin

and complete, it is a maximal code by Theorem 2.5.13. By Proposition 5.3.5, the
word uwa is right completable. Thus there exists a path 1

u−→ p′ wa−→ q ′. Since A has
delay d and since |w| = d, we have p = p′ (see Figure 5.12). This shows that A is
d-complete.

Conversely, let x ∈ X+ be of length at least d. Then, for any w ∈ A∗, since A
is d-complete, there is a path 1

xw−→ p. This implies that X is complete since A is
trim. �

We can use the previous result to give another proof of Theorem 5.2.4. Let X be a
finite maximal code. We argue by contradiction and suppose that its verbal delay is
strictly positive. Since X is finite, its literal delay d is also finite and strictly positive.
By Proposition 5.3.4, there exists a finite d-complete automaton A = (Q, 1, 1) with
minimal delay d recognizing X∗.

We first show that we may suppose the automaton unfolded in the sense that all
states in A except the initial state 1 have indegree 1. This property can be obtained
by applying the following state splitting method: Let q �= 1 be a state with indegree
r > 1. This state is split into r copies, each of which with indegree 1 and with the
same outgoing edges. Since X is finite, all cycles in A contain state 1. Consequently,
the state splitting can be repeated only a finite number of times. Clearly, state splitting
preserves the delay and d-completeness.

Assume now that A is unfolded and has the minimal possible number of states.
Since A has minimal delay d, there is a state q such that there are edges (q, a, r) and
(q, a, r ′) with r �= r ′ and paths labeled v ∈ Ad−1 going out of r, r ′. Let us prove that
r, r ′ �= 1. Arguing by contradiction, suppose that r ′ = 1. Let u be a word of maximal
length such that there is a path r

vu−→ 1, decomposing as r
v−→ s

u−→ 1 with a simple
path s

u−→ 1. Observe that vu is nonempty since otherwise r = 1 = r ′. Let b be the
first letter of uv. Note that no path exists labeled vb and going out of 1, since A
has minimal delay d (otherwise, we would have two paths q

a→ 1
vb→ and q

a→ r
vb→

labeled avb starting from q with different initial edges). Consider now the last letter
c of vu and the state t such that (t, c, 1) is the last edge of the path r

vu−→ 1. Since
A is d-complete, there exists a path labeled cvb going out of state t . Let (t, c, t ′) be
the first edge of this path (see Figure 5.13 which corresponds to the case u �= 1 and
where u = u′c). We have t ′ �= 1 since there is no path labeled vb going out of 1. Let

5.3 Weakly prefix codes 217

q

1

a

r

a

t

sv

u

c

t
c

v

vb

Figure 5.13 Showing that r ′ �= 1.

w �= 1 be a word such that there is a simple path t ′
w−→ 1. Then there is a simple

path s
uw−→ 1. This establishes the contradiction since uw is strictly longer than u.

Let A′ = (Q′, 1, 1) be the automaton obtained by merging r and r ′. Since r, r ′ �= 1
and since they both have indegree 1 and the same label on the incoming edge, the
automaton A′ also recognizes X∗ and is unfolded. Since it has strictly less states than
A, we obtain the final contradiction.

We now prove the following result which is a variant of Theorem 5.2.9. The proof
uses automata and it is illustrated in Example 5.3.10.

Theorem 5.3.7 Each weakly prefix rational code can be embedded into a maximal
one with the same delay.

We shall use the following lemma. In the proof, we use the notation q
u−→ to

denote some path starting in state q, and labeled with the word u.

Lemma 5.3.8 Let A = (Q, 1, 1) be a trim automaton with delay d. One can obtain,
by adding finitely many states and edges to A, a trim automaton B = (Q′, 1, 1) which
has still delay d and which is d-complete.

Proof. In the case d = 0 we simply add in B an edge (q, a, 1) for all states q and
letters a ∈ A, for which there is no edge leaving q and labeled a in A. The proof for
d ≥ 1 consists in several steps.

1. We start with the definition of a new automaton B0. We add the set Q′ of states
denoted q(w), for w ∈ A∗, with 1 ≤ |w| ≤ d, and set q(1) = 1. We add the edges:
q(w)

a→ q(w′), for w = aw′, a ∈ A.
Denote by B0 = (Q ∪ Q′, 1, 1) this new automaton. Clearly, B0 also has delay d.

Remark, for future use in the final step below, that each state of Q′ is coaccessible,
since for each q(w), we have a path q(w)

w→ 1.
It will be convenient to call future of a state q the set of words w of length ≤ d

such that there exists some path q
w−→. Note that in B0, the future of a state q(w)

with |w| = d is the set of prefixes of w.
2. We construct now a sequence of automata B1,B2, . . . which all have the same

states as B0. It will be clear that this sequence is finite. We will show that all Bi have
delay d. Let Bn be its last element. This will be shown to be d-complete. If Bi is
constructed and is not d-complete, then for some word u ∈ Ad , some letter b and

218 5 Deciphering delay

q(w)

1

q

w

u

a

Figure 5.14 The new edge (q, a, q(w)) is added in Bi+1 (with ub = aw, because there is no

edge q
ub→).

some state q of Bi , a path q
u−→ exists, but no path q

ub−→. Then, writing ub = aw,
with a ∈ A, we add to Bi the edge q

a−→ q(w), and this gives the automaton Bi+1

(see Figure 5.14).
3. We now show a technical property: for each i ≥ 0 and for each state p, the future

of p in Bi is equal to the future of p in B0. This implies that for any word m ∈ Ad ,
the future in every Bi of q(m) is the set of prefixes of m.

It suffices to prove that if there is a path p
v−→ in Bi+1, with |v| ≤ d, then there

exists already a path p
v−→ in Bi .

For this, we may suppose that the path p
v→ in Bi+1 involves the new edge

q
a→ q(w) created in step 2, where u is such that ub = aw, and q

u→ in Bi . Thus, we
may suppose that this path has the form p

v1→ q
a→ q(w)

v2→ p′ with v = v1av2, where
the last segment q(w)

v2→ p′ is in Bi . Now |v2| < d, thus the induction hypothesis
on the future of q(w) implies that v2 is a proper prefix of w. Thus, by construction
of the new edge, there exists in Bi a path q

av2→, since av2 is a prefix of u. Hence,
we get in Bi+1 a path p

v→ with a smaller number of occurrences of the new edge.
Consequently, a path p

v→ exists in Bi+1, with no occurrence of the new edge, and
this path is therefore in Bi , proving the induction step.

4. Suppose thatBi has delay d. We prove thatBi+1 has the same delay. Suppose that
for some states p, p1, p2, some letter c and some word v ∈ Ad , one has in Bi+1 the
two paths p

c→ p1
v→ and p

c→ p2
v→. Because of 3, some paths p1

v→ and p2
v→

exist in Bi . If the edges p
c→ p1 and p

c→ p2 are in Bi , then p1 = p2 because Bi has
delay d. Otherwise, p1 �= p2, and exactly one of the two edges p

c→ p1 or p
c→ p2,

say p
c→ p1, is the new edge q

a→ q(w) and the other is in Bi . Then p = q, c = a,
p1 = q(w), so that v = w by (2) because v has length d. Thus, considering the other
edge (which is in Bi), we see that there exists a path q

aw→ in Bi . This contradicts the
assumption that led to the construction in step 2.

5. Let B′ = (Q ∪ Q′′, 1, 1) be the trim part of B = (Q ∪ Q′, 1, 1). It has still delay
d and we show that it is still d-complete. Assume there is a path p

u→ in B′, and let a

be a letter. SinceB is d-complete, there is a path p
ua→ inB. Since p is accessible, each

state on this path is accessible. Since all states in Q′ are coaccessible, all states on
the path are both accessible and coaccessible. Thus this path is in B′. This completes
the proof. �

Proof of Theorem 5.3.7. Let X be a nonempty rational code with literal deciphering
delay d. By Proposition 5.3.4, there exists an unambiguous automaton A = (Q, 1, 1)
with same delay d which recognizes X∗. We may suppose that A is trim. By

5.4 Exercises 219

1 2

a

a

b

3 1 2

a

a

b

b

b

b

Figure 5.15 Completion of X = {a, ab}.

1

2

3

a

a

a

b

1

2

3

a a

a

b

aa

ba

ab

bb

a

b

a

b

a

b

a

b

Figure 5.16 The automata A and B0.

Lemma 5.3.8, we may embed A into a trim automaton B = (Q′, 1, 1) which has
delay d and which is d-complete.

Since B is a strongly connected automaton with finite delay, it is unambiguous,
as stated in Proposition 5.3.3. Thus the set recognized by B′ is of the form Y ∗,
for some rational code Y containing X. Moreover, Y has deciphering delay d, by
Proposition 5.3.4, and it is complete by Proposition 5.3.6. Thus Y is a maximal
rational code with deciphering delay d containing X. �

Example 5.3.9 Let X = {a, ab} as in Example 5.2.20. Using Proposition 5.3.4, we
obtain the automaton on the left of Figure 5.15. Applying the method of Theorem 5.3.7
to this automaton we obtain the automaton on the right of Figure 5.15. This gives the
complete code Y = ab∗ containing X.

Example 5.3.10 Let A be the automaton represented in Figure 5.16 on the left.
It has delay 2 and recognizes {a, aab}∗ which is a code with literal deciphering
delay 2.

The automaton B0 is represented in Figure 5.16 on the right (we denote the new
states w instead of q(w) for simplicity). The final automaton B is represented in
Figure 5.17 after removal of the states which are not accessible.

5.4 Exercises

Section 5.1

5.1.1 Show that the deciphering delay of a code X is infinite if and only if there is
an infinite path in the graph GX defined in 2.7 starting in a vertex in X. If X is finite,

220 5 Deciphering delay

1

2

3

a a

a

bab

bb

b

a

b

b

a

b

b

b
a

Figure 5.17 The automaton B.

this happens if and only if there is a cycle in GX that is accessible from some vertex
in X.

5.1.2 (a) Show that a code X has deciphering delay d if any disjoint factorizations
x1 · · · xnp = y1 · · · ym, where x1, . . . , xn, y1, . . . ym are words in X and p is a prefix
of a word in X, satisfy n ≤ d.

(b) Let e1 · · · en be the sequence of edges of a path e from s to t in the prefix graph
of a code X. The occurrence ei is called even (odd) if the number of crossing edges
among e1, . . . , ei is even (odd). Show that in the two factorizations

(i) sy1 · · · y�t = x1 · · · xk or (ii) sy1 · · · y� = x1 · · · xkt ,

the number c of crossing edges is odd or even, according to (i) or (ii). Show next that
� is the number of even edges and k is the number of odd edges.

(c) Describe a linear time algorithm for computing the deciphering delay, assuming
that there is no cycle in the prefix graph.

5.1.3 Let Y and Z be composable codes with finite deciphering delay d(Y) and
d(Z). Show that X = Y ◦ Z has finite delay d(X) ≤ d(Y) + d(Z). (Hint: Show that
for y ∈ Xd(Y), z ∈ Xd(Z), the word yz is simplifying for X.)

5.1.4 Let X = {x, y} be a two-element code. Show that X has finite deciphering
delay. (Hint: Make use of an induction on |x| + |y|, and apply the result of Exercise
5.1.3.)

5.1.5 Let X ⊂ A∗ be a finite code.
(a) Show that there exists a smallest submonoid M containing X∗ such that M is

generated by a code with finite deciphering delay.
(b) Let Y ⊂ A∗ be the base of the submonoid whose existence is asserted in (a).

Show by a proof analogous to that of Proposition 2.2.16 that

Y ⊂ X(Y ∗)−1 ∩ (Y ∗)−1X.

5.4 Exercises 221

Deduce from this that if X does not have finite deciphering delay,

Card(Y) ≤ Card(X) − 1.

5.1.6 Show that a code X has verbal deciphering delay d if and only if the code Xd

has verbal deciphering delay 1.

5.1.7 Let X ⊂ A+ be a code. Show that if both the sets E(X) of strongly right
completable words and S(X) of simplifying words are nonempty, then they are equal.

5.1.8 Let X ⊂ A+ be a code. Let S(X) be the set of simplifying words and let E(X)
be the set of strongly right completable words. Let U = S(X) \ S(X)A+. A strict
right context of a word w ∈ A∗ is a word v ∈ A∗ such that there exist x1, . . . , xn ∈ X

with wv = x1x2 · · · xn and v is a proper suffix of xn. The set of strict right contexts
of w is denoted by Cr (w).

Show that if S(X) = E(X) �= ∅ then, for all w ∈ A∗, we have

1. The set Cr (w)U is prefix.
2. The product Cr (w)U is unambiguous.
3. If w ∈ S(X), then Cr (w)U is maximal prefix.

5.1.9 Use Exercises 5.1.7, 5.1.8 and 3.4.2 to give a proof of Theorem 5.2.4.

5.1.10 Show that if X is a thin code with delay d, then the code Y defined by
Equation (5.2) is thin. (Hint: Prove that if p ∈ P , a ∈ A, then pa �∈ P . Then, prove
successively that S, R, S∗ are thin.)

Section 5.3

5.3.1 In this exercise, we call right delay of an automaton what is called delay in the
text, and we call left delay the delay of the reversal of the automaton, obtained by
reversing the edges. Similarly, we say that an automaton is is right d-complete if it is
d-complete, and left d-complete if its reversal is d-complete.

We say that an automaton has bidelay (d, d ′) if it has left delay d and right delay d ′.
In the same way, we say that an automaton is (d, d ′)-complete if it is left d-complete
and right d ′-complete. We introduce a new notion to work with automata with finite
bidelay.

An extended automaton with delay (d, d ′) is an automaton on a set of states Q

where the set E of edges, in addition to ordinary edges, includes boundary edges.
A forward boundary edge has an origin q ∈ Q and a label a ∈ A but no end. A
backward boundary edge has a label a ∈ A and an end q ∈ Q but no origin. We
extend the notion of a path by admitting that a path may possibly begin with a
backward boundary edge and end with a forward boundary edge. We denote by F (p)
the set of edges starting at p and by P (p) the set of edges ending at p. We denote by
λ(e) the label of the edge e.

Each state q of an extended automaton has attached to it a pair (Uq, Vq) where
Uq is a set of words of length d and Vq is a set of words of length d ′. Similarly,

222 5 Deciphering delay

each edge e has such a pair (Ue, Ve) ⊂ Ad × Ad ′
. These are subject to the following

compatibility conditions.

1. For each state p the family of sets λ(e)Ve for e ∈ F (p) forms a partition of the set
VpA.

2. For each state p and each edge e ∈ F (p), Up = Ue.
3. For each state q, the family of sets Ueλ(e) for e ∈ P (q), forms a partition of the

set AUq .
4. For each state q and each edge e ∈ P (q), Vq = Ve.

Show that the two following objects coincide:

(i) An extended automaton with delay (d, d ′) without boundary edges.
(ii) A (d, d ′)-complete automaton with bidelay (d, d ′) with Up (resp. Vp) equal for

each state p to the set of labels of paths of length d (resp. d ′) ending at p (resp.
starting at p).

(Hint: Show by induction on k ≥ 0 that, in an extended automaton with delay (d, d ′)
without boundary edges, for 0 ≤ k ≤ d ′ + 1, the set of labels of paths of length ≤ k

starting at p is the set of prefixes of VpA of length ≤ k.)

5.3.2 Define, for a state p of an extended automaton, the noncommutative polynomial

∂(p) = UpVpA − AUpVp,

and for an edge e

∂(e) = εUeλ(e)Ve,

with ε = 1 if e is a forward boundary edge, ε = −1 if e is a backward boundary edge,
and ε = 0 otherwise. Show that∑

p∈Q

∂(p) =
∑
e∈E

∂(e).

Derive that the sum of ∂(e) for all boundary edges, called the balance of the automaton,
belongs to the latticeL generated by the polynomials fw = wA − Aw for w ∈ Ad+d ′

.

5.3.3 Show that the following labeled graphs satisfy the definition of an extended
automaton.

1. The automaton A0 with set of states Q = Ad+d ′
, with Uuv = u and Vuv = v for

u ∈ Ad , v ∈ Ad ′
. The set of edges is Ad+d ′+1 with Uuav = u, λ(uav) = a and

Vuav = v. Moreover, F (uv) = uvA and P (uv) = Auv.
2. The automaton A−x obtained from A0 by deleting the single state x. Show that in

A−x , ∑
e∈E

∂(e) = −fx.

5.5 Notes 223

1

2

3

a

a

b

a

1

2

3

4a

a

b

a

a b

b

b

Figure 5.18 Automata with bidelay (1, 1).

3. The automaton Ax obtained from A0 by deleting all edges except those incident
to state x. Show that in Ax , ∑

e∈E

∂(e) = fx.

5.3.4 An edge e of an extended automaton is said to be simple if Ue and Ve have
just one element. Show that, by adding finitely many states and edges, any extended
automaton can be transformed in such a way that all boundary edges are simple.

5.3.5 Show that any extended automaton A can be embedded into an extended
automaton B having no boundary edge in the sense that every ordinary edge of A is
an edge of B.
(Hint: First assume that all boundary edges are simple. Write

∑
e∈E ∂(e) =∑ bxfx

where the coefficients bx are integers. If bx > 0 add bx copies of A−x , and if bx < 0,
add bx copies of Ax . The resulting extended automaton is such that

∑
∂(e) = 0.

Finally merge each forward boundary edge e with a backward boundary edge e′ such
that ∂(e) + ∂(e′) = 0.)

5.3.6 The aim of this exercise is to show that any rational code with finite literal
delay in both directions is included in a maximal one.

Let A = (Q, 1, 1) be an automaton with bidelay (d, d ′). We use a series of steps
to transform A into an automaton with the same bidelay which is (d, d ′)-complete.
Show that if A is an automaton with bidelay (d, d ′), one may first define the pairs
(Uq, Vq) and then add boundary edges to obtain an extended automaton.

Conclude, using Exercise 5.3.5 that any code with literal bidelay (d, d ′) can be
embedded into a maximal one with the same literal bidelay.

5.3.7 Consider the automaton with bidelay (1, 1) of Figure 5.18 on the left. Show that
the (1, 1)-complete automaton constructed as in Exercise 5.3.6 is the one represented
in Figure 5.18 on the right.

5.5 Notes

The notion of deciphering delay appears at the very beginning of the theory of
codes (Gilbert and Moore (1959); Levenshtein (1964)). Theorem 5.2.4 is due to

224 5 Deciphering delay

Schützenberger (1966). It was conjectured in Gilbert and Moore (1959). An incom-
plete proof appears in Markov (1962). A proof of a result which is more general than
Theorem 5.2.4 has been given in Schützenberger (1966). The proof of Theorem 5.2.4
presented here is due to Véronique Bruyère (see Bruyère (1992) or Chapter 6 of
Lothaire (2002)). The original proof of Schützenberger is given in Exercise 5.1.9.
Proposition 5.1.6 is from Choffrut (1979).

Theorem 5.2.9 is due to Bruyère et al. (1990). We have followed their proof except
for Proposition 5.2.19.

The notion of automaton with finite delay is known in early automata theory as
information lossless machines of finite order (Kohavi (1978)). It is related with the
notion of a right closing map in symbolic dynamics (see Lind and Marcus (1995)).
The term was introduced by Kitchens (1981). Theorem 5.3.7 is due to Bruyère (1992).

The construction of Lemma 5.3.8 is from Ashley et al. (1993). We have followed
the presentation of Bruyère and Latteux (1996), and Example 5.3.10 is also taken
from here.

Exercise 5.1.5 is from Berstel et al. (1979). An analogous result is proved in
Salomaa (1981). Exercises 5.1.6 is from Nivat (1966). Exercise 5.1.7 is from
Schützenberger (1966). Exercises 5.3.1 to 5.3.7 are from Ashley et al. (1993), in
which extended automata are introduced and called molecules. This name is used
metaphorically and refers to the possibility to use the boundary edges as bindings.

Let us mention the following result which has not been reported here: For a three-
element code X = {x, y, z}, there exists at most one right infinite word with two
distinct X-factorizations (Karhumaki (1984)).

6

Bifix codes

The object of this chapter is to describe the structure of maximal bifix codes. This
family of codes has quite remarkable properties and can be described in a rather
satisfactory manner.

As in the rest of this book, we will work here within the family of thin codes. As
we will see, this family contains all the usual examples, and most of the fundamental
properties extend to this family when they hold in the simple (that is, finite or
recognizable) case.

To each thin maximal bifix code, two basic parameters will be associated: its degree
and its kernel. The degree is a positive integer which is, as we will see in Chapter 9,
the degree of a permutation group associated with the code. The kernel is the set of
codewords which are proper factors of some codeword. We shall prove that these two
parameters characterize a thin maximal bifix code.

In the first section, we introduce the notion of a parse of a word with respect to a
bifix code. It allows us to define an integer-valued function called the indicator of a
bifix code. This function will be quite useful in this and later chapters.

In the second section, we give a series of equivalent conditions for a thin code
to be maximal bifix. The fact that thin maximal bifix codes are extremal objects is
reflected in the observation that a subset of their properties suffices to characterize
them completely. We also give a transformation (called internal transformation)
which preserves the family of maximal bifix codes.

Section 6.3 contains the definition of the degree of a thin maximal bifix code.
It is defined as the number of interpretations of a word which is not a factor of a
codeword. This number is independent of the word chosen. This fact will be used
to prove most of the fundamental properties of bifix codes. We will prove that the
degree is invariant under internal transformation.

In the fourth section, a construction of the thin maximal bifix code having a given
degree and kernel is described. We also describe the derived code of a thin maximal
bifix code. It is a code whose degree is one less than the degree of the original code.
Both constructions are consequences of a fundamental result (Theorem 6.4.3) which
characterizes those sets of words which can be completed in a finite maximal bifix
code without modification of the kernel.

Section 6.5 is devoted to the study of finite maximal bifix codes. It is shown that
for a fixed degree and a fixed size of the alphabet, there exists only a finite number

226 6 Bifix codes

x1 x2 xi−1 xi xi+1 xN−1 xN

Figure 6.1 The decoding of a block of N codewords: x1 · · · xi−1 is correctly decoded from left
to right, the word xi+1 · · · xN is correctly decoded from right to left. The error is located at xi .

of such codes. Further it is proved that, on this finite set, the internal transformation
acts transitively.

In the last section, we prove that any rational bifix code is contained in a maximal
rational bifix code (Theorem 6.6.1).

6.1 Basic properties

A bifix code is a subset X of A+ which is both prefix and suffix. In other words, we
have

XA+ ∩ X = ∅, A+X ∩ X = ∅. (6.1)

Example 6.1.1 Any code X composed of words of the same length is bifix.

Example 6.1.2 Let A be an alphabet containing two distinct letters a, b. Any set
X = a ∪ bYb with Y ⊂ (A \ b)∗ is bifix.

Example 6.1.3 If X, Y are bifix codes, then XY is a bifix code.

Example 6.1.4 Let A = {a, b}. By inspection, the set

X = {a3, a2ba, a2b2, ab, ba2, baba, bab2, b2a, b3}
appears to be a bifix code. It will appear at several places later.

The use of bifix codes for transmissions is related to the possibility of limiting the
consequences of errors occurring in the transmission using a bidirectional decoding
scheme as follows. Assume that we use a binary bifix code to transmit data. Assume
also that for the transmission, messages are grouped into blocks of N source symbols,
encoded as N codewords.

Suppose that in a block x1 · · · xN of N codewords, an error has occurred during
transmission that makes it impossible to decode xi . The block x1 · · · xN is first decoded
by using an ordinary left to right sequential decoding and the codewords x1 up to xi−1

are correctly decoded. However, it is impossible to decode xi . Then a new decoding
process is started, this time from right to left. If at most one error has occurred, then
again the codewords from xN down to xi+1 are decoded correctly. Thus, in a block of
N encoded source symbols, the incorrect codeword will be identified. These codes
are used for the transmission of images, see Examples 6.2.5 and 6.2.6.

Let X be a subset of A+. An X-parse (or simply a parse) of a word w ∈ A∗ is a
triple (v, x, u) (see Figure 6.2) such that w = vxu and

v ∈ A∗ \ A∗X, x ∈ X∗, u ∈ A∗ \ XA∗.

6.1 Basic properties 227

x

uv
w

Figure 6.2 An X-parse (v, x, u) of w.

w :

y z

v u

sr

Figure 6.3 A parse of w passing through the point (r, s).

An interpretation of w ∈ A∗ is a triple (v, x, u) such that w = vxu and

v ∈ A−X, x ∈ X∗, u ∈ XA−.

If X is a bifix code, then A−X ⊂ A∗ \ A∗X, and XA− ⊂ A∗ \ XA∗, thus any inter-
pretation of w is also a parse of w.

A point in a word w ∈ A∗ is a pair (r, s) ∈ A∗ × A∗ such that w = rs. A word w

thus has |w| + 1 points. A parse (v, x, u) of w is said to pass through the point (r, s)
provided x = yz for some y, z ∈ X∗ such that r = vy, s = zu (see Figure 6.3).

Proposition 6.1.5 Let X ⊂ A+ be a bifix code. For each point of a word w ∈ A∗,
there is one and only one parse passing through this point.

Proof. Let (r, s) be a point of w ∈ A∗. The code X being prefix, there is a unique
z ∈ X∗, and a unique u ∈ A∗ \ XA∗ such that s = zu (Theorem 3.1.6). Since X is
suffix, we have r = vy for a unique v ∈ A∗ \ A∗X and a unique y ∈ X∗. Clearly
(v, yz, u) is a parse of w passing through (r, s). The uniqueness follows from the
uniqueness of the factorizations of s and r . �

Proposition 6.1.6 Let X ⊂ A+ be a bifix code. For any w ∈ A∗, there are bijections
between the following sets:

1. the set of parses of w,
2. the set of prefixes of w which have no suffix in X,
3. the set of suffixes of w which have no prefix in X.

Proof. Set V = A∗ \ A∗X, U = A∗ \ XA∗. For each parse (v, x, u) of w, the word v

is in V and is a prefix of w. Thus v is in the set described in 2. Conversely, if w = vw′

and v ∈ V , set w′ = xu with x ∈ X∗ and u ∈ U (this is possible since X is prefix).
Then (v, x, u) is a parse. The uniqueness of the factorization w′ = xu shows that
the mapping (v, x, u) �→ v is a bijection from the set of parses on the set described
in 2. �

228 6 Bifix codes

Let X be a subset of A+. The indicator of X is the formal power series LX (or
simply L) which associates to any word w the number (L,w) of X-parses of w.
Setting U = A∗ \ XA∗, V = A∗ \ A∗X, we have

L = V X∗U. (6.2)

Let X be a bifix code. We have X A∗ = XA∗ since X is prefix, and A∗X = A∗X since
X is suffix. Thus U = A∗ − X A∗ = (1 − X)A∗ and V = A∗(1 − X). Substituting
this in (6.2), we obtain

L = A∗(1 − X)A∗. (6.3)

This can also be written as

L = V A∗ = A∗U. (6.4)

Note that this is an algebraic formulation of Proposition 6.1.6.
From Formula (6.3), we obtain a convenient expression for the number of parses

of a word w ∈ A∗:

(L,w) = |w| + 1 − (A∗XA∗, w). (6.5)

The term (A∗XA∗, w) equals the number of occurrences of words in X as factors of
w. Thus we see from (6.5) that for any bifix codes X, Y the following implication
holds:

Y ⊂ X ⇒ LX ≤ LY . (6.6)

Recall that the notation LX ≤ LY means that (LX,w) ≤ (LY ,w) for all w in A∗.

Proposition 6.1.7 Let X ⊂ A+ be a bifix code, let U = A∗ \ XA∗, V = A∗ \ A∗X,
and let L be the indicator of X. Then

V = L(1 − A), U = (1 − A)L, (6.7)

1 − X = (1 − A)L(1 − A). (6.8)

Proof. Formula (6.7) follows from (6.4), and (6.8) is an immediate consequence of
(6.3). �

Proposition 6.1.8 Let X ⊂ A+ be a bifix code and let L be its indicator. Then for all
w ∈ A∗

1 ≤ (L,w) ≤ |w| + 1. (6.9)

In particular, (L, 1) = 1. Further, for all u, v,w ∈ A∗,

(L, v) ≤ (L, uvw). (6.10)

6.1 Basic properties 229

Proof. For a given word w, there are at most |w| + 1 and at least one (namely, the
empty word) prefixes of w which have no suffix in X. Thus (6.9) is a consequence of
Proposition 6.1.6.

Next any parse of u can be extended to a parse of uvw. This parse of uvw is
uniquely determined by the parse of v (Proposition 6.1.5). This shows (6.10). �

Example 6.1.9 The indicator L of the bifix code X = ∅ satisfies (L,w) = |w| + 1
for all w ∈ A∗.

Example 6.1.10 For the bifix code X = A, the indicator has value (L,w) = 1 for
all w ∈ A∗.

The following proposition gives a characterization of formal power series which
are indicators.

Proposition 6.1.11 A formal power series L ∈ Z〈〈A〉〉 is the indicator of a bifix code
if and only if it satisfies the following conditions.

(i) For all a ∈ A, w ∈ A∗,

0 ≤ (L, aw) − (L,w) ≤ 1, (6.11)

0 ≤ (L,wa) − (L,w) ≤ 1. (6.12)

(ii) For all a, b ∈ A and w ∈ A∗,

(L, aw) + (L,wb) ≥ (L,w) + (L, awb). (6.13)

(iii) (L, 1) = 1.

Proof. Assume that L is the indicator of some bifix code X. It follows from Formula
(6.7) that the coefficients of the series L(1 − A) and (1 − A)L are 0 or 1. For a
word w ∈ A∗ and a letter a ∈ A, we have (L(1 − A), wa) = (L,wa) − (L,w). Thus,
(6.12) holds and similarly for (6.11). Finally, Formula (6.8) gives for the empty word,
the equality (L, 1) = 1, and for a, b ∈ A, w ∈ A∗,

−(X, awb) = (L, awb) − (L, aw) − (L,wb) + (L,w),

showing (6.13).
Conversely, assume that L satisfies the three conditions. Set S = (1 − A)L. Then

(S, 1) = (L, 1) = 1. Next for a ∈ A, w ∈ A∗, we have

(S, aw) = (L, aw) − (L,w).

By (6.11), 0 ≤ (S, aw) ≤ 1, showing that S is the characteristic series of some set U

containing the empty word 1. Next, if a, b ∈ A, w ∈ A∗, then by (6.13)

(S, aw) = (L, aw) − (L,w) ≥ (L, awb) − (L,wb) = (S, awb).

230 6 Bifix codes

Thus, awb ∈ U implies aw ∈ U , showing that U is prefix-closed.
According to Theorem 3.1.6, the set X = UA \ U is a prefix code and 1 − X =

U (1 − A).
Symmetrically, the series T = L(1 − A) is the characteristic series of some

nonempty suffix-closed set V , the set Y = AV − V is a suffix code and 1 − Y =
(1 − A)V .

Finally

1 − X = U (1 − A) = (1 − A)L(1 − A) = (1 − A)V = 1 − Y .

Thus, X = Y and X is bifix with indicator L. �

The following formulation is useful for the computation of the indicator.

Proposition 6.1.12 Let X ⊂ A+ be a bifix code, and L be its indicator. For any word
u ∈ A∗, and any letter a ∈ A,

(L, ua) =
{

(L, u) if ua ∈ A∗X,

(L, u) + 1 otherwise.
(6.14)

Proof. The formula results from Equation (6.7). �

Example 6.1.13 Let A = {a, b} and X = {a}. Then LX(w) = |w|b + 1. Indeed, this
results directly from Equation (6.5). It can also be obtained from Equation (6.14):
scanning the prefixes of w from left to right, the indicator remains constant whenever
one meets an a.

The following result shows how the condition to be a bifix code can be expressed
on a deterministic automaton recognizing X∗.

Proposition 6.1.14 Let X be a prefix code over A and let A = (Q, 1, 1) be a trim
deterministic automaton recognizing X∗. Then X is bifix if and only if for any q ∈ Q

and w ∈ A∗, q · w = 1 · w implies q = 1.

Proof. Assume first that the condition holds. We show that X∗ is left unitary. Let u, v be
words such that u, vu ∈ X∗. Set q = 1 · v. Then 1 · u = 1 and 1 · vu = (1 · v) · u = 1.
Set q = 1 · v. Then q · u = 1 and the condition implies q = 1. This shows that
1 · v = 1 and consequently v ∈ X∗.

Assume conversely that X∗ is left unitary and let w be such that 1 · w = q · w
for some q ∈ Q. Set p = q · w and let u, v be words such that 1 · u = q, p · v = 1.
Then 1 · uwv = 1 · wv = 1, showing that uwv,wv ∈ X∗. Since X∗ is left unitary,
we obtain u ∈ X∗. This in turn implies that q = 1. �

The above condition is satisfied by an automaton which is bideterministic in the
sense that for any edges (p, a, q) and (r, a, s) with p, q, r, s ∈ Q and a ∈ A, one has
p = r if and only if q = s. However, it is not always possible to recognize X∗ by a
bideterministic automaton for a bifix code X (see Exercise 6.1.2).

6.2 Maximal bifix codes 231

6.2 Maximal bifix codes

A bifix code X ⊂ A+ is maximal if, for any bifix code Y ⊂ A+, the inclusion X ⊂ Y

implies that X = Y . As in Chapter 3, it is convenient to note that the set {1} is a
maximal bifix set without being a code. We start by giving a series of equivalent
conditions for a thin code to be maximal bifix.

Proposition 6.2.1 Let X be a thin subset of A+. The following conditions are equiv-
alent.

(i) X is a maximal code and bifix.
(ii) X is a maximal bifix code.

(iii) X is a maximal prefix code and a maximal suffix code.
(iv) X is a left complete prefix code.
(iv′) X is a right complete suffix code.
(v) X is a left complete and right complete code.

Proof. (i) ⇒ (ii) is clear. (ii) ⇒ (iii). If X is maximal prefix, then by Theorem 3.3.8, X
is a maximal code, therefore X is maximal suffix. Similarly, if X is maximal suffix, it
is maximal prefix. Thus, assume that X is neither maximal prefix nor maximal suffix.
Let y, z /∈ X be such that X ∪ y is prefix and X ∪ z is suffix. Since X ∪ yt is prefix
for any word t , it follows that X ∪ yz is prefix, and so also bifix. Moreover, yz �∈ X

(since otherwise X ∪ y would not be prefix). This contradicts (ii).
(iii) ⇒ (iv’) is a consequence of Proposition 3.3.3 stating that a maximal prefix

code is right-complete (similarly for the implication (iii) ⇒ (iv)).
(iv) ⇒ (v) The code X is complete and thin. Thus, it is maximal. This shows that

it is maximal prefix, which in turn implies that it is right complete.
(v) ⇒ (i) A complete, thin code is maximal. By Theorem 3.3.8 a right-complete

thin code is prefix. Similarly, X is suffix. �

A code which is both maximal prefix and maximal suffix is always maximal bifix,
and the converse holds, as we have seen, for thin codes. However, this may become
false for codes that are not thin (see Example 6.2.4).

Example 6.2.2 A group code, as defined in Section 2.2, is bifix and is a maximal
code.

Example 6.2.3 Let A = {a, b} and

X = {a3, a2ba, a2b2, ab, ba2, baba, bab2, b2a, b3}.
By inspection of the literal representation (Figure 6.4), X is seen to be a maximal
prefix code.

The reverse code X̃ represented on the right in Figure 6.4, is also maximal prefix.
Thus X is a maximal bifix code. Observe that X̃ is equal to the set obtained from X

by interchanging a and b (reflection with respect to the horizontal axis). This is an
exceptional fact, which will be explained later (Example 6.5.3).

232 6 Bifix codes

Figure 6.4 The literal representations of X on the left and of its reversal X̃ on the right.

0

3

2

1 0 1

6 7

4 5

2 3 0 1 2 3

8 9 10 11

4 5 6 7

Figure 6.5 The reversible Golomb–Rice codes of orders 0, 1, 2.

Example 6.2.4 Let A = {a, b} and X = {wab|w| | w ∈ A∗} (see Examples 2.4.11
and 3.3.9). It is a maximal, right-dense code which is suffix but not prefix. The set
Y = X \ XA+ is maximal prefix and suffix but not maximal suffix since Y �= X.
Thus, Y is also maximal bifix, satisfying condition (ii) in Proposition 6.2.1 without
satisfying condition (iii).

Example 6.2.5 There is a reversible version of the Golomb–Rice codes described
in Example 3.4.4. These are bifix codes having the same length distribution. The
difference with the Golomb–Rice codes is that, in the base, the word 1i0 is replaced
by 10i−11 for i ≥ 1. Since the set of bases forms a bifix code, the set of all codewords
is also a bifix code. The reversible Golomb–Rice code of order k, denoted RGk is
defined by the regular expression

RGk = (0 + 10∗1)(0 + 1)k.

Figure 6.5 represents the codes RGk for k = 0, 1, 2.

Example 6.2.6 There is also a reversible version of the exponential Golomb codes
(Example 3.4.5) which are bifix codes with the same length distribution. The code

REG0 is the bifix code

REG0 = 0 + 1(00 + 10)∗(0 + 1)1,

6.2 Maximal bifix codes 233

0

3 4

1

5 6

2

0 1

6 7 8 9

2 3

10 11 12 13

4 5

Figure 6.6 The reversible exponential Golomb codes of orders 0 and 1.

and the code of order k is

REGk = REG0(0 + 1)k.

Note that REG0 is equal to its reversal, that is R̃EG0 = REG0. This shows that REG0

is bifix. The other codes are also bifix because they are products of two bifix codes.
The codes REGk for k = 0, 1, 2 are represented on Figure 6.6.

The following result gives a different characterization of maximal bifix codes
within the family of thin codes.

Proposition 6.2.7 A thin code X is maximal bifix if and only if for all w ∈ A∗, there
exists an integer n ≥ 1 such that wn ∈ X∗.

Proof. Assume that for all w ∈ A∗, we have wn in X∗ for some n ≥ 1. Then X clearly
is right-complete and left-complete. Thus, X is maximal bifix by Proposition 6.2.1.

Conversely, let X be a maximal bifix code, and let w ∈ A∗. Consider a word
u ∈ F̄ (X), that is, which is not a factor of a word in X. The code X being right-
complete, for all i ≥ 1 there exists a word vi such that

wiuvi ∈ X∗.

Since u ∈ F̄ (X), there exists a prefix si of u such that wisi ∈ X∗.
Let k,m with k < m be two integers such that sk = sm. Then setting n = m − k,

we have wksk ∈ X∗, wmsm = wnwksk ∈ X∗. Since X∗ is left-unitary, this implies
that wn ∈ X∗. �

We now describe an operation which makes it possible to construct maximal bifix
codes by successive transformations.

Proposition 6.2.8 Let X be a code which is maximal prefix and maximal suffix, and
let w ∈ A∗. Set

G = Xw−1, D = w−1X,

G0 = (wD)w−1, D0 = w−1(Gw), (6.15)

G1 = G \ G0, D1 = D \ D0.

234 6 Bifix codes

If G1 �= ∅ and D1 �= ∅, then the set

Y = (X ∪ w ∪ G1(wD∗
0)D1) \ (Gw ∪ wD) (6.16)

is a maximal prefix and maximal suffix code. Further,

Y = X + (1 − G)w(1 − D0
∗D1). (6.17)

Proof. By definition, Gw is the set of words in X ending with w. Similarly for wD.
Next, G0w is the set of words in X that start and end with w. Thus G1w is the set of
words in X which end with w and do not start with w.

Since D1 �= ∅, the set D is nonempty. Further 1 �∈ D, since otherwise w ∈ X,
and X being bifix, this implies G = D = {1}, and D0 = {1} and finally D1 = ∅, a
contradiction. Thus, w is a proper prefix of a word in X, and by Proposition 3.4.9,
the sets D and

Y1 = (X ∪ w) \ wD

are maximal prefix codes.
Next, Gw = X ∩ A∗w and wD = X ∩ wA∗. Also G0w = wD ∩ A∗w = X ∩

wA∗ ∩ A∗w. Similarly wD0 = Gw ∩ wA∗ = X ∩ wA∗ ∩ A∗w. Thus,

wA∗ ∩ A∗w ∩ X = Gw ∩ wD = wD0 = G0w. (6.18)

Now note that G = G0 ∪ G1. From this and (6.18), we get

Gw ∪ wD = G0w ∪ G1w ∪ wD = wD0 ∪ G1w ∪ wD = G1w ∪ wD,

since D0 ⊂ D. Similarly

Gw ∪ wD = Gw ∪ wD1.

Thus

Y = (Y1 ∪ G1wD∗
0D1) \ G1w.

Note that G1w ⊂ Y1 because G1w is the set of words in X which end with w and do
not start with w, and thus G1w ⊂ X \ wD. Since D = D1 ∪ D0 is a maximal prefix
code and D1 �= ∅, the set D∗

0D1 is a maximal prefix code (Proposition 3.4.12). This
and the fact that Y1 is maximal prefix imply, according to Proposition 3.4.7, that Y is
maximal prefix.

Symmetrically, it may be shown successively that Y2 = (X ∪ w) \ wG and
Y ′ = (Y2 \ wD1) ∪ G1G

∗
0wD1 are maximal suffix codes. From (6.18), we obtain

by induction that G∗
0w = wD∗

0 . Thus, Y ′ = Y and consequently Y is also maximal
suffix.

To prove (6.17), set

σ = X + (1 − G)w(1 − D0
∗D1).

6.2 Maximal bifix codes 235

Then

σ = X + w − Gw − wD0
∗D1 + GwD0

∗D1

= X + w − Gw − wD0
∗D1 + G0wD0

∗D1 + G1wD0
∗D1.

Since G0w = wD0, we obtain

σ = X + w − Gw − wD0
∗D1 + wD0D0

∗D1 + G1wD0
∗D1

= X + w − Gw − wD1 + G1wD0
∗D1.

The sets G1w,D0,D1 are prefix, and D0 �= 1 (since otherwise w ∈ X). Thus, the
products in the above expression are unambiguous. Next it follows from (6.18) that
G1w ∩ wD = ∅. Consequently

Gw ∪ wD = G1w + wD.

Thus

σ = X + w + G1wD∗
0D1 − Gw ∪ wD = Y ,

since Gw ∪ wD ⊂ X. �

The code Y is said to be obtained from X by internal transformation (with respect
to w).

Example 6.2.9 Let A = {a, b}, and consider the uniform code X = A2. Let w = a.
Then G = D = A and G0 = D0 = {a}. Consequently, the code Y defined by Formula
(6.16) is

Y = a ∪ ba∗b.

Note that Y is a group code as is X.

From Formula (6.16), it is clear that for a finite code X, the code Y is finite if and
only if D0 = ∅. This case deserves particular attention.

Proposition 6.2.10 Let X be a finite maximal bifix code and let w ∈ A∗. Set

G = Xw−1, D = w−1X. (6.19)

If G �= ∅, D �= ∅ and Gw ∩ wD = ∅, then

Y = (X ∪ w ∪ GwD) \ (Gw ∪ wD) (6.20)

is a finite maximal bifix code, and

Y = X + (G − 1)w(D − 1). (6.21)

236 6 Bifix codes

Conversely, let Y be a finite maximal bifix code. Let w ∈ Y be a word such that there
exists a maximal prefix code D, and a maximal suffix code G with GwD ⊂ Y . Then

X = (Y \ (w ∪ GwD)) ∪ (Gw ∪ wD) (6.22)

is a finite maximal bifix code, and further Equations (6.19), (6.20), and (6.21) hold.

Proof. If Gw ∩ wD = ∅, then we have, with the notations of Proposition 6.2.8,
G0 = D0 = ∅ by Formula (6.18). Then (6.16) simplifies into (6.20). Formula (6.21)
is a direct consequence of Formula (6.17).

Conversely, let us first show that X is a maximal prefix code. Set

Z = (Y \ w) ∪ wD.

Since Y is maximal prefix by Proposition 6.2.1 and since D is maximal prefix and
w ∈ Y , Corollary 3.4.8 implies that the set Z is a maximal prefix code. Next observe
that

X = (Z \ GwD) ∪ Gw.

The set Gw is contained in ZA−, since Gw ⊂ (Y \ w)A−. Next we show that Gw is
prefix. Assume indeed that gw = g′wt for some g, g′ ∈ G, t ∈ A∗. Let d be a word
in D of maximal length. The set D being maximal prefix, either td is a proper prefix
of a word in D or td has a prefix in D. The first case is ruled out by the fact that d

has maximal length. Thus, td has a prefix, say d ′ in D. The word g′wd ′ is a prefix of
g′wtd = gwd. Since both are in the prefix set Y , they are equal. Thus d ′ = td and
since d has maximal length, we get t = 1. This proves the claim.

Further, for all g ∈ G, we have D = (gw)−1Z. Indeed, the inclusion gwD ⊂ Z

implies D ⊂ (gw)−1Z, and D being a maximal prefix code, the equality follows.
In view of Proposition 3.4.10, the set X consequently is a maximal prefix code.

Symmetrically, it may be shown that X is maximal suffix. Since X is finite, it is
maximal bifix.

It remains to show that Y is obtained from X by internal transformation. First,
the inclusion Gw ⊂ X follows from (6.22), implying G ⊂ Xw−1, and G being a
maximal suffix code, this enforces the equality

G = Xw−1.

Symmetrically D = w−1X. Moreover, G �= ∅, D �= ∅, because they are maximal
codes. Let us show that

Gw ∩ wD = ∅.

If gw = wd for some g ∈ G, d ∈ D, then ggw = gwd ∈ GwD ⊂ Y . Thus
w, ggw ∈ Y ; this is impossible, since Y is suffix.

From w ∈ Y we get the result that Gw ∩ Y = ∅; otherwise Y would not be suffix.
Similarly wD ∩ Y = ∅, because Y is prefix. Then as a result of (6.22), X \ (Gw ∪
wD) = Y \ (w ∪ GwD), implying (6.20). �

6.3 Degree 237

Figure 6.7 An internal transformation.

Example 6.2.11 Let A = {a, b} and X = A3. Consider the word w = ab. Then
G = D = A and Gw ∩ wD = ∅. Thus Proposition 6.2.10 gives a finite code Y .
This code is obtained by dropping in Figure 6.7 the dotted lines and by adjoining the
heavy lines. The result is the maximal bifix code of Example 6.2.3.

6.3 Degree

In this section, we study the indicator of thin maximal bifix codes. For these bifix
codes, some simplifications occur.

Let X ⊂ A+ be a bifix code, set U = A∗ \ XA∗, V = A∗ \ A∗X, and let L =
V X∗U be the indicator of X. If X is a maximal prefix code, then U = P where
P = XA− is the set of proper prefixes of words in X. In the same way, for a maximal
suffix code, we have V = S where S = A−X is the set of proper suffixes of words in
X. It follows that if X is maximal prefix and maximal suffix, each parse of a word is
an interpretation. Then we have

L = S X∗P = S A∗ = A∗P . (6.23)

This basic formula will be used frequently. It means that the number of parses of a
word is equal to the number of its suffixes which are in P , or equivalently the number
of its prefixes which are in S. Let X be a subset of A+. Denote by

H (X) = A−XA− = {w ∈ A∗ | A+wA+ ∩ X �= ∅}
the set of internal factors of words in X. Let

H̄ (X) = A∗ \ H (X).

Clearly, each internal factor is a factor of a word in X. The converse may be false.
The set H (X) and the set

F (X) = {w ∈ A∗ | A∗wA∗ ∩ X �= ∅}

238 6 Bifix codes

of factors of words in X are related by

F (X) = H (X) ∪ XA− ∪ A−X ∪ X,

and for F̄ (X) = A∗ \ F (X),

A+H̄ (X)A+ ⊂ F̄ (X) ⊂ H̄ (X).

These relations show that H̄ (X) is nonempty if and only if F̄ (X) is nonempty; thus
X is thin if and only if H̄ (X) �= ∅.

Theorem 6.3.1 Let X ⊂ A+ be a bifix code. Then X is a thin maximal code if and
only if its indicator L is bounded. In this case,

H̄ (X) = {w ∈ A∗|(L,w) = d}, (6.24)

where d is defined as d = max{(L,w) | w ∈ A∗}.

Proof. Let X be a thin maximal bifix code. Let w ∈ H̄ (X) and w′ ∈ A∗. According
to Formula (6.23), (L,ww′) = (SA∗, ww′). Thus the number of parses of ww′ is
equal to the number of prefixes of ww′ which are in S = A−X. Since w ∈ H̄ (X), it
follows that no such prefix in S is strictly longer than w. Thus all these prefixes are
prefixes of w. Again using Formula (6.23), this shows that (L,ww′) = (L,w). Now
by Proposition 6.1.8, we have (L,ww′) ≥ (L,w′). Thus we get

(L,w′) ≤ (L,w),

showing that L is bounded on A∗ by its value for a word in H̄ (X). This shows also
that L is constant on H̄ (X). Thus

H̄ (X) ⊂ {w ∈ A∗ | (L,w) = d}.

To show the converse inclusion, consider an internal factor w ∈ H (X). Then there
exist p, s ∈ A+ such that w′ = pws ∈ X. This implies that

(L,w′) ≥ (L,w) + 1.

Indeed, each parse of w can be extended in a parse of w′, and w′ has an additional
parse, namely (1, w′, 1). This shows that for an internal factor w, the number (L,w)
is strictly less than the maximal value d. Thus Formula (6.24) is proved.

Assume now conversely that X is a bifix code with bounded indicator L, let
d = max{(L,w) | w ∈ A∗} and let v ∈ A∗ be a word such that (L, v) = d. We use
Formula (6.3) which can be rewritten as

XA∗ = A∗ + (A − 1)L.

Let w ∈ A+ be any nonempty word, and set w = au, with a ∈ A, u ∈ A∗. Then

(XA∗, wv) = (A∗ + (A − 1)L, auv) = 1 + (L, uv) − (L, auv).

6.3 Degree 239

By Proposition 6.1.8, both (L, uv) and (L, auv) are greater than or equal to (L, v).
By the choice of v, we have (L, uv) = (L, auv) = d.

Thus (XA∗, wv) = 1. Thus we have proved that for all w ∈ A+, wv ∈ XA∗. This
shows that XA∗ is right dense. This shows also that X is thin. Indeed, we have
v ∈ H̄ (X) since for all g, d ∈ A+ we have gv ∈ XA∗ and therefore gvd �∈ X. Thus
X is a thin maximal prefix code. Symmetrically, it can be shown that X is maximal
suffix. This gives the result by Proposition 6.2.1. �

Let X be a thin maximal bifix code, and let L be its indicator. The degree of X,
denoted d(X) or simply d, is the number

d(X) = max{(L,w) | w ∈ A∗}.
According to Theorem 6.3.1, the degree d is the number of parses of any word which
is not an internal factor of X. Before going on, let us illustrate the notion of degree
with several examples.

Example 6.3.2 Let ϕ be a morphism from A∗ onto a group G, and let G′ be a
subgroup of G. Let X be the group code for which X∗ = ϕ−1(G′). We have seen that
X is a maximal bifix code, and that X is thin if and only if G’ has finite index in G

(Example 2.5.22).
The degree of X is equal to the index of G′ in G. Indeed let w ∈ H̄ (X) be a word

which is not an internal factor of X, and consider the function ψ which associates,
to each word u ∈ A∗, the unique word p ∈ P = XA− such that uw ∈ X∗p. Each p

obtained in such a way is a suffix of w. The set ψ(A∗) is the set of suffixes of w

which are in P . Since w ∈ H̄ (X), we have Card ψ(A∗) = d(X). Next, we have for
u, v ∈ A∗,

ψ(u) = ψ(v) ⇔ G′ϕ(u) = G′ϕ(v).

Indeed, if ψ(u) = ψ(v) = p, then uw, vw ∈ X∗p, and consequently ϕ(u), ϕ(v) ∈
G′ϕ(p)ϕ(w)−1. Conversely, if G′ϕ(u) = G′ϕ(v), let r ∈ A∗ be a word such that
uwr ∈ X∗. Then ϕ(vwr) ∈ G′ϕ(u)ϕ(wr) ⊂ G′, whence vwr ∈ X∗. Since ψ(u) and
ψ(v) are suffixes of w, one of the words ψ(u)r and ψ(v)r is a suffix of the other.
Since X is a suffix code, it follows that ψ(u) = ψ(v).

This shows that the index of G′ in G is d(X). By Proposition 1.13.1, d(X) is also
equal to the degree of the permutation group corresponding to the action of G on the
cosets of G′, as defined in Section 1.13.

Example 6.3.3 The only maximal bifix code with degree 1 over A is X = A.

Example 6.3.4 Any maximal bifix code of degree 2 over an alphabet A has the form

X = C ∪ BC∗B, (6.25)

where A is the disjoint union of B and C, with B �= ∅.
Indeed, let C = A ∩ X and B = A \ C. Each b ∈ B has two parses, namely

(1, 1, b) and (b, 1, 1). Thus, a word which is an internal factor of a word x ∈ X

240 6 Bifix codes

cannot contain a letter in B, since otherwise x would have at least three parses. Thus,
the set H of internal factors of X satisfies H ⊂ C∗. Next consider a word x in X. Either
it is a letter, and then it is in C, or otherwise it has the form x = aub with a, b ∈ A

and u ∈ H ⊂ C∗. X being bifix, neither a nor b is in C. Thus X ⊂ C ∪ BC∗B. The
maximality of X implies the equality.

This shows that any maximal bifix code of degree 2 is a group code. Indeed, the
code given by (6.25) is obtained by considering the morphism from A∗ onto Z/2Z
defined by ϕ(B) = {1}, ϕ(C) = {0}. It shows also that any maximal bifix code of
degree 2 is rational. This is false for degree 3 (see Example 6.4.8).

Example 6.3.5 Consider the set

Y = {anbn | n ≥ 1}.

It is a bifix code which is not maximal since Y ∪ ba is bifix. Also Y is thin since
ba ∈ F̄ (Y). The code Y is not contained in a thin maximal bifix code. Suppose indeed
that X is a thin maximal bifix code of degree d containing Y . For any n ≥ 0, the word
an then has n + 1 parses, since it has n + 1 suffixes which all are proper prefixes of
a word in Y , whence in X. Since d ≤ n, this is impossible. In fact, Y is contained in
the Dyck code over {a, b} (see Example 2.2.11)

Example 6.3.6 Let X, Y ⊂ A+ be two thin maximal bifix codes. Then XY is maxi-
mal bifix and thin and

d(XY) = d(X) + d(Y).

The first part of the claim follows indeed from Corollary 3.4.2. Next, let w ∈ H̄ (XY)
be a word which is not an internal factor of XY . Then, w ∈ H̄ (X) and w ∈ H̄ (Y).
The prefixes of w which are also proper suffixes of XY are of two kinds. First, there
are d(Y) prefixes of w which are proper suffixes of words in Y . Next, there are
d(X) prefixes of w which are proper suffixes of words in X. For each such prefix
u, set w = uv. The word v is not a proper prefix of a word in Y since otherwise w

would be an internal factor of XY . Thus v has a prefix y in Y and uy is a prefix
of w which is a proper suffix of a word in XY . These are the only prefixes of w

which are in A−(XY). Since w has d(XY) parses with respect to XY , this gives the
formula.

We now define a formal power series associated to a code X and which plays a
fundamental role in the following. Let X be a thin maximal bifix code over A. The
tower over X is the formal power series TX (also written T when no confusion is
possible) defined by

(TX,w) = d − (LX,w). (6.26)

The following proposition gives a simple way to compute the value of a tower.

6.3 Degree 241

Proposition 6.3.7 Let X ⊂ A+ be a thin maximal bifix code. For any word u ∈ A∗

and letter a ∈ A, one has

(TX, ua) =
{

(TX, u) if ua ∈ A∗X,

(TX, u) − 1 otherwise.
(6.27)

Proof. This results directly from Proposition 6.1.12. �

The following proposition states some useful elementary facts about the series T .

Proposition 6.3.8 Let X be a thin maximal bifix code of degree d over A, set P =
XA−, S = A−X, and let T be the tower over X. Then

(T ,w) = 0 ⇔ w ∈ H̄ (X),

and for w ∈ H (X),

1 ≤ (T ,w) ≤ d − 1. (6.28)

Further (T , 1) = d − 1 and

X − 1 = (A − 1)T (A − 1) + d(A − 1), (6.29)

P = (A − 1)T + d, (6.30)

S = T (A − 1) + d. (6.31)

Proof. According to Theorem 6.3.1, (T ,w) = 0 if and only if w ∈ H̄ (X). For all other
words, 1 ≤ (T ,w). Also (T ,w) ≤ d − 1 since all words have at least one parse, and
(T , 1) = d − 1 since the empty word has exactly one parse.

Next, by definition of T , we have T + L = dA∗, whence

T (1 − A) + L(1 − A) = (1 − A)T + (1 − A)L = d.

The code X is maximal; consequently P = A∗ \ XA∗ and S = A∗ \ A∗X. Thus we
can apply Proposition 6.1.7 with P = U, S = V . Together with the equation above,
this gives Formulas (6.30), (6.31), and also (6.29) since

X − 1 = P (A − 1) = ((A − 1)T + d)(A − 1). �

Proposition 6.3.8 shows that the support of the series T is contained in the set
H (X). Note that two thin maximal bifix codes X and X′ having the same tower are
equal. Indeed, by Proposition 6.3.8, they have the same degree since

(T , 1) = d(X) − 1 = d(X′) − 1.

But then Equation (6.29) implies that X = X′.
Whenever a thin maximal bifix code of degree d = d(X) satisfies the equation

X − 1 = (A − 1)T (A − 1) + d(A − 1),

242 6 Bifix codes

for some T , then T must be the tower on X. The next result gives a sufficient condition
to obtain the same conclusion without knowing that the integer d is equal to d(X).

Proposition 6.3.9 Let T , T ′ ∈ Z〈〈A〉〉 and let d, d ′ ≥ 1 be integers such that

(A − 1)T (A − 1) + d(A − 1) = (A − 1)T ′(A − 1) + d ′(A − 1). (6.32)

If there is a word w ∈ A∗ such that (T ,w) = (T ′, w), then T = T ′ and d = d ′.

Proof. After multiplication of both sides by A∗ = (1 − A)−1, Equation (6.32)
becomes

T − dA∗ = T ′ − d ′A∗.

If (T ,w) = (T ′, w), then (dA∗, w) = (d ′A∗, w). Thus, d = d ′, which implies T =
T ′. �

We now observe the effect of an internal transformation (Proposition 6.2.8) on the
tower over a thin maximal bifix code X. Recall that, provided w is a word such that
G1, D1 are both nonempty, where

G = Xw−1, D = w−1X, G0 = (wD)w−1, D0 = w−1(Gw),

G1 = G \ G0, D1 = D \ D0,

the code Y defined by

Y = X + (1 − G)w(1 − D0
∗D1)

is maximal bifix. By Proposition 3.4.9, the sets G = Xw−1 and D = w−1X, are
maximal suffix and maximal prefix. Let U be the set of proper right factors of G, and
let V be the set of proper prefixes of D. Then D∗

0V is the set of proper prefixes of
words in D∗

0D1, since D = D0 ∪ D1. Consequently

G − 1 = (A − 1)U, D0
∗D1 − 1 = D0

∗V (A − 1).

Going back to Y , we get

Y − 1 = X − 1 + (A − 1)UwD0
∗V (A − 1).

Let T be the tower over X. Then using Equation (6.29), we get

Y − 1 = (A − 1)(T + UwD0
∗V)(A − 1) + d(A − 1).

Observe that since X is thin, both G and D are thin. Consequently also U and V are
thin. Since D1 = D \ D0 �= ∅, D0 is not a maximal code. As a subset of D, the set D0

is thin. By Theorem 2.5.13, D0 is not complete. Thus D∗
0 is thin. Thus UwD∗

0V , as a
product of thin sets, is thin. Next supp(T) ⊂ H (X) is thin. Thus supp(T) ∪ UwD∗

0V

is thin.

6.3 Degree 243

Let u be a word which is not a factor of a word in this set. Then

(T + UwD0
∗V , u) = 0.

On the other hand, Formula (6.16) shows that since G1(wD∗
0)D1 is thin, the set Y is

thin. Thus, the support of the tower TY over Y is thin. Let v be such that (TY , v) = 0,
then

(T + UwD0
∗V , uv) = (TY , uv) = 0,

showing that Proposition 6.3.9 can be applied. Consequently,

d(X) = d(Y) and TY = T + UwD0
∗V .

Thus, the degree of a thin maximal bifix code remains invariant under internal trans-
formations.

Example 6.3.10 The finite maximal bifix code X = {a3, a2ba, a2b2, ab, ba2, baba,

bab2, b2a, b3} over A = {a, b} of Example 6.2.3 has degree 3. This can be seen by
observing that no word has more than 3 parses, and the word a3 has 3 parses, or also
by the fact (Example 6.2.11) that X is obtained from the uniform code A3 by internal
transformation with respect to the word w = ab. Thus d(X) = d(A3) = 3.

In this example, D(= w−1A3) = G(= A3w−1) = A. Thus TX = TA3 + w. Clearly
TA3 = 2 + a + b. Consequently

TX = 2 + a + b + ab.

We now give a characterization of the formal power series that are the tower over
some thin maximal bifix code.

Proposition 6.3.11 A formal power series T ∈ N〈〈A〉〉 is the tower over some thin
maximal bifix code if and only if it satisfies the following conditions.

(i) For all a ∈ A, v ∈ A∗,

0 ≤ (T , v) − (T , av) ≤ 1, (6.33)

0 ≤ (T , v) − (T , va) ≤ 1. (6.34)

(ii) For all a, b ∈ A, v ∈ A∗,

(T , av) + (T , vb) ≤ (T , v) + (T , avb). (6.35)

(iii) There exists a word v ∈ A∗ such that

(T , v) = 0.

Proof. Let X be a thin maximal bifix code of degree d, let L be its indicator, and let
T = dA∗ − L. Then Equations (6.33), (6.34), and (6.35) are direct consequences of

244 6 Bifix codes

Equations (6.11), (6.12), and (6.13). Further (iii) holds for all v ∈ H̄ (X), and this set
is nonempty.

Conversely, assume that T ∈ N〈〈A〉〉 satisfies the conditions of the proposition.
Define

d = (T , 1) + 1, L = dA∗ − T .

Then by construction, L satisfies the conditions of Proposition 6.1.11, and therefore
L is the indicator of some bifix code X. Next by assumption, T has nonnegative
coefficients. Thus for all w ∈ A∗, we have (T ,w) = d − (L,w) ≥ 0. Thus, L is
bounded. In view of Theorem 6.3.1, the code X is maximal and thin. Since (T , v) = 0
for at least one word v, we have (L, v) = d and d = max{(L,w)|w ∈ A∗}. Thus, d

is the degree of X and T = dA∗ − L is the tower over X. �

The preceding result makes it possible to disassemble the tower over a bifix code.

Proposition 6.3.12 Let T be the tower over a thin maximal bifix code X of degree
d ≥ 2. The series

T ′ = T − H (X)

is the tower over some thin maximal bifix code of degree d − 1.

Proof. First observe that T ′ has nonnegative coefficients. Indeed, by Proposition 6.3.8,
(T ,w) ≥ 1 if and only if w ∈ H (X). Consequently (T ′, w) ≥ 0 for w ∈ H (X), and
(T ′, w) = (T ,w) = 0 otherwise.

Next, we verify the three conditions of Proposition 6.3.11.
(i) Let a ∈ A, v ∈ A∗. If av ∈ H (X), then v ∈ H (X). Thus (T ′, av) = (T , av) − 1

and (T ′, v) = (T ′, av) − 1. Therefore the inequality (6.33) results from the corre-
sponding inequality for T . Next, if av �∈ H (X), then (T , av) = (T ′, av) = 0. Con-
sequently (T , v) ≤ 1. If (T , v) = 1, then v ∈ H (X) and thus (T ′, v) = 0. Otherwise,
v ∈ H̄ (X) and (T ′, v) = 0 as already observed above. In both cases, (T ′, v) = 0, and
thus the inequality (6.33) holds for T ′.

(ii) Let a, b ∈ A and v ∈ A∗. If avb ∈ H (X), then (T ′, w) = (T ,w) − 1 for each
of the four words w = avb, av, vb, and v. Thus, the inequality

(T ′, av) + (T ′, vb) ≤ (T ′, v) + (T ′, avb)

results, in this case, from the corresponding inequality for T . On the other hand, if
avb �∈ H (X), then as before (T , av), (T , vb) ≤ 1 and (T ′, av) = (T ′, vb) = 0. Thus
(6.35) holds for T ′.

Condition (iii) of Proposition 6.3.11 is satisfied clearly for T ′ since (T ′, w) = 0
for w ∈ H̄ (X). Thus T ′ is the tower over some thin maximal bifix code. Its degree is
1 + (T ′, 1). Since 1 ∈ H (X), we have (T ′, 1) = d − 2. This completes the proof. �

Let X be a thin maximal bifix code of degree d ≥ 2, and let T be the tower over
X. Let X′ be the thin maximal bifix code with tower T ′ = T − H (X). Then X′ has

6.3 Degree 245

degree d − 1. The code X′ is called the code derived from X. Since for the indicators
L and L′ of X and X′, we have L = dA∗ − T and L′ = (d − 1)A∗ − T ′, it follows
that L − L′ = A∗ − T + T ′ = A∗ − H (X) = H̄ (X), whence

L′ = L − H̄ (X). (6.36)

We denote by X(n) the code derived from X(n−1) for d(X) ≥ n + 1, with X(0) = X.

Proposition 6.3.13 The tower over a thin maximal bifix code X of degree d ≥ 2
satisfies

T = H (X) + H (X′) + · · · + H (X(d−2)).

Proof. By induction, we have from Proposition 6.3.12

T = H (X) + H (X′) + · · · + H (X(d−2)) + T̂ ,

where T̂ is the tower over a code of degree 1. This code is the alphabet, and conse-
quently T̂ = 0. This proves the result. �

We now describe the set of proper prefixes and the set of proper suffixes of words
of the derived code of a thin maximal bifix code.

Proposition 6.3.14 Let X ⊂ A+ be a thin maximal bifix code of degree d ≥ 2. Let
S = A−X, P = XA−, and H = A∗ \ XA−, H̄ = A∗ \ H .

1. The set S ∩ H̄ is a thin maximal prefix code. The set H is the set of its proper
prefixes, that is, S ∩ H̄ = HA \ H .

2. The set P ∩ H̄ is a thin maximal suffix code. The set H is the set of its proper
suffixes, that is, P ∩ H̄ = AH \ H .

3. The set S ∩ H is the set of proper suffixes of the derived code X′.
4. The set P ∩ H is the set of proper prefixes of the derived code X′.

Proof. We first prove 1. Let T be the tower over X, and let T ′ be the tower over the
derived code X′. By Proposition 6.3.12, T = T ′ + H , and by Proposition 6.3.8

S = T (A − 1) + d.

Thus, S = T ′(A − 1) + d − 1 + H (A − 1) + 1. The code X′ has degree d − 1. Thus,
the series T ′(A − 1) + d − 1 is, by Formula (6.31), the characteristic series of the set
S ′ = A∗ \ X′ of proper suffixes of words of X′. Thus,

S = H (A − 1) + 1 + S ′ and S ′ = T ′(A − 1) + d − 1.

The set H is prefix-closed and nonempty. We show that H contains no right ideal.
Indeed, the set H̄ is not empty because X is thin, and thus it is an ideal. Thus,
for each h ∈ H , and k ∈ H̄ , the word hk is not in H . By Proposition 3.3.3, the set

246 6 Bifix codes

Y = HA \ H is a maximal prefix code, and H = YA−. Thus

Y = H (A − 1) + 1.

Further, H being also suffix-closed, the set Y is in fact a semaphore code by Propo-
sition 3.5.8. We now verify that Y = S ∩ H̄ .

Assume that y ∈ Y . Then, from the equation S = Y + S ′, it follows that y ∈
S. Since H = YA−, we have y �∈ H . Thus y ∈ S ∩ H̄ . Conversely, assume that
y ∈ S ∩ H̄ . Then y �= 1, since d ≥ 2 implies that H �= ∅ and consequently 1 ∈ H .
Further, each proper prefix of y is in SA− = A∗ \ XA− = H , thus is an internal
factor of X. In particular, considering just the longest proper prefix, we have y ∈ HA.
Consequently, y ∈ HA \ H = Y .

The second claim is proved in a symmetric way. To show 3, observe that by what
we proved before, we have

S = Y + S ′. (6.37)

Next S = (S ∩ H) ∪ (S ∩ H̄) = Y ∪ (S ∩ H), since Y = S ∩ H̄ . Moreover, the
union is disjoint, thus S = Y + S ∩ H . Consequently S ′ = S ∩ H . In the same way,
we get point 4. �

Theorem 6.3.15 Let X be a thin maximal bifix code of degree d. Then the set S of
its proper suffixes is a disjoint union of d maximal prefix sets.

Proof. If d = 1, then X = A and the set S = {1} is a maximal prefix set. If d ≥ 2,
then the set Y = S ∩ H̄ , where H = A−XA− and H̄ = A∗ \ H , is maximal prefix by
Proposition 6.3.14. Further, the set S ′ = S ∩ H is the set of proper suffixes of the code
derived from X. Arguing by induction, the set S ′ is a disjoint union of d − 1 maximal
prefix sets. Thus S = Y ∪ S ′ is a disjoint union of d maximal prefix sets. �

It must be noted that the decomposition, in Theorem 6.3.15, of the set S into disjoint
maximal prefix sets is not unique (see Exercise 6.3.1). The following corollary to
Theorem 6.3.15 expresses the remarkable property that the average length of a thin
maximal bifix code, with respect to a Bernoulli distribution, is an integer.

Corollary 6.3.16 Let X ⊂ A+ be a thin maximal bifix code. For any positive
Bernoulli distribution π on A∗, the average length of X is equal to its degree.

Proof. Set d = d(X). Let π be a positive Bernoulli distribution on A∗, and let λ(X)
be the average length of X. By Corollary 3.7.13, the average length λ(X) is finite
and λ(X) = π (S), where S = A−X is the set of proper suffixes of X. In view of
Theorem 6.3.15, we have

S = Y1 + Y2 + · · · + Yd,

6.3 Degree 247

where each Yi is a maximal prefix code. As a set of factors of X, each Yi also is thin.
Thus π (Yi) = 1 for i = 1, . . . , d by Theorem 2.5.16. Consequently,

λ(X) =
d∑

i=1

π (Yi) = d. �

Note that Corollary 6.3.16 can also be proved directly by starting with For-
mula 6.30. However, the proof we have given here is the most natural one.

We now prove a converse of Theorem 6.3.15.

Proposition 6.3.17 Let X be a thin maximal suffix code. If the set of its proper suffixes
is a disjoint union of d maximal prefix sets, then X is bifix, and has degree d.

Proof. Let S = A−X. By assumption S = Y1 + · · · + Yd , where Y1, . . . , Yd are max-
imal prefix sets. Let Ui be the set of proper prefixes of Yi . Then A∗ = Yi

∗Ui , and thus
(1 − Yi)A∗ = Ui , whence

A∗ = Ui + YiA
∗.

Summing up these equalities gives

dA∗ =
d∑

i=1

Ui + SA∗.

Multiply on the left by A − 1. Then, since (A − 1)S = X − 1,

−d =
d∑

i=1

(A − 1)Ui + (X − 1)A∗,

whence

XA∗ = A∗ −
d∑

i=1

(A − 1)Ui − d.

From this formula, we derive the fact that XA∗ is right dense. Indeed, let w ∈ A+,
and set w = au, with a ∈ A. Each of the sets Yi is maximal prefix. Thus, each YiA

∗ is
right dense. We show that there exists a word v such that simultaneously auv ∈ YiA

∗

for all i ∈ {1, . . . , d} and also uv ∈ YiA
∗ for all i ∈ {1, . . . , d}. Indeed, there exists a

word v′
1 such that auv′

1 ∈ Y1A
∗. There exists a word v′′

1 such that uv′
1v

′′
1 ∈ Y1A

∗. Set
v1 = v′

1v
′′
1 . Then both uv1, auv1 ∈ Y1A

∗. In the same way, there is a word v2 such
that both uv1v2 and auv1v2 are in Y1A

∗ and in Y2A
∗. Continuing in this way, there is

a word v such that uv, auv ∈ YiA
∗ for i = 1, . . . , d. Thus for each i ∈ {1, . . . , d}

((A − 1)Ui,wv) = (AUi,wv) − (Ui,wv)

= (Ui, uv) − (Ui,wv) = 0 − 0 = 0.

248 6 Bifix codes

Figure 6.8 A maximal bifix code of degree 4.

Consequently

(XA∗, wv) = (A∗, wv) = 1.

Thus, wv ∈ XA∗. Consequently XA∗ is right dense or equivalently X is right com-
plete. In view of Proposition 6.2.1, this means that X is maximal bifix.

Let w ∈ H̄ (X) be a word which is not an internal factor of X. Then w �∈ Ui

for 1 ≤ i ≤ d. The set Yi being maximal prefix, we have w ∈ YiA
∗ for 1 ≤ i ≤ d.

Consequently, w has exactly d prefixes which are suffixes of words in X, one in each
Yi . Thus X has degree d. �

Example 6.3.18 Let X be the finite maximal bifix code given in Figure 6.8. The
tower T over X is given in Figure 6.9 (by its values on the set H (X)). The computation
can be done by using Equation (6.27). The derived code X′ is the maximal bifix code
of degree 3 of Examples 6.2.3 and 6.3.10. The set S ′, or proper suffixes of X′, is
indicated in Figure 6.10. The set S of proper suffixes of X is indicated in Figure 6.11.
The maximal prefix code Y = S ∩ H̄ is the set of words indicated in the figure by
(�). It may be verified by inspection of Figures 6.9, 6.10, and 6.11 that S ′ = S ∩ H .

6.4 Kernel

Let X ⊂ A+, and let H = A−XA− be the set of internal factors of X. The kernel of
X, denoted K(X), or K if no confusion is possible, is the set

K = X ∩ H.

Thus a word is in the kernel if it is in X and is an internal factor of X. As we will see
in this section, the kernel is one of the main characteristics of a maximal bifix code.

6.4 Kernel 249

3

2

1
1

1

2
1

1
1

2
1

1
1

Figure 6.9 The tower T over X.

Figure 6.10 The set S ′ of proper suffixes of X′.

·
· ·

·· ·

··

·· ·

··

·

Figure 6.11 The set S of proper suffixes of X.

We start by showing how the kernel is related to the computation of the indicator.

Proposition 6.4.1 Let X ⊂ A+ be a thin maximal bifix code of degree d and let K

be the kernel of X. Let Y be a set such that K ⊂ Y ⊂ X. Then for all w ∈ H (X) ∪ Y ,

(LY ,w) = (LX,w). (6.38)

For all w ∈ A∗,

(LX,w) = min{d, (LY ,w)}. (6.39)

Proof. By Formula (6.3), we have

LX = A∗(1 − X)A∗, LY = A∗(1 − Y)A∗.

250 6 Bifix codes

Let w ∈ A∗, and let F (w) be the set of its factors. For any word x ∈ A∗, the number
(A∗xA∗, w) is the number of occurrences of x as a factor of w. It is nonzero only if
x ∈ F (w). Thus

(A∗XA∗, w) =
∑

x∈F (w)∩X

(A∗xA∗, w),

showing that if F (w) ∩ X = F (w) ∩ Y , then (LX,w) = (LY ,w). Thus, it suffices to
show that F (w) ∩ X = F (w) ∩ Y for all w ∈ H (X) ∪ Y . From the inclusion Y ⊂ X,
we get F (w) ∩ Y ⊂ F (w) ∩ X for all w ∈ A∗. If w ∈ H (X), then F (w) ⊂ H (X) and
F (w) ∩ X ⊂ K(X). Thus F (w) ∩ X ⊂ F (w) ∩ Y in this case.

If w ∈ Y , then no proper prefix or suffix of w is in X, since X is bifix. Thus F (w) ∩
X = {w} ∪ {A−wA− ∩ X} ⊂ {w} ∪ K(X) ⊂ Y . Moreover F (w) ∩ X ⊂ F (w) ∩ Y

in this case also. This shows (6.38).
Now let w ∈ H (X) be an internal factor of X. Then (LX,w) < d by Theorem

6.3.1. Consequently, (LX,w) = (LY ,w) by Formula (6.38). Next let w ∈ H̄ (X).
Then (LX,w) = d. By Formula (6.6), (LX,w) ≤ (LY ,w). This proves (6.39). �

Given two power series σ and τ , we denote by min{σ, τ } the series defined by

(min{σ, τ }, w) = min{(σ,w), (τ,w)}.

Theorem 6.4.2 Let X be a thin maximal bifix code with degree d, and let K be its
kernel. Then

LX = min{dA∗, LK}.

In particular, a thin maximal bifix code is determined by its degree and its kernel.

Proof. Take Y = K(X) in the preceding proposition. Then the formula follows from
(6.39). Assume that there are two codes X and X′ of same degree d and same
kernel. Since K(X) = K(X′), one has LK(X) = LK(X′) whence LX = LX′ which in
turn implies X = X′ by Equation (6.8). This completes the proof. �

Clearly, the kernel of a bifix code is itself a bifix code. We now give a characteriza-
tion of those bifix codes which conversely are the kernel of some thin maximal bifix
code. For this, it is convenient to introduce a notation: for a bifix code Y ⊂ A+, let

µ(Y) = max{(LY , y) | y ∈ Y }. (6.40)

It is a nonnegative integer or infinity. By convention, µ(∅) = 0.

Theorem 6.4.3 A bifix code Y is the kernel of some thin maximal bifix code of degree
d if and only if

(i) Y is not maximal bifix,
(ii) µ(Y) ≤ d − 1.

6.4 Kernel 251

Proof. Let X be a thin maximal bifix code of degree d, and let Y = K(X) be its kernel.
Let us verify conditions (i) and (ii). To verify (i), consider a word x ∈ X such that
(LX, x) = µ(X); we claim that x �∈ H (X). Thus, x �∈ K(X), showing that Y � X.
Assume the claim is wrong. Then uxv ∈ X for some u, v ∈ A+. Consequently,
(LX, uxv) ≥ 1 + (LX, x) since the word uxv has the interpretation (1, uxv, 1) which
passes through no point of x. This contradicts the choice of x, and proves the
claim. Next, for all y ∈ Y , we have (LX, y) = (LY , y) by Formula (6.38). Since
(LX, y) ≤ d − 1 because y ∈ H (X), condition (ii) is also satisfied.

Conversely, let Y be a bifix code satisfying conditions (i) and (ii). Let L ∈ N〈〈A〉〉
be the formal power series defined for w ∈ A∗ by

(L,w) = min{d, (LY ,w)}.

Let us verify that L satisfies the three conditions of Proposition 6.1.11. First, let
a ∈ A and w ∈ A∗. By (6.11),

0 ≤ (LY , aw) − (LY ,w) ≤ 1.

It follows that if (LY ,w) < d, then (L,w) = (LY ,w). Since (LY , aw) ≤ (LY ,w) +
1 ≤ d, one has (LY , aw) = (L, aw). On the other hand, if (LY ,w) ≥ d, then
(L, aw) = (L,w) = d. Thus in both cases

0 ≤ (L, aw) − (L,w) ≤ 1.

The symmetric inequality

0 ≤ (L,wa) − (L,w) ≤ 1

is shown in the same way. Thus the first of the conditions of Proposition 6.1.11 is
satisfied.

Next, for a, b ∈ A, w ∈ A∗, (LY , aw) + (LY ,wb) ≥ (LY ,w) + (LY , awb). Con-
sider first the case where (LY ,w) ≥ d. Then (L, aw) = (L,wb) = (L,w) =
(L, awb) = d, and the inequality

(L, aw) + (L,wb) ≥ (L,w) + (L, awb)

is clear. Assume now that (LY ,w) < d. Then (LY , aw) ≤ d and (LY ,wb) ≤ d. Con-
sequently

(L, aw) + (L,wb) = (LY , aw) + (LY ,wb) ≥ (LY ,w) + (LY , awb)

≥ (L,w) + (L, awb)

since L ≤ LY . This shows the second condition. Finally, we have (LY , 1) = 1, whence
(L, 1) = 1.

Thus, according to Proposition 6.1.11, the series L is the indicator of some bifix
code X. Further, L being bounded, the code X is thin and maximal bifix by Theorem
6.3.1. By the same argument, since the code Y is not maximal, the series LY is
unbounded. Consequently, max{(L,w) | w ∈ A∗} = d, showing that X has degree d.

252 6 Bifix codes

We now prove that Y = X ∩ H (X), that is, Y is the kernel of X. First, we have the
inclusion Y ⊂ H (X). Indeed, if y ∈ Y , then (L, y) ≤ (LY , y) ≤ µ(Y) ≤ d − 1. Thus,
by Theorem 6.3.1, y ∈ H (X). Next, observe that it suffices to show that X ∩ H (X) =
Y ∩ H (X); this is equivalent to showing that (X,w) = (Y ,w) for all w ∈ H (X). Let
us prove this by induction on |w|. Clearly, the equality holds for |w| = 0. Next, let
w ∈ H (X) \ 1. Then (L,w) ≤ d − 1. Thus, (L,w) = (LY ,w). This in turn implies

(A∗XA∗, w) = (A∗YA∗, w).

But F (w) ⊂ H (X). Thus, by the induction hypothesis, (X, s) = (Y , s) for all proper
factors of w. Thus the equation reduces to (X,w) = (Y ,w). �

We now describe the relation between the kernel and the operation of derivation.

Proposition 6.4.4 Let X be a thin maximal bifix code of degree d ≥ 2, and let
H = A−XA−. Set

K = X ∩ H, Y = HA \ H, Z = AH \ H.

Then the code X′ derived from X is

X′ = K ∪ (Y ∩ Z). (6.41)

Further,

K = X ∩ X′. (6.42)

Proof. Let S = A−X and P = XA− be the sets of proper right factors and of proper
prefixes of words in X. Let S ′ = S ∩ H and P ′ = P ∩ H . According to Proposition
6.3.14, S ′ is the set of proper suffixes of words in X′ and similarly for P ′. Thus,

X′ − 1 = (A − 1)S ′ = AS ′ − S ′.

From S ′ = S ∩ H , we have AS ′ = AS ∩ AH , and A S ′ = A S � A H , where �
denotes the Hadamard product (see Section 1.7). Thus,

X′ − 1 = (AS � AH) − S ′.

Now observe that, by Proposition 6.3.14, the set Z is a maximal suffix code with
proper suffixes H . Thus, Z − 1 = (A − 1)H and AH = Z − 1 + H . Similarly, from
X − 1 = (A − 1)S we get AS = X − 1 + S. Substitution gives

X′ − 1 = (X − 1 + S) � (Z − 1 + H) − S ′

= X ∩ Z + S ∩ Z + X ∩ H + S ∩ H + 1 − (1 � H) − (S � 1) − S ′.

Indeed, the other terms have the value 0 since neither X nor Z contains the empty
word. Now Z = P ∩ H̄ (Proposition 6.3.14), whence X ∩ Z = X ∩ P ∩ H̄ = ∅.

6.4 Kernel 253

Also by definition S ′ = S ∩ H and K = X ∩ H . Moreover 1 � H = S � 1 = 1.
Thus the equation becomes

X′ − 1 = S ∩ Z + K − 1.

Finally, note that by Proposition 6.3.14, Y = S ∩ H̄ . Thus, S ∩ Z = S ∩ P ∩ H̄ =
Y ∩ Z and

X′ = K ∪ (Y ∩ Z),

showing (6.41). Next

X ∩ X′ = (K ∩ X) ∪ (X ∩ Y ∩ Z).

Now X ∩ Y ∩ Z = X ∩ P ∩ S ∩ H̄ = ∅, and K ∩ X = K . Thus, as claimed

X ∩ X′ = K. �

Proposition 6.4.5 Let X be a thin maximal bifix code of degree d ≥ 2 and let X′ be
the derived code. Then

K(X′) ⊂ K(X) � X′. (6.43)

Proof. First, we show that H (X′) ⊂ H (X). Indeed, let w ∈ H (X′). Then we have
(TX′, w) ≥ 1, where TX′ is the tower over X′. By Proposition 6.3.12, (TX′, w) =
(TX,w) − (H (X), w). Thus, (TX,w) ≥ 1. This in turn implies that w ∈ H (X) by
Proposition 6.3.8. By definition, K(X′) = X′ ∩ H (X′). Thus, K(X′) ⊂ X′ ∩ H (X).
By Proposition 6.4.4, X′ = K(X) ∪ (Y ∩ Z), where Y and Z are disjoint from H (X).
Thus X′ ∩ H (X) = K(X). This shows that K(X′) ⊂ K(X). Next, Formula (6.42)
also shows that K(X) ⊂ X′. Finally, we cannot have the equality K(X) = X′, since
by Theorem 6.4.3, the set K(X) is not a maximal bifix code. �

The following theorem is a converse of Proposition 6.4.5.

Theorem 6.4.6 Let X′ be a thin maximal bifix code. For each set Y such that

K(X′) ⊂ Y � X′, (6.44)

there exists a unique thin maximal bifix code X such that K(X) = Y and d(X) =
1 + d(X′). Moreover, the code X′ is derived from X.

Proof. We first show that Y is the kernel of some bifix code. For this, we verify
the conditions of Theorem 6.4.3. The strict inclusion Y ⊆ X′ shows that Y is not
a maximal code. Next, by Proposition 6.4.1, (LY , y) = (LX′, y) for y ∈ Y . Thus,
setting d = d(X′) + 1, we have µ(Y) ≤ d(X′) = d − 1.

According to Theorem 6.4.3, there is a thin maximal bifix code X having degree d

such that K(X) = Y . By Theorem 6.4.2, this code is unique. It remains to show that
X′ is the derived code of X. Let Z be the derived code of X. By Proposition 6.4.5,

254 6 Bifix codes

K(Z) ⊂ K(X) = Y � Z. Thus we may apply Proposition 6.4.1, showing that for all
w ∈ A∗,

(LZ,w) = min{d − 1, (LY ,w)}.
The inclusions of Formula 6.44 give, by Proposition 6.4.1,

(LX′ , w) = min{d − 1, (LY ,w)}
for all w ∈ A∗. Thus LX′ = LZ whence Z = X′. �

Proposition 6.4.5 shows that the kernel of a code is located in some “interval”
determined by the derived code. Theorem 6.4.6 shows that all of the “points” of this
interval can be used effectively.

More precisely, Proposition 6.4.5 and Theorem 6.4.6 show that there is a bijection
between the set of thin maximal bifix codes of degree d ≥ 2, and the pairs (X′, Y)
composed of a thin maximal bifix code X′ of degree d − 1 and a set Y satisfying
(6.44). The bijection associates to a code X the pair (X′,K(X)), where X′ is the
derived code of X.

Example 6.4.7 We have seen in Example 6.3.4 that any maximal bifix code of degree
2 has the form

X = C ∪ BC∗B,

where the alphabet A is the disjoint union of B and C, and B �= ∅. This observation
can also be established by using Theorem 6.4.6. Indeed, the derived code of a maximal
bifix code of degree 2 has degree 1 and therefore is A. Then for each proper subset C

of A there is a unique maximal bifix code of degree 2 whose kernel is C. This code
is clearly the code given by the above formula.

Example 6.4.8 The number of maximal bifix codes of degree 3 over a finite alphabet
A having at least two letters is infinite. Indeed, consider an infinite thin maximal bifix
code X′ of degree 2. Its kernel K(X′) is a subset of A and consequently is finite. In
view of Theorem 6.4.6, each set K containing K(X′) and strictly contained in X′ is
the kernel of some maximal bifix code of degree 3. Thus, there are infinitely many
of them. Also, choosing a set K(X) which is not rational gives a bifix code X of
degree 3 which is not rational (Exercise 6.4.5).

6.5 Finite maximal bifix codes

Finite maximal bifix codes have quite remarkable properties which make them fasci-
nating objects.

Proposition 6.5.1 Let X ⊂ A+ be a finite maximal bifix code of degree d. Then for
each letter a ∈ A, ad ∈ X.

6.5 Finite maximal bifix codes 255

With the terminology introduced in Chapter 2, this is equivalent to say that the
order of each letter is the degree of the code.

Proof. Let a ∈ A. According to Proposition 6.2.7, there is an integer n ≥ 1 such that
an ∈ X. Since X is finite, there is an integer k such that ak is not an internal factor
of X. The number of parses of ak is equal to d. It is also the number of suffixes of ak

which are proper prefixes of words in X, that is n. Thus n = d. �

Note as a consequence of this result that it is, in general, impossible to complete
a finite bifix code into a maximal bifix code which is finite. Consider, for example,
A = {a, b} and X = {a2, b3}. A finite maximal bifix code containing X would have
simultaneously degree 2 and degree 3.

We now show the following result:

Theorem 6.5.2 Let A be a finite set, and let d ≥ 1. There are only a finite number of
finite maximal bifix codes over A with degree d.

Proof. The only maximal bifix code over A, having degree 1 is the alphabet A.
Arguing by induction on d, assume that there are only finitely many finite maximal
bifix codes of degree d. Each finite maximal bifix code of degree d + 1 is determined
by its kernel which is a subset of X′. Since X′ is a finite maximal bifix code of degree
d there are only a finite number of kernels and we are finished. �

Denote by βk(d) the number of finite maximal bifix codes of degree d over a k

letter alphabet A.
Clearly βk(1) = 1. Also βk(2) = 1; indeed X = A2 is, in view of Example 6.2.4,

the only finite maximal bifix code of degree 2. It is also clear that β1(d) = 1 for all
d ≥ 1.

Example 6.5.3 Let us verify that

β2(3) = 3. (6.45)

Let indeed A = {a, b}, and let X ⊂ A+ be a finite maximal bifix code of degree 3.
The derived code X′ is necessarily X′ = A2, since it is the only finite maximal bifix
code of degree 2. Let K = X ∩ X′ be the kernel of X. Thus K ⊂ A2.

According to Proposition 6.5.1, both a3, b3 ∈ X. Thus K cannot contain a2 or
b2. Consequently, K ⊂ {ab, ba}. We next rule out the case K = {ab, ba}. Suppose
indeed that this equality holds. For each k ≥ 1, the word (ab)k has exactly two X

parses. But X being finite, there is an integer k such that (ab)k ∈ H̄ (X), and (ab)k

should have three X parses. This is the contradiction.
Thus there remain three candidates for K: K = ∅ which correspond to X = A3,

then K = {ab}, which gives the code X of Example 6.2.3, and K = {ba} which gives
the reversal X̃ of the code X of Example 6.2.3. This shows (6.45). Note also that this
explains why X̃ is obtained from X by exchanging the letters a and b: this property
holds whenever it holds for the kernel.

We now show how to construct all finite maximal bifix codes by a sequence of
internal transformations, starting with a uniform code.

256 6 Bifix codes

Theorem 6.5.4 (Césari) Let A be a finite alphabet and d ≥ 1. For each finite maximal
bifix code X ⊂ A+ of degree d, there is a finite sequence of internal transformations
which, starting with the uniform code Ad , gives X.

Proof. Let K be the kernel of X. If K = ∅, then X = Ad and there is nothing to
prove. This holds also if Card(A) = 1. Thus we assume K �= ∅ and Card(A) ≥ 2.
Let x ∈ K be a word which is not a factor of another word in K . We show that there
exist a maximal suffix code G and a maximal prefix code D such that

GxD ⊂ X. (6.46)

Assume the contrary. Let P = XA−. Since x ∈ K , x is an internal factor. Thus the
set Px−1 is not empty. Then for all words g ∈ Px−1, there exist two words d, d ′ such
that

gxd, gxd ′ ∈ X and X(xd)−1 �= X(xd ′)−1.

Suppose the contrary. Then for some g ∈ Px−1, all the sets X(xd)−1, with d run-
ning over the words such that gxd ∈ X, are equal. Let D = {d | gxd ∈ X} and let
G = X(xd)−1, where d is any element in D. Then GxD ⊂ X, contradicting our
assumption. This shows the existence of d, d ′.

Among all triples (g, d, d ′) such that

gxd, gxd ′ ∈ X and X(xd)−1 �= X(xd ′)−1,

let us choose one with |d| + |d ′| minimal. For this fixed triple (g, d, d ′), set

G = X(xd)−1 and G′ = X(xd ′)−1.

Then G and G′ are distinct maximal suffix codes. Take any word h ∈ G \ G′. Then
either h is a proper right factor of a word in G′ or has a word in G ′ as a proper suffix.
Thus, interchanging if necessary G and G′, there exist words u, g′ ∈ A+ such that

g′ ∈ G, ug′ ∈ G′.

Note that this implies

g′xd ∈ X, ug′xd ′ ∈ X.

Now consider the word ug′xd. Of course, ug′xd �∈ X. Next ug′xd �∈ P , since oth-
erwise g′xd ∈ K , and x would be a factor of another word in K , contrary to the
assumption. Since ug′xd �∈ P ∪ X, it has a proper prefix in X. This prefix cannot be
a prefix of ug′x, since ug′xd ′ ∈ X. Thus it has ug′x as a proper prefix. Thus there is
a factorization d = d ′′v with d ′′, v ∈ A+, and ug′xd ′′ ∈ X.

Now we observe that the triple (ug′, d ′, d ′′) has the same properties as (g, d, d ′).
Indeed, both words ug′xd ′ and ug′xd ′′ are in X. Also X(xd ′)−1 �= X(xd ′′)−1 since
gxd ′ ∈ X, but gxd ′′ �∈ X: this results from the fact that gxd ′′ is a proper prefix of

6.5 Finite maximal bifix codes 257

g x
d

d

g x
d

u g x
d

v

d

Figure 6.12 From triple (g, d, d ′) to triple (ug′, d ′, d ′′).

gxd ∈ X (Figure 6.12). Thus, (ug′, d ′, d ′′) satisfies the same constraints as (g, d, d ′):
however, |d ′| + |d ′′| < |d ′| + |d|. This gives the contradiction and proves (6.46). Let

Y = (X ∪ Gx ∪ xD) \ (x ∪ GxD). (6.47)

In view of Proposition 6.2.10, the set Y is a finite maximal bifix code and, moreover,
the internal transformation with respect to x transforms Y into X. Finally (6.47)
shows that

Card(Y) = Card(X) + Card(G) + Card(D) − 1 − Card(G) Card(D)

= Card(X) − (Card(G) − 1)(Card(D) − 1).

The code G being maximal suffix and Card(A) ≥ 2, we have Card(G) ≥ 2. For the
same reason, Card(D) ≥ 2. Thus

Card(Y) ≤ Card(X) − 1. (6.48)

Arguing by induction on the number of elements, we can assume that Y is obtained
from Ad by a finite number of internal transformations. This completes the proof. �

Observe that by this theorem (and Formula (6.48)) each finite maximal bifix code
X ⊂ A+ of degree d satisfies

Card(X) ≥ Card(Ad), (6.49)

with an equality if and only if X = Ad . This result can be proved directly as follows
(see also Exercise 3.7.1).

Let X be a finite maximal prefix code, and

λ =
∑
x∈X

|x|k−|x|

with k = Card(A). The number λ is the average length of X with respect to the
uniform Bernoulli distribution on A∗. Let us show the inequality

Card(X) ≥ kλ. (6.50)

258 6 Bifix codes

For a maximal bifix code X of degree d, we have λ = d (Corollary 6.3.16), and thus
(6.49) is a consequence of (6.50). To show (6.50), let n = Card(X). Then

λ =
∑
x∈X

k−|x| logk k|x|,

logk n =
∑
x∈X

k−|x| logk n.

The last equality follows from 1 =∑x∈X k−|x|, which holds by the fact that X is a
finite maximal prefix code. Thus,

λ − logk n =
∑
x∈X

k−|x| logk(k|x|/n).

Since
∑

x∈X k−|x| = 1 and since the function log is concave, we have∑
x∈X

k−|x| logk(k|x|/n) ≤ log
(∑

x∈X

k−|x| k
|x|

n

)
,

and consequently

λ − logk n ≤ logk

(∑
x∈X

1

n

)
= 0.

This shows (6.50).

Example 6.5.5 Let A = {a, b} and let X be the finite maximal bifix code of degree
4 with literal representation given on the left of Figure 6.13. The kernel of X is
K = {ab, a2b2}. There is no pair (G,D) composed of a maximal suffix code G and
a maximal prefix code D such that GabD ⊂ X. On the other hand

Aa2b2A ⊂ X.

The code X is obtained from the code Y given on the right of Figure 6.13 by internal
transformation relatively to a2b2. The code Y is obtained from A4 by the sequence
of internal transformations relatively to the words aba, ab2, and ab.

We now describe the construction of a finite maximal bifix code from its derived
code.

Let Y ⊂ A+ be a bifix code. A word w ∈ A∗ is called full (with respect to Y) if
there is an interpretation passing through any point of w. It is equivalent to say that
w is full if any parse of w is an interpretation.

The bifix code Y is insufficient if the set of full words with respect to Y is finite.

Proposition 6.5.6 A thin maximal bifix code over a finite alphabet A is finite if and
only if its kernel is insufficient.

Proof. Suppose first that X is finite. Let d be its degree, and let K be its kernel.
Consider a word w in H̄ (X). Then w has exactly d X-interpretations. These are not

6.5 Finite maximal bifix codes 259

Figure 6.13 The code X on the left and the code Y on the right.

all K-interpretations, because K is a subset of the derived code of X, which has
degree d − 1. Thus, there is a point of w through which no K-interpretation passes.
Thus, w is not full (for K). This shows that the set of full words (with respect to K)
is contained in H (X). Since H (X) is finite, the set K is insufficient.

Conversely, suppose that X is infinite. Since the alphabet A is finite, there is an
infinite sequence (an)n≥0 of letters such that, setting P = XA−, we have for all n ≥ 0,

pn = a0a1 · · · an ∈ P.

We show there exists an integer k such that all words akak+1 · · · ak+� for � ≥ 1 are
full with respect to K . Note that there are at most d(X) integers n for which pn is a
proper suffix of a word in X. Similarly, there exist at most d(X) integers n such that
for all m ≥ 1,

an+1an+2 · · · an+m ∈ P.

Indeed, each such integer n defines an interpretation of each word a0a1 · · · ar , (r > n),
which is distinct from the interpretations associated to the other integers.

These observations show that there exists an integer k such that for all n ≥ k, the
following hold: pn has a suffix in X and an+1an+2 · · · an+m is in X for some m ≥ 1.
The first property implies by induction that for all n ≥ k, there is an integer i ≤ k

such that ai · · · an ∈ X∗.
Let w� = akak+1 · · · ak+� for � ≥ 1. We show that through each point of w� passes

a K-interpretation. Indeed, let

u = akak+1 · · · an, v = an+1an+2 · · · ak+�,

for some k ≤ n ≤ k + 1. There exists an integer i ≤ k such that ai · · · ak−1u ∈ X∗,
and there is an integer m ≥ k + 1 such that vak+1 · · · am ∈ X∗. In fact, these two

260 6 Bifix codes

words are in H (X) ∩ X∗ and consequently they are in K∗. This shows that K is a
sufficient set and completes the proof. �

The previous proposition gives the following result.

Theorem 6.5.7 Let X′ be a finite maximal bifix code of degree d − 1 and with kernel
K ′. For each insufficient subset K of X′ containing K ′, there exists a unique finite
maximal bifix code X of degree d, having kernel K . The derived code of X is X′.

Proof. Since K is insufficient, K is not a maximal bifix code. Thus K ′ ⊂ K � X′. In
view of Theorem 6.4.6, there is a unique thin maximal bifix code X of degree d and
kernel K . The derived code of X is X′. By Proposition 6.5.6, the code X is finite. �

The following corollary gives a method for the construction of all finite maximal
bifix codes by increasing degrees.

Corollary 6.5.8 For any integer d ≥ 2, the function

X �→ K(X)

is a bijection of the set of finite maximal bifix codes of degree d onto the set of all
insufficient subsets K of finite maximal bifix codes X′ of degree d − 1 such that

K(X′) ⊂ K � X′. �

Example 6.5.9 Let A = {a, b}. For each integer n ≥ 0, there exists a unique finite
maximal bifix code Xn ⊂ A+ of degree n + 2 with kernel

Kn = {aibi | 1 ≤ i ≤ n}.
For n = 0, we have K0 = ∅ and X0 = A2. Arguing by induction, assume Xn con-
structed. Then Kn ⊂ Xn and also an+2, bn+2 ∈ Xn, since d(Xn) = n + 2. We show
that an+1bn+1 ∈ Xn. Indeed, no proper prefix of an+1bn+1 is in Xn since each has a
suffix in Xn or is a proper suffix of an+2. Consider now a word an+1bn+k for a large
enough integer k. Since Xn is finite, there is some prefix an+1bn+r ∈ Xn for some
r ≥ 1. If r ≥ 2, then bn+2 is a suffix of this word. Thus r = 1, and an+1bn+1 ∈ Xn.

Clearly Kn ⊂ Kn+1. The set Kn+1 is insufficient. In fact, a has no Kn+1 interpreta-
tion passing through the point (a, 1) and b has no interpretation passing through the
point (1, b). Therefore, the set of full words is {1}. Finally

Kn ⊂ Kn+1 � Xn.

This proves the existence and uniqueness of Xn+1, by using Theorem 6.5.7.
The code X1 is the code of degree 3 given in Example 6.2.3. The code X2 is the

code of degree 4 of Example 6.5.5.

We end this section with some remarks on the length distribution of bifix codes.
Contrary to the case of prefix codes, it is not true that any sequence (un)n≥1 of integers

6.5 Finite maximal bifix codes 261

such that
∑

n≥1 unk
−n ≤ 1 is the length distribution of a bifix code on k letters. For

instance, there is no bifix code on the alphabet {a, b} which has the same distribution
as the prefix code {a, ba, bb}. Indeed, such a code must contain a letter, say a, and
then the only possible word of length 2 is bb. We show that the following holds.

Proposition 6.5.10 For any sequence (un)n≥1 of integers such that∑
n≥1

unk
−n ≤ 1

2
(6.51)

there exists a bifix code on an alphabet of k letters with length distribution (un)n≥1.

Proof. We show by induction on n ≥ 1 that there exists a bifix code Xn of length
distribution (ui)1≤i≤n on an alphabet A of k symbols. It is true for n = 1 since
u1k

−1 ≤ 1/2 and thus u1 < k. Assume that the property is true for n. We have by
(6.51)

n+1∑
i=1

uik
−i ≤ 1

2

or equivalently, multiplying both sides by 2kn+1,

2(u1k
n + · · · + unk + un+1) ≤ kn+1

whence

un+1 ≤ 2un+1 ≤ kn+1 − 2(u1k
n + · · · + unk). (6.52)

Since Xn is bifix by induction hypothesis, we have

Card(XnA
∗ ∩ An+1) = Card(A∗Xn ∩ An+1) = u1k

n + · · · + unk.

Thus, we have

Card((XnA
∗ ∪ A∗Xn) ∩ An+1) ≤ Card(XnA

∗ ∩ An+1) + Card(A∗Xn ∩ An+1)

≤ 2(u1k
n + · · · + unk)

It follows with Equation (6.52) that

un+1 ≤ kn+1 − 2(u1k
n + · · · + unk)

≤ Card(An+1) − Card((XnA
∗ ∪ A∗Xn) ∩ An+1)

= Card(An+1 − (XnA
∗ ∪ A∗Xn))

This shows that we can choose a set Y of un+1 words of length n + 1 on the alphabet
A which do not have a prefix or a suffix in Xn. Then Xn+1 = Y ∪ Xn is bifix, which
ends the proof. �

262 6 Bifix codes

Table 6.1 The list of maximal 2-realizable length distributions of length at most
N ≤ 4.

2 3 4

N u1 u2 u(1/2) u1 u2 u3 u(1/2) u1 u2 u3 u4 u(1/2)

2 0 1.0000 2 0 0 1.0000 2 0 0 0 1.0000
1 1 0.7500 1 1 1 0.8750 1 1 1 1 0.9375

1 0 2 0.7500 1 0 2 1 0.8125
1 0 1 3 0.8125
1 0 0 4 0.7500

0 4 1.0000 0 4 0 1.0000 0 4 0 0 1.0000
0 3 1 0.8750 0 3 1 0 0.8750

0 3 0 1 0.8125
0 2 2 0.7500 0 2 2 2 0.8750

0 2 1 3 0.8125
0 2 0 4 0.7500

0 1 5 0.8750 0 1 5 1 0.9375
0 1 4 4 1.0000
0 1 3 5 0.9375
0 1 2 6 0.8750
0 1 1 7 0.8125
0 1 0 9 0.8125

0 0 8 1.0000 0 0 8 0 1.0000
0 0 7 1 0.9375
0 0 6 2 0.8750
0 0 5 4 0.8750
0 0 4 6 0.8750
0 0 3 8 0.8750
0 0 2 10 0.8750
0 0 1 13 0.9375
0 0 0 16 1.0000

The bound 1/2 in the statement of Proposition 6.5.10 is not the best possible. It
is conjectured that the statement holds with 3/4 instead of 1/2. For convenience, we
call a sequence (un) of integers k-realizable if there is a bifix code on k symbols with
this length distribution.

We fix N ≥ 1 and we order sequences (un)1≤n≤N of integers by setting (un) ≤ (vn)
if and only if un ≤ vn for 1 ≤ n ≤ N . If (un) ≤ (vn) and (vn) is k-realizable then so is
(un). We give in Table 6.1 the values of the maximal 2-realizable sequences for N ≤ 4.
We set u(z) =∑ unz

n. For each value of N , we list in decreasing lexicographic
order the maximal realizable sequence with the corresponding value of the sum
u(1/2) =∑ un2−n. The distributions with value 1 correspond to maximal bifix codes.
For example, the distribution (0, 1, 4, 4) corresponds to the maximal bifix code of
Example 6.2.3.

It can be checked on this table that the minimal value of the sums u(1/2) is 3/4.
Since the distributions listed are maximal for componentwise order, this shows that

6.6 Completion 263

Table 6.2 The length distributions of binary finite maximal bifix codes
of degree at most 4.

d 1 2 3 4

2 1 0 4 1 0 0 8 1 0 0 0 16 1
0 0 1 12 4 6
0 0 2 8 8 6
0 0 2 9 4 4 8
0 0 3 5 8 4 6
0 0 3 6 4 8 4
0 0 3 6 5 4 4 4
0 0 4 3 5 8 4 4

0 1 4 4 2 0 1 0 5 12 4 2
0 1 0 6 8 8 2
0 1 0 6 9 4 4 4
0 1 0 7 5 8 4 4
0 1 0 7 6 5 4 4 2
0 1 0 8 2 9 4 4 2
0 1 1 3 9 8 4 4
0 1 1 4 6 8 8 4
0 1 1 4 6 9 4 4 4
0 1 1 5 3 9 8 4 4
0 1 2 2 4 9 12 4 2

1 1 3 73

for any sequence (un)1≤n≤N with N ≤ 4 such that u(1/2) ≤ 3/4, there exists a binary
bifix code X such that uX = u.

Since a thin maximal bifix code X is also maximal as a code (Proposition 6.2.1),
its generating series satisfies fX(1/k) = 1, where k is the size of the alphabet. Table
6.2 lists the length distributions of finite maximal bifix codes of degree d ≤ 4 over
{a, b}. For each degree, the last column contains the number of bifix codes with
this distribution, with a total number of 73 of degree 4. There are 39 of them with
{a, b}3 as derivative and 34 with one of the two other bifix codes of degree 3 (see the
exercises).

6.6 Completion

For a finite bifix code X, a simple construction shows that it is contained in a maximal
rational bifix code. Indeed, either X is already maximal, or it is, for each large enough
integer d, the kernel of a maximal rational bifix code of degree d (Theorem 6.4.3 and
Exercise 6.4.1).

For a rational bifix code X which is not maximal, it is not true in general that it is
the kernel of a maximal rational bifix code. Instead of acting from the outside, adding
words having the words of X as factors, one has to work from the inside, adding first
words which are factors of words of X (and therefore are in the kernel of the result).

264 6 Bifix codes

Theorem 6.6.1 Any rational bifix code is contained in a maximal rational bifix code.

Let Y ⊂ A∗ be a bifix code. Recall that its indicator is the formal series defined by

LY = A∗(1 − Y)A∗.

We shall need several properties of the indicator, grouped in the following lemma for
convenience.

Lemma 6.6.2 Let Y ⊂ A∗ be a bifix code and L its indicator. For any words u, v,w

and any letter a, the following hold.

(1) For each i with 1 ≤ i ≤ (L,w), there is a prefix p of w such that (L,p) = i.
(2) If Y is a rational set and is not a maximal code, then for any word u, the set of

values {(L, uv) | v ∈ A∗} is unbounded.
(3) (L,w) = (L,wa) if and only if wa has a suffix in Y .
(4) If (L, v) = (L, uv), then uv has a prefix in Y .
(5) If Y ⊂ Z, then LY ≥ LZ .

Proof. Property (1) is an easy consequence of Proposition 6.1.11, (6.12). For (2),
we note that a rational code is thin (Proposition 2.5.20); if Y is rational and not
maximal, L is unbounded (Theorem 6.3.1); hence, (L, v) is arbitrarily large, and so
is (L, uv) ≥ (L, v) by Proposition 6.1.8.

By (6.5), (L,w) is equal to |w| + 1− the numbers of factors of w which are in Y .
This number of factors is the same for wa, except if wa has a suffix in Y , in which
case wa has exactly one more (since Y is a suffix code). This implies (3). For (4),
assume (L, v) = (L, uv). By Proposition 6.1.8, we have (L, v) = (L, u′v) for each
suffix u′ of u; hence by the symmetric statement of (3), an easy induction on the
length of u′, starting with |u′| = 1, shows that u′v has a prefix in Y . Thus uv has a
prefix in Y . Property (5) is (6.6). �

The idea of the construction for the proof of Theorem 6.6.1 is the following.
Starting with a rational bifix code X = X0 ⊂ A+, we build an increasing sequence
of sets (Xn)n≥1 which all are shown to be rational bifix codes. It will then be proved
that for some n, Xn is a maximal rational bifix code containing X, thereby proving
the theorem.

For any set Y , we set P (Y) = Y \ YA+. It is the set of words of Y which are
minimal for the prefix order. Thus, w ∈ P (Y) if and only if w is in Y and has no
proper prefix in Y . The set P (Y) is prefix. Next, I (Y) denotes the set of words in
A∗ which are incomparable with Y for the prefix order. In other words, w ∈ I (Y) if
and only if w is not a prefix of a word in Y and has no prefix in Y . Sometimes the
algebraic formulation I (Y) = A∗ \ (YA− ∪ YA∗) is useful. Finally, we denote by Y

the set P (I (Y)). It is called the companion of Y . Thus w ∈ Y if and only if w is
incomparable with Y , and each proper prefix of w is a prefix of a word in Y . Indeed, a
proper prefix of w is a prefix of a word of Y or has a prefix in Y , but the second case is
ruled out because it would imply that w itself has a prefix in Y and so is comparable
with Y .

6.6 Completion 265

The companion of a set should not be confused with its complement. Recall also
that A−Y (resp. YA−) denotes the set of proper suffixes (resp. prefixes) of words in
Y .

Proposition 6.6.3 Let X = X0 be a bifix code. Define recursively, for n ≥ 0:

Ln = LXn
(6.53)

Vn = {w ∈ A∗ | (Ln,w) = n + 1}, (6.54)

Zn = I (Xn) ∩ P (Vn), (6.55)

Xn+1 = Xn ∪ (Zn \ A−X). (6.56)

For each n ≥ 1, the set Xn is a bifix code and (Ln,w) ≤ n for all w ∈ Xn \ X.

Note that the union defining Xn+1 is disjoint, since Zn ⊂ I (Xn) and I (Xn) cannot
intersect Xn.

Proof. Assume that Xn is a bifix code and satisfies the inequality in the statement.
We show that the same hold for Xn+1. By Equation (6.55), Zn is a prefix code which
is incomparable with Xn for the prefix order. In view of Equation (6.56), Xn+1 is the
union of two prefix codes which are incomparable for the prefix order because the
second is contained in I (Xn). Thus Xn+1 itself is a prefix code.

We show that Xn+1 is a suffix code. By contradiction, suppose that for some
x, x ′ ∈ Xn+1, x is a proper suffix of x ′. By construction, we have two cases : either
x ∈ Xn, or x ∈ Zn \ A−X.

In the first case, we have x ′ �∈ Xn, since Xn is a suffix code by induction. Thus
x ′ ∈ Zn \ A−X and x ′ ∈ P (Vn), hence x ′ is in Vn, and by definition of the latter,
(Ln, x

′) = n + 1. Write x ′ = wa, a ∈ A. Since x ′ has a suffix in Xn (namely x

itself), we have (Ln,w) = (Ln,wa) by Lemma 6.6.2 (3). Thus (Ln,w) = n + 1,
which implies that w ∈ Vn. This contradicts the fact that x ′ ∈ P (Vn).

In the second case, x ∈ Zn, hence x ∈ Vn and (Ln, x) = n + 1. Moreover, x ′ �∈ X

(otherwise x ∈ A−X). Suppose that x ′ ∈ Xn. Then x ′ ∈ Xn \ X and by the induction
hypothesis, (Ln, x

′) ≤ n. By Proposition 6.1.8, this gives a contradiction, since x is
a factor of x ′. Thus we have x ′ ∈ Zn \ A−X. This implies x ′ ∈ Vn and consequently
(Ln, x

′) = n + 1 = (Ln, x). From Lemma 6.6.2 (4), we deduce that x ′ has a prefix in
Xn, a contradiction, since x ′ ∈ Zn ⊂ I (Xn). We conclude that Xn+1 is a bifix code.
Observe that Ln+1 ≥ Ln by Lemma 6.6.2 (5) because Xn is a subset of Xn+1.

It remains to prove that (Ln+1, x) ≤ n + 1 for x ∈ Xn+1 \ X. Let indeed x ∈
Xn+1 \ X. Since Xn ⊂ Xn+1, we have by Lemma 6.6.2 (5), (Ln+1, x) ≤ (Ln, x). If
x ∈ Xn, then (Ln, x) ≤ n by the induction hypothesis; if x �∈ Xn, then x ∈ Zn ⊂ Vn,
and (Ln, x) = n + 1. In both case, we conclude that (Ln+1, x) ≤ n + 1. �

Lemma 6.6.4 Let X = X0 be a rational bifix code. For each n ≥ 1, the set Xn is a
rational set.

Proof. We prove the statement by induction on n. It is true for n = 0 by hypothesis.
Suppose next that Xn is rational. Let Un = A∗ \ XnA

∗. This set is rational. According
to (6.4), for any word z, (Ln, z) is the number of suffixes of z which are in Un.

266 6 Bifix codes

x0 p0 s0
...

x1 p1 s1
...

x2 p2 s2

Figure 6.14 A chain for the factor order.

Let A = (Q, i, T) be a deterministic automaton recognizing Un. Let B = (Q ∪
ω,ω, T ∪ ω) with ω /∈ Q be the automaton obtained as follows. The edges are those
of A plus a loop (ω, a, ω) for each letter a in A and an edge (ω, a, q) for each edge
(i, a, q) of A.

Then, for any word z, the number of successful paths labeled by z starting in ω is
equal to the number of suffixes of z which are in Un. In other words, (Ln, z) = (|B|, z).
Thus, by Proposition 1.10.4, the set Vn is rational. Since I (Xn) = A∗ \ (XnA

− ∪
XnA

∗), the set I (Xn) is rational. Since P (Vn) = Vn \ VnA
+, the set P (Vn) is also

rational. Thus Zn is a rational set and so is Xn+1. �

From now on, we assume that X = X0 is a rational bifix code. In order to prove
the theorem it is enough, in view of Lemma 6.6.3, to show that Xn is a maximal bifix
code for some n. By Theorem 2.5.13 and Proposition 2.5.20, it is therefore enough
to show that Xn is a right complete prefix code. This is the purpose of the following
lemmas.

Given a partially ordered set S, the height of an element s of S, denoted h(s), is
the maximal length of the strictly increasing chains ending in s. The height of S is
the maximal height of its elements, so it is simply the maximal length of a strictly
increasing chain of elements in S. The height is finite or infinite. We denote by S(i)

the set of elements of height i of S.
It follows from Proposition 3.2.9 that for a rational prefix code Y , the height of the

set of suffixes of Y , ordered by the prefix order, is finite. A symmetric property holds
for suffix codes. We denote by π the height of the set of prefixes of X for the suffix
order.

Recall that X = P (I (X)) denotes the companion of X. Thus, a word is in X if it is
incomparable with the words of X for the prefix order and has no proper prefix with
this property.

Lemma 6.6.5 The height of X for the factor order is at most π .

Proof. Assume, arguing by contradiction, that there is a strictly increasing chain for
the factor order x0, x1, x2, . . . , xπ of length π + 1 with xi ∈ X. Since X is a prefix
code, xi is not a prefix of xi+1. We may write xi = pisi , in such a way that each pi is
a proper suffix of pi+1, each si is a nonempty proper prefix of si+1 (see Figure 6.14).

Note that pi �= pi+1, since xi is not a prefix of xi+1. Hence p0, . . . , pπ is a strictly
increasing chain for the suffix order.

We prove that each pi is a prefix of some word in X which gives a contradiction in
view of the definition of π . Indeed, each pi is a proper prefix of xi . Since xi ∈ P (I (X)),

6.6 Completion 267

each proper prefix of xi is a prefix of a word in X. Thus pi is a prefix of a word in
X. �

Consider X, the companion of X, ordered by the factor order. We set, for i ≥ 1,

X(i) = {w ∈ X | h(w) ≤ i},
where h(w) denotes the height of w in the set X for the factor order. In particular,
X(1) is the set of words in X which are minimal for the factor order. The previous
lemma shows that X(π) = X.

Let σ be equal to 1+ the height of the set of suffixes of X for the prefix order.

Lemma 6.6.6 Let T be a set of words such that every proper suffix of a word of T is
comparable for the prefix order with some word in Xn. Then Ln is bounded on T .

Proof. Let w ∈ T . By Lemma 6.1.6, (Ln,w) = 1 + �, where � is the number of proper
suffixes of w which belong to A∗ \ XnA

∗; now, since none of them is in I (Xn), they
all belong to XnA

−.
Therefore � is bounded by the maximal length of increasing chains of prefixes

of Xn for the suffix order. This number is bounded, by the symmetric statement of
Proposition 3.2.9, since Xn is rational. �

Lemma 6.6.7 There exists m such that Lm is bounded on the companion X of X.

Proof. We prove by induction on i ≥ 1 that there exists k such that Lk is bounded
on X(i).

For i = 1, we prove that L0 is bounded on X(1). For this, we show that we may
apply Lemma 6.6.6 with n = 0 and T = X(1). Indeed, assume on the contrary that
some v ∈ X(1) has a proper suffix s which is in I (X). Then some prefix of s is in
P (I (X)) = X, and v has a proper factor in X, which contradicts the definition of X(1).

Suppose now that i > 1. By the induction hypothesis there are integers m and �

such that Lm(w) ≤ � for all w ∈ X(i−1). We may suppose that m ≤ �. Let k = � + σ

where σ was defined above. Since m ≤ � + σ , we have Xm ⊂ X�+σ and Lm ≥ L�+σ

by Lemma 6.6.2 (5). Thus Lk is bounded on X(i−1). It remains to show that Lk is
bounded on X(i).

Let w ∈ X(i) \ X(i−1). We show that any proper suffix u of w is comparable with
Xk for the prefix order.

Indeed, if u is comparable with X for the prefix order, then it is comparable with
Xk (since X ⊂ Xk); if on the other hand, u ∈ I (X), then u has a prefix v in X. Then v

is a proper factor of w, hence v ∈ X(i−1) and u ∈ X(i−1)A∗ is comparable with Xk for
the prefix order by Lemma 6.6.8 below with T = X(i−1). Thus Lemma 6.6.6 applies
with T = X(i) \ X(i−1) and n = k, and we deduce that Lk is bounded on X(i). �

Lemma 6.6.8 Let T ⊂ X and m, � be two integers with 0 ≤ m ≤ �. If X�+σ is not
maximal and (Lm,w) ≤ � for any w ∈ T , then every word in T A∗ is comparable for
the prefix order with a word in X�+σ .

Proof. Define Wi = P (V�+i) ∩ T A∗ for i ≥ 0. The main step consists in showing that
each word in Wσ has some prefix in X�+σ .

268 6 Bifix codes

For this, take a word v ∈ Wσ . Since v ∈ V�+σ , we have (L�+σ , v) = � + σ + 1. Let
i ∈ {0, . . . , σ }. Then X�+i ⊂ X�+σ and thus we have by Lemma 6.6.2 (5) (L�+i , v) ≥
(L�+σ , v) = � + σ + 1 ≥ � + i + 1.

Thus by Lemma 6.6.2 (1), there exists a prefix pi of v such that (L�+i , pi) = � +
i + 1, and therefore pi ∈ V�+i . We may even assume, by choosing a shortest prefix,
that pi ∈ P (V�+i). For i < σ , pi is a proper prefix of pi+1. Indeed, if on the contrary
pi+1 is a prefix of pi , then � + i + 1 = (L�+i , pi) ≥ (L�+i , pi+1) ≥ (L�+i+1, pi+1) =
� + i + 2 by Proposition 6.1.8 and Lemma 6.6.2 (5), a contradiction.

Now, v = tu for some t ∈ T and u ∈ A∗. We have � + i + 1 > � ≥ (Lm, t) by
the hypothesis in the Lemma and (Lm, t) ≥ (L�+i , t) by Lemma 6.6.2 (5) because
Xm ⊂ X�+i . Since (L�+i , pi) = � + i + 1, the word t must be a prefix of pi by
Proposition 6.1.8. Thus pi ∈ T A∗ and therefore pi ∈ Wi .

Suppose, arguing by contradiction, that v ∈ I (X�+σ). We first show that this implies
that pi ∈ I (X�+i).

Indeed, pi cannot have a prefix in X�+i , since this word would be prefix of v,
contradicting the assumption that v is not comparable with X�+σ which contains
X�+i . Next, suppose that pi is a prefix of some x ∈ X�+i . Then the word t which
is a prefix of pi is also a prefix of x. Since t is incomparable with X, the word x

is not in X. Thus by Lemma 6.6.3, (L�+i , x) ≤ � + i, which implies by Proposition
6.1.8 that (L�+i , pi) ≤ (L�+i , x) ≤ � + i. But pi ∈ Wi ⊂ V�+i , and this implies that
(L�+i , pi) = � + i + 1, a contradiction.

We assume now i < σ . Since pi is in I (X�+i), it is in Z�+i . Now, pi �∈ X�+i+1,
since otherwise v has a prefix in X�+i+1 ⊂ X�+σ , which contradicts the assumption
that v ∈ I (X�+σ). Thus we must have pi ∈ A−X, since Z�+i \ A−X ⊂ X�+i+1.

Since each pi is a proper prefix of pi+1, we obtain a chain of σ suffixes of X, a
contradiction with the definition of σ .

We conclude that v /∈ I (X�+σ), and consequently there is some word x ∈ X�+σ

which is comparable with v. If v is a prefix of x, then x �∈ X, otherwise, t is comparable
with X, contradicting the fact that t ∈ T ⊂ X. Hence by Lemma 6.6.3, (L�+σ , x) ≤
� + σ . Now, (L�+σ , v) = � + σ + 1, which is a contradiction by Proposition 6.1.8.
Thus x is a prefix of v. Thus we have shown that each word in Wσ has a prefix in X�+σ .

Let now w = tu be any word in T A∗ with t ∈ T . We have (L�+σ , t) ≤ (Lm, t) (by
Lemma 6.6.2 (5)) ≤ � < � + σ + 1. Thus, by Proposition 6.1.8 and Lemma 6.6.2 (2),
since X�+σ is not maximal, there is some word u′, comparable with u for the prefix
order, such that L�+σ (tu′) = � + σ + 1. Thus v = tu′ ∈ V�+σ , and one may even
assume that v ∈ P (V�+σ), hence v ∈ Wσ . By what we have already shown, v has a
prefix in X�+σ and we conclude that w is comparable with a word in X�+σ . �

Proof of Theorem 6.6.1. By Lemma 6.6.7, Lk is bounded on X for some k. Thus we
may find � such that k ≤ � and (Lk,w) ≤ � for any w in X. Lemma 6.6.8 with T = X

now implies that every word in XA∗ is comparable for the prefix order with a word
in X�+σ . Let w ∈ A∗. If w is not comparable with a word in X, then it is in XA∗, and
therefore is comparable with a word in X�+σ . Thus any word in A∗ is comparable for
the prefix order, with some word in X�+σ . This shows that X�+σ is a maximal bifix
code containing X. It is rational by Lemma 6.6.4. Hence the theorem is proved. �

6.7 Exercises 269

1
2

3
4

5
54

43
3

1
2

2

3

4
5 6

4 5

3 4

Figure 6.15 The prefix codes X = ba∗bb and X = a ∪ ba∗ba.

1
1

2
2

2
3

33
33

3

1
1

2
2

2
3

3
3

33
33

3

Figure 6.16 The bifix codes X2 = a ∪ ba∗bb and X4 = a ∪ ba∗ba∗b.

We give now an example which may be illuminating. Let X = X0 = ba∗bb. The
tree representing X, viewed as prefix code, is in Figure 6.15 on the left where the
values of the indicator on the prefixes are indicated. It follows that

I (X) = aA∗ ∪ b2aA∗ ∪ babaA∗ ∪ ba2baA∗ · · · = aA∗ ∪ ba∗baA∗.

Thus X = a ∪ ba∗ba. The prefix code X is indicated in Figure 6.15 on the right
with the values of L0 on its prefixes. It is easy to see that, by definition of L0,
(L0, a) = 2 and (L0, banba) = n + 4, since a and banba have no factor in X. Hence,
by Proposition 6.1.8, (L0, w) ≥ 2 for any w in I (X) = (a ∪ ba∗ba)A∗ and we deduce
that Z0 = ∅. Thus X = X1 and I (X) = I (X1). Now the only possible word in Z1 =
I (X1) ∩ P (V1) is a; thus Z1 = {a} and X2 = X1 ∪ {a} = a ∪ ba∗bb, since a �∈ A−X

(see Figure 6.16).
Now, I (X2) = ba∗baA∗. We have (L2, banba) = n + 4 − (n + 1) = 3, since the

only factor of banba in X2 is a, with multiplicity n + 1. Moreover (L2, banb) = 3,
hence banba �∈ P (V2) and likewise, no w in I (X2) is in P (V2). This implies that
Z2 = ∅ and X3 = X2.

We now have Z3 = P (V3) ∩ I (X3) = ba∗ba+b. Indeed for n,m ≥ 0
(L3, banbam) = 3 and (L3, banbamb) = 4. Thus X4 = a ∪ ba∗bb ∪ ba∗ba+b = a ∪
ba∗ba∗b. It is easily checked that I (X4) = ∅ and thus X4 is right complete, hence
maximal.

6.7 Exercises

Section 6.1

6.1.1 Let X ⊂ A+ be a bifix code and L = LX its indicator. Show that if for u, v ∈ A∗

we have (L, uvu) = (L, u), then for all m ≥ 0, (L, (uv)mu) = (L, u).

270 6 Bifix codes

6.1.2 Let X ⊂ A+ be a bifix code and let H be the subgroup of the free group on A

generated by X.
Show that the following conditions are equivalent:

(i) The minimal deterministic automaton of X∗ is bideterministic.
(ii) For all t, u, v,w ∈ A∗, tu, vu, vw ∈ X implies tw ∈ X.

(iii) H ∩ A∗ = X∗.

6.1.3 The aim of this exercise is to describe a method, which allows a decoding in
both directions for any finite binary prefix code. Let X be a finite prefix code on
the alphabet {0, 1} and let � be the maximal length of the words of X. Consider a
sequence x1, x2, . . . , xn of codewords. Let

w = x1x2 · · · xn0� ⊕ 0�x̃1x̃2 · · · x̃n (6.57)

where x̃ is the reversal of the word x and where ⊕ denotes the addition mod 2. Show
that w can be decoded in both directions with finite delay.

Section 6.2

6.2.1 Let X ⊂ A+ be a thin maximal prefix code. To each word w = a1a2 · · · an ∈
F̄ (X) with ai ∈ A, we will associate a function ρw from {1, 2, . . . , n} into itself.

(a) Show that for each integer i in {1, 2, . . . , n}, there exists a unique integer k ∈
{1, 2, . . . , n} such that either aiai+1 · · · ak or aiai+1 · · · ana1 · · · ak is in X. Set
ρw(i) = k. This defines, for each w ∈ F̄ (X), a mapping ρw from {1, 2, . . . , |w|}
into itself.

(b) Show that X is suffix if and only if the function ρw is injective for all w ∈ F̄ (X).
(c) Show that X is left complete if and only if the function ρw is a surjection for all

w ∈ F̄ (X).
(d) Derive from this that a thin maximal prefix code is suffix if and only if it is left

complete (see the proof of Proposition 6.2.1).

6.2.2 Let P = {ww̃ | w ∈ A∗} be the set of palindrome words of even length.

(a) Show that P ∗ is biunitary. Let X be the bifix code for which X∗ = P ∗. Then X

is called the set of palindrome primes.
(b) Show that X is left complete and right complete.

6.2.3 Show that two maximal bifix codes which are obtained one from the other by
internal transformation are either both recognizable or both not recognizable.

6.2.4 Show that a maximal bifix code X ⊂ A+ is a group code if and only if for any
u, v,w, r ∈ A∗,

uv, uw, rv ∈ X∗ ⇒ rw ∈ X∗. (6.58)

(Hint: Use Exercise 6.1.2.)

6.7 Exercises 271

Section 6.3

6.3.1 Let X be a thin maximal bifix code of degree d. Let w ∈ H̄ (X) and let

1 = p1, p2, . . . , pd

be the sequence of the suffixes of w which are proper prefixes of X. Set Y1 = 1 and
Yi = p−1

i X for 2 ≤ i ≤ d. Show that each Yi is a maximal prefix set, and that the set
S of proper suffixes of X is the disjoint union of the Yi’s (see Theorem 6.3.15).

6.3.2 Let X be a thin maximal bifix code of degree d and let S be the set of its proper
suffixes. Show that there exists a unique partition of S into a disjoint union of d prefix
sets Yi satisfying Yi−1 ⊂ YiA

− for 2 ≤ i ≤ d. (Hint: Set Yd = S ∩ H̄ (X).)

Section 6.4

6.4.1 Let X be a finite bifix code. Show, using Theorem 6.4.3, that there exists a
recognizable maximal bifix code containing X.

6.4.2 Show that if X is a recognizable maximal bifix code of degree d ≥ 2, then the
derived code is recognizable. (Hint: Use Proposition 6.3.14.)

6.4.3 Let X be a thin maximal bifix code of degree d ≥ 2. Let w ∈ H̄ (X), and let s

be the longest prefix of w which is a proper suffix of X. Further, let x be the prefix
of w which is in X. Show that the shorter one of s and x is in the derived code X′.
(Hint: Prove that if |x| ≥ |s|, then s ∈ (HA \ H) ∩ (AH \ H), with H = A−XA−.)

6.4.4 Let X1 and X2 be two thin maximal bifix codes having same kernel: K(X1) =
K(X2). Set

P1 = A∗ \ X1A
∗, P2 = A∗ \ X2A

∗,

Z = (X1 ∩ P2) ∪ (X1 ∩ X2) ∪ (P1 ∩ X2).

(see Exercise 3.4.3). Show that Z is thin, maximal, and bifix. Use this to prove directly
that two thin maximal finite bifix codes with same kernel and same degree are equal.
This is Theorem 6.4.2 for finite codes.

6.4.5 Show that there exists a maximal bifix code of degree 3 on {a, b} which is not
rational. (Hint: Choose a code with non rational kernel.)

Section 6.5

6.5.1 Let X be a finite maximal bifix code. Show that if a word w ∈ A+ satisfies

pwq = rws ∈ X (6.59)

for some p, q, r, s ∈ A+, and p �= r , then w ∈ H (X′), where X′ is the derived code
of X. (Hint: Start with a word of maximal length satisfying (6.59), consider the word
rwq and use Proposition 6.3.14.)

272 6 Bifix codes

6.5.2 For a finite code X, let �(X) = max{|x| | x ∈ X}. Show, using Exercise 6.5.1,
that if X is a finite maximal bifix code over a k letter alphabet, then

�(X) ≤ �(X′) + k�(X′)−1,

with X′ denoting the derived code of X. Denote by λ(k, d) the maximum of the lengths
of the words of a finite maximal bifix code of degree d over a k letter alphabet. Show
that for d ≥ 2

λ(k, d) ≤ λ(k, d − 1) + kλ(k,d−1)−1.

Compare with the bound given by Theorem 6.5.2.

6.5.3 Let X ⊂ A+ be a finite maximal bifix code of degree d. Let a, b ∈ A, and
define a function ϕ from {0, 1, . . . , d − 1} into itself by

aibd−ϕ(i) ∈ X.

Show that ϕ is a bijection.

6.5.4 Show that for each k ≥ 2, the number βk(d) of finite maximal bifix codes of
degree d over a k letter alphabet is unbounded as a function of d.

6.5.5 A quasipower of order n is defined by induction as follows: a quasipower of
order 0 is an unbordered word. A quasipower of order n + 1 is a word of the form
uvu, where u is a quasipower of order n. Let k be an integer and let αn be the sequence
inductively defined by

α1 = k + 1, αn+1 = αn(kαn + 1) (n ≥ 1).

Show that any word over a k letter alphabet with length at least equal to αn has a
factor which is a quasipower of order n.

6.5.6 Let X be a finite maximal bifix code of degree d ≥ 2 over a k letter alphabet.
Show that

max
x∈X

|x| ≤ αd−1 + 2,

where (αn) is the sequence defined in Exercise 6.5.5. (Hint: Use Exercise 6.1.1.)
Compare with the bound given by Exercise 6.5.2.

6.5.7 Show that the number of finite maximal bifix codes of degree 4 over a two-letter
alphabet is β2(4) = 73.

6.5.8 Let X be a thin maximal bifix code of degree d on k letters. Let S be the set
of its suffixes and let (Ui)1≤i≤d be disjoint maximal prefix codes such that S is their
union. Let Ri be the set of prefixes of Ui . Define t(z) =∑d

i=1 fRi
(z). Show that the

generating series of X satisfies

fX(z) − 1 = (kz − 1)d + (kz − 1)2t(z).

6.8 Notes 273

6.5.9 Let X be a thin maximal bifix code on k letters of degree d. We have
1
k
f ′

X(1/k) = d, where the last expression can be viewed as the average length of
the words of X with respect to the uniform Bernoulli distribution. Recall that the
variance of the lengths of the words of X is the mean of the squares of the lengths
minus the square of the mean of the lengths. Show that the variance is given by

vX = 2t(1/k) + d − d2,

where t(z) is defined in Exercise 6.5.8.

Section 6.6

6.6.1 Show that if X is a prefix code, then Y = X ∪ X is a maximal prefix code
(where X denotes the companion of X). Show that if X is rational, so is Y .

6.8 Notes

The idea to study bifix codes goes back to Schützenberger (1956) and Gilbert and
Moore (1959). These papers already contain significant results. The first systematic
study is in Schützenberger (1961b), Schützenberger (1961c).

Propositions 6.2.1 and 6.2.7 are from Schützenberger (1961c). The internal trans-
formation appears in Schützenberger (1961b). The fact that all finite maximal bifix
codes can be obtained from the uniform codes by internal transformation (Theo-
rem 6.5.4) is from Césari (1972). The fact that the average length of a thin maximal
bifix code is an integer (Corollary 6.3.16) is already in Gilbert and Moore (1959).
It is proved in Schützenberger (1961b) with the methods developed in Chapter 13.
Theorem 6.3.15 and its converse (Proposition 6.3.17) appear in Perrin (1977a). The
notion of derived code is due to Césari (1979).

The results of Section 6.4 are a generalization to thin codes of results in Césari
(1979).

Theorem 6.5.2 appears already in Schützenberger (1961b) with a different proof
(see Exercise 6.5.6). The rest of this section is due to Césari (1979). The enumeration
of finite maximal bifix codes over a two-letter alphabet has been pursued by computer.
A first program was written in 1975 by C. Precetti using internal transformations.
It produced several thousands of them for d = 5. In 1984, a program written by M.
Léonard using the method of Corollary 6.5.8 gave the exact number of finite maximal
bifix codes of degree 5 over a two-letter alphabet. This number is 5 056 783. See
Léonard (1988).

Bifix codes and their length distributions have been studied with a practical moti-
vation, under the name of reversible variable-length codes (see Takishima et al.
(1995); Gillman and Rivest (1995); Ye and Yeung (2001)). Proposition 6.5.10 is from
Ahlswede et al. (1996).

It is conjectured (this is the so-called 3/4-conjecture) that for any series f (t) =∑
unt

n with integer nonnegative coefficients satisfying f (1/k) ≤ 3/4 there exists
a bifix code X on k letters such that fX = f . Partial results are given in Yekhanin
(2004) and Deppe and Schnettler (2006).

274 6 Bifix codes

Theorem 6.6.1 is due to Zhang and Shen (1995). For the proof of the theorem, we
have followed Bruyère and Perrin (1999).

A code X is infix if no word of X is a proper factor of another word of X. Thus infix
codes are bifix. Infix codes have been studied for the first time in Ito et al. (1991).
The problem of completing an infix code has been solved by Ito and Thierrin (1994)
for finite codes, and by Lam (2000) for rational codes.

Exercise 6.1.3 is due to Girod (1999); see also Salomon (2007). Exercise 6.2.4
appears in Long (1996). Exercises 6.3.2, 6.4.4, 6.5.1, and 6.5.2 are from Césari
(1979). Exercise 6.4.5 is from Schützenberger (1961c).

7

Circular codes

In this chapter we study a particular family of codes called circular codes. The main
feature of these codes is that they define a unique factorization of words written on a
circle. The family of circular codes has numerous interesting properties. They appear
in many problems of combinatorics on words, several of which will be mentioned
here.

In Section 7.1 we give the definition of circular codes and we characterize the
submonoid generated by a circular code. We also describe some elementary properties
of circular codes. In particular we characterize maximal circular codes (Theorem
7.1.10).

In Section 7.2 we introduce successive refinements of the notion of a circular
code. For this we define the notion of (p, q)-limitedness. We then proceed to a more
detailed study of (1, 0)-limited codes. In particular, we show (Proposition 7.2.10) that
(1, 0)-limited codes correspond to ordered automata. Comma-free codes are defined
as circular codes satisfying the strongest possible condition.

Section 7.3 is concerned with length distributions of circular codes. Two important
theorems are proved. The first gives a characterization of sequences of integers which
are the length distribution of a circular code (Theorem 7.3.7). The second shows that
for each odd integer n there exists a system of representatives of conjugacy classes of
primitive words of length n which not only is circular but even comma-free (Theorem
7.3.11). The proofs of these results use similar combinatorial constructions. As a
matter of fact they are based on the notion of factorization of free monoids studied
in Chapter 8.

7.1 Circular codes

We define in this section a new family of codes which take into account, in a natural
way, the operation of conjugacy.

By definition, a subset X of A+ is a circular code if for all n,m ≥ 1 and x1, x2, . . . ,

xn ∈ X, y1, y2, . . . , ym ∈ X and p ∈ A∗, s ∈ A+, the equalities

sx2x3 · · · xnp = y1y2 · · · ym, (7.1)

x1 = ps (7.2)

imply n = m, p = 1, and xi = yi for 1 ≤ i ≤ n (see Figure 7.1).

276 7 Circular codes

p

s

xn

x1

x2

ym

y1

Figure 7.1 Two circular factorizations.

A circular code is clearly a code. The converse is false, as shown in Example 7.1.4.
The asymmetry in the definition is only apparent, and comes from the choice of the
cutting point on the circle in Figure 7.1. Clearly, any subset of a circular code is also
a circular code.

Note that a circular code X cannot contain two distinct conjugate words. Indeed,
if ps, sp ∈ X with s, p ∈ A+ then

s(ps)p = (sp)(sp).

Since X is circular, this implies p = 1 which gives a contradiction. Moreover, all
words in X are primitive, since assuming un ∈ X with n ≥ 2, it follows that

u(un)un−1 = unun.

This implies u = 1 and gives again a contradiction.
We now characterize in various ways the submonoids generated by circular codes.

The first characterization facilitates the manipulation of circular codes. A submonoid
M of A∗ is called pure if for all x ∈ A∗ and n ≥ 1,

xn ∈ M =⇒ x ∈ M. (7.3)

A submonoid M of A∗ is very pure if for all u, v ∈ A∗,

uv, vu ∈ M =⇒ u, v ∈ M. (7.4)

A very pure monoid is pure. The converse does not hold (see Example 7.1.4).

Proposition 7.1.1 A submonoid of A∗ is very pure if and only if its minimal set of
generators is a circular code.

Proof. Let M be a very pure submonoid. We show that M is stable. Let m,m′, xm,

m′x ∈ M . Then setting u = x, v = mm′, we have uv, vu ∈ M . This implies x ∈ M .

7.1 Circular codes 277

Thus M is stable, hence M is free. Let X be its base. Assume that (7.1) and (7.2)
hold. Set u = s, v = x2x3 · · · xnp. Then uv, vu ∈ M . Consequently s ∈ M . Since
ps, x2x3 · · · xnp ∈ M , the stability of M implies that p ∈ M . From ps ∈ X, it follows
that p = 1. Since X is a code, this implies n = m and xi = yi for i = 1, . . . , n.

Conversely, let X be a circular code and set M = X∗. To show that M is very pure,
consider two nonempty words u, v ∈ A+ such that uv, vu ∈ M . Set

uv = x1x2 · · · xn, vu = y1y2 · · · ym,

with xi, yj ∈ X. There exists an integer i with 1 ≤ i ≤ n such that

u = x1x2 · · · xi−1p, v = sxi+1 · · · xn,

with xi = ps, p ∈ A∗, s ∈ A+. Then vu may be written in two ways:

sxi+1 · · · xnx1x2 · · · xi−1p = y1y2 · · · ym.

Since X is a circular code, this implies p = 1 and s = y1. Thus u, v ∈ M , showing
that M is very pure. �

Example 7.1.2 Let A = {a, b} and X = a∗b. Then X∗ = A∗b ∪ 1. Thus if uv, vu ∈
X∗, the words u, v either are the empty word or end with the letter b; hence u, v ∈ X∗.
Consequently X∗ is very pure and X is circular.

Example 7.1.3 Let A = {a} and X = {a2}. The submonoid X∗ clearly is not pure.
Thus X is not a circular code.

Example 7.1.4 Let A = {a, b} and X = {ab, ba}. The code X is not circular. How-
ever, X∗ is pure (Exercise 7.1.1).

The following proposition characterizes the flower automaton of a circular code.

Proposition 7.1.5 Let X ⊂ A+ be a code and let ϕ be the representation associated
with the flower automaton of X. The following conditions are equivalent:

(i) X is a circular code.
(ii) For all w ∈ A+, the relation ϕ(w) has at most one fixed point.

Proof. For convenience, let 1 denote the state (1, 1) of the flower automaton A∗
D(X).

(i) =⇒ (ii). Let w ∈ A+, and let p = (u, v), p′ = (u′, v′) be two states of A∗
D(X)

which are fixed points of ϕ(w), that is, such that (p, ϕ(w), p) = (p′, ϕ(w), p′) = 1.
Since w �= 1, Proposition 4.2.3 shows that w ∈ vX∗u and w ∈ v′X∗u′. Thus both

paths c : p
w→ p and c′ : p′ w→ p′ pass through the state 1.

We may assume that v ≤ v′. Let z, t ∈ A∗ be the words such that v′ = vz and
w = vzt . Then the paths c, c′ factorize as

c : p
v−→ 1

z−→ r
t−→ p, c′ : p′ v−→ s

z−→ 1
t−→ p′.

278 7 Circular codes

Thus there are also paths

d : 1
z−→ r

t−→ p
v−→ 1, 1

t−→ p′ v−→ s
z−→ 1,

showing that ztv, tvz ∈ X∗. Since X∗ is very pure, it follows that z, tv ∈ X∗. Con-

sequently, there is a path e : 1
z−→ 1

tv−→ 1. By unambiguity, d = e, whence r = 1.

Thus 1
t−→ p

vz−→ 1 which compared to d ′ gives p = p′. This proves that ϕ(w) has
at most one fixed point.

(ii) =⇒ (i). Let u, v ∈ A∗ be such that uv, vu ∈ X∗. Then there are two paths
1

u−→ p
v−→ 1 and 1

v−→ q
u−→ 1. Thus the relation ϕ(uv) has two fixed points,

namely 1 and q. This implies q = 1, and thus u, v ∈ X∗. �

We now give a characterization of circular codes in terms of conjugacy. For this,
the following terminology is used.

Let X ⊂ A+ be a code. Two words w,w′ ∈ X∗ are called X-conjugate if there
exist x, y ∈ X∗ such that

w = xy, w′ = yx.

The word x ∈ X∗ is called X-primitive if x = yn with y ∈ X∗ implies n = 1. The
X-exponent of x ∈ X+ is the unique integer p ≥ 1 such that x = yp with y an X-
primitive word. Let α : B → A∗ be a coding morphism for X. It is easily seen that
w,w′ ∈ X∗ are X-conjugate if and only if α−1(w) and α−1(w′) are conjugate in B∗.
Likewise, x ∈ X∗ is X-primitive if and only if α−1(x) is a primitive word of B∗.

Thus, X-conjugacy is an equivalence relation on X∗. Of course, two words in X∗

which are X-conjugate are conjugate. Likewise, a word in X∗ which is primitive is
also X-primitive. When X = A, we get the usual notions of conjugacy and primitivity.

Proposition 7.1.6 Let X ⊂ A+ be a code. The following conditions are equivalent:

(i) X is a circular code.
(i) X∗ is pure, and any two words in X∗ which are conjugate are also X-conjugate.

Proof. (i) =⇒ (ii). Since X∗ is very pure, it is pure. Next let w,w′ ∈ X∗ be conjugate
words. Then w = uv,w′ = vu for some u, v ∈ A∗. By (7.4), u, v ∈ X∗, showing that
w and w’ are X-conjugate.

(ii) =⇒ (i). Let u, v ∈ A∗ be such that uv, vu ∈ X∗. If u = 1 or v = 1, then
u, v ∈ X∗. Otherwise, let x, y be the primitive words which are the roots of uv and
vu: then uv = xn, vu = yn for some n ≥ 1. Since X∗ is pure, we have x, y ∈ X∗. Next
uv = xn gives a decomposition x = rs, u = xpr, v = sxq for some r ∈ A∗, s ∈ A+,
and p + q + 1 = n. Substituting this in the equation vu = yn gives y = sr . Since
x, y are conjugate, they are X-conjugate. But for primitive words x, y, there exists a
unique pair (r, s ′) ∈ A∗ × A+ such that x = r ′s ′, y = s ′r ′. Consequently r, s ∈ X∗.
Thus u, v ∈ X∗, showing that X∗ is very pure. �

7.1 Circular codes 279

Proposition 7.1.7 Let X ⊂ A+ be a code and let C ⊂ An be a conjugacy class that
meets X∗. Then ∑

m≥1

1

m
Card(Xm ∩ C) ≥ 1

n
Card(C). (7.5)

Moreover, equality holds if and only if the following two conditions are satisfied:

(i) The exponent of the words in C ∩ X∗ is equal to their X-exponent.
(ii) C ∩ X∗ is a class of X-conjugacy.

Proof. Let p be the exponent of the words in C. Then Card(C) = n/p. The set C ∩ X∗

is a union of X-conjugacy classes. Let D be such a class, and set C ′ = C \ D. The
words in D all belong to Xk for the same k, and all have the same X-exponent, say
q. Then Card(D) = k/q. Since C = C ′ ∪ D, the left side of (7.5) is

n∑
m=1

1

m
Card(Xm ∩ C ′) +

n∑
m=1

1

m
Card(Xm ∩ D).

In the second sum, all terms vanish except for m = k. Thus this sum is equal to (1/k)
Card(Xk ∩ D) = 1/q. Thus

n∑
m=1

1

m
Card(Xm ∩ C) = 1

q
+

n∑
m=1

1

m
Card(Xm ∩ C ′). (7.6)

Since q ≤ p, we have 1/q ≥ 1/p = (1/n) Card(C). This proves Formula (7.5).
Assume now that (i) and (ii) hold. Then p = q, and D = C ∩ X∗. Thus C ′ ∩ X∗ =

∅. Thus the right side of (7.6) is equal to 1/p, which shows that equality holds in
(7.5). Conversely, assuming the equality sign in (7.5), it follows from (7.6) that

1

p
= 1

q
+

n∑
m=1

1

m
Card(Xm ∩ C ′) ≥ 1

q
≥ 1

p
,

which implies p = q and C ′ ∩ X∗ = ∅. �

The proposition has the following consequence:

Proposition 7.1.8 Let X ⊂ A+ be a code. The following conditions are equivalent:

(i) X is a circular code.
(ii) For any integer n ≥ 1 and for any conjugacy class C ⊂ An that meets X∗, we

have ∑
m≥1

1

m
Card(Xm ∩ C) = 1

n
Card(C). (7.7)

280 7 Circular codes

Proof. By Proposition 7.1.6, the code X is circular if and only if we have

(iii) X∗ is pure.
(iv) Two conjugate words in X∗ are X-conjugate.

Condition (iii) is equivalent to: the X-exponent of any word in X∗ is equal to its
exponent. Thus X is circular if and only if for any conjugacy class C meeting X∗, we
have

(v) The exponent of words in C ∩ X∗ equals their X-exponent.
(vi) C ∩ X∗ is a class of X-conjugacy.

In view of Proposition 7.1.7, conditions (v) and (vi) are satisfied if and only if the
conjugacy class C ∩ An satisfies the equality (7.7). This proves the proposition. �

We now prove a result which is an analogue of Theorem 2.5.5.

Proposition 7.1.9 Let X ⊂ A+ be a circular code. If X is maximal as a circular
code, then X is complete.

Proof. If A = {a}, then X = {a}. Therefore, we assume Card(A) ≥ 2. Suppose that
X is not complete. Then there is a word, say w, which is not a factor of a word in X∗.
By Proposition 1.3.6, there is a word v ∈ A∗ such that y = wv is unbordered.

Set Y = X ∪ y. We prove that Y is a circular code. For this, let xi (1 ≤ i ≤ n) and
yi (1 ≤ i ≤ m) be words in Y , let p ∈ A∗, s ∈ A+ such that

sx2x3 · · · xnp = y1y2 · · · ym x1 = ps.

If all xi (1 ≤ i ≤ n) are in X, then also all yj are in X, because y is not a factor of a
word in X∗. Since X is circular, this then implies that

n = m, p = 1, and xi = yi (1 ≤ i ≤ n). (7.8)

Suppose now that xi = y for some i ∈ {1, . . . , n} and suppose first that i �= 1. Then
xi is a factor of y1y2 · · · ym. Since y /∈ F (X∗), and since y is unbordered, this implies
that there is a j ∈ {1, 2, . . . , m} such that yj = y, and

sx2 · · · xi−1 = y1y2 · · · yj−1, yi+1 · · · xnp = yj+1 · · · ym.

This in turn implies

sx2 · · · xi−1xi+1 · · · xnp = y1y2 · · · yj−1yj+1 · · · ym,

and (7.8) follows by induction on the length of the words.
Consider finally the case where i = 1, that is, x1 = y. Since

x1x2 · · · xnp = py1y2 · · · ym,

7.2 Limited codes 281

we have yx2 · · · xnp = py1y2 · · · ym. Now p is a suffix of a word in Y ∗; further
y /∈ F (X∗) and y is unbordered. Thus p = 1 and y1 = y. This again gives (7.8) by
induction on the length of the words. Thus if X is not complete, then Y = X ∪ y is a
circular code. Since y /∈ X,X is not maximal as a circular code. �

The preceding proposition and Theorem 2.5.13 imply

Theorem 7.1.10 Let X be a thin circular code. The following three conditions are
equivalent.

(i) X is complete.
(ii) X is a maximal code.

(iii) X is maximal as a circular code. �

Observe that a maximal circular code X ⊂ A+ is necessarily infinite, except when
X = A. Indeed, assume that X is a finite maximal circular code. Then by Theorem
7.1.10, it is a maximal code. According to Proposition 2.5.15, there is, for each letter
a ∈ A, an integer n ≥ 1 such that an ∈ X. Since X is circular, we must have n = 1,
and consequently a ∈ X for all a ∈ A. Thus X = A.

We shall need the following property which allows us to construct circular codes.

Proposition 7.1.11 Let Y,Z be two composable codes, and let X = Y ◦ Z. If Y and
Z are circular, then X is circular.

Proof. Let α : B∗ → A∗ be a morphism such that X = Y ◦α Z. Let u, v ∈ A∗ be such
that uv, vu ∈ X∗. Then uv, vu ∈ Z∗, whence u, v ∈ Z∗ because Z∗ is very pure. Let
s = α−1(u), t = α−1(v). Then st, ts ∈ Y ∗. Since Y ∗ is very pure, s, t ∈ Y ∗, showing
that u, v ∈ X∗. Thus X∗ is very pure. �

7.2 Limited codes

We introduce special families of circular codes which are defined by increasingly
restrictive conditions concerning overlapping between words. The most special family
is that of comma-free codes which is the object of an important theorem proved in
the next section.

Let p, q ≥ 0 be two integers. A submonoid M of A∗ is said to satisfy condition
C(p, q) if for any sequence u0, u1, . . . , up+q of words in A∗, the assumptions

ui−1ui ∈ M (1 ≤ i ≤ p + q) (7.9)

imply

up ∈ M.

(see Figure 7.2). For example, the condition C(1, 0) simply gives

uv ∈ M =⇒ v ∈ M,

282 7 Circular codes

u0 u1 u2 up−1 up up+1 up+q

Figure 7.2 The condition C(p, q) (for p odd and q even).

that is M is suffix-closed, and condition C(1, 1) is

uv, vw ∈ M =⇒ v ∈ M.

It is easily verified that a submonoid M satisfying C(p, q) also satisfies conditions
C(p′, q ′) for p′ ≥ p, q ′ ≥ q.

Proposition 7.2.1 Let p, q ≥ 0 and let M be a submonoid of A∗. If M satisfies
condition C(p, q), then M is very pure.

Proof. Let u, v ∈ A∗ be such that uv, vu ∈ M . Define words ui(0 ≤ i ≤ p + q) to be
equal to u (to v) for even (odd) i’s. Then assumption (7.9) is satisfied and consequently
either u or v is in M . Interchanging the roles of u and v, we get that both u and v are
in M . �

Let M be a submonoid satisfying a condition C(p, q). By the preceding proposition,
M is very pure. Thus M is free. Let X be its base. By definition, X is called a (p, q)-
limited code. A code X is limited if there exist integers p, q ≥ 0 such that X is
(p, q)-limited.

Proposition 7.2.2 Any limited code is circular. �

Example 7.2.3 The only (0, 0)-limited code over A is X = A.

Example 7.2.4 A (p, 0)-limited code X is prefix. Assume indeed X is (p, 0)-limited.
If p = 0 then X = A. Otherwise take u0 = · · · = up−2 = 1. Then for any up−1, up,
we have

up−1, up−1up ∈ X∗ =⇒ up ∈ X∗,

showing that X∗ is right unitary. Likewise, a (0, q)-limited code is suffix. However,
a prefix code is not always limited, since it is not even necessarily circular.

Example 7.2.5 The code X = a∗b is (1, 0)-limited. It satisfies even the stronger
condition

uv ∈ X =⇒ v ∈ X ∪ 1.

Example 7.2.6 Let A = {a, b, c} and X = ab∗c ∪ b. The set X is a bifix code. It
is neither (1, 0)-limited nor (0, 1)-limited. However, it is (2, 0)-limited and (0, 2)-
limited.

Example 7.2.7 Let A = {ai | i ≥ 0} and X = {aiai+1 | i ≥ 0}. The code X is circu-
lar, as it is easily verified. However, it is not limited. Indeed, set ui = ai for 0 ≤ i ≤ n.
Then ui−1ui ∈ X for i ∈ {1, 2, . . . , n}, but none of the ui is in X∗.

7.2 Limited codes 283

c d b a

Figure 7.3 X is not (p, q)-limited for p + q ≤ 3.

This example shows that the converse of Proposition 7.2.2 does not hold in general.
However it holds for finite codes, as we shall see later (Theorem 10.2.7). It also holds
for recognizable codes (Exercise 7.2.7).

One of the reasons which makes the use of (p, q)-limited codes convenient, is that
they behave well with respect to composition. In the following statement, we do not
use the notation X = Y ◦ Z because we do not assume that every word of Z appears
in a word in X.

Proposition 7.2.8 Let Z be a code over A, let β : B∗ → A∗ be a coding morphism
for Z, and let Y be a code over B. If Y is (p, q)-limited and Z is (r, t)-limited, then
X = β(Y) is (p + r, q + t)-limited.

Proof. Let u0, u1, . . . , up+r+q+t ∈ A∗ be such that

ui−1ui ∈ X∗ (1 ≤ i ≤ p + r + q + t). (7.10)

Since X ⊂ Z∗ and Z is (r, t)-limited, it follows from (7.10) that

ur, ur+1, . . . , ur+p+q ∈ Z∗. (7.11)

Since Y is (p, q)-limited, (7.11) and (7.10) for r + 1 ≤ i ≤ p + q + r show that
ur+p ∈ X∗. Thus X is (p + r, q + t)-limited. �

Example 7.2.9 Let A = {a, b, c, d} and X = {ba, cd, db, cdb, dba}. Then

X = Z1 ◦ Z2 ◦ Z3 ◦ Z4,

with

Z4 = {b, c, d, ba}
Z3 ◦ Z4 = {c, d, ba, db}

Z2 ◦ Z3 ◦ Z4 = {d, ba, db, cd, cdb}.
The codes Z3 and Z4 are (0, 1)-limited. The code Z3 ◦ Z4 is not (0, 1)-limited, but
it is (0, 2)-limited, in agreement with Proposition 7.2.8. The codes Z1 and Z2 are
(1, 0)-limited. Thus X is (2, 2)-limited. It is not (p, q)-limited for any (p, q) such
that p + q ≤ 3, as shown by Figure 7.3.

We now give a characterization of (1, 0)-limited codes by means of automata.
These codes occur in Section 8.2. For that, say that an automaton A = (Q, 1, 1) is
ordered if it is deterministic and if the following conditions hold: Q is a partially

284 7 Circular codes

1 2 3

4

a b

b

a
b

a b a

Figure 7.4 An ordered automaton.

ordered set, q ≤ 1 for all q ∈ Q, and for all p, q ∈ Q, and a ∈ A, p ≤ q implies
p · a ≤ q · a.

Proposition 7.2.10 Let X ⊂ A+ be a prefix code. The set X∗ is suffix-closed if and
only if X∗ is recognized by some ordered automaton.

Proof. Assume first that X∗ is suffix-closed. Let A(X∗) = (Q, 1, 1) be the minimal
automaton of X∗. Define a partial order on Q by

p ≤ q if and only if Lp ⊂ Lq,

where for each state p, Lp = {u ∈ A∗ | p · u = 1}. This defines an order on Q, since
by the definition of a minimal automaton, Lp = Lq ⇔ p = q. Next let q ∈ Q, and
let u ∈ A∗ be such that 1 · u = q. Then v ∈ Lq if and only if uv ∈ X∗. Since X is
(1, 0)-limited, uv ∈ X∗ implies v ∈ X∗, or also v ∈ L1. Thus Lq ⊂ L1, and therefore
q ≤ 1. Further, if p, q ∈ Q with p ≤ q, and a ∈ A, let v ∈ Lp·a . Then av ∈ Lp,
hence av ∈ Lq , and thus v ∈ Lq·a . This proves that A(X∗) is indeed an ordered
automaton for this order.

Conversely, let A = (Q, 1, 1) be an ordered automaton recognizing X∗. Assume
that uv ∈ X∗, for some u, v ∈ A∗. Then 1 · uv = 1. Since 1 · u ≤ 1, we have 1 · uv ≤
1 · v. Thus 1 ≤ 1 · v ≤ 1, whence 1 · v = 1. Consequently v ∈ X∗. �

Example 7.2.11 Consider the automaton (Q, 1, 1) given in Figure 7.4. The set Q =
{1, 2, 3, 4} is equipped with the partial order given by 3 < 2 < 1 and 4 < 1. For this
order, the automaton (Q, 1, 1) is ordered. It recognizes the submonoid X∗ generated
by

X = (b2b∗a)∗{a, ba}.

Consequently, X is a (1, 0)-limited code.

The following proposition gives another characterization of (1, 0)-limited codes.

Proposition 7.2.12 A prefix code X ⊂ A+ is (1, 0)-limited if and only if the set
R = A∗ \ XA∗ of words having no prefix in X is a submonoid.

7.2 Limited codes 285

Proof. By Theorem 3.1.6, A∗ = X∗R. Suppose first that X is (1, 0)-limited. Let
u, u′ ∈ R, and set uu′ = xr with x ∈ X∗, r ∈ R. Arguing by contradiction, suppose
that x �= 1. Then x is not a prefix of u. Consequently x = uv, vr = u′ for some
v ∈ A∗. Since X is (1, 0)-limited, one has v ∈ X∗; this implies that v = 1, since v is
a prefix of u′. Thus x = u, a contradiction. Consequently x = 1 and uu′ ∈ R.

Conversely, suppose that R is a submonoid. Then, being prefix-closed, R is a left
unitary submonoid. Thus R = Y ∗ for some suffix code Y . From the power series
equation, we get

A∗ = X∗Y ∗.

Multiplication with 1 − Y on the right gives X∗ = A∗ − A∗Y . Thus X∗ is the com-
plement of a left ideal. Consequently X∗ is suffix-closed. Thus X is (1, 0)-limited. �

Example 7.2.13 The code X = (b2b∗a)∗{a, ba} of Example 7.2.11 gives, for R =
A∗ \ XA∗, the submonoid R = {b, b2a}∗.

We end this section with the definition of a family of codes which is the most
restrictive of the families we have examined. A code X ⊂ A+ is called comma-free
if for all x ∈ X+, u, v ∈ A∗,

uxv ∈ X∗ =⇒ u, v ∈ X∗. (7.12)

Comma-free codes are bifix. They are those with the easiest deciphering: if in a word
w ∈ X∗, some factor can be identified to be in X, then this factor is one term of the
unique X-factorization of w.

Proposition 7.2.14 A code X ⊂ A+ is comma-free if and only if it is (p, q)-limited
for all p, q with p + q = 3, and if A+XA+ ∩ X = ∅. In particular, a comma-free
code is circular.

Proof. First suppose that X is comma-free. Let u0, u1, u2, u3 ∈ A∗ be such that
u0u1, u1u2, u2u3 ∈ X∗. If u1 = u2 = 1, then u0, u3 ∈ X∗. Otherwise u1u2 ∈ X+

and u0u1u2u3 ∈ X+. Thus by (7.12) u0, u3 ∈ X∗. Since X is prefix, u0, u0u1 ∈ X∗

implies that u1 ∈ X∗, and X being suffix, u2u3, u3 ∈ X implies that u2 is in X∗.
Thus u0, u1, u2, u3 ∈ X∗. Consequently, X is (p, q)-limited for all p, q ≥ 0 with
p + q = 3. Furthermore A+XA+ ∩ X = ∅. Indeed assume that uxv, x ∈ X. Then
by (7.12) u, v ∈ X∗, whence u = v = 1.

Conversely, let u, v ∈ A∗ and x ∈ X+ be such that uxv ∈ X∗. Since A+xA+ ∩
X = ∅, there exists a factorization x = ps, with p, s ∈ A∗, such that up, sv ∈ X∗.
From up, ps, sv ∈ X∗ it follows, by the limitedness of X, that u, p, s, r ∈ X∗. Thus
(7.12) holds. The last statement follows from Proposition 7.2.2. �

Proposition 7.2.15 Let X,Z be two composable codes and let X = Y ◦ Z. If Y and
Z are comma-free, then X is comma-free.

286 7 Circular codes

Proof. Let u, v ∈ A∗ and x ∈ X+ be such that uxv ∈ X∗. Since X ⊂ Z∗, we have
uxv ∈ Z∗, x ⊂ Z+. Since Z is comma-free, it follows that u, v ∈ Z∗. Since Y is
comma-free, this implies that u, v are in X∗. Thus X is comma-free by (7.12). �

Example 7.2.16 Let A = {a, b} and X = {aab, bab}. The words aab and bab have
a unique interpretation. This shows that X is comma-free.

7.3 Length distributions

We now study the length distributions of circular codes. Let X be a fixed circular
code and let (un)n≥1 be its length distribution. For each n ≥ 1, let pn be the number
of words of length n which have a conjugate in X∗.

We set u(z) =∑n≥1 unz
n and p(z) =∑n≥1 pnz

n. Thus u(z) = fX(z) is the gen-
erating series of X.

Proposition 7.3.1 The following relation holds between u(z) and p(z):

exp
∑
n≥1

pn

n
zn = 1

1 − u(z)
, (7.13)

or equivalently

p(z) = zu′(z)

1 − u(z)
, (7.14)

where u′ is the derivative of u.

Proof. We first assume that the code X is finite.
Let A be the flower automaton of X and let N be the adjacency matrix of the graph

of A, that is Ni,j is the number of edges from i to j in A. We have for each n ≥ 0,

pn = Tr(Nn).

Indeed, Tr(Nn) =∑Nn
i,i and Nn

i,i is the number of paths of length n from i to i. In
view of Proposition 7.1.5, each word w of length n which has a conjugate in X∗ is the
label of a unique closed path in A. Conversely, each cycle contains the initial state,
and thus its label has a conjugate in X∗. This shows the formula.

We now use Proposition 4.1.6. By assigning the same symbol z to all letters in
Equation (4.2), the matrix M of (4.2) becomes Nz, and α(X) becomes u(z). Thus

det(I − Nz) = 1 − u(z).

Let λ1, . . . , λk be the eigenvalues of the matrix N counted with their multiplicities.
Then for each n ≥ 1, pn = Tr(Nn) = λn

1 + · · · + λn
k . Next, from elementary calculus,

one has, for any complex number λ,

exp
(∑

n≥1

(λz)n

n

)
= exp

(
log

1

1 − λz

)
= 1

1 − λz
.

7.3 Length distributions 287

1 2

a

b

a

Figure 7.5 The flower automaton of the circular code X = {a, ba}.

Consequently

exp
∑
n≥1

pn

n
zn = exp

∑
n≥1

λn
1 + · · · + λn

k

n
zn

= exp
∑
n≥1

((λ1z)n

n
+ · · · + (λkz)n

n

)
= 1

1 − λ1z
· · · 1

1 − λkz
= 1

det(I − Nz)
.

This shows (7.13) for finite codes. In the general case, one considers, for each positive
integer m, the set of words in X of length at most m. Since each pn depends only
on the first n terms of the sequence (un), (7.13) gives the relation up to m. Since this
holds for each m, the formula is true also for infinite codes.

Formula (7.14) follows from (7.13) by logarithmic derivation, that is by taking the
derivatives of the logarithms. Indeed, the equality S = T of two series with constant
term 1 is equivalent to the equality of their logarithmic derivatives. �

Example 7.3.2 Consider the circular code X = {a, ba} on the alphabet A = {a, b}.
We have u(z) = z + z2 and thus by Formula 7.14

p(z) = z + 2z2

1 − z − z2
.

The automaton A is represented on Figure 7.5. We have

M =
[

1 1
1 0

]
,

and thus det(I − Mz) = 1 − z − z2. The eigenvalues of M are the two roots ϕ, ϕ̂ of
the polynomial 1 − z − z2 and pn = ϕn + ϕ̂n.

By Formula (7.14), we get p(z) = zu′(z) + p(z)u(z), from which we obtain the
following recurrence relation for pn which is useful for numerical computations and
which is known as Newton’s formula (see the Notes):

pn = nun +
n−1∑
i=1

piun−i . (7.15)

288 7 Circular codes

There is also a closed formula for pn. For each i ≥ 1, let u(i) = (u(i)
n)n≥1 be the length

distribution of Xi . Equivalently, u(i)
n is the coefficient of degree n of u(z)i . Then∑

n≥1

pn

n
zn = log

1

1 − u(z)
=
∑
n≥1

u(i)(z)

i
.

Thus, for each n ≥ 1, the explicit value of the numbers pn in terms of the numbers
u(i)

n is

pn =
n∑

i=1

n

i
u(i)

n .

We now give a relation with primitive necklaces. Let �n be the number of primitive
necklaces of length n which meet X∗. We start with a formula which is useful to
compute the numbers �n.

Proposition 7.3.3 For all n ≥ 1,

pn =
∑
d|n

d�d . (7.16)

Proof. Let u be a primitive word of length d which has a conjugate in X∗. Any power
v of u has exactly d distinct conjugates and has a conjugate in X∗. Conversely, if v

has a conjugate v′ in X∗, let u be the unique primitive word such that v′ is in u+.
Since X∗ is pure, the word u is in X∗, and thus v itself is a power of a primitive word
which has a conjugate in X∗. This shows the formula. �

Using the Möbius inversion formula (Proposition 1.3.4), we obtain an explicit
formula

�n = 1

n

∑
d|n

µ(n/d)pd.

The following proposition establishes a direct relationship between the sequences
(un) and (�n).

Proposition 7.3.4 The following relation holds:

1

1 − u(z)
=
∏
n≥1

1

(1 − zn)�n
. (7.17)

Proof. Since, for each n,

pn

n
=
∑
d|n

d�d

n
,

we get ∑
n≥1

pn

n
zn =

∑
d,k≥1

�d

zdk

k
=
∑
d≥1

�d log
1

1 − zd
=
∑
n≥1

log
1

(1 − zn)�n
.

7.3 Length distributions 289

Table 7.1 The values of pn and �n

for X = {a, ab}.
n 1 2 3 4 5 6 7

pn 1 3 4 7 11 18 29
�n 1 1 1 1 2 2 4

Taking the exponential of both sides, we obtain

exp
∑
n≥1

pn

n
zn =

∏
n≥1

1

(1 − zn)�n
. (7.18)

Putting together Formulas (7.13) and (7.18), we obtain Formula (7.17). �

Given a series u(z) =∑ unz
n, Equation (7.14) defines directly the series p(z),

and Equation (7.16) allows us to compute the sequence (�n). These altogether are
equivalent to Equation (7.17). To emphasize these dependencies, we write �n(u) and
pn(u) for the sequences given by u.

In the special case of the series u(z) = kz, we write �n(k) instead of �n(u). This
agrees with Chapter 1 where �n(k) denotes the number of primitive necklaces of
length n on k symbols. It is clear that the sequence (�n(k))n≥1 corresponds to the code
X = A and in this case Identity (7.17) reads

1

1 − kz
=
∏
n≥1

1

(1 − zn)�n(k)
. (7.19)

It can be shown that if un ≤ vn for all n, then �n(u) ≤ �n(v) for all n (Exercise 7.3.4).

Example 7.3.5 Consider again the circular code X = {a, ab} on the alphabet A =
{a, b}. We have u(z) = z + z2 and

p(z) = z + 2z2

1 − z − z2
.

The first values of pn and �n are given in Table 7.1.

We shall now characterize the length distributions of circular codes.
For this, we say that a finite or infinite sequence (xi)i≥1 of words in A+ is a Hall

sequence over A if it is obtained in the following way:
Let X1 = A. Then x1 is an arbitrary word in X1. If xi and Xi are defined, then the

set Xi+1 is defined by

Xi+1 = x∗
i (Xi \ xi),

and xi+1 is an arbitrary chosen element in Xi+1 satisfying

|xi+1| ≥ |xi |.

290 7 Circular codes

The sequence (Xi)i≥1 is the sequence of codes associated with the sequence (xi)i≥1.

Proposition 7.3.6 Let (xi)i≥1 be a Hall sequence over A and let (Xi)i≥1 be the
associated sequence of codes.

1. Each Xi , for i ≥ 1, is a (i − 1, 0)-limited code.
2. Each primitive word w such that |w| > |xi | has a conjugate in X∗

i+1.

Proof. 1. X1 = A is (0, 0)-limited. Next

Xi+1 = T ◦ Xi,

where T is a code of the form b∗(B \ b). Clearly T is (1, 0)-limited. Assuming by
induction that Xi is (i − 1, 0)-limited, the conclusion follows from Proposition 7.2.8.

2. Define x0 = 1. We prove that the claim holds for all i ≥ 0 by induction on i.
For i = 0, the claim just states that any primitive word is in A∗. Thus assume i ≥ 1,
and let w ∈ A+ be a primitive word of length |w| > |xi |. Since |xi | ≥ |xi−1|, one has
|w| > |xi−1|. By the induction hypothesis, there is a word w′ conjugate of w which
is in X∗

i . The word w′ is not in x∗
i since w′ is primitive and |w′| > |xi |. Thus w′

factorizes into w′ = uxv for some u, v ∈ X∗
i and x ∈ Xi \ xi . Then the conjugate

w′′ = vux of w′ is in X∗
i (Xi \ xi) ⊂ X∗

i+1. Thus a conjugate of w is in X∗
i+1. �

Theorem 7.3.7 The sequence u = (un)n≥1 is the length distribution of a circular
code over k letters if and only if �n(u) ≤ �n(k), for all n ≥ 1.

Proof. Let A be an alphabet with k letters. Let X be a circular code with length
distribution u = (un). Since �n(u) is the number of primitive necklaces of length n

which meet X∗, one has �n(u) ≤ �n(k).
For the converse, we build a Hall sequence. Arguing by induction on n, we suppose

defined an integer m = m(n) and a Hall sequence x1, . . . , xm of words of length at
most n with the sequence X1, . . . , Xm of associated codes and thus with Xi+1 =
x∗

i (Xi \ xi), such that the length distribution of Xm coincides with the sequence u on
the n first terms. We set for convenience Yn = Xm(n). Thus, setting vi = Card(Yn ∩
Ai), one has vi = ui for 1 ≤ i ≤ n. We prove that

vn+1 − un+1 = �n+1(k) − �n+1(u). (7.20)

Take this equation for granted. Set r = vn+1 − un+1. Since 0 ≤ r we may select r

words xm+1, . . . , xm+r of length n + 1 in Yn = Xm to carry on the construction of the
Hall sequence for r steps. In this way, the sequence x1, . . . , xm, xm+1, . . . , xm+r forms
altogether a Hall sequence. Setting m(n + 1) = m + r , the code Yn+1 = Xm(n+1)

satisfies Card(Yn+1 ∩ Ai) = ui for 1 ≤ i ≤ n + 1. This is clear for i ≤ n. Next,
Yn+1 ∩ An+1 is obtained from Yn ∩ An+1 by removing r words of length n + 1.
This finishes the induction, starting with Y0 = A.

We now prove Equation (7.20). Since ui = vi for i = 1, . . . , n, one gets by Equa-
tion (7.15) that pi(u) = pi(v) for i = 1, . . . , n. Thus, again by Equation (7.15), one
obtains that pn+1(v) − pn+1(u) = (n + 1)(vn+1 − un+1).

7.3 Length distributions 291

Table 7.2 The list of componentwise maximal length distri-
butions of binary circular codes of length at most 4.

2 0 0 0 a, b

1 1 1 1 b, ab, a2b, a3b

1 1 0 2 b, ab, a3b, a2b2

1 0 2 1 b, ab2, a2b, a3b

1 0 1 2 b, a2b, a3b, ab3

1 0 0 3 b, a3b, ab3, a2b2

0 1 2 3 ab, a2b, bab, a3b, ba2b, b2ab

Equation (7.16) and the equalities proved above show that �i(u) = �i(v) for
i = 1, . . . , n. This implies pn+1(v) − pn+1(u) = (n + 1)(�n+1(v) − �n+1(u)) which
in turn shows that �n+1(v) − �n+1(u) = vn+1 − un+1.

Since |xm| ≤ n, the property of Hall sequences stated in Proposition 7.3.6(2) shows
that each primitive necklace of length n + 1 meets X∗

m. Thus �n+1(v) = �n+1(k). This
proves Equation (7.20). �

Example 7.3.8 Let A = {a, b} and let u = (0, 1, 1, 3, . . .). The construction of the
proof gives

X1 = {a, b}
X2 = {b, ab, aab, aaab, . . .}
X3 = {ab, aab, abab, aaab, baab, bbab, . . .}
X4 = {ab, bab, aaab, baab, bbab, . . .}

corresponding to the Hall sequence x1 = a, x2 = b, x3 = aab. One gets Y1 = X3 and
Y2 = Y3 = X4.

We have represented in Table 7.2 the componentwise maximal length distributions
of binary circular codes of length at most 4. The list is presented in decreasing
lexicographic order. The last column gives a circular code having the indicated
distribution constructed using the method of the proof of Theorem 7.3.7.

Corollary 7.3.9 Let A be an alphabet with k ≥ 1 letters. For all m ≥ 1, there exists
a circular code X ⊂ Am such that Card(X) = �m(k).

Proof. Let u = (un)n≥1 be the sequence with all terms zero except for um which
is equal to �m(k). By (7.15) and (7.16), one has �n(u) = 0 for 1 ≤ n ≤ m − 1 and
�m(u) = um. Thus �n(u) ≤ �n(k) for 1 ≤ n ≤ m. According to the proof of Theorem
7.3.7, this suffices to ensure the existence of a circular code X having um words of
length m. Thus X ∩ Am satisfies the claim. �

292 7 Circular codes

Corollary 7.3.9 can be formulated in the following way: It is possible to choose
a system X of representatives of the primitive conjugacy classes of words of length
m in such a manner that X is a circular code. The following example gives a more
precise description of these codes for m = 2.

Example 7.3.10 Let X be a subset of A2 \ {a2 | a ∈ A} and let θ be the relation over
A defined by aθb if and only if ab ∈ X. Then X is a circular code if and only if the
reflexive and transitive closure θ∗ of θ is an order relation.

Indeed, assume first that θ∗ is not an order. Then

a1a2, a2a3, . . . , an−1an, ana1 ∈ X

for some n ≥ 1, and a1, . . . , an ∈ A. If n is even, then setting u = a1, v = a2 · · · an,
one has uv, vu ∈ X∗ and u �∈ X∗. If n is odd, then (a1a2 · · · an)2 ∈ X∗ but not
a1a2 · · · an. Thus X is not circular.

Assume conversely that θ∗ is an order. Then A can be ordered in such a way that
A = {a1, a2, . . . , ak} and aiθaj =⇒ i < j . Then X ⊂ {aiaj | i < j}, and in view
of Example 7.2.7, the set X is a circular code.

The codes X ⊂ Am in Corollary 7.3.9 are circular. The next theorem states that for
m odd, X may even be chosen to be comma-free.

Theorem 7.3.11 For any alphabet A with k letters and for any odd integer m ≥ 1,
there exists a comma-free code X ⊂ Am such that

Card(X) = �m(k).

It follows from Example 7.3.10 that a circular code X ⊂ A2 having �2(k) = k(k −
1)/2 elements has the form X = {aiaj | i < j} for some numbering of the alphabet.
For k = 4 and A = {a, b, c, d}, one gets the code X = {ab, ac, ad, bc, cd, bd}. It is
not comma-free, since abcd has the factorizations (ab)(cd) and a(bc)d. Consequently,
a result like Theorem 7.3.11 does not hold for even integers m.

To prove Theorem 7.3.11, we construct a Hall sequence (xi)i≥1 and the sequence
(Xi)i≥1 of associated codes by setting

X1 = A, Xi+1 = x∗
i (Xi \ xi), (i ≥ 1), (7.21)

where xi is an element of Xi of minimal odd length. By construction, (xi)i≥1 is indeed
a Hall sequence. Set

U =
⋃
i≥1

Xi, Y = U ∩ (A2)∗, Z = U ∩ A(A2)∗.

Thus Y is the set of words of even length in U , and

Z = {xj | i ≥ 1}.
For any word u ∈ U , we define

ν(u) = min{i ∈ N | u ∈ Xi} − 1,

δ(u) = sup{i ∈ N | u ∈ Xi}.

7.3 Length distributions 293

Thus ν(u) denotes the last time before u appears in some Xi and δ(u) is the last
time u appears in some Xi . Observe that Y = {u ∈ U | δ(u) = +∞}. Next, note
that δ(xi) = i, and if ν(u) = q for some u ∈ U \ A, then u ∈ X1+q and u /∈ Xq .
Consequently u = xqv for some v ∈ Xq+1. Further, for all u ∈ U and n ≥ 1, we have

ν(u) ≤ n < δ(u) =⇒ xnu ∈ U. (7.22)

We shall prove by a series of lemmas that, for any odd integer m, the code Z ∩ Am

satisfies the conclusion of Theorem 7.3.11.

Lemma 7.3.12 For all odd integers m, we have Card(Z ∩ Am) = �m(k).

Proof. Let n be the smallest integer such that |xn| = m. Let u be the length distribution
of Xn. Then by construction of the Hall sequence (xi), we have

Z ∩ Am = {xn, xn+1, . . . , xn+p}

for some integer p. Then Z ∩ Am = Xn ∩ Am, since for all k ≥ 1, words in Xn+k

which are not in Xn have length strictly greater than |xn|. Thus Card(Z ∩ Am) = um.
Next, by the definition of n, we have m > |xn−1|. According to Proposition 7.3.6(2),

each primitive word of length m has a conjugate in X∗
n. Thus �m(u) = �m(k).

Let D be the set of odd integers d such that 1 ≤ d ≤ m − 2. By construction of
the Hall sequence, we have ud = 0 for each d in D. We show by induction on d that
pd (u) = 0 for d ∈ D. It is true for d = 1 since p1 = u1 = 0. By Equation (7.15), we
have pd = dud +∑d−1

i=1 piud−i . Each term of the right-hand side is zero since ud = 0
and either pi = 0 or ud−i = 0 since i or d − i is odd. Thus pd = 0. Consequently,
by Equation (7.16), we have �d (u) = 0 for d ∈ D and finally pm(u) = mum and
�m(u) = um.

We obtain in this way Card(Z ∩ Am) = �m(k). �

Lemma 7.3.13 Each word w ∈ A∗ admits a unique factorization

w = yz1z2 · · · zn (7.23)

with y ∈ Y ∗, zi ∈ Z, n ≥ 0, and δ(z1) ≥ δ(z2) ≥ · · · ≥ δ(zn).

Proof. First we show that for n ≥ 1

X∗
n = X∗

n+1x
∗
n.

Indeed, by definition Xn+1 = x∗
n(Xn \ xn). The product of x∗

n with Xn \ xn is unam-
biguous since Xn is a code. Thus one has in terms of formal power series

Xn+1 = x∗
n(Xn − xn). (7.24)

Consequently, Xn+1 = xn
∗Xn − xn

+ and Xn+1 − 1 = xn
∗Xn − xn

∗ = xn
∗(Xn − 1).

Formula (7.24) follows by inversion.

294 7 Circular codes

By successive substitutions in (7.24), starting with A∗ = X∗
1 , one gets for all n ≥ 1

A∗ = Xn+1
∗x∗

nx∗
n−1 · · · x∗

1 . (7.25)

Now let w ∈ A∗ and set p = |w|. Let n be an integer such that Xn+1 contains no
word of odd length ≤ p. By (7.25) there exists a factorization of w as

w = yz1z2 · · · zk

with δ(z1) ≥ δ(z2) ≥ · · · ≥ δ(zk), zi ∈ Z and y ∈ X∗
n+1. Since |y| ≤ p, the choice of

n implies that y is a product of words in Xn+1 of even length. Consequently y ∈ Y ∗.
This proves the existence of one factorization (7.23). Assume that there is second
factorization of the same type, say,

w = y ′z′1z
′
2 · · · z′n.

Let m be an integer greater than δ(z1) and δ(z′1), and large enough to ensure y, y ′ ∈
X∗

m+1. Such a choice is possible since all even words of some code X� are also in
the codes X�′ , for �′ ≥ �. Then according to (7.25), both factorizations of w are the
same. �

Now, we characterize successively the form of the factorization (7.23), for words
which are prefixes and for words which are suffixes of words in U .

Lemma 7.3.14 Each proper prefix w of a word in U admits a factorization (7.23)
with y = 1.

Proof. Each of the codes Xn is a maximal prefix code. This follows by iterated
application of Proposition 3.4.13. Consequently for n ≥ 0,

A∗ = X∗
n+1Pn+1

where Pn+1 = Xn+1A
− is the set of proper prefixes of words of Xn+1. Comparing

this equation with (7.25), we get

Pn+1 = x∗
nx∗

n−1 · · · x∗
1 . (7.26)

Let now w be a proper prefix of some word u in U . Then u ∈ Xn+1 for some n ≥ 0
and consequently w ∈ Pn+1. By Equation (7.26), w admits a factorization of the
desired form. �

Lemma 7.3.15 For all n, p ≥ 1, we have xnxn+p ∈ Y ∗. Further for z ∈ Z and y ∈ Y ,
we have zy ∈ Y ∗Z.

Proof. The first formula is shown by induction on p. For p = 1, we have ν(xn+1) ≤ n

since xn+1 ∈ Xn+1. Thus according to Formula (7.22), we have xnxn+1 ∈ U . Since
xnxn+1 has even length, xnxn+1 ∈ Y .

7.3 Length distributions 295

u :
xn u

w : w u

w :
y xk

Figure 7.6

Assume that the property holds up to p − 1, and set q = ν(xn+p). We distinguish
two cases. First assume q ≤ n. Then by (7.22), with xn+p playing the role of u, we
have xnxn+p ∈ U . This word has even length. Thus xnxn+p ∈ Y .

Next suppose that n ≤ q. Then xn+p ∈ U \ A. Consequently xn+p = xqu for
some u ∈ U . Since q ≤ n + p = δ(xn+p), we have xnxq ∈ Y ∗ by the induction
hypothesis. Next u has even length (because |xn|, |xq | are both odd). Thus u ∈ Y ,
whence xnxn+p ∈ Y ∗.

Let us prove the second formula. Set n = δ(Z) and q = ν(y). Then z = xn and
y = xqxt for some t . If n ≤ q, then xnxq ∈ Y ∗ by the preceding argument, and
consequently zy ∈ Y ∗Z. On the contrary, assume q ≤ n. Then by (7.22) xnxqxt =
xny ∈ U . Since it has odd length, this word is in Z. �

Lemma 7.3.16 Any suffix w of a word in U admits a factorization (7.23) with n = 0
or n = 1.

Proof. Given a word u ∈ U , we prove that all its suffixes are in Y ∗Z ∪ Y ∗, by induction
on |u|. The case |u| = 1 is obvious, and clearly it suffices to prove the claim for proper
suffixes of words in U .

Assume |u| ≥ 2. Set n = ν(u). Since u ∈ U \ A, we have u = xnu
′ for some

u′ ∈ U .
Let w be a proper right factor of u. If w is a suffix of u′, then by the induction

hypothesis, w is in Y ∗Z ∪ Y ∗. Thus we assume that w = w′u′, with w′ a proper suffix
of xn. By induction, w′ is in Y ∗Z ∪ Y ∗. If w′ ∈ Y ∗, then w′u′ ∈ Y ∗(Y ∪ Z) and the
claim is proved. Thus it remains the case where w′ ∈ Y ∗Z. In this case, set w′ = yxk

with y ∈ Y ∗, k ≥ 1. Observe that k ≤ n since |xk| ≤ |w′| ≤ |xn| (see Figure 7.6).
We now distinguish two cases: First, assume u′ ∈ Y . Then by Lemma 7.3.15,

xku
′ ∈ Y ∗Z. Consequently, w = yxku

′ ∈ Y ∗Z. Second, suppose that u′ ∈ Z. Then
u′ = xm for some m. We have xm ∈ Xn+1, implying that m > n. Since k ≤ n, we have
k ≤ m and by Lemma 7.3.15, xkxm ∈ Y ∗. Thus w = yxkxm ∈ Y ∗. This concludes the
proof. �

Proof of Theorem 7.3.11. Let m be an odd integer and let X = Z ∩ Am. Let x, x ′, x ′′ ∈
X. Assume that for some u, v ∈ A+,

xx ′ = ux ′′v. (7.27)

Then for some w, t ∈ A+, we have x = uw, x ′′ = wt, x ′ = tv. Since x ′′ has odd
length, one of the words w or t must have even length. Assume that the length of w is

296 7 Circular codes

Table 7.3 A sequence satisfying the conditions of the
construction.

X1 a, b

X2 b ab a2b a3b a4b

X3 ab a2b a3b a4b

bab ba2b ba3b

b2ab b2a2b

b3ab

X4 ab bab a3b a4b

ba2b ba3b

b2ab b2a2b

b3ab

a2bab

X5 ab a3b a4b

ba2b ba3b

b2ab b2a2b

b3ab

a2bab

babab

u w t v

x

x x

Figure 7.7 The case where w has even length.

even (see Figure 7.7). Since w is a proper prefix of x ′′ ∈ Z, we have by Lemma 7.3.14,
a factorization w = z1z2 · · · zn with z1, z2, . . . , zn ∈ Z and δ(z1) ≥ · · · ≥ δ(zn) On
the other hand, the word w is a suffix of x ∈ Z, and according to Lemma 7.3.16,
we have w ∈ Y ∗Z ∪ Y ∗. Since w has even length, w ∈ Y ∗. Thus n = 0 and w = 1,
showing that u = x, x ′ = x ′′, and v = 1. �

Example 7.3.17 Let A = {a, b}. A sequence (xn)n≥1 satisfying the conditions of the
construction given above is given in Table 7.3. We have represented only words of
length at most five. Words of the same length are written in a column. Taking the
words of length five in X5, we obtain all words of length five in the code Z. Thus the
following is a comma-free code X ⊂ A5:

X = {a4b, ba3b, b2a2b, b3ab, a2bab, babab}.
It has Card(X) = �2(5) = 6 elements. The words of length three in X3 give the
comma-free code of Example 7.2.16.

7.4 Exercises 297

7.4 Exercises

Section 7.1

7.1.1 Show that the submonoid {ab, ba}∗ is pure.

7.1.2 (Fine–Wilf theorem) Show that if two powers of words x and y have a common
prefix of length |x| + |y| − gcd(|x|, |y|), then x and y are powers of a word z.

Section 7.2

7.2.1 A finite monoid is called aperiodic if it contains no nontrivial group. Let
X ⊂ A+ be a finite code and let A = (Q, 1, 1) be an unambiguous trim automaton
recognizing X∗. Let ϕ be the associated representation. Show that X∗ is pure if and
only if the monoid ϕ(A∗) is aperiodic.

7.2.2 A set X ⊂ A+ is called (p, q)-constrained for some p, q ≥ 0 if for each
sequence u0, u1, . . . , up+q of words the condition ui−1ui ∈ X for 1 ≤ i ≤ p + q

implies up ∈ X∗.

(a) Show that, for p + q ≤ 2, a set X is (p, q)-constrained if and only if it is (p, q)-
limited.

(b) Let A = {a, b} and X = {a, ab}. Show that X is (3, 0)-constrained but not (3, 0)-
limited.

7.2.3 Show that a recognizable code is limited if and only if it is circular. (Hint: For
a recognizable circular code X, let ϕ : A∗ → M be the morphism on the syntactic
monoid of X∗. Prove that X is (p, p)-limited for p = Card(M) + 1.)

Section 7.3

7.3.1 Let A be a k letter alphabet and let s ∈ A+ be a word of length p. Let R be the
finite set

R = {w ∈ A∗ | sw ∈ A∗s, |w| < p}.
Let X be the semaphore code X = A∗s \ A∗sA+. Using Proposition 3.7.17, show
that the generating series of X is

fX(t) = tp

tp + (1 − kt)fR(t)
.

Now let Z = (sA+ ∩ A+s) \ A+sA+. Show that s + AX = X + Z. Let U = Zs−1.
Show that for all n ≥ p, the code U ∩ An is comma-free and that the generating
series of U is

fU (t) = (kt − 1)

tp + (1 − kt)fR(t)
+ 1.

7.3.2 Show that for any sequence (un)n≥1 of nonnegative integers, the sequence pn

defined by Formula (7.13) is formed of nonnegative integers.

298 7 Circular codes

7.3.3 Let (un)n≥1 be a sequence of nonnegative integers. Let A be a weighted alphabet
with un letters of weight n for each n ≥ 1. The weight of a word is the sum of the
weights of its letters. Show that �n(u) is the number of primitive necklaces on the
alphabet A with weight n.

7.3.4 Let (un)n≥1 and (vn)n≥1 be two sequences of integers such that 0 ≤ un ≤ vn

for each n ≥ 1. Show that �n(u) ≤ �n(v) for all n ≥ 0. (Hint: Use Exercise 7.3.3.)

7.3.5 For any sequence (vn)n≥1 of complex numbers, define the sequence (pn) by

pn =
∑
d|n

dv
n/d

d .

Show that, in terms of generating series, one has

exp
∑
n≥1

pn

n
zn =

∏
n≥1

(1 − vnz
n)−1.

7.5 Notes

The definition of limited codes is from Schützenberger (1965c), where limited codes
are defined by a condition denoted Us(p, q) for p ≤ 0 ≤ q which is our condition
C(−p, q). Theorem 7.1.10 is from de Luca and Restivo (1980). See also Lassez
(1976) where the term “circular code” appears for the first time.

There is a close connection between the formulas concerning the length distri-
butions of circular codes and symmetric functions. Actually, for a finite code, the
numbers un are, up to the sign, the elementary symmetric functions of the roots of
the polynomial 1 − u(z) and the pn are the sums of powers. Formula (7.13) is well
known in this context and Formula (7.15) is known as Newton’s formula (see for
instance Macdonald (1995)). Proposition 7.3.1 appears also in Stanley (1997).

The left side of Formula (7.13) is often called a zeta function. In the context of
symbolic dynamics, the zeta function of a subshift S is defined as

ζS(z) = exp
∑
n≥1

pn

n
zn,

where pn is the number of points of period n (see Lind and Marcus (1995)). This
corresponds to our hypotheses, considering the subshift formed of all infinite words
having a factorization in words of X. In this context, Formula (7.13) is a particular
case of a result of Manning (1971) which is the following. Let S be the subshift
formed of all two-sided infinite paths in a graph G. Let M be the adjacency matrix
of G. Then

ζS(z) = 1

det(I − Mz)
.

The numbers �n(k) are called the Witt numbers and Identity (7.19) is called the
cyclotomic identity. Other results on zeta functions and circular codes are given in

7.5 Notes 299

Keller (1991). The book by Stanley (1997) contains applications of these notions to
enumerative combinatorics.

Theorem 7.3.7 is due to Schützenberger (1965c). The proof uses a method known
in the context of free Lie algebras as Lazard elimination method.

The pair (v, p) defined as in Exercise 7.3.5 is called a Witt vector (see Lang (1965)
or Metropolis and Rota (1983)). The link between Witt vectors and codes and the
construction given in Exercise 7.3.5 is due to Luque and Thibon (2007).

The story of comma-free codes is interesting. They were introduced in Golomb
et al. (1958). Some people thought at that time that the biological code is comma-
free (Crick’s hypothesis). The number of amino acids appearing in proteins is 20.
They are coded by words of length three over the alphabet of bases A,C,G,U .
Now, the number �3(4) which is the maximum number of elements in a comma-free
(or circular) code composed of words of length three over a four-letter alphabet is
precisely 20. Unfortunately for mathematics, it appeared several years later with
the work of Niernberg that the biological code is not even a code in the sense of
this book. Several triples of bases may encode the same acid (see Stryer (1975) or
Lewin (1994)). This disappointment does not weaken the interest of circular codes,
we believe.

Theorem 7.3.11 has been conjectured by Golomb et al. (1958) and proved by
Eastman (1965). Another construction has been given by Scholtz (1969), on which
the proof given here is based. Other constructions which are possible are described in
Devitt and Jackson (1981). For even length, no formula is known giving the maximal
number of elements of a comma-free code (see Jiggs (1963)). Further studies on
comma-free codes include the corresponding completion problem, solved by Lam
(2003), and the study of a more general family, called solid codes, by Shyr and Yu
(1990), Lam (2001).

Exercise 7.1.2 is due to Fine and Wilf (see Lothaire (1997)). Exercise 7.2.1 is
from Restivo (1974) (see also Hashiguchi and Honda (1976b)). These statements
have a natural place within the framework of the theory of varieties of monoids (see
Eilenberg (1976) or Pin (1986)).

Exercise 7.3.1 is from Guibas and Odlyzko (1978). The codes introduced in this
exercise were defined by Gilbert (1960) and named prefix-synchronized. Gilbert has
conjectured that U ∩ An has maximal size when the word s is chosen unbordered and
of length logk n. This conjecture has been settled by Guibas and Odlyzko (1978). It
holds for k = 2, 3, 4, but is false for k ≥ 5.

8

Factorizations of free monoids

This chapter investigates in a systematic way the notion of factorization of free mo-
noids already seen in particular cases in Chapter 7. The main result of Section 8.1
(Theorem 8.1.2) characterizes factorizations of free monoids. It shows in particular
that the codes which appear in these factorizations are circular. The proof is based
on an enumeration technique. For this, we define the logarithm in a ring of formal
power series in noncommutative variables. The properties necessary for the proof are
derived. We illustrate the factorization theorem by considering a very general family
of factorizations obtained from sets called Lazard sets.

Section 8.2 is devoted to the study of factorizations into finitely many submonoids.
We first consider factorizations into two submonoids called bisections. The main
result (Theorem 8.2.4) gives a method to construct all bisections. We then study tri-
sections, that is factorizations into three submonoids. We prove a difficult result (The-
orem 8.2.6) showing that every trisection can be constructed by “pasting” together
factorizations into four factors obtained by successive bisections.

8.1 Factorizations

Several times in the previous chapter, we have used special cases of the notion
of factorization which will be defined here. We shall see in this section that these
factorizations are closely related to circular codes. Let I be a totally ordered set and
let (Xi)i∈I be a family of subsets of A+ indexed by I . An ordered factorization of a
word w ∈ A∗ is a factorization

w = x1x2 · · · xn (8.1)

with n ≥ 0, xi ∈ Xji
such that j1 ≥ j2 ≥ · · · ≥ jn.

A family (Xi)i∈I is a factorization of the free monoid A∗ if each word w ∈ A∗ has
exactly one ordered factorization.

If (Xi)i∈I is a factorization, then each Xi is a code, since otherwise the unique
factorization would not hold for words in X∗

i . We shall see later (Theorem 8.1.2) that
each Xi is in fact a circular code.

Let us give a formulation in terms of formal power series. Consider a family (σi)i∈I

of formal power series over an alphabet A with coefficients in a semiring K , indexed

302 8 Factorizations of free monoids

by a totally ordered set I . Assume furthermore that the family (σi)i∈I is locally finite.
Let J = {j1, j2, . . . , jn} be a finite subset of I , with j1 ≥ j2 ≥ · · · ≥ jn. Set

τJ = σj1σj2 · · · σjn
.

Then for all w ∈ A∗,

(τJ , w) =
∑

x1x2···xn=w

(σj1 , x1)(σj2 , x2) · · · (σjn
, xn). (8.2)

Let S be the set of all finite subsets of I . Then the family (τJ)J∈S is locally finite.
Indeed, for each word w ∈ A∗, the set F (w) of factors of w is finite. For each
x ∈ F (w), the set Ix of indices i ∈ I such that (σi, x) �= 0 is finite. From (8.2), it
follows that if (τJ , w) �= 0, then J ⊂⋃x∈F (w) Ix . Consequently there are only finitely
many sets J such that (τJ , w) �= 0. These considerations allow us to define the product

σ =
∏
i∈I

(1 + σi)

by the formula

σ =
∑
J∈S

τJ .

If I is finite, we obtain the usual notion of a product of a sequence of formal power
series, and the latter expression is just the expanded form obtained by distributivity.

Consider a family (Xi)i∈I of subsets of A+ indexed by a totally ordered set I . If
the family is a factorization of A∗, then

A∗ =
∏
i∈I

X∗
i . (8.3)

Conversely, if the sets Xi are codes and if the semigroups X+
i are pairwise disjoint,

then the product
∏

i∈I X∗
i is defined and (8.3) implies that the family (Xi)i∈I is a

factorization of A∗.

Example 8.1.1 Formula (7.25) states that the family (Xn+1, xn, . . . , x1) is a factor-
ization of A∗ for all n ≥ 1. Lemma 7.3.13 says that the family of sets (Y, . . . , xn,

xn−1, . . . , x1) is a factorization of A∗.

The main result of this section is the following theorem.

Theorem 8.1.2 (Schützenberger) Let (Xi)i∈I be a family of subsets of A+ indexed
by a totally ordered set I . Two of the three following conditions imply the third.

(i) Each word w ∈ A∗ has at least one ordered factorization.
(ii) Each word w ∈ A∗ has at most one ordered factorization.

(iii) Each of the Xi (i ∈ I) is a circular code and each conjugacy class of nonempty
words meets exactly one among the submonoids X∗

i .

The proof is based on an enumeration technique. Before giving the proof, we need
some results concerning the logarithm of a formal power series in commuting or

8.1 Factorizations 303

noncommuting variables. For this, we shall consider a slightly more general situation,
namely, the formal power series defined over monoids which are direct products of
a finite number of free monoids. Let M be a monoid which is a direct product of
finitely many free monoids. The set

S = QM

of functions from M into the field Q of rational numbers is equipped with the
structure of a semiring as was done for formal series over a free monoid. In particular
if σ, τ ∈ S, the product στ given by

(στ,m) =
∑
uv=m

(σ, u)(τ, v)

is well defined since the set of pairs (u, v) with uv = m is finite. As in the case of
formal power series over a free monoid, a family (σi)i∈I of elements of S is locally
finite if for all m ∈ M , the set {i ∈ I | (σi,m) �= 0} is finite. Define

S(1) = {σ ∈ S | (σ, 1) = 0}.

For σ ∈ S(1), the family (σn)n≥0 of powers of σ is locally finite. Indeed, for each
m ∈ M , (σn,m) = 0 for all n greater than the sum of the lengths of the components
of m. This allows us to define for all σ ∈ S(1),

log(1 + σ) = σ − σ 2/2 + σ 3/3 − · · · + (−1)n+1σn/n + · · · (8.4)

exp(σ) = 1 + σ + σ 2

2!
+ · · · + σn

n!
+ · · · (8.5)

Let M and N be monoids which are finite direct products of free monoids. Let
S = QM and T = QN . A morphism

γ : M → T

from the monoid M into the multiplicative monoid T is called continuous if and
only if the family (γ (m))m∈M is locally finite. In this case, the morphism γ can be
extended into a morphism, still denoted by γ , from the algebra S into the algebra T

by the formula

γ (σ) =
∑
m∈M

(σ,m)γ (m). (8.6)

This sum is well defined since the family (γ (m))m∈M is locally finite. The extended
morphism γ is also called a continuous morphism from S into T . For any locally
finite family (σi)i∈I of elements of S, the family γ (σi)i∈I is also locally finite and∑

i∈I

γ (σi) = γ
(∑

i∈I

σi

)
. (8.7)

304 8 Factorizations of free monoids

According to Formula (8.7), a continuous morphism γ : S → T is entirely deter-
mined by its definition on M , thus on a set X of generators for M . Furthermore, γ

is continuous if and only if γ (X \ {1}) ⊂ T (1) and the family (γ (x))x∈X is locally
finite. This is due to the fact that each m ∈ M has only finitely many factorizations
m = x1x2 · · · xk with x1, x2, . . . xk ∈ X \ 1. It follows from (8.6) that if σ ∈ S(1), then
γ (σ) ∈ T (1). From (8.7), we obtain

log(1 + γ (σ)) = γ (log(1 + σ)), (8.8)

exp(γ (σ)) = γ (exp(σ)). (8.9)

According to classical results from elementary analysis, we have the following for-
mulas in the algebra Q[[s]] of formal power series in the variable s:

exp(log(1 + s)) = 1 + s, log(exp(s)) = s. (8.10)

Furthermore, in the algebra Q[[s, t]] of formal power series in two commuting
variables s, t , we have

exp(s + t) = exp(s) exp(t), log((1 + s)(1 + t)) = log(1 + s) + log(1 + t).
(8.11)

Let M be a monoid which is a finite direct product of free monoids and let S = QM .
Let σ ∈ S(1) and let γ be the continuous morphism from the algebra Q[[s]] into S

defined by γ (s) = σ . Then by formulas (8.8)–(8.10), we have

exp(log(1 + σ)) = 1 + σ, log(exp(σ)) = σ (8.12)

showing that exp and log are inverse bijections of each other from the set S onto the
set

1 + S(1) = {1 + r | r ∈ S(1)}.

Now consider two series σ, τ ∈ S(1) which commute, that is, such that στ = τσ .
Since the submonoid of S generated by σ and τ is commutative, the function γ from
s∗ × t∗ into S defined by γ (sptq) = σpτq is a continuous morphism from Q[[s, t]]
into S and by (8.11),

exp(σ + τ) = exp(σ) exp(τ),

log((1 + σ)(1 + τ)) = log(1 + σ) + log(1 + τ). (8.13)

These formulas do not hold when σ and τ do not commute. We shall give a property
of the difference of the two sides of (8.13) in the general case. A series σ ∈ Q〈〈A〉〉 is
called cyclically null if for each conjugacy class C ⊂ A∗ one has

(σ,C) =
∑
w∈C

(σ,w) = 0.

Clearly any sum of cyclically null series still is cyclically null.

8.1 Factorizations 305

Proposition 8.1.3 Let A be an alphabet and let S = Q〈〈A〉〉. Let γ : S → S be a con-
tinuous morphism. For each cyclically null series σ ∈ S, the series γ (σ) is cyclically
null.

Proof. Let T ⊂ A∗ be a set of representatives of the conjugacy classes of A∗. Denote
by C(t) the conjugacy class of t ∈ T . Let

τ =
∑
t∈T

(∑
w∈C(t)

(σ,w)(w − t)
)
.

The family of polynomials (
∑

w∈C(t)(σ,w)(w − t))t∈T is locally finite. Thus the sum
is well defined. Next

τ =
∑
t∈T

∑
w∈C(t)

(σ,w)w −
∑
t∈T

∑
w∈C(t)

(σ,w)t = σ −
∑
t∈T

(σ,C(t))t.

Since σ is cyclically null, the second series vanishes and consequently τ = σ . It
follows that

γ (σ) =
∑
t∈T

(∑
w∈C(t)

(σ,w)(γ (w) − γ (t))
)
.

In order to prove the claim, it suffices to show that each series γ (w) − γ (t) for
w ∈ C(t) is cyclically null. For this, consider w ∈ C(t). Then t = uv,w = vu for
some u, v ∈ A∗. Setting µ = γ (u), ν = γ (v), one has γ (w) − γ (t) = νµ − µν. Next

νµ =
∑

x,y∈A∗
(ν, x)(µ, y)xy.

Thus

νµ − µν =
∑

x,y∈A+
(ν, x)(µ, y)(xy − yx).

Since each polynomial xy − yx clearly is cyclically null, the series νµ − µν and
hence γ (σ) is cyclically null. �

Proposition 8.1.4 Let A = {a, b}, and let C be a conjugacy class of A∗. Then

(log((1 + a)(1 + b)), C) = (log(1 + a), C) + (log(1 + b), C). (8.14)

In other words, the series log((1 + a)(1 + b)) − log(1 + a) − log(1 + b) is cyclically
null.

Proof. One has (1 + a)(1 + b) = 1 + a + b + ab and

log((1 + a)(1 + b)) =
∑
m≥1

(−1)(m+1)

m
(a + b + ab)m.

306 8 Factorizations of free monoids

Let w ∈ An, and let d be the number of times ab occurs as a factor in w. Let us
verify that

((a + b + ab)m,w) =
(

d

n − m

)
. (8.15)

Indeed, ((a + b + ab)m,w) is the number of factorizations w = x1x2 · · · xm of w in
m words, with xi ∈ {a, b, ab}. Since w has length n and the xi’s have length 1 or
2, there are exactly n − m xi’s which are equal to ab. Each factorization of w thus
corresponds to a choice of n − m factors of w equal to ab among the d occurrences
of ab. Thus there are exactly

(
d

n−m

)
factorizations. This proves (8.15).

Now let C be a conjugacy class, let n be the length of the words in C and let p be
their exponent. Then Card(C) = n/p. If C ⊂ a∗, then C = {an}. Then Formula (8.15)
shows that ((a + b + ab)m, an) equals 1 or 0 according to n = m or not. Thus both
sides of (8.14) in this case are equal to (−1)n/n. The same holds if C ⊂ b∗. Thus we
may assume that C is not contained in a∗ ∪ b∗. Then the right-hand side of (8.14)
equals 0. Consider the left-hand side. Since each word in C contains at least one a,
there is a word w in C whose first letter is a. Let d be the number of occurrences of
ab as a factor in w. Among the n/p conjugates of w, there are d/p which start with
the letter b and end with the letter a. Indeed, set w = vp. Then the word v has d/p

occurrences of the factor ab. Each of the d/p conjugates of w in bA∗a is obtained
by “cutting” v in the middle of one occurrence of ab. Each of these d/p conjugates
has only d − 1 occurrences of ab as a factor. The (n − d)/p other conjugates of w

have all d occurrences of the factor ab. According to Formula (8.15), we have for
each conjugate u of w,

((a + b + ab)m, u) =

(

d − 1

n − m

)
if u ∈ bA∗a,(

d

n − m

)
otherwise.

Summation over the elements of C gives

((a + b + ab)m,C) = d

p

(
d − 1

n − m

)
+ n − d

p

(
d

n − m

)
.

Since
(

d−1
n−m

) = d−n+m
d

(
d

n−m

)
, we obtain ((a + b + ab)m,C) = (m/p)

(
d

n−m

)
. Conse-

quently

(log(1 + a)(1 + b), C) = 1

p

∑
m≥1

(−1)m+1

(
d

n − m

)
. (8.16)

Since n > d and d �= 0, this alternating sum of binomial coefficients equals 0. �

The following proposition is an extension of Proposition 8.1.4.

8.1 Factorizations 307

Proposition 8.1.5 Let (σi)i∈I be a locally finite family of elements of Q〈〈A〉〉 indexed
by a totally ordered set I , such that (σi, 1) = 0 for all i ∈ I . The series

log
(∏

i∈I

(1 + σi)
)
−
∑
i∈I

log(1 + σi) (8.17)

is cyclically null.

Proof. Set S = Q〈〈A〉〉, and S(1) = {σ ∈ S | (σ, 1) = 0}. Let σ, τ ∈ S(1). The series

δ = log((1 + σ)(1 + τ)) − log(1 + σ) − log(1 + τ)

is cyclically null. Indeed, either σ and τ commute and δ is null by (8.13), or the
alphabet A has at least two letters a, b. Consider a continuous morphism γ such that
γ (a) = σ , γ (b) = τ . The series

d = log((1 + a)(1 + b)) − log(1 + a) − log(1 + b)

is cyclically null by Proposition 8.1.4. Since δ = γ (d), Proposition 8.1.3 shows that
δ is cyclically null. Now let τ1, τ2, . . . , τn ∈ 1 + S(1). Arguing by induction, assume
that

ε = log(τn · · · τ2) −
n∑

i=2

log τi

is cyclically null. In view of the preceding discussion, the series

ε′ = log(τn · · · τ2τ1) − log(τn · · · τ2) − log τ1

is cyclically null. Consequently

ε + ε′ = log(τn · · · τ1) −
n∑

i=1

log τi

is cyclically null. This proves (8.17) for finite sets I . For the general case, we consider
a fixed conjugacy class C. Let n be the length of words in C and let B = alph(C).
Then B is finite and C ⊂ Bn. Define an equivalence relation on S by σ ∼ τ if and
only if (σ,w) = (τ,w) for all w ∈ B[n]. (Recall that B[n] = {w ∈ B∗ | |w| ≤ n}.)
Observe first that σ ∼ τ implies σ k ∼ τ k for all k ≥ 1. Consequently σ ∼ τ and
σ, τ ∈ S(1) imply log(1 + σ) ∼ log(1 + τ).

Consider the family (τi)i∈I of the statement. Let

I0 = {i ∈ I | σi ∼ 0}, I ′ = I \ I0.

Then I ′ is finite. Indeed, for each w ∈ B[n] there are only finitely many indices i such
that (σi, w) �= 0. Since B is finite, the set B[n] is finite and therefore I ′ is finite.

Next observe that ∏
i∈I

(1 + σi) ∼
∏
i∈I ′

(1 + σi), (8.18)

308 8 Factorizations of free monoids

since in view of (8.2), we have (τJ , w) = 0 for w ∈ B[n] except when J ⊂ I ′. It
follows from (8.18) that

log
(∏

i∈I

(1 + σi)
)
∼ log

(∏
i∈I ′

(1 + σi)
)
.

Consequently (
log
(∏

i∈I

(1 + σi)
)
, C
)
=
(

log
(∏

i∈I ′
(1 + σi)

)
, C
)
.

Next, since σi ∼ 0 for i ∈ I0, we have log(1 + σi) ∼ 0 for i ∈ I0. Thus(∑
i∈I

log(1 + σi), C
)
=
(∑

i∈I ′
log(1 + σi), C

)
.

From the finite case, one obtains(
log
(∏

i∈I ′
(1 + σi)

)
, C
)
=
(∑

i∈I ′
log(1 + σi), C

)
.

Putting all this together, we obtain(
log
(∏

i∈I

(1 + σi)
)
, C
)
=
(∑

i∈I ′
log(1 + σi), C

)
=
(∑

i∈I

log(1 + σi), C
)
.

Thus the proof is complete. �

To prove Theorem 8.1.2, we need a final lemma which is a reformulation of
Propositions 7.1.7 and 7.1.8.

Proposition 8.1.6 Let X ⊂ A+ be a code. For each conjugacy class C meeting
X∗, we have (log X∗, C) ≥ (log A∗, C), and equality holds if X is a circular code.
Conversely if (log X∗, C) = (log A∗, C) for all conjugacy classes that meet X∗, then
X is a circular code.

Proof. We have X∗ = (1 − X)−1. Thus log(X∗(1 − X)) = 0. Since the series X∗

and 1 − X commute, we have 0 = log X∗ + log(1 − X), showing that log X∗ =
− log(1 − X). Thus

log X∗ =
∑
m≥1

1

m
Xm.

In particular, if C ⊂ Am is a conjugacy class, then

(log X∗, C) =
∑
m≥1

1

m
Card(Xm ∩ C).

For X = A, the formula becomes

(log A∗, C) = 1

n
Card(C).

8.1 Factorizations 309

The proposition is now a direct consequence of Propositions 7.1.6 and 7.1.7. �

Proof of Theorem 8.1.2. Assume first that conditions (i) and (ii) are satisfied, that
is, that the family (Xi)i∈I is a factorization of A∗. Then the sets Xi are codes and by
Formula (8.3), we have

A∗ =
∏
i∈I

X∗
i . (8.19)

Taking the logarithm on both sides, we obtain

log A∗ = log
(∏

i∈I

X∗
i

)
. (8.20)

By Proposition 8.1.5, the series

δ = log A∗ −
∑
i∈I

log X∗
i (8.21)

is cyclically null. Thus for each conjugacy class C

(log A∗, C) =
∑
i∈I

(log X∗
i , C). (8.22)

In view of Proposition 8.1.6, we have for each i ∈ I and for each C that meets X∗
i

the inequality

(log A∗, C) ≤ (log X∗
i , C). (8.23)

Formulas (8.22) and (8.23) show that for each conjugacy class C, there exists a unique
j ∈ I such that C meets X∗

j . For this index j , we have

(log A∗, C) = (log X∗
j , C). (8.24)

Thus if some X∗
j meets a conjugacy class, no other X∗

i (i ∈ I \ j) meets this conjugacy
class. Since (8.24) holds, each of the codes Xi is a circular code by Proposition 8.1.6.
This proves condition (iii).

Now assume that condition (iii) holds. Let C be a conjugacy class and let i ∈ I

be the unique index such that X∗
i meets C. Since Xi is circular, (8.24) holds by

Proposition 8.1.6 and furthermore (log X∗
j , C) = 0 for all j �= i. Summing up all

equalities (8.24), we obtain Equation (8.22). This proves that the series δ defined
by (8.21) is cyclically null.

Let α be the canonical morphism from Q〈〈A〉〉 onto the algebra Q[[A]] of formal
power series in commutative variables in A. The set of words in A∗ having the same
image by α is a union of conjugacy classes, since α(uv) = α(vu). Since the series δ

is cyclically null, the series α(δ) is null. Since α is a continuous morphism, we obtain,
by applying α to both sides of (8.21),

0 = log α(A∗) −
∑
i∈I

log α(X∗
i).

310 8 Factorizations of free monoids

Hence

log α(A∗) =
∑
i∈I

log α(X∗
i). (8.25)

Next, condition (iii) ensures that the product
∏

i∈I X∗
i exists. By Proposition 8.1.5,

the series

log
(∏

i∈I

X∗
i

)
−
∑
i∈I

log X∗
i

is cyclically null. Thus its image by α is null, whence

log α
(∏

i∈I

X∗
i

)
=
∑
i∈I

log α(X∗
i).

This together with (8.25) shows that

log α(A∗) = log α
(∏

i∈I

X∗
i

)
.

Since log is a bijection, this implies

α(A∗) = α
(∏

i∈I

X∗
i

)
.

This shows that α(ε) = 0, where

ε = A∗ −
∏
i∈I

X∗
i .

Observe that condition (i) means that all the coefficients of ε are negative or zero.
Condition (ii) says that all coefficients of ε are positive or zero. Thus, in both cases,
all the coefficients of ε have the same sign. This together with the condition α(ε) = 0
implies that ε = 0. This shows that if condition (iii) and either (i) or (ii) hold, then
the other one of conditions (i) and (ii) also holds. �

A factorization (Xi)i∈I , is called complete if each Xi is reduced to a singleton xi .
The following result is a consequence of Theorem 8.1.2. Recall from Chapter 1 that
�n(k) denotes the number of primitive necklaces of length n on a k-letter alphabet.

Corollary 8.1.7 Let (xi)i∈I be a complete factorization of A∗. Then the set X = {xi |
i ∈ I } is a set of representatives of the primitive conjugacy classes. In particular, for
all n ≥ 1,

Card(X ∩ An) = �n(k) (8.26)

with k = Card(A).

Proof. According to condition (iii) of Theorem 8.1.2, each conjugacy class intersects
exactly one of the submonoids X∗

i . In view of the same condition, each code {xi} is

8.1 Factorizations 311

circular and consequently each word xi is primitive. This shows that X is a system
of representatives of the primitive conjugacy classes. Formula (8.26) is an immediate
consequence. �

Now we describe a systematic procedure to obtain a large class of complete
factorizations of free monoids. These include the construction used in Section 7.3.

A Lazard set is a totally ordered subset Z of A+ satisfying the following property:
For each n ≥ 1, the set Z ∩ A[n] = {z1, z2, . . . , zk} with z1 < z2 < · · · < zk satisfies

zi ∈ Zi for 1 ≤ i ≤ k, and Zk+1 ∩ A[n] = ∅,

where the sets Z1, . . . , Zk+1 are defined by

Z1 = A, Zi+1 = z∗i (Zi \ zi) (1 ≤ i ≤ k).

(Recall that A[n] = {w ∈ A∗ | |w| ≤ n}.)

Example 8.1.8 Let (xn)n≥1 be a Hall sequence over A and let (Xn)n≥1 be the associ-
ated sequence of codes. Assume that, for each n, the word xn is a word of minimal
length in Xn, and let Z = {xn | n ≥ 1} be the subset of A+ ordered by the indices.
Then Z is a Lazard set.

Example 8.1.9 Let (xn)n≥1 be the sequence used in the proof of Theorem 7.3.11.
Recall that we start with X1 = A and

Xi+1 = x∗
i (Xi \ xi) i ≥ 1,

where xi is a word in Xi of minimal odd length. Denote by Y the set of even words
in the set

⋃
i≥1 Xi . Now set Y1 = Y and for i ≥ 1,

Yi+1 = y∗
i (Yi \ yi),

where yi ∈ Yi is chosen with minimal length. Let T = {xi, yi | i ≥ 1} ordered by

x1 < x2 < · · · < xn < · · · < y1 < y2 < · · · .

The ordered set T is a Lazard set. Indeed, let n ≥ 1 and

T ∩ A[n] = {x1, x2, . . . , xr , y1, y2, . . . , ys}.

Set

Zi = Xi, (1 ≤ i ≤ r + 1), Zr+i+1 = y∗
i (Zr+i \ yi), (1 ≤ i ≤ s).

We show by induction on i that

Zr+i ∩ A[n] = Yi ∩ A[n] (1 ≤ i ≤ s + 1). (8.27)

312 8 Factorizations of free monoids

Indeed, words in Xr+1 = Zr+1 of length at most n all have even length (since the words
with odd length are x1, x2, . . . , xr). Thus all these words are in Y = Y1. Conversely,
any word of even length ≤ n is already in Xr+1, since |xr+1| > n.

Next, consider y ∈ Yi+1 ∩ A[n]. Then y = y
p

i y ′ for some y ′ ∈ Yi \ yi . Since |y ′| ≤
n, we have by the induction hypothesis y ′ ∈ Zr+i , whence y ∈ Zr+i+1. The converse
is proved in the same way.

Equation (8.27) shows that yi ∈ Zr+i for 1 ≤ i ≤ s and that Zr+s+1 ∩ A[n] = ∅.
Thus T is a Lazard set.

Proposition 8.1.10 Let Z ⊂ A+ be a Lazard set. Then the family (z)z∈Z is a complete
factorization of A∗.

Proof. Let w ∈ A∗ and n = |w|. Set Z ∩ A[n] = {z1, z2, . . . , zk}with z1 < z2 < · · · <

zk . Let Z1 = A and Zi+1 = Z∗
i (Zi \ zi) for i = 1, 2, . . . , k. Then zi ∈ Zi for i =

1, 2, . . . , k and Zk+1 ∩ A[n] = ∅. As in the proof of Lemma 7.3.13, we have for
1 ≤ i ≤ k,

Z∗
i = Z∗

i+1z
∗
i ,

whence by successive substitutions

A∗ = Z∗
k+1z

∗
k · · · z∗1. (8.28)

Thus there is a factorization w = yzi1zi2 · · · zin with y ∈ Z∗
k+1 and i1 ≥ i2 ≥ · · · ≥ in.

Since Zk+1 ∩ A[n] = ∅, we have y = 1. This proves the existence of an ordered
factorization. Assume there is another factorization, say w = t1t2 · · · tm, with tj ∈ Z,
t1 ≥ t2 ≥ · · · ≥ tm. Then ti ∈ Z ∩ A[n] for each i. Thus by (8.28) both factorizations
coincide. �

We conclude this section with an additional example of a complete factorization.
Consider a totally ordered alphabet A. Recall that the lexicographic or alphabetic
order, denoted ≺, on A∗ is defined by setting u ≺ v if u is a proper prefix of v, or if
u = ras, v = rbt , a < b for a, b ∈ A and r, s, t ∈ A∗. Recall also that the alphabetic
order has the property

u ≺ v ⇔ wu ≺ wv.

By definition, a Lyndon word is a primitive word which is minimal in its conjugacy
class. In an equivalent way, a word w ∈ A+ is a Lyndon word if and only if w = uv

with u, v ∈ A+ implies w ≺ vu. Let L denote the set of Lyndon words. We shall
show that (�)�∈L is a complete factorization of A∗. For this we establish propositions
which are interesting on their own.

Proposition 8.1.11 A word is a Lyndon word if and only if it is smaller than all its
proper nonempty right factors.

Proof. The condition is sufficient. Let w = uv, with u, v ∈ A+. Since w ≺ v and
v ≺ vu, we have w ≺ vu. Consequently w ∈ L. Conversely, let w ∈ L and consider

8.2 Finite factorizations 313

a factorization w = uv with u, v ∈ A+. First, let us show that v is not a prefix of w.
Assume the contrary. Then w = vt for some t ∈ A+. Since w ∈ L, we have w ≺ tv.
But w = uv implies uv ≺ tv. This in turn implies u ≺ t whence, multiplying on the
left by v,

vu ≺ vt = w,

a contradiction. Suppose that v ≺ uv. Since v is not a prefix of w, this implies that
vu ≺ uv and w �∈ L, a contradiction. Thus uv ≺ v, and the proof is completed. �

Proposition 8.1.12 Let �,m be two Lyndon words. If � ≺ m, then �m is a Lyndon
word.

Proof. First we show that �m ≺ m. If � is a prefix of m, let m = �m′. Then m ≺ m′ by
Proposition 8.1.11. Thus �m ≺ �m′ = m. If � is not a prefix of m, then the inequality
� ≺ m directly implies �m ≺ m. Let v be a nonempty proper suffix of �m. If v is
a suffix of m, then by Proposition 8.1.11, m ≺ v. Hence �m ≺ m ≺ v. Otherwise
v = v′m for some proper nonempty suffix v′ of �. Then � ≺ v′ and consequently
�m ≺ v′m. Thus in all cases �m ≺ v. By Proposition 8.1.11, this shows that �m ∈ L.

�

Theorem 8.1.13 The family (�)�∈L is a complete factorization of A∗.

Proof. We prove that conditions (i) and (iii) of Theorem 8.1.2 are satisfied. This is
clear for condition (iii) since L is a system of representatives of primitive conjugacy
classes. For condition (i), let w ∈ A+. Then w has at least one factorization w =
�1�2 · · · �n with �j ∈ L. Indeed each letter is already a Lyndon word. Consider a
factorization w = �1�2 · · · �n into Lyndon words with minimal n. Then this is an
ordered factorization. Indeed, otherwise, these would be some index i such that
�i ≺ �i+1. But then �i�i+1 ∈ L and w would have a factorization into n − 1 Lyndon
words. Thus condition (i) is satisfied. �

It can be proved (see Exercises 8.1.3, 8.1.4) that the set L is a Lazard set.

8.2 Finite factorizations

In this section we consider factorizations (Xi)i∈I with I a finite set. These are families
Xn,Xn−1, . . . , X1 of subsets of A+ such that

A∗ = X∗
nX

∗
n−1 · · ·X∗

1 . (8.29)

According to Theorem 8.1.2, each Xi is a circular code and each conjugacy class
meets exactly one of the X∗

i . The aim of this section is to refine these properties. We
shall see that in some special cases the codes Xj are limited. The question whether
all codes appearing in finite factorizations are limited is still open. We start with the
study of bisections, that is, factorizations of the form (X, Y). Here X is called the left

314 8 Factorizations of free monoids

factor and Y is called the right factor of the bisection. Then

A∗ = X∗Y ∗. (8.30)

Example 8.2.1 Let A = {a, b}. The pair (a∗b, a) is a bisection of A∗. More generally,
if A = A0 ∪ A1 is a partition of A, the pair (A∗

0A1, A0) is a bisection of A∗.

Formula (8.30) can be written as

YX + A = X + Y . (8.31)

Indeed, (8.30) is equivalent to 1 − A = (1 − Y)(1 − X) by taking the inverses. This
gives (8.31). Equations (8.30) and (8.31) show that a pair (X, Y) of subsets of A+ is
a bisection if and only if the following are satisfied:

A ⊂ X ∪ Y, (8.32)

X ∩ Y = ∅, (8.33)

YX ⊂ X ∪ Y, (8.34)

each z ∈ X ∪ Y , z �∈ A factorizes uniquely into z = yx with x ∈ X, y ∈ Y . (8.35)

We shall see later (Theorem 8.2.6) that a subset of these conditions is already
enough to ensure that a pair (X, Y) is a bisection.

Before doing that, we show that for a bisection (X, Y) the code X is (1, 0)-limited
and the code Y is (0, 1)-limited. Recall that a (1, 0)-limited code is prefix and that by
Proposition 7.2.12 a prefix code X is (1, 0)-limited if and only if the set R = A∗ \ XA∗

is a submonoid. Symmetrically, a suffix code Y is (0, 1)-limited if and only if the set
S = A∗ \ A∗Y is a submonoid.

Proposition 8.2.2 Let X, Y be two subsets of A+. The following conditions are
equivalent:

(i) (X, Y) is a bisection of A∗.
(ii) X, Y are codes, X is (1, 0)-limited and Y ∗ = A∗ \ XA∗.

(iii) X, Y are codes, Y is (0, 1)-limited and X∗ = A∗ \ A∗Y .

Proof. (i) ⇒ (ii). From A∗ = X∗Y ∗ we obtain by multiplication on the left by 1 − X

the equation (1 − X)A∗ = Y ∗, showing that Y ∗ = A∗ − XA∗. The number of prefixes
in X of any word w ∈ A∗ is (XA∗, w). The equation shows that this number is 0 or 1,
according to w ∈ Y ∗ or w �∈ Y ∗. This proves that X is a prefix code. This also gives
the set relation Y ∗ = A∗ \ XA∗. Thus A∗ \ XA∗ is a submonoid and by Proposition
7.2.12, the code X is (1, 0)-limited.

(ii) ⇒ (i). By Theorem 3.1.8, we have A∗ = X∗R with R = A∗ \ XA∗. Since
R = Y ∗ and Y is a code, we have R = Y ∗. Thus A∗ = X∗Y ∗.

Consequently (i) and (ii) are equivalent. The equivalence between (i) and (iii) is
shown in the same manner. �

8.2 Finite factorizations 315

u v

m n

m n

Figure 8.1 Factorizations.

Corollary 8.2.3 The left factors of bisections are precisely the (1, 0)-limited codes.
�

Observe that for a bisection (X, Y), either X is maximal prefix or Y is maximal
suffix. Indeed, we have Y ∗ = A∗ \ XA∗. If Y ∗ contains no right ideal, then XA∗ is
right dense and consequently X is maximal prefix. Otherwise, Y ∗ is left dense and
thus Y is maximal suffix.

Proposition 8.2.4 Let M,N be two submonoids of A∗ such that A∗ = M N . Then
M and N are free and the pair (X, Y) of their bases is a bisection of A∗.

Proof. Let u, v be in A∗ such that uv ∈ M . Set v = mn with m ∈ M , n ∈ N . Similarly
set um = m′n′ for some m′ ∈ M , n′ ∈ N (see Figure 8.1). Then uv = m′(n′n). Since
uv ∈ M , the unique factorization property implies n = n′ = 1, whence v ∈ M . This
shows that M satisfies condition C(1, 0). Thus M is generated by a (1, 0)-limited
code X. Similarly N is generated by a (0, 1)-limited code Y . Clearly (X, Y) is a
factorization. �

Example 8.2.5 Let M and N be two submonoids of A∗ such that

M ∩ N = {1}, M ∪ N = A∗.

We shall associate a special bisection of A∗ with the pair (M,N). For this, let

R = {r ∈ A∗ | r = uv ⇒ v ∈ M}
be the set of words in M having all its suffixes in M . Symmetrically, define

S = {s ∈ A∗ | s = uv ⇒ u ∈ N}.
The set R is a submonoid of A∗ because M is a submonoid. Moreover, R is suffix-
closed. Consequently the base of R, say X, is a (1, 0)-limited code. Similarly S is a
free submonoid and its base, say Y , is a (0, 1)-limited code. We prove that (X, Y) is a
bisection. In view of Proposition 8.2.2, it suffices to show that Y ∗ = A∗ \ XA∗. First,
consider a word y ∈ Y ∗ = S. Then all its prefixes are in N . Thus no prefix of y is
in X. This shows that Y ∗ ⊂ A∗ \ XA∗. Conversely, let w ∈ A∗ \ XA∗. We show that
any prefix u of w is in N by induction on |u|. This holds clearly for |u| = 0. Next,
if |u| ≥ 1, then u cannot be in R = X∗ since otherwise w would have a prefix in X.

316 8 Factorizations of free monoids

ϕ
r s

a b a a b a b

Figure 8.2 The path of values of ϕ for ϕ(a) = 1, ϕ(b) = −1 and w = abaabab.

Thus there exists a factorization u = u′v′ with v′ �∈ M . Hence v′ ∈ N and v′ �= 1.
By the induction hypothesis, u′ ∈ N . Since N is a submonoid, u = u′v′ ∈ N . This
proves that w ∈ S = Y ∗.

A special case of this construction is obtained by considering a morphism ϕ :
A∗ → Z into the additive monoid Z and by setting

M = {m ∈ A∗ | ϕ(m) > 0} ∪ {1}, N = {n ∈ A∗ | ϕ(n) ≤ 0}.
Given a word w ∈ A∗, we obtain a factorization w = rs with r ∈ R, s ∈ S as follows.
The word r is the shortest prefix of w such that the value ϕ(r) is maximal in the set
of values of ϕ on the prefixes of w (see Figure 8.2).

The construction of Example 8.2.5 can be considered as a special case of the very
general following result.

Theorem 8.2.6 Let (P,Q) be a partition of A+. There exists a unique bisection
(X, Y) of A∗ such that X ⊂ P and Y ⊂ Q. This bisection is obtained as follows.

Let

X1 = P ∩ A, Y1 = Q ∩ A, (8.36)

and for n ≥ 2,

Zn =
n⋃

i=1

YiXn−i , (8.37)

Xn = Zn ∩ P, Yn = Zn ∩ Q. (8.38)

Then

X =
⋃
n≥1

Xn and Y =
⋃
n≥1

Yn. (8.39)

Proof. We first prove uniqueness. Consider a bisection (X, Y) of A∗ such that X ⊂ P

and Y ⊂ Q. We show that for n ≥ 1, we have X ∩ An = Xn, Y ∩ An = Yn, with Xn

and Yn given by (8.36) and (8.38). Arguing by induction, we consider n = 1. Then
X ∩ A ⊂ P ∩ A = X1. Conversely we have A ⊂ X ∪ Y by (8.32) and P ∩ Y = ∅.

8.2 Finite factorizations 317

Consequently P ∩ A ⊂ X and therefore X ∩ A = X1. For n ≥ 2, we have Zn ⊂
YX ∩ An by the induction hypothesis. Thus by (8.34), Zn ⊂ (X ∪ Y) ⊂ An. This
implies that Zn ∩ P ⊂ X ∩ An and Zn ∩ Q ⊂ Y ∩ An. Conversely, let z ∈ (X ∪ Y) ∩
An. Then by (8.35) z = yx for some y ∈ Y, x ∈ X. By the induction hypothesis,
y ∈ Yi and x ∈ Xn−i for i = |y|. In view of (8.37), we have z ∈ Zn. This shows that
(X ∪ Y) ∩ An ⊂ Zn. Hence X ∩ An ⊂ Zn ∩ P and Y ∩ An ⊂ Zn ∩ Q.

To prove the existence of a bisection, we consider the pair (X, Y) given in (8.39).
We proceed in several steps. Define Z1 = A and set Z =⋃n≥1 Zn. In view of (8.36)
and (8.38) we have Z = X ∪ Y . Observe first that by Formula (8.37)

YX ∪ A = X ∪ Y. (8.40)

Clearly (8.40) implies YX ⊂ X ∪ Y . By induction, we obtain

Y ∗X∗ ⊂ X∗ ∪ Y ∗. (8.41)

Next, we have

A∗ = X∗Y ∗. (8.42)

Indeed, let w ∈ A∗. Since A ⊂ Z, the word w has at least one factorization w =
z1z2 · · · zn with zj ∈ Z. Choose such a factorization with n minimal. Then we cannot
have zi ∈ Y , zi+1 ∈ X for some 1 ≤ i ≤ n − 1, since this would imply that zj zj+1 ∈
Z by (8.40) contradicting the minimality of n. Consequently there is some j ∈
{1, . . . , n} such that z1, . . . , zj ∈ X and zj+1, . . . , zn ∈ Y , showing that w ∈ X∗Y ∗.

Now we prove that X∗ is suffix-closed. For this, it suffices to show that

uv ∈ X ⇒ v ∈ X∗. (8.43)

Indeed, assuming (8.43), consider a word w = rs ∈ X∗. Then r = r ′u, s = vs ′ for
some r ′, s ′ ∈ X∗, and uv ∈ X ∪ 1. By (8.43), v is in X∗, and consequently, s ∈ X∗,
showing that X∗ is suffix-closed. We prove (8.43) by induction on the length of x =
uv. Clearly the formula holds for |x| = 1. Assume |x| ≥ 2. Then by (8.40) x = y1x1

for some y1 ∈ Y, x1 ∈ X. If y1 is not a letter, then again by (8.40), y1 = y2x2 for some
y2 ∈ Y, x2 ∈ X. Iterating this operation, we obtain a factorization x = ykxk · · · x2x1

with yk ∈ Yn ∩ A and x1, . . . , xk ∈ X.
Each proper suffix v of x has the form v = vpxp−1 · · · x1 for some suffix vp of xp

and 1 ≤ p ≤ k. By the induction hypothesis, vp ∈ X∗. Consequently v ∈ X∗. This
proves (8.43). An analogous proof shows that Y ∗ is prefix-closed.

Next we claim that

X∗ ∩ Y ∗ = {1}, (8.44)

and prove this claim by induction, showing that X∗ ∩ Y ∗ contains no word of length
n ≥ 1. This holds for n = 1 because X ∩ Y = ∅. Assume that for some w ∈ An, there
are two factorizations x = x1x2 · · · xp = y1y2 · · · yq with xi ∈ X, yj ∈ Y . Since Y ∗

is prefix-closed, we have x1 ∈ Y ∗. Since X∗ is suffix-closed yq ∈ X∗. Thus x1 ∈

318 8 Factorizations of free monoids

X ∩ Y ∗ and yq ∈ X∗ ∩ Y . By the induction hypothesis this is impossible if x1 and
yq are shorter than w. Therefore we have p = q = 1. But then w ∈ X ∩ Y = ∅, a
contradiction. This proves (8.44). Now we prove that X is prefix. For this, we show
by induction on n ≥ 1 that no word in X of length n has a proper prefix in X. This
clearly holds for n = 1.

Consider uv ∈ X ∩ An with n ≥ 2 and suppose that u ∈ X. In view of (8.40), we
have uv = yx for some y ∈ Y, x ∈ X. The word u cannot be a prefix of y, since
otherwise u would be in X ∩ Y ∗ because Y ∗ is prefix-closed and this is impossible
by (8.44). Thus there is a word u′ ∈ A+ such that u = yu′, u′v = x.

By (8.43), u′ ∈ X∗. Moreover |x| ≤ n. By the induction hypothesis, the equation
x = u′v implies v = 1. Thus u = uv, showing the claim for n. Consequently X is
prefix. A similar proof shows that Y is suffix.

We now are able to show that (X, Y) is a bisection. Equation (8.42) shows that any
word in A∗ admits a factorization. To show uniqueness, assume that xy = x ′y ′ for
x, x ′ ∈ X∗ and y, y ′ ∈ Y ∗. Suppose |x| ≥ |x ′|. Then x = x ′u and uy = y ′ for some
word u. Since X∗ is suffix-closed and Y ∗ is prefix-closed, we have u ∈ X∗ ∩ Y ∗.
Thus u = 1 by (8.44). Consequently x = x ′ and y = y ′. Since X and Y are codes,
this completes the proof. �

Theorem 8.2.6 shows that the following method allows us to construct all bisec-
tions.

(i) Partition the alphabet A into two subsets X1 and Y1.
(ii) For each n ≥ 2, partition the set Zn =⋃n−1

i=1 YiXn−i into two subsets Xn and
Yn .

(iii) Set X =⋃n≥1 Xn and Y =⋃n≥1 Yn.

In other words, it is possible to construct the components of the partition (P,Q)
progressively during the computation. A convenient way to represent the computa-
tions is to display the words in X and Y in two columns when they are obtained. This
is illustrated by the following example.

Example 8.2.7 Let A = {a, b}. We construct a bisection of A∗ by distributing iter-
atively the products yx (x ∈ X, y ∈ Y) into two columns as shown in Figure 8.3.
All the remaining products are put into the set R. This gives a defining equation for
R, since from A ∪ YX = X ∪ Y and X = {a, ba} ∪ R we obtain R = {b, b2a}R ∪
b2a{a, ba}. Thus R = {b, b2a}∗b2a{a, ba} or also R = (b2b∗a)∗b2b∗a{a, ba}. Con-
sequently X = (b2b∗a)∗{a, ba}, which is the code of Example 7.2.11.

The following convention will be used for the rest of this section. Given a code X

over A, a pair (U,V) of subsets of A∗ will be called a bisection of X∗ if

X∗ = U ∗V ∗.

To fit into the ordinary definition of bisection, it suffices to consider a coding mor-
phism for X.

8.2 Finite factorizations 319

X Y

1 a b

2 ba

3 bba

≥4 R

Figure 8.3 A bisection of A∗.

A trisection of A∗ is a triple (X, Y,Z) of subsets of A+, which form a factorization
of A∗, that is

A∗ = X∗Y ∗Z∗. (8.45)

We shall prove the following result which gives a relationship between bisections
and trisections.

Theorem 8.2.8 Let (X, Y,Z) be a trisection of A∗. There exist a bisection (U,V) of
Y ∗ and a bisection (X′, Z′) of A∗ such that (X,U) is a bisection of X′∗ and (V,Z) is
a bisection of Z′∗,

A∗ = X∗Y ∗Z∗ = (X∗U ∗)(V ∗Z∗) = X′∗Z′∗.

Before giving the proof we establish some useful formulas.

Proposition 8.2.9 Let (X, Y,Z) be a trisection of A∗.

1. The set X∗Y ∗ is suffix-closed and the set Y ∗Z∗ is prefix-closed.
2. One has the inclusions

Y ∗X∗ ⊂ X∗ ∪ Y ∗Z∗, (8.46)

Z∗Y ∗ ⊂ Z∗ ∪ X∗Y ∗. (8.47)

3. The codes X, Y and Z are (2, 0)-, (1, 1)-, and (0, 2)-limited, respectively.

Proof. We first prove 1. Let w ∈ X∗Y ∗, and let v be a suffix of w (see Figure 8.4).
Then w = uv for some u. Set v = xyz with x ∈ X∗, y ∈ Y ∗, and z ∈ Z∗. Set also
uxy = x ′y ′z′ with x ′ ∈ X∗, y ′ ∈ Y ∗, and z′ ∈ Z∗. Then

w = uv = uxyz = x ′y ′(z′z).

Uniqueness of factorization implies z′ = z = 1. This shows that v ∈ X∗Y ∗ and
proves that X∗Y ∗ is suffix-closed. Likewise Y ∗Z∗ is prefix-closed. We now verify
(8.46). Let x ∈ X∗ and y ∈ Y ∗. Set yx = x ′y ′z′ with x ′ ∈ X∗, y ′ ∈ Y ∗, and z′ ∈ Z∗. If
x ′ = 1, then yx ∈ Y ∗Z∗. Thus assume that x ′ �= 1. The word x ′ cannot be a prefix of

320 8 Factorizations of free monoids

vu

x y z

x y z

Figure 8.4 The set X∗Y ∗ is suffix-closed.

y x

x y z

u

x y

Figure 8.5 Y ∗X∗ ⊂ X∗ ∪ Y ∗Z∗.

y since y ∈ Y ∗Z∗ and Y ∗Z∗ is prefix-closed and X∗ ∩ Y ∗Z∗ = {1}. Therefore there
is a word u such that x ′ = yu and x = uy ′z′ (see Figure 8.5). Since u is a suffix of x ′ ∈
X∗Y ∗, it is itself in X∗Y ∗. Consequently u = x ′′y ′′ for some x ′′ ∈ X∗ and y ′′ ∈ Y ∗.
This shows that x = x ′′y ′′y ′z′. Uniqueness of factorization implies y ′′ = y ′ = z′ = 1.
Consequently yx = x ′y ′z′ = x ′ ∈ X∗. This proves (8.46). Formula (8.47) is proved
symmetrically.

The code X is (2, 0)-limited. Indeed, let u, v,w ∈ A+ be words such that uv, vw ∈
X∗. Since v and w are suffixes of words in X∗ and since X∗Y ∗ is suffix-closed, both
v and w are in X∗Y ∗. Thus we have

v = x ′y ′, w = xy

for some x, x ′ ∈ X∗, y, y ′ ∈ Y ∗ (see Figure 8.6). The word y ′x is a suffix of uvx ∈ X∗.
By the same argument, y ′x is in X∗Y ∗ and consequently y ′x = x ′′y ′′ for some x ′′ ∈ X∗

and y ′′ ∈ Y ∗, whence vw = x ′x ′′y ′′y. Since by assumption vw ∈ X∗, uniqueness of
factorization implies that y ′′ = y = 1. Thus w = x ∈ X∗. This proves that X is (2, 0)-
limited. Likewise Z is (0, 2)-limited.

To show that Y is (1, 1)-limited, consider words u, v,w ∈ A∗ such that uv, vw ∈
Y ∗. Then v ∈ X∗Y ∗ because v is a suffix of the word uv in X∗Y ∗ and also v ∈ Y ∗Z∗

as a left factor of the word vw in Y ∗Z∗. Thus v ∈ X∗Y ∗ ∩ Y ∗Z∗. Uniqueness of
factorization implies that v ∈ Y ∗. This completes the proof. �

Proof of Theorem 8.2.8. Set S = {s ∈ Y ∗ | sX∗ ⊂ X∗Y ∗}. First, we observe that

S = {s ∈ Y ∗ | sX∗ ⊂ X∗ ∪ Y ∗}. (8.48)

Indeed, consider a word s ∈ Y ∗. If sX∗ ⊂ X∗ ∪ Y ∗, then clearly, sX∗ ⊂ X∗Y ∗.
Assume conversely that sX∗ ⊂ X∗Y ∗. Since s ∈ Y ∗ we have sX∗ ⊂ Y ∗X∗ and

8.2 Finite factorizations 321

u v w

x y x y

x y

Figure 8.6 The code X is (2, 0)-limited.

it follows by (8.46) that sX∗ ⊂ X∗ ∪ Y ∗Z∗. Thus sX∗ ⊂ X∗Y ∗ ∩ (X∗ ∪ Y ∗Z∗) =
(X∗Y ∗ ∩ X∗) ∪ (X∗Y ∗ ∩ Y ∗Z∗) = X∗ ∪ Y ∗ by uniqueness of factorization. This
proves (8.48). Next, S is a submonoid. Indeed, 1 ∈ S and if s, t ∈ S, then stX∗ ⊂
sX∗Y ∗ ⊂ X∗Y ∗. We show that the monoid S, considered as a monoid on the alpha-
bet Y , satisfies condition C(1, 0). In other words, s, t ∈ Y ∗ and st ∈ S imply t ∈ S.
Indeed, consider x ∈ X∗. Since tx is a suffix of stx ∈ X∗Y ∗ and since X∗Y ∗ is
suffix-closed, tx ∈ X∗Y ∗. Thus t ∈ S. This shows that S is a free submonoid of Y ∗

generated by some (1, 0)-limited code U ⊂ Y+ . Note that U is (1, 0)-limited as a
code over Y . According to Proposition 8.2.2, the code U is the left factor of some
bisection (U,V) of Y ∗, with V ∗ = Y ∗ \ UY ∗. We shall give another definition of V .
For this, set

R = {r ∈ Y ∗ | rX∗ ∩ Z∗ �= ∅}.

Clearly R ∩ S = 1. We prove that

R∗ = V ∗. (8.49)

First, we show that R ⊂ V ∗. Let r ∈ R \ 1. Set r = st with s ∈ Y+, t ∈ Y ∗. Since
r ∈ R, we have stx ∈ Z∗ for some x ∈ X∗. By (8.46), we have tx ∈ X∗ ∪ Y ∗Z∗.
If tx ∈ Y ∗Z∗, then st ∈ Y+Z∗ which is impossible since stx ∈ Z∗. Consequently
tx ∈ X∗. Thus s ∈ R. Since R ∩ S = {1}, it follows that s /∈ S. This shows that no
prefix s ∈ Y+ of r is in S. In other words, no prefix of r is in the code U . This proves
that r is in V ∗.

Second, we prove that V ∗ ⊂ R∗. We proceed by induction on the length of words
in V , the case of the empty word being trivial. Let v ∈ V +. Since (U,V) is a
factorization, we have U ∗ ∩ V ∗ = {1}. Consequently v ∈ U ∗ = S. Thus by (8.48),
there is some x ∈ X∗ such that vx ∈ X∗ ∪ Y ∗. Since v ∈ Y ∗, we have by (8.46)
vx ∈ Y ∗Z∗, and by a previous remark even vx ∈ Y ∗Z+. Set vx = yz with y ∈ Y ∗,
z ∈ Z+. Then z cannot be a suffix of x, since otherwise z would be in X∗Y ∗ ∩ Z+,
which is impossible. Thus there is some word w ∈ A+ such that v = yw and wx = z.
Since w is a suffix of v ∈ X∗Y ∗, we have w ∈ X∗Y ∗. Similarly w is a prefix of
z ∈ Y ∗Z∗. This implies that w ∈ Y ∗Z∗. Uniqueness of factorization implies w ∈ Y ∗.
The word y is in V ∗. Indeed, y ∈ Y ∗ is a prefix of v, and since V ∗ is prefix-closed as
a subset of Y ∗, y ∈ V ∗. Since |y| ≤ |v|, we have y ∈ R∗ by the induction hypothesis.
On the other hand, w ∈ Y ∗ and wx = z ∈ Z∗ imply w ∈ R. Thus v = yw ∈ R∗. This

322 8 Factorizations of free monoids

completes the proof of (8.49). Up to now, we have proved that

A∗ = X∗U∗V ∗Z∗, (8.50)

with Y ∗ = U ∗V ∗, S = U ∗, and R∗ = V ∗. To finish the proof, it suffices to show that
the products M = X∗U ∗ and N = V ∗Z∗ are submonoids. Indeed, since the product
(8.50) is unambiguous, we have M = X∗U ∗ and N = V ∗Z∗ whence A∗ = MN . By
Proposition 8.2.4, the monoids M and N then are free and their bases constitute the
desired bisection (X′, Y ′). To show that X∗U ∗ is a submonoid it suffices to show that
U ∗X∗ ⊂ X∗ ∪ U ∗. Thus, let us consider words x ∈ X∗ and s ∈ U ∗ = S. Then by
(8.48) sx ∈ X∗ ∪ Y ∗. But sx ∈ Y ∗ implies sx ∈ S because sxX∗ ⊂ sX∗ ⊂ X∗ ∪ Y ∗.
Consequently sx ⊂ X∗ ∪ S, showing that X∗U ∗ is a submonoid. Finally we show
that V ∗Z∗ is a submonoid. For this, we show that

Z∗R ⊂ R ∪ Z∗. (8.51)

This will imply that Z∗R∗ ⊂ R∗ ∪ Z∗ which in turn proves the claim in view of
(8.49) To show (8.51), let z ∈ Z∗ and r ∈ R. Since r ∈ Y ∗, Formula (8.47) implies
that zr ∈ Z∗ ∪ X∗Y ∗. Next, by definition of R, rx ∈ Z∗ for some x ∈ X∗, showing
that zrx ∈ Z∗. Since Y ∗Z∗ is prefix-closed, we have z ∈ Y ∗Z∗. By the uniqueness
of factorization, zr ∈ Z∗ ∪ Y ∗. If zr ∈ Y ∗, then zr ∈ R, since zrx ∈ Z∗. Thus zr ∈
Z∗ ∪ R and this proves (8.51). �

Theorem 8.2.8 shows that all trisections can be built by “pasting” together quadri-
sections obtained by a sequence of bisections. The following example shows that, on
the contrary, a trisection cannot always be obtained by two bisections.

Example 8.2.10 Let A = {a, b}. The suffix code Z′ = {b, ba, ba2} is (0, 1)-limited.
Thus Z′ is the right factor of the bisection (X′, Z′) of A∗ with X′∗ = A∗ \ A∗Z′. The
equation

Z′X′ + A = Z′ + X′

derived from (8.31) gives A − Z′ = (1 − Z′)X′ whence X′ = Z′∗(A − Z′). It follows
that

X′ = Z′∗(a − ba − ba2)

= (Z′∗ − Z′∗b − Z′∗ba)a

= (1 + Z′∗(b + ba + ba2) − Z′∗b − Z′∗ba)a

= (1 + Z′∗ba2)a.

Thus

X′ = Z′∗ba3 ∪ {a}.

8.3 Exercises 323

Next define

U = (ba)∗ba3, V = ba, Z = {b, ba2}(ba)∗.

The pair (V,Z) is clearly a bisection of Z′∗. Moreover, by inspection U ⊂ X′. This
inclusion shows that, over the alphabet X′, the set U is the right factor of the bisection
(X,U) of X′∗ with X = U ∗(X′ \ U). Moreover, U ∗V ∗ = {ba, ba3}∗. Then setting

Y = {ba, ba3},
(U,V) is a bisection of Y ∗. Thus we have obtained

A∗ = X′∗Z′∗ = X∗U ∗V ∗Z∗ = X∗Y ∗Z∗,

and (X, Y,Z) is a trisection of A∗. Neither X∗Y ∗ nor Y ∗Z∗ is a submonoid. Indeed,
ba ∈ Y and a ∈ X (since a ∈ X′ \ U). However, ba2 ∈ Z and consequently ba2 /∈
X∗Y ∗. Similarly b ∈ Z and ba3 ∈ Y but b2a3 ∈ X whence b2a3 /∈ Y ∗Z∗. This means
that the trisection (X, Y,Z) cannot be obtained by two bisections.

8.3 Exercises

Section 8.1

8.1.1 Let A = {1, 2, . . . , n} and for j ∈ A, let Xj = j{j + 1, . . . , n}∗. Show that
the family (Xj)1≤j≤n is a factorization of A∗.

8.1.2 Let ϕ : A∗ → R be a morphism into the additive monoid. For r ∈ R, let

Cr = {v ∈ A+ | ϕ(v) = r|v|}, Br = Cr \ (
⋃
s≥r

Cs)A
+.

Show that the family (Br)r∈R (with the usual order on R) is a factorization of A∗.

8.1.3 The (left) standard factorization of a Lyndon word w ∈ L \ A is defined as the
pair

π (w) = (�,m)

of words in A+ such that w = �m and � is the longest proper prefix of w that is in L.
Show that m ∈ L and � ≺ m. (Hint: Consider the factorization of m as a nonincreasing
product of Lyndon words.)

Show that if π (w) = (�,m) and π (m) = (p, q), then p " � ≺ m.

8.1.4 Show that the set L of Lyndon words over A is a Lazard set. (Hint: Set
L ∩ An = {z1, z2, . . . , zk} with z1 ≤ z2 ≤ · · · ≤ zk . Show that zi ∈ Zi for 1 ≤ i ≤ k

where

Z1 = A,

Zi+1 = Z∗
i (Zi \ zi) (1 ≤ i ≤ k).

Show that Zi contains all zr such that π (zr) = (zs, zt) with s ≤ i ≤ r .)

324 8 Factorizations of free monoids

8.1.5 Show that the set Ln of Lyndon words of length n over a k letter alphabet is a
circular code. Show that Ln is comma-free if and only if n = 1 or (n = 2, k ≤ 3) or
(n = 3, 4 and k ≤ 2).

8.1.6 (Lyndon–Schützenberger theorem) Show that if three words x, y, z satisfy the
equation xmyn = zp with m, n, p ≥ 2, then the three words x, y, z belong to the
same cyclic submonoid t∗. (Hint: First prove that the conclusion holds if p ≥ 3
considering the conjugate z′ of z which is a Lyndon word. Then solve the case p = 2
using the fact that for some conjugate x ′ of x, the equality x ′m = u2yn holds for
some u.)

8.1.7 Let X = {x, y} be a code with two elements. Show that if X∗ is not pure, then
the set x∗y ∪ y∗x contains a word which is not primitive. (Hint: Consider the least
integer i ≥ 1 such that w2 ∈ X∗xyixX∗. Replacing w by an X-conjugate, suppose
that yix is a prefix of w and x a suffix of w. Let w′ be an X-conjugate of w such that
wh = hw′ and with h shorter than the word z ∈ X such that w′ ∈ X∗z. Distinguish
three cases: (1) w′ ∈ yX∗x, (2) w′ ∈ xX∗x, (3) w′ ∈ X∗y and |hx| > |yi |. Discuss
cases (2) and (3) according to |hx| > yi or not.)

8.1.8 Deduce from Exercise 8.1.7 that if x = uv and y = vu are conjugate primitive
words, then X∗ = {x, y}∗ is pure.

8.1.9 Show that the coefficient of zn in the series of Equation (7.13) is equal to
the number of multisets of primitive necklaces meeting X∗ whose total degree (that
is, the sum of the lengths of the necklaces) is n. Give two proofs, one using Equa-
tion (7.17), the other by applying to the free monoid X∗ the property of com-
plete factorizations given in Corollary 8.1.7, using the fact that X∗ is a very pure
submonoid.

8.1.10 Take the notations of Exercise 7.3.5, with pn as at the beginning of Sec-
tion 7.3. Show that the vn are nonnegative integers. (Hint: They are already
integers using Equation (7.13). By iteration of the fundamental bisection of
Example (8.2.2), show the existence of codes Xn and Cn, defined by: X1 =
X, Cn = {x ∈ Xn : |x| = n}, Xn+1 = (Xn \ Cn)C∗

n such that the free monoid X∗

has the factorization X∗ = C∗
1C∗

2 · · ·C∗
nX

∗
n+1. Show that vn is the cardinality

of Cn.)

8.1.11 A set L ⊂ A∗ is called cyclic if (i) for any words u, v ∈ A∗, one has uv ∈ L

if and only if vu ∈ L, and (ii) for any word w ∈ A∗ and any positive integer n, w ∈ L

if and only if wn ∈ L. The zeta function of a set is given by the left-hand side of
Equation (7.13), where pn is the number of words of length n in L.

Show that if X is a circular code, then the closure under conjugacy of X∗ is a cyclic
set. Show that the latter is rational if the former is. Show that its zeta function is equal
to the generating function of X∗. Show that more generally, the zeta function of a
cyclic set L has the expansion given in the right-hand side of Equation (7.17), where

8.4 Notes 325

�n denotes the number of primitive necklaces of length n contained in L. Deduce that
it has therefore natural integer coefficients.

Section 8.2

8.2.1 Show that if a factorization A∗ = X∗
nX

∗
n−1 · · ·X∗

1 is obtained by a composition
of bisections, then Xi is a (i − 1, n − i)-limited code. (Hint: Use induction on n.)

8.2.2 Let X be a (2, 0)-limited code over A. Let M ⊂ A∗ be the submonoid generated
by the suffixes of words in X. Show that M is right unitary. Let U be the prefix code
generating M . Show that there exists a bisection of A∗ of the form (U,Z). Show
that X, considered as a code over U is (1, 0)-limited. Derive from this a trisection
(X, Y,Z) of A∗. This shows that any (2, 0)-limited code is a left factor of some
trisection.

8.2.3 Let A = {a, b, c, d, e, f, g} and let Y = {d, eb, f a, ged, dac}. Show that Y

is (1, 1)-limited. Show that there is no trisection of A∗ of the form (X, Y,Z). (Hint:
Use Proposition 8.2.9.)

8.2.4 Let y ∈ A+ be an unbordered word. Show that there exists a trisection of A∗ of
the form (X, y,Z). Show that a prefix (resp. a suffix) of y is in Z∗ (resp. X∗). (Hint:
First construct a bisection (X′, Z) of A∗ such that X′∗ is the submonoid generated by
the suffixes of y.)

8.4 Notes

The notion of a factorization has been introduced by Schützenberger (1965a) in
the paper where he proves Theorem 8.1.2. The factorizations of free monoids are
very closely related with decompositions in direct sums of free Lie algebras. A
complete treatment of this subject can be found in Viennot (1978) and in Lothaire
(1997). Proposition 8.1.4 is a special case of a statement known as the Baker–
Campbell–Hausdorff formula (see, e.g., Lothaire (1997)). The notion of a Lazard
set is due to Viennot (1978). A series of examples of other factorizations and a
bibliography on this field can be found in Lothaire (1997). Finite factorizations
were studied by Schützenberger and Viennot. Theorem 8.2.4 is from Schützenberger
(1965a). Theorem 8.2.6 is due to Viennot (1974). Viennot (1974) contains other
results on finite factorizations. Among them, there is a necessary and sufficient
condition in terms of the construction of Theorem 8.2.4 for the factors of a bisec-
tion to be recognizable. He also gives a construction of trisections analogous to
that of bisections given in Theorem 8.2.4. Quadrisections have been studied by
Krob (1987).

The factorization of Example 8.1.8 is due to Spitzer (see Lothaire (1997)). Exer-
cise 8.1.6 is a theorem of Lyndon and Schützenberger (1962). The proof given in
the Solutions follows Harju and Nowotka (2004). Exercises 8.1.7 and 8.1.8 are from
Lentin and Schützenberger (1969). The proof given in the Solutions follows Barbin-
Le Rest and Le Rest (1985).

326 8 Factorizations of free monoids

Zeta functions of cyclic sets were introduced in Berstel and Reutenauer (1990).
It is shown there that the zeta function of a rational cyclic set is a rational function
(see also Béal et al. (1996)). Exercise 8.1.11 shows that this is true if the cyclic
set is the closure under conjugacy of a rational circular code. In Reutenauer (1997),
it is shown that each rational cyclic set is the disjoint union of the closure under
conjugacy of rational very pure monoids. This implies that the zeta function is
N-rational.

Exercises 8.2.2 and 8.2.3 are from Viennot (1974).

9

Unambiguous monoids of relations

To each unambiguous automaton corresponds a monoid of relations which is also
called unambiguous. A relation in this monoid corresponds to each word and the
computations on words are replaced by computations on relations.

The principal result of this chapter (Theorem 9.4.1) shows that very thin codes are
exactly the codes for which the associated monoid satisfies a finiteness condition:
it contains relations of finite positive rank. This result explains why thin codes
constitute a natural family containing the recognizable codes. It makes it possible to
prove properties of thin codes by reasoning in finite structures. As a consequence,
we shall give, for example, an alternative proof of the maximality of thin complete
codes which does not use probabilities.

The main result also allows us to define, for each thin code, some important
parameters: the degree and the group of the code. The group of a thin code is a
finite permutation group. The degree of the code is the number of elements on
which this group acts. These parameters reflect properties of words by means of
“interpretations”. For example, the synchronized codes in the sense of Chapter 3 are
those having degree 1.

This chapter is organized in the following manner. In Section 9.1, basic properties
of unambiguous monoids of relations are proved. These monoids constantly appear
in what follows, since each unambiguous automaton gives rise to an unambiguous
monoid of relations. In Section 9.2, we define two representations of unambiguous
monoids of relations, called the R and L-representations or Schützenberger repre-
sentations. These representations are relative to a fixed idempotent chosen in the
monoid, and they describe the way the elements of the monoid act by right or left
multiplication on the R-class and the L-class of the idempotent.

The notion of rank of a relation is defined in Section 9.3. The most important
result in this section states that the minimal ideal of an unambiguous monoid of
relations is formed of the relations having minimal rank, provided that rank is finite
(Theorem 9.3.10). Moreover, in this case the minimal ideal has a well-organized
structure.

In Section 9.4 we return to codes. We define the notion of a very thin code which
is a refinement of the notion of thin code. The two notions coincide for a complete
code. Then we prove the fundamental theorem: A code X is very thin if and only if
the associated unambiguous monoid of relations contains elements of finite positive

328 9 Unambiguous monoids of relations

rank (Theorem 9.4.1). Several consequences of this result on the structure of codes
are given.

Section 9.5 contains the definition of the group and the degree of a code. The
definition is given through the flower automaton, and then it is shown that it is
independent of the automaton considered. We also show how the degree may be
expressed in terms of interpretations of words.

9.1 Unambiguous monoids of relations

A relation m over P and Q is a subset of P × Q. If P = Q, we say that m is a
relation over P . If (p, q) ∈ m, we write equivalently

(p, q) ∈ m ⇐⇒ (p,m, q) = 1 ⇐⇒ pmq ⇐⇒ p
m−→ q ⇐⇒ mp,q = 1 .

(9.1)
Each of these notations refers to a specific view of a relation. The fourth allows us to
consider a relation as a graph, the third mimics order relations, the last one refers to
the view of a relation as a matrix. Of course, one has the negations

(p, q) /∈ m ⇐⇒ (p,m, q) = 0 ⇐⇒ mp,q = 0 . (9.2)

In these expressions, 0 and 1 refer to the elements of the Boolean semiring. In partic-
ular, viewed as matrices, relations are Boolean matrices. Since 0 and 1 are elements
of every semiring, every relation can also be viewed as a matrix with entries in this
semiring. Similarly, a row or a column of a relation is a row or a column of the cor-
responding matrix. Thus mp∗ = {q ∈ Q | mpq = 1} and m∗q = {p ∈ Q | mpq = 1}.

Each partial function from P to Q is a particular relation over P and Q. In
particular, a permutation of Q is a relation over Q.

The product of a relation m over P and Q and a relation n over Q and R is the
relation mn defined by

(p, r) ∈ mn ⇐⇒ ∃q ∈ Q : (p, q) ∈ m and (q, r) ∈ n.

The set P(Q × Q) of relations over a set Q is a monoid for this product. The product
is unambiguous if for each (p, r), there exists at most one q ∈ Q such that (p, q) ∈ m

and (q, r) ∈ n.
If the relations are viewed as graphs, this amounts to the uniqueness of paths of

length 2, that is p
m−→ q

n−→ r , p
m−→ q ′ n−→ r imply q = q ′. Viewed as matrices,

the definition is equivalent to the property that the value of the product of m and n

has the same value in any semiring. In particular, viewed as matrices with entries in
N, the sums

∑
q∈Q mp,qnq,r take only the values 0 or 1. Another way to view this is

to observe that if r is a row of m, and � is a column of n, there is at most one q ∈ Q

such that rq = �q = 1.

Example 9.1.1 Let m and n be the relations given in matrix form by

m =
0 1 0

1 0 0
1 1 0

 , n =
0 0 1

0 0 0
1 1 0

 .

9.1 Unambiguous monoids of relations 329

One checks that the product over the integers gives

mn =
0 0 0

0 0 1
0 0 1

 ,

and therefore the product of the relations is unambiguous.

A monoid of relations over Q is unambiguous if for each m, n ∈ M , the product
mn is unambiguous. As a submonoid of P(Q × Q) it contains the identity idQ.

Example 9.1.2 Every monoid of relation over a set Q which is composed of partial
functions is unambiguous.

Example 9.1.3 The reader may check that the monoid generated by the matrices of
Example 9.1.1 is unambiguous and has nine elements.

Recall that a monoid M of relations over Q is said to be transitive if for all
p, q ∈ Q, there exists m ∈ M such that (p, q) ∈ m.

Let A = (Q, I, T) be an automaton over A. Recall that, for each word w, we
denote by ϕA(w) the relation over Q defined by

(p, q) ∈ ϕA(w) ⇐⇒ p
w−→ q.

It follows from the definition that ϕA is a morphism from A∗ into the monoid of
relations over Q.

The next statement relates unambiguous monoids of relations and unambiguous
automata.

Proposition 9.1.4 Let A be an automaton over A. Then A is unambiguous if and
only if the monoid ϕA(A∗) is unambiguous. Moreover, if A = (Q, 1, 1), then A is
trim if and only if the monoid ϕA(A∗) is transitive.

Proof. Assume there are paths p
u−→ r

v−→ q and p
u−→ r ′

v−→ q in A. If r �= r ′,
the product of ϕA(u) and ϕA(v) is ambiguous, and conversely.

Next let A = (Q, 1, 1) be a trim automaton. Let p, q ∈ Q. Let u, v ∈ A∗ be such
that p

u−→ 1 and 1
v−→ q are paths. Then p

uv−→ q is a path and consequently
pϕA(uv)q. The converse is clear. �

A relation m over Q is invertible if there is a relation n over Q such that mn =
nm = IQ where IQ is the identity relation over Q.

Proposition 9.1.5 A relation is invertible if and only if it is a permutation.

Proof. Let m be an invertible relation, and let n be a relation such that mn = nm = IQ.
For all p ∈ Q, there exists q ∈ Q such that pmq, since from pmnp we get pmqnp

for some q ∈ Q. This element q is unique: if pmq ′, then qnpmq ′ = qIQq ′, whence
q = q ′. This shows that m is a function. Now if pmq and p′mq, then pmqnp and
p′mqnp, implying p′ = p. Thus m is injective. Since nm = IQ, m is also surjective.
Consequently m is a permutation. The converse is clear. �

330 9 Unambiguous monoids of relations

Let m be a relation over a set Q. A fixed point of m is an element q ∈ Q such that
qmq. In matrix form, the fixed points are the indices q such that mq,q = 1, in other
words those for which there is a 1 on the diagonal. We denote by Fix(m) the set of
fixed points of m.

Proposition 9.1.6 Let M be an unambiguous monoid of relations over Q. Let e ∈ M

and let S = Fix(e). The following conditions are equivalent:

(i) e is idempotent.
(ii) For all p, q ∈ Q, we have p

e−→ q if and only if there exists an s ∈ S such that
p

e−→ s and s
e−→ q.

(iii) We have

e = �r and r� = IS, (9.3)

where � ⊂ Q × S and r ⊂ S × Q are the restrictions of e to Q × S and S × Q,
respectively.

If e is idempotent, then moreover in matrix form

� =
[
IS

�′

]
, r = [IS r ′] , e =

[
IS r ′

�′ �′r ′

]
,

with �′ ⊂ (Q \ S) × S, r ′ ⊂ S × (Q \ S) and r ′�′ = 0. In particular, e is the identity
on Fix(e).

The decomposition (9.3) of an idempotent relation is called the column-row decom-
position of the relation. Note that

e� = �, re = r, (9.4)

since for instance re = r�r = rIS = r .
Proof. (i) ⇒ (ii). Let p, q ∈ Q be such that peq. Then pe3q. Consequently, there are
s, t ∈ Q such that peseteq. It follows that peseq and peteq. Since M is unambigu-
ous, we have s = t , whence ses and s ∈ S. The converse is clear.

(ii) ⇒ (iii). Let � and r be the restrictions of e to Q × S and S × Q, respectively.
If peq, then there exists s ∈ S such that pes and seq. Then p�s and srq. Conversely
if p�s and srq, then we have peseq, thus peq. Since this fixed point s is unique, we
have e = �r .

Now let r, s ∈ S with r r�s. Then r rq�s for some q ∈ Q. Thus req and qes.
Moreover, rer and ses, whence

rereqes, reqeses.

The unambiguity implies that r = q = s. Conversely we have sr�s for all s ∈ S.
Thus r� = idS .

(iii) ⇒ (i). We have e2 = �r�r = �(r�)r = �r = e. Thus e is idempotent.

9.1 Unambiguous monoids of relations 331

Assume now that e is idempotent. The restriction of e to S × S is the identity.
Indeed ses holds for all s ∈ S, and if ser with s, r ∈ S, then seser and serer ,
implying s = r by unambiguity. This shows that � and r have the indicated form.
Finally, the product r� is

r� = IS + r ′�′.

Since r� = IS , this implies that r ′�′ = 0, which concludes the proof. �

Let M be an unambiguous monoid of relations over Q and let e ∈ M be an
idempotent. Then eMe is a monoid, and e is the neutral element of eMe, since for
all m ∈ eMe, em = me = eme = m. It is the greatest monoid contained in M and
having neutral element e. It is called the monoid localized at e (cf. Section 1.2). The
H-class H (e) of e is the group of units of the monoid eMe (Proposition 1.12.4).

Proposition 9.1.7 Let M be an unambiguous monoid of relations over Q, let e be
an idempotent in M and let S = Fix(e) be the set of fixed points of e. The restriction
γ of the elements of eMe to S × S is an isomorphism of eMe onto an unambiguous
monoid of relations over S. If e = �r is the column-row decomposition of e, this
isomorphism is given by

γ : m �→ rm�. (9.5)

The set γ (H (e)) is a permutation group over S. Further, if M is transitive, then
γ (eMe) is transitive.

The unambiguous monoid of relations γ (eMe) is denoted by Me, and the permu-
tation group γ (H (e)) is denoted by Ge.

Proof. Let γ be the function defined by (9.5). If m ∈ eMe, then for s, t ∈ S,

(s, γ (m), t) = (s, rm�, t) = (s,m, t),

because we have srs and t�t . Thus γ (m) is the restriction of the elements in eMe to
S × S. Further, γ is a morphism since

γ (e) = re� = idS

and for m, n ∈ eMe,

γ (mn) = γ (men) = r(men)� = rm�rn� = γ (m)γ (n).

Finally γ is injective since if γ (m) = γ (n) for some m, n ∈ eMe, then also �γ (m)r =
�γ (n)r . But �γ (m)r = �rm�r = eme = m. Thus m = n. The monoid

Me = γ (eMe)

is a monoid of relations over S since it contains the relation idS . It is unambiguous
as any restriction of an unambiguous monoid of relations.

332 9 Unambiguous monoids of relations

Finally Ge = γ (H (e)) is composed of invertible relations. By Proposition 9.1.5, it
is a permutation group over S.

If M is transitive, consider s, t ∈ S. There exists m ∈ M such that smt . Then also
semet . Taking the restriction to S, we have sγ (eme)t . Since γ (eme) ∈ Me this shows
that Me is transitive. �

Example 9.1.8 Consider the relation m given in matrix form by

m =

0 1 0 0
1 0 1 0
0 0 0 0
1 0 1 0

 .

Then

m2 =

1 0 1 0
0 1 0 0
0 0 0 0
0 1 0 0

 ,

and m3 = m. Thus m2 is an idempotent relation. The monoid M = {1,m,m2} is an
unambiguous monoid of relations. The fixed points of the relation e = m2 are 1 and
2, and its column-row decomposition is

e =

1 0
0 1
0 0
0 1

[1 0 1 0
0 1 0 0

]
= �r.

We have

m = �

[
0 1
1 0

]
r,

and the restriction of m to the set {1, 2} is the transposition (12). The monoid Me is
equal to the group Ge which is isomorphic to Z/2Z.

Let M be an arbitrary monoid. We compare now the localized monoids of two
idempotents of a D-class. Let e, e′ be two D-equivalent idempotents of M . Since, by
definition, D = RL, there exists an element d ∈ M such that eRdLe′. By definition
of these relations, there exists a quadruple

(a, a′, b, b′) (9.6)

of elements of M such that

ea = d, da′ = e, bd = e′, b′e′ = d. (9.7)

(see Figure 9.1). The quadruple (9.6) is a passing system from e to e′.

9.1 Unambiguous monoids of relations 333

e

e

d

a

b

a

b

Figure 9.1 The passing system. Right multiplication by a or a′ is represented by a horizontal
arrow and left multiplication by b or b′ is represented by a vertical arrow.

The following formulas are easily derived from (9.7) (Note that most of these
identities appear in Section 1.12):

eaa′ = e, bea = e′, ea = b′e′, (9.8)

and

bb′e′ = e′, b′e′a′ = e, be = e′a′ (9.9)

(the last formula is obtained by be = bb′e′a′ = e′a′). Since e and e′ are idempotents,
the following hold also:

eabe = e, e′a′b′e′ = e′. (9.10)

Indeed, we have by (9.8), e′ = e′e′ = beabea. Thus b′e′a′ = b′beabeaa′. Since be =
e′a′ by (9.9), one has b′be = b′e′a′ = e and since by (9.8), eaa′ = e, we obtain
b′e′a′ = e = eabe. This proves the first equality. The second one is proved in the
same way.

Two monoids of relations M over Q and M ′ over Q′ are equivalent if there exists
a relation θ ∈ P(Q × Q′) which is a bijection from Q onto Q′ such that the function

m �→ θ tmθ

is an isomorphism from M onto M ′ (θ t is the transposed of θ). Since θ is a bijection,
we have θ t = θ−1. Therefore, in the case where M and M ′ are permutation groups,
this definition coincides with the one given in Section 1.13.

Proposition 9.1.9 Let M be an unambiguous monoid of relations over Q, and let
e, e′ ∈ M be two D-equivalent idempotents. Then the monoids eMe and e′Me′ are
isomorphic, the monoids Me and Me′ are equivalent, and the groups Ge and Ge′

are equivalent permutation groups. More precisely, let S = Fix(e), S ′ = Fix(e′), let
e = �r , e′ = �′r ′ be their column-row decompositions, let γ and γ ′ be the restrictions
to S × S and S ′ × S ′ and let (a, a′, b, b′) be a passing system from e to e′. Then

334 9 Unambiguous monoids of relations

1. The function τ : m �→ bma is an isomorphism from eMe onto e′Me′.
2. The relation θ = ra�′ = rb′�′ ∈ P(S × S ′) is a bijection from S onto S ′.
3. The function τ ′ : n �→ θ tnθ is an isomorphism from Me onto Me′ .
4. The following diagram is commutative

eMe τ e Me

γ γ

Me
τ Me

Proof. 1. Let m ∈ eMe. Then τ (m) = bma = bemea = e′a′mb′e′, since by (9.8)
and (9.9), be = e′a′ and b′e′ = ea. This shows that τ (m) is in e′Me′. Next τ (e) =
bea = e′ by (9.8). For m,m′ ∈ eMe, we have by (9.10)

τ (m)τ (m′) = bmabm′a = bmeabem′a = bmem′a = bmm′a = τ (mm′).

Thus τ is a morphism. Finally, it is easily seen that m′ �→ b′m′a′ is the inverse
function of τ ; thus τ is an isomorphism from eMe onto e′Me′.

2. We have eae′ = eb′e′. Consequently reae′�′ = reb′e′�′. Since by (9.4) re = r ,
e′�′ = �′, we get that

θ = ra�′ = rb′�′.

The relation θ is left invertible since

(r ′b�)θ = r ′b�ra�′ = r ′bea�′ = r ′e′�′ = idS ′ ,

and it is right invertible, since we have

θ (r ′a′�) = rb′�′r ′a′� = rb′e′a′�′ = re� = idS.

Thus θ is invertible and consequently is a bijection, and θ t = r ′a′� = r ′b�.
4. For m ∈ eMe, we have

τ ′γ (m) = (r ′b�)(rm�)(ra�′) = r ′bemea�′ = r ′(bma)�′ = γ ′τ (m),

showing that the diagram is commutative.
3. Results from the commutativity of the diagram and from the fact that γ , τ , γ ′

are isomorphisms. �

Example 9.1.10 Consider the matrices

u =

0 0 0 1
1 0 1 0
0 0 0 0
0 1 0 0

 , v =

0 0 1 0
1 0 1 0
1 0 0 0
0 1 0 0

 .

9.1 Unambiguous monoids of relations 335

They generate an unambiguous monoid of relations (as we may verify by using, for
instance, the method of Proposition 4.2.5). The matrix

uv =

0 1 0 0
1 0 1 0
0 0 0 0
1 0 1 0

is the matrix m of Example 9.1.8. The element

e = (uv)2 =

1 0 1 0
0 1 0 0
0 0 0 0
0 1 0 0

is an idempotent. We have Fix(e) = {1, 2}, and the column-row decomposition is

e =

1 0
0 1
0 0
0 1

[1 0 1 0
0 1 0 0

]
= �r.

The matrix

e′ = (vu)2 =

0 0 0 0
1 0 1 0
1 0 1 0
0 0 0 1

is also an idempotent. We have Fix(e′) = {3, 4}, and e′ has the column-row decom-
position

e′ =

0 0
1 0
1 0
0 1

[1 0 1 0
0 0 0 1

]
= �′r ′.

The idempotents e and e′ lie in the same D-class. Indeed, we may take as a passing
system from e to e′ the elements

a = b′ = u, a′ = b = vuv.

The bijection θ = ra�′ from the set Fix(e) = {1, 2} onto the set Fix(e′) = {3, 4} is

θ : 1 �→ 4, 2 �→ 3.

336 9 Unambiguous monoids of relations

e H

aH

aH

Figure 9.2 Two coordinates. The pair (aH , a′
H) satisfies eaH ∈ H and eaH a′

H = e.

9.2 The Schützenberger representations

We now describe a useful method for computing the permutation group Ge for an
idempotent e in an unambiguous monoid of relations. This method requires us to
make a choice between “left” and “right”. We first present the right-hand case.

Let M be an unambiguous monoid of relations, and let e be an idempotent element
in M . Let R be the R-class of e, let � be the set of H-classes of R and let G = H (e)
be the H-class of e. For each H ∈ �, choose two elements aH , a′

H ∈ M such that

eaH ∈ H, eaH a′
H = e,

with the convention that

aG = a′
G = e.

(see Figure 9.2). Such a set of pairs (aH , a′
H)H∈� is called a system of coordinates of

R relative to the idempotent e. Then, by Proposition 1.12.2, GaH = H and Ha′
H = G

since the elements aH , a′
H realize by right multiplication two reciprocal bijections

from G onto H .
Let e = �r be the column-row decomposition of e, and set

rH = raH and �H = a′
H � for H ∈ �. (9.11)

Note that the equality rH = reaH follows from r = re, which is (9.4).
Each m ∈ M defines a partial right action on the set � by setting, for all H ∈ �

H · m =
{

Hm if Hm ∈ �,

∅ otherwise.
(9.12)

Now we define a partial function from � × M into G by setting

H ∗ m =
{

rHm�Hm if Hm ∈ �,

∅ otherwise.
(9.13)

First, observe that H · m �= ∅ implies H ∗ m ∈ Ge. Indeed, set H ′ = Hm. From
eaH ∈ H we get eaH m ∈ H ′, showing that

eaH ma′
H ′ ∈ G.

9.2 The Schützenberger representations 337

H H H
m|H ∗m n|H ∗ n

Figure 9.3 Composition of outputs. The label of an edge from H to H ′ = H · m is the pair
(m,H ∗ m), denoted m|H ∗ m.

It follows that

H ∗ m = rHm�H ′ = (reaH)m(a′
H ′�)

= r(eaH ma′
H ′)� ∈ Ge.

Observe also that for all H ∈ �,

H · 1 = H and H ∗ 1 = e. (9.14)

Next, for all m, n ∈ M ,

(H ∗ m)(H · m ∗ n) = H ∗ mn. (9.15)

This formula shows that the functions (H,m) �→ H · m and (H,m) �→ H ∗ m are
similar to those associated to a deterministic transducer, as defined in Chapter 4.

To verify Formula (9.15), let H ′ = Hm, H ′′ = Hmn (the cases where H · m = ∅
or H · mn = ∅ are straightforward). See Figure 9.3. We have

(H ∗ m)(H ′ ∗ n) = rHm�H ′ rH ′n�H ′′ = rH ma′
H ′�raH ′n�H ′′

= raH ma′
H ′eaH ′na′

H ′′�

= r((eaHma′
H ′)e)aH ′na′

H ′′�.

(We have used (9.4).) Since eaH ma′
H ′ ∈ G, we have eaH ma′

H ′e = eaH ma′
H ′ . Thus

(H ∗ m)(H ′ ∗ n) = r((eaHm)a′
H ′aH ′)na′

H ′′�.

Since eaH m ∈ H ′, and because the multiplication on the right by a′
H ′aH ′ is the identity

on H ′, we get

(H ∗ m)(H ′ ∗ n) = reaH mna′
H ′′� = rHmn�H ′′ = H ∗ mn.

This proves Formula (9.15). As a consequence, we have the following result.

Proposition 9.2.1 Let M be an unambiguous monoid of relations generated by a set
T . Let e be an idempotent of M , let R be its R-class, let � be the set of H-classes
of R and let (aH , a′

H)H∈� be a system of coordinates of R relative to e. Then the
permutation group Ge is generated by the elements of the form H ∗ t , for H ∈ �,
t ∈ T , and H ∗ t �= ∅.

338 9 Unambiguous monoids of relations

Proof. The elements H ∗ t , for H ∈ � and t ∈ T either are ∅ or are in Ge. Now let
g be an element of H (e). Then there are t1, . . . , tn ∈ T with

g = t1t2 · · · tn,

because T generates M . Let G = H (e) and let

Hi = Gt1t2 · · · ti
for 1 ≤ i ≤ n. From Gg = G it follows that Hiti+1 · · · tn = G. Thus Hi ∈ � and
G · t1 · · · ti = Hi . By (9.15),

G ∗ g = (G ∗ t1)(H1 ∗ t2) · · · (Hn−1 ∗ tn).

But G ∗ g = rg�. This shows the result. �

The pair of partial functions from � × M to � and to Ge defined by (9.12) and
(9.13) is called the right Schützenberger representation or R-representation of M

relative to e and to the coordinate system (aH , a′
H)H∈�.

Let 0 be a new element such that 0g = g0 = 00 = 0 for all g ∈ Ge. The function

µ : M → (Ge ∪ 0)�×�,

which associates to each m ∈ M the � × �-matrix defined by

(µm)H,H ′ =
{

H ∗ m if Hm = H ′,

0 otherwise,

is a morphism from M into the monoid of row-monomial � × �-matrices with
elements in Ge ∪ 0. This is indeed an equivalent formulation of Formula (9.15).

Symmetrically, we define the left Schützenberger representation or L-
representation of M relative to e as follows. Let L be the L-class of e, and let
� be the set of its H-classes. For each H ∈ �, choose two elements bH , b′

H ∈ M

such that

bH e ∈ H, b′
HbH e = e,

with bG = b′
G = e. Such a set of pairs (bH , b′

H)H∈� is called a system of coordinates
of L with respect to e. As in (9.11), we set �H = bH c, rH = rb′

H for H ∈ �.
For each m ∈ M , we define a partial left action on � by setting, for H ∈ �,

m · H =
{

mH if mH ∈ �,

∅ otherwise,
(9.16)

and a partial function from M × � into Ge by setting

m ∗ H =
{

rmHm�H if mH ∈ �,

∅ otherwise.
(9.17)

9.2 The Schützenberger representations 339

HHH
m|m ∗Hn|n ∗H

Figure 9.4 Composition of outputs. The label of an edge from H to H ′ = m · H is the pair
(m,m ∗ H), denoted m|m ∗ H . Note that the input is read from right to left and that the

output is written from right to left.

Then Formula (9.15) becomes

(n ∗ m · H)(m ∗ H) = nm ∗ H (9.18)

and Proposition 9.2.1 holds mutatis mutandis.
Note that for the computation of theL-classes and theR-classes of an unambiguous

monoid of relations, we can use the following observation, whose verification is
straightforward: If mLn (resp. if mRn), then each row (resp. column) of m is a sum
of rows (resp. columns) of n and vice versa. This yields an easy test to conclude that
two elements are in distinct L-classes (resp. R-classes).

Example 9.2.2 Let us consider again the unambiguous monoid of Example 9.1.10,
generated by the matrices

u =

0 0 0 1
1 0 1 0
0 0 0 0
0 1 0 0

 , v =

0 0 1 0
1 0 1 0
1 0 0 0
0 1 0 0

 .

We consider the idempotent

e = (uv)2 =

1 0 1 0
0 1 0 0
0 0 0 0
0 1 0 0

 .

Its R-class R is formed of three H-classes, numbered 0, 1, 2. In Figure 9.5 a repre-
sentative is given for each of these H-classes. The fact that the L-classes are distinct
is verified by inspecting the rows of e, eu, eu2. Next, we note that eu3 = eu2v = e,
showing that these elements are R-equivalent. Further, euv = (uv)3He. Finally

ev =

1 0 1 0
1 0 1 0
0 0 0 0
1 0 1 0

has only one nonnull row (column) and consequently cannot be in the D-class of e.
We have reported in Figure 9.5 the effect of the right multiplication by u and v.

340 9 Unambiguous monoids of relations

e
0

eu
1

eu2

2

u u

v

u, v

Figure 9.5 The R-class of the idempotent e.

We choose a system of coordinates of R by setting

a0 = a′
0 =e,

a1 = u, a′
1 = vuv,

a2 = u2, a′
2 = u.

Then

r0 =
[

1 0 1 0
0 1 0 0

]
, �0 =

1 0
0 1
0 0
0 1

 ,

r1 =
[

0 0 0 1
1 0 1 0

]
, �1 =

0 0
0 1
0 1
1 0

 ,

r2 =
[

0 1 0 0
0 0 0 1

]
, �2 =

0 1
1 0
0 0
0 1

 .

Let us denote by H
t |g−→ H ′ the fact that H · t = H ′ and H ∗ t = g. Then the R-

representation of M relative to e and to this system of coordinates is obtained by
completing Figure 9.5 and is given in Figure 9.6 with

i =
[

1 0
0 1

]
, j =

[
0 1
1 0

]
.

The group Ge is of course S2.

The concepts introduced in this paragraph are greatly simplified when we consider
the case of a monoid of (total) functions from Q into itself, instead of an unambiguous
monoid of relations.

For a ∈ M , write pa = q instead of (p, a, q) = 1.

9.2 The Schützenberger representations 341

0 1 2

u|i u|i

v|i

u|i, v|i

Figure 9.6 The R-representation of M .

The image of a, denoted Im(a), is the set of q ∈ Q such that pa = q for some
p ∈ Q. The nuclear equivalence of a, denoted Ker(a), is the equivalence relation on Q

defined by p ≡ q mod Ker(a) if and only if pa = qa. If b ∈ Ma, then Im(b) ⊂ Im(a).
If b ∈ aM , then Ker(a) ⊂ Ker(b) (note the inversion of inclusions).

A function e ∈ M is idempotent if and only if its restriction to its image is the
identity. Thus, its image is in this case equal to its set of fixed points: Im(e) = Fix(e).

As a result of what precedes, if aLb, then Im(a) = Im(b) and if aRb, then Ker(a) =
Ker(b). This gives a sufficient condition to ensure that two elements are in different
L-classes (resp. R-classes).

To compute the R-class of an idempotent function e over a finite set, we may
use the following observation, where S = Fix(e). If the restriction of m to S is a
permutation on S, then eHem. Indeed, the restriction of m to S is a permutation on
S, thus emp = e for some p, therefore emmp−1 = e and thus emHe.

Example 9.2.3 Let M be the monoid of functions from the set

Q = {1, 2, . . . , 8}

into itself generated by the two functions u and v given in the following array

1 2 3 4 5 6 7 8
u 4 5 4 5 8 1 8 1
v 2 3 4 5 6 7 8 1

where each column contains the images by u and v of the element of Q placed on the
top of the column. The function e = u4 is idempotent and has the set of fixed points
S = {1, 4, 5, 8},

1 2 3 4 5 6 7 8
u4 1 4 1 4 5 8 5 8

We get the pattern of Figure 9.7 for the R-class R of e. These four H-classes are
distinct because the images of e, ev, ev2, ev3 are distinct. For the edges going back
to the H-class of e, we use the observation stated above; it suffices to verify that
the restrictions to S of the functions u, vu, v2u, v3u, v are permutations. Choose a

342 9 Unambiguous monoids of relations

e
0 1 2 3

u

u u u, v

v v v

Figure 9.7 The R-class of the idempotent e.

0 1 2 3u|(1458)
v|(1) v|(1) v|(1)

u|(15)(48)
u|(15)(48)

u, v|(15)(48)

Figure 9.8 The R-representation.

system of coordinates of R by taking

a0 = a′
0 =e,

a1 = v, a′
1 = v7,

a2 = v2, a′
2 = v6,

a3 = v3, a′
3 = v5.

For the computation of theR-representation of M relative to e, we proceed as follows:
if H · m = H ′, then the permutation H ∗ m on S is not computed by computing the
matrix product H ∗ m = rHm�H ′ of Formula (9.13), but, observing that H ∗ m is
the restriction to S of eaH ma′

H ′e, by evaluating this function on S. Thus we avoid
unnecessary matrix computations when dealing with functions. Figure 9.8 shows the
R-representation obtained.

According to Proposition 9.2.1, the group Ge is generated by the permutations

(1458), (15)(48), (14)(58).

It is the dihedral group D4 which is the group of all symmetries of the square.

1

8 5

4

It contains eight elements.

9.3 Rank and minimal ideal 343

9.3 Rank and minimal ideal

Let m be a relation between two sets P and Q. The rank of m is the minimum of
the cardinalities of the sets R such that there exist two relations � ∈ P(P × R) and
r ∈ P(R × Q) with

m = �r, (9.19)

and such that the product �r is unambiguous. The rank is denoted by rank(m). It is a
nonnegative integer or +∞. A pair (�, r) satisfying (9.19) is a minimal decomposition
if there exists no unambiguous factorization m = �′r ′ with �′ ∈ P(P × R′), r ′ ∈
P(R′ × Q) and R′ � R. If rank(m) is finite, this is the equivalent of saying that
Card(R) is minimal.

Example 9.3.1 The relation

m =
0 1 0

1 0 0
1 1 0

 =
0 1

1 0
1 1

[1 0 0
0 1 0

]

has rank at most 2 in view of the above decomposition. It does not have rank 1
because it has two distinct nonzero columns. Thus, m has rank 2.

The following properties are used frequently. First, if the product nmn′ is unambigu-
ous, then

rank(nmn′) ≤ rank(m). (9.20)

Indeed, each decomposition (�, r) of m induces a decomposition (n�, rn′) of nmn′.
If p

n−→ s
�−→ t

r−→ u
n−→ q and p

n−→ s ′
�−→ t ′

r−→ u′ n−→ q, then s = s ′ and
u = u′ by the unambiguity of the product nmn′. The unambiguity of the product �r
forces t = t ′. Second

rank(m) ≤ min{Card(P), Card(Q)}.

If (�, r) is a minimal decomposition of m, then

rank(m) = rank(�) = rank(r).

Further

rank(m) = 0 ⇔ m = 0.

If P ′ ⊂ P , Q′ ⊂ Q, and if m′ is the restriction of m to P ′ × Q′, then

rank(m′) ≤ rank(m). (9.21)

We get from the first inequality that two J -equivalent elements of an unambiguous
monoid of relations have the same rank. Thus, the rank is constant on a D-class.

344 9 Unambiguous monoids of relations

Consider two relations m ∈ P(P × S) and n ∈ P(S × Q). The pair (m, n) is called
trim if no column of m is null and no row of n is null. This is equivalent to saying
that for all s ∈ S, there exists at least one pair (p, q) ∈ P × Q such that p

m−→ s and
s

n−→ q.

Proposition 9.3.2 Any minimal decomposition of a relation is trim.

Proof. Let �r be a minimal decomposition of a relation m. Assume that � contains
a column which is null. Then we can delete this column and the row of same index
of r without changing the value of the product. But this implies that (�, r) is not a
minimal decomposition. Thus no column of � is null, and symmetrically no row of r
is null. Consequently (�, r) is trim. �

Proposition 9.3.3 For each set Q, rank(idQ) = Card(Q).

Proof. Let id = �r be a minimal decomposition of idQ, with � ∈ P(Q × P) and
r ∈ P(P × Q). Let p ∈ P . Since the pair (�, r) is trim, there exist q, q ′ ∈ Q such

that q
�−→ p

r−→ q ′. Since �r = idQ, one has q = q ′, and there is no q ′′ �= q such

that p
r−→ q ′′. Thus r defines a mapping from P into Q. This mapping is surjective

since idQ is surjective. This implies that Card(P) = Card(Q). �

Proposition 9.3.4 A permutation on Q has rank Card(Q).

Proof. Let m be a permutation on Q and let n be its inverse. Then by Proposition 9.3.3
and Equation (9.20),

Card(Q) = rank(idQ) = rank(mn) ≤ rank(m).

Thus rank(m) = Card(Q). �

Example 9.3.5 The rank of a partial function m from P to Q is

rank(m) = Card(Im(m)).

Let m′ be the restriction of m to P × Im(m). Then m = m′r , where r is the restriction
of idQ to Im(m). This shows that rank(m) ≤ Card(Im(m)). The partial function m′

contains a bijection n of a cross-section of m onto Im(m) obtained by choosing
one element in P for each set m−1(q), with q ∈ Im(m). By Proposition 9.3.4 and
Equation 9.21, rank(m) ≥ rank(n) = Card(Im(m)).

Thus the notion of rank that we defined in Section 3.6 coincides with the notion
defined here.

Let us observe that the rank of a relation m over a finite set Q has strong connections
with the usual notion of rank as defined in linear algebra. Let K be a field containing
N. The rank of a matrix m with coefficients in K , denoted by rankK (m), is the
maximal number of rows (or columns) which are linearly independent over K . We

9.3 Rank and minimal ideal 345

can observe (Exercise 9.3.2) that this number may be defined in a manner analogous
to the definition of the rank of a relation. In particular,

rankK (m) ≤ rank(m).

It is easy to see (Exercise 9.3.3) that usually the inequality is strict. However, in the
case of relations which are functions, the two notions coincide.

The following proposition gives an easy method for computing the rank of an
idempotent relation.

Proposition 9.3.6 Let e be an idempotent element of an unambiguous monoid of
relations. Then

rank(e) = Card(Fix(e)).

Proof. Set S = Fix(e). The column-row decomposition of e shows that rank(e) ≤
Card(S). Moreover, in view of Proposition 9.1.6, the matrix e contains the identity
matrix IS . Thus Card(S) = rank(IS) ≤ rank(e) by Equation (9.21). �

The following statement gives a characterization of relations of finite rank.

Proposition 9.3.7 For any relation m, the following conditions are equivalent:

(i) m has finite rank.
(ii) The set of rows of m is finite.

(iii) The set of columns of m is finite.

Proof. (i) ⇒ (ii). Let m = �r , with � ∈ P(P × S) and r ∈ P(S × Q) be a minimal
decomposition of m. If two rows of �, say with indices p and q, are equal, then the
corresponding rows mp∗ and mq∗ of m also are equal. Since S is finite, the matrix �

has at most 2Card(S) distinct rows. Thus the set of rows of m is finite.
(ii) ⇒ (i). Let (ms∗)r∈S be a set of representatives of the rows of m. Then m = �r ,

where r is the restriction of m to S × Q, and � ∈ P(Q × S) is defined by

�qr =
{

1 if mq∗ = ms∗,
0 otherwise.

This shows (i) ⇔ (ii). The proof of (i) ⇔ (iii) is identical. �

Proposition 9.3.8 Let m be a relation over a set Q of finite rank. Then the semigroup
generated by m is finite.

Proof. Let m = �r be a minimal decomposition of m, with � ∈ P(Q × R) and r ∈
P(R × Q). Let u be the relation over R defined by u = r�. Then for all n ≥ 0,

mn+1 = �(r�)nr = �unr.

Since R is finite, the set of relations un is finite and the semigroup {mn | n ≥ 1} is
finite. �

346 9 Unambiguous monoids of relations

In particular it follows from this proposition that for any relation of finite rank, a
convenient power is an idempotent relation.

Let M be an unambiguous monoid of relations over Q. The minimal rank of M ,
denoted by r(M), is the minimum of the ranks of the elements of M other than the
null relation,

r(M) = min{rank(m) | m ∈ M \ 0}.
If M does not contain the null relation over Q, this is of course the minimum of the
ranks of the elements of M . One has r(M) > 0 if Q �= ∅ and r(M) < ∞ if and only
if M contains a relation of finite positive rank.

We now study the monoids having finite minimal rank and we shall see that they
have a regular structure. We must distinguish two cases: the case where the monoid
contains the null relation, and the easier case where it does not.

Note that the null relation plays the role of a zero in view of the following, more
precise statement.

Proposition 9.3.9 If a transitive unambiguous monoid of relations over a nonempty
set Q contains a zero, then the zero is the null relation.

Proof. The null relation always is a zero. Conversely, if M has a zero z, let us prove
that z is the null relation. If Card(Q) = 1, then z = 0. Thus we assume Card(Q) ≥ 2,
and z �= 0. Let p, q ∈ Q such that zp,q = 1. Let r, s ∈ Q. By transitivity of M , there
exist m, n ∈ M such that

mrp = nqs = 1.

From mzn = z, it follows that zrs = 1. Thus zrs = 1 for all r, s ∈ Q, which contra-
dicts the unambiguity of M . �

Let M be an unambiguous monoid of relations over Q. For each q ∈ Q, the
stabilizer of q is the submonoid

Stab(q) = {m ∈ M | q
m−→ q}.

Theorem 9.3.10 Let M be a transitive unambiguous monoid of relations over Q,
containing the relation 0, and having finite minimal rank. Let K be the set of elements
of M of minimal rank r(M).

1. M contains a unique 0-minimal ideal J , which is K ∪ {0}.
2. The set K is a regular D-class whose H-classes are finite.
3. Each q ∈ Q is a fixed point of at least one idempotent e in K that is, e ∈ K ∩

Stab(q).
4. For each idempotent e ∈ K , the group Ge is a transitive group of degree r(M).
5. The groups Ge, for e idempotent in K , are equivalent.

Before we proceed to the proof, we establish several preliminary results.

9.3 Rank and minimal ideal 347

Proposition 9.3.11 Let M be an unambiguous monoid of relations over Q, and let
e ∈ M be an idempotent. If e has finite rank, then the localized monoid eMe is finite.

Proof. Let S be the set of fixed points of e. By Proposition 9.3.6, the set S is finite.
Thus the monoid Me which is an unambiguous monoid of relations over S, is finite.
Since, by Proposition 9.1.9, the monoid eMe is isomorphic to Me, it is finite. �

We now verify a technical lemma which is useful to “avoid” the null relation.

Lemma 9.3.12 Let M be a transitive unambiguous monoid of relations over Q.

1. For all m ∈ M \ 0, there exist n ∈ M and q ∈ Q such that mn ∈ Stab(q) (resp.
nm ∈ Stab(q)). Thus in particular mn �= 0 (resp. nm �= 0).

2. For all m ∈ M \ 0 and q ∈ Q, there exist n, n′ ∈ M such that nmn′ ∈ Stab(q).
3. For all m, n ∈ M \ 0, there exists u ∈ M such that mun �= 0. In other terms, the

monoid M is prime.

Proof. 1. Let q, r ∈ Q be such that (q,m, r) = 1. Since M is transitive, there exists
n ∈ M such that (r, n, q) = 1. Thus (q,mn, q) = 1.

2. There exist p, r ∈ Q such that (p,m, r) = 1. Let n, n′ ∈ M be such that
(q, n, p) = 1, (r, n′, q) = 1. Then (q, nmn′, q) = 1.

3. There exist p, r, s, q ∈ Q such that (p,m, r) = (s, n, q) = 1. Take u ∈ M with
(r, u, s) = 1. Then (p,mun, q) = 1 . �

Proposition 9.3.13 Let M be a transitive unambiguous monoid of relations over Q,
having finite minimal rank. Each right ideal R �= 0 (resp. each left ideal L �= 0) of
M contains a nonnull idempotent.

Proof. Let r ∈ R \ 0. By Lemma 9.3.12, there exist n ∈ M and q ∈ Q such that
rn ∈ Stab(q). Let m ∈ M be an element such that rank(m) = r(M). Again by
Lemma 9.3.12, there exist u, v ∈ M such that umv ∈ Stab(q). Consider the element
m′ = rnumv. Then m′ ∈ R and m′ ∈ Stab(q).

Since rank(m′) ≤ rank(m), the rank of m′ is finite. According to Proposition 9.3.8,
the semigroup generated by m′ is finite. Thus there exists k ≥ 1 such that e = (m′)k

is idempotent. Then e ∈ R and e �= 0 since e ∈ Stab(q). �

Proposition 9.3.14 Let M be a transitive unambiguous monoid of relations over
Q, having finite minimal rank and containing the null relation. For all m ∈ M , the
following conditions are equivalent:

(i) rank(m) = r(M).
(ii) The right ideal mM is 0-minimal.

(iii) The left ideal Mm is 0-minimal.

Proof. (i) ⇒ (ii). Let R �= {0} be a right ideal contained in mM . We show that
R = mM . According to Proposition 9.3.13, R contains an idempotent e �= 0. Since
e ∈ R ⊂ mM , there exists n ∈ M such that e = mn. Since rank(e) ≤ rank(m) and

348 9 Unambiguous monoids of relations

rank(m) is minimal, we have rank(e) = rank(m). Let m = �r be a minimal decompo-
sition of m, with � ∈ P(Q × S), r ∈ P(S × Q). Then e = (�r)n = �(rn). The prod-
uct �(rn) is easily checked to be unambiguous. Since rank(e) = r(M) = Card(S),
the pair (�, rn) is a minimal decomposition of e. For all k ≥ 0,

e = ek+1 = �(rn�)k rn

with all products unambiguous. Since S is finite, there exists an integer i ≥ 1 such
that (rn�)i is an idempotent element of the unambiguous monoid of relations on S

composed of the powers of rn�. Since rank((rn�)i) = Card(S), each element in S is
a fixed point of (rn�)i . Consequently (rn�)i = idS . Thus

em = eim = (�rn)im = (�rn)i�r = �(rn�)i r = �r = m.

The equality em = m shows that m ∈ R, whence R = mM . Thus mM is a 0-minimal
right ideal.

(ii) ⇒ (i). Let n ∈ M be such that rank(n) = r(M). By Lemma 9.3.12, there exists
u ∈ M such that mun �= 0. From munM ⊂ mM , we get munM = mM , whence
m ∈ munM . Thus rank(m) ≤ rank(n), showing that rank(m) = rank(n).

(i) ⇔ (iii) is shown in the same way. �

Proof of Theorem 9.3.10.
1. By Lemma 9.3.12, the monoid M is prime. According to Proposition 9.3.14, the

monoid M contains 0-minimal left and right ideals. In view of Corollary 1.12.10, the
monoid M contains a unique 0-minimal ideal J which is the union of the 0-minimal
right ideals (resp. left ideals). Once more by Proposition 9.3.14, J is the union of 0
and of the set K of elements of minimal positive rank. This proves claim 1.

2. In view of Corollary 1.12.10, the set K is a regular D-class. All the H-classes
of K have same cardinality by Proposition 1.12.3. The finiteness of these classes will
result from claim 4.

3. Let q ∈ Q and k ∈ K . By Lemma 9.3.12, nkn′ ∈ Stab(q) for some n, n′ ∈ M .
Since the semigroup generated by m = nkn′ is finite (Proposition 9.3.8), it contains
an idempotent e. Then e ∈ K ∩ Stab(q).

4. Let e be idempotent in K . Then theH-class of e is H ∪ 0 = eM ∩ Me = eMe =
H (e) ∪ 0. The first equality is a result of the fact that the R-class of e is eM \ 0.
Next eMe ⊂ eM ∩ Me, and conversely, if n ∈ eM ∩ Me, then en = ne = n whence
n = ene ∈ eMe. This shows the second equality. Finally, H (e) = H since H is a
group.

According to Proposition 9.1.7, we have Me = Ge ∪ 0 and Me is transitive. Thus
Ge is a transitive permutation group. Its degree is r(M).

5. is a direct consequence of Proposition 9.1.9. �

Now let M be an unambiguous monoid of relations that does not contain the null
relation. Theorem 9.3.10 admits a formulation which is completely analogous, and
which goes as follows.

9.4 Very thin codes 349

Theorem 9.3.15 Let M be a transitive unambiguous monoid of relations over Q

which does not contain the null relation and which has finite minimal rank. Let K be
the set of elements of minimal rank r(M).

1. The set K is the minimal ideal of M .
2. The set K is a regular D-class and is a union of finite groups.
3. Each q ∈ Q is the fixed point of at least one idempotent e in K that is e ∈

K ∩ Stab(q).
4. For each idempotent e ∈ K , the group Ge is a transitive group of degree r(M),

and these groups are equivalent.

Proof. Let M0 be the unambiguous monoid of relations

M0 = M ∪ 0.

We have r(M) = r(M0). Thus Theorem 9.3.10 applies to M0. For all m in M , we
have mM0 = mM ∪ 0. It follows easily that mM is a minimal right ideal of M if and
only if mM0 is a 0-minimal right ideal of M0. The same holds for left ideals and for
two-sided ideals. In particular, the 0-minimal ideal J of M0 is the union of 0 and of
the minimal ideal K of M . This proves 1. Next K is a D-class of M0 thus also of M .
Since the product of two elements of M is never 0, each H-class of K is a group.
This proves 2. The other claims require no proof. �

Let M be a transitive unambiguous monoid of relations over Q, of finite minimal
rank, and let

K = {m ∈ M | rank(m) = r(M)}.

The groups Ge, for each idempotent e in K , are equivalent transitive permutation
groups. The Suschkewitch group of M is, by definition, any one of them.

9.4 Very thin codes

A code X ⊂ A+ is called very thin if there exists a word x in X∗ which is not a
factor of a word in X. Recall that F (X) is the set of factors of words in X, and that
F (X) = A∗ \ F (X). With these notations, X is very thin if and only if

X∗ ∩ F (X) �= ∅.

Any very thin code is thin (that is, satisfies F (X) �= ∅). Conversely, a thin code is
not always very thin (see Example 9.4.13). However, a thin complete code X is very
thin. Consider indeed a word w ∈ F (X). Since X is complete, there exist u, v ∈ A∗

such that uwv ∈ X∗. Then uwv ∈ X∗ ∩ F (X).
The aim of this section is to prove the following result. It shows, in particular, that

a recognizable code is very thin. This is more precise than Proposition 2.5.20, which
only asserts that a recognizable code is thin.

350 9 Unambiguous monoids of relations

For ease of description, we use the following shorthand. Given an automatonA, the
rank of a word w inA is the rank of the relation ϕA(w). This agrees with the definition
of rank given in Section 3.6 for deterministic automata, as shown in Example 4.2.6.

Theorem 9.4.1 Let X ⊂ A+ be a code and let A = (Q, 1, 1) be an unambiguous
trim automaton recognizing X∗. The following conditions are equivalent.

(i) X is very thin.
(ii) The monoid ϕA(A∗) has finite minimal rank.

The proof of this result is in several steps. We start with the following property used
to prove that condition (i) implies condition (ii).

Proposition 9.4.2 Let X ⊂ A+ be a code and let A = (Q, 1, 1) be an unambiguous
trim automaton recognizing X∗. For all w ∈ F (X), the rank of w in A is finite.

Proof. Let us write ϕ instead of ϕA. For each p ∈ Q, let �(p) be the set of prefixes
of w which are labels of paths from p to 1:

�(p) = {u ∈ A∗ | u ≤ w and pϕ(u)1}.
We now show that if �(p) = �(p′) for some p, p′ ∈ Q, then the rows of index p

and p′ in ϕ(w) are equal. Consider a q ∈ Q such that

pϕ(w)q.

Since the automaton is trim, there exist v, v′ ∈ A∗ such that 1ϕ(v)p and qϕ(v′)1.
Thus 1ϕ(vwv′)1 and consequently vwv′ ∈ X∗. Since w ∈ F (X), the path p

w−→ q

is not simple; therefore there exist u, u′ ∈ A∗ such that w = uu′ and vu, u′v′ ∈ X∗.
Consequently there is, in A, the path

1
v−→ p

u−→ 1
u′−→ q

v′−→ 1.

By definition, u ∈ �(p), whence u ∈ �(p′). It follows that p′ϕ(u)1ϕ(u′)q, and con-
sequently p′ϕ(w)q. This proves the claim.

The number of sets �(p), for p ∈ Q, is finite. According to the claim just proved,
the set of rows of ϕ(w) also is finite. By Proposition 9.3.7, this implies that w has
finite rank. �

Example 9.4.3 Let X be the code X = {anban | n ≥ 0}. This is a very thin code
since b2 ∈ X∗ ∩ F (X). An automaton recognizing X∗ is given in Figure 9.9. The
image e of b2 in the associated monoid of relations M is idempotent of rank 1. The
finiteness of the rank also follows from Proposition 9.4.2 since b2 is not factor of a
word in X. The localized monoid eMe is reduced to e and 0 (which is the image of
b2ab2, for example). The monoid M has elements of infinite rank: this holds for the
image of a. Indeed, clearly no power of this element can be idempotent; hence by
Proposition 9.3.8, it has infinite rank. Moreover, M has elements of finite rank n for
each integer n ≥ 0: the word banbanb has rank n + 1, as the reader may verify.

9.4 Very thin codes 351

1

2

2

3

3

4

4

a

a

b

a

a a

a

a a

bb b

Figure 9.9 An automaton for X∗.

Proposition 9.4.4 Let X be a code over A, letA = (Q, 1, 1) be an unambiguous trim
automaton recognizing X∗, let ϕ be the associated representation and M = ϕ(A∗).

For each idempotent e in ϕ(X∗) with finite rank such that the group Ge is transitive,
the following assertions hold.

1. There exist v1, v2, . . . , vn+1 ∈ ϕ−1(H (e)) with the following property: for all y, z ∈
A∗ such that

yv1v2 · · · vn+1z ∈ X∗

there is an integer i, (1 ≤ i ≤ n) such that:

yv1v2 · · · vi, vi+1 · · · vn+1z ∈ X∗.

2. The set ϕ−1(e) ∩ F (X) is nonempty.

Proof. Let e = �r be the column-row decomposition of e, let S be the set of its fixed
points and let G = H (e). By Proposition 9.1.9, the restriction γ : eMe → Me is the
isomorphism m → rm�, and its inverse is the function n → �nr .

The set S contains the element 1, since e ∈ ϕ(X∗). Set S = {1, 2, . . . , n}. We first
rule out the case where ϕ−1(e) = {1}. Then e is the neutral element of M , and S = Q.
Since H (e) = {1} and Ge is assumed to be transitive, this forces A = X. Thus the
result holds trivially.

We now assume that ϕ−1(e) �= {1}. Choose elements g2, g3, . . . , gn ∈ Ge such that

2g2 = 1, 3g2g3 = 1, . . . , ng2g3 · · · gn = 1.

These elements exist because Ge is a transitive permutation group. The permutations
g2, g3, . . . , gn are the restrictions to S of elements h2, h3, . . . , hn of H (e) and one
has hi = �gi r . Thus gi = rhi� = γ (hi). Let v1, v2, . . . , vn+1 ∈ A+ be such that

ϕ(v1) = ϕ(vn+1) = e, ϕ(v2) = h2, . . . , ϕ(vn) = hn.

Set w = v1v2 · · · vn+1. Consider words y, z ∈ A∗ such that ywz ∈ X∗. Then there
exist p, q ∈ Q such that

1
y−→ p

w−→ q
z−→ 1.

352 9 Unambiguous monoids of relations

Note that

ϕ(w) = �rh2 · · · hn�r = �γ (h2 · · · hn)r = �g2 · · · gnr.

Since pϕ(w)q, there exist r, s ∈ S such that p
�−→ r , rg2 · · · gn = s, and s

r−→ q.
Then rg2 · · · gr = 1 (with g2 · · · gr = idS when r = 1). Since the gi’s are permuta-
tions, this implies

1gr+1 · · · gn = s.

Consequently r
h2···hr−−−→ 1, 1

hr+1···hn−−−−→ s, and since �p,r = ep,r , rs,q = es,q , we have

p
eh2···hr−−−−→ 1, 1

hr+1···hne−−−−−→ q.

This implies that

yv1v2 · · · vr, vr+1 · · · vn+1z ∈ X∗.

Thus the words v1, . . . , vn+1 satisfy the first statement.
To show the second part, we verify first that the word w = v1v2 · · · vn+1 is in F (X).

Assume indeed that ywz ∈ X for some y, z ∈ A∗. Then there exists an integer i

(1 ≤ i ≤ n) such that yv1 · · · vi , vi+1 · · · vn+1z ∈ X∗. Since v1, . . . , vn+1 ∈ A+, these
two words are in fact in X+, contradicting the fact that X is a code. Thus w ∈ F (X).

Let h′ be the inverse of h = ϕ(w) in H (e), and let w′ be such that ϕ(w′) = h′.
Then ww′ ∈ ϕ−1(e), and also ww′ ∈ F (X). This concludes the proof. �

Proof of Theorem 9.4.1.
(i) =⇒ (ii). Let x ∈ X∗ ∩ F (X). According to Proposition 9.4.2, the rank of ϕ(x)

is finite. Since x ∈ X∗, we have (1, ϕA(X), 1) = 1 and thus ϕA(x) �= 0. This shows
that ϕA(A∗) has finite minimal rank.

(ii) =⇒ (i). The monoid M = ϕA(A∗) is a transitive unambiguous monoid of
relations having finite minimal rank r(M). Let

K = {m ∈ M | rank(m) = r(M)}.

By Theorems 9.3.10 and 9.3.15, there exists an idempotent e in K ∩ Stab(1), and
the permutation group Ge is transitive of degree r(M). By Proposition 9.4.4, the set
ϕ−1
A (e) ∩ F (X) is not empty. Since ϕ−1

A (e) ⊂ X∗, the code X is very thin. �

We now give a series of consequences of Theorem 9.4.1.

Corollary 9.4.5 Let X be a complete code, and letA = (Q, 1, 1) be an unambiguous
trim automaton recognizing X∗. The following conditions are equivalent.

(i) X is thin.
(ii) The monoid ϕA(A∗) contains elements of finite rank.

9.4 Very thin codes 353

Figure 9.10 The minimal ideal.

Proof. Since X is complete, the monoid ϕA(A∗) does not contain the null relation
(Proposition 2.5.28). Thus the result follows directly from Theorem 9.4.1. �

Another consequence of Theorem 9.4.1 is an algebraic proof, independent of
measures, of Theorem 2.5.13.

Corollary 9.4.6 If X is a thin complete code, then X is a maximal code.

Proof. LetA = (Q, 1, 1) be an unambiguous trim automaton recognizing X∗ and let ϕ
be the associated representation. Let x ∈ X∗ such that e = ϕ(x) is an idempotent of the
minimal ideal J of the monoid ϕ(A∗). (Such an idempotent exists by Theorem 9.3.15,
claim 3).

Let y /∈ X. Then eϕ(y)e = ϕ(xyx) is in the H-class of e. This H-class is a finite
group. Thus there exists an integer n ≥ 1 such that (ϕ(xyx))n = e. Consequently
(xyx)n ∈ X∗. This shows that X ∪ y is not a code. �

Let X ⊂ A+ be a code and let A = (Q, 1, 1) be an unambiguous trim automaton
recognizing X∗. We have shown that X is very thin if and only if the monoid
M = ϕA(A∗) has elements of finite, positive rank. Let r be the minimum of these
nonzero ranks, and let K be the set of elements in M of rank r . Set ϕ = ϕA. It is
useful to keep in mind the following facts.

1. ϕ(X∗) meets K . Indeed ϕ(X∗) = Stab(1) and according to Theorems 9.3.10 and
9.3.15, K meets Stab(1).

2. EveryH-class H contained in K that meets ϕ(X∗) is a group. Moreover, ϕ(X∗) ∩
H is a subgroup of H . These H-classes are those which contain an idempotent having
1 as a fixed point.

Indeed, let H be an H-class meeting ϕ(X∗). Let h ∈ H ∩ ϕ(X∗). Then h2 is not
the null relation since h2 ∈ Stab(1). Thus h2 ∈ H and consequently H is a group
(Proposition 1.12.8). Let N = H ∩ ϕ(X∗). Since ϕ(X∗) is a stable submonoid of M ,
N is a stable submonoid of H , hence a subgroup (Example 2.2.3).

Figure 9.10 represents, with slashed triangles, the intersection K ∩ ϕ(X∗). It
expresses that the H-classes of K meeting ϕ(X∗) “form a rectangle” in K (see
Exercise 9.3.4). Collecting together these facts, we have proved the following theo-
rem.

Theorem 9.4.7 Let X ⊂ A+ be a very thin code. Let A = (Q, 1, 1) be an unambigu-
ous trim automaton recognizing X∗. Let K be the set of elements of minimal nonzero
rank in the monoid M = ϕA(A∗).

354 9 Unambiguous monoids of relations

1. ϕA(X∗) meets K .
2. Any H-class H in K that meets ϕA(X∗) is a group. Moreover, H ∩ ϕA(X∗) is a

subgroup of H .
3. The H-classes of K meeting ϕA(X∗) are those whose idempotent has the state 1

as a fixed point.

Another consequence of the results of this section is the proof of the following
lemma which was stated without proof in Chapter 2 (Lemma 2.6.5).

Lemma 9.4.8 Let X be a complete thin code. For any word u ∈ X∗ there exists a
word w ∈ X∗uX∗ satisfying the following property: if ywz ∈ X∗, then there exists a
factorization w = f ug such that yf, gz ∈ X∗.

Proof. Let ϕ be the representation associated with some unambiguous trim automaton
recognizing X∗. Since X is thin, the monoid M = ϕ(A∗) has a minimal ideal J .
Since X is complete, M has no zero and thus ϕ(X+) meets J . Let e be an idempotent
in ϕ(X∗) ∩ J . The group Ge is transitive by Theorem 9.3.10 and, according to
Proposition 9.4.4, there exist words v1, v2, . . . , vn+1 ∈ ϕ−1(H (e)) such that the word
v = v1v2 · · · vn+1 has the following property: if yvz ∈ X∗ for some y, z ∈ A∗, then
there exists an integer i such that yv1 · · · vi , vi+1 · · · vn+1z ∈ X∗.

We have eϕ(u)e ∈ eMe = H (e), and eϕ(u)e ∈ ϕ(X∗). Since H (e) ∩ ϕ(X∗) is a
subgroup of H (e), there exists h ∈ H (e) ∩ ϕ(X∗) such that eϕ(u)eh = e. Since h =
eh, we have eϕ(u)h = e. Consider words r ∈ ϕ−1(e), s ∈ ϕ−1(h), set u′ = rus and
consider the word

w = u′v1u
′v2 · · · u′vn+1u

′.

Let y, z ∈ A∗ be words such that ywz ∈ X∗. Since ϕ(u′) = e, we have ϕ(w) = ϕ(v).
Consequently also yvz is in X∗. It follows that for some integer i,

yv1v2 · · · vi, vi+1 · · · vn+1z ∈ X∗.

Observe that

ϕ(v1v2 · · · vi) = ϕ(u′v1u
′v2 · · · u′vi)

and

ϕ(vi+1 · · · vn+1) = ϕ(vi+1u
′ · · · u′vn+1u

′).

Thus also yu′v1u
′v2 · · · u′vi and vi+1u

′ · · · vn+1u
′z are in X∗.

Let

f = u′v1u
′v2 · · · u′vir, g = svi+1u

′ · · · vn+1u
′.

Since r, s ∈ X∗, we have yf, gz ∈ X∗ and this shows that the word w = f ug satisfies
the property of the statement. �

9.4 Very thin codes 355

Finally, we note that for complete thin codes, some of the information concerning
the minimal ideal are characteristic of prefix, suffix, or bifix codes.

Proposition 9.4.9 Let X be a thin complete code over A, let ϕ be the representation
associated with an unambiguous trim automaton A = (Q, 1, 1) recognizing X∗, let
M = ϕ(A∗) and J its minimal ideal. Let H0, R0, L0 be an H, R, L-class of J such
that H0 = R0 ∩ L0 and ϕ(X∗) ∩ H0 �= ∅.

1. X is prefix if and only if ϕ(X∗) meets every H-class in L0.
2. X is suffix if and only if ϕ(X∗) meets every H-class in R0.
3. X is bifix if and only if ϕ(X∗) meets all H-classes in J .

Proof. 1. Let H be an H–class in L0, let e0 be the idempotent of H0 and let e be the
idempotent of H (each H-class in J is a group). We have e0e = e0 since e ∈ L0 (for
some m, we have me = e0; consequently e0 = me = mee = e0e).

If X is prefix, then ϕ(X∗) is right unitary. Since e0 ∈ ϕ(X∗) and e0 = e0e, it follows
that e ∈ ϕ(X∗). Thus H ∩ ϕ(X∗) �= ∅.

Conversely, let us show that ϕ(X∗) is right complete. Let m ∈ M . Then me0 ∈ L0,
and therefore me0 ∈ H for some H-class H ⊂ L0. If n is the inverse of me0 in the
group H , then me0n ∈ ϕ(X∗). Thus ϕ(X∗) is right complete and X is prefix.

The proof of 2 is symmetric, and 3 results from the preceding arguments. �

Proposition 9.4.9 can be generalized to codes which are not maximal (see Exer-
cise 9.4.3).

Let X ⊂ A∗ be a thin, maximal prefix code, and let A = (Q, 1, 1) be a complete
deterministic automaton recognizing X∗. The monoid M = ϕA(A∗) then is a monoid
of (total) functions and we use the notation already introduced in Section 9.1. We
will write, for m ∈ M , qm = q ′ instead of (q,m, q ′) = 1. Let m ∈ M , and w ∈ A∗

with m = ϕ(w). The image of m is

Im(m) = Qm = Q · w,

and the nuclear equivalence of m, denoted by Ker(m), is defined by

q ≡ q ′ (Ker(m)) ⇐⇒ qm = q ′m.

The number of classes of the equivalence relation Ker(m) is equal to Card(Im(m));
both are equal to rank(m), in view of Example 9.3.5.

A nuclear equivalence is maximal if it is maximal among the nuclear equivalences
of elements in M . It is an equivalence relation with a number of classes equal to
r(M). Similarly, an image is minimal if it is an image of cardinality r(M), that is, an
image which does not strictly contain any other image.

Proposition 9.4.10 Let X ⊂ A+ be a thin maximal prefix code, let A = (Q, 1, 1) be
a complete deterministic automaton recognizing X∗, let M = ϕA(A∗) and let K be
the D-class of the elements of M of rank r(M). Then

356 9 Unambiguous monoids of relations

1 3

2

a

b

a a

a

Figure 9.11 An automaton for X∗.

1. There is a bijection between the minimal images and the L-classes of K .
2. There is a bijection between the maximal nuclear equivalences and the R-classes

of K .

Proof. 1. Let n,m ∈ M be two L-equivalent elements. We prove that Im(m) = Im(n).
There exist u, v ∈ M such that m = un, n = vm. Thus Qm = Qun ⊂ Qn, and also
Qn ⊂ Qm. This shows that Im(m) = Im(n).

Conversely let m, n ∈ K be such that Im(m) = Im(n). K being a regular D-class
(Theorem 9.3.10), the L-class of m contains an idempotent, say e, and the L-class of
n contains an idempotent f (Proposition 1.12.7). Then Im(e) = Im(m) and Im(f) =
Im(n), in view of the first part. Thus Im(e) = Im(f). We shall see that ef = e and
f e = f .

Let indeed q ∈ Q, and q ′ = qe. Then q ′ ∈ Im(e) = Im(f), and q ′ = q ′f since f is
idempotent. Consequently qe = qef . This shows that e = ef . The equality f e = f

is shown by interchanging e and f . These relations imply eLf . Thus mLn.
2. The proof is entirely analogous. �

Note also that in the situation described above, every state appears in some minimal
image. This is indeed the translation of Theorem 9.3.15(4). This description of the
minimal ideal of a monoid of functions, by means of minimal images and maximal
equivalences, appears to be particularly convenient.

Example 9.4.11 Let X = {aa, ba, baa}. We consider the automaton given in Fig-
ure 9.11. The 0-minimal ideal of the corresponding monoid is the following: it is
formed of elements of rank 1.

001 110

011t * αβ * αβα

100t β * βα

101t *ααβ *ααβα

9.4 Very thin codes 357

1 3

2

a

b

a a, b

a, b

Figure 9.12 An automaton for X∗.

with

α = ϕ(a) =
0 1 0

1 0 0
1 1 0

 , β = ϕ(b) =
0 0 1

0 0 0
0 0 0

 .

For each element we indicate, on the top, its unique nonnull row, and, on its left,

its unique nonnull column (with the convention a1 · · · an
t =

a1

a2
...

an

). The existence of an

idempotent is indicated by an asterisk in the H-class. The column-row decomposition
of an idempotent is simply given by the vectors in the rows and columns of the array.
For example, the column-row decomposition of αβ is

αβ =
0

1
1

[0 0 1
]
.

The following array gives the fixed point of each idempotent

3 2

1

3 1

Example 9.4.12 Let X = {aa, ba, baa, bb, bba}. We consider the automaton given
in Figure 9.12. The corresponding monoid has no 0 (the code is complete).

The minimal ideal, formed of elements of rank 1, is represented by

001 110

011t * αβ *αβα

101t *βαβ * βα

, α = ϕ(a) =
0 1 0

1 0 0
1 1 0

 , β = ϕ(b) =
0 0 1

0 0 0
1 1 0

 .

358 9 Unambiguous monoids of relations

The fixed points of the idempotents are:

3 2

3 1

Example 9.4.13 Let A = {a, ā, b, b̄}. Denote by θ the congruence on A∗ generated
by the relations

aā ∼ 1, bb̄ ∼ 1.

The class of 1 for the congruence θ is a biunitary submonoid. We denote by D′
2 the

code generating this submonoid. This code is a one-sided Dyck code. The set D′
2
∗ can

be considered to be the set of “systems of parentheses” with two types of parentheses:
a, b represent left parentheses, and ā, b̄ the corresponding right parentheses.

The code D′
2 is thin since D′

2 is not complete. Indeed, for instance, ab̄ �∈ F (D′
2)

since ab̄ �∈ F (D′
2
∗). However, D′

2 is not very thin. Indeed, for all w ∈ D′
2
∗, we

have awā ∈ D′
2. The code D′

2 is bifix. Let A(D′
2
∗) = (Q, 1, 1), let ϕ = ϕA and let

M = ϕ(A∗). By Proposition 1.4.5, the monoid M is isomorphic with the syntactic
monoid of D′

2
∗. We have D′

2
∗ = ϕ−1(1) since D′

2
∗ is the class of 1 for a congruence.

The monoid M contains a 0 and

ϕ−1(0) = F (D′
2
∗).

The only two-sided ideals of M are M and 0. Indeed, if m ∈ M \ 0 and w ∈ ϕ−1(m),
then w ∈ F (D′

2
∗). Therefore, there exist u, v ∈ A∗ such that uwv ∈ D′

2
∗. Hence

ϕ(u)mϕ(v) = 1 whence 1 ∈ MmM and MmM = M .
This shows that M itself is a 0-minimal ideal. Nonetheless, M does not contain

any 0-minimal right ideal. Suppose the contrary. By Proposition 1.12.9, M would be
the union of all 0-minimal right ideals. Thus any element of M \ 0 would generate a
0-minimal right ideal. This is false as we shall see now.

For all n ≥ 1, ϕ(ān)M ⊃ ϕ(ān+1)M . This inclusion is strict, since if ϕ(ān) =
ϕ(ān+1w) for some w ∈ A∗, then anān ∈ D′

2
∗ would imply anān+1w ∈ D′

2
∗, whence

āw ∈ D′
2
∗ which is clearly impossible.

This example illustrates the fact that for a code X which is not very thin, no
automaton recognizing X∗ has elements of finite positive rank (Theorem 9.4.1).

9.5 Group and degree of a code

Let X ⊂ A+ be a very thin code, let A∗
D(X) be the flower automaton of X and let ϕD

be the associated representation. By Theorem 9.4.1, the monoid ϕD(A∗) has elements
of finite, positive rank.

The group of the code X is, by definition, the Suschkewitch group of the monoid
ϕD(A∗) defined at the end of Section 9.3. It is a transitive permutation group of finite
degree. Its degree is equal to the minimal rank r(ϕD(A∗)) of the monoid ϕD(A∗).

9.5 Group and degree of a code 359

We denote by G(X) the group of X. Its degree is, by definition, the degree of the
code X and is denoted by d(X). Thus one has

d(X) = r(ϕD(A∗)).

We already met a notion of degree in the case of thin maximal bifix codes. We shall
see below that the present and previous notions of degree coincide.

The definition of G(X) and d(X) rely on the flower automaton of X. In fact, these
concepts are independent of the automaton which is considered. In order to show
this, we first establish a result which is interesting in its own.

Proposition 9.5.1 Let X ⊂ A+ be a thin code. Let A = (P, 1, 1) and B = (Q, 1, 1)
be two unambiguous trim automata recognizing X∗, and let ϕ and ψ be the associated
representations. Let M = ϕ(A∗), N = ψ(A∗), � = ϕ(F (X)), � = ψ(F (X)), let E

be the set of idempotents in �, and E′ the set of idempotents in �.
Let ρ : P → Q be a reduction of A onto B and let ρ̂ : M → N be the surjective

morphism associated with ρ. Then

1. ρ̂(E) = E′.
2. Let e ∈ E, e′ = ρ̂(e). The restriction of ρ to Fix(e) is a bijection from Fix(e) onto

Fix(e′), and the monoids Me and Ne′ are equivalent.

Proof. SinceA andB recognize the same set, we have ρ−1(1) = 1 (Proposition 4.2.4).
The morphism ρ̂ : M → N defined by ρ satisfies ψ = ρ̂ ◦ ϕ.

1. Let e ∈ E. Then ρ̂(e) = ρ̂(e2) = ρ̂(e)2. Thus ρ̂(e) is an idempotent. If e = ϕ(w)
for some w ∈ F (X), then ρ̂(e) = ψ(w), whence ρ̂(e) ∈ �. This shows that ρ̂(E) ⊂
E′.

Conversely, let e′ ∈ E′, and let w ∈ F (X) with e′ = ψ(w). Then ϕ(w) has finite
rank by Proposition 9.4.2, and by Proposition 9.3.8, there is an integer n ≥ 1 such
that (ϕ(w))n is an idempotent. Set e = (ϕ(w))n; then e = ϕ(wn) and wn ∈ F (X).
Thus e ∈ E. Next ρ̂(e) = ψ(wn) = e′n = e′. This shows that ρ̂(E) = E′.

2. Let S = Fix(e), S ′ = Fix(e′). Consider s ∈ S and let s ′ = ρ(s). From ses, we
get s ′e′s ′ and consequently ρ(S) ⊂ S ′. Conversely, if s ′e′s ′, then peq for some p, q ∈
ρ−1(s ′). By Proposition 9.1.9(2), there exists s ∈ S such that peseq. This implies that
s ′e′ρ(s)e′s ′ and, by unambiguity, ρ(s) = s ′. It follows that ρ(S) = S ′.

Now let s, t ∈ S be such that ρ(s) = ρ(t) = s ′. If s = 1 then t = 1, since ρ−1(1) =
1. Thus we may assume that s, t �= 1. Since e ∈ �, there exist w ∈ F (X) with
e = ϕ(w) and factorizations w = uv = u′v′ such that ϕ(uv) = ϕ(u′v′) = e and

s
u−→ 1

v−→ s, t
u′−→ 1

v′−→ t.

This implies that

s ′
u−→ 1

v−→ s ′, s ′
u′−→ 1

v′−→ s ′,

360 9 Unambiguous monoids of relations

whence in particular in B

1
vu′−→ 1.

Since ρ−1(1) = 1, this implies that there is also a path 1
vu′−→ 1 in A. This in turn

implies that

s
u−→ 1

vu′−→ 1
v′−→ t

or, equivalently, (s, e, t) = 1. Since e is an idempotent and s, t ∈ S, this implies that
s = t . Thus the restriction of ρ to S is a bijection from S onto S ′.

Since ρ̂(eMe) = e′Ne′, the restriction of ρ to S defines an equivalence between
Me and Ne′ . �

Proposition 9.5.2 Let X be a very thin code over A. Let A = (Q, 1, 1) be an unam-
biguous trim automaton recognizing X∗, and let ϕ be the associated representation.
Then the Suschkewitch group of ϕ(A∗) is equivalent to G(X).

Proof. According to Proposition 4.2.7, there exists a reduction from A∗
D(X) onto A.

Let e be a nonnull idempotent in the 0-minimal ideal of M = ϕD(A∗). The image of
e by the reduction is a nonnull idempotent e′ in the 0-minimal ideal of N = ϕ(A∗).
Both ϕD(F (X)) and ϕ(F (X)) are ideals which are nonnull because they meet ϕD(X∗)
and ϕ(X∗) repectively. Thus e ∈ ϕD(F (X)) and e′ ∈ ϕ(F (X)). By the preceding
proposition, Me $ Ne′ . Thus G(X) $ Ne′ \ 0 which is the Suschkewitch group of
ϕ(A∗). �

Example 9.5.3 Let G be a transitive permutation group on a finite set Q, and let H

be the subgroup of G stabilizing an element q of Q. Let ϕ be a morphism from A∗

onto G, and let X be the (group) code generating X∗ = ϕ−1(H). The group G(X)
then is equivalent to G and d(X) is the number of elements in Q.

In particular, we have for all n ≥ 1, G(An) = Z/nZ and d(An) = n.

9.6 Interpretations

Proposition 9.5.2 shows that the group of a very thin code and consequently also
its degree, are independent of the automaton chosen. Thus we may expect that the
degree reflects some combinatorial property of the code. This is indeed the fact, as
we will see now.

Let X be a very thin code over A. An interpretation of a word w ∈ A∗ (with respect
to X) is a triple

(d, x, g)

with d ∈ A−X, x ∈ X∗, g ∈ XA−, and w = dxg. We denote by I (w) the set of
interpretations of w. Two interpretations (d, x, g) and (d ′, x ′, g′) of w are adjacent
or meet if there exist y, z, y ′, z′ ∈ X∗ such that

x = yz, x ′ = y ′z′, dy = d ′y ′, zg = z′g′.

9.6 Interpretations 361

w

d y z g

d y z g

Figure 9.13 Two adjacent interpretations.

(see Figure 9.13). Two interpretations which do not meet are called disjoint. A set
� ⊂ I (w) is disjoint if its elements are pairwise disjoint.

Let w ∈ A∗. The degree of w with respect to X is the nonnegative number δX(w)
defined by

δX(w) = max{Card(�) | � ⊂ I (w),� disjoint}.
Thus δX(w) is the maximal number of pairwise disjoint interpretations of w. Note
that for w ∈ F (X),

δX(uwv) ≤ δX(w).

Indeed, since w is not a factor of a word in X, every interpretation of uwv gives rise to
an interpretation of w, and disjoint interpretations of uwv have their restriction to w

also disjoint. Observe also that this inequality does not hold in general if w ∈ F (X).
In particular, a word in F (X) may have no interpretation at all, whereas δX(w) is
always at least equal to 1, for w ∈ F (X) ∩ X∗.

Proposition 9.6.1 Let X be a very thin code. Then

d(X) = min{δX(w) | w ∈ X∗ ∩ F (X)}.

Proof. Let A∗
D(X) = (P, 1, 1) be the flower automaton of X, with the shorthand

notation 1 instead of (1, 1) for the initial and final state. Let M = ϕD(A∗), let J be
the 0-minimal ideal of M , let e be an idempotent in ϕD(X∗) ∩ J and let S = Fix(e).
Then by definition d(X) = Card(S).

According to Proposition 9.4.4, we have ϕ−1
D (e) ∩ F (X) �= ∅. Take a fixed word

x ∈ ϕ−1
D (e) ∩ F (X). Then x ∈ X∗ ∩ F (X), since e ∈ ϕD(X∗).

Let w ∈ X∗ ∩ F (X) and let us verify that d(X) ≤ δX(w). For this, it suffices
to show that d(X) ≤ δX(xwx), because of the inequality δX(xwx) ≤ δX(w). Now
ϕD(xwx) ∈ H (e), and consequently its restriction to S is a permutation on S. Thus
for each s ∈ S, there exists one and only one s ′ ∈ S such that (s, ϕD(xwx), s ′) = 1,
or equivalently such that

s
xwx−→ s ′.

Since w ∈ F (X), this path is not simple. Setting s = (u, d), s ′ = (g, v) it factorizes
into

s
d−→ 1

y−→ 1
g−→ s ′

362 9 Unambiguous monoids of relations

and (d, y, g) is an interpretation of xwx. Thus each path from a state in S to another
state in S, labeled by xwx, gives an interpretation of xwx. Two such interpretations are
disjoint. Assume indeed the contrary. Then there are two interpretations (d1, y1, g1)
and (d2, y2, g2) derived from paths s1

xwx−→ s ′1 and s2
xwx−→ s ′2 that are adjacent. This

means that the paths factorize into

s1
d1−→ 1

z1−→ 1
z′1−→ 1

g1−→ s ′1,

s2
d2−→ 1

z2−→ 1
z′2−→ 1

g2−→ s ′2

with d1z1 = d2z2 and also z′1g1 = z′2g2. Then there is also, in A∗
D(X), a path

s1
d1−→ 1

z1−→ 1
z′2−→ 1

g2−→ s ′2

labeled xwx. This implies (s1, ϕD(xwx), s ′2) = 1; since s ′2 ∈ S, one has s ′2 = s ′1,
whence s2 = s1.

Thus the mapping which associates, to each fixed point, an interpretation produces
a set of pairwise disjoint interpretations. Consequently Card(S) ≤ δX(xwx).

We now show that

δX(x3) ≤ d(X),

where x is the word in ϕ−1
D (e) ∩ F (X) fixed above. This will imply the proposition.

Let (d, y, g) be an interpretation of x3. Let p = (u, d), q = (g, v) ∈ P . Then there
is a unique path

p
d−→ 1

y−→ 1
g−→ q, (9.22)

and moreover the paths p
d−→ 1, 1

g−→ q are simple or null. Since ϕD(x) = e, there
exists a unique s ∈ S such that the path (9.22) also factorizes into

p
x−→ s

x−→ s
x−→ q.

Since x ∈ F (X), the word d is a prefix of x and g is a suffix of X.
Thus there exist words z, z̄ ∈ A∗ such that

y = zxz̄, dz = x = z̄g.

Observe that the fixed point s ∈ S associated to the interpretation is independent of
the endpoints of the path (9.22). Consider indeed another path

p′ d−→ 1
y−→ 1

g−→ q ′

associated to the interpretation (d, y, g), and a fixed point s ′ ∈ S such that p′ x−→
s ′

x−→ s ′
x−→ q ′. Since x = dz = z̄g, the above path factorizes in p′ d−→ 1

z−→
s ′

x−→ s ′
z̄−→ 1

g−→ q ′. The uniqueness of the path 1
y−→ 1 forces s = s ′.

9.7 Exercises 363

Thus we have associated, to each interpretation (d, y, g), a fixed point s ∈ S, which
in turn determines two words z, z̄ such that y = zxz̄, and

1
z−→ s

x−→ s
z̄−→ 1.

We now show that the fixed points associated to distinct interpretations are distinct.
This will imply that δX(x3) ≤ Card(S) = d(X) and will complete the proof.

Let (d ′, y ′, g′) be another interpretation of x3, let p′ = (u′, d ′), q ′ = (g′, v′) ∈ P ,
and assume that the path

p′ d ′−→ 1
y ′

−→ 1
g′

−→ q ′

decomposes into

p′ d ′−→ 1
z′−→ s

x−→ s
z̄′−→ 1

g′
−→ q ′. (9.23)

Since x ∈ F (X), the path s
x−→ s is not simple. Therefore there exist h, h̄ ∈ A∗ such

that x = hh̄ and

s
h−→ 1

h̄−→ s.

The paths (9.22) and (9.23) become

p
d−→ 1

z−→ s
h−→ 1

h̄−→ s
z̄−→ 1

g−→ q

p′ d ′−→ 1
z′−→ s

h−→ 1
h̄−→ s

z̄′−→ 1
g′

−→ q ′.

This shows that zh, h̄z̄, z′h, h̄z̄′ ∈ X∗. Next dz = d ′z′ = x. Thus dzh = d ′z′h, show-
ing that the interpretations (d, y, g) and (d ′, y ′, g′) are adjacent. The proof is complete.

�

Now we are able to make the connection with the concept of degree of bifix codes
introduced in the previous chapter. If X ⊂ A+ is a thin maximal bifix code, then two
adjacent interpretations of a word w ∈ A∗ are equal. This shows that δX(w) is the
number of interpretations of w. As we have seen in Chapter 6, this number is constant
on H̄ (X), whence on F (X). By Proposition 9.6.1, the two notions of degree we have
defined are identical.

9.7 Exercises

Section 9.1

9.1.1 Let e be an idempotent element of an unambiguous monoid of relations over a
set Q. Show that if p

e→ q
e→ r for p, q, r ∈ Q, then q is in Fix(e).

9.1.2 The aim of this problem is to prove that for any stable submonoid N of a
monoid M , there exists a morphism ϕ from M onto an unambiguous monoid of

364 9 Unambiguous monoids of relations

relations over some set Q and an element 1 ∈ Q such that N = Stab(1). For this let

D = {(u, v) ∈ M × M | uv ∈ N}.

Let ρ be the relation over D defined by

(u, v)ρ(u′, v′) ⇐⇒ Nu ∩ Nu′ �= ∅ and vN ∩ v′N �= ∅.

Show that the equivalence classes of the transitive closure ρ∗ of ρ are Cartesian
products of subsets of M . (Hint: Prove that for any (u, v), (u′v′) ∈ D such that
(u, v)ρ(u′, v′), one has also (u, v′), (u′, v) ∈ D and (u, v)ρ(u, v′)ρ(u′, v).)

Show that N × N is a class of ρ∗. Let Q be the set of classes of ρ∗ and let 1 denote
the class N × N . Let ϕ be the function from M into P(Q × Q) defined by

(U × V)ϕ(m)(U ′ × V ′) ⇔ Um ⊂ U ′ and mV ′ ⊂ V.

Show that ϕ is a morphism and that N = Stab(1). Show that in the case where M =
A∗, the construction above coincides with the construction of the flower automaton.

9.1.3 Let K be a field and let m be an n × n matrix with elements in K . Show that
m = m2 if and only if there exist � ∈ Kn×p and r ∈ Kp×n such that

m = �r and r� = Ip,

where Ip denotes the identity matrix.

9.1.4 Let A = (P, 1, 1) and B = (Q, 1, 1) be two unambiguous trim automata. A
reduction ρ from A to B is said to be unambiguous if there is a pair (λ,µ) of partial
functions from P to Q which are restrictions of ρ and such that for each path q

w→ q ′

in B there exists a unique pair p ∈ λ−1(q) and p′ ∈ µ−1(q ′) such that p
w→ p′ is a

path in A. Such a pair (λ,µ) is called an unambiguous realization of ρ.
(a) Verify that the functions λ,µ given below form an unambiguous realization of

the reduction ρ of Example 4.2.6.

1 2 3 4 5 6 7 8
ρ 1 2 2 2 3 3 3 3
λ 1 2 − − 3 3 3 3
µ 1 2 2 2 3 − − −

(Hint: Show that there exists an invertible matrix R such that

R =
U

L

V

 , R−1 = [W M X
]

9.7 Exercises 365

where L is the matrix of the relation λ−1 and M is the matrix of the relation µ with

RϕD(c)R−1 =
0 0 0
∗ ϕ(c) 0
∗ ∗ 0

for each letter c = a, b.)

(b) Show that if the monoid ϕA(A∗) has finite minimal rank, and if the automaton
B is transitive, then any reduction from A to B is unambiguous. (Hint: Use Claim 2
of Proposition 9.1.9.)

Section 9.2

9.2.1 Let M be an unambiguous monoid of relations over a set Q. Let D be a D-class
of M containing an idempotent e. Let R (resp. L) be the R-class (resp. the L-class)
of e and let � (resp. �) be the set of its H-classes. Let (aH , a′

H)H∈� be a system of
coordinates of R, and let (bK, b′

K)K∈� be a system of coordinates of L. Let e = �r
be the column-row decomposition of e and set rH = raH , �K = bK�.

The sandwich matrix of D (with respect to these systems of coordinates) is defined
as the � × � matrix with elements in Ge ∪ 0 given by

SHK =
{

rH �K if eaH bKe ∈ H (e),

0 otherwise.

Show that for all m ∈ M , H ∈ �, K ∈ �,

(H ∗ m)SH ′K = SHK ′(m ∗ K),

with H ′ = H · m, K ′ = m · K .
Show that D is isomorphic with the semigroup formed by the triples (H, g,K) ∈

� × Ge × � with the product defined by

(K, g,H)(K ′, g′,H ′) = (K, gSHK ′g′,H ′). (9.24)

Section 9.3

9.3.1 Let e be an idempotent element of an unambiguous monoid of relations over a
set Q. Let e = uv be a decomposition of e into an unambiguous product of relations
u : Q → T , v : T → Q, where Card(T) is the rank of e. Show that there exists a
bijection ϕ : S → T , where S is the set of fixed points of e, such that e = (uϕ−1)(ϕv)
is the column-row decomposition of e.

9.3.2 Let K be a semiring and let m be a K-relation between P and Q. The rank over
K of m is the minimum of the cardinalities of the sets R such that m = �r for some
K-relations � ∈ KP×R , r ∈ KR×Q. Denote it by rankK (m). The rank of a relation, as
defined in Section 9.3, is therefore also its rank when considered as an N-relation.

Show that if K is a field and Q is finite, the rank over K coincides with the usual
notion of rank in linear algebra.

366 9 Unambiguous monoids of relations

9.3.3 Let

m =

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 .

Show that rankN(m) = 4, but that rankZ(m) = 3.

9.3.4 Let M be an unambiguous monoid of relations over Q which is transitive and
has finite minimal rank. Let 1 ∈ Q and N = Stab(1). Let � (resp. �) be the set of
0-minimal or minimal left (resp. right) ideals of M , according to M contains or does
not contain a zero. Let R,R′ ∈ �, L,L′ ∈ �. Show that if

R ∩ L ∩ N �= ∅ and R′ ∩ L′ ∩ N �= ∅,

then also

R ∩ L′ ∩ N �= ∅ and R′ ∩ L ∩ N �= ∅.

In other words, the set of pairs (R,L) ∈ � × � such that R ∩ L ∩ N �= ∅ is a Carte-
sian product.

9.3.5 Let M be a transitive unambiguous monoid of relations on Q which has finite
minimal rank and which does not contain the null relation. Let U be the set of nonzero
rows of the elements of M . Show that the following conditions are equivalent for
v ∈ U .

(i) v is a row of an element of M of minimal rank.
(ii) 0 �∈ vM .

(iii) v is maximal among the rows of the elements of M .
(iv) v is a row of an element of M with a minimal number of distinct nonzero rows.

9.3.6 Let X be a thin maximal code and let A = (Q, 1, 1) be a trim unambigu-
ous automaton recognizing X∗. Let ϕ be the associated representation and let
M = ϕ(A∗).

(a) Show that a word w is strongly right completable if and only if 0 �∈ ϕ(w)1∗M .
(b) Let K be the minimal ideal of M . Show that any right completable word

w ∈ ϕ−1(K) is simplifying and is strongly right completable. (Hint: Use Exercise
9.3.5.)

9.3.7 Let M be an unambiguous monoid of relations on a finite set Q. Let R (resp.
L) be the set of rows (resp. columns) of the elements of M . Show that for each r ∈ R,
m ∈ M , and � ∈ L, one has rm� ≤ 1. Conversely, let R and L be sets of row and

9.7 Exercises 367

column vectors in P(Q) such that

R = {r ∈ P(Q) | r� ≤ 1 for all � ∈ L},
L = {� ∈ P(Q) | r� ≤ 1 for all r ∈ R}.

(9.25)

Let M = {m ∈ P(Q × Q) | rm� ≤ 1 for all r ∈ R and � ∈ L}.
(a) Show that M is a transitive unambiguous monoid of relations on Q which

contains all products �r for r ∈ R and � ∈ L.
(b) Show that any transitive unambiguous monoid of relations is a submonoid of

one obtained in this way.

9.3.8 Let M be a transitive unambiguous monoid of relations on a finite set Q not
containing the relation 0. Let R (resp. L) be the set of rows (resp. columns) of the
elements of M which are maximal. Let U be the set of sums of the distinct rows of
the elements of minimal rank of M and let V = L.

Show that for each u ∈ U , m ∈ M , and v ∈ V , one has umv = 1. Conversely, let
U and V be sets of row and column vectors such that

U = {u ∈ P(Q) | uv = 1 for all v ∈ V },
V = {v ∈ P(Q) | uv = 1 for all u ∈ U},

(9.26)

and such that for all p ∈ Q there is a u ∈ U (resp. v ∈ V) such that up = 1 (resp.
vp = 1). Let M = {m ∈ P(Q × Q) | umv = 1 for all u ∈ U and v ∈ V }.

(a) Show that M is a transitive unambiguous monoid of relations on Q not con-
taining 0.

(b) Show that any transitive unambiguous monoid of relations not containing 0 is
a submonoid of one obtained in this way.

9.3.9 An unambiguous monoid of relations on a finite set Q with n elements is said
to be very transitive if it contains a transitive group G of permutations on Q. The aim
of this exercise is to show that all elements of a very transitive unambiguous monoid
of relations have the same number n of elements (as subsets of Q × Q).

Let e be an idempotent of minimal rank. Let u be the sum of the distinct rows of
e and let v be a column of e. Let r = Card(u) and s = Card(v). Let U = uG be the
orbit of u under the right action of G and let V = Gv be the orbit of v under the left
action of G. Let p = Card(U) and q = Card(V).

(a) Show that for each q ∈ Q, the number of elements of U containing q is
independent of q. Let h be this integer. In the same way, let k be the number of
elements of V containing a given q ∈ Q.

(b) Show that rp = hn, sq = kn and rk = p, sh = q.
(c) Show that for each m ∈ M , pq = thk where t is the cardinality of m (as a

subset of Q × Q). Conclude that t = n.

9.3.10 Show that for any transitive unambiguous monoid of relations M on a finite
set Q, there is a finite set R containing Q and a transitive unambiguous monoid of

368 9 Unambiguous monoids of relations

relations N on R not containing 0 such that the elements of M are subsets of the
restriction to Q × Q of elements of N .

9.3.11 Let G be a graph. A clique in G is a set of vertices such that there is an
edge between all pairs of vertices. A set of vertices is stable if no pair of vertices is
connected by an edge of G. Consider the set L of cliques in G and the set R of stable
sets. Show that the pair (L,R) satisfies the equalities (9.25) of Exercise 9.3.7 when
identifying an element of L with its column characteristic vector and an element of
R with its row characteristic vector.

Let U (resp. V) be the set of maximal cliques (resp. stable sets). Show that if the
graph G has the property that any maximal clique intersects any maximal stable set,
then (U,V) satisfies the relations (9.26) of Exercise 9.3.8.

9.3.12 Let M be a transitive unambiguous monoid of relations not containing zero.
Show that for two elements m,m′ of M , if m ≤ m′ then m = m′. (Hint: Use Exercise
9.3.5.)

9.3.13 Let A be an n-state strongly connected unambiguous automaton. Assume that
the minimal rank of the words in A is 1. Show that there is a word of length at most
(n2 − n + 2)(n − 1)/2 that has rank one. (Hint: Prove first the following claim: For
a state p ∈ Q and a word u ∈ A∗, if ϕ(u)p∗ is not a maximal row, there is a state q

and a word v of length at most n(n − 1)/2 such that ϕ(u)p∗ < ϕ(vu)q∗.)

Section 9.4

9.4.1 Let X ⊂ A+ be a very thin code. Let M be the syntactic monoid of X∗ and let
ϕ be the canonical morphism from A∗ onto M . Show that M has a unique 0-minimal
or minimal ideal J , according to M contains a zero or not. Show that ϕ(X∗) meets
J , that J is a D-class, and that each H-class contained in J and which meets ϕ(X∗)
is a finite group.

9.4.2 Let X ⊂ A+ be a very thin code, let A = (Q, 1, 1) be an unambiguous trim
automaton recognizing X∗. Let ϕ be the associated morphism and M = ϕ(A∗). Let J

be the minimal or 0-minimal ideal of M and K = J \ 0. Let e ∈ M be an idempotent
of minimal rank, let R be its R-class and L be its L-class. Let � (resp. �) be the set
of H-classes contained in R (resp. L), and choose two systems of coordinates

(aH , a′
H)H∈�, (bK, b′

K)K∈�

of R and L, respectively. Let

µ : M → (Ge ∪ 0)�×�

be the morphism of M into the monoid of row-monomial � × �-matrices with
elements in Ge ∪ 0 defined by the R-representation with respect to e. Similarly, let

ν : M → (Ge ∪ 0)�×�

9.7 Exercises 369

be the morphism associated with the L-representation with respect to e. Let S be
the sandwich matrix of J relative to the systems of coordinates introduced (see
Exercise 9.2.1). Show that for all m ∈ M ,

µ(m)S = Sν(m).

Show that for all m, n ∈ M ,

µ(m) = µ(n) ⇔ (∀H ∈ �, rH m = rHn),

ν(m) = ν(n) ⇔ (∀K ∈ �,m�K = n�K),

where rH = �aH , �K = bK�, and �r is the column-row decomposition of e.
Show, using these relations, that the function

m �→ (µ(m), ν(m))

is injective.

9.4.3 Let X ⊂ A+ be a very thin code. Let ϕ be the representation associated with
an unambiguous trim automaton A recognizing X∗, let M = ϕ(A∗) and let J be its
minimal ideal.

Show that X is prefix if and only if, for any idempotent e in J not in ϕ(X∗), one
has Me ∩ ϕ(X∗) = ∅.

9.4.4 Let A = (Q, 1, 1) be a strongly connected complete deterministic automaton.
Let M be the adjacency matrix of A. Let w be a positive left eigenvector of M for
the eigenvalue Card(A). For any subset P of Q, set w(P) =∑q∈P wq .

A maximal class is any class of some maximal nuclear equivalence of the transition
monoid of A. Show that w is constant on the set of maximal classes, that is w(P) =
w(P ′) for any pair P,P ′ of maximal classes. Assume that w has integer coefficients.
Show that the minimal rank of A divides w(Q).

Section 9.5

9.5.1 Let X be a very thin code. Let M be the syntactic monoid of X∗, and let J be
the 0-minimal or minimal ideal of M (see Exercise 9.4.1). Let G be an H-class in J

that meets ϕ(X∗), and let H = G ∩ ϕ(X∗).
Show that the representation of G over the right cosets of H is injective, and that

the permutation group obtained is equivalent to G(X).

9.5.2 Let X ⊂ A+ be a very thin code. Let ϕ be the representation associated with an
unambiguous trim automaton A = (Q, 1, 1) recognizing X∗. Let M = ϕ(A∗) and let
D be a nonzero regularD-class of M . Show that if D meets ϕ(F (X)), then D ∩ ϕ(X∗)
contains an idempotent.

Conclude that when X is finite, ϕ(X∗) meets all regular nonzero D-classes.

9.5.3 Let X be a thin maximal code. Show that if z ∈ A∗ is both strongly right and
strongly left completable, then some power of z is in X∗ (a word x is strongly left
completable if for any u ∈ A∗ the word ux is left completable).

370 9 Unambiguous monoids of relations

9.5.4 Let X, Y be two codes. We define the meet of X and Y , denoted X ∧ Y as the
basis of the submonoid X∗ ∩ Y ∗. Show that the meet of two thin codes X, Y ⊂ A+ is
thin maximal over A if and only if there is a word x ∈ X∗ strongly left completable in
Y ∗ and a word y ∈ Y ∗ strongly right completable in X∗. (Hint: Use Exercise 9.5.3.)

9.5.5 Show that for any rational (resp. thin) code Z, there exist two rational (resp.
thin) maximal codes X, Y such that Z = X ∧ Y . (Hint: Use Theorem 2.5.24 and
Exercise 2.5.4 for embedding Z into a rational (resp. thin) code T .)

9.8 Notes

There are only a few research papers devoted to unambiguous monoids of relations,
and this chapter is a systematic presentation of the topic. The study of the structure
of the D-classes in unambiguous monoids of relations is very close to the standard
development for abstract semigroups presented in the usual textbooks. This holds
in particular for the Schützenberger representations, see Clifford and Preston (1961)
or Lallement (1979). The generalization of the results of Section 9.1 to arbitrary
monoids of relations is partly possible. See, for instance, Lerest and Lerest (1980).
The notion of rank and the corresponding results appear in Lallement (1979) for the
particular case of monoids of functions. A significant step in the study of unambiguous
monoids of relations using such tools as the column-row decomposition appears in
Césari (1974). The degree of a very thin code, as defined in Section 9.5 is closely
related to the degree of a finite-to-one map as defined in Lind and Marcus (1995).
Actually, letA be an unambiguous automaton. As explained in the Notes of Chapter 4,
there is a finite-to-one map λ corresponding to A, associating to a path its label. Let
M be the transition monoid of A. Then the minimal rank of M is the degree of the
map λ.

Theorem 9.4.1 is due to Schützenberger. An extension to sets which are not codes
appears in Schützenberger (1979a). Problem 9.1.2 is a theorem due to Boë et al.
(1979). Extensions may be found in Boë (1976). The notion of sandwich matrix
(Exercise 9.2.1) is standard, see Clifford and Preston (1961).

Exercise 9.1.4 is from Carpi (1987). The notion of unambiguous reduction has some
connections with the reduction of linear representations of rational series (see Berstel
and Reutenauer (1988)).

Exercise 9.3.5 is due to Césari (1974). Exercises 9.3.7 to 9.3.11 are due to
Boë (1991). Exercise 9.3.9 gives an alternative proof of a result of Perrin and
Schützenberger (1977) (see Proposition 12.2.4). Exercise 9.3.10 is related to the
embedding of codes into maximal ones, although it does not provide an alternative
to prove that every rational code is included in a maximal one (the relations corre-
sponding to the letters may generate a monoid which is not transitive). The graphs
having the property that any maximal clique meets any maximal stable set have been
characterized in Deng et al. (2004, 2005).

Exercise 9.3.12 is from Béal et al. (2008). Exercise 9.3.13 is from Carpi (1988).
A simplified proof appears in Béal et al. (2008). It shows that for strongly connected

9.8 Notes 371

unambiguous automata such that the minimal rank of words in the automaton is 1,
there is a cubic upper bound for the length of a word of rank 1, as it is the case
for synchronized deterministic automata (see Exercise 3.6.2). As for deterministic
automata, the optimal upper bound is not known.

Exercise 9.4.3 is from Reutenauer (1981). Exercises 9.5.3, 9.5.4, and 9.5.5 are
from Bruyère et al. (1998). Exercise 9.4.4 is from Friedman (1990).

10

Synchronization

The notion of synchronization for codes and automata refers to the ability of parsing
an input into codewords with a limited amount of information. It addresses a more
general situation than deciphering which is left-to-right oriented. The interest of
synchronization lies in the possibility of recovering from errors by the specific nature
of the involved decoders.

The chapter starts with the definition of synchronizing pairs, synchronizing words,
and absorbing words. These notions have already been considered in Chapter 3 for
prefix codes. Next, as for the deciphering delay, two notions of synchronization
delay are introduced, the first related to the number of words involved, the second
connected to local automata. We describe the connection between synchronization
delay and the notions of circular codes and limited codes. Important results are the
completion of rational uniformly synchronized codes and of locally parsable codes
(Theorem 10.3.13 andTheorem 10.2.11).

In the final section, we give a necessary and sufficient condition to guarantee that a
deterministic automaton can be transformed into a synchronizing one by modifying
the labels of its edges (Theorem 10.4.2). This theorem has been conjectured over
many years as the road coloring problem.

10.1 Synchronizing pairs

The section starts with the definition of synchronizing pairs, synchronizing words, and
constants. Relations among these objects are described. Constants are characterized
by their rank. Next, synchronized codes are defined, and shown to coincide with
codes of degree 1. Finally, absorbing words are introduced.

The following definitions will be used later for the submonoid S = X∗ generated
by a code X ⊂ A+. Since the nature of S does not play a role, we choose the more
general formulation.

A pair (x, y) of words of A∗ is synchronizing for S ⊂ A∗ if for any words u, v ∈ A∗,
one has

uxyv ∈ S =⇒ ux, yv ∈ S.

374 10 Synchronization

If (x, y) is a synchronizing pair for S, then any pair (x ′x, yy ′) is a synchronizing pair
for S. Thus the components of a synchronizing pair can be assumed to be nonempty
words.

A word x ∈ A∗ is synchronizing for S if

uxv ∈ S =⇒ ux, xv ∈ S.

This definition was already given in Chapter 3 for S = X∗ where X is a prefix code.

Proposition 10.1.1 If x, y ∈ A∗ are synchronizing words for S, then the pair (x, y)
is synchronizing for S.

Proof. Let x, y be synchronizing words. If uxyv ∈ S, then ux ∈ S because x is
synchronizing, and yv ∈ S because y is synchronizing. Thus (x, y) is a synchronizing
pair. �

Example 10.1.2 Let A = {a, b} and S = {ab, ba}∗. The pair (b, b) is synchronizing
for S, the word bb is not synchronizing but abba is synchronizing.

Let S ⊂ A∗ be a set. Recall that �S(w), or simply �(w) when S is understood,
denotes the set of contexts of a word w in S, that is

�S(w) = {(u, v) ∈ A∗ × A∗ | uwv ∈ S}.
A word w ∈ A∗ is said to be a constant for S if for any (u, v), (u′, v′) ∈ �S(w) one
has also (u, v′), (u′, v) ∈ �S(w). This means that �S(w) is a direct product. More
precisely, �S(w) = �

(�)
S (w) × �

(r)
S (w), where �

(�)
S (w) = {u ∈ A∗ | ∃v ∈ A∗, (u, v) ∈

�S(w)} and �
(r)
S (w) is defined symmetrically.

Example 10.1.3 Let A = {a, b} and S = {ab, ba}∗. The word bb is a constant for S.
Indeed, the contexts of bb in S are the pairs (xa, ay) for x, y ∈ S.

The following statement shows that the set of constants for a set S forms a two-sided
ideal.

Proposition 10.1.4 If w ∈ A∗ is a constant for a set S, then for all u, v ∈ A∗, the
word uwv is a constant for S.

Proof. Let p, p′, s, s ′ ∈ A∗ be words such that (p, s), (p′, s ′) ∈ �(uwv). Then
(pu, vs) and (p′u, vs ′) are in �(w). Since w is a constant, we have also (pu, vs ′),
(p′u, vs) ∈ �(w). Thus (p, s ′), (p′, s ′) ∈ �(uwv). This shows that uwv is a constant.

�

Proposition 10.1.5 If a word of S is a constant for S, then it is synchronizing for S.

Proof. Let x ∈ S be a constant for S. Let u, v ∈ A∗ be words such that uxv is in S.
Then (u, v) ∈ �S(x). Since (1, 1) also is in �S(x), it follows that ux, xv ∈ S. Thus x

is synchronizing. �

10.1 Synchronizing pairs 375

Proposition 10.1.6 Let S ⊂ A∗ be a submonoid. If (x, y) is a synchronizing pair for
S, then xy is a constant.

Proof. Let (x, y) ∈ A∗ × A∗ be a synchronizing pair. Let (u, v), (u′, v′) ∈ �S(xy).
Considering the words uxyv and u′xyv′, one gets that ux, yv, u′x, yv′ are in S. Since
S is a submonoid, it follows that uxyv′, u′xyv ∈ S. Consequently, (u, v′), (u′, v) ∈
�S(xy), showing that xy is a constant. �

The next statement summarizes the relations between the notions introduced so far
in the case of the submonoid generated by a code.

Proposition 10.1.7 Let X ⊂ A+ be a code. The following conditions are equivalent.

(i) There exists a synchronizing pair (x, y) ∈ X∗ × X∗ for X∗.
(ii) There exists a word in X∗ that is a synchronizing word for X∗.

(iii) There exists a word in X∗ that is a constant for X∗.

Proof. (i) implies (iii) by Proposition 10.1.6, (iii) implies (ii) by Proposition 10.1.5
and (ii) implies (i) by Proposition 10.1.1. �

A code X is called synchronized if there exist pairs of words in X∗ which are
synchronizing for X∗. In view of the preceding proposition, this terminology is
compatible with that introduced in Chapter 3.

A synchronized code X is very thin. Indeed, let (x, y) ∈ X+ × X+ be a synchroniz-
ing pair of nonempty words. Then xy is not a factor of a word of X, since uxyv ∈ X

implies ux, yv ∈ X+.
The existence of a synchronizing pair (x, y) has the following meaning. When we

try to decode a word w ∈ A∗, the occurrence of a factor xy in w implies that the
factorization of w into words in X, whenever it exists, must pass between x and y: if
w = uxyv, it suffices to decode separately ux and yv.

The next proposition gives a method to check whether a word is a constant. Recall
that the rank of a word w in a deterministic automaton A = (Q, i, T) is simply
Card(Q · w).

Proposition 10.1.8 Let A be the minimal deterministic automaton recognizing a set
S ⊂ A∗. A word w ∈ A∗ is a constant for S if and only if it has rank at most 1 in A.

Proof. SetA = (Q, i, T). Suppose first that w is a constant. Assume that rank(w) ≥ 1.
Let p, p′ ∈ Q · w. Let u, u′, v, v′ be such that i · uw = p, i · u′w = p′, and p · v,

p′ · v′ ∈ T . Thus uwv, u′wv′ ∈ S. Then, for any r ∈ A∗, p · r ∈ T implies uwr ∈ S

and therefore u′wr ∈ S, whence p′ · r ∈ T . Similarly, p′ · r ∈ T implies p · r ∈ T .
This shows that p = p′. This shows that rank(w) = 1.

Conversely, if rank(w) = 0, the set of contexts of w in S is empty and w is a
constant. Assume that rank(w) = 1. Suppose that uwv, u′wv′ ∈ S. Since i · uw and
i · u′w are defined, they are equal. Then i · uwv = i · u′wv implies that u′wv ∈ S.
Similarly, uwv′ ∈ S. Thus w is a constant. �

376 10 Synchronization

The following result shows that part of the previous proposition holds for nonde-
terministic automata.

Proposition 10.1.9 Let A = (Q, I, T) be an automaton recognizing a set S ⊂ A∗.
A word w ∈ A∗ that has rank 1 in the automaton A is a constant for S.

Proof. Suppose that uwv, u′wv′ ∈ S. There are paths i
u−→ p

w−→ q
v−→ t and

i ′
u′−→ p′ w−→ q ′ v′−→ t ′ with i, i ′ ∈ I , t, t ′ ∈ T . Since ϕA(w) has rank 1, ϕA(w) =

�r , with � ⊂ Q × {s} and r ⊂ {s} × Q, for some state s. Thus (p, s), (p′, s) ∈ � and
(s, q), (s, q ′) ∈ r . It follows that (p, q ′), (p′, q) ∈ ϕA(w). This implies that w is a
constant. �

Proposition 10.1.10 Let X ⊂ A+ be a code and let A = (Q, 1, 1) be a trim unam-
biguous automaton such that X∗ = Stab(1). If x, y ∈ A∗ form a synchronizing pair,
then rank(ϕA(xy)) ≤ 1.

Proof. Let � be the column of ϕA(x) of index 1 and let r be the row of ϕA(x) of
index 1. We verify that ϕA(xy) = �r . Suppose first that p

xy→ q for some p, q ∈ Q.
Since A is trim, there exist u, v ∈ A∗ such that 1

u→ p and q
v→ 1. Then uxyv is in

X∗. This implies ux, yv ∈ X∗. This shows that �p = rq = 1. Thus ϕA(xy) ⊂ �r . The
converse inclusion is clear. �

The following is a characterization of synchronized codes in terms of the degree
introduced in Chapter 9.

Proposition 10.1.11 A code is synchronized if and only if it has degree 1.

Proof. Let A = (Q, 1, 1) be an unambiguous trim automaton recognizing X∗ and let
ϕ be the associated representation. If X is synchronized, there is a synchronizing pair
(x, y) with x, y ∈ X∗. By Proposition 10.1.10, the rank of ϕ(xy) is at most 1. Since
xy ∈ X∗, the rank is not 0 and thus ϕ(xy) has rank 1. This shows that d(X) = 1.
Conversely, let w ∈ A∗ be such that rank(ϕ(w)) = 1. Since rank(ϕ(w)) �= 0, there
exist u, v ∈ A∗ such that uwv ∈ X∗. Set x = uwv. By Proposition 10.1.9, x is a
constant for X∗. This shows that X is synchronized. �

A pair (x, y) of words of X∗ is absorbing if A∗x ∩ yA∗ ⊂ X∗. A code X which
has an absorbing pair is complete since for any word w, one has ywx ∈ X∗.

Example 10.1.12 Consider the suffix code X = ab∗ over A = {a, b}. Observe that
X+ = aA∗. Every word in X is synchronizing. Indeed, if x ∈ X and uxv ∈ X∗, then
ux and xv start with the letter a, and therefore are in X+. Every pair of words of X

is absorbing. Indeed, if a word w has a prefix in X, then it starts with the letter a and
therefore is in X+.

Proposition 10.1.13 Let X ⊂ A+ be a code. Any absorbing pair is synchronizing.
Conversely, if X is complete, then any synchronizing pair of words of X∗ is absorbing.

10.2 Uniformly synchronized codes 377

Proof. Let (x, y) be an absorbing pair. Let u, v ∈ A∗ be such that uxyv ∈ X∗. Then
w = yuxyvx is in X∗. Since w = (yux)(yvx) = y(uxyvx), and y, yux, uxyvx, yvx

are in X∗, it follows by stability that ux ∈ X∗. Similarly yv ∈ X∗.
Conversely, let (x, y) be a synchronizing pair and let w ∈ A∗x ∩ yA∗. Thus

w = ux = yv for some words u, v ∈ A∗. Since X is complete, there exist words
u′, v′ ∈ A∗ such that u′xwyv′ ∈ X∗. Since (x, y) is synchronizing, we have
u′x, u′xw,wyv′, yv′ ∈ X∗ by synchronization. By stability, this implies w ∈ X∗. �

As a consequence, we have the following characterization of complete synchronized
codes.

Proposition 10.1.14 Let X ⊂ A+ be a code. Then X is complete and synchronized
if and only if there exist absorbing pairs. �

Example 10.1.15 The code X = {aa, ba, baa, bb, bba} is synchronized. Indeed,
the pair (aa, ba) is an example of a synchronizing pair: assume that uaabav ∈ X∗

for some u, v ∈ A∗. Since ab �∈ F (X), we have uaa, bav ∈ X∗. Since X is also a
complete code, it follows by Proposition 10.1.13 that (aa, ba) is absorbing. Thus
baA∗aa ⊂ X∗.

10.2 Uniformly synchronized codes

Let s be an integer. A code X ⊂ A+ has verbal synchronization delay s if any x ∈ Xs

is a synchronizing word. For simplicity we talk of the synchronization delay, when
no confusion arises. Thus a code X ⊂ A+ has synchronization delay s if

x ∈ Xs, u, v ∈ A∗, uxv ∈ X∗ =⇒ ux, xv ∈ X∗. (10.1)

A code X is said to be uniformly synchronized if it has synchronization delay s for
some s. The least s of this kind is called the minimal synchronization delay of X. It
is denoted by σ (X).

Example 10.2.1 Consider over A = {a, b} the code X = {a, ab}. Every word in X

is synchronizing. Therefore X has synchronizing delay 1. Consequently, every pair
of words of X is synchronizing.

The following result shows that a code with finite synchronization delay has also
finite deciphering delay. More precisely

Proposition 10.2.2 The minimal deciphering delay of a code is less than or equal to
its minimal synchronization delay.

Proof. Let s be the minimal synchronization delay of X. Let x ∈ X∗, y ∈ Xs and u ∈
A∗ be such that xyu ∈ X∗. Since X has synchronization delay s, we have xy, yu ∈ X∗.
Thus y is simplifying. In view of Proposition 5.1.5, this shows that X has deciphering
delay s. �

378 10 Synchronization

u0 u1 u2s u2s+1 u4s

x1 xs+1 x2s

ys y2sy1 ys+1

y

x

Figure 10.1 An X-factorization with ui−1ui ∈ X∗ for 1 ≤ i ≤ 4s.

The following example shows that the minimal deciphering delay may be finite
but not the synchronization delay.

Example 10.2.3 Let X = {ab, ba}. Since X is prefix, it has deciphering delay 0. It
has infinite synchronization delay since for each n ≥ 1, the word x = (ab)n satisfies
bxa ∈ X∗ although bx, xa �∈ X∗.

The following statements relate uniformly synchronized codes to limited codes as
introduced in Chapter 7.

Proposition 10.2.4 A uniformly synchronized code is limited.

Proof. Let X ⊂ A+ be a uniformly synchronized code, and let s be its minimal
synchronization delay. We show that X is (2s, 2s)-limited (see Figure 10.1). Consider
indeed words

u0, u1, . . . , u4s ∈ A∗,

and assume that ui−1ui ∈ X∗ for 1 ≤ i ≤ 4s. Set, for 1 ≤ i ≤ 2s,

xi = u2i−2u2i−1, yi = u2i−1u2i .

Let y = y1y2 · · · ys and x = x1x2 · · · xs .
Assume first that yi �= 1 for all i = 1, . . . , s. Then y ∈ XsX∗. Since u0yu2s+1 ∈

X∗, the uniform synchronization shows that u0y ∈ X∗. Since u0y = xu2s , this is
equivalent to

xu2s ∈ X∗. (10.2)

Next, consider the case that yi = 1 for some i ∈ {1, 2, . . . , s}. Then u2i−1 = u2i = 1.
It follows that

yi+1 · · · ys = u2i+1 · · · u2s = xi+1 · · · xtu2s .

Thus, in this case also xu2s is in X∗.
Setting y ′ = ys+1 · · · y2s , we prove in the same manner that

u2sy
′ ∈ X∗. (10.3)

Since X∗ is stable, (10.2) and (10.3) imply that u2s ∈ X∗. This shows that X is
(2s, 2s)-limited. �

10.2 Uniformly synchronized codes 379

1

2

3

4

5

b

a
b

d

b

c

d

d

b

Figure 10.2 An unambiguous automaton recognizing X∗.

Example 10.2.5 Consider the (2, 2)-limited code X = {ba, cd, db, cdb, dba} given
in Example 7.2.7. We have σ (X) = 1. The words of X have rank 1 in the automaton
of Figure 10.2. Indeed, a and c have rank 1 since ϕ(a) = {(2, 1)} and ϕ(c) = {(1, 4)}.
Further, we have ϕ(db) = {4, 1} × {1, 2} and thus db also has rank 1. Consequently
each x ∈ X is a constant, and therefore σ (X) = 1.

Example 10.2.6 Let X = ab∗c ∪ b be the limited code of Example 7.2.6. It is not
uniformly synchronized. Indeed, for all s ≥ 0, one has bs ∈ Xs and absc ∈ X. How-
ever abs, bsc /∈ X. This example shows that the converse of Proposition 10.2.4 does
not hold.

We now prove that in the case of finite codes, the concepts introduced coincide.

Theorem 10.2.7 Let X be a finite code. The following conditions are equivalent.

(i) X is circular.
(ii) X is limited.

(iii) X is uniformly synchronized.

For the proof of the theorem, we use a result about finite semigroups.

Proposition 10.2.8 Let S be a finite semigroup and let J be an ideal of S. The
following conditions are equivalent.

(i) There exists an integer n ≥ 1 such that Sn ⊂ J .
(ii) All idempotents of S are in the ideal J .

Proof. (i) ⇒ (ii). For any idempotent e in S, we have e = en ∈ J .
(ii) ⇒ (i). Set n = 1 + Card(S). We show the inclusion Sn ⊂ J . Indeed let s ∈ Sn.

Then s = s1s2 · · · sn, with si ∈ S. Let ti = s1s2 · · · si , for 1 ≤ i ≤ n. Then there exist
indices i, j with 1 ≤ i < j ≤ n and ti = tj . Setting r = si+1 · · · sj , we have tir = ti ,
hence also tir

k = ti for all k ≥ 1. Since S is finite, there exists an integer k such that
e = rk is an idempotent. Then e ∈ J , and consequently

s = tisi+1 · · · sn = tiesi+1 · · · sn ∈ J.

This proves that (i) holds. �

380 10 Synchronization

Proof of Theorem 10.2.7. We have already proved the implications (iii) =⇒ (ii) =⇒
(i) without the finiteness assumption. Indeed, the first implication is Proposi-
tion 10.2.4, and the second is Proposition 7.2.2. Thus it remains to prove (i) =⇒ (iii).

Let X ⊂ A+ be a finite circular code, and let A∗
D(X) = (P, 1, 1) be the flower

automaton of X with the shorthand notation 1 for the state (1,1). Let M = ϕD(A∗),
and let J be its 0-minimal ideal. Let S = ϕD(A+). By Proposition 7.1.5, each element
in S has at most one fixed point. In particular, every nonzero idempotent in S has
rank 1 and therefore is in J . By Proposition 10.2.8, there is an integer n ≥ 1 such
that Sn ⊂ J . Let x ∈ Xn. Then ϕD(x) ∈ J and consequently x has rank 1. Thus x is
a constant by Proposition 10.1.9, and therefore synchronizing by Proposition 10.1.5.
It follows that each word of Xn is synchronizing, showing that X has synchronizing
delay n. This shows that X is uniformly synchronized. �

Example 10.2.9 Let A = {a1, a2, . . . , a2k} and

X = {aiaj | 1 ≤ i < j ≤ 2k}.
We show that X is uniformly synchronized and σ (X) = k. First, σ (X) ≥ k since
(a2a3)(a4a5) · · · (a2k−2a2k−1) ∈ Xk−1 and also (a1a2) · · · (a2k−1a2k) ∈ X∗; however
a1a2 · · · a2k−1 /∈ X∗. Next, suppose that x ∈ Xk , and uxv ∈ X∗. If u and v have even
length, then they are in X∗. Therefore we assume the contrary. Then u = u′aj , v =
a�v

′ with aj , a� ∈ A and u′, v′ ∈ X∗. Moreover ajxa� ∈ X∗. Set x = ai1 · · · ai2k
.

Since x ∈ X∗, we have i1 < i2, i3 < i4, . . . , i2k−1 < i2k , and since ajxa� ∈ X∗, we
have j < i1, i2 < i3, . . . , i2k < �. Thus 1 ≤ j < i1 < i2 < · · · < i2k−1 < i2k < � ≤
2k, which is clearly impossible. Consequently u and v have even length, showing
that σ (X) ≤ k. This proves the equality.

Compare this example with Example 7.2.7, which is merely Example 10.2.9 with
k = ∞. The infinite code is circular but not limited, hence not uniformly synchro-
nized.

We prove now an analogue of Theorem 2.5.24 for uniformly synchronized codes.
The construction of the proof of Theorem 2.5.24 cannot be used since it does not
even preserve the finiteness of the deciphering delay (see Example 5.2.8).

The following example shows that the construction of the proof of Theorem 5.2.9
neither applies.

Example 10.2.10 Consider again the code X = {a, ab} over A = {a, b} which has
synchronizing delay 1. We have seen in Example 5.2.20 that the construction used in
Theorem 5.2.9 gives the code Y = {a, ab} ∪ {ab3, ab2a}{bb, ba}∗ which has deci-
phering delay 1. However, Y has infinite synchronization delay since every (ab)n is
a factor of ab(ba)n+1 which is in Y , and thus no pair (ab)k, (ab)� is synchronizing.

Theorem 10.2.11 Any rational uniformly synchronized code is contained in a com-
plete rational code with the same minimal synchronization delay.

Proof. Consider a nonempty code X ⊂ A+ with synchronization delay s and consider

M = (XsA∗ ∩ A∗Xs) ∪ X∗. (10.4)

10.2 Uniformly synchronized codes 381

u

w

v

Figure 10.3 Proving that M is stable.

Observe that M is a submonoid of A∗. Let Y be the minimal generating set of M .
We show that Y is a code having the desired properties. The proof is in several
steps.

Let us first prove that Y is a code. For this, we prove that M is stable. Let
u,w, v ∈ A∗ be such that u, uw,wv, v ∈ Y ∗ (see Figure 10.3). We prove by induction
on |uwv| that w ∈ Y ∗. It is true for |uwv| = 0. Suppose that it is true for any such
triple u′, w′, v′ with |u′w′v′| < |uwv|. We consider several cases.
Case 1. Suppose that u �∈ X∗ (the case v �∈ X∗ is symmetric). Then in particular
u ∈ A+Xs and thus u = tz with t ∈ A+ and z ∈ Xs . We distinguish two cases.

(i) If uw ∈ X∗, then, since uw = tzw, we have tzw ∈ X∗. Since z is synchronizing,
we have u = tz ∈ X∗, a contradiction.

(ii) If uw �∈ X∗, then in particular uw ∈ A+Xs . Thus uw = t ′z′ with t ′ ∈ A+

and z′ ∈ Xs . Suppose first that |zw| ≥ |z′|. Then zw ∈ zA∗ ∩ A∗z′ and zw ∈ Y ∗.
Therefore we may apply the induction hypothesis to the triple (z,w, v). Otherwise,
we have |zw| ≤ |z′| and z′ = rzw for some r ∈ A∗. Then rzw ∈ X∗ implies that
rz ∈ X∗. Consequently, we may apply the induction hypothesis to the triple (rz,w, v).

Case 2. We have now u, v ∈ X∗. Suppose that wv �∈ X∗ (the case uw �∈ X∗ is
symmetric). Then wv = zt with z ∈ Xs and t ∈ A+. But uwv is in X∗ and uwv = uzt

implies zt ∈ X∗, a contradiction.
Case 3. Finally, if u, uw,wv, v ∈ X∗, then w ∈ X∗ since X is a code.
This proves that Y is a code.
We now prove that X ⊂ Y . Let indeed x ∈ X. Suppose that x = yy ′ for two

nonempty words of M . Then y or y ′ is not in X∗. We may suppose for instance
that y ′ �∈ X∗. Then y ′ ∈ XsA∗ and thus y ′ = zu with z ∈ Xs and u ∈ A∗. Since z is
synchronizing and yzu ∈ X, we have y ′ = zu ∈ X∗, a contradiction. Consequently
x �∈ (Y ∗ \ 1)2, showing that x ∈ Y .

Next we show that Y is complete and has synchronization delay s. For this, we
first prove that

Y s ⊂ XsA∗ ∩ A∗Xs. (10.5)

Let indeed y = y1y2 · · · ys with y1, y2, . . . , ys ∈ Y . If all yi are in X, the conclusion
is true. Otherwise let i be the least index such that yi �∈ X. Then yi ∈ XsA∗ and since
y1, . . . , yi−1 ∈ X, we obtain y ∈ XsA∗. The proof of y ∈ A∗Xs is symmetric.

Consider now y ∈ Y s . Then by (10.5) for any u ∈ A∗, the word yuy starts and
ends with a word in Xs , and thus is in Y ∗. This shows that Y is complete.

382 10 Synchronization

u t

z

v

Figure 10.4 Proving that y = tz is synchronizing.

To show that Y has synchronization delay s, suppose that uyv ∈ Y ∗ for some
u, v ∈ A∗ and y ∈ Y s . Let us prove that uy, yv ∈ Y ∗. We only prove that uy ∈ Y ∗,
the same reasoning holds for yv.

By (10.5), y has a suffix in Xs . Thus uy has a suffix in Xs . Let y = tz with t ∈ A∗

and z ∈ Xs .
Since uyv ∈ Y ∗, either uyv ∈ X∗ or uyv has a prefix in Xs . If uyv ∈ X∗, then since

z is synchronizing, we have utz = uy ∈ X∗ and hence also uy ∈ Y ∗ (see Figure 10.4).
Otherwise, uyv has a prefix x in Xs . If x is a prefix of uy, then uy ∈ XsA∗ ∩ A∗Xs

and uy ∈ Y ∗. Otherwise, uy is a prefix of x. Since z is synchronizing, utz = uy ∈ X∗.
Thus again uy ∈ Y ∗. �

Example 10.2.12 Consider again the code X = {a, ab} with synchronization delay
1 on the alphabet A = {a, b}. The set M defined by (10.4) is M = aA∗ ∩ A∗X and
the base of M is

Y = (abb+)∗X.

Indeed, the words of Y are exactly the words starting with a, ending with a or ab and
such that the number of occurrences of b between two a is at least 2.

10.3 Locally parsable codes and local automata

A code has literal synchronization delay s if any word of As is a constant for X∗. A
code is locally parsable if there is an integer s such that it has literal synchronization
delay s.

We use here constants instead of synchronizing words (as is done in the definition of
uniformly synchronized codes). We could have used constants in the definition of the
verbal synchronizing delay without changing the notion of uniformly synchronized
code. Indeed, if every word in Xs is synchronizing, then every pair in Xs × Xs is
synchronizing by Proposition 10.1.1 and thus every word in X2s is a constant by
Proposition 10.1.6. Conversely, if every word in Xs is a constant, then every word in
Xs is synchronizing by Proposition 10.1.5.

Example 10.3.1 The code X = {a, aab} has literal synchronization delay 2. Indeed
�(aa) = X∗ × {1, b}X∗ and �(b) = X∗aa × X∗.

Example 10.3.2 The prefix code X = {ba, ca, aba, cba, aca, acba, aaca} is the
Franaszek code. It has synchronization delay 4. Indeed, the minimal automaton of
X∗ is represented in Figure 10.5. One may verify that any word of length 4 is a

10.3 Locally parsable codes and local automata 383

Table 10.1 Transitions of the automaton
of Figure 10.5.

a b c aa ac ca aac

1 2 3 4 5 4 1 3
2 5 3 4 − 3 1 −
3 1 − − 2 4 − 4
4 1 3 − 2 4 − 4
5 − − 3 − − 1 −

3

4

1 2 5a a

b

c a

ba

b

c

c

Figure 10.5 The minimal automaton of the Franaszek code.

constant. There is actually a unique word of length 3 which is not a constant, namely
aac. The two-sided ideal of constants is generated by the finite set {aaa, b, ca, cc}.
Some transitions of the automaton are represented in Table 10.1. They show in
particular the transitions of the words which are not constant.

Let X be a code with literal synchronization delay s. Let P = X∗A− and S =
A−X∗. It is a consequence of the definition that for any u, v,w ∈ A∗ such that
uvw ∈ X∗ and |v| ≥ s, we have

v ∈ P =⇒ vw ∈ X∗. (10.6)

Indeed, since v ∈ P , there is a z ∈ A∗ such that vz ∈ X∗. Then (1, z), (u,w) ∈ �X∗ (v)
implies (1, w) ∈ �X∗ (v). Similarly

v ∈ S =⇒ uv ∈ X∗. (10.7)

The following statement is the counterpart for the literal delay of Proposition 10.2.2.

Proposition 10.3.3 The minimal literal deciphering delay of a code is at most equal
to its literal synchronization delay.

Proof. Let x ∈ X∗, let y be a right completable word of length s and let u ∈ A∗ be
such that xyu ∈ X∗. By (10.6) we have yu ∈ X∗. Thus y is simplifying. This shows
that X has literal deciphering delay s. �

384 10 Synchronization

Proposition 10.3.4 A locally parsable code is uniformly synchronized. The converse
is true if the code is finite.

Proof. Let X ⊂ A+ be a code with literal synchronization delay s. Then any word
of Xs is of length at least s and is therefore a constant and thus is synchronizing. It
follows that X has verbal synchronization delay s.

Conversely, suppose that X ⊂ A+ is a finite code with verbal synchronization delay
s. Let � be the maximal length of the words of X. Let w be a word of length 2�(s + 1).
If w is not completable, then it is a constant. Otherwise, there are words x1, x2, . . . , xn

in X such that w is a factor of x1x2 · · · xn. We may suppose that x2 · · · xn−1 is a factor
of w. Then |w| ≤ n� implies 2(s + 1) ≤ n or n − 2 ≥ 2s.

Set x2 · · · xn−1 = xy with x ∈ Xs and y ∈ Xn−2−s . Then x and y are synchronizing
words and thus xy is a constant by Propositions 10.1.1 and 10.1.6.

This implies that w is a constant. Consequently X has literal synchronization delay
2�(s + 1). �

A set Y ⊂ A∗ is said to be strictly locally testable if it is of the form

Y = T ∪ (UA∗ ∩ A∗V) \ A∗WA∗, (10.8)

where T ,U, V,W are finite subsets of A∗.

Proposition 10.3.5 A code X is locally parsable if and only if X∗ is strictly locally
testable.

Proof. Suppose first that X has literal synchronization delay s. We may suppose
s ≥ 1. Let T be the set of words in X∗ of length less than s. Let U = X∗A− ∩ As and
V = A−X∗ ∩ As . Finally, let W be the set of words w of length s + 1 which are not in
the set F (X∗) of factors of X∗. Let us verify that X∗ = T ∪ (UA∗ ∩ A∗V) \ A∗WA∗.
The inclusion from left to right is clear.

Conversely, let x be in the set defined by the right-hand side. If |x| < s, then x ∈ T

and therefore x ∈ X∗. Otherwise, let us first show by contradiction that x ∈ F (X∗).
Suppose that x is not in F (X∗). Let v be a factor of x of minimal length which is
not in F (X∗). Since x has no factor in W , we have |v| > s + 1. Let v = ahb with
a, b ∈ A. Then ah, hb ∈ F (X∗) imply that there exist u1, u2, u3, u4 ∈ A∗ such that
u1ahu2, u3hbu4 ∈ X∗. But since |ahb| > s + 1, h is a constant. Thus u1ahbu4 ∈ X∗,
a contradiction with the hypothesis v = ahb �∈ F (X∗). Finally, let u, v ∈ A∗ be such
that uxv ∈ X∗. Since x ∈ UA∗, we have xv ∈ X∗. And since x ∈ A∗V , this implies
in turn that x ∈ X∗. This shows that X∗ is strictly locally testable.

Suppose conversely that X∗ is strictly locally testable. Let T ,U, V,W be finite
sets of words such that (10.8) holds. Let s be the maximal length of the words of
T ,U, V,W . Let w be a word of length s + 1 and let (u, v), (u′, v′) be in �(w). Since
|uwv|, |u′wv′| ≥ s + 1, we cannot have uwv ∈ T or u′wv′ ∈ T . Thus uwv, u′wv′ ∈
UA∗ ∩ A∗V \ A∗WA∗. Since |uw|, |u′w| ≥ s + 1, we have uw, u′w ∈ UA∗ and
wv,wv′ ∈ A∗V . For the same reason uwv′, u′wv �∈ A∗WA∗. It follows that (u, v′)
and (u′, v) are in �(w), showing that w is a constant. This implies that X has literal
synchronization delay s. �

10.3 Locally parsable codes and local automata 385

1

2

3

a

a

b

a

Figure 10.6 A local automaton.

Observe that, as a consequence of the above result, any locally parsable code is
rational.

Example 10.3.6 Let X = {a, aab} be the code with literal synchronization delay 2
of Example 10.3.1. Then

X∗ = aaA∗ \ A∗{bb, bab}A∗.

Example 10.3.7 Let A = {a, b, c} and let X be the Franaszek code of Exam-
ple 10.3.2. The sets U,V,W of (10.8) can be chosen as

U = {aaca, ab, aca, acb, b, ca, cb},
V = {ba, ca},
W = {aaaa, aaab, bb, bc, cc},

with T = ∅.

An automaton is called (�, r)-local if for any paths p
u−→ q

v−→ r and p′ u−→
q ′ v−→ r ′ with |u| = � and |v| = r , one has q = q ′. The integers �, r are called the
memory and the anticipation. The automaton is called local if it is (�, r)-local for
some �, r ≥ 0.

Example 10.3.8 Let A be the automaton given in Figure 10.6. It is (1, 1)-local.
Indeed, any path labeled aa uses state 1 in the middle and there is only one edge
labeled b.

Let �, r ≥ 0 and let n = � + r + 1. The free (�, r)-local automaton is the automaton
which has, for set of states, the words of length � + r , and for edges the triples (x, a, y)
such that for some w = a1 · · · an ∈ An

x = a1 · · · an−1, a = a�+1, y = a2 · · · an.

It is clear that this automaton is (�, r)-local.
The free (n, 0)-local automaton is usually known as the de Bruijn automaton of

order n.

Example 10.3.9 The free (1, 1)-local automaton on the alphabet {a, b} is represented
on Figure 10.7. The label of an edge is the second letter of its origin and the first
letter of its end.

386 10 Synchronization

aa

ab

ba

bba

a

b

b

b

ba

a

Figure 10.7 The free (1, 1)-local automaton.

The following result shows in particular that a strongly connected local automaton
is unambiguous.

Proposition 10.3.10 Let A be a strongly connected finite automaton on the alphabet
A. The following conditions are equivalent.

(i) A is local.
(ii) A is unambiguous and there exists an integer s such that any word of length s

has rank at most 1 in A.
(iii) Distinct cycles in A have distinct labels.

Proof. Suppose first that A is (�, r)-local and let s = � + r . Let u ∈ A� and v ∈ Ar .
Then there is at most one state q such that p

u→ q
v→ r for some states p, r . If the

rank of ϕA(uv) is positive, such a unique q exists and (p, r) ∈ ϕA(uv) if and only
if p

u→ q and q
v→ r . This shows that A is unambiguous and ϕA(uv) = 1. Thus (ii)

holds.
If (ii) is true, for any word w of length s, the relation ϕ(w) has at most one fixed

point. This implies that (iii) is true.
Suppose finally that (iii) holds. First observe that A is unambiguous. Indeed, since

A is strongly connected, any path is part of a cycle and thus there can be at most one
path with given origin, end, and label. Let n be the number of states in A. Consider
paths p

u−→ q
v−→ r and p′ u−→ q ′ v−→ r ′ such that |u|, |v| ≥ n2. Since |u| ≥ n2,

there exists a pair s, s ′ which is repeated, that is such that p
h−→ s

k−→ s
k′−→ q and

p′ h−→ s ′
k−→ s ′

k′−→ q ′ with u = hkk′. By condition (iii), we have s = s ′. Thus,

we have paths p
h−→ s

u′−→ q and p′ h−→ s
u′−→ q ′ with u′ = kk′. In the same way

there exist paths q
v′−→ t

w−→ r and q ′ v′−→ t
w−→ r ′ for some state t with v = v′w.

Since A is unambiguous, the uniqueness of the path from s to t with label u′v′ forces
q = q ′. This shows that A is (n2, n2)-local. �

Let A be a local automaton. The least integer s such that any word of length s has
rank 1 in A is called the order of the automaton.

Proposition 10.3.11 An (�, r)-local automaton has order at most � + r .

10.3 Locally parsable codes and local automata 387

Proof. Let A be a (�, r)-local automaton. Let u and v be words of length � and
r respectively. We may assume that the rank of ϕA(uv) is not zero. Let p

uv−→ q

and p′ uv−→ q ′ be two paths in the automaton. There exist states r, r ′ such that the
paths factorize into p

u−→ s
v−→ q and p′ u−→ s ′

v−→ q ′. Since the automaton is
(�, r)-local, one has s = s ′. Consequently there are also paths p

u−→ s
v−→ q ′ and

p′ u−→ s
v−→ q. This shows that the relation ϕA(uv) is the product of the column

of index s of ϕA(u) and the row of index s of ϕA(v). Thus ϕA(uv) has rank 1. We
conclude that any word of length � + r has rank at most 1 in A. �

The following result gives a characterization of locally parsable codes in terms of
automata. It shows in particular that a code X is locally parsable if and only if X∗ is
the stabilizer of a state in a local automaton.

Proposition 10.3.12 Let A = (Q, 1, 1) be a finite unambiguous automaton and let
X be the code such that A recognizes X∗. If A is local, then X is locally parsable.
Conversely, for any locally parsable code X, there exists a local automaton A =
(Q, 1, 1) recognizing X∗.

Proof. Suppose first that A is (�, r)-local. Let w be a word of length s = � + r . By
Proposition 10.3.11, w has rank at most 1 in A. By Proposition 10.1.9, it is a constant
for X∗. Thus X has literal synchronization delay s.

Conversely, let A = (Q, i, T) be the minimal deterministic automaton of X. Let
A∗ = (Q ∪ ω,ω,ω) be the star of the automaton A. Let us show that A∗ is local.
For this consider two cycles p

w−→ p and p′ w−→ p′ with the same label w. We will
prove that p = p′. Since every long enough word is a constant, replacing w by some
power, we may suppose that all words of the same length as w are constants.

Suppose first that state ω does not appear on these cycles. Then these paths are

paths in A. Let u, v, u′, v′ be such that i
u→ p

v→ t and i
u′→ p′ v′→ t are paths in

A. Since uwv, u′wv′ ∈ X, we have uwv′, u′wv ∈ X∗. Suppose that v′ = v′
1v

′
2 with

uwv′
1 ∈ X and v′

2 ∈ X∗. Then, since w is a constant, u′wv′
1 is also in X∗. Since X is

a code, u′wv′ cannot have a second factorization in words of X and thus v′
2 is empty.

This shows that uwv′ is in X. In the same way, we can show that u′wv ∈ X. Since A
is the minimal automaton of X, this implies that p = p′.

Let us now suppose that ω appears in one of the cycles, say p
w→ p. We have

w = uv with p
u−→ ω

v−→ p. Let u′, v′ be such that ω
u′−→ p′ v′−→ ω is a path in

A∗. Then, since |vu| = |w|, vu is a constant. Since vu, u′uvuvv′ ∈ X∗, we have also
u′uvu, vuvv′ ∈ X∗. Then u′w3v′ = (u′uvu)(vuvv′) is in X∗ and thus we have a path
p′ u→ ω

v→ p′, which implies p = p′. �

We now prove the following result, which is the counterpart, for locally parsable
codes of Theorem 10.2.11. The proof is similar to that of Theorem 10.2.11.

Theorem 10.3.13 Any rational locally parsable code is contained in a complete
rational code with the same delay.

Proof. Let X be a nonempty rational code with literal synchronization delay s. Let Ps

be the set of prefixes of length s of the words of X∗ and let Ss be the set of suffixes

388 10 Synchronization

of length s of the words of X∗. Let

M = (PsA
∗ ∩ A∗Ss) ∪ X∗.

Then M is a submonoid. Let Y be the minimal generating set of M . We show that Y

is a code with the desired properties. Let us first prove that M is stable. For this, let
u,w, v be such that u,wv, uw, v ∈ M . We distinguish two cases.

Case 1. Suppose |w| ≥ s. Then uw ∈ M implies that w has a suffix in Ss and
wv ∈ M implies that w has a prefix in Ps . Thus w ∈ M .

Case 2. Suppose |w| < s. We first show that there exists u′ ∈ X∗ such that u′w ∈
A∗Ss . If u ∈ X∗, then, since uw ∈ A∗Ss , we can take u′ = u. Otherwise, we have
u = tr with t ∈ A∗ and r ∈ Ss . There exists k ∈ A∗ such that u′ = kr is in X∗. Since
|r| = s, the suffix of uw which is in Ss is a suffix of rw and we have u′w ∈ A∗Ss .
Symmetrically, one can prove that there exists a v′ ∈ X∗ such that wv′ ∈ PsA

∗. Let
u′w = zt and wv′ = pq with z, q ∈ A∗, t ∈ Ss , and p ∈ Ps . Let h ∈ A∗ be such
that ph ∈ X∗. Since w is a prefix of p, u′w = zt is a prefix of u′ph. Then, from
u′ph ∈ ztA∗, we deduce by (10.7) that u′w = zt ∈ X∗. Similarly, we have wv′ ∈ X∗.
Since X∗ is stable, this implies w ∈ X∗. Thus M is stable.

Let us prove that X ⊂ Y . Let x ∈ X and suppose that x = yy ′ with y, y ′ ∈ M \ 1.
Since X is a code, we cannot have y, y ′ ∈ X∗. Let us suppose that y ′ �∈ X∗. Then
y ′ ∈ PsA

∗ and yy ′ ∈ X imply by (10.6) that y ′ is in X∗, a contradiction.
Let y ∈ PsA

∗ ∩ A∗Ss . Then for any u ∈ A∗, we have yuy ∈ PsA
∗ ∩ A∗Ss . Thus

Y is complete.
Finally, let us prove that Y has literal synchronization delay s. Let w be a word

of length s. Let u, u′, v, v′ be such that uwv, u′wv′ ∈ M . Then uw, u′w ∈ PsA
∗ and

wv,wv′ ∈ A∗Ss . Thus uwv′, u′wv are both in M , showing that w is a constant for
M . �

Example 10.3.14 Let A = {a, b} and X = {a, ab}. Then X is a code with literal
synchronization delay 1. The construction of the proof of Theorem 10.3.13 gives
Y = ab∗.

10.4 Road coloring

All automata considered in this section are finite, complete, strongly connected, and
deterministic.

The road coloring problem is the problem of the existence of a synchronizing
word in an automaton, up to a relabeling of the edges. The name comes from the
interpretation of the labels as colors. More details are given in the Notes. The aim of
this section is to prove Theorem 10.4.2 below which states that this coloring of edges
is indeed possible under mild and natural assumptions.

Recall from Chapter 3 that a word w is a synchronizing word for an automaton if
p · w = q · w for all pairs of states p, q. An automaton is synchronized if it has a
synchronizing word.

The period of an automaton is the gcd of the lengths of the cycles in its underlying
graph. We start by showing that a synchronized automaton must have period 1.

10.4 Road coloring 389

Proposition 10.4.1 A synchronized automaton has period 1.

Proof. Let p be the period of A, and let ρ be the relation on the set of states defined by
r ≡ s mod ρ if there is a path of length multiple of p from r to s. Since the automaton
is strongly connected, there is a path c from s to r . The length of the cycle resulting
from the composition of the two paths is a multiple of p, so the length of the path c

is a multiple of p. This show that s ≡ r mod ρ. Thus ρ is an equivalence relation.
We now show that any two states r and s are equivalent. Let w be a synchronizing

word in A, and let q = r · w = s · w. There is a path from q to s of length n such
that n + |w| is a multiple of p. This shows that there is a path form r to s of the same
length.

This in turn implies that p = 1. Indeed, let r be a state and a a letter. Since s = r · a
and r are equivalent, there exists a path from s to r of length n where n is a multiple
of p. This path, together with the edge from r to s gives a cycle of length n + 1, and
this number is also a multiple of p. Therefore p = 1. �

We define the following equivalence relation between automata. Given an automa-
ton A, the automata equivalent to A are obtained from A by permuting the labels of
the outgoing edges of the states, independently for each state. This implies that two
equivalent automata have isomorphic underlying graphs, and conversely. Clearly, two
equivalent automata have the same period.

We prove the following result, called the road coloring theorem, which shows that
there are “many” synchronized automata.

Theorem 10.4.2 An automaton which has period 1 is equivalent to a synchronized
one.

A set P of states of an automaton is said to be synchronizable if there exists a word
u in A∗ such that for all p, q in P , one has p · u = q · u. We also say that the word
u synchronizes the states in P .

A pair p, q of states is said to be strongly synchronizable if for any word u ∈ A∗,
the states p · u and q · u are synchronizable. We say that a deterministic automaton is
reducible if it has two distinct strongly synchronizable states. Let ρ be the equivalence
on the states of an automaton A defined by p ≡ q mod ρ if p and q are strongly
synchronizable. Then ρ is a congruence ofA called the synchronizability congruence.
We verify that ρ is transitive. Let indeed p, q, r be states such that p ≡ q mod ρ and
q ≡ r mod ρ. Let u ∈ A∗. There is a word v such that p · uv = q · uv. There exists
w such that q · uvw = r · uvw. This shows that p and r are strongly synchronizable.

Lemma 10.4.3 LetA be an automaton and let ρ be the synchronizability congruence.
If the quotient A/ρ is equivalent to a synchronized automaton, then A itself is
equivalent to a synchronized automaton.

Proof. Let E be the set of edges ofA and let F be the set of edges ofB = A/ρ. Let ϕ be
the map from E to F induced by ρ. Thus ϕ(e) = f if e = (p, a, q) and f = (p̄, a, q̄)
where p̄, q̄ are the classes modulo ρ of p and q. Let B′ be a synchronized automaton

390 10 Synchronization

equivalent to B. We define an automaton A′ equivalent to A by changing the labels
of its edges. The new label of an edge e is the label of ϕ(e) in B′. Let us show that A′

is synchronized.
Consider first two states p, q in A which are strongly synchronizable. Let us prove

that they are still synchronizable in A′. We prove this by induction on the length of
a shortest word w synchronizing such a pair p, q. For |w| = 0 we have p = q and
the property is true. For |w| ≥ 1, set w = au with a a letter. Let e = (p, a, r) and
f = (q, a, s) be the edges of A labeled a going out of p and q. Since p ≡ q modulo
ρ and ρ is a congruence, we have r = p · a ≡ q · a = s. Since ρ is a congruence, r

and s are strongly synchronizable in A and, by induction, r and s are synchronizable
in A′. Now ϕ(e) = ϕ(f), hence the labels of e and f in A′ are equal. This shows p

and q are synchronizable in A′.
Suppose now that p and q are not equivalent modulo ρ. Since B′ is synchronized,

the classes of p and q are synchronizable in B′. Let w be a word synchronizing p

and q. Then, in A′, the states p · w and q · w are in the same class modulo ρ. The
conclusion follows by the argument above.

Thus any pair of states of A′ is synchronizable, which shows that A′ is synchro-
nized. �

In the following lemma, we use the notion of minimal image of an automaton A
(see Section 9.3). Recall that a set P of states of an automaton A = (Q, i, T) is a
minimal image if it is of the form P = Q · w for some word w, and of minimal size
with this property. Recall also that two minimal images have the same cardinality.
This cardinality is the minimal rank of the elements of the transition monoid of A.
Also, if I is a minimal image and u is a word, then I · u is again a minimal image
and p �→ p · u is one-to-one from I onto I · u.

Lemma 10.4.4 Let A be an automaton. If there exist two minimal images that differ
by only one element, then A is reducible.

Proof. Let I, J be minimal images such that I = K ∪ {p} and J = K ∪ {q} with
p, q �∈ K . For any u ∈ A∗, the sets I · u = K · u ∪ p · u and J · u = K · u ∪ q · u
are minimal images. For any word v in A∗ of minimal rank, the set (I ∪ J) · uv

is a minimal image. Indeed, I · uv ⊂ (I ∪ J) · uv ⊂ Im(uv), hence all three are
equal. But (I ∪ J) · uv = K · uv ∪ p · uv ∪ q · uv. This forces p · uv = q · uv since
p · uv �∈ K · uv, since otherwise I · uv would have less elements than I . Thus p, q

are strongly synchronizable. �

A state p is a bunch if all states p · a for a in A are equal. In this case, the state
p · a is called the target of the bunch p.

Lemma 10.4.5 If an automaton A has two distinct bunch states with the same target,
then A is reducible.

Proof. Let p, p′ be such that all edges going out of p, p′ end at q. The states p and
p′ are strongly synchronizable since for any letter a, one has p · a = p′ · a. �

10.4 Road coloring 391

A

p q

r

b a

a a
p q

r

a b

a a

Figure 10.8 Case 1. All states have a-index 0.

p r

u

v

a
b

a

ak p r

u

v

a
a

b

ak

Figure 10.9 Case 2. u is not on C.

Let A be an automaton. The a-index of a state p with respect to a letter a ∈ A

is the least integer � such that p · a�+k = p · a� for some integer k ≥ 1. An a-cycle
is a cycle formed of edges all labeled by a. Thus, the a-index of a state is the least
integer � such that p · a� is on an a-cycle. The state p · a� is called the a-basis of p.
If there is a path formed of edges all labeled by a from p to q, the state p is called an
a-ascendant of a state q and q is said to be an a-descendant of p. Note that the set
of states with given a-basis r forms a tree with root r . (In such a tree, the orientation
is the reverse of the usual one.)

The following lemma is the key of the proof of Theorem 10.4.2.

Lemma 10.4.6 Any automaton with period 1 is equivalent either to a reducible
automaton, or to an automaton such that all states of maximal a-index for some letter
a have the same a-basis.

Proof. We assume that A is not equivalent to a reducible automaton, we fix a letter
a and we assume that the automaton is chosen within its equivalence class in such a
way that the number of states of a-index 0 is maximal. We distinguish a number of
cases. Let � be the maximal a-index of states.

Case 1. Suppose first that � = 0. If all states are bunches, the automaton consists
of just one cycle and since the period of A is 1, the automaton has a single state.

Let p be a state which is not a bunch, let q = p · a and let b �= a be such that
r = p · b satisfies r �= q. Let us exchange the labels of these edges. The resulting
automaton is equivalent to A and has just one state of maximal index, namely q (see
Figure 10.8). Thus the conclusion holds in this case.

Assume now � ≥ 1. Let p be a state of a-index �. Since A is strongly connected,

there is an edge u
b→ p ending in p and one may suppose u �= p. Since p has maximal

a-index, the label of this edge is b �= a. Let v = u · a. One has v �= p. Let r = p · a�

and let C be the a-cycle to which r belongs.

392 10 Synchronization

p ru

v

ab

a

ak1

ak2

p ru

v

aa

b

ak1

ak2

Figure 10.10 Case 3. k2 > �.

p r

s

u

v w

a

a
c

b

a

ak1

ak2−1

p r

s

u

v w

a

c
a

b

a

ak1

ak2−1

Figure 10.11 Case 4. The state s is not a bunch.

Case 2. Suppose first that u is not on C. We exchange the labels of u
b→ p and

u
a→ v (see Figure 10.9). We have not destroyed the a-path from p to r . Indeed, this

would mean that u was on this path and the exchange would have created a new cycle
to which u and p belong, increasing the number of vertices with a-index 0. Since u

is not on C, the exchange did not either modify the cycle C. In this new automaton,
there are vertices of a-index at least � + 1. All vertices of a-index at least � + 1 have
been created by this exchange, and are a-ascendants of u. Thus the vertices with
maximal a-index are a-ascendants of u. Their basis is the same as the basis r of p.
This proves the property.

Suppose now that u is on C. Let k1 be the least integer such that r · ak1 = u. Since
u · a = v, the state v is also on C. Let k2 be the least integer such that v · ak2 = r in
such a way that C has length k1 + k2 + 1 (see Figure 10.10).

Case 3. Suppose first that k2 > �. We exchange as before the labels of u
b→ p and

u
a→ v. The a-index of v becomes k2 and since k2 > �, the states of maximal a-index

are a-ascendants of v. Thus they all have a-basis equal to r and the property holds.
Suppose now that k2 ≤ �. We have actually k2 = �. Otherwise, exchange the labels

of u
b→ p and u

a→ v. This creates an a-cycle of length k1 + � + 1 which replaces
one of length k2 + k1 + 1. But the automaton obtained then has more states of a-
index 0, contrary to the assumption made previously. Let s be the state of C such that
s · a = r . Observe that k2 = � ≥ 1 and therefore v �= r .

Case 4. Suppose first that the state s is not a bunch (see Figure 10.11). Let w = s · c
be such that w �= r with c a letter distinct of a. We exchange the labels of the edges
s

a→ r and s
c→ w. Then r is not anymore on an a-cycle. Indeed, otherwise, this cycle

would begin with the path r
ak1→ u

a→ v
ak2−1→ s

a→ w and would be longer than C. This
would increase the number of states with a-index 0, contradicting the assumption
made on A. Thus, the a-index of r is positive and it is maximal among the states

10.4 Road coloring 393

p q r

s

u

v w

b a −1 a

ak1

ak2−1

ca a

p q r

s

u

v w

b a −1 c

ak1

ak2−1

aa a

p q r

s

u

v w

a a −1 c

ak1

ak2−1

ab a

Figure 10.12 Case 5. The state s is a bunch.

which were before on the cycle C. The states with maximal a-index obtained in this
way are a-ascendants of r and thus all have the same a-basis.

Case 5. Suppose now that s is a bunch. Let q = p · a�−1, which is the predecessor
of r on the a-path from p to r . By Lemma 10.4.5 the state q is not a bunch since
otherwise r would be the target of the bunches s and q. Thus there exists a letter c

such that r = q · a �= q · c = w. We exchange the labels of q
a→ r and q

c→ w (see
Figure 10.12 middle). The state q cannot belong to w · a∗ since otherwise we obtain

an additional cycle w
ak3→ q

a→ w and more states with a-index 0. In particular w �= p.
Case 5(a) If the a-index of w is positive, then the maximal index becomes at least

� + 1 and all states of maximal index are a-ascendants of w.
Case 5(b) Suppose now that the a-index of w is 0. If w is on the cycle C, the index

of p remains � and the only thing that has changed is the basis of p which becomes
w instead of r . We proceed as in Case 3 and consider the least integer k3 such that
v · ak3 = w. We treat the case k3 > � in the same way and we are left with the case
k3 = � (Case 4). But then k3 = � and k2 = � imply k2 = k3 which is impossible since
r �= w.

Case 5(c) Suppose finally that w is on a cycle distinct from C. We additionally

exchange the labels of the edges u
a→ v and u

b→ p (see Figure 10.12 right). The
maximal a-index has increased and the states of maximal index are all a-ascendants
of u.

This concludes the proof of the lemma. �

Proof of Theorem 10.4.2. We use an induction on the number n of states of the
automaton. The property holds for n = 1. Let us suppose that it holds for automata
with less than n states and consider an admissible automaton A with n states.

IfA is reducible, we consider the quotient ofA by the synchronizability congruence
ρ. By induction hypothesis, the automaton A/ρ is equivalent to a synchronized
automaton. Thus, by Lemma 10.4.3, A is equivalent to a synchronized automaton.

Suppose now that A is not equivalent to a reducible automaton. By Lemma 10.4.6,
A is equivalent to an automaton in which, for some letter a, the states of maximal
a-index have the same a-basis. Let � be the maximal a-index and let r be the common
a-basis. The states of a-index � form a synchronizable set since the word a� maps all
of them to r . Up to an automaton equivalence, we may assume that this property holds
for A. Let I be a minimal image containing a state p of maximal a-index �. Then,
since the other states of a-index � are synchronizable with p, the a-index of the other

394 10 Synchronization

elements of I is strictly less than � (because I is an image of minimal cardinality).
Let J = I · a�−1. Then all elements of J except q = p · a�−1 are on a cycle labeled
by a. Let k be a multiple of the lengths of the cycles labeled a. Then s · ak = s for
each state s of J distinct of q and thus J and J · ak are two distinct minimal images
which differ by only one element. By Lemma 10.4.4, this is not possible. �

The road coloring theorem has the following consequence for prefix codes. Say
that two prefix codes are flipping equivalent if they have isomorphic associated
(unlabeled) trees. The period of a prefix code is the gcd of the lengths of its words.

Theorem 10.4.7 Any rational maximal prefix code with period 1 is flipping equiva-
lent to a synchronized one.

Proof. Let X be a rational maximal prefix code with period 1. LetA = (Q, 1, 1) be the
minimal deterministic automaton of X∗. By Theorem 10.4.2, there is a synchronized
automaton A′ equivalent to A. Let X′ be the prefix code generating the stabilizer of
state 1 in A′. Then X and X′ are flipping equivalent because the corresponding trees
are obtained by unfolding the graph underlying A and A′, duplicating the state 1 into
two states one having all the input edges of 1 and the other all the output edges. Since
A′ is synchronizing, X′ is synchronized. �

The above result shows in particular that one may always find a synchronized
prefix code among the prefix codes having a given length distribution provided the
period is 1. In particular the code having an optimal length distribution for a given
set of frequencies obtained by the Huffman algorithm can be chosen synchronized
provided it is of period 1.

For another proof, see Exercise 3.8.2.

10.5 Exercises

Section 10.2

10.2.1 Let X be a code with (verbal) synchronization delay s. Show that

X∗ = 1 ∪ X ∪ · · · ∪ Xs−1 ∪ (XsA∗ ∩ A∗Xs) \ W (10.9)

with W = {w ∈ A∗ | A∗wA∗ ∩ X∗ = ∅}. Show that W has also the expression W =
A∗V A∗ with

V = (A∗ \ A∗Xs+1A∗) \ (A∗ \ F (Xs+2)) (10.10)

10.2.2 Show that a nonempty code X is complete and has finite synchronization
delay if and only if there is an integer s such that

XsA∗ ∩ A∗Xs ⊂ X∗.

10.2.3 Show that the code Y of the proof of Theorem 10.2.11 admits the expression

Y = X ∪ (T \ W) (10.11)

10.6 Notes 395

where T = (XsA∗ \ Xs+1A∗) ∩ (A∗Xs \ A∗Xs+1) and W = A∗X2sA∗ ∪ X∗.

10.2.4 Show that a thin circular code is synchronized.

10.2.5 Let X ⊂ A+ be a maximal prefix code. Show that the following conditions
are equivalent.

(i) X has synchronization delay 1.
(ii) A∗X ⊂ X∗.

(iii) X is a semaphore code such that S = X \ A+X satisfies SA∗ ∩ A∗S = S ∪
SA∗S (that is S is “non overlapping”).

Section 10.3

10.3.1 Let s ≥ 1 be an integer and let ∼s denote the equivalence on words of length
at least s defined by y ∼s z if y and z have the same prefix of length s, the same
suffix of length s and the same set of factors of length s. A set Y ⊂ A∗ is said to be
locally testable of order s if there is an integer s such that for two words y, z ∈ AsA∗

with y ∼s z one has y ∈ Y if and only if z ∈ Y . Show that a set X is locally testable
if and only if it is a finite Boolean combination of strictly locally testable sets.

10.3.2 The syntactic semigroup of a set Y ⊂ A+ is the quotient of A+ by the syntactic
congruence. Show that a set Y ⊂ A∗ is strictly locally testable if and only if all
idempotents of its syntactic semigroup are constants (where a constant in the syntactic
semigroup is the image of a constant in A+).

10.3.3 Show that if Y is locally testable, then for each idempotent e in the syntactic
semigroup of Y , the semigroup eSe is idempotent and commutative.

10.3.4 Show that a code X is locally parsable if and only if X∗ is locally testable.
(Hint: Use Proposition 10.3.5, and Exercises 10.3.2, 10.3.3.)

10.6 Notes

The notion of synchronization delay was introduced in Golomb and Gordon (1965). It
was proved in Bruyère (1998) that any rational code with finite synchronization delay
is contained in a complete rational code with finite synchronization delay. However,
the definition of synchronization delay used in Bruyère (1998) differs from ours. Her
construction is basically the same, but does not preserve the delay. Exercise 10.2.3
is also from Bruyère (1998). Theorem 10.2.7 is in Restivo (1975). Exercise 10.2.1
is from Schützenberger (1975) (see also Perrin and Pin (2004)). The completion
problem for rational synchronized codes has been solved by Guesnet (2003).

A set X ⊂ A∗ is called star-free if it can be obtained from the subsets of the
alphabet by a finite number of set products and Boolean operations (including the
complement). Thus star-free sets are those regular sets which can be obtained without
using the star operation. Examples of star-free sets are ∅, A∗ (the complement of ∅),
the singletons {a} for a ∈ A and the ideals aA∗ or A∗aA∗. Formulas (10.9) and

396 10 Synchronization

(10.10) are parts of a proof showing that if a code X with finite synchronization
delay is star-free, then X∗ is also star-free. Formula (10.4) shows that, if X is star-
free, then Y ∗ and thus also Y are star-free. There is a deep link between codes
with finite synchronization delay and star-free sets which has been investigated in
Schützenberger (1975) (see Perrin and Pin (2004) for a connection with first-order
logic).

The term “locally parsable” is from McNaughton and Papert (1971). Exer-
cise 10.3.4 is from de Luca and Restivo (1980). Exercise 10.3.3 has a converse
which is a difficult theorem due to McNaughton, Zalcstein, Bzrozowski and Simon
(see Eilenberg (1976)).

The Franaszek code of Example 10.3.2 is used to encode arbitrary binary sequences
into constrained sequences, see Lind and Marcus (1995).

The origin of the name “road coloring problem” is the following. Imagine a map
with roads which are colored in such a way that a fixed sequence of colors, called a
homing sequence, leads the traveler to a fixed place irrespective of its starting point. If
the colors are replaced by letters, a homing sequence corresponds to a synchronizing
word. The road coloring problem originates in Adler and Weiss (1970) and was
explicitly formulated in Adler et al. (1977). It was proved in Trahtman (2008). The
notion of strongly synchronizable states appears in Culik et al. (2002). Several partial
solutions have appeared earlier (see O’Brien (1981) or Friedman (1990) in particular).
Theorem 10.4.7 is proved in Perrin and Schützenberger (1992) for finite maximal
prefix codes. The same result is also established in Perrin and Schützenberger (1992)
with essentially the same proof for the commutative equivalence instead of the flipping
equivalence (Theorem 14.6.10). Lemma 10.4.3 appears already in Culik et al. (2002).

11

Groups of codes

We have seen in Chapter 9 that there is a transitive permutation group G(X) of degree
d(X) associated with every thin maximal code X which we called the group and the
degree of the code. We have seen that a code has a trivial group if and only if it is
synchronized.

In this chapter we study the relations between a code and its group. As an example,
we will see that an indecomposable prefix code X has a permutation group G(X)
which is primitive (Proposition 11.1.6). We will also see that a thin maximal prefix
code X has a regular group if and only if X = U ◦ V ◦ W with U,W synchronized
and V a regular group code (Proposition 11.2.3). This result is used to prove that
any semaphore code is a power of a synchronized semaphore code (Theorem 11.2.1
already announced in Chapter 3). A direct combinatorial proof of this result would
certainly be extremely difficult.

We study in more detail the groups of bifix codes. We start with the simplest class,
namely the group codes in Section 11.3. We show in particular (Theorem 11.3.1) that
a finite group code is uniform.

In the next two sections, we again examine the techniques introduced in Chapter
9 and particularize them to bifix codes. Specifically, we shall see that bifix codes
are characterized by the algebraic property of their syntactic monoids being nil-
simple (Theorem 11.5.2). The proof makes use of Schützenberger’s theorem 5.2.4
concerning codes with finite deciphering delay. Section 11.6 is devoted to groups of
finite maximal bifix codes. The main result is Theorem 11.6.8 stating that the group of
a finite, indecomposable, nonuniform maximal bifix code is doubly transitive. For the
proof of this theorem, we use difficult results from the theory of permutation groups
without proof. The last section contains a series of examples of finite maximal bifix
codes with special groups.

11.1 Groups and composition

We now examine the behavior of the group of a code under composition. Let G be a
transitive permutation group over a set Q. Recall (see Section 1.13) that an imprimi-
tivity equivalence of G is an equivalence relation θ on Q stable with respect to the

398 11 Groups of codes

action of G, that is, such that for all p, q ∈ Q and g ∈ G,

p ≡ q mod θ ⇒ pg ≡ qg mod θ.

The action of G on the classes of θ defines a transitive permutation group denoted
by Gθ and called the imprimitivity quotient of G for θ .

For any q ∈ Q, the restriction to the class mod θ of q of the subgroup

K = {k ∈ G | qk ≡ q mod θ}
formed of the elements globally stabilizing the class of q mod θ is a transitive per-
mutation group. The groups induced by G on the equivalence classes mod θ are all
equivalent (see Section 1.13). Any one of these groups is called the group induced
by G. It is denoted by Gθ .

Let d = Card(Q) be the degree of G, let e be the cardinality of a class of θ (thus
e is the degree of Gθ), and let f be the number of classes of θ (that is, the degree of
Gθ). Then we have the formula d = ef .

Example 11.1.1 The permutation group over the set {1, 2, 3, 4, 5, 6} generated by
the two permutations

α = (123456), β = (26)(35)

is the group of symmetries of the hexagon,

1

6 2

5 3

4

It is known under the name of dihedral group D6, and has of course degree 6. It admits
the imprimitivity partition {{1, 4}, {2, 5}, {3, 6}} corresponding to the diagonals of the
hexagon. The groups Gθ and Gθ are, respectively, equivalent to S3 and Z/2Z.

Proposition 11.1.2 Let X be a very thin code which decomposes into X = Y ◦ Z

with Y a complete code. There exists an imprimitivity equivalence θ of G = G(X)
such that

Gθ = G(Y), Gθ = G(Z).

In particular, d(X) = d(Y)d(Z).

Proof. Set X = Y ◦β Z with B = alph(Y) and β a bijection from B onto Z. Let P

and S be the sets of states of the flower automata A∗
D(X),A∗

D(Z), respectively. Let ϕ

(resp. ψ) be the morphism associated to A∗
D(X) (resp. A∗

D(Z)).
In view of Proposition 4.2.7, and since Y is complete, there exists a reduction

ρ : P → S. Actually, for (u, v) ∈ P \ (1, 1) we have ρ(u, v) = (r, s) where u = zr

and v = sz̄ with z, z̄ ∈ Z∗ and (r, s) ∈ S.

11.1 Groups and composition 399

Table 11.1 The next state function of A(X∗).

1 2 3 4 5 6 7 8

a 4 5 4 5 8 1 8 1
b 2 3 4 5 6 7 8 1

Moreover, A∗
D(Y) can be identified through β with the restriction of A∗

D(X) to
the states which are in Z∗ × Z∗. As usual, we denote by ρ̂ the morphism from
M = ϕ(A∗) onto M ′ = ψ(A∗) induced by ρ. Thus ψ = ρ̂ ◦ ϕ.

Let J (resp. K) be the 0-minimal ideal of M (resp. of M ′). Then J ⊂ ρ̂−1(K),
since ρ̂−1(K) is a nonnull ideal. Thus ρ̂(J) ⊂ K . Since ρ̂(J) �= 0, we have

ρ̂(J) = K.

Let e be an idempotent in J ∩ ϕ(X∗), let R = Fix(e) ⊂ P and let G = Ge. Let
us verify that ρ is a surjective function from R onto Fix(ρ̂(e)). Let indeed s be a
fixed point of f = ρ̂(e). By definition of a reduction, there exist p, q ∈ P such that
ρ(p) = ρ(q) = s and (p, e, q) = 1. Since e is idempotent, there exists a fixed point
r of e such that (p, e, r) = (r, e, q) = 1. Then ρ(r) = s by unambiguity, proving the
assertion.

Further, the nuclear equivalence of the restriction of ρ to R defines an equivalence
relation θ on R which is an imprimitivity equivalence of G. Indeed, let r, r ′ ∈ R

be such that ρ(r) = ρ(r ′). Let g ∈ G and set s = rg, s ′ = r ′g. By definition of G

there is an m ∈ M such that g is the restriction to R of eme. Then, since ρ̂(eme) is a
permutation on ρ(R), we have ρ(s) = ρ(s ′), proving the assertion. The group Gρ̂(e)

is the corresponding imprimitivity quotient Gθ . This shows that G(Z) is equivalent
to Gθ .

Let T = {(u, v) ∈ P | u, v ∈ Z∗}. Then T can be identified with the states of the
flower automaton of Y and moreover T = ρ−1(1, 1). Let L be the restriction to T of
the submonoid N = ϕ(Z∗) of M . Then

eNe = H (e) ∩ N.

Indeed, one has eNe ⊂ H (e) ∩ N since e ∈ ϕ(X∗) and X∗ ⊂ Z∗. Conversely, if
n ∈ H (e) ∩ N , then n = ene and thus n ∈ eNe. Since H (e) ∩ N is a group, this
shows that eN is a minimal right ideal and Ne is a minimal left ideal. Thus e is in
the minimal ideal of the monoid N . Moreover the restriction to R ∩ T of H (e) ∩ N

is the Suschkewitch group of L.
Thus the restriction to R ∩ T of the group H (e) ∩ L is equivalent to the group

G(Y). On the other hand, since T = ρ−1(1, 1), this group is also the group Gθ

induced by G on the classes of θ . �

Example 11.1.3 Let X = Zn where Z is a very thin code and n ≥ 1. Then d(X) =
nd(Z).

400 11 Groups of codes

Example 11.1.4 Consider the maximal prefix code Z over A = {a, b} given by

Z = (A2 \ b2) ∪ b2A2

and set X = Z2. The automatonA(X∗) is given in Table 11.1. Let ϕ be the correspond-
ing representation. The monoid ϕ(A∗) is the monoid of functions of Example 9.2.3,
when setting ϕ(a) = u, ϕ(b) = v.

The idempotent e = ϕ(a4) has minimal rank since the action of A on the R-class
of e given in Figure 9.7 is complete. Consequently, the group G(X) is the dihedral
group D4. This group admits an imprimitivity partition with a quotient and an induced
group both equivalent to Z/2Z. This corresponds to the fact that

G(Z) = Z/2Z,

since

Z = T ◦ A2,

where T is a synchronized code.

In the case of prefix codes, we can continue the study of the influence of the
decompositions of the prefix code on the structure of its group. We use the maximal
decomposition of prefix codes defined in Proposition 3.6.14.

Proposition 11.1.5 Let X be a very thin prefix code, and let

X = Y ◦ Z

be its maximal decomposition. Then Z is synchronized, and thus G(X) = G(Y).

Proof. Let D = X∗(A∗)−1, U = {u ∈ A∗ | u−1D = D}. Then Z∗ = U . Let ϕ be the
morphism associated with the automaton A(X∗). Let J be the 0-minimal ideal of the
monoid ϕ(A∗).

Consider x ∈ X∗ such that ϕ(x) ∈ J . First we show that

D = {w ∈ A∗ | ϕ(xw) �= 0}. (11.1)

Indeed, if w ∈ D, then xw ∈ D and thus ϕ(xw) �= 0. Conversely, if ϕ(xw) �= 0 for
some w ∈ A∗, then the fact that the right ideal generated by ϕ(x) is 0-minimal implies
that there exists a word w′ ∈ A∗ such that ϕ(x) = ϕ(xww′). Thus xww′ ∈ X∗. By
right unitarity, we have ww′ ∈ X∗, whence w ∈ D. This proves (11.1).

Next Dx−1 = Ux−1. Indeed D ⊃ U implies Dx−1 ⊃ Ux−1. Conversely, consider
w ∈ Dx−1. Then wx ∈ D. By (11.1), ϕ(xwx) �= 0. Using now the 0-minimality of the
left ideal generated by ϕ(x), there exists a word w′ ∈ A∗ such that ϕ(w′xwx) = ϕ(x).
Using again (11.1), we have, for all w′′ ∈ D, 0 �= ϕ(xw′′) = ϕ(w′xwxw′′). Then also
ϕ(xwxw′′) �= 0 and, again by (11.1), wxw′′ ∈ D. This shows that D ⊂ (wx)−1D.
For the reverse inclusion, let w′′ ∈ (wx)−1D. Then wxw′′ ∈ D. Thus ϕ(xwxw′′) �=
0. This implies that ϕ(xw′′) �= 0, whence w′′ ∈ D. Consequently D = (wx)−1D,
showing that wx ∈ U , hence w ∈ Ux−1.

11.1 Groups and composition 401

Now we prove that (x, x) is a synchronizing pair for Z. Let w,w′ ∈ A∗ be such
that wxxw′ ∈ Z∗ = U . Since U ⊂ D, we have wxxw′ ∈ D and thus wx ∈ D. By
the equality Dx−1 = Ux−1, this implies wx ∈ U . Since U is right unitary, xw′ also is
in U . Consequently Z is synchronized. In view of Proposition 11.1.2, this concludes
the proof. �

We now prove a converse of Proposition 11.1.2 in the case of prefix codes. It is not
known if it holds for arbitrary thin maximal codes.

Proposition 11.1.6 Let X be a thin maximal prefix code. If the group G = G(X)
admits an imprimitivity equivalence θ , then there exists a decomposition of X into

X = Y ◦ Z

such that G(Y) = Gθ and G(Z) = Gθ .

Proof. Let ϕ be the representation associated with the minimal automaton A(X∗) =
(Q, 1, 1), and set M = ϕ(A∗). Let J be the minimal ideal of M , let e ∈ J ∩ ϕ(X∗)
be an idempotent, let L be the L-class of e and � be the set of H-classes of L. We
have G(X) = Ge.

Since X is complete, each H ∈ � is a group and therefore has an idempotent eH

with Im(e) = Im(eH) and thus Fix(eH) = Fix(e). The code X being prefix, eH is in
ϕ(X∗) for all H ∈ �, by Proposition 9.4.9.

Set S = Fix(e). By assumption, there exists an equivalence relation θ on S that is
an imprimitivity equivalence of the group Ge. Consider the equivalence relation θ̂ on
the set Q of states of A(X∗) defined by p ≡ q mod θ̂ if and only if, for all H ∈ �,

peH ≡ qeH mod θ.

Let us verify that θ̂ is stable, that is, that

p ≡ q mod θ̂ ⇒ p · w ≡ q · w mod θ̂

for w ∈ A∗. Indeed, let m = ϕ(w). Note that for H ∈ �,

meH = emH meH = emH emeH (11.2)

since emH e = emH . Observe also that emeH ∈ H (e) since en ∈ H (e) for all n ∈ L

and since meH ∈ L by (11.2). Assume now that p ≡ q mod θ̂ . Then by definition
pemH ≡ qemH mod θ and θ being an imprimitivity equivalence, this implies

pemH emeH ≡ qemH emeH mod θ.

By (11.2), it follows that pmeH ≡ qmeH mod θ for all H ∈ �. Thus p · w ≡ q ·
w mod θ̂ .

Moreover, the restriction of θ̂ to the set S = Fix(e) is equal to θ . Assume indeed that
p ≡ q mod θ̂ for some p, q ∈ S. Then pe ≡ qe mod θ . Since p = pe and q = qe, it

402 11 Groups of codes

1
2

3

4
5

6

7

8

b

b

a, b

a, b

a

a

b

b

a, b

a, b

a

a

Figure 11.1 The minimal automaton of X∗.

e

e1

e2

e3

0

1

2

3

{1, 3}, {2, 4}, {5, 7}, {6, 8}

{1, 3}, {2, 8}, {4, 6}, {5, 7}

{1, 7}, {2, 8}, {3, 5}, {4, 6}

{1, 7}, {2↪ 4}, {3, 5}, {6, 8}

a

a

a

a

b

b

b

b

Figure 11.2 The L-class of e = ϕ(a4).

follows that p ≡ q mod θ . Conversely, if p ≡ q mod θ , then for all H ∈ �, peH = p

and qeH = q, because of the equality Fix(eH) = S. Consequently p ≡ q mod θ̂ .
Consider the prefix code Z defined by the right unitary submonoid

Z∗ = {z ∈ A∗ | 1 · z ≡ 1 mod θ̂}.
Then clearly X ⊂ Z∗, and the automaton A(X∗) being trim, alphZ(X) = Z. Thus,
by Proposition 2.6.6, X decomposes over Z: X = Y ◦ Z. The automaton Aθ̂ defined
by the action of A∗ on the classes of θ̂ recognizes Z∗ since Z∗ is the stabilizer of
the class of 1 modulo θ̂ . The group G(Z) is the group Gθ . The automaton obtained
by considering the action of Z on the class of 1 mod θ̂ can be identified with an
automaton recognizing Y ∗, and its group is Gθ . �

Corollary 11.1.7 Let X be a thin maximal prefix code. If X is indecomposable, then
the group G(X) is primitive. �

Example 11.1.8 We consider once more the finite maximal prefix code X =
((A2 \ b2) ∪ b2A2)2 of Example 11.1.4, with the minimal automaton of X∗ given
in Figure 11.1. Let ϕ be the associated representation. We have seen that e = ϕ(a4)

11.1 Groups and composition 403

Table 11.2 The automaton of ((a ∪ bA2)4)∗.

1 2 3 4 5 6 7 8 9 10 11 12

a 4 3 4 7 6 7 10 9 10 1 12 1

b 2 3 4 5 6 7 8 9 10 11 12 1

Table 11.3 The idempotent e = ϕ(a4).

1 2 3 4 5 6 7 8 9 10 11 12

a4 1 10 1 4 1 4 7 4 7 10 7 10

ea|(1, 4, 7, 10) b|(1, 10, 7, 4)

Figure 11.3 The L-representation with respect to e.

is an idempotent of minimal rank. The group Ge = G(X) is the dihedral group D4.
The partition θ = {{1, 5}, {4, 8}} is an imprimitivity partition of Ge.

TheL-class of e is composed of fourH-classes. They are represented in Figure 11.2
together with the associated nuclear equivalences.

The equivalence θ̂ is

θ̂ = {{1, 3, 5, 7}, {2, 4, 6, 8}}.
The stabilizer of the class of 1 mod θ̂ is the uniform code Z = A2 with group Z/2Z.
We have already seen that

X = (T ◦ A2)2 = T 2 ◦ A2

for some synchronized code T . The decomposition of X into X = T 2 ◦ Z is that
obtained by applying to X the method used in the proof of Proposition 11.1.6.

Example 11.1.9 Let Z be the finite complete prefix code over A = {a, b} given by
Z = a ∪ bA2, and consider X = Z4. The automaton A(X∗) is given in Table 11.2.
Let ϕ be the representation associated with A(X∗). The element e = ϕ(a4) is easily
seen to be an idempotent of minimal rank 4, with Fix(e) = {1, 4, 7, 10}. It is given
in Table 11.3. The minimal ideal of ϕ(A∗) reduces to the R-class of e, and we have
G(X) = Z/4Z, as a result of computing the L-representation (see Section 9.2) with
respect to e given in Figure 11.3. The partition θ = {{1, 7}, {4, 10}} is an imprimitivity
partition of Ge. The corresponding equivalence θ̂ is

θ̂ = {{1, 3, 5, 7, 9, 11}, {2, 4, 6, 8, 10, 12}}.
The stabilizer of the class of 1 mod θ̂ is the uniform code A2, and we have X ⊂ (A2)∗.
Observe that we started with X = Z4. In fact, the words in Z all have odd length,

404 11 Groups of codes

and consequently Z2 = Y ◦ A2 for some Y . Thus X has the two decompositions

X = Z4 = Y 2 ◦ A2.

11.2 Synchronization of semaphore codes

In this section, we prove the result announced in Chapter 3, namely the following
theorem.

Theorem 11.2.1 Let X be a semaphore code. There exist a synchronized semaphore
code Z and an integer d ≥ 1 such that X = Zd .

In view of Proposition 11.1.2, the integer d is of course the degree d(X) of the
code X. Observe that, by Proposition 3.5.9 and Corollary 3.5.10 a semaphore code
is a thin maximal code and thus its degree d(X) and its group G(X) are well defined.

The proof of the theorem is in several parts. We first consider the group of a sema-
phore code. The following lemma is an intermediate step, since the theorem implies
a stronger property, namely that the group is cyclic.

We recall that a transitive permutation group over a set is called regular if its
elements, with the exception of the identity, have no fixed point (See Section 1.13).

Lemma 11.2.2 The group of a semaphore code is regular.

Proof. Let X ⊂ A+ be a semaphore code, let P = XA− be the set of proper prefixes
of words in X, and let A = (P, 1, 1) be the literal automaton of X∗. Let ϕ be the
representation associated with A, and set M = ϕ(A∗).

A semaphore code is thin (by Proposition 3.5.9) and complete. Thus 0 �∈ M and
M has a minimal ideal denoted K . The ideal ϕ(F̄ (X)) of images of words which are
not factors of words in X contains K . By Proposition 9.5.2, the Suschkewitch group
of ϕ(A∗) is equivalent to G(X).

Let e be an idempotent in ϕ(X∗) ∩ K , and let R = Fix(e). These fixed points are
words in P . They are totally ordered by their length. Indeed let w be in ϕ−1(e) ∩ F̄ (X).
Then we have r · w = r for all r ∈ R. Since w is not a factor of a word in X, no rw

is in P . This implies that each word r ∈ R is a suffix of w. Thus, for two fixed points
of e, one is a suffix of the other.

Next, we recall that, by Corollary 3.5.7, PX ⊂ X(P ∪ X). By induction, this
implies that for n ≥ 1,

PXn ⊂ Xn(P ∪ X). (11.3)

To show that Ge is regular, we verify that each g ∈ H (e) ∩ ϕ(X∗) increases the length,
that is, for r, s ∈ R,

|r| < |s| ⇒ |rg| < |sg|. (11.4)

This implies that g is the identity on R since the above property cannot be satisfied
if g has a nontrivial cycle. Since H (e) ∩ ϕ(X∗) is composed of the elements of H (e)

11.2 Synchronization of semaphore codes 405

r x

y u

s x

z v

Figure 11.4 Comparison of rx and sx.

fixing 1, this means that only the identity of Ge fixes 1. Since Ge is transitive, this
implies that Ge is regular.

For the proof of (11.4), let g ∈ H (e) ∩ ϕ(X∗), and let x ∈ ϕ−1(g). Then x ∈ Xn

for some n ≥ 0. Let r, s ∈ R with |r| < |s|. Then by (11.3)

rx = yu and sx = zv with y, z ∈ Xn, u, v ∈ P ∪ X.

The word u is a suffix of v since otherwise z ∈ A∗yA+ (see Figure 11.4) which implies
Xn ∩ A∗XnA+ �= ∅, contradicting the fact that Xn is a semaphore code. Further, we
have in A

rg = u or 1 according to u ∈ P or u ∈ X,

sg = v or 1 according to v ∈ P or v ∈ X.

Since g is a permutation on R and 1g = 1 and s �= 1, we have sg �= 1. Thus sg = v.
Since r �= s, we have rg �= sg. Since u is a suffix of v, we have |rg| < |sg| both in
the two cases rg = u and rg = 1. �

Now let X ⊂ A+ be a group code. Then by definition,

X∗ = α−1(H),

where α : A∗ → G is a surjective morphism onto a group G and H is a subgroup
of G. The code X is called a regular group code if H = {1}. Then the permutation
group G(X) is the representation of G by multiplication on the right over itself. It is
a regular group.

The following proposition is useful for the proof of Theorem 11.2.1. However, it
is interesting in itself, because it describes the prefix codes having a regular group.

Proposition 11.2.3 Let X be a thin maximal prefix code. Then the group G(X) is
regular if and only if

X = U ◦ V ◦ W,

where V is a regular group code and U,W are synchronized codes.

Proof. The condition is sufficient. Indeed, if X = U ◦ V ◦ W , then by Proposi-
tion 11.1.2, we have G(X) = G(V).

406 11 Groups of codes

Conversely, let A = (Q, 1, 1) be an unambiguous trim automaton recognizing X∗,
let ϕ be the associated representation and M = ϕ(A∗). Since X is thin and complete,
the minimal ideal J of M is a union of groups.

Consider an idempotent e ∈ ϕ(X∗) ∩ J , let G = H (e) be its H-class, L its L-class,
and let � be the set of H-classes contained in L. Each of them is a group, and the
idempotent of H will be denoted by eH . The set of pairs

{(eH , e) | H ∈ �}
is a system of coordinates of L relative to e. Indeed eH e ∈ H . Moreover, since
e ∈ MeH , eeH = e and thus eeH e = e. Let us consider the corresponding L-
representation of M . For this choice of coordinates, by (9.17), we have for m ∈ M

and H ∈ �,

m ∗ H = rmeH � (11.5)

where e = �r is the column-row decomposition of e. Indeed, we have in this case
rmH = re = r and �H = eH �.

Set

N = {n ∈ M | n ∗ H = n ∗ G for all H ∈ �}.
The set N is composed of those elements n ∈ M for which the mapping

H ∈ � �→ n ∗ H ∈ Ge

is constant. It is a right-unitary submonoid of M . Indeed, first 1 ∈ N by (9.14). Next,
if n, n′ ∈ N , then

nn′ ∗ H = (n ∗ n′H)(n′ ∗ H) (11.6)

= (n ∗ G)(n′ ∗ G)

which is independent of H . Thus nn′ ∈ N . Assume now that n, nn′ ∈ N . Then by
(11.6), and since n ∗ n′H and n ∗ G have an inverse in Ge

n′ ∗ H = (n ∗ n′H)−1(nn′ ∗ H) = (n ∗ G)−1(nn′ ∗ G)

which is independent of H , showing that n′ ∈ N . Therefore

ϕ−1(N) = W ∗

for some prefix code W .
The hypothesis that G(X) is regular implies that X∗ ⊂ W ∗. Indeed, let m ∈ ϕ(X∗).

Then by (11.5) we have for H ∈ �,

m ∗ H = rmeH �.

Since X is prefix, eH ∈ ϕ(X∗) by Proposition 9.4.9. Consequently m ∗ H fixes the
state 1 ∈ Q (since r,m, eH and � do). Since G(X) is regular, m ∗ H is the identity
for all H ∈ �. This shows that m ∈ N .

11.2 Synchronization of semaphore codes 407

We now consider the function

θ : W ∗ → Ge

which associates to each w ∈ W ∗ the permutation ϕ(w) ∗ G. By (11.6), θ is a mor-
phism. Moreover, θ is surjective: if g ∈ G, then

g ∗ G = rge� = rg�

which is the element of Ge associated to g. From g ∗ H = rgeH � = r(ge)eH (e�) =
rge� = rg�, it follows that g ∈ N .

For all x ∈ X∗, since ϕ(x) ∗ G = 1, we have θ (x) = 1.
Since X∗ ⊂ W ∗ and X is a maximal code, we have by Proposition 2.6.14

X = Y ◦β W,

where β : B∗ → A∗ is some injective morphism, β(B) = W and β(Y) = X. Set

α = θ ◦ β.

Then α : B∗ → Ge is a morphism and Y ∗ ⊂ α−1(1) since for all x ∈ X∗, we have
θ (x) = 1. Let V be the regular group code defined by

V ∗ = α−1(1).

Then Y = U ◦ V and consequently

X = U ◦ V ◦ W.

By construction, G(V) = Ge. Thus G(X) = G(V). The codes U and W are syn-
chronized. Indeed d(X) = d(V) and d(X) = d(U)d(V)d(W) by Proposition 11.1.2
imply d(U) = d(W) = 1. This concludes the proof. �

The following result is the final lemma needed for the proof of Theorem 11.2.1.

Lemma 11.2.4 Let Y ⊂ B+ be a semaphore code, and let V �= B be a regular group
code. If Y ∗ ⊂ V ∗, then Y = (C∗D)d for some integer d, where C = B ∩ V and
D = B \ C. Moreover, C∗D is synchronized.

Proof. Let α : B∗ → G be a morphism onto a group G such that V ∗ = α−1(1). Since
V �= B, we have G �= {1}. We have

C = {b ∈ B | α(b) = 1}, D = {b ∈ B | α(b) �= 1}.

The set D is nonempty. We claim that for y ∈ Y , |y|D > 0. Assume the contrary,
and let y ∈ Y be such that |y|D = 0. Let b ∈ D. Then α(bu) �= 1 for each prefix
u of y since α(u) = 1. Thus no prefix of by is in V , whence in Y . On the other
hand, B∗Y ⊂ YB∗ because Y is a semaphore code (Proposition 3.5.4). This gives the
contradiction and proves the claim.

408 11 Groups of codes

td−1 td y

y1 w1

y2 w2

yd−1 wd−1

yd wd

v

t1

Figure 11.5

Set T = C∗D. Let d be the minimum value of |y|D for y ∈ Y . We will show that
for any t = t1t2 · · · td , with ti ∈ T and y ∈ Y such that |y|D = d, there is a word v in
Y such that y = tv and v is a prefix of y.

Indeed, since Y is a semaphore code, tdy ∈ YB∗. Therefore

tdy = y1w1

for some y1 ∈ Y , w1 ∈ B∗. We have |y1|D ≥ d by the minimality of d and |y1|D ≤
d + 1 since |y1|D ≤ |tdy|D = d + 1. If |y1|D = d + 1, then w1 ∈ C∗ and thus

α(y1) = α(y1w1) = α(td) �= 1,

a contradiction.
This implies that |y1|D = d, |w1|D = 1. In the same way, we get

td−1y1 = y2w2, . . . , t1yd−1 = ydwd,

where each of the y2, . . . , yd satisfies |yi |D = d, and each w2, . . . , wd is in C∗DC∗.
Composing these equalities, we obtain (see Figure 11.5)

ty = t1t2 · · · tdy = ydwdwd−1 · · ·w1. (11.7)

Since yd ∈ (C∗D)dC∗ and t ∈ (C∗D)d , we have

yd = t1t2 · · · tdv ∈ Y (11.8)

for some v ∈ C∗ which is also a prefix of y. This proves the claim.
This property holds in particular if t1 ∈ D, showing that Y contains a word x

(= yd) with d letters in D and starting with a letter in D, that is, x ∈ (DC∗)d .
Consequently x is one of the words in Y for which |x|D is minimal. Substitute x for
y in (11.7). Then starting with any word t = t1t2 · · · td ∈ T d , we obtain (11.8), with
v = 1, since v is in C∗ and is a prefix of x. This shows that t ∈ Y . Thus T d ⊂ Y .
Since T d is a maximal code, we have T d = Y . Since B∗b ⊂ T ∗ for b ∈ D, the code
T is synchronized. �

11.2 Synchronization of semaphore codes 409

1

2

3

4 a

b

a, b

a

b

a, b

Figure 11.6 The automaton A(X∗).

Proof of Theorem 11.2.1. Let X be a semaphore code. By Lemma 11.2.2, the group
G(X) is regular. In view of Proposition 11.2.3, we have

X = U ◦ V ◦ W,

where V is a regular group code and U and W are synchronized. Set Y = U ◦ V . If
d(V) = 1, then X is synchronized and there is nothing to prove. Otherwise, according
to Lemma 11.2.4, there exists a synchronized code T such that Y = T d . Thus

X = T d ◦ W = (T ◦ W)d .

The code Z = T ◦ W is synchronized because T and W are. Finally, since X = Zd

is a semaphore code, Z is a semaphore code by Corollary 3.5.12. This proves the
theorem. �

Example 11.2.5 Let Z be the semaphore code Z = {a, ba, bb} over A = {a, b}. This
code is synchronized since A∗a ⊂ Z∗. Set X = Z2. The minimal automaton A(X∗)
is given by Figure 11.6.

Let ϕ be the associated representation and M = ϕ(A∗). The element e = ϕ(a2) is
an idempotent of minimal rank 2 = d(X). ItsL-class is composed of two groups G1 =
H (e) and G2. The L-representation of M with respect to e is given in Figure 11.7,
with the notation a instead of ϕ(a) and the convention that the input is read from right
to left and the output is written from right to left. The prefix code W of Proposition
11.2.3 is W = Z. Indeed, we have a ∗ 1 = a ∗ 2 = (13); ba ∗ 1 = ba ∗ 2 = (13);
bb ∗ 1 = bb ∗ 2 = (13). In this case, the code U is trivial.

Example 11.2.6 Consider, over A = {a, b}, the synchronized semaphore code Z =
a∗b. Let X = Z2. The automaton A(X∗) is given in Figure 11.8. Let ϕ be the
associated representation. The element e = ϕ(b2) is an idempotent. Its set of fixed
points is {1, 3}. The L-class of e is reduced to the group H (e), and the monoid N of
the proof of Proposition 11.2.3 therefore is the whole monoid ϕ(A∗). Thus W = A.
The morphism α from A∗ into Ge is given by

α(a) = id{1,3}, α(b) = (13).

410 11 Groups of codes

1 2a|(13)

b|(1)

b|(13)

a|(13)

Figure 11.7 The L-representation of M .

12 3a

a
b

b

b

a

Figure 11.8 The automaton of X∗ = [(a∗b)2]∗.

We have X = U ◦ V with V = a ∪ ba∗b. This example illustrates the fact that even
when X is a semaphore code, the code U in the statement of Proposition 11.2.3 may
be nontrivial and that Lemma 11.2.4 is needed to obtain the decomposition X = Z2.

11.3 Group codes

Let us first recall the definition of a group code. Let G be a group, H a subgroup
of G. Let ϕ : A∗ → G be a surjective morphism. Then the submonoid ϕ−1(H) is
biunitary. It is generated by a bifix code called a group code.

A group code is a maximal code (see Section 2.2). It is thin if and only if it is
recognizable (Example 2.5.19), or equivalently, if the index of H in G is finite.

Rather than define a group code by an “abstract” group, it is frequently convenient
to use a permutation group. This is always possible for a group code X by considering
the minimal automaton of X∗. We give here the detailed description of the relation
between the initial pair (G,H) and the minimal automaton of X∗ (see also Section
1.13). Let G be a group and H a subgroup of G. Let Q be the set of the right cosets
of H in G, that is, the set of subsets of the form Hg, for g ∈ G. To each element g

in G, we associate a permutation π (g) of Q as follows: for p = Hk, we define

pπ (g) = Hkg.

It is easily verified that π is well defined and that it is a morphism from the group G

into the symmetric group over Q. The subgroup H is composed of the elements of
G whose image by π fixes the coset H . The index of H in G is equal to Card(Q). In
particular H has finite index in G if and only if π (G) is a finite group.

Now let ϕ : A∗ → G be a surjective morphism. Let X be the code generating
X∗ = ϕ−1(H). For all u, v ∈ A∗,

Hϕ(u) = Hϕ(v) ⇔ u−1X∗ = v−1X∗.

11.3 Group codes 411

Indeed, set g = ϕ(u), k = ϕ(v). Then Hg = Hk if and only if g−1H = k−1H (since
(Hg)−1 = g−1H). Further u−1X∗ = ϕ−1(g−1H), v−1X = ϕ−1(k−1H). This proves
the formula.

According to Example 6.3.2, we have the equality

Card(Q) = d(X). (11.9)

Theorem 11.3.1 Let X ⊂ A+ be a group code. If X is finite, then X = Ad for some
integer d.

Proof. Let A = (Q, 1, 1) be the minimal automaton of X∗, and let ϕ be the associated
representation. Let d be the degree of X. Then d = Card(Q) by (11.9).

Consider the relation on Q defined as follows: for p, q ∈ Q, we have p ≤ q if and
only if p = q or q �= 1 and there exists a simple path from p to q in A. Thus p ≤ q

if and only if p = q, or there exists a word w ∈ A∗ such that both p · w = q and
p · u �= 1 for each left factor u �= 1 of w. This relation is reflexive and transitive.

If X is finite, then the relation ≤ is an order on Q. Assume indeed that p ≤ q and
q ≤ p. Then either p = 1 and q = 1 or both p �= 1, q �= 1. In the second case, there

exist simple paths p
w−→ q and q

w′−→ p. There are also simple paths

1
u−→ p, p

v−→ 1.

This implies that, for all i ≥ 0, the paths

1
u−→ p

(ww′)i−−−→ p
v−→ 1

are simple, showing that u(ww′)∗v ⊂ X. Since X is finite, this implies ww′ = 1,
whence p = q. Thus ≤ is an order. Now let a, b ∈ A be two letters. According to
Proposition 6.5.1, we have

ad, bd ∈ X.

It follows that none of the states 1 · ai, 1 · bi for 1 < i < d is equal to 1. Consequently,

1 < 1 · a < 1 · a2 < · · · < 1 · ai < · · · < 1 · ad−1

and

1 < 1 · b < 1b2 < · · · < 1 · bi < · · · < 1 · bd−1.

Since Q has d states, this implies that 1 · ai = 1 · bi for all i ≥ 0. Therefore ϕ(a) =
ϕ(b) for all a, b ∈ A. We get that for all w ∈ A∗ of length n, we have w ∈ X∗ if and
only if an ∈ X∗, that is if and only if n is a multiple of d. This shows that X = Ad . �

The following theorem gives a sufficient condition, concerning the group G(X),
for a bifix code to be a group code. It will be useful later, in Section 11.6.

Theorem 11.3.2 Let X be a thin maximal bifix code. If the group G(X) is regular,
then X is a group code.

412 11 Groups of codes

Proof. According to Proposition 11.2.3, there exist two synchronized codes U , W

and a group code V such that

X = U ◦ V ◦ W.

Since X is thin maximal bifix, so are U and W (Proposition 2.6.13). Since U and W

are synchronized, they are reduced to their alphabets (Example 3.6.6). Thus, X = V

and this gives the result. �

Theorem 11.3.3 Let X ⊂ A+ be a code with A = alph(X). Then X is a regular
group code if and only if X∗ is closed under conjugacy.

Proof. If X is a regular group code, the syntactic monoid of X∗ is a group G = ϕ(A∗)
and X∗ = ϕ−1(1). If uv ∈ X∗, then ϕ(u)ϕ(v) = 1, hence also ϕ(v)ϕ(u) = 1, showing
that vu is in X∗.

To show the other implication, let us first show that X is bifix. Let u, v ∈ A∗ be such
that u, uv ∈ X∗. Then also vu ∈ X∗. Since X∗ is stable, it follows that v ∈ X∗. Thus,
X∗ is right unitary. The proof for left unitarity is analogous. Now let M = ϕ(A∗)
be the syntactic monoid of X∗. We verify that ϕ(X∗) = 1. For x ∈ X∗, we have the
equivalences

uxv ∈ X∗ ⇔ xvu ∈ X∗ ⇔ vu ∈ X∗ ⇔ uv ∈ X∗.

Therefore ϕ(x) = ϕ(1). Since ϕ(1) = 1, it follows that ϕ(X∗) = 1.
Finally, we show that M is a group. From A = alph(X) , for each letter a ∈ A,

there exists x ∈ X of the form x = uav. Then avu ∈ X∗, whence ϕ(a)ϕ(vu) = 1.
This shows that all elements ϕ(a), for a ∈ A, are invertible. This implies that M is a
group. �

Corollary 11.3.4 Let X ⊂ A+ be a finite code with A = alph(X). If X∗ is closed
under conjugacy, then X = Ad for some d ≥ 1.

11.4 Automata of bifix codes

The general theory of unambiguous monoids of relations takes a nice form in the
case of bifix codes, since the automata satisfy some additional properties. Thus, the
property to be bifix can be “read” on the automaton.

Proposition 11.4.1 Let X be a thin maximal prefix code over A, and letA = (Q, 1, 1)
be a deterministic trim automaton recognizing X∗. The following conditions are
equivalent.

(i) X is maximal bifix.
(ii) For all w ∈ A∗, we have 1 ∈ Q · w.

(iii) For all w ∈ A∗, q · w = 1 · w implies q = 1.

11.4 Automata of bifix codes 413

Proof. In a first step, we show that

(ii) ⇔ X is left complete. (11.10)

If (ii) is satisfied, consider a word w, and let q ∈ Q be a state such that q · w = 1.
Choose u ∈ A∗ satisfying 1 · u = q. Then 1 · uw = 1, whence uw ∈ X∗. This shows
that X is left complete. Conversely, assume X left complete. Let w ∈ A∗. Then
there exists u ∈ A∗ such that uw ∈ X∗. Thus, 1 = 1 · uw = (1 · u) · w shows that
1 ∈ Q · w.

Next, the equivalence

(iii) ⇔ X∗is left unitary (11.11)

is precisely Proposition 6.1.14. In view of (11.10) and (11.11), the proposition is a
direct consequence of Proposition 6.2.1. �

Let X be a thin maximal bifix code, and let A = (Q, 1, 1) be a trim deterministic
automaton recognizing X∗. Then the automaton A is complete, and the monoid
M = ϕA(A∗) is a monoid of (total) functions. The minimal ideal J is composed of
the functions m such that Card(Im(m)) = rank(m) equals the minimal rank r(M)
of M . The H-classes of J are indexed by the minimal images and by the maximal
nuclear equivalences (Proposition 9.4.10). Each state appears in at least one minimal
image and the state 1 is in all minimal images. Each H-class H meets ϕ(X∗) and
the intersection is a subgroup of H . Note the following important fact: If S is a
minimal image and w is any word, then T = S · w is again a minimal image. Thus,
Card(S) = Card(T) and consequently w realizes a bijection from S onto T .

We will be interested in the minimal automaton A(X∗) of X∗. According to
Proposition 3.3.11, this automaton is complete and has a unique final state coinciding
with the initial state. This shows that A(X∗) is of the form considered above.

Let ϕ be the representation associated with the minimal automatonA(X∗) = (Q, 1,

1), and let M = ϕ(A∗). Let J be the minimal ideal of M . We define

J (X) = ϕ−1(J).

This is an ideal in A∗. Moreover, we have

w ∈ J (X) ⇔ S · w = T · w for all minimal images S, T of A. (11.12)

Indeed, let w ∈ J (X). Then U = Q · w is a minimal image. For any minimal image
T , we have T · w ⊂ Q · w = U , hence T · w = U since T · w is minimal. Thus,
T · w = S · w = Q · w. Conversely, assume that for w ∈ A∗, we have S · w = T · w
for all minimal images S, T . Set U equal to this common image. Since every state in
Q appears in at least one minimal image, we have

Q · w =
(⋃

S

S
)
· w =

⋃
S

S · w = U,

where the union is over the minimal images. This shows that ϕ(w) has minimal rank,
and consequently w ∈ J (X). The equivalence (11.12) is proved.

414 11 Groups of codes

Proposition 11.4.2 Let X be a thin maximal bifix code and let A(X∗) = (Q, 1, 1)
be the minimal automaton of X∗. Let p, q ∈ Q be two states. If p · h = q · h for all
h ∈ J (X), then p = q.

Proof. It suffices to prove that for all w ∈ A∗, p · w = 1 if and only if q · w = 1. The
conclusion, namely that p = q, follows then by the definition of A(X∗).

Let h ∈ J (X) ∩ X∗. Let w ∈ A∗ be such that p · w = 1. We must show that q ·
w = 1. We have p · wh = (p · w) · h = 1 · h = 1, since h ∈ X∗. Now wh ∈ J (X),
hence by assumption q · wh = p · wh = 1. Thus, (q · w) · h = 1. By Proposition
11.4.1(iii), it follows that q · w = 1. This proves the proposition. �

For a transitive permutation group G of degree d it is customary to consider the
number k(G) which is the maximum number of fixed points of an element of G

distinct from the identity. The minimal degree of G is the number d − k(G). The
group is regular if and only if k(G) = 0; it is a Frobenius group if k(G) = 1.

If X is a code of degree d and with group G(X), we denote by k(X) the integer
k(G(X)). We will prove

Theorem 11.4.3 Let X ⊂ A+ be a thin maximal bifix code of degree d, and let
k = k(X). Then

Ak \ A∗XA∗ ⊂ J (X).

We use the following preliminary result.

Lemma 11.4.4 With the above notation, let A = (Q, 1, 1) be the minimal automaton
recognizing X∗. For any two distinct minimal images S and T of A, we have

Card(S ∩ T) ≤ k.

Proof. Let M = ϕA(A∗), and consider an idempotent e ∈ M having image S, that is,
such that Qe = S. Consider an element t ∈ T \ S, and set s = te. Then s ∈ S, and
therefore, s �= t . We will prove that there is an idempotent f separating s and t , that
is, such that sf �= tf .

According to Proposition 11.4.2, there exists h ∈ J (X) such that s · h �= t · h. Let
m = ϕ(h) ∈ J , where J is the minimal ideal of M . Multiplying on the right by a
convenient element n ∈ M , the element mn ∈ J will be in the L-class characterized
by the minimal image T . Since n realizes a bijection from Im(m) onto Im(mn) = T

we have smn �= tmn. Let f be the idempotent of the H-class of mn. Then f and mn

have the same nuclear equivalence. Consequently sf �= tf . Since t ∈ T = Im(mn) =
Im(f) = Fix(f), we have tf = t .

Consider now the restriction to T of the mapping ef . For all p ∈ S ∩ T , we obtain
pef = pf = p. This shows that ef fixes the states in S ∩ T . Further, since s = te,
t(ef) = sf �= t , showing that ef is not the identity on T . Thus, by definition of k,
we have Card(S ∩ T) ≤ k. �

Proof of Theorem 11.4.3. Let A = (Q, 1, 1) be the minimal automaton of X∗. Let
w ∈ A∗ \ A∗XA∗ and set w = a1a2 · · · ak with ai ∈ A. Let S be a minimal image.

11.4 Automata of bifix codes 415

Table 11.4 The automaton
A(X∗).

1 2 3 4 5

a 1 4 5 2 3

b 2 3 1 1 3

For each i = 1, . . . , k, the word a1a2 · · · ai defines a bijection from S onto Si =
S · a1a2 · · · ai . Since Si is a minimal image, it contains the state 1. Thus Sk contains
all the k + 1 states

1 · a1a2 · · · ak, 1 · a2 · · · ak, . . . , 1 · ak, 1.

These states are distinct. Indeed, assume that

1 · aiai+1 · · · ak = 1 · aj · · · ak

for some i < j . Then setting q = 1 · aiai+1 · · · aj−1, we get q · aj · · · ak = 1 ·
aj · · · ak . By Proposition 11.4.1, this implies q = 1. But then w ∈ A∗XA∗, contrary
to the assumption.

This implies that S · w contains k + 1 states which are determined in a way inde-
pendent from S. In other words, if T is another minimal image, then T · w contains
these same k + 1 states. This means that Card(T · w ∩ S · w) ≥ k + 1, and by Lemma
11.4.4, we have S · w = T · w. Thus two arbitrary minimal images have the same
image by w. This shows by (11.12) that w is in J (X). �

Remark 11.4.5 Consider, in Theorem 11.4.3, the special case where k = 0, that is,
where the group G(X) is regular. Then 1 ∈ J (X). Now

1 ∈ J (X) ⇔ Xis a group code. (11.13)

Indeed, if 1 ∈ J (X), then the syntactic monoid M = ϕA(X∗)(A∗) coincides with its
minimal ideal. This minimal ideal is a single group since it contains the neutral
element of M . The converse is clear. Thus we obtain, in another way, Theorem
11.3.2.

Example 11.4.6 If X is a thin maximal bifix code over A with degree d(X) = 3, then
k = 0 (if G(X) = Z/3Z) or k = 1 (if G(X) = S3). In the second case by Theorem
11.4.3, we have

A \ X ⊂ J (X).

The following example shows that the inclusion A ⊂ J (X) does not always hold.
Let X be the maximal prefix code over A = {a, b} defined by the automatonA(X∗) =
(Q, 1, 1) with Q = {1, 2, 3, 4, 5} and transition function given in Table 11.4.

The set of images, together with the actions by a and b, is given in Figure 11.9. Each
of the images contains the state 1. Consequently X is a bifix code. We have d(X) = 3

416 11 Groups of codes

12345 123 145ba

a

b

a, b

Figure 11.9 The diagram of images.

(which is the number of elements of the minimal images). We have Q · b = {1, 2, 3}.
Thus ϕA(b) has minimal rank; consequently b ∈ J (X). However, a /∈ J (X) since
Q · a = Q. In fact a ∈ X, in agreement with Theorem 11.4.3.

Theorem 11.4.7 Let X be a thin maximal bifix code. Then the code X is indecom-
posable if and only if G(X) is a primitive group.

Proof. If X = Y ◦ Z, then Y and Z are thin maximal bifix codes by Proposition
2.6.13. According to Proposition 11.1.2, there exists an imprimitivity partition θ of
G(X) such that Gθ = G(Y) and Gθ = G(Z). If G(X) is primitive, then Gθ = 1 or
Gθ = 1. In the first case, d(Y) = 1, implying X = Z. In the second case, d(Z) = 1,
whence Z = A. Thus, the code X is indecomposable.

The converse implication follows directly from Corollary 11.1.7. �

11.5 Depth

Let S be a finite semigroup, and let J be its minimal (two-sided) ideal. We say that
S is nil-simple if there exists an integer n ≥ 1 such that

Sn ⊂ J. (11.14)

The smallest integer n ≥ 1 satisfying (11.14) is called the depth of S. Since Sn is,
for all n, a two-sided ideal, (11.14) is equivalent to Sn = J , which in turn implies
Sn = Sn+1.

We shall use nil-simple semigroups for a characterization of bifix codes. Before
stating this result, we have to establish a property which is interesting in itself.

Proposition 11.5.1 Let X ⊂ A+ be a thin maximal bifix code, and let A = (Q, 1, 1)
be an unambiguous trim automaton recognizing X∗. Let J be the minimal ideal of
ϕA(A∗). Then

ϕA(H̄ (X)) ⊂ J.

Recall that H (X) = A−XA− is the set of internal factors of X, and H̄ (X) = A∗ \
H (X).

Proof. Let ϕD be the representation associated with the flower automaton of X,
set MD = ϕD(A∗) and let JD be the minimal ideal of MD . It suffices to prove
the result for ϕD . Indeed, there exists by Proposition 4.2.5, a surjective morphism
ρ̂ : MD → ϕA(A∗) such that ϕA = ρ̂ ◦ ϕD , we have ρ̂(JD) = J .

11.5 Depth 417

Thus the inclusion ϕD(H̄ (X)) ⊂ JD implies ϕA(H̄ (X)) ⊂ ρ̂(JD) = J . It remains
to prove the inclusion ϕD(H̄ (X)) ⊂ JD .

Let AD = (Q, (1, 1)(1, 1)) be the flower automaton of X. Let w ∈ H̄ (X). Then
w has d = d(X) interpretations. We prove that rank(ϕD(w)) = d. Since this is the
minimal rank, it implies that ϕD(w) is in JD .

Clearly rank(ϕD(w)) ≥ d. To prove the converse inequality, let I be the set com-
posed of the d interpretations of w. We define two relations

α ∈ {0, 1}Q×I , β ∈ {0, 1}I×Q

as follows : if (u, v) ∈ Q, and (s, x, p) ∈ I , with s ∈ A−X, x ∈ X∗, p ∈ XA−, then

((u, v), α, (s, x, p)) = δv,s, ((s, x, p,), β, (u, v)) = δp,u,

where δ is the Kronecker symbol. We claim that

ϕD(w) = αβ.

Assume first that (u, v)αβ(u′, v′). Then there exists an interpretation i = (v, x, u′)
∈ I such that (u, v)αiβ(u′, v′). Note that i is uniquely determined by v or by u′,
because X is bifix. Next w ∈ vX∗u′, showing that ((u, v), ϕD(w), (u′, v′)) = 1.

Conversely, assume that ((u, v), ϕD(w), (u′, v′)) = 1. Then either uw = u′ and v =
wv′, or w ∈ vX∗u′. The first possibility implies the second one: Indeed, if uw = u′

and v = wv′, then uwv′ ∈ X. Since w ∈ H̄ (X) this implies u = v′ = 1 = u′ = v. It
follows that w ∈ vX∗u′. Thus, w = vxu′ for some x ∈ X∗, showing that i = (v, x, u′)
is an interpretation of w. Consequently, (u, v)αi and iβ(u′, v′). This proves (11.5).
By (11.5), we have rank ϕD(w) ≤ Card(I) = d(X). �

The following result gives an algebraic characterization of finite maximal bifix codes.
The proof uses Theorem 5.2.4 on codes with finite deciphering delay.

Theorem 11.5.2 Let X ⊂ A+ be a finite maximal code, and let A = (Q, 1, 1) be
an unambiguous trim automaton recognizing X∗. The two following conditions are
equivalent.

(i) X is bifix.
(ii) The semigroup ϕA(A+) is nil-simple.

Proof. Set ϕ = ϕA, and set S = ϕ(A+). Let J be the minimal ideal of S.
(i) ⇒(ii). Let n be the maximum of the lengths of words in X. A word in X of

length n cannot be an internal factor of X, showing that AnA∗ ⊂ H̄ (X). Observe
that AnA∗ = (A+)n. This implies that Sn = ϕ((A+)n) ⊂ ϕ(H̄ (X)). By Proposition
11.5.1, we obtain Sn ⊂ J , showing that S is nil-simple.

(ii) ⇒ (i). Let n be the depth of S. Then for all y ∈ AnA∗ = (A+)n, we have
ϕ(y) ∈ J . We prove that for any y ∈ Xn, and for all x ∈ X∗, u ∈ A∗,

xyu ∈ X∗ ⇒ yu ∈ X∗. (11.15)

418 11 Groups of codes

1 2

a

b

b a

Figure 11.10 The minimal automaton of (a∗b)∗.

The semigroup S contains no zero. Further, the elements ϕ(y) and ϕ(yxy) of ϕ(X∗)
are in the same group, say G, of the minimal ideal, because ϕ(yxy) = ϕ(yx)ϕ(y) and
ϕ(y) = [ϕ(yx)]−1ϕ(yxy), showing that ϕ(y)Lϕ(yxy). The same argument holds for
the other side. In fact, both ϕ(yx) and ϕ(yx)−1 are in the subgroup G ∩ ϕ(X∗). Thus
there exists some r ∈ X∗ such that ϕ(yx)−1 = ϕ(r), or also ϕ(y) = ϕ(r)ϕ(yxy).

This gives

ϕ(yu) = ϕ(r)ϕ(y)ϕ(xyu) ∈ ϕ(X∗),

showing that yu ∈ X∗. This proves (11.15).
Formula (11.15) shows that every word in Xn is simplifying. In view of Proposi-

tion 5.1.5, the code X has deciphering delay n. According to Theorem 5.2.4, X is a
prefix code. Symmetrically, X is suffix. Thus X is a bifix code. �

Example 11.5.3 Consider again the maximal bifix code X of Example 11.4.6. The
semigroup ϕA(X∗)(A+) is not nil-simple. Indeed, ϕ(a) is a permutation of Q and thus
ϕ(an) �∈ J for all n ≥ 1. This shows that the implication (i) ⇒ (ii) of Theorem 11.5.2
is in general false without the assumption of finiteness on the code.

Example 11.5.4 Let A = {a, b} and X = a∗b. The code X is maximal prefix, but is
not suffix. The automaton A(X∗) is given in Figure 11.10.

The semigroup ϕ(A+) is nil-simple: it is composed of the two constant functions
ϕ(a) and ϕ(b). This example shows in addition that the implication (ii) ⇒ (i) of
Theorem 11.5.2 may become false if the code is infinite.

11.6 Groups of finite bifix codes

In the case of a thin maximal bifix code X, theL-representation, introduced in Chapter
9 (Section 9.2), of the minimal automaton of X∗ takes a particular form which makes
it easy to manipulate.

Consider a thin maximal bifix code X ⊂ A+ of degree d, let A(X∗) = (Q, 1, 1)
be the minimal (deterministic) automaton of X∗ and let ϕ = ϕA(X∗) be the associated
representation. Finally, let M = ϕ(A∗) and let J be the minimal ideal of M . Each
H-class of J is a group. Fix an idempotent e ∈ J , let S = Im(e) = Fix(e), and let �

be the set ofH-classes of theL-class of e. Denote by eH the idempotent of theH-class
H ∈ �. The set of pairs (eH , e)H∈� constitutes a system of coordinates. Indeed, for
H ∈ �,

eH e = eH , eeH = e.

11.6 Groups of finite bifix codes 419

If e = �r is the column-row decomposition of e, then for H ∈ �, eH = �H r , with
�H = eH �, is the column-row decomposition of eH . The notations of Section 9.2 then
simplify considerably. In particular, for m ∈ M and H ∈ �,

m ∗ H = rm�H = r(emeH)�.

Of course, m ∗ H ∈ Ge. As we will see, this can be used to define a function

A∗ × J (X) → Ge,

where J (X) = ϕ−1(J) as in the previous section. Let u ∈ A∗ and let k ∈ J (X). Then
ϕ(k) ∈ J , and corresponding to this element, there is an H-class denoted H (k) in �

which by definition is the intersection of the R-class of ϕ(k) and of the L-class of e.
In other words, H (k) = Me ∩ ϕ(k)M .

We define a function from A∗ × J (X) into Ge by setting u ∗ k = ϕ(u) ∗ H (k). Then

u ∗ k = rϕ(u)�H (k) = reϕ(u)eH (k)�.

Consequently u ∗ k ∈ Ge. It is a permutation on the set S = Fix(e) obtained by
restriction to S of the relation eϕ(u)eH (k) .

The following explicit characterization of u ∗ k is the basic formula for the com-
putations. For u ∈ A∗, k ∈ J (X), we have for s, t ∈ S,

s(u ∗ k) = t ⇐⇒ s · uk = t · k. (11.16)

In this formula, the computation of s · uk and t · k is of course done in the automaton
A(X∗). Let us verify (11.16). If s(u ∗ k) = t , then seϕ(u)eH (k) = t . From se = s, it
follows that sϕ(u)eH (k) = t . Taking the image by ϕ(k), we obtain

sϕ(u)eH (k)ϕ(k) = tϕ(k).

Since eH (k)ϕ(k) = ϕ(k), we get that sϕ(uk) = tϕ(k), or in other words, s · uk = t · k.
Conversely, assume that sϕ(uk) = tϕ(k). Let m ∈ M be such that ϕ(k)m = eH (k) .

Then sϕ(u)ϕ(k)m = tϕ(k)m implies sϕ(u)eH (k) = teH (k) . Since se = s and te = t ,
we get

seϕ(u)eH (k) = teeH (k) = te = t,

showing that s(u ∗ k) = t . This proves (11.16).
The function from A∗ × J (X) into Ge defined above is called the ergodic repre-

sentation of X (relative to e). We will manipulate it via the relation (11.16). Note the
following formulas which are the translation of the corresponding relations given in
Section 9.2, and which also can be simply proved directly using Formula (11.16).
For u ∈ A∗, k ∈ J (X), and v ∈ A∗,

u ∗ kv = u ∗ k, (11.17)

uv ∗ k = (u ∗ vk)(v ∗ k). (11.18)

420 11 Groups of codes

Proposition 11.6.1 Let X ⊂ A+ be a thin maximal bifix code, and let R = J (X) \
J (X)A+ be the basis of the right ideal J (X). Let e be an idempotent in the min-
imal ideal of ϕA(X∗)(A∗) and let S = Fix(e). The group G(X) is equivalent to the
permutation group over S generated by the permutations a ∗ r , with a ∈ A, r ∈ R.

Proof. It suffices to show that the permutations a ∗ r generate Ge, since Ge is equiv-
alent to G(X). Set ϕ = ϕA(X∗). Every permutation u ∗ k, for u ∈ A∗ and k ∈ J (X),
clearly is in Ge. Conversely, consider a permutation σ ∈ Ge. Let g ∈ G(e) be the
element giving σ by restriction to S, and let u ∈ ϕ−1(g), k ∈ ϕ−1(e). Then u ∗ k is
the restriction to S of eϕ(u)eH (k) = eϕ(u)e = g. Thus u ∗ k = σ .

Consequently Ge = {u ∗ k | u ∈ A∗, k ∈ J (X)}. For u = a1a2 · · · an with ai ∈ A,
and k ∈ J (X), we get, by (11.18),

u ∗ k = (a1 ∗ a2a3 · · · ank)(a2 ∗ a3 · · · ank) · · · (an ∗ k).

This shows that Ge is generated by the permutations a ∗ k, for a in A and k in J (X).
Now for each k in J (X), there exists r ∈ R such that k ∈ rA∗. By (11.17), we have
a ∗ k = a ∗ r . This completes the proof. �

Note that Proposition 11.6.1 can also be derived from Proposition 9.2.1.

Proposition 11.6.2 Let X be a finite maximal bifix code over A of degree d and
let ϕ = ϕA(X∗). For each letter a ∈ A, we have ad ∈ J (X) ∩ X and ϕ(ad) is an
idempotent.

Proof. Let A(X∗) = (Q, 1, 1). By Proposition 6.5.1, we have ad ∈ X for a ∈ A. The
states

1, 1 · a, . . . , 1 · ad−1

are distinct. Indeed, if 1 · ai = 1 · aj for some 0 ≤ i < j ≤ d − 1, then setting q =
1 · aj , we would have q · ad−j = 1 and 1 · ad−j+i = 1, whence ad−j+i ∈ X∗. Since
d − j + i < d, this contradicts the fact that X is prefix. Moreover, we have

Im(ad) = Q · ad = {1, 1 · a, . . . , 1 · ad−1}.
Indeed, let q ∈ Q, q �= 1, and let w ∈ XA− be a word such that 1 · w = q. Since X

is right complete and finite there exists a power of a, say aj , such that waj ∈ X.
Then j < d since X is suffix, and j > 0 since w �∈ X. Thus q · aj = 1 and q · ad =
1 · ad−j ∈ {1, 1 · a, . . . , 1 · ad−1}. This proves that Im(ad) ⊂ {1, 1 · a, . . . , 1 · ad−1}.
The converse inclusion is a consequence of (1 · ai) · ad = 1 · ad+i = 1 · ai , for i =
0, . . . , d − 1.

Thus ϕ(ad) has rank d, showing that ϕ(ad) is in the minimal ideal of ϕ(A∗), which
in turn implies that ad ∈ J (X). Next (1 · aj) · ad = 1 · aj for j = 0, . . . , d − 1.
It follows that ϕ(ad) is the identity on its image. This proves that ϕ(ad) is an
idempotent. �

Proposition 11.6.2 shows that in the case of a finite maximal bifix code X, a
particular ergodic representation can be chosen by taking, as basic idempotent for the

11.6 Groups of finite bifix codes 421

1

2

3
1

5
1

1
1

4

3
1

5
1

1
5

1

1

Figure 11.11 Transitions for a bifix code.

system of coordinates, the d(X)-th power of any of the letters a of the alphabet. More
precisely, let A(X∗) = (Q, 1, 1) and let ϕ be the associated morphism, set e = ϕ(ad),
and identify i with 1 · ai−1, for 1 ≤ i ≤ d. The ergodic representation relative to
the idempotent ϕ(ad) is denoted by ∗a . It is defined, for u ∈ A∗, k ∈ J (X), and for
1 ≤ i, j ≤ d, by

i(u ∗a k) = j ⇔ i · uk = j · k ⇔ 1 · ai−1uk = 1 · aj−1k. (11.19)

Observe that for u = a and for any k ∈ J (X),

a ∗a k = α

with α = (1 2 · · · d). Indeed, by (11.19) i(a ∗a k) = j if and only if i · ak = j · k,
thus if and only if (i + 1) · k = j · k. Since k induces a bijection from S onto S · k,
this implies j = i + 1, which is the claim.

Example 11.6.3 Let A = {a, b}, and consider the finite maximal bifix code X ⊂ A+

of degree 3 with kernel K(X) = {ab}. The transitions of the minimal automaton of
X∗, with states {1, 2, 3, 4, 5}, are given in Figure 11.11.

The letters a and b define mappings ϕ(a) and ϕ(b) of rank 3. Thus a, b ∈ J (X). We
consider the ergodic representation ∗a , that is relative to the idempotent e = ϕ(a3).
To compute it, it is sufficient (according to Proposition 11.6.1) to compute the four
permutations a ∗a a, a ∗a b, b ∗a a, b ∗a b by using (11.19). For instance, we have
i(a ∗a a) = j ⇔ i · a2 = j · a ⇔ i + 1 = j mod 3. The permutations are easily seen
to be

a ∗a a = a ∗a b = (123), b ∗a a = (12), b ∗a b = (132).

The group G(X) therefore is the symmetric group over S.

Proposition 11.6.4 Let X ⊂ A+ be a finite maximal bifix code of degree d, and let
a ∈ A. Then a ∗a ad is a cycle of length d.

Proof. By (11.19),

i(a ∗a ad) = j ⇔ i · ad+1 = j · ad.

422 11 Groups of codes

This is equivalent to i · a = j , or i + 1 = j mod d. Thus i(a ∗a ad) ≡ i + 1 mod d,
proving the statement. �

We are now ready to study the groups of finite bifix codes. We recall that a transitive
permutation group G of degree d ≥ 2 is called a Frobenius group if k(G) = 1.

Theorem 11.6.5 Let X be a finite maximal bifix code of degree d ≥ 4. Then G(X) is
not a Frobenius group.

Proof. Let A = (Q, 1, 1) be the minimal automaton of X∗. Since d ≥ 4, no letter is
in X. Arguing by contradiction, we suppose that G(X) is a Frobenius group. Thus
k(G(X)) = 1. By Theorem 11.4.3, we have A ⊂ J (X). This means that for all a ∈ A,
Im(a) has d elements.

Let a ∈ A be a letter, and set S = Im(ad) = {1, 2, . . . , d}, where, for 1 ≤ i ≤ d,
i = 1 · ai−1. Consider the ergodic representation ∗a , and set

α = a ∗a a, β = b ∗a a,

where b ∈ A is an arbitrary letter. We want to prove that β = α.
Note that, by (11.19) and (11.6) we have for i ∈ S, i · ba = iβ · a, and

i · α =
{

i + 1 if i < d,

1 if i = d.

Since S · b is a minimal image, it contains the state 1. Thus there exists a (unique) state
q ′ ∈ S such that q ′ · b = 1. For the same reason, there exists a unique state q ′′ ∈ S

such that q ′′ · ba = 1. We claim that q ′β = 1, q ′′β = d. Indeed, we have 1 · a =
q ′ · ba = q ′β · a. Next q ′′ · ba = q ′′β · a = 1 = d · a. Since a defines a bijection
from S onto itself, it follows that 1 = q ′β and q ′′β = d. This proves the claim.

Now we verify that

qβ ≥ q for q ∈ S, q �= q ′. (11.20)

First, we observe that the inequality holds for q ′′, since q ′′β = d. Arguing by contra-
diction, suppose that qβ = p < q for some q ∈ S, q �= q ′, q ′′. Then

qβ · a = q · ba = p · a = p + 1 ≤ q.

Setting n = q − (p + 1), it follows that q · ban+1 = q. Consider the path

q
ban+1−−−→ q.

Since q �= q ′, q ′′, we have q · b �= 1, q · ba �= 1. Also q · bai = p + i �= 1 for i =
1, . . . , n + 1. Thus this path is simple. Consequently,

aq−1(ban+1)∗ad−q+1 ⊂ X

contradicting the finiteness of X. This proves (11.20).

11.6 Groups of finite bifix codes 423

It follows from this equality that there exists at most one state q ∈ S such that
qβ < q, namely the state q ′. This implies that the permutation β is composed of at
most one cycle (of length > 1) and the remaining states are fixed points. Further,
β cannot be the identity on S, since otherwise the relation q ′β = 1 would imply
q ′ = 1, hence 1 · b = 1 and b ∈ X which is not true. Now by assumption, G(X) is
a Frobenius group. This shows that β has at most one fixed point. If β has no fixed
point, then the inequalities in (11.20) are strict and this implies that

β = (123 · · · d) = α.

Assume now that β has just one fixed point i. Then β = (123 · · · i − 1i + 1 · · · d)(i).
This implies that

β−1α =
{

(i, i + 1) if i �= d,

(d1) if i = d.

Since β−1α ∈ G(X) and β−1α has d − 2 fixed points, G(X) can be a Frobenius group
only if d ≤ 3. This gives a contradiction and proves that indeed α = β.

It follows from (11.19) and from the equality α = β that i · ba = i · a2 for i ∈ S.
This shows that for m ≥ 0,

1 · amba = 1 · am+2. (11.21)

Observe that this formula holds for arbitrary letters a, b ∈ A. This leads to another
formula, namely, for i ≥ 0 and a, b ∈ A,

aib = 1 · bi+1. (11.22)

This formula holds indeed for a, b ∈ A and i = 0. Arguing by induction, we suppose
that (11.22) holds for some i ≥ 0, and for all a, b ∈ A. Then we have, for a, b ∈ A,
also 1 · bia = 1 · ai+1, whence 1 · biab = 1 · ai+1b. Apply (11.21). We get

1 · ai+1b = 1 · biab = 1 · bi+2.

This proves (11.22).
Finally we show, by a descending induction on i ∈ {0, 1, . . . , d}, that for all a ∈ A,

1 · aiAd−i = {1}.

This holds for i = d, and for i < d we have

1 · aiAd−i =
⋃
b∈A

1 · aibAd−i−1 =
⋃
b∈A

1 · bi+1Ad−i−1 = 1

by using (11.22). This proves the formula. For i = 0, it becomes 1 · Ad = {1}, show-
ing that Ad ⊂ X. This implies that Ad = X. Since G(Ad) is a cyclic group, it is not
a Frobenius group. This gives the contradiction and concludes the proof. �

424 11 Groups of codes

Remark 11.6.6 Consider a finite maximal bifix code X of degree at most 3. If the
degree is 1 or 2, then the code is uniform, and the group is a cyclic group. If d(X) = 3,
then G(X) is either the symmetric group S3 or the cyclic group over 3 elements. The
latter group is regular, and according to Theorems 11.3.2 and 11.3.1, the code X is
uniform. Thus except for the uniform code, all finite maximal bifix codes of degree
3 have as a group S3 which is a Frobenius group.

We now establish an interesting property of the groups of bifix codes. For this,
we use a result from the theory of permutation groups which we formulate for
convenience as stated in Theorem 11.6.7. References for proofs are given in the
Notes. Recall that a permutation group G over a set Q is k-transitive if for all
(p1, . . . , pk) ∈ Qk and (q1, . . . , qk) ∈ Qk composed of distinct elements, there exists
g ∈ G such that p1g = q1, . . . , pkg = qk . This shows that 1-transitive groups are
precisely the transitive groups. A 2-transitive group is usually called doubly transitive.

Theorem 11.6.7 Let G be a primitive permutation group of degree d containing a
d-cycle. Then either G is a regular group or a Frobenius group or is doubly transitive.

Theorem 11.6.8 Let X be a finite maximal bifix code over A. If X is indecomposable
and not uniform, then G(X) is doubly transitive.

Proof. According to Theorem 11.4.7, the group G(X) is primitive. Let d be its degree.
In view of Proposition 11.6.4, G(X) contains a d-cycle. By Theorem 11.6.7, three
cases may arise. Either G(X) is regular and then, by Theorem 11.3.2, X is a group
code and by Theorem 11.3.1 the code X is uniform. Or G(X) is a Frobenius group.
By Theorem 11.6.5, we have d ≤ 3. The only group of a nonuniform code then is S3,
as shown in the remark. This group is both a Frobenius group and doubly transitive.
Thus in any case, the group is doubly transitive. �

In Theorem 11.6.8, the condition on X to be indecomposable is necessary. Indeed,
otherwise by Theorem 11.4.7, the group G(X) would be imprimitive. But it is known
that a doubly transitive group is primitive (Proposition 1.13.6).

There is an interesting combinatorial interpretation of the fact that the group of a
bifix code is doubly transitive.

Proposition 11.6.9 Let X be a thin maximal bifix code over A, and let P = XA−.
The group G(X) is doubly transitive if and only if for all p, q ∈ P \ {1}, there exist
x, y ∈ X∗ such that px = yq.

Proof. Let ϕ be the representation associated with the literal automaton A = (P, 1, 1)
of X∗. Let d = d(X), and let e be an idempotent of rank d in ϕ(X∗). Let S = Fix(e).
We have 1 ∈ S, since S = Im(e).

Let p, q ∈ S \ {1}, and assume that there exist x, y ∈ X∗ such that px = yq. We
have 1 · p = p and 1 · q = q, whence

p · x = 1 · px = 1 · yq = 1 · q = q.

11.7 Examples 425

This shows that for the element eϕ(x)e ∈ G(e), we have peϕ(x)e = q. Since
1eϕ(x)e = 1, this shows that the restriction to S of eϕ(x)e, which is in the stabi-
lizer of 1, maps p on q. Thus this stabilizer is transitive, and consequently the group
Ge = G(X) is doubly transitive. Assume now conversely that G(X) is doubly tran-
sitive, and let p, q ∈ P \ 1. Let i, j ∈ S be such that pe = i, qe = j . Then i, j �= 1.
Consider indeed a word w ∈ ϕ−1(e). Then 1 · w = 1; the assumption i = 1 would
imply that p · w = pe = i = 1, and since 1 · w = 1, Proposition 11.4.1 gives p = 1,
a contradiction. Since G(X) is doubly transitive, and G(X) is equivalent to Ge there
exists g ∈ G(e) such that ig = j and 1g = 1.

Let m ∈ ϕ(A∗) be such that jm = q, and let f be the idempotent of the group
G(em). Since e and f are in the sameR-class, they have the same nuclear equivalence.
Therefore the equalities qe = j = je imply qf = jf . Further Im(f) = Im(em).
Since qem = jm = q, we have q ∈ Im(f). Consequently q is a fixed point of f , and
jf = qf = q. Consider the function egf . Then

1egf = 1gf = 1f = 1, pegf = igf = jf = q.

Let x be in ϕ−1(egf). Then x ∈ X∗ and p · x = q. This holds in the literal automaton.
Thus there exists y ∈ X∗ such that px = yq. �

11.7 Examples

The results of Section 11.6 show that the groups of finite maximal bifix codes are
particular ones. This of course holds only for finite codes since every transitive group
appears as the group of some group code. We describe, in this section, examples of
finite maximal bifix codes with particular groups.

Call a permutation group G realizable if there exists a finite maximal bifix code X

such that G(X) = G. We start with an elementary property of permutation groups.

Lemma 11.7.1 For any integer d ≥ 1, the group generated by α = (12 · · · d) and
one transposition of adjacent elements modulo d is the whole symmetric group Sd .

Proof. Let β = (1d). Then for j ∈ {1, 2, . . . , d − 1},
α−jβαj = (j, j + 1). (11.23)

Next for 1 ≤ i < j ≤ d, (i, j) = τ (j − 1, j)τ−1, where τ = (i, i + 1)(i + 1, i +
2) · · · (j − 2, j − 1). This shows that the group generated by α and β contains all
transpositions. Thus it is the symmetric group Sd . Formula (11.23) shows that the
same conclusion holds if β is replaced by any transposition of adjacent elements. �

Proposition 11.7.2 For all d ≥ 1, the symmetric group Sd is realizable by a finite
maximal bifix code.

Proof. Let A = {a, b}. For d = 1 or 2, the code X = Ad can be used. Assume d ≥ 3.
By Theorems 6.4.2 and 6.4.3, there exists a unique maximal bifix code X of degree
d with kernel K = {ba}. Indeed, µ(K) = (LK, ba) = 2. Recall that µ is defined in

426 11 Groups of codes

Chapter 6 by (6.40). No word has more than one K-interpretation. Consequently K

is insufficient as defined in Section 6.5 and by Proposition 6.5.6, the code X is finite.
Let us verify that

X ∩ a∗ba∗ = ba ∪ {aibad−i | 1 ≤ i ≤ d − 2} ∪ ad−1b. (11.24)

For each integer j ∈ {0, 1, . . . , d − 1}, there is a unique integer i ∈ {0, 1, . . . , d − 1}
such that aibaj ∈ X. It suffices to verify that the integer i is determined by Formula
(11.24). Let i, j ∈ {0, 1, . . . , d − 1} be such that aibaj ∈ X. By Formula (6.5) in
Chapter 6, the number of X-interpretations of aibaj is

(LX, aibaj) = 1 + |aibaj | − (A∗XA∗, aibaj)

= i + j + 2 − (A∗XA∗, aibaj).

The number (A∗XA∗, aibaj) of occurrences of words of X in aibaj is equal to 1
plus the number of occurrences of words of K in aibaj , except when j = 1 which
implies i = 0 since ba ∈ X. Thus

(LX, aibaj) =
{

i + j if i ∈ {1, 2, . . . , d − 1},
i + j + 1 if i = 0 or j = 0.

On the other hand, the word aibaj must have d interpretations since it is not in K =
K(X). This proves Formula (11.24). Now consider the automaton A(X∗) = (Q, 1, 1)
and consider the ergodic representation ∗a associated to the idempotent ϕ(ad) defined
in Section 11.6. Setting i = 1 · ai−1 for i ∈ {1, 2, . . . d}, we have

a ∗a ad = (12 · · · d).

Set β = b ∗a ad and observe that β = (1d). Indeed by Formula (11.19),

iβ = j ⇐⇒ 1 · ai−1bad = 1 · aj−1ad ⇐⇒ 1 · ai−1bad = 1 · aj−1.

Thus iβ = 1 · ai−1bad . For i = 1, this gives 1β = 1 · baad−1, whence 1β = 1 ·
ad−1 = d. Next, by (11.24), for i = d, we have dβ = 1 · ad−1bad = 1 · (ad−1b)ad =
1. Finally, if 1 < i < d, then iβ = 1 · ai−1bad−(i−1) ai−1 = 1 · ai−1 = i. This shows
that the group G(X) contains the cycle

α = (12 · · · d)

and the transposition β = (1d). In view of Lemma 11.7.1, G(X) = Sd . �

For the next result, we prove again an elementary property of permutations.

Lemma 11.7.3 Let d be an odd integer. The group generated by the two permutations

α = (1, 2, . . . , d) and γ = δαδ,

where δ is a transposition of adjacent elements modulo d, is the whole alternating
group Ad .

11.7 Examples 427

Proof. The group Ad consists of all permutations σ ∈ Sd which are a product of an
even number of transpositions. A cycle of length k is in Ad if and only if k is odd.
Since d is odd, α, γ ∈ Ad .

By Lemma 11.7.1, the symmetric group is generated by α and δ. Each permutation
σ ∈ Sd can be written as

σ = αk1δαk2δ · · ·αkn−1δαkn

and σ ∈ Ad if n is odd. In this case, setting n = 2m + 1,

σ = αk1β2α
k3β4 · · ·β2mαk2m+1

with β2i = δαk2i δ for 1 ≤ i ≤ m. Since β2i = (δαδ)k2i , this formula shows that Ad is
generated by α and δαδ = γ . �

Proposition 11.7.4 For each odd integer d, the alternating group Ad is realizable by
a finite maximal bifix code.

Proof. Let A = {a, b}. For d = 1 or 3, the code X = Ad can be used. Assume d ≥ 5.
Let

I = {1, 2, . . . , d}, J = {1, 2, . . . , d − 3, d − 2, d − 1, d},

and Q = I ∪ J . Consider the deterministic automaton A = (Q, 1, 1) with transitions
given by

i · a = i + 1 (1 ≤ i ≤ d − 1), d · a = 1,

d − 2 · a = d − 1, d − 1 · a = 1, d̄ · a = d,

and

i · b = i + 1 (1 ≤ i ≤ d − 3),

(d − 2) · b = d, (d − 1) · b = d − 1, d · b = 1,

d − 2 · b = d − 1, d − 1 · b = d, d · b = 1.

Let X be the prefix code such that A recognizes X∗. Since

I · a = J · a = I, I · b = J · b = J,

the functions ϕ(a) and ϕ(b), of rank d, have minimal rank. Since I and J are the only
minimal images, and since they contain the state 1, Proposition 11.4.1(ii) shows that
X is maximal bifix code. It has degree d.

Let us show that X is finite. For this, consider the following order on Q :

1 < 2 < · · · < d − 1 and d − 2 < d − 2 < d − 1 < d − 1 < d̄ < d.

For all c ∈ {a, b} and q ∈ Q, either q · c = 1 or q · c > q. Thus, there are only finitely
many simple paths in A. Consequently, X is finite.

428 11 Groups of codes

1

2

3

4
5

4
5 5

5 5

3

4
5

4
5 5

4
5 5

2

3

4
5

4
5 5

5 5

3

4
5

4
5 5

4
5 5

Figure 11.12 A finite maximal bifix code X with G(X) = A5.

Now let us compute G(X). Since ϕ(a), ϕ(b) have minimal rank, both a, b ∈ J (X).
According to Proposition 11.6.1, the group G(X) is equivalent to the group generated
by the four permutations

a ∗a a, a ∗a b, b ∗a a, b ∗a b.

By Formula (11.6) we have a ∗a a = a ∗a b = α, with α = (1, 2, . . . , d). Next, by
Formula (11.19)

b ∗a a = α, b ∗a b = γ

with γ = (1, 2, . . . , d − 3, d − 1, d − 2, d). In view of Lemma 11.7.3, G(X) = Ad .
�

Observe that for an even d, the group Ad is not realizable. More generally, no
subgroup of Ad is realizable when d is even. Indeed, by Proposition 11.6.4, the group
G(X) of a finite maximal bifix code X contains a cycle of length d which is not in
Ad since d is even.

Example 11.7.5 We give, for d = 5, the figures of the automaton and of the code of
the previous proof (Figures 11.12 and 11.13).

Example 11.7.6 For degree 5, the only realizable groups are Z/5Z,S5, and A5. It is
known indeed that with the exception of these three groups, all transitive permutations
groups of degree 5 are Frobenius groups. By Theorem 11.6.5, they are not realizable.

11.7 Examples 429

1

2

34

5

3̄

4̄5̄

a, b

a

b

a

b
a

b

a, b

a

b

b

a

a

b

Figure 11.13 The automaton A(X∗).

Example 11.7.7 For degree 6, we already know, by the preceding propositions, that
Z/6Z and S6 are realizable. We also know that no subgroup of A6 is realizable. There
exists, in addition to these two groups, another primitive group which is realizable.
This group is denoted by PGL2(5) and is defined as follows. Let P = Z/5Z ∪∞.
The group PGL2(5) is the group of all homographies from P into P

p �→ xp + y

zp + t

for x, y, z, t ∈ Z/5Z satisfying xt − yz �= 0. Consider, for later use, the permutations

h = (∞01423), k = (∞10243).

We have h, k ∈ PGL2(5). Indeed h and k are the homographies

h : p �→ 2

p + 2
, k : p �→ p − 1

p + 2

respectively. We verify now that h and k generate all PGL2(5). A straightforward
computation gives

k2hk = (∞0421)(3), k2hkh−1 = (∞)(4)(0132).

The permutation h together with these two permutations show that the group G

generated by h and k is 3-transitive. Now each element σ in PGL2(5) is characterized,
as any homography, by its values on three points. Since G is 3-transitive, there exists
an element g ∈ G which takes the same three values on the points considered. Thus
σ = g, whence σ ∈ G. This proves that G = PGL2(5).

To show that PGL2(5) is realizable, we consider the automaton A = (Q, 1, 1)
given in Table 11.5. This automaton is minimal. Let X be the maximal prefix code

430 11 Groups of codes

Table 11.5 The transitions of the automaton A.

1 2 3 4 5 6 2̄ 3̄ 4̄ 5̄ 6̄
a 2 3 4 5 6 1 3 5 4 1 6

b 2̄ 4̄ 3̄ 6̄ 5̄ 1 3̄ 4̄ 5̄ 6̄ 1

Table 11.6 The bijection ρ.

1 2 3 4 5 6

∞ 0 1 4 2 3

such that A = A(X∗). Then X is a finite maximal bifix code. Indeed, the images

Im(a) = {1, 2, 3, 4, 5, 6}, Im(b) = {1, 2̄, 3̄, 4̄, 5̄, 6̄}
are minimal images, containing both the state 1. By Proposition 11.4.1(ii), X is
maximal bifix with degree 6. The code X is finite because if Q is ordered by

1 < 2 < 2̄ < 3 < 3̄ < 4̄ < 4 < 5 < 5̄ < 6̄ < 6,

then the vertices on simple paths from 1 to 1 are met in strictly increasing order,
with the exception of the last one. Next a, b ∈ J (X), because of the minimality of
the images Im(a), Im(b). Thus the group G(X) is generated by the permutations

α = a ∗a a = a ∗a b = (123456), β = b ∗a a, γ = b ∗a b.

Formula (11.19) shows that β = α, γ = (132546). This shows that G(X) is generated
by α and β. Let ρ be the bijection from 1, 2, 3, 4, 5, 6 onto P = Z/5Z ∪∞ given
in Table 11.6. Then h = ρ−1αρ and k = ρ−1γρ where h, k are the generators of
PGL2(5) defined previously. Consequently, the groups G(X) and PGL2(5) are
equivalent.

11.8 Exercises

Section 11.1

11.1.1 Let X ⊂ A+ be a maximal prefix code. Let

R = {r ∈ A∗ | ∀x ∈ X∗, ∃y ∈ X∗ : rxy ∈ X∗}.
(a) Show that R is a right unitary submonoid containing X∗.
(b) Let Z be the maximal prefix code such that R = Z∗ and set X = Y ◦ Z. Show

that if X is thin, then Y is synchronized.
(c) Show that if X = Y ′ ◦ Z′ with Y ′ synchronized, then Z′∗ ⊂ Z∗.
(d) Suppose that X is thin. Let A = (Q, 1, 1) be a deterministic trim automaton

recognizing X∗ and let ϕ be the associated representation. Show that a word r ∈ A∗

11.8 Exercises 431

is in R if and only if for all m ∈ ϕ(A∗) with minimal rank, 1 · r ≡ 1 mod Ker(m).
(Hint: Restrict to the case where m ∈ ϕ(X∗).)

Section 11.3

11.3.1 Let X ⊂ A+ be a finite code and let A = (Q, 1, 1) be an unambiguous trim
automaton recognizing X∗. Show that the group of invertible elements of the monoid
ϕA(A∗) is a cyclic group.

11.3.2 Show that for every finite transitive permutation group G, there exists a finite
bifix code X such that G is equivalent to Ge for some idempotent e in the transition
monoid of the minimal automaton of X∗.

(Hint: Let G be a transitive group of permutations on a set and let H be the
subgroup fixing some point of the set. Let ψ : A∗ → G be a surjective morphism
and let Z be the group code defined by Z∗ = ψ−1(H). Since Z is recognizable, it
is thin by Proposition 2.5.20. Let Y be a finite set of words in F̄ (X) such that ψ(Y)
generates G. Show that the set X = Z ∩ F (Y ∗) is a finite bifix code with the required
property.)

Section 11.4

11.4.1 Let X ⊂ A+ be a bifix code and let A = (Q, 1, 1) be a trim deterministic
automaton recognizing X∗. Let ϕ = ϕA be the associated representation and M =
ϕ(A∗). Show that for any idempotent e ∈ ϕ(F̄ (X)), the monoid of partial functions
Me is composed of injective functions.

Section 11.5

11.5.1 Let X ⊂ A+ be a thin maximal bifix code, and let JD be the minimal ideal of
ϕD(A∗). Show that for Card(A) ≥ 2,

H̄ (X) = ϕ−1
D (JD),

where H (X) = A−XA− and H̄ (X) is the complement of H (X). (Hint: Use Exer-
cise 9.3.5.)

11.5.2 Let X ⊂ A+ be a finite maximal prefix code, let A(X∗) = (Q, 1, 1) be the
minimal automaton of X∗, set ϕ = ϕA(X∗). Let a ∈ A and let n be the order of a in X

(an ∈ X).
(a) Show that the idempotent in ϕ(a+) has rank n.
(b) Show, without using Theorem 11.5.2, that ϕ(A+) is not nil-simple when n ≥

1 + d(X).

11.5.3 Let X ⊂ A+ be a thin complete code. Then X is called elementary if there
exists an unambiguous trim automaton A = (Q, 1, 1) recognizing X∗ such that the
semigroup S = ϕA(A+) has depth 1. Show that if X is elementary, then X = Y ◦ Z,
where Y is an elementary bifix code and G(X) = G(Y). (Hint: Choose for Z the code
generating the set of words which have a power in X∗.)

432 11 Groups of codes

11.5.4 Let A = (Q, 1, 1) be a complete, deterministic trim automaton and let ϕ be
the associated representation. Suppose that ϕ(A+) has finite depth, and that ϕ(A+)
has minimal rank 1. Show that the depth of ϕ(A+) is at most Card(Q) − 1. (Hint:
Consider the sequence θi of equivalence relations over Q defined by p ≡ q mod θi

if and only if p · w = q · w for all w ∈ Ai .)

11.5.5 Let X ⊂ A+ be a finite bifix code. Let ϕ be the representation associated with
A(X∗) and M = ϕ(A∗). Let J be the minimal ideal of M and let � be the set of its
L-classes. Let L0 be a distinguished L-class in �. Define a deterministic automaton
B = (�,L0, L0) by setting L · w = Lϕ(w). Let ψ be the representation associated
with B, and let I be the minimal ideal of ψ(A∗).

(a) Show that ψ(A∗) has minimal rank 1, and that ψ−1(I) = ϕ−1(J).
(b) Use Exercise 11.5.4 to show that ϕ(A+) has depth at most Card(�) − 1.

Section 11.6

11.6.1 Let X be a finite maximal bifix code of degree d. Let a ∈ A and k ≥ 0 such
that ak ∈ J (X). Show that for each integer n ≤ d − k and each word u ∈ An, there
exist at least d − k − n integers i, with 1 ≤ i ≤ d such that

i(u ∗a ak) ≥ i − k + 1.

11.6.2 Derive directly Theorem 11.3.1 from Exercise 11.6.1 (take k = 0).

11.6.3 Derive the inequalities (11.20) from Exercise 11.6.1 (take k = 1, u = b).

11.6.4 Let G be a permutation group of degree d, let k = k(G) and suppose that G

contains the cycle α = (12 · · · d). Show that if d ≥ 4k2 + 8k + 2, then every π ∈ G

which is not a power of α has at most d − 2k − 2 excedances (an excedance of a
permutation π of {1, 2, . . . , d} is a value i such that iπ > i).

11.6.5 Let X be a finite maximal bifix code of degree d and let k = k(X). Assume
that d ≥ 4k2 + 8k + 2.

(a) Show that for each a ∈ A and w ∈ Ak , the permutation π = w ∗a ad is in the
subgroup generated by α = a ∗a ad . (Hint: Use Theorem 11.4.3 to show that the
permutation παk has at least d − 2k excedances, and use Exercise 11.6.4.)

(b) Show that X does not contain words of length less than or equal to k.

11.6.6 Derive from Exercises 11.6.1 and 11.6.5 that a finite maximal nonuniform
bifix code X of degree d satisfies k(X) ≥ (

√
d/2) − 1.

Section 11.7

11.7.1 Let X be an elementary finite maximal bifix code of degree d on the alphabet
A = {a, b}. Let α = (1, 2, . . . , d), β = b ∗a a, γ = b ∗a b with the usual convention
to write i for 1 · ai−1 for 1 ≤ i ≤ d. Show that β and γ are such that

(i) 1β−1 = 1γ−1,
(ii) β = (i1, . . . , ik) with 1 = i1 < · · · < ik ,

11.9 Notes 433

Table 11.7 A finite code with group GL3(2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a 2 3 4 5 6 7 1 9 4 14 15 13 1 6 7
b 8 9 12 11 10 1 13 9 10 11 12 13 1 12 13

Table 11.8 A finite code with group M11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 2 3 4 5 6 7 8 9 10 11 1 22 23 24
b 12 13 16 17 14 15 20 19 18 1 21 13 14 15

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

25 26 27 28 29 21 1 4 5 6 7 8 9 10 11
16 17 18 19 20 21 1 14 15 16 17 18 19 20 21

(iii) γ = τ−1ατ where τ is a product of cycles of the form (k, k + 1, . . . , k + m)
with kβ ≥ k + m or kβ = 1.

Show that conversely, any choice of β and γ satisfying the above conditions defines
a finite code.

11.7.2 Use Exercise 11.7.1 to show that for A = {a, b}, there are exactly six elemen-
tary finite maximal bifix codes over A with group equivalent to PGL2(5).

11.7.3 Show that the automaton in Table 11.7 defines a finite maximal bifix code
X of degree 7. Show that G(X) is equivalent to the group GL3(2) of invertible
3 × 3 matrices with elements in Z/2Z , considered as a permutation group acting on
(Z/2Z)3 \ 0. (Hint: Identify (Z/2Z)3 with {1, 2, 3, 4, 5, 6, 7} using the remainders of
xi modulo 1 + x + x3.)

11.7.4 Show that the automaton in Table 11.8 defines a finite maximal bifix code X

of degree 11. Show that G(X) is equivalent to the Mathieu group M11.

11.9 Notes

Proposition 11.1.5 is due to Perrot (1972). The theorem on the synchronization of
semaphore codes (Theorem 11.2.1) is in Schützenberger (1964). This paper contains
also a difficult combinatorial proof of this result.

Theorem 11.3.1 already appears in Schützenberger (1956). Theorem 11.3.3 and
Corollary 11.3.4 are from Reis and Thierrin (1979). The ergodic representation of
Section 11.6 is described in Perrin (1979). It is used in Lallement and Perrin (1981) to
describe a construction of finite maximal bifix codes. Theorem 11.6.7 is a combination

434 11 Groups of codes

of a theorem of Schur and of a theorem of Burnside. Schur’s theorem is the following:
“Let G be a primitive permutation group of degree d. If G contains a d-cycle and if d

is not a prime number, then G is doubly transitive.” This result is proved in Wielandt
(1964), pp. 52–66. It is the final development of what H. Wielandt calls the “method
of Schur”. Burnside’s theorem is the following: “A transitive permutation group of
prime degree is either doubly transitive or a Frobenius group.” Burnside’s proof uses
the theory of characters. It is reproduced in Huppert (1967), p. 609. An elementary
proof (that is, without characters) is in Huppert and Blackburn (1982), Vol. III, pp.
425–434.

The other results of this chapter are from Perrin (1975), Perrin (1977b), Perrin
(1978). Perrin (1975) gives a more exhaustive catalog of examples than the list of
Section 5. Exercise 11.3.2 is from Perrin (1981) (see also Rindone (1983) and Perrin
and Rindone (2003)). Exercise 11.4.1 is due to Margolis (1982). Exercise 11.5.4 is a
well-known property of “definite” automata (Perles et al. (1963)).

The exercises of Section 11.6 are from Perrin (1978) and those of Section 11.7 are
from Perrin (1975). The definition of the Mathieu group M11 used in the solution of
Exercise 11.7.4 is from Conway (1971). It is a sharply 4-transitive group of order
11 × 10 × 9 × 8. The set H is known as the ternary Golay code.

Excedances of permutations are a well-known notion in combinatorics (see
Lothaire (1997)). The result of Exercise 11.6.4 has been improved by Mantaci (1991).
He proved the following result. Let d, k, � be integers such that d > 2k� − k and let
G be a permutation group of degree d and minimal degree d − k, containing the cycle
α = (12 · · · d). Every permutation in G \ 〈α〉 has at most d − � − 1 excedances. He
also shows that the bound is the best possible. His result implies the statement of
Exercise 11.6.4 taking � = 2k + 1.

12

Factorizations of cyclic groups

We describe in this chapter the links between codes and factorizations of cyclic
groups. It happens that for any finite maximal code X one can associate with each
letter a several factorizations of the cyclic group Z/nZ where n is the integer such
that an is in the code X. These factorizations play a role in several places in the theory
of codes. They appeared several times previously in this book. This chapter gives a
systematic presentation.

We begin with an introduction to the notion of factorizations of cyclic groups
(Section 12.1). We then study how factorizations arise in connection with two special
kinds of words: bayonets (Section 12.2) and hooks (Section 12.3). We will see that
factorizations of cyclic groups give insight into several properties of codes, like being
synchronized or being finitely completable.

12.1 Factorizations of cyclic groups

Let G be a group written additively. Given two subsets L,R of G, we write L + R =
{� + r | � ∈ L, r ∈ R}. The sum L + R is direct if for any element g in G, there exists
at most one pair (�, r) with � ∈ L and r ∈ R such that g = � + r . This means that
for finite sets L,R, the sum is direct if and only if Card(L + R) = Card(L) Card(R).
The pair (L,R) is called a factorization if G = L + R and the sum is direct. We also
say that G = L + R is a factorization of G.

Example 12.1.1 Let G = Z/6Z. The pair (L,R) defined by L = {0, 5} and R =
{0, 2, 4} is a factorization of G. More generally, if R is a subgroup of some Abelian
group G and L is a set representatives of the quotient G/R, then (L,R) is a factor-
ization.

The following example illustrates how the coset decomposition may be iterated to
form more complex factorizations.

Example 12.1.2 The pair (L,R) defined by L = {0, 4, 8, 9, 13, 17} and R =
{0, 3, 6} is a factorization of Z/18Z. We have actually L = {0, 9} + {0, 4, 8}. Thus
{0, 4, 8} + R is a system of representatives of the residues modulo 9. Accordingly,
Z/9Z = {0, 4, 8} + {0, 3, 6} is a factorization.

436 12 Factorizations of cyclic groups

Example 12.1.3 Let p, q be positive integers and let L = {0, 1} and R = {0, p, q}
with p < q. The sum L + R is direct in Z if and only if 1 < p < q − 1.

We shall be interested in factorizations of Abelian and, more specifically of cyclic
groups. Let G = Z/nZ, let L,R be two subsets of G, and let U,V ⊂ Z be sets of
representatives of L,R. Then G = L + R is a factorization if and only if for each
integer k there exists a unique pair i, j with i ∈ U and j ∈ V such that k ≡ i + j

mod n.

Example 12.1.4 Let L = {0, 3, 8, 11} and R = {0, 1, 7, 13, 14}. Since the numbers
� + r are all distinct, the sum L + R is direct in Z or in Z/nZ for large enough n. The
pair (L,R) is not a factorization of Z/20Z because 8 + 13 ≡ 0 + 1 ≡ 1 mod 20
and so the sum is not direct. It is not known whether there exists an integer n and
sets L′, R′ such that Z/nZ = L′ + R′ is a factorization with R ⊂ R′ and L ⊂ L′. See
also Example 12.3.5.

The following statement gives a useful method to handle factorizations.

Proposition 12.1.5 Let G = L + R be a factorization of a finite Abelian group G.
For any integer q ∈ Z prime to Card(L), G = qL + R is a factorization.

Proof. We may assume that 0 ∈ L, since otherwise we replace L by L′ = L − � for
some � ∈ L. If G = qL′ + R is a factorization, then so is (qL′ + q�) + R = qL + R.

Consider first the case where q = −1. We clearly have Card(qL) = Card(L) and
we only need to prove that the sum G = (−L) + R is direct. Suppose that −� + r =
−�′ + r ′ with �, �′ ∈ L and r, r ′ ∈ R. Then �′ + r = � + r ′ and thus r = r ′, � = �′.
This proves the result in this case.

Suppose next that q ≥ 1 is prime. For g = � + r with � ∈ L and r ∈ R, we denote
λ(g) = � and ρ(g) = r .

As a first step, let us prove that for any g ∈ G, the map � �→ λ(g + �) is a permuta-
tion of L. For this, let �, �′ ∈ L and assume λ(g + �) = λ(g + �′). Set g + � = u + v

and g + �′ = u + v′ with u ∈ L and v, v′ ∈ R. Then v − � = v′ − �′ and thus � = �′

since we have just shown that R − L is a factorization.
We claim that for g ∈ G, there is an x ∈ L such that g = −qx + r for some

r ∈ R. To prove this claim, consider the set T of q-tuples (x1, . . . , xq) of elements
in L such that λ(g + x1 + · · · + xq) = 0. For each choice of x1, . . . , xq−1 in L the
map � �→ λ(g + x1 + · · · + xq−1 + �) is a permutation of L. Thus there is a unique
xq ∈ L such that (x1, . . . , xq) ∈ T . Consequently T has Card(L)q−1 elements. Since
q is prime, and q does not divide Card(L) we obtain that Card(T) = Card(L)q−1 ≡ 1
mod q. The set T contains all cyclic shifts of its elements. Since q is prime, the
number of distinct cyclic shifts of an element of T is either q or 1. Since Card(T) ≡ 1
mod q there is at least one t ∈ T such that all its cyclic shifts are equal, that is
such that t = (x, x, . . . , x) for some x ∈ L. Since λ(g + qx) = 0, we have g + qx =
ρ(g + qx) and therefore g = −qx + ρ(g + qx).

This shows that G = (−qL) + R. Since Card(−qL) ≤ Card(L), the sum is direct
and thus (−qL,R) is a factorization. By what we have seen above, this implies that
G = qL + R is also a factorization.

12.1 Factorizations of cyclic groups 437

Table 12.1 A non periodic factorization of Z/72Z.

0 1 5 6 12 25 29 36 42 48 49 53
8 9 13 14 20 33 37 44 50 56 57 61

16 17 21 22 28 41 45 52 58 64 65 69
18 19 23 24 30 43 47 54 60 66 67 71
26 27 31 32 38 51 55 62 68 2 3 7
34 35 39 40 46 59 63 70 4 10 11 15

Finally, when q ≥ 1 is prime to Card(L), we write q as a product of primes and
apply iteratively the above argument. �

Example 12.1.6 When we start with the factorization L = {0, 4, 8, 9, 13, 17} and
R = {0, 3, 6} of Z/18Z given in Example 12.1.2, we obtain, for q = 5, the new
factorization given by 5L = {0, 2, 4, 9, 11, 13} and R.

A subset H of a group G is said to be periodic if there is an element g ∈ G \ {e}
such that g + H = H . We refer to such elements g as periods of H . A factorization
(L,R) of a group G is called periodic if L or R is periodic.

Example 12.1.7 The pair (M,S) defined by the two sets M = {0, 4, 8, 9, 13, 17} and
S = {0, 3, 6, 18, 21, 24} is a periodic factorization of Z/36Z. Indeed, 18 is a period
of the set S.

A group G is said to have the Hajós property if any factorization of G is periodic.
The integer n is said to be a Hajós number if the group Z/nZ has the Hajós property.
If n is a Hajós number, then any divisor of n is (see Exercise 12.1.1). The following
example shows that 72 is not a Hajós number.

Example 12.1.8 The pair (L,R) defined by L = {0, 8, 16, 18, 26, 34} and R =
{0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53} is a factorization of Z/72Z which is not
periodic.

One may verify that it is indeed a factorization by inspection of Table 12.1
in which R is the first row, L the first column and each entry is the sum of
the elements in the first row and column (the elements appearing in boldface
are those for which the sum exceeds 72). Alternatively, we may proceed as fol-
lows. Let R0 = {0, 6, 12, 36, 42, 48} and R1 = {1, 5, 25, 29, 49, 53} be the sets of
even and odd elements of R. Let M = {0, 4, 8, 9, 13, 17}, S = {0, 3, 6, 18, 21, 24}
and T = {0, 2, 12, 14, 24, 26}. Then L = 2M , R0 = 2S and R1 = 2T + 1. The
pairs (M,S) and (M,T) are periodic factorizations of Z/36Z (actually, (M,S)
is the factorization of Example 12.1.7). Then L + R = 2M + (2S ∪ (2T + 1)) =
2(M + S) ∪ (2(M + T) + 1) and thus (L,R) is a factorization.

See the Notes for a characterization of the Hajós integers. A group G is said to have
the Rédei property if for any factorization G = L + R, either 〈L〉 �= G or 〈R〉 �= G.

438 12 Factorizations of cyclic groups

Table 12.2 The sets L,H and R.

L

0 36 72 108 144
100 136 172 208 244
200 236 272 308 344
225 261 297 333 369
325 361 397 433 469
425 461 497 533 569

H

0 180 360 540 {720}
(150) 330 510 690 870

300 480 660 840 120
(450) 630 810 90 {270}
[600] [780] [60] [240] [420]
(750) 30 210 390 570

R

0 180 360 540 {45}
(250) 330 510 690 870

300 480 660 840 120
(550) 630 810 90 {495}
[636] [816] [96] [276] [456]
(850) 30 210 390 570

(We denote by 〈H 〉 the subgroup of G generated by H .) An integer n is called a Rédei
number if the group Z/nZ has the Rédei property.

It can be shown that a Hajós number is a Rédei number (see Exercise 12.1.2).

Example 12.1.9 Let Z/72Z = L + R be the factorization of Example 12.1.8. Since
all elements of L are even, the group 〈L〉 is contained in the subgroup of index 2
formed by the even residues modulo 72. Actually, 72 is a Rédei number (see the
Notes section).

The following example shows that 900 is not a Rédei number.

Example 12.1.10 Let n = 900 and let L,H,R be the subsets of G = Z/900Z listed
in Table 12.2. We will show that G = L + R is a factorization and that 〈L〉 = 〈R〉 =
G. Let x1 = 225, x2 = 100 and x3 = 36, which are elements of G of order 4, 9 and
25 respectively. The orders of x1, x2, x3 are pairwise relatively prime with a product
equal to 900. Thus G = 〈x1〉 + 〈x2〉 + 〈x3〉.

Let L1 = {0, x1}, L2 = {0, x2, 2x2}, L3 = {0, x3, . . . , 4x3} and H1 = 〈2x1〉, H2 =
〈3x2〉, H3 = 〈5x3〉. We have

L = L1 + L2 + L3, H = H1 + H2 + H3.

Indeed, the first row of the array giving L in Table 12.2 is L3, the first three rows
form L3 + L2 and the last three rows form L3 + L2 + x1. The first row of the second
array is H3, the rows 1, 3 and 5 form H2 + H3 and the other ones are obtained by
adding 2x1 = 450.

Clearly, G = L + H is a factorization. We now modify the set H as follows to
obtain the set R in such a way that x1, x2, x3 ∈ 〈R〉. We first add x2 = 100 to each
element of H2 + 2x1 (the corresponding elements are marked by () in H and R).
In this way, the set H ′ obtained is still such that G = L + H ′. Indeed, we have
L + H2 + 2x1 + x2 = L1 + L3 + 〈x2〉 + 2x1 = L + H2 + 2x1. In a second step, we

12.2 Bayonets 439

add x3 = 36 to each element of H3 + 6x2 (the corresponding elements are marked
[]). The set H ′′ obtained still satisfies G = L + H ′′ for a similar reason as previously.
Finally, the set R is obtained by adding x1 = 225 to each element of H1 + 20x3 (the
elements are marked with { }).

The factorization G = L + R is such that 〈L〉 = G and 〈R〉 = G. The first equality
follows from the fact that x1, x2, x3 ∈ L. The second one can be verified as follows.
Since 5x3, 3x2 are in R (they already belong to H and have not been modified), we
have 20x3, 6x2 ∈ 〈R〉. Since, by construction of R, 20x3 + x1 ∈ R, we have x1 ∈ 〈R〉.
Similarly, since 6x2 + x3 ∈ R, we have x3 ∈ 〈R〉. Finally, since 2x1 + x2 is in R by
construction, we have also x2 ∈ 〈R〉. Thus x1, x2, x3 ∈ 〈R〉 and 〈R〉 = G.

12.2 Bayonets

In this section, we will see that, under appropriate hypotheses, given a code X ⊂ A+

and a letter a ∈ A, the integers i, j such that aiwaj ∈ X∗ for a ∈ A and w ∈ A∗ give
rise to some factorizations of cyclic groups. We begin with the case of w = b ∈ A.
A bayonet is a word of the form a�bar for a, b ∈ A.

We say that a pair (L,R) of sets of integers is direct modulo n if � + r ≡ �′ + r ′

mod n, with �, �′ ∈ L, r, r ′ ∈ R implies � = �′ and r = r ′. In other words, (L,R) is
direct if for any integer m there is at most one pair (�, r) ∈ L × R such that m ≡ � + r

mod n. This is equivalent to saying that (L,R) is direct modulo n if and only if the
sum L̄ + R̄ formed with the sets of residues modulo n of L,R is direct.

Observe that if (L,R) is direct modulo n and L,R are both nonempty, then the
elements of L (and of R) are distinct representatives of classes of integers modulo n.

Given a word w and a subset H of N, we write wH for the set {wh | h ∈ H }.

Proposition 12.2.1 For L,R ⊂ N and n ≥ 1, the set X = an ∪ aLbaR is a code on
the alphabet A = {a, b} if and only if (L,R) is direct modulo n. Moreover, the code
X is maximal if and only if L + R = {0, . . . , n − 1}.

Proof. If (L,R) is direct modulo n, then X is a code. Consider indeed a word w

in X∗. We prove that w has a unique decomposition into words in X. Set w =
am0bam1b · · · bamk for nonnegative integers m0, . . . , mk . If k = 0, the word w is a
unique power of an. So assume k ≥ 1. For each i with 0 < i < k there is a unique
pair (ri, �i+1) ∈ R × L such that mi ≡ ri + �i+1 mod n. Moreover, there is a unique
�1 ∈ L and a unique rk ∈ R such that �1 ≡ m0 mod n and rk ≡ mk mod n. Thus
the unique factorization of w is of the form w = y0x1y1 · · · xkyk with xi = a�i bari ,
and yi ∈ (an)∗.

Conversely, assume that X is a code. In order to show that (L,R) is direct modulo n,
let �, �′ ∈ L, r, r ′ ∈ R such that � + r ≡ �′ + r ′ mod n. There exist an integer k such
that � + r = �′ + r ′ + kn. By symmetry, we may assume k ≥ 0. Then (a�bar)(a�bar)
and (a�bar ′)(an)k(a�′bar) are two factorizations of the word a�bar+�bar . Since X is
a code, this implies k = 0, � = �′ and r = r ′.

440 12 Factorizations of cyclic groups

Finally, let π be a Bernoulli distribution on A∗ and set p = π (a).
Then π (X) = pn + (1 − p)(

∑
�∈L p�)(

∑
r∈R pr). Thus π (X) = 1 if and only if∑

�∈L p�
∑

r∈R pr = 1 + p + · · · + pn−1, and this holds if and only if L + R =
{0, . . . , n − 1}. �

The pairs (L,R) such that (L,R) is direct modulo n and L + R = {0, . . . , n − 1}
are precisely the pairs such that every integer in {0, . . . , n − 1} has exactly one
decomposition of the form � + r with � ∈ L, r ∈ R. These pairs define particularly
simple factorizations which are described in Exercise 12.2.2.

Example 12.2.2 For n = 6, the pair composed of L = {0, 1} and R = {0, 3, 5} is
direct modulo n. The set X = an ∪ aLbaR is {a6, b, ab, ba3, aba3, ba5, aba5}.

If X is an arbitrary finite maximal code on A = {a, b}, the set of bayonets contained
in X does not necessarily have the form described above since the set of pairs (�, r)
such that a�bar ∈ X for some a, b ∈ A needs not even be a Cartesian product.

Let X be a code and a be a letter such that an ∈ X for some integer n ≥ 1. For a
word w, we denote by Ca(w) the pairs of residues modulo n of integers i, j ≥ 0 such
that aiwaj ∈ X∗. In what follows, we denote by k̄ the residue of k modulo n.

Recall that, given a finite maximal code X, the order of a letter a is the integer
n ≥ 1 such that an ∈ X. The order exists for each letter.

We start with a useful observation.

Lemma 12.2.3 Let X be a finite maximal code over A, and let a ∈ A be a letter. For
any w ∈ A∗, one has a∗wa∗ ∩ X∗ �= ∅.

Proof. Since X is finite and maximal, it is complete. Let � be the maximal length of a
word in X. The word a�wa� is completable, thus ua�wa�v ∈ X∗ for some words u, v.
By the definition of �, there exist integers i, i ′, j, j ′ such that uai ′ , aiwaj , aj ′

v ∈ X∗.
�

Proposition 12.2.4 Let X be a finite maximal code on the alphabet A. Let a ∈ A be
a letter and let n be the order of a. For each word w ∈ A∗, the set Ca(w) has exactly
n elements.

Proof. Let � be the maximal length of the words of X and let kn ≥ 2�. For each r

with 0 ≤ r < n, we show that there is a bijection from the set Ca(war+knw) onto the
set of pairs of elements in Ca(w) of the form (i, p), (q, j) with p + q ≡ r modulo n.

In a first step, we show that for each (ı̄, ̄) ∈ Ca(war+knw) there is a well-defined
pair (p̄, q̄) of residues modulo n such that (ı̄, p̄), (q̄, ̄) ∈ Ca(w) and p̄ + q̄ = r̄ .

Indeed, consider a pair (i, j) of representatives of (ı̄, ̄) ∈ Ca(war+knw). Then
one has aiwar+knwaj ∈ X∗. By the choice of k, there exist integers p, q such that
aiwap, aqwaj ∈ X∗ and p + q = r + kn.

Observe that if p′, q ′ are such that aiwap′
, aq ′

waj ∈ X∗ and p′ + q ′ = r + kn,
then assuming for instance p′ ≥ p, one has ap′−p ∈ X∗ since X∗ is stable. Thus
p ≡ p′ mod n and also q ≡ q ′ mod n. Consequently, the pair (p̄, q̄) is well defined
by the pair (i, j).

12.2 Bayonets 441

Next, if i ′ ≡ i mod n and j ′ ≡ j mod n and let (p̄′, q̄ ′) be the pair corresponding
to (i ′, j ′). If for instance i ′ ≥ i then ai ′wap = ai ′−iaiwap is in X∗ and consequently
p̄′ = p̄. This defines a mapping (ı̄, ̄) → (ı̄, p̄), (q̄, ̄) with p̄ + q̄ = r̄ .

This mapping is clearly injective. We prove that it is surjective. Indeed, consider
a pair aiwap, aqwaj ∈ X∗ with p̄ + q̄ = r̄ . If p > �, then aiwap−n ∈ X∗. Thus we
may assume p ≤ � and also q ≤ �. There is an integer t such that p + q + tn =
r + kn, and actually t ≥ 0 because tn = r + kn − p − q ≥ r + kn − 2� ≥ r ≥ 0.
Thus (aiwap)atn(aqwaj) = aiwar+knwaj is in X∗ and (ı̄, ̄) is in Ca(war+knw).

Let c(w) = Card(Ca(w)). By Lemma 12.2.3, we have c(w) > 0. From the bijection,
it follows that

c(w)2 =
n−1∑
r=0

c(war+knw).

Now we prove that c(w) = n for all w ∈ A∗. Recall that 0 < c(w) ≤ n2. Let w be such
that c(w) is minimal. Since

∑n−1
r=0 c(war+knw) ≥ nc(w), we obtain c(w)2 ≥ nc(w)

and consequently c(w) ≥ n. Next, let w be such that c(w) is maximal. We have∑n−1
r=0 c(war+knw) ≤ nc(w) and therefore c(w) ≤ n. �

Example 12.2.5 Let X = {aa, ba, baa, bb, bba}. There are four distinct sets Ca(w)
with respect to the letter a, namely Ca(a) = {(0, 1), (1, 0)}, Ca(a2) = {(0, 0), (1, 1)},
Ca(b) = {(0, 0), (0, 1)} and Ca(ab) = {(1, 0), (1, 1)}.

Theorem 12.2.6 Let X be a finite maximal code. Let ϕ : A∗ → M be the morphism
from A∗ onto the syntactic monoid of X∗ and let K be the minimal ideal of M . Let a

be a letter and let n be its order. For u, v ∈ A∗, let

R(u) = {i ≥ 0 | uai ∈ X∗}, L(v) = {j ≥ 0 | ajvA∗ ∩ X∗ �= ∅},
and let R̄(u), L̄(v) denote the sets of residues mod n of R(u), L(v). If u, v ∈ ϕ−1(K)
and u is right completable in X∗, then Z/nZ = R̄(u) + L̄(v) is a factorization.
Moreover, Card(L̄(v)) is a multiple of the degree of X.

Recall that a word u ∈ A∗ is called right completable in X∗ if there is a word w

such that uw ∈ X∗. A word u ∈ A∗ is called strongly right completable (with respect
to some code X) if any word in uA∗ is right completable in X∗. A word u is called
simplifying if for any x ∈ X∗ and v ∈ A∗, x, xuv ∈ X∗ implies uv ∈ X∗. Clearly, the
sets of strongly right completable and of simplifying words both are right ideals.

Proposition 12.2.7 Let X ⊂ A+ be a thin maximal code. Let ϕ : A∗ → M be the
morphism onto the syntactic monoid of X∗ and let K be the minimal ideal of M .
Then any right completable word u ∈ ϕ−1(K) is both strongly right completable and
simplifying.

Proof. To show that u is strongly right completable, observe that the right ideal ϕ(u)M
is minimal and consequently, for every m = ϕ(v) ∈ M there exists m′ = ϕ(w) such
that ϕ(u)mm′ = ϕ(uvw) = ϕ(u). Since u is right completable, this shows that uvw

is right completable. It follows that u is strongly right completable.

442 12 Factorizations of cyclic groups

uai akn ajv

uai aj v w

Figure 12.1 Proving that the sum is direct.

To show that u is simplifying, suppose first that u ∈ X∗. Let x ∈ X∗ and v ∈ A∗

be such that xuv ∈ X∗. Let m = ϕ(u), p = ϕ(x), and q = ϕ(v). Then mpm belongs
to the same group G as m. Let n be the inverse of mpm in G. Note that, since G

is a finite group, n is a power of mpm and therefore n ∈ ϕ(X∗). We have mpmn =
nmpm = e where e is the idempotent of G and thus m(nmpm)q = meq = mq. Hence
mq = mnmpmq = (m)(n)(m)(pmq) is in ϕ(X∗), and uv ∈ X∗. This shows that u is
simplifying in this case.

In the general case, since u is right completable, uA∗ ∩ X∗ �= ∅. Let y ∈ uA∗ ∩ X∗.
Then ϕ(y) ∈ K , showing that the word y is simplifying by the preceding proof. Since
the right ideal ϕ(u)M is minimal, there exists v ∈ A∗ such that ϕ(yv) = ϕ(u). To show
that u is simplifying, consider x ∈ X∗ and t ∈ A∗ such that xut ∈ X∗. Since ϕ(yv) =
ϕ(u), one has xyvt ∈ X∗, and since y is simplifying, one gets yvt ∈ X∗. Since
ϕ(ut) = ϕ(yvt), this in turn shows that ut ∈ X∗. This proves that u is simplifying.

�

For another proof of Proposition 12.2.7 see Exercise 9.3.6.

Proof of Theorem 12.2.6. Consider an integer r ≥ 0 and let k be such that kn is
larger than the maximum of the lengths of the words of X. Since u is strongly
right completable, there is a word w such that uar+knvw ∈ X∗. By the hypothesis
on k, there exist i, j with r + kn = i + j such that uai, aj vw ∈ X∗. By definition
i ∈ R(u), j ∈ L(v). This shows that R̄(u) + L̄(v) = Z/nZ.

Let us now show that the sum is direct.
Let i, i ′ ∈ R(u) and j, j ′ ∈ L(v) be such that i + j ≡ i ′ + j ′ mod n. We may

assume that i + j ≤ i ′ + j ′. Let k ≥ 0 be such that i + j + kn = i ′ + j ′. Then
uai+j+knv = uai ′+j ′

v (see Figure 12.1). Since j ′ ∈ L(v), there is a word w such
that aj ′

vw ∈ X∗. Since j ∈ L(v), the word ajv is right completable and there-
fore is simplifying by Proposition 12.2.7. We have uai+kn ∈ X∗ and uai+knajvw =
(uai ′)(aj ′

vw) ∈ X∗. Thus ajvw ∈ X∗.
Since uai , akn+j vw, uai ′ , aj ′

vw ∈ X∗ and X∗ is stable, we have, assuming for
instance that i ′ ≥ i, ai ′−i ∈ X∗. This implies that i ≡ i ′ mod n and also j ≡ j ′

mod n.
Finally, for w ∈ A∗, let

S(w) = {j ≥ 0 | ajw ∈ X∗} (12.1)

and let S̄(w) denote the set of residues of the elements of S(w). Let e = ϕ(x) be an
idempotent in K ∩ ϕ(X∗). Let G = eMe be the group containing e and H be the

12.2 Bayonets 443

subgroup G ∩ ϕ(X∗). Let G =⋃d
i=1 Hgi be the decomposition of G into right cosets

of H and let wi ∈ ϕ−1(g−1
i) for each i = 1, . . . , d.

We claim that L(v) =⋃d
i=1 S(vwi) and moreover the sets S̄(vwi) are disjoint.

First, consider j ∈ S(vwi). By definition, ajvwi ∈ X∗ and thus j ∈ L(v). Moreover,
we have also eϕ(ajv)g−1

i ∈ H and consequently eϕ(ajv)e ∈ Hgi , showing that the
index i is uniquely determined by ̄ . Thus the sets S̄(vwi) are disjoint.

Conversely, let j ∈ L(v). Then since eϕ(ajv)e ∈ G, there is an index i such that
eϕ(ajv)e ∈ Hgi , which implies eϕ(ajvwi) ∈ ϕ(X∗). The word ajv is simplifying
by Proposition 12.2.7. Hence ajvwi ∈ X∗, showing that j ∈ S(vwi).

Let

N (u) = {i ≥ 0 | A∗uai ∩ X∗ �= ∅} (12.2)

and let N̄ (u) denote the set of residues modulo n of the elements of N (u).
There is, by symmetry, an analogue factorization Z/nZ = N̄ (u′) + S̄(v′) for each
u′, v′ ∈ ϕ−1(K) with v′ left completable. Since for each wi , i = 1, . . . , d, the word
vwi is left completable, one gets d factorizations Z/nZ = N̄ (u) + S̄(vwi). In par-
ticular all sets S̄(vwi) have the same number s of elements. Thus Card(L̄(v)) =∑d

i=1 Card(S̄(vwi)) = ds is a multiple of d. �

Evidently, there is a symmetric statement for left completable words, using the
sets N (u) and S(v) defined by (12.2) and (12.1), namely: if u, v ∈ ϕ−1(K) and v is
left completable, then Z/nZ = N̄ (u) + S̄(v) is a factorization and Card(N̄(u)) is a
multiple of d.

The previous theorem has a close connection with Theorem 14.2.4 and the factor-
ization of the polynomial 1 − X for a finite maximal code X. Actually, according to
Lemma 14.4.3, there are polynomials P,Q,R with coefficients 0, 1 such that

A∗ = PX∗Q + R.

Taking b = 0 for all letters b �= a, we obtain

a∗ = U (an)∗V + W

for some polynomials U,V,W with coefficients 0, 1. Multiplying both sides by
an − 1, we obtain

1 + a + · · · + an−1 = UV + W (an − 1)

or

UV ≡ 1 + a + · · · + an−1 mod (an − 1),

which is equivalent to U = aL, V = aR with (L,R) a factorization of Z/nZ.
We illustrate this statement in the following example.

Example 12.2.8 Let A = {a, b} and let X = (A3 \ a3) ∪ a3A3 which is a finite maxi-
mal prefix code of degree 3 (the lengths of the words of X are multiples of 3). The tran-
sitions of the minimal automaton of X∗ are represented in Table 12.3. Let u = v = b.

444 12 Factorizations of cyclic groups

Table 12.3 The minimal automaton of X∗.

0 1 2 3 4 5

a 1 2 3 4 5 0
b 4 5 0 4 5 0

The sets S(b) = {j ≥ 0 | ajb ∈ X∗} and N (b) = {i ≥ 0 | A∗bai ∩ X∗ �= ∅} sat-
isfy S̄(b) = {2, 5} and N̄ (b) = {0, 1, 2}, giving a factorization of Z/6Z such that
Card(N̄(b)) = 3.

Theorem 12.2.6 takes a simpler form when X is synchronized. We give here a
direct proof, but the proposition follows from the theorem when the words x, y are
taken in the inverse image of the minimal ideal of the syntactic monoid.

Proposition 12.2.9 Let X be a finite maximal synchronized code. Let a ∈ A and let
n ≥ 1 be its order. Let x, y ∈ X∗ be a synchronizing pair. Let R(y) = {r ≥ 0 | yar ∈
X∗} and L(x) = {� ≥ 0 | a�x ∈ X∗}. Let L̄, R̄ be the set of residues modulo n of the
sets L(x), R(y). Then (L̄, R̄) is a factorization of Z/nZ.

Proof. Recall that yA∗x ⊂ X∗. Let w = yaux with u greater than the maximal length
of the words in X. Then there is a pair r, � of integers such that yar, a�x ∈ X∗

and u = r + �. This proves that N = R(y) + L(x), and consequently that Z/nZ =
L̄ + R̄. The fact that the sum is direct is proved as in the proof of Proposition 12.2.1.

�

We illustrate the proposition in the example below.

Example 12.2.10 Let A = {a, b}. Consider the maximal prefix code X = (A2 \
b2) ∪ b2A and the maximal suffix code Y = A2a ∪ b. Then X∗ ∩ Y ∗ is generated
by a finite maximal code Z which satisfies

Z − 1 = (1 + a + b + b2)((A − 1)a(A − 1) + A − 1)(1 + a + a2 + ba),

see Exercise 14.1.8. We have a6 ∈ Z. The word x = ab2a is synchronizing for X and
the word y = b2 is synchronizing for Y . Thus we have yA∗x ⊂ yA∗ ∩ A∗x ⊂ Z∗.
We have L̄(x) = {2, 5}, R̄(y) = {1, 3, 5}. By a shift, we obtain the factorization
({0, 3}, {0, 2, 4}) of Z/6Z, in which both factors are periodic.

A consequence of Theorem 12.2.6 is the following statement (it appears also as
Theorem 13.5.8 with a proof using probability distributions. It can also be obtained
as a consequence of Theorem 14.2.1).

Proposition 12.2.11 Let X be a finite maximal code on the alphabet A. The degree
of X divides the greatest common divisor of the orders of the letters.

Proof. Let a be a letter and let n be its order. According to Theorem 12.2.6, there
exists a factorization Z/nZ = R + L where Card(L) is a multiple of the degree d of
X. Since Card(L) divides n, d divides n and the result follows. �

12.3 Hooks 445

In particular if the gcd of the orders of the letters is 1, then the code X is syn-
chronized. This was proved for prefix codes, using factorizations implicitly, in The-
orem 3.6.10.

12.3 Hooks

A hook is a word of the form aibj for some letters a, b and integers i, j ≥ 0. In this
section, we will show that, under adequate hypotheses, the hooks contained in a finite
maximal code define factorizations of the cyclic groups Z/nZ where n is the order
of some letter.

Theorem 12.3.1 Let X be a finite maximal code on the alphabet A and let a, b ∈ A

be such that b ∈ X. Let n ≥ 1 be the order of a, and let

L = {� ≥ 0 | a�b+ ∩ X �= ∅}, R = {r ≥ 0 | b+ar ∩ X �= ∅}.
Let L̄, R̄ denote the sets of residues modulo n of L, R. Then (L̄, R̄) is a factorization
of Z/nZ.

Proof. Let k ≥ 1 be larger than the length of the words of X. Then, since b ∈ X,
we have bkA∗bk ⊂ X∗. Thus, for any i ≥ 0, the word w = bkai+knbk is in X∗. This
implies that there exist integers p, q, r, � such that w ∈ b∗(bpa�)(an)∗(arbq)b∗ with
bpa�, arbq ∈ X. This shows that i ≡ � + r mod n.

The decomposition of i is unique. Suppose indeed that r + � = r ′ + �′ + tn for
some integer t (with t ≥ 0, the other case is symmetric) with r, r ′ ∈ R and �, �′ ∈
L. Let p′, q ′ be such that bp′

a�′ , ar ′bq ′ ∈ X. Then the word bka�+rbk has the two
factorizations

bk−p(bpa�)(arbq)bk−q = bk−p′
(bp′

a�′)atn(ar ′bq ′
)bk−q ′

.

Since X is a code, these factorizations are the same, and p = p′, � = �′, r = r ′, and
q = q ′. �

Example 12.3.2 Let X = {aaaa, ab, abaa, b, baa}. Then n = 4 and

L = {0, 1}, R = {0, 2}.

It is possible to obtain Theorem 12.3.1 as a corollary of Theorem 12.2.6 (see Exer-
cise 12.3.1). One may use Theorem 12.3.1 to prove that some codes are not contained
in a finite maximal one.

Proposition 12.3.3 Let L,R ⊂ N with 0 ∈ L ∩ R and n ≥ 1 be such that the pair
(L,R) is direct modulo n and Card(L), Card(R) ≥ 2. If n is a prime number, then
X = an ∪ aLb ∪ baR is a code which is not contained in a finite maximal code.

Proof. The fact that X is a code follows from Proposition 12.2.1. Let Y be a finite
maximal code containing X. Then, by Theorem 12.3.1, the sets R̄, L̄ of residues
modulo n of R,L are contained in sets R̄′, L̄′ which form a factorization of Z/nZ.

446 12 Factorizations of cyclic groups

Since (L,R) is direct, in particular Card(R) = Card(R̄) and Card(L) = Card(L̄).
Thus n = Card(R̄′) Card(L̄′) is a nontrivial factorization of n, a contradiction. �

Example 12.3.4 The set X = {a5, b, ab, ba2} is a code which is not contained in a
finite maximal code.

Example 12.3.5 Let X = baR1 ∪ a{3,8}baR2 ∪ a11baR3 with R1 = {0, 1, 7, 13, 14},
R2 = {0, 2, 4, 6}, R3 = {0, 1, 2}. The set X is an example of a code which is not
commutatively prefix (see Example 14.6.7).

It is not known whether X is contained in a finite maximal code. If it is the case, by
Theorem 12.3.1 there exists an integer n and sets L,R such that Z/nZ = L + R is a
factorization with {0, 3, 8, 11} ⊂ L and {0, 1, 7, 13, 14} ⊂ R (see Example 12.1.4).
This implies that n is not a Rédei number since 0, 1 ∈ R and 0, 3, 8 ∈ L and thus
〈L〉 = 〈R〉 = Z/nZ.

It is easy to see, using Proposition 12.1.5 that such an integer n is a multiple of
330 = 2 × 3 × 5 × 11. Indeed, if n were not divisible by 3, then L + 3R would be
a factorization, a contradiction with the fact that 3 is in L and in 3R. The same
argument shows that n is divisible by 2 and 11. Finally, if n is not divisible by 5, then
L + 5R is a factorization, a contradiction with the fact that 8 = 3 + 5 = 8 + 0 has
two decompositions.

A factorization L,R of Z/nZ is a Sands factorization if there exist two relatively
prime integers p, q which are not multiples of n such that 0, 1 are in one of the factors
L or R and 0, p, q are in the other factor. The hypothetical factorization discussed in
the previous example would be a Sands factorization.

The following example shows that there exists a Sands factorization where, in
addition, p is prime.

Example 12.3.6 We start with the factorization G = L + R of Example 12.1.10
where n = 900 and the sets L and R are given in Table 12.2. Since 361 is an element
of L prime to 900, it is invertible modulo 900. It is easily checked that � = 541 is its
inverse. Since � is prime to 30, setting U = �L, G = U + R is still a factorization by
Proposition 12.1.5, and 0, 1 ∈ U . It remains to replace R by an appropriate factor. For
this, consider the elements r = 45 and s = 96 of R. In the factorization G = U + R,
the factor R can be replaced by R − r to get the factorization G = U + (R − r),
and 0 ∈ R − r . Next 96 − r = 51 = 3 × 17 is in R − r . Since 17 is relatively prime
to 900, it is invertible and its inverse is 53. Since m = 53 is relatively prime to
Card(R − r) = 30, in the factorization G = U + (R − r), we may replace the factor
R − r by m(R − r) again by Proposition 12.1.5. We obtain the factorization G =
U + V with V = m(R − r) which satisfy the conditions with p = 3 ≡ m(96 − r)
mod 900 and q = 65 ≡ m(250 − r) mod 900. The sets U,V are represented in
Table 12.4. This factorization is a Sands factorization since 0, 1 ∈ U and 0, p, q ∈ V

with p = 3 and q = 65.

A multiple factorization is defined as follows. For an integer d ≥ 1, a d-
factorization of a group G is a pair (L,R) of subsets of G such that each g ∈ G

12.4 Exercises 447

Table 12.4 The sets U and V with 0, 1 ∈ U and 0, 3, 65 ∈ V .

U

0 576 252 828 504
100 676 352 28 604
200 776 452 128 704
225 801 477 153 729
325 1 577 253 829
425 101 677 353 29

V

315 855 495 135 0
65 705 345 885 525
15 555 195 735 375

665 405 45 585 450
723 363 3 543 183
365 105 645 285 825

can be written in d different ways g = � + r with � ∈ L and r ∈ R. Thus an ordinary
factorization is a 1-factorization.

The concept of multiple factorization can be extended to the case of multisets
(L,R). We say that (L,R) is an m-factorization of Z/nZ if each element of Z/nZ
can be written in m different ways as the sum modulo n of an element of L and an
element of R, with the multiplicity taken into account.

For example, L = {0, 0, 1, 5}, R = {0, 2, 4} forms a 2-factorization of Z/6.
A generalization of Theorem 12.3.1 is the following.

Proposition 12.3.7 Let X be a finite maximal code on the alphabet A. Let a, b ∈ A

and let n,m ≥ 1 be the integers such that an, bm ∈ X. Let R,L be the multisets

L = {� ≥ 0 | a�b+ ∩ X �= ∅}, R = {r ≥ 0 | b+ar ∩ X �= ∅}.
Let L̄, R̄ be the multisets of residues modulo n of L,R. Then the pair (L̄, R̄) is an
m-factorization of Z/nZ.

Proof. We use Proposition 12.2.4. Let k be the maximal length of the words of X.
Let s ≥ k. By Proposition 12.2.4, there are m pairs of residues modulo m of integers
i, j ≥ 0 such that biasbj ∈ X∗. Thus s is the sum in m ways of integers r, � such that
biar , a�bj ∈ X∗. �

Example 12.3.8 Let X = {aa, ba, baa, bb, bba}. Then n = m = 2 and L = {0},
R = {0, 1, 1, 2}. The statement is satisfied since 0 and 1 are obtained each in two
ways as the residue modulo 2 of an element of R.

One may use Proposition 12.3.7, to prove that some codes are not contained in a
finite maximal code (see Exercise 12.3.3).

12.4 Exercises

Section 12.1

12.1.1 Show that a divisor of a Hajós number is also a Hajós number.

12.1.2 Prove that a Hajós number is a Rédei number.

448 12 Factorizations of cyclic groups

12.1.3 Show that if Z = L + R is a factorization of Z with L finite, then R is periodic.
(Hint: Prove that if L ⊂ {0, 1, . . . , d}, then R has period at most 2d .)

Section 12.2

12.2.1 Let L,R ⊂ {0, 1, . . . , n − 1} and consider the polynomials in the variable a

aL =
∑
�∈L

a�, aR =
∑
r∈R

ar .

Show that if (L,R) is a factorization of Z/nZ, then an − 1 divides aLaR(a − 1).

12.2.2 Let n ≥ 0, and let P and Q be two sets of nonnegative integers such that any
integer r in {0, 1, . . . , n − 1} can be written in a unique way as a sum r = p + q

with p ∈ P and q ∈ Q.
Show that there exist integers n1, n2, . . . , nk with n1|n2| · · · |nk and nk = n

such that {0, 1, . . . , n − 1} = {0, 1, . . . , n1 − 1} + {0, n1, 2n1, . . . , n2 − 1} + · · · +
{0, nk−1, . . . , nk − 1} such that P and Q are obtained by grouping into two parts
the terms of this sum. (Hint: Prove first the following remark: let r < n − 1 and set
r = p + q with p ∈ P and q ∈ Q. Show that r + 1 = p′ + q ′ where either p′ is the
successor of p in P and q ′ ≤ q, or q ′ is the successor of q in Q and p′ ≤ p.)

Section 12.3

12.3.1 Deduce Theorem 12.3.1 from Proposition 12.2.9.

12.3.2 Let m, n ≥ 1, and let H,K be subsets of N containing m. Let H̄ , K̄ be the
sets of residues modulo m of H and K and assume that the sum H̄ + K̄ is direct.
Similarly, let S, T be subsets of N containing n, and let S̄, T̄ be the sets of residues
modulo n of S and T . Assume again that the sum S̄ + T̄ is direct. Show that

X = {an, bm} ∪ bH aS ∪ aT bK \ {anbm, bman} (12.3)

is a code.

12.3.3 Let d, t > j > 0 and let m = dt + j . Show that for any n ≥ 1, when (S, T)
is a factorization of Z/nZ and Card(H) = d, Card(K) = t , the code defined by
Equation (12.3) is not contained in a finite maximal code.

12.3.4 Use Exercise 12.3.3 to show that the code

Y = {a2, ba2, b2a2, b10, a2b3, a2b6, ab10, ab3, ab6}

is not contained in a finite maximal code.

12.3.5 Show that if (L,R) is a factorization of Z/nZ where n is a Hajós number,
then the code an ∪ aLbaR is composed of prefix and suffix codes.

12.5 Notes 449

12.5 Notes

Factorizations of cyclic groups, or more generally of Abelian groups, form a subject
with an interesting history, beginning with the proof by G. Hajós in 1941 of a
conjecture of Minkovski. The books by Szabó (2004) and Szabó and Sands (2009)
are recommended for an exposition of this subject. Two important results in this theory
are the theorems of Hajós and Rédei. The first one asserts that if G = A1 + · · · + An

is a factorization of a finite Abelian group G where each Ai is a cyclic subset, then
at least one of the factors must be a subgroup of G (a cyclic subset is of the form
0, a, 2a, . . . , ra for some a ∈ G and r ≥ 1). The second one is a generalization
of the Hajós theorem proved by L. Rédei (1965). The theorem says that if G =
A1 + · · · + An is a factorization of a finite Abelian group G such that each Ai has a
prime number of elements and contains the neutral element, then at least one of the
factors must be a subgroup of G.

The link between codes and factorizations of cyclic groups was first noted
in Schützenberger (1979b).

Proposition 12.1.5 is due to Sands (2000). Example 12.1.8 is a counterexample to a
conjecture of Hajós due to De Bruijn (1953). The Hajós numbers are known exactly.
An integer n is a Hajós number if and only if it is a divisor of an integer of the form paq,
p2q2, p2qr or pqrs with a ≥ 1 and p, q, r distinct prime numbers (see Szabó (2004)).
The least integer n which is not a Hajós number is thus n = 72. Example 12.1.10 is
due to Szabó (1985). The list of Rédei numbers is also known exactly. It is formed
of the divisors of integers of the form paqbr , paqrs, pqrst , where p, q, r, s, t are
distinct primes and a, b ≥ 1, Szabó (2006). Example 12.3.6 is a counterexample to a
conjecture formulated in Restivo et al. (1989). The counterexample is due to Sands
(2007).

Exercise 12.2.2 is a result of Krasner and Ranulac (1937).
Exercise 12.1.3 is a result due to Hajós (see Szabó (2004) p. 165 and also Newman

(1977)). The optimal bound on the period of R is not known (see Szabó (2004) for
an example where the period is quadratic in the size of R).

Proposition 12.2.4 is a result from Perrin and Schützenberger (1977). Theo-
rem 12.3.1 is a result from Restivo et al. (1989) while Proposition 12.3.7 is due
to Lam (1996). Proposition 12.3.3 is from Restivo (1977). It exhibits a class of codes
which are not contained in any finite maximal code. Further results in this direction
can be found in De Felice and Restivo (1985).

Exercise 12.3.5 is from Lam (1997). His result generalizes one of De Felice (1996)
who proved the same result for a code X of the form X = an ∪ aLb ∪ baR . For this
smaller class De Felice also proved in De Felice (1996) that X is included in a finite
maximal code with the additional property that for each word in X there are at most
three occurrences of the letter b.

13

Densities

In this chapter we present a study of probabilistic aspects of codes. We have already
seen in Chapters 2 and 3 that probability distributions play an important role in this
theory.

In Section 13.1, we present some basics on probability measures, and we state
and prove Kolmogorov’s extension theorem. In Section 13.2, the notion of density
of a subset L of A∗ is introduced. It is the limit in mean, provided it exists, of
the probability that a word of length n is in L. In Section 13.3, we introduce the
topological entropy and we give a way to compute it for a free submonoid. We will
see how it is related to the results of Chapter 2 on Bernoulli distributions.

In Section 13.4, we describe how to compute the density of a set of words by
defining probabilities in abstract monoids. In Section 13.5, we use this study for
the proof of a fundamental formula (Theorem 13.5.1) that relates the density of the
submonoid generated by a thin complete code to that of its sets of prefixes and
suffixes.

13.1 Probability

We start with a short description of probability spaces, random variables, infinite
words, and a result on the average length of prefix codes. We then give a proof of
Kolmogorov’s extension theorem.

Let S be a set. A family F of subsets of S is a Boolean algebra of subsets of S

if it contains S and is closed under finite unions and under complement. This means
that for E,F ∈ F , then E ∪ F ∈ F and Ē ∈ F where Ē denotes the complement
of E. It is also closed under intersection since E ∩ F is the complement of Ē ∪ F̄ .
A Boolean algebra is called a σ -algebra if it is closed under countable union. This
means that if (En)n≥0 is a sequence of elements of F , then

⋃
n≥0 En ∈ F .

Example 13.1.1 Let A be an alphabet. The family composed of A∗, the empty set,
and the set of words of even (odd) length is a Boolean algebra of four elements.

Example 13.1.2 Let ϕ : A∗ → M be a morphism of A∗ onto a monoid. The family
F of set ϕ−1(P), for P ⊂ M , is a σ -algebra. Indeed, the family of all subsets of M

is σ -algebra, and so is F .

452 13 Densities

A real valued function µ defined on a σ -algebra F is additive if for any disjoint
sets E,F ∈ F , one has µ(E ∪ F) = µ(E) + µ(F). It is called countably additive if

µ(
⋃
n≥0

En) =
∑
n≥0

µ(En)

for any sequence (En)n≥0 of pairwise disjoint elements of F . If µ is countably
additive and takes nonnegative values, then it is monotone in the sense that if E ⊂ F

for E,F ⊂ F , then µ(E) ≤ µ(F) since indeed µ(E) = µ(F ∪ E) \ F = µ(F) +
µ(E \ F) ≥ µ(F).

Proposition 13.1.3 Let µ be a countably additive function on a σ -algebra F with
nonnegative values. Then

µ(
⋃
n≥0

En) ≤
∑
n≥0

µ(En)

for any sequence of subsets (En)n≥0 of elements of F .

Proof. Indeed, let Fn = En \⋃i<n Ei for n ≥ 0. Then the sets Fn are pairwise disjoint
subsets in F and

⋃
n≥0 En =⋃n≥0 Fn. Moreover Fn ⊂ En for n ≥ 0 and therefore

µ(Fn) ≤ µ(Eb). Thus

µ(
⋃
n≥0

En) = µ(
⋃
n≥0

Fn) =
∑
n≥0

µ(Fn) ≤
∑
n≥0

µ(En). �

Let F be a σ -algebra on a set S. A probability measure on F is a function µ from
F into the interval [0, 1] which is countably additive and such that µ(S) = 1. The
triple (S,F , µ) is called a probability space. When the σ -algebra F is understood,
we also say that µ is a probability on S.

Given a probability space (S,F , µ), an integer valued random variable is a map
V from S into N = N ∪∞ such that V −1(n) ∈ F for any n ∈ N . The semirings
N and R+ are defined in Section 1.6. In particular, 0∞ = 0 in both semirings. We
write Prob(V= n) for µ(V −1(n)). Note that

∑
n∈N Prob(V= n) = 1, since indeed one

has
∑

n∈N Prob(V= n) =∑n∈N µ(V −1(n)) = µ(
⋃

n∈N V −1(n)) = µ(S) = 1. The
mean value or expectation of V is is the finite or infinite sum

E(V) =
∑
n∈N

n Prob(V= n) =
∑
n∈N

n Prob(V= n) +∞Prob(V=∞).

Thus E(V) is infinite if Prob(V=∞) > 0, and it is equal to
∑

n∈N
n Prob(V= n)

otherwise since ∞0 = 0 in R+.

Proposition 13.1.4 Let S be a countable set. Any function µ : S → [0, 1] with∑
s∈S µ(s) = 1 defines a probability on the family of all subsets of S by µ(T) =∑
t∈T µ(t) for a subset T of S.

Proof. It suffices to show that µ is countably additive. Consider a sequence
(En)n≥0 of pairwise disjoint subsets of S and let T =⋃n≥0 En. Then µ(

⋃
n≥0 En) =∑

s∈T µ(s) =∑n≥0 µ(En). �

13.1 Probability 453

From now on, all alphabets considered in this chapter are assumed to be finite. Let
A be an alphabet. We introduce the set of infinite words on an alphabet which appears
to be the appropriate structure to define a probability measure on the set of all words.

An infinite word w on the alphabet A is a sequence a0, a1, . . . of elements of A. We
write w as w = a0a1 · · · . The set of infinite words on A is denoted Aω. For a word
u = a0a1 · · · an ∈ A∗ and an infinite word v = b0b1 · · · ∈ Aω, we denote by uv the
infinite word a0a1 · · · anb0b1 · · · obtained by concatenating u and v. More generally,
for a set X ⊂ A∗ of words, we denote XAω the set of infinite words xu for x ∈ X

and u ∈ Aω. In particular, if x is a word, the set xAω is the set of all infinite words
starting with x. Thus the word x is a prefix of the word y if and only if xAω ⊃ yAω,
and x and y are incomparable for the prefix order if and only if the sets xAω and yAω

are disoint.
The family of Borel subsets of Aω is the smallest family of subsets of Aω con-

taining the sets of the form xAω for x ∈ A∗ and closed under countable union and
complement. It is clear that it is a σ -algebra and that it is closed under countable
intersections.

Example 13.1.5 Let A = {a, b}. The set reduced to the infinite word aω is a Borel
subset of Aω since it is the complement of a∗bAω, and a∗bAω is the countable union
of the sets anbAω for n ≥ 0.

Example 13.1.6 For any set X ⊂ A∗, the set XAω of infinite words with a prefix in
X is a Borel set since it is the countable union XAω =⋃x∈X xAω.

Example 13.1.7 Let X ⊂ A+ be a prefix code. Then the set Xω of infinite words of
the form x0x1 · · · with xi ∈ X is

Xω =
⋂
n≥0

XnAω. (13.1)

It is a Borel set. Indeed, let us show (13.1). The inclusion Xω ⊂⋂n≥0 XnAω is clear.
Conversely, consider an infinite word x = x1u1 = . . . = xnun = . . . for xn ∈ Xn and
un ∈ Aω. Since X is prefix, we have for each n ≥ 2, xn = xn−1yn with yn ∈ X. Thus
x = y1y2 · · · is in Xω. The Equation (13.1) shows that Xω is a Borel set.

Let µ be a probability measure on the family of Borel subsets of Aω and let π be
the map from A∗ into [0, 1] defined for u ∈ A∗ by

π (u) = µ(uAω). (13.2)

Then π (1) = 1 and moreover π satisfies the coherence condition∑
a∈A

π (ua) = π (u)

for all u ∈ A∗. Indeed, the sets uaAω for a ∈ A are disjoint, and consequently one
has
∑

a∈A π (ua) =∑a∈A µ(uaAω) = µ(∪a∈aaAω) = µ(uAω) = π (u). This shows
that π is a probability distribution, as defined in Section 1.11. The converse statement
is the following theorem.

454 13 Densities

Theorem 13.1.8 (Kolmogorov’s extension theorem) For any probability distribution
π on A∗, there is one and only one probability measure µ on the family of Borel
subsets of Aω such that µ(xAω) = π (x) for all x ∈ A∗.

We say that the probability distribution π on A∗ defined by (13.2) and the proba-
bility distribution µ are associated. We postpone the proof of Theorem 13.1.8 to the
end of this section.

Let π be the probability distribution on A∗, and let µ be the associated probability
measure on Aω. Let X ⊂ A∗ be a prefix code. Recall that by Proposition 3.7.1, we
have π (X) ≤ 1. The proof now becomes obvious. Indeed, the sets xAω for x ∈ X

are pairwise disjoint. Consequently π (X) =∑x∈X µ(xAω) = µ(
⋃

x∈X xAω) and this
number is at most 1 as for any subset of Aω.

Suppose now that π (X) = 1. Observe that, since X is prefix, any infinite word
w ∈ Aω has at most one prefix of w in X. Let V be the random variable defined on
Aω by V (w) = n if w has a prefix of length n in X and V (w) = ∞ if w has no prefix
in X. Then Prob(V=∞) = µ(Aω \ XAω) = 1 − π (X) = 0. Next, for n ≥ 0,

Prob(V= n) = µ((X ∩ An)Aω) = π (X ∩ An).

Recall that the average length of X is λ(X) =∑x∈X |x|π (x). We show that the mean
value of V is equal to λ(X). Indeed,

E(V) =
∑
n≥0

n Prob(V= n) =
∑
n≥0

nπ (X ∩ An) = λ(X).

Let π be a probability distribution on A∗ and let µ be the associated probability
measure on Aω. The following statement shows that the quantity π (T) for any set
T ⊂ A∗ is the mean value of the random variable which assigns to an infinite word
the number of its prefixes in T .

Proposition 13.1.9 Let T be a subset of A∗, and let V be the random variable which
assigns to an infinite word the number of its prefixes in T . Then π (T) = E(V).

Proof. For n ≥ 0, let Tn be the set of words in T having n prefixes in T . Observe that
the sets Tn are all prefix and that they are pairwise disjoint. Moreover T =⋃n≥1 Tn

and thus π (T) =∑n≥1 π (Tn). Let V be the random variable assigning to an infinite
word the number of its prefixes in T . Let pn = Prob(V= n) for n ∈ N . For finite n,
pn is the probability that an infinite word has n prefixes in T and p∞ is the probability
that an infinite word has infinitely many prefixes in T .

We have π (Tn) = µ(TnA
ω). Since TnA

ω is the set of infinite words having at least
n prefixes in T , we have π (Tn) =∑m≥n pm + p∞ and thus

E(V) =
∑
n∈N

npn =
∑
n≥1

π (Tn) = π (T). �

Proposition 13.1.9 has the following interesting interpretation when one takes
for the set T a code X ⊂ A+. Then, by Theorem 2.4.5, one has π (X) ≤ 1 for any

13.1 Probability 455

Bernoulli distribution π on A∗. Thus the proposition shows that the average number
of prefixes in X of an infinite word is at most one, as it is for a prefix code.

We give a second interpretation of Proposition 13.1.9. Let X ⊂ A+ be a prefix
code, and let π be a probability distribution π on A∗ such that π (X) = 1. Let P be
the set of proper prefixes of X. We know by Proposition 3.7.11, that λ(X) = π (P).
This can be obtained as a consequence of Proposition 13.1.9 with T replaced by P .
Indeed, the number of prefixes of an infinite word which are in P is equal to the
length of its longest prefix in P plus 1. This number is equal to the length of the
unique word in X which is a prefix of w, provided it exists. Now the probability of
the set of infinite words having no prefix in X is zero because its complement has
probability 1. So the average value is indeed λ(X), showing that λ(X) = π (P).

We will use the fact that

xAω =
⋃
y∈An

xyAω (13.3)

for all n ≥ 0 and x ∈ A∗. The formula indeed holds for n = 0, and since Aω =⋃
a∈A aAω, one has by induction

xAω =
⋃
y∈An

xy
(⋃

a∈A

aAω
)
=
⋃

z∈An+1

xzAω.

Let F be the family of sets of the form XAω where X is a finite subset of Aω.
Observe that there are countably many sets in F . A set F in F has many different
representations of the form F = XAω, where X is a finite set. The following lemma
describes some canonical representations.

Lemma 13.1.10 For any set F ∈ F , and for any sufficiently large integer n, there is
a subset X of An such that F = XAω.

Proof. Let F = YAω for some finite set Y ⊂ A∗, and let n be larger than the lengths
of the words of Y . Let X be the set of words of length n which have a prefix in
F . Then X =⋃y∈Y yAn−|y|. By Equation (13.3), one has yAω = yAn−|y|Aω for all
y ∈ Y , and consequently XAω = YAω = F . �

Lemma 13.1.11 For every sequence (En)n≥0 of elements of F such that E =⋃
n≥0 En is in F , there is an integer n such that E = E0 ∪ · · · ∪ En.

Proof. Set E = XAω with X ⊂ An. For each x ∈ X there is an integer m = m(x)
such that xAω ∈ Em(x). Consequently E =⋃x∈X Em(x). Let m be the maximal value
of the integers m(x) for x ∈ X. Then E = E0 ∪ · · · ∪ Em. �

Lemma 13.1.12 The family F is a Boolean algebra.

Proof. The empty set and the set Aω are in F , by taking X = ∅ and X = {1} in the
definition. Since XAω ∪ YAω = (X ∪ Y)Aω, the family F is clearly closed under
union.

456 13 Densities

Let F ∈ F . By Lemma 13.1.10, there are an integer n ≥ 0 and a set X ⊂ An such
that F = XAω. Set Z = An \ Y . Then ZAω is in F , and it is the complement of
XAω. This shows that F is closed under complementation. �

We now start the proof of Kolmogorov’s extension theorem 13.1.8.
The proof is in several steps. First, one proves the existence of a function µ on

the family F of sets of the form XAω where X is a finite subset of Aω. Then, the
definition is extended to the family of all subsets of Aω. It is finally proved that the
extended function is a probability measure on the Borel subsets of Aω.

Let π be a probability distribution on A∗. We define a function µ from F into
[0, 1] by setting

µ(XAω) = π (X) (13.4)

for X ⊂ An. This is indeed a map from F into [0, 1] since by Lemma 13.1.10, each F

in F can be written in this form. We first verify that the definition is consistent, that is
that the value of µ is independent of the set X. Indeed, assume that XAω = YAω for
Y ⊂ Am with n < m. Then Y =⋃x∈X xAm−n and thus π (Y) =∑x∈X π (xAm−n) =
π (X) by the coherence condition for π .

Proposition 13.1.13 The function µ is a probability measure on F .

Proof. Clearly µ(∅) = 0 and µ(Aω) = π (1) = 1. We first prove that µ is additive.
Let E,F ∈ F be disjoint. We may suppose, by Lemma 13.1.10 that E = XAω and
F = YAω where X and Y are subsets of Am for the same integer m. Since E and
F are disjoint, one has X ∩ Y = ∅ and µ(E ∪ F) = π (X ∪ Y) = π (X) + π (Y) =
µ(X) + µ(Y). This shows that µ is additive.

We now prove that µ is countably additive on F . For this, let (En)n≥0 be a sequence
of pairwise disjoint elements in F such that E =⋃n≥0 En ∈ F . By Lemma 13.1.11,
there is an integer m such that E = E0 ∪ · · · ∪ Em. Since the elements of the sequence
(En)n≥0 are pairwise disjoint, this implies that En = 0 for n > m. Since µ is addi-
tive, one has µ(E) = µ(E0) + · · · + µ(Em). Moreover, µ(En) = 0 for n > m, and
consequently µ(E) =∑n≥0 µ(En). Thus µ is countably additive on F . �

The function µ is extended to a function µ∗ defined on all subsets of Aω as follows.
Given any set E ⊂ Aω, we denote by S(E) the set of sequences (En)n≥0 of elements
En ∈ F such that E ⊂⋃n≥0 En.

For an arbitrary set E ⊂ Aω, we define

µ∗(E) = inf
{∑

n≥0

µ(En)
∣∣∣ (En)n≥0 ∈ S(E)

}
. (13.5)

Observe that by definition, for any E ⊂ Aω and any ε > 0, there exists a sequence
(En)n≥0 ∈ S(E) such that µ∗(E) + ε ≥∑n≥0 µ(En).

Lemma 13.1.14 The function µ∗ is an extension of µ on F , that is µ∗(E) = µ(E)
for E ∈ F .

13.1 Probability 457

Proof. Let E ∈ F . Consider the sequence (En)n≥0 defined by E0 = E and En = ∅ for
n ≥ 0. Then (En)n≥0 ∈ S(E) and

∑
n≥0 µ(En) = µ(E). Therefore µ∗(E) ≤ µ(E).

For the converse inequality, let (En)n≥0 be a sequence inS(E). Let Fn = E ∩ En for
n ≥ 0. Then (Fn)n≥0 is a sequence of elements of F and

⋃
n≥0 Fn = E. Thus (Fn)n≥0

is in S(E). By Lemma 13.1.11, there is an integer m such that E = F0 ∪ · · · ∪ Fm. It
follows that

µ(E) = µ(
⋃

0≤n≤m

Fn) ≤
∑

0≤n≤m

µ(Fn) ≤
∑
n≥0

µ(Fn) ≤
∑
n≥0

µ(En).

The last inequality holds because µ is monotone. This inequality is true for any
sequence (En)n≥0 in S(E). Consequently µ(E) ≤ µ∗(E). �

A function ν defined on the subsets of a set U is countably subadditive if, for any
sequence (En)n≥0 of subsets of U , one has ν(

⋃
n≥0 En) ≤∑n≥0 ν(En).

Lemma 13.1.15 The function µ∗ is monotone and countably subadditive on the set
of subsets of Aω.

Proof. We first prove that µ∗ is monotone. Let E ⊂ F ⊂ Aω. A sequence (Fn)n≥0 of
subsets of F which is in S(F) is also in S(E), that is S(F) ⊂ S(E). This shows that
µ∗(E) ≤ µ∗(F). Thus µ∗ is monotone.

We next show that µ∗ is countably subadditive on the subsets of Aω. Let (En)n≥0 be
a sequence of subsets of Aω. For any ε > 0 and for each n ≥ 0, there exists, by the def-
inition of µ∗(En), a sequence (En,m)m≥0 of subsets of F such that

∑
m≥0 µ(En,m) ≤

µ∗(En) + ε/2n+1. Set E =⋃n≥0 En. Since
⋃

n,m≥0 En,m ⊃⋃n≥0 En = E, the fam-
ily (En,m)n,m≥0 is in S(E). By definition of µ∗, one has

µ∗(E) ≤
∑
n≥0

∑
m≥0

µ(En,m).

By the choice of the sequences (En,m)m≥0, it follows that∑
n≥0

∑
m≥0

µ(En,m) ≤
∑
n≥0

(
µ∗(En) + ε/2n+1

)
= ε +

∑
n≥0

µ∗(En).

This inequality holds for all ε. It follows that µ∗(E) ≤∑n≥0 µ∗(En). �

In the next proposition, we denote by E the complement of E.

Proposition 13.1.16 LetU be the family of subsets E of Aω such that, for all H ⊂ Aω,

µ∗(H) = µ∗(H ∩ E) + µ∗(H ∩ E).

The family U contains all Borel subsets of Aω and µ∗ is countably additive on U .

Proof. The proof is in several steps.
1. We first show that U contains F . Let E ∈ F and H ⊂ Aω. By the definition of

µ∗(H), there exists, for any ε > 0 a sequence (Hn)n≥0 in S(H) such that µ∗(H) +

458 13 Densities

ε ≥∑n≥0 µ(Hn). Next, µ(Hn) = µ(Hn ∩ E) + µ(Hn ∩ E) for all n ≥ 0, and the
sequence (Hn ∩ E)n≥0 is in S(H ∩ E), and similarly (Hn ∩ E)n≥0 is in S(H ∩ E).
Consequently

µ∗(H) + ε ≥
∑
n≥0

µ(Hn) =
∑
n≥0

(µ(Hn ∩ E) + µ(Hn ∩ E))

≥ µ∗(H ∩ E) + µ∗(H ∩ E).

This inequality holds for any ε, whence µ∗(H) ≥ µ∗(H ∩ E) + µ∗(H ∩ E). More-
over, since H = (H ∩ E) ∪ (H ∩ E), we have

µ∗(H) = µ((H ∩ E) ∪ (H ∩ E)) ≤ µ∗(H ∩ E) + µ∗(H ∩ E)

because µ∗ is subadditive by Lemma 13.1.15. Thus µ∗(H) = µ∗(H ∩ E) + µ∗(H ∩
E) and this shows that E ∈ U .

2. Next we prove thatU is closed under union. Let indeed E1, E2 ∈ U and H ⊂ Aω.
We have

µ∗(H) = µ∗(H ∩ E1) + µ∗(H ∩ E1)

= µ∗(H ∩ E1) + µ∗(H ∩ E1 ∩ E2) + µ∗(H ∩ E1 ∩ E2).

The first two terms of the right-hand side sum to µ∗(H ∩ (E1 ∪ E2)). Indeed, since
E1 ∈ U , one has

µ∗(H ∩ (E1 ∪ E2)) = µ∗((H ∩ (E1 ∪ E2) ∩ E1)) + µ∗((H ∩ (E1 ∪ E2) ∩ E1))

and next H ∩ (E1 ∪ E2) ∩ E1 = H ∩ E1 and H ∩ (E1 ∪ E2) ∩ E1 = H ∩ E1 ∩ E2.
Since E1 ∩ E2 is the complement of E1 ∪ E2, it follows that E1 ∪ E2 is in U . Thus U
is closed under union. It is clearly closed under complement and thus it is a Boolean
algebra. If moreover E1 and E2 are disjoint, then

µ∗(H ∩ (E1 ∪ E2)) = µ∗(H ∩ E1) + µ∗(H ∩ E2) (13.6)

because then H ∩ (E1 ∪ E2) ∩ E1 = H ∩ E1 and H ∩ (E1 ∪ E2) ∩ E1 = H ∩ E2.
3. We show that U is closed under countable union and that µ∗ is countably

additive on U . Consider first a sequence (En)n≥0 of pairwise disjoint elements of U .
Set E =⋃n≥0 En.

Let H ⊂ Aω. Since the sets En are pairwise disjoint, it follows from (13.6) that for
all m ≥ 0, one has µ∗(H ∩⋃n≤m En) =∑n≤m µ∗(H ∩ En). Set Fm =⋃n≤m En.
The inclusion Fm ⊂ E implies Fm ⊃ E whence H ∩ Fm ⊃ H ∩ E.

Since U is a Boolean algebra, one has Fm, Fm ∈ U , and since µ∗ is monotone, one
gets µ∗(H ∩ Fm) ≥ µ∗(H ∩ E). It follows that

µ∗(H) = µ∗(H ∩ Fm) + µ∗(H ∩ Fm) ≥
∑
n≤m

µ∗(H ∩ En) + µ∗(H ∩ E).

13.1 Probability 459

This is true for every m, and consequently

µ∗(H) ≥
∑
n≥0

µ∗(H ∩ En) + µ∗(H ∩ E) ≥ µ∗(H ∩ E) + µ∗(H ∩ E).

On the other hand, since µ∗ is (countably) subadditive on all subsets of Aω by Lemma
13.1.15, one has the inequality µ∗(H) = µ∗((H ∩ E) ∪ (H ∩ E)) ≤ µ∗(H ∩ E) +
µ∗(H ∩ E). This implies the equality

µ∗(H) =
∑
n≥0

µ∗(H ∩ En) + µ∗(H ∩ E) = µ∗(H ∩ E) + µ∗(H ∩ E).

This shows that U is closed under disjoint countable unions. To show that U is closed
under all countable unions, consider any sequence (En)n≥0 of elements in U . Set
E =⋃n≥0 En, and set Fn = En \ (E0 ∪ · · · ∪ En−1) for n ≥ 0. The sets Fn are in
U because U is a Boolean algebra. Moreover

⋃
n≥0 Fn = E. Thus E is a disjoint

countable union and by the preceding proof, E is in U .
Since the family U is a Boolean algebra containing F and closed under countable

unions, it contains the family of Borel subsets of Aω. It remains to show that µ∗

is countably additive on U . For this let (En)n≥0 be a sequence of pairwise disjoint
elements in U and set E =⋃n≥0 En. Then Equation (13.1) holds for any set H , and
in particular for H replaced by E. This gives the equality

µ∗(E) =
∑
n≥0

µ∗(En),

showing that µ∗ is countably additive on U . �

Proof of Theorem 13.1.8. Let π be a probability distribution on A∗, let µ be defined
by Equation (13.4) and let µ∗ be defined by Equation (13.5). By Proposition 13.1.16,
µ∗ is countably additive on the family of Borel subsets of Aω, and therefore is a
probability measure on this family.

To prove uniqueness, let µ′ be another probability measure on the Borel subsets of
Aω such that µ′(xAω) = π (x) for x ∈ A∗. Then µ′ = µ on F because µ′ is additive.
Next, let E be a subset of Aω and let (En)n≥0 be in S(E). Define Fn = En \ (E0 ∪
· · · ∪ En−1). Then E ⊂⋃n≥0 En =⋃n≥0 Fn, and one has µ′(E) ≤ µ′(

⋃
n≥0 Fn) =∑

n≥0 µ′(Fn) ≤∑n≥0 µ′(En).
Since µ′ = µ on F and En ∈ F for all n ≥ 0, one has µ′(E) ≤∑n≥0 µ(En). This

holds for all sequences (En)n≥0 in S(E), and thus µ′(E) ≤ µ∗(E). By the same
argument, µ′(E) ≤ µ∗(E). Since µ∗(E) + µ∗(E) = µ′(E) + µ′(E) = 1 for a Borel
subset, this forces µ′(E) = µ∗(E). This shows the uniqueness. �

Example 13.1.17 Let X ⊂ A∗ be a prefix code. For any probability distribution π ,
with corresponding probability measure µ, one has

µ(Xω) = lim
n→∞ π (Xn). (13.7)

460 13 Densities

Indeed, we first observe that if E =⋃n≥0 En for Borel subsets of Aω, and
En ⊂ En+1 for n ≥ 0, then µ(E) = limn→∞ µ(En). To see this, set Fn = En \
(E0 ∪ · · · ∪ En−1) for n ≥ 0. Then the sets Fn are pairwise disjoint and since µ is
countable additive, µ(E) =∑n≥0 µ(Fn). Next

∑
i≤n µ(Fi) = µ(En), which implies

that
∑

n≥0 µ(Fn) = limn→∞ µ(En). By taking the complements, it follows that if
E =⋂n≥0 En and En ⊃ En+1 for n ≥ 0, then again µ(E) = limn→∞ µ(En). These
conditions are satisfied for E = Xω and En = XnAω by Equation (13.1). Therefore
µ(Xω) = limn→∞ µ(XnAω) = limn→∞ π (Xn).

Example 13.1.18 Let D be the Dyck code on A = {a, b}. Let π be a Bernoulli
distribution on A∗ and set p = π (a) and q = π (b). By Example 2.4.10, we have
π (D) = 1 − |p − q|. Let µ be the measure on Aω corresponding to π . If p �= q, then
π (D)n → 0 for n → ∞ and by (13.7) µ(Dω) = 0. This means that with probability
one, the event that the number of occurrences of a and b are equal will occur a finite
number of times. If p = q, then π (D)n = 1 for all n and µ(Dω) = 1. This means
that the same event will occur infinitely often with probability one.

Example 13.1.19 Consider the function π defined on A∗ = {a, b}∗ as follows. For
x /∈ a∗b∗, one has π (x) = 0, and for n ≥ 0, j > 0,

π (an) = 2−n, π (anbj) = 2−n−1.

Then π (a) = π (b) = 1/2, and π (an) = π (an+1) + π (anb), π (anbj) = π (anbj+1).
Thus π satisfies the coherence condition and therefore is a probability distribution
on A∗. This corresponds to the following experiment: a and b are chosen at random
with equal probability until the occurrence of the first b. Afterwards, the outcome is
always b. The probability of no occurrence of a is 1/2.

The probability measure µ corresponding to π is such that µ(bω) = µ(aAω) = 1/2.
The maximal prefix code X = b∗a is such that π (X) = 1/2 since π (bna) = 0 for n >

0. This is consistent with the fact that Aω = XAω ∪ bω and thus 1 = µ(XAω) + 1/2.

13.2 Densities

We use the notation

A(n) = {1} ∪ A ∪ · · · ∪ An−1.

In particular A(0) = ∅, A(1) = {1}.
Let π be a probability distribution on A∗. Let L be a subset of A∗. The set L is

said to have a density with respect to π if the sequence of the π (L ∩ An) converges
in mean, that is, if

lim
n→∞

1

n

n−1∑
k=0

π (L ∩ Ak)

13.2 Densities 461

exists. If this is the case, the density of L (relative to π) denoted by δ(L), is this limit,
which can also be written as

δ(L) = lim
n→∞(1/n)π (L ∩ A(n)).

An elementary result from analysis shows that if the sequence π (L ∩ An) has a limit,
then its limit in mean also exists, and both are equal. This remark may sometimes
simplify computations. Observe that δ(A∗) = 1 and

0 ≤ δ(L) ≤ 1

for any subset L of A∗ having a density. If L and M are subsets of A∗ having a
density, then so has L ∪ M , and

δ(L ∪ M) ≤ δ(L) + δ(M).

If L ∩ M = ∅, and if two of the three sets L, M and L ∪ M have a density, then the
third one also has a density and

δ(L ∪ M) = δ(L) + δ(M).

The function δ is a partial function from P(A∗) into [0, 1]. Of course, δ({w}) = 0 for
all w ∈ A∗. This shows that in general

δ(L) �=
∑
w∈L

δ({w}).

Observe that if π (L) < ∞, then δ(L) = 0 since π (L ∩ A(n)) ≤ π (L), whence

lim
n→∞

1

n
π (L ∩ A(n)) = 0.

Example 13.2.1 Let L = (A2)∗ be the set of words of even length. Then

π (L ∩ A(2k)) = π (L ∩ A(2k−1)) = k.

Thus δ(L) = 1
2 .

Example 13.2.2 Let D∗ = {w ∈ A∗ | |w|a = |w|b} over A = {a, b}. The set D is the
Dyck code (see Example 2.4.10). Let π be a Bernoulli distribution and set p = π (a),
q = π (b). Then

π (D∗ ∩ A2n) =
(

2n

n

)
pnqn, π (D∗ ∩ A2n+1) = 0.

Recall that Stirling’s formula gives the following asymptotic equivalent for n!:

n! ∼
(n

e

)n√
2πn.

462 13 Densities

Using this formula, we get

π (D∗ ∩ A2n) ∼ 1√
πn

4n(pq)n,

Since pq ≤ 1/4 for all values of p and q, this shows that limn→∞ π (D∗ ∩ A2n) = 0.
Thus δ(D∗) = 0.

The definition of density clearly depends only on the values of the numbers π (L ∩
An). It appears to be useful to consider an analogous definition for power series. Let
f =∑n≥0 fnt

n be a power series. The density of f , denoted by δ(f) is the limit in
mean, provided it exists, of the sequence fn,

δ(f) = lim
n→∞

1

n

n−1∑
i=0

fi.

Recall from Section 1.11 that the probability generating series, denoted by FL(t), of
a set L ⊂ A∗, is defined by

FL(t) =
∑
n≥0

π (L ∩ An)tn.

Clearly FL(t) has a density if and only if L has a density, and

δ(L) = δ(FL).

We denote by ρL the radius of convergence of the series FL(t). Recall (see Section 1.8)
that it is infinite if FL(z) converges for all real numbers, or it is the unique real positive
number ρ ∈ R+, such that FL(z) converges for |z| < ρ and diverges for |z| > ρ. For
any set L, we have ρL ≥ 1 since π (L ∩ An) ≤ 1 for all n ≥ 0.

The following proposition is a more precise formulation of Proposition 2.5.12. It
implies Proposition 2.5.12, since if ρL > 1, then π (L) = FL(1) is finite.

Proposition 13.2.3 Let L be a subset of A∗ and let π be a positive Bernoulli distri-
bution. If L is thin, then ρL > 1 and δ(L) = 0.

Proof. Let w be a word which is not a factor of a word of L and set n = |w|. Then
we have, for 0 ≤ i < n and k ≥ 0,

L ∩ Ai(An)k ⊂ Ai(An \ w)k.

Hence

π (L ∩ Ai(An)k) ≤ (1 − π (w))k.

Thus for any ρ > 0 satisfying (1 − π (w))ρn < 1, we have

FL(ρ) ≤
n−1∑
i=0

∞∑
k=0

(1 − π (w))kρi+kn =
n−1∑
i=0

ρi

[∞∑
k=0

((1 − π (w))ρn)k
]

< +∞.

13.2 Densities 463

This proves that

ρL ≥
(1

1 − π (w)

)1/n

> 1.

This shows that FL(1) is finite, and consequently limn→∞ π (L ∩ An) = 0. Therefore
δ(L) = 0. �

For later use, we need an elementary result concerning the convergence of certain
series. For the sake of completeness we include the proof.

Proposition 13.2.4 Let f (t) =∑n≥0 fnt
n, g(t) =∑n≥0 gnt

n be two power series
satisfying

(i) 0 < g(1) < ∞,
(ii) 0 ≤ fn ≤ 1 for all n ≥ 0.

Then δ(f) exists if and only if δ(fg) exists and in this case, one has

δ(fg) = δ(f)g(1). (13.8)

Proof. Set

h = fg =
∞∑

n=0

hnt
n.

Then for n ≥ 1,

(n−1∑
i=0

fi

)
g(1) =

(n−1∑
i=0

fi

)(∞∑
j=0

gj

)
=

∑
0≤i+j≤n−1

figj +
n−1∑
i=0

fi

(∞∑
j=n−i

gj

)

=
n−1∑
k=0

hk +
n−1∑
i=0

firn−i ,

where ri =
∑∞

j=i gj . Let sn =∑n−1
i=0 firn−i . Then for n ≥ 1,

(1

n

n−1∑
i=0

fi

)
g(1) =

(1

n

n−1∑
k=0

hk

)
+ 1

n
sn. (13.9)

Furthermore

sn =
n−1∑
i=0

firn−i ≤
n−1∑
i=0

rn−i =
n∑

i=1

ri . (13.10)

Since
∑

gn converges, we have limi→∞ ri = 0. This shows that

lim
n→∞

1

n

n−1∑
i=1

ri = 0,

464 13 Densities

and in view of (13.10),

lim
n→∞

1

n
sn = 0.

Since g(1) �= 0, Equation (13.9) shows that δ(f) exists if and only if δ(h) exists and
that δ(f)g(1) = δ(h). This proves (13.8) and the proposition. �

Proposition 13.2.5 Let π be a positive Bernoulli distribution on A∗. Let L,M be
subsets of A∗ such that

(i) 0 < π (M) < ∞,
(ii) the product LM is unambiguous.

Then LM has a density if and only if L has a density, and if this is the case,

δ(LM) = δ(L)π (M). (13.11)

Proof. Since the product LM is unambiguous, we have

FLM = FLFM.

In view of the preceding proposition

δ(LM) = δ(FLM) = δ(FL)σ,

where σ =∑n≥0 π (M ∩ An) = π (M). �

This proposition will be useful below. Note that the symmetric version with LM

replaced by ML also holds. As a first illustration of its use, we note the following
corollary.

Corollary 13.2.6 Each right (left) ideal I of A∗ has a nonnull density. More precisely
δ(I) = π (X), where X = I \ IA+.

Proof. Let I be a right ideal and let X = I \ IA+. By Proposition 3.1.2, the set X is
prefix and

I = XA∗.

The product XA∗ is unambiguous because X is prefix. Further π (X) ≤ 1 since X is
a code, and π (X) > 0 since I �= ∅ and consequently also X �= ∅. Thus, applying the
(symmetrical version of the) preceding proposition, we obtain

δ(I) = δ(XA∗) = π (X)δ(A∗) = π (X) �= 0. �

Let X be a code over A. Then π (X) ≤ 1 and π (X) = 1 if X is thin and complete.
For a code X such that π (X) = 1 we define the average length of X (relative to π)

13.2 Densities 465

as the finite or infinite number λ(X) defined by

λ(X) =
∑
x∈X

|x|π (x) =
∑
n≥0

nπ (X ∩ An). (13.12)

The following fundamental theorem gives a link between the density and the
average length.

Theorem 13.2.7 Let X ⊂ A+ be a code and let π be a positive Bernoulli distribution.
If

(i) π (X) = 1,
(ii) λ(X) < ∞,

then X∗ has a density and δ(X∗) = 1/λ(X).

The theorem is a combinatorial interpretation of the following property of power
series.

Proposition 13.2.8 Let f (t) =∑n≥0 fnt
n be a power series with real nonnegative

coefficients, and with zero constant term. If f (1) = 1 and f ′(1) < ∞, then

δ
(1

1 − f (t)

)
= 1

f ′(1)
.

Proof. Let g(t) =∑∞
n=0 gnt

n be defined by

g(t) = 1 − f (t)

1 − t
, (13.13)

which can also be written as f (t) = 1 + (t − 1)g(t). Identifying terms, we get f0 =
1 − g0 and fn = gn−1 − gn for n ≥ 1, whence for n ≥ 0, gn = 1 −∑n

i=0 fi . Since
f (1) = 1, it follows that

gn =
∞∑

i=n+1

fi.

By this equation, one has gn ≥ 0 for n ≥ 0. Moreover

g(1) =
∞∑

n=0

gn =
∞∑

n=0

∞∑
i=n+1

fi =
∞∑
i=0

ifi = f ′(1). (13.14)

Since at least one fi , for i ≥ 1, is not null because
∑

i≥1 fi = 1, one has f ′(1) > 0.
Next

1

1 − t
= 1

1 − f (t)
g(t). (13.15)

Since f ′(1) is finite and not zero, we can apply Proposition 13.2.4 to (13.15), with f

replaced by 1/(1 − f), provided we check that the coefficients of the series 1/(1 − f)

466 13 Densities

are nonnegative and less than or equal to 1. This holds by (13.15), because g(t) is not
null.

Now δ(1/(1 − t)) = 1, consequently in view of (13.8), Formula (13.15) gives

1 = δ(
1

1 − f (t)
)f ′(1). �

Proof of Theorem 13.2.7. Set fn = π (X ∩ An). Then FX(t) =∑∞
n=0 fnt

n. Since X

is a code, FX(t) has zero constant term, and by assumption FX(1) = π (X) = 1. We
have as a consequence of Proposition 2.1.15,

FX∗ (t) = (1 − FX(t))−1. (13.16)

Next λ(X) = F ′
X(1) < ∞, so we can apply the previous proposition. This gives the

formula. �

Note the following important special case of Theorem 13.2.7.

Theorem 13.2.9 Let X be a thin complete code over A, and let π be a positive
Bernoulli distribution. Then X∗ has a density. Further δ(X∗) > 0, λ(X) < ∞, and
δ(X∗) = 1/λ(X).

Proof. Since X is a thin and complete code, π (X) = 1. Next, since X is thin, ρX > 1
by Proposition 13.2.3. Thus the derivative of FX(t) which is the series

F ′
X(t) =

∑
n≥1

nπ (X ∩ An)tn−1,

also has a radius of convergence strictly greater than 1. Hence F ′
X(1) is finite. Now

F ′
X(1) =

∑
n≥1

nπ (X ∩ An) = λ(X).

Therefore λ(X) < ∞ and the hypotheses of Theorem 13.2.7 are satisfied. �

Example 13.2.10 Let X be a thin maximal bifix code. Then λ(X) = d(X) by Corol-
lary 6.3.16. Thus δ(X∗) = 1/d(X).

In the case of a prefix code, Theorem 13.2.7 holds for more general probability
distributions. Recall from Section 3.7 that a persistent recurrent event on the alphabet
A is a pair (X,π) composed of a prefix code X and a probability distribution π which
is multiplicative on X∗ and such that π (X) = 1.

Theorem 13.2.11 Let (X,π) be a persistent recurrent event over an alphabet A. If
λ(X) < ∞, then the density of X∗ exists and δ(X∗) = 1/λ(X).

Proof. We verify that the assumptions of Proposition 13.2.8 are satisfied for f (t) =
FX(t). We have FX(1) = π (X) = 1 since the recurrent event is persistent. Next,
F ′

X(1) = λ(X) by Proposition 3.7.10. Thus F ′
X(1) < ∞.

13.3 Entropy 467

By Proposition 13.2.8, δ(1/(1 − FX(t))) = 1/λ(X). Finally, FX∗ (t) = 1/(1 −
FX(t)) by Proposition 3.7.3. This shows that δ(X∗) = δ(FX∗ (t)) = δ(1/(1 −
FX(t))) = 1/λ(X). �

13.3 Entropy

Given a set X ⊂ A∗, recall that the generating series of X is fX(t) =∑n≥1 Card(X ∩
An)tn. It is related to the probability generating series corresponding to the uniform
Bernoulli distribution by fX(t) = FX(kt) with k = Card(A).

The topological entropy of a set X ⊂ A∗ is h(X) = − log rX where rX is the radius
of convergence of the series fX(t). By convention, h(X) = 0 if rX = ∞. In particular,
h(A∗) = log k with k = Card(A). Also X ⊂ Y implies h(X) ≤ h(Y). Thus

0 ≤ h(X) ≤ log k

with k = Card(A).
Recall that F (X) denotes the set of factors of words in X.

Proposition 13.3.1 For any rational set X ⊂ A∗, one has h(X) = h(F (X)). In par-
ticular, if the set X is dense, then h(X) = log k with k = Card(A).

Given a probability distribution π on A∗ and a set X ⊂ A∗, recall that ρX denotes
the radius of convergence of the probability generating function FX(t) of X.

The proposition is a consequence of the following statement.

Proposition 13.3.2 Let X be a rational set and let Y be the set of factors of the words
of X. Then for any positive Bernoulli distribution π , one has ρX = ρY .

Proof. Let FX(t) =∑n≥0 ant
n and FY (t) =∑n≥0 bnt

n. LetA be a trim finite automa-
ton recognizing X with set of states Q. For each state q, there are words uq and vq ,

an initial state iq , and a terminal state tq such that iq
uq→ q

vq→ tq . For each word w of

length n in Y , there exists a path p
w→ q in A and, therefore, also words up and vq

such that upwvq ∈ X and conversely. Thus

Y =
⋃

p,q∈Q

u−1
p Xv−1

q .

Let w ∈ Y , and up, vq be words such that upwvq ∈ X and set x = upwvq . Since π is
a positive Bernoulli distribution, one has π (w) = π(x)

π(up)π(vq) . Consequently, for each
n ≥ 0

π (u−1
p Xv−1

q) = π (X ∩ upAnvq)

π (up)π (vq)
.

Setting m = minp,q∈Q π (up)π (vq), one gets

π (Y ∩ An) =
∑

p,q∈Q

π (X ∩ upAnvq)

π (up)π (vq)
≤ π (X ∩ An) + · · · + π (X ∩ An+k+�)

m
,

468 13 Densities

where k is the maximal length of the words up and � is the maximal length of
the words vq . It follows that an ≤ bn ≤ 1

m
(an + an+1 + · · · + an+k+�). This shows

that the series FX(t) and FY (t) have the same radius of convergence, because the
operations of shift, addition, and multiplication by a nonzero scalar do not change
the convergence radius. �

Proof of Proposition 13.3.1. By definition, h(X) = log rX, where rX is the radius of
convergence of fX(t). Since fX(t) = FX(kt) for the uniform Bernoulli distribution,
with k = Card(A), one has ρX = rX/k. Consequently rX = kρX = kρF (X) = rF (X)

by Proposition 13.3.2. �

We will prove the following result.

Theorem 13.3.3 Let X be a nonempty rational code. One has h(X∗) = − log r ,
where r is the unique positive real number such that fX(r) = 1.

This is a consequence of the following more general statement.

Theorem 13.3.4 Let X be a nonempty rational code and let π be a positive Bernoulli
distribution. Then ρX∗ is the unique positive real number r such that FX(r) = 1.

Theorem 13.3.4 implies that π (X) = 1 for a complete rational code (see Theorem
2.5.16). Indeed, we have ρX∗ = ρF (X∗) since X∗ is rational by Proposition 13.3.2.
Since X is complete, we have F (X∗) = A∗ and thus ρX∗ = ρF (X∗) = 1. By Theo-
rem 13.3.4 FX(1) = 1. Since π (X) = FX(1), the claim follows.

For the proof of Theorem 13.3.4, we first prove the following statement.

Proposition 13.3.5 Let X ⊂ A∗ be a nonempty code and let π be a positive Bernoulli
distribution on A∗. If ρX < ρX∗ , then ρX∗ is the unique positive root of FX(r) = 1.

Proof. Since FX∗(t) = 1/(1 − FX(t)), the statement is a direct application of Propo-
sition 1.8.4. �

We will show that the hypothesis of Proposition 13.3.5 is satisfied for a rational
code. We first prove the following result.

Proposition 13.3.6 Let X ⊂ A+ be a nonempty rational set. Then FX(ρX) = ∞, that
is ρX = ∞ or ρX is a pole of FX(t).

Proof. We use induction on the number of operations in an unambiguous rational
expression for X, see Section 4.1. The result holds if X is finite since then ρX = ∞.
Next, the cases of a disjoint union and unambiguous product are straightforward.
Finally, consider the case X = Y ∗ with Y a code. Since FY (ρY) = ∞ by induction
hypothesis, and FY (t) is continuous inside its interval of convergence, there exists
r > 0 such that FY (r) = 1. Since Y is a code, one has FX(t) =∑n≥0 FY (t)n. Since
FY (r) = 1, one has FX(r) = ∞. If 0 < s < r , then FY (s) < 1 and thus FX(s) con-
verges. This shows that r is the radius of convergence of FX(t). �

The following example shows that Proposition 13.3.6 is not true without the
hypothesis that X is rational.

13.3 Entropy 469

Example 13.3.7 Let D be the Dyck code on the alphabet A = {a, b}. Let π be the
uniform Bernoulli distribution on A. We have seen (Example 2.4.10) that FD(t) = 1 −√

1 − t2. Thus ρD = 1. Since ρD∗ ≤ ρD , this implies ρD∗ = 1 although FD(1) = 1.

Proof of Theorem 13.3.4. By Proposition 13.3.6, we have FX(ρX) = ∞. Therefore,
there is an r > 0 such that FX(r) = 1. Since FX∗ (t) =∑n≥0 FX(t)n, the series FX∗ (t)
converges for t < r and diverges for t = r . This shows that ρX∗ = r . �

The following example shows that Theorem 13.3.4 is not true for very thin codes.

Example 13.3.8 Let A = {a, b, c} and let D be the Dyck code on {a, b}. Con-
sider the prefix code X = c2 ∪ Da where Da = D ∩ aA∗. The code X is very thin
since c4 ∈ X∗ but c4 �∈ F (X). Let π be the uniform Bernoulli distribution on A. We
have FDa

(t) = fDa
(t/3). On the other hand, fDa

(t) = 1/2fD(t), and fD(t) = FD(2t),
where FD(t) denotes the probability generating series for the uniform Bernoulli
distribution on the alphabet {a, b}. Consequently fDa

(t) = (1 − √
1 − 4t2)/2 and

thus FDa
(t) = (1 −

√
1 − 4t2/9)/2. This shows that ρX∗ = ρDa

= 3/2, although
FX(3/2) = 1/4 + 1/2 = 3/4 < 1.

Proof of Theorem 13.3.3. It is a direct consequence of Theorem 13.3.4 in the case of
the uniform Bernoulli distribution. �

Example 13.3.9 Let A = {a, b} and let X = {a, ba}. We have fX(t) = t + t2 and
h(X∗) = log (1 +√

5)/2.

The next example is an illustration of the use of Proposition 13.3.5 to compute the
topological entropy of non rational codes.

Example 13.3.10 Let A = {a, b} and let X = {anbn | n ≥ 1}. We have fX(t) =∑
n≥1 t2n = t2/(1 − t2). Since fX(1/

√
2) = 1, the topological entropy of X∗ is

(log 2)/2.

The following result gives a useful relation between the entropy of X∗ when X is
a rational code and the spectral radius of the adjacency matrix of an unambiguous
automaton recognizing X∗.

Proposition 13.3.11 Let X be a rational code. Let A = (Q, 1, 1) be a trim unam-
biguous automaton recognizing X∗. The topological entropy of X∗ is h(X∗) = log λ,
where λ is the spectral radius of the adjacency matrix of A.

Proof. Let M be the adjacency matrix of A and let Np,q(t) be the coefficient of
index p, q of the matrix N (t) = (I − Mt)−1. Since I + N (t)Mt = N (t), we have
δp,q + t

∑
s∈Q Np,s(t)Ms,q = Np,q (t). Thus if Np,s(t) diverges for t = r , all Np,q(r)

also diverge for q ∈ Q. Similarly, the equality I + MtN (t) = N (t) shows that if
Ns,q(t) diverges for t = r , then all Np,q (r) diverge for p ∈ P . This shows that all
series Np,q(t) have the same radius of convergence as N1,1(t) which is ρ. Let λ be
the spectral radius of M . We cannot have ρ < 1/λ since otherwise 1/ρ would be

470 13 Densities

1 2a

b

a

Figure 13.1 An automaton recognizing X∗ for X = {a, ba}.

an eigenvalue of M larger than λ. We cannot have either ρ > 1/λ. Indeed, by the
Perron–Frobenius theorem, λ is an eigenvalue of M and the matrix M − λI is not
invertible. If ρ > 1/λ, then N (t) converges for t = 1/λ to a matrix which is the
inverse of I − 1

λ
M , a contradiction. �

Example 13.3.9 (continued) The automaton given in Figure 13.1 recognizes X∗.

The matrix M is

[
1 1
1 0

]
. Its spectral radius is (1 +√

5)/2.

13.4 Probabilities over a monoid

A detailed study of the density of a code, in relation to some of the fundamental
parameters, will be presented in the next section. The aim of the present section is to
prepare this investigation by the proof of some rather delicate results. We will show
how certain monoids can be equipped with idempotent measures. This in turn allows
us to determine the sets having a density, and to compute it.

We need the following lemma which is a generalization of Proposition 13.2.4.

Lemma 13.4.1 Let I be a set, and for each i ∈ I , let

f (i)(t) =
∞∑

n=0

f (i)
n tn, g(i)(t) =

∞∑
n=0

g(i)
n tn

be formal power series with nonnegative real coefficients satisfying

(i)
∑

i∈I g(i)(1) < ∞,
(ii) 0 ≤ f (i)

n ≤ 1 for all i ∈ I , n ≥ 0,

(iii) δ(f (i)) exists for all i ∈ I .

Then
∑

i∈I f (i)g(i) admits a density and

δ
(∑

i∈I

f (i)g(i)
)
=
∑
i∈I

δ(f (i))g(i)(1).

We first prove the following “dominated convergence” lemma. It gives a sufficient
condition to allow one to extend the formula

δ(f + g) = δ(f) + δ(g)

to an infinite sum.

13.4 Probabilities over a monoid 471

Lemma 13.4.2 Let I be a set and for each i ∈ I , let

u(i)(t) =
∞∑

n=0

u(i)
n tn

be a formal power series with nonnegative real coefficients satisfying

(i)
∑

i∈I u(i)
n < ∞ for all n ≥ 0,

(ii) δ(u(i)) exists for all i ∈ I ,
(iii) there is a sequence (v(i))i∈I of nonnegative real numbers such that

∑
i∈I v(i) < ∞

and u(i)
n ≤ v(i) for all i ∈ I and n ≥ 0.

Then

δ
(∑

i∈I

u(i)
)
=
∑
i∈I

δ(u(i)).

Proof. Let wn =∑i∈I u(i)
n and w =∑n≥0 wnt

n in such a way that w =∑i∈I u(i).
We show that ∣∣∣δ(w) −

∑
i∈I

δ(u(i))
∣∣∣ < ε

for arbitrary ε > 0. Since the series
∑

i∈I v(i) is convergent, there is a finite set F ⊂ I

such that
∑

i∈I\F v(i) < ε. Then wn −∑i∈F u(i)
n < ε and thus δ(w) −∑i∈F δ(u(i)) <

ε. Since F is finite, δ(
∑

i∈F u(i)) =∑i∈F δ(u(i)) and the result follows. �

Proof of Lemma 13.4.1. Let u(i) = f (i)g(i) and v(i) = g(i)(1). We verify that the
conditions of Lemma 13.4.2 are satisfied.

Since f (i)
n ≤ 1 for all i ∈ I and n ≥ 0, we have u(i)

n ≤∑n
�=0 g

(i)
� . Thus

∑
i∈I u(i)

n ≤∑
i∈I g(i)(1) < ∞. This shows that condition (i) is satisfied. Next, by Proposi-

tion 13.2.4, δ(u(i)) exists for all i ∈ I . Finally, u(i)
n ≤ v(i) and

∑
i∈I v(i) < ∞, showing

that condition (iii) is also satisfied. We can therefore apply Lemma 13.4.2 to obtain
δ(
∑

i∈I f (i)g(i)) =∑i∈I δ(f (i)g(i)). We now apply Proposition 13.2.4 to obtain the
desired result. �

Lemma 13.4.1 leads to the following proposition which extends Proposition 13.2.5.

Proposition 13.4.3 Let I be a set and for each i ∈ I , let Li and Mi be subsets of A∗.
Let π be a Bernoulli distribution on A∗ and suppose that

(i)
∑

i∈I π (Mi) < ∞,
(ii) the products LiMi are unambiguous and the sets LiMi are pairwise disjoint,

(iii) each Li has a density δ(Li).

Then
⋃

i∈I LiMi has a density, and

δ
(⋃

i∈I

LiMi

)
=
∑
i∈I

δ(Li)π (Mi).

472 13 Densities

Proof. Set in Lemma 13.4.1,

f (i)
n = π (Li ∩ An), g(i)

n = π (Mi ∩ An).

Then f (i) = FLi
, g(i) = FMi

. Furthermore δ(f (i)) = δ(Li), g(i)(1) = π (Mi), and in
particular

∑
i∈I π (Mi) < ∞. According to Lemma 13.4.1, we have

δ
(∑

i∈I

f (i)g(i)
)
=
∑
i∈I

δ(Li)π (Mi).

Since condition (ii) of the statement implies that∑
i∈I

f (i)g(i) =
∑
i∈I

FLi
FMi

=
∑
i∈I

FLiMi
= F⋃

i∈I LiMi

the proposition follows. �

Let ϕ be a morphism from A∗ onto a monoid M , and let π be a positive Bernoulli
distribution on A∗. Provided M possesses certain properties which will be described
below, each subset of A∗ of the form ϕ−1(P), where P ⊂ M , has a density. The study
of this phenomenon will lead us to give an explicit expression of the value of the
densities of the sets ϕ−1(m) for m ∈ M , as a function of parameters related to M .

A monoid M is called well founded if it has a unique minimal ideal, if moreover
this ideal is the union of the minimal left ideals of M , and also of the minimal right
ideals, and if the intersection of a minimal right ideal and of a minimal left ideal is a
finite group.

Any unambiguous monoid of relations of finite minimal rank is well founded
by Proposition 9.3.14 and Theorem 9.3.15. It appears that the development given
now does not depend on the fact that the elements of the monoid under concern are
relations; therefore we present it in the more abstract frame of well-founded monoids.

Let ϕ : A∗ → M be a morphism onto an arbitrary monoid, and let m, n ∈ M . We
define

Cm,n = {w ∈ A∗ | mϕ(w) = n} = ϕ−1(m−1n).

Note that here m−1n is the left residual and m−1 is not the inverse of m. The set Cn,n is
a right-unitary submonoid of A∗: for u, uv ∈ Cn,n, we have nϕ(u) = n = nϕ(uv) =
nϕ(u)ϕ(v) = nϕ(v). Thus Cn,n is free. Let Xn be its base. It is a prefix code. Let

Zm,n = Cm,n \ Cm,nA
+

be the initial part of Cm,n. It is a prefix code. Next

Cm,n = Zm,nX
∗
n

and this product is unambiguous. Indeed, observe first that for all m, n, p ∈ M ,
one has Cm,nCn,p ⊂ Cm,p since if w ∈ Cm,n and w′ ∈ Cn,p, then mϕ(ww′) =
mϕ(w)ϕ(w′) = nϕ(w′) = p. This shows in particular that Cm,n ⊃ Zm,nX

∗
n. Con-

versely, if u ∈ Cm,n, let w ∈ Zm,n and t ∈ A∗ be such that u = wt . Then n =

13.4 Probabilities over a monoid 473

mϕ(wt) = mϕ(w)ϕ(t) = nϕ(t), showing that t ∈ Cn,n. The product is unambiguous
because the code Zm,n is prefix. Note also that

C1,n = ϕ−1(n).

Proposition 13.4.4 Let ϕ : A∗ → M be a morphism onto a well-founded monoid M ,
and let π be a positive Bernoulli distribution on A∗. Let K be the minimal ideal of
M .

1. For all m, n ∈ M , the set Cm,n = ϕ−1(m−1n) has a density.
2. We have

δ(Cm,n) =
{

π (Zm,n)δ(X∗
n) if n ∈ K and m−1n �= ∅,

0 otherwise.

3. For m, n ∈ K such that nM = mM , we have π (Zm,n) = 1 and consequently

δ(Cm,n) = δ(Cn,n) = δ(X∗
n).

Proof. Let n ∈ M , with n /∈ K . Then m−1n ∩ K = ∅. Indeed, assume that p ∈
m−1n ∩ K . Then mp = n and since K is an ideal, p ∈ K implies n ∈ K . Thus
for an element n /∈ K , the set Cm,n does not meet the ideal ϕ−1(K). Consequently
Cm,n is thin, and by Proposition 13.2.3, δ(Cm,n) = 0.

Consider now the case where n ∈ K . Let R = nM be the minimal right ideal con-
taining n. Consider the deterministic automaton over A,A = (R, n, n) with transition
function defined by r · a = rϕ(a) for r ∈ R, a ∈ A. We have |A| = X∗

n. Since R is a
minimal right ideal, the automaton is complete and trim and every state is recurrent.
In particular, Xn is a complete code (Proposition 3.3.11).

Let us verify that the monoid ϕA(A∗) has finite minimal rank. For this, let u ∈ A∗ be
a word such that ϕ(u) = n. Since A is deterministic, it suffices to compute rankA(u).
Now rank(ϕA(u)) = rankA(u) = Card(R · u) = Card(Rn) = Card(nMn).

By assumption, nMn is a finite group. Thus rank(ϕA(u)) is finite and the monoid
ϕA(A∗) has finite minimal rank. By Corollary 9.4.5, the code Xn is complete and thin
and according to Theorem 13.2.9, X∗

n has a positive density. Since Zm,n is a prefix
set, we have π (Zm,n) ≤ 1. In view of Proposition 13.2.5, the set Cm,n has a density
and

δ(Cm,n) = π (Zm,n)δ(X∗
n).

Clearly

Cm,n = ∅ ⇐⇒ m−1n = ∅ ⇐⇒ Zm,n = ∅.

Moreover, π being positive, π (Zm,n) > 0 if and only if Zm,n �= ∅. This shows that
δ(Cm,n) �= 0 if m−1n �= ∅. This proves the claims (2) and (1).

474 13 Densities

To prove (3), let u ∈ A∗ be a word such that nϕ(u) = m and nϕ(u′) �= n for each
proper nonempty prefix u′ of u. Then

uZm,n ⊂ Xn.

Indeed, let w ∈ Zm,n. We have nϕ(uw) = mϕ(w) = n, therefore uw ∈ X∗
n. We claim

that uw ∈ Xn. Assume on the contrary that uw has a proper prefix u′ which is in Xn.
Then nϕ(u′) = n and by the choice of u, the word u′ is not a proper prefix of u. Thus
u is a prefix of u′. If u �= u′, then u′ = uu′′ and n = nϕ(u′) = nϕ(uu′′) = mϕ(u′′),
showing that u′′ is in Zm,n, contradicting the fact that Zm,n is prefix.

This shows that Zm,n is formed of suffixes of words in Xn, and in particular that
Zm,n is thin. To show that Zm,n is right complete, let w ∈ A∗ and let n′ = mϕ(w).
Then n′ ∈ nM , and since nM is a minimal right ideal, there exists n′′ ∈ M such that
n′n′′ = n. Let v ∈ A∗ be such that ϕ(v) = n′′. Then mϕ(wv) = n, and consequently
wv ∈ Cm,n. This shows that Zm,n = {1} or Zm,n is a thin right complete prefix code,
thus a maximal code. Therefore π (Zm,n) = 1. Consequently δ(Cm,n) = δ(X∗

n). �

Let ϕ : A∗ → M be a morphism onto a well-founded monoid, and let π be a
positive Bernoulli distribution on A∗. We define a partial function ν on the set of
subsets of M as follows. The function ν is defined for each subset F of M for which
the density of the set ϕ−1(F) exists, and its value is this density

ν(F) = δ(ϕ−1(F)).

It follows from Proposition 13.4.4 that ν(n) is defined for each n ∈ M since ϕ−1(n) =
C1,n. Note also that according to Corollary 13.2.6, every one-sided ideal R has a
positive density. Thus ν is defined for all ideals in M . We write ν = δϕ−1 for short.

We shall see (Theorem 13.4.7 below) that ν is defined for all subsets of M , so ν is
in fact a total function and, moreover, it is a probability measure on the set of subsets
of M . We start with the following result

Theorem 13.4.5 Let ϕ : A∗ → M be a morphism onto a well-founded monoid, and
let π be a positive Bernoulli distribution on A∗. Let K be the minimal ideal of M .

1. ν(n) �= 0 if and only if n ∈ K .
2. ν(K) = 1.
3. For all R-equivalent elements m, n ∈ K , one has ν(n) = ν(m−1n)ν(nM).
4. For all n ∈ K ,

ν(n) = ν(nM)ν(Mn)

Card(nM ∩ Mn)
.

Proof. 1. One has ϕ−1(n) = C1,n. By Proposition 13.4.4, δ(C1,n) �= 0 if and only if
n ∈ K , since C1,n is never empty.

2. Let Y = ϕ−1(K) \ ϕ−1(K)A+ be the initial part of the ideal ϕ−1(K). The set Y

is prefix and ϕ−1(K) = YA∗. Since the set A∗ \ ϕ−1(K) is thin, we have ν(K) = 1
by Proposition 13.2.3.

13.4 Probabilities over a monoid 475

3. For each R-class R of K , consider YR = Y ∩ ϕ−1(R). Since the set Y is
prefix, the set YR is prefix. We have YR = ϕ−1(R) \ ϕ−1(R)A+. Indeed, consider
first y ∈ YR = Y ∩ ϕ−1(R). Then y ∈ ϕ−1(R) and y /∈ ϕ−1(R)A+, since otherwise
y ∈ ϕ−1(K)A+, in contradiction with the fact that y ∈ Y . Thus YR ⊂ ϕ−1(R) \
ϕ−1(R)A+. Conversely, let y ∈ ϕ−1(R) \ ϕ−1(R)A+. Then y ∈ ϕ−1(K) because
r ⊂ K , and assuming y ∈ ϕ−1(K)A+, one has y = uv with u ∈ ϕ−1(K), and since
yRu, one has ϕ(u) ∈ R. Consequently u ∈ ϕ−1(R) and y ∈ ϕ−1(R)A+, a contradic-
tion. This implies that y /∈ ϕ−1(K)A+, showing that ϕ−1(R) \ ϕ−1(R)A+ ⊂ YR .

It follows that ϕ−1(R) = YRA∗, and hence, ν(R) = π (YR) by the symmetric version
of Corollary 13.2.6.

Let now n ∈ R. Then R = nM and

ϕ−1(n) =
⋃
r∈R

(YR ∩ ϕ−1(r))Cr,n. (13.17)

Indeed, each word w ∈ ϕ−1(n) factorizes uniquely into w = uv, where u is the
shortest prefix of w such that ϕ(u) ∈ R. Then u ∈ YR ∩ ϕ−1(r) for some r ∈ R, and
v ∈ Cr,n. The converse inclusion is clear. The union in (13.17) is disjoint, and the
products are unambiguous because the sets YR ∩ ϕ−1(r) are prefix. Indeed, they are
subsets of the prefix code YR . Each Cr,n has a density, and moreover∑

r∈R

π (YR ∩ ϕ−1(r)) = π (YR) ≤ 1.

We therefore can apply Proposition 13.4.3 to (13.17). This gives

ν(n) =
∑
r∈R

π (YR ∩ ϕ−1(r))δ(Cr,n).

According to Proposition 13.4.4, all values δ(Cr,n) for r ∈ R are equal. Thus, for any
m ∈ R,

ν(n) = δ(Cm,n)π (YR) = ν(m−1n)π (YR) = ν(m−1n)ν(R).

4. Set R = nM , L = Mn, and H = R ∩ L. Then we claim that

L =
⋃
m∈H

(m−1n ∩ K)

and furthermore that the union is disjoint.
First consider an element k ∈ m−1n ∩ K for some m ∈ H . Then mk = n. Thus

n ∈ Mk, and since n is in the minimal ideal, Mn = Mk. Therefore, k ∈ Mn = L.
This proves the first inclusion.

For the converse, let k ∈ L = Mn. The right multiplication by k, m �→ mk is a
bijection which exchanges the L-classes in K and preserves R-classes (Proposi-
tion 1.12.2). In particular, this function maps the L-class L onto Lk = L and thus
onto itself. It follows that there exists m ∈ L such that mk = n. The element m is
R-equivalent with n. Consequently m ∈ H and therefore k ∈ m−1n for some m ∈ H .

476 13 Densities

Since the function m �→ mk is a bijection, the sets m−1n are pairwise disjoint. Indeed,
if k ∈ m−1n and k ∈ m′−1n, then mk = m′k and m = m′. This proves the formula.

For all m, n ∈ K ,

ν(m−1n ∩ K) = ν(m−1n)

since the set ϕ−1(m−1n ∩ (M \ K)) is thin and therefore has density 0 by Proposi-
tion 13.2.3. The set H being finite, we have

ν(L) =
∑
m∈H

ν(m−1n).

Using the expression for ν(n) proved above, we obtain

ν(L) =
∑
m∈H

ν(n)

ν(R)
= Card(H)

ν(n)

ν(R)
.

This proves the last claim of the theorem. �

The following elementary proposition is useful.

Proposition 13.4.6 Let (µn)n≥0 and µ be probability measures on the family of
subsets of a countable set E, and such that µ(e) = limn→∞ µn(e) for every e in E.
Then for all subsets F of E,

µ(F) = lim
n→∞ µn(F).

Proof. The conclusion clearly holds when F is finite. In the general case, set

σ = lim inf µn(F), τ = lim sup µn(F),

and let F̄ = E \ F . Of course, σ ≤ τ and

1 − τ = lim inf µn(F̄).

Let F ′ be a finite subset of F . Then µn(F ′) ≤ µn(F) for all n, and taking the inferior
limit, µ(F ′) ≤ σ . It follows that

µ(F) = sup
F ′⊂F
F ′finite

µ(F ′) ≤ σ.

Similarly, µ(F̄) ≤ 1 − τ . Since µ(F̄) + µ(F) = µ(E) = 1, we obtain 1 ≤ σ + (1 −
τ), whence σ ≥ τ . Thus σ = τ . Since µ(F) ≤ σ and µ(F̄) ≤ 1 − σ , one has both
µ(F) ≤ σ and µ(F) ≥ σ , showing that µ(F) = σ . �

Theorem 13.4.7 Let ϕ : A∗ → M be a morphism onto a well-founded monoid, and
let π be a positive Bernoulli distribution on A∗. For any subset F of M , the set
ϕ−1(F) ⊂ A∗ has a density. The function ν = δϕ−1 is a probability measure on the
family of subsets of M .

13.4 Probabilities over a monoid 477

Proof. Let K be the minimal ideal of M , let � be the set of its R-classes and � the
set of its L-classes. By Theorem 13.4.5,

ν(K) = 1.

Let Y (resp. YR) be the initial part of ϕ−1(K), (resp. of ϕ−1(R), with R ∈ �). Since
K is the disjoint union of its R-classes, we have

π (Y) =
∑
R∈�

π (YR).

By Corollary 13.2.6, ν(K) = π (Y), ν(R) = π (YR). Thus

ν(K) =
∑
R∈�

ν(R) =
∑
L∈�

ν(L) = 1,

where the intermediate assertion follows by symmetry.
Now consider a fixed R-class R ∈ �. Then by Theorem 13.4.5,∑

n∈R

ν(n) =
∑
n∈R

ν(R)ν(Mn)

Card(R ∩ Mn)
= ν(R)

∑
L∈�

∑
n∈R∩L

ν(L)

Card(R ∩ L)

= ν(R)
∑
L∈�

ν(L) = ν(R)

and also ∑
n∈K

ν(n) =
∑
R∈�

(∑
n∈R

ν(n)
)
=
∑
R∈�

ν(R) = 1.

Since ν(n) = 0 for n /∈ K , it follows that∑
n∈M

ν(n) = 1.

Define for any positive integer n and F ⊂ M

νn(F) = 1

n
π (ϕ−1(F) ∩ A(n)).

Then νn(m) = 0 except for a finite number of elements of M . Since νn(M) = 1, it
follows that each νn is a probability measure on the family of all subsets of M .

Define for a subset F of M , µ(F) =∑m∈F ν(m). Then, by Proposition 13.1.4, µ

is a probability measure on the family of subsets of M . By Proposition 13.4.6 we
have for any F ⊂ M , µ(F) = limn→∞ νn(F). Since, on the other hand, the limit of
νn(F) is by definition ν(F), it follows that ν(F) exists for any F ⊂ M and is equal
to µ(F). This concludes the proof. �

The following result puts together the results obtained before.

Proposition 13.4.8 Let ϕ : A∗ → M be a morphism onto a well-founded monoid,
and let π be a positive Bernoulli distribution on A∗. The function ν = δϕ−1 is a

478 13 Densities

probability measure on the set of subsets M . Let K be the minimal ideal of M . Then
the following formulas hold:

ν(m) �= 0 if and only if m ∈ K

ν(m) = ν(n−1m)ν(mM) if m, n ∈ K and nRm

ν(m) = ν(mM)ν(Mm)

Card(mM ∩ Mm)
if m ∈ K

ν(M ′) = ν(M ′ ∩ K) for M ′ ⊂ M.

(13.18)

For each H-class H ⊂ K , and h ∈ H ,

ν(h) = ν(H)

Card(H)
. (13.19)

Proof. The first assertion is Proposition 13.4.7. All the formulas with the exception
of (13.19), are immediate consequences of the relations given in Theorem 13.4.5.
For (13.19) observe that the value of ν is the same for all h ∈ H by Formula (13.18).
Next ν(H) =∑h∈H ν(h). This proves (13.19). �

Example 13.4.9 Let ϕ : A∗ → G be a morphism onto a finite group. Let π be a
positive Bernoulli distribution. For g ∈ G,

ν(g) = 1

Card(G)
(13.20)

in view of Formula (13.19) and observing that H = K = G. This gives another
method for computing the density in Example 13.2.1. To that example corresponds
a morphism ϕ : A∗ → Z/2Z onto the additive group Z/2Z with ϕ(a) = 1 for any
letter a in A.

Example 13.4.10 Let ϕ : A∗ → M be the morphism from A∗ onto the unambiguous
monoid of relations M over Q = {1, 2, 3} defined by α = ϕ(a), β = ϕ(b), with

α =
0 1 0

1 0 0
1 1 0

 , β =
0 0 1

0 0 0
1 1 0

 .

This monoid has already been considered in Example 9.4.12. Its minimal ideal J is
composed of elements of rank 1 and is represented in Figure 13.2.

Let π be a positive Bernoulli distribution and set p = π (a), q = π (b). Let us
compute the probability measure ν = δϕ−1 over M . With the notations of Figure 13.2,
we have the equalities

L1α = L2, L1β = L2,

L2α = L2, L2β = L1.
(13.21)

13.4 Probabilities over a monoid 479

001 110
0
1
1

ab aba R1

1
0
1

bab ba R2

L1 L2

Figure 13.2 The minimal ideal of the monoid M .

Set X1 = ϕ−1(L1), X2 = ϕ−1(L2). By (13.21),

X1a
−1 ∩ ϕ−1(J) = ∅, X1b

−1 ∩ ϕ−1(J) = X2,

X2a
−1 ∩ ϕ−1(J) = X1 ∪ X2, X2b

−1 ∩ ϕ−1(J) = X1.
(13.22)

Indeed consider, for instance, the last equation: if w ∈ X1, then ϕ(w) ∈ L1, hence
ϕ(wb) ∈ L2 by the fact that L1β = L2. This implies that wb ∈ X2, and w ∈ X2b

−1 ∩
ϕ−1(J). Conversely, let w ∈ X2b

−1 ∩ ϕ−1(J). Since w ∈ ϕ−1(J), w ∈ X1 ∪ X2. But
if w ∈ X2, then ϕ(wb) ∈ L1, showing that wb ∈ X1, whence w /∈ X2b

−1. Thus w ∈
X1.

In view of (13.22),

X1a
−1 = T1, X1b

−1 = X2 ∪ T ′
1,

X2a
−1 = X1 ∪ X2 ∪ T2, X2b

−1 = X1 ∪ T ′
2,

where T1, T
′

1, T2, T
′

2 are disjoint from ϕ−1(J). Multiplication by a and b on the right
gives, since Xi = (Xia

−1)a ∪ (Xib
−1)b for i = 1, 2, by adding both sides on each

row of the equations above,

X1 = X2b ∪ (T1a ∪ T ′
1b),

X2 = X1a ∪ X2a ∪ X1b ∪ (T2a ∪ T ′
2b).

Since T1 is thin, δ(T1a) = δ(T1)π (a) = 0, and similarly for the other T ’s. Therefore

δ(X1) = δ(X2)q, δ(X2) = δ(X1) + δ(X2)p,

which together with δ(X1) + δ(X2) = 1 gives

δ(X1) = q

1 + q
, δ(X2) = 1

1 + q
.

Thus

ν(L1) = q

1 + q
, ν(L2) = 1

1 + q
.

480 13 Densities

An analogous computation gives

ν(R1) = p

1 + p
, ν(R2) = 1

1 + p
.

In particular, since R2 ∩ L2 = {βα}, we obtain

ν(βα) = ν(L2)ν(R2)

Card(L2 ∩ R2)
= 1

(1 + p)(1 + q)
.

13.5 Strict contexts

Let X ⊂ A+ be a thin complete code. We have seen that the degree d(X) of X is
the integer which is the minimal rank of the monoid of relations associated with any
unambiguous trim automaton recognizing X∗. It is also the degree of the permutation
group G(X), and it is also the minimum of the number of disjoint interpretations in X

(see Section 9.5). In this section, we shall see that d(X) is related in a quite remarkable
manner to the density δ(X∗). A word is left (right) completable in X∗ if it is a suffix
(prefix) of some word in X∗. The set of left completable (right completable) words
is denoted by GX (DX).

Theorem 13.5.1 Let X ⊂ A∗ be a thin complete code, and let π be a positive
Bernoulli distribution on A∗. Then

δ(X∗) = 1

d(X)
δ(GX)δ(DX). (13.23)

Proof. Let A = (Q, 1, 1) be an unambiguous trim automaton recognizing X∗, let ϕ

be the associated morphism and M = ϕ(A∗). In view of Corollary 9.4.5, the monoid
M is well founded. Set ν = δϕ−1. By Proposition 13.4.8, ν is a probability measure
over the set of subsets of M , and the values of ν may be computed by the formulas
of this proposition.

Let K be the minimal ideal of M . Since ν vanishes outside of K , we have

δ(X∗) = ν(ϕ(X∗) ∩ K).

Let R̂ be the union of the R-classes in K meeting ϕ(X∗), and similarly let L̂ be the
union of those L-classes in K that meet ϕ(X∗). Then

ν(ϕ(X∗) ∩ K) = ν(ϕ(X∗) ∩ R̂ ∩ L̂) =
∑
H

ν(ϕ(X∗) ∩ H),

where the sum is over all H-classes H contained in R̂ ∩ L̂. For such an H-class H ,
we have

ν(ϕ(X∗) ∩ H) =
∑

m∈ϕ(X∗)∩H

ν(m) =
∑

m∈ϕ(X∗)∩H

ν(R)ν(L)

Card(H)
,

13.5 Strict contexts 481

where R and L are the R-class and L-class containing H . Therefore

ν(ϕ(X∗) ∩ H) = Card(ϕ(X∗) ∩ H)

Card(H)
ν(R)ν(L).

Now observe that for any H-class H ⊂ R̂ ∩ L̂, since ϕ(X∗) ∩ H is a subgroup of
index d(X) of the group H ,

Card(ϕ(X∗) ∩ H)

Card(H)
= 1

d(X)
.

Thus the formula becomes

δ(X∗) =
∑
H

1

d(X)
ν(R)ν(L) = 1

d(X)
ν(R̂)ν(L̂).

Next

ϕ−1(R̂) = DX ∩ ϕ−1(K). (13.24)

Indeed, let w ∈ DX ∩ ϕ−1(K). Then wu ∈ X∗ for some word u. Consequently,
ϕ(wu) = ϕ(w)ϕ(u) ∈ ϕ(X∗) ∩ K , showing that the R-class of ϕ(w), which is the
same as the R-class of ϕ(wu), meets ϕ(X∗). This implies that ϕ(w) ∈ R̂. Con-
versely, let w ∈ ϕ−1(R̂). Then ϕ(w) ∈ R̂ and there is some m ∈ M such that
ϕ(w)m ∈ ϕ(X∗) ∩ K . Therefore wϕ−1(m) ∩ X∗ �= ∅ and we derive that w ∈ DX.

It follows from (13.24) that ν(R̂) = δ(ϕ−1(R̂)) = δ(DX ∩ ϕ−1(K)). Since A∗ \
ϕ−1(K) is thin, we have

δ(DX) = δ(DX ∩ ϕ−1(K)).

Thus δ(DX) = ν(R̂) and similarly ν(L̂) = δ(GX). This concludes the proof. �

The following corollary is a consequence of Theorem 13.2.9.

Corollary 13.5.2 Let X ⊂ A∗ be a thin complete code, and let π be a positive
Bernoulli distribution on A∗. Then

λ(X) = d(X)

δ(GX)δ(DX)
. (13.25)

�

We observe that for a thin maximal bifix code X ⊂ A∗, we have GX = DX =
A∗. Thus in this case, (13.25) becomes λ(X) = d(X). This gives another proof of
Corollary 6.3.16. Proposition 6.3.17 is also a consequence of (13.25).

Example 13.5.3 Let A = {a, b} and consider our old friend X = {aa, ba, baa,

bb, bba} which is a finite complete code. In Figure 13.3 an automaton A = (Q, 1, 1)
recognizing X∗ is represented.

482 13 Densities

1 3

2

a

b

a a, b

a, b

Figure 13.3 An unambiguous trim automaton recognizing X∗.

1 1, 232

a

a
b

a, b

b

a

Figure 13.4 A deterministic automaton for DX .

To derive more easily an expression for DX, we compute the deterministic trim
automaton associated to the automaton A by the subset construction and take all
states as final states. This gives the automaton of Figure 13.4.
We obtain

DX = a∗ ∪ (a2)∗bA∗.

A similar computation gives

GX = b∗ ∪ A∗a(b2)∗.

Let π be a positive Bernoulli distribution and set p = π (a), q = π (b). Then

δ(DX) = δ(a∗) + δ((a2)∗bA∗) = δ((a2)∗bA∗)

since δ(a∗) = 0. Since (a2)∗b is a prefix code, the product of (a2)∗b and A∗ is
unambiguous, and π ((a2)∗b) is finite. We get

δ(DX) = π ((a2)∗b),

and

δ(DX) = q

1 − p2
= 1

1 + p
.

In a similar fashion, we obtain

δ(GX) = 1

1 + q
.

On the other hand, d(X) =1 since the monoid ϕA(A∗) has minimal rank 1. By
Formula (13.25),

λ(X) = (1 + p)(1 + q).

13.5 Strict contexts 483

This can also be verified by a direct computation of the average length of X. The
computations made in this example are of course similar to those of Example 13.4.10.

Let X ⊂ A∗ be a code. A strict context of a nonempty word w ∈ A+ is a pair (u, v)
of words such that the following two conditions hold. There exist n ≥ 1 and words
x1, . . . , xn ∈ X with

uwv = x1x2 · · · xn

and

|u| < |x1|, |v| < |xn|.
The set of strict contexts of a word w ∈ A∗ (with respect to X) is denoted by C(w).
The set C(1) is defined as C(1) = {(u, v) ∈ A+ × A+ | uv ∈ X} ∪ {(1, 1)}. The strict
contexts of a word can be interpreted in terms of paths in the flower automaton
A∗

D(X) = (P, (1, 1), (1, 1)).

Lemma 13.5.4 In the flower automaton A∗
D(X) = (P, (1, 1), (1, 1)), the function

that maps the path

c : (u, u′)
w−→ (v′, v)

onto the pair (u, v) is a bijection between the set P (w) of paths labeled w in the
flower automaton and the set C(w) of strict contexts of w.

Proof. Let

c : (u, u′)
w−→ (v′, v)

be a path labeled w in A∗
D(X). Then uwv ∈ X∗. Thus either uwv = 1, or

uwv = x1x2 · · · xn

with xj ∈ X and n > 0. In that case, |u| < |x1| and |v| < |xn|. This shows that, in
both cases, (u, v) is a strict context. Consider another path

c̄ : (u, ū′)
w−→ (v̄′, v).

Then both paths

(1, 1)
u−→ (u, u′)

w−→ (v′, v)
v−→ (1, 1),

(1, 1)
u−→ (u, ū′)

w−→ (v̄′, v)
v−→ (1, 1)

are labeled uwv. By unambiguity, c = c̄. Conversely, if (u, v) is a strict context of w

and uwv = x1x2 · · · xn, define two words u′, v′ by

u′ =
{

u−1x1 if u �= 1,

1 otherwise,
v′ =

{
xnv

−1 if v �= 1,

1 otherwise.

Then (u, u′) and (v′, v) are states in A∗
D(X), and there is a path (u, u′)

w−→ (v′, v). �

The following result shows a strong relationship between all sets of strict contexts.

484 13 Densities

Theorem 13.5.5 Let X ⊂ A∗ be a thin complete code, and let π be a positive
Bernoulli distribution on A∗. For all w ∈ A∗,

λ(X) =
∑

(u,v)∈C(w)

π (uv).

Proof. LetA∗
D(X) = (P, (1, 1), (1, 1)) be the flower automaton of X, let M = ϕD(A∗)

and set ν = δϕ−1
D . Let w ∈ A∗, set m = ϕD(w), and define a set T (m) and a number

t(m) by

T (m) = {(r, �) ∈ M × M | rm� ∈ ϕD(X∗)}, t(m) =
∑

(r,�)∈T (m)

ν(r)ν(�).

We compute t(m) in two ways. First define, for each state p ∈ P ,

Rp = {r ∈ M | r1,p = 1}, Lp = {� ∈ M | �p,1 = 1}.

Then rm� ∈ ϕD(X∗) if and only if there exist p, q ∈ P such that r1,p = 1, mp,q = 1,
�q,1 = 1. Consequently,

T (m) =
⋃
(p,q)

mp,q=1

Rp × Lq.

Thus

t(m) =
∑
(p,q)

mp,q=1

ν(Rp)ν(Lq).

Set p = (u, u′) and q = (v′, v). Then mp,q = 1 if and only if there is a path c : p → q

labeled w. According to the bijection defined above, this holds if and only if (u, v) ∈
C(w). Next,

ϕ−1
D (Rp) = X∗u, ϕ−1

D (Lq) = vX∗,

hence

ν(Rp) = δ(X∗u) = δ(X∗)π (u), ν(Lq) = δ(vX∗) = π (v)δ(X∗).

Consequently

t(m) =
∑

(u,v)∈C(w)

δ(X∗)π (u)π (v)δ(X∗) = [δ(X∗)]2
∑

(u,v)∈C(w)

π (uv).

This is the first expression for t(m).
Now we compute t(m) in the monoid M . Let K be the minimal ideal of M . Since

ν vanishes for elements not in K , we have

t(m) =
∑

(r,�)∈K×K
rm�∈ϕD (X∗)

ν(r)ν(�).

13.5 Strict contexts 485

Let N = ϕD(X∗) ∩ K . Then

t(m) =
∑
n∈N

∑
(r,�)∈K×K

rm�=n

ν(r)ν(�) =
∑
n∈N

∑
r∈K

ν(r)ν((rm)−1n).

Let r ∈ K . Since (rm)−1n �= ∅ if and only if rmRn, and since rRrm, we have
(rm)−1n �= ∅ if and only if r ∈ nM and

t(m) =
∑
n∈N

∑
r∈nM

ν(r)ν((rm)−1n) =
∑
n∈N

∑
r∈nM

ν(r)
ν(n)

ν(nM)

by Proposition 13.4.8. Further

t(m) =
∑
n∈N

ν(n)
∑
r∈nM

ν(r)

ν(nM)
=
∑
n∈N

ν(n) = ν(N) = δ(X∗).

Comparing both expressions for t(m), we get

1 = δ(X∗)
∑

(u,v)∈C(w)

π (uv).

The result follows from the fact that δ(X∗) = 1/λ(X) by Theorem 13.2.9. �

There is an interesting interpretation of the preceding result. With the notations of
the theorem, set for any word w ∈ A∗,

γ (w) = 1

λ(X)

∑
(u,v)∈C(w)

π (uwv).

Call γ (w) the contextual probability of w. Then Theorem 13.5.5 claims that if π is a
Bernoulli distribution we have identically

γ (w) = π (w).

The fact that the distributions γ and π coincide is particular to Bernoulli distributions
(see Exercise 13.5.3). We now study one-sided strict contexts. Let X ⊂ A+ be a code,
and let w ∈ A∗. The set of strict right contexts of w is

Cr (w) = {v ∈ A∗ | (1, v) ∈ C(w)}.

Thus v ∈ Cr (w) if and only if wv = x1x2 · · · xn, (xi ∈ X) with |v| < |xn|.
Symmetrically, the set of strict left contexts of w is

C�(w) = {u ∈ A∗ | (u, 1) ∈ C(w)}.

We observe that

Cr (w)X∗ = w−1X∗. (13.26)

The product Cr (w)X∗ is unambiguous, because X is a code.

486 13 Densities

Proposition 13.5.6 Let X ⊂ A∗ be a thin complete code and let A = (Q, 1, 1) be
an unambiguous trim automaton recognizing X∗. Let K be the minimal ideal of the
monoid M = ϕA(A∗). Let π be a positive Bernoulli distribution.
For all w ∈ ϕ−1

A (K) ∩ DX, we have

π (Cr (w))δ(DX) = 1. (13.27)

For all w ∈ ϕ−1
A (K) ∩ GX, we have

π (C�(w))δ(GX) = 1. (13.28)

Proof. Set ϕ = ϕA, ν = δϕ−1, and let R̂ (resp. L̂) be the union of the R-classes (resp.
L-classes) in K that meet ϕ(X∗). We have seen, in the proof of Theorem 13.5.1, that
δ(DX) = ν(R̂) and δ(GX) = ν(L̂). According to Formula (13.26),

δ(w−1X∗) = π (Cr (w))δ(X∗).

Set n = ϕ(w) and T = {k ∈ K | nk ∈ ϕ(X∗)}. Then T ⊂ L̂ since for k ∈ T , we
have nk ∈ Mk ∩ ϕ(X∗), showing that the left ideal Mk meets ϕ(X∗). Let H be an
H-class contained in L̂. The function h �→ nh is a bijection from H onto the H-
class nH . Since n ∈ R̂, we have nH ⊂ R̂; since H ⊂ L̂ we have nH ⊂ L̂. Thus
nH ⊂ R̂ ∩ L̂. This implies that nH ∩ ϕ(X∗) �= ∅. Indeed let R and L denote the R-
class and L-class containing nH , and take m ∈ R ∩ ϕ(X∗), m′ ∈ L ∩ ϕ(X∗). Then
mm′ ∈ R ∩ L ∩ ϕ(X∗) = nH ∩ ϕ(X∗).

Setting d = d(X), it follows that

Card(nH ∩ ϕ(X∗))

Card(nH)
= 1

d
.

Since H ∩ T = {k ∈ H | nk ∈ ϕ(X∗)} is in bijection with nH ∩ ϕ(X∗), we have

Card(H ∩ T) = Card(nH ∩ ϕ(X∗)) = 1

d
Card(H).

Therefore

ν(T) =
∑
H⊂L̂

ν(H ∩ T) =
∑
H⊂L̂

ν(H)

Card(H)
Card(H ∩ T)

=
∑
H⊂L̂

ν(H)

d
= 1

d
ν(L̂).

We observe that ϕ−1(T) = w−1X∗ ∩ ϕ−1(K). According to (13.18), we have ν(T) =
ν(T ∩ K) = (1/d)ν(L̂). Since also ν(L̂) = δ(GX), we obtain

π (Cr (w))δ(DX) = δ(w−1X∗)

δ(X∗)
δ(DX) = 1

d

δ(GX)δ(DX)

δ(X∗)
. (13.29)

By Theorem 13.5.1, the last expression is equal to 1. �

13.5 Strict contexts 487

Proposition 13.5.7 Let X ⊂ A+ be a thin complete code. Let π be a positive
Bernoulli distribution on A∗. For all w ∈ A∗ the following conditions are equiv-
alent.

(i) The set Cr (w) is maximal among the sets Cr (u), for u ∈ A∗.
(ii) π (Cr (w))δ(DX) = 1.

Proof. With the notations of Proposition 13.5.6, consider a word x ∈ ϕ−1(K) ∩ X∗.
Then Cr (w) ⊂ Cr (xw), hence also π (Cr (w)) ≤ π (Cr (xw)). On the other hand xw ∈
ϕ−1(K) ∩ DX. Indeed the right ideal generated by x is minimal, and therefore there
exists v ∈ A∗ such that ϕ(xwv) = ϕ(x). Thus xwv ∈ X∗. By Proposition 13.5.6, we
have π (Cr (xw))δ(DX) = 1 showing that

π (Cr (w)) ≤ 1/δ(DX). (13.30)

Now assume Cr (w) maximal. Then Cr (w) = Cr (xw), implying the equality sign
in the formula. This proves (i) =⇒ (ii). Conversely Formula (13.30) shows the
implication (ii) =⇒ (i). �

In fact, the set of words w ∈ A∗ such that the set of strict right contexts is maximal
is an old friend: in Chapter 5, Section 5.1, we defined the sets of strongly right
completable and simplifying words by

E(X) = {u ∈ A∗ | ∀v ∈ A∗, ∃w ∈ A∗ : uvw ∈ X∗},
S(X) = {u ∈ A∗ | ∀x ∈ X∗,∀v ∈ A∗ : xuv ∈ X∗ =⇒ uv ∈ X∗}.

We have seen (Exercise 5.1.7) that these sets are equal provided they are both non-
empty. It can be shown (Exercise 13.5.1) that, for a thin complete code X, the
following three conditions are equivalent for all words w ∈ A∗:

(i) w ∈ E(X).
(ii) w ∈ S(X).

(iii) Cr (w) is maximal.

This leads to a natural interpretation of Formula (13.27) (see Exercise 13.5.2). We
now establish, as a corollary of Formula (13.27) a property of finite maximal codes
which generalizes the property for prefix codes shown in Chapter 3 (Theorem 3.6.10).

Theorem 13.5.8 Let X ⊂ A+ be a finite maximal code. For any letter a ∈ A, the
order of a is a multiple of d(X).

Recall that the order of a is the integer n such that an ∈ X.

Proof. Let π be a positive Bernoulli distribution on A∗. Let A = (Q, 1, 1) be a trim
unambiguous automaton recognizing X∗. Let K be the minimal ideal of the monoid
M = ϕA(A∗). Let x ∈ X∗ ∩ ϕ−1

A (K). According to Proposition 13.5.6,

π (Cr (x))δ(DX) = 1, π (C�(x))δ(GX) = 1.

488 13 Densities

By Formula (13.25), the average length of X is

λ(X) = d(X)

δ(GX)δ(DX)
.

Consequently

λ(X) = d(X)π (Cr (x))π (C�(x)).

The proof would be complete if we could set π (a) = 1 and π (b) = 0 for b �= a.
Indeed, we have then λ(X) = n, and thus d(X) divides n. However this distribution
is not positive, and so Proposition 13.5.6 cannot be applied.

Let a be a fixed letter and let n be its order. Consider a sequence (πk)k≥0 of
positive Bernoulli distributions such that limk→∞ πk(a) = 1 and limk→∞ πk(b) = 0
for any b ∈ A \ a. For any word w ∈ A∗, we have limk→∞ πk(w) = 1 if w ∈ a∗, and
limk→∞ πk(w) = 0 otherwise. For any k ≥ 0, denote by λk(X) the average length of
X with respect to πk . Then

λk(X) = d(X)πk(Cr (x))πk(C�(x)),

and also, by definition

λk(X) =
∑
x∈X

|x|πk(x).

Since X is finite, this sum is over a finite number of terms, and going to the limit, we
get

lim
k→∞

λk(X) =
∑
x∈X

|x| lim
k→∞

πk(x).

Since limk→∞ πk(x) = 0 unless x ∈ a∗, we have limk→∞ λk(X) = n, where n is the
order of a. On the other hand,

πk(Cr (x)) =
∑

v∈Cr (x)

πk(v).

The words in Cr (x) are suffixes of words in X. Since X is finite, Cr (x) is finite. Thus,
going to the limit, we have

lim
k→∞

πk(Cr (x)) =
∑

v∈Cr (x)

lim
k→∞

πk(v) = Card(Cr (x) ∩ a∗).

Similarly

lim
k→∞

πk(C�(x)) =
∑

v∈C�(x)

lim
k→∞

πk(v) = Card(C�(x) ∩ a∗).

Consequently

n = d(X) Card(Cr (x) ∩ a∗) Card(C�(x) ∩ a∗).

This proves that d(X) divides n. �

13.6 Exercises 489

13.6 Exercises

Section 13.1

13.1.1 A probability distribution π on A∗ is said to be invariant if for any w ∈ A∗∑
a∈A

π (aw) = π (w).

Let A = (Q, I, T) be a stochastic automaton with adjacency matrix P , and let π be
the probability distribution defined by A. Show that if IP = I , then π is an invariant
distribution.

Section 13.2

13.2.1 Let A = (Q, i, t) be a complete deterministic strongly connected finite
automaton and let π be a positive Bernoulli distribution on A∗. Let P be the Q × Q-
matrix defined by Pp,q =∑a∈A,p·a=q π (a).

A nonnegative Q-vector I with
∑

q∈Q Iq = 1 is said to be stationary for A if
IP = I .

Show that A admits a unique stationary vector, given by Iq = 1/λ(Xq) for any
q ∈ Q, where Xq is the prefix code such that X∗

q is the stabilizer of the state q in A.

Section 13.3

13.3.1 Let X ⊂ A+ be a rational code. Show that if Y is a code such that

X ⊂ Y and Y ∗ ⊂ F (X∗),

then X = Y (this generalizes the fact that a complete rational code is maximal).

Section 13.4

13.4.1 Let M be a monoid, and let µ, ν be two probability measures over M . The
convolution of µ and ν is defined as the probability measure given by

µ ∗ ν(m) =
∑
uv=m

µ(u)ν(v).

(a) Show that (
lim

n→∞ µn

)
∗ ν = lim

n→∞(µn ∗ ν).

(b) Let π be a positive Bernoulli distribution on A∗. For n ≥ 0, let π (n) be the
probability measure on the subsets of A∗ defined by

π (n)(L) = π (L ∩ An)

for L ⊂ A∗. Show that

π (n+1) = π (n) ∗ π (1).

490 13 Densities

(c) Let ϕ : A∗ → M be a morphism onto a well-founded monoid. Let π be as above
and let ν = δϕ−1 be the probability measure over M defined in Proposition 13.4.8.
Show that ν is idempotent, that is

ν ∗ ν = ν.

13.4.2 Let A = (Q, i, T) be a finite automaton over A. Assume moreover that A is
complete, deterministic, and strongly connected. Let ϕ be the associated represen-
tation and let M = ϕ(A∗). Let π be a positive Bernoulli distribution on A∗. Let d

be the minimal rank of M . Let E be the set of minimal images of A. Let B be the
deterministic automaton with states E and with the action induced by A. Show that
the stationary vectors I of A and J of B are related, for q ∈ Q, by

Iq = 1

d

∑
E∈Eq

JE,

where Eq is the set of E in E such that q ∈ E.

Section 13.5

13.5.1 Let X ⊂ A+ be a thin complete code. Let S(X) and E(X) be the sets of
simplifying and strongly left completable words defined in Chapter 5. Show that for
w ∈ A∗ the following conditions are equivalent:

(i) w ∈ S(X).
(ii) w ∈ E(X).
(ii) Cr (w) is maximal among all Cr (u), u ∈ A∗.

13.5.2 Use Exercise 5.1.8 to give another proof of Formula (13.27).

13.5.3 Let X ⊂ A+ be a code and α : B∗ → A∗ a coding morphism for X, that is,
α(B) = X. Let π be an invariant distribution on B∗. Show that the function πα from
A∗ into [0, 1] defined by

πα(w) = 1

λ(α)

∑
(u,v)∈C(w)

π (α−1(uwv))

with λ(α) =∑x∈X |x|π (α−1(x)) is an invariant distribution on A∗. Compare with the
definition of the contextual probability.

13.7 Notes

The presentation of measure spaces follows Halmos (1950). We have followed this
book for the proof of Kolmogorov’s extension theorem. The term “process” is used
in Shields (1996) where many additional properties of measures related to words
are presented. Theorem 13.2.11 is due to Feller. A more precise statement is the
following: Let (X,π) be a persistent recurrent event. Let p be the gcd of the lengths
of the words in X. Then the sequence π (X∗ ∩ Anp) for n ≥ 0 has a limit, which is

13.7 Notes 491

0 or p/λ(X), according to λ(X) = ∞ or not (see Feller (1968), Theorem XIII.3.3).
Theorem 13.2.7 is less precise on two points: (i) we only consider the case where
λ(X) < ∞ and (ii) we only consider the limit in mean of the sequence π (X∗ ∩ An).

The notion of topological entropy is well known in symbolic dynamics (Lind and
Marcus (1995)). The word “topological” is used to distinguish this notion from prob-
abilistic entropy, such as mentioned in Exercise 3.7.1. The results of Section 13.4
and related results can be found in Greenander (1963) and Martin-Löf (1965). The-
orem 13.5.1 is due to Schützenberger (1965b). Theorem 13.5.5 is from Hansel and
Perrin (1983).

A stationary vector, as introduced in Exercise 13.2.1, is usually called a stationary
distribution in the theory of Markov chains.

The statement of Exercise 13.3.1 is a particular case of a result of Restivo (1990)
who proved it under the more general hypothesis that X is a thin code.

Further developments of the results presented in this chapter may be found in
Blanchard and Perrin (1980), Hansel and Perrin (1983), or Blanchard and Hansel
(1986). In particular these papers discuss the relationship of the concepts developed
in this chapter with ergodic theory.

14

Polynomials of finite codes

There is a noncommutative polynomial canonically associated with a finite code: it is
the sum of the codewords, minus 1. When the code is maximal, this polynomial has
some striking factorization properties, which reflect probabilistic and combinatorial
properties of the code, such as the property of being prefix, suffix or synchronizing.
When the code is prefix, the factorization is directly related to the tree representation
of the code. When the code is bifix, one has even more combinatorial evidence for
the factorization, as described in Chapter 6. In the general case, the factorization
of the polynomial has no direct combinatorial interpretation, but is related via the
factorization conjecture to a kind of coset decomposition of the free monoid with
respect to the submonoid generated by the code. The factorization conjecture is the
main open problem in the theory of codes.

The chapter is organized as follows. In Section 14.1 we define positive factoriza-
tions. In Section 14.2, we state the factorization theorem (Theorem 14.2.1), which is
the main result of this chapter. Section 14.3 presents some results on noncommutative
polynomials which are used in the proof of the factorization theorem. Section 14.4
contains the proof of the theorem. Section 14.5 presents some applications of the
factorization theorem.

Section 14.6 introduces another equivalence, called the commutative equivalence.
It is conjectured that any finite maximal code is commutatively equivalent to a prefix
code. This is a consequence of the factorization conjecture. Indeed, it is shown that
any positively factorizing maximal code is commutatively prefix (Corollary 14.6.6).
Section 14.7 presents a specialized topic concerning the reducibility property of the
linear representation associated to an automaton. We prove that the minimal repre-
sentation associated with the submonoid generated by a maximal code is completely
reducible if and only if the code is bifix (Theorems 14.7.5 and 14.7.7).

14.1 Positive factorizations

Let X be a subset of A+. A pair (P, S) of subsets of A∗ is called a positive factorization
for the set X if each word w ∈ A∗ factorizes uniquely into

w = sxp (14.1)

494 14 Polynomials of finite codes

with p ∈ P , s ∈ S, x ∈ X∗. In terms of formal power series, (14.1) can be expressed
as

A∗ = SX∗P . (14.2)

Note the analogy with the coset decomposition of a group with respect to a subgroup.
Observe that 1 ∈ P and 1 ∈ S. Taking the inverses in (14.2), we obtain the equivalent
formulation

1 − X = P (1 − A) S (14.3)

or also

X − 1 = PAS − PS . (14.4)

This equation shows that each word in X can be written in at least one way as x = pas

with p ∈ P , a ∈ A, s ∈ S.

Proposition 14.1.1 A set X for which there is a positive factorization (P, S) is a
code.

Proof. Indeed, (14.4) implies that A∗ = S(X)∗P which in turn shows that (X)∗ has
only coefficients 0 or 1. �

A code X is positively factorizing if there exists a pair (P, S) of sets which is a
positive factorization for X.

A prefix code X is positively factorizing. Indeed, let P = A∗ \ XA∗ be the set
of words having no prefixes in X. Then A∗ = X∗P and thus (P, {1}) is a positive
factorization for X. Conversely, if (P, {1}) is a positive factorization for X, then the
code X is prefix. Indeed, if u, uv ∈ X∗, then setting v = xp with x ∈ X∗ and p ∈ P ,
we obtain (ux)p ∈ X∗, which implies p = 1 by the uniqueness of factorization. Thus
X∗ is right unitary.

Symmetrically, for a suffix code X, one has A∗ = SX∗ with S = A∗ \ A∗X. If X

is a bifix code, then simultaneously

A∗ = X∗P and A∗ = SX∗

with P = A∗ \ XA∗ and S = A∗ \ A∗X. This shows in particular that there may exist
several positive factorizations for a code (see also Exercise 14.1.8).

Recall that by Proposition 6.3.8, for a thin maximal bifix code X, we have

X − 1 = d(A − 1) + (A − 1)T (A − 1),

where T is the tower over X and d isthe degree of X. The series T has nonnegative
coefficients. Hence A∗ = X∗P = SX∗ with

P = d + (A − 1)T , S = d + T (A − 1). (14.5)

14.1 Positive factorizations 495

Let X ⊂ A+ be a positively factorizing code and let (P, S) be a positive factorization
for X. If P and S are thin, then X is a thin maximal code. Indeed, Equation (14.4)
shows that X ⊂ PAS. Since P , A, S are thin, the product PAS is thin also and
consequently X is thin. Furthermore, X is complete. Indeed, let u ∈ F̄ (S) and v ∈
F̄ (P). For each w in A∗ the word uwv is in SX∗P . By the choice of u and v, it
follows that w is in F (X∗). Thus X is complete.

As a special case, note that if P and S are finite, then X is a finite maximal code. We
shall see later that, conversely, if (P, S) is a positive factorization for a finite maximal
code, then P and S are finite. There exist finite codes which are not positively
factorizing. An example will be given in Section 14.6. However, no finite maximal
code is known which is not positively factorizing. Whether any finite maximal code is
positively factorizing is still unknown. This constitutes the factorization conjecture.

Proposition 14.1.2 The composition of two positively factorizing codes is again a
positively factorizing code.

Proof. Let X, Y ⊂ A+ and Y ⊂ B+ be codes and let β : B → Z be a bijection such
that X = Y ◦β Z. By assumption, Y and Z are positively factorizing codes. Thus
there are sets S, P ⊂ A∗ and Q,R ⊂ B∗ such that

A∗ = SZ∗P , B∗ = QY ∗R.

Set U = β(Q) and V = β(R). We extend β to series over B. Since β is bijective,
we get U = β(Q), V = β(R), and also Z = β(B∗), X∗ = β(Y ∗). This shows that
Z∗ = UX∗V and consequently

A∗ = SUX∗V P .

Since the left-hand side of this equation is a characteristic series, the products of the
right-hand side only give coefficients 0 and 1, and consequently

A∗ = SUX∗V P ,

showing that X is positively factorizing. �

Example 14.1.3 Let A = {a, b}, and let

X = {a4, ab, aba6, aba3b, aba3ba2, aba2ba, aba2ba3, aba2b2, aba2b2a2, b, ba2}.

The set X is a positively factorizing code. Indeed, an easy computation gives

1 − X = (1 + a + aba2(1 + a + b))(1 − a − b)(1 + a2). (14.6)

Thus this is a positive factorization (P, S) with

P = {1, a, aba2, aba3, aba2b}, S = {1, a2}.

496 14 Polynomials of finite codes

1 2

3 4

5 6 7

89

10

b

b

a

b

a

a

a

b

a a

a

b

a

b

b

a

a, b

a, b

Figure 14.1 The automaton A.

1

23

4

1, 5 2, 6 3, 7

4, 81, 9 102, 4 1, 3

a

b

a

a

a

b
a

b
a

a b

b

a

b

a
a

a

b

a,b

b
b

Figure 14.2 The result of the determinization.

Since P and S are finite, X is a maximal code. We may verify that X is indecompos-
able. This is the smallest known example of a finite maximal indecomposable code
which is neither prefix nor suffix (see Example 2.6.11 and Exercise 14.1.7).

The remaining part of this example illustrates the relation between the positive
factorization and the structure of the transition monoid of an unambiguous automaton.
The computation allows us, in cases such as the present one, to recover the positive
factorization directly from the monoid (see also Exercises 14.1.1 and 14.1.2).

An unambiguous automaton A recognizing X∗ is represented in Figure 14.1.
This automaton can be used as follows to recover the positive factorization for X

given by (14.6). We first compute the deterministic automaton obtained by applying
the determinization algorithm to the automaton A starting from {1}. The result is
shown in Figure 14.2. This automaton has a unique minimal strongly connected
component corresponding to the rows of the elements of the minimal ideal of the
monoid M = ϕA(A∗).

We then apply the determinization algorithm backwards to the automatonA starting
also from state {1}. The result is shown in Figure 14.3 (we represent only part of the
result, containing the unique minimal strongly connected component). Let L be the

14.2 The factorization theorem 497

Table 14.1 The minimal ideal of M .

5 6 3 4 10 9 4 3

1 2 7 8 10 1 2 1

1 6 7 4 10 1 4 1

5 2 3 8 10 9 2 3

4, 10. . .

11, 2, 8, 10

1, 4, 7, 10. . .

1, 2, 7, 8, 101, 4
6, 7, 10

3, 4, 5
6, 9, 10

2, 3, 5
8, 9, 10

a

b

a

b
a

aa

b

b
b

b

Figure 14.3 The result of the backwards determinization.

set of states of the strongly connected component of the automaton of Figure 14.2
and let C be the set of states of the strongly connected component of Figure 14.3.
Any element of L intersects any element of C in exactly one element, as shown in
Table 14.1 in which the elements of L appear as the columns and the elements of C

as the rows (this is true for any thin maximal code, see Exercise 9.3.8).
We select the state � = {1, 9} in L and the state c = {1, 2, 7, 8, 10} in C. The set

of labels of simple paths from � to 1 is S = {1, aa} and the sets of labels of simple
paths from 1 to c is P = {1, a, abaa, abaaa, abaab}. Since all paths from {1, 9} to
{1, 2, 7, 8, 10} pass through state 1, the pair (P, S) is a positive factorization for X.

14.2 The factorization theorem

Recall that the degree of a finite maximal code has been defined in Section 9.5. The
following theorem is the main result of this chapter.

Theorem 14.2.1 Let X ⊂ A∗ be a finite maximal code and d its degree. Then for
some polynomials P,Q, S in Z〈A〉, one has

X − 1 = P (d(A − 1) + (A − 1)Q(A − 1))S. (14.7)

Moreover, if X is prefix (resp. suffix), one can choose S = 1 (resp. P = 1).

Note that in all known cases, the polynomial Q has nonnegative coefficients, and
moreover P, S have coefficients 0, 1. Thus, P and S can be viewed as representing
sets of prefixes and suffixes. The polynomial Q is not, in general, a characteristic
polynomial.

498 14 Polynomials of finite codes

Example 14.2.2 Let

X ={a3, a2ba2, a2bab, a2b2, aba3, aba2ba2, aba2bab, aba2b2,

ababa2, abababa2, (ab)4, ababab2, abab2, ab2a, ab3a2, ab3aba2,

ab3abab, ab3ab2, ab4, ba, b2a2, b2aba2, b2abab, b2ab2, b3}

be the maximal prefix code of degree 3 of Example 3.6.13. We have, in agreement
with Theorem 14.2.1,

X − 1 = (1 + ab)(3(A − 1) + (A − 1)Q(A − 1)),

with A = {a, b} and Q = 2 + a + b + ba + (1 + b)ab(1 + a). This can be checked
directly or by observing that one has

X = (1 + ab)(a3 + a2b(a2 + ab + b) + abab(a2 + b)

+ ba + b2a(a + b(a2 + ab + b)) + b3) + (ab)4.

Corollary 14.2.3 For any finite maximal code X over A, there exist polynomials
P, S in Z〈A〉 such that

X − 1 = P (A − 1)S. (14.8)

�
Observe that the expression (14.8) with P, S having coefficients 0, 1 defines a

positive factorization for X, in the sense defined previously.
The previous result has the following converse. Thus finite maximal codes are

completely characterized by Corollary 14.2.3.

Theorem 14.2.4 Let W be a polynomial in N〈A〉 without constant term, and let P, S

be polynomials in C〈A〉 such that

W − 1 = P (A − 1)S.

Then W is the characteristic polynomial of a finite maximal code X. If moreover S

(resp. P) is constant, then X is a prefix (resp. suffix) code.

Proof. Since W − 1 = P (A − 1)S and since W has no constant term, P and S are
invertible in C〈〈A〉〉, and we obtain

A∗ = SW ∗P. (14.9)

Define X = supp(W) (recall that supp(T) denotes the support of the series T). Then
X is finite. We show that X is complete. Indeed, let w be any word, and choose u of
length ≥ deg(S), deg(P). Then uwu appears in the left-hand side of Equation (14.9),
and we obtain uwu = smp, for some words s ∈ supp(S), m ∈ X∗, p ∈ supp(P). By
the choice of u, it follows that w is a factor of m. Thus X∗ ∩ A∗wA∗ is not empty,
and X is complete.

14.3 Noncommutative polynomials 499

Now we show that π (X) = 1, where π is some Bernoulli distribution. This implies
that X is a maximal code by Theorem 2.5.19.

Since X is complete and finite, we have π (X) ≥ 1, by Proposition 2.5.11. On the
other hand, we extend π naturally to a morphism from C〈A〉 to C, and we obtain

π (W) − 1 = π (P)π (A − 1)π (S) = 0

and therefore π (W) = 1. Next, since W has coefficients in N, one has π (X) ≤
π (W) = 1, and therefore π (X) = 1.

If S is a constant, we may suppose that S = 1 and Equation (14.9) becomes A∗ =
W ∗P . A similar argument as before shows that X is right complete. By Theorem 3.3.8,
X is a prefix code. �

14.3 Noncommutative polynomials

Let K be a commutative ring. We begin with a result on the division of polynomials
which is a version of Euclidean division in several noncommutative variables. Given
two polynomials X, Y in K〈A〉, we say that Y is weak left divisor of X in K〈A〉 if
there exist polynomials Q,R in K〈A〉 such that

X = YQ + R with deg(R) < deg(Y).

The polynomial R is called the remainder. Observe that in one variable, this relation
is just Euclidean division. Weak left division is not always possible if A has more
than one letter (for instance take X = a and Y = b for distinct letters a, b).

The next result gives a sufficient condition for weak divisibility (this condition is
easily seen to be also necessary, see Exercise 14.3.1).

Theorem 14.3.1 Let K be a field. Let X, Y, P,Q be polynomials in K〈A〉 with
deg(Q) ≤ deg(P) and P �= 0. If Y is a weak left divisor of XP + Q, then Y is a weak
left divisor of X.

The following consequence is immediate.

Corollary 14.3.2 If X, Y,X′, Y ′ are nonzero polynomials such that XY ′ = YX′, then
Y is a weak left divisor of X and X is a weak left divisor of Y . �

We fix an order on A and use the corresponding radix order on A∗. Given a nonzero
polynomial P we denote by max(P) the maximal word (with respect to the radix
order) appearing in the support of P . One checks easily that max(P + Q) = max(P)
if deg(Q) < deg(P), and max(PQ) = max(P) max(Q).

Proof of Theorem 14.3.1. Let Q′ and R′ be polynomials such that

XP + Q = YQ′ + R′ (14.10)

with deg(R′) < deg(Y). We have Y �= 0 since deg(R′) < deg(Y). We may assume
deg(Y) ≥ 1, since the case deg(Y) = 0 is immediate. The case deg(X) < deg(Y)

500 14 Polynomials of finite codes

is also easy. So we may assume deg(X) ≥ deg(Y) ≥ 1. Observe that deg(Q) ≤
deg(P) < deg(XP) and deg(R′) < deg(Y) ≤ deg(X) ≤ deg(XP). This shows that
Q′ is nonzero. By (14.10), we have max(XP) = max(XP + Q − R′) = max(YQ′),
and max(X) max(P) = max(Y) max(Q′). Thus the word max(Y) is a prefix of max(X)
and we may write max(X) = max(Y)u for some u ∈ A∗. Hence for some α ∈ K , we
have X = X′ + αYu, with max(X′) < max(X). By (14.10), we obtain

X′P + Q = Y (Q − αuP) + R′.

We conclude by induction on max(X′) that Y is a weak left divisor of X′ and thus
of X. �

Let x1, x2, . . . be a sequence of elements of a ring, of length at least n. We define
the n-th continuant polynomial relative to this sequence by p(x1, . . . , xn), where
p(x1, . . . , xn) is the 1, 1 coefficient of the matrix(

x1 1
1 0

)(
x2 1
1 0

)
· · ·
(

xn 1
1 0

)
.

It is a simple exercise to show that this matrix is actually equal to(
p(x1, . . . , xn) p(x1, . . . , xn−1)
p(x2, . . . , xn) p(x2, . . . , xn−1)

)
. (14.11)

Indeed, for the entry in position 2,1 for example, one sees that it is p(x2, . . . , xn) by
computing the product of the first matrix by the product of the remaining ones and
using induction.

For sake of coherence, the 0-th continuant polynomial is equal to 1, and the (−1)-th
is equal to 0. From Equation (14.11), one deduces that

p(x1, . . . , xn) = p(x1, . . . , xn−1)xn + p(x1, . . . , xn−2), (14.12)

and

p(x1, . . . , xn) = x1p(x2, . . . , xn) + p(x3, . . . , xn).

We often use the latter equation in the form

p(xn, . . . , x1) = xnp(xn−1, . . . , x1) + p(xn−2, . . . , x1). (14.13)

By induction, one deduces the Wedderburn relation:

p(x1, . . . , xn)p(xn−1, . . . , x1) = p(x1, . . . , xn−1)p(xn, . . . , x1). (14.14)

To prove it, use Equation (14.12) for the left-hand side, Equation (14.13) for the
right-hand side and induction.

The next result shows that, in essence, each relation XY ′ = YX′ in K〈A〉 comes
from a Wedderburn relation (14.14).

14.3 Noncommutative polynomials 501

Theorem 14.3.3 Let X, Y,X′, Y ′ be nonzero polynomials in K〈A〉 such that XY ′ =
YX′. Then there exist n ≥ 1 and polynomials U,V, x1, . . . , xn such that

X = Up(x1, . . . , xn), Y ′ = p(xn−1, . . . , x1)V

Y = Up(x1, . . . , xn−1), X′ = p(xn, . . . , x1)V.

Furthermore, x1, . . . , xn−1 have positive degree, and if deg(X) > deg(Y), then xn

also has positive degree.

The proof is a simple noncommutative version of the Euclidean algorithm, obtained
by iteration of the Euclidean division of Corollary 14.3.2.

Proof. The hypothesis and Corollary 14.3.2 imply that Y is a weak left divisor of X.
Thus X = YQ + Z, for some polynomials Q and Z with deg(Z) < deg(Y); note that
if deg(X) > deg(Y), then deg(Q) > 0. From XY ′ = YX′, we have (YQ + Z)Y ′ =
YX′. We set Z′ = X′ − QY ′. This implies ZY ′ = YZ′; since deg(Z) < deg(Y), we
deduce that deg(Z′) < deg(Y ′). Note that Z = 0 ⇔ Z′ = 0. In this case, the result
follows with n = 1, U = Y , x1 = Q and V = Y ′. We now assume that Z �= 0.

Then we have YZ′ = ZY ′, and by induction, there exist polynomials
U,V, x1, . . . , xn such that

Y = Up(x1, . . . , xn), Z′ =p(xn−1, . . . , x1)V

Z = Up(x1, . . . , xn−1), Y ′ =p(xn, . . . , x1)V.

Moreover, x1, . . . , xn−1 have positive degrees and, since deg(Z) < deg(Y), xn also
has positive degree. This, together with X = YQ + Z and X′ = QY ′ + Z′ gives

X = U (p(x1, . . . , xn)Q + p(x1, . . . , xn−1)), Y ′ = p(xn, . . . , x1)V,

Y = Up(x1, . . . , xn), X′ = (Qp(xn, . . . , x1) + p(xn−1, . . . , x1))V.

The result follows by (14.12) and (14.13) with xn+1 = Q (recall that Q has positive
degree if deg(X) > deg(Y)). �

We shall also need the next result in the proof of Theorem 14.2.1 (with A − 1
playing the role of the polynomial of degree 1). For polynomials X, X′, Y we write
X ≡ X′ modulo Y if Y is a weak left divisor of X,X′ with the same remainder, that
is if X = YQ + R and X′ = YQ′ + R.

Theorem 14.3.4 Let B be a polynomial of degree 1, and let x1, . . . , xn be poly-
nomials such that x1, . . . , xn−1 have positive degree. If B is a weak left divisor of
p(xn−1, . . . , x1) and p(xn, . . . , x1) then p(x1, . . . , xi) ≡ p(xi, . . . , x1) modulo B for
each i = 1, . . . , n.

To prove this, we need a lemma.

502 14 Polynomials of finite codes

Lemma 14.3.5 Let x1, . . . , xn be polynomials.

(i) p(x1, . . . , xn) = 0 if and only if p(xn, . . . , x1) = 0.
(ii) If the degrees of x1, . . . , xn−1 are strictly positive, then the polynomials 1, p(x1),

. . . , p(xn−1, . . . , x1) have strictly increasing degrees.

Proof. Claim (i) is proved using the Wedderburn relation (14.14) if p(xn−1, . . . , x1)
and p(x1, . . . , xn−1) are both nonzero, and Equations (14.12) and (14.13) if they are
both zero (by induction, if one is zero, so is the other).

Similarly (ii) is proved by induction, using Equation (14.13). �

Proof of Theorem 14.3.4. The proof is by induction. The case n = 1 is obvious, so
assume n > 1. If p(xn−1, . . . , x1) vanishes, then p(x1, . . . , xn−1) also vanishes by
Lemma 14.3.5 (i). Then by Equations (14.12) and (14.13), we have p(x1, . . . , xn) =
p(x1, . . . , xn−2) and p(xn, . . . , x1) = p(xn−2, . . . , x1). Thus we conclude the proof
by induction in this case.

Suppose that p(xn−1, . . . , x1) �= 0. Then by (14.13),

xnp(xn−1, . . . , x1) + p(xn−2, . . . , x1) = BQ + α

for some polynomial Q and some scalar α ∈ K .
By Lemma 14.3.5(ii), we have deg(p(xn−2, . . . , x1)) < deg(p(xn−1, . . . , x1)).

Accordingly, by Theorem 14.3.1, the above equality implies that B is a weak left divi-
sor of xn. Hence, xn ≡ γ modulo B. By hypothesis, the left division of p(x1, . . . , xi)
and p(xi, . . . , x1) by B have the same remainder denoted δi for i ≤ n − 1. Since B

has degree 1, γ and all the δi are scalars. Thus (14.12) implies that

p(x1, . . . , xn) ≡ δn−1γ + δn−2

and (14.13) implies

p(xn, . . . , x1) ≡ γ δn−1 + δn−2.

This proves the claim. �

We consider now polynomials over Z and Q. A nonzero polynomial P ∈ Z〈A〉 is
called primitive if the greatest common divisor of its coefficients is 1. The content of
a nonzero P ∈ Q〈A〉 is the unique positive rational number c(P) such that P/c(P) is
primitive; the latter polynomial is then denoted by P̄ . Hence P = c(P)P̄ . Actually,
P̄ is the unique primitive polynomial such that P = qP̄ for some nonzero q ∈ Q+.

The next result is the analogue for noncommutative polynomials of Gauss’ lemma.

Lemma 14.3.6 (Gauss’ lemma)

(i) If P,Q are primitive polynomials in Z〈A〉, then so is PQ.
(ii) If P,Q are polynomials in Q〈A〉, then c(PQ) = c(P)c(Q) and PQ = P̄ Q̄.

14.3 Noncommutative polynomials 503

Proof. For (i), if PQ is not primitive, some prime number p divides all its coefficients.
One obtains a contradiction by reducing coefficients in Z/pZ, since polynomials over
a field do not have zero divisors. Now (ii) follows easily from (i). �

In the proof of the following statements, the exponent in the expressions like
PQ−1R refers to the inverse in the ring of series, and not to the residual.

Theorem 14.3.7 Let P,Q,R be nonzero polynomials in Z〈A〉 with (Q, 1) �= 0. Then
PQ−1R is a polynomial if and only if there exist polynomials P ′, S, T ,Q′ in Z〈A〉
such that P = P ′S, Q = T S, R = T R′.

Proof. The condition is of course sufficient. Conversely, we begin by proving the
corresponding statement with Z replaced by Q. Then we use Gauss’ lemma to lift
our conclusion to Z〈A〉.

1. Consider the set E of pairs of polynomials V = (V1, V2) such that V1 =
PQ−1V2. Clearly E is a right Q〈A〉-module, that is if (V1, V2) is in E, then for
any polynomial U ∈ Q〈A〉, the pair (V1U,V2U) is in E. Note that E contains
the pairs (P,Q) and (PQ−1R,R). Note also that if the constant term of the sec-
ond component of V = (V1, V2) ∈ E is zero, then V a−1 = (V1a

−1, V2a
−1) is in

E. Indeed, since (V2, 1) = 0, we have (PQ−1V2)a−1 = (PQ−1)(V2a
−1) and thus

PQ−1(V2a
−1) = V1a

−1. Choose V = (V1, V2) to be nonzero in E and of minimal
degree, where deg(V) is the maximum degree of its two components. Note that
V1, V2 �= 0 since otherwise V = 0. Suppose that the constant term of V2 is zero.
Let a be a letter such that V1a

−1 �= 0. This exists because V1 �= 0. Then the pair
(V1a

−1, V2a
−1) is in E and has degree less than V . This shows that the constant term

of V2 is nonzero.
We show that E = V Q〈A〉. For this, we prove by induction on deg(W) that every

W = (W1,W2) in E is of the form W = V T for some polynomial T . We may assume
that deg(W) ≥ deg(V). If W has constant term zero, then Wi =

∑
a∈A(Wia

−1)a for
i = 1, 2. Each pair Wa−1 = (W1a

−1,W2a
−1) is in E by the remark above, and by

induction Wa−1 is in V Q〈A〉. Thus W is in V Q〈A〉. This shows the property when
W has constant term zero.

Otherwise since every W = (W1,W2) in E satisfies (W1, 1) = γ (W2, 1) with γ =
(PQ−1, 1), one has (V2, 1) �= 0 and (W2, 1) = α(V2, 1) with α = (W2, 1)/(V2, 1). It
follows that (W1, 1) = γ (W2, 1) = γα(V2, 1) = α(V1, 1). This shows that the pair
W − αV = (W1 − αV1,W2 − αV2) has zero constant term. Using the above argu-
ment, we have W − αV ∈ V Q〈A〉 and thus W ∈ V Q〈A〉.

Since (P,Q) and (PQ−1R,R) are in V Q〈A〉, there exist polynomials S and R′

such that P = V1S, Q = V2S and PQ−1R = V1R
′, R = V2R

′. This concludes this
part with P ′ = V1 and T = V2.

2. By the first part, we have P = P ′S, Q = T S, R = T R′ with P ′, S, T , R′ ∈
Q〈A〉. By Lemma 14.3.6, we have c(P) = c(P ′)c(S), c(Q) = c(T)c(S), c(R) =
c(T)c(R′). Since P,Q,R are in Z〈A〉, their contents are in N. Now PQ−1R = P ′R′

is a polynomial and c(PQ−1R) = c(P ′)c(R′). From the above, one has c(P)c(R) =
c(P ′)c(S)c(T)c(R′) = c(PQ−1R)c(Q). Since the four factors are integers, there exist

504 14 Polynomials of finite codes

factorizations

c(P) = p′s, c(R) = r ′t, c(PQ−1R) = p′r ′, c(Q) = st

for integers p′, s, r ′, t . This implies that

P = p′P̄ ′sS̄, Q = t T̄ sS̄, R = t T̄ r ′R̄′

whence the result, since the polynomials p′P̄ ′, sS̄, t T̄ , r ′R̄′ have integral coefficients.
�

We shall also need the following result.

Lemma 14.3.8 Let B be a primitive polynomial of degree 1 which vanishes for some
integer value of the variables. Let P,Q ∈ Z〈A〉 be such that B is a weak left divisor
of PQ in Z〈A〉 with nonnull remainder α. Then B is a weak left divisor, in Z〈A〉, of
P with remainder β and of Q with remainder γ , where βγ = α.

Proof. Set PQ = BQ′ + α for some Q′ ∈ Z〈A〉 and α ∈ Z, α �= 0. Since Q �= 0
(because α �= 0), we may apply Theorem 14.3.1. Consequently, P = BT + β, T ∈
Q〈A〉, β ∈ Q. Thus BQ′ + α = βQ + BT Q. We have β �= 0 (since α �= 0, and
deg(B) = 1). Hence Q = γ + BS for some S ∈ Q〈A〉, and γ ∈ Q, with α = βγ .
Now, the assumption on B and the fact that P,Q ∈ Z〈A〉 imply that β, γ ∈ Z.
Since BT = P − β, we obtain by Gauss’ lemma c(B)c(T) = c(P − β) ∈ N, hence
c(T) ∈ N, because B is primitive. This shows that T ∈ Z〈A〉. Similarly we obtain
S ∈ Z〈A〉. �

Finally we prove the following lemma which will be used later.

Lemma 14.3.9 If a1, . . . , an ∈ Q〈A〉, then p(a1, . . . , an) and p(an, . . . , a1) are both
zero or have the same content.

Proof. By induction on n. Recall the Wedderburn relation

p(a1, . . . , an)p(an−1, . . . , a1) = p(a1, . . . , an−1)p(an, . . . , a1).

Assume p(a1, . . . , an) = 0. By the Wedderburn relation, either p(a1, . . . , an−1) =
0 or p(an, . . . , a1) = 0. If p(a1, . . . , an−1) = 0, then by (14.12), one has
p(a1, . . . , an−2) = 0. By induction, this implies p(an−1, . . . , a1) = 0 and
p(an−2, . . . , a1) = 0 which implies by (14.13) p(an, . . . , a1) = 0.

Assume now p(a1, . . . , an) �= 0 and p(an, . . . , a1) �= 0. If p(a1, . . . , an−1) = 0,
we have also p(an−1, . . . , a1) = 0 by induction. By (14.12), c(p(a1, . . . , an)) =
c(p(a1, . . . , an−2)) and by (14.13), c(p(an, . . . , a1)) = c(p(an−2, . . . , a1)). The con-
clusion follows by induction. Otherwise Gauss’ Lemma and the Wedderburn relation
give

c(p(a1, . . . , an))c(p(an−1, . . . , a1)) = c(p(a1, . . . , an−1))c(p(an, . . . , a1)).

By induction, c(p(a1, . . . , an−1)) = c(p(an−1, . . . , a1)) and thus we obtain the con-
clusion. �

14.4 Proof of the factorization theorem 505

14.4 Proof of the factorization theorem

Given a word u and a series T ∈ Z〈〈A〉〉, the residual of T by u is defined by

u−1T =
∑
w∈A∗

(T , uw)w.

This is consistent with the definition given in Chapter 1. Observe that (uv)−1T =
v−1(u−1T). The notation T v−1 is defined symmetrically. Note that u−1(T v−1) =
(u−1T)v−1. Here, the exponent refers to the residual and not to the inverse.

Given a code X and words u, v, we define S(u) = {s ∈ A∗ | us = x1 · · · xn, xi ∈
X, |s| < |xn|} and P (v) = {p ∈ A∗ | pv = x1 · · · xn, xi ∈ X, |p| < |x1|}. These are
the sets Cr (u) and C�(v) of strict right and left contexts of u and v already defined
earlier.

Lemma 14.4.1 Let X be a finite code. For each pair of words u, v, there exists a
finite set F (u, v) such that

u−1X∗v−1 = S(u) X∗P (v) + F (u, v). (14.15)

Proof. The series u−1X∗v−1 is the characteristic series of the set W of words w such
that uwv ∈ X∗. Let F (u, v) be the set of words w such that uwv = xyz for some
words x, z ∈ X∗ and y ∈ X with x a prefix of u, z a suffix of v and w a proper factor
of y. Since X is finite, this set is finite.

Let us verify that W is the disjoint union of S(u)X∗P (v) and F (u, v). Indeed, the
sets S(u)X∗P (v) and F (u, v) are contained in W . They are disjoint since if w is a
word in S(u)X∗P (v) ∩ F (u, v), then uwv has two distinct factorizations x1x2 · · · xn

with xi ∈ X, one in which w is a proper factor of some xi and the other in which it
is not.

Conversely, given a word w such that uwv = x1 · · · xn, with xi ∈ X, either there
is an index i such that xi = swp with x1 · · · xi−1u

′ = u, and v = v′xi+1 · · · xn, and
both u′, v′ nonempty. In this case, w ∈ F (u, v). Otherwise, w ∈ S(u)X∗P (v).

This proves Equation (14.15). �

Lemma 14.4.2 Let X be a finite maximal code of degree d. Then there exist words
u1, . . . , ud , v1, . . . , vd with u1, v1 ∈ X∗, such that, for any 1 ≤ i, j ≤ d,

A∗ =
∑

1≤�≤d

u−1
i X∗v−1

� =
∑

1≤k≤d

u−1
k X∗v−1

j .

Proof. Let A = (Q, 1, 1) be an unambiguous automaton recognizing X∗, set ϕ = ϕA
and let M = ϕA(A∗) be the transition monoid ofA. Let G be anH-class of the minimal
ideal of M that meets ϕ(X∗), and let e be its neutral element. The set H = G ∩ ϕ(X∗)
is a subgroup of index d of G. In particular, e ∈ ϕ(X∗) and ϕ−1(e) ⊂ X∗.

Let u1, . . . , ud , v1, . . . , vd be words in ϕ−1(G) such that

G =
⋃

1≤i≤d

ϕ(vi)H =
⋃

1≤j≤d

Hϕ(uj).

506 14 Polynomials of finite codes

We may assume that ϕ(u1) = ϕ(v1) = e, and that ϕ(ui) is the inverse of ϕ(vi) in G.
It follows that u1, v1 ∈ ϕ−1(e) ⊂ X∗. Fix j , 1 ≤ j ≤ d. Let w ∈ A∗. Observe that
ϕ(vj) ∈ G, hence that eϕ(wvj) = eϕ(w)ϕ(vj) = eϕ(w)ϕ(vj)e is in eMe = G. Thus
eϕ(wvj) is in some ϕ(vi)H , for some uniquely determined i, depending on w. We
show that

eϕ(wvj) ∈ ϕ(vi)H ⇔ uiwvj ∈ X∗.

Indeed, eϕ(wvj) ∈ ϕ(vi)H ⇔ ϕ(ui)eϕ(wvj) ∈ ϕ(ui)ϕ(vi)H ⇔ ϕ(uiwvj) ∈ H ⇔
uiwvj ∈ X∗ (since ϕ(uiwvj) = eϕ(uiwvj)e ∈ G).

Thus we obtain that for any w in A∗, there is a unique i such that w ∈ u−1
i X∗v−1

j ,
which implies the second equality in the lemma and the first one by symmetry. �

The following lemma is easily derived.

Lemma 14.4.3 Let X be a finite maximal code of degree d. There exist finite subsets
P, S, P1, S1 of A∗ with 1 ∈ P1, S1, finite subsets L1, R1 of A+ and a polynomial Q

with coefficients in N such that

(i) dA∗ = Q + S X∗P .
(ii) A∗ = L1 + S X∗P1 = R1 + S1 X∗P .

(iii) If S1 = {1} (resp. P1 = {1}), then X is prefix (resp. suffix). Conversely, if X is
prefix (resp. suffix), then one can chose S1 = {1} (resp. P1 = {1}).

Proof. According to Lemma 14.4.2, there exist words u1, . . . , ud, v1, . . . , vd with
u1, v1 in X∗ such that

A∗ =
∑

1≤�≤d

u−1
i X∗v−1

� =
∑

1≤k≤d

u−1
k X∗v−1

j .

By Lemma 14.4.1

u−1
i X∗v−1

j = S(ui) X∗P (vj) + F (ui, vj)

where S(ui), P (vj), F (ui, vj) are finite sets. Thus, for any i, j = 1, . . . , d,

A∗ =
∑

1≤�≤d

S(ui) X∗P (v�) +
∑

1≤�≤d

F (ui, v�) (14.16)

=
∑

1≤k≤d

S(uk) X∗P (vj) +
∑

1≤k≤d

F (uk, vj).

Let P =⋃1≤�≤d P (v�) and S =⋃1≤k≤d S(uk). Observe that, by (14.16), the unions
are disjoint and therefore

P =
∑

1≤�≤d

P (v�), S =
∑

1≤k≤d

S(uk).

Let P1 = P (v1), S1 = S(u1). Let L1 =⋃1≤i≤d F (ui, v1), R1 =⋃1≤j≤d F (u1, vj)
which are again disjoint unions and finally Q =∑1≤i,j≤d F (ui, vj).

14.4 Proof of the factorization theorem 507

Summing up both sides of Equation (14.16) for i = 1, . . . , d, one gets assertion
(i). Assertion (ii) is a reformulation of the equations for i = 1 (resp. j = 1).

Since u1, v1 ∈ X∗, one has 1 ∈ S(u1) and 1 ∈ P (v1). By (ii), we have (L1, 1) +
(S X∗P1, 1) = 1. Since 1 ∈ S and 1 ∈ P1, this implies 1 /∈ L1. This finishes the
verification of the properties of the finite sets.

It remains to prove (iii).
If X is prefix, then X∗ is right unitary. Thus the set of right contexts S1 = S(u1) is

reduced to the empty word.
Conversely, if S1 = {1}, we have A∗ = R1 + X∗P . We show that X is right com-

plete and hence, by Theorem 3.3.8, that X is a prefix code. Indeed, let w be a word,
and let u be a word longer than any word in R1 and in P . The word wu is not in R1,
therefore it is in X∗P . Consequently, w is a prefix of a word in X∗. This completes
the proof. �

Proof of Theorem 14.2.1. For convenience, we set B = 1 − A. With the notation of
Lemma 14.4.3, one has A∗ = L1 + SX∗P1. Thus SX∗P1 = B−1(1 − BL1). Hence

BSX∗ = (1 − BL1)P1
−1.

By Lemma 14.4.3(i), we have d − BQ = BSX∗P . Replacing BSX∗ gives d −
BQ = (1 − BL1)P1

−1P . This implies

P = P1(1 − BL1)−1(d − BQ).

We apply Theorem 14.3.7 to the last equality and we obtain the existence of
E,F,G,H in Z〈A〉 such that P1 = EF , 1 − BL1 = GF , d − BQ = GH , P =
EH . Lemma 14.3.8 implies that G ≡ ±1 (we write P ≡ α as a shorthand for saying
that α is the remainder of the weak left division of P by B). Replacing if necessary
E,F,G,H by their negatives, we may suppose that G ≡ 1. Then Lemma 14.3.8
again implies that H ≡ d. Thus

P = E(d + BI) (14.17)

for some I ∈ Z〈A〉.
By Lemma 14.4.3(ii), we have B−1(1 − BR1) = A∗ − R1 = S1X

∗P . Hence

1 − X = P (1 − BR1)−1BS1.

This is very close to Equation (14.7), but with a central inverted polynomial, which
we must eliminate. For this, we use Theorem 14.3.7 again. There exist J,K,L,M

in Z〈A〉 such that P = JK , 1 − BR1 = LK , BS1 = LM , 1 − X = JM . Let π be
a positive Bernoulli morphism. It extends linearly to an algebra homomorphism
Q〈A〉 → R.

We may assume that π (K) ≥ 0. Then we deduce from Lemma 14.3.8 that K =
1 + BK ′ and L = 1 + BL′ for some K ′, L′ in Z〈A〉. Thus BS1 = (1 + BL′)M =
M + BL′M , which implies that M = BM ′ for some M ′ in Z〈A〉. Therefore

1 − X = JBM ′. (14.18)

508 14 Polynomials of finite codes

Equation (14.18) will imply Equation (14.7), if we show that J is of the form
J1(d + BJ2). This is the most technical part of the proof. It will follow from

E(d + BI) = J (1 + BK ′) (14.19)

(which holds in view of (14.17) and the fact that P = JK and K = 1 + BK ′) and
from the divisibility property of Theorem 14.3.3. The difficulty is that in this theorem,
the polynomials involved have coefficients in Q. Therefore a lot of additional work
is required to draw the conclusion in Z.

Theorem 14.3.3 applied to Equation (14.19) guarantees the existence of polyno-
mials x1,. . . , xn, U,V in Q〈A〉 such that

E = Up(x1, . . . , xn), d + BI = p(xn−1, . . . , x1)V,

J = Up(x1, . . . , xn−1), 1 + BK ′ = p(xn, . . . , x1)V.

We write pi, qi for p(x1, . . . , xi) and p(xi, . . . , x1). We apply Theorem 14.3.1 to
the two equalities at the right, and obtain that qn−1 and qn are both congruent to a
scalar modulo B. Thus Theorem 14.3.4 implies that pn−1 and qn−1 (resp. pn and
qn) are congruent to the same scalar modulo B. Furthermore, by Lemma 14.3.9,
c(pn−1) = c(qn−1) and c(pn) = c(qn).

Observe that 1 − BR1 is primitive, since R1 has coefficients 0, 1. The equation
1 − BR1 = LK implies that L,K are primitive, since they are in Z〈A〉. We have
K = 1 + BK ′ = qnV , hence by Gauss’ lemma c(qn)C(V) = c(K) = 1, and qnV =
K = K . This equality together with Lemma 14.3.8 implies that V = ε + BV ′, with
V ′ ∈ Z〈A〉 and ε = ±1. Now 1 − X = JM and 1 − X is primitive, hence J is
primitive. Since JK = E(d + BI), Gauss’ lemma again implies that d + BI is
primitive. Since d + BI = qn−1V , the same lemma implies that d + BI = qn−1V .
Lemma 14.3.8 now implies that qn−1 = εd + BN for some N ∈ Z〈A〉.

We have seen that pn−1 and qn−1 are congruent to the same scalar modulo B

and that c(pn−1) = c(qn−1). Hence pn−1 and qn−1 are congruent to the same scalar
modulo B, and we have pn−1 = εd + BH with H ∈ Q〈A〉. But pn−1 − εd = BH

and B is primitive. By Gauss’ lemma, c(H) = c(pn−1 − εd) is in Z and H is in Z〈A〉.
Now, J is primitive and J = Upn−1, hence J = J = Upn−1, which implies J =

U (εd + BH). Thus Equation (14.18) implies

1 − X = U (εd + BH)BM ′.

This implies that for some polynomials W,Y,Z in Z〈A〉 (defined by W = ±U ,
Y = ±H , Z = ±M ′) and ε1 = ±1, one has

1 − X = W (ε1dB + BYB)Z, (14.20)

with π (W), π (Z) ≥ 0.
Now define the linear mapping λ : Q〈A〉 → R by λ(w) = |w|π (w) for each word

w in A∗. It is easily shown that λ(P1 P2) = λ(P1)π (P2) + π (P1)λ(P2), for P1, P2

in Q〈A〉. Applying λ to (14.20) and observing that λ(B) = −1, we obtain λ(X) =
π (W)ε1dπ (Z). Since λ(X) > 0, this shows that ε1 = 1.

14.5 Applications 509

To conclude the proof of Theorem 14.2.1, observe that if X is prefix, then one can
choose S1 = 1 by Lemma 14.4.3(iii); since BS1 = LM and M = BM ′, we obtain
that B = LBM ′. Thus M ′ = ±1. Since π (Z) ≥ 0 and Z = ±M , we deduce Z = 1.

On the other hand, if X is suffix, one can choose P1 = 1 by Lemma 14.4.3(iii)
again. Since P1 = EF , we obtain E = ±1. Since E = Upn, we obtain by Gauss’
lemma, ±1 = Upn, hence W = ±U = ±1. Since π (X) ≥ 0, one has W = 1. �

Remark 14.4.4 A closer look at the previous proof proves the following claim: under
the hypothesis of Theorem 14.2.1, one has

X − 1 = W (d(A − 1) + (A − 1)Y (A − 1))Z,

and moreover

P1 = W (1 + (A − 1)W ′), S1 = (1 + Z′(A − 1))Z,

for some polynomials W,Y,Z,W ′, Z′ in Z〈A〉, and in particular

π (W) = π (P1), π (Z) = π (S1).

Recall that P1, S1 are as defined in Lemma 14.4.3 and its proof, and therefore satisfy:

u−1
1 X∗ = S1 X∗, X∗v−1

1 = X∗P1

for some words u1, v1 in X∗. Note that the average length
∑

w∈X π (w)|w| of X is
equal to π (W)dπ (Z).

We prove the claim, by going through the proof of Theorem 14.2.1: first, we have
P1 = EF , F ≡ 1 (by Lemma 14.3.8 since G ≡ 1 and GF ≡ 1). Next, E = Upn (by
Gauss’ lemma, since E = Upn, and E being primitive since P1 is and P1 = EF).
Furthermore qn ≡ ±1 (by Lemma 14.3.8, since qnV = K ≡ 1), which implies, by
an argument similar to that for pn−1 and qn−1 in the proof of Theorem 14.2.1, that
pn ≡ ±1.

We obtain that pnF ≡ ±1, and P1 = P 1 = UpnF , which is the product of ±W

with a polynomial which is ≡ ±1. Since π (P1) > 0 and π (W) ≥ 0, we obtain finally
that P1 is of the desired form W (1 + (A − 1)W ′).

On the other hand, Z = ±M ′, M = BM ′, BS1 = (1 + BL′)M . Thus BS1 =
(1 + BL′)BM ′, which implies that S1 = (1 + L′B)M ′, and π (S1) = π (M ′). Since
π (S1) > 0 and π (Z) ≥ 0, we have in fact S1 = (1 + L′B)Z, which proves the claim.

14.5 Applications

Let π be a Bernoulli distribution. Recall that the average length (with respect to
π) of a finite code X is the number

∑
w∈X π (w)|w|. The distribution is positive if

π (w) > 0 for any word w.
The following statement is easily obtained from Remark 14.4.4. However, the same

result holds for arbitrary thin complete codes, as proved in Corollary 13.5.2.

510 14 Polynomials of finite codes

Corollary 14.5.1 Let X be a finite maximal code and let π be a positive Bernoulli
distribution. The average length of X is greater or equal to the degree of X, and
equality holds if and only if X is bifix.

Proof. With the notation of Remark 14.4.4, we have π (W) = π (P1) and π (Z) =
π (S1). By Lemma 14.4.3, π (S1) ≥ 1 (resp. π (P1) ≥ 1), with equality if and only
if P1 = 1 (resp. S1 = 1). Thus, since the average length of X is equal to λ(X) =
π (W)dπ (Z), we obtain that it is ≥ d.

If equality holds, then we must have P1 = S1 = 1. Then the code X is bifix by
Lemma 14.4.3(iii). �

Let x be any word and X a finite code. Recall from Section 13.5 that a strict context
of a word w with respect to X is a pair (p, s) such that either pws = x1 · · · xn, xi ∈ X,
n ≥ 1, with p a proper prefix of x1 and s a proper suffix of xn, or pws = 1. Thus, for
w ∈ X∗, the pair (1, 1) is a strict context. Observe that the set C(w) of strict contexts
of a word w is finite. The measure of C(w) is by definition

∑
π (p)π (s), where the

sum is over all strict contexts (p, s) of w.
The next result is easily obtained with the help of Theorem 14.2.1. The same result

holds for an arbitrary thin complete code (Theorem 13.5.5).

Corollary 14.5.2 Let X be a finite code over A, and let π be a positive Bernoulli
distribution on A∗. For any word w ∈ A∗, the measure of the set C(w) of strict
contexts of w is equal to the average length of the code X.

We prove in fact a noncommutative version of this result.

Proof. Fix a finite maximal code X and a word w. We define a mapping e from
Z〈〈A〉〉 into the complete tensor product Z〈〈A〉〉 ⊗Z Z〈〈A〉〉, which is the set of series
of the form

∑
u,v∈A∗ αu,vu ⊗ v for integers αu,v . The mapping is defined by e(z) =∑

uwv=z u ⊗ v for a word z ∈ A∗. It is easily seen that e(A∗) = A∗ ⊗ A∗. Further-
more, the very definition of a strict context implies that e(X∗) =∑p,s X∗p ⊗ sX∗,
where the sum is extended to all strict contexts (p, s) of w with respect to X. Thus
e(X∗) = (X∗ ⊗ 1)T (1 ⊗ X∗), where T =∑p ⊗ s, summed over all strict contexts
of w.

Suppose that w is nonempty; then we have for any words s,m, p:

e(smp) = (s ⊗ 1)e(m)(1 ⊗ p) + e(s)(1 ⊗ mp) + (sm ⊗ 1)e(p)

+
∑

u,v �=1,w=uv

(su−1 ⊗ (v−1m)p + s(mu−1) ⊗ v−1p)

+
∑

u,v �=1

(umv,w)su−1 ⊗ v−1p,

where we use u−1 in the same way as the notation recalled at the beginning of
Section 14.4, and where (,) is the scalar product on Z〈A〉 that has A∗ as an orthonormal
basis.

The proof of this formula follows by inspection, once the six possibilities for the
word w to be a factor of the word smp have been observed: either w appears as a

14.5 Applications 511

factor of m, or of s or p, or w is an overlapping factor of the product sm or mp, or
finally w is factor of smp which starts properly in s and ends properly in p.

Note that the previous formula is linear in each of s,m, p, so it extends to series
S,M,P . Now we have by Corollary 14.2.3, A∗ = SX∗P , where P, S are polynomi-
als. Hence we obtain

A∗ ⊗ A∗ = e(A∗) = e(SX∗P)

= (S ⊗ 1)e(X∗)(1 ⊗ P) + e(S)(1 ⊗ X∗P) + (SX∗ ⊗ 1)e(P)

+
∑

u,v �=1,w=uv

(Su−1 ⊗ (v−1X∗)P + S(X∗u−1) ⊗ v−1P)

+
∑

u,v �=1

(uX∗v,w)Su−1 ⊗ v−1P.

Note that the last sum is finite. Denote it by R. Observe that e(X∗) = (X∗ ⊗ 1)T (1 ⊗
X∗). By the proof of Lemma 14.4.1, where S(v) and P (u) are defined, we thus have

A∗ ⊗ A∗ = (SX∗ ⊗ 1)T (1 ⊗ X∗P) + e(S)(1 ⊗ X∗P) + (SX∗ ⊗ 1)e(P)

+
∑

u,v �=1,w=uv

(Su−1 ⊗ S(v)X∗P + SX∗P (u) ⊗ v−1P) + R.

Let us multiply by PB ⊗ 1 on the left and by 1 ⊗ BS on the right. Since PBS is the
inverse of X∗, we obtain

P ⊗ S = T + (PB ⊗ 1)e(S) + e(P)(1 ⊗ BS)

+
∑

u,v �=1,w=uv

(PB(Su−1) ⊗ S(v) + P (u) ⊗ (v−1P)BS)

+ (PB ⊗ 1)R(1 ⊗ BS).

Note that when w is the empty word, then the formula for e(smp) has to be slightly
modified: the �’s are replaced by−s ⊗ mp − sm ⊗ p, and from here on the argument
is similar and hence we omit it.

This shows that the sum of the strict contexts of the word w is equal to P ⊗ S

modulo the two-sided ideal of Z〈A〉 ⊗ Z〈A〉 generated by A − 1 ⊗ 1 and 1 ⊗ (A −
1).

The homomorphism π ⊗ π : Z〈A〉 ⊗ Z〈A〉 → R vanishes on this ideal. Thus the
measure of the set of strict contexts is equal to π (P)π (S). Now, using X − 1 =
P (A − 1)S, we find that the average length of X is equal to λ(X) = π (P)π (S). �

A code of degree 1 is called synchronized, see Section 9.3. Recall that for a finite
set X of words in A∗, we denote by α(X) the sum in Z[A] of the commutative images
of the words in X.

512 14 Polynomials of finite codes

Corollary 14.5.3 Let X be a finite maximal code on the alphabet A. Then α(X) − 1
is a multiple of α(A) − 1. If the quotient of these two polynomials is irreducible in
Z[A], then X has at least two of the following properties: prefix, suffix, synchronized.

Proof. Let ρ the canonical homomorphism Z〈A〉 → Z[A]. Then by Remark 14.4.4,
we have α(X) − 1 = ρ(W)ρ(Z)(d + ρ(Y)(α(A) − 1))(α(A) − 1), which proves the
first assertion. If the quotient is irreducible, then we must have two of the three
following equalities: ρ(W) = ±1, ρ(Z) = ±1, d + ρ(Y)(α(A) − 1) = ±1.

The equality ρ(W) = ±1 implies, by Remark 14.4.4, that π (S1) = 1, hence S1 = 1,
and then that X is prefix (Lemma 14.4.3(vi)). We deal with the second equality
similarly.

If the third equality holds, then we must have ρ(Y) = 0, and d = ±1, which implies
d = 1, hence X is synchronized. �

Observe that the first assertion is Theorem 2.5.30.

14.6 Commutative equivalence

Recall that the canonical morphism that associates to a formal power series its
commutative image is denoted by α : Q〈〈A〉〉 → Q[[A]] and that α(A∗) = A⊕ is the
free commutative monoid on A. By definition, for each σ ∈ Q〈〈A〉〉 and w ∈ A⊕,

(α(σ), w) = (σ, α−1(w)) =
∑

α(v)=w

(σ, v).

Two series σ, τ ∈ Q〈〈A〉〉 are called commutatively equivalent if α(σ) = α(τ).
Two subsets X and Y of A∗ are commutatively equivalent if their characteristic

series X and Y are so, which means that α(X) = α(Y). In an equivalent manner, X

and Y are commutatively equivalent if and only if there exists a bijection γ : X → Y

such that γ (x) ∈ α−1α(x) for all x ∈ X.
A subset X of A∗ is called commutatively prefix if there exists a prefix subset Y of

A∗ which is commutatively equivalent to X. It is conjectured that every finite maximal
code is commutatively prefix. This is the commutative equivalence conjecture.

Example 14.6.1 Any suffix code X is commutatively prefix (since X̃ is prefix).
More generally, any code obtained by a sequence of compositions of prefix and suffix
codes is commutatively prefix. In particular, our friend X = {aa, ba, baa, bb, bba}
is commutatively prefix.

Example 14.6.2 Let A = {a, b} and let

X = {aa, ba, bb, abab, baab, bbab, a3b2, a3ba2, a3b2ab, a3ba3b, a3babab}.
This set is easily verified to be a code, by computing, for instance, the sets Ui of
Section 2.3,

U1 = {abb, aba2, ab2ab, aba3b, (ab)3, ab}, U2 = {ab}, U3 = {ab}.

14.6 Commutative equivalence 513

Further, X is maximal since for π (a) = π (b) = 1
2 , we obtain π (X) = 1. Finally X is

commutatively prefix since

Y = {aa, ba, bb, abab, abba, abbb, abaab, aba4, aba3b2, aba3ba2, aba3bab}
is a prefix code commutatively equivalent to X. Observe that

X − 1 = (1 + a + b + a3b + a3ba)(a + b − 1)(1 + ab)

is a positive factorization for X. Actually, X belongs to the family of indecomposable
finite maximal codes described in Exercise 14.1.7.

Proposition 14.6.3 Let A = {a, b} and let X ⊂ a∗ba∗. Then X is commutatively
prefix if and only if, for all n ≥ 1,

Card(X ∩ A(n+1)) ≤ n. (14.21)

Recall that A(n+1) = 1 ∪ A ∪ . . . ∪ An.

Proof. The condition is necessary. Indeed, let Y be a prefix code commutatively
equivalent to X. Since Y is prefix, the map π from X ∩ A(n+1) to {0, 1, . . . , n − 1}
defined by π (aibaj) = i is injective. This implies that we cannot have more than n

words of length at most n in X. Conversely, suppose that the condition is satisfied. We
show by induction on n ≥ 1 that there is a prefix code Y commutatively equivalent
to X1 ∪ . . . ∪ Xn with Xn = X ∩ An. This is true for n = 1. Assume that it is true for
n ≥ 1. Set I = {i ≥ 0 | aiba∗ ∩ Y �= ∅}. Then Card(I) = Card(X ∩ A(n+1)) and thus
Card(I) + Card(Xn+1) ≤ n + 1. This shows that we can choose Z commutatively
equivalent to Xn+1 formed of words aibaj with distinct indices i ∈ {0, 1, . . . , n} \ I .
The code Y ∪ Z is prefix and commutatively equivalent to X1 ∪ . . . ∪ Xn+1. �

Theorem 14.6.4 For each subset X of A∗ the following conditions are equivalent:

(i) X is commutatively prefix.
(ii) The series (1 − α(X))/(1 − α(A)) has nonnegative coefficients.

The proof uses the following lemma.

Lemma 14.6.5 Let U ⊂ A∗ and V ∈ Z〈〈A〉〉 be such that (α(U), w) ≥ (α(V), w) ≥ 0
for all w ∈ A⊕. Then there exists U ′ ⊂ U such that α(U ′) = α(V).

Proof. Let w ∈ A⊕. Since (U, α−1(w)) ≥ (α(V), w) ≥ 0, there exists a subset Uw of
U ∩ α−1(w) such that (α(Uw), w) = (α(V), w). Then U ′ =⋃w∈A⊕ Uw is a subset of
U and (α(U ′), w) = (α(V), w). �

Proof of Theorem 14.6.4. (i) ⇒ (ii). First assume that X is commutatively equivalent
to some prefix set Y . Let P = A∗ − YA∗. Then A∗ = Y ∗P , hence 1 − Y = P (1 −
A). Thus 1 − α(X) = α(P)(1 − α(A)). Clearly α(P) = (1 − α(X))/(1 − α(A)) has
nonnegative integral coefficients.

514 14 Polynomials of finite codes

(ii)⇒ (i). Let Xn = X ∩ An for n ≥ 0. Set Q = (1 − X)A∗. Then α(Q) = (1 −
α(X))/(1 − α(A)) has nonnegative coefficients. Note that, since Q(1 − A) = 1 − X,
we have for 1 ≤ i ≤ n

Qi = Qi−1A − Xi, (14.22)

where Qi is the homogeneous component of degree i of Q.
We show by induction on n ≥ 1 that there exists a prefix code Y commutatively

equivalent to X1 ∪ . . . ∪ Xn. The property is true for n = 1 since Y = X1 satisfies
the condition.

Suppose that the property is true for n ≥ 1. Let P = A∗ \ YA∗. Thus 1 − Y =
P (1 − A). Set Yi = Y ∩ Ai and Pi = P ∩ Ai for 0 ≤ i ≤ n. Since 1 − α(X) =
α(Q)(1 − α(A)) and 1 − α(Y) = α(P)(1 − α(A)) coincide up to degree n, we
have α(Qi) = α(Pi) for 0 ≤ i ≤ n. Since Qn+1 = QnA − Xn+1, the polynomial
QnA − Qn+1 has nonnegative coefficients. This implies that α(PnA) − α(Qn+1) also
has nonnegative coefficients. In view of Lemma 14.6.5, we can choose a subset Pn+1

of PnA in such a way that α(Pn+1) = α(Qn+1).
We define Yn+1 = PnA \ Pn+1. Then Y ∪ Yn+1 is prefix and commutatively equiv-

alent to X1 ∪ . . . ∪ Xn+1. �

It is interesting to note the connection of this statement with Kraft’s inequality
given in (2.16) (see Exercise 14.6.2).

Corollary 14.6.6 A positively factorizing code is commutatively prefix.

Proof. Let X ⊂ A+ be a factorizing code and let (P,Q) be a factorization of X.
Then by definition 1 − X = P (1 − A)Q. Passing to commutative variables gives 1 −
α(X) = α(P)(1 − α(A))α(Q) or also (1 − α(X))/(1 − α(A)) = α(P)α(Q). Since
α(P)α(Q) has nonnegative coefficients, the conclusion follows from Theorem 14.6.4.

�

Now we give an example of a code which is not commutatively prefix.

Example 14.6.7 Let X ⊂ a∗ba∗ be the set given in Table 14.2, with the convention
that aibaj ∈ X if and only if the entry (i, j) contains a 1. Clearly X ⊂ A(16) and
Card(X) = 16. According to Proposition 14.6.3, X is not commutatively prefix.

Let us show that X is a code with deciphering delay 1. Let x, y, z, t ∈ X be such
that xy ≤ zt . We may suppose x ≤ z. Then (see Figure 14.4) we have

x = aibaj , y = aka�ban, z = xak, t = a�ban.

The 1’s representing x and z are in the same row in Table 14.2. Necessarily k ∈
{0, 1, 2, 4, 6, 7, 12, 13, 14} since these are the distances separating two 1’s in the
same row. Next, the 1’s representing y and t are in rows whose difference of indices
is k. Thus k ∈ {0, 3, 5, 8, 11}. This gives k = 0 and consequently x = z.

Corollary 14.6.6 shows that the factorization conjecture implies the commutative
equivalence conjecture.

14.6 Commutative equivalence 515

Table 14.2 A code X which is not commutatively prefix.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 1 1 1 1
1
2
3 1 1 1 1
4
6
7
8 1 1 1 1
9
10
11 1 1 1
12
13
14
15

x

b

z

b

ah

Figure 14.4 If X where not a code.

It is not known whether the code of Example 14.6.7 is included in a finite maximal
code. It this were true, this would be a counterexample to the commutative equivalence
conjecture and thus also to the factorization conjecture.

We use Theorem 14.6.4 to prove the following statement.

Theorem 14.6.8 A circular code is commutatively prefix.

We first prove the following lemma.

Lemma 14.6.9 Let X ⊂ A+ be a circular code. Then the series log α(A∗) −
log α(X∗) has nonnegative coefficients.

Proof. We have

log A∗ − log X∗ = log(1 − A)−1 − log(1 − X)−1 =
∑
n≥1

An

n
−
∑
n≥1

Xn

n
.

516 14 Polynomials of finite codes

Now, denoting by L the set of Lyndon words, and by L′ the set of Lyndon words
whose conjugacy class meets X∗, we have

α(A)n =
∑
x∈L

∑
p|n

n

p
α(x)p,

since the conjugacy class of xp has |x| = n/p elements. And, since X is circular,
α(X)n =∑x∈L′

n
p
α(x)p. Thus

log α(A∗) − log α(X∗) =
∑
x∈L

∑
p≥1

α(x)p

p
−
∑
x∈L′

∑
p≥1

α(x)p

p

=
∑

x∈L\L′

∑
n≥1

α(x)n

n
.

This shows that the series s = log α(A∗) − log α(X∗) has nonnegative coefficients.
�

Proof of Theorem 14.6.8 Let X be a circular code. Set s = log α(A∗) − log α(X∗).
By Lemma 14.6.9, the series s has nonnegative coefficients. We have

exp(s) = α(A∗)/α(X∗) = (1 − α(X)/(1 − α(A)) .

Since s has nonnegative coefficients, so does exp(s). Thus X is commutatively prefix
by Theorem 14.6.4. �

Note that a circular code is not always cyclically equivalent to a prefix code (see
Exercise 14.6.1).

We now consider the problem of the commutative equivalence to synchronized
codes. The period of a set of words is the greatest common divisor of the lengths
of its elements. Two commutatively equivalent sets have the same period. If a finite
maximal prefix code X has period p, then X = Y ◦ Ap and thus d(X) = d(Y)p by
Proposition 11.1.2. In particular, a finite maximal prefix code X of period p ≥ 2 is
not synchronized. The following result shows that this is the only obstruction.

Theorem 14.6.10 Any finite maximal prefix code of period 1 is commutatively equiv-
alent to a synchronized prefix code.

The proof relies on three lemmas. Since the only maximal prefix code on one letter
a of period 1 is the alphabet {a} itself, we may assume that the alphabet has at least
two letters.

For any nonempty finite set X of words, we denote by deg(X) the maximal length
of the words of X and by X̂ the set of words of X of length deg(X). For a polynomial
P , we write P̂ for the set of words of maximal length in supp(P).

Lemma 14.6.11 If X is a finite maximal prefix code of period p such that

X − 1 = L(A − 1)R

14.6 Commutative equivalence 517

where R̂ = An for some n ≥ 1, then R is a polynomial in A dividing 1 + A + · · · +
Ap−1.

Proof. 1. Let E = (A − 1)R. We first show that E is a polynomial in A. Let us prove
by descending induction on m ≤ n that

E = E′ +
n+1∑

i=m+1

siA
i (14.23)

with deg(E′) ≤ m. The property is true for m = n since Ê = AR̂ = An+1. Suppose
that it holds for m ≤ n. Let g be a word in L̂ and let h be a word of length m. For all
words k of length n − m + 1 we have ghk ∈ L̂Ê ⊂ X and thus ghk ∈ X. Since X is
prefix and k �= 1, we have (LE, gh) = 0.

But, by Formula (14.23) we have

(LE, gh) = (L, g)(E′, h) +
t−1∑
i=0

(L, gi)st+m−i (14.24)

where gi is the prefix of length i of g and t = |g|. Since (LE, gh) = 0, we deduce
from (14.24) the formula

(E′, h) = − 1

(L, g)

t−1∑
i=0

(L, gi)st+m−i .

It shows that (E′, h) does not depend on the word h and proves that (14.23) is true
for m − 1. Thus we have proved by induction that E is a polynomial in A, that is

E =
n+1∑
i=0

siA
i.

Consequently, R is also a polynomial in A.
2. Let x be a word of X and let q = |x|. Let �, s be the polynomials in the variable

z defined by

�(z) =
q∑

i=0

�iz
i, s(z) =

n+1∑
i=0

siz
i,

where �i is the coefficient in L of the prefix xi of length i of x. We have for each
integer m such that 0 ≤ m ≤ q

(LE, xm) =
∑

i+j=m

�isj

(we set si = 0 for j > n + 1). Suppose that 0 < m < q. Since X is prefix and X −
1 = LE, we have (LE, xm) = 0 and thus∑

i+j=m

�isj = 0.

518 14 Polynomials of finite codes

Since (LE, x) = 1 and (LE, 1) = −1, we therefore have zq − 1 = �(z)s(z). This
shows that E divides Aq − 1 and that R divides 1 + A + · · · + Aq−1 for each q such
that X contains a word of length q. This proves the lemma. �

The second lemma is a simple property of commutative equivalence.

Lemma 14.6.12 Let Y be a maximal prefix code on the alphabet A with Ŷ = AR

and deg(R) = n. If R �= An, then Y is commutatively equivalent to a prefix code Y ′

such that Ŷ ′ is not of the form AR′ and, in particular Ŷ ′ �= Ŷ .

Proof. We use an induction on n to prove in a first step that for a nonempty set R strictly
included in An, there exist a word h and letters a, b such that (ha)−1R �= (hb)−1R

(note that one of the sides can be the empty set). The property holds trivially for n = 0
since then R is equal to {1} = A0. Assume, for some n ≥ 1, that it holds for n − 1. If
for some a ∈ A, the set S = a−1R is nonempty and not equal to An−1, there exist, by
induction hypothesis, a word g and letters b, c such that (gb)−1S �= (gc)−1S. Then
the assertion is proved with h = ag. Otherwise, we have a−1R = An−1 or a−1R = ∅
for each letter a. Since R �= ∅ and R �= An, the sets a−1R cannot be all equal. Thus,
there exist letters a, b such that only one of the sets a−1R, b−1R is empty. Then the
conclusion holds with h = 1.

For h, a, b as above, let U = (ahb)−1Y, V = (bha)−1Y . Then Û = (hb)−1R and
V̂ = (ha)−1R. This implies that Û �= V̂ . Let Y = W ∪ ahbU ∪ bhaV with the three
terms of the union disjoint. Then Y ′ = W ∪ ahbV ∪ bhaU is commutatively equiv-
alent to Y . Suppose that Ŷ ′ = AR′. Since V = (bha)−1Y , we have

V̂ = (bha)−1Ŷ = (ha)−1R = (aha)−1Ŷ = (aha)−1Ŵ = (aha)−1Ŷ ′ = (ha)−1R′.

On the other hand, we have

Û = (bha)−1Ŷ ′ = (ha)−1R′

and thus we obtain Û = V̂ , a contradiction. �

For a finite maximal prefix code X, we denote by e(X) the integer defined by

e(X) = max{e ≥ 0 | X − 1 = L(A − 1)R, e = deg(R)}. (14.25)

Lemma 14.6.13 Let X be a finite maximal prefix code such that

X − 1 = L(A − 1)R (14.26)

with deg(R) = n ≥ 1 and R̂ �= An. Then there exists a prefix code X′ commutatively
equivalent to X such that

e(X′) < e(X).

Proof. We first note that (14.26) implies that X̂ = L̂AR̂. Observe that this also holds
for the characteristic series of these sets. Let g ∈ L̂ and let Y = g−1X. Then Ŷ = AR̂.

14.6 Commutative equivalence 519

X

g

Y

X

g

Y

Figure 14.5 The codes X and X′.

Since R̂ �= An, there exists by Lemma 14.6.12, a prefix code Y ′ commutatively
equivalent to Y such that Ŷ ′ is not of the form AR′.

Let X′ be the prefix code commutatively equivalent to X defined by (see Fig-
ure 14.5)

X′ = (X \ gY) ∪ gY ′.

In order to prove that e(X′) < e(X), consider a factorization

X′ − 1 = L′(A − 1)R′ (14.27)

and suppose by contradiction that deg(R) ≤ deg(R′).
Since Y ′ is commutatively equivalent to Y , we have deg(Y ′) = deg(Y) and therefore

deg(X) = deg(X′). This implies that gŶ ′ ⊂ X̂′ = L̂′AR̂′. Consider a word y ∈ Ŷ ′.
Then gy ∈ L̂′AR̂′ implies that gy = g′r with g′ ∈ L̂′ and r ∈ AR̂. Since deg(L) ≥
deg(L′), the word g′ is a prefix of g. Let g = g′h. Then Ŷ ′ = g−1X̂′ = h−1AR̂′.

Suppose first that h = 1, that is that g = g′. Then Ŷ ′ = AR̂′, a contradiction.
Thus h �= 1. Let a be the first letter of h and set h = ah′. Let b be a letter distinct

from a (recall that the alphabet is supposed to have at least two elements). We have

Ŷ ′ = h−1AR̂′ = h′−1R̂′ = (bh′)−1AR̂′ = (g′bh′)−1L̂′AR̂′ = (g′bh′)−1X̂′.

Since the words of X and X′ which do not begin with g are the same, this implies

Ŷ ′ = (g′bh′)−1X̂ = (g′bh′)−1L̂AR̂.

Since deg(Y ′) = deg(Y), we have deg(Y ′) = deg(R) + 1. Thus the equality Ŷ ′ =
(g′bh′)−1L̂AR̂ with |g′bh′| = |g| = deg(L) implies Ŷ ′ = AR̂, which is a contradic-
tion. �

Proof of Theorem 14.6.10. We use an induction on the integer e(X). The property
is true when e(X) = 0 since then X itself is synchronized. Indeed, we consider the
factorization

X − 1 = L(A − 1)(d + D(A − 1))

given by Theorem 14.2.1, knowing that X is prefix. Then e(X) = 0 implies D = 0
and thus d = 1.

520 14 Polynomials of finite codes

Figure 14.6 The codes X and X′.

When e(X) ≥ 1, we have X − 1 = L(A − 1)R with deg(R) = n ≥ 1. If R̂ = An,
then by Lemma 14.6.11, R divides 1 + A + · · · + Ap−1 with p the period of X.
Hence, p ≥ n + 1 ≥ 2 in contradiction with the hypothesis p = 1. Therefore, R̂ �=
An and by Lemma 14.6.13, there exists a prefix code X′ commutatively equivalent to
X such that e(X′) < e(X), whence the property by induction. �

Example 14.6.14 Consider the maximal bifix code of degree 3 on the alphabet
A = {a, b}

X = aaa + aabA + ab + baa + babA + bba + bbb.

We have X − 1 = (A − 1)R with R = 1 + a + b + bA + abA. We choose, with the
notation of the proof of Lemma 14.6.13, g = 1 and therefore Y = X. We have R̂ =
abA. Then, with the notation of Lemma 14.6.12, we choose h = a, since (aa)−1R̂ = ∅
and (ab)−1R̂ = A. Thus we obtain

X′ = aaa + aab + ab + baaA + babA + bba + bbb.

The code X′ is commutatively equivalent to X and is synchronized since baab is a
synchronizing word (see Figure 14.6).

14.7 Complete reducibility

Let A be an alphabet and let σ ∈ Q〈〈A〉〉 be a series. For each word u ∈ A∗, we define
a series σ · u by (σ · u,w) = (σ, uw) for all w ∈ A∗. The following formulas hold :

σ · 1 = σ, (σ · u) · v = σ · uv.

Let Vσ be the subspace of the vector space Q〈〈A〉〉 generated by the series σ · u for
u ∈ A∗. For each word w ∈ A∗, we denote by ψσ (w) the linear function from Vσ into
itself (acting on the right) defined by

ψσ (w) : ρ �→ ρ · w.

The formula (ρ · u)ψσ (w) = ρ · uw = ρψσ (uw) is straightforward. It follows that
ψσ is a morphism

ψσ : A∗ → End(Vσ)

from A∗ into the monoid End(Vσ) of linear functions from Vσ into itself. The mor-
phism ψσ is called the syntactic representation of σ .

14.7 Complete reducibility 521

Figure 14.7 A bifix code.

Proposition 14.7.1 Let Y be a subset of A∗ and let σ = Y . Let ϕ be the canonical
morphism from A∗ onto the syntactic monoid of Y . Then for all u, v ∈ A∗,

ϕ(u) = ϕ(v) ⇔ ψσ (u) = ψσ (v).

In particular the monoid ψσ (A∗) is isomorphic to the syntactic monoid of Y .

Proof. Assume first that ψσ (u) = ψσ (v). Then for all r ∈ A∗,

σ · ru = (σ · r)ψσ (u) = (σ · r)ψσ (v) = σ · rv.

Thus also for all s ∈ A∗,

(σ, rus) = (σ · ru, s) = (σ · rv, s) = (σ, rvs).

This means that rus ∈ Y if and only if rvs ∈ Y , which shows that ϕ(u) = ϕ(v).
Conversely, assume ϕ(u) = ϕ(v). Since the vector space Vσ is generated by the

series σ · r (r ∈ A∗), it suffices to show that for r ∈ A∗,

(σ · r)ψσ (u) = (σ · r)ψσ (v).

Now for all s ∈ A∗,

((σ · r)ψσ (u), s) = (σ · ru, s) = (σ, rus) = (σ, rvs) = ((σ · r)ψσ (v), s). �

The preceding result gives a relationship between the syntactic representation of
the characteristic series σ of a set Y ⊂ A∗ and the syntactic monoid of Y . It should be
noted that the dimension of the vector space Vσ can be strictly less than the number
of states of the minimal automaton of Y (see Example 14.7.3). However, it can be
shown that the vector space Vσ has finite dimension if and only if Y is recognizable
(Exercise 14.7.2).

Example 14.7.2 Let σ = A∗. Then σ · u = σ for all u ∈ A∗. Consequently Vσ =
Qσ is a vector space of dimension 1.

Example 14.7.3 Let A = {a, b} and let X ⊂ A+ be the bifix code of Figure 14.7.
Let σ = X∗. We shall see that the vectors σ, σ · a, σ · a2, and σ · b form a basis of

522 14 Polynomials of finite codes

the vector space Vσ . Indeed, the formulas

σ · a3 = σ · ab = σ, σ · ba = σ · a2,

σ · b2 = σ · a2b = σ · a + σ · a2 − σ · b,

show that the four vectors σ, σ · a, σ · a2 and σ · b generate Vσ . A direct computation
shows that they are linearly independent. The matrices of the linear mappings ψσ (b)
in this basis are

ψσ (a) =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 1 0

 , ψσ (b) =

0 0 0 1
1 0 0 0
0 1 1 −1
0 1 1 −1

 .

The relation between ψσ and the minimal automaton of X∗ is now to be shown. The
minimal automaton has five states which may be written as 1, 1 · a, 1 · a2, 1 · b, 1 · b2.
Let V be the Q-vector space formed of formal linear combinations of these five states.
The linear function α : V → Vσ defined by α(1 · u) = σ · u satisfies the equality α(q ·
u) = α(q) · u and moreover we have α(1 · a + 1 · a2 − 1 · b − 1 · b2) = 0. Thus V

has dimension 5 and Vσ has dimension 4.

Let V be a vector space over Q and let N be a submonoid of the monoid End(V) of
linear functions from V into itself. The action of elements in End(V) will be written
on the right.

A subspace W of V is invariant under N if for ρ ∈ W,n ∈ N , we have ρn ∈ W . The
submonoid N is called reducible if there exists a subspace W of V which is invariant
under N and such that W �= {0},W �= V . Otherwise, N is called irreducible.

The submonoid N is completely reducible if for any subspace W of V which is
invariant under N , there exists a subspace W ′ of V which is a supplementary space
of W and invariant under N .

If V has finite dimension, a completely reducible submonoid N of End(V) has
the following form. There exists a decomposition of V into a direct sum of invariant
subspaces W1,W2, . . . ,Wk ,

V = W1 ⊕ W2 ⊕ · · · ⊕ Wk

such that the restrictions of the elements of N to each of the Wi’s form an irreducible
submonoid of End(Wi). In a basis of V composed of bases of the subspaces Wi , the
matrix of an element n in N has a diagonal form by blocks,

n =

n1 0

n2

. . .

0 nk

 .

Let M be a monoid and let V be a vector space. A linear representation ψ of M

over V is a morphism from M into the monoid End(V). A subspace W of V is called

14.7 Complete reducibility 523

invariant under ψ if it is invariant under ψ(M). Similarly ψ is called reducible,
irreducible, or completely reducible if this holds for ψ(M).

The syntactic representation of a series σ is an example of a linear representation
of a free monoid. The aim of this section is to study cases where this representation
is completely reducible. We recall that all the vector spaces considered here are over
the field Q of rational numbers. The following result is a classical one.

Theorem 14.7.4 (Maschke) A linear representation of a finite group is completely
reducible.

Proof. Let V be a vector space over Q. It suffices to show that each finite subgroup of
the monoid End(V) is completely reducible. Let G be a finite subgroup of End(V) and
let W be a subspace of V which is invariant under G. Let W1 be any supplementary
space of W in V . Let π : V → V be the linear function which associates to ρ ∈ V the
unique ρ1 in W1 such that ρ = ρ1 + ρ ′ with ρ ′ ∈ W . Then π (ρ) = 0 for all ρ ∈ W

and π (ρ) = ρ for ρ ∈ W1. Moreover, ρ − π (ρ) ∈ W for all ρ ∈ V .
Let n = Card(G). Define a linear function θ : V → V by setting for ρ ∈ V ,

θ (ρ) = 1

n

∑
g∈G

π (ρg)g−1.

Let W ′ = θ (V). We shall see that W ′ is an invariant subspace of V under G which is
a supplementary space of W . First, for ρ ∈ W ,

θ (ρ) = 0. (14.28)

Indeed, if ρ ∈ W , then ρg ∈ W for all g ∈ G since W is invariant under G. Thus
π (ρg) = 0 and consequently θ (ρ) = 0. Next, for ρ ∈ V ,

ρ − θ (ρ) ∈ W. (14.29)

Indeed

ρ − θ (ρ) = ρ − 1

n

∑
g∈G

π (ρg)g−1 = 1

n

∑
g∈G

(ρg − π (ρg))g−1.

By definition of π , each ρg − π (ρg) is in W for g ∈ G. Since W is invariant under
G, also (ρg − π (ρg))g−1 ∈ W . This shows Formula (14.29).

By (14.28) we have W ⊂ Ker(θ) and by (14.29), Ker(θ) ⊂ W since ρ ∈ Ker(θ)
implies ρ − θ (ρ) = ρ. Thus

W = Ker(θ).

Formula (14.28) further shows that θ2 = θ . Indeed, θ (ρ) − θ2(ρ) = θ (ρ − θ (ρ)).
By (14.29), ρ − θ (ρ) ∈ W . Hence θ (ρ) − θ2(ρ) = 0 by (14.28). Since θ2 = θ , the
subspaces W = Ker(θ) and W ′ = im(θ) are supplementary. Finally, W ′ is invariant

524 14 Polynomials of finite codes

under G. Indeed, let ρ ∈ V and h ∈ G. Then

θ (ρ)h = 1

n

∑
g∈G

π (ρg)g−1h.

The function g �→ k = h−1g is a bijection from G onto G and thus

θ (ρ)h = 1

n

∑
g∈G

π (ρhk)k−1 = θ (ρh).

This completes the proof. �

Theorem 14.7.5 Let X ⊂ A+ be a very thin bifix code. The syntactic representation
of X∗ is completely reducible.

In the case of group codes, this theorem is a direct consequence of Theorem 14.7.4.
For the general case, we need the following proposition in order to be able to apply
Theorem 14.7.4.

Proposition 14.7.6 Let X ⊂ A+ be a very thin prefix code and let ψ = ψX∗ be the
syntactic representation of X∗. The monoid M = ψ(A∗) contains an idempotent e

such that

(i) e ∈ ψ(X∗).
(ii) The set eMe is the union of the finite group G(e) and of the element 0, provided

0 ∈ M .

Proof. Let S be the syntactic monoid of X∗ and let ϕ : A∗ → S be the canonical
morphism. Consider also the minimal automaton A(X∗) of X∗. Since X is prefix,
the automaton A(X∗) has a single final state which is the initial state (Proposition
3.2.5). Let µ = ϕA(X∗) be the morphism associated with A(X∗). We claim that for all
u, v ∈ A∗,

µ(u) = µ(v) ⇔ ψ(u) = ψ(v). (14.30)

Indeed, in view of Proposition 1.4.5, we have

µ(u) = µ(v) ⇔ ϕ(u) = ϕ(v),

and by Proposition 14.7.1,

ϕ(u) = ϕ(v) ⇔ ψ(u) = ψ(v).

Formula (14.30) shows that there exists an isomorphism β : µ(A∗) → ψ(A∗) = M

defined by β ◦ µ = ψ . In particular, ψ(X∗) = β(µ(X∗)). By Theorem 9.4.7, the
monoid M has a unique 0-minimal or minimal ideal, say J , according to whether
M does or does not have a zero. There exists an idempotent e in J which is also in
ψ(X∗). The H-class of this idempotent is isomorphic to the group of X. �

14.7 Complete reducibility 525

Proof of Theorem 14.7.5. For convenience, set V = VX∗ and denote by ψ the syn-
tactic representation ψX∗ . Let M = ψ(A∗). By Proposition 14.7.6, there exists an
idempotent e ∈ ψ(X∗) such that eMe is the union of 0 (if 0 ∈ M) and of the group
G(e). The element 0 of the monoid M corresponds to the zero of ψ(A∗). Let L = Me

and define S = {ρe | ρ ∈ V }. Since e2 = e, we have τe = τ for all τ ∈ S. Next,
for all � ∈ L, we have �e = � since � = me for some m ∈ M and consequently
�e = me2 = me = �. Thus for all � ∈ L,

V � ⊂ S. (14.31)

Let W be a subspace of V which is invariant under M . We shall see that there exists a
supplementary space of W which is invariant under M . For this, set T = W ∩ S and
G = G(e).

The group G acts on S. The subspace T of S is invariant under G. Indeed, let
τ ∈ T and let g ∈ G. Then τg ∈ W since W is invariant under M and τg ∈ S by
(14.31) since g = ge. By Theorem 14.7.4, there exists a subspace T ′ of S which is
supplementary of T in S and which is invariant under G. Set

W ′ = {ρ ∈ V | ∀� ∈ L, ρ� ∈ T ′}.

We shall verify that W ′ is a supplementary space of W invariant under M . First
observe that W ′ clearly is a subspace of V . Next it is invariant under M since for
ρ ∈ W ′ and m ∈ M , we have, for all � ∈ L, (ρm)� = ρ(m�) ∈ T ′ and consequently
ρm ∈ W ′.

Next we show that

T ′ ⊂ W ′. (14.32)

Indeed, let τ ′ ∈ T ′. Then τ ′ ∈ S and thus τ ′e = τ ′. Hence τ ′� = τ ′e� for all � ∈ L.
Since e� ∈ eMe and since T ′ is invariant under G, it follows that τ ′� ∈ T ′. This
shows that τ ′ ∈ W ′.

Now we verify that V = W + W ′. For this, set σ = X∗ and first observe that

σe = σ. (14.33)

(Note that σ ∈ V and e acts on V .) Indeed, let x ∈ X∗ be such that ψ(x) = e. Since
X∗ is right unitary, we have for all u ∈ A∗ the equivalence xu ∈ X∗ ⇔ u ∈ X∗. This
shows that (σe, u) = (σ · x, u) = (σ, xu) = (σ, u) and proves (14.33).

In view of (14.33), we have σ ∈ S. Since S = T + T ′, there exist τ ∈ T and τ ′ ∈
T ′ such that σ = τ + τ ′. Then for all m ∈ M , τm = τm + τ ′m. For each m ∈ M ,
τm ∈ T m ⊂ Wm ⊂ W , whence τm ∈ W . Using (14.32), also τ ′m ∈ T ′m ⊂ W ′m.
Since W ′ is invariant under M , we obtain τ ′m ∈ W ′. Thus σm ∈ W + W ′. Since V

is generated by the vectors σm for m ∈ M , this proves that V = W + W ′.
Finally, we claim that W ∩ W ′ = {0}. Indeed, let ρ ∈ W ∩ W ′. Then for all � ∈ L,

ρ� = 0. (14.34)

526 14 Polynomials of finite codes

Indeed, let � ∈ L. Then ρ� ∈ W , since W is invariant under M and ρ� ∈ S by
Equation (14.31). This implies ρ� ∈ W ∩ S = T . Further ρ� ∈ T ′ by the definition
of W ′ and by the fact that ρ ∈ W ′. Thus ρ� ∈ T ∩ T ′ = {0}.

Since V is generated by the series σ · u (u ∈ A∗), there exist numbers αu ∈ Q
(u ∈ A∗), with only a finite number among them nonzero, such that

ρ =
∑
u∈A∗

αu(σ · u).

Again, let x ∈ X∗ be such that ψ(x) = e. Since X∗ is left unitary, we have, as above,
(σ,w) = (σ,wx) for all w ∈ A∗. Consequently, for all v ∈ A∗,

(ρ, v) =
∑
u∈A∗

αu(σ · u, v) =
∑
u∈A∗

αu(σ, uv) =
∑
u∈A∗

αu(σ, uvx)

=
∑
u∈A∗

αu(σ · u, vx) = (ρ, vx) = (ρ · vx, 1).

Setting m = ψ(v), we have (ρ, v) = (ρme, 1), and since me ∈ L, we have ρme = 0
by (14.34). Consequently (ρ, v) = 0 for all v ∈ A∗. Thus ρ = 0. This shows that
W ∩ W ′ = {0} and completes the proof. �

Example 14.7.3 (continued) The subspace W of V = Vσ generated by the vector
ρ = σ + σ · a + σ · a2 is invariant under ψσ . Indeed we have

ρ · a = ρ, ρ · b = ρ.

We shall exhibit a supplementary space of W invariant under ψσ . It is the subspace
generated by

σ − σ · a, σ − σ · a2, σ − σ · b.

Indeed, in the basis

ρ, σ − σ · a, σ − σ · a2, σ − σ · b,

the linear mappings ψσ (a) and ψσ (b) have the form

α =

1 0 0 0
0 −1 1 0
0 −1 1 0
0 −1 1 0

 , β =

1 0 0 0
0 0 0 1
0 1 1 −1
0 1 1 −2

 .

We can observe that there are no other nontrivial invariant subspaces.
We now give a converse of Theorem 14.7.5 for the case of complete codes. The

result does not hold in general if the code is not complete (see Example 14.7.5)

Theorem 14.7.7 Let X ⊂ A+ be a thin complete code. If the syntactic representation
of X∗ is completely reducible, then X is bifix.

14.7 Complete reducibility 527

Proof. Let A = (Q, 1, 1) be a trim unambiguous automaton recognizing X∗. Let ϕ

be the associated representation and let M = ϕ(A∗).
Set σ = X∗ and also V = Vσ , ψ = ψσ . Let µ be the canonical morphism from A∗

onto the syntactic monoid of X∗. By Proposition 1.4.4, we have for u, v ∈ A∗, ϕ(u) =
ϕ(v) ⇔ µ(u) = µ(v). Thus we can define a linear representation θ : M → End(V)
by setting for m ∈ M , θ (m) = µ(u) where u ∈ A∗ is any word such that ϕ(u) = m.
If ψ is completely irreducible, then this holds also for θ .

For notational ease, we shall write, for ρ ∈ V and m ∈ M , ρ · m instead of ρ · u,
where u ∈ A∗ is such that ϕ(u) = m. With this notation, we have for m = ϕ(u),

ρ · u = ρψ(u) = ρθ (m) = ρ · m.

Observe further that with m = ϕ(u),

(σ · m, 1) = (σ · u, 1) = (σ, u).

Hence

(σ · m, 1) =
{

1 if u ∈ X∗,

0 otherwise.
(14.35)

Finally, we have for ρ ∈ V , m, n ∈ M , (ρ · m) · n = ρ · mn. For ρ ∈ V and for a
finite subset K of M , we define

ρ · K =
∑
k∈K

ρ · k.

In particular, (14.35) gives

(σ · K, 1) = Card(K ∩ ϕ(X∗)). (14.36)

The code X being thin and complete, the monoid M has a minimal ideal J that
intersects ϕ(X∗). Further, J is a D-class. Its R-classes (resp. L-classes) are the
minimal right ideals (resp. minimal left ideals) of M (see Chapter 9, Section 9.4).

Let R be an R-class of J and let L be an L-class of J . Set H = R ∩ L. For
each m ∈ M , the function h �→ hm induces a bijection from H onto the H-class
Hm = Lm ∩ R. Similarly, the function h �→ mh induces a bijection from H onto
the H-class mH = L ∩ mR.

To show that X is suffix, consider the subspace W of V spanned by the series

σ · H − σ · K (14.37)

for all pairs H,K of H-classes of J contained is the same R-class. We shall first
prove that W = {0}.

The space W is invariant under M . Indeed, let H and K be two H-classes con-
tained in some R-class R of J . Then for m ∈ M , (σ · H) · m = σ · (Hm) since, by
Proposition 1.12.2, the right multiplication by m is a bijection from H onto Hm.

528 14 Polynomials of finite codes

Thus (σ · H − σ · K) · m = σ · (Hm) − σ · (Km) and the right-hand side is in W

since Hm,Km ⊂ R. Next for all ρ ∈ W and m ∈ J ,

ρ · m = 0. (14.38)

Indeed, let H and K be two H-classes contained in an R-class R of J . Then for
m ∈ J , Hm,Km ⊂ R ∩ Rm. Since R ∩ Mm is an H-class, we have Hm = Km =
R ∩ Mm. This implies

(σ · H − σ · K) · m = 0.

Since p ∈ W is a linear combination of series of the form given in Equation (14.37).
This proves Equation (14.38).

Since the representation of M over V is completely reducible, there exists a
subspace W ′ of V which is complementary of W and invariant under M . Set σ =
ρ + ρ ′ with ρ ∈ W , ρ ′ ∈ W ′. Let H,K be twoH-classes of J contained in anR-class
R. We shall prove that

σ · H = σ · K. (14.39)

We have

σ · H − σ · K = (ρ · H − ρ · K) + (ρ ′ · H − ρ ′ · K).

Since ρ ∈ W and H,K ⊂ J , it follows from (14.38) that

ρ · H = ρ · K = 0. (14.40)

Next, there exist numbers αm ∈ Q (m ∈ M) which almost all vanish such that ρ ′ =∑
∈M αm(σ · m). Since the left multiplication is a bijection on H-classes, we have

(σ · m) · H − (σ · m) · K = σ · (mH) − σ · (mK).

Thus, since mH,mK ⊂ mR, the right-hand side is in W and consequently also
ρ ′ · H − ρ ′ · K ∈ W . Since W ′ is invariant under M , this element is also in W ′.
Consequently it vanishes and

ρ ′ · H = ρ ′ · K. (14.41)

Consequently (14.39) follows from (14.40) and (14.41).
In view of (14.36), Formula (14.39) shows that if ϕ(X∗) intersects some H-class

H in J , then it intersects all H-classes which are in the R-class containing H . In
view of Proposition 9.4.9, this is equivalent to X being suffix.

We conclude by showing that X is prefix. Let T be the subspace of V composed of
the elements ρ ∈ V such that (ρ · H, 1) = (ρ · K, 1) for all pairs H,K of H-classes
of J contained in a same L-class.

14.7 Complete reducibility 529

The subspace T is invariant under M . Indeed if ρ ∈ T and H,K ⊂ L, then for all
m ∈ M ,

(ρ · m) · H = ρ · mH, (ρ · m) · K = ρ · mK. (14.42)

Since mH,mK are in the L-class L, we have by definition ((ρ · m) · K, 1) = ((ρ ·
m) · K, 1). It follows that ρ · m ∈ T .

Next for all m ∈ J , and ρ ∈ V ,

ρ · m ∈ T . (14.43)

Indeed, let m ∈ J and let H,K be two H-classes contained in the L-class L ⊂ J .
Then mH = mK . By (14.42), ((ρ · m) · H, 1) = ((ρ · m) · K, 1). Thus ρ · m ∈ T .

Let T ′ be a supplementary space of T which is invariant under M . Again, set

σ = ρ + ρ ′

this time with ρ ∈ T , ρ ′ ∈ T ′. Let H,K be two H-classes in J both contained in
some L-class L. Then

(σ · H, 1) − (σ · K, 1) = ((ρ · H, 1) − (ρ · K, 1)) + (ρ ′ · H, 1) − (ρ ′ · K, 1).

By definition of T , we have (ρ · H, 1) − (ρ · K, 1) = 0. In view of (14.43), we
have ρ ′ · H, ρ ′ · K ∈ T whence ρ ′ · H − ρ ′ · K ∈ T ∩ T ′ = {0}. Thus (σ · H, 1) =
(σ · K, 1). Interpreting this equality using (14.36), it is shown that if ϕ(X∗) meets
some H-class of J , it intersects all H-classes contained in the same L-class. By
Proposition 9.4.9, this shows that X is prefix. �

Example 14.7.8 Let A = {a, b} and let X = {a, ba}. The code X is prefix but not
suffix. It is not complete.

Let σ = X∗. The vectors σ and σ · b form a basis of the vector space Vσ since

σ · a = σ, σ · ba = σ, σ · bb = 0.

In this basis, the matrices of ψσ (a) and ψσ (b) are

ψσ (a) =
[

1 0
1 0

]
, ψσ (b) =

[
0 1
0 0

]
.

The representation ψσ is irreducible. Indeed,

ψσ (ba) =
[

1 0
0 0

]
, ψσ (a) − ψσ (ba) =

[
0 0
1 0

]
,

ψσ (b) =
[

0 1
0 0

]
, ψσ (ab) − ψσ (b) =

[
0 0
0 1

]
.

This shows that the matrices ψσ (u), u ∈ A∗ generate the whole algebra Q2×2. Thus
no nontrivial subspace of V is invariant under A∗.

530 14 Polynomials of finite codes

This example shows that Theorem 14.7.7 does not hold in general for codes which
are not complete.

14.8 Exercises

Section 14.1

14.1.1 A code X ⊂ A+ is called separating if there is a word x ∈ X∗ such that each
w ∈ A∗ admits a factorization w = uv with xu, vx ∈ X∗

(a) Show that a separating code is complete and synchronized.
(b) Show that a separating code is positively factorizing and that its positive

factorization is unique.

14.1.2 Let X ⊂ A+ be a synchronized code and let A = (Q, 1, 1) be a trim unam-
biguous automaton recognizing X∗. For x ∈ X∗ let

U (x) = {p ∈ Q | 1
x−→ p}, V (x) = {q ∈ Q | q

x−→ 1}.
Show that X is separating if and only if there is a word x such that xA∗x ⊂ X∗ and
any path from a state in U (x) to a state in V (x) passes through state 1.

14.1.3 Let X ⊂ A+ be a code. A pair (L,R) of subsets of A∗ is called a separating
box for X if for any word w ∈ A∗ there is a unique pair (�, r) ∈ L × R such that w

admits a factorization w = uv with �u, vr ∈ X∗.
Show that a code which has a separating box is positively factorizing.

14.1.4 Let X ⊂ A+ be a synchronized code and let A = (Q, 1, 1) be a trim unam-
biguous automaton recognizing X∗. For sets S, T ⊂ A∗, let � =∑s∈S ϕA(s)1∗ and
c =∑t∈T ϕA(t)∗1. Show that (S, T) is a separating box if and only if

(i) for each w ∈ A∗, one has �ϕA(w)c = 1, and
(ii) any path from a state of � to a state of c passes through state 1.

14.1.5 Let b ∈ A be a letter and let X ⊂ A+ be a finite maximal code such that for all
x ∈ X, |x|b ≤ 1. Let A′ = A \ b. Let X′ = X ∩ A′∗. Show that there is a factorization
(P,Q) of X′ considered as a code over A′ such that

X = X′ ∪ PbQ.

14.1.6 Let A = {a, b}. Use Exercise 14.1.5 to show that a finite code X ⊂ a∗ ∪ a∗ba∗

is maximal if and only if X = an ∪ PbQ with n ≥ 1 and P,Q ⊂ a∗ satisfying
PQ = 1 + a + · · · + an−1.

14.1.7 Let X, Y ⊂ A+ be two distinct finite maximal prefix codes such that X ∩ Y �=
∅. Let P = A∗ \ XA∗, Q = A∗ \ YA∗ and let

R ⊂ (X ∩ Y)∗

be a finite set satisfying uv ∈ R, u ∈ (X ∩ Y)∗ =⇒ v ∈ R. (This means that R is
suffix-closed considered as a set over the alphabet X ∩ Y .)

14.8 Exercises 531

(a) Show that there is a unique finite code Z ⊂ A+ such that

Z − 1 = (X ∩ Y − 1)R.

(b) Show that there exists a unique finite maximal code T ⊂ A+ such that

T − 1 = (P + wQ)(A − 1)R,

where w is a word of maximal length in Z.
(c) Show that the code T is indecomposable under the following three assumptions:

(i) Z is separating.
(ii) Card(P ∪ wQ) and Card(R) are prime numbers.

(iii) R is not suffix-closed (over the alphabet A).

(Hint: First prove that T is uniquely factorizing. For this, suppose that T − 1 =
F (A − 1)G. Let n = |w| and let m be the maximal length of words in G. Show that,
for all f ∈ F , |f | + m+ ≥ n implies f ∈ wA∗.)

(d) Compare with Example 14.1.3, by taking P = {1, a}, Q = {1, a, b}, R =
{1, aa}, w = abaa.

14.1.8 Let A = {a, b} and let

X = (A2 \ b2) ∪ b2A, Y = A2a ∪ b.

(a) Verify that X is a maximal prefix code and that Y is a maximal suffix code.
(b) Show that the code Z defined by Z∗ = X∗ ∩ Y ∗ satisfies

Z − 1 = (1 + A + b2)((A − 1)a(A − 1) + A − 1)(1 + a + Aa).

(Hint: Show that Z − 1 = (X − 1)P = Q(Y − 1) for some P ⊂ X∗, Q ⊂ Y ∗.)
(c) Show that Z is synchronized but not separating.
(d) Show that Z has a separating box. (Hint: Show that ({b3}, {1, a5}) is a separating

box.)

14.1.9 Let X ⊂ A+ be a set. A word x ∈ X is said to be a pure square for X if

(i) x = w2 for some w ∈ A+,
(ii) X ∩ wA∗ ∩ A∗w = {x}.

(a) Let X ⊂ A+ be a finite maximal prefix code and let x = w2 be a pure square
for X. Set G = Xw−1, D = w−1X. Show that the polynomial

σ = (1 + w)(X − 1 + (G − 1)w(D − 1)) + 1

is the characteristic polynomial of a finite maximal prefix code denoted by δw(X).
(Hint: Set G1 = G \ w and D1 = D \ w. Show that σ = (1 + w)R + w4 where

R = (X − G1w − wD) + G1wD + w2D1

is a prefix code.

532 14 Polynomials of finite codes

Show that the polynomial

(X − 1 + (G − 1)w(D − 1))(1 + w) + 1

is the characteristic polynomial of a finite maximal code denoted by γw(X).)
(b) Let X ⊂ A+ be a finite maximal prefix code. Show that if x = w2 is a pure

square for X, then x2 is a pure square for δw(X) and γw(X).
(c) Let X ⊂ A+ be a finite maximal prefix code. Let x = w2 be a pure square for

X. Show that the codes Y = γw(X) and Z = δw(X) have the same degree. (Hint:
Show that there is a bijection between Y -interpretations and Z-interpretations of a
word.)

(d) Let X be a finite maximal bifix code. Let x = w2 be a pure square for X and
Y = δw(X). Show that d(X) = d(Y). (Hint: Show that Y − 1 = (1 + w)(A − 1)L,
where L is a disjoint union of d(X) maximal prefix codes.)

(e) Let X be a finite maximal bifix code. Let x = w2 be a pure square for X and
let Y = δw(X). By (b) the word x2 is a pure square for Y . Let Z = γx(Y). Show that
d(Z) = d(X). (Hint: Set T = δx(Y). Show that T − 1 = (1 + w)(1 + w2)(A − 1)M ,
where M is a disjoint union of d(X) prefix codes.)

(f) Show that if d(X) is a prime number and d(X) > 2, the code Z of (e) does not
admit any decomposition over a suffix or a prefix code.

(g) Use the above construction to show that for each prime number d > 3, there
exist finite maximal codes of degree d which are indecomposable and are neither
prefix nor suffix.

Section 14.3

14.3.1 Show that if Y is a weak left divisor of X, then one may find polynomials
P,Q, satisfying the hypothesis of Theorem 14.3.1.

14.3.2 Show that if the x1, . . . , xn are elements of a field and if the fraction

x1 + 1

x2 + 1

. . . + 1

xn

is defined, then it is equal to

p(x1, . . . , xn)

p(x2, . . . , xn)
.

(Hint: Use an induction on n.)

14.3.3 Show that if k ≤ n, then

p(a1, . . . , an) p(an−1, . . . , ak) − p(a1, . . . , an−1) p(an, . . . , ak)

= (−1)n+k p(a1, . . . , ak−2)

(Hint: Use descending induction on k.)

14.8 Exercises 533

14.3.4 Show that p(1, . . . , 1) (n times) is the n + 1-th Fibonacci number.

Section 14.4

14.4.1 Show that S(u) (resp. P (u), F (u, v)) defined in the proof of Lemma 14.4.1
is a sum of proper suffixes (resp. prefixes, factors) of words of C.

14.4.2 If S ∈ Z〈〈A〉〉 has constant term 0 and a ∈ A, show that a−1(S∗) = (a−1S)S∗.

Section 14.5

14.5.1 Show that if � is the number of leaves of a finite complete a-ary tree, and
i the number of its internal nodes then � − 1 = i(a − 1). Deduce from the literal
representation of a complete prefix code, the corresponding equality relating its
cardinality to the number of its prefixes.

Section 14.6

14.6.1 Let X be the circular code X = {a, ab, c, acb}. Show that there is no bijection
α : X → Y of X onto a prefix code Y such that α(x) is a conjugate of x for all x ∈ X.

14.6.2 Let u(z) =∑n≥1 unz
n with un ≥ 0. Let k ≥ 1 be an integer. Show that (1 −

u(z))/(1 − kz) has nonnegative coefficients if and only if u(1/k) ≤ 1.

Section 14.7

14.7.1 Let A = (Q, i, T) be a finite automaton. The aim of this exercise is to con-
struct the syntactic representation of the series σ = |A|.

Let ϕ be the representation associated with A and let M = ϕ(A∗). We may assume
Q = {1, 2, . . . , n} and i = 1.

Let E0 be the subspace of Qn generated by the vectors m1∗, for m ∈ M . Let E1

be the subspace of E0 composed of all vectors � in E0 such that for all m ∈ M ,∑
t∈T (�m)t = 0.
Show that the linear function α : E0 → Vσ defined by α : ϕ(u)1∗ �→ σ · u has

kernel E1. Deduce from this fact a method for computing a basis of Vσ and the
matrices of ψσ (a) in this basis for a ∈ A.

14.7.2 Let S ⊂ A+ and σ = S. Show that Vσ has finite dimension if and only if S is
recognizable (use Exercise 14.7.1).

14.7.3 Let K be a commutative field and let σ ∈ K〈〈A〉〉. The syntactic representation
of σ over K is defined as in the case K = Q. Recall that the characteristic of a field
is the greatest common divisor of all integers n such that n · 1 = 0 in K .

Let X be a very thin bifix code. Let K be a field of characteristic 0 or which is
prime to the order of G(X). Show that the syntactic representation of X∗ over K is
completely reducible.

14.7.4 Let X be a very thin bifix code. Show that if X is synchronizing, then ψX∗ (A∗)
is irreducible.

534 14 Polynomials of finite codes

14.9 Notes

The results in Section 14.2 and the proof in Section14.4 are from Reutenauer
(1985). Theorem 14.2.1 extends a commutative factorization result by Schützenberger
(1965b), see also Hansel et al. (1984). Theorem 14.3.1 and Corollary 14.3.2 are a
particular case of Paul Cohn’s weak algorithm, see Cohn (1985). For their proofs, we
have followed a lexicographic argument from Melançon (1993). Theorem 14.3.3 and
Theorem 14.3.7 are from Cohn (1985). Theorem 14.3.4, Lemmas 14.3.8 and 14.3.9
are from Reutenauer (1985). Corollary 14.5.1 is due to Schützenberger (1961b).
Corollary 14.5.2 is due to Hansel and Perrin (1983). Corollary 14.5.3 is from
Schützenberger (1965b).

Note that the relations (ii) and (iii) in Lemma 14.4.3 are each a weak form of the
factorization conjecture, since L1 is a finite sum of words (for the conjecture, one
would need to have L1 = 0). This form was also found by Zhang and Gu (1992).
For partial results on the factorization conjecture, see Restivo (1977), Boë (1981),
De Felice and Reutenauer (1986), De Felice (1992), De Felice (1993). For results
involving constructions of factorizing codes and multiple factorizations, see Perrin
(1977a), Vincent (1985), Bruyère and De Felice (1992).

New results on the polynomial of a finite code, evaluated in an algebric structure
called the stochastic free field, appear in Lavallée et al. (2009). Theorem 14.6.10
is from Perrin and Schützenberger (1992). It solves the analogue, for commutative
equivalence, of the road coloring problem (see Section 10.4).

The problem of characterizing commutatively prefix codes has an equivalent for-
mulation in terms of optimality of prefix codes with respect to some cost functions,
namely, the average length of the code for a given weight distribution on the letters.
In this context, it has been treated in several papers, and in particular in Carter and
Gill (1974), Karp (1961). The codes of Proposition 14.6.3 have been studied under
the name of bayonet codes (Hansel (1982); Pin and Simon (1982); De Felice (1983)).
Example 14.6.7 is due to Shor (1983). It is a counterexample to a conjecture of
Perrin and Schützenberger (1981). A particular case of commutatively prefix codes
is studied in Mauceri and Restivo (1981).

Results of Section 14.7 are due to Reutenauer (1981). The syntactic representation
appears for the first time in Schützenberger (1961a). It has been developed more
systematically in Fliess (1974) and in Reutenauer (1980).

Theorem 14.7.4 is Maschke’s theorem. The property for an algebra of matrices to
be completely reducible is equivalent to that of being semisimple (see, e.g., Herstein
(1969)). Thus Theorem 14.7.5 expresses the fact that the syntactic algebra ψσ (A∗)
for σ = X∗, X a thin bifix code, is semisimple. This theorem is a generalization of
Maschke’s theorem.

Solutions of exercises

Chapter 2

Section 2.1

2.1.1 Any word w = ak0bak1b · · · bakr with k1, . . . kr ≥ 0 has at most one fac-
torization w = at0ny0a

t1ny1 · · · yr−1a
trn where yu = aiubaju with k0 ≡ i0 mod n,

kr ≡ jr−1 mod n and for 1 ≤ u ≤ r − 1, ku ≡ ju−1 + iu mod n.

Section 2.2

2.2.1 Suppose that |x| ≤ |y|. If X is not a code, then x is a prefix of y. Let y = xy ′.
Then X′ = {x, y ′} is not a code and we have, by induction hypothesis, x, y ′ ∈ z∗.
Thus x, y ∈ z∗.

2.2.2 The map β is clearly surjective. To see that it is injective, consider a polynomial
P =∑n

i=1 αiwi for some wi ∈ B∗, such that β(P) = 0, and set β(wi) = xi . For each
xj , one gets 0 = (β(P), xj) =∑αi(xi, xj). Since X is a code, (xi, xj) = 1 if i = j ,
and 0 otherwise. Thus αj = 0 for all j .

2.2.3 A stable submonoid satisfies this condition. Conversely, let u, v,w ∈ M be
such that u, v, uw,wv ∈ N . Then n = vu, m = w satisfy nm, n,mn ∈ N and thus
w ∈ N . Thus N is stable.

2.2.4 A stable submonoid of a commutative monoid is right unitary: If u, uv ∈ N ,
then also vu ∈ N and thus v ∈ N .

2.2.5 We proceed as in the proof of Proposition 2.2.16. Suppose that y ∈ Y is not
in (Y ∗)−1X. Then Z = y∗(Y \ y) is such that X ⊂ Z∗ ⊂ Y ∗, Z∗ �= Y ∗ and Z∗ is
right unitary, a contradiction. This proves (a). Statement (b) follows directly. For
X = {a, ab}, we have Y = {a, b} and thus Card(X) = Card(Y) although X is not a
prefix code.

2.2.6 We show by induction on n ≥ 0 that if Y is a code such that X ⊂ Y ∗, then Sn ⊂
Y ∗. It is true for n = 0. Assuming the property true for n, let w ∈ S−1

n Sn ∩ SnS
−1
n .

536 Solutions of exercises

Let u, v ∈ Sn be such that uw,wv ∈ Sn. Then uw,wv ∈ Y ∗ by induction hypothesis
and thus w ∈ Y ∗ since Y ∗ is stable. Hence S−1

n Sn ∩ SnS
−1
n ⊂ Y ∗ and consequently

Sn+1 ⊂ Y ∗. This shows that S(X) is the free hull of X.
To prove the second statement, we introduce an intermediary statement. For any

Z ⊂ A∗, define Ui and Vi by U0 = V0 = {1} and for i ≥ 0 by Ui+1 = U−1
i Z ∪ Z−1Ui ,

Vi+1 = ZV −1
i ∪ ViZ

−1. Let U =⋃i≥0 Ui and V =⋃i≥0 Vi . Setting Q = Z∗, we
prove that

(Q−1Q ∩ QQ−1)∗ = (U ∩ V)∗. (15.1)

To prove (15.1), consider first w ∈ U ∩ V . It is easy to see that U ⊂ Q−1Q and
V ⊂ QQ−1. Thus w ∈ Q−1Q ∩ QQ−1. This proves one inclusion. Next, consider
w ∈ Q−1Q ∩ QQ−1. One may verify that Q−1Q ⊂ UQ, and QQ−1 ⊂ QV . We
have w = uq and wq ′ ∈ Q for some u ∈ U and q, q ′ ∈ Q. Since uqq ′ ∈ Q, we have
u ∈ QQ−1. Since u ∈ QQ−1 and QQ−1 ⊂ QV , we have u = q ′′v for some q ′′ ∈ Q

and v ∈ V . Since Q−1U ⊂ U , we have v ∈ U and thus w = q ′′vq ∈ Q(U ∩ V)Q.
Since Q ⊂ U ∩ V , this completes the proof of (15.1).

If X is recognizable, let ϕ : A∗ → M be a morphism on a finite monoid M recog-
nizing X. Then each submonoid Sn is generated by a set Zn recognized by ϕ. Indeed,
it is true for n = 0 since S0 = X∗. Arguing by induction, let us suppose that Sn = Z∗

n

where Zn is recognized by ϕ. Then, by (15.1), we have Sn+1 = (U ∩ V)∗ where U,V

are recognized by ϕ. Then the free hull of X is generated by the union of all Zn,
which is also recognized by ϕ. Therefore it is recognizable.

2.2.7 This is a direct consequence of the closure of the family of recognizable sets
by Boolean operations, product and star.

2.2.8 The conditions are obviously necessary. Conversely, let A be the set of ele-
ments which cannot be written bc with b, c �= 1. Condition (i) shows that this set
generates M . Indeed, if m = bc, with b, c �= 1, then λ(b), λ(c) < λ(m), so any m has
a decomposition as a finite product of elements in A. Condition (ii) implies that the
decomposition is unique. Thus M is isomorphic with A∗.

Section 2.3

2.3.1 We have (u, v) ∈ ρ∗ if and only if there exist x1, . . . , xn, y1, . . . , ym ∈ X such
that ux1 · · · xn = y1 · · · ymv with u prefix of y1, v suffix of xn, x1 �= y1, xn �= ym.

Section 2.4

2.4.1 The fact that X is a code is checked like in Exercise 2.1.1. Let π be a Bernoulli
distribution and set p = π (a), q = π (b). Set U = {i + j | i ∈, j ∈ j, i + j < n}. We
have in characteristic series aU + aV = (an − 1)/(a − 1) and aIaJ = aU + anaV .

Solutions for Section 2.5 537

Thus

π (X) − 1 = pIqpJ

1 − qpV
+ pn − 1

= qpU + qpnpV

1 − qpV
+ pn − 1

= qpU + qpnpV + pn − 1 − pnpV q + pV q

1 − qpV

= q(pn − 1)/(p − 1) + pn − 1

1 − qpV
= 0,

which shows that X is maximal. Another approach consists in showing directly that
X is complete.

2.4.2 We have fP (t) = t2/(1 − t − fP (t)). Thus fP (t) = (1 − t −√
1 − 2t − 3t2)/

2 whence the result.

2.4.3 A word x ∈ Da has a factorization x = au1 · · · umā with ui ∈ D. If ui is in
Da , then au1 · · · ui−1ā is in D, a contradiction with the fact that D is a prefix code.
Thus Da ⊂ a(D \ Da)∗ā. The converse inclusion is clear. Finally the products are all
unambiguous since D is a code. Since all series fDa

(t) for a ∈ A are equal, we have

fDa
(t) = t2

1 − (2n − 1)fDa
(t)

or equivalently (2n − 1)f 2
Da

− fDa
+ t2 = 0 and thus

fDa
(t) = 1

2(2n − 1)

(
1 −
√

1 − 4(2n − 1)t2
)
.

From fD(t) = 2nfDa
(t), it follows that

fD(t) = n

2n − 1

(
1 −
√

1 − 4(2n − 1)t2
)
.

The probability generating series of D for the uniform Bernouilli distribution on
A is FD(t) = fD(t/(2n)). Since 1 − 4(2n−1)

(2n)2 = (n−1
n

)2
, we obtain π (D) = FD(1) =

n
2n−1 (1 − n−1

n
) = 1

2n−1 .

2.4.4 It is easy to check that the set Y is a bifix code generating U . Since the
generating series of X∗ is f ∗

X(t) =∑n≥0 fn+1t
n, the generating series of U is fU (t) =∑

n≥0 f 2
n+1t

n. On the other hand, fY (t) = t + t2 + 2t2/(1 − t) whence the identity.

Section 2.5

2.5.1 To check that X is complete, we compute the minimal automaton of X∗ shown
on Figure 15.1 and deduce that bA∗b ⊂ X∗. If one withdraws an element of X, it is

538 Solutions of exercises

1 2 4a a
a

3 5 6
b

a a

b

b

b

a, b

Figure 15.1 The minimal automaton of X∗.

not complete anymore. For example, if a3 is withdrawn, the word a4 is not a factor of
{b, ab, ba2, aba2}∗, and similarly for the other words of X. Finally, X is not a code
since (b)(aaa)(b) = (baa)(ab).

2.5.2 The family F is closed under arbitrary union and intersection and ∅ ∈ F . We
may thus consider the topology for which F is the family of open sets. Let P be dense
in the sense that for any m ∈ M , there exist u, v ∈ M such that umv ∈ P . Then any
two-sided ideal has a nonempty intersection with P . Thus P is dense in the sense of
the topology and conversely.

2.5.3 The first equality is clear since y is unbordered. The second one results from
V = U ∪ X∗, and thus Vy = Uy ∪ X∗y. For the last identity, set Z = y(Uy)∗. Then
Y = X ∪ Z, and (X∗y(Uy)∗)∗ = (X∗Z)∗ = 1 ∪ (X∗Z)∗X∗Z = 1 ∪ (X ∪ Z)∗Z =
1 ∪ Y ∗Z. Consequently, A∗ = (Uy)∗(X∗Z)∗V = (Uy)∗V ∪ (Uy)∗Y ∗ZV . The fact
that Y is a code follows from the equality A∗ = R + PY ∗Q with R = (Uy)∗V ,
P = (Uy)∗ and Q = y(Uy)∗V . The fact that Y is complete also follows easily.

2.5.4 Let X be a thin code. If X is complete, then it is maximal and there is
nothing to prove. Otherwise we apply the construction of Proposition 2.5.25 to build
Y = X ∪ y(Uy)∗ starting with an unbordered word y �∈ F (X∗). Then y2 �∈ F (Y) and
thus Y is a thin maximal code containing X.

Section 2.6

2.6.1 Let us first suppose that X is decomposable, that is that X ⊂ Y ∗ where Y

is a code with Y �= A,X. By Proposition 2.6.4, Y is bifix. We first prove that Y ∗

is also recognized by ψ . Let us consider u ∈ Y ∗ and v ∈ A∗ such that ψ(u) =
ψ(v). Let w ∈ A∗ be such that uw ∈ X∗. Since Y is prefix, we also have w ∈ Y ∗.
Since ψ(uw) = ψ(vw), we have uw ∈ X∗. Thus u ∈ Y ∗. This shows that ψ(Y ∗) is a
subgroup of G containing H and H is not maximal.

Conversely, if H is not maximal, then H ⊂ K , where K is a subgroup with
K �= H,G. Let Y be the bifix code such that Y ∗ = ψ−1(K). Since X ⊂ Y ∗ and
Y ⊂ F (X∗), the code X is decomposable over Y .

Solutions for Section 3.2 539

2.6.2 If X is prefix, there is nothing to prove. Otherwise, one of the two words, say
x is prefix of the other. Let y = xy ′. Reasoning by induction, we may assume that
Z = {x, y ′} is composed of prefix and suffix codes, whence the conclusion for X

since X = Y ◦ Z with Y suffix.

2.6.3 Suppose that X ⊂ Z∗ with Z a prefix code. Then a, aba ∈ X imply ba ∈ Z∗.
Since babaab ∈ X, this forces ab ∈ Z∗ and finally b ∈ Z∗. Thus Z = A. Similarly,
one proves that if X ⊂ Z∗ with Z a suffix, then Z = A.

The code Y is formed of 11 words:

Y = {a, aba, babaaa, babaaaba, babaab, babaabba,

(ba)4, bababb, bababbba, bb, bbba}.
An easy computation shows that if X ⊂ Z∗ with Z prefix, then Z = {a, b} and the
same conclusion for Z suffix.

To obtain Y as in Exercise 14.1.7, choose P = {1, b}, Q = {1, a, b}, R = {1, ba}
and w = baba. The code Z defined by Z − 1 = P (A − 1)R is separating because b

is a separating word.

Chapter 3

Section 3.1

3.1.1 If P is infinite, there is at least one letter p1 which is a prefix of an infinite
number of elements of P . Then among this set, there is an infinite number of elements
with the same prefix of length 2, and so on.

3.1.2 Indeed XA∗ ∩ An is the disjoint union of the sets (X ∩ Ai)An−i for 1 ≤
i ≤ n − 1. Thus Card(XA∗ ∩ An) ≤∑n

i=1 αik
n−i ≤ kn. The desired inequality is

obtained dividing both sides by kn, and taking the limit for n → ∞.

Section 3.2

3.2.1 Let ρ(p) = i · p. Then ρ is surjective since A is trim. The identity ρ(p · a) =
ρ(p) · a is easy to verify in both cases pa ∈ X and pa ∈ P . In the first case both
sides are equal to i and in the second case, they are both equal to i · pa.

3.2.2 (i) =⇒ (ii). By Proposition 3.2.6, Stab(i) is a right unitary submonoid. Its
base, say Y , is a prefix code which is nonempty because Stab(i) �= 1. Let Z be the set
of words defined as follows: z ∈ Z if and only if i · z = t and i · z′ �= i for all proper
nonempty prefixes z′ of z. From t · A = ∅, it follows that Z is a prefix code. Further
Y ∩ Z �= ∅, by i �= t . Finally X = Y ∗Z. It remains to verify that V = Y ∪ Z is prefix.
A proper prefix of a word in Z is neither in Z nor in Y , the latter by definition. A
proper prefix w of a word y in Y cannot be in Z, since otherwise i · w = t whence
i · y = ∅. Thus V is prefix and X is a chain.

540 Solutions of exercises

(ii) =⇒ (iii). Assume that X = Y ∗Z with V = Y ∪ Z prefix and Y ∩ Z = ∅.
Consider a word u ∈ Y . The code V being prefix, we have u−1Z = ∅. Thus
u−1X = u−1(Y ∗Z) = u−1Y ∗Z = Y ∗Z = X.

(iii) =⇒ (i). The automatonA(X) being minimal, the states ofA(X) are in bijective
correspondence with the nonempty sets v−1X, where v runs over A∗. The bijection is
given by associating the state i · v to v−1X. Thus, the equality u−1X = X expresses
precisely that i · u = i. Consequently u ∈ Stab(i).

Section 3.3

3.3.1 Let λ(X) = minx∈X |x|. Then λ is clearly a morphism from the monoid of prefix
subsets into the additive monoid N. To be able to apply the result of Exercise 2.2.8,
we have to prove first that λ−1(0) = 1. Indeed, {1} is the only prefix set containing 1.
Next, let X, Y,Z, T ⊂ A∗ be prefix sets such that XY = ZT . Suppose that λ(X) ≤
λ(Z). Let x ∈ X be of minimal length and let U = x−1Z. For each y ∈ Y there are
z ∈ Z, t ∈ T such that xy = zt . Then z = xu and y = ut for some u ∈ U . Thus
Y ⊂ UT . Conversely, let u ∈ U and t ∈ T . Then xut ∈ ZT = XY hence ut ∈ Y .
Thus Y = UT and XU = Z. If X and XY are maximal prefix sets and if Y is prefix,
then Y is also maximal. Thus the submonoid of maximal prefix sets is right unitary.
The submonoid of recognizable prefix sets is also right unitary.

Section 3.4

3.4.1 To prove that L is the set of words w such that ‖w‖ = −1 and ‖u‖ ≥ 0
for any proper prefix u of w, we note that it is easy to prove that the condition is
necessary, by induction on the length of words in L. Conversely, let w satisfy the
condition. If |w| = 1, then w = b. Otherwise, the first letter of w has to be a. Set
w = aw1 · · ·wk where aw1 · · ·wi is, for 1 ≤ i ≤ k, the shortest prefix of w such that
‖aw1 · · ·wi‖ = k − i − 1. Then wi is in L by induction and thus w is in L.

Let w be such that ‖w‖ = −1. Let y be the minimal value of ϕ on the prefixes of
w. Then the conjugate vu of w = uv is in L if and only if u is the shortest prefix of
w such that ‖u‖ = y.

A word of L with n letters a has length n + (k − 1)n + 1 = kn + 1. The number
of them is thus 1

kn+1

(
kn+1

n

)
.

Finally, the map λ from prefix-closed sets on the alphabet Ak = {a1, . . . , ak} to
{a, b}∗ which maps ∅ to b and P = 1 ∪ a1P1 ∪ . . . ∪ akPk to aλ(P1) · · · λ(Pk) is a
bijection from the family of prefix-closed subsets of A∗

k to L such that |λ(P)| =
k Card(P) + 1.

3.4.2 Since XY is a maximal prefix code, X is right complete and Y is prefix. Let π

be a positive Bernoulli distribution. Then π (XY) = 1 since XY is a maximal prefix
code. Since the product XY is unambiguous, we have π (XY) = π (X)π (Y). Thus
π (X)π (Y) = 1 for any positive Bernoulli distribution. Let p = α(X) and q = α(Y).
Then π (pq) = 1. Let a ∈ A be a letter and let ζa(p) be the polynomial in the variables
from A \ a obtained by the substitution a �→ 1 −∑b∈A\A b in the polynomial p. By
Proposition 2.5.29, π (pq) = 1 implies that ζa(pq) = 1. Thus ζa(p) = ζa(q) = 1 and

Solutions for Section 3.6 541

thus π (p) = π (q) = 1. Since X is right complete, the set X′ = X \ XA+ is a maximal
prefix code. Since π (X′) = π (X) = 1, we have X = X′. Thus X is a maximal prefix
code. Since Y is prefix with π (Y) = 1, Y is also a maximal prefix code.

3.4.3 The set Z = RA \ R is a prefix code because R is prefix-closed. To prove
the formula Z = (X ∩ Q) ∪ (X ∩ Y) ∪ (P ∩ Y), we use that X = PA \ P and Y =
QA \ Q. Thus a word in RA \ R is either in X ∩ Y or in X but not in Y and thus in
X ∩ Q or in Y but not in X and thus in P ∩ Y . If X, Y are maximal, P and Q are the
sets of their prefixes. Then R is the set of prefixes of Z which is thus maximal.

3.4.4 The operations obviously preserve the family F of recognizable maximal
prefix codes. To see that it contains all of them, consider an element Z of F . Let A
be the minimal deterministic automaton recognizing Z �= A. We argue by induction
on the number of edges in A. We consider two cases. (i) There exists a nonempty
word w such that i · w = i. In this case, let X be the set of first returns to state i, and
let Y be the set of words which are labels of paths from i to a terminal state that do
not pass through i inbetween. Then Z = X∗Y . Next, X ∪ Y is in F in view of case
(ii) below. (ii) Otherwise, let Z = aX ∪ Y for a ∈ A such that a �∈ Z. Then X and
a ∪ Y are recognized by automata with strictly less edges than Z and the conclusion
follows.

Section 3.5

3.5.1 Let us first assume (i). The code X is semaphore since A∗X ⊂ XA∗. If the
property of the minimal set of semaphores S = X \ A+X stated in condition (ii) does
not hold, there exist two overlapping words s, t ∈ S, that is such that s = uv, t = vw

with nonempty u, v,w. Then sw = ut is in A∗X but not in X+, a contradiction. Con-
versely, if X satisfies (ii), consider a word w ∈ A∗ and x ∈ X. Since two occurrences
of words in S do not overlap, wx is a product of words in X.

3.5.2 The first inequality is clear since x ∈ J n, y ∈ Jm imply xy ∈ J n+m. To see the
second one, we observe that if xy ∈ Jp, there exist u, v ∈ A∗ and n,m ≥ 0 such that
x ∈ J nu, uv ∈ J , y ∈ vJm, and p = n + m + 1. Since x ∈ J nu and J is an ideal, one
has x ∈ J n. Similarly for y. Then n ≤ ‖x‖, m ≤ ‖y‖ and thus p ≤ ‖x‖ + ‖y‖ + 1.

Section 3.6

3.6.1 For any finite maximal prefix code X, there is an integer n such that A∗an ⊂
X∗a∗. Since a ∈ X, we have A∗an ⊂ X∗, showing that an is synchronizing.

3.6.2 Since X is synchronized, there are at least two states p, q ∈ Q such that
p · w = q · w for some word w. If |w| ≥ n2, all the pairs (p · r, q · r) for r running
through the |w| + 1 > n2 prefixes of w cannot be distinct. Thus there is a factorization
of w in w = rst such that p · r = p · rs and q · r = q · rs. Then p · rt = q · rt and
thus we can choose a shorter w. We can therefore choose a word w1 of length ≤ n2

542 Solutions of exercises

0 1 2 · · · k + 1 · · · d

Figure 15.2 The action of m′′a.

such that Card(Q · w1) ≤ n − 1. Next, there is at least one word w2 of length at most
n2 such that there exist two states p, q ∈ Q · w1 with p · w2 = q · w2. Continuing in
this way, we obtain a word w1w2 · · · of length at most n3 which is synchronizing.

3.6.3 (a) for m ∈ Md,e and i ∈ Id+j,e+j , we have i − j ∈ Id,e and ia−jmaj = (i −
j)maj = (i − j)aj = i. Thus a−jmaj ∈ Md+j,e+j .

(b) We have

iba−1 =
{

j > i for 0 ≤ i < n − t,

i for n − t ≤ i < n.

Thus some power w of ba−1 is in Mn−t,n. Then a−twat ∈ M0,t by (a).
(c) Let m ∈ M0,d and let j be the least integer such that jm �≡ j mod d. Let

m′ = aj−dm. We have for each i ∈ I0,d , im′ = (i + j − d)m ≡ i + j mod d. Thus
Qm′ = I0,d and m′ is a permutation on I0,d . This implies that m′ has a power, say
m′′ which is in M0,d . Moreover, since dm′ = km′ for some k �= 0 in I0,d we have
dm′′ = km′′ = k (that is we have shown that we might have chosen j = d). The map
m′′a defines a cycle (k + 1 · · · d) and sends every element of I0,d ultimately into this
cycle (see Figure 15.2). Thus m′′a = has a power in Mk+1,d+1. This implies by (a)
that M0,d−k �= ∅ and contradicts the minimality of d.

(d) Arguing by contradiction, let n = dq + r with q ≥ 1 and 0 < r < d. The
unique element m in M0,d satisfies

ian−rm =
{

i for 0 ≤ i < r,

i − r for r ≤ i < d.

Thus some power of an−rm is in M0,r , a contradiction.
(e) Since ba−1 fixes each i ∈ In−t,n, we have ba−1m ∈ Mn−d,n and thus ba−1m =

m. For each i ∈ Q, we have iba−1m ≡ iba−1 mod d and iba−1m ≡ i mod d. Thus
iba−1 ≡ i mod d.

3.6.4 Let A = (Q, 1, 1) be the minimal automaton of X∗. Let u ≥ 1 be such that
un ≥ m. Then for any i ≥ 0, we have 1 · aibaun ∈ 1 · a∗ since aun is not a factor
of a word in X by condition (i). Let j ≤ n − 1 be such that 1 · aibaun = 1 · aj .
Then |yi | = i + 1 + n − j . By condition (ii), we have j ≥ i + 1 with equality if and
only if n − t ≤ i ≤ n − 1. Identifying the state 1 · ai with the element i ∈ Z/nZ, we
conclude that the maps α : i → i + 1 and β : i → j with 1 · aj = 1 · aibaun satisfy
the hypotheses of Exercise 3.6.3. Thus, by (d), d divides n and by (e), iβ ≡ i + 1

Solutions for Section 3.8 543

mod d for all i ∈ Z/nZ. This implies that |yi | ≡ 0 mod d for 0 ≤ i ≤ n − 1. By
(iii), this forces d = 1.

3.6.5 We have to show that Z′∗ ⊂ U . Let w ∈ A∗ be such that that uw ∈ D. There is
a v ∈ A∗ such that uwv ∈ X∗. Since Z′ is prefix, we have wv ∈ Z′∗. Since Y ∗ is right
dense, there is some s ∈ Z′∗ such that wvs ∈ X∗. This shows that w ∈ D and thus
that u−1D ⊂ D. Let then w ∈ D. There is some v ∈ A∗ such that wv ∈ X∗. Since
uwv ∈ Z′∗ and since Y ∗ is right dense, there is an s ∈ A∗ such that uwvs ∈ X∗. This
shows that uw ∈ D and it follows that D ⊂ u−1D. We have shown that w ∈ U and
thus that Z′∗ ⊂ U .

Section 3.7

3.7.1 We have

H (X) − λ(X) =
∑
x∈X

π (x) logk

k−|x|

π (x)
.

Since logk(t) ≤ (logk e)(t − 1) for all t > 0, we obtain

H (X) − λ(X) ≤ (logk e)
((∑

x∈X

k−|x|
)
− 1
)
= 0

because
∑

x∈X k−|x| = 1. Since logk(t) < (logk e)(t − 1) unless t = 1 the equality
H (X) = λ(X) holds if and only if π (x) = k−|x| for all x ∈ X. Finally, if X has n

elements,

H (X) − logk n =
∑
x∈X

π (x) logk

1

nπ (x)
≤ (logk e)

((∑
x∈X

1

n

)
− 1
)
= 0.

Section 3.8

3.8.1 Let u(z) be the generating series of a thin maximal prefix code on k letters.
Then condition (i) holds since, by Theorem 2.5.16, we have π (X) = 1 for any positive
Bernoulli distribution. Let w be a word which is not a factor of the words of X and let
p = |w|. Let P be the set of proper prefixes of X. Then v(z) is the generating series
of P . Since no word of P can have w as a suffix, we have vn+p ≤ vn(kp − 1) for all
n ≥ 1. This proves (ii).

Conversely, let us build a maximal prefix code X as in the proof of Theorem 2.4.12
using the following strategy: Fix a letter a in A, and for each n ≥ 1, choose the words
of X ∩ An among those which have a suffix in a∗ of maximal length. To prove that
a2p is not a factor of a word of X, it is enough to prove that for each n ≥ 1, one has

vn ≤
2p∑
i=1

un+i .

Indeed, for each proper prefix q of length n there is a unique exponent m(q) such that
qam(q) is in X. This gives vn words in X, each of which has length > n. In view of

544 Solutions of exercises

the inequality, one may chose an exponent m(q) between n + 1 and n + 2p for each
prefix q.

To prove the above inequality, we start from vn+p = vnk
p −∑p

i=1 un+ik
p−i , which

results from the definition of v. Using condition (ii), we obtain

vn ≤
p∑

i=1

un+ik
p−i . (15.2)

Hence, using Equation (15.2) with n replaced by n + p,

vnk
p −

p∑
i=1

un+ik
p−i = vn+p ≤

p∑
i=1

un+p+ik
p−i

and finally

vn ≤
p∑

i=1

un+ik
−i +

p∑
i=1

un+p+ik
−i ≤

2p∑
i=1

un+i .

3.8.2 Except for the case where the sequence um is ultimately equal to one, we may
choose the words of X in such a way that for some integer n ≥ 1 and letters a, b ∈ A,

(i) an does not appear as a proper factor in the words of X,
(ii) the prefix code Y = X ∩ (a∗ ∪ a∗ba∗) has the form

Y = {an, y0, y1, . . . , yn−1}

where each yi = aibaλi−i−1 is a word of length λi satisfying i + 1 ≤ λi ≤ n and
there is an integer t with 0 ≤ t ≤ n − 1 such that λi = n if and only if i ≥ t and
finally the numbers λi are relatively prime.

Then the code X is synchronized by Exercise 3.6.4.
Finally, if the sequence un is ultimately equal to 1, we may choose X of the form

Y ∪ ana∗b where Y is formed of words of length at most n. Then the word anb is
synchronizing.

Section 3.9

3.9.1 Indeed, (3.34) is equivalent with

pm(1 + p) ≤ 1 < pm−1(1 + p)

or equivalently

m ≥ − log(1 + p)

log p
> m − 1.

Solutions for Section 3.9 545

Set Q = 1 − pm. By the choice of m, one has p−1−m ≥ 1/Q > p1−m. We consider,
for k ≥ −1, the bounded alphabet

Bk = {0, . . . , k, . . . , k + m}.

In particular, B−1 = {0, . . . , m − 1}. We consider on Bk the distribution

π (i) =
{

piq for 0 ≤ i ≤ k,

piq/Q for k < i ≤ k + m.

Clearly π (i) > π (k) for i < k and π (k + i) > π (k + m) for 1 < i < m. Observe
that also π (i) > π (k + m) for i < k since π (k + m) = pk+mq/Q ≤ pk+mq/pm+1 =
π (k − 1). Also π (k + i) > π (k) for 1 < i < m since indeed π (k + i) > π (k + m −
1) = pk+m−1q/Q > pkq = π (k). As a consequence, the symbols k and k + m are
those of minimal weight. Huffman’s algorithm replaces them with a new symbol, say
k′ which is the root of a tree with say left child k and right child k + m. The weight
of k′ is

π (k′) = π (k) + π (k + m) = pkq(1 + pm/Q) = pkq/Q.

Thus we may identify Bk \ {k, k + m} ∪ {k′} with Bk−1 by assigning to k the new
value π (k) = pkq/Q. We get for Bk−1 the same properties as for Bk and we may
iterate.

After m iterations, we have replaced Bk by Bk−m, and each of the symbols k − m +
1, . . . , k now is the root of a tree with two children. Assume now that k = (h + 1)m −
1 for some h. Then after hm steps, one gets the alphabet B−1 = {0, . . . , m − 1}, and
each of the symbols i in B−1 is the root of a binary tree of height h composed of a
unique right path of length h, and at each level one left child i + m, i + 2m, . . . , i +
(h − 1)m. This corresponds to the code Ph = {0, 10, . . . , 1h−10, 1h}. The weights
of the symbols in B−1 are decreasing, and moreover π (m − 2) + π (m − 1) > π (0)
because pm−2 + pm−1 > 1. The optimal binary tree corresponding to such a sequence
of weights has the heights of its leaves differing at most by one, as can be checked
by induction on m. This shows that the code Rm is optimal for this probability
distribution.

Thus we have shown that the application of Huffman’s algorithm to the truncated
source produces the code RmPk . When h tends to infinity, the sequence of codes
converges to Rm1∗0. Since each of the codes in the sequence is optimal, the code
Rm1∗0 is an optimal prefix code for the exponential distribution. The Golomb code
Gm = 1∗0Rm has the same length distribution and so is also optimal.

3.9.2 Consider a complete prefix code X1 built by the algorithm. Assume it is
not optimal, and consider a complete prefix tree X2 which is optimal and which is
closest to X2 in the sense that the number of common elements of X1 ∪ X1A

− and of
X2 ∪ X2A

− is maximal. There is a word x1 in X1 which is a proper prefix of a word
in X2. Otherwise every word in X1 which is not in X2 has a prefix which is in X2,

546 Solutions of exercises

but then Card(X2) > Card(X1). Symmetrically, there is a word x2 in X2 which is a
proper prefix of a word in X1.

Let p be a word that has x1 as a prefix and such that pa ∈ X2 for all a ∈ A. Since x2

is a proper prefix of a of a word in X1 and x1 is a word of X1, one has c(x2) ≤ c(x1).
Next, c(x1) ≤ c(p). Thus c(x2) ≤ c(p). Let X3 = X2 \ (pA ∪ x2) ∪ p ∪ x2A. The
difference of costs is

CX3 − CX2 =
∑
a∈A

c(x2A)c(x2) + c(p) −
∑
a∈A

c(pA) = (k − 1)(c(x2) − c(p)) ≤ 0.

Thus X3 is optimal and clearly, X3 is closer to X1 than X2.

Chapter 4

Section 4.1

4.1.1 If M is recognizable and free, let X be the code such that M = X∗. Since
X = (M \ 1) \ (M \ 1)2, X is recognizable. Let A be a deterministic finite automaton
recognizing X. Then the automaton A∗ = (Q, 1, 1) is finite, trim and, by Propo-
sition 1.10.5, it is an unambiguous automaton recognizing X∗. Conversely, let
A = (Q, 1, 1) be an unambiguous trim finite automaton. The set M recognized by A
is recognizable submonoid. By Proposition 4.1.5, M is free.

Section 4.2

4.2.1 The proof is the same as that of Proposition 4.2.3.

4.2.2 Any path j
w→ q in B can be lifted to a path j

w→ p in A such that ρ(p) = q.
Thus such a path is unique.

Chapter 5

Section 5.1

5.1.1 The deciphering delay of a code X is infinite if and only if there is an infinite
word that has two disjoint factorizations. This is equivalent to the existence of an
infinite path in GX. In the case X is finite, this is equivalent to the existence of a cycle
accessible from some vertex in X.

5.1.2 (a) is straightforward.
(b) If the path e is empty (n = 0), then s = t , form (ii) holds and there is no

crossing edge, so c = 0. Assume that for some n the form (i) holds and that c is odd.
Let en+1 = (t, u) be a crossing edge. Setting z = tu, one has z ∈ X and and one gets
sy1 · · · y�z = x1 · · · xku, so form (ii) is obtained and the number of crossing edges is
now even. The same argument is valid when one starts with form (ii). This proves the
hint.

Solutions for Section 5.1 547

The previous argument shows that all occurrences of crossing edges which are
even contribute to y1 · · · y�, and the other crossing edges to x1 · · · xk . So the claim
holds for crossing edges. It suffices to observe that the extending edges have the same
parity as the closest preceding crossing edge.

(c) The graph having no cycle, the computation can be carried out bottom up from
vertices without successors to vertices in X. For each vertex s, we maintain the pairs
(�, r) corresponding to paths of form (i) and (ii), and with maximal values: so there
are four pairs for each vertex.

For a vertex without successor there is only the pair (0, 0), and for other vertices u a
computation of maxima is carried out for all edges (u, s). This gives the corresponding
values in time proportional to the number of outgoing edges. For each x ∈ X, the
deciphering delay is derived from these pairs according to (a).

5.1.3 Let x ∈ X∗, y ∈ Xd(Y), z ∈ Xd(Z) and v ∈ A∗ be such that xyzv ∈ X∗. Since
z ∈ Z∗ and |z|Z ≥ |z|X, we have z ∈ S(Z), where S(Z) is the set of simplifying words
for Z, and so zv ∈ Z∗. Since y, viewed as a word on the alphabet of Y is in S(Y),
and since zv ∈ Z∗, we have yzv ∈ X∗. This proves that yz ∈ S(X).

5.1.4 We prove the property by induction on |x| + |y|. If X is not prefix, we have,
supposing that |y| > |x|, y = xy ′. Then X = Y ◦ Z with Z = {x, y ′}. Since Y and Z

are two-element codes, they have finite deciphering delay by induction hypothesis.
Thus, X also by the previous exercise.

5.1.5 (a) The code X being finite, there is only a finite number of codes T such
that X decomposes over T . The smallest submonoid M generated by a code with
finite deciphering delay such that X∗ ⊂ M is the intersection of the (finitely many)
submonoids T ∗ containing X generated by a code T with finite deciphering delay.

It suffices to show that if Y,Z have finite deciphering delay, then Y ∗ ∩ Z∗ is also
generated by a code with finite deciphering delay. Indeed, let T be the code such that
T ∗ = Y ∗ ∩ Z∗. Then S(Y) ∩ S(Z) ⊂ S(T). If d is greater than the delays of Y and
of Z, then T d ⊂ S(Y) ∩ S(Z), and so T has delay d.

(b) Assume for instance that Y is not a subset of X(Y ∗)−1. There is y ∈ Y which
does not appear as the first factor of a factorization of a word in X as a product of
words in Y . Set Z = (Y \ y)y∗. Then Z has finite deciphering delay, and moreover
X ⊂ Z∗ and Z∗ is strictly contained in Y ∗.

Finally, assume that X does not have finite deciphering delay. Consider words
x �= x ′, y ∈ Xd and u such that xyu ∈ x ′X∗. If d is greater than the deciphering
delay of Y , then the Y -factorizations of x and x ′ start with the same word in Y . Thus
the conclusion follows.

5.1.6 Let Y = Xd . Consider x1, . . . , xd, x
′
1, . . . , x

′
d ∈ X, y ∈ Xd and u ∈ A∗ such

that x1 · · · xdyu ∈ x ′
1 · · · x ′

dY
∗. If X has delay d, we have successively x1 = x ′

1, x2 =
x ′

2, and finally xd = x ′
d . Thus x1 · · · xd = x ′

1 · · · x ′
d , which shows that Y has delay 1.

Conversely, suppose that Y has delay 1. Let x, x ′ ∈ X, y ∈ Xd and u ∈ A∗ be such

548 Solutions of exercises

w v

x1 xn

x1 xm
y1 yp

w v y

Figure 15.3 Factorization of wv = wv′y.

that xyu ∈ x ′X∗. Then xdy is a prefix of a word of xd−1x ′Y ∗ and thus xd = xd−1x ′,
whence x = x ′.

5.1.7 Let us show first the inclusion S(X) ⊂ E(X). Let s ∈ S(X), p ∈ E(X). Note
that pt ∈ X∗ for some word t and that pt still is strongly right completable. Thus,
we may assume that p ∈ E(X) ∩ X∗. Consider any word u ∈ A∗. Since p ∈ E(X),
the word psu can be completed: there is a word v ∈ A+ such that psuv ∈ X∗. But
p is in X∗ and s is simplifying. Thus, suv ∈ X∗, showing that s is strongly right
completable.

Conversely, let s ∈ S(X), p ∈ E(X). To show that p is simplifying, let x ∈ X∗,
v ∈ A∗ such that xpv ∈ X∗. Since the word pvs is right completable, we have
pvsw ∈ X∗ for some w ∈ A∗. But then xpvsw ∈ X∗ also and since s is simplifying,
we have sw ∈ X∗. Thus, finally, the four words x, x(pv), (pv)(sw), and sw are in
X∗. The set X∗ is stable, thus pv ∈ X∗. This shows that p is simplifying.

5.1.8 We first verify the following property (∗): if vuz = v′u′ for v, v′ ∈ Cr (w),
u, u′ ∈ U , and z ∈ A∗, then v = v′, u = u′, z = 1.

Indeed, first note that u ∈ E(X). Thus, there exists t ∈ A∗ such that uzt ∈ X∗.
Then

(wv)(uzt) = (wv′)(u′t). (15.3)

Each one of the first three parenthesized words is in X∗. Now the fourth word,
namely u′t , is also in X∗, because u′ is simplifying. The set X being a code, we have
v = v′y or v′ = vy for some y ∈ X∗. This implies that v = v′ as follows: assume,
for instance, that v = v′y, and set wv = x1x2 · · · xn, wv′ = x ′

1 · · · x ′
m, y = y1 · · · yp,

with x1, . . . , xn, x ′
1, . . . , x

′
m, y1 . . . , yp ∈ X. Then |xn| > |v| and assuming p > 0,

we have on the one hand (see Figure 15.3)

|yp| ≤ |y| ≤ |v| < |xn|,

Solutions for Section 5.3 549

and on the other hand, since x1x2 · · · xn = x ′
1 · · · x ′

my1 · · · yp, we have xn = yp. Thus
p = 0, y = 1, and v = v′. Going back to (15.3), this gives uz = u′. Now U is prefix.
Consequently z = 1 and u = u′. This proves property (∗).

It follows immediately from (∗) that Cr (w)U is prefix, and also, taking z = 1,
that the product Cr (w)U is unambiguous. This proves 1 and 2. To prove 3, consider
a word t ∈ A∗. The word wt is right completable, since w ∈ E(X). Thus, wtt ′ ∈
X∗ for some t ′ ∈ A∗. Thus, t t ′ is in w−1X∗. Consequently t t ′ = vy for some v ∈
Cr (w), y ∈ X∗. Now observe that w ∈ E(X), and consequently also yw ∈ E(X).
Thus, t t ′w = vyw ∈ Cr (w)S(X). This shows that Cr (w)S(X) is right dense. From
Cr (w)S(X) = Cr (w)UA∗ it follows then by Proposition 3.3.3 that the prefix set
Cr (w)U is maximal prefix.

5.1.9 Let X be a maximal finite code with deciphering delay d. According to Propo-
sitions 5.1.5 and 5.2.3, both S(X) and E(X) are nonempty. Thus by Exercise 5.1.7,
they are equal. Set S = S(X) = E(X). Then Xd ⊂ S, further S is a right ideal, and
the prefix set U = S \ SA+ satisfies S = UA∗. We claim that U is a finite set. Indeed,
set δ = d maxx∈X |x| and let us verify that a word in U has length ≤ δ. For this, let
s ∈ S with |s| > δ. The word s being strongly right completable, there is a word
w ∈ A∗ such that sw ∈ X∗. By the choice of δ, the word sw is a product of at least
d + 1 words in X, and s has a proper left factor, say s ′, in Xd . From Xd ⊂ S, we
have s ∈ SA+. Thus, s /∈ U . This proves the claim.

Now, fix a word x ∈ Xd , and consider the set Cr (x) of right contexts of x. The set
Cr (x) is finite since each element of Cr (x) is a right factor of some word in the finite
set X.

By Exercise 5.1.8, the set Z = Cr (x)U is a maximal prefix set, since x ∈ Xd ⊂ S.
Further, Z is the unambiguous product of the finite sets Cr (x) and U. By Exer-
cise 3.4.2, both Cr (x) and U are maximal prefix sets. Since 1 ∈ Cr (x), we have
Cr (x) = {1}.

Thus, we have shown that Cr (x) = {1} for x ∈ Xd . This implies as follows that
X is prefix. Assume that y, y ′ ∈ X and yt = y ′ for some t ∈ A∗. Let x = yd . Then
xt = ydt = yd−1y ′ and |t | < |y ′| show that t ∈ Cr (x). Since x ∈ Xd , we have t = 1.
Thus, X is a prefix code.

5.1.10 We first show that P is thin proving that for each p ∈ P and a ∈ A, the word
pa cannot be a factor of P . Indeed, if upav ∈ P , then up is also in P , a contradiction.
Next, by Lemma 5.2.12, we have S ⊂⋃d−1

i=1 XiP , and thus S is thin. Since R ⊂ XS,
we also have that R is thin. Finally, let us show that S∗ is thin. Otherwise, since S

is prefix by Lemma 5.2.15, S would be a maximal prefix code. Any element of R

would then be comparable for the prefix order with an element of S, a contradiction
with Lemma 5.2.16(i).

Section 5.3

5.3.1 It is clear that if A is a (d, d ′)-complete automaton with bidelay (d, d ′), then
with the pairs (Up, Vp) chosen as indicated and the sets (Ue, Ve) defined by the

550 Solutions of exercises

compatibility conditions 2 and 4, the result satisfies conditions 1 and 3 and thus
is an extended automaton without boundary edges. Conversely, we show that in an
extended automaton with delay (d, d ′) without boundary edges, for 0 ≤ k ≤ d ′ + 1,
the set of labels of paths of length ≤ k starting at p (resp. ending at q) is the set
of prefixes of VpA (resp. AUq) of length ≤ k. We prove the first alternative. The
other one is symmetrical. The statement is true for k = 0. Assume that it holds for
k ≤ d ′. Let p

a→ q
u→ be a path of length ≤ k + 1 with a ∈ A. Then, by induction

hypothesis, u is a prefix of VqA and thus of Vq . By condition 1, au is a prefix of VpA.
This proves the property for k + 1 in one direction (observe that we did not use the
hypothesis that there are no boundary edges). Conversely, if au is a prefix of VpA,
by the compatibility condition 1, there is an edge e ∈ F (p) such that a = λ(e) and
u ∈ Ve. Since is not a boundary edge, we have e = (p, a, q) for some state q. By
condition 4, u ∈ Vq . By the induction hypothesis, there is a path q

u→, hence a path

p
au→. Thus the property holds for k + 1 and the statement is proved by induction

on k.

5.3.2 According to conditions 1 and 2, we have∑
p∈Q

UpVpA =
∑
e∈E+

Ueλ(e)Ve,

where E+ is the set of edges which have an origin (that is which are not backward
boundary edges). Similarly,

∑
p∈Q AUpVp =∑e∈E− Ueλ(e)Ve where E− is the set

of edges which have an end. This proves the formula.

5.3.3 The automaton A0 is clearly a (d, d ′)-complete automaton with bidelay (d, d ′)
and thus an extended automaton (without boundary edges). For all u ∈ Ad and v ∈
Ad ′

, there is a path p
u→ q

v→ r in A0 if and only if q = uv.
It is not difficult to verify that A−x and Ax still satisfy the four conditions defining

extended automata. In A−x , the set of forward boundary edges is Ax and the set of
backward boundary edges is xA. Thus

∑
e∈E ∂(e) = Ax − xA = −fx . The forward

boundary edges of Ax are the backward boundary edges of A−x and vice versa. This
proves the last formula.

5.3.4 Suppose that e is a forward boundary edge from state p with label a such
that Ue or Ve is not a singleton. We add a terminal state q to e with Uq = A−Uea

and Vq = Ve. For every word w = a1 · · · ad ′ad ′+1 ∈ VeA, we add a forward boundary
edge ew starting at q with label a1, and with Uew

= A−Uea, Vew
= {a2 · · · ad ′+1}. In

addition, for every word w = a1 · · · ad+1 in A(A−Uea) which is not in Uea, we add a
backward boundary edge e′w ending at q with label ad+1 and with Ue′w = {a1 · · · ad},
Ve′w = Ve. Iterating this transformation a finite number of times, we obtain an extended
automaton in which all boundary edges are simple.

5.3.5 By Exercise 5.3.4 we may suppose that the extended automaton A is such that
all boundary edges are simple. By Exercise 5.3.2, we have

∑
e∈E ∂(e) ∈ L. Let us

Solutions for Section 6.1 551

write ∑
e∈E

∂(e) =
∑

bxfx,

where the coefficients bx are integers.
For each x ∈ Ad+d ′

such that bx > 0 (resp. bx < 0), we add to the automaton A
the disjoint union of bx copies of A−x (resp. Ax). The resulting extended automaton
Ā is now such that

∑
∂(e) = 0. Each boundary edge e of Ā is simple and thus

∂(e) ∈ Ad+d ′+1. Thus, for each word w ∈ Ad+d ′
we may define a bijection τw : {e ∈

Ē | ∂(e) = w} → {e ∈ Ē | ∂(e) = −w}. We now identify each forward boundary
edge of Ā with the backward boundary edge τw(e) where w = ∂(e). The resulting
extended automaton has no boundary edges.

5.3.6 For each state q, define Uq as the set of labels of paths of length d ending at q

and Vq as the set of labels of paths of length d ′ starting at q. For each edge e from p to
q, set Ue = Up and Ve = Vq . Since A has (right) delay d ′, for each state q ∈ Q, the
sets aVe for each edge e starting at q, with a the label of e, are disjoint. Thus we may
attach forward boundary edges to state q to complete a partition of VqA as follows.
For each w = a1 · · · ad ′+1 ∈ VqA which is not in any of the sets aVe, we define a
boundary edge e with origin q and label a1 with Ue = Uq and Ve = {a2 . . . ad ′+1}. In
a completely symmetric fashion, we attach backward boundary edges to each state q

in order that the family of sets Uea is a partition of the set AUq .
Thus we obtain, by adding boundary edges, an extended automaton B containing

A. By Exercise 5.3.5, there is an extended automaton C without boundary edges such
that every edge of A is an edge of C. Since C is (d, d ′)-complete, the stabilizer of 1
is generated by a code Y with bidelay (d, d ′) containing X.

5.3.7 We first add boundary edges as indicated on Figure 15.4 on the left (for
each boundary edge e, we indicate the pair (Ue, Ve)). We have then

∑
e∈E ∂(e) =

abb − bba = −fbb. We thus add the automaton Abb represented on the right in
Figure 15.4. Merging the boundary edges by pairs which are compatible, we obtain
the automaton on the right in Figure 5.18.

Chapter 6

Section 6.1

6.1.1 Let U be the set of parses of u. If (L, u) = (L, uvu), then for each (p, x, s) ∈
U , there exists (p′, x ′, s ′) ∈ U such that svp′ ∈ X∗ and conversely. Otherwise, there
would be more parses for uvu than for u. This implies that (L, (uv)mu) = (L, u) for
all m ≥ 0.

6.1.2 Let A = (Q, 1, 1) be the minimal deterministic automaton of X∗. Suppose
first that A is bideterministic. Let t, u, v,w ∈ A∗ be such that tu, vu, vw ∈ X. Then

552 Solutions of exercises

1

2

3

a

a

b

a

a (b, b)

b

(a, b)

b

(b, a)
a (b, b)

bb b
b

(a, b)
b (b, a)

Figure 15.4 The construction of an extended automaton with delay (1, 1).

1 · tu = 1 and 1 · vu = 1 imply that 1 · t = 1 · v. Since 1 · vw = 1, we obtain 1 ·
tw = 1. Thus tw ∈ X∗. This implies that tw has a prefix in X. Since t is a prefix of
X, we have w = w′w′′ with tw′ ∈ X. For the same reason, we obtain vw′ ∈ X∗ and
thus w = w′. This proves that (ii) holds.

Next, if (ii) holds, consider x ∈ H ∩ A∗. Then x = h
ε1
1 h

ε2
2 · · · hεn

n with hi ∈ X and
εi = ±1. Since x ∈ A∗, the words h

εi

i such that εi = −1 cancel with their neighbors.
Since X is bifix, h−1

i cannot cancel completely with hi−1 or with hi+1. This, if εi = −1,
we have εi−1 = 1, εi+1 = 1 and hi−1 = tu, hi = vu, hi+1 = vw for t, u, v,w ∈ A∗.
But then hi−1h

−1
i hi+1 = tw is in X by (ii). This shows that x ∈ X∗. Thus (iii) holds.

Suppose finally that H ∩ A∗ = X∗. Let p, q ∈ Q and a ∈ A be such that p · a =
q · a. Let u, v ∈ A∗ be such that 1 · u = p and 1 · v = q. Let w ∈ A∗ be such that
p · aw = q · aw = 1 in such a way that uaw, vaw ∈ X∗. Suppose that p · ax = 1.
Then uax ∈ X∗ and thus vaw(uaw)−1uax ∈ H . Since vaw(uaw)−1uax = vax ∈
A∗, the hypothesis implies that vax ∈ X∗ and thus q · ax = 1. This shows that p = q.
Thus A is bideterministic.

6.1.3 The definition of w being symmetrical, it is enough to show that w can be
decoded from left to right. By construction, x1 is a prefix of w and the first codeword
can therefore be decoded with delay at most �. But this also identifies the prefix of
length � + |x1| of the second term of the right side of (6.57). Adding this prefix to
the corresponding prefix of w gives a word beginning with x1x2 and thus identifies
x2, and so on.

Section 6.2

6.2.1 (a) The existence of k follows from the fact that w ∈ F̄ (X) since then
ai · · · anw ∈ XA∗ for each i ∈ {1, . . . , n}.

(b) If X is suffix, then clearly, ρw is injective. Conversely, if v, uv ∈ X, then the
map ρw is not injective for any w ∈ F̄ (X) with uv as a suffix. This proves assertion
(b). The proof of (c) is similar.

(d) The proof results from the fact that a map of a finite set into itself is injective
if and only if it is surjective.

Solutions for Section 6.4 553

6.2.2 (a) Set X = P \ PA+. We prove that X∗ = P ∗. Let x, y ∈ A∗ be such that
x ∈ X, xy ∈ P ∗. We have x = uũ, xy = vṽ. If |x| ≤ |v|, then v = xw and xy =
uũww̃uũ. Thus y ∈ P ∗. Otherwise, x = vw and ṽ = wy. Then, x = ỹw̃w and thus
x̃ = w̃wy. Since x = x̃, this forces y = 1. This proves that P ∗ is right unitary. The
proof that it is left unitary is symmetric.

(b) For each u ∈ A∗, uũ and ũu are in P .

6.2.3 If X is recognizable, then the sets G,D,G0,D0 are recognizable and thus also
Y given by Y = (X ∪ w ∪ G1(wD0)∗D1) \ (Gw ∪ wD). Conversely, X = Y \ (w ∪
G1(xD0)∗D1) ∪ Gw ∪ wD, and if Y is recognizable, then X is also recognizable.

6.2.4 By Exercise 6.1.2, the condition is satisfied if and only if the minimal deter-
ministic automaton of X∗ is bideterministic. Since X is maximal, the automaton is
complete and the result follows.

Section 6.3

6.3.1 It is clear that each set Yi is maximal prefix. They are disjoint because if
y ∈ Yi ∩ Yj one of piy, pjy ∈ X is a suffix of the other. Any suffix s of X is in some
Yi since ws ∈ A∗X. This shows that S is the disjoint union of the sets Yi .

6.3.2 The existence follows from Theorem 6.3.15 since the decomposition built in
the proof satisfies this property. The uniqueness follows from the fact that a suffix s

is in Yi if and only if it has i − 1 proper prefixes which are in S.

Section 6.4

6.4.1 We may suppose that X is not maximal. Since, X is finite, µ(X) =
max{(LX, x) | x ∈ X} is finite. By Theorem 6.4.3, for each d ≥ µ(X) + 1, X is
the kernel of a maximal bifix code Z of degree d (which is unique by Theorem 6.4.2).
Let us show that Z is recognizable. For a word w, we denote by c(w) the pair (i, s)
formed by the integer i = (LX,w) and the word s which is the longest suffix of w

which is a prefix of X. It can be verified that c(w) = c(w′) implies w−1Z = w′−1Z.
The number of possible pairs c(w) is finite, and thus Z is recognizable.

6.4.2 By Proposition 6.3.14, the set P ′ of proper prefixes of the derived code is
P ∩ H . When X is recognizable, so are P = XA− and H = A−XA−. Thus P ′ is
recognizable and so is X′ = P ′A \ P ′.

6.4.3 If |x| < |s|, then x is in the kernel of X and so is in X′. Otherwise, let s = ua

with a ∈ A. Then s /∈ H = A−XA− since otherwise s would not be the longest
prefix of w which is a proper suffix of X. Thus s ∈ (HA \ H) ∩ (AH \ H) which is
contained in X′ by Proposition 6.4.4.

6.4.4 The code Z is clearly (by Exercise 3.4.14) a thin maximal prefix code. To
see that it is also suffix, suppose that a word of X1 ∩ X2A

− is a suffix of a word

554 Solutions of exercises

Table 15.1 The values of λ(k, d).

1 2 3 4 5

2 1 2 4 8 22
3 1 2 5
4 1 2 6
5 1 2 7

of X2 ∩ X1A
−. Then it belongs to the kernel of X1, which the same as that of

X2, a contradiction. If X1, X2 are finite and have also the same degree d, then, by
Proposition 6.5.1, ad is in X1 ∩ X2 for any letter a ∈ A. Thus ad is also in Z. This
implies that the degree of Z is also equal to d. But the degree of a finite maximal
bifix code is also equal to its average length with respect to any positive Bernoulli
distribution (Proposition 6.3.16). Since Z is formed of prefixes of the words of X1

and X2, this forces Z = X1 = X2.

6.4.5 Consider X = a ∪ ba∗b which is a maximal bifix code of degree 2 with kernel
{a}. Let Y be the set of words formed of a and the words of the form baib for all
integers i ≥ 0 which are powers of 2. By Theorem 6.4.6, since {a} ⊂ K � X, there
exists a unique maximal bifix code Z of degree 3 such that K(Z) = Y . Moreover, X

is the derived code of Z. Finally, Z is not rational since otherwise Y = X ∩ Z would
be rational.

Section 6.5

6.5.1 Suppose |p| < |r|. Since pwq = rws is chosen of maximal length, there
is a prefix q ′ of q such that rwq ′ ∈ X. Thus wq ′ ∈ H (X) ∩ S and wq ′ ∈ S ′ by
Proposition 6.3.14 (3). This implies w ∈ H (X′).

6.5.2 Let x = aub ∈ X with a, b ∈ A. If a word w of length �(X′) − 1 has two
occurrences in u, then w ∈ H (X′) by the previous exercise, which is impossible
because the words in H (X′) have length at most �(X′) − 2. Thus each word of length
�(X′) − 1 has at most one occurrence in u, whence |u| ≤ �(X′) − 1 + k�(X′)−1 − 1
and finally |x| ≤ �(X′) + k�(X′)−1. The second formula follows directly. Some values
of λ(k, d) are given in Table 15.1.

For d = 3, the formula gives the exact value. Actually λ(k, 2) = 2 and one may
verify that λ(k, 3) = k + 2. For k = 4, one has λ(2, 4) = 8 but the bound given by
the formula is λ(2, 4) ≤ 12.

6.5.3 The function ϕ is injective because X is suffix and therefore also surjective
(the latter is also a consequence of the fact that X is maximal suffix).

6.5.4 For each finite maximal bifix code X of degree d, AX and XA are finite
maximal bifix codes of degree d + 1. Since AX �= XA unless X = Ad , we obtain
βk(d + 1) ≥ 2βk(d) − 1. Since β(k, 3) ≥ 2 for k ≥ 2, the conclusion follows. Some
values of βk(d) are represented in Table 15.2.

Solutions for Section 6.5 555

Table 15.2 The values of βk(d).

1 2 3 4 5

2 1 1 3 73 50 567 83
3 1 1 25
4 1 1 543
5 1 1 29 281

Table 15.3 The 3 finite maximal binary bifix codes
of degree 3.

kernel length distribution symmetry class

1 ∅ 0 0 8 1

2 ab 0 1 4 4 2

6.5.5 A word of length αn has two non overlapping factors of length αn which are
equal. Thus it has a factor of the form uvu where u is of length αn. The claim follows
by induction.

6.5.6 Let us suppose that X contains a word x of length αd−1 + 2. By the previous
exercise, x contains an internal factor which is a quasipower of order d − 1. Since,
by Exercise 1.1, (L, uvu) > (L, u) for any internal factor uvu with u �= 1, we obtain
(L, x) > d which is impossible. The bound is less accurate than the one given by
Exercise 6.5.2.

6.5.7 We will describe the 73 finite maximal binary bifix codes of degree 4 according
to their derived code. The 3 finite maximal binary bifix codes of degree 3 are given by
Table 15.3. The table is made of 3 columns describing the code. The first one gives the
kernel of the code, the second one its length distribution. The third column gives the
number of codes obtained by the symmetries consisting either in the exchange of the
letters a, b or the reversal of words. There can be either 1, 2 or 4 such symmetrical
codes. In this way we reduce the number of codes to be listed and and we list
only one representative of each symmetry class, the third column giving the number
of elements of the class. For example, there is just one code with empty internal
part, namely A3. There is one code with kernel {ab} and one with kernel {ba}. The
symmetry class has two elements, in correspondence with the fact that ab and ba are
both obtained one from the other by reversal or exchange of a, b.

There are 39 bifix codes with derived code A3 listed on Table 15.4. We may observe
that the length distribution can be read from the internal part as follows. The fact
that the code X on line 5 has 4 words of length 6 corresponds to the fact that the
internal words aab and aba overlap on ab. Thus, aaba is an internal factor of X and
{a, b}aaba{a, b} ⊂ X.

556 Solutions of exercises

Table 15.4 The 39 finite maximal binary bifix codes of degree 4 with
derived code A3.

kernel length distribution symmetry class

0 ∅ 0 0 0 16 1

1 aab 0 0 1 12 4 4

2 bab 0 0 1 12 4 2

3 aab, bab 0 0 2 8 8 4

4 aab, bba 0 0 2 8 8 2

5 aab, aba 0 0 2 9 4 4 4

6 aab, abb 0 0 2 9 4 4 2

7 aab, baa 0 0 2 9 4 4 2

8 aab, bab, baa 0 0 3 5 8 4 2

9 aab, aba, bba 0 0 3 5 8 4 4

10 aab, aba, abb 0 0 3 6 4 8 4

11 aab, abb, bba 0 0 3 6 5 4 4 4

12 aab, aba, abb, bba 0 0 4 3 5 8 4 4

The remaining 34 bifix codes have a derivative with kernel {ab} or {ba} (there are
17 of each kind). They are listed in Table 15.5. The fact that the code X on line 23 has
4 words of length 8 can be read as follows on its internal part. The word abbaab has
two interpretations, namely (ab)(baa)b and a(bba)(ab). Thus it is an internal factor
and {a, b}abbaab{a, b} ⊂ X.

We have represented on Figure 15.5, the generation of the finite maximal bifix
codes of degree 4 by internal transformation. The labels of the nodes are the indices
of the first column in Tables 15.4 and 15.5. Each edge corresponds to an internal
transformation. The label of the edge is the prefix used. We have only represented a
part of the acyclic graph of internal transformations which is actually a covering tree
of this graph. There are only three nodes without successor in the complete graph,
which are 18, 20, and 23.

6.5.8 The formula is a direct consequence of X − 1 = (A − 1)(d + T (A − 1)),
where T =∑d

i=1 Ri .

6.5.9 The variance is vX =∑n≥1 n2unk
−n − d2. Since u(z) =∑n≥1 unz

n, we have
zu′(z) =∑n≥1 nunz

n, whence u′(z) + zu′′(z) =∑n≥1 n2unz
n−1. Finally, by Prob-

lem 6.5.8, u(z) − 1 = (kz − 1)d + (kz − 1)2t(z). Differentiating twice, we obtain
u′′(1/k) = 2k2t(1/k).

Solutions for Section 6.6 557

Table 15.5 The remaining 34 finite maximal binary bifix codes of degree 4.

kernel length distribution symmetry class

13 ab 0 1 0 5 12 4 2

14 ab, aabb 0 1 0 6 8 8 2

15 ab, aaba 0 1 0 6 9 4 4 4

16 ab, aaba, aabb 0 1 0 7 5 8 4 4

17 ab, aaba, babb 0 1 0 7 6 5 4 4 2

18 ab, aaba, aabb, babb 0 1 0 8 2 9 4 4 2

19 ab, baa 0 1 1 3 9 8 4 4

20 ab, baa, babb 0 1 1 4 6 8 8 4

21 ab, baa, aabb 0 1 1 4 6 9 4 4 4

22 ab, bba, aaba, aabb 0 1 1 5 3 9 8 4 4

23 ab, baa, bba 0 1 2 2 4 9 12 4 2

0

1

a2b

3

bab

13

ab

14

a2b2

15

a2ba

8

ba2

4

b2a

11

ab2

5

aba

9

b2a

10

ab2

12

b2a

17

ab

18

a2b2

6

ab2

7

ba2

19

ab

20

bab2

21

a2b2

23

b2a

2

bab

16

ab

22

b2a

Figure 15.5 The generation of finite maximal bifix codes of degree 4 by internal
transformations.

Section 6.6

6.6.1 Since X = I (X) \ I (X)A+ is the set of words of I (X) which are minimal for
the prefix order, it is prefix. Since it is contained in I (X), the union Y = X ∪ X is
prefix. If X is rational, the set A−X ∪ XA∗ of words comparable to X is rational.
The set I (X) is the complement of this set, and so is rational too. Finally, the set
X = I (X) \ I (X)A+ is rational. The code Y is right complete. Indeed, if a word is

558 Solutions of exercises

not comparable to a word in X, then it belongs to I (X), and so it has a prefix in (X).
This shows that the code Y is maximal.

Chapter 7

Section 7.1

7.1.1 Let X = {ab, ba}. Let x ∈ A∗ and n ≥ 2 be such that xn ∈ X∗. If x �∈ X∗, then
x has more than one X-interpretation. This forces x ∈ F (ab)∗, and thus xn ∈ (ab)∗

or xn ∈ (ba)∗, but then x ∈ X∗, a contradiction.

7.1.2 Set p = |x| and q = |y| with p ≥ q and d = gcd(p, q). Let w = a1a2 · · · an

with n ≥ p + q − 1 be a prefix of a power of x and of a power of y. This means that
p and q are periods of w, in the sense that ai = ai+p for 1 ≤ i ≤ n − p and ai = ai+q

for 1 ≤ i ≤ n − q. We want to prove that d is a period of w. First suppose that d = 1.
Consider i ≤ n − p + q. If i ≤ n − p, we have ai = ai+p = ai+p−q . Otherwise, we
have i > n − p and thus i > q − 1. Thus ai = ai−q = ai+p−q . Thus p − q is a period
of w. This shows that gcd(p, q) = 1 is a period of w. The general case follows by
considering w as a word on the alphabet Ad .

Section 7.2

7.2.1 Suppose first that M = ϕ(A∗) is aperiodic. Let x ∈ A∗ and n ≥ 1 be such
that xn ∈ X∗. Let e be the idempotent in ϕ(x+). Then ϕ(x)e = eϕ(x) = e and thus
x ∈ X∗. Thus X∗ is pure. Conversely, let e ∈ M be an idempotent and let G be its
H-class. Let w ∈ ϕ−1(G). We may suppose that w �∈ F (X). There is an n ≥ 1 such
that ϕ(wn) = e. Let p be a fixed point of e. Since X is finite, there is a factorization
wn = uv such that

p
u→ 1

v→ p

and thus such that vu ∈ X∗. We have vu = (rs)n with r, s such that w = sr . Since
X∗ is pure we have rs ∈ X∗. Thus p is also a fixed point of w. This shows that the
group containing e is trivial.

7.2.2 (a) Let us suppose for instance that X is (1, 1)-constrained. Suppose that
u0u1, u1u2 ∈ X∗. We may assume u0, u1, u2 �= 1. If they belong to X, then u1 ∈ X∗.
Otherwise, if for example u0u1 �∈ X, then u0 = xu, u1 = vy with x, y ∈ X∗ and
uv ∈ X. Then v ∈ X∗ and thus u1 ∈ X∗.

(b) X is (3, 0)-constrained since u0u1, u1u2, u2u3 ∈ X imply u0 = u2 = 1 or u1 =
u3 = 1. It is not (3, 0)-limited since it is not prefix.

7.2.3 Let X be a recognizable circular code. Let ϕ : A∗ → M be the morphism on the
syntactic monoid of X∗. We show that X is (p, p)-limited with p = Card(M) + 1. Let
indeed u0, u1, . . . , u2p ∈ A∗ with ui−1ui ∈ X∗ for 1 ≤ i ≤ p + q. We first observe
that for any i, j such that 0 ≤ i < j ≤ 2p, if ui, uj ∈ X∗, then uk ∈ X∗ for i ≤

Solutions for Section 8.1 559

k ≤ j since X is a code. Now, since ϕ(u0), . . . , ϕ(up) cannot be all distinct, there
are indices j, k with 0 ≤ j < k ≤ p such that ϕ(uj) = ϕ(uk). Then, since X is
circular uj , uj+1, . . . , uk ∈ X∗. In the same way, there exist two indices �,m with
p + 1 ≤ � < m ≤ 2p such that ϕ(u�) = ϕ(um) and thus u�, u�+1, . . . , um ∈ X∗. This
implies up ∈ X∗, proving the claim.

Section 7.3

7.3.1 We have by Proposition 3.7.17, with P = XA−, Ps = XR whence tpfP (t) =
fX(t)fR(t). Since P (A − 1) = X − 1, we have (kt − 1)fP (t) = fX(t) − 1. The for-
mula for fX(t) follows. The second formula also follows easily from tp + ktfX(t) =
fX(t) + fU (t)tp.

7.3.2 This is a direct consequence of Formula (7.15).

7.3.3 Let X be a circular code on a suitable alphabet B such that un = Card(X ∩ Bn)
(the alphabet may be infinite). One may define a one-to-one correspondence α : A →
X between A and X such that the weight w(a) of a is the length of α(a). Then the
result follows from the fact that for any z ∈ A∗

(i) z is primitive if and only if α(z) is primitive,
(ii) w(z) = |α(z)|,

(iii) y ∈ A∗ is conjugate to z if and only if α(y) is conjugate to α(z).

7.3.4 Let A and B be two weighted alphabets such that A (resp. B) has un (resp.
vn) letters of weight n for each n ≥ 1. Since un ≤ vn, we may suppose that A ⊂ B.
Then the set of primitive necklaces of weight n on A is a subset of those on B.

7.3.5 One has∑
n≥1

pn

n
zn =

∑
n≥1

∑
d|n

dv
n
d

d

n
zn =

∑
d,e≥1

(vdz
d)e

e
=
∑
d≥1

log(1 − vdz
d)−1

whence the formula by taking the exponential of both sides.

Chapter 8

Section 8.1

8.1.1 The unique factorization of a word w ∈ {1, 2, . . . , n} is obtained as follows.
Let i be the least letter of w and let w = uiv where all letters of u are at least equal
to i + 1. Then iv ∈ X∗

i . We factorize in the same way u and obtain the factorization
of w.

8.1.2 The factorization of a word w = a1a2 · · · an corresponds to the convex hull of
the graph of points (i, ϕ(a1 · · · ai)).

560 Solutions of exercises

8.1.3 Let m = �1�2 · · · �n be the factorization of m in a nonincreasing product
of Lyndon words. Arguing by contradiction, suppose that n > 1. If � ≺ �1, then
��1 ∈ L, a contradiction with the definition of �. Thus �1 " �, showing that w has
a nonincreasing factorization in Lyndon words of length n + 1, a contradiction with
the fact that w ∈ L. Thus n = 1 and m ∈ L. Since � ≺ w and w ≺ m, we have also
� ≺ m.

If � ≺ p, then �p ∈ L and � is not the longest proper prefix of w which is in L.
Thus p " �.

8.1.4 We show by induction on i ≥ 1 that Zi contains all zr such that π (zr) = (zs, zt)
and s < i ≤ r . It is true for i = 1. Suppose that it is true for j ≤ i − 1 and consider
zr such that π (zr) = (zs, zt) with s < i ≤ r . If s < i − 1, then zr ∈ Zi−1 by the
induction hypothesis, and thus zr ∈ Zi . Otherwise, π (zr) = (zi−1, zt). Suppose first
zt ∈ A. Since r < t , we have zt ∈ Zi and thus zr ∈ Zi . Otherwise, let π (zt) = (zu, zv).
By the previous exercise, we have u ≤ s and thus u < i. We can thus repeat the
same discussion with zt replacing zr . Iterating this argument, we can suppose that
zr = zk

i−1zt with k ≥ 0, i − 1 < t and zt ∈ A or π (zt) = (zu, zv) with u < i − 1. We
have, as above, zt ∈ Zi and thus zr ∈ Zi .

8.1.5 Suppose that for x1, . . . , xk ∈ Ln and y1, . . . , yk ∈ Ln we have x1 · · · xk =
sy2 · · · ykp and y1 = ps with ps �= 1. Then x1 < y2 < x2 < · · · < xk < y1 < x1, a
contradiction. Thus Ln is circular.

The set L2 is comma-free only if k ≤ 3 since for k = 4, (ab)(cd) = a(bc)d with
ab, bc, cd ∈ L2. The sets L3, L4 are not comma-free for k ≥ 3 since (aab)(bbc) =
a(abb)bc and (aaab)(bbbc) = a(aabb)bc.

8.1.6 We argue by contradiction and suppose that x, y, z are primitive and distinct.
First observe that |x| ≤ |z|. Indeed, otherwise x would have two distinct z-interpre-

tations, which is impossible for a primitive word. In the same way, |y| ≤ |z|.
Let us first prove that the conclusion holds if p ≥ 3. We consider the conjugate z′

of z which is a Lyndon word. Then z′ is either a factor of xm or of yn. In both cases,
since z′ is longer than x and y, this implies that z′ is bordered. This is a contradiction
since a Lyndon word is unbordered (Proposition 8.1.11).

Let us finally consider the case p = 2. We may suppose that |xm| > |yn|. Then
we have xm = zu, z = uyn for some word u. Thus xm = uynu. But this implies that,
changing x by some conjugate x ′, the equality x ′m = u2yn. By induction, we have
x ′, u, y ∈ t∗ whence the contradiction.

8.1.7 We suppose |x| ≥ |y|. We may also suppose that x and y are primitive (since
otherwise y∗x ∪ x∗y contains an imprimitive word). If X∗ is not pure, there exists
u �∈ X∗ such that un ∈ X∗. Let w = un. We may suppose that w �∈ x∗ ∪ y∗ since
otherwise x or y is not primitive. Set w = un = x1 · · · xm with xi ∈ X, and let j be
the index such that un−1 = x1 · · · xj−1k, xj = kh, hxj+1 · · · xm = u. Then wh = hw′

for w′ = xj+1 · · · xmx1 · · · xj . Note that h /∈ X∗ since u /∈ X∗.

Solutions for Section 8.1 561

y y x
w

h k k h

y y x x
w

Figure 15.6 Case 1: w′ ∈ yX∗x.

x y y y y x
w

h k k h

y y x x
w

Figure 15.7 Case 2: w′ ∈ xX∗x and |hx| > yi .

w

x y y y y x
h k h

y y x x x
w

w

x x y y x
h k h

y y x x x
w

Figure 15.8 Case 2: w′ ∈ xX∗x and |hx| < |yi |.

We consider the least integer i ≥ 1 such that w2 ∈ X∗xyixX∗. Replacing w by
an X-conjugate, we may suppose that yix is a prefix of w and x a suffix of w. We
distinguish several cases.

Case 1. w′ ∈ yX∗x (see Figure 15.6). By definition of the integer i, one has
w′ ∈ yiX∗x. Let k, k′ be such that xh = kx and yik′ = hyi . Since k and k′ are
prefixes of x of the same length, k = k′. Thus yixh = yikx = yik′x = hyix which
shows that yix is not primitive.

Case 2. w′ ∈ xX∗x. Suppose first that |hx| > yi (see Figure 15.7). We have in
fact w′ ∈ xyiX∗ ∩ X∗yix, since otherwise x would be a nontrivial factor of x2, a
contradiction with the hypothesis that x is primitive. Since yix is a suffix of w′,
there exists k such that yix = kxh. Since yix is a prefix of w, there exists k′ such
that yix = hxk′. Since |k| = |k′|, and both are prefixes of yi , we have k = k′. Thus
yix2 = hxkx = kxhx is imprimitive. Since x, y are not powers of a common root,
we have i = 1 by the Lyndon–Schützenberger theorem and yx2 is imprimitive.

If |hx| < |yi |, then i > 1 (see Figure 15.8). We have w′ ∈ X∗y2x since otherwise
x is a nontrivial factor of x2. And w ∈ X∗x2 since otherwise y is a nontrivial factor
of y2. Thus, there is a prefix k of yi such that yix = kx2h.

If w′ ∈ xy2X∗, then there is a prefix � of yi such that yix = hx�x. Since |k| = |�|,
we have k = �. Thus yix2 = hxkx2 = kx2hx is not primitive, which is impossible
since i > 1.

Thus w′ ∈ x2X∗. If |hx2| < yi , then x is a factor of y∗ with two y-interpretations,
a contradiction with the fact that x is primitive. Thus |hx2| > yi . Since x has only

562 Solutions of exercises

x y y y y

w

h k k h

y y x x
w

Figure 15.9 Case 3: w′ ∈ X∗y and |hx| > |yi |.

w
x y y y y

h k h

y y x x x
w

w
x x y y

h k h

y y x x x
w

Figure 15.10 Case 3: w′ ∈ X∗y and |hx| < |yi |.

one y-interpretation, we have h = k. Thus yix3 = (hx2)2, which is impossible since
i > 1.

Case 3. w′ ∈ X∗y. Suppose first that |hx| > |yi | (see Figure 15.9). Then there is
a suffix k of x such that yi = kh and a suffix k′ of x such that yix = hxk′. Since
|k| = |k′|, we have k = k′. Thus yix = hxk = khx is not primitive.

Suppose now that |hx| < |yi | (see Figure 15.10). Then i > 1 and there is a prefix
k of yi such that yi = kxh. If w ∈ xyiX∗, then there is a prefix � of yi such that
yi = hx�. Since |�| = |k|, we have k = �. Thus yix = kxhx = hxkx is imprimitive.

Finally, suppose that w′ ∈ x2X∗. If |hx2| < |yi |, then x has two y-interpreta-
tions, which is impossible since x and y are primitive. Thus |hx2| > |yi |. We cannot
have w′ ∈ x3X∗ since otherwise x has two x-interpretations. Thus w′ ∈ x2yi . Let
� be the prefix of yi such that yix = hx2�. Since |k| = |�|, we have k = �. Thus
yix2 = hx2kx = kxhx2 is imprimitive, which is impossible since i > 1.

8.1.8 Suppose that X∗ is not pure. Then x∗y ∪ y∗x contains a word which is not
primitive. Suppose that xny = zm for some n ≥ 1 and m ≥ 2. If (n − 1)|x| ≥ |z| then
zm and xn have a common prefix of length n|x| ≥ |x| + |z|. Thus x and z are powers
of a common word by Fine–Wilf’s theorem, a contradiction. Otherwise, we have
(n − 1)|x| < |z|. Since |x| = |y| we have (n + 1)|x| = m|z|. Thus (n − 1)m < n + 1
or equivalently (n − 1)(m − 1) < 2. The only case remaining to check is n = m = 2.
Suppose that |x| + |u| > |z|. Then u = rs with z = uvr = svvu. It follows that
|r| = |v| + |s|. Thus rsvr = svvrs implies svr = vrs and we obtain that s and vr

are powers of the same word, a contradiction with the fact that y = vrs is primitive.
The case |x| + |u| < |z| is similar.

8.1.9 The right-hand side of Equation (7.17) may be rewritten as
∏

(1 − z|ν|)−1 where
the product is over all primitive necklaces ν meeting X∗, in some fixed decreasing
ordering of these necklaces. This in turn is equal to

∏∑
n≥0 zn|ν|, which is the sum of

all monomials zn1|ν1| · · · znk |νk |, for all integers k, n1, . . . , nk and necklaces as above
with ν1 > · · · > νk . For the second solution, one uses the fact that a free monoid has

Solutions for Section 8.2 563

the complete factorization of Lyndon words, that these are in bijection with primitive
necklaces, and that primitive necklaces within X∗ coincide with primitive necklaces
of A∗ meeting X∗, since X∗ is a very pure submonoid.

8.1.10 The last factorization is proved by induction on n, together with the fact that
each Ci is contained in Ai and that Xn+1 has only words of length at least n + 1. The
case n = 0 is clear. If it is true for n, then define Cn+1, Xn+2 as indicated and verify the
previous properties, using the bisection H ∗ = K∗((H \ K)K∗)∗ where K ⊂ H . The
finite factorization above leads to the infinite factorization X∗ = C∗

1C∗
2 · · ·C∗

n · · · . To
deduce the nonnegativity of the integers vn, apply the homomorphism sending each
letter in A onto z.

8.1.11 If X is rational, then X∗ too, and it is easy to show that the closure under
conjugacy of a rational language is rational, by using the syntactic monoid of the
language. Since X∗ is very pure, its closure under conjugacy is a cyclic language.
Now, the generating function of X∗ is by Equation (7.13) equal to the zeta function
of its closure under conjugacy.

To show that the zeta function of a cyclic language L has the indicated expansion,
proceed as in the proof of Proposition 7.3.4: first, one has Equation (7.16); then one
shows by taking the logarithmic derivative that the equality of the zeta function with
the right-hand side of Equation (7.17) is equivalent to Equation (7.16).

Section 8.2

8.2.1 We prove the statement by induction on n. Let A∗ = X∗
n−1 · · ·X∗

1 be a fac-
torization obtained by composition of bisections and X∗

i = Y ∗Z∗ be a bisection
of X∗

i . Then, by induction hypothesis, Xi is an (i − 1, n − i − 1)-limited code.
We consider the factorization A∗ = Y ∗

n · · · Y ∗
1 with Yn = Xn−1, . . . , Yi+2 = Xi+1,

Yi+1 = Y, Yi = Z and Yi−1 = Xi−1, . . . , Y1 = X1. Then Yj is a (j − 1, n − j)-
limited code for 1 ≤ j ≤ i − 1 and for i + 2 ≤ j ≤ n. Let us show that Yi+1 = Y is
(i, n − i − 1)-limited. Let u0, . . . , un−1 be such that uj−1uj ∈ Y ∗ for 1 ≤ j ≤ n − 1.
Since Y ⊂ X∗

i and since Xi is (i − 1, n − i − 1)-limited, we have ui−1, ui ∈ X∗
i .

Since Y is (1, 0)-limited, we have ui ∈ Y ∗. Thus Y is (i, n − i − 1)-limited. The
proof that Yi = Z is (i − 1, n − i)-limited is similar.

8.2.2 The submonoid M satisfies C(1, 0) and thus U is (1, 0)-limited. Consequently,
there exists a bisection of the form (U,Z). Let u, v ∈ U ∗ be such that uv ∈ X∗. Let
u = u1 · · · un with u1, u2, . . . , un suffixes of X. Since X is (2, 0)-limited, we have
successively u2 · · · unv ∈ X∗,. . . ,unv ∈ X∗, and finally v ∈ X∗. Thus, considered as
a code on U , X is (1, 0)-limited, which implies the existence of a bisection (X, Y) of
U ∗.

8.2.3 An easy inspection shows that Y is (1, 1)-limited. Suppose that (X, Y,Z)
is a trisection of A∗. Since ged ∈ Y and since X∗Y ∗ is suffix-closed (by Proposi-
tion 8.2.9), ed ∈ X∗Y ∗, which implies ed ∈ X. Similarly, since dac ∈ Y and since
Y ∗Z∗ is prefix-closed, da ∈ Z. But then eda ∈ X2 ∩ Z2, which is impossible.

564 Solutions of exercises

8.2.4 The submonoid M generated by the suffixes of y clearly satisfies the condition
C(1, 0). Let X′ be the code generating M . Since X′ is (1, 0)-limited, there exists a
bisection of A∗ of the form (X′, Z). Since y is unbordered, we have y ∈ X′. Thus
X′∗ = X∗y∗ with X = y∗(X′ \ y).

Chapter 9

Section 9.1

9.1.1 Since e is an idempotent, one has also p
e→ r , and by Proposition 9.1.6(ii),

there is a fixed point s of e such that p
e→ s

e→ r . By unambiguity, we get q = s.

9.1.2 For any (u, v), (u′v′) ∈ D such that (u, v)ρ(u′, v′), one has also
(u, v′), (u′, v) ∈ D and (u, v)ρ(u, v′)ρ(u′, v). Indeed, since (u, v)ρ(u′, v′) there are
n, n′,m,m′ ∈ N such that

nu = n′u′, vm = v′m′.

Multiplying the first equality by v′ on the right and the second one on the left by u′,
we obtain nuv′ = n′u′v′ ∈ N and uv′m′ = uvm ∈ N . Since N is stable, this implies
uv′ ∈ N . Thus (u, v′) ∈ D and (u, v)ρ(u, v′). A similar proof holds for (u′, v).

Since (1, n)ρ(1, n)ρ(1, 1) for any n ∈ N , N × N is the class of (1, 1).
All we have to verify is that ϕ is well defined, in the sense that (U,V)ϕ(m)(U ′, V ′)

if and only if there are u ∈ U , v′ ∈ V ′ such that um ∈ U ′ and mv′ ∈ V . Let us con-
sider r ∈ U and s ∈ V ′. Then (u,mv′)ρ∗(r,mv′) and thus rmv′ ∈ N . Moreover,
since (u,mv′) = (u0, v0)ρ(u1, v1)ρ · · · ρ(uk, vk) = (r,mv′), we obtain (um, v′) =
(u0m, v′)ρ(u1m, v′)ρ · · · ρ(ukm, v′) = (rm, v′). Thus rm ∈ U ′. The proof that ms ∈
V is similar. Thus ϕ(m) is well defined.

If M = A∗ and N = X∗, the classes of ρ∗ are the sets X∗u × vX∗ for u, v �= 1 such
that uv ∈ X. Thus the classes are in bijection with the states of the flower automaton.
The action also coincides (by Proposition 4.2.3).

9.1.3 The condition is obviously sufficient. Conversely, let c be a n × p matrix such
that its columns form a basis of the columns of m. Then m = �r in a unique way.
The matrix n = r� is invertible and satisfies n3 = n2. Thus n is the identity.

9.1.4 (a) Choose

R =

0 −1 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, R−1 =

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 −1 −1 −1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

.

Solutions for Section 9.3 565

(b) Set M = ϕA(A∗). For q ∈ Q, let uq ∈ A∗ be such that q
uq→ q and that eq =

ϕA(uq) is an idempotent of minimal rank of M . Since ρ is a reduction, there exist

p, p′ ∈ ρ−1(q) such that p
uq→ p′. Since eq is idempotent, there is a fixed point sq of

eq such that p
uq→ sq

uq→ p′. By unambiguity, we have ρ(sq) = q. Let eq = �q rq be
the column-row decomposition of eq . Define λ(p) = q if ρ(p) = q and (sq, p) ∈ rq .
Next, define µ(p) = q if ρ(p) = q and there is a fixed point s of eq such that

(p, s) ∈ �q . Let q
w→ q ′ be a path in B and let m = ϕA(w). Then (q, q ′) ∈ eqmeq ′ and

thus eqmeq ′ �= 0. By Proposition 9.1.9, the relation rqm�q ′ is a bijection from the set
of fixed points of eq on the set of fixed points of eq ′ . This shows that the pair (λ,µ)
is an unambiguous realization of ρ.

Section 9.2

9.2.1 We have

(H ∗ m)SH ′K = rHm�H ′ rH ′�K

= raHma′
H ′�raH ′�K

= reaH ma′
H ′aH ′�K

= rHm�K.

The last equality comes from the fact that the right multiplication by a′
H ′aH is the

identity on H ′ and eaH m ∈ H ′. The proof that SHK ′(m ∗ H) reduces to the same
expression is similar.

Consider the map ρ from D to � × Ge × � associating to m ∈ D the triple
ρ(m) = (K, g,H) defined by m ∈ KM ∩ MH and g = rb′

Kma′
H �. It is one-to-one

because m = �KgrH . It is a morphism since for m ∈ KM ∩ MH ∩ D and m′ ∈
K ′M ∩ MH ′ ∩ D, we have

ρ(m)ρ(m′) = (K, rb′
Kma′

H �,H)(K ′, rb′
K ′m

′a′
H ′�,H

′)

= (K, rb′
Kma′

H raH bK�rb′
K ′m

′a′
H ′�,H

′)

= (K, rb′
Kmm′a′

H ′�,H
′) = ρ(mm′).

Section 9.3

9.3.1 For each s in the set S of fixed points of e, there exists a unique t ∈ T

such that sut and tvs. Define sϕ to be this element t . Suppose that for s, s ′ ∈ S, we
have sϕ = s ′ϕ = t . Then s

u→ t
v→ s

u→ t
v→ s and s

u→ t
v→ s ′

u→ t
v→ s. Since the

product ee is unambiguous, we have s = s ′. Since Card(T) = Card(S), this implies
that ϕ is a bijection.

Thus we may suppose that ϕ is the identity on S, and we are reduced to the case
e = uv with u : Q → S, v : S → Q and sus, svs for any s ∈ S. We prove that u = �

and v = r . Let us show that qus if and only if qes for q ∈ Q and s ∈ S.
Assume qus. Then qes because sds, and similarly svq implies seq. Thus vu = IS

as in the last part of the implication (ii) =⇒ (iii) of Proposition 9.1.6. Finally qes

566 Solutions of exercises

implies qus since u = uvu = eu. Similarly, seq implies svq. This proves that u = �

and v = r .

9.3.2 If m has rank r in the sense of linear algebra, then we can write m = cl with c a
n × r matrix whose columns form a basis of the columns of m. Conversely, if m = cl

with c ∈ Kn×r and l ∈ Kr×n then the columns of c generate the columns of m.

9.3.3 One has

m =

1 0 0
1 1 0
0 1 1
0 0 1

1 0 0 1

0 1 0 −1
0 0 1 1

and thus the rank over Z is 3. It can be verified that there is no such decomposition
with nonnegative coefficients.

9.3.4 We treat the case where M does not have a zero. Since R ∩ L ∩ N is a
subgroup, it contains the idempotent e of R ∩ L. In the same way the idempotent e′

of R′ ∩ L′ is in N . Thus ee′ is in N ∩ R ∩ L′.

9.3.5 (i) implies (ii). Indeed, let m be of minimal rank and such that v = mp∗ is a
row of m. For any n ∈ M , since the right ideal mM is minimal, there is an m′ ∈ M

such that mnm′ = m. Since vnm′ = v, we have vn �= 0.
(ii) implies (iii). Suppose that v is not maximal and let v′ > v be a row of an element

of M . Let q ∈ Q be such that (v′ − v)q = 1. Let m ∈ M be such that w = mp∗ is a
maximal row. Let n ∈ M be such that nqp = 1. Then v′nm is a row of an element of
M which is ≥ w and thus equal to w. This forces vnm = 0 and thus 0 ∈ vM .

(iii) implies (iv). Let v = mp∗ be a maximal row. Let m′ ∈ M have a minimal
number of distinct nonzero rows. Let q, s ∈ Q be such that m′

qs = 1. Let n ∈ M be
such that nsp = 1. Then m′nm has a minimal number of distinct nonzero rows and
(m′n)qp = 1. Thus v is the row of index q of m′nm.

(iv) implies (ii). Let v = mp∗ where m has a minimal number of distinct nonzero
rows. If vn = 0, then mn has less distinct nonzero rows than n.

(iii) implies (i). Let v = mp∗ be a maximal row. Let n be of minimal rank with
nqp = 1. Then (nm)q∗ ≥ v and thus (nm)q∗ = v. This shows that v is a row of an
element of minimal rank.

Observe that a matrix of minimal rank r has r distinct nonzero rows and thus a
matrix has a minimal number of distinct nonzero rows if and only if it has minimal
rank. Indeed, let e be an idempotent of minimal rank d. Let e = �r be the column
row decomposition of e. Then the rows of e are sums of rows of r . But since the
columns of � are in particular columns of e, they are maximal. Thus all rows of e are
rows of r .

9.3.6 (a) The statement is a simple consequence of the fact that a word u is right
completable if and only if ϕ(u)1∗ �= 0.

Solutions for Section 9.3 567

(b) By Exercise 9.3.5, the vector ϕ(w)1∗ is maximal and 0 �∈ ϕ(w)1∗M . Thus
w is strongly right completable by (a). Let x ∈ X∗ and u ∈ A∗ be such that xwu ∈
X∗. Then ϕ(xw)1∗ ≥ ϕ(w)1∗ implies ϕ(xw)1∗ = ϕ(w)1∗. Thus ϕ(xwu)1∗ = ϕ(wu)1∗,
showing that wu ∈ X∗.

9.3.7 The first statement is clear. To see the converse, first observe that R and L

contain singletons and thus, for any q ∈ Q there is r ∈ R (resp. � ∈ L) such that
rq = 1 (resp. �q = 1). Next, for any r ∈ R and m ∈ M , we have rm ∈ R. Similarly,
for any m ∈ M and � ∈ L, we have m� ∈ L. Let now m, n ∈ M . For any r ∈ R

and � ∈ L, we have rm ∈ R by the previous remark and thus rmn� = (rm)n� ≤ 1.
Hence mn ∈ M , which shows that M is a monoid. For any p, q ∈ Q, let r ∈ R

and � ∈ L be such that rp = �q = 1. Then 1 ≥ rmn� ≥ (mn)pq . This shows that
M is unambiguous. Any product �r for � ∈ L and r ∈ R is in M since for any
�′, r ′ ∈ L × R, r ′�r�′ = (r ′�)(r�′) ≤ 1. Thus M is additionally transitive. This proves
(a).

To prove (b), consider a transitive unambiguous monoid of relations on the set
Q. Let R (resp. L) be the set of rows (resp. columns) of the elements of M . Let
R′ be the set of all row vectors r in {0, 1}Q such that r� ≤ 1 for all � ∈ L. Then
R′M = R′. Indeed, for any r ∈ R′, m ∈ M and � ∈ L, we have rm� = r(m�) ≤ 1
because ML = L. Thus rm ∈ R′. Next, let L′ be the set of column vectors � in {0, 1}Q
such that r� ≤ 1 for all r ∈ R′. Then R′ and L′ satisfy the condition (9.25). Let N be
the transitive unambiguous monoid of relations formed of all n such that rn� ≤ 1 for
all r ∈ R′ and � ∈ L′. For any r ∈ R′, m ∈ M and � ∈ L′, we have rm� = (rm)� ≤ 1
since rm ∈ R′. Thus M is a submonoid of N .

9.3.8 Let e be an idempotent of M of minimal rank with column-row decomposition
e = �r such that u is the sum of the rows of r and v is the first column of �. Then
rm� is a permutation and thus umv = 1.

The rest of the proof is the same as that of Exercise 9.3.7.

9.3.9 (a) is clear since G acts transitively on the set Q.
(b) The first equality comes from the two ways to express the set of pairs (q,w)

for q ∈ Q and w ∈ U . The second one is analogous. The first equality of the second
group corresponds to the one-to-one correspondence between an element w ∈ U and
the set of pairs (q, �) ∈ Q × V such that w ∩ � = q.

(c) For each pair (w, �) ∈ U × V there is a unique pair (p, q) in Q × Q such that
wp = mpq = �q = 1. We conclude that

t = pq

hk
= rs = n2

rs
= n.

9.3.10 Let M be a transitive unambiguous monoid of relations on Q. By Exer-
cise 9.3.7 there is a pair R,L of row and column vectors in {0, 1}Q satisfying
Equations (9.25) such that rm� ≤ 1 for all r ∈ R and � ∈ L. Let U (resp. V) be the

568 Solutions of exercises

set of maximal elements of R (resp. L). We consider the set P obtained by adding
to Q a set pu of elements in one-to-one correspondence with U . We form the set U ′

of subsets of P obtained by adding to each u ∈ U the element pu. We also denote
by U ′ the set of characteristic vectors of the sets u ∈ U ′. Let V ′ be the subset of
{v ∈ {0, 1}P | uv ≤ 1 for all u ∈ U ′} which are maximal. One has actually uv = 1
for all v ∈ V ′ and u ∈ U ′ since v contains either an element of u or the element pu.

Let us show that for any m ∈ {0, 1}P×P such that umv ≤ 1 for all u ∈ U ′ and
v ∈ V ′ and which is maximal for this property, one has actually umv = 1 for all
u ∈ U ′ and v ∈ V ′. Suppose indeed that umv = 0. For any q ∈ v, there is a pair
(r, s) ∈ m and a pair (u′, v′) ∈ U × V ′ such that r ∈ U and q, s ∈ V ′. When q runs
through v, the set of states s forms a set u′ which is such that u′v ≤ 1 for all v ∈ V ′.
Suppose that u′ and v have a common element k. Then, choosing q = k, we obtain
that u′v′ ≥ 2, a contradiction. Thus u′v = 0, which is also a contradiction. This proves
the claim.

9.3.11 If � is a clique and r is stable, then Card(� ∩ r) ≤ 1. Conversely, let � be a set
of vertices such that Card(� ∩ r) ≤ 1 for any stable set r . Let s, t be in �. If (s, t) is
not an edge of G, then r = {s, t} is stable and Card(� ∩ r) = 2, a contradiction. Thus
� is a clique. This shows that the pair (L,R) satisfies the the first equality. The proof
for the second one is analogous.

The second assertion can be verified easily.

9.3.12 Suppose that m′
pq = 1 for some p, q ∈ Q. Since M is transitive and does

not contain zero, there exists a maximal row r such that rp = 1. Let us assume that
r = ns∗ for some n ∈ M . Then nm ≤ nm′ and (nm)s∗ = ns∗m is a maximal row by
Exercise 9.3.5. Thus (nm)s∗ = (nm′)s∗. This forces mpq = 1 since m ≤ m′.

9.3.13 Let p ∈ Q and u ∈ A∗, be such that ϕ(u)p∗ is not a maximal row. Since A is
strongly connected, there exists a maximal row r such that rp = 1. There is at least a
state p′ distinct of p such that rp′ = 1 and ϕ(u)p′∗ �= 0 since otherwise rϕ(u) is not
maximal. Hence there is a state q ∈ Q and a word v of length at most n(n − 1)/2
such that q

v→ p and q
v→ p′. Then ϕ(u)p∗ < ϕ(vu)q∗. This proves the claim.

By the claim and its symmetric form, there exist pairs (p1, u1), (p2, u2),
. . . , (ps, us) in Q × A∗ and (v1, q1), (v2, q2), . . . , (vt , qt) in A∗ × Q such that, with
xi = ϕ(ui · · · u1)pi∗ and yj = ϕ(v1 · · · vj)∗qi

,

(i) u1 = v1 = 1 and p1 = q1.
(ii) for 2 ≤ i ≤ s, the word ui has length at most n(n − 1)/2 and xi > xi−1.

(iii) for 2 ≤ j ≤ t , the word vj has length at most n(n − 1)/2 and yj > yj−1.
(iv) xs is a maximal row and yt is a maximal column.

Let u = us · · · u1 and v = v1 · · · vt . We have |u| ≤ (s − 1)n(n − 1)/2 and |v| ≤ (t −
1)n(n − 1)/2. Thus |uv| ≤ (s + t − 2)n(n − 1)/2. Since A is unambiguous, we have
xsyt = 1.

Solutions for Section 9.4 569

Thus s + t ≤∑q∈Q(xs)q +∑q∈Q(yt)q ≤ n + 1. Let finally z ∈ A∗ be such that

qt
z→ ps with |z| ≤ n − 1. Then w = vzu is such that ytxs ≤ ϕ(w). By Exer-

cise 9.3.12, this implies ϕ(w) = ytxs , whence the conclusion.

Section 9.4

9.4.1 We treat the case where the code is complete. Let A = (Q, 1, 1) be an
unambiguous trim automaton recognizing X∗. Let K be the set of minimal rank
of M ′ = ϕA(A∗). There exists a morphism ψ from M ′ onto M such that ϕ = ψϕA.
Then J = ψ(K) is the minimal ideal of M and the other properties follow from the
fact that they hold for K .

9.4.2 If µ(m) = µ(n), then for any H ∈ �, we have H · m = H · n and H ∗ m =
H ∗ n. Let H ′ = H · m. Since H ∗ m = rH m�H ′ and H ∗ n = rHn�H ′ , we obtain
rHma′

H ′� = rH na′
H ′�. Multiplying on the right by raH we have rHma′

H ′�raH =
rHna′

H ′�raH whence rH m = rHn since xa′
H ′aH = x for all x ∈ H . This proves the

equivalence concerning µ. The other one is proved in the same way. To prove that
the function m �→ (µ(m), ν(m)) is injective, let m, n ∈ M be such that µ(m) = µ(n)
and ν(m) = ν(n). Let p, q ∈ Q be such that mp,q = 1. Let H ∈ � be such that p is
a fixed point of the idempotent of H and let K ∈ � be such that q is a fixed point of
the idempotent of K . Since eaH ∈ H , there is an s ∈ Q such that s

rH→ p and since

bKe ∈ K , there is a t ∈ Q such that q
�K→ t . Since rHm = rHn, there is an u ∈ Q such

that s
rH→ u

n→ p. Since m�K = n�K , there is a v ∈ Q such that q
n→ v

�K→ t . Then
p = u and q = v since otherwise the product rHn�K is ambiguous. Thus np,q = 1.
This shows that m = n.

9.4.3 Let X be a prefix code and let e be an idempotent of J . Suppose that Me ∩
ϕ(X∗) �= ∅. Let f ∈ Me be an idempotent in ϕ(X∗). Then f e = f implies e ∈ ϕ(X∗)
since ϕ(X∗) is right unitary.

Conversely, let u, v ∈ M be such that u, uv ∈ ϕ(X). We may assume, multiplying
u on the left by an element of J ∩ ϕ(X∗) that u ∈ J . For any n ≥ 0, we have
(uv)n+1 ∈ X∗ and thus (vu)n �= 0. Let e be the idempotent in (vu)+. Since the left
ideal Mu is minimal and since e ∈ Mu, we have u ∈ Me. Thus Me ∩ ϕ(X∗) �= ∅,
which implies e ∈ ϕ(X∗). Since X is a code u, uv, e ∈ ϕ(X∗) imply v ∈ X∗ by
stability. Thus X is prefix.

9.4.4 Let C be a maximal class. For any a ∈ A, the set a−1C = {q ∈ Q | q · a ∈ C}
is again a maximal class. We have, for any maximal class C, the equality MC =∑

a∈A a−1C where we identify a class with its characteristic column vector. Multi-
plying on the left by w, we obtain Card(A)wC =∑a∈A w(a−1)C. Since wC = w(C),
we obtain ∑

a∈A

w(a−1C) = Card(A)w(C). (15.4)

570 Solutions of exercises

This implies that w(C) is a constant. Indeed, the action of A on the maximal classes
is transitive. Thus, if w is not constant on the set of maximal classes, there is a
maximal class C such that the value w(C) is maximal and a letter a ∈ A such that
w(a−1C) < w(C). Thus, by (15.4), there is a letter b ∈ A such that w(b−1C) > w(C),
a contradiction.

Let u ∈ A∗ be a word of minimal rank r . Then w(Q) =∑w(C) where the sum
is on the classes of the nuclear equivalence of u. Thus w(Q) = rw(C) since w(C) is
the same for each class. This shows that r divides w(Q).

Section 9.5

9.5.1 We treat the case where the code is complete. Let A = (Q, 1, 1) be an
unambiguous trim automaton recognizing X∗. Let K be the set of minimal rank
of M ′ = ϕA(A∗). There exists a morphism ψ from M ′ onto M such that ϕ = ψϕA.
Then J = ψ(K) is the minimal ideal of M . Let G′ be an H-class in K such that
ψ(G′) = G. Let H ′ = G′ ∩ ϕA(X∗). The restriction of ψ to G′ is one-to-one and
ψ(H ′) = H . This proves the claim since G(X) equivalent to G′ viewed as a permu-
tation group acting on the right cosets of H ′.

9.5.2 Let e be an idempotent of D. By assumption D ∩ ϕ((F̄ (X)) �= ∅. Let m ∈
D ∩ ϕ(F̄ (X)). Since m is in D, we have e ∈ MmM and thus e ∈ ϕ(F̄ (X)). Since
D �= {0} the relation e has at least one fixed point s. Let w ∈ F̄ (X) ∩ ϕ−1(e). Since
s is a fixed point of e, there is a path s

w→ s in A. Since w ∈ F̄ (X), there exist
u, v ∈ A∗ such that w = uv with s

u→ 1
v→ s. Then vu is in X∗ since 1

v→ s
u→ 1.

Moreover, ϕ(vu)4 = ϕ(v)ϕ(w)2ϕ(u) = ϕ(v)ϕ(w)ϕ(u) = ϕ(vu)2 and thus ϕ(vu)2 is
an idempotent. It belongs to D because uvRuvuLvuvu.

Suppose that X is finite. Let D be a regular D-class. If 1 ∈ ϕ−1(D), the conclusion
holds. Otherwise ϕ−1(D) meets F̄ (X) since it contains arbitrary long words. The
conclusion thus follows from the previous case.

9.5.3 Let u ∈ A∗ be a word which is not a factor of X. Then, for each integer i ≥ 1,
there is a prefix pi of u and a suffix si of u such that siz

i, zipi ∈ X∗. Since there
is a finite number of pairs (si, pi), there exist integers i < j such that pi = pj and
si = sj . Then siz

i+jpi = (siz
i)(zjpj) = (sj z

j)(zipi) imply zj−i ∈ X∗.

9.5.4 If Z = X ∧ Y is thin maximal, there exists, by Exercise 9.3.6, a word x ∈ Z∗

which is strongly right completable in Z∗ (and thus in X∗) and symmetrically a word
y ∈ Z∗ which is strongly left completable in Z∗ (and thus in Y ∗), which proves that
the condition is satisfied.

Conversely, the existence of y ∈ Y ∗ strongly right completable in X∗ shows that
X is complete. Thus, there exists x ′ ∈ A∗ strongly left completable in X∗. Similarly,
there exists y ′ ∈ A∗ strongly right completable in Y ∗. Let u = x ′x and v = yy ′. Then
u is strongly left completable in both X∗ and Y ∗ and v is strongly right completable
in both X∗ and Y ∗. Thus, for any w ∈ A∗, the word vwu is both strongly right and
left completable in X∗ and Y ∗. It follows from Exercise 9.5.3 that some power of

Solutions for Section 10.2 571

uwv is in Z∗. Thus Z is complete. It is moreover thin since Z∗ is recognized by the
direct product of automata A and B recognizing X∗ and Y ∗ (which has finite minimal
rank as A and B). It is thus a maximal code.

9.5.5 We may suppose that Z is not maximal. Let T be a rational (resp. thin) code
containing Z built using Theorem 2.5.24 (resp. Exercise 2.5.4). Let u, v be two
distinct words in T which are not in Z (the method used to build T adds an infinite
number of words). Let

X = Z ∪ u ∪ (T \ (Z ∪ u))(T \ u)∗u,

Y = Z ∪ v ∪ (T \ (Z ∪ v))(T \ v)∗v.

Then X and Y are obtained by composition as maximal rational (resp. thin) codes.
Clearly Z∗ ⊂ X∗ ∩ Y ∗. To show the converse, let w = t1 · · · tn ∈ X∗ ∩ Y ∗ with ti ∈
T . Suppose that w �∈ Z∗. Then u and v appear among the ti and the uniqueness of
the factorization forces u = v, a contradiction.

Chapter 10

Section 10.2

10.2.1 The inclusion from left to right is clear. Conversely, let x ∈ (XsA∗ ∩ A∗Xs) \
W . Since x �∈ W , there exist u, v ∈ A∗ such that uxv ∈ X∗. Let x = ry = zt with
r, t ∈ A∗ and y, z ∈ Xs . Then uztv ∈ X∗ implies ztv ∈ X∗. And ztv = ryv ∈ X∗

implies x = ry ∈ X∗. This proves (10.9).
To prove (10.10), consider a word v ∈ V . Suppose that v �∈ W . Let n be the least

integer such that v is a factor of Xn. Then uvw = x1x2 · · · xn for some u,w ∈ A∗ and
xi ∈ X. By the definition of V we have n ≥ s + 2 and by the minimality of n, u is a
prefix of x1 and v is a suffix of xn. Thus x2 · · · xn−1 is a factor of v, a contradiction
with the fact that v does not have a factor in Xs+1.

To prove the opposite inclusion, let w be a word in W without any proper factor in
W . We have to prove that w does not have a factor in Xs+1. If w ∈ A, the conclusion
holds. Otherwise, let w = ahb with a, b ∈ A and h ∈ A∗. Let us first suppose that
h has a factor in Xs . Since ah, hb �∈ W , there exist u1, u2, u3, u4 ∈ A∗ such that
u1ahu2, u3hbu4 ∈ X∗. Since h has a factor in Xs , we obtain by synchronization
u1ahbu4 ∈ X∗ a contradiction. Suppose now that w has a factor in Xs+1. Since h

does not have a factor in Xs , the only possibility is w ∈ Xs+1, a contradiction.

10.2.2 Assume first that XsA∗ ∩ A∗Xs ⊂ X∗. Then by Proposition 10.1.13, every
pair of words in Xs is synchronizing. Completion follows from the inclusion
XswXs ⊂ X∗ for all w, and from the fact that X is nonempty.

Conversely, let X be a complete code with synchronization delay s. Again by
Proposition 10.1.13, every pair (x, y) of words in Xs is such that yA∗ ∩ A∗x ⊂ X∗.

10.2.3 Set Y ′ = X ∪ (T \ W). We show first that Y ′ ⊂ Y . Let y ∈ Y ′ and suppose
that y /∈ Y . Then, since Y ′ ⊂ M , one has y = y1 · · · yn, with yi ∈ Y and n ≥ 2.

572 Solutions of exercises

At least one of the yi is not in X. Take yi /∈ X with i minimum. Then y1, . . . , yi−1 ∈
X, and yi ∈ XsA∗ by definition of M . Hence y ∈ Xi−1+sA∗, which is possible only
if i = 1 in view of the definition of T . Thus y1 /∈ X and similarly yn /∈ X.

Now y1 ∈ A∗Xs . Choose i ∈ {2, . . . , n}minimum with yi /∈ X. Then yi is in XsA∗,
hence y1 · · · yi ∈ A∗X2sA∗ and so is also y, a contradiction. Thus y ∈ Y . This proves
the inclusion.

Conversely, let y ∈ Y . If y ∈ X∗, then y ∈ X and hence y ∈ Y ′. Suppose now that
y /∈ X∗. Then y ∈ XsA∗ ∩ A∗Xs , since y ∈ M .

If we assume that y ∈ Xs+1A∗, then y = xzr with x ∈ X, z ∈ Xs . We cannot
have zr ∈ A∗Xs , otherwise zr ∈ M and y is decomposable in M , a contradiction.
But y = r ′z′ with z′ ∈ Xs . It follows that zr is a proper suffix of z′. Since z′ is a
synchronizing word, we obtain zr ∈ X∗ and thus y ∈ X∗, a contradiction.

Symmetrically, y /∈ A∗Xs+1. Thus y ∈ T . Suppose y ∈ A∗X2sA∗. Then y =
rzz′r ′, with z, z′ ∈ Xs . Since y is indecomposable in M , either rz or z′r ′ is not
in M . We may suppose that rz /∈ M . Then y = z′′s with z′′ ∈ Xs and rz is a proper
prefix of z′′. Since z is synchronizing, we obtain rz ∈ X∗, a contradiction. Thus
y �∈ W , showing the inclusion Y ⊂ Y ′.

10.2.4 Let ϕ be the representation associated with the flower automaton A∗
D(X)

of X. Let e ∈ ϕ(A+) be an idempotent with positive minimal rank. According to
Proposition 7.1.5, the rank of e is 1. Thus d(X) = 1.

10.2.5 (i) and (ii) are clearly equivalent. To prove that (ii) implies (iii), we first have
that X is a semaphore code since (ii) implies A∗X ⊂ XA∗. Let S = X \ A∗X. If
uv, vw ∈ S, then uv, uvw ∈ A∗X imply w ∈ X∗. This forces v = 1, thus proving
(iii). Conversely (iii) implies clearly (ii).

Section 10.3

10.3.1 It is clear that a strictly locally testable set is locally testable and that the family
of locally testable sets is a Boolean algebra. Thus a finite Boolean combination of
strictly locally testable sets is locally testable. Conversely, a locally testable language
is a finite union of classes of ∼s and such a class is a Boolean combination of
sets of the form yA∗, A∗y, and A∗yA∗, which are either strictly locally testable or
complements of strictly locally testable sets.

10.3.2 Let Y be a strictly locally testable set. Let ϕ : A+ → S be the morphism
from A+ onto the syntactic semigroup of Y . Let e be an idempotent of S and let
w ∈ ϕ−1(e). We may assume that w is longer than any word of the sets T ,U, V,W

defining Y by (10.8). Then it is easy to verify that w is a constant.

10.3.3 Let s be the order of Y . Let ϕ : A+ → S be the morphism from A+ onto the
syntactic semigroup of Y . Let e be an idempotent of S and let w be a word of ϕ−1(e) of
length larger than s. Then for any words p, u, v, q, we have pwuwuwq ∼s pwuwq

and pwuwvwq ∼s pwvwuwq. Thus eSe is idempotent and commutative.

Solutions for Section 11.3 573

10.3.4 By Proposition 10.3.5, we need to prove only one direction. We use the char-
acterization of strictly locally testable sets given by Exercise 10.3.2. Let ϕ : A+ → S

be the morphism onto the syntactic semigroup of the locally testable set X∗. Let e

be an idempotent of S. Suppose that p, q, r, s ∈ S are such that peq, res ∈ ϕ(X∗).
Since X∗ is locally testable, the semigroup eSe is idempotent and commutative. Thus
setting m = peqres, one gets that

m = mm = pespeqreqres = pesm = mpes

is an element of ϕ(X∗). Since ϕ(X∗) is stable, this implies pes ∈ ϕ(X∗). Thus e is a
constant.

Chapter 11

Section 11.1

11.1.1 Let u, uv ∈ R and let x ∈ X∗. Since X∗ is right dense, there exists w ∈ A∗

such that vxw ∈ X∗. Since u ∈ R, there exists y ∈ X∗ such that uvxwy ∈ X∗. Since
X∗ is right dense, there is s ∈ A∗ such that wys ∈ X∗. Since uv ∈ R there is z ∈ X∗

such that uvxwysz ∈ X∗. Finally, since X∗ is right unitary, we have sz ∈ X∗. Thus
vxwysz ∈ X∗ with wysz ∈ X∗ and this shows that v ∈ R, completing the proof of
(a).

(b) The fact that Y is synchronized results from Proposition 3.6.6.
(c) Let z ∈ Z′∗ and let x ∈ X∗. Since Y ′ is synchronized, there exists y ∈ X∗ such

that zxy ∈ X∗. Thus z ∈ Z∗.
(d) Let first r ∈ R. We may restrict to m = ϕ(x) with x ∈ X∗. Then, there is

y ∈ X∗ such that rxy ∈ X∗. Thus 1 · rxy = 1 and thus, by maximality of Ker(ϕ(x)),
1 · rx = 1. Conversely, if r satisfies the condition, let x ∈ X∗. Let y ∈ X∗ be such
that ϕ(xy) is of minimal rank. Then 1 · rxy = 1 and thus r ∈ R.

Section 11.3

11.3.1 This follows from Theorem 11.3.1 applied to the subset of the alphabet
formed of letters a ∈ A such that ϕA(a) is invertible.

11.3.2 It is clear that X is finite since X ⊂ F (Y 2) and it is bifix since X ⊂ Z. Let
ϕ be the representation associated with the minimal automaton A(X∗). Let e be an
idempotent in ϕ(Y ∗). Let us show that Ge is equivalent to G. Indeed, let w ∈ ϕ−1(e) ∩
Y ∗ and let U be the set of words in wA∗w of rank in A(X∗) equal to the degree d of
G. Then, ψ(U) = G since U contains wY ∗w. Further, for u, u′ ∈ U , ψ(u) = ψ(u′)
implies ϕ(u) = ϕ(u′). Indeed, set u = wyw and u′ = wy ′w. Let r, t ∈ A∗ be such
that rut ∈ X∗. Then w = ps = p′s ′ with rp, syp′, s ′t ∈ X∗. Since X ⊂ Z, we have
rut ∈ Z∗ and thus ru′t ∈ Z∗. This implies sy ′p′ ∈ X∗ since otherwise the rank of
ϕ(u′) would be less than d. Thus ru′t ∈ X∗. Thus ϕ(u) = ϕ(u′). This shows that ψ−1ϕ

defines a morphism from G onto the H-class of e. It is clearly bijective. Moreover,
ψ(u) ∈ H if and only if u ∈ X∗. This shows that G and Ge are equivalent.

574 Solutions of exercises

Section 11.4

11.4.1 Let w ∈ ϕ−1(e) ∩ F̄ (X). Let p, p′ be fixed points of e such that p · wtw =
p′ · wtw �= ∅ for some t ∈ A∗. Since w ∈ F̄ (X), we have w = uv = u′v′ with v, v′

prefixes of X and p · u = p′ · u′ = 1 and 1 · vtw = 1 · v′tw. Since one of v, v′ is
suffix of the other, 1 · vtw = 1 · v′tw forces v = v′ by Proposition 6.1.14. Since
ϕ(w) = e, we have p · w = p and p′ · w = p′. Thus p = 1 · v = p′.

Section 11.5

11.5.1 Let d be the degree of X. If w ∈ H̄X, then w has d interpretations w =
sixipi with si ∈ A−X, xi ∈ X∗, and pi ∈ XA−. Thus ϕD(w) =⋃d

i=1(Xs−1
i , si) ×

(pi, p
−1
i X) which shows that ϕD(w) has rank d and thus ϕD(w) ∈ JD .

Conversely, if w ∈ H (X), let u, v ∈ A+ be such that uwv ∈ X. Then the row of
index (u,wv) of ϕD(w) is reduced to {(uw, v)} and is not maximal because the row of
index (1, 1) of ϕD(uw) contains all the (uw, v′) for v′ ∈ (uw)−1X. Thus ϕD(w) �∈ JD

by Exercise 9.3.5.

11.5.2 The states 1, 1 · a, . . . , 1 · an−1 are the fixed points of the idempotent in
ϕ(a+), which has thus rank n. If n ≥ d(X) + 1, the idempotent in ϕ(a+) is not in the
minimal ideal of ϕ(A+), which is therefore not nil-simple.

11.5.3 Let B = {a ∈ A | aA∗ ∩ X∗ �= ∅} and C = {a ∈ A | A∗a ∩ X∗ �= ∅}. Then
the submonoid BA∗ ∩ A∗C is generated by a code Z such that X ⊂ Z∗. Each word in
Z∗ has a power in X∗. Indeed, let n ≥ 1 be such that ϕA(zn) is idempotent. Then zn is
left and right completable and thus in X∗. Thus X = Y ◦ Z with Y elementary bifix.

11.5.4 The sequence of equivalences θi , with θ0 being the equality, is increasing. If
θi = θi+1, then θi = θi+k for all k ≥ 1. There is an i such that θi has one class. The
smallest such integer i is the depth d of ϕ(A+). This forces the sequence θ0, . . . , θd

to be strictly increasing from θ0 to θd , whence d ≤ Card(Q) − 1.

11.5.5 Let w ∈ ψ−1(J). Then for any L,L′ ∈ �, L · w = L′ · w. Thus w has rank
one. Conversely, if w has rank 1, then it is in ψ−1(J). Thus ψ−1(I) = ψ−1(I). As a
direct consequence of Exercise 11.5.4, the depth of ϕ(A+) is at most Card(�).

Section 11.6

11.6.1 Let j = i(u ∗a ak). There is a path labeled uak from i to j · ak . If this path
does not pass by 1, the finiteness of X imposes j + k ≥ i + 1.

11.6.2 If X is a group code, we have k = 0 and by the previous exercise, for each
letter b ∈ A we have i · b ≥ i + 1 for all i except one. This forces X = Ad .

11.6.3 With k = 1 and u = b, we obtain i(b ∗a a) ≥ i for all i provided ai−1ba does
not have a prefix in X, that is except when ai−1b ∈ X.

Solutions for Section 11.6 575

11.6.4 Let π ∈ G not a power of α. Let [d] = {1, 2, . . . , d}, E = {i ∈ [d] | iπ ≤ i},
and F = [d] − E. Let d − 1 = ku + v with u ≥ 0 and 0 ≤ v < k. Let N be the set
formed of the (u − 2)k first elements of F ordered by increasing value of iπ − i. Let
I1 + · · · + Iu−2 be a partition of N in consecutive intervals with respect to the value of
iπ − i. Let us show by induction on r , 1 ≤ r ≤ u − 2 that for each i ∈ Ir , iπ − i ≥ r .
It is true for r = 1. Suppose now that the element j of Ir with minimal value of iπ − i

is such that jπ − j ≤ r − 1. Then by induction, we have iπ − i = r − 1 for each
i ∈ Ir−1. But then π coincides with αr−1 on the r + 1 elements of Ir−1 ∪ j , which
implies by definition of k that π = αr−1, a contradiction. Thus

S =
∑
i∈F

(iπ − i) ≥
u−2∑
r=1

∑
i∈Ir

(iπ − i) ≥
u−2∑
r=1

kr = k(u − 1)(u − 2)/2.

On the other hand

S =
∑
i∈E

(i − iπ) ≤ (2k + 1)(d − 1).

Comparing the two inequalities, we obtain k(u − 1)(u − 2)/2 ≤ (2k + 1)(d − 1).
Since d − 1 ≤ (u + 1)k, this implies k(u − 1)(u − 2)/2 ≤ (2k + 1)(u + 1)k or (u −
1)(u − 2)/2 ≤ (2k + 1)(u + 1). Since (u − 1)(u − 2) ≥ (u + 1)(u − 5) for u ≥ 0,
we obtain 2(2k + 1) ≥ u − 5 and finally d ≤ 4k2 + 8k + 1.

11.6.5 (a) We write as usual i for 1 · ai−1. Thus α = (12 · · · d). According to The-
orem 11.4.3, one has ak ∈ J (X). Thus the permutation π = w ∗a ak is defined by
i · wak = iπ · ak for 1 ≤ i ≤ d. Let σ = παk . Then iσ = 1 · ai+1wak . There are
exactly 2k values of i such that ai−1wak has a prefix in X. Otherwise, ai−1wak is a
prefix of X and i is an excedance of σ . Thus σ has at least d − 2k excedances. This
implies, by Exercise 11.6.4, that σ belongs to the subgroup generated by α.

(b) We show that if X∗ contains a word t of length at most k, then it contains
all the conjugates of t . This is a contradiction since all the powers of t would
have k < d interpretations. Let t = a1 · · · a� with ai ∈ A and � ≤ k. We show by
descending induction on i that ti = ai · · · a�a1 · · · ai−1 ∈ X∗. Assume that ti−1 ∈ X∗.
We apply statement 1 with a = ai−2 and w = ti−1a

k−�. Thus π = ti−1a
k−� ∗a ad is in

the subgroup generated by α = (12 . . . d). Since 1π = 1 · ak−�, we have π = αk−�.
Thus 1 · ti−2a

d = 1 · ati−2a
d−1 = 2 · ti−1a

d−1 = 1. This shows that ti−2 ∈ X∗ and
concludes the proof.

11.6.6 Assume by contradiction that k ≤ √
d/2 − 2. Then d ≥ 4k2 + 16k + 16. By

Exercise 11.6.5, X does not contain words of length less than or equal to k. Thus,
by Theorem 11.5.2, the depth of the syntactic semigroup of X∗ is at most equal to k.
Let Y be the base of the right ideal J (X). For any a ∈ A and y ∈ Y , the permutation
σ = (ay ∗a ak) has at least d − 2k − 1 excedances. By Exercise 11.6.1, this implies
that σ is the subgroup generated by α. Since ay ∗a ak = (a ∗a y)(y ∗a ak) and since
G(X) is generated by the permutations a ∗a y for a ∈ A and y ∈ Y , we obtain that
G(X) is cyclic and thus that X = Ad .

576 Solutions of exercises

Section 11.7

11.7.1 It can be verified that the conditions stated on β and γ are equivalent to:

1. 1β−1 = 1γ−1,
2. for each i �= 1β−1, one has iβ ≥ i.
3. γ is an n-cycle such that 1γ i ≤ i + 2 for all i.
4. for all i �= 1β−1, 1β−1γ−1, one has iγβ ≥ i.

and that in turn, these conditions are necessary and sufficient for the code to be finite.
The first condition is necessary and sufficient for the code to be bifix.

11.7.2 We use the following facts concerning the group PGL2(5). It is sharply
3-transitive on six points, of order 120 = 6 × 5 × 4. As an abstract group it is iso-
morphic with the symmetric group S5. Let α = (123456), β = b ∗a a, γ = b ∗a b.
Since all the elements of order 6 of PGL2(5) are internally conjugate, we may sup-
pose that the identification of {1, 2, 3, 4, 5, 6} with the projective line Z/5Z ∪∞
is the same as the bijection ρ used in Example 11.7.7, with αρ = (∞01423) real-
ized by the homography ζ �→ 2/(ζ + 2). By Exercise 11.7.1, β and γ are such that
β = (i1 · · · ik) with i1 < · · · < ik and γ = ατ where τ is a product of cycles of the
form (k, k + 1, . . . , k + m) with kβ ≥ k + m or kβ = 1.

If β has no fixed points, then β = α. The permutation γ is conjugate of α by an
involution which is a product of two cycles. The only solution is γ = (132546). This
gives the finite maximal bifix code X1 of Example 11.7.7 (Table 11.5).

If β has one fixed point, then it coincides with α on four points, which is impossible.
If β has two fixed points, these cannot be consecutive since otherwise β would

coincide with α on three points. These two points cannot either form an orbit
of α3, since otherwise β would commute with α3, in contradiction with the
fact that the stabilizer of two points is, in PGL2(5) its own centralizer. Thus,
the possible sets of fixed points are (2, 4), (2, 6), (4, 6), and (3, 5), correspond-
ing to

β1 = (1356), β2 = (1345), β3 = (1235), β4 = (1246).

Each of them generates, together with α, the group PGL2(5). As for γ , we have
either γ = α or γ = ατ where τ is a product of two transpositions. This gives the
two solutions

1. γ1 = (132546) with τ = (23)(45) compatible with β = β4.
2. γ2 = (124365) with τ = (34)(56) compatible with β = β2 or β = β3.

Thus, in the case where β has two fixed points, the code X is one of the five possible
codes.

1. The code X2 corresponding to β = β1 and γ = α whose minimal automaton is
described in Table 15.6.

2. The code X3 = X̄1 symmetric of X1 by the exchange of a, b with β = β2, γ = γ2.
3. The code X4 = X̃2 which is the reversal of X2 with β = β3 and γ = γ2.

Solutions for Section 11.7 577

Table 15.6 The transitions of the minimal automaton of X∗
2 .

1 2 3 4 5 6 7 8 9 10

a 2 3 4 5 6 1 4 3 6 5

b 7 8 9 10 6 1 8 9 10 6

Table 15.7 The vector
space (Z/2Z)3.

1 1 0 0
2 0 1 0
3 0 0 1
4 1 1 0
5 0 1 1
6 1 1 1
7 1 0 1

4. The code X̄4 with β = β4 and γ = α.
5. The code X̄2 with β = β4 and γ = γ1.

Note that X1 = X̃1, so X1 is equal to its reversal.

11.7.3 The identification of (Z/3Z)3 with {1, 2, . . . , 7} is shown in Table 15.7. In
this way, the permutation α = (1234567) corresponds, via the identification, to the
matrix 0 1 0

0 0 1
1 1 0

which represents the multiplication by x in the basis 1, x, x2. The group G(X) is
generated by α = (1234567) and the permutations:

b ∗a a2 = (1236)(45)(7), b ∗a ab = (146)(235)(7), b ∗a b = (1254376)

correspond, via the identification, to the matrices:

b ∗a a2 =
0 1 0

0 0 1
1 1 1

 , b ∗a ab =
1 1 0

0 0 1
0 1 1

 , b ∗a b =
0 1 0

0 1 1
1 0 1

 ,

which generate the group GL3(2).

11.7.4 The images of a2, ab, b are of minimal rank and thus the group G(X) is
generated by α = (1 2 · · · 11), β = b ∗a a2, γ = b ∗a ba, and δ = b ∗a b. We compute

578 Solutions of exercises

from the transitions of the automaton

β = (1 2 3 6 5 4 7 10)(8 9)(11),

γ = (1 4 7 9 6 3 8 10)(2 5)(11) = βα2β−1α−1,

δ = (1 2 5 6 3 4 9 8 7 11 10) = βαβ−1.

Let us show that α and β generate the Mathieu group M11 (see the Notes for a
reference). Let h(x) be the polynomial with coefficients in the field F3 = Z/3Z

h(x) = −1 + x2 − x3 + x4 + x5.

The columns of the matrix K below are the remainders of the polynomials
1, x, . . . , x10 modulo h(x).

K =

1 0 0 0 0 1 −1 −1 −1 1 0
0 1 0 0 0 0 1 −1 −1 −1 1
0 0 1 0 0 −1 1 −1 0 1 −1
0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 1 −1 −1 −1 1 0 1

Multiplying the last one by x, one obtains that x11 − 1 ≡ 0 modulo h(x). We consider
the vector space V = F3[x]/(x11 − 1). Let H be the subspace of V formed by the
multiples of h(x). Since h(x) has degree 5, H has dimension 11 − 5 = 6. The Mathieu
group M11 is the group of permutations of {1, 2, . . . , 11} which leave invariant the
support of the vectors in H (that is the set of coordinates with nonzero coefficient).
A basis of the orthogonal of H is made of the rows of the matrix K above.

The columns of K are the components in the basis {1, ξ, ξ 2, ξ 3, ξ 4} of the powers
of a root ξ of the polynomial h(x). Thus the group M11 contains α, which corresponds
to the multiplication by ξ , and also β whose action on the columns of K corresponds
to the matrix

0 0 −1 −1 0
−1 0 0 1 0

0 −1 1 1 0
0 0 −1 1 −1
0 0 1 −1 0

One may verify that α, β generate G by showing that they they generate a 4-transitive
group.

Chapter 12

Section 12.1

12.1.1 Let m, n ≥ 1 be integers. We show that if n is not a Hajós number, then neither
is mn. Let G = Z/mnZ and H = {0,m, . . . , (n − 1)m}. Thus H is a subgroup
of G and H $ Z/nZ. Let H = K + L be a factorization of H where neither K

Solutions for Section 12.2 579

nor L is periodic. Let M = {0, 1, . . . , m − 1} and N = L + M . Since M is a set
of representatives of the cosets of H , G = H + M is a factorization of G. Thus
G = K + N is a factorization of G. We show that N is not periodic. Assume by
contradiction that p is a period of N and consider i ∈ M . We have p + i + L ⊂ p +
N = N and p + i + L ⊂ p + i + H = j + H for some appropriate j ∈ M . Thus
p + i + L ⊂ N ∩ (j + H) = j + L. Since L is not periodic, we have p + i = j .
Thus we have proved that p + M ⊂ M , a contradiction since M is not periodic.

12.1.2 The proof is by induction on n. Let G = Z/nZ and let G = L + R be a
factorization. Since n is a Hajós number, L or R is periodic. We may suppose that R

is periodic. Then, we can write R = H + S where H is a nontrivial subgroup of G

and the sum is direct. We have a factorization G/H = (L + H)/H + (S + H)/H .
Since G/H has the Hajós property by Exercise 12.1.1, it has the Rédei property
by induction hypothesis. Thus either 〈(L + H)/H 〉 �= G/H and thus 〈L〉 �= G, or
〈(S + H)/H 〉 �= G/H and thus 〈R〉 �= G.

12.1.3 For x, y ∈ Z with x ≤ y, denote [x, y] = {z ∈ Z | x ≤ z ≤ y}. We may sup-
pose that L ⊂ [0, d] for some d ≥ 0. Let x, y ∈ Z with x ≤ y be such that R ∩
[x, x + d] = R ∩ [y, y + d]. Then R ∩ [x + kd, x + (k + 1)d] = R ∩ [y + kd, y +
(k + 1)d] for all k ≥ 0, as one may verify by induction on k. Thus R is periodic of
period at most 2d .

Section 12.2

12.2.1 Suppose that Z/nZ = L + R is a factorization. For each i ∈ {0, 1, . . . , n −
1} there is exactly one pair (�, r) ∈ L × R such that i ≡ � + r mod n. Since 0 ≤
� + r ≤ 2n − 2, we have actually � + r = i or � + r = i + n. Thus a�ar = ai or
a�ar = aian. This shows that

aLaR ≡ 1 + a + · · · + an−1 mod an − 1, (15.5)

and thus aLaR(a − 1) ≡ 0 mod an − 1 as claimed.

12.2.2 We first prove the preliminary remark. If p′ ≤ p and q ′ ≤ q, then p′ + q ′ ≤
p + q, a contradiction. Suppose p′ > p. Then q ′ ≤ q since otherwise p′ + q ′ ≥
p + q + 2. If p′ is not the successor of p in P , then there exists p′′ such that
p < p′′ < p′, then p + q < p′′ + q < p′ + q ′, a contradiction. The other case is
handled in an analogous way.

We have 0 ∈ P ∩ Q and we may assume that 1 ∈ P . If Q = {0}, there is nothing to
prove. Otherwise let m be the least nonzero element of Q. Then {0, 1, . . . , m − 1} ⊂
P .

Let r in {0, 1, . . . , n − 1}. We claim that

(i) if r ∈ Q, then m|r ,
(ii) if r is in P , then s, s + 1, . . . , s + m − 1 are in P , where s is the unique integer

such that m|s and s ≤ r < s + m.

580 Solutions of exercises

The proof is by induction on r . The property holds for r = 0 since 0 ∈ Q and
{0, 1, . . . , m − 1} ⊂ P . Assume that it holds for s < r . Set r = um + v with u ≥ 0
and 0 ≤ v < m. Let um = p + q with p ∈ P and q ∈ Q. We distinguish three cases.

Case 1. p < r and q < r . Then by (i) m|q and thus m|p. By (ii), we have p + v ∈ P

and thus r = (p + v) + q is the decomposition of r in P + Q. We cannot have r ∈ Q

since otherwise p = v = 0 and thus q = r . If r is in P , then q = 0 and p = um.
By the induction hypothesis, p, p + 1, . . . , p + m − 1 are in P . Thus (ii) is satisfied
with s = um.

Case 2. p = r and thus v = q = 0. Set r + 1 = p′ + q ′ with p′ ∈ P and q ′ ∈
Q. By the preliminary remark, we have either p′ = r + 1 or q ′ = m. If q ′ = m,
then m|(p′ − 1) and thus p′ − 1 ∈ P by (ii). Therefore r = (p′ − 1) + m is another
decomposition of r , a contradiction. Thus p′ = r + 1 and r + 1 is in P . One proves
in the same way that r + 2, . . . , r + m − 1 are in P . Thus r satisfies also (ii).

Case 3. q = r and thus p = v = 0. In this case, m|r and thus (i) holds.
We have shown that there exist sets P ′ and Q′ such that P = {0, 1, . . . , m −

1} + P ′ and that Q = mQ′. Thus {0, 1, . . . , n/m − 1} = P ′ + Q′. This proves the
statement taking n1 = m.

Section 12.3

12.3.1 Let m ≥ 1 be such that x = bm is not a proper factor of a word in X.
Then, since b ∈ X, the pair (x, x) is synchronizing. Suppose that � ∈ L, that is
a�b+ ∩ X �= ∅. Then a�x ∈ X∗ and thus � is in the set L(x) defined in Proposi-
tion 12.2.9. Conversely, if � ∈ L(x), then � = kn + �′ with a�′b+ ∩ X �= ∅. Thus the
set of residues modulo n of L and L(x) are the same. The same holds for R and R(x).
Thus Theorem 12.3.1 follows from Proposition 12.2.9.

12.3.2 The property is a simple consequence of the fact that the sums H̄ + K̄ and
S̄ + T̄ are direct.

12.3.3 Let Y ⊂ {a, b}∗ be a finite maximal code containing X. Let L,R

be as in Proposition 12.3.7. We cannot have X ∩ (a∗b∗ ∪ b∗a∗) = Y ∩ (a∗b∗ ∪
b∗a∗) since otherwise Card(L) = Card(K) Card(T) = t Card(T) and Card(R) =
Card(H) Card(S) = d Card(S). The pair (L,R) would thus be a dt-factorization of
Z/nZ and thus not an m-factorization.

Assume first that there is an h /∈ R such that b+ah ∩ Y �= ∅. Let us show the
multiplicity of h in L + (R ∪ h) is larger than m. Indeed, since (S, T) is a factorization
of Z/nZ, there is a pair (r, �) ∈ S × T such that h ≡ � + r mod n. Thus the value h

is represented modulo n in t ways as the sum h + n and in dt ways as the sum � + r .
Thus the multiplicity of h is dt + t > m. The proof that the same property holds for
(L ∪ h) + R is symmetrical.

12.3.4 Use Solution 12.3.3 with m = 10, n = 2 and H = {1, 2, 10}, K = {3, 6, 10}
and S = {2}, T = {1, 2}.

Solutions for Section 13.3 581

12.3.5 The proof is by induction on n ≥ 1. The property is true for n = 1 since
a ∪ a�bar is composed of a prefix and a suffix code. Consider next an integer n ≥ 2.

Since n has the Hajós property, either L or R is periodic. We may assume
that L is periodic of period p. Then n = pq and L = L′ + {0, p, . . . , p(q − 1)}.
The pair (L′, R) is a factorization of Z/qZ. By the induction hypothesis, the
code Z = aq ∪ aL′

baR is composed of prefix and suffix codes. Then X ⊂ an ∪
{1, ap, . . . , ap(q−1)}aL′

baR has the same property.

Chapter 13

Section 13.1

13.1.1 Let µ be the matrix representation of A. We have for any w ∈ A∗∑
a∈A

π (aw) =
∑
a∈A

Iµ(aw)T = IPµ(w)T = Iµ(w)T = π (w).

Section 13.2

13.2.1 Let ϕ be the representation associated with A. The hypotheses imply that
each Xp is rational and a maximal prefix code. Thus, by Theorem 13.2.9, we have
δ(X∗

p) = 1/λ(Xp).
For p, q ∈ Q, let Lp,q be the set defined by Lp,q = {w ∈ A∗ | p · w = q}. Set

Yp,q = Lp,q \ Lp,qA
+. Since Lp,q = Yp,qX

∗
q , and since each Yp,q is a rational max-

imal prefix code, we have for each p, q ∈ Q, by Proposition 13.4.3, δ(Lp,q) =
δ(X∗

q) = 1/λ(Xq).
First assume that I is given by Iq = 1/λ(Xq) for each q ∈ Q. Since A is determin-

istic and complete, the family of sets Li,q for q ∈ Q forms a partition of A∗. Thus∑
q∈Q Iq =∑q∈Q δ(Li,q) = δ(A∗) = 1.
For each q ∈ Q, the sets Li,q and

⋃
p·a=q Li,pa differ at most by

the empty word and thus δ(Li,q) =∑p·a=q δ(Li,p)π (a). Since δ(Li,q) =
δ(X∗

q), this shows that (IP)q =∑p∈Q IpPp,q =∑p∈Q(Ip(
∑

p·a=q π (a)) =∑
p∈Q

∑
p·a=q δ(Li,p)π (a) = δ(Li,q) = Iq . Thus I is stationary.

Conversely, suppose that
∑

q∈Q Iq = 1 and that IP = I . We have also IP n =
I for all n ≥ 0. But P n

p,q = π (Lp,q ∩ An) and thus the sequence of matrices
(S(n)) defined by S(n) = 1/n

∑
i<n P i converges to the matrix S with coeffi-

cients Sp,q = δ(Lp,q) = 1/λ(Xq). Since IS(n) = I , we obtain IS = I , and for each
q ∈ Q, Iq =∑p∈Q IpSp,q =∑p∈Q Ip/λ(Xq) = (

∑
p∈Q Ip)/λ(Xq). This shows that

Iq = 1/λ(Xq) for each q ∈ Q.

Section 13.3

13.3.1 Since X∗ ⊂ Y ∗ ⊂ F (X∗), one has h(X∗) ≤ h(Y ∗) ≤ h(F (X∗)), where h

denotes the entropy. By Proposition 13.3.1, one has h(X∗) = h(F (X∗)). Thus
h(X∗) = h(Y ∗). Set h(X∗) = − log r . By Theorem 13.3.3, we have fX(r) = fY (r) =
1, which implies X = Y .

582 Solutions of exercises

Section 13.4

13.4.1 (a) is clear by bounded convergence.
(b) We have

π (n) ∗ π (1)(L) =
∑
u∈L

π (n) ∗ π (1)(u) =
∑

u∈L∩An+1

∑
va=u

π (v)π (a)

=
∑

u∈L∩An+1

π (u) = π (n+1)(L).

(c) Let µn = 1
n

∑n−1
i=0 π (n)ϕ−1. Then ν = lim µn and thus

ν ∗ ν = (lim µn) ∗ (lim µm) = lim(µn+m) = ν.

13.4.2 We verify that the vector K defined by Kq = 1
d

∑
E∈Eq

JE is stationary and
satisfies

∑
Kq = 1. Since every minimal image has d elements, we have

∑
q∈Q Kq =

1
d

∑
E∈E dJE =∑E∈E JE = 1. Next,

∑
p·a=q

Kpπ (a) =
∑

p·a=q

1

d

∑
E∈Ep

JEπ (a) =
∑
F∈Eq

1

d

∑
E∈Ep,E·a=F

JEπ (a) =
∑
F∈Eq

1

d
JF = Kq.

Section 13.5

13.5.1 We rely on the fact that for a thin maximal code, the sets E(X) and S(X) are
nonempty and equal (see Exercises 5.1.7 and 9.3.6). Thus (i) and (ii) are equivalent.

If Cr (w) is maximal, then w ∈ S(X). Indeed, suppose that xwv ∈ X∗ for some
x ∈ X∗. Since Cr (w) ⊂ Cr (xw), we have Cr (w) = Cr (xw). Thus wv ∈ X∗.

If Cr (w) is not maximal, then w �∈ E(X). Suppose indeed that Cr (w) ⊂ Cr (u)
with v ∈ Cr (u) \ Cr (w). Let s ∈ S(X) and suppose that for some t ∈ A∗, we have
wvst ∈ X∗. Since Cr (w) ⊂ Cr (u), we have uvst ∈ X∗. Since v ∈ Cr (u) we have
uv ∈ X∗ and consequently st ∈ X∗. Let v′ ∈ Cr (w) be such that vst = v′x with
x ∈ X∗. Then uv′x = uvst forces v = v′ by unambiguity, a contradiction. Thus
there is no t as above and w /∈ E(X).

13.5.2 Let U = S(X) \ S(X)A+. Since S(X) is a right ideal, we have S(X) = UA∗.
Thus δ(S(X) = π (U). Moreover, we have E(X) ∩ ϕ−1(K) = DX ∩ ϕ−1(K). Indeed,
let u ∈ DX ∩ ϕ−1(K).

Since the right ideal ϕ(uA∗) is minimal, for any v ∈ A∗ there is a w ∈ A∗ such that
ϕ(uvw) = ϕ(u). Since u ∈ DX there is a w′ ∈ A∗ such that uvww′ ∈ X∗. Thus u ∈
E(X). The other inclusion is clear. Thus δ(DX) = δ(S(X)). For any w ∈ ϕ−1(K) ∩
DX, by Exercise 5.1.8, the set Cr (w)U is a maximal prefix code and the product is
unambiguous. Thus

π (Cr (w))δ(DX) = π (Cr (w))δ(S(X)) = π (Cr (w))π (U) = π (Cr (w)U) = 1.

Solutions for Section 14.1 583

13.5.3 First, we have πα(1) = 1
λ(α)

∑
uv∈X πα−1(uv) = 1

λ(α)

∑
x∈X |x|πα−1(x) = 1.

Next,∑
a∈A

πα(wa) = 1

λ(α)

∑
(u,v)∈C(wa)

πα(−1)(uwav)

= 1

λ(α)

(∑
(u,v)∈C(wa)

v �=1

πα(−1)(uwv) +
∑

(u,1)∈C(w)
x∈X

πα(−1)(uwx)
)

= 1

λ(α)

(∑
(u,v)∈C(wa)

v �=1

πα(−1)(uwv) +
∑

(u,1)∈C(w)

πα(−1)(uw)
)
= πα(w).

A symmetric argument shows that
∑

a∈a πα(aw) = πα(w). The contextual probabil-
ity corresponds to the case where π is a Bernoulli distribution on B∗.

Chapter 14

Section 14.1

14.1.1 A word x ∈ X∗ as in the statement is called separating.
(a) A separating code is complete and synchronized since for any w ∈ A∗, one has

xwx ∈ X∗.
(b) Let P be the set of strict left contexts of x and let S be the set of strict

right contexts of x. Then A∗ = SX∗P unambiguously. Suppose that A∗ = S ′X∗P ′

unambiguously. Let us first verify that the product S ′X∗P is unambiguous. Suppose
indeed that syp = s ′y ′p′ for some s, s ′ ∈ S ′, y, y ′ ∈ X∗ and p, p′ ∈ P . Then sypx =
s ′y ′p′x are two factorizations in S ′X∗ which is unambiguous and thus s = s ′, yp =
y ′p′. Since X∗P is unambiguous, y = y ′ and p = p′.

Let now R be the set such that A∗ = S ′X∗P + R. Then SX∗P = S ′X∗P + R and
multiplying on the right both sides by (1 − A)S, we obtain

S ′ = S − R(1 − A)S. (15.6)

One can show symmetrically that the product SX∗P ′ is unambiguous and that the set
T such that A∗ = SX∗P ′ + T satisfies

P ′ = P − P (1 − A)T . (15.7)

Substituting the expressions for P ′ and S ′ given by Equations (15.6) and (15.7) in the
equality S ′X∗P ′ = SX∗P , we obtain

S ′X∗P ′ = (S − R(1 − A)S)X∗(P − P (1 − A)T)

= SX∗P − R − T + R(1 − A)T .

584 Solutions of exercises

Thus R + T + RAT = RT which forces R = T = 0, by considering the terms of
lowest degree of both sides. Thus S ′X∗P = SX∗P and SX∗P ′ = SX∗P , which
implies P = P ′ and S = S ′.

14.1.2 If x satisfies the conditions, for any word w ∈ A∗ there is a path 1
x−→ p

w−→
q

x−→ 1. Then p is in U (x) and q is in V (x). The hypothesis on U (x), V (x) implies
that w = uv with p

u−→ 1
v−→ q, showing that xu, vx ∈ X∗. Thus X is separating. The

converse is clear.

14.1.3 Let (L,R) be a separating box. Let P be the set of right contexts of words
in L and let Q be the set of left contexts of the words in R. Then A∗ = PX∗Q
unambiguously.

14.1.4 Suppose that S, T satisfy the hypotheses. For w ∈ A∗, there is a unique
pair (s, t) ∈ S × T such that ϕA(swt)11 = 1, and thus such that there is a path 1

s−→
p

w−→ q
t−→ 1. Since ϕ(s)1p = 1, p is in the set �. Since ϕ(t)q1 = 1, q is in c. By

condition (ii), we have w = uv with p
u−→ 1

v−→ q. We obtain su, vt ∈ X∗. Thus S, T

is a separating box.
The converse implication is similar.

14.1.5 Let P (resp. Q) be the set of left (resp. right) contexts of b. Then A∗ =
QX∗

u(P) and thus X − 1 = P (A − 1)Q = X′ − 1 + PbQ.

14.1.6 One has an − 1 = P (a − 1)Q if and only if PQ = 1 + a + · · · + an−1.

14.1.7 (a) is clear since Z is a suffix code on the alphabet X.
(b) Let V be the code defined by V − 1 = Q(A − 1)R. We have

P (A − 1)R + wQ(A − 1)R = Z − 1 + wV − w.

Since w is of maximal length in Z, the right-hand side has the form T − 1 for a
subset T of A∗ which is a code by Proposition 14.1.1.

(c) We first show that T is uniquely factorizing. Suppose that T − 1 = F (A − 1)G.
Let n = |w| and m be the maximal length of words in G. It is possible to show that,
for all f ∈ F , |f | + m + 1 > n implies f ∈ wA∗.

This is shown by descending induction on the length of f . If f is of maximal length,
then f Ag ⊂ wV for |g| = m and thus f ∈ wA∗. Consider next f ∈ F , a ∈ A, and
g ∈ G such that |f ag| > n with |g| = m. We first rule out out the case |f | < n. If this
were the case, we first suppose that f ag ∈ wV . Then, for b �= a, we have f bg �∈ wV

and thus f bg = f1g1 for some f1 ∈ F and g1 ∈ G. Since |g| is maximal, we have
|f1| > |f |, whence f1 ∈ wA∗ by the induction hypothesis, a contradiction. Suppose
next that f Ag ∩ wV = ∅. Using the same argument as above, we conclude that f a

and f b are prefixes of w for a �= b, a contradiction. Thus |f | ≥ n. If f ag �∈ wV ,

Solutions for Section 14.1 585

then f ag = f1g1 for some f1 ∈ F and g1 ∈ G. Then |f1| > |f | implies f1 ∈ wA∗

by induction hypothesis and finally f ∈ wA∗.
Let F1 be the set of f ∈ F such that |f ag| ≤ |w| for all a ∈ A and g ∈ G and

let F ′
2 = F \ F1. Then, as we have seen, F ′

2 = wF2 and F1AG ∩ wF2G = {w}. We
thus obtain P (A − 1)R = F1(A − 1)G and Q(A − 1)R = F2(A − 1)G. Since Z is
separating, it is uniquely factorizing, and thus R = G. Thus T is uniquely factorizing.

The three-factor expression of T − 1 does not correspond to a decomposition of
T since P ∪ wQ is not prefix-closed and R is not suffix-closed. Since P + wQ and
R cannot be factorized into products of nontrivial characteristic polynomials, these
are the only possible decompositions of T . Thus T is indecomposable.

(d) Z is separating. Let indeed z = b. We have for any word w ∈ A∗, wb ∈ X∗.
Since X∗ = RZ∗, we have either wb ∈ Z∗ or wb = aav with v ∈ Z∗. In the first
case we have b,wb ∈ Z∗ and in the second one baa, vb ∈ Z∗. Thus condition (i) is
satisfied. Next, we have Card(P ∪ wQ) = 5 and Card(R) = 2. Thus condition (ii) is
satisfied. Finally, R is not suffix-closed since a /∈ R and thus condition (iii) is also
satisfied.

14.1.8 (a) is a direct verification.
(b) We show that the code Z defined by the expression satisfies Z∗ = X∗ ∩ Y ∗.

We have

Z − 1 = (1 + A + b2)(A − 1)(a(A − 1) + 1)(1 + a + Aa)

= (X − 1)(a(A − 1) + 1)(1 + a + Aa)

= (X − 1)(1 + aA + ba + aA2a)

and thus Z ⊂ X∗, since Z − 1 = (X − 1)P with P ⊂ X∗. In the same way

Z − 1 = (1 + A + b2)((A − 1)a + 1)(A − 1)(1 + a + Aa)

= (1 + a + b + +b2)(1 − a + a2 + ba)(Y − 1)

= (1 + aAa + b + b2 + ba2 + b2Aa)(Y − 1)

and Z − 1 = Q(Y − 1) with Q ⊂ Y ∗. Thus Z decomposes on X and Y and conse-
quently Z ⊂ X∗ ∩ Y ∗. The other inclusion follows from the fact that these are the
only possible decompositions of Z.

(c) Z is synchronized since X and Y are. Let x, y ∈ Z∗ be such that yA∗x ⊂ Z∗.
Then yA∗ ⊂ Y ∗ since Y is suffix and A∗x ⊂ X∗ since X is prefix. Consider the word
xay. We cannot have ya ∈ Z∗ (since a /∈ X∗) and neither ax ∈ Z∗ (since a /∈ Y ∗).
Thus Z is not separating.

(d) Consider the automaton recognizing Z∗ represented on Figure 15.11 (it can
be computed either from the list of words forming Z or using the direct product of
automata recognizing X∗ and Y ∗). Let us verify that ({b3}, {1, a5}) is a separating

box. Indeed, the set of states q such that 0
b3−→ q is � = {1, 3, 6}. It is a maximal

row of the transition monoid of the automaton appearing as the first column of
Table 15.8. The other maximal rows are {2, 4, 5} and {4, 7}. Each of these sets

586 Solutions of exercises

1 2

34

5 6

7

a
a, b

a

a, b

a, b

a

b

b
b a

b

b a

Figure 15.11 An automaton recognizing Z∗.

Table 15.8 The maximal
rows and columns.

1 2 7

3 5 7

6 4 4

intersects in exactly one point the set {1, 5, 7} = {1} ∪ {q ∈ Q | q
a5−→ 1}. This shows

that condition (i) of Exercise 14.1.4 is satisfied for the pair ({1, 3, 6}, {1, 5, 7}). It
can be checked that condition (ii) is also satisfied and thus the pair is a separating
box. The corresponding factorization is Z − 1 = (X − 1)P . Another separating box

is ({1, a4, a4b}, {1, aba}. Indeed, the set of states q such that q
aba−−→ 1 is {2, 7}. But

the set {1, 2, 7} is a maximal column of the transition monoid of the automaton,
appearing as the first row of Table 15.8. The other maximal columns are {3, 5, 7} and
{4, 6}. Each of them intersects in exactly one point the set {1, 3, 4} which is the set
of states q such that 1

u−→ q for u = 1, a4 or a4b. Thus the pair ({1, 3, 4}, {1, 2, 7})
satisfies condition (i). Since condition (ii) is also satisfied, the pair is a separating
box. It corresponds to the other factorization Z − 1 = Q(Y − 1).

14.1.9 (a) We have

σ = (1 + w)(X − 1 + G1wD1 + G1w
2 − G1w + w2D1 + w3 − w2 − wD + w) + 1

= (1 + w)R + (1 + w)(w3 − w2 + w − 1) + 1 = (1 + w)R + w4.

It is easy to verify that R is a prefix code, that w is not a prefix of R, and that σ is the
characteristic polynomial of a maximal prefix code.

The polynomial τ = (X − 1 + (G − 1)w(D − 1))(1 + w) + 1 satisfies τ =
R(1 + w) + w4 and thus τ has nonnegative coefficients. We have also τ − 1 =
(P + (G − 1)wQ)(A − 1)(1 + w) where P is the set of prefixes of X and Q the
set of prefixes of D. Thus τ is the characteristic polynomial of a finite maximal code.

Solutions for Section 14.3 587

(b) We have γw(X) ∩ w2A∗ = w2D1 ∪ w2Dw and γw(X) ∩ A∗w2 = G1w ∪
Gw3. Thus γw(X) ∩ w2A∗ ∩ A∗w2 = {w4}, which shows that x2 = w4 is a pure
square for γw(X).

(c) It follows from the fact that Y = (1 + w)R + w4 and Z = R(1 + w) + w4

that for each y ∈ Y ∗, we have either y ∈ Z∗ or y = wz with z, zw ∈ Z∗. Indeed, if
y = y1y2 · · · yn, we have for each i = 1, . . . , n, yi ∈ R or yi ∈ wR or yi = w4. We
then glue each prefix w with the previous element of the factorization, except perhaps
for the first one. Thus a word with d disjoint interpretations in Y ∗ has also d disjoint
interpretations in Z∗.

(d) Let S be the set of suffixes of X and T be the set of suffixes of G. We have
X − 1 = (A − 1)S and G − 1 = (A − 1)T . Thus

Y − 1 = (1 + w)(X − 1 + (G − 1)w(D − 1)) = (1 + w)(A − 1)(S + T w(D − 1))

= (1 + w)(A − 1)L

with L = (S \ T w) ∪ T wD. Thus, equivalently A∗ = LY ∗(1 + w) is a factorization.
Since S is a disjoint union of d(X) maximal prefix codes and T w ⊂ S, the set L

is a disjoint union of d(X) maximal prefix codes. Thus any word has d(X) disjoint
interpretations in Y ∗.

(e) Let G′ = Yw−2 and D′ = w−2Y . We have G′ = (1 + w)G1 + w2 and D′ =
(1 + w)D1 + w2. Thus G′ − 1 = (1 + w)(G − 1) and D′ − 1 = (1 + w)(D − 1).
We have then the factorization

T − 1 = (1 + w2)(Y − 1 + (G′ − 1)w(D′ − 1))

= (1 + w2)(1 + w)(X − 1 + (G − 1)w(D − 1) + (G − 1)w(D′ − 1))

= (1 + w2)(1 + w)(A − 1)(S + T w(1 + w + w2)(D − 1))

= ((1 + w2)(1 + w)(A − 1)M,

where M is a disjoint union of d(X) maximal prefix codes (observe that (1 + w +
w2)(D − 1) = E − 1 where E is a maximal prefix code). This shows that d(T) =
d(X). By (c) we obtain the conclusion d(Z) = d(X).

(f) Suppose that Z ⊂ V ∗ where V is a prefix code. Fix a letter a ∈ A. Set d = d(X)
and let e < d be such that ae ∈ D. Since d > 2, we have w �= a. Since Z contains
ad and adw, we have w ∈ V ∗. Since Gw3D \ w5 is a subset of Z, we have D1 ⊂ V ∗

and thus ae ∈ V ∗. We conclude, since d is prime that a ∈ V . The case where V is a
suffix code is symmetric.

(g) The set X defined by X = Ad + (A − 1)an−1ban(A − 1) with d = 2n + 1 is a
maximal bifix code. The word (anb)2 is a pure square for X. Thus we may apply the
above construction for any prime number d > 2.

Section 14.3

14.3.1 Take P = 1 and Q = 0.

588 Solutions of exercises

14.3.2 By induction on n. It is clear for n = 1. Assume it holds for n. Then

x1 + 1

x2 + 1

. . . + 1

xn + 1

xn+1

is equal to

p(x1, . . . , xn + 1/xn+1)

p(x2, . . . , xn + 1/xn+1)
.

Next,

p(x1, . . . , xn + 1/xn+1) = p(x1, . . . , xn−1)(xn + 1/xn+1) + p(x1, . . . , xn−2)

= p(x1, . . . , xn−1)xn + p(x1, . . . , xn−2) + p(x1, . . . , xn−1)
1

xn+1

= p(x1, . . . , xn) + p(x1, . . . , xn−1)
1

xn+1

= 1

xn+1
p(x1, . . . , xn, xn+1),

Thus, the fraction is equal to

p(x1, . . . , xn + 1/xn+1)

p(x2, . . . , xn + 1/xn+1)
=

1
xn+1

p(x1, . . . , xn, xn+1)
1

xn+1
p(x2, . . . , xn, xn+1)

.

14.3.3 The formula holds for k = n since it reduces to p(a1, . . . , an) − p(a1, . . . ,

an−1)an = p(a1, . . . , an−2). It also holds for k = n − 1. Indeed, the left-hand side is
equal to p(a1, . . . , an)an−1 − p(a1, . . . , an−1)(anan−1 + 1), and since

p(a1, . . . , an−1)(anan−1 + 1) = p(a1, . . . , an−1)anan−1 + p(a1, . . . , an−1)

= p(a1, . . . , an−1)anan−1 + p(a1, . . . , an−2)an−1 + p(a1, . . . , an−3)

= p(a1, . . . , an)an−1 + p(a1, . . . , an−3)

we get

p(a1, . . . , an)an−1 − p(a1, . . . , an−1)(anan−1 + 1)

= p(a1, . . . , an)an−1 − p(a1, . . . , an)an−1 − p(a1, . . . , an−3)

= −p(a1, . . . , an−3)

Solutions for Section 14.7 589

as required. Arguing by induction on decreasing values of k, we have, using the
formula p(an, . . . , ak) = p(an, . . . , ak+1)ak + p(an, . . . , ak+2)

p(a1, . . . , an) p(an−1, . . . , ak) − p(a1, . . . , an−1) p(an, . . . , ak)

= p(a1, . . . , an) p(an−1, . . . , ak+1)ak + p(a1, . . . , an) p(an−1, . . . , ak+2)

− p(a1, . . . , an−1) p(an, . . . , ak+1)ak − p(a1, . . . , an−1) p(an, . . . , ak+2)

= (−1)n+k+1 p(a1, . . . , ak−1)ak + (−1)n+k+2 p(a1, . . . , ak)

= (−1)n+k p(a1, . . . , ak−2).

14.3.4 Set fn+1 = p(1, . . . , 1) (n times). Then f0 = 0, f1 = 1, and by the definition,
one gets fn+1 = fn + fn−1.

Section 14.4

14.4.1 This is clear for S(u), P (u), and F (u, v) by definition.

14.4.2 This results from the formula a−1(ST) = a−1(S)T + (S, 1)a−1(T) and from
the fact that S∗ = 1 + SS∗.

Section 14.5

14.5.1 The proof is easy by induction on the number of nodes of the tree and the
number of states of the literal automaton.

Section 14.6

14.6.1 Since a, c ∈ Y , we have ba ∈ Y . But then all conjugates of acb have a prefix
in Y .

14.6.2 Set p(z) = (1 − u(z)/(1 − kz) with p(z) =∑i≥0 piz
i . Then for each n ≥ 1

pn/kn = 1 − u1/k − · · · − un/kn,

whence the result.

Section 14.7

14.7.1 Any � ∈ E0 is a linear combination
∑

λuiϕ(u), where i denotes the charac-
teristic row vector of I and T denotes the characteristic column vector of T . For
v ∈ A∗, we have (γ (�), v) = (

∑
λu(σ · u), v) =∑ λu(σ, uv) =∑ λuiϕ(uv)T =

�ϕ(v)T. Thus γ (�) = 0 if and only if � ∈ E1.

14.7.2 If S is recognizable, there is a finite automaton A = (Q, i, T) recognizing S.
Then, by Exercise 14.7.1, the dimension of Vσ is at most equal to Card(Q).

590 Solutions of exercises

14.7.3 Theorem 14.7.4 can be stated more generally as: A linear representation of a
finite group G over a field of characteristic 0 or prime to the order of G is completely
reducible. The same proof applies with the observation that the map θ is well defined
under the hypothesis. The rest of the proof of Theorem 14.7.5 remains unchanged.

14.7.4 Suppose, as in the proof of Theorem 14.7.5, that W is an invariant subspace
of V . Let W ′ be the supplementary subspace of W defined in the proof. Since X is
synchronized, the idempotent e has rank 1 and therefore S has dimension 1. Thus
either T = {0} or T = S. In the first case, T ′ = S, which implies W ′ = V and thus
W = {0}. In the second case, W ′ = {0} and thus W = V . Thus, the representation is
irreducible.

Appendix: Research problems

In this appendix, we gather, for the convenience of the reader, the conjectures men-
tioned in the book and present some additional open problems. We take this oppor-
tunity to discuss some of them in more detail.

The inclusion problem Recall from Chapter 2 that the inclusion problem for a
finite code X is the existence of a finite maximal code containing X. The inclusion
conjecture is that this problem is decidable.

The smallest integer k for which a k element code is known which is not included
in a finite maximal code is k = 4. Such an example is the code X = {a5, ba2, ab, b}
of Example 2.5.7. Proposition 12.3.3 describes an infinite family of codes to which
X belongs. It is not known whether every code with three elements is included in a
finite maximal code.

For a finite bifix code X, the existence of a finite maximal bifix code containing
X is decidable. Indeed, if X is insufficient, then any maximal bifix code with kernel
X is finite by Proposition 6.5.6. On the contrary, if X is sufficient, then the degree of
a finite maximal code containing X must be equal to the common value (LX,w) of
the indicator LX of X for any full word w whose length exceeds the maximal length
of the words of X. Since there is a finite number of finite maximal bifix codes with
given degree, this gives a decision procedure (although it is not a very practical one).

Complexity of unique decipherability The precise complexity of the test for
unique decipherability is still unknown. The same holds for the property of com-
pleteness. The length of the shortest word w such that w is not a factor of X∗ for a
finite set X has been studied by Restivo (1981). The bound proposed in Restivo (1981)
is 2k2 where k = maxx∈X |x|. A counterexample has been obtained by a computer-
aided search using the software Vaucanson. It is believed that the conjecture is true
with a larger value of the constant.

Černý’s conjecture Recall from Chapter 3 that Černý’s conjecture asserts that
any synchronized strongly connected deterministic automaton with n states has a
synchronizing word of length at most (n − 1)2. The conjecture is known to be true in
several particular cases. For example, the conjecture holds if there is a letter which acts

592 Appendix: Research problems

as an n-cycle on the set of states, see Dubuc (1998). This result has been generalized
to so-called strongly transitive automata by Carpi and D’Alessandro (2008).

The best upper bound known is (n3 − n)/6, far from the lower bound. For an
n-state so-called monotonic automaton over a k-letter input alphabet there exists an
algorithm that finds a synchronizing word in O(n3 + n2k) time and O(n2) space; for
this subclass of automata, an upper bound of (n − 1)2 on the length of a synchro-
nizing word can be proven. It has also been proved that finding the minimum length
synchronizing word is an NP-complete problem. For a recent survey, see Volkov
(2008).

The same conjecture can be formulated for unambiguous automata instead of
deterministic ones. The cubic bound which is easy to obtain for deterministic automata
can still be proved by a result of Carpi (1988) (Exercise 9.3.13).

Bifix codes Recall from Chapter 6 that it is conjectured that for any sequence of
nonnegative integers un such that

∑
n≥0 unk

−n ≤ 3/4, there exists a bifix code X on
k letters with length distribution (un)n≥0. Among the partial results obtained so far,
we mention that for k = 2, the conjecture holds with 3/4 replaced by 5/8, as shown
by Yekhanin (2004).

Groups of codes The first problem is simply to study whether Proposition 11.1.6
holds for arbitrary thin maximal codes.

Next, let X ⊂ A+ be a finite code with n elements and let A = (Q, 1, 1) be a
trim unambiguous automaton recognizing X∗. Let ϕ = ϕA and let M = ϕ(A∗). Let
e be an idempotent in the transition monoid of the automaton A and let H be the
H-class of e. Schützenberger (1979a) has proved that either ϕ−1(H) is cyclic or the
group Ge has degree at most 2n. This bound can be reduced to n by using the critical
factorization theorem (see Lothaire (1997)). It is conjectured that actually, the degree
of Ge is at most n − 1 if ϕ−1(H) is not cyclic. This is known to be true if X is prefix
(Perrin and Rindone (2003)).

Finally, it is not known whether Theorem 11.6.5 holds more generally for finite
maximal prefix codes. For example, it is not known if there exists a finite maximal
prefix code X such that G(X) is the dihedral group D5.

Finite factorizations Given a factorization A∗ = X∗
nX

∗
n−1 · · ·X∗

1 with n factors,
are the codes Xi always limited? This is true if the factorization is obtained by
iterating bisections (Exercise 8.2.1). It is true for factorizations with up to four
factors by a result of Krob (1987). A conjecture in relation to factorizations is the
following. If A∗ = M1 · · ·Mn where M1, . . . ,Mn are submonoids, then the Mi are
free submonoids. This is known to hold up to n = 4, see Krob (1987).

Probability distributions Let X ⊂ A∗ be a finite maximal code and let π be a
probability distribution on A∗. It is conjectured that if π is invariant and multiplicative
on X∗, then it is a Bernoulli distribution. This has been proved to hold for a finite
maximal prefix code by Langlois, as reported in Hansel and Perrin (1989).

Appendix: Research problems 593

Factorization conjecture Recall from Chapter 14 that the factorization conjecture
states that any finite maximal code is positively factorizing and that the commutative
equivalence conjecture states that any finite maximal code is commutatively prefix. By
Corollary 14.6.6, the factorization conjecture implies the commutative equivalence
conjecture. There are relations between the factorization conjecture and factorizations
of cyclic groups. These have been described in a series of papers, see De Felice
(2007). It is not known whether every finite maximal code has a separating box (see
Exercise 14.1.3). A positive answer would solve the factorization conjecture. It is
conjectured that the polynomial Q in Equation (14.7) has the form Q =∑d−1

i=1 Ui ,
where each Ui is a nonempty prefix-closed set.

Noncommutative polynomials Let K be a field and let A be an alphabet. A subring
R of K〈A〉 is free if it is isomorphic to K〈B〉 for some alphabet B. A subring R of
K〈A〉 is called an anti-ideal if for any u ∈ K〈A〉 and nonzero v,w ∈ R, uv,wu ∈ R

implies u ∈ R. By a theorem of Kolotov (1978), a free subring of K〈A〉 is an anti-
ideal, see also Lothaire (2002). Thus the subring generated by a submonoid M of
A∗ is an anti-ideal if and only if it is free. Indeed, if K〈M〉 is an anti-ideal, then M

is stable and therefore is free. This is not true for arbitrary subrings of K〈A〉, Cohn
(1985), Exercise 6.6.11 gives a counterexample which he credits to Dicks. It is not
known whether the property that K〈Y 〉 is free, for a finite set Y of K〈A〉, is decidable.

Some of the problems presented in this appendix were already mentioned in Berstel
and Perrin (1986). They are also discussed in Bruyère and Latteux (1996) and Béal
et al. (2009).

References

Roy L. Adler and Benjamin Weiss (1970). Similarity of Automorphisms of the Torus.
Memoirs of the American Mathematical Society, No. 98. American Mathemat-
ical Society. 396

Roy L. Adler, L. Wayne Goodwyn, and Benjamin Weiss (1977). Equivalence of
topological Markov shifts. Israel J. Math., 27 (1): 48–63. 396

Roy L. Adler, Donald Coppersmith, and Martin Hassner (1983). Algorithms for
sliding block codes. IEEE Trans. Inform. Theory, IT-29: 5–22. 175

Rudolf Ahlswede, Bernhard Balkenhol, and Levon H. Khachatrian (1996). Some
properties of fix-free codes. In Proc. 1st Int. Sem. on Coding Theory and Com-
binatorics, Thahkadzor, Armenia, pp. 20–33. 273

Alfred V. Aho and Margaret J. Corasick (1975). Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18: 335–40. 105

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman (1974). The Design and
Analysis of Computer Algorithms. Addison-Wesley. 104

Alberto Apostolico and Raffaele Giancarlo (1984). Pattern-matching implementation
of a fast test for unique decipherability. Inform. Process. Lett., 18: 155–8. 104,
105

Robert B. Ash (1990). Information Theory. Dover Publications Inc. Corrected reprint
of the 1965 original. 104

Jonathan Ashley, Brian Marcus, Dominique Perrin, and Selim Tuncel (1993). Sur-
jective extensions of sliding block codes. SIAM J. Discrete Math., 6: 582–611.
224

G. Bandyopadhyay (1963). A simple proof of the decipherability criterion of Sardinas
and Patterson. Inform. and Control, 6: 331–6. 104

Evelyne Barbin-Le Rest and Michel Le Rest (1985). Sur la combinatoire des codes à
deux mots. Theoret. Comput. Sci., 41 (1): 61–80. 325

Frédérique Bassino, Marie-Pierre Béal, and Dominique Perrin (2000). A finite state
version of the Kraft-McMillan theorem. SIAM J. Comput., 30 (4): 1211–30
(electronic). 175

Marie-Pierre Béal (1993). Codage symbolique. Masson. 104
Marie-Pierre Béal and Dominique Perrin (2005). Codes and sofic constraints. Theoret.

Comput. Sci., 340(2): 381–93. 105

References 595

Marie-Pierre Béal and Dominique Perrin (2006). Complete codes in a sofic shift. In
STACS 2006, volume 3884 of Lecture Notes in Computer Science, pp. 127–36.
Springer-Verlag. 105

Marie-Pierre Béal, Olivier Carton, and Christophe Reutenauer (1996). Cyclic lan-
guages and strongly cyclic languages. In C. Puech and R. Reischuk, editors,
STACS’96, volume 1046 of Lecture Notes in Computer Science, pp. 49–59.
Springer-Verlag. 326

Marie-Pierre Béal, Sylvain Lombardy, and Jacques Sakarovitch (2005). On the equiv-
alence of Z-automata. In ICALP’05, volume 3580 of Lecture Notes in Computer
Science, pp. 397–409. Springer-Verlag. 175

Marie-Pierre Béal, Eugen Czeizler, Jarkko Kari, and Dominique Perrin (2008). Unam-
biguous automata. Math. Comput. Sci., 1 (4): 625–38. 370

Marie-Pierre Béal, Jean Berstel, Brian H. Marcus, Dominique Perrin, Christophe
Reutenauer, and Paul H. Siegel (2009). Variable length-codes and finite
automata. In Isaac Woungang, editor, Selected Topics in Information and Coding
Theory. World Scientific. 104, 593

Jean Berstel (1979). Transductions and Context-Free Languages. Teubner. 198
Jean Berstel and Dominique Perrin (1986). Trends in the theory of codes. Bull. Eur.

Assoc. Theor. Comput. Sci. EATCS, 29: 84–95. 593
Jean Berstel and Dominique Perrin (2007). The origins of combinatorics on words.

European J. Combin., 28 (3): 996–1022. 105
Jean Berstel and Christophe Reutenauer (1988). Rational Series and their Languages.

Springer-Verlag. 53, 370
Jean Berstel and Christophe Reutenauer (1990). Zeta functions of formal languages.

Trans. Amer. Math. Soc., 321: 533–46. 326
Jean Berstel, Dominique Perrin, Jean François Perrot, and Antonio Restivo (1979).

Sur le théorème du défaut. J. Algebra, 60: 169–80. 104, 224
Marek Tomasz Biskup (2008). Shortest synchronizing strings for Huffman codes.

In E. Ochmanski and J. Tyszkiewicz, editors, Mathematical Foundations of
Computer Science 2008, Torun, Poland, August 25-29, 2008, volume 5162 of
Lecture Notes in Computer Science, pp. 120–31. Springer-Verlag. 175

François Blanchard and Georges Hansel (1986). Systèmes codés. Theoret. Comput.
Sci., 44 (1): 17–49. 491

François Blanchard and Dominique Perrin (1980). Relèvement d’une mesure
ergodique par un codage. Z. Wahrsch. Verw. Gebiete, 54: 303–11. 491

Edward K. Blum (1965). Free subsemigroups of a free semigroup. Michigan Math.
J., 12: 179–82. 104

Jean-Marie Boë (1976). Représentations des monoı̈des: Applications à la théorie des
codes. PhD thesis, Montpellier. 370

Jean-Marie Boë (1981). Sur les codes synchronisants coupants. In Noncommutative
Structures in Algebra and Geometric Combinatorics (Naples, 1978), volume
109 of Quad. “Ricerca Sci.”, pp. 7–10. 534

Jean Marie Boë (1991). Les boı̂tes. Theoret. Comput. Sci., 81 (1, (Part A)): 17–34.
370

596 References

Jean-Marie Boë, Jeanine Boyat, Jean-Pierre Bordat, and Yves Cesari (1979). Une
caractérisation des sous-monoı̈des libérables. In D. Perrin, editor, Théorie des
Codes (actes de la septième École de Printemps d’Informatique Théorique),
LITP, pp. 9–20. 370

Jean-Marie Boë, Aldo de Luca, and Antonio Restivo (1980). Minimal completable
sets of words. Theoret. Comput. Sci., 12: 325–32. 104

Phillip G. Bradford, Mordecai J. Golin, Lawrence L. Larmore, and Wojciech Rytter
(2002). Optimal prefix-free codes for unequal letter costs: dynamic programming
with the Monge property. J. Algorithms, 42 (2): 277–303. 175

Véronique Bruyère (1987). Maximal prefix products. Semigroup Forum, 36: 147–57.
174

Véronique Bruyère (1992). Automata and codes with bounded deciphering delay.
In LATIN ’92 (São Paulo, 1992), volume 583 of Lecture Notes in Computer
Science, pp. 99–107. Springer-Verlag. 224

Véronique Bruyère (1998). On maximal codes with bounded synchronization delay.
Theoret. Comput. Sci., 204: 11–28. 395

Véronique Bruyère and Clelia De Felice (1992). Synchronization and decompos-
ability for a family of codes. Internat. J. Algebra Computation, 2: 367–93.
534

Véronique Bruyère and Michel Latteux (1996). Variable-length maximal codes. In
ICALP’96, volume 1099 of Lecture Notes in Computer Science, pp. 24–47.
Springer-Verlag. 224, 593

Véronique Bruyère and Dominique Perrin (1999). Maximal bifix codes. Theoret.
Comput. Sci., 218 (1): 107–21. 274

Véronique Bruyère, Li Min Wang, and Liang Zhang (1990). On completion of codes
with finite deciphering delay. European J. Combin., 11 (6): 513–21. 224

Véronique Bruyère, Denis Derencourt, and Michel Latteux (1998). The meet oper-
ation in the lattice of codes. Theoret. Comput. Sci., 191 (1-2): 117–29. 176,
371

John A. Brzozowski (1967). Roots of star events. J. Assoc. Comput. Mach., 14:
466–77. 104

Renato M. Capocelli and Christoph M. Hoffmann (1985). Algorithms for factorizing
semigroups. In A. Apostolico and Z. Galil, editors, Combinatorial Algorithms
on Words (Maratea, 1984), volume 12 of NATO Adv. Sci. Inst. Ser. F, pp. 59–81.
Springer-Verlag. 105

Renato M. Capoceli, Alfredo A. De Santis, Luisa Gargano, and Ugo Vaccaro (1992).
On the construction of statistically synchronizable codes. IEEE Trans. Inform.
Theory, 38(2, part 1): 407–14. 175

Arturo Carpi (1987). On unambiguous reductions of monoids of unambiguous rela-
tions. Theoret. Comput. Sci., 51 (1-2): 215–20. 370

Arturo Carpi (1988). On synchronizing unambiguous automata. Theoret. Comput.
Sci., 60 (3): 285–96. 370, 592

Arturo Carpi and Flavio D’Alessandro (2008). The synchronization problem for
strongly transitive automata. In Masami Ito and Masafumi Toyama, editors,
Developments in Language Theory, 12th International Conference, DLT 2008,

References 597

Kyoto, Japan, September 16-19, 2008, volume 5257 of Lecture Notes in Com-
puter Science, pp. 240–51. Springer-Verlag. 592

Larry Carter and John Gill (1974). Conjectures on uniquely decipherable codes. IRE
Trans. Inform. Theory, IT-20: 394–96. 534

Ján Černý (1964). Poznamka k homogenym s konecnymi automati. Mat.-fyz. cas.
SAV., 14: 208–15. 175

Yves Césari (1972). Sur un algorithme donnant les codes bipréfixes finis. Math.
Systems Theory, 6: 221–25. 273

Yves Césari (1974). Sur l’application du théorème de Suschkevitch à l’étude des codes
rationnels complets. In Automata, Languages and Programming, volume 14 of
Lecture Notes in Computer Science, pp. 342–50. Springer-Verlag. 370

Yves Césari (1979). Propriétes combinatoires des codes bipréfixes. In D. Perrin, edi-
tor, Théorie des Codes (actes de la septième École de Printemps d’Informatique
Théorique), pp. 20–46. LITP. 273, 274

Christian Choffrut (1979). Une caractérisation des codes à délai borné par leur fonc-
tion de décodage. In D. Perrin, editor, Théorie des Codes (actes de la septième
École de Printemps d’Informatique Théorique), pp. 47–56. LITP. 224

Alfred H. Clifford and Gordon B. Preston (1961). The Algebraic Theory of Semi-
groups, volume 1. American Mathematical Society. 53, 370

Paul M. Cohn (1962). On subsemigroups of free semigroups. Proc. Amer. Math. Soc.,
63: 347–51. 104

Paul M. Cohn (1985). Free Rings and their Relations, volume 19 of London Math-
ematical Society Monographs. Academic Press, second edition. (First edition
1971). 104, 534, 593

John H. Conway (1971). Three lectures on exceptional groups. In Finite Simple
Groups (Proc. Instructional Conf., Oxford, 1969), pp. 215–47. Academic Press.
434

Karel Culik, Juhani Karhumäki, and Jarkko Kari (2002). A note on synchronized
automata and the road coloring problem. In W. Kuich, editor, Developments in
Language Theory (Vienna, 2001), volume 2295 of Lecture Notes in Computer
Science, pp. 175–85. Springer-Verlag. 396

Nicholaas Govert De Bruijn (1953). On the factorization of cyclic groups. Indag.
Math., 15: 258–64. 449

Clelia De Felice (1983). A note on the triangle conjecture. Inform. Process. Lett., 14:
197–200. 534

Clelia De Felice (1992). On the factorization conjecture. In STACS’92, volume 577
of Lecture Notes in Computer Science, pp. 545–56. Springer-Verlag. 534

Clelia De Felice (1993). A partial result about the factorization conjecture for finite
variable-length codes. Discrete Math., 122: 137–52. 534

Clelia De Felice (1996). An application of Hajós factorizations to variable-length
codes. Theoret. Comput. Sci., 164: 223–52. 449

Clelia De Felice (2007). Finite completions via factorizing codes. Internat. J. Algebra
Computation, 17 (4): 715–60. 593

Clelia De Felice and Antonio Restivo (1985). Some results on finite maximal codes.
RAIRO Informat. Theor., 19: 383–403. 449

598 References

Clelia De Felice and Christophe Reutenauer (1986). Solution partielle de la conjecture
de factorisation des codes. C. R. Acad. Sci. Paris, 302: 169–70. 534

Aldo de Luca (1976). A note on variable length codes. Inform. and Control, 32:
263–71. 104

Aldo de Luca and Antonio Restivo (1980). On some properties of very pure codes.
Theoret. Comput. Sci., 10: 157–70. 298, 396

Xiaotie Deng, Guojun Li, and Wenan Zang (2004). Proof of Chvátal’s conjecture on
maximal stable sets and maximal cliques in graphs. J. Combin. Theory Ser. B,
91 (2): 301–25. 370

Xiaotie Deng, Guojun Li, and Wenan Zang (2005). Corrigendum to: “Proof of
Chvátal’s conjecture on maximal stable sets and maximal cliques in graphs”
[J. Combin. Theory Ser. B 91 (2004), no. 2, 301–25; mr2064873]. J. Combin.
Theory Ser. B, 94 (2): 352–53. 370

Christian Deppe and Holger Schnettler (2006). On q-ary fix-free codes and directed
deBrujin graphs. In IEEE International Symposium on Information Theory, pp.
1482–5. 273

Denis Derencourt (1996). A three-word code which is not prefix-suffix composed.
Theoret. Comput. Sci., 163: 145–60. 106

John S. Devitt and David M. Jackson (1981). Comma-free codes: An extension of
certain enumerative techniques to recursively defined sequences. J. Combin.
Theory Ser. A, 30: 1–18. 299

Volker Diekert and Anca Muscholl (1996). Code problems on traces. In Mathematical
Foundations of Computer Science 1996 (Cracow), volume 1113 of Lecture Notes
in Computer Science, pp. 2–17. Springer-Verlag. 105

Louis Dubuc (1998). Sur les automates circulaires et la conjecture de Černý. RAIRO
Inform. Théor. Appl., 32 (1-3): 21–34. 592

Williard L. Eastman (1965). On the construction of comma-free codes. IEEE Trans.
Inform. Theory, IT-11: 263–7. 299

Andrei Ehrenfeucht and Gregorz Rozenberg (1978). Elementary homomorphisms
and a solution to the D0L sequence equivalence problem. Theoret. Comput. Sci.,
7: 169–84. 104

Andrei Ehrenfeucht and Gregorz Rozenberg (1983). Each regular code is included in
a regular maximal code. RAIRO Informat. Theor., 20: 89–96. 104

Samuel Eilenberg (1974). Automata, Languages and Machines, volume A. Academic
Press. 52, 53, 104, 198

Samuel Eilenberg (1976). Automata, Languages and Machines, volume B. Academic
Press. 299, 396

Peter Elias (1975). Universal codeword sets and representations of the integers. IEEE
Trans. Inform. Theory, 21(2): 194–203. 174

William Feller (1968). An Introduction to Probability Theory and Its Applications.
Wiley, third edition. 175, 491

Michel Fliess (1974). Matrices de Hankel. J. Math. Pures Appl., 53: 197–222. 534
Dominique Foata and Guo Niu Han (1994). Nombres de Fibonacci et polynômes

orthogonaux. In M. Morelli and M. Tangheroni, editors, Leonardo Fibonacci:

References 599

il tempo, le opere, l’eredità scientifica, pp. 179–200, Pisa, 23–25 March. Pacini
Editore (Fondazione IBM Italia). 106

Christopher F. Freiling, Douglas S. Jungreis, Francois Théberge, and Kenneth Zeger
(2003). Almost all complete binary prefix codes have a self-synchronizing string.
IEEE Trans. Inform. Theory, 49(9):2219–25. 175

Joel Friedman (1990). On the road coloring problem. Proc. Amer. Math. Soc., 110
(4): 1133–5. 371, 396

Zvi Galil (1985). Open problems in stringology. In A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words (Maratea, 1984), volume 12 of NATO Adv.
Sci. Inst. Ser. F, pp. 1–8. Springer-Verlag. 105

Robert G. Gallager and David C. van Voorhis (1975). Optimal source codes for
geometrically distributed integer alphabets. IEEE Trans. Inform. Theory, 21:
228–30. 176

Felix R. Gantmacher (1959). The Theory of Matrices Vols 1, 2. Chelsea. Translated
from the Russian original. 52

Adriano M. Garsia and Michelle L. Wachs (1977). A new algorithm for minimum
cost binary trees. SIAM J. Comput., 6 (4): 622–42. 175

Israel M. Gel′fand and Vladimir S. Retakh (1991). Determinants of matrices over
noncommutative rings. Funktsional. Anal. i Prilozhen., 25 (2): 13–25, 96. 198

Edgar N. Gilbert (1960). Synchronization of binary messages. IRE Trans. Inform.
Theory, IT-6: 470–77. 299

Edgar N. Gilbert and Edward F. Moore (1959). Variable length binary encodings.
Bell System Tech. J., 38: 933–67. 104, 175, 223, 224, 273

David Gillman and Ronald Rivest (1995). Complete variable length fix-free codes.
Designs, Codes and Cryptography, 5: 109–14. 273

Bernd Girod (1999). Bidirectionally decodable streams of prefix code words. IEEE
Communications Letters, 3 (8): 245–7. 274

Mordecai J. Golin and Günter Rote (1998). A dynamic programming algorithm for
constructing optimal prefix-free codes with unequal letter costs. IEEE Trans.
Inform. Theory, 44 (5): 1770–81. 175

Mordecai J. Golin, Claire Kenyon, and Neal E. Young (2002). Huffman coding
with unequal letter costs. In Proceedings of the Thirty-Fourth Annual ACM
Symposium on Theory of Computing, pp. 785–91 (electronic). ACM. 176

Solomon W. Golomb (1966). Run-length encodings. IEEE Trans. Inform. Theory,
IT-12: 399–401. 174

Solomon W. Golomb and Basil Gordon (1965). Codes with bounded synchronization
delay. Inform. and Control, 8: 355–72. 395

Solomon W. Golomb, Basil Gordon, and Lloyd R. Welch (1958). Comma free codes.
Canad. J. Math., 10: 202–9. 299

Ian P. Goulden and David M. Jackson (2004). Combinatorial Enumeration. Dover
Publications Inc. Reprint of the 1983 original. 105

Ulf Greenander (1963). Probabilities on Algebraic Structures. Wiley. 491
Yannick Guesnet (2003). On maximal synchronous codes. Theoret. Comput. Sci.,

307(1):129–38. 395

600 References

Leonidas J. Guibas and Andrew M. Odlyzko (1978). Maximal prefix synchronized
codes. SIAM J. Appl. Math., 35: 401–18. 299

Paul R. Halmos (1950). Measure Theory. Van Nostrand. 490
Georges Hansel (1982). Baı̈onettes et cardinaux. Discrete Math., 39: 331–5. 534
Georges Hansel and Dominique Perrin (1983). Codes and Bernoulli partitions. Math.

Systems Theory, 16: 133–57. 491, 534
Georges Hansel and Dominique Perrin (1989). Rational probability measures. Theo-

ret. Comput. Sci., 65 (2): 171–88. 592
Georges Hansel, Dominique Perrin, and Christophe Reutenauer (1984). Factorizing

the polynomial of a code. Trans. Amer. Math. Soc., 285: 91–105. 534
Tero Harju and Dirk Nowotka (2004). The equation xi = yj zk in a free semigroup.

Semigroup Forum, 68 (3): 488–90. 325
Kosaburo Hashiguchi and Namio Honda (1976a). Homomorphisms that preserve

star-height. Inform. and Control, 30: 247–66. 104
Kosaburo Hashiguchi and Namio Honda (1976b). Properties of code events and

homomorphisms over regular events. J. Comput. System Sci., 12: 352–67. 299
Tom Head and Andreas Weber (1993). Deciding code related properties by means

of finite transducers. In R. Capocelli, A. De Santis, and U. Vaccaro, editors,
Sequences, II (Positano, 1991), pp. 260–72. Springer-Verlag. 105

Tom Head and Andreas Weber (1995). Deciding multiset decipherability. IEEE Trans.
Inform. Theory, 41 (1): 291–7. 105

Israel N. Herstein (1969). Non-commutative Rings. Carus Mathematical Monographs.
Wiley. 534

Christoph M. Hoffmann (1984). A note on unique decipherability. In Math. Founda-
tions Comput. Sci. (MFCS), volume 176 of Lecture Notes in Computer Science,
pp. 50–63. Springer-Verlag. 105

Te Chiang Hu and Alan C. Tucker (1971). Optimal computer search trees and variable-
length alphabetical codes. SIAM J. Appl. Math., 21: 514–32. 176

Te Chiang Hu and Paul A. Tucker (1998). Optimal alphabetic trees for binary search.
Inform. Process. Lett., 67 (3): 137–40. 176

Te Chiang Hu and Man-Tak Shing (2002). Combinatorial Algorithms. Dover Publi-
cations Inc., second edition. 176

David A. Huffman (1952). A method for the construction of minimum redundancy
codes. Proceedings of the Institute of Electronics and Radio Engineers, 40 (10):
1098–101. 175

David A. Huffman (1959). Notes on information-lossless finite-state automata. Nuovo
Cimento (10), 13 (supplemento): 397–405. 198

Bertram Huppert (1967). Endliche Gruppen. Springer-Verlag. 434
Bertram Huppert and Norman Blackburn (1982). Finite Groups II and III, volume

242 and 243 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag. 434

Alon Itai (1976). Optimal alphabetic trees. SIAM J. Comput., 5 (1): 9–18. 176
Masami Ito and Gabriel Thierrin (1994). Congruences, infix and cohesive prefix

codes. Theoret. Comput. Sci., 136(2):471–85. 274

References 601

Masami Ito, Helmut Jürgensen, Huei-Jan Shyr, and Gabriel Thierrin (1991). Outfix
and infix codes and related classes of languages. J Comput. Syst. Sci., 43(3):484–
508. 274

B. H. Jiggs (1963). Recent results in comma-free codes. Canad. J. Math., 15: 178–87.
Jiggs is a pseudonym for Baumert, Hales, Jewett Golomb, Gordon, Selfridge;
the i is imaginary. 299

Juhani Karhumäki (1984). A property of three element codes. In STACS’84, vol-
ume 166 of Lecture Notes in Computer Science, pp. 305–13. Springer-Verlag.
224

Richard M. Karp (1961). Minimum redundancy codes for the discrete noiseless
channel. IRE Trans. Inform. Theory, IT-7: 27–38. 175, 534

Gerhard Keller (1991). Circular codes, loop counting, and zeta-functions. J. Combin.
Theory Ser. A, 56 (1): 75–83. 299

Jeffrey H. Kingston (1988). A new proof of the Garsia-Wachs algorithm. J. Algo-
rithms, 9 (1): 129–36. 175

Bruce Kitchens (1981). Continuity properties of factor maps in ergodic theory. PhD
thesis, University of North Carolina. 224

Donald E. Knuth (1971). Optimum binary search trees. Acta Informatica, 1: 14–25.
175

Donald E. Knuth (1985). Dynamic Huffman coding. J. Algorithms, 6 (2): 163–80.
175

Donald E. Knuth (1998). The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, second edition. 175

Zvi Kohavi (1978). Switching and Automata Theory. McGraw-Hill, second edition.
198, 224

Alexander T. Kolotov (1978). Free subalgebras of free associative algebras. Sibirsk.
Mat. Ž., 19 (2): 328–35. 593

Marc Krasner and Britt Ranulac (1937). Sur une propriété des polynômes de la
division du cercle. C. R. Acad. Sci. Paris, 240: 397–9. 449

Daniel Krob (1987). Codes limites et factorisations finies du monoı̈de libre. RAIRO
Inform. Théor. Appl., 21 (4): 437–67. 325, 592

Michal Kunc (2004). Undecidability of the trace coding problem and some decidable
cases. Theoret. Comput. Sci., 310(1-3):393–459. 105

Gérard Lallement (1979). Semigroups and Combinatorial Applications. Wiley. 53,
370

Gérard Lallement and Dominique Perrin (1981). A graph covering construction of
all the finite complete biprefix codes. Discrete Math., 36: 261–71. 433

Nguyen Huong Lam (1996). A property of finite maximal codes. Acta Mathematica
Vietnamica, 21: 279–88. 449

Nguyen Huong Lam (1997). Hajós factorizations and completion of codes. Theoret.
Comput. Sci., 182: 245–56. 449

Nguyen Huong Lam (2000). Finite maximal infix codes. Semigroup Forum, 61
(3):346–56. 274

Nguyen Huong Lam (2001). Finite maximal solid codes. Theorect. Comput. Sci.,
262(1-2):333–47. 299

602 References

Nguyen Huong Lam (2003). Completing comma-free codes. Theor. Comput. Sci.,
1-3(301):399–415. 299

Serge Lang (1965). Algebra. Addison-Wesley. 299
Jean-Louis Lassez (1973). Prefix codes and isomorphic automata. Internat. J. Com-

put. Math., 3: 309–14. 176
Jean-Louis Lassez (1976). Circular codes and synchronization. Internat. J. Computer

System Sciences, 5: 201–8. 298
Sylvain Lavallée, Dominique Perrin, Vladimir Retakh, and Christophe Reutenauer

(2009). Codes and noncommutative stochastic matrices. J. Noncommutative
Geometry, to appear. 534

André Lentin (1972). Equations dans les monoı̈des libres. Gauthier-Villars. 104
André Lentin and Marcel-Paul Schützenberger (1969). A combinatorial problem in

the theory of free monoids. In Combinatorial Mathematics and its Applications
(Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), pp. 128–44. Univ.
North Carolina Press, Chapel Hill, N.C. 325

Evelyne Lerest and Michel Lerest (1980). Une representation fidèle des groupes d’un
monoı̈de de relations sur un ensemble fini. Semigroup Forum, 21: 167–72. 370

Martine Léonard (1988). A property of biprefix codes. RAIRO Inform. Théor. Appl.,
22(3):311–18. 273

Vladimir I. Levenshtein (1964). Some properties of coding and self-adjusting
automata for decoding messages. Problemy Kirbernet., 11: 63–121. 104, 223

Frank W. Levi (1944). On semigroups. Bull. Calcutta Math. Soc., 36: 141–6. 104
Benjamin Lewin (1994). Genes V. Oxford University Press. 299
Douglas A. Lind and Brian H. Marcus (1995). An Introduction to Symbolic Dynamics

and Coding. Cambridge University Press. 175, 198, 224, 298, 370, 396, 491
Dongyang Long (1996). On group codes. Theoret. Comput. Sci., 163 (1-2): 259–67.

274
M. Lothaire (1997). Combinatorics on Words. Cambridge University Press, second

edition. (First edition 1983). 52, 176, 299, 325, 434, 592
M. Lothaire (2002). Algebraic Combinatorics on Words, volume 90 of Encyclopedia

of Mathematics and its Applications. Cambridge University Press. 104, 224, 593
M. Lothaire (2005). Applied Combinatorics on Words, volume 105 of Encyclopedia

of Mathematics and its Applications. Cambridge University Press. 198
Jean-Gabriel Luque and Jean-Yves Thibon (2007). Noncommutative symmetric func-

tions associated with a code, Lazard elimination, and Witt vectors. Discrete
Math. Theor. Comput. Sci., 9 (2): 59–72 (electronic). 299

Roger C. Lyndon and Marcel-Paul Schützenberger (1962). The equation am = bncp

in a free group. Michigan Math. J., 9: 289–98. 325
Ian G. Macdonald (1995). Symmetric Functions and Hall Polynomials. Oxford Uni-

versity Press. 298
F. Jessie MacWilliams and Neil J. Sloane (1977). The Theory of Error Correcting

Codes. North-Holland. 103
Wilhelm Magnus, Abraham Karrass, and Donald Solitar (2004). Combinatorial

Group Theory. Dover, second edition. 104

References 603

Gennady S. Makanin (1976). On the rank of equations in four unknowns in a free
semigroup. Mat. Sb. (N.S.), 100: 285–311. 104

Anthony Manning (1971). Axiom A diffeomorphisms have rational zeta functions.
Bull. London Math. Soc., 3: 215–20. ISSN 0024-6093. 298

Roberto Mantaci (1991). Anti-exceedences in permutation groups. Europ. J. Combi-
natorics, 12: 237–44. 434

Sabrina Mantaci and Antonio Restivo (2001). Codes and equations on trees. Theoret.
Comput. Sci., 255(1-2):483–509. 105

Brian H. Marcus (1979). Factors and extensions of full shifts. Monatsh. Math, 88:
239–47. 175

Stuart W. Margolis (1982). On the syntactic transformation semigroup of a lan-
guage generated by a finite biprefix code. Theoret. Comput. Sci., 21: 225–30.
434

Aleksandr A. Markov (1962). On alphabet coding. Soviet. Phys. Dokl., 6: 553–4. 224
Per Martin-Löf (1965). Probability theory on discrete semigroups. Z. Wahrsch. Verw.

Gebiete, 4: 78–102. 491
Silvana Mauceri and Antonio Restivo (1981). A family of codes commutatively

equivalent to prefix codes. Inform. Process. Lett., 12: 1–4. 534
Robert J. McEliece (2004). The Theory of Information and Coding, volume 86 of

Encyclopedia of Mathematics and its Applications. Cambridge University Press,
student edition. With a foreword by Mark Kac. 104

Brockway McMillan (1956). Two inequalities implied by unique decipherability. IRE
Trans. Inform. Theory, IT-2: 115–16. 104

Robert McNaughton and Seymour Papert (1971). Counter Free Automata. MIT Press.
396

Guy Melançon (1993). Constructions des bases standards des K〈A〉-modules à droite.
Theoret. Comput. Sci., 117: 255–72. 534

Nicolas C. Metropolis and Gian-Carlo Rota (1983). Witt vectors and the algebra of
necklaces. Advances in Math., 50: 95–125. 299

Edward F. Moore (1956). Gedanken-experiments on sequential machines. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, volume 34 of Ann. of
Math. Stud., pp. 129–153. 175

Donald J. Newman (1977). Tesselations of integers. J. Number Theory, 9: 107–11.
449

Maurice Nivat (1992). Binary tree codes. In M. Nivat and A. Podelski, editors, Tree
Automata and Languages, pp. 1–20. North-Holland. 105

Maurice Nivat (1966). Éléments de la théorie générale des codes. In E. Caianiello,
editor, Automata Theory, pp. 278–94. Academic Press. 104, 224

George L. O’Brien (1981). The road coloring problem. Israel J. Math, 39: 145–54.
396

Yehoshua Perl, Michael R. Garey, and Shimon Even (1975). Efficient generation of
optimal prefix codes: equiprobable words using unequal cost letters. J. Assoc.
Comput. Mach., 22 (2): 202–14. 175

Micha Perles, Michael Rabin, and Eliahu Shamir (1963). The theory of definite
automata. IEEE Trans. Electronic Computers, 12: 233–43. 434

604 References

Dominique Perrin (1975). Codes bipréfixes et groupes de permutations. PhD thesis,
Universite Paris 7. 434

Dominique Perrin (1977a). Codes asynchrones. Bull. Soc. Math. France, 105: 385–
404. 175, 273, 534

Dominique Perrin (1977b). La transitivité du groupe d’un code bipréfixe fini. Math.
Z., 153: 283–7. 434

Dominique Perrin (1978). Le degré minimal du groupe d’un code bipréfixe fini. J.
Combin. Theory Ser. A, 25: 163–73. 434

Dominique Perrin (1979). La représentation ergodique d’un automate fini. Theoret.
Comput. Sci., 9: ,221–41. 433

Dominique Perrin (1981). Sur les groupes dans les monoı̈des finis. In Noncommutative
Structures in Algebra and Geometric Combinatorics (Naples, 1978), volume 109
of Quad. “Ricerca Sci.”, pp. 27–36. CNR. 434

Dominique Perrin and Jean-Éric Pin (2004). Infinite Words, Automata, Semigroups,
Logic and Games. Elsevier. 395, 396

Dominique Perrin and Giuseppina Rindone (2003). On syntactic groups. Bull. Belg.
Math. Soc. Simon Stevin, 10 (suppl.): 749–59. 434, 592

Dominique Perrin and Marcel-Paul Schützenberger (1977). Codes et sous-monoı̈des
possédant des mots neutres. In H. Tzschach, H. Waldschmidt, and Hermann
K.-G. Walter, editors, Theoretical Computer Science, 3rd GI Conference, Darm-
stadt, volume 48 of Lecture Notes in Computer Science, pp. 270–81. Springer-
Verlag. 370, 449

Dominique Perrin and Marcel-Paul Schützenberger (1981). A conjecture on sets of
differences of integer pairs. J. Combin. Theory Ser. B, 30: 91–93. 534

Dominique Perrin and Marcel-Paul Schützenberger (1992). Synchronizing words
and automata and the road coloring problem. In P. Walters, editor, Symbolic
Dynamics and its Applications, pp. 295–318. American Mathematical Society.
Contemporary Mathematics, vol. 135. 396, 534

Jean-François Perrot (1972). Contribution à l’étude des monoı̈des syntaxiques et de
certains groupes associés aux automates finis. Thèse d’État, Université de Paris.
175, 433

Jean-Éric Pin (1978). Le problème de la synchronisation et la conjecture de Černy.
PhD thesis, Université Paris 6. 175

Jean-Éric Pin (1986). Varieties of Formal Languages. Foundations of Computer
Science. Plenum Publishing Corp. With a preface by M.-P. Schützenberger,
Translated from the French by A. Howie. 299

Jean-Éric Pin and Imre Simon (1982). A note on the triangle conjecture. J. Combin.
Theory Ser. A, 32: 106–9. 534

Vera S. Pless, W. Cary Huffman, and Richard A. Brualdi, editors, (1998). Handbook
of Coding Theory. Vol. I, II. North-Holland. 103

Lázló Rédei (1965). Ein Überdeckungssatz für endliche abelsche Gruppen im Zusam-
menhang mit dem Hauptsatz von Hajós. Acta Sci. Math. Szeged, 26: 55–61. 449

Clive Reis and Gabriel Thierrin (1979). Reflective star languages and codes. Inform.
and Control, 42: 1–9. 433

References 605

Antonio Restivo (1974). On a question of McNaughton and Pappert. Inform. and
Control, 25: 1. 299

Antonio Restivo (1975). A combinatorial property of codes having finite synchro-
nization delay. Theoret. Comput. Sci., 1: 95–101. 395

Antonio Restivo (1977). On codes having no finite completions. Discrete Math., 17:
309–16. 104, 449, 534

Antonio Restivo (1981). Some remarks on complete subsets of a free monoid.
In Noncommutative Structures in Algebra and Geometric Combinatorics
(Naples, 1978), volume 109 of Quad. “Ricerca Sci.”, pp. 19–25. CNR, Rome.
591

Antonio Restivo (1990). Codes and local constraints. Theoret. Comput. Sci., 72 (1):
55–64. 105, 491

Antonio Restivo, Sergio Salemi, and Tecla Sportelli (1989). Completing codes.
RAIRO Inform. Théor. Appl., 23: 135–47. 106, 449

Christophe Reutenauer (1980). Séries formelles et algèbres syntaxiques. J. Algebra,
66: 448–83. 534

Christophe Reutenauer (1981). Semisimplicity of the algebra associated to a biprefix
code. Semigroup Forum, 23: 327–42. 371, 534

Christophe Reutenauer (1985). Noncommutative factorization of variable-length
codes. J. Pure and Applied Algebra, 36: 157–86. 534

Christophe Reutenauer (1986). Ensembles libres de chemins dans un graphe. Bull.
Soc. Math. France, 114(2):135–52. 105

Christophe Reutenauer (1997). N-rationality of zeta functions. Adv. Appl. Math., 18:
1–17. 326

Robert F. Rice (1979). Some pratical universal noiseless coding techniques. Technical
report, Jet Propulsion Laboratory. 174

Iain Richardson (2003). H.264 and MPEG-4 Video Compression: Video Coding for
Next-generation Multimedia. Wiley. 174

John A. Riley (1967). The Sardinas-Patterson and Levenshtein theorems. Inform. and
Control, 10: 120–36. 104

Giuseppina Rindone (1983). Groupes finis et monoı̈des syntaxiques. PhD thesis,
Université Paris 7. 434

Michael Rodeh (1982). A fast test for unique decipherability based on suffix trees.
IEEE Trans. Inform. Theory, IT-28: 648–51. 104, 105

Jacques Sakarovitch (2009). Elements of Theory of Automata. Cambridge University
Press. 198

Arto Salomaa (1981). Jewels of Formal Language Theory. Computer Science Press.
224

David Salomon (2007). Variable-length Codes for Data Compression. Springer-
Verlag. 174, 274

Arthur D. Sands (2000). Replacement of factors by subgroups in the factorization of
Abelian groups. Bull. London Math. Soc., 32 (3): 297–304. 449

Arthur D. Sands (2007). A question concerning the factorization of cyclic groups.
Internat. J. Algebra Comput., 17 (8): 1573–5. 449

606 References

August Albert Sardinas and George W. Patterson (1953). A necessary and sufficient
condition for the unique decomposition of coded messages. IRE Internat. Conv.
Rec., 8: 104–8. 104

Robert A. Scholtz (1969). Maximal and variable length comma-free codes. IEEE
Trans. Inform. Theory, IT-15: 300–6. 299

Marcel-Paul Schützenberger (1955). Une théorie algébrique du codage. In Séminaire
Dubreil-Pisot 1955-56, p. Exposé No. 15. 104

Marcel-Paul Schützenberger (1956). On an application of semigroup methods to
some problems in coding. IRE Trans. Inform. Theory, IT-2: 47–60. 273, 433

Marcel-Paul Schützenberger (1961a). On the definition of a family of automata.
Inform. and Control, 4: 245–70. 534

Marcel-Paul Schützenberger (1961b). On a special class of recurrent events. Ann.
Math. Statist., 32: 1201–13. 273, 534

Marcel-Paul Schützenberger (1961c). On a family of submonoids. Publ. Math. Inst.
Hungar. Acad. Sci. Ser. A, VI: 381–91. 273, 274

Marcel-Paul Schützenberger (1961d). A remark on finite transducers. Inform. and
Control, 4: 185–96. 198

Marcel-Paul Schützenberger (1964). On the synchronizing properties of certain prefix
codes. Inform. and Control, 7: 23–36. 174, 433

Marcel-Paul Schützenberger (1965a). On a factorization of free monoids. Proc. Amer.
Math. Soc., 16: 21–4. 325

Marcel-Paul Schützenberger (1965b). Sur certains sous-monoı̈des libres. Bull. Soc.
Math. France, 93: 209–23. 198, 491, 534

Marcel-Paul Schützenberger (1965c). Sur une question concernant certains sous-
monoı̈des libres. C. R. Acad. Sci. Paris, 261: 2419–20. 298, 299

Marcel-Paul Schützenberger (1966). On a question concerning certain free sub-
monoids. J. Combin. Theory, 1: 437–22. 224

Marcel-Paul Schützenberger (1967). On synchronizing prefix codes. Inform. and
Control, 11: 396–401. 175, 176

Marcel-Paul Schützenberger (1975). Sur certaines opérations de fermeture dans les
langages rationnels. In Symposia Mathematica, Vol. XV (Convegno di Informat-
ica Teorica, INDAM, Roma, 1973), pp. 245–53. Academic Press. 395, 396

Marcel-Paul Schützenberger (1979a). A property of finitely generated submonoids of
free monoids. In G. Pollak, editor, Algebraic Theory of Semigroups, pp. 545–76.
North-Holland. 370, 592

Marcel-Paul Schützenberger (1979b). Codes à longueur variable. In D. Perrin, editor,
Théorie des codes (actes de la septième École de Printemps d’Informatique
Théorique), pp. 247–71. LITP. Reproduction of the notes for a NATO school,
Royan. 449

Louis W. Shapiro (1981). A combinatorial proof of a Chebyshev polynomial identity.
Discrete Math., 34 (2): 203–6. 106

Lev N. Shevrin (1960). On subsemigroups of free semigroups. Soviet. Math. Dokl.,
1: 892–4. 104

Paul C. Shields (1996). Ergodic Theory of Discrete Sample Paths. Springer-Verlag.
490

References 607

Peter W. Shor (1983). A counterexample to the triangle conjecture. J. Combin. Theory
Ser. A., 38: 110–12. 534

Huei-Jan Shyr and Shyr-Shen Yu (1990). Solid codes and disjunctive domains. Semi-
group Forum, 41(1):23–37. 299

Jean-Claude Spehner (1975). Quelques constructions et algorithmes relatifs aux sous-
monoı̈des d’un monoı̈de libre. Semigroup Forum, 9: 334–53. 104

Jean-Claude Spehner (1976). Quelques problèmes d’extension, de conjugaison et
de présentation des sous-monoı̈des d’un monoı̈de libre. PhD thesis, Université
Paris 7. 104

Richard P. Stanley (1997). Enumerative Combinatorics. Vol. 1, volume 49 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press. With a
foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. 106, 298,
299

Lubert Stryer (1975). Biochemistry. Freeman. 299
Sandor Szabó (1985). A type of factorization of finite Abelian groups. Discrete

Mathematics, 54: 121–4. 449
Sandor Szabó (2004). Topics in the Factorisation of Abelian Groups. Birkhaüser. 449
Sandor Szabó (2006). Completing codes and the Rédei property of groups. Theoret.

Comput. Sci., 359: 449–54. 449
Sandor Szabó and Arthur D. Sands (2009). Factoring Groups into Subsets, volume

257 of Lecture Notes in Pure and Applied Mathematics. CRC Press. 449
Yasuhiro Takishima, Masahiro Wada, and Hitomi Murakami (1995). Reversible vari-

able length codes. IEEE Trans. Comm., 43:158–62. 273
Jukka Teuhola (1978). A compression method for clustered bit-vectors. Inform. Pro-

cess. Lett., 7 (6): 308–11. 174
Bret Tilson (1972). The intersection of free submonoids is free. Semigroup Forum,

4: 345–50. 104
Avraham N. Trahtman (2008). The road coloring problem. Israel J. Math., to appear.

396
Jacobus H. van Lint (1982). Introduction to Coding Theory. Springer-Verlag. 104
Ben Varn (1971). Optimal variable length codes (arbitrary symbol cost and equal

code word probabilities). Inform. and Control, 19: 289–301. 175
Gérard Viennot (1974). Algèbres de Lie libres et monoı̈des libres. PhD thesis, Uni-

versité Paris 7. 325, 326
Gérard Viennot (1978). Algèbres de Lie et monoı̈des libres, volume 691 of Lecture

Notes in Mathematics. Springer-Verlag. 325
Max Vincent (1985). Construction de codes indécomposables. RAIRO Informatique

Théorique, 19: 165–78. 534
Mikhail V. Volkov (2008). Synchronizing automata and the Cerny conjecture. In

Carlos Martı́n-Vide, Friedrich Otto, and Henning Fernau, editors, Language
and Automata Theory and Applications, Second International Conference, LATA
2008, Tarragona, Spain, March 13-19. Revised Papers, volume 5196 of Lecture
Notes in Computer Science, pp. 11–27. Springer-Verlag. 592

Helmut Wielandt (1964). Finite Permutation Groups. Academic Press. 53, 434

608 References

Chunxuan Ye and Raymond W. Yeung (2001). Some basic properties of fix-free
codes. IEEE Trans. Inform. Theory, 47 (1): 72–87. 273

Sergey Yekhanin (2004). Improved upper bound for the redundancy of fix-free codes.
IEEE Trans. Inform. Theory, 50 (11): 2815–18. 273, 592

Liang Zhang and Changkang Gu (1992). On factorization of finite maximal codes.
In M. Ito, editor, Words, Languages and Combinatorics, pp. 534–41. World
Scientific. 534

Liang Zhang and Zhong Hui Shen (1995). Completion of recognizable bifix codes.
Theoret. Comput. Sci., 145 (1-2): 345–55. 274

Index of notation

1, 5

A∗, 5
A+, 5
A�, 10
A⊕, 10, 512
A(n), 5, 460
A[n], 5
A, 11
A(X), 13
A/ρ, 14
A∗, 33
A∗

D(X), 182
AD(X), 182
|A|, 32, 36
alph(X), 5
alph(w), 5
α, 86
α(σ), 179

B, 20

C(w), 483
C�(w), 485
Ca(w), 440
Cr (w), 221, 485
c : p

w−→ q, 11, 36

D, 65
D(m), 43
D∗, 65
D4, 342, 400
DX, 480
Dn, 65
D, 43

deg(p), 23
δ(L), 461
δ(f), 462
δX(w), 361
d(X), 239

E, 11
E(X), 204
ε, 5

F (X), 4, 237
FX(t), 40
Fix(m), 330
F (X), 4
ϕA(w), 11

GX, 480
Gθ , 50
Ge, 331
[G : H], 48
�(w), 15

H (X), 237
H (m), 43
H, 42
H̄ (X), 237
〈H 〉, 438

I (w), 360
IQ, 22, 32
Im(a), 341
idQ, 22

J , 42

610 Index of notation

K[A], 26
K[[A]], 26
K〈〈A〉〉, 23
K〈A〉, 23
Ker(a), 341
Ker(m), 355

L(A), 11, 32
L(m), 43
LX, 228
L, 42
�(X), 90
�n(k), 8
λ(X), 465

Me, 331
Mi,p, 3
min, 250
µ, 9
µ(Y), 250
µA, 32
m∗q , 22
mp∗, 22
mp,q , 22

N , 21

P(X), 1
π (X), 40
≺, 312
(p,m, q), 22, 328
pmq, 328

R(m), 43
R, 42
rank(m), 343
rankK , 344
rankA(x), 139
ρ, 185
ρL, 462
r(M), 346

Stab(q), 117, 346
supp, 23
S(A), 178
Sn, 48
(σ,w), 23
σ (X), 377
σ ≤ τ , 26
σ � τ , 25
σ ∗, 24
σ+, 24

T , 19

u ≺ v, 6
u∗(z), 38

|w|, 5
|w|B , 5
w̃, 6
w ,̃ 6

A−X, 108
XA−, 108
XY−1, 4
X∗, 6
X+, 6
X(n), 245
X−1Y , 4
∼X, 15
X̃, 6
X, 24
X, 1
[x, y), 1
x < y, 108
x ≤ y, 5, 108
x−1y, 4
xy−1, 4

Y ◦ Z, 87
Y ◦β Z, 87

Index

absorbing pair, 376
accessible state, 11
adjacency matrix, 28, 38, 40
adjacent interpretations, 360
alphabet, 4

channel, 56
source, 56

alphabetic
coding, 161
order, 6, 312
tree, 161

alternating group, 48, 426
anticipation, 385
aperiodic monoid, 297
approximate eigenvector, 31
asynchronous automaton, 17
automaton, 11, 117

asynchronous, 17
behavior, 32
bidelay, 221
complete, 12
congruence, 14
d-complete, 215
delay, 214
deterministic, 12
edge, 11
extended, 221
finite, 11
flower, 182, 277
free local, 385
input, 20
literal, 114, 119
local, 385
minimal, 13, 115
next-state function, 12
normalized weighted, 37
of a prefix code, 114
order, 386
ordered, 283
path, 11
period, 388
quotient, 14
reduced, 13
reduction, 185
representation associated with, 32
square, 178
star, 33

stochastic, 40
strongly connected, 11
synchronized, 139
synchronizing word, 139
transition monoid, 11, 14
trim, 11
trim part of, 11
unambiguous, 177
underlying graph, 11
weakly complete, 215
weakly deterministic, 214
weighted, 35

average length, 149, 158, 464, 509

backward boundary edge, 221
balance, 222
base

of a submonoid, 61
right ideal, 109

bayonet
code, 534
word, 439

behavior, 177
of a weighted automaton, 36
of an automaton, 32

Bernoulli distribution, 40, 246, 257
positive, 40
uniform, 40

bidelay of an automaton, 221
bideterministic automaton, 230
bifix code, 58, 226

degree, 239
derived, 245
group, 397
indicator, 264
insufficient, 258
internal transformation, 235, 256
kernel, 248, 425
maximal, 231
tower over, 240

bifix set, 58
biological code, 299
bisection, 313, 318
biunitary submonoid, 62
Boolean

algebra, 451
semiring, 20

612 Index

Borel subset, 453
boundary edge, 221

backward, 221
forward, 221

box
separating, 530

bunch state, 390

Césari’s theorem, 256
Catalan numbers, 129
Cayley graph, 111
Černý’s conjecture, 175, 591
chain, 170
channel alphabet, 56
characteristic series, 24
circular code, 275, 324
clique, 368
coaccessible state, 11
code, 55

average length, 158, 464, 509
bayonet, 534
bifix, 58, 226
circular, 275, 324
coding morphism, 56
comma-free, 285, 324
commutatively prefix, 512
complete, 76
composed, 188
deciphering delay, 200, 417
degree, 359, 480
elementary, 431
Elias, 126
exponential Golomb

reversible, 232
finite deciphering delay, 417
Golomb, 124, 174

exponential, 126
Golomb–Rice, 125, 150, 152

reversible, 232
group of, 358
indecomposable, 89
limited, 282
literal deciphering delay, 213
literal synchronization delay, 382
locally parsable, 382
maximal, 59
positive factorization, 495
positively factorizing, 494
prefix, 58, 108
prefix-synchronized, 299
run-length limited, 159
semaphore, 131, 150, 172, 246, 395,

404
separating, 530
suffix, 58
synchronized, 375, 404

prefix, 138
thin, 77
two elements, 66, 324
uniform, 56
uniformly synchronized, 377
verbal deciphering delay, 200
verbal synchronization delay,

377

very thin, 349
weakly prefix, 213

codes
composable, 87
composition of, 87

codeword, 55
coding

alphabetic, 161
morphism, 56, 147
ordered, 161
prefix, problem, 158

coherence condition, 40
column, 328
column-row decomposition, 330
comma-free code, 285, 324
commutative

equivalence conjecture, 512
image, 179
monoid, free, 10

commutative equivalence
conjecture, 593

commutative equivalence conjecture,
593

commutatively
equivalent series, 512
prefix, 512

companion, 264
compatibility conditions, 222
completable

strongly left, 369
strongly right, 204, 441, 487
word, 75
word, left, 480
word, right, 120, 441, 480

complete
automaton, 12
code, 76
factorization, 310
semiring, 21
set, 76
set, right, 120

completely reducible monoid, 522
composable codes, 87
composed

code, 188
transducer, 196

composition of codes, 87
congruence, 2

automaton, 14
nuclear, 2
syntactic, 15

conjecture
3/4, 273, 592
Černý’s, 175, 591
commutative equivalence, 512
factorization, 495, 593
inclusion, 83, 593

conjugacy
class, 7, 279
equivalence, 7

conjugate words, 7, 276
constant

term, 24
word, 374

Index 613

context, 15
strict, 483, 510
strict left, 485
strict right, 221, 485

contextual probability, 485, 490
continuant polynomial, 500
continuous morphism, 303
cosets, right, 48
cost, weighted, 158
countably additive function, 452
cyclic

monoid, 3
index, 3

set, 324
cyclically null series, 304
cyclotomic identity, 298

D-class, 43, 332
regular, 46

d-complete automaton, 215
de Bruijn automaton, 385
deciphering delay, 200, 417

literal, 213
minimal, 200
verbal, 200

decoding function, 191
decomposition

maximal, 144
minimal, 343

defect theorem, 66
degree

minimal, of a permutation group,
414

of a bifix code, 239
of a code, 359, 480
of a permutation group, 49
of a polynomial, 23
of a word, 361

delay
literal

deciphering, 213
synchronization, 382

of an automaton, 214
verbal

deciphering, 200
synchronization, 377

verbal synchronization, 377
dense, 76

set, right, 120
density, 460, 462, 464
depth of a semigroup, 416
derived code, 245
deterministic

automaton, 12
transducer, 192

dihedral group, 342, 398, 400
direct

modulo n, 439
sum, 435

disjoint
factorizations, 94
interpretations, 361

distribution, 460
invariant, 489

length, 27, 152
positive, 40, 509

divisor, weak left, 499
doubly transitive permutation group, 52, 424
Dyck code, 65, 74, 76, 78, 81, 150, 240, 461

one-sided, 358

edge
boundary, 221
of a transducer, 19
of an automaton, 11

Ehrenfeucht–Rozenberg’s theorem, 83
eigenvalue, 28
eigenvector, 28

approximate, 31
elementary

code, 431
Elias code, 108, 126
elimination method of Lazard, 299
empty word, 5
encoding

run-length, 176
end of a path, 11, 19
entropy, 173

topological, 467
equivalence

conjugacy, 7
imprimitivity, 50, 397
maximal nuclear, 355
nuclear, 341, 355

equivalent
permutation groups, 50
series, commutatively, 512
unambiguous monoids of relations, 333

ergodic representation, 419
even permutation, 48
excedance, 432
exponent of a word, 8
exponential Golomb code, 126

reversible, 232
expression

rational, 19
regular, 19
unambiguous rational, 181

extended automaton, 221

factor, 5
internal, 237, 416

factorization, 6
conjecture, 495, 593
disjoint, 94
multiple, 446
of a group, 435
of the free monoid, 301

complete, 310
finite, 313

ordered, 301
periodic, 437
positive, 493, 495
standard, of a Lyndon word, 323

failure function, 98
Fibonacci number, 33
final state, 11
Fine–Wilf theorem, 297

614 Index

finite
automaton, 11
deciphering delay, 199, 417
factorization, 313
locally, 23
transducer, 19

finite-to-one map, 198
fixed point of a relation, 330
flipping equivalent, 394
flower automaton, 182, 277
forward boundary edge, 221
Franaszek code, 382
free

commutative monoid, 10
group, 10, 64
hull, 66
local automaton, 385
monoid, 5
monoid, factorization, 301, 310

Frobenius group, 414, 422
full word, 258
function

image, 341
next-state, 12
nuclear equivalence of, 341
transition, 12

future of a state, 217

Gauss’ lemma, 502
generating series, 26, 152

probability, 40
geometric distribution, 174
Golay code, 434
Golomb code, 124, 174

exponential, 126
reversible exponential, 232

Golomb–Rice code, 125, 150, 152
reversible, 232

good
pair, 207
word, 212

graph
prefix, 93
underlying an automaton, 11

group
alternating, 48, 426
dihedral, 342, 398, 400
factorization, 435
free, 10, 64
induced, 50, 51, 398
of a bifix code, 397
of a code, 358
permutation, 48
primitive, 51, 402
symmetric, 48
transitive, 49

group code, 64, 82, 410
group of units, 3, 45

H-class, 42
Hadamard product, 25
Hajós

number, 437
property, 437

Hall sequence, 289
height

of an element, 266
of a partially ordered set, 266

homing sequence, 396
hook, 445
Huffman encoding, 158
hull, free, 66

ideal
left, 41
minimal, 42
right, 41
two-sided, 41
0-minimal, 42

idempotent, 3
column-row decomposition of,

330
monoid localized at, 331
probability measure, 490

identity relation, 4
image

commutative, 179
minimal, 355
of a function, 341

imprimitivity
equivalence, 50, 397
quotient, 50, 398

inclusion conjecture, 83, 591
incomparable words, 108
indecomposable code, 89
index

cyclic monoid, 3
subgroup, 48, 82, 410

indicator
bifix code, 264
set, 228

induced group, 50, 51, 398
initial

part of a set, 109
state, 11, 19

input
automaton, 20
label of a path, 19
-simple transducer, 20

inseparable states, 13
insufficient

bifix code, 258
kernel, 426

internal
factor, 237, 416
transformation, 235, 256

interpretation, 227, 360
adjacent, 360
disjoint, 361

invariant
distribution, 489
subspace, 522

invertible relation, 329
irreducible

matrix, 29
space, 522

J -class, 42

Index 615

K-rational series, 36
K-relations, monoid, 22
k-transitive permutation group, 52
kernel, 248, 425

insufficient, 426
Kleene’s theorem, 18
Kolmogorov’s extensiontheorem,

454
Kraft inequality, 75
Kraft–McMillan’s theorem, 75

L-class, 42
L-representation of a monoid, 338
label of a path, 11
Lazard

elimination method, 299
set, 311

left
completable word, 480

strongly, 369
context, strict, 485
divisor, weak, 499
ideal, 41
minimal pair, 163
unitary submonoid, 62

length
distribution, 27, 152
of a word, 5

letter, 5
order, 80, 141, 255, 440, 487

lexicographic order, 6, 312
limited code, 282

run-length, 159
linear representation, 522
literal

automaton, 114, 119
deciphering delay, 213
synchronization delay, 382
transducer, 20

local automaton, 385
free, 385

locally
finite, 23
parsable, 382
testable, 395

logarithm of a series, 302
Lyndon word, 312

standard factorization, 323
Lyndon–Schützenberger theorem,

324

Möbius
function, 9
inversion formula, 9

machine, pattern matching, 105
Markov chain, 41
Maschke’s theorem, 523
Mathieu group, 433
matrix

adjacency, 28
irreducible, 29
nonnegative, 28
positive, 28
representation, 36

spectral radius, 28
stochastic, 28

maximal
bifix code, 231
decomposition, 144
nuclear equivalence, 355
prefix code, 120

mean value, 452
measure, probability, 452
meet of two codes, 370
memory, 385
minimal

automaton, 13, 115
deciphering delay, 200
decomposition of a relation, 343
degree of a permutation group, 414
ideal, 42
image, 355
pair, 163
rank, 346
synchronization delay, 377

0-minimal ideal, 42
molecule, 224
monoid, 2

aperiodic, 297
completely reducible, 522
cyclic, 3

index, 3
D-class, 43
D-class in, 332
free, 5
free commutative, 10
H-class, 42
J -class, 42
L-class, 42
L-representation of, 338
localized at an idempotent, 331
of K-relations, 22
of relations, 4

transitive, 4, 329
prime, 46, 347
R-class, 42
R-representation, 338
Schützenberger representation

left, 338
right, 338

stabilizer, 346
syntactic, 15, 368, 369, 412
transition, 11, 14
transitive, of relations, 329
unambiguous, of relations, 329

minimal rank, 346
very transitive, 367
well founded, 472
zero, 3

monoids
equivalent unambiguous, of relations, 333

morphism, 2
associated with a reduction, 185
continuous, 303
recognizing, 14

Morse code, 58
Motzkin code, 102
multiple factorization, 446

616 Index

necklace, 7
primitive, 7, 310

Newton’s formula, 287
next-state function, 12
nil-simple semigroup, 417
nonnegative

matrix, 28
vector, 28

normalized weighted automaton, 37
nuclear

congruence, 2
equivalence, 341, 355

maximal, 355
null relation, 4

one-sided Dyck code, 358
operations

rational, 18
unambiguous rational, 181

order, 386
alphabetic, 6, 312
lexicographic, 6, 312
of a letter, 80, 141, 255, 440,

487
prefix, 5, 108
radix, 6

ordered
automaton, 283
coding, 161
factorization of a word, 301
semiring, 21
tree, 161

origin of a path, 11, 19
output label of a path, 19

pair
absorbing, 376
good, 207
synchronizing, 373
very good, 207

palindrome word, 270
parsable, locally, 382
parse, 226
passing system, 332
path, 11, 19

end, 11, 19
input label, 19
label, 11
origin, 11, 19
output label, 19
simple, 34
successful, 11, 19, 32

pattern matching machine, 97, 105
period, 437, 516

of a cyclic monoid, 3
of an automaton, 388

periodic subset of a group, 437
permutation

even, 48
excedance, 432
signature, 180

permutation group, 48
degree, 49
doubly transitive, 52, 424

equivalent, 50
k-transitive, 52
minimal degree, 414
primitive, 51, 402, 416
realizable, 425
regular, 51, 404, 411
transitive, 49

Perron–Frobenius theorem, 29
persistent recurrent event, 146
point in a word, 227
polynomial, 23

degree, 23
primitive, 502

positive
Bernoulli distribution, 40
distribution, 40, 509
factorization, 493, 495
matrix, 28
probability distribution, 40
vector, 28

positively factorizing code, 494
power series, 26
prefix

-closed set, 6
code, 58, 108

automaton, 114
maximal, 120
synchronized, 138
weakly, 213

coding problem, 158
graph, 93
of a word, 5
order, 5, 108
set, 58
-synchronized code, 299
transducer, 193

prime monoid, 46, 347
primitive

necklace, 7, 310
permutation group, 51, 402,

416
polynomial, 502
word, 7

probability, 452
distribution, 40, 460

defined by an automaton, 41
invariant, 489

generating series, 40
measure, 452

idempotent, 490
space, 452

probability distribution
associated, 454

product
of relations, 4, 328
unambiguous, 25
unambiguous, of relations, 328

pure submonoid, 276, 297

quasideterminant, 198
quasipower, 272
quotient

automaton, 14
imprimitivity, 50, 398

Index 617

R-class, 42
R-representation of a monoid, 338
Rédei

number, 438
property, 437

radius
convergence, 26, 462
spectral, 28

radix order, 6
random variable, 452
rank

minimal, 346
of a relation, 343
of a word, 139, 350
over a field, 344

rational
expression, 19

unambiguous, 181
operations, 18

unambiguous, 181
set, 17

unambiguous, 181
realizable permutation group, 425
recognizable set, 15, 82, 171, 197, 270, 297
recognized

series, 36
set, 11

recognizing morphism, 14
recurrent

state, 123
recurrent event, 146

persistent, 146, 466
transient, 146

reduced automaton, 13
reducible matrix, 29
reduction

morphism associated to, 185
of automata, 185
unambiguous, 364

regular
expression, 19
permutation group, 51, 404, 411
set, 19

relation, 4, 328
column, 328
fixed point, 330
identity, 4
invertible, 329
minimal decomposition, 343
minimal rank, 346
monoid, 4
null, 4
product, 4, 328
rank, 343
realized by a transducer, 19
row, 328

relations
equivalent unambiguous monoids, 333
trim pair, 344
unambiguous monoid, 329
unambiguous product, 328

remainder, 195, 499
representation

associated with an automaton, 32

matrix, 36
Schützenberger, 338
syntactic, 520

residual, 4
reversal, 6, 270
reversible

exponential Golomb code, 232
Golomb–Rice code, 232
variable-length codes, 273

right
closing map, 224
completable, strongly, 204, 441, 487
completable word, 120, 441, 480
complete set, 120
context, strict, 221, 485
cosets, 48
dense set, 120
ideal, 41

base of, 109
thin set, 120
unitary submonoid, 62

road coloring problem, 373
root of a word, 8
row, 328
run-length

encoding, 176
limited code, 159

Sands factorization, 446
sandwich matrix, 365
Schützenberger

covering, 198
representation, 338

Schützenberger’s theorem
on codes with finite delay, 205
on factorizations, 302
on semaphore codes, 143

scope of a sequence, 163
semaphore code, 131, 150, 172, 246, 395,

404
semigroup, 2

depth, 416
nil-simple, 416
syntactic, 395

semiring, 20
Boolean, 20
complete, 21
ordered, 21

separating
box, 530
code, 530
word, 530, 583

sequence
2-descending, 163

sequential transducer, 194
series, 23

characteristic, 24
commutative image, 179
commutatively equivalent, 512
cyclically null, 304
density, 462
K-rational, 36
logarithm, 302
probability generating, 40

618 Index

series, (cont.)
recognized, 36
star, 24
support, 23

set
bifix, 58
indicator, 228
initial part, 109
prefix, 58
suffix, 58

σ -algebra, 451
signature of a permutation, 180
simple path, 34
simplifying word, 201, 441, 487
sofic system, 105
source alphabet, 56
space

invariant, 523
irreducible, 522
probability, 452

spectral radius, 28
square of an automaton, 178
stabilizer

in a relation, 346
of a state, 117

stable
set, 368
submonoid, 61, 276, 363

standard factorization of a Lyndon word,
323

star
of a series, 24
of an automaton, 33
operation, 18

star-free set, 395
state, 11

accessible, 11
bunch, 390
coaccessible, 11
future of a, 217
initial, 11, 19
recurrent, 123
stabilizer of a, 117
terminal, 11, 19

states
inseparable, 13
strongly synchronizable, 389
synchronizable, 139, 389

stationary vector, 489
Stirling’s formula, 461
stochastic

automaton, 40
probability distribution, 41

matrix, 28
strict

context, 483, 510
left context, 485
right context, 221, 485

strictly locally testable set, 384
strongly

connected automaton, 11
left completable, 369
right completable, 204, 441, 487
synchronizable states, 389

subgroup, index, 48, 82, 410
submonoid, 2

base of, 61
biunitary, 62
left unitary, 62
pure, 276, 297
right unitary, 62
stable, 61, 276, 363
very pure, 276

subspace
invariant, 522

successful path, 11, 19, 32
suffix, 6

code, 58
set, 58

support of a series, 23
Suschkewitch group, 349, 358
symmetric group, 48
synchronizable

states, 139, 389
strongly, 389

synchronization delay
literal, 382
minimal, 377
verbal, 377

synchronized
automaton, 139
code, 375, 404

uniformly, 377
prefix code, 138

synchronizing
pair, 373
word, 137, 139, 374

syntactic
congruence, 15
monoid, 15, 368, 369, 412
representation, 520
semigroup, 395

system of coordinates, 336, 338

telegraph channel, 159
terminal state, 11, 19
testable, locally, 395
thin

code, very, 349
set, 77, 462

right, 120
3/4-conjecture, 273
topological entropy, 467
tower over a bifix code, 240
trace coding problem, 105
transducer, 19

composed, 196
deterministic, 192
finite, 19
input-simple, 20
literal, 20
path, 19
prefix, 193
relation realized by, 19
sequential, 194
unambiguous, 192

transformation, internal, 235, 256
transient recurrent event, 146

Index 619

transition
function, 12
monoid, 11, 14

transitive
monoid of relations, 4, 329
monoid, very, 367
permutation group, 49

tree
alphabetic, 161
ordered, 161

trie, 97
trim

automaton, 11
pair of relations, 344
part of an automaton, 11
weighted automaton, 37

trisection, 319
two elements code, 66, 324
2-descending sequence, 163
two-sided ideal, 41

unambiguous
automaton, 177
monoid of relations, 329
monoids of relations

equivalent, 333
product, 25
product of relations, 328
rational expression, 181
rational operations, 181
rational set, 181
reduction, 364
transducer, 192

unbordered word, 10, 83, 272
uniform

Bernoulli distribution, 40
code, 56

uniformly synchronized code, 377

variance, 273
Varn coding problem, 160
vector

nonnegative, 28
positive, 28
stationary, 489

verbal
deciphering delay, 200
synchronization delay, 377

very
good

pair, 207
word, 212

pure submonoid, 276
thin code, 349
transitive monoid, 367

weak
left divisor, 499

weakly
complete automaton, 215
deterministic automaton, 214

prefix code, 213
Wedderburn relation, 500
weighted automaton, 35

behavior, 36
normalized, 37
trim, 37

weighted, cost, 158
well-founded monoid, 472
Wielandt function, 52
Witt

numbers, 298
vector, 299

word, 4
bayonet, 439
completable, 75
empty, 5
exponent, 8
factor, 5
full, 258
good, 212
interpretation, 360
left completable, 480
length, 5
ordered factorization, 301
palindrome, 270
point, 227
prefix, 5
primitive, 7
rank, 139, 350
reversal, 6
right completable, 120, 441,

480
root, 8
separating, 530, 583
simplifying, 201, 441,

487
strongly

left completable, 369
right completable, 204, 441,

487
suffix, 6
synchronizing, 137, 374

in an automaton, 139
unbordered, 10, 83, 272
very good, 212
X-exponent, 278
X-factorization, 6
X-primitive, 278

words
conjugate, 7, 276
incomparable, 108
X-conjugate, 278

X-conjugate, 278
X-exponent, 278
X-factorization, 6
X-primitive, 278

zero of a monoid, 3
0-minimal ideal, 42
zeta function, 298, 324

