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PREFACE

Although vast activity exists, especially recent, the editors did not find any book
that treats applied algorithms in a comprehensive manner. The editors discovered a
number of graduate courses in computer science programs with titles such as “Design
and Analysis of Algorithms, “Combinatorial Algorithms” “Evolutionary Algorithms”
and “Discrete Mathematics.” However, when glancing through the course contents,
it appears that they were detached from the real-world applications. On the contrary,
recently some graduate courses such as “Algorithms in Bioinformatics” emerged,
which treat one specific application area for algorithms. Other graduate courses heav-
ily use algorithms but do not mention them anywhere explicitly. Examples are courses
on computer vision, wireless networks, sensor networks, data mining, swarm intelli-
gence, and so on.

Generally, it is recognized that software verification is a necessary step in the design
of large commercial software packages. However, solving the problem itself in an
optimal manner precedes software verification. Was the problem solution (algorithm)
verified? One can verify software based on good and bad solutions. Why not start
with the design of efficient solutions in terms of their time complexities, storage, and
even simplicity? One needs a strong background in design and analysis of algorithms
to come up with good solutions.

This book is designed to bridge the gap between algorithmic theory and its ap-
plications. It should be the basis for a graduate course that will contain both basic
algorithmic, combinatorial and graph theoretical subjects, and their applications in
other disciplines and in practice. This direction will attract more graduate students
into such courses. The students themselves are currently divided. Those with weak
math backgrounds currently avoid graduate courses with a theoretical orientation,
and vice versa. It is expected that this book will provide a much-needed textbook for
graduate courses in algorithms with an orientation toward their applications.

This book will also make an attempt to bring together researchers in design and
analysis of algorithms and researchers that are solving practical problems. These com-
munities are currently mostly isolated. Practitioners, or even theoretical researchers
from other disciplines, normally believe that they can solve problems themselves
with some brute force techniques. Those that do enter into different areas looking
for “applications” normally end up with theoretical assumptions, suitable for proving
theorems and designing new algorithms, not having much relevance for the claimed
application area. On the contrary, the algorithmic community is mostly engaged in
their own problems and remains detached from reality and applications. They can
rarely answer simple questions about the applications of their research. This is valid
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viii PREFACE

even for the experimental algorithms community. This book should attract both sides
and encourage collaboration. The collaboration should lead toward modeling prob-
lems with sufficient realism for design of practical solutions, also allowing a sufficient
level of tractability.

The book is intended for researchers and graduate students in computer science and
researchers from other disciplines looking for help from the algorithmic community.
The book is directed to both people in the area of algorithms, who are interested
in some applied and complementary aspects of their activity, and people that want
to approach and get a general view of this area. Applied algorithms are gaining
popularity, and a textbook is needed as a reference source for the use by students and
researchers.

This book is an appropriate and timely forum, where researchers from academics
(both with and without a strong background in algorithms) and emerging industry in
new application areas for algorithms (e.g., sensor networks and bioinformatics) learn
more about the current trends and become aware of the possible new applications of
existing and new algorithms. It is often not the matter of designing new algorithms,
but simply the recognition that certain problems have been already solved efficiently.
What is needed is a starting reference point for such resources, which this book could
provide.

Handbook is based on a number of stand-alone chapters that together cover the
subject matter in a comprehensive manner. The book seeks to provide an opportunity
for researchers, graduate students, and practitioners to explore the application of al-
gorithms and discrete mathematics for solving scientific, engineering, and practical
problems. The main direction of the book is to review various applied algorithms
and their currently “hot” application areas such as computational biology, computa-
tional chemistry, wireless networks, and computer vision. It also covers data mining,
evolutionary algorithms, game theory, and basic combinatorial algorithms and their
applications. Contributions are made by researchers from United States, Canada,
United Kingdom, Italy, Greece, Cyprus, France, Denmark, Spain, and India.

Recently, a number of application areas for algorithms have been emerging into
their own disciplines and communities. Examples are computational biology, com-
putational chemistry, computational physics, sensor networks, computer vision, and
others. Sensor networks and computational biology are currently among the top
research priorities in the world. These fields have their own annual conferences
and books published. The algorithmic community also has its own set of annual
meetings, and journals devoted to algorithms. Apparently, it is hard to find a mix-
ture of the two communities. There are no conferences, journals, or even books
with mixed content, providing forum for establishing collaboration and providing
directions.

BRIEF OUTLINE CONTENT

This handbook consists of 18 self-contained chapters. Their content will be described
briefly here.
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Many practical problems require an exhaustive search through the solution space,
which are represented as combinatorial structures such as permutations, combinations,
set partitions, integer partitions, and trees. All combinatorial objects of a certain
kind need to be generated to test all possible solutions. In some other problems, a
randomly generated object is needed, or an object with an approximately correct
ranking among all objects, without using large integers. Chapter 1 describes fast
algorithms for generating all objects, random object, or object with approximate
ranking, for basic types of combinatorial objects.

Chapter 2 presents applications of combinatorial algorithms and graph theory to
problems in chemistry. Most of the techniques used are quite general, applicable to
other problems from various fields. The problem of cell growth is one of the classical
problems in combinatorics. Cells are of the same shape and are in the same plane,
without any overlap. The central problem in this chapter is the study of hexagonal
systems, which represent polyhexes or benzenoid hydrocarbons in chemistry. An
important issue for enumeration and exhaustive generation is the notion of isomorphic
or equivalent objects. Usually, we are interested in enumerating or generating only
one copy of equivalent objects, that is, only one representative from each isomorphism
class. Polygonal systems are considered different if they have different shapes; their
orientation and location in the plane are not important. The main theme in this chapter
is isomorph-free exhaustive generation of polygonal systems, especially polyhexes.
In general, the main algorithmic framework employed for exhaustive generation is
backtracking, and several techniques have been developed for handling isomorphism
issues within this framework. This chapter presents several of these techniques and
their application to exhaustive generation of hexagonal systems.

Chapter 3 describes some graph-theoretic models in chemistry and molecular biol-
ogy. RNA, proteins, and other structures are described as graphs. The chapter defines
and illustrates a number of important molecular descriptors and related concepts.
Algorithms for predicting biological activity of given molecule and its structure are
discussed. The ability to predict a molecule’s biological activity by computational
means has become more important as an ever-increasing amount of biological infor-
mation is being made available by new technologies. Annotated protein and nucleic
databases and vast amounts of chemical data from automated chemical synthesis and
high throughput screening require increasingly more sophisticated efforts. Finally,
this chapter describes popular machine learning techniques such as neural networks
and support vector machines.

A major paradigm shift in molecular biology occurred recently with the introduc-
tion of gene-expression microarrays that measure the expression levels of thousands
of genes at once. These comprehensive snapshots of gene activity can be used to
investigate metabolic pathways, identify drug targets, and improve disease diagnosis.
However, the sheer amount of data obtained using the high throughput microarray
experiments and the complexity of the existing relevant biological knowledge is be-
yond the scope of manual analysis. Chapter 4 discusses the bioinformatics algorithms
that help analyze such data and are a very valuable tool for biomedical science.

Activities of contemporary society generate enormous amounts of data that are
used in decision-support processes. Many databases have current volumes in the
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hundreds of terabytes. The difficulty of analyzing this kind of data volumes by hu-
man operators is clearly insurmountable. This lead to a rather new area of com-
puter science, data mining, whose aim is to develop automatic means of data anal-
ysis for discovering new and useful patterns embedded in data. Data mining builds
on several disciplines: statistics, artificial intelligence, databases, visualization tech-
niques, and others and has crystallized as a distinct discipline in the last decade
of the past century. The range of subjects in data mining is very broad. Among
the main directions of this branch of computer science, one should mention identi-
fication of associations between data items, clustering, classification, summariza-
tion, outlier detection, and so on. Chapters 6 and 7 concentrate on two classes
of data mining algorithms: clustering algorithms and identification of association
rules.

Data stream processing has recently gained increasing popularity as an effective
paradigm for processing massive data sets. A wide range of applications in compu-
tational sciences generate huge and rapidly changing data streams that need to be
continuously monitored in order to support exploratory analyses and to detect corre-
lations, rare events, fraud, intrusion, unusual, or anomalous activities. Relevant exam-
ples include monitoring network traffic, online auctions, transaction logs, telephone
call records, automated bank machine operations, and atmospheric and astronomical
events. Due to the high sequential access rates of modern disks, streaming algorithms
can also be effectively deployed for processing massive files on secondary storage,
providing new insights into the solution of several computational problems in ex-
ternal memory. Streaming models constrain algorithms to access the input data in
one or few sequential passes, using only a small amount of working memory and
processing each input item quickly. Solving computational problems under these re-
strictions poses several algorithmic challenges. Chapter 8 is intended as an overview
and survey of the main models and techniques for processing data streams and of
their applications.

Frequency assignment is a well-known problem in operations research for which
different mathematical models exist depending on the application-specific conditions.
However, most of these models are far from considering actual technologies currently
deployed in GSM networks, such as frequency hopping. In these networks, interfer-
ences provoked by channel reuse due to the limited available radio spectrum result
in a major impact of the quality of service (QoS) for subscribers. In Chapter 9, the
authors focus on optimizing the frequency planning of a realistic-sized, real-world
GSM network by using evolutionary algorithms.

Methods from game theory and mechanism design have been proven to be a power-
ful mathematical tool in order to understand, control and efficiently design dynamic,
complex networks, such as the Internet. Game theory provides a good starting point
for computer scientists in order to understand selfish rational behavior of complex
networks with many agents. Such a scenario is readily modeled using game theory
techniques, in which players with potentially different goals participate under a com-
mon setting with well-prescribed interactions. Nash equilibrium stands out as the
predominant concept of rationality in noncooperative settings. Thus, game theory
and its notions of equilibria provide a rich framework for modeling the behavior of
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selfish agents in these kinds of distributed and networked environments and offering
mechanisms to achieve efficient and desirable global outcomes in spite of the selfish
behavior. In Chapter 10, we review some of the most important algorithmic solutions
and advances achieved through game theory.

Real-time face detection in images received growing attention recently. Recogni-
tion of other objects, such as cars, is also important. Applications are in similar and
content-based real-time image retrieval. The task is currently achieved by designing
and applying automatic or semisupervised machine learning algorithms. Chapter 11
will review some algorithmic solutions to these problems. Existing real-time object
detection systems appear to be based primarily on the AdaBoost framework, and this
chapter will concentrate on it. Emphasis is given on approaches that build fast and
reliable object recognizers in images based on small training sets. This is important
in cases where the training set needs to be built manually, as in the case of detecting
back of cars, studied as a particular example.

Existing computer vision applications that demonstrated their validity are mostly
based on shape analysis. A number of shapes, such as linear or elliptic ones, are
well studied. More complex classification and recognition tasks require new shape
descriptors. Chapter 12 reviews some algorithmic tools for measuring and detecting
shapes. Since shape descriptors are expected to be applied not only to a single object
but also to a multiobject or dynamic scene, time complexity of the proposed algorithms
is an issue, in addition to accuracy.

Cryptographic algorithms are extremely important for secure communication over
an insecure channel and have gained significant importance in modern day technol-
ogy. Chapter 13 introduces the basic concepts of cryptography, and then presents
general principles, algorithms, and designs for block and stream ciphers, public key
cryptography, and key agreement. The algorithms largely use mathematical tools from
algebra, number theory, and algebraic geometry and have been explained as and when
required.

Chapter 14 studies the issues related to secure communication among sensor nodes.
The sensor nodes are usually of limited computational ability having low CPU power,
small amount of memory, and constrained power availability. Thus, the standard cryp-
tographic algorithms suitable for state of the art computers may not be efficiently
implemented in sensor nodes. This chapter describes strategies that can work in con-
strained environment. It first presents basic introduction to the security issues in
distributed wireless sensor networks. As implementation of public key infrastructure
may not be recommendable in low end hardware platforms, chapter describes key pre-
distribution issues in detail. Further it investigates some specific stream ciphers for
encrypted communication that are suitable for implementation in low end hardware.

In Chapter 15, the authors consider localized algorithms, as opposed to centralized
algorithms, which can be used in topology control for wireless ad hoc or sensor
networks. The aim of topology control can be to minimize energy consumption, or
to reduce interferences by organizing/structuring the network. This chapter focuses
on neighbor elimination schemes, which remove edges from the initial connection
graph in order to generate energy efficient, sparse, planar but still connected network
in localized manner.
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Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to ter-
restrial wireless networks in order to provide broadband services to users regardless
of their location. LEO satellites are expected to support multimedia traffic and to
provide their users with some form of QoS guarantees. However, the limited band-
width of the satellite channel, satellite rotation around the Earth, and mobility of
end users makes QoS provisioning and mobility management a challenging task.
One important mobility problem is the intrasatellite handoff management. Chapter
16 proposes RADAR—refined admission detecting absence region, a novel call ad-
mission control and handoff management scheme for LEO satellite networks. A key
ingredient in the scheme is a companion predictive bandwidth allocation strategy that
exploits the topology of the network and contributes to maintaining high bandwidth
utilization.

After a brief review of conventional approaches to shortest path routing, Chapter 17
introduces an alternative algorithm that abstracts a network graph into a logical tree.
The algorithm is based on the decomposition of a graph into its minimum cycle basis
(a basis of the cycle vector space of a graph having least overall weight or length).
A procedure that abstracts the cycles and their adjacencies into logical nodes and
links correspondingly is introduced. These logical nodes and links form the next level
logical graph. The procedure is repeated recursively, until a loop-free logical graph
is derived. This iterative abstraction is called a logical network abstraction procedure
and can be used to analyze network graphs for resiliency, as well as become the basis
of a new routing methodology. Both these aspects of the logical network abstraction
procedure are discussed in some detail.

With the tremendous growth of bandwidth-intensive networking applications, the
demand for bandwidth over data networks is increasing rapidly. Wavelength di-
vision multiplexing (WDM) optical networks provide promising infrastructures to
meet the information networking demands and have been widely used as the back-
bone networks in the Internet, metropolitan area networks, and high capacity local
area networks. Efficient routing on WDM networks is challenging and involves hard
optimization problems. Chapter 18 introduces efficient algorithms with guaranteed
performance for fundamental routing problems on WDM networks.
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ABSTRACTS

1 GENERATING ALL AND RANDOM INSTANCES OF A
COMBINATORIAL OBJECT

Many practical problems require an exhaustive search through the solution space,
which are represented as combinatorial structures, such as, permutations, combina-
tions, set partitions, integer partitions, and trees. All combinatorial objects of a certain
kind need to be generated to test all possible solutions. In some other problems, a
randomly generated object is needed, or an object with an approximately correct
ranking among all objects, without using large integers. Fast algorithms for generat-
ing all objects, random object, or object with approximate ranking for basic types of
combinatorial objects are described.

2 BACKTRACKING AND ISOMORPH-FREE
GENERATION OF POLYHEXES

General combinatorial algorithms and their application to enumerating molecules in
chemistry are presented and classical and new algorithms for the generation of com-
plete lists of combinatorial objects that contain only inequivalent objects (isomorph-
free exhaustive generation) are discussed. We introduce polygonal systems, and how
polyhexes and hexagonal systems relate to benzenoid hydrocarbons. The central
theme is the exhaustive generation of nonequivalent hexagonal systems, which is
used to walk the reader through several algorithmic techniques of general appli-
cability. The main algorithmic framework is backtracking, which is coupled with
sophisticated methods for dealing with isomorphism or symmetries. Triangular and
square systems, as well as the problem of matchings in hexagonal systems and their
relationship to Kékule structures in chemistry are also presented.

3 GRAPH THEORETIC MODELS IN CHEMISTRY
AND MOLECULAR BIOLOGY

The field of chemical graph theory utilizes simple graphs as models of molecules.
These models are called molecular graphs, and quantifiers of molecular graphs are

xv
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known as molecular descriptors or topological indices. Today’s chemists use molec-
ular descriptors to develop algorithms for computer aided drug designs, and com-
puter based searching algorithms of chemical databases and the field is now more
commonly known as combinatorial or computational chemistry. With the comple-
tion of the human genome project, related fields are emerging such as chemical
genomics and pharmacogenomics. Recent advances in molecular biology are driv-
ing new methodologies and reshaping existing techniques, which in turn produce
novel approaches to nucleic acid modeling and protein structure prediction. The
origins of chemical graph theory are revisited and new directions in combinato-
rial chemistry with a special emphasis on biochemistry are explored. Of particular
importance is the extension of the set of molecular descriptors to include graph-
ical invariants. We also describe the use of artificial neural networks (ANNs) in
predicting biological functional relationships based on molecular descriptor values.
Specifically, a brief discussion of the fundamentals of ANNs together with an ex-
ample of a graph theoretic model of RNA to illustrate the potential for ANN cou-
pled with graphical invariants to predict function and structure of biomolecules is
included.

4 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE
EXPRESSION DATA

The traditional approach to molecular biology consists of studying a small number
of genes or proteins that are related to a single biochemical process or pathway.
A major paradigm shift recently occurred with the introduction of gene-expression
microarrays that measure the expression levels of thousands of genes at once. These
comprehensive snapshots of gene activity can be used to investigate metabolic path-
ways, identify drug targets, and improve disease diagnosis. However, the sheer
amount of data obtained using high throughput microarray experiments and the
complexity of the existing relevant biological knowledge is beyond the scope
of manual analysis. Thus, the bioinformatics algorithms that help analyze such
data are a very valuable tool for biomedical science. First, a brief overview of
the microarray technology and concepts that are important for understanding the
remaining sections are described. Second, microarray data preprocessing, an
important topic that has drawn as much attention from the research community as
the data analysis itself is discussed. Finally, some of the more important methods
for microarray data analysis are described and illustrated with examples and case
studies.

5 ALGORITHMS OF REACTION–DIFFUSION COMPUTING

A case study introduction to the novel paradigm of wave-based computing in chem-
ical systems is presented in Chapter 5. Selected problems and tasks of computa-
tional geometry, robotics and logics can be solved by encoding data in configuration
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of chemical medium’s disturbances and programming wave dynamics and interac-
tion.

6 DATA MINING ALGORITHMS I: CLUSTERING

Clustering is the process of grouping together objects that are similar. The similarity
between objects is evaluated by using a several types of dissimilarities (particularly,
metrics and ultrametrics). After discussing partitions and dissimilarities, two basic
mathematical concepts important for clustering, we focus on ultrametric spaces that
play a vital role in hierarchical clustering. Several types of agglomerative hierarchical
clustering are examined with special attention to the single-link and complete link
clusterings. Among the nonhierarchical algorithms we present the k-means and the
PAM algorithm. The well-known impossibility theorem of Kleinberg is included
in order to illustrate the limitations of clustering algorithms. Finally, modalities of
evaluating clustering quality are examined.

7 DATA MINING ALGORITHMS II: FREQUENT ITEM SETS

The identification of frequent item sets and of association rules have received a lot
of attention in data mining due to their many applications in marketing, advertis-
ing, inventory control, and many other areas. First the notion of frequent item set is
introduced and we study in detail the most popular algorithm for item set identifi-
cation: the Apriori algorithm. Next we present the role of frequent item sets in the
identification of association rules and examine the levelwise algorithms, an important
generalization of the Apriori algorithm.

8 ALGORITHMS FOR DATA STREAMS

Data stream processing has recently gained increasing popularity as an effective
paradigm for processing massive data sets. A wide range of applications in com-
putational sciences generate huge and rapidly changing data streams that need to
be continuously monitored in order to support exploratory analyses and to detect
correlations, rare events, fraud, intrusion, and unusual or anomalous activities. Rele-
vant examples include monitoring network traffic, online auctions, transaction logs,
telephone call records, automated bank machine operations, and atmospheric and as-
tronomical events. Due to the high sequential access rates of modern disks, streaming
algorithms can also be effectively deployed for processing massive files on secondary
storage, providing new insights into the solution of several computational problems
in external memory. Streaming models constrain algorithms to access the input data
in one or few sequential passes, using only a small amount of working memory
and processing each input item quickly. Solving computational problems under these
restrictions poses several algorithmic challenges.
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9 APPLYING EVOLUTIONARY ALGORITHMS TO SOLVE THE
AUTOMATIC FREQUENCY PLANNING PROBLEM

Frequency assignment is a well-known problem in operations research for which dif-
ferent mathematical models exist depending on the application-specific conditions.
However, most of these models are far from considering actual technologies currently
deployed in GSM networks, such as frequency hopping. In these networks, interfer-
ences provoked by channel reuse due to the limited available radio spectrum result in
a major impact of the quality of service (QoS) for subscribers. Therefore, frequency
planning is of great importance for GSM operators. We here focus on optimizing
the frequency planning of a realistic-sized, real-world GSM network by using evo-
lutionary algorithms (EAs). Results show that a (1+10) EA developed by the chapter
authors for which different seeding methods and perturbation operators have been
analyzed is able to compute accurate and efficient frequency plans for real-world
instances.

10 ALGORITHMIC GAME THEORY AND APPLICATIONS

Methods from game theory and mechanism design have been proven to be a powerful
mathematical tool in order to understand, control, and efficiently design dynamic,
complex networks, such as the Internet. Game theory provides a good starting point
for computer scientists to understand selfish rational behavior of complex networks
with many agents. Such a scenario is readily modeled using game theory techniques,
in which players with potentially different goals participate under a common setting
with well prescribed interactions. The Nash equilibrium stands out as the predom-
inant concept of rationality in noncooperative settings. Thus, game theory and its
notions of equilibria provide a rich framework for modeling the behavior of selfish
agents in these kinds of distributed and networked environments and offering mecha-
nisms to achieve efficient and desirable global outcomes despite selfish behavior. The
most important algorithmic solutions and advances achieved through game theory are
reviewed.

11 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

Real time face detection images has received growing attention recently. Recognition
of other objects, such as cars, is also important. Applications are similar and content
based real time image retrieval. Real time object detection in images is currently
achieved by designing and applying automatic or semi-supervised machine learning
algorithms. Some algorithmic solutions to these problems are reviewed. Existing real
time object detection systems are based primarily on the AdaBoost framework, and
the chapter will concentrate on it. Emphasis is given to approaches that build fast and
reliable object recognizers in images based on small training sets. This is important
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in cases where the training set needs to be built manually, as in the case of detecting
the back of cars, studied here as a particular example.

12 2D SHAPE MEASURES FOR COMPUTER VISION

Shape is a critical element of computer vision systems, and can be used in many ways
and for many applications. Examples include classification, partitioning, grouping,
registration, data mining, and content based image retrieval. A variety of schemes
that compute global shape measures, which can be categorized as techniques based
on minimum bounding rectangles, other bounding primitives, fitted shape models,
geometric moments, and Fourier descriptors are described.

13 CYPTOGRAPHIC ALGORITHMS

Cryptographic algorithms are extremely important for secure communication over an
insecure channel and have gained significant importance in modern day technology.
First the basic concepts of cryptography are introduced. Then general principles,
algorithms and designs for block ciphers, stream ciphers, public key cryptography,
and protocol for key-agreement are presented in details. The algorithms largely use
mathematical tools from algebra, number theory, and algebraic geometry and have
been explained as and when required.

14 SECURE COMMUNICATION IN DISTRIBUTED SENSOR
NETWORKS (DSN)

The motivation of this chapter is to study the issues related to secure communication
among sensor nodes. Sensor nodes are usually of limited computational ability having
low CPU power, a small amount of memory, and constrained power availability. Thus
the standard cryptographic algorithms suitable for state of the art computers may not
be efficiently implemented in sensor nodes. In this regard we study the strategies that
can work in constrained environments. First we present a basic introduction to the se-
curity issues in distributed wireless sensor networks. As implementation of public key
infrastructure may not be recommendable in low end hardware platforms, we describe
key predistribution issues in detail. Further we study some specific stream ciphers for
encrypted communication that are suitable for implementation in low end hardware.

15 LOCALIZED TOPOLOGY CONTROL ALGORITHMS
FOR AD HOC AND SENSOR NETWORKS

Localized algorithms, in opposition to centralized algorithms, which can be used in
topology control for wireless ad hoc or sensor networks are considered. The aim of
topology control is to minimize energy consumption, or to reduce interferences by
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organizing/structuring the network. Neighbor elimination schemes, which consist of
removing edges from the initial connection graph are focused on.

16 A NOVEL ADMISSION FOR CONTROL OF MULTIMEDIA
LEO SATELLITE NETWORKS

Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terres-
trial wireless networks in order to provide broadband services to users regardless of
their location. In addition to global coverage, these satellite systems support commu-
nications with hand-held devices and offer low cost-per-minute access cost, making
them promising platforms for personal communication services (PCS). LEO satel-
lites are expected to support multimedia traffic and to provide their users with some
form of quality of service (QoS) guarantees. However, the limited bandwidth of the
satellite channel, satellite rotation around the Earth and mobility of end-users makes
QoS provisioning and mobility management a challenging task. One important mo-
bility problem is the intra-satellite handoff management. While global positioning
systems (GPS)-enabled devices will become ubiquitous in the future and can help
solve a major portion of the problem, at present the use of GPS for low-cost cellu-
lar networks is unsuitable. RADAR—refined admission detecting absence region—
a novel call admission control and handoff management scheme for LEO satellite
networks is proposed in this chapter. A key ingredient in this scheme is a companion
predictive bandwidth allocation strategy that exploits the topology of the network
and contributes to maintaining high bandwidth utilization. Our bandwidth allocation
scheme is specifically tailored to meet the QoS needs of multimedia connections.
The performance of RADAR is compared to that of three recent schemes proposed
in the literature. Simulation results show that our scheme offers low call dropping
probability, providing for reliable handoff of on-going calls, and good call blocking
probability for new call requests, while ensuring high bandwidth utilization.

17 RESILIENT RECURSIVE ROUTING IN COMMUNICATION
NETWORKS

After a brief review of conventional approaches to shortest path routing an alternative
algorithm that abstracts a network graph into a logical tree is introduced. The algorithm
is based on the decomposition of a graph into its minimum cycle basis (a basis of the
cycle vector space of a graph having least overall weight or length). A procedure that
abstracts the cycles and their adjacencies into logical nodes and links correspondingly
is introduced. These logical nodes and links form the next level logical graph. The
procedure is repeated recursively, until a loop-free logical graph is derived. This
iterative abstraction is called a logical network abstraction procedure and can be used
to analyze network graphs for resiliency, as well as become the basis of a new routing
methodology. Both these aspects of the logical network abstraction procedure are
discussed in some detail.
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18 ROUTING ALGORITHMS ON WDM OPTICAL NETWORKS

With the tremendous growth of bandwidth-intensive networking applications, the de-
mand for bandwidth over data networks is increasing rapidly. Wavelength division
multiplexing (WDM) optical networks provide promising infrastructures to meet
the information networking demands and have been widely used as the backbone
networks in the Internet, metropolitan area networks, and high-capacity local area
networks. Efficient routing on WDM networks is challenging and involves hard op-
timization problems. This chapter introduces efficient algorithms with guaranteed
performance for fundamental routing problems on WDM networks.
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Teatinos, 29071 Málaga, Spain [antonio@lcc.uma.es]

Zoran Obradovic, Center for Information Science and Technology, Temple Uni-
versity, 300 Wachman Hall, 1805 N. Broad St., Philadelphia, PA 19122, USA
[zoran@ist.temple.edu]

Stephan Olariu, Department of Computer Science, Old Dominion University,
Norfolk, Virginia, 23529, USA [olariu@cs.odu.edu]

Vicky Papadopoulou, Department of Computer Science, University of Cyprus,
Nicosia CY-1678, Cyprus [viki@cs.ucy.ac.cy]

Salvador Pedraza, Universidad de Málaga, ETS. Ing. Informática, Campus de
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CHAPTER 1

Generating All and Random Instances
of a Combinatorial Object

IVAN STOJMENOVIC

1.1 LISTING ALL INSTANCES OF A COMBINATORIAL OBJECT

The design of algorithms to generate combinatorial objects has long fascinated math-
ematicians and computer scientists. Some of the earliest papers on the interplay be-
tween mathematics and computer science are devoted to combinatorial algorithms.
Because of its many applications in science and engineering, the subject continues
to receive much attention. In general, a list of all combinatorial objects of a given
type might be used to search for a counterexample to some conjecture, or to test and
analyze an algorithm for its correctness or computational complexity.

This branch of computer science can be defined as follows: Given a combinatorial
object, design an efficient algorithm for generating all instances of that object. For
example, an algorithm may be sought to generate all n-permutations. Other combina-
torial objects include combinations, derangements, partitions, variations, trees, and
so on.

When analyzing the efficiency of an algorithm, we distinguish between the cost of
generating and cost of listing all instances of a combinatorial object. By generating we
mean producing all instances of a combinatorial object, without actually outputting
them. Some properties of objects can be tested dynamically, without the need to check
each element of a new instance. In case of listing, the output of each object is required.
The lower bound for producing all instances of a combinatorial object depends on
whether generating or listing is required. In the case of generating, the time required
to “create” the instances of an object, without actually producing the elements of each
instance as output, is counted. Thus, for example, an optimal sequential algorithm
in this sense would generate all n-permutations in θ(n!) time, that is, time linear in
the number of instances. In the case of listing, the time to actually “output” each
instance in full is counted. For instance, an optimal sequential algorithm generates
all n-permutations in θ(nn!) time, since it takes θ(n) time to produce a string.
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Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.

1



2 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Let P be the number of all instances of a combinatorial object, and N be the average
size of an instance. The delay when generating these instances is the time needed to
produce the next instance from the current one. We list some desirable properties of
generating or listing all instances of a combinatorial object.

Property 1. The algorithm lists all instances in asymptotically optimal time, that is,
in time O(NP).

Property 2. The algorithm generates all instances with constant average delay. In
other words, the algorithm takes O(P) time to generate all instances. We say that a
generating algorithm has constant average delay if the time to generate all instances
is O(P); that is, the ratio T/P of the time T needed to generate all instances and the
number of generated instances P is bounded by a constant.

Property 3. The algorithm generates all instances with constant (worst case) delay.
That is, the time to generate the next instance from the current one is bounded by a
constant. Constant delay algorithms are also called loopless algorithms, as the code
for updating given instance contains no (repeat, while, or for) loops.

Obviously, an algorithm satisfying Property 3 also satisfies Property 2. However,
in some cases, an algorithm having constant delay property is considerably more so-
phisticated than the one satisfying merely constant average delay property. Moreover,
sometimes an algorithm having constant delay property may need more time to gen-
erate all instances of the same object than an algorithm having only constant average
delay property. Therefore, it makes sense to consider Property 3 independently of
Property 2.

Property 4. The algorithm does not use large integers in generating all instances of
an object. In some papers, the time needed to “deal” with large integers is not properly
counted in.

Property 5. The algorithm is the fastest known algorithm for generating all instances
of given combinatorial object. Several papers deal with comparing actual (not asymp-
totic) times needed to generate all instances of given combinatorial object, in order
to pronounce a “winner,” that is, to extract the one that needs the least time. Here,
the fastest algorithm may depend on the choice of computer. Some computers support
fast recursion giving the recursive algorithm advantage over iterative one. Therefore,
the ratio of the time needed for particular instructions over other instructions may
affect the choice of the fastest algorithm.

We introduce the lexicographic order among sequences. Let a = a1, a2, . . . ,ap
and b = b1, b2, . . . , bq be two sequences. Then a precedes b(a<b) in lexicographic
order if and only if there exists i such that aj = bj for j<i and either p = i+ 1<q
or ai < bi. The lexicographic order corresponds to dictionary order. For example,
112< 221 (where i = 1 from the definition).
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For example, the lexicographic order of subsets of {1, 2, 3} in the set repre-
sentation is Ø, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}. In binary notation, the
order of subsets is somewhat different: 000, 001, 010, 011, 100, 101, 110, 111,
which correspond to subsets Ø, {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}, re-
spectively. Clearly the lexicographic order of instances depends on their rep-
resentation. Different notations may lead to different listing order of same
instances.

Algorithms can be classified into recursive or iterative, depending on whether or
not they use recursion. The iterative algorithms usually have advantage of giving
easy control over generating the next instance from the current one, which is often a
desirable characteristic. Also some programming languages do not support recursion.
In this chapter we consider only iterative algorithms, believing in their advantage over
recursive ones.

Almost all sequential generation algorithms rely on one of the following three
ideas:

1. Unranking, which defines a bijective function from consecutive integers to
instances of combinatorial objects. Most algorithms in this group do not satisfy
Property 4.

2. Lexicographic updating, which finds the rightmost element of an instance that
needs “updating” or moving to a new position.

3. Minimal change, which generates instances of a combinatorial object by making
as little as possible changes between two consecutive objects. This method can
be further specified as follows:

� Gray code generation, where changes made are theoretically minimal possi-
ble.

� Transpositions, where instances are generated by exchanging pairs of (not
necessarily adjacent) elements.

� Adjacent interchange, where instances are generated by exchanging pairs of
adjacent elements.

The algorithms for generating combinatorial objects can thus be classified
into those following lexicographic order and those following a minimal change
order. Both orders have advantages, and the choice depends on the applica-
tion. Unranking algorithms usually follow lexicographic order but they can fol-
low minimal change one (normally with more complex ranking and unranking
functions).

Many problems require an exhaustive search to be solved. For example, finding
all possible placements of queens on chessboard so that they do not attack each other,
finding a path in a maze, choosing packages to fill a knapsack with given capacity
optimally, satisfy a logic formula, and so on. There exist a number of such problems
for which polynomial time (or quick) solutions are not known, leaving only a kind of
exhaustive search as the method to solve them.
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Since the number of candidates for a solution is often exponential to input size,
systematic search strategies should be used to enhance the efficiency of exhaustive
search. One such strategy is the backtrack. Backtrack, in general, works on partial
solutions to a problem. The solution is extended to a larger partial solution if there is
a hope to reach a complete solution. This is called an extend phase. If an extension
of the current solution is not possible, or a complete solution is reached and another
one is sought, it backtracks to a shorter partial solution and tries again. This is called
a reduce phase. Backtrack strategy is normally related to the lexicographic order of
instances of a combinatorial object. A very general form of backtrack method is as
follows:

initialize;
repeat

if current partial solution is extendable then extend else reduce;
if current solution is acceptable then report it;

until search is over

This form may not cover all the ways by which the strategy is applied, and, in the
sequel, some modifications may appear. In all cases, the central place in the method
is finding an efficient test as to whether current solution is extendable. The backtrack
method will be applied in this chapter to generate all subsets, combinations, and other
combinatorial objects in lexicographic order.

Various algorithms for generating all instances of a combinatorial object can
be found in the journal Communications of ACM (between 1960 and 1975) and
later in ACM Transactions of Mathematical Software and Collected Algorithms
from ACM, in addition to hundreds of other journal publications. The generation
of ranking and unranking combinatorial objects has been surveyed in several books
[6,14,21,25,30,35,40].

1.2 LISTING SUBSETS AND INTEGER COMPOSITIONS

Without loss of generality, the combinatorial objects are assumed to be taken from the
set {1, 2, . . . , n}, which is also called n-set. We consider here the problem of generat-
ing subsets in their set representation. Every subset [or (n,n)-subset] is represented in
the set notation by a sequence x1, x2, . . . , xr, 1 ≤ r ≤ n, 1 ≤ x1<x2< . . .<xr ≤ n.
An (m,n)-subset is a subset with exactly m elements.

Ehrlich [11] described a loopless procedure for generating subsets of an n-set.
An algorithm for generating all (m,n)-subsets in the lexicographic order is given in
the work by Nijenhius and Wilf [25]. Semba [33] improved the efficiency of the
algorithm; the algorithm is modified in the work by Stojmenović and Miyakawa [37]
and presented in Pascal-like notation without goto statements. We present here the
algorithm from the work by Stojmenović and Miyakawa [37]. The generation goes
in the following manner (e.g., let n = 5):
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1 12 123 1234 12345

1235

124 1245

125

13 134 1345

135

14 145

15

2 23 234 2345

235

24 245

25

3 34 345

35

4 45

5.

The algorithm is in extend phase when it goes from left to right staying in the same
row. If the last element of a subset is n, the algorithm shifts to the next row. We call
this the reduce phase.

read( n); r← 0; xr ← 0;
repeat

if xr<n then extend else reduce;
print out x1, x2, . . . , xr

until x1 = n
extend ≡ {xr+1 ← xr + 1; r← r + 1}
reduce ≡ {r← r − 1; xr ← xr + 1}.

The algorithm is loopless, that is, has constant delay. To generate (m,n)-subsets,
the if instruction in the algorithm should be changed to

if xr<n and r<m then {xr+1 ← xr + 1; r← r + 1} (* extend *)
else if xr<n then xr ← xr + 1 (*cut *)

else {r← r − 1; xr ← xr + 1} (* reduce *).

The new cut phase will be used when the algorithm goes from one subset to a
subset in a lower row, skipping several subsets (having more than m elements). For
example, form = 3 and n = 5 , the first three columns of the last table of subsets are
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(3,5)-subsets. This illustrates the backtrack process applied on all subsets to extract
(m,n)-subsets.

We now present the algorithm for generating variations. A (m,n)-variation out of
{p1, p2, . . . , pn} can be represented as a sequence c1c2 . . . cm, where p1 ≤ ci ≤ pn.
Let z1z2 . . . zm be the corresponding array of indices, that is, ci = pzi , 1 ≤ i ≤ m.
The next variation can be determined by a backtrack search that finds an element ct
with the greatest possible index t such that zt<n, therefore increasable (the index t is
called the turning point). The value of zt is increased by 1 while the new value of zi
for i ≥ t is 1. The algorithm is as follows.

for i← 0 to m do zi← 1 ;
repeat

print out pzi , 1 ≤ i ≤ m ;
t← m ;
while zt = n do t← t − 1 ;
zt ← zt + 1;
for i← t + 1 to m do zi← 1

until t = 0.

We now prove that the algorithm has constant average delay property. Every step
will be assigned to the current value of t; in this way the time complexity T is sub-
divided into m portions T1, T2, . . . , Tm. In the process of a backtrack search and the
update of elements, every portion Ti for t ≤ i ≤ m increases by a constant amount.
After the update, ith element does not change (moreover, the backtrack search does
not reach it) during the next nm−i variations (i.e., Ti does not increase). Therefore,
on average, Ti increases by O(1/nm−i) . It follows that the average delay is, up to a
constant,

m∑
i=1

1

nm−1 =
1

nm

nm+1 − 1

n− 1
= O(1).

Subsets may be also represented in binary notation, where each “1” corresponds
to the element from the subset. For example, subset {1,3,4} for n = 5 is represented
as 11010. Thus, subsets correspond to integers written in the binary number system
(i.e., counters) and to bitstrings, giving all possible information contents in a com-
puter memory. A simple recursive algorithm for generating bitstrings is given in the
work by Parberry [28]. A call to bitstring (n) produces all bitstrings of length n as
follows:

procedure bitstring( m);
if m = 0 then print out ci;

else cm← 0; bitstring(m− 1 );
cm← 1; bitstring(m− 1 ) .
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Given an integer n, it is possible to represent it as the sum of one or more positive
integers (called parts) ai that is, n = x1 + x2 + · · · + xm. This representation is called
an integer partition if the order of parts is of no consequence. Thus, two partitions of
an integer n are distinct if they differ with respect to the xi they contain. For example,
there are seven distinct partitions of the integer 5 : 5, 4+ 1, 3+ 2, 3+ 1+ 1, 2+
2+ 1, 2+ 1+ 1+ 1, 1+ 1+ 1+ 1+ 1. If the order of parts is important then the
representation of n as a sum of some positive integers is called integer composition.
For example, integer compositions of 5 are the following:

5, 4+ 1, 1+ 4, 3+ 2, 2+ 3, 3+ 1+ 1, 1+ 3+ 1, 1+ 1+ 3, 2+ 2+ 1,

2+ 1+ 2, 1+ 2+ 2, 2 + 1+ 1+ 1, 1+ 2+ 1+ 1, 1+ 1+ 2+ 1,

1+ 1+ 1+ 2, 1+ 1+ 1+ 1+ 1.

Compositions of an integer n into m parts are representations of n in the form
of the sum of exactly m positive integers. These compositions can be written in the
form x1 + · · · + xm = n, where x1 ≥ 0, . . . , xm ≥ 0. We will establish the correspon-
dence between integer compositions and either combinations or subsets, depending
on whether or not the number of parts is fixed.

Consider a composition of n = x1 + · · · + xm, where m is fixed or not fixed.
Let y1, . . . , ym be the following sequence: yi = x1 + · · · + xi, 1 ≤ i ≤ m. Clearly,
ym = n . The sequence y1, y2, . . . , ym−1 is a subset of {1, 2, . . . , n− 1}. If the
number of parts m is not fixed then compositions of n into any number of parts
correspond to subsets of {1, 2, . . . , n− 1}. The number of such compositions is
in this case CM(n) = 2n−1. If the number of parts m is fixed then the sequence
y1, . . . , ym−1 is a combinations ofm− 1 out of n− 1 elements from {1, . . . , n− 1},
and the number of compositions in question is CO(m, n) = C(m− 1, n− 1). Each
sequence x1 . . . xm can easily be obtained from y1, . . . , ym since xi = yi − yi−1 (with
y0 = 0 ).

To design a loopless algorithm for generating integer compositions of n, one can
use this relation between compositions of n and subsets of {1, 2, . . . , n− 1}, and the
subset generation algorithm above.

1.3 LISTING COMBINATIONS

A (m,n)-combination out of {p1, p2, . . . , pn} can be represented as a se-
quence c1, c2, . . . , cm, where p1 ≤ c1<c2< · · ·<cm ≤ pn. Let z1, z2, . . . , zm be
the corresponding array of indices, that is, ci = pzi , 1 ≤ i ≤ m. Then 1 ≤
z1<z2< · · ·<zm≤ n, and therefore zi ≤ n−m+ i for 1 ≤ i ≤ m. The number of
(m,n)-combinations is binomial coefficient C(m, n) = n!/(m!(n−m)!). In this sec-
tion, we investigate generating the C(m,n) (m,n)-combinations, in lexicographically
ascending order. Various sequential algorithms have been given for this problem.
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Comparisons of combination generation techniques are given in the works by Ak1
[1] and Payne and Ives [29]. Akl [1] reports algorithm by Misfud [23] to be the fastest
while Semba [34] improved the speed of algorithm [23].

The sequential algorithm [23] for generating (m,n)-combinations determines the
next combination by a backtrack search that finds an element ct with the greatest
possible index t such that zt<n−m+ t, therefore increasable (the index t is called
the turning point). The new value of zi for i ≥ t is zt + i− t + 1 .

The average delay of the algorithm is O(n/(n−m)) [34]. The delay is constant
whenever m = o(n). On the contrary, the average delay may be nonconstant in some
cases (e.g., when n−m = O(

√
n)). Semba [34] modified the algorithm by noting that

there is no need to search for the turning point as it can be updated directly from one
combination to another, and that there is no need to update the elements with indices
between t and m if they do not change from one combination to another. If zt<n−
m+ t − 1 then all elements in the next combination will be less that their appropriate
maximal values and the turning point of the next combination will be index m. In this
case, a total of d = m− t + 1 elements change their value in the next combination.
Otherwise, that is, when zt = n−m+ t − 1, the new value for the turning point
element becomes its maximal possible value n−m+ t, elements between t and m
remain unchanged (with their maximal possible values), and the turning point for the
next combination is the element with index t − 1. Only one element is checked in
this case. The following table gives values of t and d for (4,6)-combinations.

1234 1235 1236 1245 1246 1256 1345 1346 1356 1456 2345 2346 2356 2456 3456

t = 4 4 3 4 3 2 4 3 2 1 4 3 2 1 0

d = 1 1 2 1 1 3 1 1 1 4 1 1 1 1

The algorithm [34] is coded in FORTRAN language using goto statements. Here
we code it in PASCAL-like style.

z0 ← 1; t← m;
for i← 1 to m do zi← i;
repeat

print out pzi , 1 ≤ i ≤ m;
zt ← zt + 1;
if zt = n−m+ t then t← t − 1

else for i = t + 1 to m do zi← zt + i− t; t← m

until t = 0.

The algorithm always does one examination to determine the turning point. We
now determine the average number d of changed elements. For a fixed t, the num-
ber of (m,n)-combinations that have t as the turning point with zt<n−m+ t − 1
is C(t, n−m+ t − 2). This follows because zi = n−m+ i when i>t for each of
these combinations while z1, z2, . . . , zt can be any (t, n−m+ t − 2) -combination.
The turning point element is always updated. In addition, m− t elements when-
ever zt<n−m+ t − 1, which happens C(t, n−m+ t − 2) times. Therefore, the



LISTING PERMUTATIONS 9

total number of updated elements (in addition to the turning point) to generate all
combinations is

m∑
t=1

(m− t)C(t, n−m+ t − 2) =
m−1∑
j=0

jC(n− j − 2, n−m− 2)

= m

n−mC(n−m− 1, n− 1)−m

= m
n
C(m, n)−m.

Thus, the algorithms updates, on the average, less than m/n+ 1<2 elements and
therefore the average delay is constant for any m and n(m ≤ n).

1.4 LISTING PERMUTATIONS

A sequence p1, p2, . . . , pn of mutually distinct elements is a permutation of S =
{s1, s2, . . . , sn} if and only if {p1, p2, . . . , pn} = {s1, s2, . . . , sn} = S. In other words,
an n-permutation is an ordering, or arrangement, of n given elements. For example,
there are six permutations of the set {A,B,C}. These are ABC, ACB, BAC, BCA,
CAB, and CBA.

Many algorithms have been published for generating permutations. Surveys and
bibliographies on the generation of permutations can be found in the Ord-Smith [27]
and Sedgewick [31] [27,31]. Lexicographic generation presented below is credited to
L.L. Fisher and K.C. Krause in 1812 by Reingold et al. [30].

Following the backtrack method, permutations can be generated in lexicographic
order as follows. The next permutation of x1x2 . . . xn is determined by scanning
from right to left, looking for the rightmost place where xi<xi+1 (called again the
turning point). By another scan, the smallest element xj that is still greater than
xi is found and interchanged with xi. Finally, the elements xi+1, . . . , xn (which
are in decreasing order) are reversed. For example, for permutation 3, 9, 4, 8, 7,
6, 5, 2, 1, the turning point x3 = 4 is interchanged with x7 = 5 and 8, 7, 6, 4,
2, 1 is reversed to give the new permutation 3, 9, 5, 1, 2, 4, 6, 7, 8. The fol-
lowing algorithm is the implementation of the method for generating permutations
of {p1, p2, . . . , pn}. The algorithm updates the indices zi (such that xi = pzi , ),
1 ≤ i ≤ n.

for i← 0 to n do zi← i ;
i← 1;
while i �= 0 do {

print out pzi , 1 ≤ i ≤ n;
i← n− 1;
while zi ≥ zi+1 do i← i− 1;
j← n;
while zi ≥ zj do j← j − 1;
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ch← zi; zi← zj; zj ← ch;
v← n; u← i+ 1;
while v>u do {ch← zv; zv ← zu; zu← ch; v ← v− 1;

u← u+ 1}}.
We prove that the algorithm has constant average delay property. The time

complexity of the algorithm is clearly proportional to the number of tests zi ≥ zi+1
in the first while inside loop. If ith element is the turning point, the array zi+1, . . . , zn
is decreasing and it takes (n− 1 ) tests to reach zi. The array z1z2 . . . zi is a
(m,n)-permutation. It can be uniquely completed to n-permutation z1z2 . . . zn
such that zi+1> · · ·>zn. Although only these permutations for which zi<zi+1
are valid for zi to be the turning point, we relax the condition and artificially
increase the number of tests in order to simplify the proof. Therefore for each
i, 1 ≤ i ≤ n− 1 there are at most P(i, n) = n(n− 1) · · · (n− i+ 1) arrays such
that zi is the turning point of n-permutation z1z2 . . . zn. Since each of them
requires n− i tests, the total number of tests is at most

∑n−1
i=1 P(i, n)(n− i) =∑n−1

i=1 (n(n− 1) · · · (n− i+ 1)(n− i)) =∑n−1
i=1 n!/(n− i− 1)! = n!

∑n−2
j=0 1/j!.

Since j! = 2 · 3 · · · j > 2× 2 · · · × 2 = 2j−1, the average number of tests is
<2+∑n−2

j=2 1/(2j−1) = 2+ 1/2+ 1/4+ . . . <3. Therefore the algorithm has
constant delay property. It is proved [27] that the algorithm performs about 1.5n!
interchanges.

The algorithm can be used to generate the permutations with repetitions. Let
n1, n2, . . . , nk be the multiplicities of elements p1, p2, . . . , pk, respectively, such
that the total number of elements is n1 + n2 + · · · + nk = n. The above algorithm
uses no arithmetic with indices zi and we can observe that the same algorithm gener-
ates permutations with repetitions if the initialization step (the first instruction, i.e.,
for loop) is replaced by the following instructions that find the first permutation with
repetitions.

n← 0; z0 ← 0;
for i← 1 to k do

for j← 1 to ni do {n← n+ 1; zn← j};

Permutations of combinations (or (m,n)-permutations) can be found by gener-
ating all (m,n)-combinations and finding all (m,m)-permutations for each (m,n)-
combination. The algorithm is then obtained by combining combination and permu-
tation generating algorithms. In the standard representation of (m,n)-permutations as
an array x1x2 . . . xm, the order of instances is not lexicographic. Let c1c2 . . . cm be the
corresponding combination for permutation x1x2, . . . , xm, that is, c1<c2< · · ·<cm
and {c1, c2, . . . , cm} = {x1, x2, . . . , xm}. Then we can observe that the obtained
order of generating (m,n)-permutations is lexicographic if they are represented
as an array of 2m elements c1c2 . . . cm x1x2 . . . xm, composed of corresponding
(m,n)-combination followed by the (m,n)-permutation. In other words, the order
is lexicographic if corresponding combinations are compared before comparing
permutations.



LISTING EQUIVALENCE RELATIONS OR SET PARTITIONS 11

1.5 LISTING EQUIVALENCE RELATIONS OR SET PARTITIONS

An equivalence relation of the setZ = {p1, . . . , pn} consists of classesπ1, π2, . . . , πk
such that the intersection of every two classes is empty and their union is
equal to Z. Equivalence relations are often referred to as set partitions. For
example, let Z = {A, B, C}. Then there are four equivalence relations of Z :
{{A,B,C}}, {{A,B}{C}}, {{A,C}{B}}, {{A}, {B,C}}, and {{A}, {B}, {C}}.

Equivalence relations of Z can be conveniently represented by codewords
c1c2 . . . cn such that ci = j if and only if elementpi is in classπj . Because equivalence
classes may be numbered in various ways (k! ways), such codeword representation is
not unique. For example, set partition {{A,B}{C}} is represented with codeword 112
while the same partition {{C}{A,B}} is coded as 221.

In order to obtain a unique codeword representation for given equivalence rela-
tion, we choose lexicographically minimal one among all possible codewords. Clearly
c1 = 1 since we can choose π1 to be the class containing p1. All elements that are in
π1 are also coded with 1. The class containing element that is not in π1 and has the
minimal possible index is π2 and so on. For example, let {{C,D,E}, {B}, {A,F }}
be a set partition of {A,B,C,D,E, F}. The first equivalence class is {A,F },
the second is {B}, and the third is {C,D,E}. The corresponding codeword is
123331.

A codeword c1 . . . cn represents an equivalence relation of the set Z if and
only if c1 = 1 and 1 ≤ cr ≤ gr−1 + 1 for 2 ≤ r ≤ n , where ci = j if i is in πj ,
and gr = max(c1, . . . , cr) for 1 ≤ r ≤ n . This follows from the definition of lex-
icographically minimal codeword. Element pt is either one of the equivalence
classes with some other element pi(i<t) in which case ct receives one of exist-
ing codes assigned to elements p1, p2, . . . , pt−1 or in none of previous classes,
in which case it starts a new class with index one higher than previously maximal
index.

Sequential algorithms [9,12,25,32] generate set partitions represented by code-
words in lexicographic order. The next equivalence relation is found from the current
one by a backtracking or recursive procedure in all known sequential generating tech-
niques that maintain the lexicographic order of elements; in both cases an increasable
element (one for which xj≤ gj − 1 is satisfied) with the largest possible index t is
found (t ≤ n− 2 ); we call this element the turning point. For example, the turning
point of the equivalence relation 1123 is the second element (t = 2 ).

A list of codewords and corresponding partitions for n = 4 and Z = {A,B,C,D}
is, in lexicographic order, as follows:

1111 = {{A,B,C,D}}, 1112 = {{A,B,C}, {D}}, 1121 = {{A,B,D}, {C}},
1122 = {{A,B}, {C,D}}, 1123 = {{A,B}, {C}, {D}},
1211 = {{A,C,D}, {B}}, 1212 = {{A,C}, {B,D}},

1213 = {{A,C}, {B}, {D}}, 1221 = {{A,D}, {B,C}},
1222 = {{A}, {B,C,D}}, 1223 = {{A}, {B,C}, {D}}, 1231 = {{A,D}, {B}, {C}},
1232 = {{A}, {B,D}, {C}}, 1233 = {{A}, {B}, {C,D}}, 1234 = {{A}, {B}, {C}, {D}}.
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We present an iterative algorithm from the work by Djokić et al. [9] for generating
all set partitions in the codeword representation. The algorithm follows backtrack
method for finding the largest r having an increasable cr, that is, cr<gr−1 + 1 .

program setpart( n);
r← 1; c1 ← 1; j← 0; b0 ← 1; n1 ← n− 1;
repeat

while r<n1 do {r← r + 1; cr ← 1; j← j + 1; bj ← r};
for i← 1 to n− j do {cn← i; print out c1, c2, . . . , cn};
r← bj; cr ← cr + 1;
if cr>r − j then j← j − 1

until r = 1

In the presented iterative algorithm bj is the position where current position r
should backtrack after generating all codewords beginning with c1, c2, . . . , cn−1.
Thus the backtrack is applied on n− 1 elements of codeword while direct generation
of the last element in its range speeds the algorithm up significantly (in most set
partitions the last element in the codeword is increasable). An element of b is defined
whenever gr = gr−1, which is recognized by either cr = 1 or cr>r − j in the algo-
rithm. It is easy to see that the relation r = gr−1 + j holds whenever j is defined. For
example, for the codeword c = 111211342 we have g = 111222344 and b = 23569.
Array b has n− gn = 9− 4 = 5 elements.

In the algorithm, backtrack is done on array b and finds the increasable element in
constant time; however, updating array b for future backtrack calls is not a constant
time operation (while loop in the program). The number of backtrack calls is Bn−1
(recall that Bn is the number of set partitions over n elements).

The algorithm has been compared with other algorithms that perform the same
generation and it was shown to be the fastest known iterative algorithm. A recursive
algorithm is proposed in the work by Er [12]. The iterative algorithm is faster than
recursive one on some architectures and slower on other [9].

The constant average time property of the algorithm can be shown as in the work
by Semba [32]. The backtrack step returns to position r exactly Br − Br−1 times, and
each time it takes n− r + 1 for update (while loop), for 2 ≤ r ≤ n− 1 . Therefore,
up to a constant, the backtrack steps require (B2 − B1)(n− 1)+ (B3 − B2)(n− 2)+
· · · + (Bn−1 − Bn−2)2<B2 + B3 + · · · + Bn−2 + 2Bn−1. The update of nth element
is performed Bn − Bn−1 times. Since Bi+1>2Bi, the average delay, up to a constant,
is bounded by

Bn + Bn−1 + · · · + B2

Bn
< 1+ 1

2
+ 1

22 + · · · +
1

2n−2 < 2.

1.6 GENERATING INTEGER COMPOSITIONS AND PARTITIONS

Given an integer n, it is possible to represent it as the sum of one or more positive
integers (called parts)xi, that is,n = x1 + x2 + · · · + xm. This representation is called
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an integer partition if the order of parts is of no consequence. Thus, two partitions of
an integer n are distinct if they differ with respect to the xi they contain. For example,
there are seven distinct partitions of the integer 5:

5, 4+ 1, 3+ 2, 3+ 1+ 1, 2+ 2+ 1, 2+ 1+ 1+ 1, 1+ 1+ 1+ 1+ 1.

In the standard representation, a partition of n is given by a sequence x1, . . . , xm,
where x1 ≥ x2 ≥ · · · ≥ xm, and x1 + x2 + · · · + xm = n. In the sequel x will denote
an arbitrary partition and m will denote the number of parts of x (m is not fixed). It
is sometimes more convenient to use a multiplicity representation for partitions in
terms of a list of the distinct parts of the partition and their respective multiplicities.
Let y1> · · ·>yd be all distinct parts in a partitions, and c1, . . . , cd their respective
(positive) multiplicities. Clearly c1y1 + · · · + cdyd = n.

We first describe an algorithm for generating integer compositions of n into
any number of parts and in lexicographic order. For example, compositions of 4
in lexicographic order are the following: 1+ 1+ 1+ 1, 1+ 1+ 2, 1+ 2+ 1, 1+
3, 2+ 1+ 1, 2+ 2, 3+ 1, 4. Let x1 . . . xm, where x1 + x2 + · · · + xm = n be a
composition. The next composition, following lexicographic order, is x1, . . . , xm−1 +
1, 1, . . . , 1(xm − 1 1s). In other words, the next to last part is increased by one and
the xm − 1, 1s are added to complete the next composition. This can be coded as
follows:

program composition( n);
m← 1; x1 ← n;
repeat

for j← 1 to m do print out x1, x2, . . . , xm;
m← m− 1; xm← xm + 1;
for j← 1 to xm+1 − 1 do {m← m+ 1; xm← 1}

until m = n.

In antilexicographic order, a partition is derived from the previous one by subtract-
ing 1 from the rightmost part greater than 1, and distributing the remainder as quickly
as possible. For example, the partitions following 9+ 7+ 6+ 1+ 1+ 1+ 1+ 1+ 1
is 9+ 7+ 5+ 5+ 2. In standard representation and antilexicographic order, the next
partition is determined from current one x1x2 . . . xm in the following way. Let h be the
number of parts of x greater than 1, that is, xi>1 for 1 ≤ i ≤ h, and xi = 1 for h< i ≤
m. If xm>1 (or h = m ) then the next partition is x1, x2, . . . , xm−1, xm − 1, 1.
Otherwise (i.e., h<m ), the next partition is obtained by replacing xh, xh+1 =
1, . . . , xm = 1 with (xh − 1), (xh − 1), . . . , (xh − 1), d, containing c elements, where
0<d ≤ xh − 1 and (xh − 1)(c− 1)+ d = xh +m− h.

We describe two algorithms from the work by Zoghbi and Stojmenovic [43] for
generating integer partitions in standard representation and prove that they have con-
stant average delay property. The first algorithm, named ZS1, generates partitions in
antilexicographic order while the second, named ZS2, uses lexicographic order.

Recall that h is the index of the last part of partition, which is greater than 1
while m is the number of parts. The major idea in algorithm ZS1 is coming from the
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observation on the distribution of xh. An empirical and theoretical study shows that
xh = 2 has growing frequency; it appears in 66 percent of cases for n = 30 and in 78
percent of partitions for n = 90 and appears to be increasing with n. Each partition
of n containing a part of size 2 becomes, after deleting the part, a partition of n− 2
(and vice versa). Therefore the number of partitions of n containing at least one part
of size 2 is P(n− 2). The ratio P(n− 2)/P(n) approaches 1 with increasing n. Thus,
almost all partitions contain at least one part of size 2. This special case is treated
separately, and we will prove that it suffices to argue the constant average delay of
algorithm ZS1. Moreover, since more than 15 instructions in known algorithms that
were used for all cases are replaced by 4 instructions in cases of at least one part of size
2 (which happens almost always), the speed up of about four times is expected even
before experimental measurements. The case xh>2 is coded in a similar manner as
earlier algorithm, except that assignments of parts that are supposed to receive value
1 is avoided by an initialization step that assigns 1 to each part and observation that
inactive parts (these with index >m ) are always left at value 1. The new algorithm
is obtained when the above observation is applied to known algorithms and can be
coded as follows.

Algorithm ZS1
for i← 1 to n do xi← 1;
x1 ← n;m← 1;h← 1; output x1;
while x1 �= 1 do {

if xh = 2 then {m← m+ 1; xh← 1; h← h− 1}
else {r← xh − 1; t← m− h+ 1; xh← r;

while t ≥ r do {h← h+ 1; xh← r; t← t − r}
if t = 0 then m← h

else m← h+ 1
if t>1 then {h← h+ 1; xh← t}}

output x1, x2, . . . , xm}}.

We now describe the method for generating partitions in lexicographic order and
standard representation of partitions. Each partition of n containing two parts of size
1 (i.e., m− h>1 ) becomes, after deleting these parts, a partition of n− 2 (and vice
versa). Therefore the number of integer partitions containing at least two parts of size
1 is P(n− 2), as in the case of previous algorithm. The coding in this case is made
simpler, in fact with constant delay, by replacing first two parts of size 1 by one part of
size 2. The position h of last part>1 is always maintained. Otherwise, to find the next
partition in the lexicographic order, an algorithm will do a backward search to find the
first part that can be increased. The last part xm cannot be increased. The next to last
part xm−1 can be increased only if xm−2>xm−1. The element that will be increased
is xj where xj−1>xj and xj = xj+1 = . . . = xm−1. The jth part becomes xj + 1, h
receives value j, and appropriate number of parts equal to 1 is added to complete the
sum to n. For example, in the partition 5+ 5+ 5+ 4+ 4+ 4+ 1 the leftmost 4 is
increased, and the next partition is 5+ 5+ 5+ 5+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1.
The following is a code of appropriate algorithm ZS2:
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Algorithm ZS2
for i← 1 to n do xi← 1 ; output xi, i = 1, 2, . . . , n;
x0 ← 1; x1 ← 2; h← 1; m← n− 1; output xi, i = 1, 2, . . . , m;
while x1 �= n do {

if m− h>1 then {h← h+ 1; xh← 2; m← m− 1}
else {j← m− 2;

while xj = xm−1 do {xj ← 1; j← j − 1};
h← j + 1; xh← xm−1 + 1;
r← xm + xm−1(m− h− 1); xm← 1;
if m− h>1 then xm−1 ← 1;
m← h+ r − 1;

output x1, x2, . . . , xm}.

We now prove the constant average delay property of algorithms ZS1 and ZS2.

Theorem 1 Algorithms ZS1 and ZS2 generate unrestricted integer partitions in
standard representation with constant average delay, exclusive of the output.

Proof. Consider part xi ≥ 3 in the current partition. It received its value after
a backtracking search (starting from last part) was performed to find an index
j ≤ i, called the turning point, that should change its value by 1 (increase/decrease
for lexicographic/antilexicographic order) and to update values xi for j ≤ i. The time
to perform both backtracking searches is O(rj), where rj = n− x1 − x2 − · · · − xj
is the remainder to distribute after first j parts are fixed. We decide to charge the
cost of the backtrack search evenly to all “swept” parts, such that each of them re-
ceives constant O(1) time. Part xi will be changed only after a similar backtracking
step “swept” over ith part or recognized ith part as the turning point (note that ith
part is the turning point in at least one of the two backtracking steps). There are
RP(ri, xi) such partitions that keep all xj intact. For xi ≥ 3 the number of such par-
titions, is ≥ r2i /12. Therefore the average number of operations that are performed
by such part i during the “run” of RP(ri, xi), including the change of its value, is
O(1)/RP(ri, xi) ≤ O(1)/r2i = O(1/r2i )<qi/r

2
i , whereqi is a constant. Thus the aver-

age number of operations for all parts of size≥ 3 is≤ q1/r
2
1 + q2/r

2
2 + · · · + qs/r2s ≤

q(1/r21 + · · · + 1/r2s )<q(1/n
2 + 1/(n− 1)2 + · · · + 1/12)< 2q (the last inequality

can be obtained easily by applying integral operation on the last sum), which is a
constant. The case that was not counted in is when xi ≤ 2 . However, in this case both
algorithms ZS1 and ZS2 perform constant number of steps altogether on all such
parts. Therefore the algorithm has overall constant time average delay. �

The performance evaluation of known integer partition generation methods is per-
formed in the work by Zoghbi and Stojmenovic [43]. The results show clearly that
both algorithms ZS1 and ZS2 are superior to all other known algorithms that gener-
ate partitions in the standard representation. Moreover, both algorithms SZ1 and ZS2
were even faster than any algorithm for generating integer partitions in the multiplicity
representation.
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1.7 LISTING t-ARY TREES

The t-ary trees are data structures consisting of a finite set of n nodes, which either
is empty (n = 0) or consists of a root and t disjoint children. Each child is a t-ary
subtree, recursively defined. A node is the parent of another node if the latter is a
child of the former. For t = 2, one gets the special case of rooted binary trees, where
each node has a left and a right child, where each child is either empty or is a binary
tree. A computer representation of t-ary trees with n nodes is achieved by an array
of n records, each record consisting of several data fields, t pointers to children and
a pointer to the parent. All pointers to empty trees are nil. The number of t-ary trees
with n nodes is B(n, t) = (tn)!/(n!(tn− n)!)/((t − 1)n+ 1) (cf. [19,42]).

If the data fields are disregarded, the combinatorial problem of generating binary
and, in general, t-ary trees is concerned with generating all different shapes of t-ary
trees with n nodes in some order. The lexicographic order of trees refers to the lex-
icographic order of the corresponding tree sequences. There are over 30 ingenious
generating algorithms for generating binary and t-ary trees. In most references, tree
sequences are generated in lexicographic order. Each of these generation algorithms
causes trees to be generated in a particular order. Almost all known sequential algo-
rithms generate tree sequences, and the inclusion of parent–child relations requires
adding a decoding procedure, usually at a cost of greatly complicating the algorithm
and/or invalidating the run time analysis. Exceptions are the works by Akl et al. [4]
and Lucas et al. [22].

Parent array notation [4] provides a simple sequential algorithm that extends triv-
ially to add parent–children relations. Consider a left-to-right breadth first search
(BFS) labeling of a given tree. All nodes are labeled by consecutive integers
1, 2, . . . , n such that nodes on a lower level are labeled before those on a higher
level, while nodes on the same level are labeled from left to right. Children are or-
dered as L = 1, . . . , t. Parent array p1, . . . , pn can be defined as follows: p1 = 1,
pi = t(j − 1)+ L+ 1 if i is the Lth child of node j, 2 ≤ i ≤ n , and it has property
pi−1<pi ≤ ti− t + 1 for 2 ≤ i ≤ n . For example, the binary tree on Figure 1.1 has
parent array 1, 3, 4, 5, 7, 8; the 3-ary tree on Figure 1.1 has parent array 1, 2, 3, 4, 8,
10, 18.

The algorithm [4] for generating all parent arrays is extended from the work by
Zaks [42] to include parent–children relations (the same sequence in the works by
Zaks [42] and Akl et al. [4] refers to different trees). The Lth children of node i is
denoted by childi,L (it is 0 if no such child exist) while parenti denotes the parent

FIGURE 1.1 Binary tree 1, 3, 4, 5, 7, 8 and ternary tree 1, 2, 3, 4, 8, 10, 18.
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node of i. Integer division is used throughout the algorithm. The algorithm generates
tree sequences in lexicographic order.

for i← 1 to n do
for L← 1 to t do childi,L← 0;

for i← 1 to n do {pi← i; parenti← (i− 2)/t + 1;
L← pi − 1− t(parenti − 1); child(i−2)/t+1,L← i}

repeat
report t-ary tree;
j← n;
while pj < 2j − 1 and j>1 do {i← parentj;

L← pi − 1− t(i− 1); childi,L← 0; j← j − 1}
pj ← pj + 1;
for i← j + 1 to n do pi← pi−1 + 1;
for i← j to n do {k← (pi − 2)/t + 1; parenti← k;

L← pi − 1− t(k − 1); childk,L← i}
until p1 = 2 .

Consider now generating t-ary trees in the children array notation. A tree is repre-
sented using a children array c1c2, c3, . . . , ctn as follows:

� The jth children of node i is stored in c(i−1)t+j+1 for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤
t; missing children are denoted by 0. The array is, for convenience, completed
with c1 = 1 and c(n−1)t+2 = · · · = cnt = 0 (node n has no children).

For example, the children array notations for trees in FIGURE 1.1 are
102340560000 and 123400050600000007000. Here we give a simple algorithm to
generate children array tree sequences, for the case of t-ary trees (generalized from
the work by Akl et al. [4] that gives corresponding generation of binary trees).

The rightmost element of array c that can be occupied by an integer j>0, repre-
senting node j, is obtained when j is tth child of node j − 1 , that is, it is c(j−1)t+1.
We say that an integer j is mobile if it is not in c(j−1)t+1 and all (nonzero) integers
to its right occupy their rightmost positions. A simple sequential algorithm that uses
this notation to generate all t-ary trees with n nodes is given below. If numerical order
0< 1< · · · <n is assumed, the algorithm generates children array sequences in an-
tilexicographic order. Alternatively, the order may be interpreted as lexicographic if
0, 1, · · · , n are treated as symbols, ordered as “1”< “2”< . . .< “n”< “0”. Numeric
lexicographic order may be obtained if 0 is replaced by a number larger than n (the
algorithm should always report that number instead of 0).

for i← 1 to n do ci← i;
for i← n+ 1 to tn do ci← 0;
repeat

print out c1, . . . , ctn;
i← (n− 1)t;
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while
(
ci = 0 or ci = k−1

t
+ 1
)

and (i > 1) do i← i− 1;
ci+1 ← ci;
ci← 0;
for k← 1 to n− ci+1 do ci+k+1 ← ci+k + 1;
for k← i+ n− ci+1 + 2 to (n− 1)t + 1 do ck ← 0

until i = 1 .

We leave as an exercise to design an algorithm to generate well-formed parenthesis
sequences. This can be done by using the relation between well-formed parenthesis
sequences and binary trees in the children representation, and applying the algorithm
given in this section.

An algorithm for generating B-trees is described in the work by Gupta et al.
[16]. It is based on backtrack search, and produces B-trees with worst case delay
proportional to the output size. The order of generating B-trees becomes lexicographic
if B-trees are coded as a B-tree sequence, defined in [5]. The algorithm [16] has
constant expected delay in producing next B-tree, exclusive of the output, which is
proven in the work by Belbaraka and Stojmenovic [5]. Using a decoding procedure, an
algorithm that generates the B-tree data structure (meaning that the parent–children
links are established) from given B-tree sequence can be designed, with constant
average delay.

1.8 LISTING SUBSETS AND BITSTRINGS IN A GRAY CODE ORDER

It is sometimes desirable to generate all instances of a combinatorial object in such
a way that successive instances differ as little as possible. An order of all instances
that minimizes the difference between any two neighboring instances is called mini-
mal change order. Often the generation of objects in minimal change order requires
complicated and/or computationally expensive procedures. When new instances are
generated with the least possible changes (by a single insertion of an element, single
deletion or single replacement of one element by another, interchange of two ele-
ments, updating two elements only, etc.), corresponding sequences of all instances of
a combinatorial objects are refereed to as Gray codes. In addition, the same property
must be preserved when going from the last to first sequence. In most cases, there is
no difference between minimal change and Gray code orders. They may differ when
for a given combinatorial object there is no known algorithm to list all instances in
Gray code order. The best existing algorithm (e.g., one in which two instances differ
at two positions whereas instances may differ in one position only) then is referred
to achieving minimal change order but not in Gray code order.

We describe a procedure for generating subsets in binary notation, which is
equivalent to generating all bitstrings of given length. It is based on a backtrack
method and sequence comparison rule. Let e1 = 0 and ei = x1 + x2 + · · · + xi−1 for
1< i ≤ n. Then the sequence that follows x1x2 . . . xn is x1x2 . . . xi−1x

′
ixi+1 . . . xn,

where i is the largest index such that ei + xi is even and ′ is complement function
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(0′ = 1, 1′ = 0; also x′ = x+ 1 mod 2).

read( n);
for i← 0 to n do {xi← 0; ei← 0};
repeat

print out x1, x2, . . . , xn;
i← n;
while xi + ei is odd do i← i− 1;
xi← x′i;
for j← i+ 1 to n do ej ← e′j

until i = 0 .

The procedure has O(n) worst case delay and uses no large integers. We will prove
that it generates Gray code sequences with constant average delay. The element xi
changes 2i−1 times in the algorithm, and each time it makes n− i+ 1 steps back and
forth to update xi. Since the time for each step is bounded by a constant, the time
to generate all Gray code sequences is

∑n
i=1 c2

i−1(n− i+ 1). The average delay is
obtained when the last number is divided by the number of generated sequences 2n,
and is therefore

c

n∑
i=1

2−n+i−1(n− i+ 1) = c
n∑
i=1

2−ii = c
(

2− n

2n
− 1

2n−1

)
< 2c.

An algorithm for generating subsets in the binary notation in the binary reflected
Gray code that has constant delay in the worst case is described in the work by
Reingold et al. [30]. Efficient loopless algorithms for generating k-ary trees are
described in the Xiang et al. [41].

1.9 GENERATING PERMUTATIONS IN A MINIMAL CHANGE ORDER

In this section we consider generating the permutations of {p1, p2, . . . , pn}
(p1< · · · <pn) in a minimum change order. We present one that is based on the
idea of adjacent transpositions, and is independently proposed by Johnson [18] and
Trotter [39]. It is then simplified by Even [14]. In the work by Even [14], a method
by Ehrlich is presented, which has constant delay. The algorithm presented here is a
further modification of the technique, also having constant delay, and suitable as a
basis for a parallel algorithm [36].

The algorithm is based on the idea of generating the permutations of
{p1, p2, . . . , pn} from the permutations of {p1, p2, . . . , pn−1} by taking each such
permutation and inserting pn in all n possible positions of it. For example, tak-
ing the permutation p1 p2 . . . pn−1 of {p1, p2, . . . , pn−1} we get n permutations
of {p1, p2, . . . , pn} as follows:
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p1 p2 . . . pn−2 pn−1 pn

p1 p2 . . . pn−2 pn pn−1

p1 p2 . . . pn pn−2 pn−1

·
·
·

pn p1 . . . pn−3 pn−2 pn−1.

The nth element sweeps from one end of the (n− 1) -permutation to the other by a
sequence of adjacent swaps, producing a new n-permutation each time. Each time the
nth element arrives at one end, a new (n− 1) -permutation is needed. The (n− 1)-
permutations are produced by placing the (n− 1)th element at each possible position
within an (n− 2) -permutation. That is, by applying the algorithm recursively to the
(n− 1) elements.

The first permutation of the set {p1, p2, . . . , pn} is p1, p2, . . . , pn. Assign a
direction to every element, denoted by an arrow above the element. Initially all arrows
point to the left. Thus if the permutations of {p1, p2, p3, p4} are to be generated, we
would have

←
p1

←
p2

←
p3

←
p4.

Now an element is said to be mobile if its direction points to a smaller adjacent
neighbor. In the above example, p2, p3 and p4 are mobile, while in


p3
←
p2

←
p1 
p4

only p3 is mobile. The algorithm is as follows:

While there are mobile elements do
(i) find the largest mobile element; call it pm
(ii) reverse the direction of all elements larger than pm
(iii) switch pm with the adjacent neighbor to which its direction points

endwhile.

The straightforward implementation of the algorithm leads to an algorithm that
exhibits a linear time delay. The algorithm is modified to achieve a constant delay.
After initial permutation, the following steps are then repeated until termination:

1. Move element pn to the left, by repeatedly exchanging it with its left neighbor,
and do (i) and (ii) in the process.

2. Generate the next permutation of {p1, p2, . . . , pn−1} (i.e., do step (iii)).

3. Move element pn to the right, by repeatedly exchanging it with its right neigh-
bor, and do (i) and (ii) in the process.
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4. Generate the next permutation of {p1, p2, . . . , pn−1} (i.e., do step (iii)).

For example, permutations of {1, 2, 3, 4} are generated in the following order:

1234, 1243, 1423, 4123 move element 4 to the left

4132 132 is the next permutation of 123,with

3 moving to the left

1432, 1342, 1324 move 4 to the right

3124 312 is the next permutation following 132,with

3 moving to the left

3142, 3412, 4312 4 moves to the left

4321 321 is the next permutation following 312;

2 in 12 moves to the left

3421, 3241, 3214 4 moves to the right

2314 231 follows 321,where 3 moves to the right

2341, 2431, 4231 4 moves to the left

4213 213 follows 231, 3 moved to the right

2413, 2143, 2134 4 moves to the right.

The constant delay is achieved by observing that the mobility of pn has a regular
pattern (moves n− 1 times and then some other element moves once). It takes n− 1
steps to move pn to the left or right while (i), (ii), and (iii) together take O(n) time.
Therefore, if steps (i), (ii), and (iii) are performed afterpn has already finished moving
in a given direction, the algorithm will have constant average delay. If the work in steps
(i) and (ii) [step (iii) requires constant time] is evenly distributed between consecutive
permutations, the algorithm will achieve constant worst case delay. More precisely,
finding largest mobile element takes n− 1 steps, updating directions takes also n− 1
steps. Thus it suffices to perform two such steps per move of element pn to achieve
constant delay per permutation.

The current permutation is denoted d1, d2, . . . , dn. The direction is stored in a vari-
able a, where ai = −1 for left and ai = 1 for right direction. When two elements are
interchanged, their directions are also interchanged implicitly. The algorithm termi-
nates when no mobile element is found. For algorithm conciseness, we assume that
two more elements p0 and pn+1 are added such that p0<p1< . . . <pn <pn+1.
Variable i is used to move pn from right to left (i = n, n− 1, . . . , 2) or from left
to right (i = 1, 2, . . . , n− 1). The work in steps (i) and (ii) is done by two “sweep-
ing” variables l (from left to right) and r (from right to left). They update the largest
mobile elements dlm and drm, respectively, and their indices lm and rm, respec-
tively, that they detect in the sweep. When they “meet” (l = r or l = r − 1) the largest
mobile element dlm and its index lm is decided, and the information is broadcast
(when l>r) to all other elements who use it to update their directions. Obviously the
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sweep of variable i coincides with either the sweep of l or sweep of r. For clarity, the
code below considers these three sweeps separately. The algorithm works correctly
for n>2.

procedure output;
{ for s← 1 to n do write( d[s]); writeln}

procedure exchange ( c, b: integer);
{ ch← d[c+ b]; d[c+ b] ← d[c]; d[c] ← ch; ch← a[c+ b];

a[c+ b] ← a[c]; a[c] ← ch };

procedure updatelm; {
l← l+ 1; if (d[l] = pn) or (d[l+ dir] = pn) then l← l+ 1;
if l> r then {

if d[l− 1] �= pn then l1 ← l− 1 else l1 ← l− 2;
if d[l+ 1] �= pn then l2 ← l+ 1 else l2 ← l+ 2;
if (((a[l] = −1) and (d[l1]<d[l])) or ((a[l] = 1) and

(d[l2]<d[l]))) and (d[l]>dlm)
then {lm← l; dlm← d[l]};};

if ((l = r) or (l = r − 1)) and (drm>dlm) then {lm← rm;
dlm← drm};

if (l>r) and (d[r]>dlm) then a[r] ←−a[r];
r← r − 1; if (d[r] = pn) or (d[r + dir] = pn) then r← r − 1;
if l < r then {

if d[r − 1] �= pn then l1 ← r − 1 else l1 ← r − 2;
if d[r − 1] �= pn then l2 ← r + 1 else l2 ← r + 2;
if (((a[r] = −1) and (d[l1]<d[r])) or

((a[r] = 1) and (d[l2]<d[r]))) and (d[r]>drm)
then { rm← r; drm← d[r] }; };

if ((l = r) or (l = r − 1)) and (drm>dlm) then
{ lm← rm; dlm← drm };

if (lεr) and (d[r]>dlm) then a[r]− a[r];
exchange( i, dir);
if i+ dir = lm then lm← i;
if i+ dir = rm then rm← i;
output; };

read( n); for i← 0 to n+ 1 do read pi;
d[0] ← pn+1; d[n+ 1] ← pn+1; d[n+ 2] ← p0;
for i← 1 to n do { d[i] ← pi; a[i] ←−1};
repeat

output;
l← 1; r← n+ 1; lm← n+ 2; dlm← p0; rm← n+ 2;

drm← p0; dir←−1;
for i← n downto 2 do updatelm;
exchange (lm, a[lm]);
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output;
l← 1; r ← n + 1; lm← n+ 2; dlm← p0;

drm← p0; rm← n+ 2; dir← 1;
for i← 1 to n− 1 do updatelm;

exchange (lm, a[lm]);
until lm = n+ 2.

1.10 RANKING AND UNRANKING OF COMBINATORIAL OBJECTS

Once the objects are ordered, it is possible to establish the relations between in-
tegers 1, 2, . . . , N and all instances of a combinatorial object, where N is the
total number of instances under consideration. The mapping of all instances
of a combinatorial object into integers is called ranking. For example, let f(X)
be ranking procedure for subsets of the set {1, 2, 3}. Then, in lexicographic
order,f ( ) = 1, f ({1}) = 2, f ({1, 2}) = 3, f ({1, 2, 3}) = 4, f ({1, 3}) = 5, f ({2}) =
6, f ({2, 3}) = 7 and f ({3}) = 8. The inverse of ranking, called unranking, is mapping
of integers 1, 2, . . . , N to corresponding instances. For instance, f−1(4) = {1, 2, 3}
in the last example.

The objects can be enumerated in a systematic manner, for some combinatorial
classes, so that one can easily construct the sth element in the enumeration. In such
cases, an unbiased generator could be obtained by generating a random number s
in the appropriate range (1,N) and constructing the sth object. In practice, random
number procedures generate a number r in interval [0,1); then s = �rN� is required
integer.

Ranking and unranking functions exist for almost every kind of combinatorial ob-
jects, which has been studied in literature. They also exist for some objects listed in
minimal change order. The minimal change order has more use when all instances
are to be generated since in this case either the time needed to generate is less or the
minimal change order of generating is important characteristics of some applications.
In case of generating an instance at random, the unranking functions for minimal
change order is usually more sophisticated than the corresponding one following lex-
icographic order. We use only lexicographic order in ranking and unranking functions
presented in this chapter.

In most cases combinatorial objects of given kind are represented as integer
sequences. Let a1a2 . . . am be such a sequence. Typically each element ai has
its range that depends on the choice of elements a1, a2, . . . , ai−1. For example,
if a1a2 . . . am represents a (m,n)-combination out of {1, 2, . . . , n} then 1 ≤ a1 ≤
n−m+ 1, a1<a2 ≤ n−m+ 2, . . . , am−1<am ≤ n. Therefore element ai has
n−m+ 1− ai−1 different choices.

LetN(a1, a2, . . . , ai) be the number of combinatorial objects of given kind whose
representation starts with a1a2 . . . ai. For instance, in the set of (4,6)-combinations
we have N(2, 3) = 3 since 23 can be completed to (4,6)-combination in three ways:
2345, 2346, and 2356.
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To find the rank of an object a1a2 . . . am, one should find the number of objects
preceding it. It can be found by the following function:

function rank(a1, a2, . . . , am )
rank← 1 ;

for i← 1 to m do
for each x<ai

rank← rank +N(a1, a2, . . . , ai−1, x).

Obviously in the last for loop only such values x for which a1a2 . . . ai−1x can be
completed to represent an instance of a combinatorial object should be considered
(otherwise adding 0 to the rank does not change its value). We now consider a general
procedure for unranking. It is the inverse of ranking function and can be calculated
as follows.

procedure unrank ( rank, n, a1, a2, . . . , am)
i← 0 ;
repeat

i← i+ 1;
x← first possible value;
while N(a1, a2, . . . , ai−1, x) ≤ rank do

{rank← rank − N(a1, a2, . . . , ai−1, x);
x← next possible value};

ai← x

until rank = 0;
a1a2 . . . am← lexicographically first object starting by a1a2 . . . ai.

We now present ranking and unranking functions for several combinatorial objects.
In case of ranking combinations out of {1, 2, . . . , n}, x is ranged between ai−1 + 1
and ai − 1. Any (m, n)-combination that starts with a1a2 . . . ai−1x is in fact a (m−
i, n− x)- combination. The number of such combinations is C(m− i, n− x). Thus
the ranking algorithm for combinations out of {1, 2, . . . , n} can be written as follows
(a0 = 0 in the algorithm):

function rankcomb (a1, a2, . . . , am)
rank← 1 ;
for i← 1 to m do

for x← ai−1 + 1 to ai − 1 do
rank← rank + C(m− i, n− x).

In lexicographic order, C(4, 6) = 15 (4,6)-combinations are listed as 1234, 1235,
1236, 1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456.
The rank of 2346 is determined as 1+ C(4− 1, 6− 1)+ C(4− 4, 6− 5) = 1+
10+ 1 = 12 where last two summands correspond to combinations that start with
1 and 2345, respectively. Let us consider a larger example. The rank of 3578 in
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(4,9)-combinations is 1+ C(4− 1, 9− 1)+ C(4− 1, 9− 2)+ C(4− 2, 9− 4)+
C(4− 3, 9− 6) = 104 where four summands correspond to combinations starting
with 1, 2, 34, and 356, respectively.

A simpler formula is given in the work by Lehmer [21]: the rank of combination
a1a2 . . . am is C(m, n)−∑m

j=1C(j, n− 1− am−j+1). It comes from the count of
the number of combinations that follow a1a2 . . . am in lexicographic order. These
are all combinations of j out of elements {am−j+1 + 1, am−j+1 + 2, . . . , an}, for all
j, 1 ≤ j ≤ m. In the last example, combinations that follow 3578 are all combinations
of 4 out of {4, 5, 6, 7, 8, 9}, combinations with first element 3 and three others taken
from {6, 7, 8, 9}, combinations which start with 35 and having two more elements
out of set {8, 9} and combination 3579.

The function calculates the rank in two nested for loops while the formula would
require one for loop. Therefore general solutions are not necessarily best in the partic-
ular case. The following unranking procedure for combinations follows from general
method.

procedure unrankcomb (rank, n, a1, a2, . . . , am)
i← 0; a0 ← 0;
repeat

i← i+ 1;
x← ai−1 + 1;
while C(m− i, n− x) ≤ rank do

{rank← rank − C(m− i, n− x); x← x+ 1};
ai← x

until rank = 0;
for j = i+ 1 to m do aj ← n−m+ j.

What is 104th (4,9)-combination? There areC(3, 8) = 56 (4,9)-combinations start-
ing with a 1 followed byC(3, 7) = 35 starting with 2 andC(3, 6) = 20 starting with 3.
Since 56+ 35 ≤ 104 but 56+ 35+ 20> 104 the requested combination begins with
a 3, and the problem is reduced to finding 104− 56− 35 = 13th (3,6)-combination.
There areC(2, 5) = 10 combinations starting with 34 andC(2, 4) = 6 starting with a
5. Since 13> 10 but 13< 10+ 6 the second element in combination is 5, and we need
to find 13− 10 = 3rd (2,4)-combination out of {6, 7, 8, 9}, which is 78, resulting in
combination 3578 as the 104th (4,9)-combination.

We also consider the ranking of subsets. The subsets in the set and in the binary
representation are listed in different lexicographic orders. In binary representation,
the ranking corresponds to finding decimal equivalent of an integer in binary system.
Therefore the rank of a subset b1, b2, . . . , bn is bn + 2bn−1 + 4bn−2 + · · · + 2n−1b1.
For example, the rank of 100101 is 1+ 4+ 32 = 37 . The ranks are here between
0 and 2n − 1 since in many applications empty subset (here with rank 0) is not
taken into consideration. The ranking functions can be generalized to variations out
of {0, 1, . . . , m− 1} by simply replacing all “2” by “m” in the rank expression. It
corresponds to decimal equivalent of a corresponding number in number system
with base m.
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Similarly, the unranking of subsets in binary representation is equivalent to
converting a decimal number to binary one, and can be achieved by the following
procedure that uses the mod or remainder function. The value rank mod 2 is 0 or
1, depending whether rank is even or odd, respectively. It can be generalized for
m-variations if all “2” are replaced by “m”.

function unranksetb(n, a1a2 . . . am)
rank← m; a0 ← 0;
for i← m downto 1 do

{bi← rank mod 2; rank← rank − bi2n−i}.
In the set representation, the rank of n-subset a1a2 . . . am is found by the following

function from the work by Djokić et al. [10].

function rankset(n, a1a2 . . . am)
rank← m; a0 ← 0;
for i← 1 to m− 1 do

for j← ai + 1 to ai+1 − 1 do
rank← rank + 2n−j .

The unranking function [10] gives n-subset with given rank in both representations
but the resulting binary string b1b2 . . . bn is assigned its rank in the lexicographic order
of the set representation of subsets.

function unranksets(rank, n, a1a2 . . . am)
m← 0; k← 1; for i← 1 to n do bi← 0 ;
repeat

if rank ≤ 2n−k then {bk ← 1; m← m+ 1; am← k};
rank← rank − (1− bk)2n−k − bk;
k← k + 1

until k>n or rank = 0.

As noted in the work by Djokić [10], the rank of a subset a1a2 . . . am among all
(m, n)-subsets is given by

ranks(a1a2 . . . am) = rankcomb(a1a2 . . . am)+ rankcomb(a1a2 . . . am−1)+ · · ·
+ rankcomb(a1a2)+ rankcomb(a1).

Let L(m, n) = C(1, n)+ C(2, n)+ · · · + C(n, m) be the number of (m, n)-
subsets. The following unranking algorithm [10] returns the subset a1a2 . . . am with
given rank.

function unranklim (rank, n, m, a1a2 . . . ar)
r← 0; i← 1;
repeat

s← t − 1− L(m− r − 1, n− i);
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if s>0 then t← s else {r← r + 1; ar ← i; rank← rank − 1};
i← i+ 1

until i = n+ 1 or rank = 0.

Note that the (m, n)-subsets in lexicographic order also coincide with a minimal
change order of them. This is a rare case. Usually it is trivial to show that lexicographic
order of instances of an object is not a minimal change order.

Ranking and unranking functions for integer compositions can be described by
using the relation between compositions and either subsets or combinations (discussed
above).

A ranking algorithm for n-permutations is as follows [21]:

function rankperm(a1a2 . . . an )
rank← 1 ;
for i← 1 to n do

rank← rank + k(n− i)! where k = |{1, 2, . . . , ai − 1}\
{a1, a2, . . . , ai−1}|.

For example, the rank of permutation 35142 is 1+ 2× 4!+ 3× 3!+ 1× 1! = 68
where permutations starting with 1, 2, 31, 32, 34, and 3512 should be taken into
account. The unranking algorithm for permutations is as follows [21]. Integer division
is used (i.e., 13/5 = 2 ).

procedure unrankperm(rank, n, a1a2 . . . an)
for i← 1 to n do {⌊

k← rank − 1

(n− i)!
⌋

;

ai← kth element of {1, 2, . . . , n}\{a1, a2, . . . , ai−1};
rank← rank − (k − 1)(n− i)!}.

The number of instances of a combinatorial object is usually exponential in size of
objects. The ranks, being large integers, may need O(n) or similar number of memory
location to be stored and also O(n) time for the manipulation with them. Avoiding large
integers is a desirable property in random generation in some cases. The following
two sections offer two such approaches.

1.11 RANKING AND UNRANKING OF SUBSETS AND VARIATIONS
IN GRAY CODES

In a Gray code (or minimal change) order, instances of a combinatorial object are listed
such that successive instances differ as little as possible. In this section we study Gray
codes of subsets in binary representation. Gray code order of subsets is an ordered
cyclic sequence of 2n n-bit strings (or codewords) such that successive codewords
differ by the complementation of a single bit. If the codewords are considered to be
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vertices of an n-dimensional binary cube, it is easy to conclude that Gray code order
of subsets corresponds to a Hamiltonian path in the binary cube. We will occasionally
refer in the sequel to nodes of binary cubes instead of subsets. Although a binary cube
may have various Hamiltonian paths, we will define only one such path, called the
binary-reflected Gray code [17] that has a number of advantages, for example, easy
generation and traversing a subcube in full before going to other subcube. The (binary
reflected) Gray code order of nodes of n-dimensional binary cube can be defined in
the following way:

� For n = 1 the nodes are numbered g(0) = 0 and g(1) = 1, in this order,
� If g(0), g(1), . . . , g(2n − 1) is the Gray code order of nodes of an n-dimensional

binary cube, then g(0) = 0g(0), g(1) = 0g(1), . . . , g(2n − 1) = 0g(2n −
1), g(2n) = 1g(2n − 1), g(2n + 1) = 1g(2n − 2), . . . , g(2n+1 − 2) = 1g(1),
g(2n+1 − 1) = 1g(0) is a Gray code order of nodes of a (n+ 1)-dimensional
binary cube.

As an example, for n = 3 the order is g(0) = 000, g(1) = 001, g(2) =
011, g(3) = 010, g(4) = 110, g(5) = 111, g(6) = 101, g(7) = 100. First, let us see
how two nodes u and v can be compared in Gray code order. We assume that a node
x is represented by a bitstring x1 ≥ x2 . . . xn. This corresponds to decimal node ad-
dress x = 2n−1x1 + 2n−2x2 + · · · + 2xn−1 + xn where 0 ≤ x ≤ 2n − 1. Let i be the
most significant (or leftmost) bit where u and v differ, that is, u[l] = v[l] for l < i and
u[i] �= v[i]. Then u<v if and only if u[1]+ u[2]+ · · · + u[i] is an even number. For
instance, 11100< 10100< 10110.

The above comparison method gives a way to find Gray code address t of a node
u (satisfying g(t) = u ), using the following simple procedure; it ranks the Gray code
sequences.

procedure rank GC(n, u, t);
sum← 0; t← 0;
for l← 1 to n do {

sum← sum+ u[l];
if sum is odd then t← t + 2n−l }.

The inverse operation, finding the binary address u of node having Gray code
address t (0 ≤ t ≤ 2n − 1), can be performed by the following procedure; it unranks
the Gray code sequences.

procedure unrank GC( n,u,t);
sum← 0; q← t; size← 2n;
for l← 1 to n do {

size← size/2;
if q ≥ size then {q← q− size; s← 1} else s← 0 ;
if sum+ s is even then u[l] ← 0 else u[l] ← 1;
sum← sum+ u[l]}.
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The important property of the Gray code order is that corresponding nodes of a
binary cube define an edge of the binary cube whenever they are neighbors in the Gray
code order (this property is not valid for the lexicographic order 0, 1, 2, . . . , 2n − 1
of binary addresses).

The reflected Gray code order for subsets has been generalized for variations
[7,15]. Gray codes of variations have application in analog to digital conversion of
data.

We establish a n-ary reflected Gray code order of variations as follows. Let
x = x1 ≥ x2 . . . xm and y = y1y2 . . . ym be two variations. Then x<y iff there exist
i, 0 ≤ i ≤ m, such that xj = yj for j < i and either x1 + x2 + . . .+ xi−1 is even
and xi < yi or x1 + x2 + · · · + xi−1 is odd and xi>yi. We now prove that the order
is a minimal change order. Let x and y be two consecutive variations in given order,
x<y, and let xj = yj for j < i and xi �= yi. There are two cases. If xi < yi then
Xi = x1 + x2 + · · · + xi−1 is even and yi = xi + 1. Thus Xi+1 and Yi+1 have dif-
ferent parity, since Yi+1 = Xi+1 + 1. It means that either xi+1 = yi+1 = 0 or xi+1 =
yi+1 = n− 1 (the (i+ 1)th element in x is the maximum at that position while the
(i+ 1) –the element in y is the minimum at given position, and they are the same
because of different parity checks). Similarly we conclude Yj = Xj + 1 and xj = yj
for all j>i+ 1. The case xi>yi can be analyzed in analogous way, leading to the same
conclusion.

As an example, 3-ary reflected Gray code order of variations out of {0, 1, 2} is as
follows (the variations are ordered columnwise):

000 122 200

001 121 201

002 120 202

012 110 212

011 111 211

010 112 210

020 102 220

021 101 221

022 100 222.

It is easy to check that, at position i(1 ≤ i ≤ m), each element repeats nm−i times.
The repetition goes as follows, in a cyclic manner: 0 repeats nm−i times, 1 repeats
nm−i times, . . . , n− 1 repeats nm−i times, and then these repetitions occur in reverse
order, that is n− 1 repeats nm−i times, . . . , 0 repeats nm−i times.

Ranking and unranking procedures for variations in the n-ary reflected Gray code
are described in the work by Flores [15].
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1.12 GENERATING COMBINATORIAL OBJECTS AT RANDOM

In many cases (e.g., in probabilistic algorithms), it is useful to have means of gen-
erating elements from a class of combinatorial objects uniformly at random (an un-
biased generator). Instead of testing new hypothesis on all objects of given kind,
which may be time consuming, several objects chosen at random can be used for
testing, and likelihood of hypothesis can be established with some certainty. There
are several ways of choosing a random object of given kind. All known ways are
based on the correspondence between integer or real number(s) and combinatorial
objects. This means that objects should be ordered in a certain fashion. We already
described two general ways for choosing a combinatorial object at random. We now
describe one more way, by using random number series. This method uses a series
of random numbers in order to avoid large integers in generating a random instance
of an object. Most known techniques in fact generate a series of random numbers.
This section will present methods for generating random permutations and integer
partitions. A random subset can easily be generated by flipping coin for each of its
elements.

1.12.1 Random Permutation and Combination

There exist a very simple idea of generating a random permutation of
A = {a1, . . . , an}. One can generate an array x1, x2, . . . , xn of random num-
bers, sort them, and obtain the destination indices for each element of A in a
random permutation. The first m elements of the array can be used to determine
a random (m, n)-combination (the problem of generating combinations at random
is sometimes called random sampling). Although very simple, the algorithm has
O(n log n) time complexity [if random number generation is allowed at most O(log
n) time]. We therefore describe an alternative solution that leads to a linear time
performance. Such techniques for generating permutations of A = {a1, . . . , an}
at random first appeared in the works by the Durstenfeld [8] and Hoses [24], and
repeated in the works by Nijeshius [25] and Reingold [30]. The algorithm uses a
function random (x) that generates a random number x from interval (0,1), and is as
follows.

for i← 1 to n− 1 do {
random(xi);
ci xi(n− i+ 1)� + 1;
j← i− 1+ ci;
exchange ai with aj }.

As an example, we consider generating a permutation of {a, b, c, d, e, f } at ran-
dom. Random number x1 = 0.7 will choose 6× 0.7� + 1 = 5th element e as the first
element in a random permutation, and decides the other elements considering the set
{b, c, d, a, f } (e exchanged with a). The process is repeated: another random number,
say x2 = 0.45, chooses 5× 0.45� + 1 = 3rd element d from {b, c, d, a, f } to be the
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second element in a random permutation, and b and d are exchanged. Thus, random
permutation begins with e, d, and the other elements are decided by continuing same
process on the set {c, b, a, f }.

Assuming that random number generator takes constant time, the algorithm runs in
linear time. The same algorithm can be used to generate combinations at random. The
first m iterations of the for loop determine (after sorting, if such output is preferable)
a combination of m out of n elements.

Uniformly distributed permutations cannot be generated by sampling a finite por-
tion of a random sequence and the standard method [8] does not preserve randomness
of the x-values due to computer truncations. Truncation problems appear with other
methods as well.

1.12.2 Random Integer Partition

We now present an algorithm from the work by Nijenhius and Wilf [26] that generates
a random integer partition. It uses the distribution of the number of partitions RP(n,m)
of n into parts not greater than m.

First, we determine the first part. An example of generating random partition
of 12 will be easier to follow than to show formulas. Suppose a random number
generator gives us r1 = 0.58. There are 77 partitions of 12. In lexicographic or-
der, the random number should point to 0.58× 77 = 44.66th integer partition. We
want to avoid rounding and unranking here. Thus, we merely determine the largest
part such. Looking at the distribution RP(12,m) of partitions of 12 (Section 1.2),
we see that all integer partitions with ranks between 35 and 47 have the largest
part equal to 5. What else we need in a random partition of 12? We need a ran-
dom partition of 12− 5 = 7 such that its largest part is 5 (the second part cannot
be larger than the first part). There are RP(7, 5) = 13 such partitions. Let the sec-
ond random number be r2 = 0.78. The corresponding partition of 7 has the rank
0.78× 13 = 10.14. Partitions of 7 ranked between 9 and 11 have the largest part
equal to 4. It remains to find a random partition of 7− 4 = 3 with largest part 4
(which in this case is not a real restriction). There are RP(3, 3) = 3 partitions as
candidates let r3 = 0.20. Then 0.20× 3 = 0.6 points to the third (and remaining)
parts of size 1. However, since the random number is taken from open interval (0,1),
in our scheme the partition n = n will never be chosen unless some modification
to our scheme is made. Among few possibilities, we choose that the value < 1 as
the rank actually points to the available partition with the maximal rank. Thus, we
decide to choose partition 3 = 3, and the random partition of 12 that we obtained is
12 = 5+ 4+ 3.

An algorithm for generating random rooted trees with prescribed degrees (where
the number of nodes of each down degree is specified in advance) is described in
the work by Atkinson [3]. A linear time algorithm to generate binary trees uniformly
at random, without dealing with large integers is given in the work by Korsch [20].
An algorithm for generating valid parenthesis strings (each open parenthesis has its
matching closed one and vice versa) uniformly at random is described in the work
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by Arnold and Sleep [2]. It can be modified to generate binary trees in the bitstring
notation at random.

1.13 UNRANKING WITHOUT LARGE INTEGERS

Following the work by Stojmenovic [38], this section describes functions mapping
the interval [0 . . . 1) into the set of combinatorial objects of certain kind, for example,
permutations, combinations, binary and t-ary trees, subsets, variations, combinations
with repetitions, permutations of combinations, and compositions of integers. These
mappings can be used for generating these objects at random, with equal probability of
each object to be chosen. The novelty of the technique is that it avoids the use of very
large integers and applies the random number generator only once. The advantage of
the method is that it can be applied for both random object generation and dividing
all objects into desirable sized groups.

We restrict ourselves to generating only one random number to obtain a random
instance of a combinatorial object but request no manipulation with large integers.
Once a random number g in [0,1) is taken, it is mapped into the set of instances
of given combinatorial object by a function f(g) in the following way. Let N be the
number of all instances of a combinatorial object. The algorithm finds the instance
x such that the ratio of the number of instances that precede x and the total number
of instances is ≤ g . In other words, it finds the instance f(g) with the ordinal number
gN� + 1. In all cases that will be considered in this section, each instance of given
combinatorial object may be represented as a sequence x1 . . . xm, where xi may have
integer values between 0 and n (m and n are two fixed numbers), subject to constraints
that depend on particular case.

Suppose that the first k − 1 elements in given instance are fixed, that is, xi =
ai, 1 ≤ i < k. We call them (k − 1) -fixed instances. Let a′1< · · · <a′h be all possible
values of xk of a given (k − 1) -fixed instance. By S(k, u), S(k,≤ u), and S(k,≥ u),
we denote the ratio of the number of (k − 1) -fixed instances for which xk = a′u(xk ≤
a′u, and xk ≥ a′u respectively) and the number of (k − 1) -fixed instances. In other
words, these are the probabilities (under uniform distribution) that an instance for
which xi = ai, 1 ≤ i < k, has the value in variable xk which is= a′u,≤ a′u, and≥ a′u,
respectively.

Clearly, S(k, u) = S(k,≤ u)− S(k,≤ u− 1) and S(k,≥ u) = 1− S(k,≤ u− 1).
Thus

S(k, u)

S(k,≥ u)
= S(k,≤ u)− S(k,≤ u− 1)

1− S(k,≤ u− 1)
.

Therefore

S(k,≤ u) = S(k,≤ u− 1)+ (1− S(k,≤ u− 1))
S(k, u)

S(k,≥ u)
.

Our method is based on the last equation. The large numbers can be avoided in
cases when S(k, u)/S(k,≥ u) is explicitly found and is not a very large integer. This
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condition is satisfied for combinations, permutations, t-ary trees, variations, subsets,
and other combinatorial objects.

Given g from [0, . . . , 1), let l be chosen such that S(1,≤ u− 1)<g ≤ S(1,≤ u).
Then x1 = a′u and the first element of combinatorial object ranked g is decided. To
decide the second element, the interval [S(1,≤ u− 1) . . . S(1,≤ u)) containing g can
be linearly mapped to interval [0 . . . 1) to give the new value of g as follows:

g← g− S(1,≤ u− 1)

S(1,≤ u)− S(1,≤ u− 1)
.

The search for the second element proceeds with the new value of g. Similarly the
third, . . . , mth elements are found. The algorithm can be written formally as follows,
where p′ and p stand for S(k,≤ u− 1) and S(k,≤ u) , respectively.

procedure object( m, n, g);
p′ ← 0;

for k← 1 to m do
{

u← 1;
p← S(k, 1);

while p ≤ g do
{

p′ ← p;
u← u+ 1;

p← p′ + (1− p′) S(k, u)

S(k,≥ u)

}
xk ← a′u;

g← g− p′
p− p′

}
.

Therefore the technique does not involve large integers iff S(k, u)/S(k,≥ u) is not
a large integer for any k and u in the appropriate ranges (note that S(k,≥ 1) = 1 ).

The method gives theoretically correct result. However, in practice the random
number g and intermediate values of p are all truncated. This may result in com-
putational imprecision for larger values of m or n. The instance of a combinatorial
object obtained by a computer implementation of above procedure may differ from the
theoretically expected one. However, the same problem is present with other known
methods (as noted in the previous section) and thus this method is comparable with
others in that sense. Next, in applications, randomness is practically preserved despite
computational errors.

1.13.1 Mapping [0 . . . 1) Into the Set of Combinations

Each (m, n)-combination is specified as an integer sequence x1, . . . , xm such that
1 ≤ x1< · · · <xm ≤ n. The mapping f(g) is based on the following lemma. Recall
that (k-1)-fixed combinations are specified by xi = ai, 1 ≤ i < k. Clearly, possible
values for xk are a′1 = ak−1 + 1, a′2 = ak−1 + 2, . . . , a′h = n (thus h = n− ak−1 ).
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Lemma 1. The ratio of the number of (k − 1 )-fixed (m,n)-combinations for which
xk = j and the number of (k − 1 )-fixed combinations for which xk ≥ j is (m− k +
1)/(n− j + 1) whenever j>ak−1.

Proof. Let yk−i = xi − j, k < i ≤ n. The (k − 1 )-fixed (m,n)-combinations for which
xk = j correspond to (m− k, n− j) -combinations y1, . . . , ym−k, and their num-
ber is C(m− k, n− j). Now let yk−i+1 = xi − j + 1, k ≤ i ≤ n. The (k − 1 )-fixed
combinations for which xk ≥ j correspond to (m− k + 1, n− j + 1) -combinations
y1 . . . ym−k+1, and their number is C(m− k + 1, n− j + 1). The ratio in question is

C(m− k, n− j)
C(m− k + 1, n− j + 1)

= m− k + 1

n− j + 1
.�

Using the notation introduced in former section for any combinatorial objects, let
u = j − ak−1. Then, from Lemma 1 it follows that

S(k, u)

S(k,≥ u)
= m− k + 1

n− u− ak−1 + 1

for the case of (m,n)-combinations, and we arrive at the following procedure that
finds the (m,n)-combination with ordinal number gC(m, n)� + 1. The procedure
uses variable j instead of u, for simplicity.

procedure combination( m,n,g);
j← 0; p′ ← 0;

for k← 1 to m do
{

j← j + 1;

p← m− k + 1

n− j + 1
;

while p ≤ g do
{

p′ ← p;
j← j + 1;

p← p′ + (1− p′)m− k + 1

n− j + 1

}
xk ← j;

g← g− p′
p− p′

}
.

A random sample of size m out of the set of n objects, that is, a random (m,n)-
combination can be found by choosing a real number g in [0, . . . , 1) and applying the
map f (g) = combination(m,n,g).

Each time the procedure combination (m,n,g) enters for or while loop, the index
j increases by 1; since j has n as upper limit, the time complexity of the algorithm
is O(n), that is, linear in n. Using the correspondences established in Chapter 1, the
same procedure may be applied to the case of combinations with repetitions and
compositions of n into m parts.
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1.13.2 Random Permutation

Using the definitions and obvious properties of permutations, we conclude that, after
choosing k − 1 beginning elements in a permutation, each of the remaining n− k + 1
elements has equal chance to be selected next. The list of unselected elements is kept in
an array remlist. This greatly simplifies the procedure that determines the permutation
x1 . . . xn with index gP(n)� + 1.

procedure permutation( n,g);
for i← 1 to n do remlisti← i;
for k← 1 to n do {

u← g(n− k + 1)� + 1;
xk ← remlistu;
for i← u to n− k do remlisti← remlisti+1;
g← g(n− k + 1)− u+ 1}.

The procedure is based on the same choose and exchange idea as the one used in
the previous section but requires one random number generator instead of a series
of n generators. Because the lexicographic order of permutations and the ordering of
real numbers in [0 . . . 1) coincide, the list of remaining elements is kept sorted, which
causes higher time complexity O(n2) of the algorithm.

Consider an example. Let n = 8 and g = 0.1818. Then 0.1818 ∗ 8!�+1 = 7331
and the first element of 7331st 8-permutation is u = 0.1818× 8� + 1 = 2; the re-
maining list is 1,3,4,5,6,7,8 (7331− 1× 5040 = 2291; this step is for verification
only, and is not part of the procedure). The new value of g is g = 0.1818× 8−
2+ 1 = 0.4544, and new u is u = 0.4544× 7� + 1 = 4; the second element is 4th
one in the remaining list, which is 5; the remaining list is 1,3,4,6,7,8. Next update
is g = 0.4544× 7− 3 = 0.1808 and u = 0.1808× 6� + 1 = 2; the 3rd element is
the 2nd in the remaining list, that is, 3; the remaining list is 1,4,6,7,8. The new
iteration is g = 0.1808× 6− 1 = 0.0848 and u = 0.0848× 5� + 1 = 1; the 4th
element is 1st in the remaining list, that is, 1; the remaining list is 4,6,7,8. Fur-
ther, g = 0.0848× 5 = 0.424 and u = 0.424× 4� + 1 = 2; the 5th element is 2nd
in the remaining list, that is, 6; the new remaining list is 4,7,8. The next values
of g and u are g = 0.424× 4− 1 = 0.696 and u = 0.696× 3� + 1 = 3; the 6th
element is 3rd in the remaining list, that is, 8; the remaining list is 4,7. Finally,
g = 0.696× 3− 2 = 0.088 and u = 0.088× 2� + 1 = 1; the 7th element is 1st in
the remaining list, that is, 4; now 7 is left, which is the last, 8th element. Therefore,
the required permutation is 2,5,3,1,6,8,4,7.

All (m,n)-permutations can be obtained by taking all combinations and listing
permutations for each combination. Such an order that is not lexicographic one,
and (m,n)-permutations are in this case refereed to as the permutations of combina-
tions. Permutation of combinations with given ordinal number can be obtained by
running the procedure combination first, and continuing the procedure permutation
afterwards, with the new value of g that is determined at the end of the procedure
combination.
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1.13.3 Random t-Ary Tree

The method requires to determine S(k, 1), S(k, u), and S(k,≥ u). Each element bk
has two possible values, that is, bk = a′1 = 0 or bk = a′2 = 1; thus it is sufficient to
find S(k,1) and S(k,≥ 1). S(k,≥ 1) is clearly equal to 1. Let the sequence bk . . . btn
contains q ones, the number of such sequences is D(k − 1, q). Furthermore, D(k,q)
of these sequences satisfy bk = 0. Then

S(k, 1) = D(k, q)

D(k − 1, q)
= (t(n− q)− k + 1)(tn− k − q+ 2)

(t(n− q)− k + 2)(tn− k + 1)
.

This leads to the following simple algorithm that finds the t-ary tree f(g) with
the ordinal number gB(t, n)� + 1.

procedure tree( t, n, g);
p′ ← 0; q← n;

for k← 1 to tn do

{
bk ← 0;

p← (t(n− q)− k + 1)(tn− k − q+ 2)

(t(n− q)− k + 2)(tn− k + 1)
;

if p ≤ g then {
p′ ← p;
bk ← 1;
q← q− 1;
p← 1 }

g← g− p
p− p′

}
The time complexity of the above procedure is clearly linear, that is, O(tn).

1.13.4 Random Subset and Variation

There is a fairly simple mapping procedure for subsets in binary representation. Let
g = 0. a1 . . . anan+1 . . . be number g written in the binary numbering system. Then
the subset with ordinal number gS(n)� + 1 is coded as a1 . . . an. Using a relation
between subsets and compositions of n into any number of parts, described procedure
can be also used to find the composition with ordinal number gCM(n)� + 1 .

A mapping procedure for variations is a generalization of the one used for sub-
sets. Suppose that the variations are taken out of the set {0, 1, . . . , n− 1}. Let
g=0. a1a2 . . . amam+1 . . . be the number g written in the number system with the base
n, that is, 0 ≤ ai ≤ n− 1 for 1 ≤ i ≤ m. Then the variation indexed gV (m, n)� + 1
is coded as a1a2 . . . am.

If variations are ordered in the n-ary reflected Gray code then the variation indexed
gV (m, n)� + 1 is coded as b1b2 . . . bm, where b1 = a1, bi = ai if a1 + a2 + · · · +
ai−1 is even and bi = n− 1− ai otherwise (2 ≤ i ≤ m ).
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CHAPTER 2

Backtracking and Isomorph-Free
Generation of Polyhexes

LUCIA MOURA and IVAN STOJMENOVIC

2.1 INTRODUCTION

This chapter presents applications of combinatorial algorithms and graph theory to
problems in chemistry. Most of the techniques used are quite general, applicable to
other problems from various fields.

The problem of cell growth is one of the classical problems in combinatorics. Cells
are of the same shape and are in the same plane, without any overlap. If h copies of the
same shape are connected (two cells are connected by sharing a common edge), then
they form an h-mino, polyomino, animal, or polygonal system (various names given
in the literature for the same notion). Three special cases of interest are triangular,
square, and hexagonal systems, which are composed of equilateral triangles, squares,
and regular hexagons, respectively. Square and hexagonal systems are of genuine
interest in physics and chemistry, respectively. The central problem in this chapter is
the study of hexagonal systems. Figure 2.1 shows a molecule and its corresponding
hexagonal system.

Enumeration and exhaustive generation of combinatorial objects are central topics
in combinatorial algorithms. Enumeration refers to counting the number of distinct
objects, while exhaustive generation consists of listing them. Therefore, exhaustive
generation is typically more demanding than enumeration. However, in many cases,
the only available methods for enumeration rely on exhaustive generation as a way
of counting the objects. In the literature, sometimes “enumeration” or “construc-
tive enumeration” are also used to refer to what we call here “exhaustive genera-
tion.”

An important issue for enumeration and exhaustive generation is the notion of
isomorphic or equivalent objects. Usually, we are interested in enumerating or gen-
erating only one copy of equivalent objects, that is, only one representative from
each isomorphism class. Polygonal systems are considered different if they have
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FIGURE 2.1 (a) A benzenoid hydrocarbon and (b) its skeleton graph.

different shapes; their orientation and location in the plane are not important. For
example, the two hexagonal systems in Figure 2.2b are isomorphic. The main theme
in this chapter is isomorph-free exhaustive generation of polygonal systems, especially
polyhexes.

Isomorph-free generation provides at the same time computational challenges and
opportunities. The computational challenge resides in the need to recognize or avoid
isomorphs, which consumes most of the running time of these algorithms. On the
contrary, the fact that equivalent objects do not need to be generated can substantially
reduce the search space, if adequately exploited. In general, the main algorithmic
framework employed for exhaustive generation is backtracking, and several tech-
niques have been developed for handling isomorphism issues within this framework.
In this chapter, we present several of these techniques and their application to exhaus-
tive generation of hexagonal systems.

In Section 2.2, we present benzenoid hydrocarbons, a class of molecules in organic
chemistry, and their relationship to hexagonal systems and polyhexes. We also take
a close look at the parameters that define hexagonal systems, and at the topic of
symmetries in hexagonal systems. In Section 2.3, we introduce general algorithms
for isomorph-free exhaustive generation of combinatorial structures, which form the

FIGURE 2.2 Hexagonal systems with (a) h = 11 and (b) h = 4 hexagons.
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theoretical framework for the various algorithms presented in the sections that follow.
In Section 2.4, we provide a historical overview of algorithms used for enumeration
and generation of hexagonal systems. In Sections 2.5–2.7, we present some of the main
algorithmic techniques used for the generation of polyhexes. We select algorithms
that illustrate the use of different general techniques, and that were responsible for
breakthroughs regarding the sizes of problems they were able to solve at the time they
appeared. Section 2.5 presents a basic backtracking algorithm for the generation of
hexagonal, square, and triangular systems. In Section 2.6, we describe a lattice-based
algorithm that uses a “cage” to reduce the search space. In Section 2.7, we present
two algorithms based on McKay’s canonical construction path, each combined with
a different way of representing a polyhex. Finally, Section 2.8 deals with a different
problem involving chemistry, polygonal systems, and graph theory, namely perfect
matchings in hexagonal systems and the Kekulé structure of benzenoid hydrocarbons.

2.2 POLYHEXES AND HEXAGONAL SYSTEMS

2.2.1 Benzenoid Hydrocarbons

We shall study an important class of molecules in organic chemistry, the class of ben-
zenoid hydrocarbons. A benzenoid hydrocarbon is a molecule composed of carbon
(C) and hydrogen (H) atoms. Figure 2.1a shows a benzenoid called naphthalene, with
molecular formula C10H8 (i.e., 10 carbon atoms and 8 hydrogen atoms). In general,
a class of benzenoid isomers is defined by a pair of invariants (n, s) and written as
the chemical formula CnHs, where n and s are the numbers of carbons and hydro-
gens, respectively. Every carbon atom with two neighboring carbon atoms bears a
hydrogen, while no hydrogen is attached to the carbon atoms with three neighbor-
ing carbon atoms. A simplified representation of the molecule as a (skeleton) graph
is given in Figure 2.1b. Carbon atoms form six-membered rings, and each of them
has four valences. Hydrogen atoms (each with one valence) and double valences be-
tween carbon atoms are not indicated in the corresponding graph, which has carbon
atoms as vertices with edges joining two carbon atoms linked by one or two va-
lences. In the sequel, we shall study the skeleton graphs, which will be called polyhex
systems.

A polyhex (system) is a connected system of congruent regular hexagons such that
any two hexagons either share exactly one edge or are disjoint. The formula C6H6
is represented by only one hexagon and is the simplest polyhex, called benzene.
Presently, we shall be interested only in the class of geometrically planar, simply
connected polyhexes. A polyhex is geometrically planar when it does not contain
any overlapping edges, and it is simply connected when it has no holes. The geo-
metrically planar, simply connected polyhexes may conveniently be defined in terms
of a cycle on a hexagonal lattice; the system is found in the interior of this cycle,
which represents the boundary (usually called the “perimeter”) of the system. With
the aim of avoiding confusion, we have adopted the term “hexagonal system” (HS)
for a geometrically planar, simply connected polyhex (see Fig. 2.2a for an HS with
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h = 11 hexagons). A plethora of names has been proposed in the literature for what
we just defined (or related objects), such as benzenoid systems, benzenoid hydrocar-
bons, hexagonal systems, hexagonal animal, honeycomb system, fusene, polycyclic
aromatic hydrocarbon, polyhex, and hexagonal polyomino, among others.

A polyhex in plane that has holes is called circulene; it has one outer cycle (perime-
ter) and one or a few inner cycles. The holes may have the size of one or more hexagons.
Coronoids are circulenes such that all holes have the size of at least two hexagons.
There are other classes of polyhexes; for instance, a helicenic system is a polyhex with
overlapping edges or hexagons if drawn in a plane (or a polyhex in three-dimensional
space). Fusenes are generalizations of polyhexes in which the hexagons do not need
to be regular.

2.2.2 Parameters of a Hexagonal System

We shall introduce some parameters and properties of HSs in order to classify them.
The leading parameter is usually the number of hexagons h in an HS (it is sometimes
called the “area”). For example, HSs in Figures 2.1b, 2.2a and b have h = 2, 11, and
4 hexagons, respectively. The next parameter is the perimeter p, or the number of
vertices (or edges) on its outer boundary. The HSs in Figures 2.1b, 2.2a and b have
perimeterp = 10, 32, and 16, respectively. A vertex of an HS is called internal (exter-
nal) if it does not (does, respectively) belong to the outer boundary. A vertex is internal
if and only if it belongs to three hexagons from the given HS. The number of internal
vertices i of HSs in Figures 2.1b, 2.2a and b is i = 0, 7 and 1, respectively. Let the total
number of vertices and edges in HSs ben = p+ i andm, respectively. From Euler the-
orem, it follows that n−m+ h = 1. There are p external and m− p internal edges.
Since every internal edge belongs to two hexagons, we obtain 6h = 2(m− p)+ p,
that is, m = 3h+ p/2. Therefore, n− 2h− p/2 = 1 and i = 2h− p/2+ 1 [31]. It
follows that p must be even, and that i is odd if and only if p is divisible by 4.

Consider now the relation between invariants n and s of a benzenoid isomer class
CnHs and other parameters of an HS. The number of vertices is n = i+ p = 2h+
p/2+ 1 = 4h− i+ 2. We shall find the number of hydrogen atoms s, which is equal
to the number of degree-2 vertices in an HS (all such vertices belong to the perimeter).
Let t be the number of tertiary (degree 3) carbon atoms on the perimeter. Therefore,
p = s+ t since each vertex on the perimeter has degree either 2 or 3. We have already
derivedm = 3h+ p/2. Now, if one assigns each vertex to all its incident edges, then
each edge will be “covered” twice; since each internal vertex has degree 3, it follows
that 2m = 3i+ 3t + 2s. Thus, 6h+ p = 3i+ 3t + 2s, that is, 3t = 6h+ p− 3i−
2s. By replacing t = p− s, one gets 3p− 3s = 6h+ p− 3i− 2s, which implies s =
2p− 6h+ 3i. Next, i = 2h− p/2+ 1 leads to s = p/2+ 3. It is interesting that s is a
function ofp independent ofh. The reverse relation readsp = 2s− 6, which, together
with p = s+ t, gives another direct relation t = s− 6. Finally, h = (n− s)/2+ 1
follows easily from 2h = n− p/2− 1 and p = 2s− 6. Therefore, there exists a one-
to-one correspondence between pairs (h, p) and (n, s). More precisely, the number
of different HSs corresponding to the same benzenoid isomer class CnHs is equal
to the number of (nonisomorphic) HSs with area h = (n− s)/2+ 1 and perimeter
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p = 2s− 6. The study of benzenoid isomers is surveyed by Brunvoll et al. [9] and
Cyrin et al. [15].

We shall list all the types of chemical isomers of HSs for increasing values of
h ≤ 5; h = 1: C6H6; h = 2: C10H8; h = 3: C13H9, C14H10; h = 4: C16H10, C17H11,
C18H12; h = 5: C19H11, C20H12, C21H13, C22H14.

The number of edgesm of all isomers with given formula CnHs ism = (3n− s)/2.
The number of edgesm and number of internal vertices i are sometimes used as basic
parameters; for example, n = (4m− i+ 6)/5, s = (2m− 3i+ 18)/5.

The Dias parameter is an invariant for HSs and is defined as the difference between
the number of vertices and number of edges in the graph of internal edges, obtained by
deleting the perimeter from a given HS, reduced by 1. In other words, it is the number
of tree disconnections of internal edges. The number of vertices of the graph of inter-
nal edges is i+ t (only s vertices with degree 2 on the perimeter do not “participate”),
and the number of internal edges ism− p. Thus, the Dias parameter for an HS is d =
i+ t −m+ p− 1 = h− i− 2 = p/2− h− 3. The pair of invariants (d, i) plays
an important role in connection with the periodic table for benzenoid hydrocarbons
[19,21]. The other parameters of an HS can be expressed in terms of d and i as follows:
n = 4d + 3i+ 10, s = 2d + i+ 8, h = d + i+ 2, and p = 4d + 2i+ 10. The pair
(d, i) can be obtained from pair (n, s) as follows: d = (3s− n)/2− 7, i = n− 2s+ 6.

There are several classifications of HSs. They are naturally classified with re-
spect to their area and perimeter. Another classification is according to the number
of internal vertices: catacondensed systems have no internal vertices (i = 0), while
pericondensed systems have at least one internal vertex (i > 0). For example, HSs
in Figures 2.1a, 2.3b, c and d are catacondensed, while HSs in Figures 2.2a,b and
2.3a are pericondensed. An HS is catacondensed if and only if p = 4h+ 2. Thus,
the perimeter of a catacondensed system is an even number not divisible by 4. All
catacondensed systems are Hamiltonian, since the outer boundary passes through
all vertices. Catacondensed HSs are further subdivided into unbranched (also called
chains, where each hexagon, except two, has two neighbors) and branched (where
at least one hexagon has three neighboring hexagons). Pericondensed HSs are either
basic or composite, depending on whether they cannot (or can, respectively) be cut
into two pieces by cutting along only one edge.

2.2.3 Symmetries of a Hexagonal System

We introduce the notion of free and fixed HSs. Free HSs are considered distinct if they
have different shapes; that is they are not congruent in the sense of Euclidean geometry.
Their orientation and location in the plane are of no importance. For example, the
two systems shown in Figure 2.2b represent the same free HS. Different free HSs
are nonisomorphic. Fixed HSs are considered distinct if they have different shapes or
orientations. Thus, the two systems shown in Figure 2.2b are different fixed HSs.

The key to the difference between fixed and free HSs lies in the symmetries of the
HSs. An HS is said to have a certain symmetry when it is invariant under the transfor-
mation(s) associated with that symmetry. In other words, two HSs are considered to be
the same fixed HSs, if one of them can be obtained by translating the other, while two
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HSs are considered the same free HSs, if one of then can be obtained by a sequence
of translations and rotations that may or may not be followed by a central symmetry.
A regular hexagon has 12 different transformations that map it back to itself. These
are rotations for 0˚, 60˚, 120˚, 180˚, 240˚, 300˚, and central symmetry followed by the
same six rotations. Let us denote the identity transformation (or rotation for 0˚) by ε,
rotation for 60˚ by ρ, and central symmetry by μ (alternatively, a mirror symmetry
can be used). Then, these 12 transformation can be denoted as ε, ρ, ρ2, ρ3, ρ4, ρ5, μ,
ρμ, ρ2μ, ρ3μ, ρ4μ, and ρ5μ, respectively. They form a group generated by ρ and μ.
When these transformations are applied on a given HS, one may or may not obtain
the same HS, depending on the kinds of symmetries that it has. The transformations
of an HS that produce the same fixed HS form a subgroup of the transformation group
G = {ε, ρ, ρ2, ρ3, ρ4, ρ5, μ, ρμ, ρ2μ, ρ3μ, ρ4μ, ρ5μ}. Every free HS corresponds
to 1, 2, 3, 4, 6, or 12 fixed HSs, depending on its symmetry properties. Thus, the
HSs are classified into symmetry groups of which there are eight possibilities, which
are defined here as subgroups of G: D6h = G, C6h = {ε, ρ, ρ2, ρ3, ρ4, ρ5}, D3h =
{ε, ρ2, ρ4, μ, ρ2μ, ρ4μ}, C3h = {ε, ρ2, ρ4}, D2h = {ε, ρ3, μ, ρ3μ}, C2h = {ε, ρ3},
C2v = {ε, μ}, and Cs = {ε}. The number of fixed HSs for each free HS under these
symmetry groups are specifically (in the same order): 1, 2, 2, 4, 3, 6, 6, and 12. Note
that the number of elements in the subgroup multiplied by the number of fixed HSs
for each free HS is 12 for each symmetry group. For example, HS in Figure 2.1b
has symmetry group D2h, while HSs in Figure 2.2a and b are associated with Cs
(have no symmetries). Examples of HSs with other symmetry groups are given
in Figure 2.3.

FIGURE 2.3 Hexagonal systems and their symmetry groups.
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Let H(h) and N(h) denote the number of fixed and free (nonisomorphic) HSs
with h hexagons, respectively. Furthermore, N(h) can be split into the numbers
for the different symmetries, say N(G,h), where G indicates the symmetry
group. Then H(h) = N(D6h, h)+ 2N(C6h, h)+ 2N(D3h, h)+ 4N(C3h, h)+
3N(D2h, h)+ 6N(C2h, h)+ 6N(C2v, h)+ 12N(Cs, h). For the free HSs, N(h) =
N(D6h, h)+N(C6h, h)+N(D3h, h)+N(C3h, h)+N(D2h, h)+N(C2h, h)+
N(C2v, h)+N(Cs, h). Eliminating N(Cs, h), we get

N(h) = 1
12 [11N(D6h, h)+ 10N(C6h, h)+ 10N(D3h, h)+ 8N(C3h, h)

+9N(D2h, h)+ 6N(C2h, h)+ 6N(C2v, h)+H(h)] . (2.1)

As we will see later, some algorithms use the above formula in order to compute
N(h) via computing the quantities on the right-hand side and avoiding the often costly
computation of N(Cs, h).

2.2.4 Exercises

1. Let n = p+ i be the number of vertices and m be the number of edges of an
HS. Show that m = 5h+ 1− i.

2. Prove that the maximal number of internal vertices of a HS, for fixed area h, is
2h+ 1−√12h− 3 [30,37]. Also, show that the perimeter of an HS satisfies
2
√

12h− 3 ≤ p ≤ 4h+ 2.

3. Prove that 0 ≤ � ≤ h/3�and1/2(1− (−1)i) ≤ � ≤ i [9].

4. Prove the following upper and lower bounds for the Dias parameter [9]:√
12h− 3− h− 3 ≤ d ≤ h− 2.

5. Prove that 2h+ 1+√12h− 3 ≤ n ≤ 4h+ 2 [37].

6. Prove that 3+√12h− 3 ≤ s ≤ 2h+ 4 [33].

7. Prove that 3h+ ⌈√12h− 3
⌉ ≤ m ≤ 5h+ 1 [30,37].

8. Prove that the possible values of s are within the range [30,37]
2
⌈
1/2(n+√6n)

⌉− n ≤ s ≤ n+ 2− 2 �(n− 2)/4�.
9. Prove that n− 1+ �(n− 2)/4� ≤ m ≤ 2n− ⌈(n+√6n)/2

⌉
[37].

10. Show that s+ 3 �s/2� − 9 ≤ m ≤ s+ ⌊(s2 − 6s)/12
⌋− 2 [15].

11. Prove that �(m− 1)/5� ≤ h ≤ m− ⌈(2m− 2+√4m+ 1)/3
⌉

[37].

12. Prove that 1+ ⌈(2m− 2+√4m+ 1)/3
⌉ ≤ n ≤ m+ 1− �(m− 1)/5� [37].

13. Show that 3− 2m+ 3
⌈
(2m− 2+√4m+ 1)/3

⌉ ≤ s ≤ m+ 3−
3 �(m− 1)/5� [9].

14. Let d(r, s) be the distance between the vertices r and s in an HS (which is the
length of the shortest path between them) [32]. The Wiener index W is the
sum of all distances (between all pairs of vertices) in a given HS. Show that
if B1 and B2 are catacondensed HSs with an equal number of hexagons, then
W(B1) = W(B2) (mod 8).
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2.3 GENERAL ALGORITHMS FOR ISOMORPH-FREE
EXHAUSTIVE GENERATION

In this section, we present general algorithms for generating exactly one representative
of each isomorphism class of any kind of combinatorial objects. The reader is referred
to the works by Brinkmann [6] and McKay [46] for more information on this type of
methods and to the survey by Faulon et al. [26] for a treatment of these methods in
the context of enumerating molecules.

The algorithms in this section generate combinatorial objects of size n+ 1 from
objects of size n via backtracking, using a recursive procedure that should be first
called with parameters of an empty object, namely X = [ ] and n = 0. They are
presented in a very general form that can be tailored to the problem at hand. In
particular, procedures IsComplete(X) and IsExtendible(X) can be set to
ensure that all objects of size up to n or exactly n are generated, depending on the
application. In addition, properties of the particular problem can be used in order to
employ further prunings, which cannot be specified in such a general framework but
which are of crucial importance.

The basic algorithms we consider here (Algorithms BasicGenA and BasicGenB)
exhaustively generate all objects using backtracking and only keep one representative
from each isomorphism class. They both require a method for checking whether the
current object generated is the one to be kept in its isomorphism class. In Algorithm
BasicGenA, this is done by remembering previously generated objects, which are
always checked for isomorphism against the current object.

Algorithm BasicGenA (X = [x1, x2, . . . , xn], n)
redundancyFound = false
if (IsComplete(X)) then

if (for all Y ∈ GenList: ¬ AreIsomorphic(X, Y)) then
GenList = GenList ∪ {X}
process X

else redundancyFound = true
if ((¬redundancyFound) and (IsExtendible(X))) then

for all extensions of X: X′ = [x1, x2, . . . , xn, x
′]

if (IsFeasible(X′)) then
BasicGenA(X′, n+ 1)

The third line of Algorithm BasicGenA is quite expensive in terms of time, since
an isomorphism test AreIsomorphic(X, Y) between X and each element Y in
GenList must be computed; see the works by Kocay [43] and McKay [44] for more
information on isomorphism testing and by McKay [45] for an efficient software
package for graph isomorphism. In addition, memory requirements for this algorithm
become a serious issue as all the previously generated objects must be kept.

In Algorithm BasicGenB, deciding whether the current object is kept is done by a
rule specifying who is the canonical representative of each isomorphism class. Based
on this rule, the current object is only kept if it is canonical within its isomorphism
class. A commonly used rule is that the canonical object be the lexicographically
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smallest one in its isomorphism class. In this case, a simple method for canonicity
testing (a possible implementation of procedure IsCanonical(X) below) is one
that generates all objects isomorph to the current object X by applying all possible
symmetries, and rejecting X if it finds a lexicographically smaller isomorph.

Algorithm BasicGenB (X = [x1, x2, . . . , xn], n)
redundancyFound = false
if (IsComplete(X)) then

if (IsCanonical(X)) then process X
else redundancyFound = true

if ((¬redundancyFound) and (IsExtendible(X))) then
for all extensions of X: X′ = [x1, x2, . . . , xn, x

′]
if (IsFeasible(X′)) then

BasicGenB(X′, n+ 1)

In Algorithm BasicGenB, the pruning given by the use of flag redundancyFound
assumes that the canonicity rule guarantees that a complete canonical object that has
a complete ancestor must have a canonical complete ancestor. This is a reasonable
assumption, which is clearly satisfied when using the “lexicographically smallest”
rule.

The next two algorithms substantially reduce the size of the backtracking tree by
making sure it contains only one copy of each nonisomorphic partial object. That
is, instead of testing isomorphism only for complete objects, isomorphism is tested
at each tree level. Faradzev [24] and Read [50] independently propose an orderly
generation algorithm. This algorithm also generates objects of size n by extending
objects of size n− 1 via backtracking. Like in Algorithm BasicGenB, it uses the idea
that there is a canonical representative of every isomorphism class that is the object
that needs to be generated (say, the lexicographically smallest). When a subobject
of certain size is generated, canonicity testing is performed, and if the subobject is
not canonical, the algorithm backtracks. Note that the canonical labeling and the
extensions of an object must be defined so that each canonically labeled object is the
extension of exactly one canonical object. In this way, canonical objects of size n are
guaranteed to be the extension of exactly one previously generated canonical object
of size n− 1.

Algorithm OrderlyGeneration (X = [x1, x2, . . . , xn], n)
if (IsComplete(X)) then process X.
if (IsExtendible(X)) then

for all extensions of X: X′ = [x1, x2, . . . , xn, x
′]

if (IsFeasible(X′)) then
if (IsCanonical(X′)) then

OrderlyGeneration(X′, n+ 1)

McKay [46] proposes a related but distinct general approach, where generation
is done via a canonical construction path, instead of a canonical representation. In
this method, objects of size n are generated from objects of size n− 1, where only
canonical augmentations are accepted. So, in this method the canonicity testing is
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substituted by testing whether the augmentation from the smaller object is a canonical
one; the canonicity of the augmentation is verified by the test IsParent(X,X′) in
the next algorithm. The canonical labeling does not need to be fixed as in the orderly
generation algorithm. Indeed, the relabeling of an object of size n− 1 must not affect
the production of an object of size n via a canonical augmentation.

Algorithm McKayGeneration1 (X = [x1, x2, . . . , xn], n)
if (IsComplete(X)) then process X.
if (IsExtendible(X)) then

for all inequivalent extensions of X: X′ = [x1, x2, . . . , xn, x
′]

if (IsFeasible(X′)) then
if (IsParent(X,X′)) then /* if augmentation is canonical */

McKayGeneration1(X′, n+ 1)

The previous algorithm may appear simpler than it is, because a lot of its key
features are hidden in the test (IsParent(X,X′)). This test involves several
concepts and computations related to isomorphism. We delay discussing more
of these details until they are needed in the second application of this method in
Section 2.7.2. The important and nontrivial fact established by McKay regarding
this algorithm is that if X has two extensions X′1 and X′2 for which X is the parent,
then it is enough that these objects be inequivalent extensions to guarantee that they
are inequivalent. In other words, Algorithm McKayGeneration1 produces the same
generation as Algorithm McKayGeneration2 below:

Algorithm McKayGeneration2 (X = [x1, x2, . . . , xn], n)
if (IsComplete(X)) then process X.
if (IsExtendible(X)) then
S = ∅
for all extensions of X: X′ = [x1, x2, . . . , xn, x

′]
if (IsFeasible(X′)) then

if (IsParent(X,X′) then /* if augmentation is canonical */
S = S ∪ {X′}

Remove isomorph copies from S
for all X′ ∈ S do

McKayGeneration2(X′, n+ 1)

Indeed, McKay establishes that in Algorithm McKayGeneration2 the isomorph
copies removed from set S must come from symmetrical extensions with respect to
the parent object X, provided that the function IsParent(X,X′) is defined as
prescribed in his article [46]. Algorithm McKayGeneration1 is the stronger, more
efficient version of this method, but for some applications it may be more convenient
to use the simpler form of Algorithm McKayGeneration2. McKay’s method is related
to the reverse search method of Avis and Fukuda [1]. Both are based on the idea of
having a rule for deciding parenthood for objects, which could otherwise be generated
as extensions of several smaller objects. However, they differ in that Avis and Fukuda’s
method is not concerned with eliminating isomorphs, but simply repeated objects.

Note that all the given algorithms allow for generation from scratch when called
with parameters X = [ ] and n = 0, as well as from the complete isomorph-free list
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of objects at level n by calling the algorithm once for each object. In the latter case, for
Algorithms BasicGenB and OrderlyGeneration, the list of objects at level n must be
canonical representatives, while for Algorithms BasicGenA and McKayGeneration,
any representative of each isomorphism class can be used.

2.4 HISTORICAL OVERVIEW OF HEXAGONAL
SYSTEM ENUMERATION

In this section, we concentrate on the main developments in the enumeration and
generation of hexagonal systems, which are geometrically planar and simply con-
nected polyhexes, as defined earlier. A similar treatment can be found in the article
by Brinkmann et al. [8]. For more information on the enumeration and generation of
hexagonal systems and other types of polyhexes, the reader is referred to the books by
Dias [19,20], Gutman and Cyvin [17,33,34], Gutman et al. [36], and Trinajstic [59].
For a recent treatment on generating and enumerating molecules, see the survey by
Faulon et al. [26].

The enumeration of HSs is initiated by Klarner [40] who lists all HSs for 1 ≤ h ≤ 5
and is followed by a race for counting HSs for larger values of h. The presence of
faster computers and development of better algorithms enabled the expansion of
known generation and enumeration results.

The first class of algorithms is based on the boundary code. Knop et al. [42] used
this method for counting and even drawing HSs for h ≤ 10. Using the same approach,
HSs were exhaustively generated forh = 11 [53] andh = 12 [38]. The boundary code
is explained in Section 2.5, where we give a basic backtracking algorithm (following
the framework of Algorithm BasicGenB) for the generation of triangular, square, and
hexagonal systems.

The next generation of algorithms uses the dualistic angle-restricted spanning
tree (DAST) code [49], which is based on the dualistic approach associated with a
general polyhex [3]. This approach was used for generating all HSs with h = 13 [47],
h = 14 [48], h = 15 [49], and h = 16 [41]. This method uses a graph embedded on
the regular hexagonal lattice containing the HS. Each vertex is associated with the
center of a hexagon, and two vertices are connected if they share an edge. This graph
is rigid; that is, angles between adjacent edges are fixed. Therefore, any spanning tree
of this graph completely determines the HS. DAST algorithms exhaustively generate
canonical representatives of dualist spanning trees using again a basic backtracking
algorithm.

The next progress was made by Tosic et al. [56], who propose a lattice-based
method that uses a “cage,” which led to the enumeration of HSs for h = 17. This
is a completely different method from the previous ones. The lattice-based approach
focuses on counting the number of HSs on the right-hand side of equation (2.1) in order
to compute N(h). This algorithm accomplishes this by generating nonisomorphic
HSs with nontrivial symmetry group based on a method of Redelmeier [51], and by
generating all fixed HSs by enclosing them on a triangular region of the hexagonal
lattice, which they call a cage. The cage algorithm is described in Section 2.6.



50 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

The boundary edge code algorithm by Caporossi and Hansen [12] enabled the
generation of all HSs for h = 18 to h = 21. The labeled inner dual algorithm
by Brinkmann et al. [7] holds the current record for the exhaustive generation of
polyhexes, having generated all polyhexes for h = 22 to h = 24. Each of these two
algorithms use a different representation for the HSs, but both use the generation by
canonical path introduced by McKay [46] given by the framework of Algorithms
McKayGeneration1 and McKayGeneration2 from Section 2.3. Both algorithms are
described in Section 2.7.

TABLE 2.1 Results on the Enumeration and Exhaustive Generation of HSs

h N(h) Algorithm Type Year Reference

1 1 – –
2 1 – –
3 3 – –
4 7 – –
5 22 – –
6 81 – –
7 331 – –
8 1453 – –
9 6505 – – 1965 [40]

10 30086 BC G 1983 [42]
11 141229 BC G 1986 [53]
12 669584 BC G 1988 [38]
13 3198256 DAST G 1989 [47]
14 15367577 DAST G 1990 [48]
15 74207910 DAST G 1990 [49]
16 359863778 DAST G 1990 [41]
17 1751594643 CAGE E 1995 [56]
18 8553649747 BEC G
19 41892642772 BEC G
20 205714411986 BEC G
21 1012565172403 BEC G 1998 [12]
22 4994807695197 LID G
23 24687124900540 LID G
24 122238208783203 LID G 2002 [7]

25 606269126076178 FLM E
26 3011552839015720 FLM E
27 14980723113884739 FLM E
28 74618806326026588 FLM E
29 372132473810066270 FLM E
30 1857997219686165624 FLM E
31 9286641168851598974 FLM E
32 46463218416521777176 FLM E
33 232686119925419595108 FLM E
34 1166321030843201656301 FLM E
35 5851000265625801806530 FLM E 2002 [60]
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Finally, Vöge et al. [60] give an algorithm that enables a breakthrough on the enu-
meration of HSs, allowing for the counting of all HSs with h = 25 to h = 35. Like the
cage algorithm, they use a lattice-based approach, but instead of brute force genera-
tion of all fixed HSs, they employ transfer matrices and the finite lattice method by
Enting [23] to compute H(h). Their algorithm is based on counting using generating
functions, so they enumerate rather than exhaustively generate HSs.

Table 2.1 provides a summary of the results obtained by enumeration and
exhaustive generation algorithms. For each h, it shows in order: the number N(h) of
free HSs with h hexagons, the first algorithmic approach that computed it, whether
the algorithm’s type was exhaustive generation (G) or enumeration (E), publication
year, and reference. When the year and reference are omitted, it is to be understood
that it can be found in the next row for which these entries are filled.

2.5 BACKTRACKING FOR HEXAGONAL, SQUARE,
AND TRIANGULAR SYSTEMS

In this section, we presents a basic backtracking algorithm, based on the boundary
code, for listing all nonisomorphic polygonal systems. This algorithm is applicable
for hexagonal [53], triangular [22], and square [54] systems. First, each of these
“animals” is decoded as a word over an appropriate alphabet. A square system can
be drawn such that each edge is either vertical or horizontal. If a counterclockwise
direction along the perimeter of a square system is followed, each edge can be coded
with one of four characters, say from the alphabet {0, 1, 2, 3}, where 0, 1, 2, and 3
correspond to four different edge orientations (see Fig. 2.4b). For example, the square
system in Figure 2.4a can be coded, starting from the bottom-left corner, as the word
001001221000101221012232212332330333. The representation of a square system
is obviously not unique, since it depends on the starting point.

Similarly, each hexagonal or triangular system can be coded using words from the
alphabet {0, 1, 2, 3, 4, 5}, where each character corresponds to one of six possible edge
orientations, as indicated in Figure 2.4d. Figure 2.4c shows a triangular system that
can be coded, starting from bottommost vertex and following counterclockwise order,
as 11013242345405; the hexagonal system in Figure 2.4e can be coded, starting from
the bottom-left vertex and following counterclockwise direction, as 01210123434505.

Let li(u) denote the number of appearances of the letter i in the wordu. For example,
l4(01210123434505) = 2, since exactly two characters in the word are equal to 4.

Lemma 1 [54] A word u corresponds to a square system if and only if the following
conditions are satisfied:

1. l0(u) = l2(u) and l1(u) = l3(u), and

2. for any nonempty proper subword w of u, l0(w) �= l2(w) or l1(w) �= l3(w).

Proof. A given closed path along the perimeter can be projected onto Cartesian co-
ordinate axes such that 0 and 2 correspond to edges in the opposite directions (and,
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FIGURE 2.4 Boundary codes for polygonal systems.

similarly, edges 1 and 3), as indicated in Figure 2.4b. Since the number of projected
“unit” edges in direction 0 must be equal to the number of projected unit edges
in direction 2, it follows that l0(u) = l2(u). Similarly, l1(u) = l3(u). To avoid self-
intersections along the perimeter, both equalities shall not be met simultaneously for
any proper subword of u. �

Lemma 2 [53] A word u = u1u2...up corresponds to a hexagonal system if and
only if the following conditions are satisfied:

1. l0(u) = l3(u), l1(u) = l4(u), and l2(u) = l5(u),

2. for any nonempty proper subword w of u, l0(w) �= l3(w) or l1(w) �= l4(w), or
l2(w) �= l5(w), and

3. ui+1 = ui ± 1 (mod 6), i = 1, 2, ..., p− 1.

Proof. Condition 3 follows easily from the hexagonal grid properties. To verify con-
dition 1, consider, for example, a vertical line passing through the middle of each
horizontal edge (denoted by 0 or 3). Each such vertical line intersects only edges
marked by 0 or 3, and no other edge. Therefore, in order to return to the starting
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point of the perimeter, each path along the boundary must make equal number of
moves to the right and to the left; thus, the number of 0s and 3s in a hexagonal system
is equal. The other two equalities in 1 follow similarly. Condition 2 assures that no
self-intersection of the boundary occurs. �

Lemma 3 [22] A word u corresponds to a triangular system if and only if the
following conditions are satisfied:

1. l0(u)− l3(u) = l4(u)− l1(u) = l2(u)− l5(u), and

2. no proper subword of u satisfies condition 1.

Proof. Project all edges of a closed path onto a line normal to directions 2 and 5. All
edges corresponding to characters 2 and 5 have zero projections while the length of
projections of edges 0, 1, 3, and 4 are equal; edges 0 and 1 have equal sign, which is
opposite to the sign of projections of edges 3 and 4. The sum of all projections for
a closed path is 0 and therefore l0(u)+ l1(u) = l3(u)+ l4(u). Analogously, l1(u)+
l2(u) = l4(u)+ l5(u). �

The same polygonal system can be represented by different words. Since the
perimeter can be traversed starting from any vertex, there arepwords in the clockwise
and p words in the counterclockwise direction for the same fixed polygonal sys-
tem u1u2...up. In addition, central symmetry and rotations can produce additional
isomorphic polygonal systems. In the case of hexagonal and triangular systems,
each free polygonal system corresponds to at most 12 fixed ones, as discussed
above (the symmetry groups for hexagonal and triangular systems coincide). Thus,
each HS or TS (triangular system) may have up to 24p isomorphic words (words
that define the same free system). They can be generated by repeated applica-
tion and combination of the following transformations: α(u1u2...up) = u2u3...upu1,
β(u1u2...up) = upup−1...u2u1 and σ(u1u2...up) = σ(u1)σ(u2)...σ(up), where σ is
an arbitrary element of the transformation group G described above. G is generated
by permutations μ = 123450 (μ(t) = t + 1 (mod 6)) and ρ = 345012 (ρ(t) = 3+
t (mod 6)).

In the case of square systems, each word has similarly up to 2p words ob-
tained by starting from an arbitrary vertex and following (counter) clockwise di-
rection, and up to eight isomorphic systems corresponding to the symmetry group
of a square. The group is generated by a rotation of π/4 and a central symmetry,
which correspond to permutations μ = 1230 (μ(t) = t + l (mod 4)) and ρ = 2301
(ρ(t) = 2+ t (mod 4)), respectively. The transformation group contains eight ele-
ments {ε, μ,μ2, μ3, ρ, μρ,μ2ρ,μ3ρ}.

In summary, each polygonal system can be coded by up to 24p words and only
one of them shall be selected to represent it. We need a procedure to determine
whether or not a word that corresponds to a polygonal system is the representative
among all words that correspond to the same polygonal system. As discussed in
Section 2.3, Algorithm BasicGenA is time and space inefficient when used for large
computations, where there are millions of representatives. Instead, we employ
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Algorithm BasicGenB. We may select, say, the lexicographically first word among
all isomorphic words as the canonical representative.

We shall now determine the area of a polygonal system, that is the number of
polygons in its interior. Given a closed curve, it is well known that the curvature
integration gives the area of the interior of the curve. Let (xi, yi) be the Cartesian
coordinates of the vertex where the ith edge (corresponding to the element ui in the
word u) starts. Then, the area obtained by curvature integration along the perime-
ter of a given polygonal system that is represented by a word u = u1u2 . . . un is
P = 1/2

∑p
i=1 (xi+1 − xi)(yi+1 − yi) = 1/2

∑p
i=1 (xiyi+1 − xi+1yi). The number of

polygons h in the interior of a polygonal system is then obtained when P is divided
by the area of one polygon, namely

√
3/4, 3

√
3/2, and 1 for triangular, hexagonal,

and square systems, respectively, where each edge is assumed to be of length 1. It
remains to compute the coordinates (xi, yi) of vertices along the perimeter. They can
be easily obtained by projecting each of the unit vectors corresponding to directions
0, 1, 2, 3, 4, and 5 of triangular/hexagonal and 0, 1, 2, and 3 of square system onto
the Cartesian coordinates.

Let u = u1u2...uj be a given word over the appropriate alphabet. If it represents a
polygonal system, then conditions 1 and 2 are satisfied from the appropriate lemma
(Lemma 1, 2, or 3). Condition 1 means that the corresponding curve is closed and
condition 2 that it has no self-intersections. Suppose that condition 2 is satisfied
but not condition 1; that is, the corresponding curve has no self-intersections and is
not closed. We call such a word addable. It is clear that u can be completed to a
word u′ = u1u2...up, for some p > j, representing a polygonal system if and only
if u is addable. If u is addable, then it can be extended to a word u1u2...ujuj+1,
where uj+1 has the following possible values: uj − 1, uj + 1 (mod 6) for hexagonal,
uj + 4, uj + 5, uj , uj + 1, and uj + 2 (mod 6) for triangular (note that obviously
uj+1 �= uj + 3 (mod 6)), and uj − 1, uj , and uj + 1 (mod 4) for square (note that
uj+1 �= uj + 2 (mod 4)) systems.

Algorithm BacktrackSj,h(p)
Procedure GenPolygonalSystem(U = [u1, . . . , uj], j, p) {
if (U = [u1, . . . , uj] represents a polygonal system) then

if (U = [u1, . . . , uj] is a canonical representative) then {
find its area h;
Sj,h← Sj,h + 1;
print u1, . . . , uj
}

else
if (U = (u1, . . . , uj is addable) and (j < p) then

for all feasible values of uj+1 with respect to U do
GenPolygonalSystem([u1, . . . , uj, uj+1], j + 1, p)

}
begin main
u1 ← 0;
GenPolygonalSystem([u1], 1, p)

end main
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TABLE 2.2 Number of Square and Triangle Systems with h Polygons

h
1 2 3 4 5 6 7 8 9 10 11 12 13

S 1 1 2 5 12 25 107 363 1248 4460
T 1 1 1 3 4 12 24 66 159 444 1161 3226 8785

Algorithm BacktrackSj,h(p) determines the numbers Sj,h of polygonal
systems with perimeter j and area h, for j ≤ p (i.e., for all perimeters ≤p
simultaneously). Due to symmetry and lexicographical ordering for the choice of a
canonical representative, one can fix u1 = 0. This algorithm follows the framework
given by Algorithm BasicGenB in Section 2.3.

This algorithm was used to produce the numbers Sp,h and the results were obtained
for the following ranges: p ≤ 15 for triangular [22], p ≤ 22 for square [54], and p ≤
46 for hexagonal [53] systems. Using the relationp ≤ 4h+ 2 for hexagonal,p ≤ h+
2 for triangular, andp ≤ 2h+ 2 for square systems, the numbers of polygonal systems
with exactlyhpolygons are obtained for the following ranges ofh:h ≤ 13 (triangular),
h ≤ 10 (square), andh ≤ 11 (hexagonal systems). These numbers are given for square
and triangular systems in Table 2.2. The data for hexagonal systems can be found in
the corresponding entries in Table 2.1. Table 2.3 gives some enumeration results [53]
for the number of nonisomorphic HSs with area h and perimeter p.

TABLE 2.3 Hexagonal Systems with Area h and Perimeter p

h
1 2 3 4 5 6 7 8 9

p = 6 1 — — — — — — — —
p = 8 — — — — — — — — —
p = 10 — 1 — — — — — — —
p = 12 — — 1 — — — — — —
p = 14 — — 2 1 — — — — —
p = 16 — — — 1 1 — — — —
p = 18 — — — 5 3 3 1 — —
p = 20 — — — — 6 4 3 1 —
p = 22 — — — — 12 14 10 9 4
p = 24 — — — — — 24 25 21 15
p = 26 — — — — — 36 68 67 55
p = 28 — — — — — — 106 144 154
p = 30 — — — — — — 118 329 396
p = 32 — — — — — — — 453 825
p = 34 — — — — — — — 411 1601
p = 36 — — — — — — — — 1966
p = 38 — — — — — — — — 1489

 1 1 3 7 22 81 331 1435 6505
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2.5.1 Exercises

1. Prove that p ≤ h+ 2 for triangular systems.

2. Prove that p ≤ 2h+ 2 for square systems.

3. Find the projections of each unit vector corresponding to directions
0, 1, 2, 3, 4, and 5 of triangular/hexagonal and 0, 1, 2, and 3 of square sys-
tem onto the x and y coordinate axes.

4. An unbranched catacondensed HS can be coded as a word u = u1u2...up
over the alphabet {0, 1, 2, 3, 4, 5}, where ui corresponds to the vector
joining ith and (i+ l)th hexagon in the HS (the vector notation being
as defined in Fig. 2.4). Prove that a word u is the path code of an
unbranched catacondensed HS if and only if for every subword y of
u, |l0(y)+ l5(y)− l3(y)− l2(y)| + |l1(y)+ l2(y)− l4(y)− l5(y)| > 1. Show
that there always exist a representative of an equivalence class beginning
with 0 and having 1 as the first letter different from 0 [55].

5. Describe an algorithm for generating and counting unbranched catacondensed
HSs [55].

6. The test for self-intersection given as condition 2 in Lemmas 1–3 requires
O(n) time (it suffices to apply it only for subwords that have different
beginning but the same ending as the tested word). Show that one can use
an alternative testing that will require constant time, by using a matrix
corresponding to the appropriate grid that stores 1 for every grid vertex
occupied by a polygon and 0 otherwise.

7. Design an algorithm for generating and counting branched catacondensed
HSs [11].

8. Design an algorithm for generating and enumerating coronoid hydrocarbons,
which are HSs with one hole (they have outer and inner perimeters) [10].

9. Let u1u2 . . . up be a boundary code of an HS as defined above. Suppose that
an HS is traced along the perimeter in the counterclockwise direction. A new
boundary code x = x1x2...xp is defined over the alphabet {0, 1} such that
xi = 0 if ui = ui−1 + l (mod 6) and xi = 1 if ui = ui−1 − 1 (mod 6) (where
y0 = yp). Show that the number of 1s is t while the number of 0s is s, where
s and t are defined in Section 2.2.2. Design an algorithm for generating and
counting HSs based on the new code.

10. Design an algorithm for generating HSs with area h which would be based
on adding a new hexagon to each HS of area h− 1.

11. Let h, p, i,m, n, and d be defined for square (triangular, respectively) systems
analogously to their definitions for HSs. Find the corresponding relations
between them.

2.5.2 Open Problems

Find a closed formula or a polynomial time algorithm to compute the number of
nonisomorphic hexagonal (triangular, square) systems with area h.
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2.6 GENERATION OF HEXAGONAL SYSTEMS
BY A CAGE ALGORITHM

This section describes an algorithm by Tosic et al. [56] that enumerates nonisomor-
phic hexagonal systems and classifies them according to their perimeter length. This
algorithm therefore performs the same counting as the one in the previous section
but is considerably faster (according to the experimental measurements), and was the
first to enumerate all HSs with h ≤ 17.

The algorithm is a lattice-based method that uses the results of the enumera-
tion and classification of polyhex hydrocarbons according to their various kinds of
symmetry and equation (2.1). These enumerations are performed by separate pro-
grams, which are not discussed here. Known results on the enumeration and clas-
sification of HSs according to symmetries are surveyed by Cyrin et al. [14]. In the
present computation, the symmetry of the HSs is exploited by adopting the method
of Redelmeier [51]. This method is improved in some aspects by using a boundary
code (see the previous section) for the HSs. The exploitation of symmetry involves
separate enumeration of the fixed HSs on one hand (H(h)) and free HSs of spe-
cific (nontrivial) symmetries on the other (other values on the right-hand side of
equation (2.1)).

The easiest way to handle a beast (HS) is to put it in a cage. A cage is a rather
regular region of the hexagonal grid in which we try to catch all relevant hexagonal
systems. This algorithm uses a triangular cage. Let Cage(n) denote a triangular cage
with n hexagons along each side. Figure 2.5 shows Cage(9) and exemplifies how a
coordinate system can be introduced in Cage(n).

It is almost obvious that each hexagonal system that fits inside a cage can be placed
in the cage in such a way that at least one of its hexagons is on the x-axis of the cage,
and at least one of its hexagons is on the y-axis of the cage. We say that such HSs
are properly placed in the cage. Thus, we generate and enumerate all HSs that are
properly placed in the cage.

FIGURE 2.5 A hexagonal system properly placed in a cage.
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Let B be a free HS with h hexagons and let GB be its symmetry group. It
can be easily shown that B can be properly placed in Cage(h) in exactly |GB|
ways. Therefore, we can use equation (2.1) in order to determine N(h). This re-
quires the knowledge of N(D6h, h), N(C6h, h), N(D3h, h), N(C3h, h), N(D2h, h),
N(C2h, h), and N(C2v, h)), which are found by separate generation algorithms
not discussed here, as well as of H(h), the total number of fixed hexagons,
which is determined by the algorithm discussed in this section. By using this ap-
proach, we completely avoid isomorphism tests, which are considered to be the
most time-consuming parts of similar algorithms. Note that this is sufficient for
enumeration, but if we need exhaustive generation, isomorphism tests would be
required.

One needs Cage(h) to be able to catch all properly placed HSs with up to h
hexagons. However, it turns out that the beasts are not that wild. Almost all hexago-
nal systems with h hexagons appear in Cage(h− 1). This allows a significant speedup
due to the reduction in the search space. Those HSs that cannot be properly placed
in Cage(h− 1) can easily be enumerated (see Exercise 3). Therefore, we can re-
strict our attention to Cage(h− 1), when dealing with hexagonal systems with h
hexagons.

Let p and q be the smallest x- and y-coordinates (respectively) of all (centers of)
hexagons of an HS that is properly placed in Cage(h− 1). Hexagons with coordinates
(p, 0) and (0, q) (with respect to the coordinate system of the cage) are named key
hexagons. Let H(p, q) denote the set of all HSs with ≤h hexagons that are properly
placed in Cage(h− 1) and their key hexagons on x- and y-axes have coordinates
(p, 0) and (0, q), respectively. Figure 2.5 shows one element of H(4, 2).

The family {H(p, q) : 0 ≤ p ≤ h− 2, 0 ≤ q ≤ h− 2} is a partition of the set of
all hexagonal systems that are well placed in Cage(h− 1). Because of symmetry,
it can be verified that |H(p, q)| = |H(q, p)|, for all p, q ∈ {0, 1, . . . , h− 2}. Thus,
the job of enumeration of all properly placed hexagons is reduced to determining
|H(p, q)| for all p ≥ q.

Given the numbers 0 ≤ p ≤ q ≤ h− 2 and Cage(h− 1), determining |H(p, q)|
reduces to generating all hexagons systems from H(p, q). We do that by generating
their boundary line. A quick glance at Figure 2.5 reveals that the boundary line of a
hexagonal system can be divided into two parts: the left part of the boundary (from
the readers point of view), which starts on the y-axis below the key hexagon and
finishes at the first junction with x-axis, and the rest of the boundary, which we call
the right part of the boundary.

We recursively generate the left part of the boundary line. As soon as it reaches
the x-axis, we start generating the right part. We maintain the length of the bound-
ary line as well as the area of the hexagonal system. The trick that gives the area of
the hexagonal system is simple: hexagons are counted in each row separately, start-
ing from y-axis, such that their number is determined by their x-coordinate. Each
time the boundary goes up (down), we add (subtract, respectively) the corresponding
x-coordinate. When following the contour of HS in counterclockwise direction (i.e.,
in the direction of generating HS, see Fig. 2.5), there remain some hexagons out of
HS to the left of the vertical contour line that goes down while hexagons to the left of
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the vertical line that goes up belong to the HS. The “zigzag” movements do not inter-
fere with the area. Once the generation is over, the area of the HS gives the number
of hexagons circumscribed in this manner. The area count is used to eliminate HSs
with more than h hexagons, which appear during the generation of systems with h
hexagons that belong to H(p, q).

However, it would be a waste of time (and computing power) to insist on generating
elements of H(p, q) strictly. This would require additional tests to decide whether
the left part of the boundary has reached x-axis precisely at hexagon p or not. In
addition, once we find out we have reached the x-axis at hexagon, say, p+ 2, why
should we ignore it for the calculation of H(p+ 2, q)? We shall therefore introduce
another partition of the set of all properly placed HSs.

Given h and Cage(h− 1), let H∗(q) = ⋃h−2
j=0 H(j, q), for all q = 0, 1, . . . , h− 2.

It is obvious that {H∗(q) : 0 ≤ q ≤ h− 2} is a partition of the set of all HSs with
h hexagons that are properly placed in Cage(h− 1). Instead of having two sepa-
rate phases (generating H(p, q) and adding appropriate number to total), we now
have one phase in which generating and counting are put together. We should
prevent appearances of hexagonal systems from H(p, q) with p < q. This re-
quires no computational overhead because it can be achieved by forbidding some
left and some down turns in the matrix representing the cage. On the contrary,
avoiding the forbidden turns accelerates the process of generating the boundary
line.

The algorithm is a school example of backtracking, thus facing all classical
problems of the technique: Even for small values of h the search tree misbehaves,
so it is essential to cut it as much as possible. One idea that cuts some edges of the
tree is based on the fact that for larger values of q there are some parts of the cage
that cannot be reached by hexagonal systems with ≤h hexagons, but can easily be
reached by useless HSs that emerge as a side effect. That is why we can, knowing q,
forbid some regions of the cage.

The other idea that reduces the search tree is counting the boundary hexagons.
A boundary hexagon is a hexagon that has at least one side in common with the
boundary line and that is in the interior of the hexagonal system we are generating. It
is obvious that boundary hexagons shall be part of the HS, so we keep track of their
number. We use that number as a very good criterion for cutting off useless edges
in the search tree. The idea is simple: further expansion of the left/right part of the
boundary line is possible if and only if there are less than h boundary hexagons the
boundary line has passed by.

The next idea that speeds up the algorithm is living on credit. When we start
generating the left part of the boundary, we do not know where exactly is it going
to finish on the x-axis, but we know that it is going to finish on the x-axis. In other
words, knowing that there is one hexagon on the x-axis that is going to become a part
of the HS, we can count it as a boundary hexagon in advance. It represents a credit
of the hexagonal bank, which is very eagerly exploited. Thus, many useless HSs are
discarded before the left part of the boundary lands on the x-axis.

All these ideas together represent the core of the algorithm, which can be outlined
as follows.
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Algorithm CageAlgorithm(h)
procedure ExpandRightPart(ActualPos,BdrHexgns) {

if (EndOfRightPart) then {
n←NoOfHexagons()
if (n ≤ h) then {

determine p;
if (p = q) then total[n] ← total[n]+ 1
else total[n] ← total[n]+ 2

}
}
else {

FindPossible(ActualPos,FuturePos)
while (RightPartCanBeExpanded(ActuallPos, FuturePos))

and (BdrHexgns≤ h) do {
ExpandRightPart(FuturePos,update(BdrHexgns))
CalcNewFuturePos(ActualPos,FuturePos)

}
}

}
procedure ExpandLeftPart(ActualPos,BdrHexgns) {

if (EndOfLeftPart) then
ExpandRightPart (RightlnitPos(q), updCredit(BdrHexgns))

else {
FindPossible(ActualPos,FuturePos)

while (LeftPartCanBeExpanded(ActualPos, FuturePos)) and
(BdrHexgns ≤h) do {

ExpandLeftPart(FuturePos,update(BdrHexgns))
CalcNewFuturePos(ActualPos,FuturePos)

}
}

}
begin main

initialize Cage(h-1);
total[1..h] ← 0
for q← 0 to h− 2 do {

initialize y-axis key hexagon(q)
ExpandLeftPart(LeftInitPos(q),InitBdrHexgns(q))

}
end main

2.6.1 Exercises

1. Design algorithms for counting square and triangular systems, using analogous
ideas as these presented in this section for HSs.
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2. Design algorithms for generating all HSs with area h and perimeter p, which
belong to a given kind of symmetry of HSs (separate algorithms for each of
these symmetry classes).

3. Prove that the number of HSs with h hexagons that cannot be placed properly in
Cage(h− 1) is (h2 − h+ 4)2h−3. Show that, among them, there are (h2 − 3h+
2)2h−4 pericondensed (with exactly one inner vertex) and (h2 + h+ 6)2h−4

catacondensed HSs [56].

2.7 TWO ALGORITHMS FOR THE GENERATION OF HSs USING
MCKAY’S METHOD

2.7.1 Generation of Hexagonal Systems Using
the Boundary Edge Code

Caporossi and Hansen [12] give an algorithm, based on Algorithm McKayGenera-
tion2 seen in Section 2.3, for isomorph-free generation of hexagonal systems repre-
sented by their boundary edge code (BEC). Their algorithm was the first to generate
all the HSs with h = 18 to h = 21 hexagons.

We first describe the BEC representation of an HS, exemplified in Figure 2.6.
Select an arbitrary external vertex of degree 3, and follow the boundary of the HS
recording the number of boundary edges of each hexagon it traverses. Then, apply
circular shifts and/or a reversal, in order to obtain a lexicographically maximum code.
Note that each hexagon can appear one, two or three times as digits in the BEC code.
Caporossi and Hansen [12] prove that an HS always start with a digit greater than or
equal to 3.

Now, two aspects of the algorithm need specification: How to determine which
sub-HS (of order h− 1) of an HS of order h will be selected to be its parent in
the generation tree, and how hexagons are added to existing HSs to create larger
HSs.

In Figure 2.7, we show the generation tree explored by this algorithm for h = 4.
Note that, for example, from the HS with code 5351 we can produce six noniso-
morphic HSs, but only three of them are kept as its legitimate children. The rule for
determining the parent of an HS is to remove the hexagon corresponding to the first
digit of its BEC code. In other words, the parent of an HS is the one obtained by
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FIGURE 2.6 Boundary edge code for a hexagonal system.
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FIGURE 2.7 Isomorph-free search tree for h = 4.

removing its first hexagon. This operation in rare cases may disconnect the HS. This
occurs precisely when the first hexagon occurs twice rather than once in the code. In
such cases, the HS is orphan and cannot be generated via the algorithm’s generation
tree. A specially designed method for generation of orphan HSs must be devised in
these cases. However, Caporossi and Hansen [12] proved that orphan HSs do not
occur for h ≤ 28, so they did not have to deal with the case of orphan HSs in their
search.

Next, we describe how hexagons are added to create larger HSs. There are three
ways in which a hexagon can be added to an HS, exemplified in Figure 2.8a:

1. A digit x ≥ 3 in the BEC code corresponding to edges of a hexagon such that
one of the edges belong only to this hexagon can be replaced by a5b, where
a+ b+ 1 = x and a ≥ 1 and b ≥ 1.

2. A sequence xy in the BEC code with x ≥ 2 and y ≥ 2 can be replaced by
(x− 1)4(y − 1).

3. A sequence x1y with x ≥ 2 and y ≥ 2 in the BEC code can be replaced by
(x− 1)3(y − 1).

In each of the above cases, we must make sure that the addition of the hexagon
does not produce holes. This can be accomplished by checking for the presence of
a hexagon in up to three adjacent positions, as shown in Figure 2.8b; if any of these
hexagons is present, this addition is not valid.

Procedure GenerateKids that generates, from an HSP with j hexagons, its children
in the search with j + 1 hexagons is outlined next.

1. Addition of hexagons: Any attempt to add a hexagon in the steps below is
preceded by a test that guarantees that no holes are created.
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FIGURE 2.8 Ways of adding a hexagon to the boundary of an HS.

• Add a 5 in every possible way to the BEC code of P .

• If the BEC code of P does not begin with a 5, then add a 4 in every possible
way to the BEC code of P ; otherwise, only consider the addition of a 4
adjacent to the initial 5.

• If the BEC code ofP has no 5 and at most two 4s, consider the addition of a 3.

2. Parenthood validation: For each HS generated in the previous step, verify that
its BEC code can begin on the new hexagon. Reject the ones that cannot.

The correctness of the above procedure comes from the rule used to define who is
the parent of an HS, and from the lexicographical properties of the BEC code. Now,
putting this into the framework of Algorithm McKayGeneration2, from Section 2.3,
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gives the final algorithm.

Algorithm BECGeneration(P, Pcode, j)
if (j = h) then output P
else {

S=GenerateKids(P, Pcode)
Remove isomorph copies from S
for all (P ′, Pcode′) ∈ S do

BECGeneration(P ′, Pcode′, j + 1)
}

Caporossi and Hansen [12] discuss the possibility of using Algorithm McKay-
Generation1, which require computing the symmetries of the parent HS to avoid the
isomorphism tests on the fourth line of the above algorithm. However, they report that
experiments with this variant gave savings of only approximately 1 percent. Thus,
this seem to be a situation in which it is worth using the simpler algorithm given by
Algorithm McKayGeneration2.

2.7.2 Generation of Hexagonal Systems and Fusenes
Using Labeled Inner Duals

Brinkmann et al. [7,8] exhaustively generate HSs using an algorithm that constructs
all fusenes and filters them for HSs. Fusenes are a generalization of polyhexes that
allows for irregular hexagons. They only consider simply connected fusenes, of
which HSs are therefore a special case. In this section, we shall describe their al-
gorithm for constructing fusenes. Testing whether a fusene fits the hexagonal lattice
(checking whether it is an HS) can be easily done, and it is not described here. This
algorithm was the first, and so far the only one, to exhaustively generate all HSs
with h = 22 to h = 24.

We first describe the labeled inner dual graph representation of a fusene. The
inner dual graph has one vertex for each hexagon, and two vertices are connected if
their corresponding hexagons share an edge. This graph does not uniquely describe a
fusene, but using an appropriate labeling together with this graph does, see Figure 2.9.
Following the boundary cycle of the fusene, associate as many labels with a vertex
as the number of times its corresponding hexagon is traversed, so that each label
records the number of edges traversed each time. In the cases in which the hexagon
occurs only once in the boundary, the label is omitted, as the number of edges in the

1
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FIGURE 2.9 Hexagonal systems, their inner dual, and labeled inner dual graphs.
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boundary is completely determined from 6−deg(v), where deg(v) is the degree of the
corresponding vertex.

Brinkmann et al. characterize the graphs that are inner duals of fusenes, which
they call id-fusenes. They show that a planar embedded graphG is an id-fusene if and
only if (1) G is connected, (2) all bounded faces of G are triangles, (3) all vertices
not on the boundary have degree 6, and (4) for all vertices, the total degree, that is,
the degree plus the number of times it occurs in the boundary cycle of the outer face,
is at most 6.

Before we describe the algorithm, we need some basic definitions related to graph
isomorphisms. Two graphs G1 and G2 are isomorphic if there exists a bijection
(isomorphism) from the vertex set of G1 to the vertex set of G2 that maps edges
to edges (and nonedges to nonedges). An isomorphism from a graph to itself is
called an automorphism (also called a symmetry). The set of all automorphisms of
a graph form a permutation group called the automorphism group of the graph, de-
noted Aut(G). The orbit of a vertex v under Aut(G) is the set of all images of v
under automorphisms ofG; that is, orb(v) = {g(v) : g ∈ Aut(G)}. This definition can
be naturally extended to a set S of vertices as orb(S) = {g(S) : g ∈ Aut(G)}, where
g(S) = {g(x) : x ∈ S}.

In the first step of the algorithm, nonisomorphic inner dual graphs of fusenes (id-
fusenes) are constructed via Algorithm McKayGeneration1, described in Section 2.3.
This first step is going to be described in more detail later in this section. In the second
step, labeled inner duals are generated. We have to assign labels, in every possible
way, to the vertices that occur more than once on the boundary, so that the sum of
the labels plus the degrees of each vertex equals 6. In this process, we must make
sure that we do not construct isomorphic labeled inner dual graphs, which can be
accomplished by using some isomorphism testing method. To this end, the authors
use the homomorphism principle developed by Kerber and Laue (see, for instance,
the article by Grüner et al. [28]), which we do not describe here. However, it turns out
that isomorphism testing is not needed for the labelings of most inner dual graphs, as
discussed in the next paragraph, so the method that we choose for the second step is
not so relevant.

One of the reasons for the efficiency of this algorithm is given next. For two labeled
inner dual graphs to be isomorphic, we need that their inner dual graphs be isomorphic.
Since the first step of the algorithm generates only one representative of each isomor-
phism class of inner dual graphs, isomorphic labeled inner dual graphs can only result
from automorphisms of the same inner dual graph. So, if the inner dual graph has a
trivial automorphism group, each of its generated labelings do not have to be tested
for isomorphism. It turns out that the majority of fusene inner dual graphs have trivial
automorphism group. For instance, for n = 26 trivial automorphism groups occur in
99.9994% of the inner dual graphs, each of them with more than 7000 labelings in
average. So, this method saves a lot of unnecessary isomorphism tests in the second
step of the algorithm.

Now, we give more details on the first step of the algorithm, namely the isomorph-
free generation of the inner dual graphs via Algorithm McKayGeneration1, as
described by Brinkmann et al. [7]. We need to specify how hexagons are added to
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FIGURE 2.10 Valid augmentations of an id-fusene.

existing id-fusenes to create larger ones and how to determine which subgraphs
(of order v− 1) of an id-fusene of order v will be selected to be its parent in the
generation tree.

In order to describe how we augment an id-fusene, we need some definitions. A
boundary segment of an id-fusene is a set of l− 1 consecutive edges of the boundary
cycle. The vertices of the boundary segment are the end vertices of its edges (there
are l of them). For convenience, a single vertex in the boundary cycle is a boundary
segment with l = 1. A boundary segment is said to be augmenting if the following
properties hold: l ≤ 3, its first and last vertices have total degree at most 5, if l = 1
its only vertex has total degree at most 4, and if l = 3 and the middle occurs only
once in the boundary, it has total degree 6; see examples of valid augmentations in
Figure 2.10. The augmentation algorithm is based on the following lemma.

Lemma 4 All id-fusenes can be constructed from the inner dual of a single hexagon
(a single vertex graph) by adding vertices and connecting them to each vertex of an
augmenting boundary segment.

McKay [46] describes a general way of determining parenthood in Algorithm
McKayGeneration1 based on a canonical choice function f . When applied to the case
of the current algorithm with the given augmentation, f is chosen to be a function
that takes each id-fusene G to an orbit of vertices under the automorphism group of
G that satisfy the following conditions:

1. f (G) consists of boundary vertices that occur only once in the boundary cycle
and have degree at most 3;

2. f (G) is independent of the vertex numbering of G; that is, if � is an isomor-
phism from G to G′, then �(f (G)) = f (G′).

Now, as described by McKay [46], graph G is defined to be the parent of graph
G ∪ {v} if and only if v ∈ f (G ∪ {v}). The specific f used by Brinkmann et al. [7]
is a bit technical and would take a page or more to properly explain, so we refer the
interested reader to their paper.

Procedure GenerateKidsIDF that generates, from an id-fuseneGwith v hexagons,
its children in the search tree with v+ 1 hexagons is outlined next.
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1. Addition of hexagons:

• Compute the orbit of the set of vertices of each augmenting boundary segment
of G.

• Connect the new vertex n+ 1 to the vertices in one representative of each
orbit, creating a new potential child graph G′ per orbit.

2. Parenthood validation: For each G′ created in the previous step, if n+ 1 ∈
f (G′) then add G′ to S, the set of children of G.

As discussed in the presentation of Algorithm McKayGeneration1, from Section
2.3, no further isomorphism tests are needed between elements of S, unlike the al-
gorithm in Section 2.7.1. Now, putting all these elements into the given framework
gives the final algorithm for the isomorph-free generation of id-fusenes.

Algorithm IDFGeneration(G,n)
if (n = h) then output G
else {

S=GenerateKidsIDF(G,n)
for all G′ ∈ S do

IDFGeneration(G′, n+ 1)
}

For this algorithm and for the one in Section 2.7.1, it is possible and convenient
to distribute the generation among several computers, each expanding part of the
generation tree. This can be done by having each computer build the generation tree
up to certain level and then start the generation starting on a node at that level.

2.7.3 Exercises

1. Draw the edges and vertices in the next level (h = 5) of the search tree of
the BEC algorithm generation given in Figure 2.7. Recall that it must contain
exactly 22 nodes (and edges).

2. Prove that the BEC code of an HS always begins with a digit greater than or
equal to 3 [12] .

3. Prove that no HS obtained by the addition of a hexagon sharing more than three
consecutive edges with the current HS can be one of its legitimate children in
the search tree of Algorithm BECGeneration [12].

4. Consider the three types of addition of hexagons to an HS, given in Figure 2.8a.
For each of these cases, prove that the added hexagon creates a polyhex with
a hole if and only if at least one of the positions marked with “?” (in the
corresponding figure in Fig. 2.8b) contains a hexagon.

5. Prove that any HS with h ≥ 2 can be obtained from the HS with h = 2 by
successive additions of hexagons satisfying rules 1–3 in Section 2.7.1 for
hexagon additions in the BEC code algorithm.

6. Prove, by induction on n, that a graph with n vertices is an id-fusene if and
only if the four properties listed in Section 2.7.2 are satisfied.



68 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

7. Give an example of an id-fusene graph that does not correspond to a hexagonal
system.

8. Write an algorithm for filtering fusenes for hexagonal systems, that is, an
algorithm that verifies whether a labeled inner dual graph of a fusene can be
embedded into the hexagonal lattice.

9. Prove Lemma 4 [7].

10. Prove that Algorithm IDFGeneration accepts exactly one member of every
isomorphism class of id-fusenes with n vertices [7,46].

2.8 PERFECT MATCHINGS IN HEXAGONAL SYSTEMS

The transformation from molecular structure (e.g., Fig. 2.1a) to an HS (e.g., Fig. 2.1b)
leaves out the information about double valences between carbon atoms. Clearly, each
carbon atom has a double valence link with exactly one of its neighboring carbon
atoms. Thus, double valences correspond to a perfect matching in an HS. Therefore,
an HS is the skeleton of a benzenoid hydrocarbon molecule if and only if it has a
perfect matching.

An HS that has at least one perfect matching is called Kekuléan; otherwise, it is
called non-Kekuléan. Kekuléan HSs are further classified as either normal (if every
edge belongs to at least one perfect matching) or essentially disconnected (otherwise).
Classification of HSs according to the perfect matching property is summarized by
Cyvin et al. [14]. An HS with a given perfect matching is called a Kekulé structure in
chemistry and has great importance. Figure 2.11a and b shows two Kekulé structures
that corresponds to the HS in Figure 2.1b.

If the number of vertices of an HS is odd, then clearly there is no perfect matching.
We denote byK(G) the number of perfect matchings of a graphG, and refer to it as the

FIGURE 2.11 (a–c) Kekulé structures and (d–f ) vertex coloring of hexagonal systems.
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K number ofG. WhenG is an HS,K(G) is the number of its Kekulé structures. The
edges belonging to a given Kekulé structure are double bonds while others are single
bonds. The stability and other properties of HSs have been found to correlate with
their K numbers. A whole book [17] is devoted to Kekulé structures in benzenoid
hydrocarbons. It contains a list of other references on the problem of finding the
“Kekulé structure count” for hydrocarbons.

The vertices of an HS may be divided into two groups, which are conveniently
called black and white. Choose a vertex and color it white, and color all its neighboring
vertices black. Continue the process such that all vertices adjacent to a black vertex
are white and vice versa. Figure 2.11d shows an example of such coloring. The black
and white internal vertices correspond to two different configurations of edges as
drawn in Figure 2.11e and f. Every edge joins a black and a white vertex; therefore,
HSs are bipartite graphs. Let the number of white and black vertices be nw and
nb, respectively, and � = |nw− nb|. Clearly, nw+ nb = p+ i (recall that p is the
perimeter and i is the number of internal vertices of an HS). Every edge of a perfect
matching of a given HS joins a black and a white vertex. Therefore, if the HS is
Kekuléan then� = 0. The reverse is not always true. Non-Kekuléan HSs with� = 0
exist and are called concealed, while for � > 0 they are referred to as the obvious
non-Kekuléan.

2.8.1 K Numbers of Hexagonal, Square, and Pentagonal Chains

This section contains a study of the numbers of perfect matchings of square,
pentagonal, and hexagonal chains, that is the graphs obtained by concatenating
squares, pentagons, and hexagons, respectively. A mapping between square
(pentagonal) and hexagonal chains that preserves the number of perfect matchings
is established. The results in this section are by Tosic and Stojmenovic [58] (except
for the proof of Theorem 1, which is original).

By a polygonal chain Pk,s we mean a finite graph obtained by concatenating s
k-gons in such a way that any two adjacent k-gons (cells) have exactly one edge in
common, and each cell is adjacent to exactly two other cells, except the first and
last cells (end cells) that are adjacent to exactly one other cell each. It is clear that
different polygonal chains will result, according to the manner in which the cells are
concatenated.

Figure 2.12a shows a hexagonal chain P6,11. The LA-sequence of a hexagonal
chain is defined by Gutmann [29] as follows. A hexagonal chain P6,s is represented
by a word of length s over the alphabet {A,L}. The ith letter isA (and the correspond-
ing hexagons is called a kink) if and only if 1 < i < s and the ith hexagon has an edge
that does not share a common vertex with any of its two neighbors. Otherwise, the
ith letter is L. For instance, the hexagonal chain in Figure 2.12a is represented by the
wordLAALALLLALL, or, in abbreviated form,LA2LAL3AL2. TheLA-sequence
of a hexagonal chain can always be written in the form P6〈x1, x2, . . . , xn〉 to repre-
sent Lx1ALx2A . . . ALxn , where x1 ≥ 1, xn ≥ 1, xi ≥ 0 for i = 2, 3, . . . , n− 1. For
instance, the LA-sequence of the hexagonal chain in Figure 2.12 may be written in
the form P6〈1, 0, 1, 3, 2〉, which represents LAL0ALAL3AL2. It is well known that
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FIGURE 2.12 LA-sequences of (a) hexagonal and (b) square chains.

the K number of a hexagonal chain is entirely determined by its LA-sequence, no
matter which way the kinks go [33]. The term isoarithmicity for this phenomenon
is coined. Thus, P6〈x1, x2, . . . , xn〉 represents a class of isoarithmic hexagonal
chains.

Figure 2.12b shows a square chain P4,11. We introduce a representation of square
chains in order to establish a mapping between square and hexagonal chains that
will enable us to obtain the K numbers for square chains. A square chain P4,s is
represented by a word of length s over the alphabet {A,L}, also called its LA-
sequence. The ith letter is A if and only if each vertex of the ith square also be-
longs to an adjacent square. Otherwise the ith letter is L. For instance, the square
chain in Figure 2.12b is represented by the word LAALALLLALL, or, in abbrevi-
ated form, LA2LAL3AL2. Clearly, the LA-sequence of a square chain can always
be written in the form P4〈x1, x2, . . . , xn〉 to represent Lx1ALx2A . . . ALxn , where
x1 ≥ 1, xn ≥ 1, xi ≥ 0 for i = 2, 3, ..., n− 1. For example, the LA-sequence of the
square chain in Figure 2.12 may be written in the form P4〈1, 0, 1, 3, 2〉 to represent
LAL0ALAL3AL2. We show below that all square chains of the form P4〈x1, . . . , xn〉
are isoarithmic.

We will draw pentagonal chains so that each pentagon has two vertical edges and
a horizontal one that is adjacent to both vertical edges. The common edge of any two
adjacent pentagons is drawn vertical. We shall call such way of drawing a pentagonal
chain the horizontal representation of that pentagonal chain. From the horizontal
representation of a pentagonal chain one can see that it is composed of a certain
number (≥1) of segments; that is, two adjacent pentagons belong to the same segment
if and only if their horizontal edges are adjacent. We denote by P5〈x1, x2, . . . , xn〉
the pentagonal chain consisting of n segments of lengths x1, x2, . . . , xn, where the
segments are taken from left to right. Figure 2.15a shows P5〈3, 2, 4, 8, 5〉. Notice that
one can assume that x1 > 1 and xn > 1.

Among all polygonal chains, the hexagonal chains were studied the most
extensively, since they are of great importance in chemistry. We define P6〈〉 as the
hexagonal chain with no hexagons.
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Theorem 1 [58]

K(P6〈〉) = 1,

K(P6〈x1〉) = 1+ x1,

K(P6〈x1, . . . , xn−1, xn〉) = (xn + 1)K(P6〈x1, . . . , xn−1〉)
+K(P6〈x1, . . . ., xn−2〉), for n ≥ 2.

Proof. It is easy to deduce the K formula for a single linear chain (polyacene) of x1
hexagons, K(P6〈x1〉) = 1+ x1 [27]. Let H be the last kink (A-mode hexagon) of
〈x1, . . . , xn〉 and u and v be the vertices belonging only to hexagon H (Fig. 2.13a).
We apply the method of fragmentation by attacking the bond uv (Fig. 2.13a). If a per-
fect matching (Kekulé structure) contains the double bond uv, then the rest of such a
perfect matching will be the perfect matching of the graph consisting of two compo-
nents: 〈xn〉 and 〈x1, . . . , xn−1〉 (Fig. 2.13a). The number of such perfect matchings is
K(P6〈xn〉)K(P6〈x1, ..., xn−1〉), that is, (xn + l)K(P6〈x1, ..., xn−1〉). On the contrary,
each perfect matching not containing uv (uv is a single bond in the corresponding
Kekulé structure) must contain all the double bonds indicated in Figure 2.13b. The rest
of such a perfect matching will be a perfect matching of 〈x1, x2, . . . , xn−2〉 and the
number of such perfect matchings is K(P6〈x1, . . . , xn−2〉). The recurrence relation
now follows easily. �

FIGURE 2.13 Recurrence relation for the K number of hexagonal systems.
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FIGURE 2.14 Transforming square chains into hexagonal chains.

Theorem 2 [58] K(P4〈x1, x2, . . . , xn〉) = K(P6〈x1, x2, . . . , xn〉).
Proof. Referring to Figure 2.14, it is easy to see that if in a square chain some (or all)
structural details of the type A, B, and C are replaced by A*, B*, and C*, respectively,
the K number will remain the same. By accomplishing such replacements, each
square chain can be transformed into a hexagonal chain with the same LA-sequence.
Therefore, a square chain and corresponding hexagonal chain represented by the
same LA-sequence have the same K number. For example, the square chain in
Figure 2.12b can be transformed into the hexagonal chain in Figure 2.12a. Note that
the corner squares of a square chain correspond to the linear hexagons, and vice
versa, in this transformation. �

It is clear that all other properties concerning theK numbers of square chains can be
derived from the corresponding results for hexagonal chains and that the investigation
of square chains as a separate class from that point of view is of no interest. Let us
now study the K number of pentagonal chains. First, let us recall a general result
concerning matchings of graphs. Let G be a graph and u, x, y, v distinct vertices,
such that ux, xy, yv are edges ofG, u and v are not adjacent, and x and y have degree
2. Let the graphH be obtained fromG by deleting the vertices x and y and by joining
u and v. Conversely,G can be considered as obtained fromH by inserting two vertices
(x and y) into the edge uv). We say thatG can be reduced toH , or thatG is reducible
to H ; clearly, K(G) = K(H).

Theorem 3 [58] If x1 + x2 + · · · + xn is odd, then K(P5〈x1, . . . , xn〉) = 0.
Otherwise (i.e., if the sequence x1, x2, . . . , xn contains an even number of
odd integers), let s(j1), s(j2), . . . , s(jt), j1 < j2 < · · · < jt , be the odd num-
bers in the sequence s(r) = x1 + · · · + xr, r = 1, 2, . . . , n, and let s(j0) =
−1, and s(jt+1) = s(n)+ 1; then K(P5〈x1, . . . , xn〉) = K(P6〈y1, y2, . . . , yt+1〉),
where y1 = (s(j1)− 1)/2 = (s(j1)− s(j0)− 2)/2, yt+1 = (s(n)− s(jt)− 1)/2 =
(s(jt+1)− s(jt)− 2)/2, and, for 2 ≤ i ≤ t, yi = (s(ji)− s(ji−1)− 2)/2.

Proof. Clearly, a pentagonal chain consisting of p pentagons has 3p+ 2 vertices.
Hence, a pentagonal chain with an odd number of pentagons has no perfect matching.
Therefore, we assume that it has an even number of segments of odd length.
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FIGURE 2.15 Transforming (a) pentagonal chains into (b) octagonal chains.

Consider a horizontal representation of P5〈x1, x2, . . . , xn〉 (Fig. 2.15a). Label the
vertical edges by 0, 1, ..., s(n), from left to right. Clearly, no edge labeled by an odd
number can be included in any perfect matching of P5〈x1, x2, . . . , xn〉, since there
are an odd number of vertices on each side of such an edge. By removing all edges
labeled with odd numbers we obtain an octagonal chain consisting of s(n)/2 octagons
(Fig. 2.15b). This octagonal chain can be reduced to a hexagonal chain with s(n)/2
hexagons (Fig. 2.12a). It is evident that in the process of reduction, each octagon
obtained from the two adjacent pentagons of the same segment becomes an L-mode
hexagon, while each octagon obtained from the two adjacent pentagons of different
segments becomes a kink. The number of kinks is t, since each kink corresponds
to an odd s(r). It means that this hexagonal chain consists of t + 1 segments. Let
yi be the number of L-mode hexagons in the ith segment. Then the sequence y is
defined as given in the theorem. Since reducibility preserves K numbers, it follows
that K(P5〈x1, x2, ..., xn〉) = K(P6〈y1, y2, . . . , yt+1〉). �

Corollary 1 [58] Let x1, x2, . . . , xn be even positive integers, n ≥ 1. Then,
K(P5〈x1, . . . , xn〉) = (x1 + · · · + xn)/2+ 1.

Proof. Since all partial sums s(r) in Theorem 3 are even, no kink is obtained in
the process of reduction to a hexagonal chain. Thus, a linear hexagonal chain con-
sisting of h = (x1 + x2 + · · · + xn)/2 hexagons is obtained (i.e. P6〈h〉 = Lh). Since
K(P6〈h〉) = h+ 1, it follows that K(P5〈x1, . . . , xn〉) = h+ 1. �

2.8.2 Clar Formula

A hexagon q in an HS is said to be an aromatic sextet when it has exactly three
(alternating) single and three double bonds in a given perfect matching. In some
references, an aromatic sextet q is called a resonant hexagon, defined as a hexagon
such that the subgraph of the HS obtained by deleting from it the vertices of q together
with their edges has at least one perfect matching. For instance, the upper hexagon
in Figure 2.11a is an aromatic sextet. When single and double bonds are exchanged
in an aromatic sextet (as in Fig. 2.11b), one obtains another Kekulé structure of the
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same HS. Aromatic sextets are usually marked by circles inside the hexagon, and
such a circle corresponds to two possible matchings of the edges of the hexagon.
Figure 2.11c shows an HS with a circle that replaces matchings of Figure 2.11a and b.
Clearly, it is not allowed to draw circles in adjacent hexagons. Circles can be drawn
in hexagons if the rest of the hexagonal system has at least one perfect matching.

The so-called Clar formula of an HS is obtained when the maximal number of
circles is drawn such that it leads to a Kekulé structure of the HS. Therefore, not
all perfect matchings correspond to a Clar formula (only the maximal ones, when
the placement of additional circles is not possible by changing some edges of the
matching).

In this section, we shall study Clar formulas of hexagonal chains. We denote by
S(B) the number of circles in a Clar formula of a hexagonal chain B. The benzenoid
chains with a unique Clar formula (Clar chains) are characterized. All the results are
taken from the work by Tosic and Stojmenovic [57].

It is clear that the chain with exactly one hexagon (h = 1) is a Clar chain. The
following theorem describes Clar chains for h > 1.

Theorem 4 A hexagonal chainB is a Clar chain if and only if itsLA-sequence is of
the formLAm1LAm2L . . . LAmkL, where k ≥ 1 and all the numbersm1,m2, . . . , mk
are odd.

Proof. Let B be a benzenoid chain given by its LA-sequence

Lm
′
0Am1Lm

′
1Am2Lm

′
2 . . . L

m′
k−1AmkLm

′
k ,

wherem′0 ≥ 1;m′k ≥ 1;m′i ≥ 0 for i = 1, . . . , k − 1; andmk ≥ 1, for i = 1, 2, . . . , k.
The part of this chain between the two successive appearances of the A-mode

hexagon is said to be an open segment of B. The first m′0 L-mode hexagons and m′k
last L-mode hexagons also constitute the segments (end segments) of lengthsm′0 and
m′k, respectively. An inner open segment may be without any hexagon: no-hexagon
segment. A closed segment is obtained by adding to an open segment two A-mode
hexagons that bound it, if it is an inner segment, or one A-mode hexagon that bounds
it, if it is an end segment. Two adjoined closed segments always have exactly one
common A-mode hexagon.

It easily follows that between any two circles in a Clar-type formula of a benzenoid
chain, there must be at least one A-mode hexagon (kink) of that chain. Also, each
closed segment of a benzenoid chain contains exactly one circle in any Clar formula
of that chain.

Let B be a Clar chain and let H be an A-mode hexagon of B, adjacent to at least
one L-mode hexagon of B. Consider a closed segment of B with at least one L-mode
hexagon. If any of the two A-mode hexagons of that segment is with circle in a Clar
formula ofB, then that circle can be replaced by a circle in any of theL-mode hexagon
of that segment, producing another Clar formula of B. It is in contradiction with the
fact that B is a Clar chain. Thus, H is without circle in any Clar formula of B.

We now show that a Clar chainB does not contain two adjacentL-mode hexagons.
Consider a closed segment ofBwith at least twoL-mode hexagons. Neither of the end
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hexagons of that segment is circled in the Clar formula of B. According to the above
two observations, exactly one of the L-mode hexagons of that segment is circled.
However, it is clear that each of them can be chosen to be circled. So, the existence of
two adjacent L-mode hexagons imply that the Clar formula of B is not unique; that
is, B is not a Clar chain. Therefore, each L-mode hexagon of a Clar chain is circled
in the Clar formula of that chain.

A benzenoid chain with h hexagons in which all hexagons except the first and the
last are A-mode hexagons is called a zigzag chain and is denoted by A(h). We show
that a zigzag chain A(h) with h hexagons is a Clar chain if and only if h is an odd
number. A chain with h hexagons cannot have more than �h/2� circles in its Clar
formula. Now, if h = 2k + 1 is odd, then the choice of �h/2� = k + 1 nonadjacent
hexagons of A(h) is unique and obviously it determines the unique Clar formula of
A(h). Consider now an A(h) with h even. The number of circles in that Clar formula
is not greater than h/2. However, one can easily draw h/2 circles in every second
hexagon, thus obtaining two different Clar formulas. Thus, A(h) is not a Clar chain
for even h.

The proof proceeds by induction on k. If k = 1, then the statement of the theorem
follows from the last observation on zigzag chains. Consider the case when B is not
a zigzag chain. In that case, B has at least three L-mode hexagons.

(⇒) Suppose thatB is a Clar chain and for some i, 1 ≤ i ≤ k,mi is even. Consider
the part of B corresponding to the subword Ami (Fig. 2.16), which is a zigzag chain
A(mi). Two L-mode hexagons that bound this zigzag chain in B are with circles in
the unique Clar formula of B. It follows that the first and the last hexagons of A(mi)
(numbered by 1 andmi in Fig. 2.16) are without circles in that formula. The remaining
part of A(mi) is a zigzag chain A(mi − 2) with an even number of hexagons and it is
independent from the rest of B with respect to the distribution of circles in the Clar
formula of B. So, A(mi − 2) itself must be a Clar chain. This is contradiction with
the previous observation on zigzag chains. It means thatmi cannot be even. Thus, all
mi, i = 1, 2, . . . , k, are odd.

The number of hexagons of B is h = m1 +m2 + · · · +mk + (k + 1), where all
m1,m2, · · · ,mk, are odd numbers; so h must be odd.

FIGURE 2.16 Clar chain with an even mi (contradiction).
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FIGURE 2.17 LA-sequence with odd mi’s.

(⇐) Let B be a hexagonal chain with the LA-sequence LAm1LAm2L . . . LAmkL,
where all the numbers m1,m2, . . . , mk are odd, and k > 1. Consider B as
obtained from two chains B1 and B2 with LA-sequences, respectively, LAm1L and
LAm2LAm3L · · ·LAmkL, by identifying the last L-mode hexagon of B1 and the first
L-mode hexagon of B2 (the second L-mode hexagon in Fig. 2.17).

By induction hypothesis, both B1 and B2 are Clar chains. The common L-mode
hexagon of B1 and B2 is with circle in both Clar formulas, for B1 and B2. Hence, B
is a Clar chain. �

Let B be a Clar chain with h hexagons. From the discussions in the proof of the
previous theorem it follows that, starting from a circled end hexagon, hexagons with
and without circle alternate. Thus, the number of circles in the unique Clar formula
of B is S(B) = (h+ 1)/2.

We say that two LA-sequences are equivalent if they coincide or can be ob-
tained from each other by reversing. Two benzenoid chains with the same number
of hexagons h are isoarithmic if they have equivalent LA-sequences. So, the number
of nonisoarithmic chains with h hexagons is equal to the number of nonequivalent
LA-sequences of the length h.

We shall determine the number of nonisoarithmic chains with h hexagons and with
a unique Clar formula. We denote this number by N(h). Clearly, N(h) = 0, if h is an
even number, and N(1) = 1.

Theorem 5 Let h be an odd positive integer, h > 1. Then

N(h) = 2(h−5)/2 + 2(h−1)/4�−1.

Proof. From Theorem 4, it follows that N(h) is equal to the number of LA-
sequences LAm1LAm2L . . . LAmkL, such that m1 +m2 + · · · +mk = h− k − 1,
k ≥ 1, and all the numbers m1,m2, . . . , mk are odd. Now, the number of such LA-
sequences is equal to the number of compositions of h− 1 into even positive in-
tegers, that is, to the number of compositions of n = (h− 1)/2 into positive in-
tegers. This last number is equal to 2n−1 = 2(h−3)/2. Among these compositions
there are 2n/2� = 2(h−1)/4�of those that are symmetric, that is, those that correspond
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to symmetric (self-reversible) LA-sequences. So, the number of nonequivalent LA-
sequences in question is

(2(h−3)/2 − 2(h−1)/4�)/2+ 2(h−1)/4� = 2(h−5)/2 + 2(h−1)/4�−1.

That is at the same time the number of nonisoarithmic Clar chains. Among them,
2(h−1)/4� are self-isoarithmic. �

2.8.3 Exercises

1. Show that every catacondensed HS is normal [33].

2. Assume that an HS is drawn so that some of its edges are vertical. Then, we
distinguish peaks and valleys among the vertices on the perimeter. A peak lies
above its nearest neighboring vertices, while a valley lies below its nearest
neighbors. Let np and nv denote the number of peaks and valleys in a given
HS. Prove that |np− nv| = |nb− nw| = � [17].

3. Prove that an HS B is Kekuléan if and only if it has equal numbers of black
and white vertices, and if for all edge cuts of B, the fragment F1 does not have
more white vertices than black vertices. An edge cut decomposes HS into two
parts F1 and F2 (mutually disconnected but each of them is a one-component
graph) such that black end vertices of all edges in the cut belong to F1 [63].

4. Prove that the K number of an HS satisfies h+ 1 ≤ K ≤ 2h−1 + 1 [32].

5. Let x, y, and z denote the number of double bounds of an HS for each of
three edge orientations (i.e., parallel to three alternating edges of a hexagon),
respectively. Prove that all Kekulé structures of an HS have the same triplet
{x, y, z}.

6. Prove that a triplet (x, y, z), x ≤ y ≤ z, corresponds to a catacondensed HS if
and only if x+ y + z is odd and x+ y ≥ z+ 1 [65].

7. Prove that every perfect matching of an HS contains three edges, which cover
all the six vertices of a hexagon [31].

8. Prove by induction that

K(P6〈x1, ..., xn−1, xn〉)
= fn+1 +

∑
0<i1<···<ik≤n,1≤k≤n

fn+1−ikfik−ik−1 · · · fi2−i1fi1xi1xi2 · · · xik ,

where fn is the nth Fibonacci number [58].

9. Prove that theK number for the chainLAp−1LAq−1L is fp+q+2 + fp+1fq+1
[35,58].

10. Prove that theK number for the hexagonal chain with n segments of the same
length m is [4]
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K(P6〈m, . . . , m〉)

=
(
m+ 1+

√
(m+ 1)2 + 4

)n+1 −
(
m+ 1−

√
(m+ 1)2 + 4

)n+1

2n+1
√

(m+ 1)2 + 4
.

11. Prove that the K number for the LA-sequence LmALm−1A . . . ALm−1ALm

(with n− 1 As) is [2]

1√
m2 + 4

[(√
m2 + 4+ 2

)(m+√m2 + 4

2

)n

+
(√
m2 + 4− 2

)(m−√m2 + 4

2

)n]
.

12. Prove that the K number for pentagonal chains is [58]

K(P5〈x1, . . . , xn−1, xn〉) = ft+2

+
∑

0=i0<i1<···<ir≤t+1,
1≤r≤t+1

(ft+2−ir )/2
r
r∏
l=1

(s(jil )− s(jil−l)− 2)fil−il−1 ,

where fk is the kth Fibonacci number and the sequence s is defined in the text.

13. Letm be an odd positive integer> 1. Then,K(P5〈m2〉) = (m2 + 2m+ 5)/4,
and K(P5〈m4〉) = (m3 + 2m2 + 5m+ 4)/4 [25,58].

14. Prove that the K number of the zigzag hexagonal chain with LA-sequence
LAk−2L is fk+2 [58,61].

15. Prove that the K number of pentagonal zigzag chain with 2k pentagons and
theK number of hexagonal zigzag chains with k hexagons are the same [58].

16. Prove that K(P5〈12k〉) = fk+2 [25,58].

17. Design a general algorithm for the enumeration of Kekulé structures (K
numbers) of benzenoid chains and branched catacondensed benzenoids
[16,27].

18. Suppose that some edges of an HSs are vertical. Peaks (valleys) are vertices on
the perimeter with degree 2 such that both their neighbors are below (above,
respectively) them. Prove that the absolute magnitude of the difference be-
tween the numbers of peaks and valleys is equal to�. Show that the numbers
of peaks and valleys in a Kékulean HS are the same.

19. A monotonic path in an HS is a path connecting a pick with a valley, such
that starting at the pick we always go downward. Two paths are said to be
independent if they do not have common vertices. A monotonic path system
of an HS is a collection of independent monotonic paths that involve all the
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peaks and all the valleys of the HS. Prove that the number of Kekulé structures
of the HS is equal to the number of distinct monotonic path systems of the HS
[27,52].

20. Let p1, p2, . . . , pk be the picks and v1, v2, . . . , vk the valleys of a given HS.
Define a square matrix W of order k such that (W)ij is equal to the number
of monotonic paths in the HS starting at pi and ending at vj . Prove that the
number of Kekulé structures of the HS is | det(W)| (i.e., the determinant of
matrixW) [39].

21. If A is the adjacency matrix of an HS B with n vertices, then prove that
det(A) = (−1)n/2K(B)2 [13,18].

22. The dual graph of an HS is obtained when the centers of all neighboring
hexagons are joined by an edge. The outer boundary of the dual graph of
a hexagon-shaped HS is a hexagon with parallel edges of size m, n, and k,
respectively. Prove that the number of Kekulé structures of such an HS is∏k−1
j=0

(
n

m+n+j
)
/
(
n
n+j
)

[5].

23. Suppose that some edges of an HS are drawn vertically. Prove that in
all perfect matchings of the HS a fixed horizontal line, passing through
the center of at least one hexagon, intersects an equal number of double
bonds [52].

24. Prove that all Kekulé structures of a given HS have an equal number of vertical
double bonds (again, some edges are drawn vertically) [64].

25. An edge of an HS is called a single (double) fixed bond if it does not belong
(belongs, respectively) to all perfect matchings of the HS. Design an O(h2)
algorithm for the recognition of all fixed bonds in an HS and for determining
whether or not a given HS is essentially disconnected [66].

26. A cycle of edges of an HS is called an alternating cycle if there exists a perfect
matching of the HS such that edges in the cycle alternatingly belong and do not
belong to the perfect matching. Prove that every hexagon of an HS is resonant
(i.e., an aromatic sextet) if and only if the perimeter of the HS is an alternating
cycle of the HS [62].

27. Determine the number of nonisoarithmic hexagonal chains with h hexagons
[17].
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corona-condensed benzenoids (corannulenes). Acta Chim Hung 1987;124:299.

5. Bodroza O, Gutman I, Cyvin SJ, Tosic R. Number of Kekulé structures of hexagon-shaped
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CHAPTER 3

Graph Theoretic Models in Chemistry
and Molecular Biology

DEBRA KNISLEY and JEFF KNISLEY

3.1 INTRODUCTION

3.1.1 Graphs as Models

A graph is a mathematical object that is frequently described as a set of points
(vertices) and a set of lines (edges) that connect some, possibly all, of the points.
If two vertices in the graph are connected by an edge, they are said to be adjacent,
otherwise they are nonadjacent. Every edge is incident to exactly two vertices; thus,
an edge cannot be drawn unless we identify the two vertices that are to be connected
by the edge. The number of edges incident to a vertex is the degree of the vertex.
How the edges are drawn, straight, curved, long, or short, is irrelevant, only the
connection is relevant. There are many families of graphs and sometimes the same
graph can belong to more than one family. For example, a cycle graph is a connected
graph where every vertex is of degree 2, meaning every vertex is incident to exactly
two edges. A bipartite graph is a graph with the property that there exists a partition
of the vertex set into two sets such that there are no edges between any two vertices in
the same set. Figure 3.1 shows two drawings of the same graph that can be described
both as a cycle on six vertices and as a bipartite graph. The two graphs in Figure 3.1
are said to be isomorphic. Two graphs are isomorphic if there exists a one-to-one
correspondence between the vertex sets that preserves adjacencies. In general, it is
a difficult problem to determine if two graphs are isomorphic.

An alternate definition of a graph is a set of elements with a well-defined relation.
Each element in the set can be represented by a point and if two elements in the set
are related by the given relationship, then the corresponding points are connected by
an edge. Thus, the common definition of a graph is really a visual representation of
a relationship that is defined on a set of elements. In graph theory, one then studies
the relational representation as an object in its own right, discerning properties of
the object and quantifying the results. These quantities are called graphical invariants
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FIGURE 3.1 (a) A cycle. (b) A bipartite graph.

since their values are the same regardless of how the graph is drawn. The graphical
invariants, in turn, tell us about the consequences the relation has on the set. To
utilize a graph as a model, we must first determine the set and the relation on the
set that we want to study. For example, suppose we want to consider a group of
six people, three men and three women. None of the men have ever met each other
and none of the women have ever met, but some of the men have met some of the
women. Suppose the graph in Figure 3.1b models this set of people where the two
people are “related” or associated if they have previously met. Since the two graphs
in Figure 3.1 are isomorphic, we immediately know that it is possible to seat the six
people around a circular table so that each person is seated next to someone that they
have previously met. This illustration shows the usefulness of graphs even with a
very simple example. Graphs are frequently used in chemistry to model a molecule.
Given the atoms in a molecule as the set, whether or not a bond joins two atoms
is well defined and hence the graphical representation of a molecule is the familiar
representation.

What is a mathematical model? What is a graph theoretic model? Since graph
theory is a field of mathematics, one would assume that a graph theoretic model is a
special case or a particular kind of mathematical model. While this is true, the gen-
erally accepted definition of a mathematical model among applied mathematicians is
somewhat different from the idea of a model in graph theory. In mathematical settings,
a model is frequently associated with a set of equations. For example, a biological
system is often modeled by a system of equations, and solutions to the equations are
used to predict how the biological system responds to stimuli. Molecular biology and
biochemistry, however, are more closely aligned with chemistry methodology and
literature. Models of molecules in chemistry are often geometric representations of
the actual molecule in various formats such as the common ball and stick “model”
where balls are used to represent atoms and bonds between the atoms are represented
by sticks. As we have seen, this straightforward model of a molecule gives easy rise
to a graph where the balls are the vertices and the sticks are the edges. The first
appearance of a graph as a model or representation of a molecule appeared in the
early nineteenth century. In fact, chemistry and graph theory have been paired since
the inception of graph theory and we find that the early work in physical chemistry
coincided with the development of graph theory.

As we have seen, a graphical invariant is a measure of some aspect of a graph that
is not dependent upon how the graph is drawn. For example, the girth of a graph is the
length of its shortest cycle. A graph that has no cycle is said to be of infinite girth. The
most obvious of invariants are the order (number of vertices) and the size (number of
edges). The minimum number of vertices whose removal will disconnect the graph
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FIGURE 3.2 G.

is the (vertex) connectivity number. The graph in Figure 3.2 has girth 4, is of order 6,
size 7, and connectivity 2.

3.1.2 Early Models in Chemistry

One of the first theorems of graph theory can be stated as follows: The sum of the
degrees of a graph is twice the number of edges. Since the sum of the degrees of the
vertices of even degree is necessarily an even number, the sum of the degrees of the
vertices of odd degree must also be even. As a corollary to the above theorem, we
know that the number of vertices of odd degree must be even. As far back as 1843,
Laurent [1] and Gerhardt [2] established that the number of atoms of odd valence
(degree) in a molecule was always even. What constituted an edge was not well
established though. One of the earliest formulations of graphs appeared in 1854 in
the work by Couper [3], and in 1861, a chemical bond was represented by a graphical
edge following the introduction of the term “molecular structure” by Butlerov [4].
The concept of valence of an atom was later championed by Frankland whose work
was published in 1866 [5].

Arthur Cayley, a well-known mathematician from the late 1800s, used combi-
natorial mathematics to construct chemical graphs [6]. Using mathematics, Cayley
enumerated the saturated hydrocarbons by determining the generating function for
rooted trees. As an illustration, consider the expansion of the expression (a+ b)3.
The coefficients of the terms are 1, 3, 3, and 1, respectively, in the expanded form:
1a3b0 + 3a2b1 + 3a1b2 + 1a0b3. Note that the exponents in each term sum to 3 and
each term represents a distinct way we can obtain the sum of 3 using two distinct
ordered terms. If we let b represent the number of ways we can select to insert an
edge (or not to insert an edge), then the corresponding coefficients yield the number
of ways this selection can be done. Hence, corresponding to the coefficients, there
is one graph with no edges, three graphs with exactly one edge, three graphs with
exactly two edges, and one graph with three edges. These are drawn in Figure 3.3.
This is the idea behind generating functions. Since the graphical representations of
the saturated hydrocarbons are trees, Cayley determined how many such trees are
combinatorially possible. At that time, his count exceeded the number of known sat-
urated hydrocarbons by 2. Soon after, two additional hydrocarbons were found. How
does one prove that a graphical representation of a saturated hydrocarbon is a tree?
First, we must define a tree. A tree is a connected graph with no cycles. These two
properties, connected and acyclic, imply that any tree with n vertices must contain
exactly n− 1 edges.
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FIGURE 3.3 All possible graphs with three vertices.

A saturated hydrocarbon has the maximum possible number of hydrogen atoms for
the number of carbon atoms in a molecule and is denoted by the formula CmH2m+2.

The tree representation of butane, C4H10, is shown in Figure 3.4.
In order to prove that a graphical representation of a molecule with the above

formula will always be represented by a tree, we must conclude that it is connected
and acyclic. Since it is molecule, it is inherently connected. Thus, we must show that
it will be impossible for a cycle to occur. This is equivalent to showing that there
will always be exactly one less edge than the number of vertices. So we proceed with
the counting argument. We know that there are m+ 2m+ 2 vertices total by adding
the carbon and hydrogen atoms. Thus, there are 3m+ 2 vertices. To count the edges
we observe that each carbon atom is incident to exactly four edges and hence there are
4(m) edges associated with the carbon atoms. Also, each hydrogen atom is incident
to exactly one edge and thus we have 1(2m+ 2) additional edges. Since each edge
is incident to exactly two vertices, each edge has now been counted exactly twice.
Thus, the number of edges total is (1/2)(4m+ 2m+ 2) = 3m+ 1.Note that 3m+ 1
is exactly one less than the number of vertices.

The mathematician Clifford was first to demonstrate that a saturated hydrocarbon
could not possess any cycles and in fact showed that a hydrocarbon with the gen-
eral formula CmH2m+2−2x must contain x cycles [7]. In 1878, Sylvester founded the
American Journal of Mathematics. In its very first issue he wrote a lengthy article
on atomic theory and graphical invariants. By labeling the vertices of the graphs,
Sylvester was able to devise a method for validating the existence of different types
of chemical graphs. This was the first usage of the word graph in the graph theoretic
sense [8]. Through the years, chemical graph theory has survived as a little known
niche in the field of graph theory. Most textbook applications of graphs have cen-
tered on computer networks, logistic problems, optimal assignments strategies, and
data structures. Chemical graph theorists persisted and developed a subfield of graph

FIGURE 3.4 Butane.
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theory built upon molecular graphs. Quantifiers of the molecular graphs are known
as “descriptors” or topological indices. These topological indicators are equivalent
to graphical invariants in the realm of mathematical graph theory. In the following
sections we discuss some of the early graph theoretic models, as well as some of the
first graphical invariants and topological indices. For more information on chemical
graph theory see the works by Bonchev and Rouvray [9] and Trinajstic [10,11].

3.1.3 New Directions in Chemistry and Molecular Biology

Today graphs are being used extensively to model both chemical molecules and
biomolecules. Chemists use molecular descriptors that yield an accurate deter-
mination of structural properties to develop algorithms for computer-aided drug
designs and computer-based searching algorithms of chemical databases. Just as
bioinformatics is the field defined as belonging in the intersection of biology and
computer science, cheminformatics lies in the intersection of chemistry and computer
science. Cheminformatics can be defined as the application of computational tools to
address problems in the efficient storage and retrieval of chemical data. New related
fields are emerging, such as chemical genomics and pharmacogenomics. Organic
chemicals frequently referred to as “small molecules” are playing a significant part
in the discovery of new interacting roles of genes. The completion of the Human
Genome Project has changed the way new drugs are being targeted and the expansion
of chemical libraries aided by techniques from combinatorial chemistry is seeing
more and more graph theoretic applications. While it is generally accepted that
graphs are a useful tool for small molecules, graphs are also being utilized for larger
biomolecules as well. Graphs are appearing in the literature as DNA structures,
RNA structures, and various protein structures. We find that graphs are becoming
an invaluable tool for modeling techniques in proteomics and protein homology and
thus one could say that chemical graph theory has contributed indirectly to these
fields as well. Using graphs to model a molecule has evolved from the early days of
chemical graph theory to become an integral part of cheminformatics, combinatorial
and computational chemistry, chemical genomics, and pharmacogenomics.

Algorithms that determine maximum common induced subgraphs or other
structure similarity searches have played a key role in computational chemistry and
cheminformatics. An obvious problem associated with such algorithms is the rapid
increase in the number of possible configurations. The exponential growth of the
number of graphs with an increasing number of vertices is a difficult challenge that
must be addressed. Large graphs result in nonpolynomial time algorithms creating
excessive computational expense. In addition, intuition that can often be an aid in
determining appropriate molecular descriptors and thus the investigation is greatly
hindered by large graphs that cannot be visualized. Methods have been developed for
reducing the size of graphs, and such graphs are commonly referred to as reduced
graphs. These methods have had a significant impact on the ability to model the rel-
evant biomolecular structures and provide summary representations of chemical and
biochemical structures. Reduced graphs offer the ability to represent molecules in
terms of their high level features [12,13].
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In 2005, in partial fulfillment of the NIH Roadmap stated objectives, NIH
announced a plan to fund 10 cheminformatic research centers in response to the iden-
tification of critical cheminformatics needs of the biomedical research community.
The centers will formulate the strategies to address those needs and will also allow
awardees to become familiar with the operation and interactions among the various
components of the NIH Molecular Libraries Initiative. These centers are intended to
promote multidisciplinary, multiinstitutional collaboration among researchers in com-
putational chemistry, chemical biology, data mining, computer science, and statistics.
Stated components of proposed research include the calculation of molecular descrip-
tors, similarity metrics, and specialized methodologies for chemical library design and
virtual screening. For example, the Carolina Exploratory Center for Cheminformatics
Research plans to establish and maintain an integrated publicly available Cheminfor-
matics Workbench (ChemBench) to support experimental chemists in the Chemical
Synthesis centers and quantitative biologists in the Molecular Libraries Screening
Centers Network. The Workbench is intended to be a data analytical extension to
PubChem.

3.2 GRAPHS AND ALGORITHMS IN CHEMINFORMATICS

3.2.1 Molecular Descriptors

Values calculated from a representation of a molecule that encode some aspect of
the chemical or biochemical structure and activities are called molecular descrip-
tors. There are an enormous number of descriptors that have been defined and uti-
lized by researchers in fields such as cheminformatics, computational chemistry, and
mathematical chemistry. The Handbook of Molecular Descriptors [14] is an ency-
clopedic collection of more than 3000 descriptors. Molecular descriptors fall into
three general categories. Molecular descriptors that quantify some measure of shape
and/or volume are called steric descriptors. Electronic descriptors are those that mea-
sure electric charge and electrostatic potential, and there are those that measure a
molecule’s affinity for a lipophilic environment such as log P. log P is calculated as
the log ratio of the concentration of the solute in the solvent. Examples of steric de-
scriptors are surface area and bond connectivity. Surface area is calculated by placing
a sphere on each atom with the radius given by the Van der Waals radius of the atom.
Electronic descriptors include the number of hydrogen bond donors and acceptors and
measures of the pi–pi donor–acceptor ability of molecules. With the support of the EU,
INTAS (the International Association for the Promotion of Cooperation with Scien-
tists) from the New Independent States (NIS) of the Former Soviet Union created The
Virtual Computational Chemistry Laboratory (VCCL) with the aim to promote free
molecular properties calculations and data analysis on the Internet [15]. E-Dragon,
a program developed by the Milano Chemometrics and QSAR Research Group [16]
and a contributor to the VCCL, can calculate more than 1600 molecular descrip-
tors that are divided into 20 categories. Its groups of indices include walk-and-path
counts, electronic, connectivity, and information indices. The molecular descriptors
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that E-Dragon categorizes as topological indices are obtained from molecular graphs
(usually H-depleted) that are conformationally independent. E-Dragon is available at
VCCL.

All chemical structures can be represented by a simplified linear string using a
specific set of conversion and representation rules known as SMILES (Simplified
molecular input line entry system). SMILES strings can be converted to representative
3D conformations and 2D representations. While 1D representations are strings and
3D representations are geometric, 2D representations are primarily graphs consisting
of vertices (nodes) and their connecting edges. SMILES utilizes the concept of a graph
with vertices as atoms and edges as bonds to represent a molecule. The development of
SMILES was initiated by the author, David Weininger, at the Environmental Research
Laboratory, USEPA, Duluth, MN; the design was completed at Pomona College in
Claremont, CA. It was embodied in the Daylight Toolkit with the assistance of Cedar
River Software. Parentheses are used to indicate branching points and numeric labels
designate ring connection points [17].

Quantities derived from all three representations are considered molecular de-
scriptors. Since we are primarily concerned with graph theoretic models, we will
focus on 2D descriptors from graphs and refer to these as topological descriptors or
topological indices. Graphs are also useful for 3D models since 3D information can
be contained in vertex and edge labeling [18,19]. Descriptors calculated from these
types of representations are sometimes called information descriptors. While the 2D
graphical model neglects information on bond angles and torsion angles that one finds
in 3D models, this can be advantageous since it allows flexibility of the structure to
occur without a resulting change in the graph. Methods and tools from computational
geometry also often aid in the quantification and simulation of 3D models.

Molecular descriptors are a valuable tool in the retrieval of promising pharmaceu-
ticals from large databases and also in clustering applications. (ADAPT) (Automated
Data Analysis Using Pattern Recognition Toolkit) has a large selection of molecu-
lar descriptor generation routines (topological, geometrical, electronic, and physic-
ochemical) and the ability to generate hybrid descriptions that combine features.
ADAPT was developed by Peter Jurs, the Jurs Research Group at Penn State, and is
available over the Internet [20]. The Molecular operating environment (MOE) offered
by the Chemical Computing Group [21] has a developed a pedagogical toolkit for
educators including a cheminformatics package. This toolkit can calculate approx-
imately 300 descriptors including topological indices, structural keys, and E-state
indices.

3.2.2 Graphical Invariants and Topological Indices

A topological index is a number associated with a chemical structure represented by
a connected graph. The graph is usually a hydrogen-depleted graph, where atoms are
represented by vertices and covalent bonds by edges. On the contrary, many results
in graph theory have focused on large graphs and asymptotic results in general. Since
chemical graphs are comparatively small, it is not too surprising that graphical invari-
ants and topological indices have evolved separately. However, with the new avenues
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of research in biochemical modeling of macromolecules, the field of mathematical
graph theory may bring new tools to the table. In chemical graph theory, the number
of edges, that is, the number of bonds, is an obvious and well-utilized molecular de-
scriptor. Theorems from graph theory or graphical invariants from related fields such
as computational complexity and computer architecture may begin to shed new light
on the structure and properties of proteins and other large molecules. In recent results
by Haynes et al., parameters based on graphical invariants from mathematical graph
theory showed promising results in this direction of research [22,23]. It certainly ap-
pears that a thorough review of theoretical graphical invariants with an eye toward
new applications in biomolecular structures is warranted

Without a doubt, there will be some overlap of concepts and definitions. For ex-
ample, one of the most highly used topological indices was defined by Hoyosa in
1971 [24]. This index is the sum of the number of ways k disconnected edges can be
distributed in a graph G.

I(G) =
n/2∑
k=0

θ(G, k),

where θ(G, 0) = 1 and θ(G, 1) is the number of edges in G. Let us deviate for a
moment and define the graphical invariant, k-factor. To do so, we first define a few
other graph theoretic terms. A graph is k-regular if every vertex has degree k. A graph
H is a spanning subgraph of G if it is a subgraph that has the same vertex set of
G. A subgraph H is a k-factor if it is a k-regular spanning subgraph. A 1-factor is a
spanning set of edges and a 2-factor of a graph G is a collection of cycle subgraphs
that span the vertex set of G. If the collection of spanning cycles consists of a single
cycle, then the graph isHamiltonian. Hamiltonian theory is an area that has received
substantial attention among graph theorists, as well as the topic of k-factors. We
note that θ(G, 1) is the number of edges in G and that θ(G,n/2) is equivalent to the
number of 1-factors in G [9]. In the following sections, we define selected graphical
invariants and topological indices, most of which were utilized in the work by Haynes
et al. [22,23].

Domination numbers of graphs have been utilized extensively in fields such as
computer network design and fault tolerant computing. The idea of domination is
based on sets of vertices that are near (dominate) all the vertices of a graph. A set of
vertices dominate the vertex set if every vertex in the graph is either in the dominating
set or adjacent to at least one vertex in the dominating set. The minimum cardinality
among all dominating sets of vertices in the graph is the domination number. For more
information on the domination number of graphs see Haynes [25]. If restrictions are
placed on the set of vertices that we may select to be in the dominating set, then we
obtain variations on the domination number. For example, the independent domination
number is the minimum number of nonadjacent vertices that can dominate the graph.
Consider Figure 3.5, which contains two trees of order 7, one with independent
domination number equal to 3 and the other with independent domination number
equal to 2. The vertices in each independent minimum dominating set are labeled
{u,w, z} and {u, z}, respectively. Domination numbers have been highly studied in
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FIGURE 3.5 Dominating vertices {u,w, z} and {u, z}, respectively.

mathematical graph theory and have applications in many fields such as computer
networks and data retrieval algorithms.

The eccentricity of a vertex is the maximum distance from a vertex v to any other
vertex in the graph where distance is defined to be the length of the shortest path and
is denoted by d(u, v). The diameter of G, diam (G), is the maximum eccentricity
where this maximum is taken over all eccentricity values in the graph. That is,

diam(G) = max
u,v∈V

d(v, u)

and the radius of a graphG, denoted by rad (G), is given by the minimum eccentricity
value, that is,

rad(G) = min
x∈V max

y∈V
{d(x, y)}.

The diameter and radius are both highly utilized graphical invariants and topological
indices.

The line graph of G, denoted by L(G), is a graph derived from G so that the edges
in G are replaced by vertices in L(G). Two vertices in L(G) are adjacent whenever
the corresponding edges in G share a common vertex. Beineke and Zamfirescu [26]
studied the kth ordered line graphs and Dix [27] applied the second ordered line graphs
to concepts in computational geometry. Figure 3.6 shows a graph G with L(G) and
L2(G), the second iterated line graph. Note that vertex x in L2(G) corresponds to the
edge x in L(G). The edge x in L(G) is defined by the two vertices a and b. These two
vertices in L(G) correspond to the two edges a and b in G. Topological indices do
not account for angle measures; however, two incident edges represent an angle and
thus vertex x in L2(G) corresponds to the angle, or path of length 2, namely {1, 3, 2}.

Given that there are over 3000 molecular descriptors defined in the Handbook
of Molecular Descriptors, we will make no attempt to provide an extensive list of
topological indices. Rather we have selected a few representatives that are classical
and well known as examples.

The Gordon–Scantlebury index is defined as the number of distinct ways a chain
fragment of length 2 can be embedded on the carbon skeleton of a molecule [28].
Thus, ifG is the graph in Figure 3.6, then the Gordon–Scantlebury number is 4. The
second iterated line graph discussed above not only provides an easy way to determine
this index, but also tells us how these paths are related. Notice that the vertices z, w,
and y in L2(G) form a triangle; that is, they are all pairwise adjacent. This is because
they are all incident to vertex c in L(G). Since vertex c in L(G) corresponds to edge
c in G, we know that the three paths of length 2 corresponding to the vertices in z,
w, and y in L2(G) all share edge c.
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FIGURE 3.6 A graph, its line graph, and the second iterated line graph.

Among the earliest topological indices are the connectivity indices. The classical
connectivity index defined by Randic [29] is given by

R0(G) =
∑
v∈V

1√
∂(v)

,

R1(G) =
∑
uv∈E

1√
∂(u)∂(v)

.

The Randic numbers for the graph G in Figure 3.6 are R0(G) = 1+ 1+ 1/
√

3+
1/
√

2+ 1 = 4.28 and R1(G) = 2(1/
√

1 · 3)+ 1/
√

2 · 3+ 1/
√

1 · 2) = 2.27. This
index can be generalized for paths of length l to define the generalized Randic number
Rl(G).One can consider paths as a special type of subgraph. More recently, Bonchev
introduced the concept of overall connectivity of a graphG, denoted by TC(G), which
is defined to be the sum of vertex degrees of all subgraphs of G [30].

The adjacency matrix is a straightforward way to represent a graph in a computer.
Given a graph with n vertices labeled V = {v1, v2, ..., vn}, the adjacency matrix A
is an n× n matrix with a 1 in the ith row and jth column if vertex vi is adjacent
to vertex vj and zeros elsewhere. The degree matrix D is the n× n matrix with
dij = deg(vi) and dij = 0 if i �= j. The Laplacian matrix is defined as the difference
of the adjacency matrix and the degree matrix, L = D− A. The spectrum of a graph
is the set of eigenvalues of the Laplacian matrix. The eigenvalues are related to the
density distribution of the edge set, and the pattern of a graph’s connectivity is closely
related to its spectrum. The second smallest eigenvalue, denoted by λ2 (often called
the Fiedler eigenvalue), is the best measure of the graph’s connectivity among all of the
eigenvalues. Large values for λ2 correspond to vertices of high degree that are in close
proximity whereas small values forλ2 correspond to a more equally dispersed edge set.

The Balaban index [31], sometimes called the distance sum connectivity index, is
considered to be a highly discriminating topological index. The Balaban index B(G)
of a graph G is defined as

B(G) = q

μ(G)+ 1

∑
edges

1√
sisj
,

where si is the sum of the distance of the ith vertex to the other vertices in the graph, q
is the number of edges, andμ is the minimum number of edges whose removal results
in an acyclic graph. The distance matrix T is the n× nmatrix with dij = dist(vi, vj).
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dij = dist(vi, vj). The distance matrix and B(G) forG in Figure 3.6 are given below.

T =

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 1 2 3

2 0 1 2 3

1 1 0 1 2

2 2 1 0 1

3 3 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B(G) = 4

(
1√
8 · 5 +

1√
8 · 5 +

1√
5 · 6 +

1√
6 · 9

)
.

The reverse Wiener index was introduced in 2000 [32]. Unlike the distance sums,
reverse Wiener indices increase from the periphery toward the center of the graph.
As we have seen, there are an enormous number of molecular descriptors utilized in
computational chemistry today. These descriptors are frequently used to build what are
known as quantitative structure–activity relationships (QSAR). A brief introduction
of QSAR is given in the following section.

3.2.3 Quantitative Structure–Activity Relationships

The structure of a molecule facilitates the molecule’s properties and its related
activities. This is the premise of a QSAR study. QSAR is a method for building models
that associate the structure of a molecule with the molecule’s corresponding biolog-
ical activity. QSAR was first developed by Hansch and Fujita in the early 1960s and
remains a key player in computational chemistry. The fundamental steps in QSAR are
molecular modeling, calculation of molecular descriptors, evaluation and reduction
of descriptor set, linear or nonlinear model design, and validation. Researchers at the
University of North Carolina at Chapel Hill recently extended the four steps to an
approach that employs various combinations of optimization methods and descriptory
types. Each descriptor type was used with every QSAR modeling technique, so in
total 16 combinations of techniques and descriptor types were considered [33].

A successful QSAR algorithm is predictive. That is, given a molecule and its struc-
ture, one can make a reasonable prediction of its biological activity. The ability to
predict a molecule’s biological activity by computational means has become more
important as an ever-increasing amount of biological information is being made avail-
able by new technologies. Annotated protein and nucleic databases and vast amounts
of chemical data from automated chemical synthesis and high throughput screening
require increasingly more sophisticated efforts.

QSAR modeling requires the selection of molecular descriptors that can then be
used for either a statistical model or a computational neural network model. Current
methods in QSAR development necessarily include feature selection. It is generally
accepted that after descriptors have been calculated, this set must be reduced to a set
of descriptors that measure the desired structural characteristics. This is obvious, but
not always as straightforward as one would hope since the interpretation of a large
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number of descriptors is not always easy. Since many descriptors may be redundant
in the information that they contain, principal component analysis has been the
standard tool for descriptor reduction, often reducing the set of calculated invariants.
This is accomplished by a vector space description analysis that looks for descriptors
that are orthogonal to one another where descriptors that contain essentially the same
information are linearly dependent. For example, a QSAR algorithm was developed
by Viswanadahn et al. in which a set of 90 graph theoretic and information descriptors
representing various structural/topological characteristics of these molecules were
calculated. Principal component analysis was used to compress these 90 into the
8 best orthogonal composite descriptors [34]. Often molecular descriptors do not
contain molecular information that is relevant to the particular study, which is another
drawback one faces in selecting descriptors for a QSAR model. Due to the enormous
number of descriptors available, coupled with the lack of interpretation one has
for the molecular characteristics they exhibit, very little selection of descriptors
is made a priori. Randic and Zupan reexamined the structural interpretation of
several well-known indices and recommended partitioning indices into bond additive
terms [35]. Advances in neural network capabilities may allow for the intermediate
steps of molecular descriptor reduction and nonlinear modeling to be combined.
Consequently, neural network algorithms are discussed in greater detail in Section 3.4.

Applications of QSAR can be found in the design of chemical libraries, in
molecular similarity screening in chemical databases, and in virtual screening in
combinatorial libraries. Combinatorial chemistry is the science of synthesizing and
testing compound en masse and QSAR predictions have proven to be a valuable tool.
The QSAR and Modeling Society Web site is a good source for more information
on QSAR and its applications.

3.3 GRAPHS AS BIOMOLECULES

The Randic index is an example of a well-known and highly utilized topological
index in cheminformatics. In 2002, Randic and Basak used the term “biodescriptor”
when applying a QSAR model for a biomolecular study [36,37]. While graphs
have historically been used to model molecules in chemistry, they are beginning to
play a fundamental role in the quantification of biomolecules. A new technique for
describing the shape and property distribution of proteins, called PPEST (protein
property-encoded surface translator) has been developed to help elucidate the
mechanism behind protein interactions [38]. The utility of graphs as models of
proteins and nucleic acids is fertile ground for the discovery of new and innovative
methods for the numerical characterization of biomolecules.

3.3.1 Graphs as RNA

The information contained in DNA must be accessed by the cell in order to be utilized.
This is accomplished by what is known as transcription, a process that copies the
information contained in a gene for synthesis of genetic products. This copy, RNA,
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is almost identical to the original DNA, but a letter substitution occurs as thymine
(T) is replaced by uracil (U). The other three bases A, C, and G are the same. Since
newly produced (synthesized) RNA is single stranded, it is flexible. This allows it to
bend back on itself to form weak bonds with another part of the same strand. The
initial string is known as the primary structure of RNA and the 2D representation in
Figure 3.7 is an example of secondary RNA structure.

While scientists originally believed that the sole function of RNA was to serve as
a messenger of DNA to encode proteins, it is now known that there are noncoding or
functional RNA sequences. In fact, the widespread conservation of secondary struc-
ture points to a very large number of functional RNAs in the human genome [39,40].
Many classes of RNA molecules are characterized by highly conserved secondary
structures that have very different primary structure (or primary sequence), which
implies that both sequential and structural information is required in order to expand
the current RNA databases [41]. RNA was once thought to be the least interesting
since it is merely a transcript of DNA. However, since it is now known that RNA is
involved in a large variety of processes, including gene regulation, the important task
of classifying RNA molecules remains far from complete. Graph theory is quickly
becoming one of the fundamental tools used in efforts to determine and identify RNA
molecules.

It is assumed that the natural tendency of the RNA molecule is to reach its most
energetically stable conformation and this is the premise behind many RNA folding
algorithms such as Zucker’s well-known folding algorithms [42]. More recently, how-
ever, the minimum free energy assumption has been revisited and one potential new
player is graph theoretic modeling and biodescriptors. Secondary structure has been
represented by various forms in the literature and representations of RNA molecules
as graphs is not new. In the classic work of Waterman [43], secondary RNA structure
is defined as a graph where each vertex ai represents a nucleotide base. If ai pairs
with aj and ak is paired with al where i < k < j, then i < l < j.

More recently, secondary RNA structures have been represented by various mod-
eling methods as graph theoretic trees. RNA tree graphs were first developed by Le
et al. [44] and Benedetti and Morosetti [45] to determine structural similarities in
RNA.

FIGURE 3.7 Secondary RNA structure and its graph.
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A modeling concept developed by Barash [46] and Heitsch et al. [47] who noted
that the essential arrangement of loops and stems in RNA secondary structure is cap-
tured by a tree if one excludes the pseudoknots. A pseudoknot can be conceptualized
as switchbacks in the folding of secondary structure. With the exclusion of pseudo-
knots, the geometric skeleton of secondary RNA structure is easily visualized as a tree
as in Figure 3.7. Unlike the classic model developed by Waterman et al. where atoms
are represented by vertices and bonds between the atoms by edges in the graph,
this model represents stems as edges and breaks in the stems that result in bulges
and loops as vertices. A nucleotide bulge, hairpin loop, or internal loop are each
represented by a vertex when there is more than one unmatched nucleotide or non-
complementary base pair.

Researchers at New York University in the Computational Biology Group led by
Tamar Schlick used this method to create an RNA topology database called RAG
(RNA As Graphs) that is published and available at BMC Bioinformatics and Bioin-
formatics [48,49]. The RNA motifs in RAG are cataloged by their vertex number
and Fiedler eigenvalues. This graph theoretic representation provides an alternative
approach for classifying all possible RNA structures based on their topological
properties. In this work, Schlick et al. find that existing RNA classes represent only
a small subset of possible 2D RNA motifs [50,51]. This indicates that there may be a
number of additional naturally occuring secondary structures that have not yet been
identified. It also points to possible structures that may be utilized in the synthesis
of RNA in the laboratory for drug design purposes. The discovery of new RNA
structures and motifs is increasing the size of specialized RNA databases. However,
a comprehensive method for quantifying and cataloging novel RNAs remains absent.
The tree representation utilized by the RAG database provides a useful resource to
that end. Other good online resources in addition to the RAG database include the
University of Indiana RNA Web site, RNA World, and RNA Base [52].

3.3.2 Graphs as Proteins

Proteins are molecules that consist of amino acids. There are 20 different amino acids;
hence, one can think of a chain or sequence from an alphabet of size 20 as the primary
structure of a protein. Each amino acid consists of a central carbon atom, an amino
group, a carboxyl group, and a unique “side chain” attached to the central carbon.
Differences in the side chains distinguish different amino acids. As this string is being
produced (synthesized) in the cell, it folds back onto itself creating a 3D object. For
several decades or more, biologists have tried to discover how a completely unfolded
protein with millions of potential folding outcomes almost instantaneously finds the
correct 3D structure. This process is very complex and often occurs with the aid of
other proteins known as chaperones that guide the folding protein. The majority of
protein structure prediction algorithms are primarily based on dynamic simulations
and minimal energy requirements. More recently, it has been suggested that the high
mechanical strength of a protein fiber, for example, is due to the folded structural
linking rather than thermodynamic stability. This suggest the feasibility and validity
of a graph theoretic approach as a model for the molecule.
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The 3D structure of the protein is essential for it to carry out its specific function.
The 3D structure of a protein has commonly occurring substructures that are referred
to as secondary structures. The two most common are alpha helices and beta strands.
Bonds between beta strands form beta sheets. We can think of alpha helices and
beta sheets as building blocks of the 3D or tertiary structure. As in the case for the
secondary RNA trees, graph models can be designed for amino acids, secondary, and
tertiary protein structures. In addition to protein modeling, protein structure prediction
methods that employ graph theoretic modeling focus on predicting the general protein
topology rather than the 3D coordinates. When sequence similarity is poor, but the
essential topology is the same, these graph theoretic methods are more advantageous.

The idea of representing a protein structure as a graph is not new and there have
been a number of important results on protein structure problems obtained from
graphs. Graphs are used for identification of tertiary similarities between proteins by
Mitchell et al. [53] and Grindley et al [54]. Koch et al. apply graph theory to the
topology of structures in proteins to automate identification of certain motifs [55].
Graph spectral analysis has provided information on protein dynamics, protein motif
recognition, and fold. Identification of proteins with similar folds is accomplished
using the graph spectra in the work by Patra and Vishveshwara [56]. Clusters important
for function, structure, and folding were identified by cluster centers also using the
graph’s eigenvalues [57]. Fold and pattern identification information was gained by
identifying subgraph isomorphisms [58]. For additional information on these results,
see the work by Vishveshwara et al. [59]. It is worth noting that all of the above
methods relied heavily on spectral graph theory alone.

Some of the early work on amino acid structure by graph theoretic means was
accomplished in the QSAR arena. Use of crystal densities and specific rotations
of amino acids described by a set of molecular connectivity indices was utilized by
Pogliani in a QSAR study [60]. Pogliani also used linear combinations of connectivity
indices to model the water solubility and activity of amino acids [61]. Randic et al.
utilized a generalized topological index with a multivariate regression analysis QSAR
model to determine characteristics of the molar volumes of amino acids [62].

On a larger scale, a vertex can represent an entire amino acid and edges are present
if the amino acids are consecutive on the primary sequence or if they are within some
specified distance. The graph in the Figure 3.8 shows the modeling of an alpha helix
and a beta strand with a total of 24 amino acids.

By applying a frequent subgraph mining algorithm to graph representations of
a 3D protein structure, Huan et al. found recurring amino acid residue packing
patterns that are characteristic of protein structural families [63]. In their model,
vertices represent amino acids, and edges are chosen in one of three ways: first,
using a threshold for contact distance between residues; second, using Delaunay
tessellation; and third, using the recently developed almost-Delaunay edges. For
a set of graphs representing a protein family from the Structural Classification of
Proteins (SCOP) database [64], subgraph mining typically identifies several hundred
common subgraphs corresponding to the residue packing pattern. They demonstrate
that graphs based on almost-Delaunay edges significantly reduced the number of
edges in the graph representation and hence presented computational advantage.
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FIGURE 3.8 An alpha helix and a beta strand.

Researchers at the University of California at Berkley and at the Dana Farber
Cancer Institute at Harvard Medical School have used aberration multigraphs to model
chromosome aberrations [65]. A multigraph is a graph that allows multiple edges
between two vertices. Aberration multigraphs characterize and interrelate three basic
aberration elements: (1) the initial configuration of a chromosome; (2) the exchange
process whose cycle structure helps to describe aberration complexity; and (3) the
final configuration of rearranged chromosomes. An aberration multigraph refers
in principle to the actual biophysical process of aberration formation. We find that
graphical invariants provide information about the processes involved in chromosome
aberrations. High diameter for the multigraph corresponds to many different cycles in
the exchange process, linked by the fact that they have some chromosomes in common.
Girth 2 in a multigraph usually corresponds to a ring formation and girth 3 to inver-
sions. Aberration multigraphs are closely related to cubic multigraphs. An enormous
amount is known about cubic multigraphs, mainly because they are related to work on
the four-color theorem. Results on cubic multigraphs suggest a mathematical classifi-
cation of aberration multigraphs. The aberration multigraph models the entire process
of DNA damage, beginning with an undamaged chromosome and ending with a
damaged one.

A relation is symmetric if “a is related to b" implies “b is related to a." Clearly, not
all relations are symmetric. If a graph models a relation that is not symmetric, then
directions are assigned to the edges. Such graphs are known as digraphs and networks
are usually modeled by digraphs. Some network applications exist in chemical graph
theory [66]. Since a reaction network in chemistry is a generalization of a graph, the
decomposition of the associated graph reflects the submechanisms by closed directed
cycles. A reaction mechanism is direct if no distinct mechanisms for the same reaction
can be formed from a subset of the steps. Although the decomposition is not unique,
the set of all direct mechanisms for a reaction is a unique attribute of a directed graph.
Vingron and Waterman [67] utilized the techniques and concepts from electrical
networks to explore applications in molecular biology. A variety of novel modeling
methods that exploit various areas of mathematical graph theory such as random graph
theory are emerging with exciting results. For more examples applications of graphs
in molecular biology, see the work by Boncher et al. [68].
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3.4 MACHINE LEARNING WITH GRAPHICAL INVARIANTS

Graphical invariants of graph theoretic models of chemical and biological structures
can sometimes be used as descriptors [23] in a fashion similar to molecular descriptors
in QSPR and QSAR models. Over the past decade, the tools of choice for using
descriptors to predict such functional relationships have increasingly been artificial
neural networks (ANNs) or algorithms closely related to ANNs [69]. More recently,
however, support vector machines (SVMs) have begun to supplant the use of ANNs
in QSAR types of applications because of their ability to address issues such as
overfitting and hard margins (see, e.g., the works by Xao et al. [70] and Guler and
Kocer [71]).

Specifically, the possible properties or activities of a chemical or biological
structure define a finite number of specific classes. The ANNs and SVMs use descrip-
tors for a given structure to predict the class of the structure, so that properties and ac-
tivities are predicted via class membership. Algorithms that use descriptors to predict
properties and functions of structures are known as classifiers. Typically, a collection
of structures whose functional relationships have been classified a priori are used to
train the classifier so that the classifier can subsequently be used to predict the clas-
sification of a structure whose functional relationships have yet to be identified [72].

3.4.1 Mathematics of Classifiers

Before describing SVMs and ANNs more fully, let us establish a mathematical basis
for the study of classification problems. Because a descriptor such as a graphical
invariant is real valued, a number n of descriptors of a collection of biological struc-
tures form an n-tuple x = (x1, ..., xn) in n-dimensional real space. A classifier is a
method that partitions n-dimensional space so that each subset in the partition con-
tains points corresponding to only one class. Training corresponds to using a set of
n-tuples for structures with a priori classified functional relationships to approximate
such a partition. Classification corresponds to using the approximate partition to make
predictions about a biological structure whose class is not known [72].

If there are only two classes, as was the case in the work by Haynes et al. [23] where
graph theoretic trees were classified as either RNA-like or not RNA-like, the goal is
to partition an n-dimensional space into two distinct subsets. If the two subsets can
be separated by a hyperplane, then the two classes are said to be linearly separable.
An algorithm that identifies a suitable separating hyperplane is known as a linear
classifier (Fig. 3.9).

In a linearly separable classification problem, there are constantsw1, ..., wn and b
such that

w1x1 + · · · + wnxn + b > 0

when (x1, ..., xn) is in one class and

w1x1 + · · · + wnxn + b < 0



102 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

FIGURE 3.9 Linear separability.

when (x1, ..., xn) is in the other. Training reduces to choosing the constants so that the
distance between the hyperplane and the training data is maximized, and this maximal
distance is then known as the margin.

If there are more than two classes and the classes are not linearly separable, then
there are at least two different types of classifiers that can be used. An SVM supposes
that some mapping φ(x) from n-space into a larger dimensional vector space known
as a feature space will lead to linear separability in the larger dimensional space, at
which point an optimal hyperplane is computed in the feature space by maximizing
the distance between the hyperplane and the closest training patterns. The training
patterns that determine the hyperplane are known as support vectors.

If K(x,y) is a symmetric, positive definite function, then it can be shown that there
exists a feature space with an inner product for which

K (x, y) = φ (x) · φ (y) .

The function K(x,y) is known as the kernel of the transformation, and it follows that
the implementation of an SVM depends only on the choice of a kernel and does not
require the actual specification of the mapping or the feature space. Common kernels
include the following:

� Inner product: K (x, y) = x · y.
� Polynomial: K (x, y) = (x · y+ 1)N , where N is a positive integer.
� Radial: K (x, y) = e−a‖x−y‖2

.
� Neural: K (x, y) = tanh (ax · y+ b), where a and b are parameters.

Within the feature space, an SVM is analyzed as a linear classifier [73].
Several implementations of SVMs are readily available. For example, mySVM

and YALE, which can be found at http://www.support-vector-machines.org, can be
downloaded as windows executables or Java applications [74]. There are also several
books, tutorials, and code examples that describe in detail how SVMs are implemented
and trained [75].
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FIGURE 3.10 An artificial neuron.

ANNs are alternatives to SVMs that use networks of linear-like classifiers to predict
structure–function classifications. Specifically, let us suppose that the two classes of a
linear classifier can be associated with the numbers 1 and 0. If we also define a firing
function by

g (s) =
{

1 if s > 0,

0 if s < 0,
(3.1)

then the linear classifier can be interpreted to be a single artificial neuron, which is
shown in Figure 3.10. In this context, w1, ..., wn are known as synaptic weights and
b is known as a bias. The firing function is also known as the activation function, and
its output is known as the activation of the artificial neuron.

The terminology comes from the fact that artificial neurons began as a caricature
of real-world neurons, and indeed, real-world neurons are still used to guide the
development of ANNs [76]. The connections with neurobiology also suggest that the
activation function g(s) should be sigmoidal, which means that it is differentiable and
nondecreasing from 0 up to 1. A commonly used activation function is given by

g (s) = 1

1+ e−κs , (3.2)

where κ > 0 is a parameter [77], which is related to the hyperbolic tangent via

g(s) = 1
2 tanh(κ s)+ 1

2 .

The choice of a smooth activation function allows two different approaches to
training—the synaptic weights can be estimated from a training set either using lin-
ear algebra and matrix arithmetic or via optimization with the synaptic weights as
dependent variables. The latter is the idea behind the backpropagation method, which
is discussed in more detail below.

A multilayer feedforward network (MLF) is a network of artificial neurons orga-
nized into layers as shown in Figure 3.11, where a layer is a collection of neurons
connected to all the neurons in the previous and next layers, but not to any neurons in
the layer itself. The first layer is known as the input layer, the last layer is known as
the output layer, and the intermediate layers are known as hidden layers. Figure 3.11
shows a typical three-layer MLF.
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FIGURE 3.11 A three-layer MLP.

In the prediction or feedforward stage, the descriptors x1, · · · , xn are presented to
the input layer neurons, and their activations are calculated as in Figure 3.10. Those
activations are multiplied by the synaptic weights wij between the ith input neuron
and the jth output neuron and used to calculate the activations of the hidden layer
neurons. Similarly, the synaptic weights αjk between the kth hidden neurons and the
jth output neurons are used to calculate the activations y1, · · · , yr from the output
neurons, which are also the predicted classification of the structure that generated the
initial descriptors.

If the classification q = (q1, . . . , qr) for an n-tuple of descriptors p =
(p1, . . . , pn) is known, then the pair (p, q) is known as a training pattern. Training a
three-layer MLF using a collection

(
p1, q1

)
, . . . ,

(
pt , qt

)
of training patterns means

using nonlinear optimization to estimate the synaptic weights. In addition, the synap-
tic weights can be used for feature selection, which is to say that a neural network
can be used to determine how significant a descriptor is to a classification problem
by examining how sensitive the training process is to the values of that descriptor.

3.4.2 Implementation and Training

Both general-purpose and informatics-targeted implementations of MLFs are readily
available. For example, the neural network toolbox for MatLab and the modeling kit
ADAPT allow the construction of MLFs and other types of neural networks [75,77].
There are also many variations on the MLF ANN structure and training methods,
including self-organizing feature maps (SOFM) [78,79] and Bayesian regularized
neural network [80]. In addition, several different implementations of neural networks
in programming code are also available.

However, it is important not to treat ANNs or SVMs as “canned” routines, because
they are similar to other nonlinear regression methods in that they can overfit the data
and they can be overtrained to the training set [69]. Overtraining corresponds to
the network’s “memorizing” of the training set, thus leading to poor predictions for
structures not in the training set. This issue is often addressed using cross-validation
or “leave-one-out” training methods in which a part of the training set is removed,
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the network is trained on the remaining training patterns, and then the classification
of the removed training patterns is predicted.

Overfitting is a more serious and less avoidable problem [81]. Typically, there
is small variation or “noise” in the descriptor values, so that if there are too many
parameters—for example, too many neurons in the hidden layer—then training may
lead to an “interpolation” of the slightly flawed training set at the expense of poor gen-
eralization of the training set. In both overfitting and overtraining, convergence of the
nonlinear optimization algorithm is common, but predictions are either meaningless
in the case of overfitting or too dependent on the choice of the training.

Because graphical invariants are often discrete valued and highly dependent on the
construction of the graphical model, overfitting and overtraining are important issues
that cannot be overlooked. For this reason, we conclude with a more mathematical
exploration of the ANN algorithm so that their training and predictive properties can
be better understood.

To begin with, suppose that y = (y1, ..., yn) denotes the output from a three-layer
MLF that has r input neurons connected to m hidden layer neurons that are connected
to n neurons in the output layer. It has been shown that with the appropriate selection
of synaptic weights, a three-layer MLF can approximate any absolutely integrable
mapping of the type

f (x1, . . . , xr) = (y1, . . . , yn)

to within any ε > 0 [82]. That is, a three-layer MLP can theoretically approximation
the solution to any classification problem to within any given degree of accuracy, thus
leading MLFs to be known as universal classifiers. However, in practice the number
of hidden layer neurons may necessarily be large, thus contradicting the desire to use
small hidden layers to better avoid overfitting and overtraining.

To gain further insights into the innerworkings of a three-layer MLF, let wk =
(wk1, . . . , wkr) denote the vector of weights between the input layer and the
kth-hidden neuron. It follows that yj = g

(
sj − bj

)
, where bj denotes the bias of

the jth output neuron, where

sj =
m∑
k=1

αjkg (wk(x− θk)),

and where θk denotes the bias for the kth hidden neuron. A common method for
estimating synaptic weights given a collection

(
p1, q1

)
, . . . ,

(
pt , qt

)
of training

patterns is to define an energy function

E = 1

2

t∑
i=1

(
y − qi) (y − qi),
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FIGURE 3.12 The energy surface.

and then train the MLP until we have closely approximated

∂E

∂wkl
= 0 and

∂E

∂αjk
= 0

at the inputs pi for all l = 1, . . . , r, k = 1, . . . , m, and j = 1, . . . , n. Because
these equations cannot be solved directly, a gradient-following method called the
backpropagation algorithm is used instead.

The backpropagation algorithm is based on the fact that if g is the sigmoidal
function defined in equation (3.2), then

g′ = κg (1− g).

In particular, for each training pattern
(
pi, qi

)
, a three-layer MLP first calculates y

as the output to pi, which is the feedforward step. The weights αjk are subsequently
adjusted using

αjk → αjk + λδjξk,

where ξk = g (wk · x − θk) , where λ > 0 is a fixed parameter called the learning rate,
and where

δj = κyj
(
1− yj

) (
qij − yj

)
.

The weights wkr are adjusted using

wkl → wkl + λρk xl,

where xl = g
(
pil − θl

)
and where

ρk = κξk (1− ξk)
n∑
j=1

αjkδj.

Cybenko’s theorem implies that the energy E should eventually converge to 0, so
training continues until the energy is sufficiently small in magnitude.

However, it is possible that the energy for a given training set does not converge.
For example, it is possible for training to converge to a local minimum of the energy
function, as depicted in Figure 3.12. When this happens, the network can make errant
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predictions known as spurious states. To avoid such local minima, it may be necessary
to add small random inputs into each neuron so that training continues beyond any
local minima, or it may be necessary to use a process such as simulated annealing to
avoid such local minima [77].

Similarly, if the synaptic weights are not initialized to small random values, then
the network tends to overtrain immediately on the first training pattern presented to
it and thus may converge only very slowly. Overtraining can often be avoided by
calculating the energy on both the training set and a validation set at each iteration.
However, overfitting may not necessarily be revealed by the behavior of the energy
during training.

This is because the quantities that define the training process are

δj = κyj
(
1− yj

) (
qij − yj

)
and

ρk = κξk (1− ξk)
n∑
j=1

αjkδj,

both of which are arbitrarily close to 0 when δj is arbitrarily close to 0. In overfitting,
this means that once yj is sufficiently close to qij , the quantities ξk can vary greatly
without changing the convergence properties of the network. That is, convergence of
the output to the training set does not necessarily correspond to convergence of the
hidden layer to a definite state. Often this means that two different training sessions
with the same training set may lead to different values for the synaptic weights [69].

Careful design and deployment of the network can often avoid many of the issues
that may affect ANNs. Large hidden layers are typically not desirable, and often an
examination of the synaptic weights over several “test runs” will give some insight
into the arbitrariness of the dependent variables ξk for the hidden layer, thus indi-
cating when the hidden layer may possibly be too large. In addition, as the network
begins to converge, modifying the learning parameter λ as the network converges may
“bump” the network out of a local minimum without affecting overall convergence
and performance.

3.5 GRAPHICAL INVARIANTS AS PREDICTORS

We conclude with an example of the usefulness of graphical invariants as predictors
of biomolecular structures. The RAG database [48] contains all possible unlabeled
trees of orders 2 through 10. For the trees of orders 2 through 8, each tree is classified
as an RNA tree, an RNA-like tree or not RNA-like tree. For the trees of order 9 and 10,
those that represent a known secondary RNA structure are identified as an RNA tree,
but no trees are shown to be candidate structures, that is, RNA-like. In the works by
Haynes et al. [22,23], the tree modeling method is used to quantify secondary RNA
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structures with graphical parameters that are defined by variations of the domination
number of a graph.

Note that a single graphical invariant may not be sufficient to differentiate between
trees that are RNA-like and those that are not. For example, the domination number
for trees of order 7, 8, and 9 range from 1 to 4 with no discernable relationship between
the value of the invariant and the classification of the tree. However, defining three
parameters in terms of graphical invariants does prove to be predictive.

Specifically, an MLP with three input neurons, five hidden neurons, and two output
neurons is trained using values of the three parameters

P1 = γ + γt + γa

n
,

P2 = γL + γD

n
,

P3 = diam(L(T ))+ rad(L(T ))+ |B|
n

,

where γ is the domination number, γt is the total domination number, γa is the global
alliance number, γL is the locating domination number of the line graph, and γD
is the differentiating dominating number. For more on variations of the domination
numbers of graphs, see the work by Haynes et al. [25]. Additionally, diam(L(T )) is
the diameter of the line graph, rad(L(T )) is the radius of the line graph, |B| is the
number of blocks in the line graph of the tree, and n is the order of a tree. The use
of leave-one-out cross-validation during training addresses possible overfitting. We
also use the technique of predicting complements (also known as leave-v-out cross-
validation) with 6, 13, and 20 trees, respectively, in the complement. Table 3.1 shows
the average error and standard deviation in predicting either a “1” for a RNA tree or
a “0” for a tree that is not RNA-like.

The resulting MLP predicts whether trees of orders 7, 8, and 9 are RNA-like or
are not RNA-like. The results are shown in Table 3.2. For the trees of order 7 and 8,
the network predictions coincide with the RAG classification with the exception of 2
of the 34 trees. Also, the network was able to predict an additional 28 trees of order
9 as being RNA-like in structure. This information may assist in the development of
synthetic RNA molecules for drug design purposes [49].

The use of domination-based parameters as biomolecular descriptors supports
the concept of using graphical invariants that are normally utilized in fields such as
computer network design to quantify and identify biomolecules. By finding graphical
invariants of the trees of orders 7, 8, and using the four additional trees of order 9 in

TABLE 3.1 Accuracy Results for the RNA Classification

|Comp| = 6 |Comp| = 13 |Comp| = 20

Average error 0.084964905 0.161629391 0.305193489
Standard deviation 0.125919698 0.127051425 0.188008046
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TABLE 3.2 RNA Prediction Results

RAGa Classb Errorc RAG Class Error RAG Class Error

7.4 0 0.00947 9.9 0 0.0554 9.31 1 0.0247
7.5 1 0.0245 9.10 1 2.65E−06 9.32 0 1.99E−06
7.7 1 7.45E−05 9.12 1 5.28E−07 9.33 1 0.0462
7.8 1 1.64E−07 9.14 1 2.32E−07 9.34 1 0.00280
8.1 1 1.05E−06 9.15 0 1.82E−04 9.35 0 2.46E−06
8.2 1 1.24E−06 9.16 1 5.35E−04 9.36 0 7.41E−05
8.4 1 0.0138 9.17 1 6.24E−06 9.37 0 7.41E−05
8.6 1 0.0138 9.18 1 4.87E−07 9.38 1 4.86E−05
8.8 1 5.43E−05 9.19 1 6.06E−07 9.39 0 2.46E−06
8.12 1 3.59E−06 9.20 1 0.0247 9.40 0 4.79E−08
8.13 0 0.0157 9.21 1 6.38E−05 9.41 0 4.79E-08
8.16 1 8.81E−06 9.22 1 0.0247 9.42 1 2.51E−07
9.1 1 1.48E−07 9.23 0 7.41E−05 9.43 1 4.86E−05
9.2 1 0.0151 9.24 1 1.47E−05 9.44 1 0.0247
9.3 1 0.0121 9.25 0 3.85E−07 9.45 0 7.41E−05
9.4 1 4.05E−07 9.26 1 1.48E−04 9.46 0 4.79E−08
9.5 1 5.24E−05 9.28 0 7.41E−05 9.47 0 2.33E−08
9.7 1 6.38E−05 9.29 1 3.61E−07
9.8 1 6.38E−05 9.30 1 1.47E−05

a Labels from the RAG RNA database [48].
b Class = 1 if predicted to be an RNA tree; class = 0 if not RNA-like.
c Average deviation from predicted class.

the RAG database, Knisley et al. [23] utilize a neural network to identify novel RNA-
like structures from among the unclassified trees of order 9 and thereby illustrate
the potential for neural networks coupled with mathematical graphical invariants to
predict function and structure of biomolecules.
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CHAPTER 4

Algorithmic Methods for the Analysis
of Gene Expression Data

HONGBO XIE, UROS MIDIC, SLOBODAN VUCETIC, and
ZORAN OBRADOVIC

4.1 INTRODUCTION

The traditional approach to molecular biology consists of studying a small number of
genes or proteins that are related to a single biochemical process or pathway. A major
paradigm shift recently occurred with the introduction of gene expression microarrays
that measure the expression levels of thousands of genes at once. These comprehensive
snapshots of gene activity can be used to investigate metabolic pathways, identify drug
targets, and improve disease diagnosis. However, the sheer amount of data obtained
using the high throughput microarray experiments and the complexity of the existing
relevant biological knowledge are beyond the scope of manual analysis. Thus, the
bioinformatics algorithms that help to analyze such data are a very valuable tool
for biomedical science. This chapter starts with a brief overview of the microarry
technology and concepts that are important for understanding the remaining sections.
Second, microarray data preprocessing, an important topic that has drawn as much
attention from the research community as the data analysis itself, is addressed. Finally,
some of the most important methods for microarray data analysis are described and
illustrated with examples and case studies.

4.1.1 Biology Background

Most cells within the same living system have identical copies of DNA that store
inherited genetic traits. DNA and RNA are the carriers of the genetic information.
They are both polymers of nucleotides. There are four different types of nucleotides:
adenine (A), thymine/uracil (T/U), guanine (G), and cytosine (C). Thymine is present
in DNA, while uracil replaces it in RNA. Genes are fundamental blocks of DNA
that encode genetic information and are transcribed into messenger RNA, or mRNA
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FIGURE 4.1 Central dogma of molecular biology: DNA–RNA–protein relationship.

(hereafter noted simply as “RNA”). RNA sequences are then translated into proteins,
which are the primary components of living systems and which regulate most of a
cell’s biological activities. Activities regulated and/or performed by a protein whose
code is contained in the specific gene are also considered functions of that gene.
For a gene, the abundance of the respective RNA in a cell (called the “expression
level” for that gene) is assumed to correlate with the abundance of the protein into
which the RNA translates. Therefore, the measurement of genes’ expression levels
elucidates the activities of the respective proteins. The relationship between DNA,
RNA, and proteins is summarized in the Central Dogma of molecular biology as
shown in Figure 4.1.

DNA consists of two helical strands; pairs of nucleotides from two strands are
connected by hydrogen bonds, creating the so-called base pairs. Due to the chemical
and steric properties of nucleotides, adenine can only form a base pair with thymine,
while cytosine can only form a base pair with guanine. As a result, if one strand of
DNA is identified, the other strand is completely determined. Similarly, the strand of
RNA produced during the transcription of one strand of DNA is completely deter-
mined by that strand of DNA. The only difference is that uracil replaces thymine as a
complement to adenine in RNA. Complementarity of nucleotide pairs is a very impor-
tant biological feature. Preferential binding—the fact that nucleotide sequences only
bind with their complementary nucleotide sequences—is the basis for the microarray
technology.

4.1.2 Microarray Technology

Microarray technology evolved from older technologies that are used to measure
the expression levels of a small number of genes at a time [1,2]. Microarrays con-
tain a large number—hundreds or thousands—of small spots (hence the term “mi-
croarray”), each of them designed to measure the expression level of a single gene.
Spots are made up of synthesized short nucleotide sequence segments called probes,
which are attached to the chip surface (glass, plastic, or other material). Probes
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FIGURE 4.2 Binding of probes and nucleotide sequences. Probes in one spot are designed
to bind only to one particular type of RNA sequences. This simplified drawing illustrates how
only the complementary sequences bind to a probe, while other sequences do not bind to the
probe.

in each spot are designed to bind only to the RNA of a single gene through the
principle of preferential binding of complementary nucleotide sequences, as illus-
trated in Figure 4.2. The higher the RNA expression level is for a particular gene,
the more of its RNA will bind (or “hybridize”) to probes in the corresponding
spot.

Single-channel and dual-channel microarrays are the two major types of gene
expression microarrays. Single-channel microarrays measure the gene expression
levels in a single sample and the readings are reported as absolute (positive) values.
Dual-channel microarrays simultaneously measure the gene expression levels in two
samples and the readings are reported as relative differences in the expression between
the two samples. A sample (or two samples for dual-channel chips) and the microarray
chip are processed with a specific laboratory procedure (the technical details of which
are beyond the scope of this chapter). Part of the procedure is the attachment of a
special fluorescent substrate to all RNA in a sample (this is called the “labeling”).
When a finalized microarray chip is scanned with a laser, the substrate attached to
sequences excites and emits light. For dual-channel chips, two types of substrates
(cy3 and cy5) that emit light at two different wavelengths are used (Fig. 4.3). The
intensity of light is proportional to the quantity of RNA bound to a spot, and this
intensity correlates to the expression level of the corresponding gene.
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FIGURE 4.3 Dual-channel cDNA microarray. A sample of dual-channel microarray chip
images, obtained from an image scanner. All images contain only a portion of the chip. From
left to right: cy3 channel, cy5 channel, and the computer-generated joint image of cy3 and cy5
channels. A light gray spot in the joint image indicates that the intensity of the cy3 channel spot
is higher than intensity of the cy5 channel spot, a dark gray spot indicates a reverse situation,
and a white spot indicates similar intensities.

Images obtained from scanning are processed with image processing software.
This software transforms an image bitmap into a table of spot intensity levels ac-
companied by additional information such as estimated spot quality. The focus of
this chapter is on the analysis of microarray data starting from this level. The next
section describes methods for data preprocessing, including data cleaning, transfor-
mation, and normalization. Finally, the last section provides an overview of methods
for microarray data analysis and illustrates how these methods are used for knowledge
discovery. The overall process of microarray data acquisition and analysis is shown
in Figure 4.4.

FIGURE 4.4 Data flow schema of microarray data analysis.
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4.1.3 Microarray Data Sets

Microarray-based studies consider more than one sample and most often produce
several replicates for each sample. The minimum requirement for a useful biological
study is to have two samples that can be hybridized on a single dual-channel or on
two single-channel microarray chips.

A data set for a single-channel microarray experiment can be described as an
M ×N matrix in which each column represents gene expression levels for one of the
N chips (arrays), and each row is a vector containing expression levels of one of theM
genes in different arrays (called “expression profile”). A data set for a dual-channel
microarray experiment can be observed as a similar matrix in which each chip is
represented by a single column of expression ratios between the two channels (cy3
and cy5), or by two columns of absolute expression values of the two channels. A
typical microarray data table has a fairly small number of arrays and a large number
of genes (M � N); for example, while microarrays can measure the expression of
thousands of genes, the number of arrays is usually in the range from less than 10 (in
small-scale studies) to several hundred (in large-scale studies).

Methods described in this chapter are demonstrated by case studies on acute
leukemia, Plasmodium falciparum intraerythrocytic developmental cycle, and chronic
fatigue syndrome microarray data sets. Acute leukemia data set [3] contains
7129 human genes with 47 arrays of acute lymphoblastic leukemia (ALL) sam-
ples and 25 arrays of acute myeloid leukemia (AML) samples. The data set is
used to demonstrate a generic approach to separating two types of human acute
leukemia (AML versus ALL) based on their gene expression patterns. This data set
is available at http://www.broad.mit.edu/cgi-bin/cancer/publications/pub paper.cgi?
mode=view&paper id=43. Plasmodium falciparum data set [4] contains 46 arrays
with samples taken during 48 h of intraerythrocytic developmental cycle of Plasmod-
ium falciparum to provide the comprehensive overview of the timing of transcrip-
tion throughout the cycle. Each array consists of 5080 spots, related to 3532 unique
genes. This data set is available at http://biology.plosjournals.org/archive/1545-
7885/1/1/supinfo/10.1371 journal.pbio.0000005.sd002.txt. Chronic fatigue syn-
drome (CFS) data set contains 79 arrays from 39 clinically identified CFS pa-
tients and 40 non-CFS (NF) patients [5]. Each chip measures expression levels
of 20,160 genes. This data set was used as a benchmark at the 2006 Critical
Assessment of Microarray Data Analysis (CAMDA) contest and is available at
http://www.camda.duke.edu/camda06/datasets.

4.2 MICROARRAY DATA PREPROCESSING

Images obtained by scanning microarray chips are preprocessed to identify the spots,
estimate their intensities, and flag the spots that cannot be read reliably. Data obtained
from a scanner are usually very noisy; the use of raw unprocessed data would likely
bias the study and possibly lead to false conclusions. In order to reduce these problems,
several preprocessing steps are typically performed and are described in this section.
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4.2.1 Data Cleaning and Transformation

4.2.1.1 Reduction of Background Noise in Microarray Images The back-
ground area outside of the spots in a scanned microarray image should ideally be dark
(indicating no level of intensity), but in practice, the microarray image background
has a certain level of intensity known as background noise. It is an indicator of the sys-
tematic error introduced by the laboratory procedure and microarray image scanning.
This noise can often effectively be reduced by estimating and subtracting the mean
background intensity from spot intensities. A straightforward approach that uses the
mean background intensity of the whole chip is not appropriate when noise intensity
is not uniform in all parts of the chip. In such situations, local estimation methods
are used to estimate the background intensity individually for each spot from a small
area surrounding the spot.

4.2.1.2 Identification of Low Quality Gene Spots Chip scratching, poor
washing, bad hybridization, robot injection leaking, bad spot shape, and other rea-
sons can result in microarray chips containing many damaged spots. Some of these
gene spot problems are illustrated in Figure 4.5. Low quality gene spots are typically
identified by comparing the spot signal and its background noise [6,7]. Although
statistical techniques can provide a rough identification of problematic gene spots,
it is important to carefully manually evaluate the microarray image to discover the
source of the problem and to determine how to address problematic spots. The most
simplistic method is to remove all data for the corresponding genes from further anal-
ysis. However, when the spots in question are the primary focus of the biological
study, it is preferable to process microarray images using specialized procedures [8].
Unfortunately, such a process demands intensive manual and computational work. To
reduce the data uncertainty due to damaged spots, it is sometimes necessary to repeat
the hybridization of arrays with a large area or fraction of problematic spots.

FIGURE 4.5 Examples of problematic spots. The light gray ovals in the left image are
examples of poor washing and scratching. The black circle spots in the right image are good-
quality spots. The light gray circles indicate empty (missing) spots. The dark gray circles mark
badly shaped spots.
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FIGURE 4.6 Data distribution before and after logarithmic transformation. Histograms show
gene expression data distribution for patient sample #1 from acute lymphoblastic leukemia data
set (X-axis represents the gene expression levels and Y -axis represents the amount of genes
with given expression level). The distribution of raw data on the left is extremely skewed. The
log-2 transformed data have a bell-shaped, approximately normal distribution, shown on the
right.

4.2.1.3 Microarray Data Transformation After the numerical readings are ob-
tained from the image, the objective of microarray data transformation is to identify
outliers in the data and to adjust the data to meet the distribution assumptions implied
by statistical analysis methods. A simple logarithmic transformation illustrated in
Figure 4.6 is commonly used. It reshapes the data distribution into a bell shape that
resembles normal distribution. This transformation is especially beneficial for data
from dual-channel arrays, since data from these arrays are often expressed as ratios of
signal intensities of pairs of samples. Alternative transformations used in practice in-
clude arcsinh function, linlog transformation, curve-fitting transformations, and shift
transformation [9]; among them, the linlog transformation was demonstrated to be
the most beneficial.

4.2.2 Handling Missing Values

Typical data sets generated by microarray experiments contain large fractions of miss-
ing values caused by low quality spots. Techniques for handling missing values have
to be chosen carefully, since they involve certain assumptions. When these assump-
tions are not correct, artifacts can be added into the data set that may substantially
bias the evaluation of biological hypotheses.

The straightforward approach is to completely discard genes with at least one
missing value. However, if a large fraction of genes are eliminated because of missing
values, then this approach is not appropriate.

A straightforward imputation method consists of replacing all missing values for
a given gene with the mean of its valid expression values among all available arrays.
This assumes that the data for estimating the most probable value of a missing gene
expression were derived under similar biological conditions; for instance, they could
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be derived from replicate arrays. Most microarray experiments lack replicates due
to the experimental costs. When there are no replicates available, a better choice for
imputation is to replace all of the missing data in an array with the average of valid
expression values within the array.

The k-nearest-neighbor based method (KNN) does not demand experimental repli-
cates. Given a gene with missing gene expression readings, k genes with the most
similar expression patterns (i.e., its k neighbors) are found. The given gene’s miss-
ing values are imputed as the average expression values of its k neighbors [10], or
predicted with the local least squares (LLS) method [11]. Recent research has demon-
strated that the weighted nearest-neighbors imputation method (WeNNI), in which
both spot quality and correlations between genes were used in the imputation, is more
effective than the traditional KNN method [12].

Domain knowledge can help estimate missing values based on the assumption that
genes with similar biological functions have similar expression patterns. Therefore, a
missing value for a given gene can be estimated by evaluating the expression values
of all genes that have the same or similar functions [13]. Although such an approach
is reasonable in terms of biology, its applicability is limited when the function is
unknown for a large number of the genes.

In addition to the problems that are related to poor sample preparation, such as
chip scratching or poor washing, a major source of problematic gene spots is rela-
tively low signal intensity compared to background noise. It is important to check the
reasons for low signal intensity. Gene expression might be very low, for instance, if
the biological condition successfully blocks the gene expression. In this case, the low
gene expression signal intensity is correct and the imputation of values estimated by
the above-mentioned methods would probably produce a value that is too high. An
alternative is to replace such missing data with the lowest obtained intensity value
within the same chip or with an arbitrary small number.

4.2.3 Normalization

Microarray experiments are prone to systematic errors that cause changes in the data
distribution and make statistical inference unreliable. The objective of normalization
is to eliminate the variation in data caused by errors of the experimental methods,
making further analysis based only on the real variation in gene expression levels.
All normalization methods may introduce artifacts and should be used with care.
Most methods are sensitive to outliers, so outlier removal is crucial for the success of
normalization.

There are two major types of normalization methods: within-chip normaliza-
tion uses only the data within the same chip and is performed individually on each
chip, while between-chip normalization involves microarray data from all chips si-
multaneously. Reviews on microarray data normalization methods are provided in
[14–16].

4.2.3.1 Within-Chip Normalization Several within-chip normalization meth-
ods are based on linear transformations of the form new value =(original value–
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a)/b, where parameters a and b are fixed for one chip. Standardization normalization
assumes that the gene expression levels in one chip follow the standard normal dis-
tribution. Parameter a is set to the mean, while parameter b is set to the standard
deviation of gene expression levels in a chip. This method can be applied to both
dual-channel and single-channel microarray data.

Linear regression normalization [15] is another linear transformation that uses
a different way to choose parameters a and b. The basic assumption for dual-
channel arrays is that for a majority of genes, the intensity for the cy3 channel is
similar to intensity for the cy5 channel. As a result, the two intensities should be
highly correlated, and the fitted regression line should be very close to the main
diagonal of the scatterplot. Parameters a and b in linear transformation are cho-
sen so that the regression line for transformed data points aligns with the main
diagonal.

A more advanced normalization alternative is the loess transformation. It uses a
scatterplot of log ratio of two channel intensities (log(cy3/cy5)) against average value
of two channel intensities ((cy3+ cy5)/2). A locally weighted polynomial regression
is used on this scatterplot to form a smooth regression curve. Original data are then
transformed using the obtained regression curve. Loess normalization can also be
used with single-channel microarrays where two arrays are observed as two channels
and normalized together. For data from more than two arrays, loess normalization
can be iteratively applied on all distinct pairs of arrays, but this process has larger
computational cost. Some other forms of loess normalization are local loess [17],
global loess, and two-dimensional loess [18].

Several normalization methods make use of domain knowledge. All organisms
have a subset of genes—called housekeeping genes—that maintain necessary cell
activities, and, as a result, their expression levels are nearly constant under most
biological conditions. All the above-mentioned methods can be modified so that
all transformation parameters are calculated based only on the expression levels of
housekeeping genes.

4.2.3.2 Between-Chip Normalization Row–column normalization [19] is ap-
plied to a data set comprised of several arrays, observed as a matrix with M rows
(representing genes) and N columns (representing separate arrays and array chan-
nels). In one iteration, the mean value of a selected row (or column) is subtracted
from all of the elements in that row (or column). This is iteratively repeated for all
rows and columns of the matrix, until the mean values of all rows and columns ap-
proach zero. This method fixes variability among both genes and arrays. A major
problem with this method is its sensitivity to outliers, a problem that can significantly
increase computation time. Outlier removal is thus crucial for the performance of this
method. The computation time can also be improved if standardization is first applied
to all individual arrays.

Distribution (quantile) normalization [20] is based on the idea that a quantile–
quantile plot is a straight diagonal line if two sample vectors come from the same
distribution. Data samples can be forced to have the same distribution by project-
ing data points onto the diagonal line. For microarray data matrix with m rows
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and n columns, each column is separately sorted in descending order, and the mean
values are calculated for all rows in the new matrix. Each value in the original ma-
trix is then replaced with the mean value of the row in the sorted matrix where
that value was placed during sorting. Distribution normalization may improve the
reliability of statistical inference. However, it may also introduce artifacts; after nor-
malization, low intensity genes may have the same (very low) intensity across all
arrays.

Statistical model-fitting normalization involves the fitting of gene expression level
data using a statistical model. The fitting residues can then be treated as bias-free
transformation of expression data. For example, for a given microarray data set with
genes g (g = 1, . . . , n), biological conditions Ti(i = 1, . . . , m), and arrays Aj(j =
1, . . . , k), the intensity I of gene g at biological condition i and array j can be fitted
using a model [21]

Igij = u+ Ti + Aj + (TA)ij + εgij.

The fitting residues εgij for this model can be treated as bias-free data for gene g
at biological condition i and array j after normalization.

In experiments with dual-channel arrays, it is possible to distribute (possibly mul-
tiple) samples representing m biological conditions over k arrays in many different
ways. Many statistical models have recently been proposed for model-fitting normal-
ization [22,23]. The normalization approaches of this type have been demonstrated to
be very effective in many applications, especially in the identification of differentially
expressed genes [21,24].

4.2.4 Data Summary Report

The data summary report is used to examine preprocessed data in order to find and
correct inconsistencies in the data that can reduce the validity of statistical inference.
Unlike other procedures, there are no golden standards for this step. It is a good practice
to evaluate the data summary report before and after data preprocessing. Approaches
used to inspect the data include the evaluation of a histogram to provide information
about data distribution in one microarray, a boxplot of the whole data set to check the
similarities of all data distributions, and the evaluation of correlation coefficient maps
(see Fig. 4.7) to check consistency among arrays. Correlation coefficient heat maps
plot the values of correlation coefficients between pairs of arrays. For a given pair of
arrays, #i and #j, their expression profiles are observed as vectors and the correlation
coefficient between the two vectors is plotted as two pixels—in symmetrical positions
(ij) and (ji)—in the heat map (the magnitude of correlation coefficient is indicated
by the color of the pixel). Correlation coefficients are normally expected to be high,
since we assume that the majority of gene expression levels are similar in different
arrays. A horizontal (and the corresponding vertical) line in a heat map represents
all of the correlation coefficients between a given array and all other arrays. If a line
has a near-constant color representing a very low value, we should suspect a problem
with the corresponding array.
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FIGURE 4.7 Correlation coefficient heat maps. The left heat map shows the correlation
coefficients among the 79 samples of the CFS data set. The first 40 samples are from the
nonfatigue (control) group. The remaining 39 samples are from the group of CFS patients. The
shade of a pixel represents the magnitude of the correlation coefficient (as shown in the shaded
bar on the right). The correlation coefficients on the diagonal line are 1, since they compare
each sample to itself. There are two clearly visible horizontal and vertical lines in the heat map
on the left, corresponding to the sample #42. This indicates that this sample is different from the
others; its correlation coefficients with all other samples are near zero. Therefore, we need to
inspect this sample’s chip image. Another sample that draws our attention is sample #18, which
also has near-uniform correlation coefficients (around 0.5) with other samples. After inspecting
the sample’s chip image, we found that these correlation coefficients reflected sample variation
and that we should not exclude sample #18 from our study. A similar heat map on the right
shows the correlation coefficients among the 47 ALL samples from the acute leukemia data
set. Overall data consistency is fairly high with an average correlation coefficient over 0.89.

4.3 MICROARRAY DATA ANALYSIS

This section provides a brief outline of methods for the analysis of preprocessed mi-
croarray data that include the identification of differentially expressed genes, discov-
ery of gene expression patterns, characterization of gene functions, pathways analysis,
and discovery of diagnostic biomarkers. All methods described in this section assume
that the data have been preprocessed; see Section 4.2 for more details on microarray
data preprocessing methods.

4.3.1 Identification of Differentially Expressed Genes

A gene is differentially expressed if its expression level differs significantly for two
or more biological conditions. A straightforward approach for the identification of
differentially expressed genes is based on the selection of genes with absolute values
of log-2 ratio of expression levels larger than a prespecified threshold (such as 1).
This simple approach does not require replicates, but is subject to high error rate
(both false positive and false negative) due to the large variability in microarray
data.
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More reliable identification is possible by using statistical tests. However, these
methods typically assume that the gene expression data follow a certain distribu-
tion, and require sufficiently large sample size that often cannot be achieved due
to microarray experimental conditions or budget constraints. Alternative techniques,
such as bootstrapping, impose less rigorous requirements on the sample size and
distribution while still providing reliable identification of differentially expressed
genes.

Given the data, a statistical test explores whether a null hypothesis is valid and
calculates the p-value, which refers to the probability that the observed statistics are
generated by the null model. If the p-value is smaller than some fixed threshold (e.g.,
0.05), the null hypothesis is rejected. If the p-value is above the threshold, however,
it should not be concluded that the original hypothesis is confirmed; the result of the
test is that the observed events do not provide a reason to overturn it [25]. The most
common null hypothesis in microarray data analysis is that there is no difference
between two groups of expression values for a given gene. In this section, we briefly
introduce the assumptions and requirements for several statistical tests that are often
used for the identification of differentially expressed genes.

4.3.1.1 Parametric Statistical Approaches The Student’s t-test examines
the null hypothesis that the means of distributions from which two samples are
obtained are equal. The assumptions required for t-test are that the two distributions
are normal and that their variances are equal. The null hypothesis is rejected if the
p-value for the t-statistics is below some fixed threshold (e.g., 0.05). The t-test is
used in microarray data analysis to test—for each individual gene—the equality of
the means of expression levels under two different biological conditions. Genes for
which a t-test rejects the null hypothesis are considered differentially expressed.

The t-test has two forms: dependent sample t-test and independent sample t-test.
Dependent sample t-test assumes that each member in one sample is related to a
specific member of the other sample; for example, this test can be used to evaluate the
drug effects by comparing the gene expression levels of a group of patients before and
after they are given a certain type of drug. Independent sample t-test is used when the
samples are independent of each other; for example, this test can be used to evaluate
the drug effects by comparing gene expression levels for a group of patients treated
with the drug to the gene expression levels of another group of patients treated with
a placebo. The problem with using the t-test in microarray data analysis is that the
distribution normality requirement is often violated in microarray data.

One-way analysis of variance (ANOVA) is a generalization of the t-test to samples
from more than two distributions. ANOVA also requires that the observed distributions
are normal and that their variances are approximately equal. ANOVA is used in
microarray data analysis when gene expression levels are compared under two or
more biological conditions, such as for a comparison of gene expression levels for a
group of patients treated with drug A, a group of patients treated with drug B, and a
group of patients treated with placebo.

The volcano plot (see Fig. 4.8) is often used in practice for the identifica-
tion of differentially expressed genes; in this case, it is required that a gene both
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FIGURE 4.8 The volcano plot of significance versus fold change. This figure is a plot of the
significance (p-value from ANOVA test, on a –log-10 scale) against fold change (log-2 ratio),
for testing the hypothesis on the differences in gene expression levels between the AML group
and the ALL group in the acute leukemia data set. The horizontal line represents a significance
level threshold of 0.05. The two vertical lines represent the absolute fold-change threshold of
2. The genes plotted in the two “A” regions are detected as significant by both methods, while
the genes plotted in region “C” are detected as insignificant by both methods. This type of plot
demonstrates two types of errors that occur with the ratio-based method: false positive errors
plotted in the two “D” regions, and false negative errors plotted in the “B” region. A common
practice is to identify only the genes plotted in the two “A” regions as differentially expressed
and discard the genes plotted in the “B” region.

passes the significance test and that its expression level log ratio is above the
threshold.

4.3.1.2 Nonparametric Statistical Approaches Nonparametric tests relax
the assumptions posed by the parametric tests. Two popular nonparametric tests are
the Wilcoxon rank-sum test for equal median and the Kruskal–Wallis nonparametric
one-way analysis of variance test.

The Wilcoxon rank-sum test (also known as Mann–Whitney U-test) tests the hy-
pothesis that two independent samples come from distributions with equal medi-
ans. This is a nonparametric version of the t-test. It replaces real data values with
their sorted ranks and uses the sum of ranks to obtain a p-value. Kruskal–Wallis
test compares the medians of the samples. It is a nonparametric version of the one-
way ANOVA, and an extension of the Wilcoxon rank-sum test to more than two
groups.
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FIGURE 4.9 Importance of data distribution type for the choice of statistical test. Two
histograms show the distribution of expression levels for gene #563 in two groups of samples
in the acute leukemia data set: ALL on the left and AML on the right. The two distributions
are clearly different. When testing the equality of means of two groups, the Kruskal–Wallis
test gives us the p-value of 0.16, and the ANOVA test gives us the p-value of 0.05. Since the
data distribution in the right panel has two major peaks, it is not close to normal distribution;
therefore, it is preferable to choose the Kruskal–Wallis test.

Nonparametric tests tend to reject less null hypotheses than the related parametric
tests and have lower sensitivity, which leads to an increased rate of false negative
errors. They are more appropriate when the assumptions for parametric tests are not
satisfied, as is often the case with microarray data (see Fig. 4.9). However, this does
not imply that nonparametric tests will necessarily identify a smaller number of genes
as differentially expressed than the parametric test, or that the sets of genes identified
by one parametric test and one nonparametric test will necessarily be in a subset
relationship. To illustrate the difference in results we used both ANOVA and the
Kruskal–Wallis test to identify differentially expressed genes in the acute leukemia
data set. Out of 7129 genes, 1030 genes were identified as differentially expressed by
both methods. In addition to that, 155 genes were identified only by ANOVA, while
210 genes were identified only by the Kruskal–Wallis test.

4.3.1.3 Advanced Statistical Models Recently, more sophisticated models
and methods for the identification of differentially expressed genes have been pro-
posed [26,27]. For example, when considering the factors of array (A), gene (G), and
biological condition (T), a two-step mix-model [21] first fits the variance of arrays,
biological conditions, and interactions between arrays and biological conditions us-
ing one model, and then uses the residues from fitting the first model to fit the second
model. An overview of mix-model methods is provided in the work by Wolfinger et al.
[28]. Other advanced statistical approaches with demonstrated good results in iden-
tifying differentially expressed genes include the significance analysis of microarray
(SAM) [29], regression model approaches [30], empirical Bayes analysis [31], and
the bootstrap approach to gene selection (see the case study below).



Case Study 4.1: Bootstrapping Procedure for Identification of
Differentially Expressed Genes

We illustrate the bootstrapping procedure for the identification of differentially expressed
genes on an acute leukemia data set. The objective is to identify the genes that are
differentially expressed between 47 ALL and 25 AML arrays. For each gene, we first
calculate the p-value p0 of two-sample t-test on the gene’s expression levels in AML
group versus ALL group. Next, the set of samples is randomly split into two subsets
with 47 and 25 elements, and a similar t-test is performed with these random subsets and
p-value p1 is obtained. This step is repeated a large number of times (n>1000), and as
a result we obtain p-values p1, p2, p3, . . . , pn. These p-values are then compared to the
original p0. We define the bootstrap p-value as pb = c/n, where c is the number of times
when values pi(i = 1, . . . , n) are smaller than p0. If pb is smaller than some threshold
(e.g., 0.05), then we consider the gene to be differentially expressed.

For the 88th gene in the data set, the expression levels are

ALL AML
759, 1656, 1130, 1062, 1801, 1024, 3084, 1974,
822, 1020, 1068, 1455, 1084, 1090, 908, 2474,
1099, 1164, 662, 753, 1635, 1591, 1323, 857,
728, 918, 943, 644, 1872, 1593, 1981, 2668,
2703, 916, 677, 1251, 1128, 3601, 2153, 1603,
138, 1557, 750, 814, 769, 893, 2513, 2903,
667, 616, 1187, 1214, 2147
1080, 1053, 674, 708,
1260, 1051, 1747, 1320,
730, 825, 1072, 774,
690, 1119, 866, 564,
958, 1377, 1357

Figure 4.10

The p-value of the t-test for this gene is p0 = 3.4E− 007, which is smaller than
the threshold 0.05. The distribution of p-values obtained on randomly selected subsets
(p1, . . . , p1000) is shown in Figure 4.10. The bootstrap p-value is pb = 0, so the boot-
strapping procedure confirms the result of the t-test, that is, the 88th gene is differentially
expressed.
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FIGURE 4.11 Benjamini–Hochberg FDR control. This figure compares the use of constant
p-value threshold (in this case 0.05) and the use of Benjamini–Hochberg (BH) FDR control
method for the two-sample t-test on acute leukemia data set. The curve is the plot of the
original p-values obtained from the t-tests for individual genes, sorted in an increasing order.
The horizontal line represents the constant p-value threshold of 0.05. There are 2106 genes
with a p-value smaller than this threshold. The slanted line represents the p-value thresholds
pi = α0 · i/N that BH method uses to control the FDR at level of α0 = 0.05 (N is the total
number of genes). It intersects with the curve at p-value 0.0075. Only the 1071 genes whose
p-values are smaller than 0.0075 are considered to be significantly differentially expressed. The
remaining 935 genes are considered to be false positive discoveries made by individual t-tests.

4.3.1.4 False Discovery Rate (FDR) Control Statistical procedures for the
identification of differentially expressed genes can be treated as multiple hypothe-
sis testing. A p-value threshold that is appropriate for a single test does not pro-
vide good control on false positive discovery for the overall procedure. For exam-
ple, testing of 10,000 genes with p-value threshold of 0.05 is expected to identify
10, 000× 0.05 = 500 genes as differentially expressed even if none of the genes
are actually differentially expressed. The false positive rate can be controlled by
evaluating the expected proportion of true rejected null hypotheses out of the to-
tal number of rejected null hypothesis. An example of FDR control is shown in
Figure 4.11.

IfN is the total number of genes, α0 is the p-value threshold, and pi(i = 1, . . . , N)
are p-values in ascending order, then the ith ranked gene is selected if pi ≤ α0 · i/N
[32]. A comprehensive review of this statistical FDR control is presented in the work
by Qian and Huang [33]. It is worth noting that a bootstrap procedure for FDR control
has also been introduced [29] and was shown to be suitable for gene selecting when
data distribution deviates from normal distribution.
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FIGURE 4.12 Part of the Gene Ontology direct acyclic graph. The shortest path between
GO:0007275:development and GO:0009948:anterior/posterior axis specification is 3 (the near-
est common ancestor for the two terms is GO:0007275:development). The shortest path between
the terms GO:0007275:development and GO:0008152:metabolism is 3 but the only ancestor
for them is GO:0008150:biological processes, so the distance between them is 3+ 23, where
23 is the added penalty distance, which is the maximum distance in Biological Process part of
Gene Ontology DAG.

4.3.2 Functional Annotation of Genes

One of the goals of microarray data analysis is to aid in discovering biological func-
tions of genes. One of the most important sources of domain knowledge on gene
functions is Gene Ontology (GO), developed and maintained by the Gene Ontology
Consortium [34,35]. Using a controlled and limited vocabulary of terms describing
gene functions, each term in Gene Ontology consists of a unique identifier, a name,
and a definition that describes its biological characteristic. GO terms are split into
three major groups: biological processes, molecular functions, and cellular compo-
nent categories. Within each category, GO terms are organized in a direct acyclic graph
(DAG) structure, where each term is a node in the DAG, and each node can have sev-
eral child and parent nodes. The GO hierarchy is organized with a general-to-specific
relation between higher and lower level GO terms (see Fig. 4.12).

Sometimes, it is useful to compare several GO terms and determine if they are
similar. Although there is no commonly accepted similarity measure between different
GO terms, various distance measures were proposed for measuring the similarity
between GO terms [36,37]. For example, the distance between nodes X and Y in a
DAG can be measured as the length of the shortest path between X and Y within
the GO hierarchy normalized by the length of maximal chain from the top to the
bottom of the DAG [38]. One possible modification, illustrated in Figure 4.12, is to
add a large penalty for paths that cross the root of a DAG to account for unrelated
terms.

4.3.3 Characterizing Functions of Differentially Expressed Genes

After identifying differentially expressed genes, the next step in analysis is often to
explore the functional properties of these genes. This information can be extremely
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useful to domain scientists for the understanding of biological properties of different
sample groups. Commonly used methods for such analysis are described in this sec-
tion. The chi-square and the Fisher’s exact tests are used to test whether the selected
genes are overannotated with a GO term F, as compared to the set of remaining genes
spotted on a microarray [39,40]. For instance, the following 2× 2 contingency table
contains the data that can be used to test whether the frequency of genes annotated
with a GO term F among the selected genes is different than the same frequency
among the remaining genes:

Number of genes

Selected genes Remaining genes Total

Annotated with a GO term F f11 f12 r1
Not annotated with a GO term F f21 f22 r2
Total c1 c2 S

Chi-square test uses a χ2 statistic with formula

χ2 =
2∑
i=1

2∑
i=1

(fij − ricj/S)2

ricj/S
.

The chi-square test is not suitable when any of the expected values ricj/S are smaller
than 10. Fisher’s exact test is more appropriate in such cases. In practice, all genes
annotated with term F and all terms in the subtree of term F are considered to be
annotated with F.

4.3.4 Functional Annotation of Uncharacterized Genes

The functional characterization of genes involves a considerable amount of biological
laboratory work. Therefore, only a small fraction of known genes and proteins is
functionally characterized. An important microarray application is the prediction of
gene functions in a cost-effective manner. Numerous approaches use microarray gene
expression patterns to identify unknown gene functions [41–43]. In the following
section, we outline some of the most promising ones.

4.3.4.1 Unsupervised Methods for Functional Annotation Gene expres-
sion profiles can be used to measure distances among genes. The basic assumption
in functional annotation is that genes with similar biological functions are likely to
have similar expression profiles. The functions of a given gene could be inferred by
considering the known functions of genes with similar expression profiles. A similar
approach is to group all gene expression profiles using clustering methods and to find
the overrepresented functions within each cluster [44,45]. Then, all genes within a
cluster are annotated with the overrepresented functions of that cluster. An alternative
is to first cluster only the genes with known functions. An averaged expression profile
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of all genes within the cluster can then be used as the representative of a cluster [4].
The gene with the unknown function can be assigned functions based on its distance
to the representative expression profiles. Conclusions from these procedures are often
unreliable: a gene may have multiple functions that may be quite distinctive; also,
genes with the same function can have quite different expression profiles. Therefore,
it is often very difficult to select representative functions from a cluster of genes.

Many unsupervised methods for functional annotation face the issue of model
selection in clustering, such as choosing the proper number of clusters, so that the
genes within the cluster have similar functions. Domain knowledge is often very
helpful in the model selection [46].

As we already mentioned, nearest-neighbor and clustering methods for assigning
functions to genes are based on assumptions that genes with similar functions will
have similar expression profiles [47]. However, this assumption is violated for more
than half of the GO terms [48]. A more appropriate approach, therefore, is to first
determine a subset of GO terms for which the assumption is valid, and use only these
GO terms in gene function annotation.

4.3.4.2 Supervised Methods for Functional Annotation Supervised meth-
ods for functional characterization involve building classification models that predict
gene functions based on gene expression profiles. A predictor for a given function is
trained to predict whether a given gene has that function or not [49]. Such a predictor
is trained and tested on a collection of genes with known functions. If testing shows
that the accuracy of the predictor is significantly higher than that for a trivial predictor,
the predictor can then be used on the uncharacterized genes to annotate them. Previ-
ous research shows that the support-vector machines (SVM) model achieves the best
overall accuracy when compared to other competing prediction methods [50]. The
SVM-based predictor can overcome some of the difficulties that are present with the
unsupervised methods. It can flexibly select the expression profile similarity measure

Case Study 4.2: Identification of GO Terms with
Conserved Expression Profiles

We applied a bootstrapping procedure to identify GO terms that have conserved gene
expression profiles in the Plasmodium data set that contains 46 arrays. Each of the 46
arrays in the Plasmodium data set measures expression levels of 3532 genes at a specific
time point over the 48-h Plasmodium falciparum intraerythrocytic developmental cycle
(IDC). The bootstrap procedure was applied to 884 GO terms that are associated with
at least two genes. For a given GO term with l associated genes, we collected their
expression profiles and calculated the average pairwise correlation coefficients ρ0. We
compared ρ0 to average expression profile correlation coefficients of randomly selected
pairs of genes. In each step of the bootstrap procedure, we randomly selected l genes
and computed their average correlation coefficient ρi. This was repeated 10,000 times
to obtain ρ1, ρ2, . . . , ρ10,000. We counted the number c of ρi that are greater than ρ0 and
calculated the bootstrap p-value as pb = c/n. If pb is smaller than 0.05, the expression
profiles of the GO term are considered to be conserved.
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Figure 4.13

The plot in the left part of Figure 4.13 shows the cumulative number of GO terms
with p-value smaller than x. Four hundred and twenty-eight (48.4 percent) of the 884 GO
terms have p-value smaller than 0.05; 199 of these are molecular function and 229 are
biological process GO terms. This result validates to a large extent the hypothesis that
genes with identical functions have similar expression profiles. However, it also reveals
that for a given microarray experiment, a large fraction of functions do not follow this
hypothesis.

Figure 4.13 also contains expression profiles of genes annotated with GO term
GO:0006206 (pyrimidine base metabolism; bootstrap p-value 0) and its representative
expression profile.

and handle a large feature space. The unresolved problem of the supervised approach
is the presence of multiple classes and class imbalance; a function can be associated
with only a few genes, and there are several thousand functions describing genes in
a given microarray data set.

4.3.5 Correlations Among Gene Expression Profiles

A major challenge in biological research is to understand the metabolic pathways and
mechanisms of biological systems. The identification of correlated gene expressions
in a microarray experiment is aimed at facilitating this objective. Several methods for
this task are described in this section.

4.3.5.1 Main Methods for Clustering of Gene Expression Profiles Hier-
archical clustering and K-means clustering are two of the most popular approaches
for the clustering of microarray data. The hierarchical clustering approach used with
microarray data is the bottom-up approach. This approach begins with single-member
clusters, and small clusters are iteratively grouped together to form larger clusters,
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FIGURE 4.14 Visualization of hierarchically clustered data with identified functional cor-
relation. The Plasmodium data set was clustered using hierarchical clustering. Rows of pixels
represent genes’ expression levels at different time points. Columns of pixels represent the
expression level of all genes in one chip at one given time point in the IDC process, and their
order corresponds to the order of points in time. The cluster hierarchy tree is on the left side.
The image contains clearly visible patterns of dark gray and light gray pixels that correspond to
upregulated and downregulated expression levels, respectively. A domain expert investigated
the higher level nodes in the clustering tree, examining the similarity of functions in each clus-
ter for genes with known functions. Five examples of clusters for which the majority of genes
are annotated with a common function are marked using the shaded bars and the names of the
common functions. These clusters can be used to infer the functions of the genes within the
same cluster whose function is unknown or unclear.
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until a single cluster containing the whole set is obtained. In each iteration, the two
clusters that are chosen for joining are two clusters with the closest distance to each
other. The result of hierarchical clustering is a binary tree; descendants of each clus-
ter in that tree are the two subclusters of which the cluster consists. The distance
between two clusters in the tree reflects their correlation distance. Hierarchical clus-
tering provides a visualization of the relationships between gene expression profiles
(see Fig. 4.14).

K-means clustering groups genes into a prespecified number of clusters by mini-
mizing the distances within each cluster and maximizing the distances between clus-
ters. TheK-means clustering method first chooses k genes called centroids (which can
be done randomly or by making sure that their expression profiles are very different).
It then examines all gene expression profiles and assigns each of these to the cluster
with the closest centroid. The position of a centroid is recalculated each time a gene
expression profile is added to the cluster by averaging all profiles within the cluster.
This procedure is iteratively repeated until stable clusters are obtained, and no gene
expression profiles switch clusters between iterations. The K-means method is com-
putationally less demanding than hierarchical clustering. However, an obvious disad-
vantage is the need for the selection of parameter k, which is generally not a trivial task.

4.3.5.2 Alternative Clustering Methods for Gene Expression Profiles
Alternative clustering methods that are used with gene expression data include the
self-organizing map (SOM) and random forest (RF) clustering.

An SOM is a clustering method implemented with a neural network and a special
training procedure. The comparison of SOM with hierarchical clustering methods
shows that an SOM is superior in both robustness and accuracy [51]. However, as
K-means clusters, an SOM requires the value of parameter k to be prespecified.

RF clustering is based on an RF predictor that is a collection of individual classifi-
cation trees. After an RF is constructed, the similarity measure between two samples
can be defined as the number of times a tree predictor places the two samples in the
same terminal node. This similarity measure can be used to cluster gene expression
data [52]. It was demonstrated that the RF-based clustering of gene profiles is superior
compared to the standard Euclidean distance measure [53].

Other advanced techniques proposed for clustering gene expression data include
the mixture model approach [54], the shrinkage-based similarity procedure [55], the
kernel method [56], and bootstrapping analysis [57].

4.3.5.3 Distance of Gene Expression Profile Clusters There are many
ways to measure the distance between gene expression profiles and clusters of gene
expression profiles. The Pearson correlation coefficient and the Euclidean distance
are often used for well-normalized microarray data sets. However, microarray gene
expression profiles contain noise and outliers. Nonparametric distance measures pro-
vide a way to avoid these problems. For instance, the Spearman correlation replaces
gene expression values with their ranks before measuring the distance.

Average linkage, single linkage, and complete linkage are commonly used to
measure the distances between clusters of gene expression profiles. Average linkage
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FIGURE 4.15 Cluster distance definitions. Hollow dots represent data points, and the two
circles represent two distinct clusters of data points, while black dots are weighted centers of
data points in each cluster. The bottom line illustrates the single linkage method of cluster
distance, the top line illustrates the complete linkage method, and the middle line represents
the average linkage method.

computes the distances between all pairs of gene expression profiles from two clus-
ters and the average of these distances becomes the distance between the clusters.
Single linkage defines the distance between two clusters as the distance between the
two closest representatives of these clusters. Complete linkage defines the distance
between two clusters as the distance between the two farthest representatives. The
difference between these three definitions is illustrated in Figure 4.15.

4.3.5.4 Cluster Validation Regardless of the type of clustering, all obtained
clusters need to be evaluated for biological validity before proceeding to further
analysis. Visual validation is aimed at determining whether there are outliers in clus-
ters or whether the gene expression profiles within each cluster are correlated to each
other. If a problem is detected by validation, clusters are often refined by adjusting the
number of clusters (parameter k), the distance measuring method, or even by repeat-
ing the clustering with a different clustering method. Microarray data sets are highly
dimensional. It is often difficult to provide a clear view of gene expression profile
types within each cluster. By reducing the dimension of the microarray data set to
two or three dimensions, analysis can be simplified and a visual overview of the data
can be generated, which may provide useful information on gene expression profile
clustering. Such a dimensionality reduction is typically achieved with principal com-
ponent analysis (PCA). This technique finds the orthogonal components (also called
principal components) of the input vectors and retains two or three orthogonal com-
ponents with the highest variance. A visual examination of the projected clusters can
help determine an appropriate number of distinct clusters for clustering as illustrated
in Figure 4.16.
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FIGURE 4.16 Principal component analysis. This scatterplot was obtained by plotting the
first and the second principal component of the first 100 genes in an acute leukemia data set.
It illustrates the benefit of PCA for visualizing data. There are apparently two to four clusters
(depending on the criteria of separation of clusters), which is valuable information for the
choice of parameter k in many clustering algorithms. A possible clustering to two groups of
genes is shown as light gray and dark gray points, while black and lighter gray (top right) points
can be discarded as outliers.

4.3.6 Biomarker Identification

One major challenge of microarray data analysis is sample classification. Examples
of classification include the separation of people with and without CFS, or the clas-
sification of cancer patients into prespecified subcategories. Classifier construction
includes the selection of the appropriate prediction model and the selection of fea-
tures. Feature selection is a technique whereby genes with the most useful expression
levels for classification are selected. Such genes can also be useful as biomarkers that
in turn can be used for practical and cost-effective classification systems.

4.3.6.1 Classical Feature Selection Methods Forward feature selection is an
iterative process. It starts with an empty set of genes and at each iteration step adds the
most informative of the remaining genes based on their ability to discriminate different
classes of samples. This process is repeated until no further significant improvement
of classification accuracy can be achieved. A reverse procedure, backward feature
elimination, is also widely applied. It begins by using all the available genes and
continues by dropping the least important genes until no significant improvement can
be achieved.
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In the filter feature selection methods, various statistical measures are used to rank
genes by their discriminative powers. Successful measures include using the t-test,
the chi-square test, information gain, and the Kruskal–Wallis test.

A recently proposed biomarker identification approach involves clustering gene
expression profiles [58]. In such an approach, genes are clustered based on their
microarray expression profiles. Then, within each cluster, the most representative gene
is selected (the representative gene could be the gene closest to the mean or median
expression value within the cluster). The representative genes are collected and used as
selected features to build a predictor for classification of unknown samples. However,
selected sets of genes often lack biological justification and their size is usually too
large for experimental validation.

4.3.6.2 Domain Knowledge-Based Feature Selection A recently proposed
feature selection approach exploits the biological knowledge of gene functions as
a criterion for selection [59]. The underlying hypothesis for this approach is that
the difference between samples lies in a few key gene functions. Genes annotated
with those key functions are likely to be very useful for classification. To use this
observation, a statistical test is applied to microarray data in order to rank genes by
their p-values and generate a subset of significant genes. Selected genes are compared
to the overall population in order to identify the most significant function. Only
genes associated with the most significant function are selected for classification.
This approach results in a small set of genes that provide high accuracy (see the case
study below).

Case Study 4.3: Feature Selection for Classification

The CFS data set contains 39 test samples from patients clinically diagnosed with CFS
and 40 control samples from subjects without CFS (nonfatigue, NF). The objective is to
develop a predictor that classifies new subjects either as CFS or NF based on their gene
expressions. Each microarray measures 20,160 genes.
We first used the Kruskal–Wallis test with p-value threshold of 0.05 for the initial gene
selection. For each GO term, we count how many genes in the original set of 20,160 genes,
as well as how many of the selected, are annotated with it. We then use the hypergeometric
test to evaluate whether the representation of this GO term in the selected subset of genes
is significantly greater than that in the original set of genes. We rank GO terms by their
p-values and find the most overrepresented (those with smallest p-value) GO term. We
narrow the selection of genes to include only the genes that are the most overrepresented
GO term. We then select these genes as features for classification. Feature selection
methods were tested using a leave-one-out cross-validation procedure. The prediction
model used in all experiments was an SVM with quadratic kernel k(x, y) = (C + xTy)2.

The Kruskal–Wallis test with a threshold of 0.05 produced the initial selection of 1296
genes. The overall accuracy of prediction with this feature selection method was 53
percent, which is barely better than the 50 percent accuracy of a random predictor. The
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proposed procedure narrowed the selection down to 17 genes. Although the number of
features was reduced by almost two orders of magnitude, the overall accuracy of prediction
with this smaller feature set improved to 72 percent. The GO term that was most often
selected was GO:0006397 (mRNA processing). Interestingly, mRNA processing was
verified by unrelated biological research as very important for CFS diagnosis [60]. We
can compare the accuracy of the obtained predictor (72 percent) to the accuracy of a
predictor with 17 features with the smallest p-values selected by the Kruskal–Wallis test,
which was close to 50 percent; in other words, the predictor was not better than a trivial
random predictor.

4.3.7 Conclusions

Microarray data analysis is a significant and broad field with many unresolved prob-
lems. This chapter briefly introduces some of the most commonly used methods for
the analysis of microarray data, but many topics still remain. For example, microarray
data can be used to construct gene networks, which are made up of links that represent
relationships between genes, such as coregulation. Computational models for gene
networks include Bayesian networks [61], Boolean networks [62], Petri nets [63],
graphical Gaussian models [64], and stochastic process calculi [65].

Microarrays can also be studied in conjunction with other topics, such as
microarray-related text mining, microarray resources and database construction, drug
discovery, drug response study, and design clinical trials.

Several other types of microarrays are used in addition to gene expression mi-
croarrays: protein microarrays (including antibody microarrays), single-nucleotide
polymorphism (SNP) microarrays, and chemical compound microarrays. Other ex-
perimental technologies, such as mass spectrometry, also produce results at a high
throughput rate. Methods for the analysis of these various types of biological data
have a certain degree of similarity with microarray data analysis. For example, meth-
ods used for the identification of differentially expressed genes are similar to the
methods used for the identification of biomarkers in mass spectrometry data. Over-
all, there are many challenging open topics on analyzing high throughput biological
data that can provide research opportunities for the data mining and machine learning
community. Progress toward solving these challenges and the future directions of
research in this area are discussed at various bioinformatics meetings; these include a
specialized International Conference for the Critical Assessment of Microarray Data
Analysis (CAMDA) that was established in 2000, and that was aimed at the assess-
ment of the state-of-the-art methods in large-scale biological data mining. CAMDA
provided standard data sets and put an emphasis on various challenges of analyzing
large-scale biological data: time series cell cycle data analysis [45] and cancer sample
classification using microarray data [3], functional discovery [42] and drug response
[66], microarray data sample variance [67], integration of information from different
microarray lung cancer data sets [68–71], the malaria transcriptome monitored by
microarray data [4], and integration of different types of high throughput biological
data related to CFS.
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CHAPTER 5

Algorithms of Reaction–Diffusion
Computing

ANDREW ADAMATZKY

We give a case study introduction to the novel paradigm of wave-based computing
in chemical systems. We show how selected problems and tasks of computational
geometry, robotics, and logics can be solved by encoding data in configuration of
chemical medium’s disturbances and programming wave dynamics and interaction.

5.1 INTRODUCTION

It is usually very difficult, and sometimes impossible, to solve variational problems
explicitly in terms of formulas or geometric constructions involving known simple el-
ements. Instead, one is often satisfied with merely proving the existence of a solution
under certain conditions and afterward investigating properties of the solution. In many
cases, when such an existence proof turns to be more or less difficult, it is stimulat-
ing to realize the mathematical conditions of the problem by corresponding physical
devices, or rather, to consider mathematical problem as an interpretation of a physical
phenomenon. The existence of the physical phenomenon then represents the solution of
the mathematical problem [16].

In 1941, in their timeless treatise Courant and Robbins [16] discussed one of the
“classical examples of nonclassical computing”— an idea of physics-based compu-
tation, traced back to 1800s where Plateau experimented with the problem on cal-
culation of the surface of smallest area bounded by a given closed contour in space.
We will rephrase this as follows. Given a set of planar points, connect the points by a
graph with minimal sum of edge lengths (it is allowed to add more points; however,
a number of additional points should be minimal). The solution offered is extraordi-
narily simple and hence nontrivial. Mark given planar points on a flat surface. Insert
pins in the points. Place another sheet on top of the pins. Briefly immerse the device
in soap solution. Wait till the soap film dries. Record (draw, make a photo) topology
of dried soap film. This represents minimal Steiner tree spanning given planar points.

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.
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FIGURE 5.1 Soap computer constructs spanning tree of four points [16].

An example of the computing device is shown in Figure 5.1. Owing to surface
tension the soap film between the pins, representing points, will try to minimize total
surface area. The shrinking can be constrained by a fixed pressure, assuming that the
foam film is a cross section of a three-dimensional foam. A length-minimizing curve
enclosing a fixed-area region consists of circular arcs of positive outward curvature
and line segments [41]. Curvature of the arcs is inversely proportional to pressure. By
gradually increasing pressure (Fig. 5.2) we transform arcs to straight lines, and thus
spanning tree is calculated.

In the nineteenth century many of the fundamental theorems of function theory were dis-
covered by Riemann by thinking of simple experiments concerning the flow of electricity
in thin metallic sheets [16].

At that time ideas on unconventional, or nature-inspired, computing were flourishing
as ever, and Lord Kelvin made his famous differential analyzer, a typical example
of a general-purpose analog computer generating functions of the time measure in
volts [37]. He wrote in 1876

FIGURE 5.2 Several steps of spanning tree constructions by soap film [41].
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FIGURE 5.3 An electrical machine that computes connectivity of graph edges [50].

It may be possible to conceive that nature generates a computable function of a real
variable directly and not necessarily by approximation as in the traditional approach [37].

The main idea of a field computing on graphs and networks lies in the application of
a voltage to a graph, where edges and nodes are assumed to have certain resistance, and
measuring resistance or capacities of the networks. This technique was used, at least
implicitly, from the beginning of the century or even early but the earliest publication
with the emphasis on the algorithmic part is the paper by Vergis et al. [50]. They solve
a well-known (s, t)-connectivity problem by constructing a virtual electrical model
of the given graph (Fig. 5.3): Given two vertexes s and t of a graph, decide whether
there is a path from s to t. This is solved as follows. Put wires instead of edges and
connect them at the nodes. Apply a voltage between the nodes s and t. Measure the
current. If near null current is recorded, there is no path between s and t.

The method works on the assumption that resistance is proportional only to the
length of a wire; therefore, if there is no path between s and t then resistance is
nearly infinite high resistance, if there is no path between vs and vt . If lengths of
wires grow linearly with the number of graph nodes, the total capacity of the voltage
source and total resistance have the upper boundO(|E2|), which leads to the total size
and power consumption O(|E4|); that is, the electric machine operates polynomial
resources [50].

Surface tension, propagating waves, and electricity have been principal “engines”
of nature-inspired computers for over two centuries; even so they never were com-
bined together till Kuhnert’s pioneer work on image transformations in light-sensitive
Belousov–Zhabotinsky system [27]. A reaction–diffusion computer is a spatially ex-
tended chemical system, which processes information using interacting growing pat-
terns, and excitable and diffusive waves. In reaction–diffusion processors, both the
data and the results of the computation are encoded as concentration profiles of the
reagents. The computation is performed via the spreading and interaction of wave
fronts.

The reaction–diffusion computers are parallel because myriads of their
microvolumes update their states simultaneously, and molecules diffuse and react
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in parallel. Liquid-phase chemical media are wet analogs of massive parallel
(millions of elementary processors in a small chemical reactor) and locally connected
(every microvolume of the medium changes its state depending on the states of its
closest neighbors) processors. They have parallel inputs and outputs; for example,
optical input is parallel because of the control of initial excitation dynamics by
illumination masks while, output is parallel because concentration profile repre-
senting results of computation is visualized by indicators. The reaction–diffusion
computers are fault tolerant and capable of automatic reconfiguration, namely if we
remove some quantity of the computing substrate, the topology is restored almost
immediately.

Reaction–diffusion computers are based on three principles of physics-inspired
computing. First, physical action measures amount of information: we exploit active
processes in nonlinear systems and interpret dynamics of the systems as computation.
Second, physical information travels only finite distance: this means that computation
is local and we can assume that the nonlinear medium is a spatial arrangement of
elementary processing units connected locally; that is, each unit interacts with closest
neighbors. Third, nature is governed by waves and spreading patterns: computation
is therefore spatial.

Reaction–diffusion computers give us best examples of unconventional computers;
their features follow Jonathan Mills’ classification of convention versus unconven-
tional [32]: wetware, nonsilicon computing substrate; parallel processing; compu-
tation occurring everywhere in substrate space; computation is based on analogies;
spatial increase in precision; holistic and spatial programming; visual structure; and
implicit error correcting.

A theory of reaction–diffusion computing was established and a range of practi-
cal applications are outlined in the work by Adamatzky [1]; recent discoveries are
published in a collective monograph [5]. The chapter in no way serves as a substitute
for these books but rather an introduction to the field and a case study of several
characteristic examples.

The chapter is populated with cellular automaton examples of reaction–diffusion
processes. We have chosen cellular automatons to study computation in reaction–
diffusion media because cellular automatons can provide just the right fast prototypes
of reaction–diffusion models. The examples of “best practice” include models of
BZ reactions and other excitable systems [21,31], chemical systems exhibiting Tur-
ing patterns [54,56,58], precipitating systems [5], calcium wave dynamics [55], and
chemical turbulence [23]. We therefore consider it reasonable to interpret the cellular
automaton local update rules in terms of reaction–diffusion chemical systems and
reinterpret the cellular automaton rules in novel designs of the chemical laboratory
reaction–diffusion computers.

Cellular automaton models of reaction–diffusion and excitable media capture es-
sential aspects of the natural media in a computationally tractable form. A cellular
automaton is a—in our case two-dimensional—lattice of finite automatons, or an ar-
ray of cells. The automatons evolve in a discrete time and take their states from a finite
set. All automatons of the lattice update their states simultaneously. Every automaton
calculates its next state depending on the states of its closest neighbors (throughout
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the chapter we assume every nonedge cell x of a cellular automaton updates its state
depending on the states of its eight closest neighbors).

The best way to learn riding bicycle is to ride a bicycle. Therefore, instead of
wasting time on pointless theoretical constructions, we immediately describe and
analyze working reaction–diffusion algorithms for image processing, computational
geometry, logical and arithmetical circuits, memory devices, path planning and robot
navigation, and control of massive parallel actuators.

Just few words of warning—when thinking about chemical algorithms some of
you may realize that diffusive and phase waves are pretty slow in physical time. The
sluggishness of computation is the only point that may attract criticism to reaction–
diffusion chemical computers. There is however a solution—to speed up we are
implementing the chemical medium in silicon, microprocessor LSI analogs of
reaction–diffusion computers [11]. Further miniaturization of the reaction–diffusion
computers can be reached when the system is implemented as a two-dimensional
array of single-electron nonlinear oscillators diffusively coupled to each other [12].
Yet another point of developing reaction–diffusion computers is to design embedded
controllers for soft-bodied robots, where usage of conventional silicon materials
seem to be inappropriate.

5.2 COMPUTATIONAL GEOMETRY

In this section we discuss “mechanics” of reaction–diffusion computing on example
of plane subdivision. Let P be a nonempty finite set of planar points. A planar Voronoi
diagram of the set P is a partition of the plane into such regions that for any element
of P, a region corresponding to a unique point p contains all those points of the
plane that are closer to p than to any other node of P. A unique region vor(p) = {z ∈
R2 : d(p, z) < d(p,m)∀m ∈ R2, m �= z} assigned to point p is called a Voronoi cell
of the point p. The boundary of the Voronoi cell of a point p is built of segments
of bisectors separating pairs of geographically closest points of the given planar set
P. A union of all boundaries of the Voronoi cells determines the planar Voronoi
diagram: VD(P) = ∪p∈P∂ vor(p). A variety of Voronoi diagrams and algorithms of
their construction can be found in the work by Klein [26].

The basic concept of constructing Voronoi diagrams with reaction-diffusion sys-
tems is based on a very simple intuitive technique for detecting the bisector points
separating two given points of the set P. If we drop reagents at the two data points,
the diffusive waves, or phase waves if computing substrate is active, spread outward
from the drops with the same speed. The waves travel the same distance from the
sites of origination before they meet one another. The points, where the waves meet,
are the bisector points. This idea of a Voronoi diagram computation was originally
implemented in cellular automaton models and in experimental parallel chemical
processors (see extensive bibliography in the works by Adamatzky et al. [1,5]).

Assuming that the computational space is homogeneous and locally connected,
and every site (microvolume of the chemical medium or cell of the automaton array)
is coupled to its closest neighbors by the same diffusive links, we can easily draw
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a parallel between distance and time, and thus put our wave-based approach into
action. In cellular automaton representation of physical reality, cell neighborhood u
determines that all processes in the cellular automaton model are constrained to the
discrete metric L∞. So, when studying automaton models we should think rather
about discrete Voronoi diagram than its Euclidean representation. Chemical labora-
tory prototypes of reaction–diffusion computers do approximate continuous Voronoi
diagram as we will see further.

A discrete Voronoi diagram can be defined on lattices or arrays of cells, for example,
a two-dimensional lattice Z2. The distance d(·, ·) is calculated not in Euclidean but in
one of the discrete metrics, for example,L1 andL∞. A discrete bisector of nodes x and
y of Z2 is determined as B(x, y) = {z ∈ Z2 : d(x, z) = d(y, z)}. However, following
such definition we sometimes generate bisectors that fill a quarter of the lattices
or produce no bisector at all [1]. If we want the constructed diagrams be closer to
the real world, then we could redefine discrete bisector as follows: B(x, y) = {z ∈
Z2 : |d(x, z)− d(y, z)| ≤ 1}. The redefined bisector will comprise edges of Voronoi
diagrams constructed in discrete, cellular automaton models of reaction–diffusion
and excitable media.

Now we will discuss several versions of reaction–diffusion wave-based construc-
tion of Voronoi diagrams, from a naı̈ve model, where the number of reagents grow
proportionally to the number of data points, to a minimalist implementation with just
one reagent and one substrate [1].

Let us start with O(n)-reagent model. In a naı̈ve version of reaction–diffusion
computation of a Voronoi diagram, one needs two reagents and a precipitate to mark
a bisector separating two points. Therefore, n+ 2 reagents, including precipitate and
substrate, are required to approximate a Voronoi diagram of n points. When place n
unique reagents on n points of the given data set P, waves of these reagents spread
around the space and interact with each other where they meet. When at least two
different reagents meet at the same or adjacent sites of the space, they react and form a
precipitate—sites that contain the precipitate represent edges of the Voronoi cell, and
therefore constitute the Voronoi diagram. In “chemical reaction” equations, the idea
looks as follows: α and β are different reagents and # is a precipitate: α+ β→ #.
This can be converted to cellular automaton interpretation as follows:

xt+1 =

⎧⎪⎨⎪⎩
ρ, if xt = • and�(x)t ⊂ {ρ, •},
#, if xt �= # and |�(x)t/#| > 1,

xt, otherwise,

where • is a resting state (cell in this state does not contain any reagents), ρ ∈ R is
a reagent from the set R of n reagents, and �(x)t = {yt : y ∈ u(x)} characterizes the
reagents that are present in the local neighborhood u(x) of the cell x at time step t.

The first transition of the above rule symbolizes diffusion. A resting cell takes
the state ρ if only this reagent is present in the cell’s neighborhood. If there are two
different reagents in the cell’s neighborhood, then the cell takes the precipitate state
#. Diffusing reagents halt because the formation of precipitate reduces the number
of “vacant” resting cells. Precipitate does not diffuse. Cell in state # remains in this
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FIGURE 5.4 Computation of a Voronoi diagram in a cellular automaton model of a chem-
ical processor with O(n) reagents. Precipitate is shown in black (a) t = 1; (b) t = 3; (c) t = 5;
(d) t = 6; (e) t = 7; (f ) t = 8; (g) t = 10; (h) t = 12; (i) t = 15.

indefinitely. An example of a cellular automaton simulation ofO(n)-reagent chemical
processor is shown in Figure 5.4.

The O(n)-reagent model is demonstrative; however, it is computationally inef-
ficient. Clearly, we can reduce number of reagents to four—using map coloring
theorems—but preprocessing time will be unfeasibly high. The number of participat-
ing reagents can be sufficiently reduced to O(1) when the topology of the spreading
waves is taken into account [1].

Now we go from one extreme to another and consider a model with just one reagent
and a substrate. The reagent α diffuses from sites corresponding two point of a data
planar set P. When two diffusing wave fronts meet a superthreshold concentration of
reagents, they do not spread further. A cellular automaton model represents this as
follows.

Every cell has two possible states: resting or substrate state • and reagent state
α. If the cell is in state α, it remains in this state indefinitely. If the cell is in state
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• and between one and four of its neighbors are in state α, then the cell takes the
state α. Otherwise, the cell remains in the state •— this reflects the “superthreshold
inhibition” idea. A cell state transition rule is follows:

xt+1 =
{
α, if xt = • and 1 ≤ σ(x)t ≤ 4,

xt, otherwise,

where σ(x)t = |y ∈ u(x) : yt = α|.
Increasing number of reagents to two (one reagent and one precipitate) would

make life easy. A reagent β diffuses on a substrate, from the initial points (drop
of reagent) of P, and forms a precipitate in the reaction mβ→ α, where 1 ≤
m ≤ 4.

FIGURE 5.5 An example of Voronoi diagram computing in an automaton model of reaction–
diffusion medium with one reagent and one substrate. Reactive parts of wave fronts are shown
in black. Precipitate is gray and edges of Voronoi diagram are white (a) t = 1; (b) t = 3;
(c) t = 5; (d) t = 7; (e) t = 9; (f ) t = 11; (g) t = 13; (h) t = 15; (i) t = 17.
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FIGURE 5.6 Planar Voronoi diagram computed in (a) cellular automaton and (b) palladium
reaction–diffusion chemical processor [5].

Every cell takes three states: • (resting cell, no reagents), α (e.g., colored precipi-
tate), and β (reagent). The cell updates its states by the rule:

xt+1 =

⎧⎪⎨⎪⎩
β, if xt = • and 1 ≤ σ(x)t ≤ 4,

α, if xt = β and 1 ≤ σ(x)t ≤ 4,

xt, otherwise,

where σ(x)t = |y ∈ u(x) : yt = β|.
An example of a Voronoi diagram computed in an automaton model of a reaction–

diffusion medium with one reagent and one substrate is shown in Figure 5.5.
By increasing number of cell state and enlarging cell neighborhood in cellular au-

tomaton model we can produce more realistic—almost perfectly matching outcomes
of chemical laboratory experiments—Voronoi diagrams (Fig. 5.6).

Let us consider the following model. Cells of the automaton take state from interval
[ρ, α], where ρ is a minimum refractory value and α is maximum excitation value;
ρ = −2 and α = 5 in our experiments. Cell x’s state transitions are strongly deter-
mined by normalized local excitation σtx =

∑
y∈ux (y

t/
√

(|ux|)). Every cell x updates
its state at time t + 1, depending on its state xt and state utx of its neighborhood ux—in
experiments we used 15× 15 cell neighborhood—as follows:

xt+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α, if xt = 0 and σtx ≥ α,
0, if xt = 0 and σtx < α,

xt + 1, if xt < 0,

xt − 1, if xt > 1,

ρ, if xt = 1.
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FIGURE 5.7 Skeleton—internal Voronoi diagram—of planar T-shape constructed in multi-
state cellular automaton model (a) and chemical laboratory Prussian blue reaction–diffusion
processor (b) [10].

This rule represents spreading of “excitation,” or simply phase wave fronts, in com-
putational space, interaction, and annihilation of the wave fronts. To allow the
reaction–diffusion computer “memorize” sites of wave collision, we add a precip-
itate state ptx. Concentration ptx of precipitate at site x at moment t is calculated as
pt+1
x ∼ |{y ∈ ux : yt = α}|.

As shown in Figure 5.7, the model represents cellular automaton Voronoi diagrams
in “unlike phase” with experimental chemical representation of the diagram. Sites of
higher concentration of precipitate in cellular automaton configurations correspond
to sites with lowest precipitate concentration in experimental processors.

5.3 LOGICAL UNIVERSALITY

Certain families of thin-layer reaction–diffusion chemical media can implement
sensible transformation of initial (data) spatial distribution of chemical species con-
centrations to final (result) concentration profile [1,45]. In these reaction–diffusion
computers, a computation is realized via spreading and interaction of diffusive or
phase waves. Specialized, intended to solve a particular problem, experimental chem-
ical processors implement basic operations of image processing [5,28,39,40], com-
putation of optimal paths [5,9,46], and control of mobile robots [5].

A device is called computationally universal if it implements a functionally com-
plete system of logical gates, for example, a tuple of negation and conjunction, in its
space–time dynamics.

A number of computationally universal reaction–diffusion devices were imple-
mented: the findings include logical gates [42,48] and diodes [17,29,34] in Belousov-
Zhabotinsky (BZ) medium, and xor gate in palladium processor [2]. All the known
so far experimental prototypes of reaction–diffusion processors exploit interaction of
wave fronts in a geometrically constrained chemical medium; that is, the computa-
tion is based on a stationary architecture of medium’s inhomogeneities. Constrained
by stationary wires and gates, chemical universal processors pose a little computa-
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tional novelty and none dynamical reconfiguration ability because they simply imitate
architectures of silicon computing devices.

Experimental prototypes of reaction–diffusion processors exploit interaction of
wave fronts in a geometrically constrained chemical medium; that is, the computation
is based on a stationary architecture of medium’s inhomogeneities. Constrained by
stationary wires and gates reaction–diffusion chemical universal processors pose a lit-
tle computational novelty and no dynamic reconfiguration ability because they simply
imitate architectures of conventional silicon computing devices. To appreciate in full
massive parallelism of thin-layer chemical media and to free the chemical processors
from limitations of fixed computing architectures, we adopt an unconventional
paradigm of architectureless, or collision-based, computing. An architecture-based,
or stationary, computation implies that a logical circuit is embedded into the system
in such a manner that all elements of the circuit are represented by the system’s
stationary states. The architecture is static. If there is any kind of “artificial” or
“natural” compartmentalization, the medium is classified as an architecture-based
computing device. Personal computers, living neural networks, cells, and networks
of chemical reactors are typical examples of architecture-based computers.

A collision-based, or dynamical, computation employs mobile compact finite pat-
terns, mobile self-localized excitations or simply localizations, in active nonlinear
medium. Essentials of collision-based computing are the following. Information val-
ues (e.g., truth values of logical variables) are given by either absence or presence
of the localizations or other parameters of the localizations. The localizations travel
in space and do computation when they collide with each other. There are no prede-
termined stationary wires; a trajectory of the traveling pattern is a momentary wire.
Almost any part of the medium space can be used as a wire. Localizations can col-
lide anywhere within a space sample; there are no fixed positions at which specific
operations occur, nor location specified gates with fixed operations. The localizations
undergo transformations, form bound states, annihilate, or fuse when they interact
with other mobile patterns. Information values of localizations are transformed as a
result of collision and thus a computation is implemented [3].

The paradigm of collision-based computing originates from the technique of prov-
ing computational universality of game of life [14], conservative logic and billiard
ball model [20], and their cellular automaton implementations [30].

Solitons, defects in tubulin microtubules, excitons in Scheibe aggregates, and
breather in polymer chains are most frequently considered candidates for a role of
information carrier in nature-inspired collision-based computers (see overview in the
work by Adamatzky [1]). It is experimentally difficult to reproduce all these artifacts
in natural systems; therefore, existence of mobile localizations in an experiment-
friendly chemical media would open new horizons for fabrication of collision-based
computers.

The basis for material implementation of collision-based universality of reaction–
diffusion chemical media is discovered by Sendina-Nadal et al. [44]. They experi-
mentally proved the existence of localized excitations—traveling wave fragments that
behave like quasiparticles—in photosensitive subexcitable Belousov–Zhabotinsky
medium.
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We show how logical circuits can be fabricated in a subexcitable BZ medium
via collisions between traveling wave fragments. While implementation of collision-
based logical operations is relatively straightforward [5], more attention should be
paid to control of signal propagation in the homogeneous medium. It has been demon-
strated that applying light of varying intensity we can control excitation dynamics in
Belousov–Zhabotinsky medium [13,22,36], wave velocity [47], and pattern forma-
tion [51]. Of particular interest are experimental evidences of light-induced back-
propagating waves, wave front splitting, and phase shifting [59]; we can also manip-
ulate medium’s excitability by varying intensity of the medium’s illumination [15].
On the basis of these facts we show how to control signal wave fragments by varying
geometric configuration of excitatory and inhibitory segments of impurity reflectors.

We built our model on a two-variable Oregonator equation [19,49] adapted to a
light-sensitive BZ reaction with applied illumination [13]:

∂u

∂t
= 1

ε

(
u− u2 − (fv+ φ)

u− q
u+ q

)
+Du∇2u,

∂v

∂t
= u− v,

where variables u and v represent local concentrations of bromous acid (HBrO2) and
the oxidized form of the catalyst ruthenium (Ru(III)), respectively, ε sets up a ratio
of timescale of variables u and v, q is a scaling parameter depending on reaction
rates, f is a stoichiometric coefficient, and φ is a light-induced bromide production
rate proportional to intensity of illumination (an excitability parameter—moderate
intensity of light will facilitate excitation process, higher intensity will produce ex-
cessive quantities of bromide which suppresses the reaction). We assumed that the
catalyst is immobilized in a thin layer of gel; therefore, there is no diffusion term
for v. To integrate the system we used the Euler method with five-node Laplacian
operator, time step�t = 10−3, and grid point spacing�x = 0.15, with the following
parameters: φ = φ0 + A/2, A = 0.0011109, φ0 = 0.0766, ε = 0.03, f = 1.4, and
q = 0.002. Chosen parameters correspond to a region of “higher excitability of the
subexcitability regime” outlined in the work by Sedina-Nadal et al. [44] (see also how
to adjust f and q in the work by Qian and Murray [38]) that supports propagation
of sustained wave fragments (Fig. 5.8a). These wave fragments are used as quanta of
information in our design of collision-based logical circuits. The waves were initi-
ated by locally disturbing initial concentrations of species; for example, 10 grid sites
in a chain are given value u = 1.0 each; this generated two or more localized wave
fragments, similarly to counterpropagating waves induced by temporary illumina-
tion in experiments [59]. The traveling wave fragments keep their shape for around
4× 103–104 steps of simulation (4–10 time units), then decrease in size and vanish.
The wave’s lifetime is sufficient, however, to implement logical gates; this also allows
us not to worry about “garbage collection” in the computational medium.

We model signals by traveling wave fragments [13,44]: a sustainably propagating
wave fragment (Fig. 5.8a) represents true value of a logical variable corresponding
to the wave’s trajectory (momentarily wire).
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FIGURE 5.8 Basic operations with signals. Overlay of images taken every 0.5 time units.
Exciting domains of impurities are shown in black; inhibiting domains of impurities are shown
in gray. (a) Wave fragment traveling north. (b) Signal branching without impurities: a wave
fragment traveling east splits into two wave fragments (traveling southeast and northeast) when
it collides with a smaller wave fragment traveling west. (c) Signal branching with impurity:
wave fragment traveling west is split by impurity (d) into two waves traveling northwest and
southwest. (e) Signal routing (U-turn) with impurities: a wave fragment traveling east is routed
north and then west by two impurities. (f ) An impurity reflector consists of inhibitory (gray)
and excitatory (black) chains of grid sites.

To demonstrate that a physical system is logically universal, it is enough to im-
plement negation and conjunction or disjunction in spatiotemporal dynamics of the
system. To realize a fully functional logical circuit, we must also know how to op-
erate input and output signals in the system’s dynamics, namely to implement signal
branching and routing; delay can be realized via appropriate routing.

We can branch a signal using two techniques. First, we can collide a smaller
auxiliary wave to a wave fragment representing the signal, the signal wave will split
then into two signals (these daughter waves shrink slightly down to stable size and
then travel with constant shape further 4× 103 time steps of the simulation) and the
auxiliary wave will annihilate (Fig. 5.8b).

Second, we can temporarily and locally apply illumination impurities on a signal’s
way to change properties of the medium and thus cause the signal to split (Fig. 5.8c
and d). We must mention, it was already demonstrated in the work by Yoneyama [59],
that wave front influenced by strong illumination (inhibitory segments of the impurity)
splits and its ends do not form spirals, as in typical situations of excitable media.
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FIGURE 5.9 Implementation of conservative gate in Belousov–Zhabotinsky system.
(a) Elastic co-collision of two wave fragments, one traveling west and the other east. The
fragments change directions of their motion to northwest and southeast, respectively, as a re-
sult of the collision. (b) Scheme of the gate. In (a), logical variables are represented as x = 1
and y = 1.

A control impurity, or reflector, consists of a few segments of sites whose illu-
mination level is slightly above or below overall illumination level of the medium.
Combining excitatory and inhibitory segments we can precisely control wave’s tra-
jectory, for example, realize U-turn of a signal (Fig. 5.8e and f).

A typical billiard ball model interaction gate [20,30] has two inputs—x and y,
and four outputs—xy (ball x moves undisturbed in absence of ball y), xy (ball y
moves undisturbed in absence of ball x), and twice xy (balls x and y change their
trajectories when collided with each other). Such conservative interaction gate can be
implemented via elastic collision of wave fragment see Fig. 5.9.

The elastic collision is not particularly common in laboratory prototypes of chem-
ical systems; more often interacting waves either fuse or one of the waves annihilates
as a result of the collision with another wave. This leads to nonconservative version

FIGURE 5.10 Two wave fragments undergo angle collision and implement interaction gate
〈x, y〉 → 〈xy, xy, xy〉. (a) In this example x = 1 and y = 1, both wave fragments are present
initially. Overlay of images taken every 0.5 time units. (b) Scheme of the gate. In upper-left
and bottom-left corners of (a) we see domains of wave generation two echo wave fragments
are also generated; they travel outward gate area and thus do not interfere with computation.
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of the interaction gate with two inputs and three outputs, that is, just one xy output
instead of two. Such collision gate is shown in Figure 5.10.

Rich dynamics of subexcitable Belousov-Zhabotinsky medium allows us also to
implement complicated logical operations just in a single interaction event (see details
in the work by Adamatzky et al. [5]).

5.4 MEMORY

Memory in chemical computers can be represented in several following ways. In
precipitating systems, any site with precipitate is a memory element. However, they are
not rewritable. In “classical” excitable chemical systems, like Belousov–Zhabotinsky
dynamics, one can construct memory as a configuration of sources of spiral or target
ways. We used this technique to program movement of wheeled robot controlled by
onboard chemical reactor with Belouso–Zhabotinsky system [5]. The method has the
same drawback as precipitating memory—as soon as reaction space is divided by
spiral or target waves, it is quite difficult if not impossible to sensibly move source
of the waves. This is only possible with external inhibition or complete reset of the
medium.

In geometrically constrained excitable chemical medium, as demonstrated in the
work by Motoike et al. [33], we can employ old-time techniques of storing information
in induction coils and other types of electrical circuits, that is, dynamical memory. A
ring with an input channel is prepared from reaction substrate. The ring is broken by a
small gap and the input is also separated from the ring with a gap of similar width [33];
the gaps play a role of one-way gates to prevent excitation from spreading backwards.
The waves enter the ring via input channel and travel along the ring “indefinitely”
(till substrate lasts) [33]. The approach aims to split reaction–diffusion system into
many compartments, and thus does not fit our paradigm of computing in uniform
medium.

In our search for real-life chemical systems exhibiting both mobile and stationary
localizations, we discovered a cellular automaton model [53] of an abstract activator–
inhibitor reaction–diffusion system, which ideally fits the framework of the collision-
based computing paradigm and reaction–diffusion computing. The phenomenology
of the automaton was discussed in detail in our previous work [53]; therefore, in the
present paper we draw together the computational properties of the reaction–diffusion
cellular hexagonal automaton. The automaton imitates spatiotemporal dynamics of
the following reaction equations:

A+ 6S → A A+ I → I A+ 3I → I

A+ 2I → S 2A→ I

3A→ A βA→ I

I → S.
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Each cell of the automaton takes three states—substrate S, activator A, and in-
hibitor I. Adopting formalism from [7], we represent the cell state transition rule as
a matrix M = (mij), where 0 ≤ i ≤ j ≤ 7, 0 ≤ i+ j ≤ 7, and mij ∈ {I, A, S}. The
output state of each neighborhood is given by the row index i, the number of neigh-
bors in cell state I, and column index j (the number of neighbors in cell state A). We
do not have to count the number of neighbors in cell state S, because it is given by
7− (i+ j). A cell with a neighborhood represented by indexes i and j will update
to cell state Mij that can be read off the matrix. In terms of the cell state transition
function, this can be presented as follows: xt+1 = Mσ2(x)tσ1(x)t , where σi(x)t is a sum
of cell x’s neighbors in state i, i = 1, 2, at time step t. The exact matrix structure,
which corresponds to matrixM3 in the work by Wuensche and Adamatzky [53], is as
follows:

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S A I A I I I I

S I I A I I I

S S I A I I

S I I A I

S S I A

S S I

S S

S

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The cell state transition rule reflects the nonlinearity of activator–inhibitor interac-
tions for subthreshold concentrations of the activator. Namely, for small concentration
of the inhibitor and for threshold concentrations, the activator is suppressed by the
inhibitor, while for critical concentrations of the inhibitor both inhibitor and activator
dissociate producing the substrate. In exact words,M01 = A symbolizes the diffusion
of activator A,M11 = I represents the suppression of activator A by the inhibitor I,
and Mz2 = I (z = 0, · · · , 5) can be interpreted as self-inhibition of the activator in
particular concentrations.Mz3 = A (z = 0, . . . , 4) means a sustained excitation under
particular concentrations of the activator.Mz0 = S (z = 1, . . . , 7) means that the in-
hibitor is dissociated in absence of the activator, and that the activator does not diffuse
in subthreshold concentrations. And, finally, Mzp = I,p ≥ 4 is an upper-threshold
self-inhibition.

Among nontrivial localizations, see full “catalog” in the work by Adamatzky and
Wuensche Study [8], found in the medium we selected eaters gliders G4 and G34,
mobile localizations with activator head and inhibitor tail, and eaters E6, stationary
localizations transforming gliders colliding into them, as components of the memory
unit.

The eater E6 can play the role of a six-bit flip-flop memory device. The substrate
sites (bit-down) between inhibitor sites (Fig. 5.11) can be switched to an inhibitor state
(bit-up) by a colliding glider. An example of writing one bit of information in E6 is
shown in Figure 5.12. Initially,E6 stores no information. We aim to write one bit in the
substrate site between the northern and northwestern inhibitor sites (Fig. 5.12a). We
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(a) (b) (c) (d)

FIGURE 5.11 Localizations in reaction–diffusion hexagonal cellular automaton. Cell with
inhibitor I are empty circles, and cells with activator A are black disks. (a) Stationary local-
ization eater E6, (b), (c) two forms of glider G34, and (d) glider G4 [8].

generate a gliderG34 (Fig. 5.12b and c) traveling west.G34 collides with (or brushes
past) the north edge of E6, resulting in G34 being transformed to a different type of
glider, G4 (Fig. 5.12g and h). There is now a record of the collision—evidence that
writing was successful. The structure of E6 now has one site (between the northern
and northwestern inhibitor sites) changed to an inhibitor state (Fig. 5.12j)—a bit was
saved [8].

To read a bit from the E6 memory device with one bit-up (Fig. 5.13a), we collide
(or brush past) with glider G34 (Fig. 5.13b). Following the collision, the glider G34
is transformed into a different type of basic glider, G34 (Fig. 5.13g), and the bit is
erased (Fig. 5.13j).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 5.12 Write bit [8]. (a) t; (b) t + 1; (c) t + 2; (d) t + 3; (e) t + 4; (f ) t + 5; (g) t +
6; (h) t + 7; (i) t + 8; (j) t + 9.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 5.13 Read and erase bit [8]. (a) t; (b) t + 5; (c) t + 7; (d) t + 8; (e) t + 9; (f ) t +
10; (g) t + 11; (h) t + 12; (i) t + 13; (j) t + 14.

5.5 PROGRAMMABILITY

When developing a coherent theoretical foundation of reaction–diffusion computing
in chemical media, one should pay particular attention to issues of programmability.
In chemical laboratory, the term programmability means controllability.

How real chemical systems can be controlled? The majority of the literature, related
to theoretical and experimental studies concerning the controllability of reaction–
diffusion medium, deals with the application of an electric field. For example, in a
thin-layer Belousov–Zhabotinsky reactor stimulated by an electric field the following
phenomena are observed. The velocity of excitation waves is increased by a negative
and decreased by a positive electric field. Very high electric field, applied across the
medium, splits a wave into two waves that move in opposite directions; stabilization
and destabilization of wave fronts are also observed (see [5]).

The other control parameters may include temperature (e.g., program transitions
between periodic and chaotic oscillations), substrate’s structure (controlling forma-
tion, annihilation, and propagation of waves), and illumination (inputting data and
routing signals in light-sensitive chemical systems).

Let us demonstrate a concept of control-based programmability in models of
reaction–diffusion processors. First, we show how to adjust reaction rates in chemical
medium to make it perform computation of Voronoi diagram over a set of given points.
Second, we show how to switch excitable system between specialized-processor and
universal-processor modes (see the work by Adamatzky et al. [5] for additional ex-
amples and details).

Let a cell x of a two-dimensional lattice take four states: resting ◦, excited (+),
refractory (−) and precipitate �, and update their states in discrete time t depending
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FIGURE 5.14 Cell state transition diagrams: (a) model of precipitating reaction–diffusion
medium and (b) model of excitable system.

on the number σt(x) of excited neighbors in its eight-cell neighborhood as follows
(Fig. 5.14a):

� A resting cell x becomes excited if 0 < σt(x) ≤ θ2 and precipitates if θ2 < σ
t(x).

� An excited cell “precipitates” if θ1 < σ
t(x) or otherwise becomes refractory.

� A refractory cell recovers to the resting state unconditionally, and the precipitate
cell does not change its state.

Initially, we perturb the medium, excite it in several sites, thus inputting data.
Waves of excitation are generated, they grow, collide with each other, and annihilate
as a result of the collision. They may form a stationary inactive concentration profile
of a precipitate, which represents the result of the computation. Thus, we can only

be concerned with reactions of precipitation: + k1→� and ◦�+ k2→�, where k1 and k2
are inversely proportional to θ1 and θ2, respectively. Varying θ1 and θ2 from 1 to 8,
and thus changing precipitation rates from the maximum possible to the minimum,
we obtain various kinds of precipitate patterns, as shown in Figure 5.15.

Precipitate patterns developed for relatively high ranges of reaction rates (3 ≤
θ1, θ2 ≤ 4) represent discrete Voronoi diagrams (a given “planar” set, repre-
sented by sites of initial excitation, is visible in pattern θ1 = θ2 = 3 as white
dots inside the Voronoi cells) derived from the set of initially excited sites (see
Fig. 5.16a and b). This example demonstrates that by externally controlling pre-
cipitation rates we can force the reaction–diffusion medium to compute a Voronoi
diagram.

When dealing with excitable media excitability is the key parameter for tuning
spatiotemporal dynamics. We demonstrated that by varying excitability we can force
the medium to exhibit almost all possible types of excitation dynamics [1].

Let each cell of 2D automaton take three states: resting (·), exciting (+), and
refractory (−), and update its state depending on number σ+ of excited neighbors in its
eight-cell neighborhood (Fig. 5.14a). A cell goes from excited to refractory and from
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FIGURE 5.15 Final configurations of reaction–diffusion medium for 1 ≤ θ1 ≤ θ2 ≤ 2. Rest-
ing sites are black, precipitate is white [4].

refractory to resting states unconditionally, and resting cell excites if σ+ ∈ [θ1, θ2],
1 ≤ θ1 ≤ θ2 ≤ 8. By changing θ1 and θ2 we can move the medium dynamics in a
domain of “conventional” excitation waves, useful for image processing and robot
navigation [5] (Fig. 5.17a), as well as make it exhibit mobile localized excitations

FIGURE 5.16 Exemplary configurations of reaction–diffusion medium for (a) θ1 = 3 and
θ2 = 3, and (b) θ1 = 4 and θ2 = 3. Resting sites are black, precipitate is white [5].
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FIGURE 5.17 Snapshots of space–time excitation dynamics for excitability σ+ ∈ [1, 8] (a)
and σ+ ∈ [2, 2] (b).

(Fig. 5.17b), quasiparticles, and discrete analogs of dissipative solitons, employed in
collision-based computing [1].

5.6 ROBOT NAVIGATION AND MASSIVE MANIPULATION

As we have seen in previous sections, reaction–diffusion chemical systems can solve
complex problems and implement logical circuits. Embedded controllers for nontradi-
tional robotics architectures would be yet another potentially huge field of application
of reaction–diffusion computers. The physicochemical artifacts are well known to be
capable of sensible motion. Most famous are Belousov–Zhabotinsky vesicles [24],
self-propulsive chemosensitive drops [25,35], and ciliar arrays. Their motion is di-
rectional but somewhere lacks sophisticated control mechanisms.

At the present stage of reaction–diffusion computing research, it seems to be diffi-
cult to provide effective solutions for experimental prototyping of combined sensing,
decision making, and actuating. However, as a proof-of-concept we can always con-
sider hybrid “wetware + hardware” systems. For example, to fabricate a chemical
controller for robot, we can place a reactor with Belousov–Zhabotinsky solution
onboard of a wheeled robot and allow the robot to observer excitation wave dynamics
in the reactor. When the medium is stimulated at one point, target waves are formed.
The robot becomes aware of the direction toward source of stimulation from the
topology of the wave fronts [2,5].

A set of remarkable experiments were undertaken by Hiroshi Yokoi and Ben De
Lacy Costello. They built interface between robotic hand and Belousov–Zhabotinsky
chemical reactor [57]. Excitation waves propagating in the reactor were sensed by
photodiodes, which triggered finger motion. When the bending fingers touched the
chemical medium with their glass nails filled with colloid silver, circular waves were
triggered in the medium [5]. Starting from any initial configuration, the chemical
robotic system does always reach a coherent activity mode, where fingers move in
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regular, somewhat melodic patterns, and few generators of target waves govern dy-
namics of excitation in the reactor [57].

The chemical processors for navigating wheeled robot and for controlling, and
actively interacting with, a robotic hand are well discussed in our recent mono-
graph [5]; therefore, we do not go into details in the present chapter. Instead, we
concentrate on rather novel findings on coupling of reaction–diffusion system with
massive parallel array of virtual actuators.

How a reaction–diffusion medium can manipulate objects? To find out we couple a
simulated abstract parallel manipulator with an experimental Belousov–Zhabotinsky
(BZ) chemical medium, so the excitation dynamics in the chemical system are re-
flected in changing the OFF–ON mode of elementary actuating units. In this case,
we convert experimental snapshots of the spatially distributed chemical system to a
force vector field and then simulate the motion of manipulated objects in the force
field, thus achieving reaction–diffusion medium controlled actuation. To build an in-
terface between the recordings of space–time snapshots of the excitation dynamics
in BZ medium and simulated physical objects, we calculate force fields generated by
mobile excitation patterns and then simulate the behavior of an object in this force
field.

Chemical medium to perform actuation is prepared following the typical receipt1

(see the works by Adamatzky et al. [6] and Field and Winfee [18]), based on a
ferroin-catalyzed BZ reaction. A silica gel plate is cut and soaked in a ferroin
solution. The gel sheet is placed in a Petri dish and BZ solution is added. Dynamics
of the chemical system is recorded at 30-s intervals using a digital camera.

The cross-section profile of the BZ wave front recorded on a digital snapshot shows
a steep rise of red color values in the pixels at the wave front’s head and a gradual
descent in the pixels along the wave front’s tail. Assuming that excitation waves push
the object, local force vectors generated at each site—pixel of the digitized image—of
the medium should be oriented along local gradients of the red color values. From the
digitized snapshot of the BZ medium we extract an array of red components from the
snapshot’s pixels and then calculate the projection of a virtual vector force at the pixel.
Force fields generated by the excitation patterns in a BZ system (Fig. 5.18) result in
tangential forces being applied to a manipulated object, thus causing translational and
rotational motions of the object [6].

Nonlinear medium controlled actuators can be used for sorting and manipulating
both small objects, comparable in size to the elementary actuating unit, and larger
objects, with lengths of tens or hundreds of actuating units. Therefore, we demonstrate
here two types of experiments with BZ-based manipulation of pixel-sized objects and
of planar convex shapes.

Pixel objects, due to their small size, are subjected to random forces, caused by
impurities of the physical medium and imprecision of the actuating units. In this case,
no averaging of forces is allowed and the pixel objects themselves sensitively react
to a single force vector. Therefore, we adopt the following model of manipulating a

1Chemical laboratory experiments are undertaken by Dr. Ben De Lacy Costello (UWE, Bristol, UK).
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FIGURE 5.18 Force vector field (b) calculated from BZ medium’s image (a) [6].

pixel object: if all force vectors at the eight-pixel neighborhood of the current site of
the pixel object are nil, then the pixel object jumps to a randomly chosen neighboring
pixel of its neighborhood, otherwise the pixel object is translated by the maximum
force vector in its neighborhood.

When placed on the simulated manipulating surface, pixel objects move at random
in the domains of the resting medium; however, by randomly drifting each pixel object
does eventually encounter a domain of coaligned vectors (representing excitation
wave front in BZ medium) and is translated along the vectors. An example of several
pixel objects transported on a “frozen” snapshot of the chemical medium is shown
in Figure 5.19. Trajectories of pixel objects (Fig. 5.19a) show distinctive intermittent
modes of random motion separated by modes of directed “jumps” guided by traveling
wave fronts. Smoothed trajectories of pixel objects (Fig. 5.19b) demonstrate that
despite a very strong chaotic component in manipulation, pixel objects are transported
to the sites of the medium where two or more excitation wave fronts meet.

FIGURE 5.19 Examples of manipulating five pixel objects using the BZ medium: (a) tra-
jectories of pixel objects, (b) jump trajectories of pixel objects recorded every 100th time step.
Initial positions of the pixel objects are shown by circles [6].
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The overall speed of pixel object transportation depends on the frequency of wave
generations by sources of target waves. As a rule, the higher the frequency, the faster
the objects are transported. This is because in parts of the medium spanned by low
frequency target waves there are lengthy domains of resting system, where no force
vectors are formed. Therefore, pixel-sized object can wander randomly for a long
time till climbing next wave front [6].

To calculate the contribution of each force we partitioned the object into frag-
ments, using a square grid, in which each cell of the grid corresponds to one pixel of
the image. We assume that the magnitude of the force applied to each fragment above
given pixel is proportional to the area of the fragment and is codirectional with a force
vector. A momentum of inertia of the whole object with respect to axis normal to the
object and passing through the object’s center of mass is calculated from the position
of the center of mass and the mass of every fragment. Since the object’s shape and
size are constant, it is enough to calculate the moment of inertia only at the beginning
of simulation. We are also taking into account principal rotational momentum created
by forces and angular acceleration of the object around its center of mass. Therefore,
object motion in our case can be sufficiently described by coordinates of its center of
mass and its rotation at every moment of time [6].

Spatially extended objects follow the general pattern of motion observed for the
pixel-sized objects. However, due to integration of many force vectors the motion of
planar objects is smoother and less sensitive to the orientation of any particular force
vector.

FIGURE 5.20 Manipulating planar object in BZ medium. (a) Right-angled triangle moved by
fronts of target waves. (b) Square object moved by fronts of fragmented waves in subexcitable
BZ medium. Trajectories of center of mass of the square are shown by the dotted line. Exact
orientation of the objects is displayed every 20 steps. Initial position of the object is shown by
 and the final position by ⊗ [6].
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Outcome of manipulation depends on the size of the object; with increas-
ing size of the object—due to larger numbers of local vector forces acting on
the object—the objects become more controllable by the excitation wave fronts
(Fig. 5.20).

5.7 SUMMARY

The field of reaction–diffusion computing started 20 years ago [27] as a subfield of
physics and chemistry dealing with image processing operations in uniform thin-layer
excitable chemical media. The basic idea was to apply input data as two-dimensional
profile of heterogeneous illumination, then allow excitation waves spread and inter-
act with each other, and then optically record result of the computation. The first
even reaction–diffusion computers were already massively parallel, with parallel op-
tical inputs and outputs. Later computer engineers entered the field and started to ex-
ploit traditional techniques—wires were implemented by channels where wave pulses
travel, and specifically shaped junctions acted as logical valves. In this manner, most
“famous” chemical computing devices were implemented, including Boolean gates,
coincidence detectors, memory units, and more. The upmost idea of reaction–
diffusion computation was if not ruined then forced into cul-de-sac of nonclassical
computation. The breakthrough happened when paradigms and solutions from the
field of dynamical, collision-based computing and conservative logic were mapped
onto realms of spatially extended chemical systems. The computers became uniform
and homogeneous.

In several examples we demonstrated that reaction–diffusion chemical systems
are capable of solving combinatorial problems with natural parallelism. In spatially
distributed chemical processors, the data and the results of the computation are en-
coded as concentration profiles of the chemical species. The computation per se is
performed via the spreading and interaction of wave fronts.

The reaction–diffusion computers are parallel because the chemical medium’s
microvolumes update their states simultaneously, and molecules diffuse and react in
parallel. During the last decades, a wide range of experimental prototypes of reaction–
diffusion computing devices have been fabricated and applied to solve various prob-
lems of computer science, including image processing, pattern recognition, path plan-
ning, robot navigation, computational geometry, logical gates in spatially distributed
chemical media, and arithmetical and memory units.

These important, but scattered across many scientific fields, results convince us that
reaction–diffusion systems can do a lot. Are they capable enough to be intelligent?
Yes, reaction–diffusion systems are smart—showing a state of readiness to respond,
able to cope with difficult situations, capable for determining something by mathemat-
ical and logical methods—and endowed with capacity to reason. Reaction–diffusion
computers allow for massive parallel input of data. Equivalently, reaction–diffusion
robots would need no dedicated sensors, each microvolume of the medium, each
site of the matrix gel, is sensitive to changes in one or another physical character-
istic of the environment. Electric field, temperature, and illumination are “sensed”
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by reaction–diffusion devices, and these are three principal parameters in controlling
and programming reaction–diffusion robots.

Hard computational problems of geometry, image processing, and optimization
on graphs are resource efficiently solved in reaction–diffusion media due to intrinsic
natural parallelism of the problems [1]. In this chapter we demonstrated efficiency of
reaction–diffusion computers on example of construction of Voronoi diagram. The
Voronoi diagram is a subdivision of plane by data planar set. Each point of the data
set is represented by a drop of a reagent. The reagent diffuses and produces a color
precipitate when reacting with the substrate. When two or more diffusive fronts of
the “data” chemical species meet, no precipitate is produced (due to concentration-
dependent inhibition). Thus, uncolored domains of the computing medium represent
bisectors of the Voronoi diagram. The precipitating chemical processor can also com-
pute a skeleton. The skeleton of a planar shape is computed in the similar manner.
A contour of the shape is applied to computing substrate as a disturbance in reagent
concentrations. The contour concentration profile induces diffusive waves. A reagent
diffusing from the data contour reacts with the substrate and the precipitate is formed.
Precipitate is not produced at the sites of diffusive waves’ collision. The uncolored
domains correspond to the skeleton of the data shape. To compute a collision-free
shortest path in a space with obstacles, we can couple two reaction–diffusion media.
Obstacles are represented by local disturbances of concentration profiles in one of
the media. The disturbances induce circular waves traveling in the medium and ap-
proximating a scalar distance-to-obstacle field. This field is mapped onto the second
medium, which calculates a tree of “many-sources-one-destination” shortest paths by
spreading wave fronts [5].

There is still no rigorous theory of reaction–diffusion computing, and God knows if
one will ever be developed; however, algorithms are intuitively convincing and range
of applications is wide, and after all the whole field of nature-inspired computing is
built on interpretations:

Of course, this is only a plausible consideration and not a mathematical proof, since the
question still remains whether the mathematical interpretation of the physical event is
adequate in a strict sense, or whether it gives only an adequate image of physical reality.
Sometimes such experiments, even if performed only in imagination, are convincing
even to mathematicians [16].
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CHAPTER 6

Data Mining Algorithms I: Clustering

DAN A. SIMOVICI

6.1 INTRODUCTION

Activities of contemporary society generate enormous amounts of data that are used
in decision support processes. Many databases have current volumes in the hundreds
of terabytes. An academic estimate [4] puts the volume of data created in 2002 alone
at 5 hexabytes (the equivalent of 5 million terabytes). The difficulty of analyzing
these kinds of data volumes by human operators is clearly insurmountable. This lead
to a rather new area of computer science, data mining, whose aim is to develop
automatic means of data analysis for discovering new and useful patterns embedded
in data.

Data mining builds on several disciplines, statistics, artificial intelligence,
databases, visualization techniques, and others, and has crystallized as a distinct dis-
cipline in the last decade of the past century.

The range of subjects in data mining is very broad. Among the main directions
of this branch of computer science, one should mention identification of associations
between data items, clustering, classification, summarization, outlier detection, and so
on. The diversity of these preoccupations makes impossible an exhaustive presentation
of data mining algorithms in a very limited space. In this chapter, we concentrate
on clustering algorithms. This choice will allow us a presentation that is as self-
contained as possible and gives a quite accurate image of the challenges posed by data
mining.

6.2 CLUSTERING ALGORITHMS

Clustering is the process of grouping together objects that are similar. The groups
formed by clustering are referred to as clusters. Similarity between objects that belong
to a set S is usually measured using a dissimilarity d : S × S −→ R≥0 that is definite
(see Section 6.3), this means that d(x, y) = 0 if and only if x = y and d(x, y) = d(y, x)
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for every x, y ∈ S. Two objects x, y are similar if the value of d(x, y) is small; what
“small” means depends on the context of the problem.

Clustering can be regarded as a special type of classification, where the clusters
serve as classes of objects. It is a widely used data mining activity with multiple
applications in a variety of scientific activities ranging from biology and astronomy
to economics and sociology.

There are several points of view for examining clustering techniques. We follow
here the taxonomy of clustering presented in the work by Jain et al. [5].

Clustering may or may not be exclusive, where an exclusive clustering technique
yields clusters that are disjoint, while a nonexclusive technique produces overlapping
clusters. From an algebraic point of view, an exclusive clustering generates a partition
of the set of objects, and most clustering algorithms fit in this category.

Clustering may be intrinsic or extrinsic. Intrinsic clustering is an unsupervised
activity that is based only on the dissimilarities between the objects to be clustered.
Most clustering algorithms fall into this category. Extrinsic clustering relies on
information provided by an external source that prescribes, for example, which
objects should be clustered together and which should not.

Finally, clustering may be hierarchical or partitional.
In hierarchical clustering algorithms, a sequence of partitions is constructed. In

hierarchical agglomerative algorithms, this sequence is increasing and it begins with
the least partition of the set of objects whose blocks consist of single objects; as
the clustering progresses, certain clusters are fused together. As a result, an agglom-
erative clustering is a chain of partitions on the set of objects that begins with the
least partition αS of the set of objects S and ends with the largest partition ωS . In
a hierarchical divisive algorithm, the sequence of partitions is decreasing. Its first
member is the one-block partition ωS and each partition is built by subdividing the
blocks of the previous partition.

A partitional clustering creates a partition of the set of objects whose blocks are
the clusters such that objects in a cluster are more similar to each other than to objects
that belong to different clusters. A typical representative algorithm is the k-means
algorithm and its many extensions.

Our presentation is organized around the last dichotomy. We start with a class
of hierarchical agglomerative algorithms. This is continued with a discussion of the
k-means algorithm, a representative of partitional algorithms. Then, we continue
with a discussion of certain limitations of clustering centered around Kleinberg’s
impossibility theorem. We conclude with an evaluation of clustering quality.

6.3 BASIC NOTIONS: PARTITIONS AND DISSIMILARITIES

Definition 1 Let S be a nonempty set. A partition of S is a nonempty collection
of nonempty subsets of S, π = {Bi|i ∈ I} such that i �= j implies Bi ∩ Bj = ∅ and⋃{Bi|i ∈ I} = S.

The members of the collection π are the blocks of the partition π. The collection
of partitions of a set S is denoted by PART(S).
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Example 1 Let S = {a, b, c, d, e} be a set. The following collections of subsets of S
are partitions of S:

π0 = {{a}, {b}, {c}, {d}, {e}},
π1 = {{a, b}, {c}, {d, e}},
π2 = {{a, c}, {b}, {d, e}},
π3 = {{a, b, c}{d, e}},
π4 = {{a, b, c, d, e}}.

�

A partial order relation can be defined on PART(S) by taking π ≤ σ if every block
of π is included in some block of σ. It is easy to see that for the partitions defined in
Example 1, we have π0 ≤ π1 ≤ π3 ≤ π4 and π0 ≤ π2 ≤ π3 ≤ π4; however, we have
neither π1 ≤ π2 nor π2 ≤ π1.

The partially ordered set (PART(S),≤) has as its least element the partition whose
blocks are singletons of the form {x},

αS = {{x}|x ∈ S},

and as its largest element the one-block partition ωS = {S}. For the partitions defined
in Example 1 we have π0 = αS and π4 = ωS .

We refer the reader to the work by Birkhoff [1] for a detailed discussion of the
properties of this partial ordered set.

To obtain a quantitative expression of the differences that exist between objects
we use the notion of dissimilarity.

Definition 2 A dissimilarity on a set S is a function d : S2 −→ R≥0 satisfying the
following conditions:

(i) d(x, x) = 0 for all x ∈ S;

(ii) d(x, y) = d(y, x) for all x, y ∈ S.

The pair (S, d) is a dissimilarity space.

The set of dissimilarities defined on a set S is denoted by DS .
The notion of dissimilarity can be strengthened in several ways by imposing certain

supplementary conditions. A nonexhaustive list of these conditions is given next.

1. d(x, y) = 0 implies d(x, z) = d(y, z) for every x, y, z ∈ S (evenness);

2. d(x, y) = 0 implies x = y for every x, y (definiteness);

3. d(x, y) ≤ d(x, z)+ d(z, y) for every x, y, z (triangular inequality);

4. d(x, y) ≤ max{d(x, z), d(z, y)} for every x, y, z (the ultrametric inequality).
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The set of definite dissimilarities on a set S is denoted by D′S .

Example 2 Consider the mapping d : (Seqn(S))2 −→ R≥0 defined by

d(p, q) = |{i|0 ≤ i ≤ n− 1 and p(i) �= q(i)}|,

for every sequences p, q of length n on the set S.
Clearly, d is a dissimilarity that is both even and definite. Moreover, it satisfies the

triangular inequality. Indeed, let p, q, r be three sequences of length n on the set S.
If p(i) �= q(i), then r(i) must be distinct from at least one of p(i) and q(i). Therefore,

{i|0 ≤ i ≤ n− 1 and p(i) �= q(i)}
⊆ {i|0 ≤ i ≤ n− 1 and p(i) �= r(i)} ∪ {i|0 ≤ i ≤ n− 1 and r(i) �= q(i)},

which implies the triangular inequality. �

The ultrametric inequality implies the triangular inequality; both the triangular
inequality and definiteness imply evenness (see Exercise 10).

Definition 3 A dissimilarity d ∈ DS is

1. a metric, if it satisfies the definiteness property and the triangular inequality;

2. an ultrametric, if it satisfies the definiteness property and the ultrametric
inequality.

The set of metrics and the set of ultrametrics on a set S are denoted by MS and
US , respectively.

If d is a metric or an ultrametric on a set S, then (S, d) is a metric space or an
ultrametric space, respectively.

Definition 4 The diameter of a finite metric space (S, d) is the number diamS,d =
max{d(x, y)|x, y ∈ S}.

Exercise 10 implies that US ⊆MS ⊆ DS .

Example 3 Let G = (V,E) be a connected graph. Define the mapping d : V 2 −→
R≥0 by d(x, y) = m, where m is the length of the shortest path that connects x and
y. Then, d is a metric.

Indeed, we have d(x, y) = 0 if and only if x = y. The symmetry of d is obvious.
If p is a shortest path that connects x to z and q is a shortest path that connects

z to y, then pq is a path of length d(x, z)+ d(z, y) that connects x to y. Therefore,
d(x, y) ≤ d(x, z)+ d(z, y). �

In this chapter, we shall use frequently the notion of sphere in a metric space.
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Definition 5 Let (S, d) be a metric space. The closed sphere centered in x ∈ S of
radius r is the set

Bd(x, r) = {y ∈ S|d(x, y) ≤ r}.

The open sphere centered in x ∈ S of radius r is the set

Cd(x, r) = {y ∈ S|d(x, y) < r}.

Let d be a dissimilarity and let S(x, y) be the set of all nonnull sequences s =
(s1, . . . , sn) ∈ Seq(S) such that s1 = x and sn = y. The d-amplitude of s is the number
ampd(s) = max{d(si, si+1)|1 ≤ i ≤ n− 1}.

If d is a ultrametric we have d(x, y) ≤ min{ampd(s)|s ∈ S(x, y)} (Exercise 1).
Dissimilarities defined on finite sets can be represented by matrices. If S =

{x1, . . . , xn} is a finite set and d : S × S −→ R≥0 is a dissimilarity, let Dd ∈
(R≥0)n×n be the matrix defined by (Dd)ij = d(xi, xj) for 1 ≤ i, j ≤ n. Clearly, all
main diagonal elements of Dd are 0 and the matrix D is symmetric.

6.4 ULTRAMETRIC SPACES

Ultrametrics represent a strengthening of the notion of metric, where the triangular
inequality is replaced by the stronger ultrametric inequality. They play an important
role in studying hierarchical clustering algorithm, which we discuss in Section 6.5.

A simple, interesting property of triangles in ultrametric spaces is given next.

Theorem 1 Let (S, d) be an ultrametric space. For every x, y, z ∈ S, two of the num-
bers d(x, y), d(x, z), d(y, z) are equal and the third is not larger than the other two
equal numbers.

Proof. Let d(x, y) be the least of the numbers d(x, y), d(x, z), d(y, z). We
have d(x, z) ≤ max{d(x, y), d(y, z} = d(y, z) and d(y, z) ≤ max{d(x, y), d(x, z)} =
d(x, z). Therefore, d(y, z) = d(x, z) and d(x, y) is not larger than the other
two. �

Theorem 1 can be paraphrased by saying that in an ultrametric space any triangle
is isosceles and the side that is not equal to the other two cannot be longer than these.

In an ultrametric space, a closed sphere has all its points as centers.

Theorem 2 Let B(x, r) be a closed sphere in the ultrametric space (S, d). If z ∈
B(x, d), thenB(x, r) = B(z, r). Moreover, if two closed spheresB(x, r),B(y, r′) space
have a point in common, they one of the closed spheres is included in the other.

Proof. See Exercise 7. �

Theorem 2 implies S = B(x, diamS,d) for any point x ∈ S.
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6.4.1 Construction of Ultrametrics

There is a strong link between ultrametrics defined on a finite set S and chains of
equivalence relations on S (or chains of partitions on S). This is shown in the next
statement.

Theorem 3 Let S be a finite set and let d : S × S −→ R≥0 be a function whose range
is Ran(d) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if and only if x = y. For
u ∈ S and r ∈ R≥0 define the set Du,r = {x ∈ S|d(u, x) ≤ r}. Define the collection
of sets πri = {D(u, ri)|u ∈ S} for 1 ≤ i ≤ m.

The function d is an ultrametric on S if and only if the sequence of collections
πr1 , . . . , πrm is an increasing sequence of partitions on S such that πr1 = αS and
πrm = ωS .

Proof. Suppose that d is an ultrametric on S. Then, the sets of the form D(x, r)
are precisely the closed spheres B(x, r). Since x ∈ B(x, r) for x ∈ S, it follows that
none of these sets is empty and that

⋃
x∈S B(x, r) = S. Any two distinct spheres

B(x, r), B(y, r) are disjoint by Theorem 2.
It is straightforward to see that πr1 ≤ πr2 ≤ · · · ≤ πrm ; that is, this sequence of

relations is indeed a chain of equivalences.
Conversely, suppose that πr1 , . . . , πrm is an increasing sequence of partitions on

S such that πr1 = αS and πrm = ωS , where πri consists of the sets of the form Du,ri
for u ∈ S.

Since Dx,0 = {x}, it follows that d(x, y) = 0 if and only if x = y.
We claim that

d(x, y) = min{r|{x, y} ⊆ B ∈ πr}. (6.1)

Indeed, since πrm = ωS , it is clear that there is a partition πri such that {x, y} ⊆
B ∈ πri . If x and y belong to the same block of πri , the definition of πri implies
d(x, y) ≤ ri, so d(x, y) ≤ min{r|{x, y} ⊆ B ∈ πr}. This inequality can be easily seen
to become an equality since x, y ⊆ B ∈ πd(x,y). This implies immediately that d is
symmetric.

To prove that d satisfies the ultrametric inequality, let x, y, z be three members of
the set S. Letp = max{d(x, z), d(z, y)}. Since {x, z} ⊆ b ∈ πd(x,z) ≤ πp and {z, y} ⊆
B′ ∈ πd(z,y) ≤ πp, it follows that x, y belong to the same block of the partition πp.
Thus, d(x, y) ≤ p = max{d(x, z), d(z, y)}, which proves the triangular inequality
for d. �

6.4.2 Hierarchies and Ultrametrics

Definition 6 Let S be a set. A hierarchy on the set S is a collection of sets H ⊆ P(S)
that satisfies the following conditions:

(i) the members of H are nonempty sets;

(ii) S ∈ H;
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(iii) for every x ∈ S we have {x} ∈ H;

(iv) if H,H ′ ∈ H and H ∩H ′ �= ∅, then we have either H ⊆ H ′ or H ′ ⊆ H .

Example 4 Let S = {s, t, u, v,w, x, y} be a finite set. It is easy to verify that the
family of subsets of S defined by

H = {{s}, {t}, {u}, {v}, {w}, {x}, {y},
{s, t, u}, {w, x}, {s, t, u, v}, {w, x, y}, {s, t, u, v,w, x, y}}

is a hierarchy on the set S. �

Chains of partitions defined on a set generate hierarchies as we show next.

Theorem 4 Let S be a set and let C = (π1, π2, . . . , πn) be an increasing chain of
partitions (PART(S),≤) such that π1 = αS and πn = ωS . Then, the collection HC =⋃n
i=1 πi that consists of the blocks of all partitions in the chain is a hierarchy on S.

Proof. The blocks of any of the partitions are nonempty sets, so HC satisfies the first
condition of Definition 6.

Note that S ∈ HC because S is the unique block of πn = ωS . Also, since all
singletons {x} are blocks of αS = π1 it follows that HC satisfies the second and
the third conditions of Definition 6. Finally, let H,H ′ be two sets of HC such that
H ∩H ′ �= ∅. Because of this condition it is clear that these two sets cannot be blocks
of the same partition. Thus, there exist two partitions πi and πj in the chain such that
H ∈ πi andH ′ ∈ πj . Suppose that i < j. Since every block of πj is a union of blocks
of πi, H ′ is a union of blocks of πi and H ∩H ′ �= ∅ means that H is one of these
blocks. Thus, H ⊆ H ′. If j > i, we obtain the reverse inclusion. This allows us to
conclude that HC is indeed a hierarchy. �

Of course, Theorem 4 could be stated in terms of chains of equivalences; we give
this alternative formulation for convenience.

Theorem 5 Let S be a finite set and let (ρ1, . . . , ρn) be a chain of equivalence re-
lations on S such that ρ1 = ιS and ρn = θS . Then, the collection of blocks of the
equivalence relations ρr, that is, the set

⋃
1≤r≤n S/ρr, is a hierarchy on S.

Proof. The proof is a mere restatement of the proof of Theorem 4. �

Define the relation “≺” on a hierarchy H on S by H ≺ K if H,K ∈ H, H ⊂ K,
and there is no set L ∈ H such that H ⊂ L ⊂ K.

Lemma 1 Let H be a hierarchy on a finite set S and let L ∈ H. The collection
PL = {H ∈ H|H ≺ L} is a partition of the set L.
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Proof. We claim that L = ⋃PL. Indeed, it is clear that
⋃PL ⊆ L.

Conversely, suppose that z ∈ L but z �∈ ⋃PL. Since {z} ∈ H and there is no K ∈
PL such that z ∈ K, it follows that {z} ∈ PL, which contradicts the assumption that
z �∈ ⋃PL. This means that L = ⋃PL.

Let K0,K1 ∈ PL be two distinct sets. These sets are disjoint since otherwise we
would have either K0 ⊂ K1, or K1 ⊂ K0, and this would contradict the definition of
PL. �

Theorem 6 Let H be a hierarchy on a set S. The graph of the relation ≺ on H is a
tree whose root is S; its leaves are the singletons {x} for every x ∈ S.

Proof. Since ≺ is an antisymmetric relation on H it is clear that the graph (H,≺) is
acyclic. Moreover, for each setK ∈ H there is a unique path that joinsK to S, so the
graph is indeed a rooted tree. �

Definition 7 Let H be a hierarchy on a set S. A grading function for H is a function
h : H −→ R that satisfies the following conditions:

(i) h({x}) = 0 for every x ∈ S, and

(ii) if H,K ∈ H and H ⊂ K, then h(H) < h(K).

If h is a grading function for a hierarchy H, the pair (H, h) is a graded hierarchy.

Example 5 For the hierarchy H defined in Example 4 on the set S =
{s, t, u, v,w, x, y}, the function h : H −→ R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = h({y}) = 0,

h({s, t, u}) = 3, h({w, x}) = 4, h({s, t, u, v}) = 5, h({w, x, y}) = 6,

h({s, t, u, v,w, x, y}) = 7

is a grading function and the pair (H, h) is a graded hierarchy on S. �

Theorem 4 can be extended to graded hierarchies.

Theorem 7 Let S be a finite set and let C = (π1, π2, . . . , πn) be an increasing chain
of partitions (PART(S),≤) such that π1 = αS and πn = ωS .

Consider a function f : {1, . . . , n} −→ R≥0 such that f (1) = 0. The function h :
HC −→ R≥0 given by h(K) = f (min{j|K ∈ πj}

)
forK ∈ HC is a grading function

for the hierarchy HC.

Proof. Since {x} ∈ π1 = αS it follows that h({x}) = 0, so h satisfies the first condition
of Definition 7.

Suppose that H,K ∈ HC and H ⊂ K. If � = min{j|H ∈ πj}, it is impossible for
K to be a block of a partition that precedes π�. Therefore, � < min{j|K ∈ πj}, so
h(H) < h(K), so (HC, h) is indeed a graded hierarchy. �
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A graded hierarchy defines an ultrametric as shown next.

Theorem 8 Let (H, h) be a graded hierarchy on a finite set S. Define the function
d : S2 −→ R as

d(x, y) = min{h(U)|U ∈ H and {x, y} ⊆ U}

for x, y ∈ S. The mapping d is an ultrametric on S.

Proof. Note that for every x, y ∈ S there exists a set H ∈ H such that {x, y} ⊆ H
because S ∈ H.

It is immediate that d(x, x) = 0. Conversely, suppose that d(x, y) = 0. Then, there
exists H ∈ H such that {x, y} ⊆ H and h(H) = 0. If x �= y, then {x} ⊂ H ; hence
0 = h({x}) < h(H), which contradicts the fact that h(H) = 0. Thus, x = y.

The symmetry of d is immediate.
To prove the ultrametric inequality, let x, y, z ∈ S and suppose that d(x, y) = p,

d(x, z) = q, and d(z, y) = r. There existH,K,L ∈ H such that {x, y} ⊆ H , h(H) =
p, {x, z} ⊆ K, h(K) = q, and {z, y} ⊆ L, h(L) = r. Since K ∩ L �= ∅ (because both
sets contain z), we have eitherK ⊆ L or L ⊆ K, soK ∪ L equals eitherK or L, and
in either case, K ∪ L ∈ H. Since {x, y} ⊆ K ∪ L, it follows that

d(x, y) ≤ h(K ∪ L) = max{h(K), H(L)} = max{d(x, z), d(z, y)},

which is the ultrametric inequality. �

We refer to the ultrametric d whose existence is shown in Theorem 8 as the ultra-
metric generated by the graded hierarchy (H, h).

Example 6 The values of the ultrametric generated by the graded hierarchy (H, h)
on the set S, introduced in Example 5, are given in the following table.

d s t u v w x y

s 0 3 3 5 7 7 7
t 3 0 3 5 7 7 7
u 3 3 0 5 7 7 7
v 5 5 5 0 7 7 7
w 7 7 7 7 0 4 6
x 7 7 7 7 4 0 6
y 7 7 7 7 6 6 0

�

The hierarchy introduced in Theorem 5 that is associated with an ultrametric space
can be naturally equipped with a grading function, as shown next.

Theorem 9 Let (S, d) be a finite ultrametric space. There exists a graded hierarchy
(H, h) on S such that d is the ultrametric associated to (H, h).
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Proof. Let H be the collection of equivalence classes of the equivalences ηr =
{(x, y) ∈ S2|d(x, y) ≤ r} defined by the ultrametric d on the finite set S, where the
index r takes its values in the range Rd of the ultrametric d. Define h(E) = min{r ∈
Rd |E ∈ S/ηr} for every equivalence class E.

It is clear that h({x}) = 0 because {x} is an η0-equivalence class for every x ∈ S.
Let [x]t be the equivalence class of x relative to the equivalence ηt .
Suppose that E,E′ belong to the hierarchy and E ⊂ E′. We have E = [x]r and

E′ = [x]s for some x ∈ X. Since E is strictly included in E′, there exists z ∈ E′ − E
such that d(x, z) ≤ s and d(x, z) > r. This implies r < s. Therefore,

h(E) = min{r ∈ Rd |E ∈ S/ηr} ≤ min{s ∈ Rd |E′ ∈ S/ηs} = h(E′),

which proves that (H, h) is a graded hierarchy.
The ultrametric e generated by the graded hierarchy (H, h) is given by

e(x, y) = min{h(B)|B ∈ H and {x, y} ⊆ B}
= min{r|(x, y) ∈ ηr}
= min{r|d(x, y) ≤ r}
= d(x, y),

for x, y ∈ S; in other words, we have e = d. �

Example 7 Starting from the ultrametric on the set S = {s, t, u, v,w, x, y} defined
by the table given in Example 6, we obtain the following quotient sets:

Values of r S/ηr

[0, 3) {s}, {t}, {u}, {v}, {w}, {x}, {y}
[3, 4) {s, t, u}, {v}, {w}, {x}, {y}
[4, 5) {s, t, u}, {v}, {w, x}, {y}
[5, 6) {s, t, u, v}, {w, x}, {y}
[6, 7) {s, t, u, v}, {w, x, y}

[7,∞) {s, t, u, v,w, x, y}
�

We shall draw the tree of a graded hierarchy (H, h) using a special representation
known as a dendrogram. In a dendrogram, an interior vertex K of the tree is repre-
sented by a horizontal line drawn at the height h(K). For example, the dendrogram
of the graded hierarchy of Example 5 is shown in Figure 6.1.

As we saw in Theorem 8, the value d(x, y) of the ultrametric d generated by a
hierarchy H is the smallest height of a set of a hierarchy that contains both x and y.
This allows us to “read” the value of the ultrametric generated by H directly from the
dendrogram of the hierarchy.

Example 8 For the graded hierarchy of Example 5, the ultrametric extracted from
Figure 6.1 is clearly the same as the one that was obtained in Example 6. �
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FIGURE 6.1 Dendrogram of graded hierarchy of Example 5.

6.4.3 The Poset of Ultrametrics

Let S be a set. Recall that we denoted the set of dissimilarities by DS . Define a partial
order ≤ on DS by d ≤ d′ if d(x, y) ≤ d′(x, y) for every x, y ∈ S. It is easy to verify
that (DS,≤) is a poset.

Note that US , the set of ultrametrics on S, is a subset of DS .

Theorem 10 Let d be a dissimilarity on a set S and let Ud be the set of ultrametrics:

Ud = {e ∈ US |e ≤ d}.

The set Ud has a largest element in the poset (DS,≤).

Proof. Note that the set Ud is nonempty because the zero dissimilarity d0 given by
d0(x, y) = 0 for every x, y ∈ S is an ultrametric and d0 ≤ d.

Since the set {e(x, y)|e ∈ Ud} has d(x, y) as an upper bound, it is possible to define
the mapping e1 : S2 −→ R≥0 as

e1(x, y) = sup{e(x, y)|e ∈ Ud}

for x, y ∈ S. It is clear that e ≤ e1 for every ultrametric e. We claim that e1 is an
ultrametric on S.

We prove only that e1 satisfies the ultrametric inequality. Suppose that there exist
x, y, z ∈ S such that e1 violates the ultrametric inequality, that is

max{e1(x, z), e1(z, y)} < e1(x, y).

This is equivalent to

sup{e(x, y)|e ∈ Ud} > max{sup{e(x, z)|e ∈ Ud}, sup{e(z, y)|e ∈ Ud}}.

Thus, there exists ê ∈ Ud such that

ê(x, y) > sup{e(x, z)|e ∈ Ud},
ê(x, y) > sup{e(z, y)|e ∈ Ud}.
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FIGURE 6.2 Two ultrametrics on the set {x, y, z}.

In particular, ê(x, y) > ê(x, z) and ê(x, y) > ê(z, y), which contradicts the fact that
ê is an ultrametric. �

The ultrametric defined by Theorem 10 is known as the maximal subdominant
ultrametric for the dissimilarity d.

The situation is not symmetric with respect to the infimum of a set of ultramet-
rics because, in general, the infimum of a set of ultrametrics is not necessarily an
ultrametric.

For example, consider a three-element set S = {x, y, z}, four distinct nonnegative
numbers a, b, c, d such that a > b > c > d, and the ultrametrics d and d′ defined by
the triangles shown in Figure 6.2a and b, respectively. The dissimilarity d0 defined
by d0(u, v) = min{d(u, v), d′(u, v)} for u, v ∈ S is given by

d0(x, y) = b, d0(y, z) = d, and d0(x, z) = c,

and d0 is clearly not an ultrametric because the triangle xyz is not isosceles.
In the sequel, we give an algorithm for computing the maximal subdominant ul-

trametric for a dissimilarity defined on a finite set S.
We will define inductively an increasing sequence of partitionsπ1 ≺ π2 ≺ · · · and a

sequence of dissimilarities d1, d2, . . . on the sets of blocks of π1, π2, . . ., respectively.
For the initial phase, π1 = αS and d1({x}, {y}) = d(x, y) for x, y ∈ S.
Suppose that di is defined on πi. If B,C ∈ πi is a pair of blocks such that di(B,C)

has the smallest value, define the partition πi+1 by

πi+1 = (πi − {B,C}) ∪ {B ∪ C}.

In other words, to obtain πi+1 we replace two of the closest blocks B,C of πi (in
terms of di) with new block B ∪ C. Clearly, πi ≺ πi+1 in PART(S) for i ≥ 1. Note
that the collection of blocks of the partitions πi form a hierarchy Hd on the set S. The
dissimilarity di+1 is given by

di+1(U,V ) = min{d(x, y)|x ∈ U, y ∈ V } (6.2)

for U,V ∈ πi+1.
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We introduce a grading function hd on the hierarchy defined by this chain of
partitions starting from the dissimilarity d. The definition is done for the blocks of
the partitions πi by induction on i.

For i = 1 the blocks of the partition π1 are singletons; in this case we define
hd({x}) = 0 for x ∈ S.

Suppose that hd is defined on the blocks of πi and let D be the block of πi+1 that
is generated by fusing the blocks B,C of πi. All other blocks of πi+1 coincide with
the blocks of πi. The value of the function hd for the new block D is given by

hd(D) = min{d(x, y)|x ∈ B, y ∈ C}.

It is clear that hd satisfies the first condition of Definition 7.
For a setU of Hd define pU = min{i|U ∈ πi} and qU = max{i|U ∈ πi}. To verify

the second condition of Definition 7, let H,K ∈ Hd such that H ⊂ K. It is clear
that qH ≤ pK. The construction of the sequence of partitions implies that there are
H0, H1 ∈ πpH−1 and K0,K1 ∈ πpK−1 such that H = H0 ∪H1 and K = K0 ∪K1.
Therefore,

hd(H) = min{d(x, y)|x ∈ H0, y ∈ H1},
hd(K) = min{d(x, y)|x ∈ K0, y ∈ K1}.

Since H0, H1 have been fused (to produce the partition πpH ) before K0,K1 (to pro-
duce the partition πpK ), it follows that hd(H) < hd(K).

By Theorem 8 the graded hierarchy (Hd, hd) defines an ultrametric; we denote
this ultrametric by e and we will prove that e is the maximal subdominant ultrametric
for d. Recall that e is given by

e(x, y) = min{hd(W)|{x, y} ⊆ W},

and that hd(W) is the least value of d(u, v) such that u ∈ U, v ∈ V if W ∈ πpW is
obtained by fusing the blocks U and V of πpW−1. The definition of e(x, y) implies
that we have neither {x, y} ⊆ U nor {x, y} ⊆ V . Thus, we have either x ∈ U and y ∈ V
or x ∈ V and y ∈ U. Thus, e(x, y) ≤ d(x, y).

We now prove that

e(x, y) = min{ampd(s)|s ∈ S(x, y)},
for x, y ∈ S.

LetD be the minimal set in Hd that includes {x, y}. Then,D = B ∪ C, whereB,C
are two disjoint sets of Hd such that x ∈ B and y ∈ C. If s is a sequence included
in D, then there are two consecutive components of s, sk, sk+1 such that sk ∈ B and
sk+1 ∈ C. This implies

e(x, y) = min{d(u, v)|u ∈ B, v ∈ C}
≤ d(sk, sk+1)

≤ ampd(s).
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If s is not included in D, let sq, sq+1 be two consecutive components of s such that
sq ∈ D and sq+1 �∈ D. Let E be the smallest set of Hd that includes {sq, sq+1}. Note
thatD ⊆ E (because sk ∈ D ∩ E), and therefore, hd(D) ≤ hd(E). IfE is obtained as
the union of two disjoint sets E′, E′′ of Hd such that sk ∈ E′ and sk+1 ∈ E′′, we have
D ⊆ E′. Consequently,

hd(E) = min{d(u, v)|u ∈ E′, v ∈ E′′} ≤ d(sk, sk+1),

which implies

e(x, y) = hd(D) ≤ hd(E) ≤ d(sk, sk+1) ≤ ampd(s).

Therefore, we conclude that e(x, y) ≤ ampd(s) for every s ∈ S(x, y).
We show now that there is a sequence w ∈ S(x, y) such that e(x, y) ≥ ampd(w),

which implies the equality e(x, y) = ampd(w). To this end, we prove that for every
D ∈ πk ⊆ Hd there exists w ∈ S(x, y) such that ampd(w) ≤ hd(D). The argument is
by induction on k.

For k = 1, the statement obviously holds. Suppose that it holds for 1, . . . , k − 1
and letD ∈ πk. The setD belongs to πk−1 orD is obtained by fusing the blocks B,C
of πk−1. In the first case, the statement holds by inductive hypothesis. The second
case has several subcases:

(i) If {x, y} ⊆ B, then by inductive hypothesis, there exists a sequence u ∈
S(x, y) such that ampd(u) ≤ hd(B) ≤ hd(D) = e(x, y).

(ii) The case {x, y} ⊆ C is similar to the first case.

(iii) If x ∈ B and y ∈ C, there exist u, v ∈ D such that d(u, v) = hd(D). By the
inductive hypothesis, there is a sequence u ∈ S(x, u) such that ampd(u) ≤
hd(B) and there is a sequence v ∈ S(v, y) such that ampd(v) ≤ hd(C). This
allows us to consider the sequence w obtained by concatenating the sequences
u, (u, v), v; clearly, we have w ∈ S(x, y) and

ampd(w) = max{ampd(u), d(u, v), ampd(v)} ≤ hd(D).

To complete the argument we need to show that if e′ is an other ultramet-
ric such that e(x, y) ≤ e′(x, y) ≤ d(x, y), then e(x, y) = e′(x, y) for every x, y ∈
S. By the previous argument there exists a sequence s = (s0, . . . , sn) ∈ S(x, y)
such that ampd(s) = e(x, y). Since e′(x, y) ≤ d(x, y) for every x, y ∈ S, it follows
that e′(x, y) ≤ ampd(s) = e(x, y). Thus, e(x, y) = e′(x, y) for every x, y ∈ S, which
means that e = e′. This concludes our argument.

6.5 HIERARCHICAL CLUSTERING

Hierarchical clustering is a recursive process that begins with a metric space of objects
(S, d) and results in a chain of partitions of the set of objects. In each of the partitions,
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similar objects belong to the same block and objects that belong to distinct blocks
tend to be dissimilar.

In the agglomerative hierarchical clustering, the construction of this chain begins
with the unit partition π1 = αS . If the partition constructed at step k is

πk = {Uk1 , . . . , Ukmk },

then two distinct blocks Ukp and Ukq of this partition are selected using a
selection criterion. These blocks are fused and a new partition

πk+1 = {Uk1 , . . . , Ukp−1, U
k
p+1, . . . , U

k
q−1, U

k
q+1, . . . , U

k
p ∪ Ukq }

is formed. Clearly, we have πk ≺ πk+1. The process must end because the poset
(PART(S),≤) is of finite height. The algorithm halts when the one-block partition ωS
is reached.

As we saw in Theorem 4, the chain of partitions π1, π2, . . . generates a hierarchy
on the set S. Therefore, all tools developed for hierarchies, including the notion of
dendrogram, can be used for hierarchical algorithms.

When data to be clustered is numerical, that is, when S ⊆ Rn, we can define the
centroid of a nonempty subset U of S as

cU = 1

|U|
∑
{o|o ∈ U}.

If π = {U1, . . . , Um} is a partition of S, then the sum of the squared errors of π is the
number

sse(π) =
m∑
i=1

∑
{d2(o, cUi )|o ∈ Ui}, (6.3)

where d is the Euclidean distance in Rn.
If two blocks U,V of a partition π are fused into a new block W to yield a new

partition π′ that covers π, then the variation of the sum of squared errors is given by

sse(π′)− sse(π) =
∑
{d2(o, cW )|o ∈ U ∩ V }

−
∑
{d2(o, cU )|o ∈ U} −

∑
{d2(o, cV )|o ∈ V }.

The centroid of the new clusterW is given by

cW = 1

|W |
∑
{o|o ∈ W}

= |U|
|W |cU +

|V |
|W |cV .
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This allows us to evaluate the increase in the sum of squared errors:

sse(π′)− sse(π) =
∑
{d2(o, cW )|o ∈ U ∪ V }

−
∑
{d2(o, cU )|o ∈ U} −

∑
{d2(o, cV )|o ∈ V }

=
∑
{d2(o, cW )− d2(o, cU )|o ∈ U}

+
∑
{d2(o, cW )− d2(o, cV )|o ∈ V }.

Observe that

∑
{d2(o, cW )− d2(o, cU )|o ∈ U}

=
∑
o∈U

((o− cW )(o− cW )− (o− cU )(o− cU ))

= |U|(c2
W − c2

U )+ 2(cU − cW )
∑
o∈U

o

= |U|(c2
W − c2

U )+ 2|U|(cU − cW )cU

= (cW − cU ) (|U|(cW + cU )− 2|U|cU )

= |U|(cW − cU )2.

Using the equality cW − cU = |U|/|W |cU + |V |/|W |cV − cU = |V |/|W |
(cV−cU ), we obtain

∑{d2(o, cW )− d2(o, cU )|o ∈ U} = |U||V |2/|W |2 (cV − cU )2.
Similarly, we have

∑
{d2(o, cW )− d2(o, cV )|o ∈ V } = |U|

2|V |
|W |2 (cV − cU )2 ,

so

sse(π′)− sse(π) = |U||V ||W | (cV − cU )2 . (6.4)

The dissimilarity between two clusters U,V can be defined using one of the
following real-valued, two-argument functions defined on the set of subsets of S:

sl(U,V ) = min{d(u, v)|u ∈ U, v ∈ V };
cl(U,V ) = max{d(u, v)|u ∈ U, v ∈ V };

gav(U,V ) =
∑{d(u, v)|u ∈ U, v ∈ V }

|U| · |V | ;
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cen(U,V ) = (cU − cV )2;

ward(U,V ) = |U||V |
|U| + |V | (cV − cU )2 .

The names of the functions sl, cl, gav, and cen defined above are acronyms of the
terms “single link,” “complete link,” “group average,” and “centroid,” respectively.
They are linked to variants of the hierarchical clustering algorithms that we discuss
in later. Note that in the case of the ward function the value equals the increase in
the sum of the square errors when the clusters U,V are replaced with their union.

The specific selection criterion for fusing blocks defines the clustering algo-
rithm. All algorithms store the dissimilarities between the current clusters πk =
{Uk1 , . . . , Ukmk } in a mk ×mk matrix Dk = (dkij), where dkij is the dissimilarity be-

tween the clusters Uki and Ukj . As new clusters are created by merging two existing
clusters, the distance matrix must be adjusted to reflect the dissimilarities between
the new cluster and existing clusters.

The general form of the algorithm is

matrix agglomerative clustering {
compute the initial dissimilarity matrix D1;
k = 1;
while (πk contains more than one block) do

merge a pair of two of the closest clusters;
k ++;
compute the dissimilarity matrix Dk;

endwhile;
}

Next, we show the computation of the dissimilarity between a new cluster and
existing clusters.

Theorem 11 Let U,V be two clusters of the clustering π that are joined into a new
clusterW . Then, ifQ ∈ π − {U,V } we have

sl(W,Q) = 1
2 sl(U,Q)+ 1

2 sl(V,Q)− 1
2

∣∣∣sl(U,Q)− sl(V,Q)
∣∣∣;

cl(W,Q) = 1
2 cl(U,Q)+ 1

2 cl(V,Q)+ 1
2

∣∣∣cl(U,Q)− cl(V,Q)
∣∣∣;

gav(W,Q) = |U|
|U| + |V |gav(U,Q)+ |V |

|U| + |V |gav(V,Q);

cen(W,Q) = |U|
|U| + |V |cen(U,Q)+ |V |

|U| + |V |cen(V,Q)− |U||V |
(|U| + |V |)2 cen(U,V );
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ward(W,Q) = |U| + |Q|
|U| + |V | + |Q|ward(U,Q)+ |V | + |Q|

|U| + |V | + |Q|ward(V,Q)

− |Q|
|U| + |V | + |Q|ward(U,V ).

Proof. The first two equalities follow from the fact that

min{a, b} = 1
2 (a+ b)− 1

2 |a− b|,
max{a, b} = 1

2 (a+ b)+ 1
2 |a− b|,

for every a, b ∈ R.
For the third equality, we have

gav(W,Q) =
∑{d(w, q)|w ∈ W, q ∈ Q}

|W | · |Q|

=
∑{d(u, q)|u ∈ U, q ∈ Q}

|W | · |Q| +
∑{d(v, q)|v ∈ V, q ∈ Q}

|W | · |Q|

= |U|
|W |

∑{d(u, q)|u ∈ U, q ∈ Q}
|U| · |Q| + |V |

|W |
∑{d(v, q)|v ∈ V, q ∈ Q}

|V | · |Q|

= |U|
|U| + |V |gav(U,Q)+ |V |

|U| + |V |gav(V,Q).

The equality involving the function cen is immediate. The last equality can be
easily translated into

|Q||W |
|Q| + |W |

(
cQ − cW

)2

= |U| + |Q|
|U| + |V | + |Q|

|U||Q|
|U| + |Q|

(
cQ − cU

)2

+ |V | + |Q|
|U| + |V | + |Q|

|V ||Q|
|V | + |Q|

(
cQ − cV

)2

− |Q|
|U| + |V | + |Q|

|U||V |
|U| + |V | (cV − cU )2 ,

which can be verified replacing |W | = |U| + |V | and cW = |U|/|W |cU + |V |/
|W |cV . �.

The equalities contained by Theorem 11 are often presented as a single equality
involving several coefficients.

Corollary 1 (The Lance–Williams formula) LetU,V be two clusters of the cluster-
ing π that are joined into a new clusterW . Then, ifQ ∈ π − {U,V } the dissimilarity
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betweenW andQ can be expressed as

d(W,Q) = aUd(U,Q)+ aV d(V,Q)+ bd(U,V )+ c|d(U,Q)− d(V,Q)|,

where the coefficients aU, aV , b, c are given by the following table.

Function aU aV b c

sl 1/2 1/2 0 −(1/2)

cl 1/2 1/2 0 1/2

gav |U|/(|U| + |V |) |V |/|U| + |V | 0 0

cen |U|/(|U| + |V |) |V |/|U| + |V | −(|U||V |(|U| + |V |)2) 0

ward |U| + |Q|(|U| + |V | + |Q|) |V | + |Q|/|U| + |V | + |Q| −(|Q||U| + |V | + |Q|) 0

Proof. This statement is an immediate consequence of Theorem 9. �

The variant of the algorithm that makes use of the function sl is known as the
single-link clustering. It tends to favor elongated clusters.

Example 9 We use single-link clustering for the data set shown in Figure 6.3, S =
{o1, . . . , o7}, that consists of seven objects.

The distances between the objects of S are specified by the 7× 7 matrix

D1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
√

5
√

20
√

32
√

61
√

58
1 0

√
2

√
13 5

√
50

√
45√

5
√

2 0
√

5
√

13
√

32
√

29√
20

√
13

√
5 0 2

√
13

√
10√

32
√

5
√

13 2 0
√

5
√

10√
61

√
50

√
32

√
13

√
5 0

√
5√

58
√

45
√

29
√

10
√

10
√

5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us apply the hierarchical clustering algorithm using the single-link variant to the
set S. Initially, the clustering is

FIGURE 6.3 Set of seven points in R2.
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π1 = {{o1}, {o2}, {o3}, {o4}, {o5}, {o6}, {o7}}.

The closest clusters are {o1}, {o2}; these clusters are fused into the cluster {o1, o2},
the new partition is

π2 = {{o1, o2}, {o3}, {o4}, {o5}, {o6}, {o7}},

and the matrix of dissimilarities becomes the 6× 6 matrix

D2 =

⎛⎜⎜⎜⎜⎜⎝
0

√
2

√
13 5

√
50

√
45√

2 0
√

5
√

13
√

32
√

29√
13

√
5 0 2

√
13

√
10

5
√

13 2 0
√

5
√

10√
50

√
32

√
13

√
5 0

√
5√

45
√

29
√

10
√

10
√

5 0

⎞⎟⎟⎟⎟⎟⎠ .

Next, the closest clusters are {o1, o2} and {o3}. These clusters are fused into the cluster
{o1, o2, o3} and the new 5× 5 matrix is

D3 =

⎛⎜⎜⎜⎝
0

√
5

√
13

√
32

√
29√

5 0 2
√

13
√

10√
13 2 0

√
5

√
10√

32
√

13
√

5 0
√

5√
29

√
10

√
10

√
5 0

⎞⎟⎟⎟⎠ ,
which corresponds to the partition

π3 = {{o1, o2, o3}, {o4}, {o5}, {o6}, {o7}}.

Next, the closest clusters are {o4} and {o5}. Fusing these yields the partition

π4 = {{o1, o2, o3}, {o4, o5}, {o6}, {o7}}

and the 4× 4 matrix

D4 =

⎛⎜⎝
0

√
5

√
32

√
29√

5 0
√

5
√

10√
32

√
5 0

√
5√

29
√

10
√

5 0

⎞⎟⎠ .
We have two choices now: we could fuse {o1, o2, o3} with {o4, o5}, or {o4, o5} with
{o6} since in either case the intercluster dissimilarity is

√
5. We choose the first option

and we form the cluster {o1, o2, o3, o4, o5}. Now the partition is

π5 = {{o1, o2, o3, o4, o5}, {o6}, {o7}}
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FIGURE 6.4 Elongated cluster produced by the single-link algorithm.

and the matrix is

D5 =
( 0

√
5
√

10√
5 0

√
5√

10
√

5 0

)
.

Observe that the large cluster formed so far has an elongated shape (see Fig. 6.4);
this is typical for single-link variant of the algorithm. Fusing now {o1, o2, o3, o4, o5}
with {o6} gives the two-block partition

π6 = {{o1, o2, o3, o4, o5, o6}, {o7}}

and the 2× 2 matrix

D6 =
(

0
√

5√
5 0

)
.

In the final step, the two clusters are fused and the algorithm stops.
The dendrogram of the hierarchy produced by the algorithm is given in

Figure 6.5. �

The variant of the algorithm that uses the function cl is known as the complete-link
clustering. It tends to favor globular clusters.

FIGURE 6.5 Dendrogram of single-link clustering.



198 DATA MINING ALGORITHMS I: CLUSTERING

Example 10 Now we apply the complete-link algorithm to the set S considered in
Example 9. It is easy to see that the initial two partitions and the initial matrix are the
same as for the single-link algorithm.

However, after creating the first cluster {o1, o2}, the distance matrices begin to
differ. The next matrix is

D2 =

⎛⎜⎜⎜⎜⎜⎝
0

√
5

√
20

√
32

√
61

√
58√

5 0
√

5
√

13
√

32
√

29√
20

√
5 0 2

√
13

√
10√

32
√

13 2 0
√

5
√

10√
61

√
32

√
13

√
5 0

√
5√

58
√

29
√

10
√

10
√

5 0

⎞⎟⎟⎟⎟⎟⎠ ,

which shows that the closest clusters are now {o4} and {o5}. Thus,

π3 = {{o1, o2}, {o3}, {o4, o5}, {o6}, {o7}}

and the new matrix is

D3 =

⎛⎜⎜⎜⎝
0

√
5

√
32

√
61

√
58√

5 0
√

13
√

32
√

29√
32

√
13 0

√
10

√
10√

61
√

32
√

13 0
√

5√
58

√
29

√
10

√
5 0

⎞⎟⎟⎟⎠ .

Now there are two pairs of clusters that correspond to the minimal value in D3:
{o1, o2}, {o3} and {o6}, {o7}; if we merge the last pair we get the partition π4 =
{{o1, o2}, {o3}, {o4, o5}, {o6, o7}} and the matrix

D4 =

⎛⎜⎝
0

√
32

√
61

√
58√

32 0
√

13
√

10√
61

√
13 0

√
5√

58
√

10
√

5 0

⎞⎟⎠ .
Next, the closest clusters are {o1, o2}, {o3}. Merging those clusters will result in the
partition π5 = {{o1, o2, o3}, {o4, o5}, {o6, o7}} and the matrix

D5 =
( 0

√
32

√
61√

32 0
√

13√
61

√
13 0

)
.

The current clustering is shown in Figure 6.6. Observe that in the case of the complete-
link method clusters that appear early tend to enclose objects that are closed in the
sense of the distance.
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FIGURE 6.6 Partial clustering obtained by complete-link method.

Now the closest clusters are {o4, o5} and {o6, o7}. Merging those clusters will give
the partition π5 = {{o1, o2, o3}, {o4, o5, o6, o7}} and the matrix

D6 =
(

0
√

61√
61 0

)
.

The dendrogram of the resulting clustering is given in Figure 6.7. �

The group average method that makes use of the gav function is an intermediate
approach between the single-link and the complete-link method. What the methods
mentioned so far have in common is the monotonicity property expressed by the
following statement.

FIGURE 6.7 Dendrogram of complete-link clustering.
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Theorem 12 Let (S, d) be finite metric space and letD1, . . . , Dm be the sequence of
matrices constructed by any of the first three hierarchical methods (single, complete,
or average link), where m = |S|. If μi is the smallest entry of the matrix Di for 1 ≤
i ≤ m, then μ1 ≤ μ2 ≤ · · · ≤ μm. In other words, the dissimilarity between clusters
that are merged at each step is nondecreasing.

Proof. Suppose that the matrix Dj+1 is obtained from the matrix Dj by merging the
clusters Cp and Cq that correspond to the lines p, q and to columns p, q of Dj . This
happens because dpq = dqp is one of the minimal elements of the matrix Dj . Then,
these lines and columns are replaced with a line and column that corresponds to the
new cluster Cr and to the dissimilarities between this new cluster and the previous
clusters Ci, where i �= p, q. The elements dj+1

rh of the new line (and column) are ob-

tained either as min{djph, djqh}, max{djph, djqh}, or as (|Cp|/|Cr|)djph + (|Cq|/|Cr|)djqh,
for the single-link, complete-link, or group average methods, respectively. In any of
these case, it is not possible to obtain a value for dj+1

rh that is less than the minimal
value of an element of Dj . �

The last two methods captured by the Lance–Williams formula are, respectively,
the centroid method and the Ward method of clustering. As we observed before,
formula (6.4) shows that the dissimilarity of two cluster in the case of Ward’s method
equals the increase in the sum of the squared errors that results when the clusters are
merged. The centroid method adopts the distance between the centroids as the distance
between the corresponding clusters. Either method lacks the monotonicity properties.

To evaluate the space and time complexity of hierarchical clustering note that the
algorithm must handle the matrix of the dissimilarities between objects and this is
a symmetric n× n matrix having all elements on its main diagonal equal to 0; in
other words, the algorithm needs to store (n(n− 1)/2) numbers. To keep track of the
clusters, an extra space that does not exceed n− 1 is required. Thus, the total space
required is O(n2).

The time complexity of agglomerative clustering algorithms has been evaluated in
the work by Kurita [9]; the proposed implementation requires a heap that contains the
pairwise distances between clusters and therefore has a size of n2. The pseudocode
of this algorithm is

generic agglomerative algorithm {
construct a heap H of size n2

for inter-cluster dissimilarities;
while the number of clusters is larger than 1 do

get the nearest pairs of clusters Cp,Cq that correspond to
H[0];
reduce the number of clusters by 1 through merging Cp and
Cq;
update the heap to reflect the revised distances and

remove unnecessary elements;
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endwhile;
}

Note that the while loop is performed n times as each execution reduces the
number of clusters by 1. The initial construction of the heap requires a time of
O(n2 log n2) = O(n2 log n). Then, each of operations inside the loop requires no
more than O(log n2) = O(log n) (because the heap has size n2). Thus, we conclude
that the time complexity is O(n2 log n).

There exists an interesting link between the single-link clustering algorithm and
the subdominant ultrametric of a dissimilarity, which we examined in Section 6.4.3.

To construct the subdominant ultrametric for a dissimilarity dissimilarity space
(S, d), we built an increasing chain of partitions π1, π2, . . . of S (where π1 = αS)
and a sequence of dissimilarities d1, d2, . . . (where d1 = d) on the sets of blocks of
π1, π2, . . ., respectively. We claim that this sequence of partitionsπ1, π2, . . . coincides
with the sequence of partitions π1, π2, . . ., and that the sequence of dissimilarities
d1, d2, . . . coincides with the sequences of dissimilarities d1, d2, . . . defined by the
matricesDi constructed by the single-link algorithm. This is clearly the case for i = 1.

Suppose that the statement is true for i. The partition πi+1 is obtained from πi by
fusing the blocks B,C of π such that di(B,C) has the smallest value, that is,

πi+1 = (πi − {B,C}) ∪ {B ∪ C}.

Since this is exactly how the partition πi+1 is constructed from πi, it follows that
πi+1 = πi+1. The inductive hypothesis implies that

di(U,V ) = di(U,V ) = min{d(u, v)|u ∈ U, v ∈ V }

for allU,V ∈ πi. Since the dissimilarity di+1 is di+1(U,V ) = min{d(u, v)|u ∈ U, u ∈
V } for every pair of blocks U,V of πi+1, it is clear that di+1(U,V ) = di(U,V ) =
di(U,V ) = di+1(U,V ) when neither U nor V equal the block B ∪ C. Then,

di+1(B ∪ C,W)

= min{d(t, w)|t ∈ B ∪ C,w ∈ W}
= min{min{d(b,w)|b ∈ B,w ∈ W},min{d(c,w)|c ∈ C,w ∈ W}}
= min{di(B,W), di(C,W)}
= min{di(B,W), di(C,W)}
= di+1(B ∪ C,W).

Thus, di+1 = di+1.
Let x, y be a pair of elements of S. The value of the subdominant ultrametric is

given by

e(x, y) = min{hd(W)|W ∈ Hd and {x, y} ⊆ W}.
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This is the height ofW in the dendrogram of the single-link clustering, and therefore,
the subdominant ultrametric can be read directly from this dendrogram.

Example 11 The subdominant ultrametric of the Euclidean metric considered in
Example 9 is given by the following table.

e(oi, oj) o1 o2 o3 o4 o5 o6 o7

o1 0 1
√

2 2
√

5
√

5
√

5
o2 1 0

√
2
√

5
√

5
√

5
√

5
o3

√
2
√

2 0
√

5
√

5
√

5
√

5
o4 2

√
5
√

5 0
√

5
√

5
√

5
o5

√
5
√

5
√

5
√

5 0
√

5
√

5
o6

√
5
√

5
√

5
√

5
√

5 0
√

5
o7

√
5
√

5
√

5
√

5
√

5
√

5 0
�

6.6 THE k-MEANS ALGORITHM

The k-means algorithm is a partitional algorithm that requires the specification of the
number of clusters k as an input. The set of objects to be clustered S = {o1, . . . , on}
is a subset of Rm. Due to its simplicity and its many implementations, it is a very
popular algorithm despite this requirement.

The k-means algorithm begins with a randomly chosen collection of k points
c1, . . . , ck in Rm called centroids. An initial partition of the set S of objects is
computed by assigning each object oi to its closest centroid cj . Let Uj be the set of
points assigned to the centroid cj .

The assignments of objects to centroids are expressed by a matrix (bij), where

bij =
{

1 if oi ∈ Uj,
0 otherwise.

Since each object is assigned to exactly one cluster, we have
∑k
j=1 bij = 1. On the

contrary,
∑n
i=1 bij equals the number of objects assigned to the centroid cj .

After these assignments, expressed by the matrix (bij), the centroids cj must be
recomputed using the formula

cj =
∑n
i=1 bijo

i∑n
i=1 bij

(6.5)

for 1 ≤ j ≤ k.
The sum of squared errors of a partition π = {U1, . . . , Uk} of a set of objects S

was defined in equality (6.3) as
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sse(π) =
k∑
j=1

∑
o∈Uj

d2(o, cj),

where cj is the centroid of Uj for 1 ≤ j ≤ k. The error of such an assignment is the
sum of squared errors of the partition π = {U1, . . . , Uk} defined as

sse(π) =
n∑
i=1

k∑
j=1

bij||oi − cj||2

=
n∑
i=1

k∑
j=1

bij

m∑
p=1

(
oip − cjp

)2
.

The mk necessary conditions for a local minimum of this function,

∂sse(π)

∂c
j
p

=
n∑
i=1

bij

(
−2(oip − cjp)

)
= 0

for 1 ≤ p ≤ m and 1 ≤ j ≤ k, can be written as

n∑
i=1

bijo
i
p =

n∑
i=1

bijc
j
p = cjp

n∑
i=1

bij,

or as

cjp =
∑n
i=1 bijo

i
p∑n

i=1 bij

for 1 ≤ p ≤ m. In vectorial form, these conditions amount to

cj =
∑n
i=1 bijo

i∑n
i=1 bij

,

which is exactly formula (6.5) that is used to update the centroids. Thus, the choice
of the centroids can be justified by the goal of obtaining local minima of the sum of
squared errors of the clusterings.

Since we have new centroids, objects must be reassigned, which means that the
values of bij must be recomputed, which, in turn, will affect the values of the centroids,
and so on.

The halting criterion of the algorithm depends on particular implementations and
it may involve
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(i) performing a certain number of iterations;

(ii) lowering the sum of squared errors sse(π) below a certain limit;

(iii) the current partition coincides with the previous partition.

This variant of the k-means algorithm is known as Forgy’s algorithm:

k means forgy{
obtain a randomly chosen collection of
k points c1, . . . , ck in Rn;
assign each object oi to the closest centroid cj;
let π = {U1, . . . , Uk} be the partition defined by

c1, . . . , ck;
recompute the centroids of the clusters U1, . . . , Uk;
while (halting criterion is not met) do

compute the new value of the partition π
using the current centroids;

recompute the centroids of the blocks of π;
endwhile

}

The popularity of the k-means algorithm stems on its simplicity and its low time
complexity that is O(kn�), where n is the number of objects to be clustered and � is
the number of iterations that the algorithm is performing.

Another variant of the k-means algorithm redistributes objects to clusters based on
the effect of such a reassignment on the objective function. If sse(π) decreases, the
object is moved and the two centroids of the affected clusters are recomputed. This
variant is carefully analyzed in the work by Berkin and Becher [3].

6.7 THE PAM ALGORITHM

Another algorithm named PAM (an acronym of partition around medoids) developed
by Kaufman and Rousseeuw [7] also requires as an input parameter the number k of
clusters to be extracted.

The k clusters are determined based on a representative object from each cluster
called the medoid of the cluster. The medoid is intended to have the most central
position in the cluster relative to all other members of the cluster. Once medoids are
selected, each remaining object o is assigned to a cluster represented by a medoid oi
if the dissimilarity d(o, oi) is minimal.

In the second phase, swapping objects and existing medoids are considered. The
cost of a swap is defined with the intention of penalizing swaps that diminish the
centrality of the medoids in the clusters. Swapping continues as long as useful swaps
(i.e., swaps with negative costs) can be found.

PAM begins with a set of objects S, where |S| = n, a dissimilarity n× nmatrixD,
and a prescribed number of clusters k. The dij entry of the matrixD is the dissimilarity
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d(oi, oj) between the objects oi and oj . PAM is more robust than Forgy’s variant of
k-clustering because it minimizes the sum of the dissimilarities instead of the sum of
the squared errors.

The algorithm has two distinct phases: the building phase and the swapping phase.
The building phase aims to construct a set L of selected objects, L ⊆ S. The set

or remaining objects is denoted by R; clearly, R = S − L. We begin by determining
the most centrally located object.

The quantitiesQi =
∑n
j=1 dij are computed starting from the matrixD. The most

central object oq is the determined by

q = arg miniQi.

The set L is initialized as L = {oq}.
Suppose now that we have constructed a set of L of selected objects and |L| < k.

We need to add a new selected object to the set L. To do this, we need to examine all
objects that have not been included in L so far, that is, all objects in R. The selection
is determined by a merit functionM : R −→ N.

To compute the merit M(o) of an object o ∈ R, we scan all objects in R distinct
from o. Let o′ ∈ R− {o} be such an object. If d(o, o′) < d(L, o′), then adding o to
L could benefit the clustering (from the point of view of o′) because d(L, o′) will
diminish. The potential benefit is d(o′, L)− d(o, o′). Of course, if d(o, o′) ≥ d(L, o′)
no such benefit exists (from the point of view of o′). Thus, we compute the merit of
o as

M(o) =
∑

o′∈R−{o}
max{D(L, o′)− d(o, o′), 0}.

We add to L the unselected object o that has the largest merit value. The building
phase halts when |L| = k.

The objects in setL are the potential medoids of the k clusters that we seek to build.
The second phase of the algorithm aims to improve the clustering by considering the
merit of swaps between selected and unselected objects. So, assume now that oi is a
selected object, oi ∈ L, and oh is an unselected object, oh ∈ R = S − L. We need to
determine the cost C(oi, oh) of swapping oi and oh. Let oj be an arbitrary unselected
object. The contribution cihj of oj to the cost of the swap between oi and oh is defined
as follows:

1. If d(oi, oj) and d(oh, oj) are greater than d(o, oj) for any o ∈ L− {oi}, then
cihj = 0.

2. If d(oi, oj) = d(L, oj), then two cases must be considered depending on the
distance e(oj) from ej to the second closest object of S.

(a) If d(oh, oj) < e(oj), then cihj = d(oh, oj)− d(S, oj).

(b) If d(oh, oj) ≥ e(oj), then cihj = e(oj)− d(S, oj).

In either of these two subcases, we have



206 DATA MINING ALGORITHMS I: CLUSTERING

cihj = min{d(oh, oj), ej} − d(oi, oj).

3. If d(oi, oj) > d(L, oj) (i.e., oj is more distant from oi than from at least one
other selected object) and d(oh, oj) < d(L, oj) (which means that oj is closer
to oh than to any selected object), then cihj = d(oh, oj)− d(S, oj).

The cost of the swap is C(oi, oh) =∑oj∈R cihj . The pair that minimizes C(oi, oj)
is selected. If C(oi, oj) < 0, then the swap is carried out. All potential swaps are
considered.

The algorithm halts when no useful swap exists, that is, no swap with negative cost
can be found.

The pseudocode of the algorithm is

k means PAM{
construct the set L of k medoids;
repeat

compute the costs C(oi, oh) for oi ∈ L and oh ∈ R;
select the pair (oi, oh) that corresponds to the minimum

m = C(oi, oh);
until (m > 0);

}

Note that inside the loop repeat . . .until there are l(n− l) pairs of objects to be
examined and for each pair we need to involve n− l nonselected objects. Thus, one
execution of the loop requires O(l(n− l)2) and the total execution may require up to

O
(∑n−l

l=1 l(n− l)2
)

, which isO(n4). Thus, the usefulness of PAM is limited to rather

small data set (no more than a few hundred objects).

6.8 LIMITATIONS OF CLUSTERING

As we stated before, an exclusive clustering of a set of objects S is a partition of S
whose blocks are the clusters. A clustering method starts with a definite dissimilarity
on S and generates a clustering. This is formalized in the next definition.

Definition 8 Let S be a set of objects and let D′S be the set of definite dissimilarities
that can be defined on S.

A clustering function on S is a mapping f : D′S −→ PART(S).

Example 12 Let g : R≥0 −→ R≥0 be a continuous, nondecreasing, and unbounded
function and let S ⊆ Rn be a finite subset of Rn. For k ∈ N and k ≥ 2, define a
(g, k)-clustering function as follows.

Begin by selecting a set T of k points from S such that the function �gd(T ) =∑
x∈S g(d(x, T )) is minimized. Here d(x, T ) = min{d(x, t)|t ∈ T }. Then, define a
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partition of S into k clusters by assigning each point to the point in T that is the
closest and breaking the ties using a fixed (but otherwise arbitrary) order on the set
of points. The clustering function defined by (d, g), denoted by fg maps d to this
partition.

The k-median clustering function is obtained by choosing g(x) = x for x ∈ R≥0;
the k-means clustering function is obtained by taking g(x) = x2 for x ∈ R≥0. �

Definition 9 Let κ be a partition of S and let d, d′ ∈ D′S . The definite dissimilarity d′
is a κ-transformation of d if the following conditions are satisfied:

(i) If x ≡κ y, then d′(x, y) ≤ d(x, y);

(ii) If x �≡κ y, then d′(x, y) > d(x, y).

In other words, d′ is a κ-transformation of d if for two objects that belong to the same
κ-cluster d′(x, y) is smaller than d(x, y), while for two objects that belong to two
distinct clusters d′(x, y) is larger than d(x, y).

Next, we consider three desirable properties of a clustering function.

Definition 10 Let S be a set and let f : D′S −→ PART(S) be a clustering function.
The function f is

(i) scale invariant, if for every d ∈ D′S and every α > 0 we have f (d) = f (αd);

(ii) rich, if Ran(f ) = PART(S);

(iii) consistent, if for every d, d′ ∈ D′S and κ ∈ PART(S) such that f (d) = κ and
d′ is a κ-transformation of d we have f (d′) = κ,

Unfortunately, as we shall see in Theorem 14, established in the work by
Kleinburg [8], there is no clustering function that enjoys all three properties.

The following definition will be used in the proof of Lemma 2.

Definition 11 A dissimilarity d ∈ D′S is (a, b)-conformant to a clustering κ if x ≡κ y
implies d(x, y) ≤ a and x �≡κ y implies d(x, y) ≥ b.

A dissimilarity is conformant to a clustering κ if it is (a, b)-conformant to κ for
some pair of numbers (a, b).

Note that if d′ is a κ-transformation of d, and d is (a, b)-conformant to κ, then d′
is also (a, b)-conformant to κ.

Definition 12 Let κ ∈ PART(S) be a partition on S and f be a clustering function on
S. A pair of positive numbers (a, b) is κ-forcing with respect to f if for every d ∈ D′S
that is (a, b)-conformant to κ we have f (d) = κ.

Lemma 2 If f is a consistent clustering function on a set S, then for any partition
κ ∈ Ran(f ) there exist a, b ∈ R>0 such that the pair (a, b) is κ-forcing.
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Proof. For κ ∈ Ran(f ) there exists d ∈ D′S such that f (d) = κ. Define the numbers

aκ,d = min{d(x, y)|x �= y, x ≡κ y},
bκ,d = max{d(x, y)|x �≡κ y}.

In other words, aκ,d is the smallest d value for two distinct objects that belong to the
same κ-cluster, and bκ,d is the largest d value for two objects that belong to different
κ-clusters.

Let (a, b) a pair of positive numbers such that a ≤ aκ,d and b ≥ bκ,d . If d′ is a
definite dissimilarity that is (a, b)-conformant to κ, then x ≡κ y implies d′(x, y) ≤
a ≤ aκ,d ≤ d(x, y) and x �≡κ y implies d′(x, y) ≥ b > bκ,d > d(x, y), so d′ is a κ-
transformation of d. By the consistency property of f , we have f (d′) = κ. This
implies that (a, b) is κ-forcing. �

Theorem 13 If f is a scale-invariant and consistent clustering function on a set S,
then its range is an antichain in poset (PART(S),≤).

Proof. This statement is equivalent to saying that for any scale-invariant and consistent
clustering function no two distinct partitions of S that are values of f are comparable.

Suppose that there are two clusterings, κ0 and κ1, in the range of a scale-invariant
and consistent clustering such that κ0 < κ1.

Let (ai, bi) be a κi-forcing pair for i = 0, 1, where a0 < b0 and a1 < b1. Let a2 be
a number such that a2 ≤ a1 and choose ε such that

0 < ε <
a0a2

b0
.

By Exercise 3 construct a distance d such that:

1. for any points x, y that belong to the same block of π0, d(x, y) ≤ ε;
2. for points that belong to the same cluster of π1, but not to the same cluster of
π0, a2 ≤ d(x, y) ≤ a1;

3. for points that do not belong to the same cluster of π1, d(x, y) ≥ b1.

The distance d is (a1, b1)-conformant to π1 and so we have f (d) = π1. Take α =
b0/a2, and define d′ = αd. Since f is scale invariant, we have f (d′) = f (d) = π1.
Note that for points x, y that belong to the same cluster of κ0 we have

d′(x, y) ≤ εb0

a2
< a0,

while for points x, y that do not belong to the same cluster of κ0 we have

d′(x, y) ≥ a2b0

a2
≥ b0.
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Thus, d′ is (a0, b0)-conformant to κ0, and so we must have f (d′) = κ0. Since κ0 �= κ1,
this is a contradiction. �

Theorem 14 (Kleinberg’s impossibility theorem) If |S| ≥ 2, there is no clustering
function that is scale invariant, rich, and consistent.

Proof. If S contains at least two elements than the poset (PART(S),≤) is not an
antichain. Therefore, this statement is a direct consequence of Theorem 13. �

Theorem 15 For every antichainAof the poset (PART(S),≤) there exists a clustering
function f that is scale invariant and consistent such that Ran(f ) = A.

Proof. Suppose that A contains more than one partition. We define f (d) as the first
partition π ∈ A (in some arbitrary but fixed order) that minimizes the quantity:

�d(π) =
∑
x≡πy

d(x, y).

Note that �αd = α�d . Therefore, f is scale invariant.
We need to prove that every partition of A is in the range of f .
For a partition ρ ∈ A define d such that d(x, y) < 1/|S|3 if x ≡ρ y and d(x, y) ≥ 1

otherwise. Observe that �d(ρ) < 1. Suppose that �d(θ) < 1. The definition of d
means that

�d(θ) =
∑
x≡θy

d(x, y) < 1,

so for all pairs (x, y) ∈≡θ we have d(x, y) < 1/|S|3, which means that x ≡ρ y. There-
fore, we have π < ρ. SinceA is an antichain, it follows that ρmust minimize�d over
all partitions of A, and consequently, f (d) = ρ.

To verify the consistency of f suppose that f (d) = π and let d′ be a π-
transformation of d. For σ ∈ PART(S) define δ(σ) as �d(σ)−�d′ (σ). For σ ∈ A
we have

δ(σ) =
∑
x≡σy

(d(x, y)− d′(x, y))

≤
∑
x ≡σ y

and x ≡π y

(d(x, y)− d′(x, y))

(only terms corresponding to pairs in the same
cluster are nonnegative)

≤ δ(π)

(every term corresponding to a pair in the same
cluster is nonnegative).
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Consequently,

�d(σ)−�d′ (σ) ≤ �d(π)−�d′ (π),

or �d(σ)−�d(π) ≤ �d′ (σ)−�d′ (π). Thus, if π minimizes �d(π), then �d(σ)−
�d(π) ≥ 0 for every σ ∈ A, and therefore,�d′ (σ)−�d′ (π) ≥ 0, which means that π
also minimizes �d′ (π). This implies f (d′) = π, which shows that f is consistent. �

Example 13 It is possible to show that for k ≥ 2 and for sufficiently large sets of
objects the clustering function fg introduced in Example 12 is not consistent.

Suppose that κ = {C1, C2, . . . , Ck} is a partition of S and d is a definite dissim-
ilarity on S such that d(x, y) = ri if x �= y and {x, y} ⊆ Ci for some 1 ≤ i ≤ k and
d(x, y) = r + a if x and y belong to two distinct blocks of κ, where r = max{ri|1 ≤
i ≤ k} and a > 0.

Suppose that T is a set of k members of S. Then, the value of g(d(x, T )) is g(r)
if the closest member of T is in the same block as x and is g(r + a) otherwise. This
means that the smallest value of �gd(T ) =∑x∈Ci g(d(x, T )) is obtained when each
block Ci contains a member ti of T for 1 ≤ i ≤ k and the actual value is �gd(T ) =∑k
i=1(|Ci| − 1)r2 = (|S| − k)r2.
Consider now a partition κ′ = {C′1, C′′1 , C2, . . . , Ck}, where C1 = C′1 ∪ C′′1 , so

κ′ < κ. Choose r′ to be a positive number such that r′ < r and define the dissim-
ilarity d′ on S such that d′(x, y) = r′ if x �= y and x ≡κ′ y and d′(x, y) = d(x, y)
otherwise. Clearly, d′ is a κ-transformation of d. The minimal value for �gd(T ′) will
be achieved when T ′ consists of k + 1 points, one in each of the block of κ′; as a
result, the value of the clustering function for d′ will be κ′ �= κ, which shows that no
clustering function obtained by this technique is consistent. �

6.9 CLUSTERING QUALITY

There are two general approaches for evaluating the quality of a clustering:
unsupervised evaluation that measures the cluster cohesion and the separation be-
tween clusters and supervised evaluation that measures the extent to which the clus-
tering we analyze matches a partition of the set of objects that is specified by an
external labeling of the objects.

6.9.1 Object Silhouettes

The silhouette method is an unsupervised method for evaluation of clusterings that
computes certain coefficients for each object. The set of these coefficients allows an
evaluation of the quality of the clustering.

Let O = {u1, . . . , un} be a collection of objects, d : O×O −→ R+ be a dissim-
ilarity on O, and let κ : O −→ {C1, . . . , Ck} be a clustering function.
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Suppose that κ(ui) = C�. The (κ, d)-average dissimilarity is the function ak,d :
O −→ R given by

aκ,d(ui) =
∑{d(ui, u)|κ(u) = κ(ui) and u �= ui}

|κ(ui)| ,

that is, the average dissimilarity of ui to all objects of κ(ui), the cluster to which ui is
assigned.

For a cluster C and an object ui let

d(ui, C) =
∑{d(ui, u)|κ(u) = C}

|C|

be the average dissimilarity between ui and the objects of the cluster C.

Definition 13 Let κ : O −→ {C1, . . . , Ck} be a clustering function. A neighbor of ui
is a cluster C �= κ(ui) for which d(ui, C) is minimal.

In other words, a neighbor of an object ui is “the second best choice” for a cluster for
ui. Let b : O −→ R be the function defined by

bκ,d(ui) = min{d(ui, C)|C �= κ(ui)}.

If κ and d are clear from context, we shall simply write a(ui) and b(ui) instead of
aκ,d(ui) and bκ,d(ui), respectively.

Definition 14 The silhouette of the object ui for which |κ(ui)| ≥ 2 is the number
sil(ui) given by

sil(ui) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− a(ui)

b(ui)
if a(ui) < b(ui)

0 if a(ui) = b(ui)
b(ui)

a(ui)
− 1 if a(ui) > b(ui).

Equivalently, we have

sil(ui) = b(ui)− a(ui)
max{a(ui), b(ui)}

for ui ∈ O.
If κ(ui) = 1, then s(ui) = 0.
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Observe that −1 ≤ sil(ui) ≤ 1. When sil(ui) is close to 1, this means that a(ui) is
much smaller than b(ui) and we may conclude that ui is well classified. When sil(ui)
is near 0, it is not clear which is the best cluster for ui. Finally, if sil(ui) is close to
−1, the average distance from u to its neighbor(s) is much smaller than the average
distance between ui and other objects that belong to the same cluster κ(ui). In this
case, it is clear that ui is poorly classified.

Definition 15 Let average silhouette width of a cluster C is

sil(C) =
∑{sil(u)|u ∈ C}

|C| .

The average silhouette width of a clustering κ is

sil(κ) =
∑{sil(u)|u ∈ O}

|O| .

The silhouette of a clustering can be used for determining the “optimal” number
of clusters. If the silhouette of the clustering is above 0.7, we have a strong clustering.

6.9.2 Supervised Evaluation

Suppose that we intend to evaluate the accuracy of a clustering algorithm A on a set
of objects S relative to a collection of classes on S that forms a partition σ of S. In
other words, we wish to determine the extent to which the clustering produced by A
coincides with the partition determined by the classes.

If the set S is large, the evaluation can be performed by extracting a random sample
T from S, applyingA to T , and then comparing the clustering partition of T computed
by A and the partition of T into the preexisting classes.

Let κ = {C1, . . . , Cm} be the clustering partition of T and let σ = {K1, . . . , Kn}
be the partition of T of classes. The evaluation is helped by n×m matrix Q, where
qij = |Ci ∩Kj| named the confusion matrix.

We can use distances associated with the generalized entropy, dβ(κ, σ), to evaluate
the distinction between these partitions. This was already observed by Rand [11],
who proposed as a measure the cardinality of the symmetric difference of the sets of
pairs of objects that belong to the equivalences that correspond to the two partitions.

Frequently, one uses the conditional entropy

H(σ|κ) =
m∑
i=1

|Ci|
|T | H(σCi ) =

m∑
i=1

|Ci|
|T |

n∑
j=1

|Ci ∩Kj|
|Ci| log2

|Ci ∩Kj|
|Ci|

to evaluate the “purity” of the clusters Ci relative to the classes K1, . . . , Kn. Low
values of this number indicate a high degree of purity.

Some authors [14] define the purity of a cluster Ci as a as purσ(Ci) =
maxj |Ci ∩Kj|/|Ci| and the purity of the clustering κ relative to σ as
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purσ(κ) =
n∑
i=1

|Ci|
|T | purσ(Ci).

Larger values of the purity indicate better clusterings (from the point of view of the
matching with the class partition of the set of objects).

Example 14 Suppose that a set of 1000 objects consists of three classes of objects
K1,K2,K3, where |K1| = 500, |K2| = 300, and |K1| = 200. Two clustering algo-
rithms A and A′ yield the clusterings κ = {C1, C2, C3} and κ′ = {C′1, C′2, C′3} and
the confusion matricesQ andQ′, respectively:

K1 K2 K3

C1 400 0 25
C2 60 200 75
C3 40 100 100

and

K1 K2 K3

C′1 60 0 180
C′2 400 50 0
C′3 40 250 20

The distances d2(κ, σ) and d2(κ′, σ) are 0.5218 and 0.4204 suggesting that the clus-
tering κ′ produced by the second algorithm is closer to the partition in classes.

As expected, the purity of the first clustering, 0.7, is smaller than the purity of the
second clustering, 0.83. �

Another measure of clustering quality proposed in the work by Ray and Turi [12]
applies to objects in Rn and can be applied, for example, to the clustering that results
from the k-means method, the validity of clustering. Let π = {U1, . . . , Uk} be a
clustering of N objects, c1, . . . , ck the centroids of the clusters, then the clustering
validity is

val(π) = sse(π)

N mini<j d2(ci, cj)
.

The variety of clustering algorithms is very impressive and it is very helpful to the
reader to consult two excellent surveys of clustering algorithms [2,5] before exploring
in depth this domain.

6.10 FURTHER READINGS

Several general introductions in data mining [13,14] provide excellent references for
clustering algorithms. Basic reference books for clustering algorithms are authored
by Jain and Dubes [6] and Kaufmann and Rousseeuw [7]. Recent surveys such as
those by Berkhin [2] and Jain et al. [5] allow the reader to get familiar with current
issues in clustering.
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6.11 EXERCISES

1. Let d be a ultrametric and let S(x, y) be the set of all non-null sequences
s = (s1, . . . , sn) ∈ Seq(S) such that s1 = x and sn = y. If d is a ultrametric
prove that d(x, y) ≤ min{ampd(s)|s ∈ S(x, y)} (Exercise 1).

2. Let S be a set, π be a partition of S, and let a, b be two numbers such that
a < b. Prove that the mapping d : S2 −→ R≥0 given by d(x, x) = 0 for x ∈ S,
d(x, y) = a if x �= y and {x, y} ⊆ B for some block B of π and d(x, y) = b,
otherwise is an ultrametric on S.

3. Prove the following extension of the statement from Exercise 2.
Let S be a set, π0 < π1 < · · · < πk−1 be a chain of partitions on S, and let

a0 < a1 . . . < ak−1 < ak be a chain of positive reals.
Prove that the mapping d : S2 −→ R≥0 given by

d(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = y
a0 if x �= y and x ≡π0 y

...
...

ak−1 if x �≡πk−2 y and x ≡πk−1 y

ak if x �≡πk−1 y

is an ultrametric on S.

4. Let f : R≥0 −→ R≥0 be a function that satisfies the following conditions:

(a) f (x) = 0 if and only if x = 0;

(b) f is monotonic on R≥0, that is, x ≤ y implies f (x) ≤ f (y) for x, y ∈ R≥0;

(c) f is subadditive on R≥0, that is, f (x+ y) ≤ f (x)+ f (y) for x, y ∈ R≥0.

(c) Prove that if d is a metric on a set S, then fd is also a metric on S.

(d) Prove that if d is a metric on S, the
√
d and d/1+ d are also metrics on S;

what can be said about d2?

5. A function F : R ≥ 0 −→ R is convex if for every s, t ∈ R≥0 and a ∈ [0, 1]
we have F (as+ (1− a)t) ≤ aF (s)+ (1− 1)F (t).

(a) Prove that if F (0) = 0, F is monotonic and convex, then F is subadditive.

(b) Prove that if f is a metric on the set S, then the function given by

d′(x, y) = 1− e−kd(x,y),

where k is a positive constant and x, y ∈ S is also a metric on S. This metric
is known as the Schoenberg transform of d.

6. Let S be a finite set and let d : S2 −→ R≥0 be a dissimilarity. Prove that there
exists a ∈ R≥0 such that the dissimilarity da defined by da(x, y) = (d(x, y))a

satisfies the triangular inequality.
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Hint: Observe that lima→0 da(x, y) is a dissimilarity that satisfies the triangular
inequality.

7. Prove Theorem 2.

8. Let (S, d) be a finite metric space. Prove that the functionsD,E : P(S)2 −→ R
defined by

D(U,V ) = max{d(u, v)|u ∈ U, v ∈ V }

E(U,V ) = 1

|U| · |V |
∑
{d(u, v)|u ∈ U, v ∈ V }

for U,V ∈ P(S) are metrics on P(S).

9. Prove that if we replace max by min in Exercise 8, then the resulting function
F : P(S)2 −→ R defined by

D(U,V ) = min{d(u, v)|u ∈ U, v ∈ V }

for U,V ∈ P(S) is not a metric on P(S), in general.

10. Prove that the ultrametric inequality implies the triangular inequality; also,
show that both the triangular inequality and definiteness imply evenness for an
ultrametric.

11. Let (T , v0) be a finite rooted tree, V be the set of vertices of the tree T , and
let S be a finite, nonempty set such that the rooted tree (T , v0) has |S| leaves.
Consider a functionM :V −→ P(S) defined as follows:

(a) the tree T has |S| leaves and each for each leaf v the setM(v) is a distinct
singleton of S;

(b) if an interior vertex v of the tree has the descendants v1, v2, . . . , vn, then
M(v) = ⋃ni=1M(vi).

Prove that the collection of sets {M(v)|v ∈ V } is a hierarchy on S.

12. Apply hierarchical clustering to the data set given in Example 9 using the
average-link method, the centroid method and the Ward method. Compare the
shapes of the clusters that are formed during the aggregation process. Draw the
dendrograms of the clusterings.

13. Using a random number generator produce h sets of points in Rn normally
distributed around h given points in Rn. Use k-means to cluster these points
with several values for k and compare the quality of the resulting clusterings.

14. A variant of the k-means clustering introduced in the work by Stainbach [13] is
the bisecting k-means algorithm described below. The parameters are S, the set
of objects to be clustered; k, the desired number of clusters; and nt, the number
of trial bisections.

bisecting k-means{
set of clusters = {S};
while (|set of clusters| < k)
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extract a cluster C from the set of clusters;
k = 0;
for i = 1 to nt do

let C0i, C1i be the two clusters obtained from C by bisecting C
using standard k-means (k = 2);

if (i = 1) then s = sse({C0i, C1i});
if (sse({C0i, C1i}) ≤ s) then
k = i;
s = sse({C0i, C1i});

endif;
endfor;
add C0k, C1k to set of clusters;

endwhile
}

The cluster C that is bisected may be the largest cluster, or the cluster having
the largest sse.

Evaluate the time performance of bisecting k-means compared with the stan-
dard k-means and with some variant of a hierarchical clustering.

15. One of the issues that the k-means algorithm must confront is that the number
of clusters k must be provided as an input parameter. Using clustering validity
design an algorithm that identifies local maxima of validity (as a function of k)
to provide a basis for a good choice of k. For a solution that applies to image
segmentation, see the work by Ray and Turi.
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CHAPTER 7

Data Mining Algorithms II:
Frequent Item Sets

DAN A. SIMOVICI

7.1 INTRODUCTION

Association rules have received a lot of attention in data mining due to their many
applications in marketing, advertising, inventory control, and many other areas. The
area of data mining has been initiated in the seminal paper [5].

A typical supermarket may well have several thousand items on its shelves. Clearly,
the number of subsets of the set of items is immense. Even though a purchase by a
customer involves a small subset of this set of items, the number of such subsets
is very large. In principle, there are

∑5
i=1

(10000
i

)
subsets T having no more than

5 elements of a set that has 10,000 items and this is indeed a large number!
The supermarket is interested in identifying associations between item sets; for

example, it may be interested to know how many of the customers who bought bread
and cheese also bought milk. This knowledge is important because if it turns out that
many of the customers who bought bread and cheese also bought milk, the supermarket
will place milk physically close to bread and cheese in order to stimulate the sales of
milk. Of course, such a piece of knowledge is especially interesting when there is a
substantial number of customers who buy all three items and a large fraction of those
individuals who buy bread and cheese also buy milk. Informally, if this is the case,
we shall say that we have identified the association rule bread cheese → milk. Two
numbers will play a role in evaluating such a rule: Nbcm/N and Nbcm/Nbc. Here, N
is the total number of purchases, Nbcm denotes the number of transactions involving
bread, cheese, and milk, andNbc gives the number of transactions involving bread and
cheese. The first number is known as the support of the association rule; the second
is its confidence and approximates the probability that a customer who bought bread
and cheese will buy milk.

Thus, identifying association rules requires the capability to identify item sets
that occur in large sets of transactions; these are the frequent item sets. Identify-
ing association rules amounts essentially to finding frequent item sets. If Nbcm is
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large, then Nbc is larger still. We formalize this problem and explore its algorithmic
aspects.

7.2 FREQUENT ITEM SETS

Suppose that I is a finite set; we refer to the elements of I as items.

Definition 1 A transaction data set over I is a function T : {1, . . . , n} −→ P(I). The
setT (k) is the kth transaction ofT . The numbers 1, . . . , n are the transaction identifiers
(tids).

An example of a transaction set is the set of items present in the shopping cart of a
consumer who completed a purchase in a store.

Example 1 The table below describes a transaction data set over the set of over-the-
counter medicines in a drugstore.

Transactions Content

T (1) {Aspirin, Vitamin C}
T (2) {Aspirin, Sudafed}
T (3) {Tylenol}
T (4) {Aspirin, Vitamin C, Sudafed}
T (5) {Tylenol, Cepacol}
T (6) {Aspirin, Cepacol}
T (7) {Aspirin, Vitamin C}

The same data set can be presented as a 0/1 table as follows:

Aspirin Vitamin C Sudafed Tylenol Cepacol

T (1) 1 1 0 0 0
T (2) 1 0 1 0 0
T (3) 0 0 0 1 0
T (4) 1 1 1 0 0
T (5) 1 0 0 0 1
T (6) 1 0 0 0 1
T (7) 1 1 0 0 0

The entry in the row T (k) and the column ij is set to 1 if ij ∈ T (k); otherwise, it is
set to 0. �

Example 1 shows that we have the option of two equivalent frameworks for studying
frequent item sets: tables or transaction item sets.
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Given a transaction data set T on the set I, we would like to determine those subsets
of I that occur often enough as values of T .

Definition 2 Let T : {1, . . . , n} −→ P(I) be a transaction data set over a set of
items I. The support count of a subset K of the set of items I in T is the number
suppcountT (K) given by

suppcountT (K) = |{k|1 ≤ k ≤ n and K ⊆ T (k)}|.

The support of an item set K is the number

suppT (K) = suppcountT (K)

n
.

Example 2 For the transaction data set T considered in Example 1 we have

suppcountT ({Aspirin,VitaminC}) = 3,

because {Aspirin, Vitamin C} is a subset of three of the sets T (k). Therefore,
suppT ({Aspirin,Vitamin C}) = 3

7 . �

To simplify our notation we will denote item sets by the sequence of their elements.
For instance, a set {a, b, c} will be denoted from now on by abc.

Example 3 Let I = {i1, i2, i3, i4} be a collection of items. Consider the transaction
data set T given by

T (1) = i1i2,
T (2) = i1i3,
T (3) = i1i2i4,
T (4) = i1i3i4,
T (5) = i1i2,
T (6) = i3i4.

Thus, the support count of the item set i1i2 is 3; similarly, the support count of the
item set i1i3 is 2. Therefore, suppT (i1i2) = 1

2 and suppT (i1i3) = 1
3 . �

The following rather straightforward statement is fundamental for the study of
frequent item sets.

Theorem 1 Let T : {1, . . . , n} −→ P(I) be a transaction data set over a set of
items I. IfK andK′ are two item sets, thenK′ ⊆ K implies suppT (K′) ≥ suppT (K).
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FIGURE 7.1 The Rymon tree of P({i1, i2, i3}).
Proof. Note that every transaction that contains K also contains K′. The statement
follows immediately. �

If we seek those item sets that enjoy a minimum support level relative to a transac-
tion data set T , then it is natural to start the process with the smallest nonempty item
sets.

Definition 3 An item set K is μ-frequent relatively to the transaction data set T if
suppT (K) ≥ μ.

We denote byFμT the collection of allμ-frequent item sets relative to the transaction
data set T , and by FμT,r the collection of μ-frequent item sets that contain r items for
r ≥ 1.

Note that

FμT =
⋃
r≥1

FμT,r.

If μ and T are clear from the context, then we may omit either or both adornments
from this notation.

Let I = {i1, . . . , in} be an item set that contains n elements. We use a graphical
representation of P(I), the set of subsets of I, known as the Rymon tree.

The root of the tree is ∅. A vertex K = ip1 · · · ipk with ip1 < ip2 < · · · < ipk has
n− ipk children K ∪ {j}, where ipk < j ≤ n. We shall denote this tree by RI .

Example 4 Let I = {i1, i2, i3}. The Rymon tree RI is shown in Figure 7.1. �

LetSr be the collection of item sets that have r elements. The next theorem suggests
a technique for generating Sr+1 starting from Sr.

Theorem 2 Let RI be the Rymon tree of the set of subsets of I = {i1, . . . , in}. If
W ∈ Sr+1, where r ≥ 2, then there exists a unique pair of distinct sets U,V ∈ Sr
that has a common immediate ancestor T ∈ Sr−1 in RI such that U ∩ V ∈ Sr−1 and
W = U ∪ V .
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FIGURE 7.2 Rymon tree for P({i1, i2, i3, i4}).

Proof. Let u, v be the largest and the second largest subscript of an item that occurs in
W , respectively. Consider the setsU = W − {u} and V = W − {v}. Both sets belong
to Sr. Moreover, Z = U ∩ V belongs to Sr−1 because it consists of the first r − 1
elements ofW . Note that both U and V are descendants of Z and that U ∪ V = W .

The pair (U,V ) is unique. Indeed, suppose that W can be obtained in the same
manner from another pair of distinct sets U ′, V ′ ∈ Sr, such that U ′, V ′ are immediate
descendants of a set Z′ ∈ Sr−1. The definition of the Rymon tree RI implies that
U ′ = Z′ ∪ {im} and V ′ = Z′ ∪ {iq}, where the letters in Z′ are indexed by number
smaller than min{m, q}. Then,Z′ consists of the first r − 1 symbols ofW , soZ′ = Z.
If m < q, then m is the second highest index of a symbol in W and q is the highest
index of a symbol inW , so U ′ = U and V ′ = V . �

Example 5 Consider the Rymon tree of the collection P({i1, i2, i3, i4) shown in Fig-
ure 7.2. The set i1i3i4 is the union of the sets i1i3 and i1i4 that have the common
ancestor i1. �

Next we discuss an algorithm that allows us to compute the collection FμT of
all μ-frequent item sets for a transaction data set T . The algorithm is known as the
Apriori algorithm.

We begin with the procedure apriori gen that starts with the collection FμT,k of
frequent item sets for the transaction data set T that contain k elements and generates
a collection Ck+1 of sets of items that contains FμT,k+1, the collection the frequent item
sets that have k + 1 elements. The justification of this procedure is based on the next
statement.

Theorem 3 Let T be a transaction data set over a set of items I and let k ∈ N such
that k > 1.

IfW is a μ-frequent item set and |W | = k + 1, then there exist a μ-frequent item
set Z and two items im and iq such that |Z| = k − 1, Z ⊆ W ,W = Z ∪ {im, iq} and
both Z ∪ {im} and Z ∪ {iq} are μ-frequent item sets.
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Proof. If W is an item set such that |W | = k + 1, then we already know that W is
the union of two subsets U,V of I such that |U| = |V | = k and that Z = U ∩ V has
k − 1 elements. Since W is a μ-frequent item set and Z,U, V are subsets of W , it
follows that each of these sets is also a μ-frequent item set. �

Note that the reciprocal statement of Theorem 3 is not true, as the next example
shows.

Example 6 Let T be the transaction data set introduced in Example 3. Note that both
i1i2 and i1i3 are 1

3 -frequent item sets; however,

suppT (i1i2i3) = 0,

so i1i2i3 fails to be a 1
3 -frequent item set. �

The procedure apriori gen mentioned above is introduced next. This proce-
dure starts with the collection of item sets FT,k and produces a collection of item sets
CT,k+1 that includes the collection of item sets FT,k+1 of frequent item sets having
k + 1 elements.

apriori gen(μ,FμT,k){
C
μ
T,k+1 = ∅;

for each L,M ∈ FμT,k such that
L �= M and L ∩M ∈ FμT,k−1 do

begin
add L ∪M to CμT,k+1;
remove all sets K in CμT,k+1 where

there is a subset of K containing k elements
that does not belong to FμT,k;

end
}

Note that in apriori gen no access to the transaction data set is needed.
The Apriori algorithm is introduced next. The algorithm operates on “levels.” Each

level k consists of a collection CμT,k of candidate item sets of μ-frequent item sets.
To build the initial collection of candidate item sets CμT,1, every single item set is
considered for membership in CμT,1. The initial set of frequent item set consists of
those singletons that pass the minimal support test. The algorithm alternates between
a candidate generation phase (accomplished by using apriori gen) and an evaluation
phase, which involves a data set scan and is, therefore, the most expensive component
of the algorithm.

Apriori(T,μ){
C
μ
T,1 = {{i}|i ∈ I};
i = 1;
while (CμT,i �= ∅) do
/* evaluation phase */
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F
μ
T,i = {L ∈ CμT,i|suppT (L) ≥ μ};

/* candidate generation */
C
μ
T,i+1 = apriori gen(FμT,i);
i++;
endwhile;
output FμT =

⋃
j<i F

μ
T,j;

}

Example 7 Let T be the data set given by

Transactions i1 i2 i3 i4 i5

T (1) 1 1 0 0 0
T (2) 0 1 1 0 0
T (3) 1 0 0 0 1
T (4) 1 0 0 0 1
T (5) 0 1 1 0 1
T (6) 1 1 1 1 1
T (7) 1 1 1 0 0
T (8) 0 1 1 1 1

The support counts of various subsets of I = {i1, . . . , i5} are given below:

i1 i2 i3 i4 i5

5 6 5 2 5

i1i2 i1i3 i1i4 i1i5 i2i3 i2i4 i2i5 i3i4 i3i5 i4i5

3 2 1 3 5 2 3 2 3 2

i1i2i3 i1i2i4 i1i2i5 i1i3i4 i1i3i5 i1i4i5 i2i3i4 i2i3i5 i2i4i5 i3i4i5

2 1 1 1 1 1 2 3 2 2

i1i2i3i4 i1i2i3i5 i1i2i4i5 i1i3i4i5 i2i3i4i5

1 1 1 1 2

i1i2i3i4i5

0

Starting with μ = 0.25 and with FμT,0 = {∅}, the Apriori algorithm computes the
following sequence of sets:

CμT,1 = {i1, i2, i3, i4, i5},
FμT,1 = {i1, i2, i3, i4, i5},
CμT,2 = {i1i2, i1i3, i1i4, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},
FμT,2 = {i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},
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CμT,3 = {i1i2i3, i1i2i5, i1i3i5, i2i3i4, i2i3i5, i2i4i5, i3i4i5},
FμT,3 = {i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5},
CμT,4 = {i2i3i4i5},
FμT,4 = {i2i3i4i5},
CμT,5 = ∅.

Thus, the algorithm will output the collection:

FμT =
4⋃
i=1

FμT,i

= {i1, i2, i3, i4, i5, i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5,
i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5, i2i3i4i5}.

�

Let I be a set of items and T : {1, . . . , n} −→ P(I) be a transaction data set.
Denote byD the set of transaction identifiers,D = {1, . . . , n}. The functions itemsT :
P(D) −→ P(I) and tidsT : P(I) −→ P(D) are defined by

itemsT (E) =
⋂
{T (k)|k ∈ E},

tidsT (H) = {k ∈ D|H ⊆ T (k)}

for every E ∈ P(D) and every H ∈ P(I).
Note that suppcountT (H) = |tidsT (H)| for every item set H ∈ P(I).
The next statement shows that the mappings itemsT and tidsT form a Galois con-

nection between the partial ordered sets P(D) and P(I) (see the works by Birkhoff
[7] and Ganter and Wille [10] for this concept and related results). The use of Ga-
lois connections in data mining was initiated in the work by Pasquier et al. [15] and
continued in the work by Zaki [19].

Theorem 4 Let T : {1, . . . , n} −→ P(I) be a transaction data set. We have

1. if E ⊆ E′, then itemsT (E′) ⊆ itemsT (E),

2. if H ⊆ H ′, then tidsT (H ′) ⊆ tidsT (H),

3. E ⊆ tidsT (itemsT (E)), and

4. H ⊆ itemsT (tidsT (H)),

for every E,E′ ∈ P(D) and every H,H ′ ∈ P(I).
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Proof. The first two parts of the theorem follow immediately from the definitions of
the functions itemsT and tidsT .

To prove part (iii) let k ∈ E be a transaction identifier. Then, the item set T (e)
includes itemsT (E), by the definition of itemsT (E). By part (ii), tidsT (T (e)) ⊆
tidsT (itemsT (E)). Since e ∈ tidsT (T (e)) it follows that e ∈ tidsT (itemsT (E)), so
E ⊆ tidsT (itemsT (E)).

The argument for part (iv) is similar. �

Corollary 1 Let T : D −→ P(I) be a transaction data set and let I : P(I) −→
P(I) and D : P(D) −→ P(D) be defined by I(H) = itemsT (tidsT (H)) forH ∈ P(I)
and D(E) = tidsT (itemsT (E)) for E ∈ P(D). Then, I and D are closure operators
on I and D, respectively.

Proof. Let H,H ′ be two subsets of I such that H ⊆ H ′. By part (ii) of Theo-
rem 4 we have tidsT (H ′) ⊆ tidsT (H); part (i) of the same theorem yields I(H) =
itemsT (tidsT (H)) ⊆ itemsT (tidsT (H ′)) = I(H ′), so I is monotonic. The proof of
monotonicity for D is similar.

Since E ⊆ tidsT (itemsT (E)), by part (i) of Theorem 4 we have

itemsT (tidsT (itemsT (E))) ⊆ itemsT (E).

On the contrary, by the expansiveness of I we can write

itemsT (E) ⊆ itemsT (tidsT (itemsT (E))),

which implies the equality

itemsT (tidsT (itemsT (E))) = itemsT (E) (7.1)

for every E ∈ P(D). This, in turn means that

tidsT (itemsT (tidsT (itemsT (E)))) = tidsT (itemsT (E)),

which proves that D is idempotent. The proof for the idempotency of I makes use of
the equality

tidsT (itemsT (tidsT (H))) = tidsT (H) (7.2)

and is similar; we omit it. �

Closed sets of items, that is, sets of items H such that H = I(H), can be charac-
terized as follows:

Theorem 5 Let T : {1, . . . , n} −→ P(I) be a transaction data set.
A set of items H is closed if and only if for every set L ∈ P(I) such that H ⊂ L,

we have suppT (H) > suppT (L).
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Proof. Suppose that for every superset L of H we have suppT (H) > suppT (L) and
that H is not a closed set of items. Therefore, the set I(H) = itemsT (tidsT (H)) is a
superset of H , and consequently suppcountT (H) > suppcountT (itemsT (tidsT (H))).
Since suppcountT (itemsT (tidsT (H))) = |tidsT (itemsT (tidsT (H)))| = |tidsT (H)|, this
leads to a contradiction. Thus, H must be closed.

Conversely, suppose that H is a closed set of items, that is

H = I(H) = itemsT (tidsT (H))

and let L be a strict superset of H . Suppose that suppT (L) = suppT (H). This means
that |tidsT (L)| = |tidsT (H)|.

Since H = itemsT (tidsT (H)) ⊂ L, it follows that

tidsT (L) ⊆ tidsT (itemsT (tidsT (H))) = tidsT (H),

which implies the equality tidsT (L) = tidsT (itemsT (tidsT (H))) because the sets
tidsT (L) and tidsT (H) have the same number of elements. Thus, by equality (7.1),
tidsT (L) = tidsT (H). In turn, this yields

H = itemsT (tidsT (H)) = itemsT (tidsT (L)) ⊇ L,

which contradicts the initial assumption H ⊂ L. �

Theorem 6 For any transaction data set T : {1, . . . , n} −→ P(I) and set of items
L we have suppT (L) = suppT (I(L)). In other words, the support of an item set in T
equals the support of its closure.

Proof. Equality (7.2) implies that

tidsT (I(L)) = tidsT (itemsT (tidsT (L))) = tidsT (L).

Since suppcountT (H) = |tidsT (H)| for every item set H , it follows that

suppcountT (I(L)) = suppcountT (L).�

A special class of subsets of closed sets is helpful for obtaining a concise repre-
sentation of μ-frequent item sets.

Definition 4 A μ-maximal frequent item set is a μ-frequent item set that is closed.

Thus, once theμ-maximal frequent item sets have been identified, then all frequent
item sets can be obtained as subsets of these sets.

Several improvements of the standard Apriori algorithm are very interesting to
explore. Park et al. [14] hash tables used for substantially decreasing the sizes of the
candidate sets. In a different direction, an algorithm that picks a random sample from
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a transaction data set, detects association rules satisfied in this sample, and verifies the
results on the remaining transactions has been proposed in the work by Toivonen [18].

7.3 ASSOCIATION RULES

Definition 5 An association rule on an item set I is a pair of nonempty disjoint item
sets (X, Y ).

Note that if |I| = n, then there exist 3n − 2n+1 + 1 association rules on I. Indeed,
suppose that the set X contains k elements; there are

(
n
k

)
ways of choosing X. Once

X is chosen, Y can be chosen among the remaining 2n−k − 1 nonempty subsets of
I −X. In other words, the number of association rules is

n∑
k=1

(
n

k

)
(2n−k − 1) =

n∑
k=1

(
n

k

)
2n−k −

n∑
k=1

(
n

k

)
.

By taking x = 2 in the equality

(1+ x)n =
n∑
k=0

(
n

k

)
xn−k,

we obtain

n∑
k=1

(
n

k

)
2n−k = 3n − 2n.

Since
∑n
k=1

(
n
k

) = 2n − 1, we obtain immediately the desired equality. The number
of association rules can be quite considerable even for small values of n. For example,
for n = 10 we have 310 − 211 + 1 = 57, 002 association rules.

An association rule (X, Y ) is denoted by X⇒ Y . The support of X⇒ Y is the
number suppT (XY ). The confidence of X⇒ Y is the number

confT (X⇒ Y ) = suppT (XY )

suppT (X)
.

Definition 6 An association rule holds in a transaction data set T with support μ and
confidence c if suppT (XY ) ≥ μ and confT (X⇒ Y ) ≥ c.

Once a μ-frequent item set Z is identified, we need to examine the support levels
of the subsets X of Z to ensure that an association rule of the form X⇒ Z −X has
a sufficient level of confidence, confT (X⇒ Z −X) = μ/suppT (X). Observe that
suppT (X) ≥ μ because X is a subset of Z. To obtain a high level of confidence for
X⇒ Z −X, the support of X must be as small as possible.
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Clearly, if X⇒ Z −X does not meet the level of confidence, then it is pointless
to look rules of the form X′ ⇒ Z −X′ among the subsets X′ of X.

Example 8 Let T be the transaction data set introduced in Example 7. We saw that the
item setL = i2i3i4i5 has the support count equal to 2, and therefore, suppT (L) = 0.25.
This allows us to obtain the following association rules having three item sets in their
antecedent, which are subsets of L.

Rule suppcountT (X) confT (X⇒ Y )

i2i3i4 ⇒ i5 2 1
i2i3i5 ⇒ i4 3 2

3
i2i4i5 ⇒ i3 2 1
i3i4i5 ⇒ i2 2 1

Note that i2i3i4 ⇒ i5, i2i4i5 ⇒ i3, and i3i4i5 ⇒ i2 have 100 percent confidence. We
refer to such rules as exact association rules.

The rule i2i3i5 ⇒ i4 has confidence ( 2
3 ). It is clear that the confidence of rules of

the formU ⇒ V withU ⊆ i2i3i5 andUV = Lwill be lower than ( 2
3 ) since suppT (U)

is at least 3. Indeed, the possible rules of this form are

Rule suppcountT (X) confT (X⇒ Y )

i2i3 ⇒ i4i5 5 2
5

i2i5 ⇒ i3i4 3 2
3

i3i5 ⇒ i2i4 3 2
3

i2 ⇒ i3i4i5 6 2
6

i3 ⇒ i2i4i5 5 2
5

i5 ⇒ i2i3i4 5 2
5

Obviously, if we seek association rules having a confidence larger than 2
3 no such rule

U ⇒ V can be found such that U is a subset of i2i3i5.
Suppose, for example, that we seek association rules U ⇒ V that have a minimal

confidence of 80 percent. We need to examine subsets U of the other sets: i2i3i4,
i2i4i5, or i3i4i5, which are not subsets of i2i3i5 (since the subsets of i2i3i5 cannot
yield levels of confidence higher than 2

3 . There are five such sets.

Rule suppcountT (X) confT (X⇒ Y )

i2i4 ⇒ i3i5 2 1
i3i4 ⇒ i2i5 2 1
i4i5 ⇒ i2i3 2 1
i3i4 ⇒ i2i5 2 1
i4 ⇒ i2i3i5 2 1

Indeed, all these sets yield exact rules, that is, rules having 100 percent
confidence. �
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Many transaction data sets produce huge number of frequent item sets, and there-
fore, huge number of association rules particularly when the levels of support and
confidence required are relatively low. Moreover, it is well known (see the work by
Tan et al. [17]) that limiting the analysis of association rules to the support/confidence
framework can lead to dubious conclusions. The data mining literature contains many
references that attempt to derive interestingness measures for association rules in
order to focus data analysis of those rules that may be more relevant (see, other
works [4,6,8,11,12,16]).

7.4 LEVELWISE ALGORITHMS AND POSETS

The focus of this section is the levelwise algorithms, a powerful and elegant gener-
alization of the Apriori algorithm that was introduced in the work by Mannila and
Toivonen [13].

Let (P,≤) be a partially ordered set and letQ be a subset of P .

Definition 7 The border ofQ is the set

BD(Q) = {p ∈ P |u < p implies u ∈ Q and p < v implies v �∈ Q}.

The positive border ofQ is the set

BD+(Q) = BD(Q) ∩Q,

while the negative border ofQ is

BD−(Q) = BD(Q)−Q.

Clearly, we have BD(Q) = BD+(Q) ∪ BD−(Q).
An alternative terminology exists that makes use of the terms generalization and

specialization. If r, p ∈ P and r < p, then we say that r is a generalization of p, or
that p is a specialization of r. Thus, the border of a setQ consists of those elements
p of P such that all their generalizations are inQ and none of their specializations is
inQ.

Theorem 7 Let (P,≤) be a partially ordered set. IfQ,Q′ are two disjoint subsets
of P , then BD(Q ∪Q′) ⊆ BD(Q) ∪ BD(Q′).

Proof. Let p ∈ BD(Q ∪Q′). Suppose that u < p, so u ∈ Q ∪Q′. SinceQ andQ′ are
disjoint we have either u ∈ Q or u ∈ Q′. On the contrary, if p < v, then v �∈ Q ∪Q′,
so v �∈ Q and v �∈ Q′. Thus, we have p ∈ BD(Q) ∪ BD(Q′). �
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The notion of a hereditary subset of a poset is an immediate generalization of the
notion of hereditary family of sets.

Definition 8 A subsetQ of a poset (P,≤) is said to be hereditary if p ∈ Q and r ≤ p
imply r ∈ Q.

Theorem 8 IfQ be a hereditary subset of a poset (P,≤), then the positive and the
negative borders ofQ are given by

BD+(Q) = {p ∈ Q|p < v implies v �∈ Q}

and
BD−(Q) = {p ∈ P −Q|u < p implies u ∈ Q},

respectively.

Proof. Let t be an element of the positive border BD+(Q) = BD(Q) ∩Q. We have
t ∈ Q and t < v implies v �∈ Q, because t ∈ BD(Q).

Conversely, suppose that t is an element ofQ such that t < v implies v �∈ Q. Since
Q is hereditary, u < t implies u ∈ Q, so t ∈ BD(Q). Therefore, t ∈ BD(Q) ∩Q =
BD+(Q).

Let now s be an element of the negative border ofQ, that is, s ∈ BD(Q)−Q. We
have immediately s ∈ P −Q. If u < s, then u ∈ Q, because Q is hereditary. Thus,
BD−(Q) ⊆ {p ∈ P −Q|u < p implies u ∈ Q}.

Conversely, suppose that s ∈ P −Q and u < s implies u ∈ Q. If s < v, then v
cannot belong toQ because this would entail s ∈ Q due to the hereditary property of
Q. Consequently, s ∈ BD(Q), and so, s ∈ BD(Q)−Q = BD−(Q). �

Theorem 8 can be paraphrased by saying that for a hereditary subset Q of P the
positive border consists of the maximal elements of Q, while the negative border of
Q consists of the minimal elements of P −Q.

Note that ifQ,Q′ are two hereditary subsets of P and BD+(Q) = BD+(Q′), then
Q = Q′. Indeed, if z ∈ P , one of the following two cases may occur:

1. If z is not a maximal element of Q, then there is a maximal element w of
Q such that z < w. Since w ∈ BD+(Q) = BD+(Q′), it follows that w ∈ Q′;
hence z ∈ Q′, becauseQ′ is hereditary.

2. If z is a maximal element ofQ, then z ∈ BD+(Q) = BD+(Q′); hence z ∈ Q′.

In either case z ∈ Q′, so Q ⊆ Q′. The reverse inclusion can be proven in a similar
way, soQ = Q′.

Similarly, we can show that for two hereditary collections Q,Q′ of subsets of
I, BD−(Q) = BD−(Q′) implies Q = Q′. Indeed, suppose that z ∈ Q−Q′. Since
z �∈ Q′, there exists a minimal element v such that v �∈ Q′ and each of its lower
bounds is in Q′. Since v belongs to the negative border BD−(Q′), it follows that
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v ∈ BD−(Q). This leads to a contradiction because z ∈ Q and v (for which we have
v < z) does not, thereby contradicting the fact thatQ is a hereditary subset. Since no
such z may exist, it follows that Q ⊆ Q′. The reverse inclusion can be shown in the
same manner.

Definition 9 Let D be a relational database, SD be the set of states of D, and let
(B,≤, h) be a ranked poset, referred to as the ranked poset of objects.

A query is a function q : SD × B −→ {0, 1} such that D ∈ SD, b ≤ b′, and
q(D, b′) = 1 imply q(D, b) = 1.

Definition 9 is meant to capture the framework of the Apriori algorithm for iden-
tification of frequent item sets. As shown in the work by Mannila and Toivonen [13],
this framework can capture many other situations.

Example 9 Let D be a database that contains a tabular variable (T,H) and let θ =
(T,H, ρ) be the table that is the current value of (T,H) contained by the current state
D of D.

The graded poset (B,≤, h) is (P(H),⊆, h), where h(X) = |X|. Given a number
μ, the query is defined by

q(D,K) =
{

1 if suppT (K) ≤ μ,
0 otherwise.

SinceK ⊆ K′ implies suppT (K′) ≤ suppT (K), it follows that q satisfies the condition
of Definition 9.

Example 10 As in Example 9, let D be a database that contains a tabular variable
(T,H), and let θ = (T,H, ρ) be the table that is the current value of (T,H) contained
by the current state D of D. The graded poset (P(H),⊇, g) is the dual of the graded
poset considered in Example 9, where g(K) = |H | − |K|. If L is a set of attributes
the function qL is defined by

qL(D,K) =
{

1 if K→ L holds in θ,

0 otherwise.

Note that if K′ ⊆ K and D satisfies the functional dependency K′ → L, then D
satisfies K→ L. Thus, q is a query in the sense of Definition 9. �

Definition 10 The set of interesting objects for the state D of the database and the
query q is given by

INT(D, q) = {b ∈ B| q(D, b) = 1}.
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Note that the set of interesting objects is a hereditary set (B,≤). Indeed, if b ∈
INT(D, q) and c ≤ b, then c ∈ INT(D, q), according to Definition 9. Thus,

BD+(INT(D, q)) = {b ∈ INT(D, q) |b < v implies v �∈ INT(D, q)},
BD−(INT(D, q)) = {b ∈ B − INT(D, q) |u < b implies u ∈ INT(D, q)}.

In other words, BD+(INT(D, q)) is the set of maximal objects that are interesting,
while BD−(INT(D, q)) is the set of minimal objects that are not interesting.

Next, we discuss a general algorithm that seeks to compute the set of interesting
objects for a database state. The algorithm is known as the levelwise algorithm because
it identifies these objects by scanning successively the levels of the graded poset of
objects.

IfL0, L1, . . . are the levels of the graded poset (B,≤, h), then the algorithm begins
by examining all objects located on the initial level. The set of interesting objects
located on the level Li is denoted by Fi; for each level Li the computation of Fi is
preceded by a computation of the set of potentially interesting objects Ci referred to
as the set of candidate objects.

The first set of candidate objects C1 coincides with the levelLi. Only the interesting
objects on this level are retained for the set F1.

The next set of candidate objects Ci+1 is constructed by examining the level Li+1
and keeping those objects b having all their subobjects c in the interesting sets of the
previous levels.

Generic levelwise algorithm(D, (B,≤, h), q){
C1 = L1;
i = 1;
while (Ci �= ∅) do

/* evaluation phase */
Fi = {b ∈ Ci|q(D, b) = 1};
/* candidate generation */

Ci+1 = {b ∈ Li+1|c < b implies c ∈ ⋃j≤i Fj} −⋃j≤i Cj
i++;

endwhile;
output

⋃
j<i Fj;

}

Example 11 For frequent item sets we can work in the framework described in Ex-
ample 9. The algorithm, which is essentially the Apriori algorithm described in Sec-
tion 7.2, goes through the while loop no more than k + 1 times, where

k = max{|X||X ⊆ H, suppT (X) > μ}. �
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Example 12 In Example 10, we defined the grading query qL as

qL(D,K) =
{

1 if K→ L holds in θ,

0 otherwise.

for K ∈ P(H). The levelwise algorithm allows us to identify those subsets K such
that a table θ = (T,H, ρ) satisfies the functional dependency K→ L. The first level
consists of all subsets K of H that have |H | − 1 attributes. There are, of course,
|H | − 1 such subsets and the set F1 will contain all these sets such that K→ H is
satisfied. Successive levels contain sets that have fewer and fewer attributes. Level Li
contains sets that have |H | − i attributes.

The algorithm will go through the while loop at most 1+ |H −K|, where K is
the smallest set such that K→ L holds. �

Observe that the computation of Ci+1 in the generic levelwise algorithm,

Ci+1 =
⎧⎨⎩b ∈ Li+1| c < b implies c ∈

⋃
j≤i

Fj

⎫⎬⎭−⋃
j≤i

Cj

can be written as

Ci+1 = BD−
⎛⎝⋃
j≤i

Fj

⎞⎠−⋃
j≤i

Cj.

This shows that the set of candidate objects at level Li+1 is the negative border of the
interesting sets located on lower level excluding those objects that have been already
evaluated.

The most expensive component of the levelwise algorithm is the evaluation of
q(D, b) since this requires a scan of the database stateD. Clearly, we need to evaluate
this function for each candidate element, so we will require |⋃�i=1 Ci| evaluations,
where � is the number of levels that are scanned. Some of these evaluations will result
in including the evaluated object b in the set Fi. Objects that will not be included in
INT (D, q) are such that any of their generalizations are in INT (D, q), even though
they fail to belong to this set. They belong to BD−(INT (D, q)). Thus, the levelwise
algorithm performs |INT (D, q)| + |BD−(INT (D, q))| evaluations of q(D, b).

Exercises 5–8 are reformulations of results obtained in the work by Mannila and
Toivonen [13].

7.5 FURTHER READINGS

In addition to general data mining references [17], the reader should consult [1], a
monograph dedicated to frequent item sets and association rules. Seminal work in this
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area, in addition to the original paper [5], has been done by Mannila and Toivonen [13]
and by Zaki [19]; these references and others, such as [2] and [3], lead to an interesting
and rewarding journey through the data mining literature. An alternative method for
detecting frequent item sets based on a very interesting condensed representation of
the data set was developed by Han et al. [9].

7.6 EXERCISES

1. Let I = {a, b, c, d} be a set of items and let T be a transaction data set defined
by

T (1) = abc,
T (2) = abd,
T (3) = acd,
T (4) = bcd,
T (5) = ab.

(a)Find item sets whose support it at least 0.25.

(b)Find association rules having support at least 0.25 and a confidence at least
0.75.

2. Let I = i1i2i3i4i5 be a set of items. Find the 0.6-frequent item sets of the
transaction data set T over I defined by

T (1) = i1 T (6) = i1i2i4
T (2) = i1i2 T (7) = i1i2i5
T (3) = i1i2i3 T (8) = i2i3i4
T (4) = i2i3 T (9) = i2i3i5
T (5) = i2i3i4 T (10) = i3i4i5

Also, determine all rules whose confidence is at least 0.75.

3. Let T be a transaction data set T over an item set I, T : {1, . . . , n} −→ P(I).
Define the bit sequence of an item set X as sequence bX = (b1, . . . , bn) ∈
Seqn({0, 1}), where

bi =
{

1 if X ⊆ T (i),

0 otherwise,

for 1 ≤ i ≤ n.
For b ∈ Seqn({0, 1}) the number

√|{i|1 ≤ i ≤ n, bi = 1}| is denoted by ‖b‖.
The distance between the sequences b, c is defined as ‖b⊕ c‖. Prove that
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(a) bX∪Y = bX ∧ bY for every X, Y ∈ P(I);

(b) bK⊕L = bL ⊕ bK, where K ⊕ L is the symmetric difference of the item
sets K and L;

(c) |√suppT (K)−√suppT (L)| ≤ d(bK, bL)/
√|T |.

4. For a transaction data setT over an item set I = {i1, . . . , in},T : {1, . . . , n} −→
P(I) and a number h, 1 ≤ h ≤ n, define the number νT (h) by

νT (h) = 2n−1bn + · · · + 2b2 + b1,

where

bk =
{

1 if ik ∈ T (h),

0 otherwise,

for 1 ≤ k ≤ n. Prove that ik ∈ T (h) if and only if the result of the integer division
νT (h)/k is an odd number.

Suppose that the tabular variables of a databaseD are (T1, H1), . . . , (Tp,Hp).
An inclusion dependency is an expression of the form Ti[K] ⊆ Tj[L], where
K ⊆ Hi andL ⊆ Hj for some i, j, where 1 ≤ i, j ≤ p are two sets of attributes
having the same cardinality. Denote by IDD the set of inclusion dependences
of D.

Let D ∈ SD be a state of the database D, φ = Ti[K] ⊆ Tj[L] be an inclu-
sion dependency and let θi = (Ti,Hi, ρi), θj = (Tj,Hj, ρj) be the tables that
correspond to the tabular variables (Ti,Hi) and (Tj,Hj) in D. The inclusion
dependency φ is satisfied in the state D of D if for every tuple t ∈ ρi there is a
tuple s ∈ ρj such that t[K] = s[L].

5. For φ = Ti[K] ⊆ Tj[L] and ψ = Td[K′] ⊆ Te[L′] define the relation φ ≤ ψ if
d = i, e = j, K ⊆ K′, and H ⊆ H ′. Prove that “≤” is a partial order on IDD.

6. Prove that the triple (IDD,≤, h) is a graded poset, where h(Ti[K] ⊆ Tj[L]) =
|K|.

7. Prove that the function q : SD × IDD −→ {0, 1} defined by

q(D,φ) =
{

1 if φ is satisfied in D,

0 otherwise

is a query (as in Definition 9).

8. Specialize the generic levelwise algorithm to an algorithm that retrieves all
inclusion dependences satisfied by a database state.

Let T : {1, . . . , n} −→ P(D) be a transaction data set over an item set D.
The contingency matrix of two item sets X, Y is the 2× 2 matrix:

MXY =
(
m11 m10
m01 m00

)
,
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where

m11 = |{k|X ⊆ T (k) and Y ⊆ T (k)}|,
m10 = |{k|X ⊆ T (k) and Y �⊆ T (k)}|,
m01 = |{k|X �⊆ T (k) and Y ⊆ T (k)}|,
m00 = |{k|X �⊆ T (k) and Y �⊆ T (k)}|.

Also, let m1· = m11 +m10 and m·1 = m11 +m01.

9. Let X⇒ Y be an association rule. Prove that

suppT (X⇒ Y ) = m11 +m10

n
and confT (X⇒ Y ) = m11

m11 +m10
.

Which significance has the number m10 for X⇒ Y?

10. Let T : {1, . . . , n} −→ P(I) be a transaction data set over a set of items I
and let π be a partition of the set {1, . . . , n} of transaction identifiers, π =
{B1, . . . , Bp}. Let ni = |Bi| for 1 ≤ i ≤ p.

A partitioning of T is a sequence T1, . . . , Tp of transaction data sets over
I such that Ti : {1, . . . , ni} −→ P(I) is defined by Ti(�) = T (k�), where Bi =
{k1, . . . , kni} for 1 ≤ i ≤ p.

Intuitively, this corresponds to splitting horizontally the table of T into p
tables that contain n1, . . . , np consecutive rows, respectively.

LetK be an item set. Prove that if suppT (K) ≥ μ, there exists j, 1 ≤ j ≤ p,
such that suppTj (K) ≥ μ. Give an example to show that the reverse implication
does not hold; in other words, give an example of a transaction data set T , a
partitioning T1, . . . , Tp of T , and an item set K such that K is μ-frequent in
some Ti but not in T .

11. Piatetsky-Shapiro [16] formulated three principles that a rule interestingness
measure R should satisfy:

(a)R(X⇒ Y ) = 0 if m11 = m1m1/n;

(b)R(X→ Y ) increases with m11 when other parameters are fixed;

(c)R(X→ Y ) decreases withm·1 and withm1·when other parameters are fixed.

The lift of a ruleX⇒ Y is the number lift(X⇒ Y ) = (nm11)/(m1m1). The PS
measure is PS(X→ Y ) = m11 − (m1m1)/(n). Do lift and PS satisfy Piatetsky-
Shapiro’s principles? Give examples of interestingness measures that satisfy
these principles.

REFERENCES

1. Adamo JM. Data Mining for Association Rules and Sequential Patterns. New York:
Springer-Verlag; 2001.



REFERENCES 239

2. Agarwal RC, Aggarwal CC, Prasad VVV. A tree projection algorithm for generation of
frequent item sets. J Parallel Distrib Comput 2001;61(3):350–371.

3. Agarwal RC, Aggarwal CC, Prasad VVV. Depth first generation of long patterns. Proceed-
ings of Knowledge Discovery and Data Mining; 2000. p 108–118.

4. Aggarwal CC, and Yu PS. Mining associations with the collective strength approach. IEEE
Trans. Knowledge Data Eng 2001;13(6):863–873.

5. Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in very
large databases. Proceedings of the ACM SIGMOD Conference on Management of Data;
1993. p 207–216.

6. Bayardo R, Agrawal R. Mining the most interesting rules. Proceedings of the 5th KDD.
San Diego; 1999. p 145–153.

7. Birkhoff G. Lattice Theory. 3rd ed. Providence, RI: American Mathematical Society;
1967.

8. Brin S, Motwani R, Silverstein C. Beyond market baskets: generalizing association rules
to correlations. Proceedings of ICMD; 1997. p 255–264.

9. Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. Proceedings
of the ACM–SIGMOD International Conference on Management of Data; Dallas; 2000.
p 1–12.

10. Ganter B, Wille R. Formal Concept Analysis. Berlin: Springer-Verlag; 1999.

11. Hilderman R, Hamilton H. Knowledge discovery and interestingness measures: a survey.
Technical Report No. CS 99-04. Department of Computer Science, University of Regina;
October 1999.

12. Jaroszewicz S, Simovici D. Interestingness of frequent item sets using Bayesian networks
as background knowledge. Proceedings of the 10th KDD International Conference; Seattle;
2004. p 178–186.

13. Mannila H, Toivonen H. Levelwise search and borders of theories in knowledge discovery.
TR C-1997-8. Helsinki, Finland: University of Helsinki; 1997.

14. Park JS, Chen MS, Yu PS. An Effective Hash based algorithm for mining association rules.
Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data;
San Jose, CA; 1995. p 175–186.

15. Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering Frequent Closed Itemsets for
Association Rules. Lecture Notes in Computer Science. Volume 1540. New York: Springer-
Verlag; 1999. p 398–416.

16. Piatetsky-Shapiro G. Discovery, analysis and presentation of strong rules. In: Piatetsky-
Shapiro G, Frawley W, editors. Knowledge Discovery in Databases. Cambridge, MA: MIT
Press; 1991. p 229–248.

17. Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. Reading, MA: Addison-
Wesley; 2005.

18. Toivonen H. Sampling large databases for association rules. Proceedings of the 22nd VLDB
Conference; Mumbai, India; 1996. p 134–145.

19. Zaki MJ. Mining non-redundant association rules. Data Mining Knowledge Discov
2004;9:223–248.





CHAPTER 8

Algorithms for Data Streams

CAMIL DEMETRESCU and IRENE FINOCCHI

8.1 INTRODUCTION

Efficient processing over massive data sets has taken an increased importance in
the last few decades due to the growing availability of large volumes of data in a
variety of applications in computational sciences. In particular, monitoring huge and
rapidly changing streams of data that arrive online has emerged as an important data
management problem: Relevant applications include analyzing network traffic, online
auctions, transaction logs, telephone call records, automated bank machine operations,
and atmospheric and astronomical events. For these reasons, the streaming model
has recently received a lot of attention. This model differs from computation over
traditional stored data sets since algorithms must process their input by making one
or a small number of passes over it, using only a limited amount of working memory.
The streaming model applies to settings where the size of the input far exceeds the size
of the main memory available and the only feasible access to the data is by making
one or more passes over it.

Typical streaming algorithms use space at most polylogarithmic in the length of
the input stream and must have fast update and query times. Using sublinear space
motivates the design for summary data structures with small memory footprints, also
known as synopses [34]. Queries are answered using information provided by these
synopses, and it may be impossible to produce an exact answer. The challenge is
thus to produce high quality approximate answers, that is, answers with confidence
bounds on the possible error: Accuracy guarantees are typically made in terms of
a pair of user-specified parameters, ε and δ, meaning that the error in answering a
query is within a factor of 1+ ε of the true answer with probability at least 1− δ.
The space and update time will depend on these parameters and the goal is to limit
this dependence as much as possible.

Major progress has been achieved in the last 10 years in the design of streaming
algorithms for several fundamental data sketching and statistics problems, for which
several different synopses have been proposed. Examples include number of distinct

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.
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items, frequency moments, L1 and L2 norms of vectors, inner products, frequent
items, heavy hitters, quantiles, histograms, and wavelets. Recently, progress has been
achieved for other problem classes, including computational geometry (e.g., cluster-
ing and minimum spanning trees) and graphs (e.g., triangle counting and spanners).
At the same time, there has been a flurry of activity in proving impossibility results,
devising interesting lower bound techniques, and establishing important complemen-
tary results.

This chapter is intended as an overview of this rapidly evolving area. The chapter
is not meant to be comprehensive, but rather aims at providing an outline of the main
techniques used for designing algorithms or for proving lower bounds. We refer the
interested reader to the works by Babcock et al. [7], Gibbons and Matias [34] and
Muthukrishnan [57] for an extensive discussion of problems and results not mentioned
here.

8.1.1 Applications

As observed before, the primary application of data stream algorithms is to monitor
continuously huge and rapidly changing streams of data in order to support exploratory
analyses and to detect correlations, rare events, fraud, intrusion, and unusual or anoma-
lous activities. Such streams of data may be, for example, performance measurements
in traffic management, all detail records in telecommunications, transactions in retail
chains, ATM operations in banks, bids in online auctions, log records generated by
Web Servers, or sensor network data. In all these cases, the volumes of data are huge
(several terabytes or even petabytes), and records arrive at a rapid rate. Other relevant
applications for data stream processing are related, for example, to processing mas-
sive files on secondary storage and to monitoring the contents of large databases or
data warehouse environments. In this section, we highlight some typical needs that
arise in these contexts.

8.1.1.1 Network Management Perhaps the most prominent application is re-
lated to network management. This involves monitoring and configuring network
hardware and software to ensure smooth operations. Consider, for example, traffic
analysis in the Internet. Here, as IP packets flow through the routers, we would like
to monitor link bandwidth usage, to estimate traffic demands, to detect faults, con-
gestion, and usage patterns. Typical queries that we would be able to answer are thus
the following. How many IP addresses used a given link in a certain period of time?
How many bytes were sent between a pair of IP addresses? Which are the top 100 IP
addresses in terms of traffic? What is the average duration of an IP session? Which
sessions transmitted more than 1000 bytes? Which IP addresses are involved in more
than 1000 sessions? All these queries are heavily motivated by traffic analysis, fraud
detection, and security.

To get a rough estimate of the amount of data that need to be analyzed to answer
one such query, consider that each router can forward up to 1 billion packets per hour,
and each Internet Service Provider may have many hundreds of routers: thus, many
terabytes of data per hour need to be processed. These data arrive at a rapid rate, and
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we therefore need algorithms to mine patterns, process queries, and compute statistics
on such data streams in almost real time.

8.1.1.2 Database Monitoring Many commercial database systems have a query
optimizer used for estimating the cost of complex queries. Consider, for example, a
large database that undergoes transactions (including updates). Upon the arrival of
a complex query q, the optimizer may run some simple queries in order to decide
an optimal query plan for q: In particular, a principled choice of an execution plan
by the optimizer depends heavily on the availability of statistical summaries such as
histograms, the number of distinct values in a column for the tables referenced in
a query, or the number of items that satisfy a given predicate. The optimizer uses
this information to decide between alternative query plans and to optimize the use of
resources in multiprocessor environments. The accuracy of the statistical summaries
greatly impacts the ability to generate good plans for complex SQL queries. The
summaries, however, must be computed quickly: In particular, examining the entire
database is typically regarded as prohibitive.

8.1.1.3 Online Auctions During the last few years, online implementations of
auctions have become a reality, thanks to the Internet and to the wide use of computer-
mediated communication technologies. In an online auction system, people register
to the system, open auctions for individual items at any time, and then submit contin-
uously items for auction and bids for items. Statistical estimation of auction data is
thus very important for identifying items of interest to vendors and purchasers, and
for analyzing economic trends.

Typical queries may require to convert the prices of incoming bids between dif-
ferent currencies, to select all bids of a specified set of items, to maintain a table of
the currently open auctions, to select the items with the most bids in a specified time
interval, to maintain the average selling price over the items sold by each seller, to
return the highest bid in a given period of time, or to monitor the average closing
price (i.e., the price of the maximum bid, or the starting price of the auction in case
there were no bids) across items in each category.

8.1.1.4 Sequential Disk Accesses In modern computing platforms, the access
times to main memory and disk vary by several orders of magnitude. Hence, when the
data reside on disk, it is much more important to minimize the number of I/Os (i.e., the
number of disk accesses) than the CPU computation time as it is done in traditional
algorithms theory. Many ad hoc algorithmic techniques have been proposed in the
external memory model for minimizing the number of I/Os during a computation
(see, e.g., the work by Vitter [64]).

Due to the high sequential access rates of modern disks, streaming algorithms can
also be effectively deployed for processing massive files on secondary storage, pro-
viding new insights into the solution of several computational problems in external
memory. In many applications managing massive data sets, using secondary and ter-
tiary storage devices is indeed a practical and economical way to store and move data:
such large and slow external memories, however, are best optimized for sequential
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access, and thus naturally produce huge streams of data that need to be processed in a
small number of sequential passes. Typical examples include data access to database
systems [39] and analysis of Internet archives stored on tape [43]. The streaming
algorithms designed with these applications in mind may have a greater flexibility:
Indeed, the rate at which data are processed can be adjusted, data can be processed
in chunks, and more powerful processing primitives (e.g., sorting) may be available.

8.1.2 Overview of the Literature

The problem of computing in a small number of passes over the data appears already
in papers from the late 1970s. Morris, for instance, addressed the problem of keeping
approximate counts of large numbers [55]. Munro and Paterson [56] studied the space
required for selection when at most P passes over the data can be performed, giving
almost matching upper and lower bounds as a function of P and of the input size.
The paper by Alon et al. [5,6], awarded in 2005 with the Gödel Prize for outstanding
papers in the area of theoretical computer science, provided the foundations of the
field of streaming and sketching algorithms. This seminal work introduced the novel
technique of designing small randomized linear projections that allow the approxi-
mation (to user specified precision) of the frequency moments of a data set and other
quantities of interest. The computation of frequency moments is now fully under-
stood, with almost matching (up to polylogarithmic factors) upper bounds [12,20,47]
and lower bounds [9,14,46,62]. Namely, Indyk and Woodruff [47] presented the first
algorithm for estimating the kth frequency moment using space Õ(n1−2/k). A simpler
one-pass algorithm is described in [12].

Since 1996, many fundamental data statistics problems have been efficiently solved
in streaming models. For instance, the computation of frequent items is particularly
relevant in network monitoring applications and has been addressed, for example,
in many other works [1,16,22,23,51,54]. A plethora of other problems have been
studied in the last few years, designing solutions that hinge upon many different and
interesting techniques. Among them, we recall sampling, probabilistic counting, com-
binatorial group testing, core sets, dimensionality reduction, and tree-based methods.
We will provide examples of application of some of these techniques in Section 8.3.
An extensive bibliography can be found in the work by Muthukrishnan [57]. The
development of advanced techniques made it possible to solve progressively more
complex problems, including the computation of histograms, quantiles, norms, as
well as geometric and graph problems.

Histograms capture the distribution of values in a data set by grouping values into
buckets and maintaining suitable summary statistics for each bucket. Different kinds
of histograms exist: for example, in an equidepth histogram the number of values
falling into each bucket is uniform across all buckets. The problem of computing
these histograms is strictly related to the problem of maintaining the quantiles for the
data set: quantiles represent indeed the bucket boundaries. These problems have been
addressed, for example, in many other works [18,36,37,40,41,56,58,59]. Wavelets are
also widely used to provide summarized representations of data: works on computing
wavelet coefficients in data stream models include [4,37,38,60].
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A few fundamental works consider problems related to norm estimation, for
example, dominance norms and Lp sums [21,44]. In particular, Indyk pioneered
the design of sketches based on random variables drawn from stable distributions
(which are known to exist) and applied this idea to the problem of estimating Lp
sums [44].

Geometric problems have also been the subject of much recent research in the
streaming model [31,32,45]. In particular, clustering problems received special at-
tention: given a set of points with a distance function defined on them, the goal
is to find a clustering solution (a partition into clusters) that optimizes a certain
objective function. Classical objective functions include minimizing the sum of
distances of points to their closest median (k-median) or minimizing the max-
imum distance of a point to its closest center (k-center). Streaming algorithms
for such problem are presented, for example, in the works by Charikar [17] and
Guha et al. [42].

Differently from most data statistics problems, where O(1) passes and polyloga-
rithmic working space have been proven to be enough to find approximate solutions,
many classical graph problems seem to be far from being solved within similar bounds:
for many classical graph problems, linear lower bounds on the space × passes prod-
uct are indeed known [43]. A notable exception is related to counting triangles in
graphs, as discussed in the works by Bar-Yossef et al. [10], Buriol et al. [13], and
Jowhari and Ghodsi [49]. Some recent papers show that several graph problems can
be solved with one or few passes in the semi-streaming model [26–28,53] where the
working memory size isO(n · polylog n) for an input graph with n vertices: in other
words, akin to semi-external memory models [2,64] there is enough space to store ver-
tices, but not edges of the graph. Other works, such as [3,25,61], consider the design
of streaming algorithms for graph problems when the model allows more powerful
primitives for accessing stream data (e.g., use of intermediate temporary streams and
sorting).

8.1.3 Chapter Outline

This chapter is organized as follows. In Section 8.2 we describe the most common
data stream models: such models differ in the interpretation of the data on the stream
(each item can either be a value itself or indicate an update to a value) and in the
primitives available for accessing and processing stream items. In Section 8.3 we
focus on techniques for proving upper bounds: we describe some mathematical and
algorithmic tools that have proven to be useful in the construction of synopsis data
structures (including randomization, sampling, hashing, and probabilistic counting)
and we first show how these techniques can be applied to classical data statistics
problems. We then move to consider graph problems as well as techniques useful in
streaming models that provide more powerful primitives for accessing stream data
in a nonlocal fashion (e.g., simulations of parallel algorithms). In Section 8.4 we
address some lower bound techniques for streaming problems, using the computation
of the number of distinct items in a data stream as a running example: we explore the
use of reductions of problems in communication complexity to streaming problems,
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and we discuss the use of randomization and approximation in the design of efficient
synopses. In Section 8.5 we summarize our contribution.

8.2 DATA STREAM MODELS

A variety of models exist for data stream processing: the differences depend on how
stream data should be interpreted and which primitives are available for accessing
stream items. In this section we overview the main features of the most commonly
used models.

8.2.1 Classical Streaming

In classical data streaming [5,43,56,57], input data are accessed sequentially in the
form of a data stream
 = x1, ..., xn and need to be processed using a working memory
that is small compared to the length n of the stream. The main parameters of the model
are the number p of sequential passes over the data, the size s of the working memory,
and the per-item processing time. All of them should be kept small: typically, one
strives for one pass and polylogarithmic space, but this is not a requirement of the
model.

There exist at least three variants of classical streaming, dubbed (in increasing order
of generality) time series, cash register, and turnstile [57]. Indeed, we can think of
stream items x1, ..., xn as describing an underlying signalA, that is, a one-dimensional
function over the reals. In the time series model, each stream item xi represents the
ith value of the underlying signal, that is, xi = A[i]. In the other models, each stream
item xi represents an update of the signal: namely, xi can be thought of as a pair
(j, Ui), meaning that the jth value of the underlying signal must be changed by the
quantity Ui, that is, Ai[j] = Ai−1[j]+ Ui. The partially dynamic scenario in which
the signal can be only incremented, that is, Ui ≥ 0, corresponds to the cash register
model, while the fully dynamic case yields the turnstile model.

8.2.2 Semi-Streaming

Despite the heavy restrictions of classical data streaming, we will see in Section 8.3
that major success has been achieved for several data sketching and statistics prob-
lems, where O(1) passes and polylogarithmic working space have been proven to be
enough to find approximate solutions. On the contrary, there exist many natural prob-
lems (including most problems on graphs) for which linear lower bounds on p × s
are known, even using randomization and approximation: these problems cannot be
thus solved within similar polylogarithmic bounds. Some recent papers [27,28,53]
have therefore relaxed the polylog space requirements considering a semi-streaming
model, where the working memory size isO(n · polylog n) for an input graph with n
vertices: in other words, akin to semi-external memory models [2,64], there is enough
space to store vertices, but not edges of the graph. We will see in Section 8.3.3 that
some complex graph problems can be solved in semi-streaming, including spanners,
matching, and diameter estimation.
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8.2.3 Streaming with a Sorting Primitive

Motivated by technological factors, some authors have recently started to investigate
the computational power of even less restrictive streaming models. Today’s comput-
ing platforms are equipped with large and inexpensive disks highly optimized for
sequential read/write access to data, and among the primitives that can efficiently
access data in a nonlocal fashion, sorting is perhaps the most optimized and well
understood. These considerations have led to introduce the stream-sort model [3,61].
This model extends classical streaming in two ways: the ability to write intermediate
temporary streams and the ability to reorder them at each pass for free. A stream-sort
algorithm alternates streaming and sorting passes: a streaming pass, while reading
data from the input stream and processing them in the working memory, produces
items that are sequentially appended to an output stream; a sorting pass consists of
reordering the input stream according to some (global) partial order and producing the
sorted stream as output. Streams are pipelined in such a way that the output stream
produced during pass i is used as input stream at pass i+ 1. We will see in Sec-
tion 8.3.4 that the combined use of intermediate temporary streams and of a sorting
primitive yields enough power to solve efficiently (within polylogarithmic passes
and memory) a variety of graph problems that cannot be solved in classical stream-
ing. Even without sorting, the model is powerful enough for achieving space–passes
trade-offs [25] for graph problems for which no sublinear memory algorithm is known
in classical streaming.

8.3 ALGORITHM DESIGN TECHNIQUES

Since data streams are potentially unbounded in size, when the amount of computation
memory is bounded it may be impossible to produce an exact answer. In this case,
the challenge is to produce high quality approximate answers, that is, answers with
confidence bounds on the possible error. The typical approach is to maintain a “lossy”
summary of the data stream by building up a synopsis data structure with memory
footprint substantially smaller than the length of the stream. In this section we describe
some mathematical and algorithmic techniques that have proven to be useful in the
construction of such synopsis data structures. Besides the ones considered in this
chapter, many other interesting techniques have been proposed: the interested reader
can find pointers to relevant works in Section 8.1.2. Rather than being comprehensive,
our aim is to present a small amount of results in sufficient detail that the reader can
get a feeling of some common techniques used in the field.

The most natural approach to designing streaming algorithms is perhaps to main-
tain a small sample of the data stream: if the sample captures well the essential char-
acteristics of the entire data set with respect to a specific problem, evaluating a query
over the sample may provide reliable approximation guarantees for that problem. In
Section 8.3.1 we discuss how to maintain a bounded size sample of a (possibly un-
bounded) data stream and describe applications of sampling to the problem of finding
frequent items in a data stream.
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Useful randomized synopses can also be constructed hinging upon hashing tech-
niques. In Section 8.3.2 we address the design of hash-based sketches for estimating
the number of distinct items in a data stream. We also discuss the main ideas behind
the design of randomized sketches for the more general problem of estimating the
frequency moments of a data set: the seminal paper by Alon et al. [5] introduced
the technique of designing small randomized linear projections that summarize large
amounts of data and allow frequency moments and other quantities of interest to
be approximated to user-specified precision. As quoted from the Gödel Award Prize
ceremony, this paper “set the pattern for a rapidly growing body of work, both the-
oretical and applied, creating the now burgeoning fields of streaming and sketching
algorithms.”

Sections 8.3.3 and 8.3.4 are mainly devoted to the semi-streaming and stream-sort
models. In Section 8.3.3 we focus on techniques that can be applied to solve complex
graph problems in O(1) passes and Õ(n) space. In Section 8.3.4, finally, we analyze
the use of more powerful primitives for accessing stream data, showing that sorting
yields enough power to solve efficiently a variety of problems for which efficient
solutions in classical streaming cannot be achieved.

8.3.1 Sampling

A small random sample S of the data often captures certain characteristics of the entire
data set. If this is the case, the sample can be maintained in memory and queries can
be answered over the sample. In order to use sampling techniques in a data stream
context, we first need to address the problem of maintaining a sample of a specified
size over a possibly unbounded stream of data that arrive online. Note that simple
coin tossing is not possible in streaming applications, as the sample size would be
unbounded. The standard solution is to use Vitter’s reservoir sampling [63] that we
describe in the following Sections.

8.3.1.1 Reservoir Sampling This technique dates back to the 1980s [63]. Given
a stream 
 of n items that arrive online, at any instant of time reservoir sampling
guarantees to maintain a uniform random sample S of fixed size m of the part of
stream observed up to that time. Let us first consider the following natural sampling
procedure.

At the beginning, add to S the first m items of the stream. Upon seeing the
stream item xt at time t, add xt to S with probability m/t. If xt is added, evict
a random item from S (other than xt).

It is easy to see that at each time |S| = m as desired. The next theorem proves that,
at each time, S is actually a uniform random sample of the stream observed so far.

Theorem 1 [63] Let S be a sample of size m maintained over a stream 
 =
x1, ..., xn by the above algorithm. Then, at any time t and for each i ≤ t, the probability
that xi ∈ S is m/t.
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Proof. We use induction on t. The base step is trivial. Let us thus assume that the
claim is true up to time; t that is, by inductive hypothesis Pr[xi ∈ S] = m/t for each
i ≤ t. We now examine how S can change at time t + 1, when item xt+1 is considered
for addition. Consider any item xi with i < t + 1. If xt+1 is not added to S (this
happens with probability 1−m/(t + 1)), then xi has the same probability of being in
S of the previous step (i.e., m/t). If xt+1 is added to S (this happens with probability
m/(t + 1)), then xi has a probability of being in S equal to (m/t)(1− 1/m), since it
must have been in S at the previous step and must not be evicted at the current step.
Thus, for each i ≤ t, at time t + 1 we have

Pr[xi ∈ S] =
(

1− m

t + 1

)
m

t
+ m

t + 1

[
m

t

(
1− 1

m

)]
= m

t + 1
.

The fact that xt+1 is added to S with probability m/(t + 1) concludes the proof. �

Instead of flipping a coin for each element (that requires to generate n random
values), the reservoir sampling algorithm randomly generates the number of elements
to be skipped before the next element is added to S. Special care is taken to generate
these skip numbers, so as to guarantee the same properties that we discussed in
Theorem 1 for the naı̈ve coin-tossing approach. The implementation based on skip
numbers has the advantage that the number of random values to be generated is the
same as the number of updates of the sample S. We refer to the work by Vitter [63]
for the details and the analysis of this implementation.

We remark that reservoir sampling works well for insert and updates of the incom-
ing data, but runs into difficulties if the data contain deletions. In many applications,
however, the timeliness of data is important, since outdated items expire and should
be no longer used when answering queries. Other sampling techniques have been pro-
posed that address this issue: see, for example, [8,35,52] and the references therein.
Another limitation of reservoir sampling derives from the fact that the stream may
contain duplicates, and any value occurring frequently in the sample is a wasteful
use of the available space: concise sampling overcomes this limitation representing
elements in the sample by pairs (value, count). As described by Gibbons and Ma-
tias [33], this natural idea can be used to compress the samples and allows it to solve,
for example, the top-k problem, where the kmost frequent items need to be identified.

In the rest of this section, we provide a concrete example of how sampling can
be effectively applied to certain nontrivial streaming problems. However, as we will
see in Section 8.4, there also exist classes of problems for which sampling-based
approaches are not effective, unless using a prohibitive (almost linear) amount of
memory.

8.3.1.2 An Application of Sampling: Frequent Items Following an ap-
proach proposed by Manku and Motwani [51], we will now show how to use sampling
to address the problem of identifying frequent items in a data stream, that is, items
whose frequency exceeds a user-specified threshold. Intuitively, it should be possible
to estimate frequent items by a good sample. The algorithm that we discuss, dubbed
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sticky sampling [51], supports this intuition. The algorithm accepts two user-specified
thresholds: a frequency threshold ϕ ∈ (0, 1), and an error parameter ε ∈ (0, 1) such
that ε < ϕ. Let 
 be a stream of n items x1, ..., xn. The goal is to report

� all the items whose frequency is at leastϕ n (i.e., there must be no false negatives)
� no item with frequency smaller than (ϕ − ε)n.

We will denote by f (x) the true frequency of an item x, and by fe(x) the frequency
estimated by sticky sampling. The algorithm also guarantees small error in individual
frequencies; that is, the estimated frequency is less than the true frequency by at most
ε n. The algorithm is randomized, and in order to meet the two goals with probability at
least 1− δ, for a user-specified probability of failure δ ∈ (0, 1), it maintains a sample
with expected size 2ε−1 log(ϕ−1δ−1) = 2t. Note that the space is independent of the
stream length n.

The sample S is a set of pairs of the form (x, fe(x)). In order to handle poten-
tially unbounded streams, the sampling rate r is not fixed, but is adjusted so that the
probability 1/r of sampling a stream item decreases as more and more items are
considered. Initially, S is empty and r = 1. For each stream item x, if x ∈ S, then
fe(x) is increased by 1. Otherwise, x is sampled with rate r, that is, with probability
1/r: if x is sampled, the pair (x, 1) is added to S, otherwise we ignore x and move to
the next stream item.

After sampling with rate r = 1 the first 2t items, the sampling rate increases geo-
metrically as follows: the next 2t items are sampled with rate r = 2, the next 4t items
with rate r = 4, the next 8t items with rate r = 8, and so on. Whenever the sampling
rate changes, the estimated frequencies of sample items are adjusted so as to keep
them consistent with the new sampling rate: for each (x, fe(x)) ∈ S, we repeatedly
toss an unbiased coin until the coin toss is successful, decreasing fe(x) by 1 for each
unsuccessful toss. We evict (x, fe(x)) from S if fe(x) becomes 0 during this process.
Effectively, after each sampling rate doubling, S is transformed to exactly the state it
would have been in, if the new rate had been used from the beginning.

Upon a frequency items query, the algorithm returns all sample items whose esti-
mated frequency is at least (ϕ − ε)n.

The following technical lemma will be useful in the analysis of sticky sampling.
Although pretty straightforward, we report the proof for the sake of completeness.

Lemma 1 Let r ≥ 2 and let n be the number of stream items considered when the
sampling rate is r. Then 1/r ≥ t/n, where t = ε−1 log(ϕ−1δ−1).

Proof. It can be easily proved by induction on r that n = rt at the beginning of the
phase in which sampling rate r is used. The base step, for r = 2, is trivial: at the
beginning S contains exactly 2t elements by construction. During the phase with
sampling rate r, as far as the algorithm works, rt new stream elements are considered;
thus, when the sampling rate doubles at the end of the phase, we have n = 2rt, as
needed to prove the induction step. This implies that during any phase it must be
n ≥ rt, which proves the claim. �
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We can now prove that sticky sampling meets the goals in the definition of the
frequent items problem with probability at least 1− δ using space independent of n.

Theorem 2 [51] For any ε, ϕ, δ ∈ (0, 1), with ε < ϕ, sticky sampling solves the
frequent items problems with probability at least 1− δ using a sample of expected
size (2/ε) log(ϕ−1δ−1).

Proof. We first note that the estimated frequency of a sample element x is an underesti-
mate of the true frequency, that is, fe(x) ≤ f (x). Thus, if the true frequency is smaller
than (ϕ − ε)n, the algorithm will not return x, since it must also be fe(x) < (ϕ − ε)n.

We now prove that there are no false negatives with probability ≥ 1− δ. Let k
be the number of elements with frequency at least ϕ, and let y1, ..., yk be those
elements. Clearly, it must be k ≤ 1/ϕ. There are no false negatives if and only if all
the elements y1, ..., yk are returned by the algorithm. We now study the probability
of the complementary event, proving that it is upper bounded by δ.

Pr[∃ false negative] ≤
k∑
i=1

Pr[yi is not returned] =
k∑
i=1

Pr[fe(yi) < (ϕ − ε)n].

Since f (yi) ≥ ϕ n by definition of yi, we have fe(yi) < (ϕ − ε)n if and only if the
estimated frequency of yi is underestimated by at least ε n. Any error in the estimated
frequency of an element corresponds to a sequence of unsuccessful coin tosses during
the first occurrences of the element. The length of this sequence exceeds ε n with
probability (

1− 1

r

)ε n
≤
(

1− t

n

)ε n
≤ e−t ε,

where the first inequality follows from Lemma 1. Hence,

Pr[∃ false negative] ≤ k e−t ε ≤ e
−t ε

ϕ
= δ

by definition of t. This proves that the algorithm is correct with probability ≥ 1− δ.
It remains to discuss the space usage. The number of stream elements considered

at the end of the phase in which sampling rate r is used must be at most 2rt (see the
proof of Lemma 1 for details). The algorithm behaves as if each element was sam-
pled with probability 1/r: the expected number of sampled elements is therefore 2t. �

Manku and Motwani also provide a deterministic algorithm for estimating frequent
items: this algorithm guarantees no false negatives and returns no false positives with
true frequency smaller than (ϕ − ε)n [51]. However, the price paid for being determin-
istic is that the space usage increases to O((1/ε) log(ε n)). Other works that describe
different techniques for tracking frequent items are, for example, Refs. 1,16,22,23,54.
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8.3.2 Sketches

In this section we exemplify the use of sketches as randomized estimators of the
frequency moments of a data stream. Let 
 = x1, ..., xn be a stream of n values
taken from a universe U of size u, and let fi, for i ∈ U, be the frequency (number of
occurrences) of value i in 
, that is, fi = |{j : xj = i}|. The kth frequency moment
Fk of 
 is defined as

Fk =
∑
i∈U
f ki .

Frequency moments represent useful statistical information on a data set and are
widely used in database applications. In particular, F0 and F1 represent the number
of distinct values in the data stream and the length of the stream, respectively. F2,
also known as Gini’s index, provides valuable information about the skew of the data.
F∞, finally, is related to the maximum frequency element in the data stream, that is,
maxi∈U fi.

8.3.2.1 Probabilistic Counting We begin our discussion from the estimation
of F0. The problem of counting the number of distinct values in a data set using small
space has been studied since the early 1980s by Flajolet and Martin [29,30], who
proposed a hash-based probabilistic counter. We first note that a naı̈ve approach to
compute the exact value of F0 would use a counter c(i) for each value i of the universe
U, and would therefore require O(1) processing time per item, but linear space. The
probabilistic counter of Flajolet and Martin [29,30] relies on hash functions to find a
good approximation of F0 using onlyO(log u) bits of memory, where u is the size of
the universe U.

The counter consists of an array C of log u bits. Each stream item is mapped to
one of the log u bits by means of the combination of two functions h and t. The
hash function h : U → [0, u− 1] is drawn from a set of strongly 2-universal hash
functions: it transforms values of the universe into integers sufficiently uniformly
distributed over the set of binary strings of length logu. The function t, for any
integer i, gives the number t(i) of trailing zeros in the binary representation of i.
Updates and queries work as follows:

� Counter update: Upon seeing a stream value x, set C[t(h(x))] to 1.
� Distinct values query: Let R be the position of the rightmost 1 in the

counter C, with 1 ≤ R ≤ log u. Return 2R.

Notice that all stream items by the same value will repeatedly set the same counter bit
to 1. Intuitively, the fact that h distributes items uniformly over [0, u− 1] and the use
of function t guarantee that counter bits are selected in accordance with a geometric
distribution; that is, 1/2 of the universe items will be mapped to the first counter bit,
1/4 will be mapped to the second counter bit, and so on. Thus, it seems reasonable
to expect that the first logF0 counter bits will be set to 1 when the stream contains
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F0 distinct items: this suggests that R, as defined above, yields a good approximation
for F0. We will now give a more formal analysis. We will denote by Zj the number
of distinct stream items that are mapped (by the composition of functions t and h) to
a position ≥ j. Thus, R is the maximum j such that Zj > 0.

Lemma 2 Let Zj be the number of distinct stream items x for which t(h(x)) ≥ j.
Then, E[Zj] = F0/2j and Var[Zj] < E[Zj].

Proof. Let Wx be an indicator random variable whose value is 1 if and only if
t(h(x)) ≥ j. Then, by definition of Zj ,

Zj =
∑
x∈U∩


Wx. (8.1)

Note that |U ∩
| = F0. We now study the probability thatWx = 1. It is not difficult
to see that the number of binary strings of length log u that have exactly j trailing
zeros, for 0 ≤ j < log u, is 2log u−(j+1). Thus, the number of strings that have at
least j trailing zeros is 1+∑log u−1

i=j 2log u−(i+1) = 2log u−j . Since h distributes items
uniformly over [0, u− 1], we have that

Pr[Wx = 1] = Pr[t(h(x)) ≥ j] = 2log u−j

u
= 2−j.

Hence, E[Wx] = 2−j and Var[Wx] = E[W2
x ]− E[Wx]2 = 2−j − 2−2j = 2−j(1−

2−j). We are now ready to compute E[Zj] and Var[Zj]. By (8.1) and by linearity of
expectation we have

E[Zj] = F0 ·
(

1 · 1

2j
+ 0 ·

(
1− 1

2j

))
= F0

2j
.

Due to pairwise independence (guaranteed by the choice of the hash function h) we
have Var[Wx +Wy] = Var[Wx]+ Var[Wy] for any x, y ∈ U ∩
 and thus

Var[Zj] =
∑
x∈U∩


Var[Wx] = F0

2j

(
1− 1

2j

)
< F02j = E[Zj].

This concludes the proof. �

Theorem 3 [5,29,30] Let F0 be the exact number of distinct values and let 2R be
the output of the probabilistic counter to a distinct values query. For any c > 2, the
probability that 2R is not between F0/c and c F0 is at most 2/c.

Proof. Let us first study the probability that the algorithm overestimates F0 by a
factor of c. We begin by noticing that Zj takes only nonnegative values, and thus we
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can apply Markov’s inequality to estimate the probability that Zj ≥ 1, obtaining

Pr[Zj ≥ 1] ≤ E[Zj]

1
= F0

2j
, (8.2)

where the equality is by Lemma 2. If the algorithm overestimates F0 by a factor of c,
then it must exist an index j such that C[j] = 1 and 2j/F0 > c (i.e., j > log2(c F0)).
By definition of Zj , this implies Zlog2(c F0) ≥ 1. Thus,

Pr[∃j : C[j] = 1 and 2j/F0 > c ] ≤ Pr[Zlog2(c F0) ≥ 1 ] ≤ F0

2log2(c F0) =
1

c
,

where the last inequality follows from (8.2). The probability that the algorithm over-
estimates F0 by a factor of c is therefore at most 1/c.

Let us now study the probability that the algorithm underestimates F0 by a factor
of 1/c. Symmetrically to the previous case, we begin by estimating the probability
that Zj = 0. Since Zj takes only nonnegative values, we have

Pr[Zj = 0 ] = Pr[ |Zj − E[Zj]| ≥ E[Zj] ] ≤ Var[Zj]

E[Zj]2 <
1

E[Zj]
= 2j

F0
(8.3)

using Chebyshev inequality and Lemma 2. If the algorithm underestimates F0
by a factor of 1/c, then there must exist an index j such that 2j < F0/c (i.e.,
j < log2(F0/c)) and C[p] = 0 for all positions p ≥ j. By definition of Zj , this im-
plies Zlog2(F0/c) = 0, and with reasonings similar to the previous case and by using
(8.3), we obtain that the probability that the algorithm underestimates F0 by a factor
of 1/c is at most 2log2(F0/c)/F0 = 1/c.

The upper bounds on the probabilities of overestimates and underestimates imply
that the probability that 2R is not between F0/c and c F0 is at most 2/c. �

The probabilistic counter of Flajolet and Martin [29,30] assumes the existence of
hash functions with some ideal random properties. This assumption has been more
recently relaxed by Alon et al. [5], who adapted the algorithm so as to use simpler
linear hash functions. We remark that streaming algorithms for computing a (1+ ε)-
approximation of the number of distinct items are presented, for example, in the work
by Bar-Yossef et al. [11].

8.3.2.2 Randomized Linear Projections and AMS Sketches We now con-
sider the more general problem of estimating the frequency moments Fk of a data set,
for k ≥ 2, focusing on the seminal work by Alon et al. [5].

In order to estimate F2, Alon et al. introduced a fundamental technique based
on the design of small randomized linear projections that summarize some essential
properties of the data set. The basic idea of the sketch designed in the work by Alon
et al. [5] for estimating F2 is to define a random variable whose expected value is F2,
and whose variance is relatively small. We follow the description from the work Alon
et al. [4].
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The algorithm computes μ random variables Y1, ..., Yμ and outputs their median
Y as the estimator for F2. Each Yi is in turn the average of α independent, identically
distributed random variablesXij , with 1 ≤ j ≤ α. The parameters μ and α need to be
carefully chosen in order to obtain the desired bounds on space, approximation, and
probability of error: such parameters will depend on the approximation guarantee λ
and on the error probability δ.

Each Xij is computed as follows. Select at random a hash function ξ mapping the
items of the universeU to {−1,+1}: ξ is selected from a family of 4-wise independent
hash functions. Informally, 4-wise independence means that for every four distinct
values u1, ..., u4 ∈ U and for every 4-tuple ε1, ..., ε4 ∈ {−1,+1}, exactly (1/16)-
fraction of the hash functions in the family map ui to εi, for i = 1, ..., 4. Given ξ,
we define Zij =

∑
u∈U fu ξ(u) and Xij = Z2

ij . Notice that Zij can be considered as a
random linear projection (i.e., an inner product) of the frequency vector of the values
in U with the random vector associated with such values by the hash function ξ.

It can be proved that E[Y ] = F2 and that, thanks to averaging of the Xij , each Yi
has small variance. Computing Y as the median of Yi allows it to boost the confidence
using standard Chernoff bounds. We refer the interested reader to the work by Alon
et al. [5] for a detailed proof. We limit here to formalize the statement of the result
proved in the work by Alon et al. [5].

Theorem 4 [5] For every k ≥ 1, λ > 0, and δ > 0, there exists a randomized
algorithm that computes a number Y that deviates from F2 by more than λF2 with
probability at most δ. The algorithm uses only

O

(
log(1/δ)

λ2 (log u+ log n)

)
memory bits and performs one pass over the data.

Let us now consider the case ofFk, for k ≥ 2. The basic idea of the sketch designed
in the work by Alon et al. [5] is similar to that described above, but each Xij is now
computed by sampling the stream
 as follows: an index p = pij is chosen uniformly
at random in [1, n] and the number r of occurrences of xp in the stream following
position p is computed by keeping a counter. Xij is then defined as n(rk − (r −
1)k). We refer the interested reader to the works by Alon et al. [4–6] for a detailed
description of this sketch and for the extension to the case where the stream length
n is not known. We limit here to formalize the statement of the result proved in the
work by Alon et al. [5]:

Theorem 5 [5] For every k ≥ 1, λ > 0 and δ > 0, there exists a randomized algo-
rithm that computes a number Y such that Y deviates from Fk by more than λFk with
probability at most δ. The algorithm uses

O

(
k log(1/δ)

λ2 u1−1/k(log u+ log n)

)
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memory bits and performs only one pass over the data.

Notice that Theorem 5 implies thatF2 can be estimated usingO( (log(1/δ)/λ2)
√
u

(log u+ log n)) memory bits: this is worse by a
√
u factor than the bound obtained

in Theorem 4.

8.3.3 Techniques for Graph Problems

In this section we focus on techniques that can be applied to solve graph problems in
the classical streaming and semi-streaming models. In Section 8.3.4 we will consider
results obtained in less restrictive models that provide more powerful primitives for
accessing stream data in a nonlocal fashion (e.g., stream-sort). Graph problems appear
indeed to be difficult in classical streaming, and only few interesting results have been
obtained so far. This is in line with the linear lower bounds on the space × passes
product proved in the work by Henzinger et al. [43], even using randomization and
approximation.

One problem for which sketches could be successfully designed is counting the
number of triangles: if the graphs have certain properties, the algorithm presented
in the work by Bar-Yossef et al. [10] uses sublinear space. Recently, Cormode and
Muthukrishnan [24] studied three fundamental problems on multigraph degree se-
quences: estimating frequency moments of degrees, finding the heavy hitter degrees,
and computing range sums of degree values. In all cases, their algorithms have space
bounds significantly smaller than storing complete information. Due to the lower
bounds in the work by Henzinger et al. [43], most work has been done in the semi-
streaming model, in which problems such as distances, spanners, matchings, girth,
and diameter estimation have been addressed [27,28,53]. In order to exemplify the
techniques used in these works, in the rest of this section we focus on one such result,
related to computing maximum weight matchings.

8.3.3.1 Approximating Maximum Weight Matchings Given an edge
weighted, undirected graph G(V,E,w), the weighted matching problem is to find
a matchingM∗ such that w(M∗) =∑e∈M∗ w(e) is maximized. We recall that edges
in a matching are such that no two edges have a common end point. We now present a
one-pass semi-streaming algorithm that solves the weighted matching problem with
approximation ratio 1/6; that is, the matching M returned by the algorithm is such
that

w(M∗) ≤ 6w(M).

The algorithm has been proposed in the work by Feigenbaum et al. [27] and is very
simple to describe. Algorithms with better approximation guarantees are described
in the work by McGregor [53].

As edges are streamed, a matching M is maintained in main memory. Upon
arrival of an edge e, the algorithm considers the set C ⊆ M of matching edges
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that share an end point with e. If w(e) > 2w(C), then e is added toM while the
edges in C are removed; otherwise (w(e) ≤ 2w(C)) e is ignored.

Note that, by definition of matching, the set C of conflicting edges has cardinality
at most 2. Furthermore, since any matching consists of at most n/2 edges, the space
requirement in bits is clearly O(n log n).

In order to analyze the approximation ratio, we will use the following notion of
replacement tree associated with a matching edge (see also Fig. 8.1). Let e be an edge
that belongs toM at the end of the algorithm’s execution: the nodes of its replacement
tree Te are edges of graph G, and e is the root of Te. When e has been added toM, it
may have replaced one or two other edges e1 and e2 that were previously inM: e1 and
e2 are children of e in Te, which can be fully constructed by applying the reasoning
recursively. It is easy to upper bound the total weight of nodes of each replacement
tree.

Lemma 3 Let R(e) be the set of nodes of the replacement tree Te, except for the
root e. Then, w(R(e)) ≤ w(e).

Proof. The proof is by induction. When e is a leaf in Te (base step),R(e) is empty and
w(R(e)) = 0. Let us now assume that e1 and e2 are the children of e in Te (the case of
a unique child is similar). By inductive hypothesis, w(e1) ≥ w(R(e1)) and w(e2) ≥
w(R(e2)). Since e replaced e1 and e2, it must have been w(e) ≥ 2 (w(e1)+ w(e2)).
Hence, w(e) ≥ w(e1)+ w(e2)+ w(R(e1))+ w(R(e2)) = w(R(e)). �

(c)

120

130 40

10
62 30

2

50
4

a b c

d f
e

g h i

a b c

d f
e

g h i

(f)

(a)

120

130 40

10
62 30

2

50
4

a b c

d f
e

g h i

(c,f)(b,e)

(e,f)

(d,e)

(d,g) (h,i)

(d)

(c,f,2)
(b,e,10)
(h,i,4)
(e,f,30)
(h,f,50)
(e,g,40)
(d,e,62)
(a,d,120)
(d,g,130)

(b)

Σ =

a b c

d f
e

g h i

(e)

FIGURE 8.1 (a) A weighted graph and an optimal matching Opt (bold edges); (b) order in
which edges are streamed; (c) matchingM computed by the algorithm (bold solid edges) and
edges in the history H \M (dashed edges); (d) replacement trees of edges in M; (e) initial
charging of the weights of edges in Opt; (f ) charging after the redistribution.
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Theorem 6 [27] In one pass and spaceO(n log n), the above algorithm constructs
a (1/6)-approximate weighted matchingM.

Proof. Let Opt= {o1, o2, ...} be the set of edges in a maximum weight matching and
let H = ⋃e∈M(R(e) ∪ {e}) be the set of edges that have been part of the matching at
some point during the algorithm’s execution (these are the nodes of the replacement
trees).

We will show an accounting scheme that charges the weight of edges in Opt to
edges in H . The charging strategy, for each edge o ∈Opt, is the following:

� If o ∈ H , we charge w(o) to o itself.
� If o �∈ H , let us consider the time when o was examined for insertion inM, and

let C be the set of edges that share an end point with o and were in M at that
time. Since o was not inserted, it must have been |C| ≥ 1 and w(o) ≤ 2w(C).
If C contains only one edge, we charge w(o) to that edge. If C contains two
edges e1 and e2, we charge w(o)w(e1)/(w(e1)+ w(e2)) ≤ 2w(e1) to e1 and
w(o)w(e2)/(w(e1)+ w(e2)) ≤ 2w(e2) to e2.

The following two properties hold: (a) the charge of o to any edge e is at most 2w(e);
(b) any edge ofH is charged by at most two edges of Opt, one per end point (see also
Fig. 8.1).

We now redistribute some charges as follows: if an edge o ∈ Opt charges an edge
e ∈ H and e gets replaced at some point by an edge e′ ∈ H that also shares an end
point with o, we transfer the charge of o from e to e′. With this procedure, property (a)
remains valid since w(e′) ≥ w(e). Moreover, o will always charge an incident edge,
and thus property (b) also remains true. In particular, each edge e ∈ H \M will be
now charged by at most one edge in Opt: if at some point there are two edges charging
e, the charge of one of them will be transferred to the edge ofH that replaced e. Thus,
only edges inM can be charged by two edges in Opt. By the above discussion we get

w(Opt) ≤
∑
e∈H\M

2w(e)+
∑
e∈M

4w(e) =
∑
e∈M

2w(R(e))+
∑
e∈M

4w(e)

≤
∑
e∈M

6w(e) = 6w(M),

where the first equality is by definition ofH and the last inequality is by Lemma 3. �

8.3.4 Simulation of PRAM Algorithms

In this section we show that a variety of problems for which efficient solutions in
classical streaming are not known or impossible to obtain can be solved very effi-
ciently in the stream-sort model discussed in Section 8.2.3. In particular, we show
that parallel algorithms designed in the PRAM model [48] can yield very efficient al-
gorithms in the stream-sort model. This technique is very similar to previous methods
developed in the context of external memory management for deriving I/O efficient



ALGORITHM DESIGN TECHNIQUES 259

algorithms (see, e.g., the work by Chiang et al. [19]). We recall that the PRAM
is a popular model of parallel computation: it consists of a number of processors
(each processor is a standard Random Access Machine) that communicate through a
common, shared memory. The computation proceeds in synchronized steps: no pro-
cessor will proceed with instruction i+ 1 before all other processors complete the
ith step.

Theorem 7 LetA be a PRAM algorithm that usesN processors and runs in time T .
Then,A can be simulated in stream-sort inp = O(T ) passes and space s = O(logN).

Proof. Let 
 = (1, val1)(2, val2) · · · (M, valM) be the input stream that represents
the memory image given as input to algorithm A, where valj is the value contained
at address j, and M = O(N). At each step of algorithm A, processor pi reads one
memory cell at address ini, updates its internal state sti, and possibly writes one output
cell at address outi. In a preprocessing pass, we append to 
 the N tuples:

(p1, in1, st1, out1) · · · (pN, inN, stN, outN ),

where ini and outi are the cells read and written by pi at the first step of algorithm
A, respectively, and sti is the initial state of pi. Each step of A can be simulated by
performing the following sorting and scanning passes:

1. We sort the stream so that each (j, valj) is immediately followed by tuples
(pi, ini, sti, outi) such that ini = j; that is, the stream has the form

(1, val1)(pi11 , 1, sti11 , outi11 )(pi12 , 1, sti12 , outi12 ) · · ·
(2, val2)(pi21 , 2, sti21 , outi21 )(pi22 , 2, sti22 , outi22 ) · · ·
. . .
(M, valM)(piM1 ,M, stiM1 , outiM1 )(piM2 ,M, stiM2 , outiM2 ) · · ·

This can be done, for example, by using 2j as sorting key for tuples (j, valj)
and 2ini + 1 as sorting key for tuples (pi, ini, sti, outi).

2. We scan the stream, performing the following operations:

• If we read (j, valj), we let currval = valj and we write (j, valj,“old”) to the
output stream.

• If we read (pi, ini, sti, outi), we simulate the task performed by processor
pi, observing that the value valini that pi would read from cell ini is readily
available in currval. Then we write to the output stream (outi, resi,“new”),
where resi is the value that pi would write at address outi, and we write tuple
(pi, in′i, st′i, out′i), where in′i and out′i are the cells to be read and written at the
next step of A, respectively, and st′i is the new state of processor pi.

3. Notice that at this point, for each j we have in the stream a triple of the form
(j, valj,“old”), which contains the value of cell j before the parallel step, and
possibly one or more triples (j, resi,“new”), which store the values written by
processors to cell j during that step. If there is no “new” value for cell j, we
simply drop the “old” tag from (j, valj,“old”). Otherwise, we keep for cell j
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one of the new triples pruned of the “new” tag, and get rid of the other triples.
This can be easily done with one sorting pass, which lets triples by the same j be
consecutive, followed by one scanning pass, which removes tags and duplicates.

To conclude the proof, we observe that if A performs T steps, then our stream-sort
simulation requires p = O(T ) passes. Furthermore, the number of bits of working
memory required to perform each processor task simulation and to store currval is
s = O(logN). �

Theorem 7 provides a systematic way of constructing streaming algorithms (in the
stream-sort model) for several fundamental problems. Prominent examples are list
ranking, Euler tour, graph connectivity, minimum spanning tree, biconnected com-
ponents, and maximal independent set, among others: for these problems there exist
parallel algorithms that use a polynomial number of processors and polylogarithmic
time (see, e.g., the work by Jájá [48]). Hence, according to Theorem 7, these prob-
lems can be solved in the stream-sort model within polylogarithmic space and passes.
Such bounds essentially match the results obtainable in more powerful computational
models for massive data sets, such as the parallel disk model [64]. As observed by Ag-
garwal et al. [3], this suggests that using more powerful, harder to implement models
may not always be justified.

8.4 LOWER BOUNDS

An important technique for proving streaming lower bounds is based on communi-
cation complexity lower bounds [43]. A crucial restriction in accessing a data stream
is that items are revealed to the algorithm sequentially. Suppose that the solution of
a computational problem needs to compare two items directly; one may argue that if
the two items are far apart in the stream, one of them must be kept in main memory for
long time by the algorithm until the other item is read from the stream. Intuitively, if
we have limited space and many distant pairs of items to be compared, then we cannot
hope to solve the problem unless we perform many passes over the data. We formal-
ize this argument by showing reductions of communication problems to streaming
problems. This allows us to prove lower bounds in streaming based on lower bounds
in communication complexity. To illustrate this technique, we prove a lower bound
for the element distinctness problem, which clearly implies a lower bound for the
computation of the number of distinct items F0 addressed in Section 8.3.2.

Theorem 8 Any deterministic or randomized algorithm that decides whether a
stream of n items contains any duplicates requires p = �(n/s) passes using s bits of
working memory.

Proof. The proof follows from a two-party communication complexity lower bound
for the bit-vector-disjointness problem. In this problem, Alice has an n-bit-vector A
and Bob has an n-bit-vectorB. They want to know whetherA · B > 0, that is, whether
there is at least one index i ∈ {1, . . . , n} such that A[i] = B[i] = 1. By a well-known
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communication complexity lower bound [50], Alice and Bob must communicate
�(n) bits to solve the problem. This results holds also for randomized protocols: any
algorithm that outputs the correct answer with high probability must communicate
�(n) bits.

We now show that bit-vector-disjointness can be reduced to the element distinctness
streaming problem. The reduction works as follows. Alice creates a stream of items
SA containing indices i such thatA[i] = 1. Bob does the same forB, that is, he creates
a stream of items SB containing indices i such that B[i] = 1. Alice runs a streaming
algorithm for element distinctness on SA, then she sends the content of her working
memory to Bob. Bob continues to run the same streaming algorithm starting from the
memory image received from Alice, and reading items from the stream SB. When the
stream is over, Bob sends his memory image back to Alice, who starts a second pass
on SA, and so on. At each pass, they exchange 2s bits. At the end of the last pass,
the streaming algorithm can answer whether the stream obtained by concatenating
SA and SB contains any duplicates; since this stream contains duplicates if and only
if A · B > 0, this gives Alice and Bob a solution to the problem.

Assume by contradiction that the number of passes performed by Alice and Bob
over the stream is o(n/s). Since at each pass they communicate 2s bits, then the
total number of bits sent between them over all passes is o(n/s) · 2s = o(n), which
is a contradiction as they must communicate �(n) bits as noticed above. Thus, any
algorithm for the element distinctness problem that uses s bits of working memory
requires p = �(n/s) passes. �

Lower bounds established in this way are information-theoretic, imposing no restric-
tions on the computational power of the algorithms. The general idea of reducing a
communication complexity problem to a streaming problem is very powerful, and
allows it to prove several streaming lower bounds. Those range from computing sta-
tistical summary information such as frequency moments [5] to graph problems such
as vertex connectivity [43], and imply that for many fundamental problems there are
no one-pass exact algorithms with a working memory significantly smaller than the
input stream.

A natural question is whether approximation can make a significant difference for
those problems, and whether randomization can play any relevant role. An interesting
observation is that there are problems, such as the computation of frequency moments,
for which neither randomization nor approximation is powerful enough for getting a
solution in one pass and sublinear space, unless they are used together.

8.4.1 Randomization

As we have seen in the proof of Theorem 8, lower bounds based on the communi-
cation complexity of the bit-vector-disjointness problem hold also for randomized
algorithms, which yields clear evidence that randomization without approximation
may not help. The result of Theorem 8 can be generalized for all one-pass frequency
moments. In particular, it is possible to prove that any randomized algorithm for com-
puting the frequency moments that outputs the correct result with probability higher
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than 1/2 in one pass must use �(n) bits of working memory. The theorem can be
proven using communication complexity tools.

Theorem 9 [6] For any nonnegative integer k �= 1, any randomized algorithm
that makes one pass over a sequence of at least 2n items drawn from the universe
U = {1, 2, . . . , n} and computes Fk exactly with probability>1/2 must use�(n) bits
of working memory.

8.4.2 Approximation

Conversely, we can show that any deterministic algorithm for computing the frequency
moments that approximates the correct result within a constant factor in one pass must
use�(n) bits of working memory. Differently from the lower bounds addressed earlier
in this section, we give a direct proof of this result without resorting to communication
complexity arguments.

Theorem 10 [6] For any nonnegative integer k �= 1, any deterministic algorithm
that makes one pass over a sequence of at least n/2 items drawn from the universe
U = {1, 2, . . . , n} and computes a number Y such that |Y − Fk| ≤ Fk/10 must use
�(n) bits of working memory.

Proof. The idea of the proof is to show that if the working memory is not large
enough, for any deterministic algorithm (which does not use random bits) there exist
two subsets S1 and S2 in a suitable collection of subsets of U such that the memory
image of the algorithm is the same after reading either S1 or S2; that is, S1 and S2 are
indistinguishable. As a consequence, the algorithm has the same memory image after
reading either S1 :S1 or S2 :S1, whereA :B denotes the stream of items that starts with
the items of A and ends with the items of B. If S1 and S2 have a small intersection,
then the two streams S1 :S1 and S2 :S1 must have rather different values of Fk, and
the algorithm must necessarily make a large error on estimating Fk on at least one of
them. We now give more details on the proof assuming that k ≥ 2. The case k = 0
can be treated symmetrically.

Using a standard construction in coding theory, it is possible to build a family
F of 2�(n) subsets of U of size n/4 each such that any two of them have at most
n/8 common items. Notice that, for every set in F , the frequency of any value of
U in that set is either 0 or 1. Fix a deterministic algorithm and let s < log2 F be
the size of its working memory. Since the memory can assume at most 2s different
configurations and we have |F | > 2s possible distinct input sets in F , then by the
pigeonhole principle there must be two input sets S1, S2 ∈ F such that the memory
image of the algorithm after reading either one of them is the same. Now, if we
consider the two streams S1 :S1 and S2 :S1, the memory image of the algorithm after
processing either one of them is the same. Since by construction of F , S1 and S2
contain n/4 items each, and have at most n/8 items in common, then
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� Each of the n/4 distinct items in S1 :S1 has frequency 2, thus

F
S1:S1
k =

n∑
i=1

f ki = 2k · n
4
.

� If S1 and S2 have exactly n/8 items in common, then S2 :S1 contains exactly
n/8+ n/8 = n/4 items with frequency 1 and n/8 items with frequency 2.
Hence,

F
S2:S1
k =

n∑
i=1

f ki =
n

4
+ 2k · n

8
.

Notice that, for k ≥ 2, FS2:S1
k can only decrease as |S1 ∩ S2| decreases, and

therefore we can conclude that

F
S2:S1
k ≤ n

4
+ 2k · n

8
.

To simplify the notation, letA = FS2:S1
k andB = FS1:S1

k . The maximum relative error
performed by the algorithm on either input S2 :S1 or input S1 :S1 is

max

{ |Y − A|
A

,
|Y − B|
B

}
.

In order to prove that the maximum relative error is always ≥ 1/10, it is sufficient to
show that

|Y − B|
B

<
1

10
⇒ |Y − A|

A
≥ 1

10
. (8.4)

Let C = n/4+ 2k · n/8. For k ≥ 2, it is easy to check that A ≤ C ≤ B = 2k · n/4.
Moreover, the maximum relative error obtained for any Y < A is larger than the
maximum relative error obtained for Y = A (similarly for Y > B): thus, the value of
Y that minimizes the relative error is such that A ≤ Y ≤ B. Under this hypothesis,
|Y − B| = B − Y and |Y − A| = Y − A. With simple calculations, we can show that
proving (8.4) is equivalent to proving that

Y >
9

10
B ⇒ Y ≥ 11

10
A.

Notice that C = n/4+ B/2. Using this fact, it is not difficult to see that 9B ≥ 11C
for any k ≥ 2, and therefore the above implication is always satisfied since C ≥ A.

Since the maximum relative error performed by the algorithm on either input
S1 :S1 or input S2 :S1 is at least 1/10, we can conclude that if we use fewer than
log2 F = �(n) memory bits, there is an input on which the algorithm outputs a value
Y such that |Y − Fk| > Fk/10, which proves the claim. �
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8.4.3 Randomization and Approximation

A natural approach that combines randomization and approximation would be to use
random sampling to get an estimator of the solution. Unfortunately, this may not
always work: as an example, Charikar et al. [15] have shown that estimators based
on random sampling do not yield good results for F0.

Theorem 11 [15] Let E be a (possibly adaptive and randomized) estimator of F0
that examines at most r items in a set of n items and let err = max{E/F0, F0/E} be
the error of the estimator. Then, for any p > 1/er, there is a choice of the set of items
such that err ≥ √((n− r)/2r) ln(1/p) with probability at least p.

The result of Theorem 11 states that no good estimator can be obtained if we only
examine a fraction of the input. On the contrary, as we have seen in Section 8.3.2,
hashing techniques that examine all items in the input allow it to estimate F0 within
an arbitrary fixed error bound with high probability using polylogarithmic working
memory space for any given data set.

We notice that, while the ideal goal of a streaming algorithm is to solve a problem
using a working memory of size polylogarithmic in the size of the input stream, for
some problems this is impossible even using approximation and randomization, as
shown in the following theorem from the work by Alon et al. [6].

Theorem 12 [6] For any fixed integer k > 5, any randomized algorithm that makes
one pass over a sequence of at leastn items drawn from the universeU = {1, 2, . . . , n}
and computes an approximate value Y such that |Y − Fk| > Fk/10 with probability
< 1/2 requires at least �(n1−5/k) memory bits.

Theorem 12 holds in a streaming scenario where items are revealed to the algorithm
in an online manner and no assumptions are made on the input. We finally notice that
in the same scenario there are problems for which approximation and randomization
do not help at all. A prominent example is given by the computation of F∞, the
maximum frequency of any item in the stream.

Theorem 13 [6] Any randomized algorithm that makes one pass over a sequence
of at least 2n items drawn from the universe U = {1, 2, . . . , n} and computes an
approximate value Y such that |Y − F∞| ≥ F∞/3 with probability < 1/2 requires
at least �(n) memory bits.

8.5 SUMMARY

In this chapter we have addressed the emerging field of data stream algorithmics,
providing an overview of the main results in the literature and discussing computa-
tional models, applications, lower bound techniques, and tools for designing efficient
algorithms. Several important problems have been proven to be efficiently solvable
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despite the strong restrictions on the data access patterns and memory requirements
of the algorithms that arise in streaming scenarios. One prominent example is the
computation of statistical summaries such as frequency moments, histograms, and
wavelet coefficient, which are of great importance in a variety of applications includ-
ing network traffic analysis and database optimization. Other widely studied problems
include norm estimation, geometric problems such as clustering and facility location,
and graph problems such as connectivity, matching, and distances.

From a technical point of view, we have discussed a number of important tools for
designing efficient streaming algorithms, including random sampling, probabilistic
counting, hashing, and linear projections. We have also addressed techniques for
graph problems and we have shown that extending the streaming paradigm with a
sorting primitive yields enough power for solving a variety of problems in external
memory, essentially matching the results obtainable in more powerful computational
models for massive data sets.

Finally, we have discussed lower bound techniques, showing that tools from the
field of communication complexity can be effectively deployed for proving strong
streaming lower bounds. We have discussed the role of randomization and approx-
imation, showing that for some problems neither one of them yields enough power,
unless they are used together. We have also shown that other problems are intrinsically
hard in a streaming setting even using approximation and randomization, and thus
cannot be solved efficiently unless we consider less restrictive computational models.
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CHAPTER 9

Applying Evolutionary Algorithms
to Solve the Automatic Frequency
Planning Problem

FRANCISCO LUNA, ENRIQUE ALBA, ANTONIO J. NEBRO,
PATRICK MAUROY, and SALVADOR PEDRAZA

9.1 INTRODUCTION

The global system for mobile communications (GSM) [14] is an open, digital cellular
technology used for transmitting mobile voice and for data services. GSM is also re-
ferred to as 2G, because it represents the second generation of this technology, and it
is certainly the most successful mobile communication system. Indeed, by mid-2006
GSM services are in use by more than 1.8 billion subscribers across 210 countries, rep-
resenting approximately 77 percent of the world’s cellular market. GSM differs from
the first-generation wireless systems in that it uses digital technology and frequency
division multiple access/time division multiple access (FDMA/TDMA) transmission
methods. It is also widely accepted that the Universal Mobile Telecommunication
system (UMTS) [15], the third-generation mobile telecommunication system, will
coexist with the enhanced releases of the GSM standard (GPRS [9] and EDGE [7])
at least in the first phases. Therefore, GSM is expected to play an important role as a
dominating technology for many years.

The success of this multiservice cellular radio system lies in efficiently using
the scarcely available radio spectrum. GSM uses frequency division multiplexing
and time division multiplexing schemes to maintain several communication links
“in parallel.” The available frequency band is slotted into channels (or frequencies)
that have to be allocated to the elementary transceivers (TRXs) installed in the base
stations of the network. This problem is known as the automatic frequency planning
(AFP), frequency assignment problem (FAP), or channel assignment problem (CAP).
Several different problem types are subsumed under these general terms and many
mathematical models have been proposed since the late 1960s [1,6,12]. This chapter,

1http://www.wirelessintelligence.com/.
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however, is focused on concepts and models that are relevant for current GSM fre-
quency planning and not on simplified models of the abstract problem. In GSM, a
network operator has usually a small number of frequencies (few dozens) available
to satisfy the demand of several thousands of TRXs. A reuse of these frequencies is
therefore unavoidable. However, reusing frequencies is limited by interferences that
could lead the quality of service (QoS) for subscribers to be reduced down to unsatis-
factory levels. The automatic generation of frequency plans in real GSM networks [5]
is a very important task for present GSM operators not only in the initial deployment
of the system, but also in the subsequent expansions or modifications of the network,
solving unpredicted interference reports, and/or handling anticipated scenarios (e.g.,
an expected increase in the traffic demand in some areas).

This optimization problem is a generalization of the graph coloring problem, and
thus it is an NP-hard problem [10]. As a consequence, using exact algorithms to solve
real-sized instances of AFP problems is not practical, and therefore other approaches
are required. Many different methods have been proposed in the literature [1], and
among them, metaheuristic algorithms have proved to be particularly effective. Meta-
heuristics [3,8] are stochastic algorithms that sacrifice the guarantee of finding optimal
solutions for the sake of (hopefully) getting accurate (also optimal) ones in a reason-
able time. This fact is even more important in commercial tools, in which the GSM
operator cannot wait very long times for a frequency plan (e.g., several weeks). Among
the existing metaheuristic techniques, evolutionary algorithms (EAs) [2] have been
widely used [6]. EAs work iteratively on a population of individuals. Every individ-
ual is the encoded version of a tentative solution to which a fitness value is assigned
indicating its suitability to the problem. The canonical algorithm applies stochastic
operators such as selection, crossover (merging two or more parents to yield one or
more offsprings), and mutation (random alterations of the problem variables) on an
initial population in order to compute a whole generation of new individuals. However,
it has been reported in the literature that crossover operators do not work properly for
this problem [4,17]. In this scenario, our algorithmic proposal is a fast and accurate
(1+ 10) EA (see the work by Schwefel [16] for details on this notation) in which
recombination of individuals is not performed. The main contributions of this chapter
are the following:

• We have developed and analyzed a new (1+ 10) EA. Several seeding methods
as well as several mutation operators have been proposed.

• The evaluation of the algorithm has been performed by using a real-world in-
stance provided by Optimi Corp.TM This is a currently operating GSM network
in which we are using real traffic data, accurate models for all the system com-
ponents (signal propagation, TRX, locations, etc.), and actual technologies such
as frequency hopping. This evaluation of the tentative frequency plans is carried
out with a powerful commercial simulator that enables users to simulate and
analyze those plans prior to implementation in a real environment.

• Results show that this simple algorithm is able to compute accurate frequency
plans, which can be directly deployed in a real GSM network.
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The chapter is structured as follows. In the next section, we provide the reader with
some details on the frequency planning in GSM networks. Section 9.3 describes the
algorithm proposed along with the different genetic operators used. The results of the
experimentation are analyzed in Section 9.4. Finally, conclusions and future lines of
research are discussed in the last section.

9.2 AUTOMATIC FREQUENCY PLANNING IN GSM

This section is devoted to presenting some details on the frequency planning task
for a GSM network. We first provide the reader with a brief description of the GSM
architecture. Next, we give the relevant concepts to the frequency planning problem
that will be used along this chapter.

9.2.1 The GSM System

An outline of the GSM network architecture is shown in Figure 9.1. The solid lines
connecting components carry both traffic information (voice or data) and the “in-
band” signaling information. The dashed lines are signaling lines. The information
exchanged over these lines is necessary for supporting user mobility, network features,
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operation and maintenance, authentication, encryption, and many other functions
necessary for the network’s proper operation. Figure 9.1 shows the different network
components and interfaces within a GSM network.

As it can be seen, GSM networks are built out of many different components. The
most relevant ones to frequency planning are briefly described next.

9.2.1.1 Mobile Terminals Mobile terminals are the (only) part of the system’s
equipment that the user is aware of. Usually, the mobile terminal is designed in the
form of a phone. The GSM mobile phone is designed as a unity of two parts that are
both functionally and physically separated:

1. Hardware and software specific to the GSM radio interface.

2. Subscriber identity module (SIM). The SIM is a removable part of the mobile
terminal that stores a subscriber’s unique identification information. The SIM
allows the subscriber to access the network regardless of the particular mobile
station being used.

9.2.1.2 Base Transceiver Station (BTS) In essence, the BTS is a set of TRXs.
In GSM, one TRX is shared by up to eight users in TDMA mode. The main role of
a TRX is to provide conversion between the digital traffic data on the network side
and radio communication between the mobile terminal and the GSM network. The
site at which a BTS is installed is usually organized in sectors: one to three sectors
are typical. Each sector defines a cell. A single GSM BTS can host up to 16 TRXs.

9.2.1.3 Base Station Controller (BSC) The BSC plays a role of a small digital
exchange station with some mobility-specific tasks and it has a substantial switching
capability. It is responsible for intra-BTS functions (e.g., allocation and release of
radio channels), as well as for most processing involving inter-BTS handovers.

9.2.1.4 Other Components Every BSC is connected to one mobile service
switching center (MSC), and the core network interconnects the MSC core network
MSCs. Specially equipped gateway MSCs (GMSCs) interface with other telephony
and data networks. The home location registers (HLRs) and the visitors location reg-
isters (VLRs) are database systems, which contain VLR subscriber data and facilitate
mobility management. Each gateway MSC consults its home location register if an
incoming call has to be routed to a mobile terminal. The HLR is also used in the
authentication of the subscribers together with the authentication center (AuC).

9.2.2 Automatic Frequency Planning

The frequency planning is the last step in the layout of a GSM network. Prior to
tackling this problem, the network designer has to address some other issues: where to
install the BTSs, how to dimension signaling propagation parameters of the antennas
(tilt, azimuth, etc.), how to connect BTSs to BSCs, or how to connect MSCs among
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each other and to the BSCs [13]. Once the sites for the BTSs are selected and the
sector layout is decided, the number of TRXs to be installed per sector has to be
fixed. This number depends on the traffic demand that the corresponding sector has
to support. The result from this process is a quantity of TRXs per cell. A channel has
to be allocated to every TRX and this is the main goal of the automatic frequency
planning [5]. Essentially, three kinds of allocation exist: fixed channel allocation
(FCA), dynamic channel allocation (DCA), and hybrid channel allocation. In FCA,
the channels are permanently allocated to each TRX, while in DCA the channels
are allocated dynamically upon request. Hybrid channel allocation (HCA) schemes
combine FCA and DCA. Neither DCA nor HCA are supported in GSM, so we only
consider here FCA.

We now explain the most important parameters to be taken into account in GSM
frequency planning. Let us consider the example network shown in Figure 9.2, in
which each site has three installed sectors (e.g., site A operates A1, A2, and A3).
The first issue that we want to remark is the implicit topology that results from the
previous steps in the network design. In this topology, each sector has an associated
list of neighbors containing the possible handover candidates for the mobile residing

FIGURE 9.2 An example of GSM network.
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in a specific cell. These neighbors are further distinguished into first-order (those
that can potentially provoke strong interference to the serving sector) and second-
order neighbors. In Figure 9.2, A2 is the serving sector and the first-order neighbors
defined areA1,A3,C2,D1,D2,E2,F3,G1,G2, andB1′′′, whereas the second-order
neighbors coming fromC2 are F1, F2,C1,C3,D2′,D3′,A3′′,B1′′,B3′′,G1′′,G3′′,
and E1′′′.

As stated before, each sector in a site defines a cell; the number of TRXs installed in
each cell depends on the traffic demand. A valid channel from the available spectrum
has to be allocated to each TRX. Owing to technical and regulatory restrictions, some
channels in the spectrum may not be available in every cell. Such channels are called
locally blocked and they can be specified for each cell.

Each cell operates one broadcast control channel (BCCH), which broadcasts cell
organization information. The TRX allocating the BCCH can also carry user data.
When this channel does not meet the traffic demand, some additional TRXs have to
be installed to which new dedicated channels are assigned for traffic data. These are
called traffic channels (TCHs).

In GSM, significant interference may occur if the same or adjacent channels are
used in neighboring cells. Correspondingly, they are named co-channel and adj-
channel interference. Many different constraints are defined to avoid strong inter-
ference in the GSM network. These constraints are based on how close the channels
assigned to a pair of TRXs may be. These are called separation constraints, and they
seek to ensure that there is proper transmission and reception at each TRX and/or that
the call handover between cells is supported. Several sources of constraint separation
exist: co-site separation, when two or more TRXs are installed in the same site, or
co-cell separation, when two TRXs serve the same cell (i.e., they are installed in the
same sector).

This is intentionally an informal description of the automatic frequency problem
in GSM networks. It is out of the scope of this chapter to propose a precise model of
the problem, since we use a proprietary software that is aware of all these concepts, as
well as the consideration of all the existing advanced techniques, such as frequency
hopping, power control, discontinuous transmission, and so on [5], developed for
efficiently using the scarce frequency spectrum available in GSM.

9.3 EAs FOR SOLVING THE AFP PROBLEM

EAs have been widely used for solving the many existing flavors of the frequency as-
signment problem [1,5,6,11]. However, it has been shown that well-known crossover
operators such as single-point crossover do not perform well on this problem [4].
Indeed, it does not make sense for a frequency planning to randomly exchange two
different, possibly nonrelated assignments. Our approach here is to use an (1+ 10)
EA, in which the recombination operator is not required. In the following, we first
describe the generic (μ+ λ) EA. The solution encoding used, the fitness function, and
several proposals for generating the initial solutions and the perturbing individuals
are discussed afterward.
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FIGURE 9.3 Pseudocode of the (μ+ λ) EA.

9.3.1 (μ + λ) Evolutionary Algorithm

This optimization technique first generates μ initial solutions. Next, the algorithm
perturbs and evaluates these μ individuals at each iteration, from which λ new ones
are obtained. Then, the best μ solutions taken from the μ+ λ individuals are moved
to the next iteration. An outline of the algorithm is shown in Figure 9.3. Other works
using this algorithmic approach for the AFP problem can be found in works by Dorne
and Hao [4] and Vidyarthi et al. [18].

As stated before, the configuration used in this chapter for μ and λ is 1 and
10, respectively. This means that 10 new solutions are generated from single initial
random one, and the best from the 11 is selected as the current solution for the next
iteration. With this configuration, the seeding procedure for generating the initial
solution and the perturbation (mutation) operator are the core components defining
the exploration capabilities of the (1+ 10) EA. Several approaches for these two
procedures are detailed in Sections 9.3.4 and 9.3.5.

9.3.2 Solution Encoding

A major issue in this kind of algorithms is how solutions are encoded, because it will
determine the set of search operators that can be applied during the exploration of the
search space.

LetT be the number of TRXs needed to meet the traffic demand of a given GSM net-
work. Each TRX has to be assigned with a channel. LetFi ⊂ N be the set of valid chan-
nels for transceiver i, i = 1, 2, 3, . . . , T . A solution p (a frequency plan) is encoded
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FIGURE 9.4 Solution encoding example.

as a T -length integer array p = [f1, f2, f3, . . . , fT
]
, p ∈ F1 × F2 × · · · × FT ,

where fi ∈ Fi is the channel assigned to TRX i. The fitness function (see the next
section) is aware of adding problem-specific information to each transceiver, that is,
whether it allocates a BCCH channel or a TCH channel, whether it is a frequency
hopping TRX or not, and so on.

As an example, Figure 9.4 displays the representation of a frequency plan p for the
GSM network shown in Figure 9.2. We have assumed that the traffic demand in the
example network is fulfilled by one single TRX per sector (TRX A1, TRX A2, etc.).

9.3.3 Fitness Function

As it was stated before, we have used a proprietary application provided by Optimi
Corp.TM, which allows us to estimate the performance of the tentative frequency
plans generated by the optimizer. Factors like frame erasure rate, block error rate,
RxQual, and BER are evaluated. This commercial tool combines all aspects of network
configuration (BCCHs, TCHs, frequency hopping, etc.) in a unique cost function, F ,
which measures the impact of proposed frequency plans on capacity, coverage, QoS
objectives, and network expenditures. This function can be roughly defined as

F =
∑
v

(CostIM (v)× E (v)+ CostNeighbor (v)) , (9.1)

that is, for each sector v that is a potential victim of interference, the associated cost
is composed of two terms: a signaling cost computed with the interference matrix
(CostIM (v)) that is scaled by the traffic allocated to v, E (v), and a cost coming from
the current frequency assignment in the neighbors of v. Of course, the lower the total
cost, the better the frequency plan; that is, this is a minimization problem.

9.3.4 Initial Solution Generation

Two different initializations of individuals have been developed: Random Init and
Advanced Init.
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1. Random Init. This is the most usual seeding method used in the evolutionary field.
Individuals are randomly generated: each TRX in the individual is assigned with
a channel that is randomly chosen from the set of its valid channels.

2. Advanced Init. In this initialization method, individuals are not fully generated at
random; instead, we have used a constructive method [3], which uses topological
information of the GSM network. It first assigns a random channel to the first
TRX of the individual; then, for the remainder of the TRXs, several attempts (as
many as the number of valid channels of the considered TRXs) are tried with
assignments that minimize interference as follows.

Let t and Ft be the TRX to be allocated a new channel and its set of valid
channels, respectively. A random valid channelf ∈ Ft is generated. However,f is
assigned to t if no co-channel or adj-channel interference occurs with any channel
already assigned to a TRX installed in the same or any first-order neighboring
sector of t. This procedure is repeated |Ft| times. If no channel is allocated to t
in this process, the Random Init strategy is used.

If we continue the GSM network of Figure 9.2 (assuming a TRX per sector),
generating an initial solution with the Advanced Init strategy might take first TRX
A1. Let us suppose that the randomly chosen channel is 146 (Fig. 9.4). Next, a
channel has to be allocated to TRX A2. In this case, channels 145, 146, and 147
are forbidden since A2 is a first-order neighbor of A1 (see Fig. 9.2) and this
will provoke co-channel (channel 146) and adj-channel (channels 145 and 147)
interference. Then, TRX A2 is assigned with channel number 137 after several
possible attempts at randomly selecting a channel from its set of valid channels.
Of course, the Random Init scheme will surely be used for many assignments in
the last sectors of each first-order neighborhood.

9.3.5 Perturbation Operators

In (μ+ λ) EAs, the perturbation (or mutation) operator largely determines the search
capabilities of the algorithm. The mutation mechanisms proposed are based on mod-
ifying the channels allocated to a number of transceivers. Therefore, two steps must
be performed:

1. Selection of the transceivers. The perturbation has first to determine the set of
transceivers to be modified.

2. Selection of channels. Once a list of TRXs have been chosen, a new channel
allocation must be performed.

9.3.5.1 Strategies for Selecting Transceivers This is the first decision to
be made in the perturbation process. It is a major decision because it determines
how explorative the perturbation is; that is, how different the resulting plan is from its
original solution. Several strategies have been developed, which consist of reallocating
channels on neighborhoods of TRXs. These neighborhoods are defined based on the
topological information of the network:
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TABLE 9.1 Weights Used in the Interference-Based Strategy

Sector First-order neighbor

Co-channel 16 8
Adj-channel 4 1

1. OneHopNeighborhood. Set of TRXs belonging to the first-order neighbors of a
given transceiver.

2. TwoHopNeighborhood. The same, but using not only the first-order neighbors,
but also the second-order ones. That is, a larger number of TRXs are reassigned.

We now need to specify the TRX from which the corresponding neighborhood is
generated. In the experiments, the following selection schemes have been used:

1. Random. The TRX is randomly chosen from the set of all transceiver of the given
problem instance.

2. Interference-based. This selection scheme uses a binary tournament. This method
randomly chooses two TRXs of the network and returns the one with the higher
interfering cost value. This cost value is based on counting the number of co-
channel and adj-channel constraint violations provoked by these two TRXs in
the current frequency planning. Since the closer the TRXs the stronger the inter-
ference, we further distinguish between co-channel and adj-channel within the
same sector or within a first-order neighboring sector. Consequently, the cost
value is computed as a weighted sum with four addends. The weights used are
included in Table 9.1.

Since we are looking for frequency plans with minimal interference, we
have used this information for perturbing those TRXs with high values of this
measurement in order to hopefully reach better assignments. Note that this
interference-based value is only computed for two TRXs each time the perturba-
tion method is invoked.

Let us illustrate this with an example. Consider the GSM network shown in
Figure 9.5, where the traffic demand is met with one single TRX per cell. This
way, the number next to the name of each sector is the current channel allocated
to the TRX. No intrasector interference can therefore occur. Let us now suppose
that the two TRXs selected by the binary tournament are B1 and D2. Their
corresponding first-order neighbors are the sets {B2, B3, E1, E3} and {D1,D3,
F3}, respectively (see the gray-colored sectors in Fig. 9.5). With the current
assignment, the interference-based value of B1 is 8× 1+ 1× 1 = 9, that is, a
co-channel with E1 plus an adj-channel with B2. Concerning D2, this value is
8× 2+ 1× 1 = 17, which corresponds to two co-channels withD1 andF3 plus
an adj-channel with D3. So D2 would be the chosen sector to be perturbed in
this case.
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FIGURE 9.5 A tentative frequency planning for a GSM network composed of 21 sectors.

9.3.5.2 Frequency Selection At this point, the perturbation method has defined
a set of TRXs whose channels can be modified. The modification is to determine which
channel is allocated to each TRX. Again, two different schemes have been used:

1. Random. The channel allocated is randomly chosen from the set of valid channels
of each TRX.

2. Interference-based. In this scheme, all the valid channels of a TRX are assigned
sequentially and the interference-based cost value described previously is com-
puted. The channel showing the lowest value for this interference-based cost is
then allocated to the TRX.

For instance, let us continue with the example shown in Figure 9.5. Now, the
TRX installed in sectorD2, FD2 = {134, 143, 144, 145}, has to be assigned with
a new channel. This strategy computes the cost value for all the valid channels of
D2 (see Table 9.2), and the one with the lowest value is chosen (channel 134).

TABLE 9.2 Interference-Based Cost Values for the Single TRX
Installed in Sector D2 from the GSM Network in Figure 9.5

Interference-based cost

Channel Co-channel Adj-channel Value

134 0 0 0
143 2 1 17
144 1 2 10
145 0 1 1
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TABLE 9.3 Configurations of the (1+ 10) EA That Have Been Tested

Selection scheme Selection scheme
Config name Init TRXs for TRXs for channels

Rand&Rand-1 Random OneHopNeighborhood Random Random
Rand&Rand-2 Advanced OneHopNeighborhood Random Random
Rand&Rand-3 Random TwoHopNeighborhood Random Random
Rand&Rand-4 Advanced TwoHopNeighborhood Random Random
Interf&Rand-1 Random OneHopNeighborhood Interference-based Random
Interf&Rand-2 Advanced OneHopNeighborhood Interference-based Random
Interf&Rand-3 Random TwoHopNeighborhood Interference-based Random
Interf&Rand-4 Advanced TwoHopNeighborhood Interference-based Random
Rand&Interf-1 Random OneHopNeighborhood Random Interference-based
Rand&Interf-2 Advanced OneHopNeighborhood Random Interference-based
Rand&Interf-3 Random TwoHopNeighborhood Random Interference-based
Rand&Interf-4 Advanced TwoHopNeighborhood Random Interference-based
Interf&Interf-1 Random OneHopNeighborhood Interference-based Interference-based
Interf&Interf-2 Advanced OneHopNeighborhood Interference-based Interference-based
Interf&Interf-3 Random TwoHopNeighborhood Interference-based Interference-based
Interf&Interf-4 Advanced TwoHopNeighborhood Interference-based Interference-based

9.4 EXPERIMENTS

In this section we now turn to present the experiments conducted to evaluate the
(1+ 10) EAs proposed when solving a real-world instance of the AFP problem. We
first detail the parameterization of the algorithms and the different configurations used
in the EA. A discussion of the results is carried out afterward.

9.4.1 Parameterization

Several seeding and mutation operators for the (1+ 10) EA have been defined in the
previous section. Table 9.3 summarizes all the combinations that have been studied.
The number of iterations that are allowed to run is 2 000 in all the cases.

We also want to provide the reader with some details about the AFP instance that is
being solved. The GSM network used has 711 sectors with 2 612 TRXs installed. That
is, the length of the individuals in the EA is 2 132. Each TRX has 18 available channels
(from 134 to 151). Additional topological information indicates that, on average,
each TRX has 25.08 first-order neighbors and 96.60 second-order neighbors, thus
showing the high complexity of this AFP instance, in which the available spectrum
is much smaller that the average number of neighbors. Indeed, only 18 channels can
be allocated to TRXs with 25.08 potential first-order neighbors. We also want to
remark that this real network operates with advanced technologies, such as frequency
hopping, and it employs accurate interference information that has been actually
measured at a cell-to-cell level (neither predictions nor distance-driven estimations
are used).
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TABLE 9.4 Initial Cost Reached with the Two Initialization Methods

AFP cost
Initialization method x̄ σn

Random Init 180,631,987 15,438,987
Advanced Init 113,789,997 11,837,857

9.4.2 Discussion of the Results

All the values included in Table 9.4 are the average, x̄, and the standard deviation, σn,
of five independent runs. Although it is commonly accepted that 30 independent runs
should be performed at least, we were only able to run five because of the very high
complexity of such a large problem instance (2 612 TRXs) and the many different
configurations used.

Let us start showing the performance of the two initialization methods. We present
in Table 9.4 the AFP costs of the frequency plannings that result from both Random
Init and Advanced Init. As expected, the latter reaches more accurate frequency as-
signments since it prevents the network from initially incurring in many interferences.

For each configuration of the EAs, the AFP costs of these final solutions are
included in Table 9.5. If we analyze these results as a whole, it can be noticed that the
configuration Rand&Rand-1 gets the lowest AFP cost on average, thus indicating that
the computed frequency plannings achieve the smaller interference and therefore the
better QoS for subscribers. Similar high quality frequency assignments are computed
by the Rand&Interf-1, Rand&Interf-1, and Interf&Interf-3, where the cost values are
around 20,000 units. We also want to remark two additional facts here. The first one
was already mentioned before and it lies in the huge reduction of the AFP costs that

TABLE 9.5 Resulting AFP Costs (Average Over Five Executions)

AFP cost
Config x̄ σn Best run

Rand&Rand-1 18,808 12,589 9,966
Rand&Rand-2 31,506 10,088 13,638
Rand&Rand-3 34,819 24,756 13,075
Rand&Rand-4 76,115 81,103 13,683
Interf&Rand-1 56,191 87,562 14,224
Interf&Rand-2 63,028 96,670 11,606
Interf&Rand-3 108,146 99,839 18,908
Interf&Rand-4 72,043 83,198 15,525
Rand&Interf-1 21,279 11,990 9,936
Rand&Interf-2 19,754 7,753 11,608
Rand&Interf-3 34,292 16,178 12,291
Rand&Interf-4 28,422 20,473 11,493
Interf&Interf-1 147,062 273,132 14,011
Interf&Interf-2 26,346 10,086 15,304
Interf&Interf-3 20,087 10,468 13,235
Interf&Interf-4 32,982 19,814 16,818
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EAs can achieve starting from randomly generated solution (from more than 110
million to several thousand cost units). This means that the strongest interference in
the network has been avoided. The second fact concerns the best solutions found so
far by the solvers, which are included in the column “best” of Table 9.5. They point
out that all the configurations of the (1+ 10) EA are able to compute very accurate
frequency assignments. As a consequence, we can conclude that these algorithms are
very suitable for solving this optimization problem.

We now turn to further analyze how the different strategies proposed for initializing
and perturbing work within the (1+ 10) EA framework. With this goal in mind,
Figure 9.6 displays the average costs of the configurations using

1. The Random Init strategy versus those using the Advanced Init method

2. OneHopNeighborhood versus TwoHopNeighborhood strategies for determining
the number of TRXs to be reallocated a channel

3. The random scheme versus interference-based one for selecting the TRXs

4. The random versus interference-based channel selection strategies.

Concerning the initialization method, Figure 9.6 shows that the (1+ 10) EAs using
the Advanced Init scheme reach, on average, better frequency assignments than the
configurations with Random Init. It is clear from these results that our proposed EAs
can profit from good initial plannings that guide the search toward promising regions
of the search space.

If we compare the different strategies used in the perturbation method, several
conclusions can be drawn. First of all, configurations of the (1+ 10) EA that reallocate
the channel to a smaller number of TRXs, that is, OneHopNeighborhood strategy,
against using the TwoHopNeighborhood scheme report a small improvement in the
AFP cost. However, it is clear that randomly choosing the TRX (and its corresponding
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FIGURE 9.6 Performance of the initialization and perturbation methods in the (1+ 10) EA.
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neighborhood) comes up with a large reduction in the AFP costs of the configurations
using this selection strategy (see Fig. 9.6). Indeed, the interference-based scheme
leads the (1+ 10) EA to converge prematurely to a local minimum because of an
excessive intensification of the search. This also means that the many existing works
advising sophisticated local searches work only on easy conceptualizations of low
dimensionality of this problem, which is an important fact [1,5].

Even though this interference-based selection strategy does not work properly for
selecting the TRXs to be perturbed, the EA configurations using this strategy for
choosing channels show better performance (lower AFP costs) than those applying
the random one (see the last columns in Fig. 9.6). That is, perturbations using this
scheme allow the (1+ 10) EA to reach accurate frequency plans, which means that in-
terference information is very useful at the channel selection stage of the perturbation,
whereas random selection is preferred when the TRXs have to be chosen.

9.5 CONCLUSIONS AND FUTURE WORK

This chapter describes the utilization of (1+ 10) EAs to solve the automatic fre-
quency planning in a real-world GSM network composed of 2132 transceivers. In-
stead of using a mathematical formulation of this optimization problem, we have used
a commercial application that allows the target frequency plannings to be evaluated
in a real scenario where current technologies are in use (e.g., frequency hopping,
discontinuous transmission, etc.).

Two different methods for generating initial solutions along with several perturba-
tion methods have been proposed. We have analyzed all the possible configurations of
an (1+ 10) EA using these operators. The results show that the configuration called
Rand&Rand-1 gets the lowest cost values for the final frequency planning computed,
thus reaching an assignment that avoids major interference in the network. We have
then compared the different seeding and perturbation methods among them to provide
insight into their search capabilities within the (1+ 10) EA framework. Concerning
the seeding methods, the configurations using the Advanced Init scheme outperforms
those endowed with Random Init. In the perturbation operator, OneHopNeighbor-
hood and TwoHopNeighborhood strategies for selecting how many TRXs have to
be reallocated a channel are very similar. However, significant reductions in the cost
values are reached when using the random scheme to choose which TRX (and its cor-
responding neighboring sectors) will be perturbed, instead of the interference-based
approach. We want to remark that this is contraintuitive and brings into discredit sim-
plified works of k-coloring and small instances of 200/300 TRXs like those included
in COST, CELAR, or OR Library, for example. Conversely, the interference-based
strategy performs the best when a channel has to be chosen to be allocated a TRX.

As future work, we plan to develop new search operators and new metaheuris-
tic algorithms to solve this problem. Their evaluation with the current instance and
other real-world GSM networks is also an ongoing research line. The formulation
of the AFP problem as a multiobjective optimization problem will be investigated
as well.
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CHAPTER 10

Algorithmic Game Theory
and Applications

MARIOS MAVRONICOLAS, VICKY PAPADOPOULOU, and PAUL SPIRAKIS

10.1 INTRODUCTION

Most of the existing and foreseen complex networks, such as the Internet, are operated
and built by thousands of large and small entities (autonomous agents), which collab-
orate to process and deliver end-to-end flows originating from and terminating at any
of them. The distributed nature of the Internet implies a lack of coordination among
its users. Instead, each user attempts to obtain maximum performance according to
his own parameters and objectives.

Methods from game theory and mathematical economics have been proven to
be a powerful modeling tool, which can be applied to understand, control, and ef-
ficiently design such dynamic, complex networks. Game theory provides a good
starting point for computer scientists in their endeavor to understand selfish ra-
tional behavior in complex networks with many agents (players). Such scenar-
ios are readily modeled using techniques from game theory, where players with
potentially conflicting goals participate in a common setting with well-prescribed
interactions.

Nash equilibrium [73,74] distinguishes itself as the predominant concept of ratio-
nality in noncooperative settings. So, game theory and its various concepts of equi-
libria provide a rich framework for modeling the behavior of selfish agents in these
kinds of distributed or networked environments; they offer mechanisms to achieve
efficient and desirable global outcomes in spite of the selfish behavior.

Mechanism design, a subfield of game theory, asks how one can design systems so
that agents’ selfish behavior results to desired systemwide goals. Algorithmic mech-
anism design additionally considers computational tractability to the set of concerns
of mechanism design. Work on algorithmic mechanism design has focused on the
complexity of centralized implementations of game-theoretic mechanisms for dis-
tributed optimization problems. Moreover, in such huge and heterogeneous networks,
each agent does not have access to (and may not process) complete information.

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.
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The notion of bounded rationality for agents and the design of corresponding
incomplete-information distributed algorithms have been successfully utilized to cap-
ture the aspect of lack of global knowledge in information networks.

In this chapter, we review some of the most thrilling algorithmic problems and
solutions, and corresponding advances, achieved on the account of game theory. The
areas addressed are the following.

Congestion Games A central problem arising in the management of large-scale
communication networks is that of routing traffic through the network. However, due
to the large size of these networks, it is often impossible to employ a centralized traffic
management. A natural assumption to make in the absence of central regulation is that
network users behave selfishly and aim at optimizing their own individual welfare. One
way to address this problem is to model this scenario as a noncooperative multiplayer
game and formalize it using congestion game. Congestion games (either unweighted
or weighted) offer a very natural framework for resource allocation in large networks
like the Internet. In a nutshell, the main feature of congestion games is that they model
congestion on a resource as a function of the number (or total weight) of all agents
sharing the resource.

Price of Anarchy We survey precise and approximate estimations for the price of
anarchy; this is the cost of selfish behavior in dynamic, large-scale networks compared
to hypothetical centralized solutions. We consider the price of anarchy for some of
the most important network problems that are modeled by noncooperative games;
for example, we consider routing and security problems. A natural variant of the
price of anarchy is the price of stability [5], which is the best-case cost of selfish
behavior in complex networks, compared to a hypothetical centralized solution. The
best-case assumption in the formulation of the price of stability implies that this
cost can be enforced to the agents since they are interested in paying as low cost as
possible.

Selfish Routing with Incomplete Information The impact of bounded rational-
ity in networks with incomplete information can be addressed in two successful
ways: either by Bayesian games or by congestion games with player-specific pay-
off functions. We will survey methods and tools for approximating network equi-
libria and network flows for a selfish system comprised of agents with bounded
rationality.

Mechanism Design Mechanism design is a subfield of game theory and microe-
conomics, which deals with the design of protocols for rational agents. Generally, a
mechanism design problem can be described as the task of selecting, out of a col-
lection of feasible games, one that will yield desirable results for the designer. So,
mechanism design can be thought of as the “inverse problem” in game theory, where
the input is a game’s outcome and the output is a game guaranteeing the desired out-
come. The study of mechanism design from the algorithmic point of view starts with
the seminal paper of Nisan and Ronen [76].

The routing problem in large-scale networks, where users are instinctively selfish,
can be modeled by a noncooperative game. Such a game could impose strategies
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that might induce an equilibrium close to the overall optimum. These strategies can
be enforced through pricing mechanisms [28], algorithmic mechanisms [76], and
network design [57,87].

Stackelberg Games We will examine network routing games from the network
designer’s point of view. In particular, the network administrator or designer
can define prices and rules, or even construct the network, in a way that in-
duces near-optimal performance when the users act selfishly inside the system.
Particularly interesting is the approach where the network manager takes part
in the noncooperative game. The manager has the ability to control centrally a
part of the system resources, while the rest resources are managed by the selfish
users. This approach has been implemented through Stackelberg or leader–follower
games [16,58].

The apparent advantage of this approach is that it might be easier to be de-
ployed in large-scale networks. This is so since there is no need to add extra
components to the network, or to exchange information between the users of the
network.

In a typical Stackelberg game, one player acts as a leader (here, the centralized
authority interested in optimizing system performance) and the rest act as followers
(here, the selfish users). The problem is then to compute a strategy for the leader
(a Stackelberg strategy) that induces the followers to react in a way that (at least
approximately) minimizes the total latency in the system.

Selfish routing games can be modeled as a Stackelberg game. We will sur-
vey issues related to how the manager should assign the flow under his control
into the system so as to induce optimal cost incurred by the selfish users. In par-
ticular, we will be interested in the complexity of designing optimal Stackelberg
strategies.

Pricing Mechanisms Pricing mechanisms for resource allocation problems aim at
allocating resources in such a way that those users who derive greater utility from the
network are not denied access due to other users placing a lower value on it. In other
words, pricing mechanisms are designed to guarantee economic efficiency. We will
survey cost-sharing mechanisms for pricing the competitive usage of a collection of
resources by a collection of selfish agents, each coming with an individual demand.

Network Security Games We will also consider security problems in dynamic,
large-scale, distributed networks. Such problems can be modeled as concise, nonco-
operative multiplayer games played on a graph. We will investigate the associated
Nash equilibria for such network security games. In the literature, there have been
studied at least two such interesting network security games.

Complexity of Computing Equilibria The investigation of the computational com-
plexity of finding a Nash equilibrium in a general strategic game is definitely a fun-
damental task for the development of algorithmic game theory. Answers to such
questions are expected to have great practical impact on both the analysis of the
performance of antagonistic networks and the development and implementation of
policies for the network designers themselves.
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Finding a Nash equilibrium in a game with two players could potentially be easier
(than for many players) for several reasons.

� First, the zero-sum version of the game can be solved in polynomial time by
linear programming. This grooms hopes for the polynomial solvability of the
general (nonconstant sum) version of the problem.

� Second, the two-player version of the game admits a polynomial size rational
number solution, while there are games with three or more players that may only
have solutions in irrational numbers.

This reasoning justified the identification of the problem of finding Nash equilibria
for a two-player game as one of the most important open questions in the field of
algorithmic game theory. The complexity of this problem was very recently settled in
a perhaps surprising way in a series of breakthrough papers. In this chapter, we will
later survey some of the worldwide literature related to this problem and the recent
progress to it.

In this chapter, we only assume a basic familiarity of the reader with some central
concepts of game theory such as strategic games and Nash equilibria; for more details,
we refer the interested reader to the leading textbooks by Osborne [77] and Osborne
and Rubinstein [78]. We also assume some acquaintance of the reader with the basic
facts of the theory of computational complexity, as laid out, for example, in the leading
textbook of Papadimitriou [80]. For readers interested in recalling the fundamental
of algorithms design and analysis, we refer the reader to the prominent textbook of
Kleinberg and Tardos [53]. For overwhelming motivation to delving into the secrets
of algorithmic game theory, we cheerfully refer the reader to the inspirational and
prophetic survey of Papadimitriou in STOC 2001 [81].

10.2 CONGESTION GAMES

10.2.1 The General Framework

10.2.1.1 Congestion Games Rosenthal [84] introduced a special class of strate-
gic games, now widely known as congestion games and currently under intense in-
vestigation by researchers in algorithmic game theory. Here, the strategy set of each
player is a subset of the power set of a set of resources; so, it is a set of sets of re-
sources. Each player has an objective function, defined as the sum (over their chosen
resources) of functions in the number of players sharing this resource. In his seminal
work, Rosenthal showed with the help of a potential function that congestion games
(in sharp contrast to general strategic games) always admit at least one pure Nash
equilibrium.

An extension to congestion games are weighted congestion games, in which the
players have weights, and thus exert different influences on the congestion of the
resources. In (weighted) network congestion games, the strategy sets of the players
correspond to paths in a network.
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10.2.1.2 Price of Anarchy In order to measure the degradation of social wel-
fare due to the selfish behavior of the players, Koutsoupias and Papadimitriou [60]
introduced in their seminal work a global objective function, usually coined as social
cost. It is quite remarkable that no notion similar in either spirit or structure to social
cost had been studied in the game theory literature before. They defined the price of
anarchy, also called coordination ratio and denoted as PoA, as the worst-case ratio
between the value of social cost at a Nash equilibrium and that of some social opti-
mum. The social optimum is the best-case social cost; so it is the least value of social
cost achievable through cooperation. Thus, the coordination ratio measures the extent
to which noncooperation approximates cooperation.

As a starting point for analyzing the price of anarchy, Koutsoupias and Papadim-
itriou considered a very simple weighted network congestion game, now known as the
KP model. Here, the network consists of a single source and a single destination (in
other words, it is a single-commodity network) that are connected together by parallel
links. The load on a link is the total weight of players assigned to this link. Associated
with each link is a capacity (or speed) representing the rate at which the link processes
load. Each of the players selfishly routes from the source to the destination by using a
probability distribution over the links. The private objective function of a player is its
expected latency. The social cost is the expected maximum latency on a link, where
the expectation is taken over all random choices of the players.

Fotakis et al. [34] have proved that computing social cost (in the form of expected
maximum) is a #P-complete problem. The stem of this negative result is the nature
of exponential enumeration explicit in the definition of social cost (as an exponential-
size expectation sum). An essentially identical #P-hardness result has been proven
recently by Daskalakis et al. [19]. This is one of the very few hard enumeration
problems known in algorithmic game theory as of today. Determining more remains
a great challenge.

Mavronicolas and Spirakis [69] introduced fully mixed Nash equilibria for the
particular case of the KP model, in which each player chooses every link with pos-
itive probability. Gairing et al. [38,39] explicitly conjectured that, in case the fully
mixed Nash equilibrium exists, it is the worst-case Nash equilibrium with respect to
social cost. This so-called fully mixed Nash equilibrium conjecture is simultaneously
intuitive and significant.

� It is intuitive because the fully mixed Nash equilibrium favors an increased
number of collisions between different players, since each player assigns its load
with positive probability to every link. This increased probability of collisions
should favor an increase to social cost.

� The conjecture is also significant since it identifies the worst-case Nash equilib-
rium over all instances. The fully mixed Nash equilibrium conjecture has been
studied very intensively in the last few years over a variety of settings and models
relative to the KP model.

The KP model was recently extended to restricted strategy sets [9,35], where the
strategy set of each player is a subset of the links. Furthermore, the KP model was
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extended to general latency functions and studied with respect to different definitions
of social cost [36,37,63].

Inspired by the arisen interest in the price of anarchy, the much older Wardrop
model was reinvestigated in the work by Roughgarden and Tordos[88] (see also
references therein). In this weighted network congestion game, weights can be split
into arbitrary pieces. The social welfare of the system is defined as the sum of the
edge latencies (sum or total social cost). An equilibrium in the Wardrop model can
be interpreted as a Nash equilibrium in a game with infinitely many players, each
carrying an infinitesimal amount of weight. There has been a tremendous amount of
work following the work by Roughgarden and Tordos[88] on the reinvestigation of
the Wardrop model. For an exposition, see the book by Roughgarden [86], which
gives an account of the earliest results.

Koutsoupias and Papadimitriou [60] initiated a systematic investigation of the
social objective of (expected) maximum latency (also called maximum social cost)
for a weighted congestion game on uniformly related parallel links. The price of
anarchy for this game has been shown to be  (logm/log logm) if either the users
or the links are identical [18,59], and (logm/log log logm) for weighted users and
uniformly related links [18]. On the contrary, Czumaj et al. [17] showed that the price
of anarchy is far worse and can be even unbounded for arbitrary latency functions.
For uniformly related parallel links, identical users, and the objective of total latency,
the price of anarchy is 1− o(1) for the general case of mixed equilibria and 4/3 for
pure equilibria [63]. For identical users and polynomial latency functions of degree
d, the price of anarchy is d (d) [8,15].

Christodoulou and Koutsoupias [15] consider the price of anarchy of pure Nash
equilibria in congestion games with linear latency functions. They showed that
for general (asymmetric) games, the price of anarchy for maximum social cost
is  (

√
n), where n is the number of players. For all other cases of symmetric

or asymmetric games, and for both maximum and average social cost, the price
of anarchy is shown to be 5/2. Similar results were simultaneously obtained by
Awerbuch et al. [15]

10.2.2 Pearls

A comprehensive survey of some of the most important recent advances in the lit-
erature on atomic congestion games is provided by Kontogiannis and Spirakis [55].
That work is an overview of the extensive expertise on (mainly, network) congestion
games and the closely related potential games [71], which has been developed in var-
ious disciplines (e.g., economics, computer science and operations research) under
a common formalization and modeling. In particular, the survey goes deep into the
details of some of the most characteristic results in the area in order to compile a
useful toolbox that game theory provides in order to study antagonistic behavior due
to congestion phenomena in computer science settings.

10.2.2.1 Selfish Unsplittable Flows Fotakis et al. study congestion games
where selfish users with varying service demands on the system resources may request



CONGESTION GAMES 293

a joint service from an arbitrary subset of resources [32]. Each user’s demand has to be
served unsplittably from a specific subset of resources. In that work, it is proved that
the weighted congestion games are no longer isomorphic to the well-known potential
games, although this was true for the case of users with identical service demands.
The authors also demonstrate the power of the network structure in the case of users
with varying demands. For very simple networks, they show that there may not exist
a pure Nash equilibria, which is not true for the case of parallel links network or for
the case of infinitely splittable service demands. Furthermore, the authors propose
a family of networks (called layered networks) for which they show the existence
of at least one pure Nash equilibrium when each resource charges its users with a
delay equal to its load. Finally, the same work considers the price of anarchy for the
family of layered networks in the same case. It is shown that the price of anarchy
for this case is  (logm/log logm). That is, within constant factors, the worst-case
network is the simplest one (the parallel links network). This implies that, for this
family of networks, the network structure does not affect the quality of the outcome
of the congestion games played on the network in an essential way.

Panagopoulou and Spirakis [79] consider selfish routing in single-commodity net-
works, where selfish users select paths to route their loads (represented by arbitrary
integer weights). They consider identical delay functions for the links of the network.
That work focuses also on an algorithm suggested in the work by Fotakis et al. [32];
this is a potential-based algorithm for finding pure Nash equilibria in such networks.
The analysis of this algorithm from the work by Fotakis et al. [32] has given an upper
bound on its running time, which is polynomial in n (the number of users) and the
sumW of their weights. This bound can be exponential in n when some weights are
superpolynomial. Therefore, the algorithm is only known to be pseudopolynomial.
The work of Panagopoulou and Spirakis [79] provides strong experimental evidence
that this algorithm actually converges to a pure Nash equilibria in polynomial time in
n (and, therefore, independent of the weights values).

In addition, Panagopoulou and Spirakis [79] propose an initial allocation of users
to paths that dramatically accelerates this algorithm, as opposed to an arbitrary
initial allocation. A by-product of that work is the discovery of a weighted potential
function when link loads are exponential to their loads. This guarantees the existence
of pure Nash equilibria for these delay functions, while it extends the results of
Fotakis et al. [32].

10.2.2.2 Worst-Case Equilibria Fischer and Vöcking [30] reexamined the
question of worst-case Nash equilibria for the selfish routing game associated with the
KP model [60], where n weighted jobs are allocated to m identical machines. Recall
that Gairing et al. [38,39] had conjectured that the fully mixed Nash equilibrium is the
worst Nash equilibrium for this game (with respect to the expected maximum load
over all machines). The known algorithms for approximating the price of anarchy re-
lied on proven cases of that conjecture. Fischer and Vöcking [30], interestingly present
a counterexample to the conjecture showing that fully mixed Nash equilibria cannot
be generally used to approximate the price of anarchy within reasonable factors. In
addition, they present an algorithm that constructs the so-called concentrated Nash
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equilibria, which approximate the worst-case Nash equilibrium within constant
factors.

Although the work of Fischer and Vöcking [30] has disproved the fully mixed
Nash equilibrium conjecture for the case of weighted users and identical links, the
possibility that the conjecture holds for the case of identical users and arbitrary links
is still open.

10.2.2.3 Symmetric Congestion Games Fotakis et al. [33] continued the
work and studied computational and coordination issues of Nash equilibria in sym-
metric network congestion games. A game is symmetric if all users have the same
strategy set and users costs are given by identical symmetric functions of other users’
strategies. (Symmetric games were already considered in the original work of Nash
[73,74].) In unweighted congestions games, users are identical, so that a common
strategy set implies symmetry.

This work proposed a simple and natural greedy method (which is called the
Greedy Best Response—GBR), to compute a pure Nash equilibria. In this algorithm,
each user plays only once and allocates his traffic to a path selected via a shortest
path computation. It is shown that this algorithm works for three special cases: (1)
series-parallel networks, (2) users are identical, and (3) users are of varying demands
but they have the same best response strategy for any initial network traffic (this is
called the Common Best Response property).

The authors also give constructions where the algorithm fails if either the latter
condition is violated (even for a series-parallel network) or the network is not series-
parallel (even for the case of identical users). Thus, these results essentially indicate
the limits of the applicability of this greedy approach.

The same work [33] also studies the price of anarchy for the objective of (expected)
maximum latency. It is proved that for any network of m uniformly related links
and for identical users, the price of anarchy is  (logm/log logm). This result is
complementary (and somewhat orthogonal) to a similar result proved in the work by
Fotakis et al. [32] for the case of weighted users to be routed in a layered network.

10.2.2.4 Exact Price of Anarchy Obtaining exact bounds on price of anarchy
is, of course, the ultimate wish providing a happy end to the story. Unfortunately, the
cases where such exact bounds are known are truly rare as of today. We describe here
a particularly interesting example of a success story for one of these rare cases.

Exact bounds on the price of anarchy for both unweighted and weighted congestion
games with polynomial latency functions are provided in the work by Aland et al. [3].
The authors use the total latency as the social cost measure. The result in the work by
Aland et al. [3] vastly improve on results by Awerbuch et al. [8] and Christodoulou
and Koutsoupias [15], where nonmatching upper and lower bounds were given. (We
will later discuss the precise relation of the newer result to the older results.)

For the case of unweighted congestion games, it is shown in the work by Aland et
al. [3] that the price of anarchy is exactly

PoA = (k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1 ,
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where k = �d� and �d is a natural generalization of the golden ratio to larger
dimensions such that �d is the solution to the equation (�d + 1)d = �d+1

d . The best
known upper and lower bounds had before been shown to be of the form dd(1−o(1))

[15]. However, the term o(1) was still hiding a significant gap between the upper and
the lower bound.

For weighted congestion games, the authors show that the price of anarchy is
exactly

PoA = �d+1
d .

This result closes the gap between the so far best upper and lower bounds of
O(2ddd+1) and �(dd/2) from the work by Awarbuch et al. [8].

Aland et al. [3] show that the above values on the price of anarchy also hold for
the subclasses of unweighted and weighted network congestion games. For the upper
bounds, the authors use a similar analysis as in the work by Christodoulou et al. [15].
The core of their analysis is to simultaneously determine parameters c1 and c2 such
that

yf (x+ 1) ≤ c1xf (x)+ c2yf (y)

for all polynomial latency functions of maximum degree d and for all reals x, y ≥ 0.
For the case of unweighted users, it suffices to show the inequality for all pairs of
integers x and y. (In order to prove their upper bound, Christodoulou and Koutsou-
pias [15] looked at the inequality with c1 = 1/2 and gave an asymptotic estimate
for c2.) In the analysis presented in the work by Aland et al. [3], both parameters
c1 and c2 are optimized. This optimization process required new mathematical ideas
and is highly nontrivial. This optimization was successfully applied by Dumrauf and
Gairing [24] to the so-called polynomial Wardrop games, where it yielded almost
exact bounds on price of stability.

10.3 SELFISH ROUTING WITH INCOMPLETE INFORMATION

In his seminal work, Harsanyi [46] introduced an elegant approach to study nonco-
operative games with incomplete information, where the players are uncertain about
some parameters of the game. To model such games, he introduced the Harsanyi
transformation, which converts a game with incomplete information to a strategic
game where players may have different types. In the resulting Bayesian game, the
players’ uncertainty about each other’s types is described by a probability distribution
over all possible type profiles. It was only recently that Bayesian games were investi-
gated from the point of view of algorithmic game theory. Naturally, researchers were
interested in formulating Bayesian versions of already studied routing games, as we
described below.

In more detail, the problem of selfish routing with incomplete information has
recently been faced via the introduction of new suitable models and the development of
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new methodologies that help to analyze such network settings. In particular, there were
introduced new selfish routing games with incomplete information, called Bayesian
routing games [40].

In a different piece of work, the same problem has been viewed as a congestion
game where latency functions are player-specific [41], or a congestion game under
the restriction that the link for each user must be chosen from a certain set of allowed
links for the user [9,26].

10.3.1 Bayesian Routing Games

Gairing et al. [40] introduced a particular selfish routing game with incomplete in-
formation, called Bayesian routing game. Here, n selfish users wish to assign their
traffics to one of m parallel links. Users do not know each other’s traffic. Following
Harsanyi’s approach, the authors introduce for each user a set of types. Each type
represents a possible traffic; so, the set of types captures the set of all possibilities for
each user. Unfortunately, users know the set of all possibilities for each other, but not
the actual traffic itself.

Gairing et al. [40] proved, with the help of a potential function, that every Bayesian
routing game has a pure Bayesian Nash equilibrium. This result has also been gen-
eralized to a larger class of games, called weighted Bayesian congestion games. For
the case of identical links and independent type distributions, it is shown that a pure
Bayesian Nash equilibrium can be computed in polynomial time. (A probability dis-
tribution over all possible type profiles is independent if it can be expressed as the
product of independent probability distributions, one for each type.)

In the same work, Gairing et al. study structural properties of Bayesian fully mixed
Nash equilibria for the case of identical links; they show that those maximize in-
dividual cost. This implies, in particular, that Bayesian fully mixed Nash equilibria
maximize social cost as sum of individual costs.

In general, there may exist more than one fully mixed Bayesian Nash equilibrium.
Gairing et al. [40] provide a characterization of the class of fully mixed Bayesian
Nash equilibria for the case of independent type distribution; the characterization
determines, in turn, the dimension of Bayesian fully mixed Nash equilibria. (The
dimension of Bayesian fully mixed Nash equilibria is the dimension of the smallest
Euclidean space into which all Bayesian fully mixed Nash equilibria can be mapped.)

Finally, Gairing et al. [40] consider the price of anarchy for the case of identical
links and for three different social cost measures; that is, they consider social cost as
expected maximum congestion, as sum of individual costs, and as maximum individ-
ual cost. For the latter two measures, (asymptotic) tight bounds were provided using
the proven structural properties of fully mixed Bayesian Nash equilibria.

10.3.2 Player-Specific Latency Functions

Gairing et al. [41] address the impact of incomplete knowledge in (weighted) net-
work congestion games with either splittable or unsplittable flow. In this perspective,
the proposed models generalize the two famous models of selfish routing, namely



SELFISH ROUTING WITH INCOMPLETE INFORMATION 297

weighted (network) congestion games and Wardrop games, to accommodate player-
specific latency functions. Latency functions may be arbitrary, nondecreasing func-
tions; however, many of the shown results in the work by Gairing et al. [41] assume that
the latency function for player i on resource j is a linear function fij(x) = aijx+ bij ,
where aij ≥ 0 and bij ≥ 0. Gairing et al. use the term player-specific capacities to
denote a game where bij = 0 in all (linear) latency functions.

Gairing et al. [41] derive several interesting results on the existence and compu-
tational complexity of (pure) Nash equilibria and on the price of anarchy. For rout-
ing games on parallel links with player-specific capacities, they introduce two new
potential functions, one for unsplittable traffic and the other for splittable traffic. The
first potential function is used to prove that games with unweighted players possess
the finite improvement property in the case of unsplittable traffics. It is also shown in
the work by Gairing et al. [41] that games with weighted players do not possess the
finite improvement property in general, even if there are only three users. The second
potential function is a convex function tailored to the case of splittable traffics. This
convex function is minimized if and only if the corresponding assignment is a Nash
equilibrium. Since such minimization of a convex latency function can be carried out
in polynomial time, the established equivalence between minimizes of the potential
function and Nash equilibria implies that a Nash equilibrium can be computed in
polynomial time.

The same work [41] proves upper and lower bounds on the price of anarchy under a
certain restriction on the linear latency functions. For the case of unsplittable traffics,
the upper and lower bounds are asymptotically tight. All bounds on the price of
anarchy translate to corresponding bounds for general congestion games.

10.3.3 Network Uncertainty in Selfish Routing

The problem of selfish routing in the presence of incomplete network information
has also been studied by Georgiou et al. [43]. This work proposes an interesting
new model for selfish routing in the presence of incomplete network information.
The model proposed by Georgiou et al. captures situations where the users have
incomplete information regarding the link capacities. Such uncertainty may be caused
if the network links actually represent complex paths created by routers, which are
constructed differently on separate occasions and sometimes according to the presence
of congestion or link failures.

The new, extremely interesting model presented in the work by Georgiou et al.
[43] consists of a number of users who wish to route their traffic on a network of
m parallel links with the objective of minimizing their latency. In order to capture
the lack of precise knowledge about the capacity of the network links, Georgiou et
al. [43] assumed that links may present a number of different capacities. Each user’s
uncertainty about the capacity of each link is modeled via a probability distribution
over all possibilities. Furthermore, it is assumed that users may have different sources
of information regarding the network; therefore, Georgiou et al. assume the proba-
bility distributions of the various users to be (possibly) distinct from each other. This
gives rise to a very interesting model with user-specific payoff functions, where each
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user uses its distinct probability distribution to take decisions as to how to route its
traffic.

The authors propose simple polynomial-time algorithms to compute pure Nash
equilibria in some special cases of the problem and demonstrate that a counterexam-
ple presented in the work by Milchtaich et al. [70], showing that pure Nash equilibria
may not exist in the general case, does not apply to their model. Thus, Georgiou et al.
identify an interesting open problem in this area, that of the existence of pure Nash
equilibria in the general case of their model. Also, two different expressions for the
social cost and the associated price of anarchy are identified and employed in the
work by Georgiou et al. [43]. For the latter, Georgiou et al. obtain upper bounds for the
general case and some better upper bounds for several special cases of their model.

In the same work, Georgiou et al. show how to compute the fully mixed Nash
equilibrium in polynomial time; they also show that when it exists, it is unique. Also,
Georgiou et al. prove that for certain instances of the game, fully mixed Nash equilibria
assign all links to all users equiprobably. Finally, the work by Georgiou et al. [43]
verifies the fully mixed Nash equilibrium conjecture, namely that the fully mixed
Nash equilibrium maximizes social cost.

10.3.4 Restricted Selfish Scheduling

Elsässer et al. [26] further consider selfish routing problems in networks under the
restriction that the link for each user must be chosen from a certain set of allowed
links for the user. It is particularly assumed that each user has access (that is, finite
cost) to only two machines; its cost on other machines is infinitely large, giving it
no incentive to switch there. Interaction with just a few neighbors is a basic design
principle to guarantee efficient use of resources in a distributed system. Restricting
the number of interacting neighbors to just two is then a natural starting point for
the theoretical study of the impact of selfish behavior in a distributed system with
local interactions. In the model of Elsässer et al., the (expected) cost of a user is the
(expected) load on the machine it chooses.

The particular way of modeling local interaction in the work by Elsässer et al.
[26] has given rise to a simple, graph-theoretic model for selfish scheduling among
m noncooperative users over a collection of n machines with local interaction. In
their graph-theoretic model, Elsässer et al. [26] address these bounded interactions
by using an interaction graph, whose vertices and edges are the machines and the
users, respectively. Elsässer et al. [26] have been interested in the impact of their
modeling on the properties of the induced Nash equilibria.

The main result of Elsässer et al. [26] is that the parallel links graph is the best-case
interaction graph—the one that minimizes expected makespan of the standard fully
mixed Nash equilibrium—among all 3-regular interaction graphs. (In the standard
fully mixed Nash equilibria each user chooses each of its two admissible machines
with probability 1

2 .) The proof employs a graph-theoretic lemma about orientations
in 3-regular graphs, which may be of independent interest. This is a particularly
pleasing case where algorithmic game theory rewards graph theory with a wealth of
new interesting problems about orientations in regular graphs.
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A lower bound on price of anarchy is also provided in the work of Elsässer et
al. [26]. In particular, it is proved that there is an interaction graph incurring price
of anarchy � (log n/log log n). This bound relies on a proof employing pure Nash
equilibria. Finally, the authors present counterexample interaction graphs to prove that
a fully mixed Nash equilibrium may sometimes not exist at all. (A characterization of
interaction graphs admitting fully mixed Nash equilibria is still missing.) Moreover,
they prove existence and uniqueness properties of the fully mixed Nash equilibrium
for complete bipartite graphs and hypercube graphs.

The problems left open in the work by Elsässer et al. [26] invite graph theory to a
pleasing excursion into algorithmic game theory.

10.3.5 Adaptive Routing with Stale Information

Fischer and Vöcking [29] consider the problem of adaptive routing in networks by
selfish users that lack central control. The main focus of this work is on simple adap-
tion policies, or dynamics, that make possible use of stale information. The analysis
provided in the work by Fischer and Vöcking [29] covers a wide class of dynamics
encompassing the well-known replicator dynamics and other dynamics from evolu-
tionary game theory; the basic milestone is the well-known fact that choosing the
best option on the basis of out-of-date information can lead to undesirable oscillation
effects and poor overall performance.

Fischer and Vöcking [29] show that it is possible to cope with this problem, and
guarantee efficient convergence toward an equilibrium state, for all of this broad class
of dynamics, if the function describing the cost of an edge depending on its load is
not too steep. As it turns out, guaranteeing convergence depends solely on the size of
a single parameter describing the greediness of the agents!

While the best response dynamics, which corresponds to always choosing the best
option, performs well if information is always up-to-date, it is interestingly clear
from the results in the work by Fischer and Vöcking [29] that this policy fails when
information is stale. More interestingly, Fischer and Vöcking [29] present a dynamics
that approaches the global optimal solution in networks of parallel links with linear
latency functions as fast as the best response dynamics does, but which does not suffer
from poor performance when information is out-of-date.

10.4 ALGORITHMIC MECHANISM DESIGN

Mechanism design is a subfield of game theory and microeconomics, which, gener-
ally speaking, deals with the design of protocols for rational agents. In most simple
words, a mechanism design problem can be described as the task of selecting from a
collection of (feasible) games, a game that will yield desirable results for the designer.
Specifically, the theory of mechanism design has focused on problems where the goal
is to satisfactorily aggregate privately known preferences of several agents toward a
social choice. Intuitively, a mechanism design problem has two components:
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� The usual algorithmic output specification.
� Descriptions of what the participating agents want, formally given as utility

functions over the set of possible outputs (outcomes).

The origin of algorithmic mechanism design is marked with the seminal paper of
Nisan and Romen [76].

A mechanism solves a given problem by assuring that the required outcome occurs,
under the assumption that agents choose their strategies as to maximize their own
selfish utilities. A mechanism needs thus to ensure that players’ utilities (which it can
influence by handing out payments) are compatible with the algorithm.

Recall that the routing problem in large-scale networks where users are instinc-
tively selfish can be modeled as a noncooperative game. Such a game is expected to
impose strategies that would induce an equilibrium as close to the overall optimum
as possible. Two possible approach to formulate such strategies are through pricing
mechanisms [28] and network design [57,87].

In the first approach, the network administrator defines prices (or rules) in a way
that induces near optimal performance when the users act selfishly. This approach
has been considered in the works by Caragiannis et al. [10] and Cole et al. [16] (see
also references therein). In the second approach, the network manager takes part in
the noncooperative game. The manager has the ability to control centrally a part of
the system resources, while the rest of the resources are to be shared by the selfish
users. This approach has been studied through Stackelberg or leader–follower games
[50,85] (see also references therein). We here overview some issues related to how
should the manager assign the flow he controls into the system, with the objective to
induce optimal cost in spite of the behavior of the selfish users.

10.4.1 Stackelberg Games

Roughgarden [85], studied the problem of optimizing the performance of a sys-
tem shared by selfish, noncooperative users assigned to shared machines with load-
dependent latency functions. Roughgarden measured system performance by the total
latency of the system. (This measure is different from that used in the KP model.)
Assigning jobs according to the selfish interests of individual users typically results
in suboptimal system performance. However, in many systems of this type, there is
a mixture of “selfishly controlled” and “centrally controlled” jobs; as the assignment
of centrally controlled jobs will influence the subsequent actions by selfish users,
the degradation in system performance due to selfish behavior can be reduced by
scheduling the centrally controlled jobs in the best possible way. Stackelberg games
provide a framework that fits this situation in an excellent way.

A Stackelberg game is a special game where there are two kinds of entities: a
number of selfish entities, called players, that are interested in optimizing their own
utilities, and a distinguished leader controlling a number of non-self-interested entities
called followers; the leader aims at improving the social welfare and decides on the
strategies of the followers so that the resulting situation will induce suitable decisions
for the players that will optimize social welfare (as much as possible).
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Roughgarden [85] formulated this particular goal for such a selfish routing system
as an optimization problem via Stackelberg games. The problem is then to compute
a strategy for the leader (a Stackelberg strategy) that induces the followers to react
in a way that (at least approximately) minimizes the total latency in the system.
Roughgarden [85] proved that, perhaps not surprisingly, it is NP-hard to compute
the optimal Stackelberg strategy; he also presented simple strategies with provable
performance guarantees.

More precisely, Roughgarden [85] gave a simple algorithm to compute a strategy
inducing a job assignment with total latency no more than a small constant times that
of the optimal assignment for all jobs; in the absence of centrally controlled jobs and
a Stackelberg strategy, no result of this type is possible. Roughgarden also proved
stronger performance guarantees in the special case where every latency function is
linear in the load.

10.4.1.1 The Price of Optimum Kaporis and Spirakis [50] continued the study
of the Stackelberg games from the work by Roughgarden [85]. They considered
a system of parallel machines, each with a strictly increasing and differentiable
load-dependent latency function. The users of such a system are of infinite number
and act selfishly, routing their infinitesimally small portion of the total flow they
control to machines of currently minimum delay. In that work, such a system
is modeled as a Stackelberg or leader–follower game motivated by the work by
Roughgarden and Tardos [88].

Roughgarden [85] had presented the LLF Stackelberg strategy for a leader in a
Stackelberg game with an infinite number of followers, each routing its infinitesimal
flow through machines of currently minimum delay (this is called the flow model in the
work by Roughgarden [85]). An important question posed there was the computation
of the least portion βM that a leader must control in order to enforce the overall
optimum cost on the system. An algorithm that computes βM was presented and its
optimality was also shown [50]. Most importantly, it was proved that the algorithm
presented is optimal for any class of latency functions for which Nash and optimum
assignments can be efficiently computed. This is one of a very few known cases where
the computation of optimal Stackelberg strategies is reduced to the computation of
(pure) Nash equilibria and optimal assignments.

10.4.2 Cost Sharing Mechanisms

In its most general form, a cost sharing mechanism specifies how costs originating
from resource consumption in a selfish system should be shared among the users
of the system. Apparently, not all sharing ways are good. Intuitively, a cost sharing
mechanism is good if it can induce equilibria optimizing social welfare as much as
possible. This point of view was adopted in a recent work by Mavronicolas et al. [65].

In more detail, a simple and intuitive cost mechanism that assigns costs for the
competitive usage of m resources by n selfish agents was proposed by Mavronicolas
et al. [65]. Each agent has an individual demand; demands are drawn according to
some (unknown) probability distribution coming from a (known) class of probability
distributions. The cost paid by an agent for a resource he chooses is the total demand
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put on the resource divided by the number of agents who chose that same resource.
So, resources charge costs in an equitable, fair way, while each resource makes no
profit out of the agents. This simple model was called fair pricing in the work by
Mavronicolas et al. [65]. 1

Mavronicolas et al. [65] analyzed the Nash equilibria (both pure and mixed) for
the induced game; in particular, they consider the fully mixed Nash equilibrium,
where each agent selects each resource with nonzero probability. While offering (in
addition) an advantage with respect to convenience in handling, the fully mixed Nash
equilibrium is suitable for that economic framework under the very natural assumption
that each resource offers usage to all agents without imposing any access restrictions.

The most significant contribution of the work by Mavronicolas [65] was the intro-
duction of the diffuse price of anarchy for the analysis of Nash equilibria in the induced
game. Roughly speaking, the diffuse price of anarchy is an extension to the price of
anarchy that takes into account the probability distribution of the demands. Roughly
speaking, the diffuse price of anarchy is the worst case, over all allowed probability
distributions, of the expectation (according to each specific probability distribution)
of the ratio of social cost over optimum in the worst-case Nash equilibrium. The dif-
fuse price of anarchy is meant to alleviate the sometimes overly pessimistic Price of
Anarchy due to Koutsoupias and Papadimitriou [60] (which is a worst-case measure)
by introducing and analyzing stochastic assumptions on the system inputs.

Mavronicolas et al. [65] proved that pure Nash equilibria may not exist unless all
chosen demands are identical; in contrast, a fully mixed Nash equilibrium exists for
all possible choices of the demands. Further on, it was proved that the fully mixed
Nash equilibrium is the unique Nash equilibrium in case there are only two agents.
It was also shown that, in the worst-case choice of demands, the price of anarchy is
 (n); for the special case of two agents, the price of anarchy is less than 2− 1/m.

A plausible assumption is that demands are drawn from a bounded, independent
probability distribution, where all demands are identically distributed and each is at
most a (universal for the class) constant times its expectation. Under this very general
assumption, it is proved in the work by Mavronicolas et al. [65] that the diffuse price
of anarchy is at most that same universal constant; the constant is just 2 when each
demand is distributed symmetrically around its expectation.

10.4.3 Tax Mechanisms

How much can taxes improve the performance of a selfish system? This is a very
general question since it leaves three important dimensions of it completely unspec-
ified: the precise way of modeling taxes, the selfish system itself, and the measure
of performance. Making specific choices for these three dimensions gives rise to
specific interesting questions about taxes. There is already a sizeable amount of lit-

1One could argue that this pricing scheme is unfair in the sense that players with smaller demands can be
forced to support those players with larger demands that share the same resource. However, the model can
also be coined as fair on account of the fact that it treats all players sharing the same resource equally, and
players are not overcharged beyond the actual cost of the resource they choose.
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erature addressing such questions and variants of them (see, e.g., the works by Cara-
giannis et al. [10], Cole et al. [16], and Fleischer et al. [31] and references therein).
In this section, we briefly describe the work of Caragiannis et al. [10], and we refer
the reader to the work by Cole et al. [16] and Fleischer et al. [16,31] for additional
related results.

Caragiannis et al. [10] consider the (by now familiar) class of congestion games
due to Rosenthal [84] as their selfish system; they consider several measures for
social welfare, including total latency and a new interesting measure they introduce,
called total disutility, which is the sum of latencies plus taxes incurred to players.
Caragiannis et al. [10] focus on the well-studied case of linear latency functions, and
they provide many (both positive and negative) interesting results.

Their most interesting positive result is (in our opinion) the fact that there is a way
to assign taxes that can improve the performance of congestion games by forcing
players to follow strategies by which the total latency is within a factor of two of the
least possible; Caragiannis et al. prove that, most interestingly, this is the best possible
way of assigning taxes. Furthermore, Caraginannis et al. [10] consider cases where
the system performance may be very poor in the absence of taxes; they prove that,
fortunately, in such cases the total disutility cannot be much larger than the optimal
total latency. Another interesting result emanating from the work of Caragiannis et al.
[10] is that there is a polynomial-time algorithm (based on solving convex quadratic
programs) to compute good taxes; this represents the first result on the efficiency of
taxes for linear congestion games.

10.5 NETWORK SECURITY GAMES

It is an undeniable fact that the huge growth of the Internet has significantly extended
the importance of network security [90]. Unfortunately, as it is well known, many
widely used Internet systems and components are prone to security risks (see, e.g.,
the work by Cheswick and Bellovin [14]); some of these risks have even led to
successful and well-publicized attacks [89]. Typically, an attack exploits the discovery
of loopholes in the security mechanisms of the Internet. Attacks and defenses are
currently attracting a lot of interest in major forums of communication research.
A current challenge for algorithmic game theory is to invent and analyze appropriate
theoretical models of security attacks and defenses for emerging networks like the
Internet.

Two independent research teams, one consisting of Aspnes et al. [6] and another
consisting of Mavronicolas et al. [67,68], initiated recently the introduction of strate-
gic games on graphs (and the study of their associated Nash equilibria) as a means
of studying security problems in networks with selfish entities. The nontrivial results
achieved by these two teams exhibit a novel interaction of ideas, arguments, and
techniques from two seemingly diverse fields, namely game theory and graph theory.
This research line invites a simultaneously game-theoretic and graph-theoretic analy-
sis of network security problems, where not only threats seek to maximize their caused
damage to the network, but also the network seeks to protect itself as much as possible.
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The two graph-theoretic models of Internet security can be cast as particular
cases of the so-called interdependent security games studied earlier by Kearns and
Ortiz [52]. There, a large number of players must make individual decisions related
to security. The ultimate safety of each player may depend in a complex way on the
actions of the entire population.

10.5.1 A Virus Inoculation Game

Aspnes et al. [6] consider an interesting graph-theoretic game with an interesting secu-
rity flavor, modeling containment of the spread of viruses on a network with installable
antivirus software. In this game, the antivirus software may be installed at individual
nodes; a virus damages a node if it can reach the node starting at a random initial
node and proceeding to it without crossing a node with installed antivirus software.
Aspnes et al. [6] prove several algorithmic properties for their graph-theoretic game
and establish connections to a certain graph-theoretic problem called sum-of-squares
partition.

Moscibroda et al. [72] initiate the study of Byzantine game theory in the context of
the specific virus inoculation game introduced by Aspnes et al. [6]. In their extension,
they allow some players to be malicious or Byzantine rather than selfish. They ask
the very natural question of what the impact of Byzantine players on the performance
of the system compared to either the purely selfish setting (where all players are
self-interested and there are no Byzantine players) or to the social optimum is.

To address such questions, they introduce the very interesting notion of the price
of malice that captures the efficiency degradation due to the presence of Byzantine
players (on top of selfish players). Moscibroda et al. [72] use the price of malice
to quantify how much the presence of Byzantine players can deteriorate the social
welfare of the distributed system corresponding to the virus inoculation game of
Aspnes et al. [6]. Most interestingly, Moscibroda et al. [72] demonstrate that in case
the selfish players are highly risk-averse, the social welfare of the system can improve
as a result of taking Byzantine players into account!

We expect that Byzantine game theory will further develop in the upcoming years
and be applied successfully to evaluate the impact of Byzantine players on the per-
formance of selfish computer systems.

10.5.2 A Network Security Game

The work of Mavronicolas et al. [67,68] considers a security problem on a distributed
network modeled as a multiplayer noncooperative game with attackers (e.g., viruses)
and a defender (e.g., a security software) entities. More specifically, there are two
classes of confronting randomized players on a graph: ν attackers, each choosing
vertices and wishing to minimize the probability of being caught, and a single de-
fender, who chooses edges and gains the expected number of attackers it catches.
The authors exploit both game-theoretic and graph-theoretic tools for analyzing the
associated Nash equilibria.
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In a subsequent work, Mavronicolas et al. [64] introduced the price of defense in
order to evaluate the loss in the provided security guarantees due to the selfish nature
of attacks and defenses. The work address the question of whether there are Nash
equilibria that both are computationally tractable and offer good price of defense.
An extensive collection of trade-offs between price of defense and the computa-
tional complexity of Nash equilibria is provided in the work of Mavronicolas et al.
[64]. Most interestingly, the work of Mavronicolas et al. [64,66–68] introduce certain
natural classes of Nash equilibria for their network security game on graphs, includ-
ing matching Nash equilibria [67,68] and perfect matching Nash equilibria [64];
they prove that deciding the existence of equilibria from such classes is precisely
equivalent to the recognition problem for König–Egervary graphs [25,54]. So, this
establishes a very interesting (and perhaps unexpected) link to some classical pearls
in graph theory.

10.6 COMPLEXITY OF COMPUTING EQUILIBRIA

By Nash’s celebrating result [73,74] every strategic game has at least one Nash equi-
librium (and an odd number of them). What is the complexity of computing one?
Note that this question is meaningful exactly when the payoff table is given in some
implicit way that allows for a succinct representation. The celebrated algorithm of
Lemke and Howson [61] shows that for bimatrix games this complexity is no more
than exponential.

10.6.1 Pure Nash Equilibria

A core question in the study of Nash equilibria is which games have pure Nash
equilibria. Also, under what circumstances can we find one (assuming that there is
one) in polynomial time?

Recall that congestion games make a class of games that are guaranteed to have pure
Nash equilibria. In a classical paper [84], Rosenthal proves that, in any such game, the
Nash dynamics converges; equivalently, the directed graph with action combinations
as nodes and payoff-improving deviations by individual players as edges is acyclic.
Hence, the game has pure Nash equilibria that are the sinks of this graph. The proof
is based on a simple potential function. This existence theorem, however, again left
open the question of whether there is a polynomial-time algorithm for finding pure
Nash equilibria in congestion games.

Fabrikant et al. [27] prove that the answer to this general question is positive when
all players have the same origin and destination (the so-called symmetric case); a
pure Nash equilibrium is found by computing the optimum of Rosenthal’s potential
function through a reduction to min-cost flow. However, it is shown that computing a
pure Nash equilibrium in the general network case is PLS-complete [49]. Intuitively,
this means that it is as hard to compute as any object whose existence is guaranteed by
a potential function. (The precise definition of the complexity class PLS is beyond
the scope of this chapter.) The proof of Fabrikant et al. [27] has the interesting con-
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sequence: the existence of examples with exponentially long shortest paths, as well
as the PSPACE-completeness for the problem of computing a Nash equilibrium
reachable from a specified state.

The completeness proof requires reworking the reduction to the problem of find-
ing local optimal of weighted MAX2SAT instances. Ackermann et al. [1] present a
significantly simpler proof based on a PLS-reduction from MAX-CUT showing that
finding Nash equilibria in network congestion games is PLS-complete even for the
case of linear latency functions. Additional results about the complexity of pure Nash
equilibria in congestion games appear in the works of Ackermann et al. [1,2].

Gottlob et al. [45] provide a comprehensive study of complexity issues related
to pure Nash equilibria. They consider restrictions of strategic games intended to
capture certain aspects of bounded rationality. For example, they show that even in
the settings where each player’s payoff function depends on the strategies of at most
three other players, and where each player is allowed to choose one out of at most
three strategies, the problem of determining whether a game has a pure Nash equilib-
rium is NP-complete. On the positive side, they also identified tractable classes of
games.

10.6.2 Mixed Nash Equilibria

Daskalakis et al. [20] consider the complexity of Nash equilibria in a game with
four or more players. They show that this problem is complete for the complexity
class PPAD. Intuitively, this means that a polynomial-time algorithm would imply
a similar algorithm, for example, for computing Brouwer fixpoints; note that this is
a problem for which quite strong lower bounds for large classes of algorithms are
known [48]. (A precise definition of the complexity class PPAD is beyond the scope
of this chapter.)

Nash [73,74] had shown his celebrated result on the existence of Nash equilibria
by reducing the existence of Nash equilibria to the existence of Brouwer fixpoints.
Given any strategic game, Nash constructs a Brouwer function whose fixpoints are
precisely the equilibria of the game. In Nash’s reduction, as well as in subsequent
simplified ones [42], the constructed Brouwer function is quite specialized; this has
led to the speculation that the fixpoints of such functions (thus, Nash equilibria) are
easier to find than for general Brouwer functions. This question is answered in the
negative by presenting a very interesting reduction in the opposite direction [20]: Any
(computationally presented) Brouwer function can be simulated by a suitable game,
so that Nash equilibria correspond to fixpoints.

It is proved that computing a Nash equilibrium in a three-player game is also
PPAD-complete [23]. The proof is based on a variant of an arithmetical gadget from
[44], Independently, Chen and Deng [11] have also come up with a quite different
proof of the same result.

In a very recent paper [12], Chen and Deng settle the complexity of Nash equilibria
for two-player strategic games with a PPAD-completeness proof. Their proof de-
rived a direct reduction from a search problem called the three-dimensional Brouwer
problem, which is known to be PPAD-complete [20] to the objective problem. The
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completeness proof of the work by Chen and Deng[12] utilizes new gadgets for var-
ious arithmetic and logic operations.

10.6.3 Approximate Nash Equilibria

As it is always the case, an established intractability invites an understanding of the
limits of approximation. Since it was established that computing a Nash equilibrium
is PPAD-complete [20], even for two-player strategic games [12], the question of
computing approximate Nash equilibria has emerged as the central remaining open
problem in the area of computing Nash equilibria.

Assume from this point on that all utilities have been normalized to be between
0 and 1. (Clearly, this assumption is without any loss of generality.) Say that a set
of mixed strategies is an ε-approximate Nash equilibrium, where ε > 0, if for each
player all strategies have expected payoff that is at most ε more that the expected
payoff for its strategy in the given set. (So, ε is an additive approximation term.)

Lipton et al. [62] proved that an ε-approximate Nash equilibrium can be computed
in timeO(nε

2/log n) (that is, in strictly subexponential time) by examining all supports
of size log n/ε2. It had been earlier pointed out [4] that no algorithm examining
supports smaller than about log n can achieve an approximation better than 1

4 , even for
zero-sum games. In addition, it is easy to see that a 3

4 -approximation Nash equilibrium
can be found (in polynomial time) by examining all supports of size 2.

Two research teams, one consisting of Daskalakis et al. [21] and the other of
Kontogiannis et al. [56], investigated very recently the approximability of Nash equi-
libria in two-player games, and established essentially identical, strong results. Most
remarkably, there is a simple, linear-time algorithm in the work by Daskalakis et al.
[21], which builds heavily on a corresponding algorithm from the work by Kontogian-
nis et al. [56]; it examines just two strategies per player and results in a 1

2 -approximate
Nash equilibrium for any two-player game. Daskalakis et al. [21] also looked at the
more demanding notion of well-supported approximate Nash equilibria introduced
in the work by Daskalakis et al. [20] and present an interesting reduction (of the same
problem) to win–lose games (that is, games with all utilities equal to 0 and 1). For
this more demanding notion, Daskalakis et al. showed that an approximation of 5

6 is
possible contingent upon a graph-theoretic conjecture.

Chen et al. [13] establish strong inapproximability results for approximate Nash
equilibria. Their results imply that it is unlikely to obtain a fully polynomial-time
approximation scheme for Nash equilibria (unless PPAD ⊆ P).

10.6.4 Correlated Equilibria

Nash equilibrium [73,74] is widely accepted as the standard notion of rationality in
game theory. However, there are several other competing formulations of rationality;
chief among them is the correlated equilibrium, proposed by Aumann [7]. Observe
that the mixed Nash equilibrium is a distribution on the strategy space that is uncorre-
lated or independent; that is, it is the product of independent probability distributions,
one for each player. In sharp contrast, a correlated equilibrium is a general distribution
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over strategy profiles. It must, however, possess an equilibrium property: If a strategy
profile is drawn according to this distribution, and each player is told separately his
suggested strategy (that is, his own component in the profile), then no player has an
incentive to switch to a different strategy (assuming that all other players also obey),
because the suggested strategy is the best in expectation. Correlated equilibria enjoy
a very nice combinatorial structure: The set of correlated equilibria of a multiplayer,
noncooperative game is a convex polytope, and all Nash equilibria are not only in-
cluded in this polytope but they all lie on the boundary of the polytope. (See the work
by Nau et al. [75] for an elegant elementary proof of this latter result.)

As noted in the own words of Papadimitriou [82], the correlated equilibrium has
several important advantages: It is a perfectly reasonable, simple, and plausible con-
cept; it is guaranteed to always exist (simply because the Nash equilibrium is a par-
ticular case of a correlated equilibrium); and it can be found in polynomial time for
any number of players and strategies by linear programming, since the inequalities
specifying the satisfaction of all players are linear. In fact, it turns out that the corre-
lated equilibrium that optimizes any linear function of the players’ utilities (e.g., their
sum) can be computed in polynomial time.

Succinct Games Equilibria in games, of which the correlated equilibrium is a promi-
nent example, are objects worth of studying from the algorithmic point of view.
Multiplayer games are the most compelling specimens in this regard. But, to be of
algorithmic interest, they must be represented succinctly. Succinct representation is
required since otherwise a typical (multiplayer) game would need an exponential
size of bits in order to be described. Some well-known games that admit a succinct
representation include

� Symmetric games, where all players are identical and indistinguishable.
� Graphical games [51], where the players are the vertices of a graph, and

the payoff for each player only depends on its own strategy and those of its
neighbors.

� Congestion games, where the payoff of each player only depends on its strategy
and those choosing the same strategy as him.

Papadimitriou and Roughgarden [83] initiated the systematic study of algorithmic
issues involved in finding equilibria (both Nash and correlated) in games with a
large number of players, which are succinctly represented. The authors develop a
general framework for obtaining polynomial-time algorithms for optimizing over
correlated equilibria in such settings. They show how such algorithms can be applied
successfully to symmetric games, graphical games, and congestion games, among
others. They also present complexity results, implying that such algorithms are not
in sight for certain other similar games. Finally, a polynomial-time algorithm, based
on quantifier elimination, for finding a Nash equilibrium in symmetric games (when
the number of strategies is relatively small) was presented.

Daskalakis and Papadimitriou [22] studied from the complexity point of view
the problem of finding equilibria in games played on highly regular graphs with
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extremely succinct representation, such as the d-dimensional grid. There, it is argued
that such games are of interest in modeling large systems of interacting agents. It has
been shown by Daskalakis and Papadimitriou [22] that the problem of determining
whether such a game on the d-dimensional grid has a pure Nash equilibrium depends
on d, and the dichotomy is remarkably sharp: It is polynomial time solvable when
d = 1, but NEXP-complete for d ≥ 2. In contrast, it was also proved that mixed
Nash equilibria can be found in deterministic exponential time for any fixed d by
quantifier elimination.

Recently, Papadimitriou [82] considered, and largely settled, the question of the
existence of polynomial-time algorithms for computing correlated equilibria in suc-
cinctly representable multiplayer games. Papadimitriou developed a polynomial-time
algorithm for finding correlated equilibria in a broad class of succinctly representable
multiplayer games, encompassing essentially all kinds of such games we mentioned
before.

The algorithm presented by Papadimitriou [82] was based on a careful mimicking
of the existence proof due to Hart and Schmeidler [47], combined with an argument
based on linear programming duality and the ellipsoid algorithm, Markov chain steady
state computations, as well as application-specific methods for computing multivariate
expectations.

10.7 DISCUSSION

In this chapter, we attempted a glimpse at the fascinating field of algorithmic game
theory. This is a field that is currently undergoing a very intense investigation by
the community of the theory of computing. Although some fundamental theoretical
questions have been resolved (e.g., the complexity of computing Nash equilibria for
two-player games), there are still a lot of challenges ahead of us. Among those, most
important are, in our opinion, the further complexity classification of algorithmic prob-
lems in game theory, and the further application of systematic techniques from game
theory to modeling and evaluating modern computer systems with selfish entities.
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25. Egerváry J. Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai Lapok
1931;38:16–28.
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CHAPTER 11

Algorithms for Real-Time Object
Detection in Images

MILOS STOJMENOVIC

11.1 INTRODUCTION

11.1.1 Overview of Computer Vision Applications

The field of Computer Vision (CV) is still in its infancy. It has many real-world
applications, and many breakthroughs are yet to be made. Most of the companies
in existence today that have products based on CV can be divided into three main
categories: auto manufacturing, computer circuit manufacturing, and face recognition.
There are other smaller categories of this field that are beginning to be developed
in industry such as pharmaceutical manufacturing applications and traffic control.
Auto manufacturing employs CV through the use of robots that put the cars together.
Computer circuit manufacturers use CV to visually check circuits in a production line
against a working template of that circuit. CV is used as quality control in this case. The
third most common application of CV is in face recognition. This field has become
popular in the last few years with the advent of more sophisticated and accurate
methods of facial recognition. Applications of this technology are used in security
situations like checking for hooligans at sporting events and identifying known thieves
and cheats in casinos. There is also the related field of biometrics where retinal
scans, fingerprint analysis, and other identification methods are conducted using CV
methods.

Traffic control is also of interest because CV software systems can be applied to
already existing hardware in this field. By traffic control, we mean the regulation
or overview of motor traffic by means of the already existing and functioning array
of police monitoring equipment. Cameras are already present at busy intersections,
highways, and other junctions for the purposes of regulating traffic, spotting problems,
and enforcing laws such as running red lights. CV could be used to make all of these
tasks automatic.
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11.2 MACHINE LEARNING IN IMAGE PROCESSING

AdaBoost and support vector machines (SVMs) are, among others, two very pop-
ular and conceptually similar machine learning tools for image processing. They
are both based on finding a set of hyperplanes to separate the sets of positive and
negative examples. Current image processing culture involving machine learning
for real-time performance almost exclusively uses AdaBoost instead of SVMs. Ad-
aBoost is easier to program and has proven itself to work well. There are very
few papers that deal with real-time detection using SVM principles. This makes
the AdaBoost approach a better choice for real-time applications. A number of
recent papers, using both AdaBoost and SVMs, confirm the same, and even ap-
ply a two-phase process. Most windows are processed in the first phase by Ad-
aBoost, and in the second phase, an SVM is used on difficult cases that could
not be easily eliminated by AdaBoost. This way, the real-time constraint remains
intact.

Le and Satoh [16] maintain that “The pure SVM has constant running time of 554
windows per second (WPS) regardless of complexity of the input image, the pure Ad-
aBoost (cascaded with 37 layers—5924 features) has running time of 640, 515 WPS.”
If a pure SVM approach was applied to our test set, it would take 17, 500, 000/554 ≈ 9
h of pure run time to test the 106 images. It would take roughly 2 min to process an
image of size 320× 240. Thus, Lee and Satoh [16] claim that cascaded AdaBoost is
1000 times faster than SVMs. A regular AdaBoost with 30 features was presented in
the works by Stojmenovic [24,25]. A cascaded design cannot speed up the described
version by more than 30 times. Thus, the program in the works by Stojmenovic [24,25]
is faster than SVM by over 1000/30 > 30 times.

Bartlett et al. [3] used both AdaBoost and SVMs for their face detection and facial
expression recognition system. Although they state that “AdaBoost is significantly
slower to train than SVMs,” they only use AdaBoost for face detection, and it is
based on Viola and Jones’ approach [27]. For the second phase, facial expression
recognition on detected faces, they use three approaches: AdaBoost, SVMs, and a
combined one (all applied on Gabor representation), and reported differences within
3 percent of each other. They gave a simple explanation for choosing AdaBoost in the
face detection phase, “The average number of features that need to be evaluated for
each window is very small, making the overall system very fast” [3]. Moreover, each of
these features is evaluated in constant time, because of integral image preprocessing.
That performance is hard to beat, and no other approach in image processing literature
for real-time detection is seriously considered now.

AdaBoost was proposed by Freund and Schapire [8]. The connection between
AdaBoost and SVMs was also discussed by them [9]. They even described two very
similar expressions for both of them, where the difference was that the Euclidean
norm was used by SVMs while the boosting process used Manhattan (city block) and
maximum difference norms. However, they also list several important differences.
Different norms may result in very different margins. A different approach is used
to efficiently search in high dimensional spaces. The computation requirements are
different. The computation involved in maximizing the margin is mathematical pro-



MACHINE LEARNING IN IMAGE PROCESSING 319

gramming, that is, maximizing a mathematical expression given a set of inequalities.
The difference between the two methods in this regard is that SVM corresponds to
quadratic programming, while AdaBoost corresponds only to linear programming
[9]. Quadratic programming is more computationally demanding than linear program-
ming [9].

AdaBoost is one of the approaches where a “weak” learning algorithm, which
performs just slightly better than random guessing, is “boosted” into an arbitrarily
accurate “strong” learning algorithm. If each weak hypothesis is slightly better than
random, then the training error drops exponentially fast [9]. Compared to other similar
learning algorithms, AdaBoost is adaptive to the error rates of the individual weak
hypotheses, while other approaches required that all weak hypotheses need to have
accuracies over a parameter threshold. It is proven [9] that AdaBoost is indeed a
boosting algorithm in the sense that it can efficiently convert a weak learning algorithm
into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

Freund and Schapire [8] state “Practically, AdaBoost has many advantages. It is
fast, simple, and easy to program. It has no parameters to tune (except for the number
of rounds). It requires no prior knowledge about the weak learner and so can be
flexibly combined with any method for finding weak hypotheses. Finally, it comes
with a set of theoretical guarantees given sufficient data and a weak learner that can
reliably provide only moderately accurate weak hypotheses. This is a shift in mind
set for the learning-system designer: instead of trying to design a learning algorithm
that is accurate over the entire space, we can instead focus on finding weak learning
algorithms that only need to be better than random. On the other hand, some caveats
are certainly in order. The actual performance of boosting on a particular problem is
clearly dependent on the data and the weak learner. Consistent with theory, boosting
can fail to perform well given insufficient data, overly complex weak hypotheses, or
weak hypotheses that are too weak. Boosting seems to be especially susceptible to
noise.”

Schapire and Singer [23] described several improvements to Freund and Schapire’s
[8] original AdaBoost algorithm, particularly in a setting in which hypotheses may
assign confidences to each of their predictions. More precisely, weak hypotheses can
have a range over all real numbers rather than the restricted range [−1,+1] assumed
by Freund and Schapire [8]. While essentially proposing a general fuzzy AdaBoost
training and testing procedure, Howe and coworkers [11] do not describe any specific
variant, with concrete fuzzy classification decisions. We propose in this chapter a
specific variant of fuzzy AdaBoost. Whereas Freund and Schapire [8] prescribe a
specific choice of weights for each classifier, Schapire and Singer [23] leave this choice
unspecified, with various tunings. Extensions to multiclass classifications problems
are also discussed.

In practice, the domain of successful applications of AdaBoost in image processing
is any set of objects that are typically seen from the same angle and have a constant
orientation. AdaBoost can successfully be trained to identify any object if this object is
viewed from an angle similar to that in the training set. Practical real-world examples
that have been considered so far include faces, buildings, pedestrians, some animals,
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and cars. The backbone of this research comes from the face detector work done by
Viola et al. [27]. All subsequent papers that use and improve upon AdaBoost are
inspired by it.

11.3 VIOLA AND JONES’ FACE DETECTOR

The face detector proposed by Viola and Jones [27] was the inspiration for all other
AdaBoost applications thereafter. It involves different stages of operation. The training
of the AdaBoost machine is the first part and the actual use of this machine is the
second part. Viola and Jones’ contributions come in the training and assembly of the
AdaBoost machine. They had three major contributions: integral images, combining
features to find faces in the detection process, and use of a cascaded decision process
when searching for faces in images. This machine for finding faces is called cascaded
AdaBoost by Viola and Jones [27]. Cascaded AdaBoost is a series of smaller AdaBoost
machines that together provide the same function as one large AdaBoost machine,
yet evaluate each subwindow more quickly, which results in real-time performance.
To understand cascaded AdaBoost, regular AdaBoost will have to be explained first.
The following sections will describe Viola and Jones’ face detector in detail.

Viola and Jones’ machine takes in a square region of size equal to or greater than
24× 24 pixels as input and determines whether the region is a face or is not a face.
This is the smallest size of window that can be declared a face according to Viola and
Jones. We use such a machine to analyze the entire image, as illustrated in Figure 11.1.
We pass every subwindow of every scale through this machine to find all subwindows
that contain faces. A sliding window technique is therefore used. The window is
shifted 1 pixel after every analysis of a subwindow. The subwindow grows in size
10 percent every time all of the subwindows of the previous size were exhaustively
searched. This means that the window size grows exponentially at a rate of (1.1)p,

FIGURE 11.1 Subwindows of an image.
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where p is the number of scales. In this fashion, more than 90 percent of faces of all
sizes can be found in each image.

As with any other machine learning approach, the machine must be trained using
positive and negative examples. Viola and Jones used 5000 positive examples of
randomly found upright, forward-facing faces and 10,000 negative examples of any
other nonface objects as their training data. The machine was developed by trying to
find combinations of common attributes, or features of the positive training set that
are not present in the negative training set.

The library of positive object (head) representatives contains face pictures that
are concrete examples. That is, faces are cropped from larger images, and positive
examples are basically closeup portraits only. Moreover, positive images should be
of the same size (that is, when cut out of larger images, they need to be scaled so that
all positive images are of the same size). Furthermore, all images are frontal upright
faces. The method is not likely to work properly if the faces change orientation.

11.3.1 Features

An image feature is a function that maps an image into a number or a vector (array).
Viola and Jones [27] used only features that map images into numbers. Moreover, they
used some specific types of features, obtained by selecting several rectangles within
the training set, finding the sum of pixel intensities in each rectangle, assigning a
positive or negative sign and/or weight to each sum, and then summing them. The
pixel measurements used by Viola and Jones were the actual grayscale intensities of
pixels. If the areas of the dark (positive sign) and light (negative sign) regions are not
equal, the weight of the lesser region is raised. For example, feature 2.1 in Figure 11.2
has a twice greater light area than a dark one. The area of the dark rectangle in this case
would be multiplied by 2 to normalize the feature. The main problem is to find which
of these features, among the thousands available, would best distinguish positive and
negative examples, and how to combine them into a learning machine.

Figure 11.2 shows the set of basic shapes used by Viola and Jones [27]. Adding
features to the feature set can increase the accuracy of the AdaBoost machine at the
cost of additional training time. Each of the shapes seen in Figure 11.2 is scaled and
translated anywhere in the test images, consequently forming features. Therefore,
each feature includes a basic shape (as seen in Fig. 11.2), its translated position in the
image, and its scaling factors (height and width scaling). These features define the
separating ability between positive and negative sets. This phenomenon is illustrated
in Figure 11.3. Both of the features seen in Figure 11.3 (each defined by its position
and scaling factors) are derived from the basic shapes in Figure 11.2.

FIGURE 11.2 Basic shapes that generate features by translation and scaling.
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FIGURE 11.3 First and second features in Viola and Jones face detection.

Figure 11.3 shows the first and second features selected by the program [27]. Why
are they selected? The first feature shows the difference in pixel measurements for
the eye area and area immediately below it. The “black” rectangle covering the eyes
is filled with predominantly darker pixels, whereas the area immediately beneath the
eyes is covered with lighter pixels. The second feature also concentrates on the eyes,
showing the contrast between two rectangles containing eyes and the area between
them. This feature corresponds to feature 2.1 in Figure 11.2 where the light and dark
areas are inverted. This is not a separate feature; it was drawn this way in Figure 11.3
to better depict the relatively constant number obtained by this feature when it is
evaluated in this region on each face.

11.3.2 Weak Classifiers (WCs)

A WC is a function of the form h(x, f, s, θ), where x is the tested subimage, f is the
feature used, s is the sign (+ or −), and θ is the threshold. The sign s defines on
what side of the threshold the positive examples are located. Threshold θ is used
to establish whether a given image passes a classifier test in the following fashion:
when feature f is evaluated on image x, the resulting number is compared to threshold
θ to determine how this image is categorized by the given feature. The equation is
given as sf (x)<sθ. If the equation evaluates true, the image is classified as positive.
The function h(x, f, s, θ) is then defined as follows: h(x, f, s, θ) = 1 if sf (x)<sθ
and 0 otherwise. This is expected to correspond to positive and negative examples,
respectively. There are a few ways to determine the threshold θ. In the following
example, the green numbers are considered to be the positive set, and the red letters
are considered to be the negative set. The threshold is set to be the black vertical line
after the “7” since at this location overall classification error is minimal. All of the
positions are tried, and the one with minimal error is selected. The error function that
is used is the number of misclassifications divided by the total number of examples.
The array of evaluated feature values is sorted by the values of f (x), and it shows
positive examples as 1, 2, 3, . . . in green and negatives as A, B, C, D, . . . in red. The
error of the threshold selected below is 3/17 ≈ 0.17.
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In general, the threshold is found to be the value θ that best separates the positive
and negative sets. When a feature f is selected as a “good” distinguisher of images
between positive and negative sets, its value would be similar for images in the positive
set and different for all other images. When this feature is applied to an individual
image, a number f (x) is generated. It is expected that values f (x) for positive and
negative images can be separated by a threshold value of θ.

It is worthy to note that a single WC needs only to produce results that are slightly
better than chance to be useful. A combination of WCs is assembled to produce a
strong classifier as seen in the following text.

11.3.3 Strong Classifiers

A strong classifier is obtained by running the AdaBoost machine. It is a linear com-
bination of WCs. We assume that there are T WCs in a strong classifier, labelled
h1, h2, . . . , hT , and each of these comes with its own weight labeled α1, α2, . . . , αT .
Tested image x is passed through the succession of WCs h1(x), h2(x), . . . , hT (x), and
each WC assesses if the image passed its test. The assessments are discrete values:
hi(x) = 1 for a pass and hi(x) = 0 for a fail. αi(x) are in the range [0,+∞]. Note
that hi(x) = hi(x, fi, si, θi) is abbreviated here for convenience. The decision that
classifies an image as being positive or negative is made by the following inequality:

α1h1(x)+ α2h2(x)+ . . .+ αT hT (x) > α/2 where α =
T∑

i=1

αi .

From this equation, we see that images that pass a weighted average of half of the
WC tests are cataloged as positive. It is therefore a weighted voting of selected WCs.

11.3.4 AdaBoost: Meta Algorithm

In this section we explain the general principles of the AdaBoost (an abbreviation of
Adaptive Boosting) learning strategy [8]. First, a huge (possibly hundreds of thou-
sands) “panel” of experts is identified. Each expert, or WC, is a simple threshold-
based decision maker, which has a certain accuracy. The AdaBoost algorithm will
select a small panel of these experts, consisting of possibly hundreds of WCs, each
with a weight that corresponds to its contribution in the final decision. The expertise
of each WC is combined in a classifier so that more accurate experts carry more
weight.

The selection of WCs for a classifier is performed iteratively. First, the best WC
is selected, and its weight corresponds to its overall accuracy. Iteratively, the algo-
rithm identifies those records in the training data that the classifier built so far was
unable to capture. The weights of the misclassified records increase since it becomes
more important to correctly classify them. Each WC might be adjusted by chang-
ing its threshold to better reflect the new weights in the training set. Then a single
WC is selected, whose addition to the already selected WCs will make the greatest
contribution to improving the classifier’s accuracy. This process continues iteratively
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until a satisfactory accuracy is achieved, or the limit for the number of selected WCs
is reached. The details of this process may differ in particular applications, or in
particular variants of the AdaBoost algorithm.

There exist several AdaBoost implementations that are freely available in
Weka (Java-based package http://www.cs.waikato.ac.nz/ml) and in R (http://www.r-
project.org). Commercial data mining toolkits that implement AdaBoost include
TreeNet, Statistica, and Virtual Predict. We did not use any of these packages for
two main reasons. First, our goal was to achieve real-time performance, which re-
stricted the choice of programming languages. Next, we have modified the general
algorithm to better suit our needs, which required us to code it from scratch.

AdaBoost is a general scheme adaptable to many classifying tasks. Little is as-
sumed about the learners (WCs) used. They should merely perform only a little better
than random guesses in terms of error rates. If each WC is always better than a chance,
then AdaBoost can be proven to converge to a perfectly accurate classifier (no train-
ing error). Boosting can fail to perform if there is insufficient data or if WCs are
overly complex. It is also susceptible to noise. Even when the same problem is being
solved by different people applying AdaBoost, the performance greatly depends on
the training set being selected and the choice of WCs (that is, features).

In the next subsection, the details of the AdaBoost training algorithm, as used by
Viola and Jones [27], will be given. In this approach, positive and negative training
sets are separated by a cascade of classifiers, each constructed by AdaBoost. Real
time performance is achieved by selecting features that can be computed in constant
time. The training time of the face detector appears to be slow, even taking months
according to some reports. Viola and Jones’ face finding system has been modified
in literature in a number of articles. The AdaBoost machine itself was modified in
literature in several ways.

11.3.5 AdaBoost Training Algorithm

We now show how to create a classifier with the AdaBoost machine. It follows the
algorithm given in the work by Viola and Jones [27]. The machine is given images
(x1, y1), . . . , (xq, yq) as input, where yi = 1 or 0 for positive and negative examples,
respectively. In iteration t, the ith image is assigned the weight w(t, i), which corre-
sponds to the importance of that image for a good classification. The initial weights are
w(1, i) = 1/(2p), 1/(2n), for yi = 0 or 1, respectively, where n and p are the numbers
of negatives and positives, respectively, q = p+ n. That is, all positive images have
equal weight, totaling 1

2 , and similarly for all negative images. The algorithm will
select, in step t, the tth feature f, its threshold value θ, and its direction of inequality
s(s = 1 or − 1). The classification function is h(x, f, s, θ) = 1 (declared positive) if
sf (x)<sθ, and 0 otherwise (declared negative).

The expression |h(xi, f, s, θ)− yi| indicates whether or not h(x, f, s, θ) correctly
classified image xi. Its value is 0 for correct classification, and 1 for incorrect clas-
sification. The sum

∑N
i=1 w(t, i)× |h(xi, f, s, θ)− yi| then represents the weighted

misclassification error when using h(x, f, s, θ) as the feature-based classifier. The
goal is to minimize that sum when selecting the next WC.
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We revisit the classification of numbers and letters example to illustrate the as-
signment of weights in the training procedure. We assume that feature 1 classifies the
example set in the order seen below. The threshold is chosen to be just after the “7”
since this position minimizes the classification error. We will call the combination of
feature 1 with its threshold WC 1. We notice that “I”, “9,” and “2” were incorrectly
classified. The number of incorrect classifications determines the weight α1 of this
classifier. The fewer errors that it makes, the heavier the weight it is awarded.

The weights of the incorrectly classified examples (I, 9, and 2) are increased before
finding the next feature in an attempt to find a feature that can better classify cases
that are not easily sorted by previous features. We assume that feature two orders the
example set as seen below.

Setting the threshold just after the “2” minimizes the error in classification. We
notice that this classifier makes more mistakes in classification than its predecessor.
This means that its weight, α2, will be less that α1. The weights for elements “E”, “I,”
“8,” and “4” are increased. These are the elements that were incorrectly classified by
WC 2. The actual training algorithm will be described in pseudocode below.

For t=1 to T do:

Normalize the weights w(t, i), by dividing each of them with their sum (so that
the new sum of all weights becomes 1);

swp← sum of weights of all positive images
swn← sum of weights of all negative images
(* note that swp+ swn = 1 *)

FOR each candidate feature f, find f (xi) and w(t, i)∗f (xi), i = 1, . . . , q.

- Consider records (f (xi), yi, w(t, i)). Sort these records by the f (xi) field
with mergesort, in increasing order. Let the obtained array of the f (xi)
field be g1, g2, . . . , gq. The corresponding records are (gj, status(j), w′(j)) =
(f (xi), yi, w(t, i)), where gj = f (xi). That is, if the jth element gj is equal to ith
element from the original array f (xi) then status(j) = yi and w′(j) = w(t, i).

(*Scan through the sorted list, looking for threshold θ and direction s that mini-
mizes the error e(f, s, θ)∗)

sp← 0; sn← 0; (*weight sums for positives/negatives below a considered
threshold *)

emin← minimal total weighted classification error
If swn<swp then {emin← swn; smin← 1; θmin← gn + 1 (*all declared

positive*)



326 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

else { emin← swp; smin← 1; θmin← g1 − 1 } (*all declared negative
*)

For j← 1 to q-1 do {
If status(j) = 1 then sp← sp+ w′(j) else sn← sn+ w′(j)
θ← (gj + gj+1)/2
If sp+ swn− sn<emin then {emin← sp+ swn− sp; smin←
−1; θmin← θ }
If sn+ swp− sp<emin then {emin← sn+ swp− sp; smin← 1; θmin←
θ } }

EndFOR

Set st ← smin; set θt ← θmin(*s and θ of current stage are determined*)
βt ← emin/(1− emin);
αT ←−log(βt) (* αT is the output of AdaBoost for the second part*)

Update the weights for the next weak classifier, if needed:

w(t+ 1, i)←w(t, i)β1−e
t , where e=

{
0 if xiis correctly classified bycurrent ht
1otherwise

}
EndFor;

AdaBoost therefore assigns large weights with each good classification and small
weights with each poor function. The selection of the next feature depends on selec-
tions made for previous features.

11.3.6 Cascaded AdaBoost

Viola and Jones [27] also described the option of designing a cascaded AdaBoost.
For example, instead of one AdaBoost machine with 100 classifiers, one could design
10 such machines with 10 classifiers in each. In terms of precision, there will not be
much difference, but testing for most images will be faster [27]. One particular image
is first tested on the first classifier. If declared as nonsimilar, it is not tested further. If
it cannot be rejected, then it is tested with the second machine. This process continues
until either one machine rejects an image, or all machines “approve” it, and similarity
is confirmed. Figure 11.4 illustrates this process. Each classifier seen in Figure 11.4
comprises one or more features. The features that define a classifier are chosen so
that their combination eliminates as much as possible all negative images that are

FIGURE 11.4 Cascaded decision process.
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FIGURE 11.5 Concept of a classifier.

passed through this classifier, while at the same time accepting nearly 100 percent of
the positives. It is desirable that each classifier eliminates at least 50 percent of the
remaining negatives in the test set. A geometric progression of elimination is created
until a desired threshold of classification is attained. The number of features in each
classifier varies. It typically increases with the number of classifiers added. In Viola
and Jones’ face finder cascade, the first classifiers had 2, 10, 25, 25, and 50 features,
respectively. The number of features grew very rapidly afterward. Typical numbers
of features per classifier ranged in the hundreds. The total number of features used
was roughly 6000 in Viola and Jones’ application.

Figure 11.5 will help explain the design procedure of the cascaded design process.
We revisit the letters and numbers example in our efforts to show the development
of a strong classifier in the cascaded design. At the stage seen in Figure 11.5, we
assume to have two WCs with weights α1 and α2. Together these two WCs make a
conceptual hyperplane depicted by the solid dark blue line. In actuality, this line is not
a hyperplane (in this case a line in two-dimensional space), but a series of orthonormal
dividers. It is, however, conceptually easier to explain the design of a strong classifier
in a cascade if we assume that WCs form hyperplanes.

So far in Figure 11.5, we have two WCs where the decision inequality would be
of the form α1h1(x)+ α2h2(x) > α/2, where α = α1 + α2. At this stage, the combi-
nation of the two WCs would be checked against the training set to see if they have a
99 percent detection rate (this 99 percent is a design parameter). If the detection rate
is below the desired level, the threshold α/2 is replaced with another threshold γ such
that the detection rate increases to the desired level. This has the conceptual effect of
translating the dark blue hyperplane in Figure 11.5 to the dotted line. This also has
a residual effect of increasing the false positive rate. At the same time, once we are
happy with the detection rate, we check the false positive rate of the shifted threshold
detector. If this rate is satisfactory, for example, below 50 percent (also a design pa-
rameter), then the construction of the classifier is completed. The negative examples
that were correctly identified by this classifier are ignored from further consideration
by future classifiers. There is no need to consider them if they are already success-
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fully eliminated by a previous classifier. In Figure 11.5, “D”, “C,” and “F” would be
eliminated from future consideration if the classifier construction were completed at
this point.

11.3.7 Integral Images

One of the key contributions in the work by Viola and Jones [27] (which is used and/or
modified by Levi and Weiss [17], Luo et al. [19], etc.) is the introduction of a new
image representation called the “integral image,” which allows the features used by
their detector to be computed very quickly.

In the preprocessing step, Viola and Jones [27] find the sums ii(a, b) of pixel
intensities i(a′, b′) for all pixels (a′, b′) such that a′ ≤ a, b′ ≤ b. This can be done in
one pass over the original image using the following recurrences:

s(a, b) = s(a, b− 1)+ i(a, b),

ii(a, b) = ii(a− 1, b)+ s(a, b),

where s(a, b) is the cumulative row sum, s(a,−1) = 0, and ii(−1, b) = 0. In prefix
sum notation, the expression for calculating the integral image values is

ii(a, b) =
∑

a′≤a,b′≤b
i(a′, b′).

Figure 11.6 shows an example of how the “area” for rectangle “D” can be cal-
culated using only four operations. Let the area mean the sum of pixel intensities
of a rectangular region. The preprocessing step would have found the values of cor-
ners 1, 2, 3, and 4, which are in effect the areas of rectangles A,A+ B,A+ C, and
A+ B + C +D, respectively. Then the area of rectangle D is= (A+ B + C +D)+

FIGURE 11.6 Integral image.
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(A)− (A+ B)− (A+ C) = “4” + “1” − “2” − “3”. Jones and Viola [12] built one
face detector for each view of the face. A decision tree is then trained to determine
the viewpoint class (such as right profile or rotated 60 degrees) for a given window
of the image being examined. The appropriate detector for that viewpoint can then
be run instead of running all of the detectors on all windows.

11.4 CAR DETECTION

The most popular example of object detection is the detection of faces. The funda-
mental application that gave credibility to AdaBoost was Viola and Jones’ real-time
face finding system [27]. AdaBoost is the concrete machine learning method that was
used by Viola and Jones to implement the system. The car detection application was
inspired by the work of Viola and Jones. It is based on the same AdaBoost principles,
but a variety of things, both in testing and in training, were adapted and enhanced to
suit the needs of the CV system described in the works by Stojmenovic [24,25]. The
goal of this chapter is to analyze the capability of current machine learning techniques
of solving similar image retrieval problems. The “capability” of the system includes
real-time performance, a high detection rate, low false positive rate, and learning with
a small training set. Of particular interest are cases where the training set is not easily
available, and most of it needs to be manually created.

As a particular case study, we will see the application of machine learning to the
detection of rears of cars in images [24,25]. Specifically, the system is able to recognize
cars of a certain type such as a Honda Accord 2004. While Hondas have been used
as an instance, the same program, by just replacing the training sets, could be used to
recognize other types of cars. Therefore, the input should be an arbitrary image, and
the output should be that same image with a rectangle around any occurrence of the
car we are searching for (see Fig. 11.7). The system will work by directly searching
for an occurrence of the positive in the image, while treating all subwindows of the
image the same way. It will not first search for a general vehicle class and then specify
the model of the vehicle. This is a different and much more complicated task that is not
easily solvable by machine learning. Any occurrence of a rectangle around a part of
the image that is not a rear of a Honda Accord 2004 is considered a negative detection.

The image size in the testing set is arbitrary, while the image sizes in both the
negative and positive training sets are the same. Positive training examples are the
rears of Hondas. The data set was collected by taking pictures of Hondas (about

FIGURE 11.7 Input and output of the testing procedure.
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300 of them) and other cars. The training set was actually manually produced by
cropping and scaling positives from images to a standard size. Negative examples
in the training set include any picture, of the same fixed size, that cannot be consid-
ered as a rear of a Honda. This includes other types of cars, as close negatives, for
improving the classifier’s accuracy. Thus, a single picture of a larger size contains
thousands of negatives. When a given rectangle around a rear of a Honda is slightly
translated and scaled, one may still obtain a positive example, visually and even by
the classifier. That is, a classifier typically draws several rectangles at the back of each
Honda. This is handled by a separate procedure that is outside the machine learning
framework.

In addition to precision of detection, the second major main goal of the system was
real-time performance. The program should quickly find all the cars of the given type
and position in an image, in the same way that Viola and Jones finds all the heads.
The definition of “real time” depends on the application, but generally speaking the
system delivers an answer for testing an image within a second. The response time
depends on the size of the tested image, thus what appears to be real-time for smaller
images may not be so for larger ones.

Finally, this object detection system is interesting since it is based on a small
number of training examples. Such criteria are important in cases where training
examples are not easily available. For instance, in the works by Stojmenovic [24,25],
photos of back views of a few hundred Honda Accords and other cars were taken
manually to create training sets, since virtually no positive images were found on the
Internet. In such cases, it is difficult to expect that one can have tens of thousands
of images readily available, which was the case for the face detection problem. The
additional benefit of a small training set is that the training time is reduced. This
enabled us to perform a number of training attempts, adjust the set of examples,
adjust the set of features, test various sets of WCs, and otherwise analyze the process
by observing the behavior of the generated classifiers.

11.4.1 Limitations and Generalizations of Car Detection

Machine learning methods were applied in the work by Stojmenovic [24] in an attempt
to solve the problem of detecting rears of a particular car type since they appear to
be appropriate given the setting of the problem. Machine learning in similar image
retrieval has proven to be reliable in situations where the target object does not change
orientation. As in the work of Viola and Jones [27], cars are typically found in the
same orientation with respect to the road. The situation Stojmenovic [24] is interested
in is the rear view of cars. This situation is typically used in monitoring traffic since
license plates are universally found at the rears of vehicles.

The positive images were taken such that all of the Hondas have the same general
orthogonal orientation with respect to the camera. Some deviation occurred in the
pitch, yaw, and roll of these images, which might be why the resulting detector has
such a wide range of effectiveness. The machine that was built is effective for the
following deviations in angles: pitch −15◦; yaw −30◦ to 30◦; and roll −15◦ to 15◦.
This means that pictures of Hondas taken from angles that are off by the stated amounts
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are still detected by the program. Yaw, pitch, and roll are common jargon in aviation
describing the three degrees of freedom the pilot has to maneuver an aircraft.

Machine learning concepts in the CV field that deal with retrieving similar objects
within images are generally faced with the same limitations and constraints. All
successful real-time applications in this field have been limited to successfully finding
objects from only one view and one orientation that generally does not vary much.
There have been attempts to combine several strong classifiers into one machine, but
discussing only individual strong classifiers, we conclude that they are all sensitive to
variations in viewing angle. This limits their effective range of real-world applications
to things that are generally seen in the same orientation. Typical applications include
faces, cars, paintings, posters, chairs, some animals, and so on. The generalization
of such techniques to problems that deal with widely varying orientations is possible
only if the real-time performance constraint is lifted. Another problem that current
approaches are faced with is the size of the training sets. It is difficult to construct a
sufficiently large training database for rare objects.

11.4.2 Fast AdaBoost Based on a Small Training Set for Car Detection

This section describes the contributions and system [24] for detecting cars in real time.
Stojmenovic [24] has revised the AdaBoost-based learning environment, for use in
their object recognition problem. It is based on some of the ideas from literature, and
some new ideas, all combined into a new machine.

The feature set used in the work Stojmenovic [24,25] initially included most of the
feature types used by Viola and Jones [27] and Lienhart [14]. The set did not include
rotated features [14], since the report on their usefulness was not convincing. Edge
orientation histogram (EOH)-based features [17] were considered a valuable addition
and were included in the set. New features that resemble the object being searched
for, that is, custom-made features, were also added.

Viola and Jones [27] and most followers used weight-based AdaBoost, where the
training examples receive weights based on their importance for selecting the next
WC, and all WCs are consequently retrained in order to choose the next best one.
Stojmenovic [24,25] states that it is better to rely on the Fast AdaBoost variant [30],
where all of the WCs are trained exactly once, at the beginning. Instead of the weighted
error calculation, Stojmenovic [24] believes that it is better to select the next WC to
be added as the one that, when added, will make the best contribution (measured as
the number of corrections made) to the already selected WCs. Each selected WC will
still have an associated weight that depends on its accuracy. The reason for selecting
the Fast AdaBoost variant is to achieve an O(log q) time speed-up in the training
process, believing that the lack of weights for training examples can be compensated
for by other “tricks” that were applied to the system.

Stojmenovic [24,25] has also considered a change in the AdaBoost logic itself. In
existing logic, each WC returns a binary decision (0 or 1) and can therefore be referred
to as the binary WC. In the machine proposed by Schapire and Singer [23], each WC
will return a number in the range [−1, 1] instead of returning a binary decision (0 or 1),
after evaluating the corresponding example. Such a WC will be referred to as a fuzzy
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FIGURE 11.8 Positive training examples.

WC. Evaluation of critical cases is often done by a small margin of difference from
the threshold. Although the binary WC may not be quite certain about evaluating
a particular feature against the adopted threshold (which itself is also determined
heuristically, therefore is not fully accurate), the current AdaBoost machine assigns the
full weight to the decision on the corresponding WC. Stojmenovic [24,25] therefore
described an AdaBoost machine based on a fuzzy WC. More precisely, the described
system proposes a specific function for making decisions, while Schapire [23] left
this choice unspecified. The system produces a “doubly weighted” decision. Each
WC receives a corresponding weight α, then each decision is made in the interval
[−1, 1]. The WC then returns the product of the two numbers, that is, a number in
the interval [−α, α] as its “recommendation.” The sum of all recommendations is
then considered. If positive, the majority opinion is that the example is a positive one.
Otherwise, the example is a negative one.

11.4.3 Generating the Training Set

All positives in the training set were fixed to be 100× 50 pixels in size. The entire
rear view of the car is captured in this window. Examples of positives are seen in
Figure 11.8. The width of a Honda Accord 2004 is 1814 mm. Therefore, each pixel
in each training image represents roughly 1814/100 = 18.14 mm of the car.

A window of this size was chosen due to the fact that a typical Honda is unrec-
ognizable to the human eye at lower resolutions; therefore, a computer would find it
impossible to identify accurately. Viola and Jones used similar logic in determining
their training example dimensions. All positives in the training set were photographed
at a distance of a few meters from the camera. Detected false positives were added
in the negative training set (bootstrapping), in addition to a set of manually selected
examples, which included backs of other car models. The negative set of examples
perhaps has an even bigger impact on the training procedure than the positive set. All
of the positive examples look similar to the human eye. It is therefore not important
to overfill the positive set since all of the examples there should look rather similar.
The negative set should ideally combine a large variety of different images. The neg-
ative images should vary with respect to their colors, shapes, and edge quantities and
orientations.

11.4.4 Reducing Training Time by Selecting a Subset of Features

Viola and Jones’ faces were 24× 24 pixels each. Car training examples are 100× 50
pixels each. The implications of having such large training examples are immense
from a memory consumption point of view. Each basic feature can be scaled in both
height and width, and can be translated around each image. There are seven basic
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features used by Viola and Jones. They generated a total of 180,000 WCs [27]. Stoj-
menovic [24,25] also used seven basic features (as described below), and they generate
a total of approximately 6.5 million WCs! Each feature is shifted to each position in
the image and for every vertical and horizontal scale. By shifting our features by 2
pixels in each direction (instead of 1) and making scale increments of 2 during the
training procedure, we were able to cut this number down to approximately 530,000,
since every second position and scale of feature was used. In the initial training of
the WCs, each WC is evaluated based on its cumulative error of classification (CE).
The cumulative error of a classifier is CE = (false positives + number of missed
examples)/total number of examples. WCs that had a CE that was greater than a
predetermined threshold were automatically eliminated from further consideration.
Details are given in the works by Stojmenovic [24,25].

11.4.5 Features Used in Training for Car Detection

Levi and Weiss [17] stress the importance of using the right features to decrease the
sizes of the training sets, and increase the efficiency of training. A good feature is the
one that separates the positive and negative training sets well. The same ideology is
applied here in hopes of saving time in the training process. Initially, all of Viola and
Jones’ features were used in combination with the dominant edge orientation features
proposed by Levi and Weiss [17] and the redness features proposed by Luo et al. [19].
It was determined that the training procedure never selected any of Viola and Jones’
grayscale features to be in the strong classifier at the end of training. This is a direct
consequence of the selected positive set. Hondas come in a variety of colors and these
colors are habitually in the same relative locations in each positive case. The most
obvious example is the characteristic red tail lights of the Honda accord. The redness
features were included specifically to be able to use the redness of the tail lights as
a WC. The training algorithm immediately exploited this distinguishing feature and
chose the red rectangle around one of the tail lights as one of the first WCs in the
strong classifier. The fact that the body of the Honda accord comes in its own subset
of colors presented problems to the grayscale set of Viola and Jones’ features. When
these body colors are converted to a grayscale space, they basically cover the entire
space. No adequate threshold can be chosen to beneficially separate positives from
negatives. Subsequently, all of Viola and Jones’ features were removed due to their
inefficiency.

The redness features we refer to are taken from the work of Luo et al. [19]. More
details are given in the works by Stojmenovic [24,25]. Several dominant edge orien-
tation features were used in the training algorithm. To get a clearer idea of what edge
orientation features are, we will first describe how they are made. Just as their name
suggests, they arise from the orientation of the edges of an image. A Sobel gradient
mask is a matrix used in determining the location of edges in an image. A typical
mask of this sort is of size 3× 3 pixels. It has two configurations, one for finding
edges in the x-direction and the other for finding edges in the y-direction of source
images ([7], p. 165). These two matrices, hx and hy (shown in Figs. 11.9 and 11.10),
are known as the Sobel kernels.
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FIGURE 11.9 Kernel hy. FIGURE 11.10 Kernel hx.

Figure 11.9 shows the typical Sobel kernel for determining vertical edges (y-
direction), and Figure 11.10 shows the kernel used for determining horizontal edges
(x-direction). Each of these kernels is placed over every pixel in the image. Let
P be the grayscale version of the input image. Grayscale images are determined
from RGB color images by taking a weighted sampling of the red, green, and blue
color spaces. The value of each pixel in a grayscale image was found by con-
sidering its corresponding color input intensities, and applying the following for-
mula: 0.212671× R+ 0.715160×G+ 0.072169× B, which is a built in function
in OpenCV, which was used in the implementation.

Let P(x, y) represent the value of the pixel at point (x, y) and I(x, y) is a 3× 3
matrix of pixels centered at (x, y). Let X and Y represent output edge orientation
images in the x and y directions, respectively. X and Y are computed as follows:

X(i, j) = hx · I(i, j) = −P(i− 1, j − 1)+ P(i+ 1, j − 1)− 2P(i− 1, j)
+2P(i+ 1, j)− P(i− 1, j + 1)+ P(i+ 1, j + 1),

Y (i, j) = hy · I(i, j) = −P(i− 1, j − 1)− 2P(i, j − 1)− P(i+ 1, j − 1)
+P(i− 1, j + 1)+ 2P(i, j + 1)+ P(i+ 1, j + 1)

A Sobel gradient mask was applied to each image to find the edges of that im-
age. Actually, a Sobel gradient mask was applied both in the x-dimension, called
X(i, j), and in the y-dimension, called Y (i, j). A third image, called R(i, j), of
the same dimensions as X, Y, and the original image, was generated such that
R(i, j) =

√
X(i, j)2 + Y (i, j)2. The result of this operation is another grayscale im-

age with a black background and varying shades of white around the edges of the
objects in the image. The image R(i, j) is called a Laplacian image in image process-
ing literature, and values R(i, j) are called Laplacian intensities. One more detail of
our implementation is the threshold that was placed on the intensities of the Laplacian
values. We used a threshold of 80 to eliminate the faint edges that are not useful. A
similar threshold was employed in the work by Levi and Weiss [17].

The orientations of each pixel are calculated from the X(i, j) and Y (i, j) images.
The orientation of each pixel R(i, j) in the Laplacian image is found as

orientation(i,j) = arctan(Y(i,j),X(i,j))× 180/π.

This formula gives the orientation of each pixel in degrees. The orientations are
divided into six bins so that similar orientations can be grouped together. The whole
circle is divided into six bins. Bin shifting (rotation of all bins by 15◦) is applied
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to better capture horizontal and vertical edges. Details are given in the work by
Stojmenovic [24].

11.5 NEW FEATURES AND APPLICATIONS

11.5.1 Rotated Features and Postoptimization

Lienhart and Maydt [14] add a set of classifiers (Haar wavelets) to those already
proposed by Viola and Jones. Their new classifiers are the same as those pro-
posed by Viola and Jones, but they are all rotated 45◦. They claim to gain a
10 percent improvement in the false detection rate at any given hit rate when
detecting faces. The features used by Lienhart were basically Viola and Jones’
entire set rotated 45◦ counterclockwise. He added two new features that resem-
bled the ones used by Viola and Jones, but they too failed to produce notable
gains.

However, there is a postoptimization stage involved with the training process. This
postoptimization stage is credited with over 90 percent of the improvements claimed
by this paper. Therefore, the manipulation of features did not impact the results all
that much; rather the manipulation of the weights assigned to the neural network at
the end of each stage of training is the source of gains. OpenCV supports the integral
image function on 45◦ rotated images since Lienhart was on the development team
for OpenCV.

11.5.2 Detecting Pedestrians

Viola et al. [29] propose a system that finds pedestrians in motion and still images.
Their system is based on the AdaBoost framework. It considers both motion infor-
mation and appearance information. In the motion video pedestrian finding system,
they train AdaBoost on pairs of successive frames of people walking. The intensity
differences between pairs of successive images are taken as positive examples. They
find the direction of motion between two successive frames, and also try to establish
if the moving object can be a person. If single images are analyzed for pedestrians, no
motion information is available, and just the regular implementation of AdaBoost seen
for faces is applied to pedestrians. Individual pedestrians are taken as positive training
examples. It does not work as well as the system that considers motion information
since the pedestrians are relatively small in the still pictures, and also relatively low
resolution (not easily distinguishable, even by humans). AdaBoost is easily confused
in such situations. Their results suggest that the motion analysis system works better
than the still image recognizer. Still, both systems are relatively inaccurate and have
high false positive rates.

11.5.3 Detecting Penguins

Burghardt et al. [5] apply the AdaBoost machine to the detection of African penguins.
These penguins have a unique chest pattern that AdaBoost can be trained on. They
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were able to identify not only penguins in images, but distinguish between individual
penguins as well. Their database of penguins was small and taken from the local
zoo. Lienhart’s [14] adaptation of AdaBoost was used with the addition of an extra
feature: the empty kernel. The empty kernel is not a combination of light and dark
areas, but rather only a light area so that AdaBoost may be trained on “pure luminance
information.” AdaBoost was used to find the chests of penguins, and other methods
were used to distinguish between different penguins. Their technique did not work
very well for all penguins. They gave no statistics concerning how well their approach
works. This is another example of how the applications of AdaBoost are limited to
very specialized problems.

11.5.4 Redeye Detection: Color-Based Feature Calculation

Luo et al. [19] introduce an automatic redeye detection and correction algorithm
that uses machine learning in the detection of red eyes. They use an adapta-
tion of AdaBoost in the detection phase of redeye instances. Several novelties
are introduced in the machine learning process. The authors used, in combina-
tion with existing features, color information along with aspect ratios (width to
height) of regions of interest as trainable features in their AdaBoost implementa-
tion.

Viola and Jones [27] used only grayscale intensities, although their solution to face
detection could have used color information. Finding red eyes in photos means literally
finding red oval regions, which absolutely requires the recognition of color. Another
unique addition in their work is a set of new features similar to those proposed by
Viola and Jones [27], yet designed specifically to easily recognize circular areas. We
see these feature templates in Figure 11.11. It is noticeable that the feature templates
presented in this figure have three distinct colors: white, black, and gray. The gray
and black regions are taken into consideration when feature values are calculated.
Each of the shapes seen in Figure 11.11 is rotated around itself or reflected creating
eight different positions. The feature value of each of the eight positions is calculated,
and the minimum and maximum of these results are taken as output from the feature
calculation.

The actual calculations are performed based on the RGB color space. The pixel
values are transformed into a one-dimensional space before the feature values are
calculated in the following way: Redness= 4R− 3G+ B. This color space is biased
toward the red spectrum (which is where red eyes occur). This redness feature was
used in the car detection system [24].

FIGURE 11.11 Features for redeye detection.
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11.5.5 EOH-Based Features

Levi and Weiss [17] add a new perspective on the training features proposed by
Viola and Jones [27]. They also detect upright, forward-facing faces. Among other
contributions in their work [17], their most striking revelation was adding an edge
orientation feature that the machine can be trained on. They also experimented with
mean intensity features, which means taking the average pixel intensity in a rect-
angular area. These features did not produce good results in their experiments and
were not used in their system. In addition to the features used by Viola and Jones
[27], which considered sums of pixel intensities, Levi and Weiss [17] create fea-
tures based on the most prevalent orientation of edges in rectangular areas. There
are obviously many orientations available for each pixel but they are reduced to
eight possible rotations for ease of comparison and generalization. For any rectan-
gle, many possible features are extracted. One set of features is the ratio of any two
pairs of the eight EOHs [17]. There are therefore 8 choose 2 = 28 possibilities for
such features. Another feature that is calculated is the ratio of the most dominant
EOH in a rectangle to the sum of all other EOHs. Levi and Weiss [17] claim that
using EOHs, they are able to achieve higher detection rates at all training database
sizes.

Their goal was to achieve similar or better performance of the system to Viola
and Jones’ work while substantially reducing training time. They primarily achieve
this because EOH gives good results with a much smaller training set. Using these
orientation features, symmetry features are created and used. Every time a WC was
added to their machine, its vertically symmetric version was added to a parallel yet
independent cascade. Using this parallel machine architecture, the authors were able
to increase the accuracy of their system by 2 percent when both machines were run
simultaneously on the test data. The authors also mention detecting profile faces. Their
results are comparable to those of other proposed systems but their system works in
real-time and uses a much smaller training set.

11.5.6 Fast AdaBoost

Wu et al. [30] propose a training time performance increase over Viola and Jones’
training method. They change the training algorithm in such a way that all of the
features are tested on the training set only once (per each classifier). The ith clas-
sifier (1 ≤ i ≤ N) is given as input the desired minimum detection rate di and the
maximum false positive rate fpi. These rates are difficult to predetermine because the
performance of the system varies greatly. The authors start with optimistic rates and
gradually decrease expectations after including over 200 features until the criterion is
met. Each feature is trained so that it has minimal false positive rate fpi. The obtained
WCs hj are sorted according to their detection rates. The strong classifier is created
by incrementally adding the feature that either increases the detection rate (if it is
<di) or minimizes false positives until desired levels are achieved in both categories.
Since the features are tested independently, the weights of the positive and negative
training examples that are incorrectly classified are not changed. The decision of the
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ensemble classifier is formed by a majority vote of the WCs (that is, each WC has
equal weight in the work by wu et al. [30]). The authors state that using their model of
training, the desired detection rate was more difficult to achieve than the desired false
positive rate. To improve this defect, they introduce asymmetric feature selection.
They incorporated a weighting scheme into the selection of the next feature. They
chose weights of 1 for false positive costs and λ for false negative costs. λ is the
cost ratio between false negatives and false positives. This setup allows the system
to add features that increase the detection rate early on in the creation of the strong
classifier.

Wu et al. [30] state that their method works almost as well as that of Viola and
Jones when applied to the detection of upright, forward-facing faces. They however
achieve a training time that is two orders of magnitude faster than that of Viola and
Jones. This is achieved in part by using a training set that was much smaller than
Viola and Jones’ [27], yet generated similar results.

We will now explain the time complexity of both Viola and Jones’ [27] and Wu’s
[30] training methods. There are three factors to consider when finding the time com-
plexity of each training procedure: the number of features F, the number of WCs in
a classifier T, and the number of examples in the training set q. One feature in one
example takesO(1) time because of integral images. One feature on q examples takes
O(q) time to evaluate, and O(q log(q)) to sort and find the best WC. Finding the best
feature takes O(Fq log(q)) time. Therefore, the construction of the classifier takes
O(TFq log q). Wu’s [30] method takes O(Fq log q) time to train all of the classifiers
in the initial stage. Testing each new WC while assuming that the summary votes of all
classifiers are previously stored would takeO(q) time. It would then takeO(Fq) time
to select the best WC. Therefore, it takes O(TqF ) time to chose T WC. We deduce
that it would takeO(Fq log q+ TqF ) time to complete the training using the methods
described by Wu et al. [30]. The dominant term in the time complexity of Wu’s [30]
algorithm is O(TqF ). This is order O(log q) times faster than the training time for
Viola and Jones’ method [27]. For a training set of size q = 10, 000, log2 q ≈ 13. For
the same size training sets, Wu’s [30] algorithm would be 13 times faster to train,
not a 100 times as claimed by the authors. The authors compared training times to
achieve a predetermined accuracy rate, which requires fewer training items than Viola
and Jones’ method [27]. Froba et al. [13] elaborate on a face verification system. The
goal of this system is to be able to recognize a particular person based on his/her
face. The first step in face verification is face detection. The second is to analyze the
detected sample and see if it matches one of the training examples in the database.
The mouths of input faces into the system are cropped because the authors claim
that this part of the face varies the most and produces unstable results. They how-
ever include the forehead since it helps with system accuracy. The authors use the
same training algorithm for face detection as Viola and Jones [27], but include a few
new features. They use AdaBoost to do the training, but the training set is cropped,
which means that the machine is trained on slightly different input than Viola and
Jones [27]. The authors mention that a face is detectable and verifiable with roughly
200 features that are determined by AdaBoost during the training phase. The actual
verification or recognition step of individual people based on these images is done
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using information obtained in the detection step. Each face that is detected is made
up of a vector of 200 numbers that are the evaluations of the different features that
made up that face. These numbers more or less uniquely represent each face and are
used as a basis of comparison of two faces. The sum of the weighted differences in
the feature values between the detected face and the faces of the individual people
in the database is found and compared against a threshold as the verification step.
This is a sort of nearest-neighbor comparison that is used in many other applica-
tions.

11.5.7 Downhill Feature Search

McCane and Novins [20] described two improvements over the Viola and Jones’ [27]
training scheme for face detection. The first one is a 300-fold speed improvement
over the training method, with an approximately three times slower execution time
for the search. Instead of testing all features at each stag (exhaustive search), McCane
and Novins [20] propose an optimization search, by applying a “downhill search”
approach. Starting from a feature, a certain number of neighboring features are tested
next. The best one is selected as the next feature, and the procedure is repeated until
no improvement is possible. The authors propose to use same size adjacent features
(e.g., rectangles “below” and “above” a given one, in each of the dimensions that
share one common edge) as neighbors. They observe that the work by Viola and
Jones [27] applies AdaBoost in each stage to optimize the overall error rate, and
then, in a postprocessing step, adjust the threshold to achieve the desired detection
rate on a set of training data. This does not exactly achieve the desired optimization
for each cascade step, which needs to optimize the false positive rate subject to the
constraint that the required detection rate is achieved. As such, sometimes adding
a level in an AdaBoost classifier actually increases the false positive rate. Further,
adding new stages to an AdaBoost classifier will eventually have no effect when the
classifier improves to its limit based on the training data. The proposed optimization
search allows it to add more features (because of the increased speed), and to add
more parameters to the existing features, such as allowing some of the subsquares
in a feature to be translated. The second improvement in the work by McCane and
Novins [20] is a principled method for determining a cascaded classifier of optimal
speed. However, no useful information is reported, except the guideline that the false
positive rate for the first cascade stage should be between 0.5 and 0.6. It is suggested
that exhaustive search [27] could be performed at earlier stages in the cascade, and
replaced by optimized search [20] in later stages.

11.5.8 Bootstrapping

Sung and Poggio [22] applied the following “bootstrap” strategy to constrain the
number of nonface examples in their face detection system. They incrementally select
only those nonface patterns with high utility value. Starting with a small set of non-face
examples, they train their classifier with current database examples and run the face
detector on a sequence of random images (we call this set of images a “semitesting”
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set). All nonface examples that are wrongly classified by the current system as faces
are collected and added to the training database as new negative examples. They
notice that the same bootstrap technique can be applied to enlarge the set of positive
examples. In the work by Bartlett et al. [3], a similar bootstrapping technique was
applied. False alarms are collected and used as nonfaces for training the subsequent
strong classifier in the sequence, when building a cascade of classifiers.

Li et al. [18] observe that the classification performance of AdaBoost is often poor
when the size of the training sample set is small. In certain situations, there may be
unlabeled samples available and labeling them is costly and time consuming. They
propose an active learning approach, to select the next unlabeled sample that is at the
minimum distance from the optimal AdaBoost hyperplane derived from the current
set of labeled samples. The sample is then labeled and entered into the training set.
Abramson and Freund [1] employ a selective sampling technique, based on boost-
ing, which dramatically reduces the amount of human labor required for labeling
images. They apply it to the problem of detecting pedestrians from a video camera
mounted on a moving car. During the boosting process, the system shows subwin-
dows with close classification scores, which are then labeled and entered into positive
and negative examples. In addition to features from the work by Viola and Jones
[27], authors also use features with “control points” from the work by Burghardt and
Calic [2].

Zhang et al. [31] empirically observe that in the later stages of the boosting process,
the nonface examples collected by bootstrapping become very similar to the face
examples, and the classification error of Haar-like feature based WC is thus very close
to 50 percent. As a result, the performance of a face detection method cannot be further
improved. Zhang et al. [31] propose to use global features, derived from Principal
component analysis (PCA), in later stages of boosting, when local features do not
provide any further benefit. They show that WCs learned from PCA coefficients are
better boosted, although computationally more demanding. In each round of boosting,
one PCA coefficient is selected by AdaBoost. The selection is based on the ability to
discriminate faces and nonfaces, not based on the size of coefficient.

11.5.9 Other AdaBoost Based Object Detection Systems

Treptow et al. [26] described a real-time soccer ball tracking system, using the de-
scribed AdaBoost based algorithm [27]. The same features were used as in the work
by Viola and Jones [27]. They add a procedure for predicting ball movement.

Cristinacce and Cootes [6] extend the global AdaBoost-based face detector by
adding four more AdaBoost based algorithms that detect the left eye, right eye, left
mouth corner, and right mouth corner within the face. Their placement within the
face is probabilistically estimated. Training face images are centered at the nose and
some flexibility in position of other facial parts with a certain degree of rotation is
allowed in the main AdaBoost face detector, because of the help provided by the four
additional machines.

FloatBoost [31,32] differs from AdaBoost in a step where the removal of previously
selected WCs is possible. After a new WC is selected, if any of the previously added
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classifiers contributes to error reduction less than the latest addition, this classifier
is removed. This results in a smaller feature set with similar classification accuracy.
FloatBoost requires about a five times longer training time than AdaBoost. Because
of the reduced set of selected WCs, Zhang et al. [31,32] built several face recognition
learning machines (about 20), one for each of face orientation (from upfront to pro-
files). They also modified the set of features. The authors conclude that the method
does not have the highest accuracy.

Howe [11] looks at boosting for image retrieval and classification, with comparative
evaluation of several algorithms. Boosting is shown to perform significantly better
than the nearest-neighbor approach. Two boosting techniques that are compared are
based on feature- and vector-based boosting. Feature-based boosting is the one used
in the work by Viola and Jones [27]. Vector-based boosting works differently. First,
two vectors, toward positive and negative examples, are determined, both as weighted
sums (thus corresponding to a kind of average value). A hyperplane bisecting the angle
between them is used for classification. The dot product of the tested example that
is orthogonal to that hyperplane is used to make a decision. Comparisons are made
on five training sets containing suns, churches, cars, tigers, and wolves. The features
used are color histograms, correlograms (probabilities that a pixel B at distance x
from pixel A has the same color as A), stairs (patches of color and texture found in
different image locations), and Viola and Jones’ features. Vector boosting is shown
to be much faster than feature boosting for large dimensions. Feature-based boosting
gave better results than vector based when the number of dimensions in the image
representation is small.

Le and Satoh [15] observe AdaBoost advantages and drawbacks, and propose to
use it in the first two stages of the classification process. The first stage is a cascaded
classifier with subwindows of size 36× 36, the second stage is a cascaded classifier
with subwindows of size 24× 24. The third stage is an SVM classifier for greater
precision. Silapachote et al. [21] use histograms of Gabor and Gaussian derivative
responses as features for training and apply them for face expression recognition
with AdaBoost and SVM. Both approaches show similar results and AdaBoost offers
important feature selections that can be visualized.

Barreto et al. [4] described a framework that enables a robot (equipped with a
camera) to keep interacting with the same person. There are three main parts of
the framework: face detection, face recognition, and hand detection. For detection,
they use Viola and Jones’s features [27] improved by Lienhart and Maydt [14]. The
eigenvalues and PCA are used in the face recognition stage of the system. For hand
detection, they apply the same techniques used for face detection. They claim that the
system recognizes hands in a variety of positions. This is contrary to the claims made
by Kolsch et al. [13] who built one cascaded AdaBoost machine for every typical
hand position and even rotation.

Kolsch and Turk [16,17] describe and analyze a hand detection system. They create
a training set for each of the six posture/view combinations from different people’s
right hands. Then both training and validation sets were rotated and a classifier was
trained for each angle. In contrast to the case of the face detector, they found poor
accuracy with rotated test images for as little as a 4◦ rotation. They then added rotated
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example images to the same training set, showing that up to 15◦ of rotation can be
efficiently detected with one detector.

11.5.10 Binary and Fuzzy Weak Classifiers

Most AdaBoost implementations that we found in literature use binary WCs, where
the decision of a WC is either accept or reject, which will be valued at +1 and −1,
respectively (and described in Chapter 2). We also consider fuzzy WCs [23] as follows.
Instead of making binary decisions, fuzzy WCs make a ‘weighted’ decision, as a real
number in the interval [−1, 1]. Fuzzy WCs can then simply replace binary WCs as
basic ingredients in the training and testing programs, without affecting the code or
structure of the other procedures.

A fuzzy WC is a function of the form h(x, f, s, θ, θmn, θmx) where x is the tested sub
image, f is the feature used, s is the sign (+ or−), θ is the threshold, and θmn and θmx
are the adopted extreme values for positive and negative images. The sign s defines
on what side the threshold the positive examples are located. Threshold θ is used to
establish whether a given image passes a classifier test in the following fashion: when
feature f is applied to image x, the resulting number is compared to threshold θ to deter-
mine how this image is categorized by the given feature. The equation is given below

sf (x) < sθ.

If the equation evaluates true, the image is classified as positive. The function
h(x, f, s, θ, θmn, θmx) is then defined as follows. If the image is classified as posi-
tive (sf (x) < sθ) then h(x, f, s, θ, θmn, θmx) = min(1, |(f (x)− θ)/(θmn − θ)|). Oth-
erwise h(x, f, s, θ, θmn, θmx) = max(−1,−|(f (x)− θ)/(θmx − θ)|). This definition is
illustrated in the following example.

Let s = 1, thus the test is f (x) < θ. One way to determine θmn and θmx (used in our
implementation) is to find the minimal feature value of the positive examples (example
“1” seen here), and maximal negative value (example “H” seen here) and assign them
to θmn and θmx, respectively. If s = −1, then the definitions are modified accordingly.
Suppose that an image is evaluated to be around the letter “I” in the example (it could be
exactly the letter “I” in the training process or a tested image at runtime). Since f (x) <
θ, the image is estimated as positive. The degree of confidence in the estimation is
|(f (x)− θ)/(θmn − θ)|, which is about 0.5 in the example. If the ratio is > 1, then
it is replaced by 1. The result of the evaluation is then h(x, f, s, θ, θmn, θmx) = 0.5,
which is returned as the recommendation.

11.5.11 Strong Classifiers

A strong classifier is obtained by running the AdaBoost machine. It is a linear com-
bination of WCs. We assume that there are T WCs in a strong classifier, labeled
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h1, h2, . . . , hT , and each of these comes with its own weight labeled α1, α2, . . . , αT .
The tested image x is passed through the succession of WCs h1(x), h2(x), . . . , hT (x),
and each WC assesses if the image passed its test. In case of binary WCs, the recom-
mendations are either−1 or 1. In case of using fuzzy WCs, the assessments are values
ρ in the interval [−1, 1]. Values ρ from interval (0, 1] correspond to a pass (with confi-
dence ρ) and in the interval [0,−1] a fail. Note that hi(x) = hi(x, fi, si, θi, θmn, θmx)
is abbreviated here for convenience (parameters θmn and θmx are needed only for
fuzzy WCs). The decision that classifies an image as being positive or negative is
made by the following inequality:

α = α1h1(x)+ α2h2(x)+ · · · + αT hT (x) > δ.

From this equation, we see that images that pass (binary or weighted) weighted
recommendations of the WC tests are cataloged as positive. It is therefore a (simple or
weighted) voting of selected WCs. The value α also represents the confidence of over-
all voting. The error is expected to be minimal when δ = 0, and this value is used in
our algorithm. The α values are determined once at the beginning of the training pro-
cedure for each WC, and are not subsequently changed. Eachαi = − log(ei/(1− ei)).
Each ei is equal to the cumulative error of the WC.

11.6 CONCLUSIONS AND FUTURE WORK

It is not so trivial to apply any AdaBoost approach to the recognition of a new vision
problem. Pictures of the new object may not be readily available (such as those for
faces). A positive training set numbering in the thousands is easily acquired with a
few days spent on the internet hunting for faces. It took roughly a month to collect
the data set required for the training and testing of the detection of the Honda Accord
[24]. Even if a training set of considerable size could be assembled, how long would
it take to train? Certainly, it would take in the order of months. It is therefore not
possible to easily adapt Viola and Jones’ standard framework to any vision problem.
This is the driving force behind the large quantity of research that is being done in
this field. Many authors still try to build upon the AdaBoost framework developed
by Viola and Jones, which only credits this work further. The ideal object detection
system in CV would be the one that can easily adapt to finding different objects in
different settings while being autonomous from human input. Such a system is yet to
be developed.

It is easy to see that there is room for improvement in the detection procedures
seen here. The answer does not lie in arbitrarily increasing the number of training
examples and WCs. The approach of increasing the number of training examples is
brute force, and is costly when it comes to training time. Increasing the number of WCs
would result in slower testing times. We propose to do further research in designing
a cascaded classifier that will still work with a limited number of training examples,
but can detect a wide range of objects. This new cascaded training procedure must
also work in very limited time; in the order of hours, not days or months as proposed
by predecessors.
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The design of fuzzy WCs and the corresponding fuzzy training procedure may
be worth further investigation. We have perhaps only seen applications that were
solvable efficiently with standard binary WCs. There are perhaps some more difficult
problems, with finer boundaries between positive and negative examples, where fuzzy
WCs would produce better results. Since the change that is involved is quite small,
affecting only a few lines of code, it is worth trying this method in future object
detection cases.

All of the systems that were discussed here were mainly custom made to suit the
purpose of detecting one object (or one class of objects). Research should be driven
to find a flexible solution with a universal set of features that is capable of solving
many detection problems quickly and efficiently.

An interesting open problem is to also investigate constructive learning of good
features for object detection. This is different from applying an automatic feature
triviality test on existing large set of features, proposed in the works by Stojmenovic
[24,25]. The problem is to design a machine that will have the ability to build new
features that will have good performance on a new object detection task. This appears
to be an interesting ultimate challenge for the machine learning community.
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CHAPTER 12

2D Shape Measures for Computer Vision

PAUL L. ROSIN and JOVIŠA ŽUNIĆ

12.1 INTRODUCTION

Shape is a critical element of computer vision systems. Its potential value is made
more evident by considering how its effectiveness has been demonstrated in biologi-
cal visual perception. For instance, in psychophysical experiments it was shown that
for the task of object recognition, the outline of the shape was generally sufficient,
rendering unnecessary the additional internal detail, texture, shading, and so on avail-
able in the control photographs [1,22]. A second example is the so-called shape bias.
When children are asked to name new objects, generalizing from a set of previously
viewed artificial objects, it was found that they tend to generalize on the basis of
shape, rather than material, color, or texture [28,56].

There are many components in computer vision systems that can use shape
information, for example, classification [43], shape partitioning [50], contour
grouping [24], removing spurious regions [54], image registration [62], shape
from contour [6], snakes [11], image segmentation [31], data mining [64], and
content-based image retrieval [13], to name just a few.

Over the years, many ways have been reported in the literature for describing shape.
Sometimes they provide a unified approach that can be applied to determine a variety
of shape measures [35], but more often they are specific to a single aspect of shape.
This material is covered in several reviews [26,32,53,67], and a comparison of some
different shape representations has been carried out as part of the Core Experiment
CE-Shape-1 for MPEG-7 [2,29,61].

Many shape representations (e.g., moments, Fourier, tangent angle) are capable of
reconstructing the original data, possibly up to a transformation (e.g., modulo trans-
lation, rotation, scaling, etc.). However, for this chapter the completeness of the shape
representations is not an issue. A simpler and more compact class of representation in
common use is the one-dimensional signature (e.g., the histogram of tangent angles).
This chapter does not cover such schemes either, but is focused on shape measures
that compute single scalar values from a shape. Their advantage is that not only are
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Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.

347



348 2D SHAPE MEASURES FOR COMPUTER VISION

these measures extremely concise (benefiting storage and matching) but they tend
to be designed to be invariant to rotations, translations, and uniform scalings, and
often have an intuitive meaning (e.g., circularity) since they describe a single aspect
of the shape. The latter point can be helpful for users of computer vision systems to
understand their reasoning. The shapes themselves we assume to be extracted from
images and are presented either in the form of a set of boundary or interior pixels, or
as polygons.

The majority of the measures described have been normalized so that their values
lie in the range [0, 1] or (0, 1]. Nevertheless, even when measuring the same attribute
(e.g., there are many measures of convexity) the values of the measures are not directly
comparable since they have not been developed in a common framework (e.g., a
probabilistic interpretation).

The chapter is organized as follows: Section 12.2 describes several shape
descriptors that are derived by the use of minimum bounding rectangles. The consid-
ered shape descriptors are rectangularity, convexity, rectilinearity, and orientability.
Section 12.3 extends the discussion to the shape descriptors that can be derived from
other bounding shapes (different from rectangles). Fitting a shape model to the data
is a general approach to the measurement of shape; an overview of this is given in
Section 12.4. Geometric moments are widely used in computer vision, and their
application to shape analysis is described in Section 12.5. The powerful framework
of Fourier analysis has also been applied, and Fourier descriptors are a standard
means of representing shape, as discussed in Section 12.6.

12.2 MINIMUM BOUNDING RECTANGLES

As we will see in the next section, using a bounding shape is a common method
for generating shape measures, but here we will concentrate on a single shape,
optimal bounding rectangles, and outline a variety of its applications to shape
analysis.

Let R(S, α) be the minimal area rectangle with edges parallel to the coordinate
axes, which includes polygon S rotated by an angle α around the origin. Briefly, R(S)
means R(S, α = 0). Let Rmin(S) be the rectangle that minimizes area(R(S, α)). This
can be calculated in linear time with respect to the number of vertices of S by first
computing the convex hull followed by Toussaint’s [59] “rotating orthogonal calipers”
method.

12.2.1 Measuring Rectangularity

There are a few shape descriptors that can be estimated from Rmin(S). For example, a
standard approach to measure the rectangularity of a polygonal shape S is to compare
S and Rmin(S). Of course, the shape S is said to be a perfectly rectangular shape (i.e.,
S is a rectangle) if and only if S = Rmin(S). Such a trivial observation suggests that
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rectangularity can be estimated by

area(S)

area(Rmin(S))
.

Also, the orientation of S can be defined by the orientation of Rmin(S), or more
precisely, the orientation of S can be defined by the orientation of the longer edge
of Rmin(S). Finally, the elongation of S can be derived from Rmin(S), where the
elongation of S is estimated by the ratio of the lengths of the orthogonal edges of
Rmin(S).

Analogous measures can be constructed using the minimum perimeter bounding
rectangle instead of the minimum area bounding rectangle. Of course, in both cases
where the bounding rectangles are used, a high sensitivity to boundary defects is
expected.

12.2.2 Measuring Convexity

Curiously, the minimum area bounding rectangle can also be used to measure convex-
ity [70]. Indeed, a trivial observation is that the total sum of projections of all the edges
of a given shape S onto the coordinate axes is equal to the Euclidean perimeter of
R(S), which will be denoted by P2(R(S)). The sum of projections of all the edges of
S onto coordinate axes can be written asP1(S), whereP1(S) means the perimeter of S
in the sense of l1 distance (sometimes called the “city block distance”), and so we have

P1(S, α) = P2(R(S, α)) (12.1)

for every convex polygon S and all α ∈ [0, 2π) (P1(S, α) denotes the l1 perimeter of
S after rotation of an angle α).

The equality (12.1) could be satisfied for some nonconvex polygons as well (see
Fig. 12.1), but a deeper observation (see the work by Žunić and Rosin [70]) shows that
for any nonconvex polygonal shape S there is an angle α such that the strict inequality

P1(S, α) > P2(R(S, α)) (12.2)

holds.
Combining (12.1) and (12.2) the following theorem that gives a useful

characterization of convex polygons can be derived.

Theorem 1 ([70]) A polygon S is convex if and only if

P1(S, α) = P2(R(S, α))

holds for all α ∈ [0, 2π).
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FIGURE 12.1 (a) Since S is convex, then P1(S) = P2(R(S)). (b) If x and y are chosen to
be the coordinate axes, then P2(R(S)) = P1(S). Since S is not convex, there is another choice
of the coordinate axes, say u and v, such that the strict inequality P2(R(S)) < P1(S) holds.

Taking into account the previous discussion, inequality (12.2), and Theorem 1, the
following convexity measure C(S) for a given polygonal shape S is very reasonable:

C(S) = min
α∈[0,2π]

P2(R(S, α))

P1(S, α)
. (12.3)

The convexity measure defined as above has several desirable properties:

� The estimated convexity is always a number from (0, 1].
� The estimated convexity is 1 if and only if the measured shape is convex.
� There are shapes whose estimated convexity is arbitrary close to 0.
� The new convexity measure is invariant under similarity transformations.

The minimum of the function P2(R(S, α))/P1(S, α) that is used to estimate the
convexity of a given polygonal shape S cannot be given in a “closed” form. Also,
it is obvious that the computation of P2(R(S, α))/P1(S, α) for a big enough number
of uniformly distributed different values of α ∈ [0, 2π] would lead to an estimate of
C(S) within an arbitrary required precision. But a result from the work by Žunić and
Rosin [70] shows that there is a deterministic, very efficient algorithm that enables
the exact computation of C(S). That is an advantage of the method. It turned out that it
is enough to compute P2(R(S, α))/P1(S, α) for a number of O(n) different, precisely
defined, values of α and take the minimum from the computed values (n denotes the
number of vertices of S).

C(S) is a boundary-based convexity measure that implies a high sensitivity to the
boundary defects. In the majority of computer vision tasks robustness (rather than
sensitivity) is a preferred property, but in high precision tasks the priority has to be
given to the sensitivity.
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1.0000 0.9757 0.8648 0.8475

0.7894 0.6729 0.5617 0.5503

0.5422 0.4997 0.4672 0.4053

FIGURE 12.2 Shapes ranked by the C convexity measure.

Several shapes with their measured convexity values (the convexity measure C
is used) are presented in Figure 12.2. Each shape S is rotated such that the function
P2(R(S, α))/P1(S, α) reaches the minimum. The first shape (the first shape in the first
row) is convex leading to the measured convexity equal to 1. Since the used measure
C is boundary based, boundary defects are strongly penalized. For example, the first
shape in the second row, the last shape in the second row, and the last shape in the third
row all have measured convexity values that strongly depend on the intrusions. Also
note that there are a variety of different shape convexity measures (e.g., [5,42,58])
including both boundary- and area-based ones.

12.2.3 Measuring Rectilinearity

In addition to the above, we give a sketch of two recently introduced shape descriptors
with their measures that also use optimal (in a different sense) bounding rectangles.
We start with rectilinearity. This shape measure has many possible applications such
as shape partitioning, shape from contour, shape retrieval, object classification, image
segmentation, skew correction, deprojection of aerial photographs, and scale selection
(see the works by Rosin and Žunić [55,69]. Another application is the detection of
buildings from satellite images. The assumption that extracted polygonal areas whose
interior angles belong to {π/2, 3π/2} very likely correspond to building footprints on
satellite images seems to be reasonable. Consequently, a shape descriptor that would
detect how much an extracted region differs from a polygonal area with interior angles
belonging to {π/2, 3π/2} could be helpful in detecting buildings on satellite images
(see Fig. 12.3).

Thus, a shape with interior angles belonging to {π/2, 3π/2} is named a “rectilinear
shape,” while a shape descriptor that measures the degree to which shape can be
described as a rectilinear one is named “shape rectilinearity.” It has turned out that
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(a) (b)

FIGURE 12.3 (a) The presented rectilinear polygons correspond to building footprints.
(b) The presented (nonpolygonal) shapes correspond to building footprints but they are not
rectilinear polygons.

the following two quantities

R1(S) = 4

4− π ·
(

max
α∈[0,2π)

P2(S)

P1(S, α)
− π

4

)
(12.4)

R2(S) = π

π − 2
√

2
·
(

max
α∈[0,2π)

P1(S, α)√
2P2(S, α)

− 2
√

2

π

)
(12.5)

are appropriate to be used as rectilinearity measures. For a detailed explanation see
the work by Žunić and Rosin [69]. It is obvious that both R1 and R2 are boundary-
based shape descriptors. An area-based rectilinear descriptor is not defined yet. A
reasonably good area-based rectilinearity measure would be very useful as a building
detection tool when working with low quality images.

The following desirable properties of rectilinearity measures R1 and R2 hold (for
details see the works by Rosin and Žunić [55,69]):

� Measured rectilinearity values are numbers from (0, 1].
� A polygon S has a measured rectilinearity equal to 1 if and only if S is rectilinear.
� For each ε > 0, there is a polygon whose measured rectilinearity belongs to

(0, ε).
� Measured rectilinearities are invariant under similarity transformations.

Although R1 and R2 are derived from the same source and give similar results,
they are indeed different and they could lead to different shape ranking (with respect
to the measured rectilinearity). For an illustration see Figure 12.4; shapes presented in
Figure 12.4a are ranked with respect toR1 while the shapes presented in Figure 12.4b
are ranked with respect to R2.

12.2.4 Measuring Orientability

To close this section on related shape measures based on bounding rectangles, we
discuss “shape orientability” as a shape descriptor that should indicate the degree to
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(a)

(b)

FIGURE 12.4 Shapes ranked by rectilinearity measures (a) R1 and (b) R2.

which a shape has a distinct (but not necessarily unique) orientation. This topic was
recently investigated by the authors [71]. The definition of the orientability measure
uses two optimal bounding rectangles. One of them is the minimum area rectangle
Rmin(S) that inscribes the measured shape S while another is the rectangle Rmax(S)
that maximizes area(R(S, α)).A modification of Toussaint’s [59] rotating orthogonal
calipers method can be used for an efficient computation of Rmax(S).The orientability
D(S) of a given shape S is defined as

D(S) = 1− Rmin(S)

Rmax(S)
. (12.6)

Defined as above, the shape orientability has the following desirable properties:

� D(S) ∈ [0, 1) for any shape S.
� A circle has measured orientability equal to 0.
� No polygonal shape has measured orientability equal to 0.
� The measured orientability is invariant with respect to similarity transformations.

Since both Rmin(S) and Rmax(S) are easily computable, it follows that the shape
orientability of a given polygonal shape S is also easy to compute. For more details
we refer to the work by Žunić et al. [71].
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FIGURE 12.5 Trademarks ranked by orientability using D(S). The bounding rectangles
Rmin(S) and Rmax(S) are displayed for each measured shape S.

Note that a trivial approach could be to measure shape orientability by the
degree of elongation of the considered shape. Indeed, it seems reasonable to expect
that the more elongated a shape, the more distinct its orientation. But if such an
approach is used then problems arise with many-fold symmetric shapes, as described
later in Sections 12.5.1 and 12.5.2. However, measuring shape orientability by the
new measure D(S) is possible in the case of such many-fold symmetric shapes,
as demonstrated in Figure 12.5. This figure gives several trademark examples
whose orientability is computed by D(S). As expected, elongated shapes are
considered to be the most orientable. Note, however, that the measure D(S) is also
capable of distinguishing different degrees of orientability for several symmetric
shapes that have similar compactness, such as the first and last examples in the
top row.

12.3 FURTHER BOUNDING SHAPES

The approach taken to measure rectangularity (Section 12.2.1) can readily also be
applied to other shape measures, as long as the bounding geometric primitive can
be computed reasonably efficiently. However, in some cases it is not appropriate; for
instance, sigmoidality (see Section 12.4) is determined more by the shape of its medial
axis than its outline, while other measures such as complexity [40] or elongation (see
Section 12.5.2) are not defined with respect to any geometric primitive.

A simple and common use of such a method is to measure convexity. If we denote
the convex hull of polygonS by CH(S), then the standard convexity measure is defined
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as

C1(S) = area(S)

area(CH(S))
.

The computation time of the convex hull of a simple polygon is linear in the number of
its vertices [36] and so the overall computational complexity of the measure is linear.

A perimeter-based version can be used in place of the area-based measure:

C2 = P2(CH(S))

P2(S)
.

It was straightforward to apply the same approach to compute triangularity [51].
Moreover, since linear time (w.r.t. number of polygon vertices) algorithms are
available to determine the minimum area bounding triangle [37,39], this measure
could be computed efficiently. Many other similar measures are possible, and
we note that there are also linear time algorithms available to find bounding
circles [18] and bounding ellipses [19] that can be used for estimating circularity and
ellipticity.

A more rigorous test of shape is, given a realization of an ideal shape, to consider
fluctuations in both directions, that is, intrusions and protrusions. Thus, in the field of
metrology there is an ANSII standard for measuring roundness, which requires finding
the minimum width annulus to the data. This involves determining the inscribing and
circumscribing circles that have a common center and minimize the difference in their
radii. Although the exact solution is computationally expensive, Chan [8] presented an
O(n+ ε−2) algorithm to find an approximate solution that is within a (1+ ε)-factor
of optimality, where the polygon contains n vertices and ε > 0 is an input parameter.
We note that, in general, inscribed shapes are more computationally expensive to
compute than their equivalent circumscribing versions (even when the two are fitted
independently). For instance, the best current algorithm for determining the maximum
area empty (i.e., inscribed) rectangle takes O(n3) time [10] compared to the linear
time algorithm for the minimum area bounding rectangle. Even more extreme is the
convex skull algorithm; the optimal algorithm runs inO(n7) time [9] compared again
to a linear time algorithm for the convex hull.

12.4 FITTING SHAPES

An obvious scheme for a general class of shape measures is to fit a shape model to
the data and use the goodness of fit as the desired shape measure. There is of course
great scope in terms of which fitting procedure is performed, which error measure is
used, and the choice of the normalization of the error of fit.
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12.4.1 Ellipse Fitting

For instance, to fit ellipses, Rosin [48] used the least median of squares (LMedS) ap-
proach that is robust to outliers and enables the ellipse to be fitted reliably even in the
presence of outliers. The LMedS enables outliers to be rejected, and then a more accu-
rate (and ellipse-specific) least squares fit to the inliers was found [15]. Calculating the
shortest distance from each data point to the ellipse requires solving a quartic equation,
and so the distances were approximated using the orthogonal conic distance approx-
imation method [47]. The average approximated error over the data E was combined
with the region’s area A to make the ellipticity measure scale invariant [51]:

(
1+ E√

A

)−1

.

12.4.2 Triangle Fitting

For fitting triangles, a different approach was taken. The optimal three-line polygonal
approximation that minimized the total absolute error to the polygon was found using
dynamic programming. The average error was then normalized as above to give a
triangularity measure [51].

12.4.3 Rectangle Fitting

An alternative approach to measure rectangularity [51] from the one introduced in
Section 12.2 is to iteratively fit a rectangle R to S by maximizing the functional

1− area(R \ S)+ area(S \ R)

area(S ∩ R)
(12.7)

based on the two set differences between R and S normalized by the union of R and
S. This provides a trade-off between forcing the rectangle to contain most of the data
while keeping the rectangle as small as possible, as demonstrated in Figure 12.6. Each
iteration can be performed inO(n log n) time [12], where n is the number of vertices.

(a) (b)

FIGURE 12.6 The rectangle shown in (a) was fitted according to (12.7) as compared to the
minimum bounding rectangle shown in (b).
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12.4.4 Sigmoid Fitting

To measure sigmoidality (i.e., how much a region is S-shaped), several methods were
developed that analyze a single centerline curve that was extracted from the region
by smoothing the region until the skeleton (obtained by any thinning algorithm) is
nonbranching. The centerline is then rotated so that its principal axis lies along the
x-axis. Fischer and Bunke [14] fitted a cubic polynomial y = ax3 + bx2 + cx+ d and
classified the shape into linear, C-shaped, and sigmoid classes based on the coeffi-
cient values. A modified version specifically designed to produce only a sigmoidality
measure [52] fitted the symmetric curve given by y = ax3 + bx+ c. The correlation
coefficient ρ was used to measure the quality of fit between the data and the sampled
model. Inverse correlation was not expected, and so the value was truncated at zero.

Rather than fit models directly to the coordinates, other derived data can be used
instead. The following approach to compute sigmoidality used the tangent angle
that was modeled by a generalized Gaussian distribution [52] (see Fig. 12.7). The
probability density function is given by

p(x) = vη(v, σ)

2Γ (1/v)
e−[η(v,σ)|x|]v ,

where "(x) is the gamma function, σ is the standard deviation, v is a shape parameter
controlling the peakiness of the distribution (values v = 1 and v = 2 correspond to
Laplacian and Gaussian densities), and the following is a scaling function:

η(v, σ) = 1

σ

√
Γ (3/v)

Γ (1/v)
.

Mallat’s method [34] for estimating the parameters was employed. First, the mean
absolute value and variance of the data xi are matched to the generalized Gaussian.

-5 0 5
0

50

100

FIGURE 12.7 The tangent angle of the handwritten digit “5” is overlaid with the best fit
generalized Gaussian (dashed) — the good fit yields a high sigmoidality measure.
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If m1 = (1/n)
∑n
i=1 |xi| and m2 = (1/n)

∑n
i=1 x

2
i , then

v = F−1
(
m1√
m2

)
,

where

F (α) = Γ (2/α)√
Γ (1/α)Γ (3/α)

.

In practice, the values ofF (α) are precomputed, and the inverse function is determined
by a lookup table with linear interpolation. Finally, the tangent angle is scaled so that
the area under the curve sums to 1. It was found that rather than calculating the
measure as the correlation coefficient, better results were obtained by taking the area
of intersection A of the curves as an indication of the error of fit. An approximate
normalization was found by experimentation as max(2A− 1, 0).

12.4.5 Using Circle and Ellipse Fits

Koprnicky et al. [27] fitted two model shapes M (a circle and ellipse) to the data S
and for each considered four different error measures: the outer difference

area(S ∩M)

area(S)
,

the inner difference

area(S ∩M)

area(S)
,

as well as the sum and difference of the above. This provided four different measures,
from which the first three can be considered as circularity and ellipticity measures,
focusing on the different aspects of the errors.

12.5 MOMENTS

Moments are widely used in shape analysis tasks. Shape normalization, shape encod-
ing (characterization), shape matching, and shape identification are just some exam-
ples where moments techniques are successfully applied. To be precise, by “shape
moments” we mean geometric moments. The geometric moment mp,q(S) of a given
planar shape S is defined by

mp,q(S) =
∫
S

∫
xpyq dx dy.
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In real image processing applications, we are working with discrete data resulting from
a particular digitization process applied to real data. In the most typical situation, real
objects are replaced with a set of pixels whose centers belong to the considered shape.
In such a case, the exact computation of geometric moments is not possible and each
used moment mp,q(S) is usually replaced with its discrete analog μp,q(S), which is
defined as

μp,q(S) =
∑

(i,j)∈S∩Z2

ipjq,

where Z means the set of integers. The order ofmp,q(S) is said to be p+ q.Note that
the zeroth-order moment m0,0(S) of a shape S coincides with the area of S.

12.5.1 Shape Normalization: Gravity Center and Orientation

Shape normalization is usually an initial step in image analysis tasks or a part of
data preprocessing. It is important to provide an efficient normalization because a
significant error in this early stage of image analysis would lead to a large cumulative
error at the end of processing.

Shape normalization starts with the computation of image position. A common
approach is that the shape position is determined by its gravity center (i.e., center
of mass or, simply, centroid) of a given shape. Formally, for a given planar shape S
its gravity center (xc(S), yc(S)) is defined as a function of the shape area (i.e., the
zeroth-order moment of the shape) and the first-order moments

(xc(S), yc(S)) =
(
m1,0(S)

m0,0(S)
,
m0,1(S)

m0,0(S)

)
. (12.8)

Computation of shape orientation is another step in the shape normalization
procedure, which is computed using moments. The orientation seems to be a very
natural feature for many shapes, although obviously there are some shapes that do
not have a distinct orientation. Many rotationally symmetric shapes are shapes that
do not have a unique orientation while the circular disk is a shape that does not have
any specific orientation at all. The standard approach defines the shape orientation
by a line that minimizes the integral of the squared distances of points (belonging
to the shape) to this line. Such a line is also known as the “axis of the least second
moment of inertia.” If r(x, y, δ, ρ) denotes the perpendicular distance from the point
(x, y) to the line given in the form

x cos δ− y sin δ = ρ,

then the integral that should be minimized is

I(δ, ρ, S) =
∫
S

∫
r2(x, z, δ, ρ) dx dy.
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Elementary mathematics shows that the line that minimizes I(δ, ρ, S) passes through
the centroid (xc(S), yc(S)) of S and consequently we can set ρ = 0. Thus, the
problem of orientation of a given shape S is transformed to the problem of computing
the angle δ for which the integral

I(δ, S) =
∫
S

∫
(−x sin δ+ y cos δ)2dx dy (12.9)

reaches the minimum. Finally, if we introduce central geometric moments mp,q(S)
defined as usual

mp,q(S)
∫
S

∫
(x− xc(S))2(y − yc(S))2dx dy,

then the function I(δ, S) can be written as

I(δ, S) = m2,0(S)(sin δ)2 − 2m1,1(S) sin δ cos δ+m0,2(S)(cos δ)2, (12.10)

that is, as a polynomial in cos δ and sin δ whose coefficients are the second-order
moments of S. The angle δ for which I(δ, S) reaches its maximum defines the
orientation of S. Such an angle δ is easy to compute and it can be derived that the
required δ satisfies the equation

sin(2δ)

cos(2δ)
= 2m1,1(S)

m2,0(S)−m0,2(S)
. (12.11)

It is worth mentioning that if working in discrete space, that is, if continuous shapes
are replaced with their digitizations, then real moments have to be replaced with their
discrete analogs. For example, the orientation of discrete shape that is the result of
digitization of S is defined as a solution of the following optimization problem:

min
δ∈[0,2π)

⎧⎨⎩ ∑
(i,j)∈S∩Z2

(i sin δ− j cos δ)2

⎫⎬⎭ .
The angle δ that is a solution of the above problem satisfies the equation

sin(2δ)

cos(2δ)
= 2μ1,1(S)

μ2,0(S)− μ0,2(S)
,

which is an analog to (12.11).
So, the shape orientation defined by the axis of the least second moment of inertia

is well motivated and easy to compute in both continuous and discrete versions. As
expected, there are some situations when the method does not give any answer as
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to what the shape orientation should be. Such situations, where the standard method
cannot be applied, are characterized by

I(δ, S) = constant. (12.12)

There are many regular and irregular shapes that satisfy (12.12). The result from
the work by Tsai and Chou [60] says that (12.12) holds for all N-fold rotationally
symmetric shapes withN > 2, whereN-fold rotationally symmetric shapes are such
shapes that are identical to themselves after being rotated through any multiple of
2π/N.

In order to expand the class of shapes with a computable orientation, Tsai and
Chou [60] suggested a use of the so-called Nth order central moments IN (δ, S). For
a discrete shape S those moments are defined by

IN (δ, S) =
∑

(x,y)∈S
(−x sin δ+ y cos δ)N (12.13)

assuming that the centroid of S is coincident with the origin.
Now, the shape orientation is defined by the angle δ for which IN (δ, S) reaches the

minimum. ForN = 2, we have the standard method. Note that IN (δ, S) is a polynomial
in cos δ and sin δ while polynomial coefficients are central moments of S having the
order less than or equal to N.

A benefit from this redefined shape orientation is that the method can be applied to a
wider class of shapes. For example, since a square is a fourfold rotationally symmetric
shape, the standard method does not work. If I4(δ, S) is used, then the square can be
oriented. A disadvantage is that there is not a closed formula (as (12.11)) that gives δ
for which IN (δ, S) reaches the minimum for an arbitrary shape S. Thus, a numerical
computation has to be applied in order to compute shape orientation in the modified
sense.

Figure 12.8 displays some shapes whose orientation is computed by applying
the standard method (N = 2) and by applying the modified method with N = 4 and
N = 8. Shapes (1), (2), and (3) are not symmetric, but they have a very distinct ori-
entation. Because of that all three measured orientations are almost identical. Shapes
(4), (5), and (6) have exactly one axis of symmetry and consequently their orientation
is well determined. That is the reason why all three computed orientations coincide.
The small variation in the case of the bull sketch (shape (5)) is caused by the fact
that the sketch contains a relatively small number of (black) pixels, and consequently
the digitization error has a large influence. Shapes (7), (8), (9), and (10) do not have
a distinct orientation. That explains the variation in the computed orientations. For
shapes (11) and (12), the standard method does not work. The presented regular trian-
gle is a threefold rotationally symmetric shape and its orientation cannot be computed
for N = 4, as well. For N = 8, the computed orientation is 150◦, which is very rea-
sonable. This is the direction of one of the symmetry axes. Of course, the modified
method (in the case ofN = 8) gives the angles δ = 270◦ and δ = 30◦ as the minimum
of the function I8(δ, S) and those angles can also be taken as the orientation of the



362 2D SHAPE MEASURES FOR COMPUTER VISION

FIGURE 12.8 Computed orientation of the presented shapes for N = 2, N = 4, and N = 8
are given (in degrees).

presented triangle. The last shape is a fourfold rotationally symmetric shape whose
orientation cannot be computed by the standard method.

12.5.2 Shape Elongation

Shape elongation is another shape descriptor with a clear intuitive meaning. A com-
monly used measure of elongatedness uses the central moments and is computed
as the ratio of the maximum of I(δ, S) and the minimum of I(δ, S); that is, shape
elongation is measured as [38]

μ20(S)+ μ02(S)+
√

(μ20(S)− μ02(S))2 + 4μ11(S)2

μ20(S)+ μ02(S)−
√

(μ20(S)− μ02(S))2 + 4μ11(S)2
, (12.14)

which can be simplified and reformulated as√
(μ20(S)− μ02(S))2 + 4μ11(S)2

μ20(S)+ μ02(S)

to provide a measure in the range [0, 1].
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Similarly as in the previous subsection some problems arise when working with
shapes satisfying I(δ, S) = constant. All such shapes have the same measured elon-
gation equal to 1. Rather, it is more reasonable that all the regular 2n-gons have the
same measured elongation. It seems natural that the elongation of regular 2n-gons
decreases if n increases. Partially, the problem can be avoided if higher order moments
of inertia are used. A possibility (see the work by Žunić et al. [68]) is to define the
elongation of a given shape S as

max{IN (δ, S) | δ ∈ [0, 2π)}
min{IN (δ, S) | δ ∈ [0, 2π)} . (12.15)

Again, an advantage of the modified definition of the shape orientation is that a smaller
class of shapes would have the measured elongation equal to 1.Such a minimum possi-
ble measured elongation should be reserved for the circular disk only. On the contrary,
for N > 2 there is no closed formula (like (12.14)) that can be used for immediate
computation of the shape elongation. More expensive numerical algorithms have to
be applied. For more details about elongation of many-fold rotationally symmetric
shapes see the work by Žunić et al. [68].

12.5.3 Other Shape Measures

A simple scheme for measuring rectangularity [49] considers the moments of a rectan-
gle (dimensions a× b) centered at the origin and aligned with the axes. The moments
are m00 = ab and m22 = a3b3/144, and so the quantity

R = 144× m22

m3
00

is invariant for rectangles of variable aspect ratio and scaling, and can be normalized
as

RM =

⎧⎪⎨⎪⎩
R if R ≤ 1,

1

R
otherwise.

To add invariance to rotation and translation, the data are first normalized in the
standard way by moving its centroid to the origin and orienting its principal axis to
lie along the X-axis.

A straightforward scheme to measure similarity to shapes such as triangles and
ellipses that do not change their category of shape under affine transformations is to
use affine moment invariants [51]. The simplest version is to characterize shape using
just the first, lowest order affine moment invariant [16]

I1 = m20m02 −m2
11

m4
00

.
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This has the advantage that it is less sensitive to noise than the higher order mo-
ments. The moments for the unit radius circle are

μpq =
∫ 1

−1

∫ √r2−x2

−
√
r2−x2

xpyq dy dx

leading to the value of its invariant as I1 = 1/16π2.When normalized appropriately,
this then provides a measure of ellipticity

EI =

⎧⎪⎪⎨⎪⎪⎩
16π2I1 if I1 ≤ 1

16π2 ,

1

16π2I1
otherwise,

which ranges over [0, 1], peaking at 1 for a perfect ellipse. The same approach was
applied to triangles, all of which have the value I1 = 1/108, and the triangularity
measure is

TI =

⎧⎪⎪⎨⎪⎪⎩
108I1 if I1 ≤ 1

108
,

1

108I1
otherwise.

.

Of course, using a single moment invariant is not very specific, and so the above two
measures will sometimes incorrectly assign high ellipticity or triangularity values
to some other nonelliptical or triangular shapes. This can be remedied using more
moment values, either in the above framework, or as described next.

Voss and Süße describe a method for fitting geometric primitives by the method of
moments [63]. The data are normalized into a (if possible unique) canonical frame,
which is generally defined as the simplest instance of each primitive type, by ap-
plying an affine transformation. Applying the inverse transformation to the primitive
produces the fitted primitive. For example, for an ellipse they take the unit circle as
the canonical form, and the circle in the canonical frame is transformed back to an
ellipse, thereby providing an ellipse fit to the data. For the purposes of generating
shape measures, the inverse transformation is not necessary as the measures can be
calculated in the canonical frame. This is done by computing the differences between
the normalized moments of the data (m′ij) and the moments of the canonical primitive
(mij) where only the moments not used to determine the normalization are included:⎛⎝1+

∑
i+j≤4

(m′ij −mij)2

⎞⎠−1

.

The above approach method was applied in this manner by Rosin [51] to generate
measures of ellipticity and triangularity. Measuring rectangularity can be done in
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the same way, except that for fitting rectangles the procedure is modified to apply
a similarity transformation rather than an affine transformation. After this transfor-
mation the rectangle’s aspect ratio remains to be determined, and this is done by a
one-dimensional optimization using the higher order moments (up to fourth order).

We note that the above methods can all compute the moments either from the
polygon boundary directly (line moments) [57] or else can operate on the rasterized
set of pixels inside the polygon (region) [33].

12.6 FOURIER DESCRIPTORS

Like moments, Fourier descriptors are a standard means of representing shape. This
involves taking a Fourier expansion of the boundary function, which itself may be
described in a variety of ways. If the boundary of the region is given by the points
(xj, yj), j = 1, . . . , N, then one approach is to represent the coordinates by complex
numbers zj = xj + iyj [21]. Other possibilities are to represent the boundary by real
1D functions versus arc length such as tangent angle [66] or radius from the centroid.

Taking the representation zj = xj + iyj and applying the discrete Fourier trans-
form leads to the complex coefficients that make up the descriptors

Fk = ak + ibk = 1

N

N−1∑
m=0

zm exp (−i2πmk/N).

Often just the magnitude is used rk =
√
a2
k + b2

k , and since r1 indicates the size of
the region it can be used to make the descriptors scale invariant: wk = rk/r1.

For a study of sand particles, Bowman et al. [4] used individual Fourier descrip-
tors to describe specific aspects of shape, for example, w−3, w−2, w−1, and w+1
to measure, respectively, squareness, triangularity, elongation, and asymmetry. How-
ever, this approach is rather crude. A modification [53] to make the measure more
specific includes the relevant harmonics and also takes into account the remaining
harmonics that do not contribute to squareness:

(w−3 + w−7 + w−11 + · · ·)/
∑

∀i/∈{−1,0,1}
wi.

Kakarala [25] uses the same boundary representation and derives the following
expression for the Fourier expansion of the boundary curvature:

Kn = 1

2

N∑
m=−N

m
[
(m+ n)2F̄mFm+n + (m− n)2FmF̄m−n

]
,

where F is the complex conjugate of F .
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He shows that for a convex contour

K0 ≥ 2
2N∑
n=1

|Kn|

from which the following convexity shape measure is derived:

K0 − 2
∑2N
n=1 |Kn|∑2N

n=−2N |Kn|
.

Another measure based on curvature is “bending energy,” which considers the
analog of the amount of energy required to deform a physical rod [65]. If a circle
(which has minimum bending energy) is considered to be the simplest possible shape,
then bending energy can be interpreted as a measure of shape complexity or deviation
from circularity.

The normalized energy is the summed squared curvature values along the boundary,
which can be expressed in the Fourier domain as

N∑
m=−N

(
2πm

N

)4 (
|am|2 + |bm|2

)
although in practice the authors performed the computation in the spatial domain.

When the boundary is represented instead by the radius function, a “roughness
coefficient” can be defined as√√√√1

2

[(N+1)/2]−1∑
n=1

(
a2
n + b2

n

)
.

This shape measure is effectively the mean squared deviation of the radius function
from a circle of equal area [26].

12.7 CONCLUSIONS

This chapter has described several approaches for computing shape measures and has
showed how each of these can then be applied to generate a variety of specific shape
measures such as convexity, rectangularity, and so on. Figure 12.9 illustrates some of
the geometric primitives that have been inscribed, circumscribed, or otherwise fitted
to example data, and which are then used to generate shape measures.

Our survey is not complete, as there exist some methodologies in the literature
that we have not covered. Here, for instance, Information Theory has been used to
measure convexity [41] and complexity [17,40,44]. Projections are a common tool
in image processing, and in the context of the Radon transform have also been used
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min-R max-R robust-R circ-C insc-C voss-C voss-E voss-R voss-T

FIGURE 12.9 Geometric primitives fitted to shapes. min-R: minimum area rectangle; max-R:
maximum area rectangle; robust-R: best fit rectangle — equation (12.7); circ-C: circumscribing
circle; insc-C: inscribed circle; voss-C, voss-E, voss-R, voss-T: circle, ellipse, rectangle, and
triangle fitted by Voss and Süße’s moment-based method [63]. These primitives are used to
generate some of the shape measures described in this chapter.

to compute convexity, elongation, and angularity shape measures [30]; a measure
of triangularity was also based on projections [51]. Only a brief mention has been
made to the issues of digitization, but it is important to note that this can have a
significant effect. For instance, the popular compactness measure P2(S)2/area(S) in
the continuous domain is minimized by a circle but this is not true when working
with digital data [45]. Therefore, some measures explicitly consider the digitization
process, for example, for convexity [46], digital compactness [3,7], and other shape
measures [20].

Given these methodologies, it should be reasonably straightforward for the reader
to construct new shape measures as necessary. For instance, consider an application
requiring a “pentagonality” measure, that is, the similarity of a polygon to a regular
pentagon. Considering the various methods discussed in this chapter, several seem to
be readily applicable:

� A measure could be generated from the polygon’s bounding pentagon; see Sec-
tion 12.3.

� Once a pentagon is fitted to the polygon’s coordinates, various shape measures
can be produced; see Section 12.4.
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� Rather than directly processing the polygon’s coordinates the histogram of
boundary tangents could be used instead, and it would be straightforward to
fit five regular peaks and then compute a shape measure from the error of fit;
see again Section 12.4.

� The two methods for generating shape measures from moments by Voss and
Süße [63] and Rosin [51] could readily be applied; see Section 12.5.3.

� The Fourier descriptor method for calculating triangularity in Section 12.6 could
also be readily adapted to computing pentagonality.

The natural question is, which is the best shape measure? While measures can
be rated in terms of their computational efficiency, sensitivity to noise, invariance to
transformations, and robustness to occlusion, ultimately their effectiveness depends
on their application. For example, whereas for one application reliability in the pres-
ence of noise may be vital, for another sensitivity to subtle variations in shape may
be more important. It should also be noted that, while there are many possible shape
measures already available in the literature, and many more that can be designed, they
are not all independent. Some analysis on this topic was carried out by Hentschel and
Page [23] who computed the correlations between many similar measures as well as
determined the most effective one for the specific task of powder particle analysis.
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CHAPTER 13

Cryptographic Algorithms

BIMAL ROY and AMIYA NAYAK

13.1 INTRODUCTION TO CRYPTOGRAPHY

Cryptography is as old as writing itself and has been used for thousands of years to
safeguard military and diplomatic communications. It has a long fascinating history.
Kahn’s The Codebreakers [23] is the most complete nontechnical account of the
subject. This book traces cryptography from its initial and limited use by Egyptians
some 4000 years ago, to the twentieth century where it played a critical role in the
outcome of both the world wars. The name cryptography comes from the Greek words
“kruptos” (means hidden) and “graphia” (means writing).

For electronic communications, cryptography plays an important role and that is
why cryptography is quickly becoming a crucial part of the world economy. Organi-
zations in both the public and private sectors have become increasingly dependent on
electronic data processing. Vast amount of digital data are now gathered and stored
in large computer databases and transmitted between computers and terminal devices
linked together in complex communication networks. Without appropriate safeguards,
these data are susceptible to interception (i.e., via wiretaps) during transmission, or
they may be physically removed or copied while in storage. This could result in
unwanted exposures of data and potential invasions of privacy. Before the 1980s,
cryptography was used primarily for military and diplomatic communications, and in
fairly limited contexts. But now cryptography is the only known practical method for
protecting information transmitted through communications networks that use land
lines, communications satellites, and microwave facilities. In some instances, it can
be the most economical way to protect stored data.

A cryptosystem or cipher system is a method of disguising messages so that only
certain people can see through the disguise. Cryptography, the art of creating and using
cryptosystems, is one of the two divisions of the field called cryptology. The other
division of cryptology is cryptanalysis, which is the art of breaking cryptosystems,
seeing through the disguise even when you are not supposed to be able to. Thus,
cryptology is the study of both cryptography and cryptanalysis. In cryptology, the
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original message is called a plaintext. The disguised message is called a ciphertext,
and the encryption means any procedure to convert plaintext into ciphertext, whereas
decryption means any procedure to convert cipher text into plaintext.

The fundamental objective of cryptography is to enable two people, say A and
B, to communicate over an insecure channel in such a way that an opponent O,
cannot understand what is being said. Suppose A encrypts the plaintext using the
predetermined key and sends the resulting ciphertext over the channel. O (opponent)
on seeing the ciphertext in the channel by intercepting (i.e., wire tapping), cannot
determine what the plaintext was; but B, who knows the key for encryption, can
decrypt the ciphertext and reconstruct the plaintext. The plaintext messageM that the
sender wants to transmit will be considered to be a sequence of characters from a set
of fixed characters called alphabet. M is encrypted to produce another sequence of
characters from the set alphabet called the cipher C. In practice, we use the binary
digits (bits) as alphabet. The encryption function Eke operates on M to produce C,
and the decryption function Dkd operates on C to recover original plaintextM. Both
the encryption function Eke and the decryption function Dkd are parameterized by
the keys ke and kd , respectively, which are chosen from a very large set of possible
keys called keyspace. The sender encrypts the plaintext by computing C = Eke (M)
and sends C to the receiver. Those functions have properties that receiver recovers
the original text by computing Dkd (C) = Dkd (Eke (M)) = M (see Fig. 13.1).

Two types of cryptographic schemes are typically used in cryptography. They are
private key (symmetric key) cryptography and public key (asymmetric key) cryptog-
raphy. Public key cryptography is a relatively new field. It was invented by Diffie and
Hellman [11] in 1976. The idea behind a public key cryptosystem is that it might be
possible to find a cryptosystem where it is computationally infeasible to determine the
decryption rule given the encryption rule. Moreover, in public key cryptography, the
encryption and the decryption are performed with different keys, whereas in private
key cryptography both parties possesses the same key. Private key cryptography is
again subdivided into block cipher and stream cipher. The stream ciphers operate
with a time-varying transformation on smaller units of plane text, usually bits,
whereas the block ciphers operate with a fixed transformation on larger blocks of
data. Symmetric and asymmetric systems have their own strengths and weaknesses.
In particular, asymmetric systems are vulnerable in different ways, such as through
impersonation, and are much slower in execution than symmetric systems. However,
they have particular benefits and, importantly, can work together with symmetric

sender
M Ek e (M )

ke

keyspace

C

public channel

Dk d (C )

kd

keyspace

M
receiver

FIGURE 13.1 Basic cryptosystem.
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systems to create cryptographic mechanisms that are elegant and efficient and can
give an extremely high level of security. In this chapter, we will deal with both stream
and block ciphers. Let us first talk about stream ciphers. In the following section, we
will define and explain some of the important terms regarding stream ciphers.

13.2 STREAM CIPHERS

In stream ciphers, plaintext P is a binary string; keystream, K, is a pseudo-random
binary string; ciphertext, C, is a bit-wise XOR (addition modulo 2) of plaintext and
keystream. Decryption is bit-wise XOR of ciphertext and keystream. Let us consider
the following example.

P : 100011010101111011011

K : 010010101101001101101

C : 110001111000110110110

In this example, one can observe that C = P ⊕K. Also, P = C ⊕K.
In 1949, Claude Shannon published a paper “Communication Theory of Secrecy

Systems” [34] that had a great impact on the scientific study of cryptography. In the
following subsection, we will discuss about Shannon’s notion of perfect secrecy.

13.2.1 Shannon’s Notion of Perfect Secrecy

Let P , K, and C denote the finite set of possible plaintexts, keys, and ciphertexts,
respectively, for a given cryptosystem. We assume that a particular key k ∈ K is used
for only one encryption. Let us suppose that there are probability distributions on
both P and K. Thus, two probability distributions on P and K induce a probability
distribution on C. Then, the cryptosystem has a perfect security, if

Pr(x | y) = Pr(x) for all x ∈ P and for all y ∈ C.

This basically means that the ciphertext has no information about the plaintext. The
basic strength of stream- cipher lies in how “random” the keystream is. Random
keystream will satisfy Shannon’s notion [34]. Let us consider the following illustra-
tion.

Illustration Let us consider one bit encryption;C = P ⊕K. Here, K random means
Pr(K = 0) = Pr(K = 1) = 1

2 . Let Pr(P = 0) = 0.6, Pr(P = 1) = 0.4. Then

Pr(P = 0 | C = 1) = Pr(P = 0, C = 1)

Pr(C = 1)

= Pr(P = 0, C = 1)

Pr(P = 0, C = 1)+ Pr(P = 1, C = 1)
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= Pr(C = 1 | P = 0) · Pr(P = 0)

Pr(C = 1 | P = 0) · Pr(P = 0)+ Pr(C = 1 | P = 1) · Pr(P = 1)

= Pr(K = 1) · Pr(P = 0)

Pr(K = 1) · Pr(P = 0)+ Pr(K = 0) · Pr(P = 1)

=
1
2 × 0.6

1
2 × 0.6+ 1

2 × 0.4 = 0.6 = Pr(P = 0)

= 0.6 = Pr(P = 0).

Likewise, Pr(P = 0 | C = 0) = Pr(P = 0), Pr(P = 1 | C = 1) = Pr(P = 1), and
Pr(P = 1 | C = 0) = Pr(P = 1).

The main objective of a stream cipher construction is to getK as much random as
possible. So the measurement of randomness plays an important role in cryptography.
In the following subsection, we will discuss about the randomness measurements.

13.2.2 Randomness Measurements

Randomness of a sequence is the unpredictability property of sequence. The aim is
to measure randomness of the sequence generated by a deterministic method called a
generator. The test is performed by taking a sample output sequence and subjecting it
to various statistical tests to determine whether the sequence possesses certain kinds
of attributes, a truly random sequence would be likely to exhibit. This is the reason
the sequence is called pseudo-random sequence instead of random sequence and the
generator is called pseudo-random sequence generator (PSG) in literature.

The sequence s = s0, s1, s2, . . . is said to be periodic if there is some positive
integer N such that si+N = si and smallest N is called the period of sequence.

Golomb’s Randomness Postulates is one of the initial attempts to establish some
necessary conditions for a periodic pseudo-random sequence to look random.

13.2.2.1 Golomb’s Randomness Postulates

R-1: In every period, the number of 1’s differ from the number of 0’s by at most
1. Thus, |∑N−1

i=0 (−1)si | ≤ 1.

R-2: In every period, half the runs have length 1, one fourth have length 2, one-
eighth have length 3, and so on, as long as the number of runs so indicated
exceeds 1. Moreover, for each of these lengths, there are (almost) equally
many runs of 0’s and of 1’s.

R-3: The autocorrelation function C(τ) =∑N−1
i=0 (−1)si+si+τ is two valued. Ex-

plicitly

C(τ) =
{
N if τ ≡ 0(modN)

T if τ �≡ 0(modN),

where T is a constant.
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As an example, let us consider the periodic sequence s of period 15 with cycle

s15 = 011001000111101.

One can observe that

R-1: There are seven 0’s and eight 1’s.

R-2: Total runs are 8. Four runs of length 1 (2 for each 0’s and 1’s), two runs of
length 2 (one for each 0’s and 1’s), one run of 0’s of length 3, and one run
of 1’s of length 4.

R-3: The function C(τ) takes only two values: C(0) = 15 and C(τ) = −1 for
1 ≤ τ ≤ 14.

13.2.3 Five Basic Tests

1. Frequency test (monobit test): To test whether the number of 0’s and 1’s in
sequence s is approximately the same, as would be expected for a random
sequence.

2. Serial test (two-bit test): To determine whether the number of 00, 01, 10, and
11 as subsequences of s are approximately the same, as would be expected for
a random sequence.

3. Poker test: Letm be a positive integer. Divide the sequence into n/m nonover-
lapping parts of lengthm. To test whether the number of each sequence of length
m is approximately the same, as would be expected for a random sequence.

4. Runs test: To determine whether the number of runs of various lengths in the
sequence satisfy the R-2, as expected for a random sequence.

5. Autocorrelation test: To check whether correlation between the sequence and
its sifted version is approximately 0 when the number of shifts is not divisible
by the period as expected for a random sequence. Here, autocorrelation is taken
as C(τ)/N, C(τ) is as defined in R-3.

For details on randomness measurement one can see the work by Gong [20].
In the next subsection, we will discuss about an efficient method of producing

keystream in hardware using linear feedback shift register (LFSR).

13.2.4 LFSR

One of the basic constituents in many stream ciphers is a LFSR. An LFSR of length
L consists of L stages numbered 0, 1, . . . , L− 1, each storing one bit and having
one input and one output; together with a clock that controls the movement of data.
During each unit of time, the following operations are performed:

(i) The content of stage 0 is the output and forms part of the output sequence.

(ii) The content of stage i is moved to stage i− 1.



378 CRYPTOGRAPHIC ALGORITHMS

(iii) The new content of stage L− 1 is the feedback bit that is calculated by
adding together modulo 2 the previous contents of a fixed subset of stages
0, 1, . . . , L− 1.

The position of these previous contents may be thought of having a correspondence
with a polynomial. A polynomial

∑k
i=0 aiX

i induces the recurrence on the output

{Dn : n ≥ 1} as Dn =
k∑
i=1

ak−iDn−i.

Let us consider the following example.

Example Consider an LFSR 〈4, 1+X3 +X4〉. It induces the recurrence Dn =
Dn−1 +Dn−4.

t D3 D2 D1 D0

0 0 1 1 0
1 0 0 1 1
2 1 0 0 1
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
6 1 0 0 0
7 1 1 0 0
8 1 1 1 0
9 1 1 1 1

10 0 1 1 1
11 1 0 1 1
12 0 1 0 1
13 1 0 1 0
14 1 1 0 1
15 0 1 1 0

Output: s = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, . . . .
For cryptographic use, the LFSR should have period as long as possible. The

following result takes care of it.

If C(X) is a primitive polynomial, then each of the 2L − 1 nonzero initial states
of the LFSR 〈L,C(X)〉 produces an output sequence with maximum possible period
2L − 1.

If C(X) ∈ Z2[X] is a primitive polynomial of degree L, then 〈L,C(X)〉 is called
a maximum-length LFSR.
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13.2.5 Linear Complexity

Linear complexity is a very important concept for the study of randomness of
sequences. The linear complexity of an infinite binary sequence s, denoted L(s), is
defined as follows:

(i) If s is the zero sequence s = 0, 0, 0, ..., then L(s) = 0.

(ii) If no LFSR generates s, then L(s) = ∞.

(iii) Otherwise, L(s) is the length of the shortest LFSR that generates s.

The linear complexity of a finite binary sequence s(n), denoted L(s(n)), is the length
of the shortest LFSR that generates a sequence having s(n) as its first n terms.

13.2.6 Properties of Linear Complexity

Let s and t be binary sequences.

(i) For any n ≥ 1, the linear complexity of the subsequence s(n) satisfies 0 ≤
L(s(n)) ≤ n.

(ii) L(s(n)) = 0 if and only if s(n) is the zero sequence of length n.

(iii) L(s(n)) = n if and only if sn = 0, 0, 0, . . . , 0, 1.

(iv) If s is periodic with period N , then L(s) ≤ N.

(v) L(s⊕ t) ≤ L(s)+ L(t), where s⊕ t denotes the bitwise XOR of s and t.

(vi) For a finite sequence of length n, linear complexity ≤ n/2. If the linear com-
plexity is strictly less than n

2 , the sequence is not random. For a random se-
quence, linear complexity should be n

2 . This is one of the strongest measure
of randomness.

Berlekamp [1] and Massey [26] devised an algorithm for computing the linear
complexity of a binary sequence.

Let us define, s(N+1) = s0, s1, . . . , sN−1, sN . The basic idea is as follows. Let
〈L,C(X)〉 be an LFSR that generates the sequence s(N) = s0, s1, . . . , sN−1. Let us
define the next discrepancy as

dN =
(
sN +

L∑
i=1

cisN−i

)
mod 2.

If dN is 0, the same LFSR also produces SN+1, else the LFSR is to be modified. The
detailed algorithm is stated below.

13.2.6.1 Berlekamp–Massey Algorithm

Input: a binary sequence s(n) = s0, s1, s2, . . . , sn−1.

Output: the linear complexity L(s(n)) of s(n).
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1 Initialize C(X) ← 1, L← 0,m←−1,
B(X) ← 1, N ← 0.

2 While (N < n) do
2.1Compute d ← (sN +

∑L
i=1 cisN−i)

2.2If d = 1 then
T (X) ← C(X), C(X) ← C(X)+ B(X)XN−m.
If L ≤ N/2 then L← N + 1− L,
m← N,B(X) ← T (X).

2.3N ← N + 1.

3 Return(L).

Let us illustrate the algorithm for two sequences: s(n) = 0, 0, 1, 1, 0, 1, 1, 1, 0
and t(n) = 0, 0, 1, 1, 0, 0, 0, 1, 1, 0. The first sequence has linear complexity 5 and
an LFSR that generates it is 〈5, 1+X3 +X5〉. The second sequence has the linear
complexity 3 and and an LFSR that generates it is 〈3, 1+ x+ x2〉. Since linear
complexity is less than n/2 = 5, the sequence is not random, which is also evident
from the sequence.

The steps of the Berlekamp–Massey algorithms are explained in the two following
tables.

sN d T (X) C(X) L m B(X)
– – – 1 0 −1 1
0 0 – 1 0 −1 1
0 0 – 1 0 −1 1
1 1 1 1+X3 3 2 1
1 1 1+X3 1+X+X3 3 2 1
0 1 1+X+X3 1+X+X2 +X3 3 2 1
1 1 1+X+X2 +X3 1+X+X2 3 2 1
1 0 1+X+X2 +X3 1+X+X2 3 2 1
1 1 1+X+X2 1+X+X2 +X5 5 7 1+X+X2

0 1 1+X+X2 +X5 1+X3 +X5 5 7 1+X+X2

tN d T (X) C(X) L m B(X)
– – – 1 0 −1 1
0 0 – 1 0 −1 1
0 0 – 1 0 −1 1
1 1 1 1+X3 3 2 1
1 1 1+X3 1+X+X3 3 2 1
0 1 1+X+X3 1+X+X2 +X3 3 2 1
0 0 1+X+X3 1+X+X2 +X3 3 2 1
0 0 1+X+X3 1+X+X2 +X3 3 2 1
1 0 1+X+X3 1+X+X2 +X3 3 2 1
1 0 1+X+X3 1+X+X2 +X3 3 2 1
0 0 1+X+X3 1+X+X2 +X3 3 2 1
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FIGURE 13.2 Nonlinear filter generator.

The running time of the algorithm for determining the linear complexity of a
binary sequence of bit length n is O(n2) bit operations. For a finite binary sequence
of length n, let the linear complexity be L. Then there is a unique LFSR of length L
which generates the sequence iffL ≤ n/2. For an infinite binary sequence (s) of linear
complexityL, let t be a (finite) subsequence of length at least 2L. Then the Berlekamp–
Massey algorithm on input t determines an LFSR of length L which generates s.

13.2.7 Nonlinear Filter Generator

A filter generator is a running key generator for stream cipher applications. It consists
of a single LFSR that is filtered by a nonlinear Boolean function f . This model
has been in practical use for generating the keystream of a stream cipher. However,
the strength of this model depends on the choice of the nonlinear Boolean function
(Fig.13.2).

13.2.8 Synchronous and Asynchronous Stream Ciphers

There are two types of stream ciphers.

1. Synchronous: keys are generated before encryption process independently of
the plaintext and ciphertext. Example: DES in OFB mode.

2. Asynchronous: encryption keys are generated using keys and a set of former
ciphertext bits. Example: A5 used in GSM, DES in CFB mode (Fig.13.3).

13.2.8.1 Synchronous vs Asynchronous Stream Ciphers Attributes of
synchronous stream ciphers:

� Easy to generate.
� No error propagation.
� Insertion, deletion can be detected.
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FIGURE 13.3 Asynchronous stream cipher.

� Data authentication and integrity check required.
� Synchronization required. Both the sender and receiver must be synchronized. If

synchronization is lost, then decryption fails and can only be restored by resyn-
chronization. Technique for resynchronization includes reinitialization, placing
special markers at regular intervals in the ciphertext, or, if the plaintext contains
enough redundancy, trying all possible keystream offsets.

Attributes of asynchronous stream ciphers.

� Self-synchronized and limited error propagation.
� More difficult to detect insertion and deletion.
� Plaintext statistics are dispersed through ciphertext.
� More resistant to eavesdropping.
� Harder to generate.

13.2.9 RC4 Stream Ciphers

RC4 was created by Rivest for RSA Securities. Inc. in 1994. Its key size varies from
40 to 256 bits. It has two parts, namely, a key scheduling algorithm (KSA) and a
pseudo-random generator algorithm (PRGA). KSA turns a random key into a initial
permutation S of {0, · · · , N − 1}. PRGA uses this permutation to generate a pseudo-
random output sequence.
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13.2.9.1 Key scheduling algorithm KSA(K)
Initialization :

For i = 0, . . . , N − 1 DO
S[i] = i
j = 0

endDo
Scrambling

For i = 0, . . . , N − 1 Do
j = j + S[i]+K[i mod l], where l is the byte length of key

Swap (S[i], S[j])
endDo

Example Let N = 8, l = 8, and the key

K = 1 3 0 0 1 2 0 0

S = 0 1 2 3 4 5 6 7

i = 0, j = 0+ 0+ 1 = 1, S = 1 0 2 3 4 5 6 7

i = 1, j = 1+ 0+ 3 = 4, S = 1 4 2 3 0 5 6 7

13.2.9.2 Pseudo-random Sequence Generator PRGA(K)
Initialization
i = 0
j = 0

Generating loop
i = i+ 1
j = j + S[i]

Swap (S[i], S[j])
Output z = S(S[i]+ S[j])

Example Let

S = 7 2 6 0 4 5 1 3

i = 1, j = 2, S = 7 6 2 0 4 5 1 3

z = S(6+ 2) = S(0) = 7

13.2.9.3 Weaknesses in RC4

1. The most serious weakness in RC4 was observed by Mantin and Shamir [25]
who noted that the probability of a zero output byte at the second round is twice
as large as expected. In broadcast applications, a practical ciphertext only attack
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FIGURE 13.4 Nonlinear combiner model.

can exploit this weakness.

2. Fluhrer et al. [18] have shown that if some portion of the secret key is known
then RC4 can be broken completely. This is of practical importance.

3. Pudovkina [31] has attempted to detect a bias, only analytically, in the distri-
bution of the first and second output values of RC4 and digraphs under certain
uniformity assumptions.

4. Paul and Preneel [30] have shown a statistical bias in the distribution of the first
two output bytes of the RC4 keystream generator. They have shown that the
probability of the first two output bytes being equal is (1/N)(1− 1/N). (Note
that RC4 produced output bytes uniformly then the probability of that event
would have been 1/N.)

The number of outputs required to reliably distinguish RC4 outputs from
random strings using this bias is only 225 bytes.

Most importantly, the bias exists even after dropping the first N bytes and
the probability of that event is (1/N)

(
1− 1/N2

)
.

13.2.10 Combiner Model

In this model, several LFSRs are considered. The output of these are combined by a
Boolean function to produce the “keystream.” This is one of the most commonly used
stream cipher models. The strength of this model lies in the choice of the combining
function.

In the next subsection, we will discuss some of cryptographic properties of Boolean
function. Boolean functions play a basic role in questions of complexity theory as
well as the design of circuits and chips for digital computers. In both nonlinear filter
generator and nonlinear combiner model, the security depends largely on the choice
of the Boolean functions. Therefore, the study of cryptographic properties of Boolean
functions is extremely relevant and important (Fig. 13.4).

13.2.11 Cryptographic Properties of Boolean Function

We interpret a Boolean function f (X1, . . . , Xn) as the output col-
umn of its truth table f , that is, a binary string of length 2n, f =
[f (0, . . . , 0), f (1, 0, . . . , 0), f (0, 1, . . . , 0), . . . , f (1, 1, . . . , 1)]. f (X1, . . . , Xn)
can be written in algebraic normal form as a0 +

∑i=n
i=1 aiXi +

∑
1≤i<j≤n aijXiXj +



STREAM CIPHERS 385

. . .+ a12,...,nX1X2 · · ·Xn, where a0, aij, . . . , a12...n ∈ {0, 1}. The number of
variables in the highest order product term with nonzero coefficient is called the
algebraic degree of f . For example, f (X1, X2, X3) = X3 +X1 ·X2 is a three
variable Boolean function with algebraic degree 2. Here (+) and (·) denote addition
(XOR) and multiplication (AND) over GF (2), respectively. By �n, we mean the set
of all Boolean functions of n variables. Functions of degree at most one are called
affine functions. An affine function with constant term equal to zero is called a linear
function. For example, f (X1, X2, X3) = 1+X1 +X2 +X3 is an affine function.
The set of all n-variable affine (respectively linear) functions is denoted by A(n)
respectively L(n). Nonlinearity of an n-variable function f is

nl(f ) = min
g∈A(n)

(d(f, g)),

that is, the minimum distance from the set of all n-variable affine functions.

Example of Boolean Function

x1 x2 x3 f1 f2 f3 f4 f5 f6 f7 f8 f

0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 1 1 1 0
0 1 0 1 0 1 0 1 1 0 1 0
0 1 1 1 0 1 1 1 0 1 0 0
1 0 0 1 1 0 0 1 0 1 1 0
1 0 1 1 1 0 1 1 1 0 0 0
1 1 0 1 1 1 0 0 1 1 0 1
1 1 1 1 1 1 1 0 0 0 1 1

Function Distance from f
f1 6
f2 2
f3 2
f4 4
f5 6
f6 4
f7 4
f8 4

Here nl(f ) = 2.
Let X = (X1, . . . , Xn) and ω = (ω1, . . . , ωn) both belong to {0, 1}n and

X · ω = X1ω1 + · · · +Xnωn.

Let f (X) be a Boolean function on n variables. Then the Walsh transform of f (X) is
a real-valued function over {0, 1}n that can be defined as

Wf (ω) =
∑

X∈{0,1}n
(−1)f (X)+X·ω.
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It can be shown that

nl(f ) = 2n−1 − 1
2 maxω∈{0,1}n |Wf (ω)|.

A function f (X1, . . . , Xn) is mth order correlation immune (CI) iff its Walsh
transform satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m. Note that f is balanced iff
Wf (0) = 0. Balancedmth order CI functions are calledm-resilient functions. A func-
tion f (X1, . . . , Xn) is m-resilient iff its Walsh transform satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m.
Example of Boolean Function

x4 x3 x2 x1 f

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

In the above example, the ANF is f = x4 ⊕ x3 ⊕ x2x1. Also n = 4, algebraic degree
d = 2, m, the order of CI is 1 and nonlinearity is 4. These are the best possible
parameters for such a function.

13.2.12 Design of Boolean Function

By an (n,m, d, x) function we denote an n-variable, m-resilient function with alge-
braic degree d and nonlinearity x.

Tradeoffs for Design

1. Siegenthaler’s inequality : m+ d ≤ n− 1.

2. nlmax(n) : max nonlinearity of n-variable function.

nlmax(n) ≤ 2n−1 − 2(n/2)−1.

If n is even, nlmax(n) = 2n−1 − 2(n/2)−1.
3. nlr(n,m) : maximum possible nonlinearity of n-variable,m-resilient functions.
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Specific construction techniques, like recursive construction, concatenation of small
affine functions, are used for designing certain (n,m, d, x) functions. This is an area
of active research.

Recursive Construction Basic idea proposed in the work by Siegenthalor [35].
To start with, one can consider an unbalanced function g on n−m− 1 variables.
Next, note that the (n−m)-variable function h = Xn−m + g(X1, . . . , Xn−m−1) is
balanced. Now consider the function f on n variables as Xn + . . .+Xn−m+1 +
h(X1, . . . , Xn−m). This is an (n,m, d, x) function. We will talk about the values
of d, x little later. That is, after getting the balanced function h, addition of each
new variable increases the order of correlation immunity by 1. Now interpret this
construction in the following way. Let hk,i be a k-variable resilient function of
order i. Just as notation, we consider the unbalanced functions as resilient func-
tions of order −1 and balanced non-CI functions as resilient functions of order 0.
It is now clear that Xk+1 + hk,i is always a (k + 1)-variable, (i+ 1)-resilient func-
tion. Let us call this c (complement) operation, since the truth table of hk,i and its
complement are concatenated to get the (k + 1)-variable function. Extension of this
kind of construction has been discussed in the work by Camion et al. [7]. If i is
even, then (1+Xk+1)hk,i(X1, . . . , Xk)+Xk+1hk,i(1+X1, . . . , 1+Xk) is (k + 1)-
variable, (i+ 1)-resilient function. We call this as r (reverse) operation, since the truth
table of hk,i and its reverse string are concatenated to get the (k + 1)-variable function.
If i is odd, then (1+Xk+1)hk,i(X1, . . . , Xk)+Xk+1(1+ hk,i(1+X1, . . . , 1+Xk))
is (k + 1)-variable, (i+ 1)-resilient function. We call this as rc (reverse and comple-
ment) operation, since the truth table of hk,i and its reverse and then complemented
string are concatenated to get the (k + 1)-variable function.

Example of Recursive Construction

x3 x2 x1 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

x4 x3 x2 x1 f

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0
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Note that the nonlinearity measure is bound to increase as a consequence of this kind
of construction.

Advanced Recursive Construction Recursive construction by Tarannikov [38] that
has been modified in the work by Pasalic et al. [29]. Given an (n,m, d, x) function, an
(n+ 3,m+ 2, d + 1, 2n+1 + 4x) function can be constructed. An (n,m, d,−) func-
tion f is in desired form if it is of the form f = (1+Xn)f1 +Xnf2, where f1, f2 are
(n− 1,m, d − 1,−) functions. Let F = f ||f ||f ||f, or written in ANF, F = Xn+2 +
Xn+1 + f. Let G = g||h||h||g where g = f1||f 1 and h = f2||f 2. In ANF, the func-
tion G is given by G = (1+Xn+2 +Xn+1)f1 + (Xn+2 +Xn+1)f2 +Xn+2 +Xn.
We construct a function H in n+ 3 variables in the following way,

H = (1+Xn+3)F +Xn+3G.

Then, the function H constructed from f is an (n+ 3,m+ 2, d + 1, 2n+1 + 4x)
function in the desired form.

Efficient Implementation Majority of the stream ciphers are based on LFSRs.
LFSR overGF (2) is fast in hardware but software realization is slow. Some recent soft-
ware stream ciphers such as SNOW [16] (versions 1 and 2), t-classes of SOBER [21],
TURING [33] are based on word-oriented LFSRs over GF (2b). These are consid-
erably fast in software but not time-tested. Already certain weaknesses have been
found.

For resisting the known correlation attacks, following are recommended.

(i) Attack is resisted if time complexity ≥ 2q, q is key length.

(ii) Equivalent LFSRs

• For a given ε,CJS attack can be resisted if L = 4q. Required cipher bits
N ↑ as ε ↓, where ε is ( 1

2 )− p, p being probability of some LFSR output
bit being equal to the corresponding cipher bit.

• The condition L = 4q resists CT attack.

• Consider smallest length equivalent LFSR.

• Wt. of ψ(x) must be > 10 for resisting fast correlation attack [27] using
sparse multiples of connection polynomial.

• Considering L = 4q, expected degree of the least sparse multiple (wt.5)
≈ 2q.

(iii) Boolean function

• Maximize nonlinearity to resist best affine approximation attack [12].

• The (n,m, u, x) functions with best possible nonlinearity must have three
valued Walsh spectra for m > n

2 − 2.

• Thereby, 2m−n+1 must be ≤ ε, as maxω∈{0,1}n |Wf (ω̄)| = 2m+2.

Until now, we have talked about stream ciphers. In the next section, we will discuss
another very important and useful concept of private key cryptography known as block
ciphers.
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13.3 BLOCK CIPHER

In block ciphers, the plaintext is divided into blocks of a fixed length and encrypted
into blocks of ciphertext using the same key. The mathematical definition of a block
cipher is as follows:

Definition. An n-bit block cipher is a function E : Vn × K→ Vn such that for each
key k ∈ K, E(p, k) is an invertible mapping (encryption function for k ) from Vn
to Vn, written as Ek( P ). The inverse mapping is the decryption function, denoted
Dk(C). C = Ek(P) denotes the ciphertext C that results from plaintext P under k.

The variable Vn is the space containing all the possible bit strings of length n.
An n-bit block cipher with a fixed key is a permutation p : GF (2)n→ GF (2)n.

It would require log2(2n!) bits to represent the key such that all permutations p were
possible, or roughly 2n times the number of bits in a cipher block. With an ordinary
block size, for example, 64 bits, this is much too big a number for practical use,
therefore the key size in a practical block cipher is much smaller, typically 128 bits or
256 bits. A good encryption function must contain some nonlinear component, and
this is often a substitution box S-box. An s-box is defined as a mapping GF (2)n→
GF (2)m, usually defined by an×m lookup table. Almost all block ciphers used today
are iterated block ciphers. These ciphers are based on iterating a function several times,
each iteration is called a round.

In Figure 13.5, we show the process of encrypting the plaintextX0 under a typical
r-round block cipher to obtain the ciphertext Xr. Here Xi denotes the intermediate
value of the block after i rounds of the encryption, so that Xi = Fi(Xi−1 , ki), where
(k1,k2, . . . , kr) is the list of round keys which is derived from the secret key K using
a policy known as KSA.

The round key is derived from the cipher key by a key schedule, which is an
algorithm that expands the master key or the cipher key. Key scheduling function
should be a good pseudo-random generator, however the complexity of its design is
less restricted than that of the main body of the block cipher itself. This is so because
in most cases a single key is used to encrypt many blocks before it is changed and thus
KSA can spend more time on randomizing things than on the encryption function.
Due to this reasoning, in many cases, the analysis of key scheduling function is hard.
It is also hardly worth the effort since in most cases the flawed key schedule can
be replaced without altering the main encryption function. An attacker may assume
that subkeys are independent random variables. If the cipher is broken under this
assumption, no patch of key schedule will save it. Interestingly, it is possible to avoid
the need for a complex key schedule by using a fixed mixing permutation on a large
set of inputs and two keys XORed at the input and at the output of the encryption
function [17,34]. These keys are now called whitening keys. Many modern ciphers
combine both the whitening and the key scheduling approaches.

......X          F         F                 F      X0 1 2 r r

FIGURE 13.5 A typical r-round block cipher.



390 CRYPTOGRAPHIC ALGORITHMS

The cipher key is usually between 40 and 256 bits for a block cipher, and for an r-
round iterated cipher this is expanded into r-round keys. The round function is usually
a combination of substitution and transposition. Substitution is when a block in the
plaintext is substituted with another block by some substitution rule. Transposition
is to permute the blocks or characters in the plaintext. In earlier ciphers, substitution
and transposition were used on their own as a cipher, where each plaintext symbol
was a block, but this proved to be insecure because of the small block size. Most
modern ciphers are a combination of substitution and transposition, and are often
called product ciphers [37].

Among the main building blocks of modern block ciphers are substitutions and per-
mutations, which are primitive ciphers on their own. Substitution ciphers are known
from ancient times and can be viewed simply as a change of names of the letters. For
example, in a cipher attributed to Julius Caesar each letter of the alphabet is exchanged
by a letter standing three positions from it (A is encrypted as D, B as E, C as F, etc.).
Of course, in general, the substitution need not have a simple “shift” structure as in
Caesar’s cipher. However, in spite of an astronomical number of possible substitution
ciphers over the English alphabet (26!), they are easily solvable, using the letter fre-
quency analysis. As a bright illustration of this one can read Edgar Poe’s fascinating
story “The Golden Bug,” or Conan Doyle’s “The Dancing Men.” A popular element
of modern ciphers—a substitution box (S-box)—takes a block of m bits as its input
and outputs a block of n bits (m not necessarily equals n). The S-box can perform
any function on a set of its inputs: if m = n, it can be a permutation on a set of 2m

inputs, if m > n, it can be a collection of several permutations on a set of 2n inputs.
It can be a randomly chosen function or a carefully designed function with special
properties. It is desirable for an S-box to perform nonlinear and nonaffine function in
order for the whole cipher to be a nonlinear function. Linearity in cipher’s behavior
is the end of a cipher, since it essentially means that information is leaked from the
plaintext to the ciphertext. Both expanding (m < n) and contracting (m > n) S-boxes
can be met in modern block ciphers. Unless being calculated by a compact formula,
the memory required to store an s-box grows exponentially with the linear increase
in the size of its input m . Thus, the most typical sizes for S-box input are m = 4, 6,
8, and 12 bits. The second basic element—permutation (or transposition) cipher—
keeps plaintext characters as they are but arranges them in a different order. One of
the oldest transposition methods was used by ancient Greeks: A leather belt is tightly
wound around a cylinder and a message is written on the belt across the length of the
cylinder. The belt is then worn by a messenger. The message can be decrypted by a
party who has a cylinder of the same diameter as was used during the “encryption.”
Breaking a basic permutation cipher is an easy task, especially if one knows a part
of the encrypted plaintext. In modern ciphers, permutations of bits are frequently
used. Although weak on their own, a line of substitutions followed by a permutation
has good “mixing” properties: substitutions add to local confusion and permutation
“glues” them together and spreads the local confusion to the more distant subblocks.
Shannon [34] in a pioneering work “Communication Theory of Secrecy Systems,”
suggested the use several mixing layers interleaving substitutions and permutations.
Such a design is called substitution permutation network (SPN). Figure 13.6 is an
example of SPN.
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FIGURE 13.6 An example of substitution permutation network (SPN).

13.3.1 Data Encryption Standard

The DES [28] has been the most widely used iterated block cipher since it was
published in 1977 by National Bureau of Standards [28] (now the National Institute
of Standards and Technology, or NIST), but it is now replaced by the Advanced
Encryption Standard (AES) because of too small key and block size. The DES can be
seen as a special implementation of a Feistel cipher, named after Horst Feistel, where
the input to each round is divided into two halves, as in the following description.

Description of DES. DES cipher is so important to the development of modern crypt-
analysis that it might be worth while to describe this construction in some greater
detail. It usually looks “monstrous” to the first time reader. Surprisingly, almost every

F

F

K1
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FIGURE 13.7 Two round DES.



392 CRYPTOGRAPHIC ALGORITHMS

32 bits 48 bits

48 bits

s       s s s s s s s

p

E

1 2 3 4 5 6 7 8

FIGURE 13.8 The F -function of DES.

bit of design in DES seems to have a security reason, and most of the changes seem
to weaken the cipher considerably. Biham and Shamir [4] gave a thorough study of
DES and its modifications. DES was designed by IBM crypto group from its prede-
cessor Lucifer in early 1970 and was published in the Federal Register of March 17,
1975. DES was adopted as a standard for “unclassified” information on January 1977.
Since then it has become the most widely used and the most analyzed cipher. DES
is an iterative block cipher. It encrypts blocks of 64 bits into ciphertext blocks of 64
bits under control of the 56-bit secret key. DES performs 16 iterations of the round
function, which is called the F -function. Figure 13.7 shows the basic structure of
DES reduced to two rounds, one can see that it is a Feistel cipher. The F -function has
a relatively simple structure and is based on the substitution–permutation sandwich
idea of Shannon (described above).

Each round takes the 64-bit output of the previous round and divides it into two 32-
bit halves–the left halfL and the right halfR. The F -function (described in Fig. 13.8)
takes R as its input, expands it (by E(R)) from 32 bits into 48 bits and XORs the
result with the 48-bit subkey derived from the 56-bit secret key K by the KSA. Then
the result enters eight S-boxes. Each S-box takes as input six bits and outputs four
bits. The 32-bit result from the row of S-boxes is permuted by the permutation P .
The permuted value is the output of the F -function. In the round function, the output
of the F -function, F (R,Ki), is XORed with L, and the right and the left halves are
swapped. Thus, the output of the ith round is ( R, L⊕ F (R;Ki)). Note that the tables
P , Si, i = 1, . . . , 8,E are defined and fixed in the standard, so the only variable part of
DES is the secret key K. The KSA of DES is as follows: The 64-bit key is permuted
by the permutation PC − 1 [37]. This permutation performs two functions: strips
eight parity bits and then distributes the remaining 56 bits into two 28-bit registers
C and D. On each round, 28-bit registers C and D are left shifted by one or two
places (according to a fixed schedule). After the shift, the permutation PC − 2 [37]
is performed over C andD, selecting 24 bits out of each 28-bit register. These 48 bits
form the subkey of the corresponding round.

AES is the successor of DES. NIST replaced DES by the new standard that is
called AES in 1997. At the “First AES candidate conference” in 1998, 15 AES
candidates were selected by NIST. In 1999, five of them (MARS, RC6, Rijndael,
Serpent, and Twofish) were selected at the “Second AES candidate conference.”
Finally, Rijndael [9,10] was ultimately selected as the AES by NIST on December 4,
2001 (to be effective March 26, 2002).
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13.3.2 AES

We now give a short description of AES (for details see the work by Daemen and
Rijmen [10]). Rijndeal is a 128-bit block cipher with one of the three different key
sizes, 128 or 192 or 256 bits. The 128-bit block is viewed as (b0, b1, . . . , bi, . . . , b15),
where bi is the ith byte of the block. The bytes are organized in a matrix form:⎛⎜⎜⎜⎝

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

⎞⎟⎟⎟⎠
This form of the input block is named “State.” The State is modified by applying
some transformations on it and thus 16 bytes of ciphertext is produced for every 16
bytes of plaintext. The number of rounds in AES depend on the key size. There are
10 rounds for 128 bit, 12 for 192 bit, or 14 for 256 bit key.

Each round of the cipher is composed of four different transformations. In pseudo
C notation, a particular round is described as

Round(State, RoundKey)
{

ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State, RoundKey);

}

The final round is slightly different than other rounds. The MixColumn transformation
is absent in the last round.

The inverse cipher has similar structure. The inverse cipher is as follows

InvRound(State, RoundKey)
{

AddRoundKey(State, RoundKey);
InvMixColumn(State);
InvShiftRow(State);
InvByteSub(State);

}

The initial round of the inverse cipher (corresponding to the last round of the cipher)
does not have the MixColumn transformation.

In addition, an extra step of “whitening” (XORing the State with the RoundKey)
is taken before the rounds begin during the cipher operation. While inverting, the last
step is therefore XORing the State with the same RoundKey.

The round transformations and their inverses are described next.

1. ByteSub and InvByteSub: These operations act on a byte and substitute a new
value in its place. A byte b consisting of bits b7b6b5 · · · b1b0, is considered as a
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polynomial with coefficients in {0,1}: b7x
7 + b6x

6 + b5x
5 + · · · + b1x+ b0.

The ByteSub operation consists of two steps. Given an irreducible polynomial
m(x) = x8 + x4 + x3 + x+ 1, first the inverse of byte b in the field generated
by m(x) is found. The zero element is considered to be its own inverse. Next,
this inverse element is operated by a bit level affine transformation Ax+ b,
where A is an 8× 8 matrix binary matrix, x and b are one byte each which
are considered as eight element column vectors (bit representation of the byte).
This operation can be implemented with the use of a substitution table for each
byte. Such a table is called the S-box.

The inverse operation can be implemented by the inverse S-box. If S-
box(x) = y then Inverse-S-box(y) = x.

2. ShiftRow and InvShiftRow: ShiftRow transformation acts on the rows of the
State array. The four bytes in row i are cyclically shifted by Ci bytes, where
C1 = 0, C2 = 1, C3 = 2, andC4 = 3. That is, the first row remains unchanged,
the second row, which was initially (x1, x2, x3x4), becomes (x4, x1, x2x1), and
so on. The inverse of this operation shifts the bytes of the rows cyclically by C

′
i

bytes, where C
′
1 = 0, C

′
2 = 3, C

′
3 = 2, and C

′
4 = 1. It is clear that the inverse

operations “undoes” the effect of the ShiftRow operation.

3. MixColumn and InvMixColumn: Each column (four bytes) of State array is
transformed to another column in this operation. Each column is considered to
be a polynomial of degree less than 4 with coefficients inGF (28). It is multiplied
by M(x) = ‘03’ x3+ ‘01’x2+ ‘01’x+ ‘02’ and the result is taken modulo
(x4 + 1). In inverse operation, first the columns are multiplied byM

′
(x) =‘0B’

x3+ ‘0D’ x2+ ‘09’ x+ ‘0E’ and then the modulo operation is performed. It is
easy to see thatM(x) ·M ′

(x) = 1.

4. AddRoundKey: RoundKeys are generated from the given cipher key. The num-
ber of RoundKeys generated is one more than the number of rounds, and each
key is of size 16 bytes. Round i of cipher operation uses the ith RoundKey. An
extra RoundKey is used for “whitening” purposes. The AddRoundKey opera-
tion XORs the RoundKey with the State array. This operation is its own inverse.
Thus, while deciphering, the only change needed is to change the order of the
RoundKeys. That is, the last RoundKey is used in the beginning of decipher
operation and so on.

For the details of the above operations and the RoundKey generation see works by
Stinson [37] or Rijndael Proposal by Daemen and Rijnmen [32].

In the next section, we will discuss about one of the most widely used public key
cryptosystem known as RSA cryptosystem.

13.4 PUBLIC KEY CRYPTOGRAPHY

Asymmetric cryptography, also called public key cryptography, is a relatively new
field. It was invented by Diffie and Hellman in 1976. Let us briefly discuss about
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the motivation of Deffie–Hellman’s (DH) work. For that consider the following
assumption.

Assumption. One can get two functions f and g which are easily computable and
f ◦ g = identity mapping, g ◦ f = identiy mapping and from f (or g), computing g
(or f ) is a computationally infeasibleproblem.

Protocol. Let there be n participants P1, P2, . . . , Pn. For each participant Pi, let gi
be the public key and fi be the private key such that fi ◦ gi = identity mapping,
gi ◦ fi = identity mapping, i = 1, 2, . . . , n. Now suppose, Pk wants to communicate
some messageM to another participant Pt , k �= t, over an insecure channel. For that,
firstPk will collect the public keygt of the participantPt and will computegt(M). Then
he/she will use his/her own private key fk and will computeC = fk(gt(M)). Then the
participant Pk will send the ciphertext C over an insecure channel to the participant
Pt . On receiving the ciphertextC, the participantPt will collect the public key gk ofPk
and first compute gk(C). After that, the participant Pt will use his/her own private key
ft to get back the original message M = ft(gk(C)), since M = ft(gk(fk(gt(M)))).
Here, gt is the notion of “authentication,” fk is the notion of “signature,” gk is the
“signature verification” and ft is the notion of “authorization validation.”

In 1977, a year after the publication of the DH paper, three researchers at MIT
developed a practical method to implement the suggested ideas. This became known as
RSA, after the initials of the three developers—Ron Rivest, Adi Shamir, and Leonard
Adelman—and is probably the most widely used public key cryptosystem. It was
patented in the United States in 1983.

13.4.1 RSA Cryptosystem

Let n be a product of two distinct primes p and q. Let P = C = Zn. Let us define K =
{(n, p, q, e, d) : ed ≡ 1(mod φ(n))}, where φ(n) is the number of positive integers
less than n which are relatively prime to n. For each K = (n, p, q, e, d), we define
eK(x) = xe(mod n) and dK(y) = yd(mod n), where x, y ∈ Zn. The values n and e are
public and the values p, q and d are used as public key.

Now we will verify that this really forms a public key cryptosystem. Suppose A
wants to send a secret message to B using the public key of B. For that, first we will
give algorithm for the generation of keys for B.

• B’s algorithm to construct keys

◦ Generate two distinct large primes p and q, each roughly of same size.

◦ Compute n = pq and φ(n) = (p− 1)(q− 1).

◦ Select a random integer e with 1 < e < φ(n), such that gcd(e, φ(n)) = 1.

◦ Use the extended Euclidean algorithm to find the integer d, 1 < d < φ(n), such
that ed ≡ 1(mod φ(n)).

◦ B’s public keys are n and e (i.e., known to A or C) and his private keys are p, q,
and d.
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• A’s algorithm for encryption

◦ Obtain B’s public key (n, e).

◦ Represent the message as an integer m in the interval [0, n− 1].

◦ Compute c ≡ me(mod n).

◦ Send the ciphertext c to B.

• B’s algorithm to decrypt the message

◦ To obtain the plaintext message m, B uses his private key d to get m ≡
cd(mod n).

Proof of the decryption. It is given that ed ≡ 1(mod φ(n)). So there must exist
some integer t such that ed = 1+ tφ(n). Now we consider the following situations.
If gcd(m,p) = 1, then by Fermat’s Theorem, mp−1 ≡ 1(mod p) ⇒ mt(p−1)(q−1) ≡
1(mod p) ⇒ m1+t(p−1)(q−1) ≡ m(mod p). Now if gcd(m,p) = p, then also the above
equality holds as both sides are equal to 0 modulo p. Hence in both the cases,
med ≡ m(mod p). By same argument med ≡ m(mod q). Finally, since p and q are
distinct primes, it follows thatmed ≡ m(mod n) and hence cd ≡ (me)d ≡ m(mod n).
Hence the result.

Illustration. Let us illustrate briefly the RSA algorithm with a simple example.
Suppose A wants to send a secret message to B using RSA. Then A and B will follow
the following algorithms.

• B’s algorithm to construct keys

◦ Consider two distinct primes p = 11 and q = 13.

◦ Compute n = pq = 143 and φ(143) = 10 · 12 = 120.

◦ Select an integer e = 103 with 1 < 103 < φ(143), such that gcd(103, φ(143))
= 1.

◦ Use the extended Euclidean algorithm to find the integer d = 7, 1 < 7 < φ(143),
such that 103 · 7 ≡ 1(mod φ(143)).

◦ B’s public key is n = 143 and e = 103 and his private key is p = 11, q = 13,
and d = 7.

• A’s algorithm for encryption

◦ Obtain Bs public key (n = 143, e = 103).

◦ Represent the message as an integer m in the interval [0, 143− 1]. Let m = 7.

◦ Compute c ≡ 7103(mod 143) = 123.

◦ Send the ciphertext c = 123 to B.
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• B’s algorithm to decrypt the message

◦ To obtain the plaintext message m = 7, B uses his private key d = 7 to get
m ≡ 1237(mod 143) = 7.

Note: It is currently difficult to obtain the private key d from the public key (n, e).
However, if one could factor n into p and q, then one could obtain the private key
d. Thus, the security of the RSA system is based on the assumption that factoring is
difficult. The discovery of an easy method of factoring would “break” RSA.

13.5 KEY AGREEMENT PROTOCOL

13.5.1 DH Key Agreement

DH proposed the first two-party single-round key agreement protocol in their sem-
inal paper [11] that enables the users to compute a common key from a secret
key and publicly exchanged information. No user is required to hold secret infor-
mation before entering the protocol and each member makes an independent con-
tribution to the common agreed key. This work invents the revolutionary concept
of public key cryptography and is the most striking development in the history of
cryptography.

� Protocol description
Setup: LetG be a finite multiplicative group of some large prime order q and
g be a generator of G.

Key Agreement: Assume that two entities A and B want to decide upon a
common key. They perform the following steps.

1. User A chooses a random a ∈ Z∗q , computes TA = ga and sends TA
to B.

2. User B chooses a random b ∈ Z∗q , computes TB = gb and sends TB
to A.

3. UserA computesKA = T aB and similarly userB computesKB = T bA.

IfA andB execute the above steps honestly, they will agree upon a common
key KAB = KA = KB = gab.

� Assumption: DLP is hard.
� Security: The protocol is unauthenticated in the sense that it is secure against

passive adversaries. An active adversary can mount man-in-the-middle attack.
� Efficiency

Communication: Round required is 1 and group element (ofG) sent per user
is 1.

Computation: Each user computes two exponentiations.
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13.5.2 Elementary Concepts on Elliptic Curves

Even though a pairing-based cryptographic primitive can be fully understood with-
out any knowledge of elliptic curves, any implementation of such primitives will
almost certainly involve the (modified) Weil or Tate pairing. We, therefore, in-
cluded in the following section a brief introduction to elliptic curves that quickly
leads to the definition of Weil pairing. For an elementary introduction to elliptic
curves, we recommend Koblitz’s book [24] and the notes by Charlap and Rob-
bins [8]. The proofs of the results stated in this section can be found in the book by
Silverman [36].

LetK be a field andK its algebraic closure. An elliptic curve overK is defined by
a Weierstrass equation

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ K and there are no “singular points” (singular points for a
curve f (x, y) = 0 are those points where both the partial derivatives of f vanish). If
L ⊃ K, then the set of L-rational points on E is

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}.

Here O is an identified element, called point at infinity. If L ⊃ K, then E(L) ⊃
E(K). We denote E(K) by E. Simplified Weierstrass equation is as follows.

Case 1. If char(K) �= 2, 3, then the equation simplifies to y2 = x3 + ax+ b, a, b ∈
K and 4a3 + 27b2 �= 0.

Case 2. If char(K) = 2, then the equation simplifies to

y2 + xy = x3 + ax2 + b, a, b ∈ K, b �= 0, nonsupersingular,

or

y2 + cy = x3 + ax+ b, a, b, c ∈ K, c �= 0, supersingular.

For any L ⊃ K, the set E(L) is an abelian group under the “chord-and-tangent
law” [24] explained below: If P �= O,Q �= O,Q �= −P , then P +Q = −R, where
R is the third point of intersection of the line PQ (or tangent PQ in case P = Q) with
the curve E.

Consider E/K : y2 = x3 + ax+ b. Addition formulae are as follows:

1. P +O = O + P = P , for all P ∈ E(L).

2. −O = O.

3. If P = (x, y) ∈ E(L), then −P = (x,−y).

4. IfQ = −P , then P +Q = O.
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R

– R = P + Q

Q
P

FIGURE 13.9 Elliptic curve addition (“chord-and-tangent law”).

5. If P = (x1, y1) ∈ E(L), Q = (x2, y2) ∈ E(L), P �= −Q, then P +Q =
(x3, y3), where x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, and

λ =

⎧⎪⎪⎨⎪⎪⎩
y2 − y1

x2 − x1
if P �= Q;

3x2
1 + a
2y1

if P = Q.

Note that if P �= O,Q �= O,Q = −P , then P +Q = O, that is, O is the third point
of intersection of any vertical line through P (or Q) with the curve E. Any vertical
line through P (or Q) meets the curve E at infinity. This is why O is called point at
infinity. O serves as the identity of the abelian group E(L).

For the purpose of cryptography, assume henceforth thatK = IFq, that is, the finite
field of characteristic p and of order q and K = ∪m≥1IFqm . The following are three
important results on the group order of elliptic curve groups (Fig. 13.9).

Theorem 1 (Hasse’s Theorem) #E(IFq) = q+ 1− t, |t| ≤ 2
√
q. Consequently,

#E(IFq) ≈ q.
Theorem 2 (Schoof’s Algorithm) #E(IFq) can be computed in polynomial time.

Theorem 3 (Weil Theorem) Let t = q+ 1− #E(IFq). Let α, β be complex roots
of T 2 − tT + q ∈ Z[T ] (where Z[T ] is the ring of polynomials in T with integer
coefficients). Then #E(IFqk ) = qk + 1− αk − βk for all k ≥ 1.

The structure of elliptic curve groups is summarized by the following results.

� Let E be an elliptic curve defined over IFq. Then E(IFq) ∼= Zn1 ⊕ Zn2 , where
n2|n1 and n2|(q− 1).
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� E(IFq) is cyclic if and only if n2 = 1.
� P ∈ E is an n-torsion point if nP = O andE[n] is the set of all n-torsion points.
� If gcd(n, q) = 1, then E[n] ∼= Zn ⊕ Zn.

13.5.2.1 Supersingular Elliptic Curves An elliptic curve E/IFq is supersin-
gular if p|t where t = q+ 1− #E(IFq).

Theorem 4 (Waterhouse) E/IFq is supersingular if and only if t2 = 0, q, 2q, 3q or
4q. The group structure is given by the following result.

Theorem 5 (Schoof) Let E/IFq be supersingular with t = q+ 1− #E(IFq). Then

1. If t2 = q, 2q or 3q, then E(IFq) is cyclic.

2. If t2 = 4q and t = 2
√
q, then E(IFq) ∼= Z√q−1 ⊕ Z√q−1.

3. If t2 = 4q and t = −2
√
q, then E(IFq) ∼= Z√q+1 ⊕ Z√q+1.

4. If t = 0 and q �≡ 3 mod 4, then E(IFq) is cyclic.

5. If t = 0 and q ≡ 3 mod 4, then E(IFq) is cyclic or E(IFq) ∼= Z(q+1)/2 ⊕ Z2.

13.5.3 Cryptographic Bilinear Maps

Let G1,G2 be two groups of the same prime order q. We view G1 as an additive
group and G2 as a multiplicative group. A mapping e : G1 ×G1 → G2 satisfying
the following properties is called a cryptographic bilinear map:

Bilinearity e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Z∗q .
Nondegeneracy If P is a generator of G1, then e(P, P) is a generator of G2.
Computability There exists an efficient algorithm to compute e(P,Q).

Modified Weil Pairing [5] and Tate Pairing [2,19] are examples of cryptographic
bilinear maps.

13.5.3.1 Decision Hash Bilinear Diffie–Hellman (DHBDH) Problem Let
(G1,G2, e) be as in Section 13.5.3. We define the following problem. Given an
instance (P, aP, bP, cP, r) for some a, b, c, r∈RZ∗q and a one-way hash function

H : G2 → Z∗q , to decide whether r = H(e(P, P)abc) mod q. This problem is termed
DHBDH problem as defined in the work by Barua et al. [3] and is a combination of the
bilinear Diffie–Hellman (BDH) problem and a variation of the hash Diffie–Hellman
(HDH) problem.

The DHBDH assumption is that there exists no probabilistic, polynomial time, 0/1-
valued algorithm that can solve the DHBDH problem with nonnegligible probability
of success.
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13.5.4 Tree-based Group Key Agreement Using Pairing

Barua et al. [3], present a ternary tree-based unauthenticated key agreement protocol
by extending the basic Joux’s protocol [22] to multiparty setting and provide a proof of
security against passive adversaries. In the work by Dutta et al. [14], a provably secure
authenticated tree-based group key agreement from the unauthenticated protocol of
Barua et al. [3] is proposed with the security analysis in the model formalized by
Bresson et al. [6]. The dynamic case of the scheme in the work by the Dutta et al. [14]
is further considered in the work by Dutta and Barua [15] that enables a user to join or
leave the group at his desire retaining the tree structure with minimum key updates.
We will present here the basic unauthenticated scheme in the work by Barua et al. [3].

� Protocol description
Setup: Suppose a set of n users P = {U1, U2, . . . , Un} wish to agree upon

a secret key. Let US be a subset of users. Quite often, we identify a
user with its instance during the execution of a protocol. In case US is
a singleton set, we will identify US with the instance it contains. Each
user set US has a representative Rep(US) and for the sake of concrete-
ness we take Rep(US) = Uj , where j = min{k : $dkUk ∈ US}. We use the
notation A[1, . . . , n] for an array of n elements A1, . . . , An and write
A[i] or Ai to denote the ith element of array A[ ]. Let G1 = 〈P〉,G2
(groups of prime order q) and e(, ) be as described in Section 13.5.3.
We choose a hash function H : G2 → Z∗q . The public parameters are
params = (G1,G2, e, q, P,H). Each user Ui ∈ P chooses si ∈ Z∗q at
random which it uses as its ephemeral key. These keys are session specific
and determine the final common key for the users in a session.

Key agreement: Let p = n/3 and r = n mod 3. The set of users participat-
ing in a session is partitioned into three user sets US1,US2,US3 with
respective cardinalities being p, p, p if r = 0; p, p, p+ 1 if r = 1; and
p, p+ 1, p+ 1 if r = 2. This top-down recursive procedure is invoked
for further partitioning to obtain a ternary tree structure (cf. Section 13.11).
The lowest level 0 consists of singleton users having a secret key. Combi-
neTwo, a key agreement protocol for two user sets, and CombineThree,
a key agreement protocol for three user sets are invoked in the key tree
thus obtained. These two procedures are demonstrated in Figure 13.10.

All communications are done by representatives and users in each user
set have a common agreed key. In CombineThree, a, b, c, respectively,
are the common agreed key of user setsA,B,C. Representative of user set
A sends aP to both the user setsB,C. Similarly, representative ofB sends
bP to both A,C and representative of C sends cP to both A,B. After
these communications, each user can compute the common agreed key
H(e(P, P)abc). In CombineTwo, users in user setA have common agreed
key a, users in user set B have common agreed key b. Representative of
A sends aP to user set B and representative of B sends bP to user set A.



402 CRYPTOGRAPHIC ALGORITHMS

B CA
a b c

A B
a â b

aP bP cP aP bPaP^

H(e(P, P)      )
abc

H(e(P, P)      )
aab^

FIGURE 13.10 Procedure CombineThree and procedure CombineTwo.

Moreover, representative of user setA generates a random key â ∈ Z∗q and
sends âP to all the users in both A,B. After these communications, each
user can compute the common agreed key H(e(P, P)aâb) (Fig. 13.11).
The formal description of the protocol is given below.

procedure KeyAgreement(l,US[i+ 1, . . . , i+ l],S[i+ 1, . . . , i+ l])
1. if (l = 2) then
2. call CombineTwo(US[i+ 1, i+ 2],S[i+ 1, i+ 2]);
3. return;
4. end if
5. if (l = 3) then
6. call CombineThree(US[i+ 1, i+ 2, i+ 3],S[i+ 1, i+ 2, i+ 3]);
7. return;
8. end if
9. p0 = 0; p1 = l/3�; p3 = �l/3�; p2 = l− p1 − p3;

10. n0 = 0; n1 = p1; n2 = p1 + p2;
11. for j = 1 to 3 do in parallel
12. ÛSj = US[i+ nj−1 + 1, . . . , i+ nj−1 + pj];
13. if pj = 1, then Ŝj = S[i+ nj−1 + 1];
14. else
15. call KeyAgreement(pj, ÛSj,S[i+ nj−1 + 1, . . . , i+ nj−1 + pj]);

16. Let Ŝj be the common agreed key among all members of ÛSj;
17. end if;

14

4 5 5

1 2 2 2 21211

1 2 3 4 5 12 13 1411109876

FIGURE 13.11 Procedure KeyAgreement for n = 14.
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18. end for;

19. call CombineThree(ÛS[1, 2, 3], Ŝ[1, 2, 3]);
end KeyAgreement

procedure CombineTwo(US[1, 2],S[1, 2])
1. do Steps 2 and 3 in parallel
2. US1 generates S ∈R Z∗q and sends SP and S1P to US2;
3. US2 sends S2P to US1;
4. end do;
5. do steps 6 and 7 in parallel
6. US1 computes H(e(S2P,SP)S1 );
7. US2 computes H(e(S1P,SP)S2 );
8. end do;
end CombineTwo
procedure CombineThree(US[1, 2, 3],S[1, 2, 3])
1. for i = 1 to 3 do in parallel
2. Let {j, k} = {1, 2, 3} \ {i};
3. Rep(USi) sends SiP to all members USj ∪ USk;
4. end for;
5. for i = 1 to 3 do in parallel
6. let {j, k} = {1, 2, 3} \ {i};
7. each member of USi computes H(e(SjP,SkP)Si );
8. end for;
end CombineThree
The start of the recursive protocol KeyAgreement is made by the follow-
ing statements:

start main
1. USj = {Uj} for 1 ≤ j ≤ n;
2. User j chooses a secret sj ∈R Z∗q;
3. User j sets S[j] = sj;
4. call KeyAgreement(n,US[1, . . . , n],S[1, . . . ,n]).
end main
The values s1, . . . , sn are session specific and determine the final com-
mon key for the users. Note that CombineTwo is invoked only for two
individual users (i.e., |US1| = |US2| = 1), whereas CombineThree is
invoked for three individual users as well as for three groups of users. In
CombineThree the common agreed key of user sets US1,US2,US3 is
H(e(P, P)S1S2S3 ) and in CombineTwo the common agreed key of the
two users in the singleton sets US1,US2 is H(e(P, P)S1S2S).

The protocol described above allows U1, . . . , Un to agree upon a
common key. The same protocol can be used by an arbitrary subset of
{U1, . . . , Un} to agree upon a common key.
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� Assumption: Decision hash bilinear Diffie–Hellman (DHBDH) problem is hard.
� Security: Secure against passive adversary under the assumption that DHBDH

problem is hard.
� Efficiency

Communication: Round required is �log3 n� and group element (ofG1) sent
per user is n�log3 n�.

Computation: Each user computes< 5
2 (n− 1) elliptic curve scalar multipli-

cations,n�log3 n�pairings,n�log3 n�group exponent inG2, andn�log3 n�
hash function (H) evaluation.
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CHAPTER 14

Secure Communication in Distributed
Sensor Networks (DSN)

SUBHAMOY MAITRA and BIMAL ROY

14.1 GENERAL OVERVIEW OF DISTRIBUTED SENSOR
NETWORK (DSN) AND ITS LIMITATIONS

In this chapter we will study the issues of implementing cryptographic primitives
on a sensor node. The basic premise in this regard is the hardware capability of a
sensor node is limited (i.e., CPU of lower speed, less amount of memory, and limited
availability of power sources). Given some high complexity primitives generally used
in cryptosystems, there is a need to look at the implementability of such primitives
on a sensor node.

Before proceeding further, let us present a brief introduction to wireless sensor net-
works. A wireless sensor network consists of a number of inexpensive sensor devices
spread across a geographical area. Each sensor is capable of wireless communication
using the radio frequency (RF). The sensor nodes also have some limited computing
capability. Let us first list a few applications of sensor networks.

1. Military sensor networks to detect and gain as much information as possible
about enemy movements, explosions, and other phenomena of interest.

2. Sensor networks to detect and characterize chemical, biological, radiological,
nuclear, and explosive (CBRNE) attacks and material.

3. Sensor networks to detect and monitor environmental changes in plains, forests,
oceans, and so on.

4. Wireless traffic sensor networks to monitor vehicle traffic on highways or in
congested parts of a city.

5. Wireless surveillance sensor networks for providing security in shopping malls,
parking garages, and other facilities.

6. Wireless parking lot sensor networks to determine which spots are occupied
and which are free.
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The above list suggests that wireless ad hoc sensor networks offer certain ca-
pabilities and enhancements in operational efficiency in civilian applications as
well as in assisting the national effort to increase alertness to potential terrorist
threats.

Two ways to classify wireless ad hoc sensor networks are whether or not the nodes
are individually addressable, and whether the data in the network are aggregated. The
sensor nodes in a parking lot network should be individually addressable, so that one
can determine the locations of all the free spaces. This application shows that it may
be necessary to broadcast a message to all the nodes in the network. If one wants
to determine the temperature in a corner of a room, then addressability may not be
so important. Any node in the given region can respond. The ability of the sensor
network to aggregate the data collected can greatly reduce the number of messages
that need to be transmitted across the network.

The basic goals of a wireless ad hoc sensor network generally depend upon the
application, but the following tasks are common to many other networks.

1. Determine the value of some parameters at a given location: In an environmen-
tal network, one might want to know the temperature, atmospheric pressure,
amount of sunlight, and the relative humidity at a number of locations. This
example shows that a given sensor node may be connected to different types of
sensors, each with a different sampling rate and range of allowed values.

2. Detect the occurrence of events of interest and estimate parameters of the
detected event or events: In the traffic sensor network, one would like to detect
a vehicle moving through an intersection and estimate the speed and direction
of the vehicle.

3. Classify a detected object: Is a vehicle in a traffic sensor network a car, a
minivan, a light truck, a bus, and so on.

4. Track an object: In a military sensor network, track an enemy tank as it moves
through the geographic area covered by the network.

In these four tasks, an important requirement of the sensor network is that the
required data are to be disseminated to the proper end users. In some cases, there are
fairly strict time requirements for the communication. For example, the detection of
an intruder in a surveillance network should be immediately communicated to the
police so that action can be taken.

Wireless ad hoc sensor network requirements include the following:

1. Large number of (mostly stationary) sensors: Aside from the deployment of
sensors on the ocean surface or the use of mobile, unmanned, robotic sensors
in military operations, most nodes in a smart sensor network are stationary.
Networks of 10,000 or even 100,000 nodes are envisioned, so scalability is a
major issue.

2. Low energy usage: Since in many applications the sensor nodes will be placed
in a remote area, reworking on a node may not be possible. In this case, the
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lifetime of a node may be determined by the battery life, thereby requiring the
minimization of energy expenditure.

3. Network self-organization: Given the large number of nodes and their potential
placement in hostile locations, it is essential that the network be able to self-
organize; manual configuration is not feasible. Moreover, nodes may fail (either
from lack of energy or from physical destruction), and new nodes may join
the network. Therefore, the network must be able to periodically reconfigure
itself so that it can continue to function. Individual nodes may become discon-
nected from the rest of the network, but a high degree of connectivity must be
maintained.

4. Collaborative signal processing: Yet another factor that distinguishes these net-
works from MANETs is that the end goal is detection/estimation of some events
of interest, and not just communications. To improve the detection/estimation
performance, it is often quite useful to fuse data from multiple sensors. This
data fusion requires the transmission of data and control messages, and so it
may put constraints on the network architecture.

5. Querying ability: A user may want to query an individual node or a group of
nodes for information collected in the region. Depending on the amount of data
fusion performed, it may not be feasible to transmit a large amount of the data
across the network. Instead, various local sink nodes will collect the data from
a given area and create summary messages. A query may be directed to the sink
node nearest to the desired location.

14.2 MODELS FOR SECURE COMMUNICATION

Given the availability of low cost, short-range radios along with advances in wireless
networking, it is expected that wireless sensor networks will become commonly de-
ployed. In these networks, each node may be equipped with a variety of sensors such
as acoustic, seismic, infrared, still/motion video camera, and so on. These nodes may
be organized in clusters such that a locally occurring event can be detected by most
of, if not all, the nodes in a cluster. Each node may have sufficient processing power
to make a decision, and it will be able to broadcast this decision to the other nodes in
the cluster. One node may act as the cluster master, and it may also contain a longer
range radio using a protocol such as IEEE 802.11 or Bluetooth.

14.2.1 Security Issues

Let us point out the fundamental difficulties in providing security to a sensor network.

1. The issue of taking the advantage of asymmetric cryptography is a real chal-
lenge in this area since the sensor devices have constraints in terms of com-
putation, communication, memory, and energy resources. RSA algorithm or
Diffie–Hellman key agreement protocol are difficult to implement, whereas
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the symmetric solutions like Advanced Encryption Standard (AES) block ci-
pher and HMAC-SHA-1 message authentication code are faster and easier to
compute for the sensor nodes.

2. The nodes may be physically captured. Usually one should not assume that the
hardware in each node is tamper resistant. Compromised nodes may behave
arbitrarily, possibly in collusion with other compromised nodes.

3. Since the communication channel is wireless in sensor networks environment,
eavesdropping and injection of malicious messages could be easier.

4. The sensor network security protocols should be amenable to scalability. Usu-
ally the network is often required to be scaled up to cater to several sensor
nodes.

5. Lack of fixed infrastructure.

6. Unknown network topology prior to deployment.

There are different attack models. If the attacker is not an authorized participant of
the network, it is called an outsider attack. For example, a passive eavesdropper, packet
spoofer, or signal jammer may launch an outsider attack. Also physical destruction
of nodes (may be intentional, climatic, or resulting from depletion of energy sources)
is a form of outsider attack. Benign node failure is to be considered as a security
problem since it is indistinguishable from an attack resulting into disabling a node.

On the other hand, an insider attack means the compromise of one or more sensor
node(s). A compromised node may run some malicious code to steal some secret
from the network and in turn that may disrupt the normal functioning of the complete
network. If standard encryption and authentication protocols are implemented in the
network, the compromised node should have some valid secret keys that enable it to
join the secret and authenticated communications.

If the base station is assumed to be a trusted server that is never compromised, the
problem of key distribution finds a ready solution. The base station serves as the trusted
intermediary and distributes a key to each pair of nodes that need to communicate.
However, for a network of very large size, the nodes in the immediate vicinity of the
base station will have to continuously relay the key setup messages and very soon
deplete the energy source. Also the base station will have to set up n(n− 1)/2 keys
in the worst case and becomes inefficient in case of large n.

The basic idea is to make the network resistant to outsider attacks and resilient to
insider attacks (while maintaining a realistic notion of security). The former may be
achieved by standard cryptographic primitives and maintaining some redundancy in
the network. The network protocols should be capable of identifying the failed nodes
in real time and update themselves according to the updated topology.

For the latter, the ideal situation is to detect the compromised node and revoke
the keys contained therein. It is not always possible and perhaps the way out is to
design protocols resilient to node capture so that the performance of the network
gracefully degrades with the compromise of a small fraction of nodes. Depending on
the application and sensitivity of the collected data, the security level may be relaxed
or beefed up. Let us now list a few specific requirements.
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1. Authentication: It is usually in two forms, namely source authentication and
data authentication. The verification of the origin of a message/packet is known
as source authentication and the condition that the data are unchanged during
the transmission is known as data authentication. Though authentication pre-
vents outsider attacks like injecting/spoofing of packets, a compromised node
can authenticate itself to the network since it is in possession of valid secret
keys.

2. Secrecy: Using standard cryptographic techniques and shared secret keys be-
tween the communicating nodes may not be sufficient to maintain secrecy be-
cause an eavesdropper can analyze the network traffic and obtain some sensitive
meta data. Access control has to be exercised in order to protect the privacy of
the collected data. An insider attack may defeat this purpose since the data can
be revealed or the communication between two nodes may be eavesdropped by
a compromised node.

3. Availability: Availability means the functioning of the devices for the entire
lifetime. Denial of service (DoS) attacks result in a loss of availability. Both
outsider and insider attacks may cause nonavailability.

4. Integrity of service: In the application layer, the protocols may be required to
provide service integrity in the face of malfunctioning (compromised) nodes.
As an example, the data aggregation service should be able to filter out the
erroneous readings provided by the compromised nodes.

Secrecy and authentication may be protected from outsider attacks (like packet
spoofing/modification and eavesdropping) using standard cryptographic techniques.
Two sensor nodes can set up a secret and authenticated link through a shared secret
key. The problem of setting up the secret key between a pair of nodes is known as
the key establishment problem. There are various solutions available to this problem.
Among them, the most naive one is to use a single master key for the entire network.
The moment a single node is compromised, the entire network becomes insecured.
At the other extreme, if one uses different keys for each pair of nodes, it will be
extremely secure. This scheme is not viable because each node has to store several
keys, which is not achievable due to memory constraint in sensor nodes. This solution
does not scale well with the increase in the size of the network. The other solution
may be obtained using public key cryptography. This is computation intensive, and
one of the most important recent challenges is to implement such primitives in low
end hardware. It should be noted that the public key solution is also susceptible to
DoS attacks. Availability may be disrupted through DoS attacks [44] and may take
place in different parts of the protocol stack.

Many sensor network protocols use broadcast and multicast, one cannot use dig-
ital signatures for the verification of the messages since public key cryptography is
difficult in sensor networks. As a possible solution, in the work by Perrig et al. [35],
the μTesla protocol has been proposed. A notion of asymmetry is introduced into
symmetric key cryptography by the use of one-way function key chains and delayed
key disclosures.
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At the physical layer, jamming may be tried by propagating interfering RF signals.
The other form of jamming may be by injection of irrelevant data or wastage of battery
power at the reception node. The solution to this problem is discussed in the work by
Pickholtz et al. [37], where frequency hopping and spread spectrum communication
have been suggested. The jamming may also take place in the link layer by inducing
malicious collisions or obtaining an unfair share of the radio resource. This can be
resisted by carefully designing secure MAC protocols as described in the work by
Wood and Stankovic [44]. If the jamming is attempted at the networking layer through
the injection of malicious data packets, one can use authentication to detect such
packets and nonces to detect replayed packets.

There is another kind of attack called the Sybil attack [11,34]. In this case, a
malicious node claims multiple identities. The affected node can claim a major part
of the radio resource. The attacker will succeed to achieve a selective forwarding and
to create a sinkhole so that the affected node can capture a large amount of data [25].
The defense mechanisms have been detailed in the work by Newsome et al. [34]
leveraging the key distribution strategy.

There may be different kinds of attacks like denying a message to the intended
recipient, dropping of packets, and selective forwarding [25]. Multipath routing
solves this problem [9,17]. Some other attacks like spreading bogus routing infor-
mation, creating sinkholes or wormholes, and Hello flooding have been described
[25].

Service integrity may be at stake if the attacker launches a stealthy attack in order
to make the network accept a false data value. It may be achieved in different ways like
compromising an aggregator node, a Sybil attack by a compromised node to affect the
data value, a DoS attack to legitimate nodes to stop them reporting to the base station,
and so on. The stealthy attack in data aggregation context and Secure Information
Aggregation (SIA) Protocol have been proposed in the work by Przydatek et al. [38].
For an excellent and brief reading in this area we refer to the work by Perrig et al.
[36].

14.3 LOW COST KEY AGREEMENT ALGORITHMS

Before starting a secure communication, the parties need to settle on one or more
secret keys. In 1976, Diffie and Hellman proposed [10] a one round bipartite key
agreement protocol based on the hardness of the discrete log problem in any cyclic
group. LetG be a cyclic group of some large prime order p and let g be a generator of
G. Suppose two entitiesA andBwant to establish a common key between themselves.
A chooses some random a ∈ Z∗p, computes ga, and sends it to B; while B chooses

some random b ∈ Zp, computes gb, and sends it to A. On receiving ga, B computes
the common key as KAB = (ga)b, while on receiving gb, A computes KAB = (gb)a.
This protocol is secure assuming that the discrete logarithm problem (DLP) is hard
over G. The DLP over G is: given ga it should be computationally hard to obtain
a. Later, in 2001, Joux [24] proposed a one round tripartite key agreement protocol
based on bilinear pairing.
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Both these protocols were later extended to multiparty setting, which is referred to
as group key agreement [5]. Researchers also considered the dynamic scenario [40];
that is, participants are allowed to join or leave the group at any time. A general
approach of group key agreement is to arrange the participants in a tree structure —
for n participants this requires around n rounds. Constant round group key agreement
protocol is also available in the literature [4].

The group key agreement protocols are usually implemented over elliptic curve
groups [26]. Those requiring bilinear pairing further use modified Weil or Tate pair-
ing [15] over elliptic curve groups. Operations over elliptic curve groups and imple-
mentation of bilinear pairing are computationally quite intensive. This severely re-
stricts their application in smaller devices, especially sensor networks, though some
encouraging result is available for elliptic curve cryptography in 8-bit processors [20].

For application is sensor networks, the target is to achieve some kind of optimum
trade-off between computational and memory costs and communication bandwidth.
In the absence of any trusted central authority, contributory group key agreement
(CGKA) protocols that provide some kind of verifiable trust relationship has been
suggested [31] for this kind of situation. Some recent works [29] are available in this
direction based on the tree-based approach of group key agreement in the elliptic
curve settings.

14.4 KEY PREDISTRIBUTION

Consider a scenario where N number of sensor nodes are dropped from an airplane
in the battlefield. Thus, the geographical positioning of the nodes cannot be decided a
priori. However, any two nodes in RF range are expected to be able to communicate
securely. One option is to maintain different secret keys for each of the pairs. Then
each of the nodes needs to store N − 1 keys. Given (i) the huge number of sensor
nodes generally deployed, (ii) the memory constraint of the sensor nodes, this solution
is not practical. On the other hand, online key exchange needs further research as
implementation of public key framework demands processing power at the higher
end. Hence, key predistribution to each of the sensor nodes before deployment is a
thrust area of research and the most used mathematical tool for key predistribution
is combinatorial design. Each of the sensor nodes contains M keys and each key is
shared by Q nodes, (thus fixing M and Q) such that the encrypted communication
between two nodes may be decrypted by at mostQ− 2 other nodes if they fall within
the RF range of the two communicating nodes. Similarly, one node can decrypt the
communication between any two of at mostM(Q− 1) nodes if it lies within the RF
range of all the nodes who share a key with it.

Let us present an exact example from the work by Lee and Stinson [28]. Take
N = 2401,M = 30,Q = 49. The parameters are obtained using a transversal de-
sign (TD; for a basic introduction to TD, refer the work by Street and Street [43,
p 133] or Section 14.4.1). It has been shown that two nodes share either 0 or 1 key.
In this case, M(Q− 1) gives the number of nodes with which one node can com-
municate. The expected number of keys that is common between any two nodes is
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M(Q− 1)/N − 1 = 0.6. This is called the probability that two nodes share a com-
mon key [28]. Further, it can be checked that if two nodes do not share a common key,
then they may communicate via another intermediate node. Let nodes νi, νj do not
share a common key, but νi, νk share a common key and νk, νj share a common key,
i, j, k are all distinct. Hence, the secret communication between νi and νk needs a key
(encrypted by νi, decrypted by νk) and that between νk and νj needs another secret
key (encrypted by νk, decrypted by νj). It has been shown that the communication
between two nodes is possible in almost 0.99995 proportion of cases [28]. However,
the following problems are immediate:

1. Communication between any two nodes in 60 Percent of the cases will be in
one step (no involvement of any other node), but the communication between
any two of them needs two steps for the rest 40 Percent of the cases, making
the average of 1.4 steps in each communication. This is an overhead. Thus, we
need a design where we can guarantee that there is a common key between any
two nodes.

2. The direct communication between any two nodes can be decrypted by at most
Q− 2 other nodes. However, if one takes the help of a third intermediate node,
then the communication can be decrypted by at most 2(Q− 2) nodes. Thus, any
communication can be decrypted by at most 1.4(Q− 2) nodes on an average.

3. In an adversarial situation, if s nodes are compromised, it has been shown
that 1− (1− (Q− 2/N − 2))s proportion of links becomes unusable. In this
specific design, for s = 10, out of 2401 nodes, the proportion of unusable links
becomes as high as 17.95 Percent.

The solution to all these problems is based on the fact that we need to increase the
number of common keys between any two nodes. The issues at this point are as
follows:

1. The number of keys to be stored in each node will clearly increase. So one
needs to decide the availability of storage space. It has been commented that
storing 150 keys in a sensor node may not be practical [28, p. 4]. On the other
hand, scenarios have been described with 200 keys in the works by Du et al.
[12, p. 17] and Lee and Simon [27, section 5.2]. If one considers 4 Kbytes of
memory space for storing keys in a sensor node, then choosing 128-bit key (16
byte), it is possible to accommodate 256 keys.

2. It is not easy to find out combinatorial designs with prespecified number of
common keys (say, e.g., 5) among any two nodes for key predistribution [8,42].
Consider the following technique. Generally, a sensor node corresponds to a
block in combinatorial design [6,28]. Here one can merge a few blocks to get
a sensor node. Thus, the key space at each node gets increased and the number
of common keys between any two nodes can also be increased to the desired
level. This technique provides a much better control over the design parameters
in key predistribution algorithms.
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3. Further using such a random merging strategy, one gets more flexible parameters
than those given in the work by Lee and Stinson [28].

In the paper by Chakrabarti et al. [7] a randomized block merging based design
strategy is used that originates from TD. The computation to find out a common key
is also shown to be of very low time complexity under this paradigm as explained
in Section 14.4.3.6. Note that Blom’s scheme [3] has been extended in recent works
for key predistribution in wireless sensor networks [12,27]. The problem with these
kinds of schemes is the use of several multiplication operations (as example see the
work by Du et al. [12, Section 5.2]) for key exchange.

The randomized key predistribution is another strategy in this area [14]. However,
the main motivation is to maintain the connectivity (possibly with several hops) in the
network. As example [14, Section 3.2], a sensor network with 10,000 nodes has been
considered and to maintain the connectivity it has been calculated that it is enough if
one node can communicate with only 20 other nodes. Note that the communication
between any two nodes may require a large number of hops. However, as we discussed
earlier, only the connectivity criterion (with too many hops) may not suffice in an
adversarial condition. Further in such a scenario, the key agreement between two
nodes requires exchange of the key indices.

The use of combinatorial and probabilistic design (also a combination of both—
termed as hybrid design) in the context of key distribution has been proposed in the
work by Camtepe and Yener [6]. In this case also, the main motivation was to have low
number of common keys as in the work by Lee and Stinson [28]. On the other hand,
the work by Chakrabarti et al. [7] proposes the idea of good number of common keys
between any two nodes. The novelty of this approach is to start from a combinatorial
design and then to apply a probabilistic extension in the form of random merging of
blocks to form the sensor nodes and in this case there is good flexibility in adjusting
the number of common keys between any two nodes.

First the block merging strategy is applied in a completely randomized fashion. In
such a case there is a possibility that the constituent blocks (which are merged to form
a sensor node) may share common keys among themselves. This is a loss in terms
of the connectivity in the designed network as no shared key is needed since there
is no necessity for “intranode communication.” Thus, a cleverer merging strategy is
used toward minimizing the number of common keys among the blocks that are being
merged. A heuristic is presented for this and it works better than the random merging
strategy. The scheme is a hybrid one as combinatorial design is followed by a heuristic.

14.4.1 Basics of Combinatorial Design

LetA be a finite set of subsets (also known as blocks) of a setX. A set system or design
is a pair (X,A). The degree of a point x ∈ X is the number of subsets containing the
point x. If all subsets/blocks have the same size k, then (X,A) is said to be uniform
of rank k. If all points have the same degree r, (X,A) is said to be regular of degree r.

A regular and uniform set system is called a (v, b, r, k)− 1 design, where |X| =
v, |A| = b, r is the degree, and k is the rank. The condition bk = vr is necessary
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and sufficient for existence of such a set system. A (v, b, r, k)− 1 design is called a
(v, b, r, k) configuration if any two distinct blocks intersect in zero or one point.

A (v, b, r, k, λ) BIBD is a (v, b, r, k)− 1 design in which every pair of points occurs
in exactly λ blocks. A (v, b, r, k) configuration having deficiency d = v− 1− r(k −
1) = 0 exists if and only if a (v, b, r, k, 1) BIBD exists.

Let g, u, k be positive integers such that 2 ≤ k ≤ u. A group-divisible design of
type gu and block size k is a triple (X,H,A), whereX is a finite set of cardinality gu,
H is a partition of X into u parts/groups of size g, and A is a set of subsets/blocks of
X. The following conditions are satisfied in this case:

1. |H ⋂A| ≤ 1 ∀H ∈ H, ∀A ∈ A,

2. every pair of elements of X from different groups occurs in exactly one
block in A.

A TD (k, n) is a group-divisible design of type nk and block size k. Hence,H
⋂
A =

1 ∀H ∈ H, ∀A ∈ A.
Let us now describe the construction of a TD. Let p be a prime power and 2 ≤

k ≤ p. Then there exists a TD(k, p) of the form (X,H,A) where X = Zk × Zp. For
0 ≤ x ≤ k − 1, define Hx = {x} × Zp and H = {Hx : 0 ≤ x ≤ k − 1}.

For every ordered pair (i, j) ∈ Zp × Zp, define a blockAi,j = {x, (ix+ j) mod p :
0 ≤ x ≤ k − 1}. In this case, A = {Ai,j : (i, j) ∈ Zp × Zp}. It can be shown that
(X,H,A) is a TD(k, p).

Now let us relate a (v = kr, b = r2, r, k) configuration with sensor nodes and keys.
X is the set of v = kr number of keys distributed among b = r2 number of sensor
nodes. The nodes are indexed by (i, j) ∈ Zr × Zr and the keys are indexed by (i, j) ∈
Zk × Zr. Consider a particular blockAα,β. It will contain k number of keys {(x, (xα+
β) mod r) : 0 ≤ x ≤ k − 1}. Here |X| = kr = v, |Hx| = r, the number of blocks in
which the key (x, y) appears for y ∈ Zr, |Ai,j| = k, the number of keys in a block.
For more details on combinatorial design refer the works by Lee and Stinson [28] and
Street and Street [28,43].

Note that if r is a prime power, one cannot get an inverse ofx ∈ Zr when gcd(x, r) >
1. This is required for key exchange protocol (see Section 14.4.3.6). So basically
one should consider the field GF (r) instead of the ring Zr. However, there is no
problem when r is a prime by itself. One may generally use Zr if r is considered to be
a prime.

14.4.2 Lee–Stinson Approach [28]

Consider a (v, b, r, k) configuration (which is in fact a (rk, r2, r, k) configuration).
There are b = r2 sensor nodes, each containing k distinct keys. Each key is repeated
in r nodes. Also v gives the total number of distinct keys in the design. One should
note that bk = vr and v− 1 > r(k − 1). The design provides 0 or 1 common key
between two nodes. The design (v = 1470, b = 2401, r = 49, k = 30) has been used
as an example in the work by Lee and Stinson [28]. The important parameters of the
design are as follows:
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1. Expected number of common keys between two nodes: It is p1 =
k(r − 1)/b− 1 = k/r + 1 and in this example p1 = 30/49+ 1 = 0.6.

2. Consider an intermediate node: There is a good proportion of pairs (40 Percent)
with no common key, and two such nodes will communicate through an inter-
mediate node. Assuming a random geometric deployment, the example shows
that the expected proportion such that two nodes are able to communicate either
directly or through an intermediate node is as high as 0.99995.

3. Resiliency: Under adversarial situation, one or more sensor nodes may get
compromised. In that case, all the keys present in those nodes cannot be used
for secret communication any longer, that is, given the number of compromised
nodes, one needs to calculate the proportion of links that cannot be used further.
The expression for this proportion is

fail(s) = 1−
(

1− r − 2

b− 2

)s
,

where s is the number of nodes compromised. In this particular example,
fail(10) ≈ 0.17951. That is, given a large network comprising as many as 2401
nodes, even if only 10 nodes are compromised, almost 18 Percent of the links
become unusable.

14.4.3 Chakrabarti–Maitra–Roy Approach [7]

14.4.3.1 Merging Blocks in Combinatorial Design. Let us present the con-
cept of merging blocks to form a sensor node. Note that all the following materials
of this section are taken from the work by Chakrabarti et al. [7]. Initially no specific
merging strategy is considered and that blocks are merged randomly.

Theorem 1 Consider a (v, b, r, k) configuration with b = r2. Merge z randomly
selected blocks to form a sensor node. Then

1. There will be N = b/z� sensor nodes.

2. The probability that any two nodes share no common key is (1− p1)z
2
, where

p1 = k/(r + 1).

3. The expected number of keys shared between two nodes is z2p1.

4. Each node will containM distinct keys, where zk − (z2) ≤ M ≤ zk. The average
value ofM is M̂ = zk − (z2)k/(r + 1).

5. The expected number of links in the merged system is

L̂ =
((
r2

2

)
−
⌊
r2

z

⌋(
z

2

))
k

r + 1
− (r2 mod z)k.

6. Each key will be present inQ nodes, where �r/z� ≤ Q ≤ r. The average value
ofQ is
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Q̂ = 1

kr

(⌊
b

z

⌋)(
zk −

(
z

2

)
k

r + 1

)
.

Proof. The first item is easy to see.
Since the blocks are merged randomly, any two sensor nodes will share no common

key if and only if none of the keys in z blocks constituting one sensor node are available
in the z blocks constituting the other sensor node. Thus, there are z2 cases where there
are no common keys. As we have considered random distribution in merging z blocks
to form a node, under reasonable assumption (corroborated by extensive simulation
studies), all these z2 events are independent. Note that p1 is the probability that two
blocks share a common key. Hence, the proof of the second item.

The number of common keys between two blocks approximately follows bino-
mial distribution. The probability that two blocks share i common keys is given by(
z2

i

)
pi1(1− p1)z

2−i, 0 ≤ i ≤ z2. Thus, the mean of the distribution is z2p1, which
proves the third item.

For the fourth item, note that each block contains k distinct keys. When z blocks
are merged, then there may be at most

(
z
2

)
common keys among them. Thus, the

number of distinct keysM per sensor node will be in the range zk − (z2) ≤ M ≤ zk.
The average number of common keys between two nodes is k/(r + 1). So the average
value ofM is zk − (z2)k/(r + 1).

Consider that z blocks are merged to form a node, that is, given a (v = rk, b =
r2, r, k) configuration we get r2/z� sensor nodes. The total number of links was(
r2

2

)
k/(r + 1) before the merging of blocks. For each of the nodes (a node is z blocks

merged together),
(
z
2

)
k/(r + 1) links become intranode links and totally, there will

be a deduction of r2/z�(z2)k/(r + 1) links (to account for the intranode links) on an
average. Further as we use r2/z� sensor nodes, we discard (r2 mod z) number of
blocks, which contribute to (r2 mod z)k links. There will be a deduction for this as
well. Thus the expected number of links in the merged system is((

r2

2

)
−
⌊
r2

z

⌋(
z

2

))
k

r + 1
− (r2 mod z)k.

This proves the fifth item.
Note that a key will be present in r blocks. Thus, a key may be exhausted as early as

after being used in �r/z� sensor nodes. On the other hand, a key may also be distributed
to a maximum of r different nodes. Hence, the number of distinct nodesQ correspond-
ing to each key is in the range �r/z� ≤ Q ≤ r. Now we try to find out the average
value of Q, denoted by Q̂. Total number of distinct keys in the merged design does
not change and is also kr. Thus, Q̂ = NM̂/kr = (1/kr)(b/z�) (zk − (z2)(k/(r + 1))) .
This proves the sixth item. �

The expression fail(s), the probability that a link become unusable if s nodes are
compromised, has been calculated in the following way in the work by Lee and Stinson
[28]. Consider that there is a common secret key between the two nodes Ni,Nj . Let
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Nh be a compromised node. Now the key that Ni,Nj share is also shared by r − 2
other nodes. The probability that Nh is one of those r − 2 nodes is r − 2/b− 2.
Thus, the probability that compromise of s nodes affect a link is approximately 1−
(1− (r − 2)/(b− 2)s. Given the design (v = 1470, b = 2401, r = 49, k = 30) and
s = 10, fail (10) ≈ 0.17951.

We calculate this expression in a little different manner. Given b = r2 nodes, the

total number of links is
(
r2

2

)
k/(r + 1). The compromise of one node reveals k keys.

Each key is repeated in r nodes, that is, it is being used in
(
r
2

)
links. Thus, if one key

is revealed, it disturbs the following proportion of links:(
r
2

)(
r2

2

)
k
r+1

= 1

kr
.

Now s nodes contain ks− (s2)k/(r + 1) distinct keys on an average. This is because
there are

(
s
2

)
pairs of nodes and a proportion of k/r + 1 of them will share a common

key. Thus, in our calculation, on an average

Fail(s) = ks−
(
s
2

)
k
r+1

kr
= s
r

(
1− s− 1

2(r + 1)

)
.

Note that to distinguish the notation we use Fail(s) instead of fail(s) in the work by
Lee and Stinson [28]. Note that considering the design (v = 1470, b = 2401, r =
49, k = 30), we tabulate the values of fail(s), Fail(s) and experimental data (average
of 100 runs for each s) regarding the proportion of links that cannot be used after
compromise of s nodes. The results look quite similar. However, it may be pointed
out that our approximation is in better conformity with the experimental values than
that of Lee and Stinson [28], which looks a bit underestimated.

Now we present the calculation of Fail(s) when more than one blocks are merged.
Let Na and Nb be two given nodes. Define two events E and F as follows:

1. E: Na and Nb are disconnected after the failure of s number of nodes

2. F : Na and Nb were connected before the failure of those s nodes

The sought for quantity is

Fail(s) = P(E|F ) = P
(
E
⋂
F
)

P (F )
.

Let X be the random variable denoting the number of keys between Na and Nb and
following the proof of Theorem 1(2), we assume that X follows B(z2, k/(r + 1)).
Thus,

P(F ) = P(X > 0) = 1− P(X = 0) = 1−
(

1− k

r + 1

)2

.
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Next define two sets of events:

1. E1i: i number of keys (shared between Na and Nb) are revealed consequent
upon the failure of s nodes,

2. E2i : i number of keys are shared between Na and Nb.

Let Ei = E1i
⋂
E2i for i = 1, 2, . . . , z2. So, Ei

⋂
Ej = ∅ for 0 ≤ i �= j ≤ z2. As

E
⋂
F =

z2⋃
i=1

Ei, we have P
(
E
⋂
F
) = P

⎛⎝ z2⋃
i=1

Ei

⎞⎠
=

z2∑
i=1

P(Ei) =
z2∑
i=1

P(E1i|E2i)P(E2i) and also

P(E2i) =
(
z2

i

)( k

r + 1

)i(
1− k

r + 1

)z2−i
.

Now we estimate P(E1i|E2i) by hypergeometric distribution. Consider the popu-
lation (of keys) of size kr and γ number of defective items (the number of distinct
keys revealed). We shall draw a sample of size i (without replacement) and we are
interested in the event that all the items drawn are defective.

Note that γ is estimated by the average number of distinct keys revealed, that is,

γ = szk
(

1− sz− 1

2(r + 1)

)
.

So P(E1i|E2i) =
(
γ
i

)
/
(
kr
i

)
, i = 1, 2, . . . , z2.

Finally

P(E|F ) = P(E
⋂
F )

P(F )

=

z2∑
i=1

(
γ
i

)(
kr
i

)(z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i
1−

(
1− k

r + 1

)2 .

The estimate γ is a quadratic function of s and hence is not an increasing function
(though in reality, it should be an increasing function of s ∀s). That is why Fail(s) in-
creases with s as long as γ increases with s. Given γ = szk (1− (sz− 1)/2(r + 1))),
it can be checked that γ is increasing for s ≤ (2r + 3)/2z. As we are generally in-
terested in the scenarios where a small proportion of nodes are compromised, this
constraint on the number of compromised nodes s is practical.

Based on the above discussion, we have the following theorem.
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Theorem 2 Consider a (v, b, r, k) configuration. A node is created by random
merging of z nodes. For s ≤ (2r + 3)/2z,

Fail(s) ≈

z2∑
i=1

(
γ
i

)(
kr
i

)(z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i
1−

(
1− k

r + 1

)2 ,

where γ = szk (1− ((sz− 1)/2(r + 1)) .

It may be mentioned that while estimatingP(E1i|E2i) by
(
γ
i

)
/
(
kr
i

)
, we are allowing

a higher quantity in the denominator. The number of distinct keys revealed is under the
restriction that the keys are distributed in s distinct blocks. However, the denominator
is the expression for choosing i number of distinct keys from a collection of kr keys
without any restriction. As a consequence, the resulting probability values will be
under estimated.

Note that in Theorem 2, there is a restriction on s. Next we present another ap-
proximation of Fail(s) as follows where such a restriction is not there. However, the
approximation of Theorem 3 is little further than that of Theorem 2 from the experi-
mental results.

Theorem 3 Consider a (v = kr, b = r2, r, k) configuration. A node is prepared by
merging z > 1 nodes. Then in terms of design parameters,

Fail(s) ≈

1

1− (1− k
r+1 )z2

z2∑
i=1

(
z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i
πi,

where

π = szk
(

1− sz− 1

2(r + 1)

)
Q̂(Q̂− 1)

2L̂

.

Proof. Compromise of one node reveals M̂ keys on an average. Thus, there will be sM̂
keys. Further, between any two nodes, z2(k/(r + 1)) keys are common on an average.
Thus, we need to subtract

(
s
2

)
z2k/r + 1 keys from sM̂ to get the number of distinct

keys. Thus, the number of distinct keys in s merged nodes is

= sM̂−
(
s

2

)
z2 k

r + 1
= s
(
zk−

(
z

2

)
k

r+1

)
−
(
s

2

)
z2 k

r+1
= szk

(
1− sz−1

2(r+1)

)
.
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We haveN = b/z� sensor nodes, and L̂ =
((
r2

2

)−  r2
z
�(z2)) k

r+1 − (r2 mod z)k

average number of total links. Each key is repeated in Q̂ nodes on an average, that
is, it is being used in (Q̂)(Q̂− 1)/2 links. Thus, if one key is revealed that dis-
turbs (Q̂(Q̂− 1))/2L̂ links on an average. Hence, compromise of 1 key disturbs
(Q(Q− 1))/2/L̂ proportion of links. Hence, compromise of s nodes disturbs

π = szk
(

1− sz− 1

2(r + 1)

)
Q̂(Q̂− 1)

2L̂

proportion of links on an average. Thus, we can interpret π as the probability that one
link is affected after compromise of s merged nodes.

Now the probability that there are i links between two nodes given at least one link
exists between them is

1

1−
(

1− k
r+1

)z2
(
z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i
.

Further the probability that all those i links will be disturbed due to compromise of s
nodes is πi. Hence

Fail(s) = 1

1−
(

1− k
r+1

)z2 z2∑
i=1

(
z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i
πi .�

The following example illustrates our approximations vis-a-vis the experimental
results. Consider a (v = 101 · 7, b = 1012, r = 101, k = 7) configuration and merg-
ing of z = 4 blocks to get a node. Thus, there will be 2550 nodes. In such a situation
we present the proportion of links disturbed if s (1 ≤ s ≤ 10) nodes are compromised;
that is, this can also be seen as the probability that two nodes get disconnected, which
were connected earlier (by one or more links).

14.4.3.2 Comparison with the work by Lee and Stinson In the example
presented in the work by Lee and Stinson [28], the design (v = 1470, b =
2401, r = 49, k = 30) has been used to get N = 2401,M = 30,Q = 49, p1 = 0.6,
1− p1 = 0.4.

Now we consider the design (v = 101 · 7 = 707, b = 1012 = 10201, r =
101, k = 7). Note that in this casep1 = (k)/(r + 1) = (7)(102). We take z = 4. Thus,
N = 10201/4� = 2550. Further, the probability that two nodes will not have a com-
mon key is (1− (7/102))16 = 0.32061. Note that this is considerably lesser (better)
than the value 0.4 presented in the work by Lee and Stinson [28] under a situation
where the number of nodes is greater (2550 > 2401) and number of keys per node is
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TABLE 14.1 Comparison with an Example Presented in the Work by
Lee and Stinson [28]

Random merging Heuristic Lee and
Stinson [28]Comparison (Section 14.4.3.1) (Section 14.4.3.4)

Number of nodes 2550 2550 2401
Number of keys per node ≤ 28 ≤ 28 30
Probability that two nodes

do not share a common key 0.320555 0.30941 0.4
Fail(s), for s = 10 0.222167 0.218968 0.185714

lesser (28 < 30) in our case. Thus, our strategy is clearly more efficient than that of
Lee and Stinson [28] in this respect. On the other hand, the Fail(s) value is worse in
our case than what has been achieved in the work by Lee and Stinson [28]. In Ta-
ble 14.4.3.2, for our approaches, we present the experimental values that are average
over 100 runs. For the time being let us concentrate on the comparison between our
contribution in this section (Section 14.4.3.1) and the idea presented in the work by
Lee and Stinson [28]. In the next section (Section 14.4.3.4), we will present a better
idea and the result of that is also included in Table 14.1 for brevity.

The comparison in Table 14.1 is only to highlight the performance of our design
strategy with respect to what is described in the work by Lee and Stinson [28] and
that is why we present a design with average number of common keys between any
two nodes ≤ 1. However, we will present a practical scenario in the next subsection
where there are more number (≥ 5) of common keys (on an average) between any
two nodes and consequently the design achieves much less Fail(s) values.

One more important thing to mention is that we consider the average case analysis
for our strategy. The worst-case situation will clearly be worse than the average case,
but that is not of interest in this context as we will first try to get a merging configuration
that is close to the average case. As this is done in preprocessing stage, we may go for
more than one attempts for the configuration and it is clear that in a few experiments,
we will surely get a configuration matching the average case result. On the other hand,
it is very important to identify the best case as this will provide a solution better than
the average case. However, this is open at this point of time.

The strength of our scheme is in the presence of several common keys between
two nodes, which in fact makes it more resilient. Of course, this is at the cost of
an obvious increase in number of keys in each node by a factor of z. The examples
presented in Sections 14.4.3.2 and 14.4.3.3 illustrate this fact. In Section 14.4.3.2,
we deliberately allowed a very low number of common keys (so that the node size is
comparable to that of Lee and Stinson [28]) and hence the negative resiliency measure
Fail(s) increased slightly. In what follows, we demonstrate that with an increase
in the node capacity, the negative resiliency measure Fail(s) assumes a negligible
value.

14.4.3.3 A Practical Design with More Than One Keys (On Average)
Shared Between Two Nodes We start with the idea that a node can contain 128
keys and as we like to compare the scenario with the work by Lee and Stinson [28],
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we will consider the number of sensor nodes ≥ 2401, as it has been used in the
examples in the work by Lee and Stinson [28].

Consider a (v = rk, b = r2, r = 101, k = 32) configuration. If one merges z = 4
blocks (chosen at random) to construct a node, the following scheme is obtained (refer
to Theorems 1 and 2).

1. There will be 10201/4� = 2550 sensor nodes.

2. The probability that two nodes do not share a common key is approximately
(1− 32/102)16 = 0.0024.

3. Expected number of keys shared between two nodes = (16 · 32/102) ≥ 5.

4. Each node will contain on an average M̂ = 4× 32− (4
2

)
(32/102) ≈ 126 dis-

tinct keys and at most 128 keys.

5. Fail(10) = 0.019153 ≈ 2 percent and Fail(25) = 0.066704 ≈ 7 percent.

This example clearly uses more keys (≤128) per sensor node than the value 30 in the
example of Lee and Stinson [28]. Note that directly from a (v, b, r, k) configuration,
it is not possible to have k > r. However, in a merged system that is always possible.
Moreover, the average number of keys shared between any two nodes is≈ 5. It is not
easy to get a combinatorial design [43] to achieve such a goal directly. This shows
the versatility of the design proposed by us.

14.4.3.4 A Heuristic: Merging Blocks Attempting to Minimize the
Number of Intra Node Common Keys So far we have used the concept of
merging blocks to form a sensor node without any constraints on how the blocks will
be chosen to form a node. Now we add the constraint that the blocks that will be
merged to form a node such that the number of common keys between two blocks
of the same node is minimized (the best case is if the number is zero). For this we
present the following heuristic.

Heuristic 1

1. flag = true; count = 0; all the blocks are marked as unused;

2. an array node[. . .] is available, where each element of the array can store z
blocks;

3. while(flag){
(a) choose a random block, mark it as used and put it in node[count];

(b) for (i = 1; i < z; i++){
(i) search all the unused blocks in random fashion and put the first avail-

able one in node[count] that has no common key with the existing
blocks already in node[count];

(ii) mark this block as used;

(iii) if such a block is not available then break the for loop and assign
flag = false;
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(c) }(end for)

(d) if flag = true then count = count + 1;

4. } (end while)

5. report that count nodes are formed such that there is no intranode connectivity.

6. for rest of the (r2 − count · z) blocks, merge z blocks randomly to form a node
(they may have intranode connectivity) to get (r2/z� − count) many extra
nodes; this constitutes the initial configuration.

7. assign the initial configuration to current configuration and run step 8 for i
iterations.

8. make m moves (explained below) on the current configuration and choose the
one that gives rise to the maximum increase in connectivity; update the current
configuration with this chosen one.

We define a move as follows:

1. start move;

2. copy the current configuration in a temporary configuration and work on the
temporary configuration;

3. from the list of pairs of nodes sharing more than one common keys, select one
pair of nodes randomly; call them a and b;

4. from the list of pairs of nodes sharing no common key, select one pair of nodes
randomly; call them c and d.

5. select one block each from a and b (say block α from node a and block β from
node b) and remove them such that α and β intersect each other and nodes a
and b are still connected after the removal of α, β, respectively; if this condition
is not satisfied then go to step 9;

6. select one block each from nodes c and d and remove them; let the removed
blocks be γ and δ respectively;

7. put γ in a, δ in b, α in c, and β in d;

8. store this temporary configuration in some container;

9. end move.

In Heuristic 1 we use a simple hill climbing technique and for experimental pur-
poses we took m = 100, i = 100. It will be encouraging to apply more involved
metaheuristic techniques in step 8 of Heuristic 1. This we recommend for future
research.

It is very clear that given (v, b, r, k) configuration with b = r2, if one merges z
blocks to get each node then the maximum possible nodes that are available could be
N ≤ b/z�. However, it is not guaranteed that given any configuration one can really
achieve the upper bound b/z� with the constraint that the blocks constituting a node
cannot have any common key among themselves. Using Heuristic 1 up to step 5, one
can use all the blocks in some cases, but sometimes it may not be possible also. That
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is the reason we go for step 6 for merging the rest of the blocks where we remove the
constraints that no two blocks of a node can have a common key.

The following example illustrates the experimental results. Consider a (v = 101 ·
7, b = 1012, r = 101, k = 7) configuration and merging of z = 4 blocks to get a node.
Thus, there will be 2550 nodes. In such a situation we present the proportion of links
disturbed if s (1 ≤ s ≤ 10) nodes are compromised; that is, this can also be seen as
the probability that two nodes get disconnected, which were connected earlier (by
one or more links).

Let us refer to Table 14.1 for the comparison. As usual, we consider the (v = 101 ·
7 = 707, b = 1012 = 10201, r = 101, k = 7) configuration to attain a comparable
design after merging. Note that in this casep1 = k/(r + 1) = 7/(102). We take z = 4.
Thus, N = 10201/4� = 2550. Considering the binomial distribution presented in
Theorem 1(3), the theoretical probability that two nodes will not have a common
key is (1− (7/102))16 = 0.32061. Experimentally with 100 runs we find the average
value as 0.30941, which is less (better) than the theoretically estimated value and
also the experimental value 0.320555 as explained in Section 14.4.3.1 under the same
experimental setup. Note that this is considerably lesser than the value 0.4 presented in
the work by Lee and Stinson [28]. The average number of common keys between any
two nodes is z2p1 = z2k/(r + 1) = 16 · · · 7/102 = 1.098039. Experimentally with
100 runs we get it as 1.098362 on an average, which is a higher (improved) value
than the theoretical estimate and also the experimental value 1.098039 as given in
Section 14.4.3.1 under the same experimental setup.

14.4.3.5 More Keys Shared Between Two Nodes As in Section 14.4.3.3,
consider a (v = rk, b = r2, r = 101, k = 32) configuration. If one merges z = 4
blocks to construct a node according to Heuristic 1, the following scheme is obtained.

1. There are 10201/4� = 2550 sensor nodes.

2. The probability that two nodes do not share a common key is approximately
(1− 32/102)16 = 0.002421. The experimental value on an average is 0.002094
with 100 runs, which is lesser (better) than the theoretically estimated value.

3. Expected number of keys shared between two nodes= 16·32
102 ≥ 5.019608. The

experimental value with 100 runs is 5.021088 on an average, little better than
the theoretically estimated value.

14.4.3.6 Key Exchange In this section, we present the key exchange protocol
between any two nodes. First we present the key exchange protocol (as given in the
work by Lee and Stinson [28]) between two blocksNa,Nb having identifiers (a1, a2)
and (b1, b2), respectively. We take a (v = kr, b = r2, r, k) configuration. Thus, the
identifier of a block is a tuple (a1, a2) where a1, a2 ∈ {0, . . . , r − 1} and the identifier
of a key is a tuple (k1, k2) where k1 ∈ {0, . . . , k − 1}, k2 ∈ {0, . . . , r − 1}.

1. Consider two blocksNa,Nb having identifiers (a1, a2) and (b1, b2), respectively.

2. If a1 = b1 (and hence a2 �= b2), then Na and Nb do not share a common key.
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3. Else x = (b2 − a2)(a1 − b1)−1 mod r. If 0 ≤ x ≤ k − 1, then Na and Nb share
the common key having identifier (x, a1x+ a2). If x ≥ k, thenNa andNb do not
share a common key.

They can independently decide whether they share a common key in O(log2
2 r)

time as inverse calculation is used [41, Chapter 5].
In the proposed system, a node comprises of z number of blocks. Since each block

has an identifier (which is an ordered pair (x, y) ∈ Zr × Zr), a node in the merged
system has z number of such identifiers, which is maintained in a list.

1. For the tth block in the node Na, t = 1, . . . , z

(a) send the identifier corresponding to the tth block to the other node Nb;

(b) receive an identifier corresponding to a block in Nb;

(c) compare the received identifier from Nb with each of the z identifiers in it
(i.e., Na) using Algorithm 14.4.3.6;

(d) if a shared key is discovered acknowledge Nb and terminate;

(e) if an acknowledgment is received from Nb that a shared key is discovered
then terminate;

2. Report that there is no shared key;

Since Na and Nb participate in the protocol at the same time, the above algorithm
is executed by Na and Nb in parallel. There will be O(z) amount of communications
between Na and Nb for identifier exchange and the decision whether they share a
common key. At each node at most z2 inverse calculations are done (each identifier
of the other node with each identifier of the node), which gives O(z2 log2

2 r) time
complexity.

14.5 LOW COST SYMMETRIC CIPHERS FOR ACTUAL
COMMUNICATION

Once the secret key(s) between the communicating parties are settled, actual sym-
metric ciphers are required for the secured communication. There are two major
areas in symmetric cipher design, one is block cipher and another is stream ci-
pher. The most well-known block cipher of recent time is the (AES), also known
as Rijndael [48]. Here we leave the detailed study regarding the implementation
of AES on low end hardware (see http://www.iaik.tugraz.at/research/krypto/AES/
and http://www2.mat.dtu.dk/people/Lars.R.Knudsen/aes.html for more details), but
mainly concentrate on a few well-known stream ciphers for low end applications.

Stream ciphers have important applications in cryptography. A private or secret
key between two communicating nodes is fixed earlier and it is supposed that the key
is not known to any other person. This key is used as a seed in a pseudorandom bit
generator. The generator outputs a stream of pseudorandom bits based on the initial
key (the seed) called the keystream. The message bits are bitwise XORed with the
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keystream bits to generate the ciphertext bits. These ciphertext bits are communicated
over a public channel. It is expected that if the stream cipher design is proper, then it
is hard (in practical sense impossible) to extract the message from the cipher without
knowing the secret key. From cryptanalysis point of view, it is assumed that the
attacker will know everything about the encryption and decryption algorithm, and
the only unknown parameter will be the secret key itself. We present one of the most
famous stream cipher RC4 and point out briefly its implementation on a low end
device.

14.5.1 RC4

The RC4 stream cipher has been designed by Ron Rivest for RSA Data Security in
1987, and was a propriety algorithm until 1994. It uses an S-Box S = S0, . . . , S255
of length 256, with each location of 8 bits. It is initialized as Si = i for 0 ≤ i ≤ 255.
Another array KEY = KEY0, . . . , KEY255 is used, where each location is of 8 bits.
The minimum key size is 40 bits, that is, in this caseKEY0, . . . , KEY40 will be filled
by the key and then that is repeated number of times to fill up the entire array KEY .
Initially, an index j is set to 0 and the following code is executed for key scheduling.

for (i = 0; i < 256; i++){j = (j + Si +KEYi) mod 256; Swap Si and Sj; }

The following code is used to generate a random byte.

i = j = 0; i = (i+ 1) mod 256; j = (j + Si) mod 256; Swap Si and Sj;

t = (Si + Sj) mod 256; keyByte = St ;

The keyByte is XORed with the message byte to generate the cipher byte at the
sender end and again the keyByte is XORed with the cipher byte to generate the
message byte at the receiver end.

An exact implementation of RC4 for ATMega 163L has been presented
in the work by Sheshadri et al. [39]. ATMega 163L is a high performance,
low power 8-bit microcontroller working at a clock speed of 4 MHz. It
has 130 instructions and 32 general purpose 8-bit registers. For detailed de-
scription of the hardware see http://www.chipdocs.com/datasheets/datasheet-pdf/
Atmel-Corporation/ATMEGA163.html [45]. The implementation of RC4 takes only
eight machine instructions on ATMega 163L microcontroller to generate one byte of
keystream after every 13 cycles.

One may refer to www.cosic.esat.kuleuven.be/ecrypt/stream/ [46] to get the com-
plete details on state of the art research in the area of stream ciphers. There are a few
well-known stream ciphers that are proposed keeping in mind that one may implement
them in low end devices and keeping that in mind we will discuss E0, A5/1, and Grain.
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14.5.2 E0

E0 is a stream cipher used in the Bluetooth protocol for link encryption (see Bluetooth
SIG(2001) [47]). The encryption function in Bluetooth has a variable key size that
is decided upon during the manufacturing stage and never changed. Each device
uses a PIN code, which can be supplied to the device by the user. This PIN code
has a variable length, from 1 to 16 bits. In addition, each unit has a unique address,
BD ADDR (Bluetooth device address), which is a publicly known 48-bit value.

Firstly, for a point-to-point communication setup, a 128-bit initialization key is
derived in both units based on the PIN and the BD ADDR of the claimant unit. This
key is used for a few transaction to establish a new 128-bit key called the link key
Klink. From the link key, the cipher key Kc is derived. The link key is only used for
the authentication and is not as strictly regulated as the encryption keys, thus Klink is
always 128 bits.

The cipher key Kc, together with a 48-bit BD ADDR, a 128-bit publicly known
random value, and the 26 least significant bits from the master clock are used as
initialization values for the link encryption algorithmE0. This is a stream cipher with
linear feedback shift registers (LFSRs) feeding a finite state machine (FSM). The
binary output from the state machine is the keystream, which is Xored to the plaintext
to form the ciphertext. There are four LFSRs having lengths 25, 31, 33, and 39 bits.
The cipher is shown in Figure 14.1.

The boxes labeled z−1 are delay elements holding two bits each. T1 and T2 are two
different linear bijections over F2

2 , T1(x1, x0) → (x1, x0) and T2(x1, x0) → (x0, x1 ⊕
x0). Let xit denotes the output from theLFSRi at time t. The output from the keystream
generator zt is given by

zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t .

The following relations also hold:

st+1 = (s1t+1, s
0
t+1) =

⌊
yt + ct

2

⌋
,

yt = x1
t + x2

t + x3
t + x4

t ,

ct+1 = (c1
t+1, c

0
t+1) = (s1t+1, s

0
t+1)⊕ T1(ct)⊕ T2(ct−1).

Since the addition operations are over integers, we have the possible values
yt ∈ {0, 1, 2, 3, 4} and st ∈ {0, 1, 2, 3}. Furthermore, (s1t , s

2
t ) is the binary vector rep-

resentation of st with the natural mapping 0 → (0, 0), 1 → (0, 1), and so on.
The four feedback polynomials used in the LFSRs are given in Table 14.2. The

LFSR output xit is not taken from the end of the shift registers but from the taps as
shown in Table 14.2.

The key initialization in E0 is somewhat more complicated and involves a pre-
mixing of the initially loaded key material, the details of which are available in the
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FIGURE 14.1 Bluetooth stream cipher E0.

Bluetooth documentation [47]. However, it is important that the initial values of the
LFSRs are dependent on the master clock, and that the registers are reinitialized and
premixed for each frame. Two consecutive frames with the little difference in the
master clock will not generate initial states with little difference due to premixing.

The first attack was presented in 1999 by Hermelin and Nyberg [23]. Their attack
can recover the initial state of the shift registers with a given keystream length of 264

and a computational complexity of 264.
In 2001, Fluhrer and Lucks [16] found a theoretical attack with 280 operations

precalculation and key search space of complexity of about 265 operations. Fluhrer’s
attack is an improvement upon the earlier work by Golic et al. [19] who devised a 270

operations attack on E0.
In 2005, Lu et al. [30] published a cryptanalysis of E0 based on a conditional

correlation attack. Their result required the first 24 bits of the 223.8 frames and 238

computations to recover the key.

TABLE 14.2 Feedback Polynomials used in the LFSRs

LFSR Feedback polynomial Output tap

1 t25 + t20 + t12 + t8 + 1 24
2 t31 + t24 + t16 + t12 + 1 24
3 t33 + t28 + t24 + t4 + 1 32
4 t39 + t36 + t24 + t4 + 1 32



LOW COST SYMMETRIC CIPHERS FOR ACTUAL COMMUNICATION 431

0 18

0 21

0 22

13 168

10

10

C1

C2

C3

Keystream

7

20

FIGURE 14.2 The A5/1 stream cipher.

14.5.3 A5/1

A5/1 is a stream cipher used to provide over-the-air voice privacy in the GSM cellular
telephone standard. A GSM conversation is sent as a sequence of frames, where one
frame is sent every 4.6 ms. Each frame contains 114 bits representing the communi-
cation from the mobile station (MS) to the base transceiver station (BTS), and another
114 bits in the other direction. A5/1 is used to produce 228 bits of keystream, which is
XORed with the frame. A5/1 is initialized using a 64-bit key together with a publicly
known 22-bit frame number.

A5/1 consists of three short binary LFSRs of lengths 19, 22, and 23 denoted by R1,
R2, and R3, respectively. All these three LFSRs have primitive feedback polynomials
(see Table 14.3). The keystream of A5/1 is the XOR of the outputs of these three
LFSRs, as shown in Figure 14.2.

The LFSRs are clocked in an irregular fashion. It is a type of stop/go clocking with
majority rule as follows: each register has a certain clocking tap, denoted by C1, C2,
and C3, respectively. Each time the LFSRs are clocked, the three clocking taps C1,
C2, and C3 determine which of the LFSRs is to be clocked, according to Table 14.4.
At each step at least two LFSRs are clocked.

TABLE 14.3 Primitive Feedback Polynomials for LFSRs

LFSR number Length in bits Characteristic polynomial Clocking bit

1 19 x19 + x5 + x2 + x+ 1 8
2 22 x22 + x+ 1 10
1 23 x23 + x15 + x2 + x+ 1 10

TABLE 14.4 Register Clocking Taps

Conditions Registers clocked

C1 = C2 = C3 ⊕1 R1 R2
C1 = C2 ⊕1 = C3 R1 R3
C1 ⊕1 = C2 = C3 R2 R3
C1 = C2 = C3 R1 R2 R3
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First, the LFSRs are initialized to zero. Then for 64 cycles, the 64-bit secret key is
mixed in accordance to the following scheme: in cycle 0 ≤ i ≤ 64, the ith key bit is
added to the least significant bit of each register using XOR as follows:

R[0] = R[0]⊕K[i],

where R is a register and K is the key. Each register is then clocked (ignoring the
irregular clocking).

In the second step, the three registers are clocked for 100 additional clock cycles
with irregular clocking, but ignoring the output. Then finally, the three registers are
clocked for 228 additional clock cycles with the irregular clocking, producing the 228
bits that form the keystream. As A5/1 is an additive stream cipher, the keystream is
XORed to the plaintext to form the ciphertext. The keystream output is denoted as
z = z1, z2, ..., z228.

In 1997, Golic [18] described two attacks on A5/1. The first is an attack by solving
the system of linear equations that requires about 240 operations. The second attack
is a time–memory trade-off one that can find the initial state of the ciphers using a
precomputed table of 242 128-bit entries, and probing the table with about 222 queries
during the active phase of the attack.

In 2000, Biryukov, et al. [2] refined the attack of Golic. They presented two at-
tacks both based on highly optimized and cipher-specific search algorithms. One
needs encrypted voice data for 2 s for this attack and the attack itself requires around
2 min. However, the preprocessing time requires 248 steps and 150 GB of data
storage.

The same year Biham and Dunkelman [1] published an attack in A5/1 with a total
work complexity of 239.91 clockings of the cipher, given 220.8 bits of known plaintext.
The attack requires 32 GB of data storage after a precomputation time complexity of
238.

Ekdahl and Johannson [13] published an attack in 2003, based on initialization
procedure that breaks A5/1 by observing 2–5 min of encrypted conversation. No
preprocessing stage is required. Maximov et al. [33] improved this requiring less than
1 min.

14.5.4 Grain

Grain [21] is a stream cipher primitive that is designed to be accommodated in low
end hardware. It is based on two shift registers and a nonlinear filter function. The
key size is 80 bits. Grain is a bit-oriented stream cipher.

The cipher is presented as in Figure 14.3. It contains three main building blocks,
namely an LFSR, a nonlinear feedback shift register (NFSR), and a filter function. The
LFSR guarantees a minimum period for the key stream and it provides balancedness
in the output. The NFSR, together with the nonlinear filter, introduces nonlinearity.

Both the shift registers are 80 bits in size. The contents of the LFSR are denoted by
si, si+1,. . . ,si+79 and the contents of the NFSR are denoted by bi, bi+1, . . . ,bi+79. The
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FIGURE 14.3 The grain cipher.

feedback polynomial of the LFSR, f (x), is a polynomial of degree 80 and is defined
as

f (x) = 1+ x18 + x29 + x42 + x57 + x67 + x80.

Thus, the update function of the LFSR is

si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si .

The feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1+ x17 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x65 + x71 + x80

+x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71

+x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71

+x28x35x43x47x52x59.

The update function has the bit si masked with the input and can be defined as

bi+80 = si + bi+63 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21

+bi+15 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9

+bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9 +
bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15 + bi+63bi+60bi+52bi+45bi+37

+bi+33bi+28bi+21bi+15bi+9 + bi+52bi+45bi+37bi+33bi+28bi+21.
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The contents of the two shift registers represent the state of the cipher. From this
state, five variables are taken as input to a Boolean function, h(x). This filter function
is chosen to be balanced, first-order correlation immune and with algebraic degree 3.
The nonlinearity is the highest possible for five-variable functions, namely 12. The
function h(x) is defined as

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3

+x0x2x4 + x1x2x4 + x2x3x4.

where the variables x0, x1, x2, x3, and x4 correspond to the tap positions si+3, si+25,
si+46, si+64, and bi+63, respectively. The output of the filter function is masked with the
bit bi from the NFSR to produce the keystream. The ciphertext can then be obtained
simply by XORing the plaintext bits with the keystream bits.

Before generating the keystream, the cipher must be initialized with the key and
an initialization vector (IV). Let the bits of the key k be denoted by ki, 0 ≤ i ≤ 79,
and the bits of the IV be denoted by IVi, 0 ≤ i ≤ 63. First the NFSR bits are loaded
with the key bits bi = ki, for 0 ≤ i ≤ 79, and the first 64 bits of the LFSR are loaded
with the IV, si = IVi, 0 ≤ i ≤ 63, and the remaining bits of the LFSR are filled with
ones. The cipher is clocked 160 times without producing any running key. Instead,
the output of the filter function, h(x), is fed back and XORED with the input, both to
the LFSR and to the NFSR as shown in Figure 14.4.

The exhaustive key search attack requires the complexity 280. It is known that
an LFSR with degree d and having a primitive connection polynomial produces an
output with period 2d − 1. Because of the NFSR and the fact that the input is masked
with the output of the LFSR, the exact period will depend on the key and the IV used.

Both the shift registers are regularly clocked so that the cipher will output 1 bit
per clock. However, the speed can be increased at the expense of more hardware.
This is done by just implementing the feedback functions f (x), g(x) and filtering
function h(x) several times. The last 15 bits of the shift registers, si, 65 ≤ i ≤ 79, and
bi, 65 ≤ i ≤ 79, are not used in the feedback functions or inputs to the filter function.

NFSR LFSR

h(x)

g(x)

+

f(x)

FIGURE 14.4 The key initialization.
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This increases the speed up to 16 times if sufficient hardware is available. An example
of implementation is shown in Figure 3 in the work by Hell et al. [21]. Moreover, the
shift registers also need be implemented such that each bit is shifted t steps instead
of one thus increasing the speed by a factor of t. By increasing the speed 16 times,
the cipher outputs 16 bits/clock. Since in key initialization, the cipher is clocked 160
times, the possibilities to increase the speed is limited to factors less than or equal to
16 that are divisible by 160. The number of clockings used in the key initialization
is then 160/t. Since the filter and feedback functions are quite small, the throughput
can be increased in this way.

Grain was implemented in hardware based on standard FPGA architectures [21].
The whole design was described in VHDL. The ALTERA MAX 3000A family was
chosen because MAX 3000A uses flash memory as storage for programming data.
This is persistent and no loading procedure is necessary as with RAM-based FPGA.
Using the ALTERA Quartus design tool, a place/rout and postlayout timing analysis
was done. It has been found that t ≤ 4 fits into the EPM3256, leading to a usage of
about 90 Percent of the 256 available macrocells.

The maximum clock frequency is in the range of 35–50 MHz, depending on the
operating mode and the output interface. Also t = 8 fits into the chips, but the maxi-
mum clock frequency is then limited to 30 Hz. The number of output bits per second
is t times the clock frequency. Design on other FPGA families, namely the ALTERA
MAX II and ALTERA Cyclone, allowed the cipher to be clocked at higher speed and
it also allowed an implementation when the speed is increased by a factor of 16, that
is, t = 16.

Given certain attacks on Grain [32], a new cipher in a similar direction, called
Grain-128 is proposed in the work by Hell et al. [22]. In the hardware implementation
of the Grain family of stream cipher, the gate count is very low and it is expected that
these ciphers can be accommodated in very low end hardwares, even in RFID tags.

14.6 CONCLUSION

In this chapter we have discussed the issues of secure communication in sensor net-
work environment. One should note that in general the sensor nodes have limited
processing power and restricted amount of memory. We have first described a basic
introduction of security issues in distributed wireless sensor networks. Toward low
cost key agreement algorithms, we note that using a public key kind of situation may
not be recommendable in low end hardware platforms. Thus, key predistribution is-
sues are discussed in detail. Further we study some specific stream ciphers those are
possible to implement in low end hardware.
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CHAPTER 15

Localized Topology Control Algorithms for
Ad Hoc and Sensor Networks

HANNES FREY and DAVID SIMPLOT-RYL

15.1 INTRODUCTION

Ad hoc networks are formed by portable devices that are communicating wirelessly
without using a stationary network infrastructure. Such networks may be desired
when users are collaborating via mobile devices or may be of great importance in
case of disaster control whenever infrastructure-based communication is no longer
available. In addition, multihop ad hoc networking techniques can be used in order
to extend the limited range of wireless access points, thus extending the area from
where wireless nodes can access the Internet. Finally, ad hoc networking can be used
as an alternative communication platform to existing wired network infrastructures.
For instance, in urban regions, specific wireless routing nodes installed on top of
some selected buildings might span a high speed wireless communication network.
Installation and maintenance of such wireless rooftop networks is less expensive and
time consuming compared to their fiber- or copper-based counterparts.

A specific networking scenario that received significant attention within the past
years is sensor networks. The idea is to combine sensor, processing, and communi-
cation capabilities in small wireless network nodes that perform a measurement in
a collaborative way. In general, a single sensor node plays no significant role in the
whole measurement. Individual measurements are aggregated along a path to selected
data sinks. In this way, individual measurements emerge to a global picture of the
observed physical phenomenon. Compared to installing a set of hard-wired sensors,
sensor networks enable a rapid deployment of sensors at the measured phenomenon.
Moreover, since sensor nodes are small in general, and, in fact, not tied together by
cables, sensor networks have only a minimal influence on the whole measurement. It
is expected that in the near future, sensor networks will lead us significantly beyond
scale, precision, and detail compared to what we can measure today.

To enable the receiver to decode the received signal correctly, any wireless commu-
nication requires the signal to be received above a certain minimum signal strength.
More precisely, the relationship between the received signal strength and the noise
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FIGURE 15.1 (a) The neighbor set of node v. (b) The topology of the entire node set.

at the receiver has to be above a certain threshold referred as signal-to-noise ratio.
In general, the received signal strength significantly decreases with the distance be-
tween sending and receiving devices. In addition, due to its limited energy resources
and physical constraints, any sending device may only issue signals that are below or
equal to a maximal possible signal strength. Consequently, the potential destinations
of a message transmission are limited to spatial close network nodes (see Fig. 15.1a).
The nodes that are immediately reachable from a node v are denoted as its neighbors
N(v). The size of this set is the degree of node v. The topology of an ad hoc network
can be defined as an extension of the neighbor relation by referring to the network
graph (V,E) consisting of all nodes V and all edges (v,w) that satisfy that w is a
neighbor of v (see Fig. 15.1b).

Generally speaking, topology control refers to all methods that, starting from a
given network topology (V,E), construct a graph (V ′, E′) that satisfies a desired prop-
erty. More specifically, existing topology control mechanisms can be distinguished
according to the following three subclasses. Neighbor elimination schemes (NES)
maintain the entire set of network nodes while reducing each node’s neighbor set;
that is, the resulting topology (V ′, E′) satisfies V ′ = V and E′ ⊆ E with additional
properties like connectivity. In contrast, backbone construction schemes remove nodes
from the original node’s neighbor set while keeping all edges from the original graph
that connect the remaining nodes. This corresponds to constructing a graph (V ′, E′)
that satisfies V ′ ⊆ V and E′ = {(v,w) : v,w ∈ V ′ and (v,w) ∈ E}. Finally, the class
of overlay topology control schemes utilizes the original network topology in order
to construct a virtual graph consisting of nodes and edges that are not contained in V
and E of the original network topology, respectively.

Owing to limited communication ranges, ad hoc and sensor networks are inherently
decentralized; that is, in general there exists no node that has at once an entire view
on the global network topology. Thus, algorithms that rely on a global network view
require the local views of individual nodes being collected and transferred to one,
all, or a set of dedicated nodes that are responsible for performing the topology
control. Moreover, in most cases an ad hoc network topology will vary over the time.
This might be due to varying external noises, changes in the environment, unrelated
message transmissions, and device mobility. In such a dynamic environment, nodes
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that are in charge of the topology control have to receive periodic update messages
reflecting the most current view of the entire network topology. Consequently, any
centralized method may end up with a scalability problem when the number of devices
is increasing.

A promising solution that does not suffer from this scalability problem is localized
methods where network nodes obtain only a local view on the constructed topol-
ogy. In addition, the topology construction is performed by using local knowledge
only. More precisely, local knowledge of a node v refers to a constant amount of
information about the network nodes that are able to send a message to v by using
a well-defined maximum number of intermediate forwarding nodes. In the simplest
setting this constant is equal to 1; that is, topology control executed at each node
v is based on a constant amount of information about the nodes for which v is an
immediate neighbor.

In this chapter we focus on the basic ideas and results about the most prominent
neighbor elimination-based localized topology control mechanisms. First of all, the
different objectives that can be followed by topology control mechanisms are dis-
cussed in Section 15.2. Possible model assumptions and elementary mechanisms are
subsequently presented in Section 15.3. With the elementary terms and definitions
introduced, basic NESs are presented in Section 15.4. For more details concerning
the classes backbone construction and overlay topologies the reader can refer to the
works by Simplot-Ryl et al.[43] and by other authors [10–12], respectively. Finally,
Section 15.5 concludes the chapter by discussing future research directions.

15.2 TOPOLOGY CONTROL OBJECTIVES

In the most general definition, topology control refers to transferring the underlying
network topology to a graph having a desired property. This section will substantiate
this definition by listing some of the most frequently pursued objectives. Depending
on the application of scenario topology control, only some of the listed objectives
might be desired ones. Moreover, some of the objectives may be conflicting ones and
cannot be followed at the same time. Whenever two conflicting goals are of interest
at the same time, pro and contra of both methods have to be assessed in order to find
the right trade-off between them.

15.2.1 Connectivity

In general, a constructed topology is intended to serve as the basis for supporting
communication within a network. Thus, connectivity is one of the most intrinsic
properties that should be satisfied by any topology control method. More precisely,
the existence of a path connecting two nodes v and w in the original topology (V,E)
should always imply that sending a message from v tow is as well possible by utilizing
a path in the constructed topology (V ′, E′).

However, some schemes sacrifice connectivity of the resulting topology putting
main emphasis on other objectives like reducing node degree. Moreover, some ap-
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proaches may not result in a connected topology in all possible cases but may
show good performance regarding connectivity in the typical network scenarios they
are designed for. Finally, for some schemes that do not guarantee connectivity it
might be possible to prove that they produce a connected topology with some high
probability.

15.2.2 Energy Consumption

The lifetime of a wireless network depends on the battery capacity of its individual
nodes. As long as nodes are not recharged, energy will permanently dissipate, initially
resulting in some nodes to fail, and eventually resulting in malfunction of the entire
network. Thus, energy efficient protocol design is vital for the practical applicability
of wireless ad hoc and sensor networks.

The energy requirementf (v,w) for message transmission along a single link (v,w)
can be extended to the energy requirement for an entire pathp = v1v2 . . . vn by setting
f (p) = f (v1, v2)+ . . .+ f (vn−1vn). According to this definition, a topology control
mechanism might aim to construct a subtopology that supports all energy optimal
paths from the original network topology. More precisely, a path p connecting two
nodes v and w is energy optimal if any other path q connecting these two nodes
satisfies f (p) ≤ f (q). For each energy minimal path p, there has to be a path p′ in
the subtopology that connects the same end points of p and that satisfies f (p′) =
f (p).

A less restrictive form of this definition is topology control mechanisms that sup-
port energy efficient paths up to a constant factor; that is, there exists a specific
constant c ≥ 1 such that for each energy minimal path p in the original topology,
there exists a path p′ in the subtopology that connects the same end points and that
satisfies f (p′) ≤ cf (p). A topology with this property is also denoted as a spanner
with respect to the considered edge weight function.

Energy optimality can as well be expressed in terms of optimizing the transmission
power assignment, which refers to the minimum power needed at a node in order
to reach all its neighbors in the constructed topology. Two objectives have been
considered so far, min-max and min-total assignments. The min-max assignment
problem is to find a transmission power assignment such that the topology is connected
and the maximum over the transmission power assigned to each node is minimal. The
min-total assignment problem tries to find a transmission power assignment such
that the resulting topology is connected and the sum over the transmission powers
assigned to each node is minimal.

The transmission power assignment problem has some similarity to the minimum
energy broadcasting problem. Any broadcasting can be seen as a directed tree T
rooted at the broadcasting initiator. The cost of a broadcasting tree can be calcu-
lated as the sum over the cost of each node in the tree. Leaf nodes require no further
transmission and are assigned energy cost 0. Under the assumption that the commu-
nication hardware supports transmission power adjustments, intermediate nodes are
assigned the minimum power required in order to reach all neighbor nodes in the
broadcasting tree. Finding an optimal broadcasting tree is not possible in polynomial
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time under P �= NP [7]. However, a possible topology control objective might be
to support energy minimal broadcasting up to a constant factor, that is, when using
the neighbor relation of the topology, independent from the broadcasting initiator
should consume only a constant factor more energy than the optimal broadcasting
tree.

15.2.3 Node Degree

A further objective that is considered by many topology control mechanisms is to keep
each node’s degree small. A desirable property is that a topology control mechanism
guarantees the degree of any network node limited by a certain constant from above.
Using such a subtopology may support scalability of protocols that rely on neighbor-
hood information since there is less amount of information that has to be kept up to
date. For an example, consider a protocol that requires two-hop neighbor information;
that is, each node needs information about the neighbors a neighbor node is able to
reach. Suppose this information is periodically provided by each node to its neigh-
bors by sending control messages over the wireless communication media. The size
of these control messages depends on the degree of the nodes. In densely deployed
networks without topology control, such control messages might get arbitrarily large
sizes. Thus, control message exchange in this case will consume a significant amount
of energy and might congest the wireless network.

Topology control that reduces a network node’s set of neighbor nodes may as
well support network throughput due to spatial reuse of the communication me-
dia. The reduced set of neighbor nodes might extend over a smaller area than it
does for the entire neighbor set from the original network topology. If the commu-
nication hardware supports signal strength adjustments, the maximum transmission
power needed is less than or equal to the one required in order to reach all neighbor
nodes in the original topology. Communications that involve only nodes from the re-
duced neighbor set might disturb less other nodes that are communicating at the same
time.

15.2.4 Planarity

Constructing a planar topology is an important ingredient of planar graph routing
schemes [4,20,22]. In this context, the notion planar refers to a two-dimensional
geometric graph with no intersecting edges. The general idea of this routing scheme
can be described as follows. A planar graph partitions the plane into faces that are made
up of the polygons described by the graph edges. Beginning with the face containing
the starting node, planar graph routing accomplishes message forwarding by following
a sequence of faces that provide general progress toward the final destination node.
Exploration of a single face and deciding the right sequence of faces can be done in a
pure localized manner. Each forwarding node needs information about its immediate
neighbors only.

A wireless network consisting of nodes that are deployed on a plane defines
a geometric graph in a natural way. In general, the resulting graph is not planar
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(see Fig. 15.1b, for instance). From a global point of view, planarity can simply be
obtained by repeatedly removing one of the two intersecting edges until no intersec-
tion remains. However, without any further structural assumptions on the underlying
topology, it is easy to construct an example where connectivity and planarization by
edge removal are conflicting goals. Moreover, under this general network setting, the
described global planarization scheme cannot be applied in a localized manner. The
edge end point of two intersecting edges might be connected by only one path of length
n. Thus, detecting the intersection requires message exchange along n communication
hops while n can be arbitrarily large.

15.2.5 Symmetry

Under a given topology (V,E), two nodes v and w are connected by a symmetric link
if both edges (v,w) and (w, v) are present in E. Otherwise, if only one of both edges
is present in E, the connection will be referred as asymmetric or unidirectional. In
general, a topology may contain unidirectional links. For instance, in the network
topology depicted in Figure 15.1, it is possible that node v is able to reach node v4
but v4 is not able to reach node v. In this situation, node v is able to send a message
to node v4 but node v4 is not able to send a direct reception acknowledgment to
v. Thus, the message gets lost in case of a transmission failure. The objective of
symmetric topologies is to maintain only symmetric connections that provide reliable
communications due to direct link acknowledgments.

Given an arbitrary topology T , a symmetric topology can be constructed by remov-
ing all unidirectional edges or by introducing a backward edge for each unidirectional
edge. The resulting topology will be denoted as symmetric subtopology T− and sym-
metric supertopology T+, respectively. Symmetric sub- and supertopologies can be
constructed in a localized way due to the fact that an asymmetric link can be detected
at the sending node due to missing acknowledgments from the receiver. A symmet-
ric subtopology is obtained when each sending node removes all potential receivers
from which it has not received an acknowledgment. The symmetric supertopology
requires that the sender informs all unidirectional connected receivers to introduce the
backward edge. This can be obtained by increasing the receiver node’s transmission
power, for instance.

15.3 MODEL ASSUMPTIONS AND BASIC MECHANISMS

Different topology control mechanisms may have similar requirements on the hard-
ware capabilities and the structure of the underlying network topology. Moreover,
even schemes that are highly different in the applied topology construction rule may
have some elementary building blocks in common. The following lists some of the
most fundamental model assumptions and elementary building blocks that are often
used in the literature.
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15.3.1 Energy Models

In the most general form, the energy that is consumed by two communicating nodes
can be described as a functionf : V × V → R+, that is, each communication requires
a positive amount of energy. In the simplest setting, the energy required for signal
transmission between two nodes v and w might be assumed as f (v,w) = c with
c > 0. This model is a reasonable choice whenever the communication hardware
cannot adapt the signal strength and thus always sends with full transmission power.

When a sender can adjust its power to the minimum needed in order to reach the
message receiver, the energy model requires a closer look. In general, the energy
required for a communication between two close nodes will be less than the energy
required for a communication between two distant ones. Under the assumption of
omnidirectional and unobstructed signal dispersion, it is reasonable to define f as a
nondecreasing function depending only on the distance between two nodes. This will
be denoted as a distance-based energy model in the following.

A well-established distance-based energy model is the exponential path loss model
[40] that defines the power required for two communicating nodes v and w as
f (v,w) = t|vw|α + c for appropriate α > 1, t > 0, and c ≥ 0. The parameter α is
typically set to 2 or 4. |vw|α reflects the signal attenuation along the transmission
path. The value of t that is sometimes assumed as 1 can be used as a normaliz-
ing constant depending on the hardware parameters and the utilized energy unit.
Finally, the constant c that is sometimes neglected is used in order to take energy
requirements for message processing in the sender and receiver devices into account.
This value is assumed to be independent of the distance between the communicating
devices.

The energy considerations described so far refer to energy efficient unicast com-
munications between two devices. Multicasting and broadcasting are important com-
munication paradigms as well, which differ in the way that a single message trans-
mission might have more than one recipient. In order to take multiple recipients
into account, the general energy consumption model can be extended to a mapping
f : V × P(V ) → R+ withP(V ) being the power set ofV . Constant energy consump-
tion in each message transmission can be extended to f (v, {v1, . . . , vn}) = a+ n · b.
In this connection, a reflects the constant amount of energy spent at the sending device
and b the constant amount of energy spent at the receiving devices. In the same way, the
exponential path loss model can be extended to f (v, {v1, . . . , vn}) = a+ tdα + n · b
with d = max{|vv1|, |vv2|, . . . , |vvn|}; that is, the power is set to the value required
to reach the recipient that is most distant from v.

15.3.2 Geometric Data

The class of geographic topology control schemes needs additional information about
the nodes’ physical location. This might be available by GPS [19], a local positioning
infrastructure [15], or relative positioning based on signal strength estimations [5]. In
contrast, schemes that only need information about the current reachability between
neighbor nodes can be denoted as link-based topology control.
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Some geographic topology schemes require weaker geometric information in the
form of the direction or the distance to the signal sender. Such methods can be de-
noted as direction-based and distance-based topology control, respectively. Whenever
nodes can determine their physical location, direction or distance can simply be com-
puted by using the sending and receiving node positions. The position of a message
sender can be made available by piggybacking this information on each transmitted
message.

Direction- and distance-based topology control does not necessarily require a lo-
calization mechanism. Directional information can be made available if the commu-
nication hardware uses more than one directional antenna [21] in order to determine
the angle of arrival; that is, relatively to its own orientation a receiving node is able to
determine the direction of a sending node. Distance information might be inferred by
measuring the signal strength of a received message. The reception hardware might
provide this always existent information to upper protocol layers. Assuming an ad-
equate distance-based energy model, the receiver can compute the distance to the
sender by applying the inverse function of the power model on the sent and received
signal strength. The signal strength used in the sending device might be either known
in advance or transmitted as additional information within each message.

15.3.3 Neighbor Discovery

From a global point of view, determination of the neighbors of a given node is obvious.
For instance, under the topology depicted in Figure 15.1(b), one can see that the
neighbors of node v are {v1, v2, v3, v4}. However, by exploiting local information
only, how is node v able to determine that it is able to reach node v4? It might send
a hello message with full signal strength and thus might be able to reach v4 but any
direct reply from node v4 is not possible under this topology. On the contrary, node
v4 might use path v4v5v1v (wherever it gets this information from) in order to send a
reply message to v.

In general, such a backward path might be arbitrarily long. Consequently, without
any further network assumptions determining the entire set of neighbors a node might
be able to reach is not always possible in a localized way. There has been a general dis-
cussion about the usefulness of unidirectional links. Some works like those by Pearl-
man et al. [35] and Ramasubramanian et al. [39] suggest that protocols might benefit
from treating such links as bidirectional; for example, node v4 in Figure 15.1b might
introduce a virtual link (v4, v) that is mapped on the backward pathv4v5v1v. Whenever
node v4 receives a message from v it might send an acknowledgment along the virtual
link, implicitly using the assigned backward path. However, maintaining such virtual
links requires some control overhead when the network is changing over the time. The
required control overhead might outweigh the usefulness of such virtual links [32].

A localized neighbor discovery protocol that simply ignores such unidirectional
links can basically be implemented by the following request reply protocol. A node v
sends a broadcast message by using a desired transmission power p (this might be the
full signal strength, for instance). All nodes receiving the request message will reply
with appropriate signal strength. After the node v has received all reply messages,
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it knows about the set of bidirectional connected neighbors it is able to reach with
power p.

When the network is changing dynamically, the request reply protocol has to
be repeated periodically. As an alternative solution, each node might periodically
broadcast a hello message including the list of all nodes it recently received a hello
message from. Whenever a node is an element in a hello message it received from a
node w, it knows that there exists a bidirectional link between itself and w.

Neighbor discovery is sometimes considered under the simplified assumption that
the underlying topology is undirected; that is, two nodes v and w are either mutually
in their communication ranges or cannot communicate directly at all. In this case,
sending a plain hello message containing the sending node ID is sufficient since
reception of a hello message from w implies that w is able to receive messages from
node v as well.

As an alternative to the described active neighbor discovery scheme, neighbor
detection might as well be performed in a passive manner. Such schemes do not require
any hello message exchange but rely on the fact that communication among two nodes
can be overheard by nearby nodes running their transceivers in promiscuous mode,
passing as well messages to upper protocol layers that were not addressed to this node.
In such a scheme it is assumed that other networking protocols are producing control
and data messages. A neighbor is any node from which a message was overheard
recently.

Finally, an alternative passive scheme might just utilize neighbor information that
is already maintained within another protocol. For instance, proactive routing schemes
periodically exchange hello messages in order to keep their routing tables up to date.
In order to avoid unnecessary additional control overhead, a topology control scheme
can utilize the information that is already available at the routing layer.

15.3.4 Unit Disk Graphs (UDGs)

Assuming a distance-based energy model has an important implication on the resulting
network topology. When issuing a specific signal strength p the recipients that a node
v is able to reach are exactly the nodes located within a circle centered at v, while the
circle radius r(p) depends on the signal strength p. Assuming that each node utilizes
a uniform signal strength p implies a topology consisting of exactly those edges
(v,w) that satisfy |vw| ≤ r(p). A topology with this structural property is referred to
as a UDG. A generalization of this concept is quasi-unit disk graphs that allow the
communication range to vary within a minimum and a maximum transmission radius.
More precisely, the communication range may be any shape boundary lying outside
a minimum circle with center v and radius Rmin, and inside a maximum circle with
center v and radius Rmax.

UDGs are an important class of network topologies that are often used in order
to simplify the theoretical analysis of a given topology control scheme. Moreover,
some topology control schemes require that the underlying topology has the UDG
property. This assumption might be justified if the network is deployed in a well-
tempered medium like sensor nodes flowing in a large water basin. Moreover, it
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might be possible to construct a unit disk graph by throwing away all long edges.
More precisely, in many scenarios network nodes are able to communicate with each
other whenever their distance is not larger than a critical distance parameter d. When
the distance between two devices is larger than d, communication might no longer be
possible. Whenever nodes are able to precisely determine the distance of a message
sender, a unit disk graph can be constructed locally by simply ignoring all messages
that were transmitted over a distance larger than d. However, connectivity of the
original topology might get lost under this construction.

15.3.5 Power Control

Topology control mechanisms based on power control assume that each network
node is able to adjust its transmission power. Power control can be used as a general
mechanism to control the network topology. A node that transmits a signal with
reduced signal strength will be visible to less or at most the same set of nodes that
will see this node in the original network topology. Power control is sometimes used
as a synonym for topology control. However, when defining topology control in the
general sense, power control refers to a specific subclass of the possible topology
control mechanisms.

The general idea of localized power control is that each node attempts to find its
own optimal power level such that the set of neighbors it discovers with this power
level satisfies a desired property. This general idea can further be classified according
to the way the optimal power setting is found. This may either be a direct or a feedback
scheme.

Under a direct power control scheme each node uses its maximum possible
transmission range in order to discover the set of neighbor nodes first and determine
the right power setting afterward. Setting the power level in one step requires an
appropriate signal propagation model that enables a node to estimate the subset of
neighbor nodes it is able to reach after reducing the power level. The calculation
might rely on either neighbor node positions or signal strength measurements.

A feedback-based adjustment refers to all methods that starting from an initial
power level successively adapt a node current power level in order to reach an optimal
one. Within each step, the current power level pi is used for the neighbor discovery
procedure. The neighbor information detected with the current power level pi is used
in order to calculate the next power level pi+1. A feedback scheme might either be
transient in the sense that it finds an optimal power level after a finite number of
steps, or it might be applied permanently in order to keep the power level optimal
with regard to possible changing network parameters.

15.4 NEIGHBOR ELIMINATION SCHEMES

The following lists the basic ideas of the most prominent localized NESs. In general,
neighbor elimination can be obtained either in a direct way by eliminating some
elements from the list of all currently known neighbor nodes or in an indirect way
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by reducing a node maximum transmission range such that neighbor discovery will
find less neighbor nodes. A reduced neighbor set may be a by-product when using
topology control to reduce a node’s maximum transmission range. On the contrary,
explicitly reducing a node’s neighbor set may be used in order to reduce a node’s
maximum transmission range as well. In other words, power control and explicit
neighbor elimination accompany each other.

15.4.1 Relay Regions and Enclosures

The minimum energy communication network (MECN) algorithm that was intro-
duced by Rodoplu and Meng [41] is a sophisticated geographic topology control
mechanism that keeps all energy efficient paths from the original network topology.
The algorithm was further improved by Li and Halpern [24]. The improvement—
referred as small minimum energy communication network (SMECN)—constructs a
subgraph of the topology obtained by MECN while maintaining its minimum energy
property.

Both algorithms are based on the concept of relay regions, which for two given
nodesu and v describes the region of node positions where message transmission from
nodeu via node v consumes less power than transmitting the message directly. In other
words, the relay region R(u, v) is defined as the point set {w : p(u, v)+ p(v,w) <
p(u,w)}, whilep(u, v) denotes the power required to send a message fromu tov. Refer
to Figure 15.2a for a typical shape of a relay region resulting from the exponential
path loss model.

Basically, in both algorithms each node v explores its surrounding with a suc-
cessively increasing broadcast range. In each step, v determines the enclosure of its
already discovered neighbors. For a given set of nodes N, the enclosure of a node u
defines the region where a direct message transmission is less expensive than sending
it over a relay node. This can be defined as the intersection of the nonrelay regions of
the neighbor nodes inN, that is, ∩v∈NR(u, v)c. For instance, Figure 15.2b depicts the
enclosure of u defined by the discovered nodes v1, v2, and v3. Neighbor exploration
stops when the broadcast area becomes a superset of the node’s discovered enclosure.

u

v u

(a) (b)

relay region
v1v2

v3

FIGURE 15.2 (a) The relay region for node u and its neighbor node v. (b) The enclosure for
node u obtained due to its neighbor nodes v1, v2, and v3.
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For instance, in Figure 15.2b neighbor exploration will stop since the current broad-
cast range (the dashed circle) contains the entire enclosure formed by the already
discovered neighbor nodes v1, v2, and v3.

Refer to Figure 15.2b to follow the intuition behind the described power control
scheme. Network nodes might be located either within or without the broadcast range
of nodeu. The nodes within the broadcast range are the discovered nodes v1, v2, and v3
that are located within the enclosureE(u) of node u. Minimum power consumption is
achieved when addressing them directly (in general, minimum energy communication
within the enclosure E(u) might as well require an appropriate relay node within
E(u)). Sending a message to any other node located outside the broadcast range of
u and thus outside the enclosure E(u), always consumes less power when it is sent
via the right relay node in {v1, v2, v3}. Thus, regarding energy minimal paths, further
neighbor discovery beyond the enclosure is not required.

Enclosure-based topology control requires knowledge about the geometry of relay
and broadcast regions. Although this is not a necessary condition for the key idea
described by MECN and SMECN, the algorithms are introduced under the exponential
path loss model assuming omnidirectional free space radio propagation. In this case,
by using the power model parameters it is possible to compute the broadcast region,
which is a circle centered at u, and the relay region, which is a bell-shaped curve as
depicted in Figure 15.2a.

15.4.2 The Cone-Based Approach

The cone-based topology control (CBTC) mechanism by Wattenhofer et al. [47] is a
directional topology control mechanism that provides a parameter α that can be used
in order to control the energy efficiency and node degree of the resulting topology.
For a given angle α, each node v running CBTC determines the minimum broadcast
range that satisfies that any cone with angle α centered at v (see Fig. 15.3a) contains at
least one neighbor node. Obviously, the condition is equivalent to finding the power
setting such that the angular distance between two successive neighbors, according
to their direction, is less than α.

The original work [47] and a subsequent publication [25] give a precise analysis of
the parameter α regarding network connectivity and energy efficient communication

p/2

2p/3

5p/6

=> Energy efficient  routes   in T

=> Connectivity of and -T T

<=> Connectivity of +T

v

α

(a) (b)

FIGURE 15.3 (a) Every cone with angle α must contain at least a neighbor node. (b) The
structural properties of CBTC depending on the parameter α.
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paths. Refer to Figure 15.3b for a summary on the results. It is shown that α ≤ 2π/3
is a sufficient condition for connectivity of the resulting topology. It can be observed
that the topology T resulting from CBTC might contain asymmetric links. Thus, the
parameter α is as well analyzed with respect to the symmetric sub- and supertopology
of T . It holds that α ≤ 2π/3 is even a sufficient condition for connectivity of the
symmetric subtopology T−. For the symmetric supergraph T+ the parameter α ≤
5π/6 is a necessary and sufficient condition for connectivity. Energy efficiency is
analyzed under the assumption that the power p(u, v) required to send a message
from u to v is lower and upper bounded by cdx ≤ p(u, v) ≤ czdx, with d = |uv|,
z ≥ 1, c > 0, and x ≥ 2. It is shown that the topology obtained for α ≤ π/2 preserves
power optimal routes up to a constant factor.

15.4.3 Counting-Based Methods

A direct approach to reduce the average node degree of a given topology is to set each
node’s communication range to the minimum power that is required to obtain a given
number of neighbor nodes. Assuming a distance power model, this approach is similar
to setting each node’s communication range to the minimum that is required in order
to reach the k-nearest-neighbor node. In the following, the topology resulting from
connecting each node with its k closest neighbors will be denoted as a k-neighbor
graph Gk.

Assuming that network nodes are uniformly distributed on a given square, it has
been proved by Xue and Kumar [48] that for an increasing number of nodes n there
exists a constant c1 such that the symmetric supertopology of Gc1 log n tends to be
connected with probability 1. Furthermore, there exists as well a constant c2 < c1 such
that the symmetric supertopologyGc2 log n tends to be disconnected with probability 1.
Based on this result, Blough et al. [2] proved the same property even for the symmetric
subtopology, that is, even when all asymmetric links are removed from Gc1 log n the
resulting graph tends to be connected with probability 1.

This theoretical result shows that topology control that considers the k closest
neighbors is a reasonable approach to control the node degree while preserving net-
work connectivity with a high probability. The critical part with this approach is that
the value of k depends on log n, that is, on the total number of network nodes. Thus,
the number of nodes has to be known in advance in order to adjust the right k value
at each node.

A counting-based approach can be implemented in many variants. A straightfor-
ward method is to actively search for neighbor nodes with increasing power adjust-
ment until the desired number of neighbors has been discovered. If nodes are able to
estimate their mutual distances, the k closest neighbors can be determined directly
without the need for successively increasing node current power setting. This ap-
proach is followed by the k-neighborhood protocol (k-Neigh) by Blough et al. [2].
Basically, each node sends its node ID with the maximum possible signal strength.
After a certain time-out delta each node sends again with full signal strength its own
ID and the IDs of the k-nearest-neighbor nodes it has heard about. With this infor-
mation each node is able to decide the neighbors it is bidirectionally connected with.
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Each node sets its maximum power to the one that is needed in order to reach the
most distant bidirectional connected neighbor.

Passive realizations of the counting-based approach have been proposed as well.
In the MobileGrid approach by Liu and Li [31] the current number of neighbor
nodes is estimated by listening for control and data messages issued by neighboring
devices. After a certain time-out interval the algorithm checks whether the number of
discovered neighbors is within a certain interval, which is an external parameter tuned
according to the network characteristics. If the number of neighbors is this interval, the
device’s own power level is proportionally increased or decreased. Passive neighbor
discovery and power level adaption are performed periodically such that the power
level gradually approaches the desired one. A similar approach is taken by the Local
Information No Topology (LINT) protocol described by Ramanathan and RosalesHain
[38]. LINT is intended to run in combination with a routing protocol where each node
keeps a neighbor table used for routing. This already available information is exploited
by LINT in order to determine whether the current number of neighbors is within a
certain minimum and maximum threshold. If not satisfied, the node transmission
power is gradually modified according to a function of the current and the desired
node degrees.

15.4.4 Gabriel and Relative Neighborhood Graph

Gabriel graphs (GGs) [13] and relative neighborhood graphs (RNGs) [45] have ex-
tensively been studied in conjunction with planar graph routing. Both methods assume
an underlying UDG topology and that each node is aware of the positions of its im-
mediate neighbor nodes. A Gabriel graph is obtained by removing all UDG edges
(u, v) that satisfy that at least one neighbor node w lies in the circle U(u, v) with
diameter |uv| and passing through nodes u and v (see Fig. 15.4a). A relative neigh-
borhood graph is obtained in the same way but using a broader area to detect such a
node w. The edge (u, v) is removed whenever a further neighbor node w lies within
the intersection of the circles U(u) and U(v) with radius |uv| and centers u and v,
respectively (see Fig. 15.4b).

Both graph constructions result in a planar graph and maintain connectivity of
the underlying UDG. Moreover, it is obvious that relative neighborhood graph is a
subtopology of Gabriel graph. Bose et al. investigated that RNG and GG are not
network spanners with respect to the Euclidean distance metric [3]. In the worst case

u

v
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FIGURE 15.4 (a) The Gabriel graph criterion. (b) The relative neighborhood graph criterion.
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the shortest path in a Gabriel graph might be O(
√
n) times longer than the shortest

path in the UDG. Worse still, in a relative neighborhood graph the shortest path might
be O(n) times longer.

It was pointed out by Li [27] that a node in a relative neighborhood graph might
have an arbitrarily large node degree. This observation is based on the fact that in the
original RNG construction an edge (u, v) is preserved even if a nodew is lying on the
boundary ofU(u) ∩ U(v). The work proposes a modified version of RNG, denoted as
RNG′, which takes such boundary nodes w as well into account. Removing all edges
(u, v) that have a node on the boundary ofU(u) ∩ U(v) might result in a disconnected
topology. For this reason, the RNG′ variant utilizes a total ordering to decide if such an
edge has to be removed or not. More precisely, besides the original RNG criterion an
edge (u, v) is removed as well if there exists a nodew on the boundary ofU(u) ∩ U(v)
and one of the following three conditions is satisfied: w is closer to v than to u and
id(w) < id(v),w is closer to u than to v and id(w) < id(u), orw has the same distance
to u and v and id(w) < min{id(u), id(v)}.

The UDG assumption is inevitable for the described Gabriel graph and relative
neighborhood graph constructions. For arbitrary graphs the resulting topology can
neither guarantee planarity nor connectivity. Barriere et al. [1] described an extension
of the Gabriel graph construction that can be applied in quasi-UDG that satisfies that
the ratio between the maximum and the minimum transmission radius is lower than
or equal to

√
2. As it was pointed out as well by Kuhn et al., this ratio forms a sharp

transition with respect to locally detectable edge intersections [23]. In the Gabriel
graph-based robust topology control mechanism described in the work by Barriere
et al.[1], each node u determines for all its nonprocessed outgoing edges (u, v) if there
exists a neighbor node w that is located within U(u, v). Any such detected neighbor
nodew is announced to node v. Node v addsw as an unprocessed node to its neighbor
set, if node w was not a known to v so far. In addition, node v stores a virtual edge
(v,w) that is mapped to the relay node u; that is, a message from v to w is first sent
to node u and from there sent to node w. Finally, when all nodes have completed
the virtual edge construction step, local Gabriel graph construction is applied on this
extended neighbor set. It is proved that the resulting topology is connected and planar
if the quasi-unit disk graph satisfies rmax/rmin ≤

√
2 [1].

Note that the virtual edge concept is a recursive structure; that is, the edges (v, u)
and (u,w) used for the virtual edge (v,w) might be virtual edges as well. It is shown
that the path corresponding to a virtual edge might be arbitrarily long [1]. Thus,
without any further provision the algorithm is not localized. However, it is shown that
for graph families providing a minimum Euclidean distance between any two network
nodes (sometimes denoted as civilized graphs or ω(1)-model) the total length of a
virtual edge’s corresponding path is bounded by a constant. Moreover, it is proved
that the length of the corresponding path is as well bounded by a constant if the
quasi-unit disk graph has a bounded node degree [1]. The work proposes a localized
two-phase scheme that first applies a topology control mechanism that limits the node
degrees but maintains the quasi-unit disk graph property. Afterward, the virtual edge
topology control scheme and localized Gabriel graph construction is applied on this
backbone structure.
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15.4.5 Localized Delaunay Triangulation

Given a point set V , the Delaunay triangulation is obtained by all triangles T =
(u, v,w) ∈ V 3 that satisfy that there exists no further node x ∈ V that is contained in
the diskU(u, v,w) passing through the nodesu, v, andw. The geometric graph formed
by a Delaunay triangulation is planar and is known to be a spanner with respect to the
Euclidean distance metric [9,18]. It is thus an ideal candidate planar graph routing
schemes might be applied on. However, Delaunay triangulation requires knowledge
of the entire node set, and, moreover, might contain arbitrarily long edges, that is,
edges that are longer than the communication range of its end points.

It has been observed that the intersection of the Delaunay triangulation and UDG
over a node setV , which is referred as unit Delaunay triangulationUDel(V ), preserves
the spanning property; that is, with respect to the Euclidean distance metric for two
given nodes the shortest path inUDel(V ) is at most a constant longer than the shortest
path in the UDG [14,28]. Thus, Delaunay triangulation is an interesting candidate for
constructing planar, spanning topologies in a localized manner.

In the method described by Gao et al. [14], each node locally constructs a Delaunay
triangulation over all its one-hop neighbor nodes and announces this triangulation to
its one-hop neighbors. Based on this information a node u checks for each incident
Delaunay triangulation edge (u, v) if there exists a one-hop neighbor w that is con-
nected to v but does not contain the edge (u, v) in its local Delaunay triangulation.
In this case, the edge (u, v) is removed at node u. It is shown that this topology con-
struction method always produces a planar graph that preserves all edges of UDel(V )
[14]. The topology is thus a spanner as well.

Li et al. [28] introduced the concept of k-localized Delaunay triangulation
LDelk(V ), which denotes the topology obtained by preserving each node Gabriel
graph edges and edges of all k-localized Delaunay triangles. The latter refers to all
triangles (u, v,w) that satisfy that u, v, and w can reach each other in the underly-
ing UDG and that the disk U(u, v,w) does not contain any k-hop neighbor of u, v,
or w. It is observed that LDelk(V ) may be nonplanar for k = 1 while it is always
planar for k > 2. Moreover, it is shown that LDelk(V ) is a spanner. LDelk(V ) can
be used for localized topology control since it requires only local neighborhood in-
formation. However, the communication cost will be high for k > 1. For this reason
the planarized LDel1(V ) method PLDel(V ) described in the work by Li et al. [28]
first locally constructs the nonplanar topology LDel1(V ) and then removes intersect-
ing edges by the following scheme. In a previous step, a node u removes a triangle
(u, v,w) from LDel1(V ) if one edge of a neighbor nodes triangle (x, y, z) is lying
in the circle U(u, v,w). Afterward, node u keeps all incident edges that are either a
Gabriel graph edge or an edge from a triangle (u, v,w) that was kept by each triangle
nodes u, v, and w.

The partial Delaunay triangulation PDT described by Li et al. [29] employs an
alternative definition of Delaunay triangulation in a localized way. It is easy to show
that the edges (u, v) of a Delaunay triangulation are exactly those edges that satisfy
that there exists a circle having u and v on its boundary that does not contain any other
nodes. A node u running the PDT method keeps an edge (u, v) if the empty circle rule



NEIGHBOR ELIMINATION SCHEMES 455

is satisfied for the specific circle U(u, v) that is used for Gabriel graph construction;
that is, node u keeps the edge if the circle U(u, v) is empty. Two cases arise if the
circle is not empty. Node u removes the edge (u, v) if all nodes found in the circle
are located on both sides of the line segment uv. If these nodes are lying on one side
only, the node wmaximizing the angle � uwv is considered. The edge is kept iff each
neighbor node x of u and v satisfies � uvw+ � uxv < π.

15.4.6 Explicit Planarization

An inherent property of a UDG is that for any intersection between two edges (a, b)
and (c, d) there exists at least one edge end point (for instance, node c in Fig. 15.5a)
that is connected to the remaining nodes. This will be referred as the redundancy
property in the following. Any undirected graph satisfying the redundancy property
supports local detection of intersecting edges. More precisely, when the network
nodes exchange two-hop neighbor information the intersection between two edges
(a, b) and (c, d) is visible to all nodes in {a, b, c, d}.

Whenever edge intersection can be detected locally it is a natural approach to
explicitly remove only an edge whenever it intersects with another one. This, however,
raises the question which of both edges has to be removed. As depicted in Figure 15.5a,
removing both edges or even removing only the wrong one (edge (c, d) in this case)
might result in a disconnected subtopology. Moreover, even if a localized construction
method always selects the right edge the question remains if the resulting topology
remains connected. More precisely, from a local point of view, removing edge (a, b)
in Figure 15.5a will not cause disconnection since messages sent along the edge (a, b)
can as well be relayed along the intermediate node c by using edge (a, c) at first and
edge (c, b) afterward. However, during some construction step these edges might have
been removed as well. Thus, in order to keep the resulting topology connected any
direct planarization scheme has to ensure that there remains at least a path from a to
c and a path from c to b that do not use the removed edge (a, b).
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FIGURE 15.5 (a) The redundancy property. (b) A graph that loses connectivity when pla-
narizing it by edge removal.
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It turns out that the redundancy property alone does not provide edge removal based
construction of a planar and connected topology. Refer to Figure 15.5b for an example.
The depicted graph satisfies the redundancy property. Planarity can be obtained by
removing either the edges (ui, vi) or the edges (ui, w). However, in both cases either
the nodes vi or the node w get isolated from the remaining network. On the contrary,
the fact that any UDG can be planarized (for instance, by applying the Gabriel
graph method) reveals that these graphs have besides the redundancy an additional
structural property that assures that an example like depicted in Figure 15.5b cannot
be constructed. An explicit formal graph theoretic definition of this property is still
missing.

A localized rule in order to decide which one of the two intersecting edges (a, b)
or (c, d) has to be removed can be described as follows. For edge (a, b) compute the
maximum over the angles � acb and � adb. For edge (c, d) compute the maximum over
the angles � cad and � cbd. The edge with the larger maximum value is removed. For
instance, in Figure 15.5a the angle α = � acb is the maximum one in the quadrilateral
(a, b, c, d). Thus, the edge (a, b) will be removed. Ties, that is, both edges have the
same maximum value, are broken by using a given edge ordering and removing the
“smaller” edge. In the following, the described construction method will be referred
as angle-based direct planarization (ABDP).

Since for each intersection at least one edge is removed, it is obvious that the
resulting topology is planar. Moreover, it is easy to show that a Gabriel graph is a
subtopology of the topology obtained by ABDP. Consequently, the resulting topology
preserves connectivity of the underlying UDG. The intuition behind this approach is
to maintain shortest paths up to a constant factor. An edge is removed only if it
intersects, and from both edges exactly the one is removed whose alternative path
introduces the smallest increment in terms of the Euclidean distance. However, it is
not known by now if the resulting topology is a spanner with respect to the Euclidean
distance metric.

15.4.7 Minimum Spanning Trees

For an undirected and connected graph G = (V,E) a spanning tree T is an acyclic
subset of E, which connects any two nodes in V . For any edge weight function
f : E→ R+0 the weight of a tree f (T ) is defined as the sum over its edge weights.
A minimum spanning tree Tmin denotes a spanning tree that satisfies f (Tmin) ≤ f (T )
for any other spanning tree T ofG. Under the assumption that the nodes are deployed
on the plane and that the edge weight function is the Euclidean distance, the degree
of each node in the resulting Euclidean minimum spanning tree is limited by 6 [33].
Thus, when aiming at small node degrees a minimum spanning tree might be a desired
topology.

Standard minimum spanning tree constructions like those by Prim [36] require
global knowledge about the entire network and are thus limited in scale when the
network is dynamically changing. The geographic topology construction method by
Li et al. [26] referred as local minimum spanning tree (LMST) applies an independent
localized minimum spanning tree construction at each node. More precisely, by using
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the full available signal strength the nodes exchange position information among
their one-hop neighbors and apply a standard Euclidean minimum spanning tree
construction on all detected one-hop neighbors. The transmission power of each node
is adjusted to the minimum power that is required to reach the most distant node that
is adjacent in the locally constructed spanning tree.

It is shown that the topology G0 resulting from all locally preserved edges—the
edges (v,w) that satisfy that w is an immediate neighbor of v in the spanning tree
constructed at node v—inherits the same node degree bound that is observed for
Euclidean minimum spanning trees [26]. Moreover, it is shown that topology G0
is connected (assuming that the original network topology is connected). However,
the topology G0 might contain directed links. Thus, when an undirected topology
is desired, either the symmetric subtopology G−0 or the symmetric supertopologies
G+0 can be constructed afterward. The theoretical analysis reveals that G−0 being a
subgraph ofG0 preserves connectivity ofG0, and thatG+0 being a supergraph ofG0
remains bounded in degree; that is, each node still has at most six neighbor nodes in
G+0 .

Minimum spanning trees are as well of special interest for energy minimal broad-
casting. Under the exponential path loss model |uv|α (i.e., the constant c is ignored
here), it was shown by Wan et al. that a minimum spanning tree supports energy min-
imal broadcasting up to a constant factor [46]. Thus, localized topology control based
on minimum spanning trees is a desired topology to support energy efficient broad-
casting. In order to assess the quality of a topology with respect to minimum spanning
trees, Li introduced the concept of low weight graphs that denotes all graphs whose
total edge length is within a constant factor of the total edge length of the minimum
spanning tree [27]. In the same work it is shown as well that localized construction
of a localized minimum weighted graph requires some two-hop information. This
implies that, for instance, LMST although based on minimum spanning trees is not a
low weight graph in general. However, by allowing some two-hop neighbor informa-
tion the basic idea of LMST can be extended to a low weight graph construction. Li
et al. [30] introduce two such methods that are based on the UDG assumption. The
two-hop LMST (LMST2) employs the idea of LMST but each node utilizes two-hop
information in order to construct its local minimum spanning tree. The incident MST
and RNG (IMRG) graph is basically a combination of RNG′ and LMST. By using one-
hop neighbor information, a RNG′ topology is constructed first. The incident edges
of RNG′ are then broadcast to all one-hop neighbors. The LMST construction is then
applied on this partial two-hop neighbor information. For both structures LMST2 and
IMRG it is shown that they are planar, connected, limited by 6 in node degree, and that
they have the low weight graph property. The latter construction method is suggested
as the favored one since construction has a significantly reduced message complexity
due to the fact that only two-hop neighbor information with respect to the constructed
RNG′ topology has to be exchanged.

It is important to note that a low weight graph does not imply that this graph
supports energy efficient broadcasting up to a constant factor. However, it is shown
in the work by Li et al. [30] that IMRG improves the RNG method that has as well
been applied as a broadcasting topology [42]. More precisely, it is pointed out there
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that RNG can consume about O(nα) (with α being the path loss exponent) times
the energy used by the optimal broadcasting method. This is improved by IMRG
by the factor O(n); that is, it is shown that IMRG consumes up to a constant factor
of O(nα−1) more energy than the optimal broadcast tree. Another example of RNG
and LMST for broadcasting can be found in the work by Ingelrest et al. [17] where
authors propose a variation of NES for broadcasting by limiting surveillance to RNG
or LMST neighbors and by reducing transmission power to noncovered monitored
neighbors.

15.4.8 Redundant Edges

Generally speaking, an edge (u,w) can be denoted as redundant whenever for
some intermediate node v the edges (u, v) and (v,w) do exist and communica-
tion along (u, v) and (v,w) is “cheaper” than direct communication along (u,w).
In terms of a given edge weight f : E→ R+0 this condition can be expressed as
f (u, v)+ f (v,w) < f (u,w). For instance, in Figure 15.6a (u,w) is a redundant
edge due to (u, v) and (v,w). It is obvious that removing a redundant edge from a
given topology T will end up into a topology T ′ that preserves all paths in T that are
minimal regarding the given edge weight function.

The concept of redundant edges can be used either as a topology control
mechanism on its own or as a subsequent refinement to further reduce the subset of
neighbors already constructed by a given topology control mechanism. For instance,
in the CBTC method [47], after the minimum required power setting for each node
has been found, in the second phase node degrees are reduced by removing distant
neighbors that can be reached by intermediate nodes. The described NES assumes that
the required transmission power p(v,w) is a nondecreasing function depending on
the distance between two communicating nodes v andw. In addition, neighbor nodes
have to perform a local exchange of the minimum transmission power they need in
order to reach their neighbor nodes. By inspecting the neighbor nodes with increasing
power distance, node u will check for the current neighbor node w if there exists a
neighbor node v that satisfies p(u, v) ≤ p(u,w) and p(u, v)+ p(v,w) ≤ q · p(u,w).
In this case, the node w will be removed from the neighbor list. In other words, node
w is removed whenever there exists an alternative closer relay node v and the power
required to send a message along the relay node v is lower than a constant factor
more than the power required in order to transmit the message directly to w. The
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FIGURE 15.6 (a) A redunant edge in terms of single relay node. (b) A redundant edge in
terms of a sequence of relay nodes.
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constant q is introduced to adjust CBTC between energy optimal paths and reduced
node degree that is forming a trade-off. Obviously, for q1 ≤ q2 the neighbor set
constructed for q2 will be a subset of the neighbor set constructed for q1. A large q
value may result in relay nodes that require significantly more energy consumption.

When assuming an arbitrary power model, reducing all redundant edges might
still leave some more room for improvement. For an example refer to Figure 15.6b.
The edge (u, x) with edge weight 5 is not redundant since using the only possible
relay node w will produce energy consumption of 4+ 2 = 6. However, the sequence
of the relay nodes v and w will produce energy consumption of only 1+ 1+ 2 = 4.
The pruning stage of the k-Neigh protocol [2] can be seen as an improved version
of the basic redundant edge elimination scheme that implicitly takes such sequences
of relay nodes into account. Considering all neighbor nodes in ascending edge order,
the neighbor w is removed if it is redundant. In this case, the algorithm looks for the
relay node v that produces the minimum energy expenditure. The edge of the removed
nodew is considered in all further steps; however, its weight is reduced from f (u,w)
to f (u, v)+ f (v,w). For instance, in Figure 15.6b the edge weight of (u,w) will be
reduced from 4 to 1+ 1 = 2. Thus, when inspecting the next edge (u, x) the relay
nodewwill consume power 2+ 2 = 4; that is, edge (u, x) is a redundant one as well.

The removal of redundant nodes can be used in order to reduce the information
that is disseminated in the network. For instance, in OLSR protocol [6], each node
broadcasts information about topology (edges) to all nodes in the network. In the
original proposition, the reduced graph G′ = (V ′, E′) has to satisfy shortest paths,
for all couple of nodes (u, v) that are not neighbors inG, the hop distance between u
and v has to be the same in G and in G′. In order to compute locally G′, each node
selects a subset of its neighbors called multipoint relays (MPRs) [37]. Ideally, this
subset is the smallest subset of one-hop neighbors, which covers two-hop neighbors.
Since this problem is shown to be NP-complete, Viennot et al. propose a greedy
heuristic. For QoS purpose, Moraru et al. [34] propose to replace advertisement of
MPR links by links that preserve widest paths (bandwidth) or quickest path (delay).

15.5 PERSPECTIVES

In this chapter we have presented last recent results of topology control in the domain
of neighbor elimination. The emphasis was on presenting the basic mechanisms in this
domain. The result of a topology control mechanism A applied on a network graph
is again a graph (with some desired properties). If the structural properties of this
result is compatible with the input domain of a further topology control mechanism
B, concatenation of mechanism B after mechanism A can be applied as a combined
topology control mechanism.

This intrinsic property opens a wide spectrum of possible combined schemes,
which can be subject of future research. The combination of two basic topology
control building blocks could result in a scheme that supports the objectives of both
schemes. For instance, producing a topology that supports cost efficient routing paths
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and applying a planar graph construction mechanism that supports face routing is a
prominent example of such a combined scheme [8].

Foundation of many works in topology control is the so-called UDG, which is a
simplified version of wireless communication in real world. While in theory this model
plays an important role, in future research a majority of well established mechanisms
could be investigated with focus on more realistic models [16,44].

15.6 EXERCISES

1. Assume neighbor discovery based on periodic hello messages including the send-
ing node’s ID only. What is the main problem when applying this scheme under
an arbitrary topology? Argue why this scheme might, however, be applied in this
case and discuss possible solutions.

2. Design a localized protocol that maintains two-hop neighbor information under
arbitrary topologies. More precisely, each node should know about the node to
which itself and its neighbors are connected. Estimate the message complexity
of your scheme.

3. Suppose a simple neighbor discovery protocol where a requesting node sends out
a broadcast message and each node receiving this broadcast immediately sends
a neighbor discovery reply. What is the problem with this approach? Describe
possible solutions to this problem.

4. Assume that communication between two nodes v and w consumes energy ac-
cording to the exponential path loss model |vw|α + c. Show that there are an
optimal number of equidistant intermediate forwarding nodes that require the
minimum amount of energy.

5. Neighbor nodes can be discovered passively by listening for control and data mes-
sages issued by the surrounding nodes. Discuss the advantage and disadvantage
of this approach.

6. Show by an example that CBTC may produce a directed topology.

7. Suppose that network nodes are deployed on a rectangular area D. Assume the
enclosure of a node u and its neighbors N defined as ∩v∈NR(u, v)c.

(a) Show by an example that with this definition nodes at the boundary of
D will often set their broadcast range to the maximum possible one.

(b) Describe an improved definition of enclosure, which avoids this problem.

8. Show by an example that CBTC does not necessarily preserve connectivity for
α = 5π/6+ ε for any ε > 0.

9. Show by an example that the topology derived under LMST might be asymmetric.

10. Construct an example network that loses connectivity when planarizing it by edge
removal.

11. From a global point of view, graph planarization can be obtained by simply
removing one of two intersecting edges until no intersection remains. Discuss if
such a scheme can be implemented in a localized way.
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12. Show that there exists no localized algorithm that constructs a topology so that
the maximum node power based on this structure is within a constant factor of
that based on a minimum spanning tree.

13. Show by an example that Gabriel and relative neighborhood graphs are not
bounded in degree.

14. Show by an example that Gabriel and relative neighborhood graph construction
might produce disconnection and nonplanarity in arbitrary graphs.

15. Let G be a quasi-UDG with minimum transmission range rmin and maximum
transmission range rmax.

(a) Show that for rmax/rmin ≤
√

2 an edge intersection can always be detected
locally, that is, at least one end point of the first edge is connected to an end
point of the second edge.

(b) Show that for rmax/rmin >
√

2 local detection of an intersection is not
always possible.

(c) Construct an example that shows that the path corresponding to a virtual
edge of the robust Gabriel graph construction might be arbitrarily long.

16. Prove that for any intersecting edges in a UDG at least one of the edge end points
is connected to all other nodes.

17. Show that under the assumption of a connected UDG the ABDP method results
in a planar and connected subtopology.

18. Show by an example that LDel1(V ) is not planar in general.
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CHAPTER 16

A Novel Admission Control for Multimedia
LEO Satellite Networks

SYED R. RIZVI, STEPHAN OLARIU, and MONA E. RIZVI

16.1 INTRODUCTION

Terrestrial wireless networks provide mobile communication services with limited
geographic coverage since they are economically infeasible in areas of rough to-
pography or inadequate user population [1]. In order to provide global information
access, a number of satellite systems have been proposed. These satellite networks
are well suited for worldwide communication services and to complement the terres-
trial wireless networks because they can support not only the areas with terrestrial
wireless networks but also the areas that lack a wireless infrastructure. Among the
satellite systems, Low Earth Orbit (LEO) satellite systems play an important role in
the near future of communication services. The satellite system could interact with
the terrestrial wireless network to absorb the instantaneous traffic overload of these
networks. In other words, it is possible to route a connection using intersatellite links
(ISL) without relying on terrestrial resources. However, a number of mobility prob-
lems that did not exist in terrestrial systems should be solved in order to have feasible
implementations of the LEO systems.

In response to the demand for truly global coverage by personal communication
services (PCS), a new generation of mobile satellite networks intended to provide
anytime–anywhere communication services has emerged [4,5]. LEO satellite net-
works, deployed at altitudes ranging from 500 to 2000 km, are well suited to handle
bursty Internet and multimedia traffic and to offer anytime–anywhere connectivity
to mobile hosts (MH). LEO satellite networks offer numerous advantages over ter-
restrial networks including global coverage and low cost-per-minute access to MHs
equipped with handheld devices. Because LEO satellite networks are expected to
support real-time interactive multimedia traffic, they must be able to provide their
users with quality-of-service (QoS) guarantees for metrics that includes bandwidth,
delay, jitter, call dropping, and call blocking probability [8].
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16.2 LEO SATELLITE NETWORKS AND MAIN QoS PARAMETERS

Although providing significant advantages over their terrestrial counterparts, LEO
satellite networks present protocol designers with an array of daunting challenges,
including handoff, mobility, and location management [8]. Because LEO satellites are
deployed at low altitude, Kepler’s third law implies that these satellites must traverse
their orbits at a very high speed. We assume an orbital speed of about 26,000 km/h.
As can be seen in Figure 16.1, the coverage area of a satellite—a circular area of the
surface of the Earth—is referred to as its footprint. For spectral efficiency reasons,
the satellite footprint is partitioned into slightly overlapping cells, called spotbeams.
As their coverage area changes continuously, in order to maintain connectivity, MHs
must switch from spotbeam to spotbeam and from satellite to satellite, resulting in
frequent intra and intersatellite handoffs. Identical frequencies can be reused in differ-
ent spotbeams if the spotbeams are geographically separated to limit the interference.
In this chapter, we focus on intrasatellite handoffs, referred to, simply, as handoffs.

Due to the large number of handoffs experienced by a typical connection during
its lifetime, resource management and connection admission control are very impor-
tant tasks if the system is to provide fair bandwidth sharing and QoS guarantees.
In particular, a reliable handoff mechanism is needed to maintain connectivity and
to minimize service interruption to on-going connections, as MHs. In fact, one of
the most important QoS parameters for LEO satellite networks is the call dropping
probability (CDP), quantifying the likelihood that an ongoing connection will be
force-terminated due to an unsuccessful handoff attempt. The call blocking proba-
bility (CBP) expresses the likelihood that a new call request will not be honored at
the time it is placed. The extent to which the existing bandwidth in a spotbeam is
efficiently used is known as bandwidth utilization (BU). The main goal of a network
designer becomes to provide acceptably low CDP and CBP while, at the same time,
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FIGURE 16.1 Illustration of satellite footprint.



BACKGROUND AND RELATED WORK 467

maximizing BU [8,11]. This chapter describes in detail four recent resource allocation
strategies in multimedia LEO satellite networks that use a novel call admission con-
trol concept. The performance of these schemes is compared and simulation results
show that they offer low CDP, providing for reliable handoff of on-going calls, good
CBP for new call requests, while maintaining high BU.

16.3 BACKGROUND AND RELATED WORK

In this section, we briefly outline a number of call admission algorithms proposed in
the literature. One noticeable prioritization scheme is the handoff with queueing (HQ)
technique [3]. This scheme outlines the overlapped area between two cells where the
handoff takes place. When an MH is in an overlapped area, the handoff process is
initiated. If a channel is available in the new cell, it is allocated to the MH; otherwise,
the handoff request is queued. When a channel becomes available, one of the calls in
the queue is served. A handoff call is blocked if no channel is allocated for the call
in the new cell when the power level received from the current cell falls below the
minimum power level that is required for a successful data transfer. The HQ scheme
reduces the handoff call dropping; however, its performance depends on the new call
arrival rate and the size of the overlapped area. In the worst case, high call arrival
rates or small overlapped areas would result in a high value of handoff CDP.

Later, Markhasin et al. [6] introduced two different mobility models for satellite
networks. In the first model, only the motion of the satellite is taken into account,
whereas in the second model, other motion components such as the rotation of the
Earth and user mobility are considered. To design a call admission control algorithm
for mobile satellite systems, the authors introduced a new metric called mobility
reservation status, which provides the information about the current bandwidth re-
quirements of all active connections in a specific spotbeam in addition to the possible
bandwidth requirements of mobile terminals currently connected to the neighboring
spotbeams. A new call request is accepted in the spotbeam where it originated, say
m, if there is sufficient available bandwidth in the spotbeam, and the mobility reser-
vation status of particular neighboring spotbeams have not exceeded a predetermined
threshold TNewCall. If a new call is accepted, the mobility reservation status of a
particular number S of spotbeams will be updated. A handoff request is accepted
if bandwidth is available in the new spotbeam and the handoff threshold is not ex-
ceeded. The key idea of the algorithm is to prevent handoff dropping during a call
by reserving bandwidth in a particular number S of spotbeams into which the call
is likely to move. The balance between new call blocking and handoff call dropping
depends on the selection of predetermined threshold parameters for new and handoff
calls. However, during simulation implementation, we found that this scheme has a
problem determining threshold points in the case of LEO satellite networks.

Uzunalioglu [14] proposed a call admission strategy based on the MH location. In
his scheme, a new call is accepted only if the handoff CDP of the system is below the
target dropping rate at all times. Thus, this strategy ensures that the handoff dropping
probability averaged over the contention area is lower than a target handoff dropping



468 A NOVEL ADMISSION CONTROL FOR MULTIMEDIA LEO SATELLITE NETWORKS

probability PQoS (QoS of the contention area). The system always traces the location
of all the MHs in each spotbeam and updates the MH’s handoff dropping parameters.
The algorithm involves high processing overhead to be handled by the satellite, and
seems therefore to be unsuitable for high-capacity systems where a satellite footprint
consists of many small-sized spotbeams, each having many active MHs. Cho [1]
employs MH location information as the basis for adaptive bandwidth allocation for
handoff resource reservation. In a spotbeam, bandwidth reservation for handoff is al-
located adaptively by calculating the possible handoffs from neighboring spotbeams.
A new call request is accepted if the spotbeam where it originated has enough avail-
able bandwidth for new calls. This reservation mechanism provides a low handoff
dropping probability compared to the fixed reservation strategy. However, the use of
location information in handoff management suffers from the disadvantage of updat-
ing locations, which then results in a high processing load for the onboard handoff
controller, thereby increasing the complexity of terminals. The method seems suitable
for only fixed users. El-Kadi et al. [2] proposed a probabilistic resource reservation
strategy for real-time services. They introduced a call admission algorithm where
real-time and non-real-time service classes are treated differently. The novel concept
of a sliding window is proposed in order to predict the necessary amount of reserved
bandwidth for a new call in its future handoff spotbeams. For real-time services, a new
call request is accepted if the spotbeam where it originated has available bandwidth,
and resource reservation is successful in future handoff spotbeams. For non-real-time
services, a new call request is accepted if the spotbeam where it originated satisfies
its maximum required bandwidth. Handoff requests for real-time traffic are accepted
if the minimum bandwidth requirement is satisfied. Non-real-time traffic handoff
requests are honored if there is some residual bandwidth available in the cell.

This chapter describes four recent QoS provisioning strategies for multimedia LEO
satellite networks that perform admission control by using the concept of a sliding
window, which was first proposed by El-Kadi et al. [2].

16.4 MOBILITY MODEL AND TRAFFIC PARAMETERS

Although several mobility models exist for LEO satellites [7,8], it is customary to
assume a one-dimensional mobility model where the MHs move in straight lines
and at a constant speed, essentially the same as the orbital speed of the satellite [7].
Since the speed of users (even in fast moving vehicles) is negligible compared to the
satellite’s speed and the Earth’s rotation, MH speed can be ignored. For example,
users in fast vehicles move with a maximum speed of 80 m/s, while a LEO satellite’s
ground track speed is more than 5700 m/s and the speed of the rotation of the Earth at
the equatorial level is nearly 460 m/s. For simplicity, all the spotbeams (also referred
to as cells) are identical in shape and size. Although each spotbeam is, in reality,
circular, the use of squares to approximate spotbeams is justifiable. Some authors use
regular hexagons instead of squares. We assume an orbital speed of 26,000 km/h. The
width of a cell is taken to be 425 km. Thus, the time ts it takes an end-user to cross a
cell is, roughly, 65 s. Referring to Figure 16.2, the MH remains in the cell where the
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FIGURE 16.2 Illustration of some of the mobility and cell parameters.

connection was initiated for tf time, where tf is uniformly distributed between 0 and
ts. Thus, tf is the time until the first handoff request, assuming that the call does not
end in the original cell. After the first handoff, a constant time ts is assumed between
subsequent handoff requests until call termination.

As illustrated in Figure 16.2, when a new connection C is requested in cell N, it is
associated with a trajectory, consisting of a list N,N + 1, N + 2, . . . , N + k, . . . of
cells that the connection may visit during its lifetime.
The traffic offered to the satellite may be real-time multimedia traffic, such as inter-
active voice and video applications, and non-real-time data traffic, such as email or
ftp. Thus, traffic offered to the satellite system is classified as

� Class I traffic—real-time multimedia traffic, such as interactive voice and video
applications.

� Class II traffic—non-real-time data traffic, such as email or ftp.

When a mobile user requests a new connection C in a given cell, it provides the
following parameters:

� The desired class of traffic for C (either I or II).
� MC the desired amount of bandwidth for the connection.

If the request is for a Class I connection, the following parameters are also specified:

1. mC, the minimum acceptable amount of bandwidth, that is, the smallest amount
of bandwidth that the source requires in order to maintain acceptable quality,
for example, the smallest encoding rate of its codec.

2. θC, the largest acceptable CDP that the connection can tolerate.

3. 1/μC, the mean holding time of C.

16.5 A NOVEL CALL ADMISSION CONTROL USING THE
SLIDING WINDOW CONCEPT

Connection admission control is one of the fundamental tasks performed by the satel-
lite network at call setup time in order to determine if the connection request can
be accepted into the system without violating prior QoS commitments. The task is
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nontrivial because the traffic offered to the system is heterogeneous due to new call
attempts and handoff requests. El-Kadi et al. [2] proposed the following two novel
call admission criteria.

� The first call admission criterion, which is local in scope, applies to both Class
I and Class II connections, and attempts to ensure that the originating cell has
sufficient resources to provide the connection with its desired amount of band-
width.

� The second admission control criterion, which is global in scope, applies to Class
I connections only, and attempts to minimize the chances that, once accepted,
the connection will be dropped later due to a lack of bandwidth in some cell into
which it may handoff. The second criterion is inspired by the sliding window
criterion first proposed by El-Kadi et al. [2].

Consider a request for a new Class I connection C in cell N at time tC and let tf be
the estimated residence time of C in N. Referring to Figure 16.3, the key observation
that inspired the second criterion is that when C is about to handoff into cell N + 1,
the connections resident inN + 1 are likely to be those in region A of call N and those
in region B of cell N + 1. More precisely, these regions are defined as follows:

� A connection is in region A if at time tC its residual residence time in cell N is
less than or equal to tf.

� A connection is in region B if at time tC its residual residence time in cellN + 1
is larger than or equal to tf.

In general, the satellite does not know the exact position of a new call request
in generic cell N. This makes the computation of the bandwidth committed to con-
nections in areas A and B difficult to assess. Some schemes rely on a MH location
database by utilizing global positioning system (GPS). While GPS-enabled devices
will become ubiquitous in the future, at present the use of GPS in call admission and
handoff management schemes for LEO satellite networks has many disadvantages.
For one thing, in order for GPS localization to be effective, three or more satellites

MH

Cells N N+1

ts=65 s 

A B

tc

tf

tf

FIGURE 16.3 Illustration of the sliding window concept for call admission.
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must be visible to the GPS receiver. This limits the applicability of GPS in urban areas
where the buildings may obstruct line of sight to the satellites. By the same token,
GPS localization does not work indoors. Likewise, GPS does not work well in poor
atmospheric conditions. The protocols discussed here do not use GPS to determine
the MH location.

16.5.1 SILK—A Selective Look-Ahead Allocation Scheme

The main goal of this section is to spell out the details of SILK, a selective look-ahead
bandwidth admission control and handoff management scheme.

16.5.1.1 SILK—The Basic Idea SILK [13] admission policies distinguish be-
tween real-time (known as Class I) and non-real-time (known as Class II) connections.
As in [11], Class I handoffs are admitted only if their minimum bandwidth require-
ments can be met. However, Class II handoff requests will be accepted as long as there
is some residual bandwidth left in the cell. Thus, bandwidth reservation pertains only
to Class I handoffs. The key idea of SILK is to allocate bandwidth to each accepted
Class I connection in a look-ahead horizon of k cells along its trajectory. Here, k is
referred to as the depth of the look-ahead horizon. The intuition for this concept is
provided by the fact that the deeper the horizon, the smaller the likelihood of a handoff
failure, and the smaller the CDP. Because at setup time the connection C specifies the
CDP it can tolerate, it implicitly specifies the depth k of the corresponding look-ahead
horizon. Thus, for each connection C, SILK looks ahead just enough to ensure that the
CDP of θC can be enforced. Thus, in SILK, the look-ahead allocation is determined
by the negotiated QoS.

Let ph denote the handoff failure probability of a Class I connection, that is, the
probability that a handoff request is denied for lack of resources. Let Sk denote the
event that a Class I connection C admitted in cell N goes successfully through k
handoffs and will, therefore, show up in cell N + k. It is easy to confirm that the
probability of Sk is

Pr[Sk] = pf (1− ph)[ps(1− ph)]k−1

where pf (1− ph) is the probability that the first handoff request is successful and
[ps(1− ph)]k−1 is the probability that all subsequent k − 1 handoff requests are also
successful.

Likewise, letDk+1 be the event that C will be dropped at the next handoff attempt.
Thus, we have

Pr[Dk+1] = Pr[Sk]psph = pfpsph(1− ph)[ps(1− ph)]k−1

= pfph.[ps(1− ph)]k−1

as psph is the probability that the connection will attempt but fail to secure the
(k + 1)th handoff.
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Now, assuming that the connection C has negotiated a CDP of θC, it follows that

Pr[Dk+1] = pfph[ps(1− ph)]k−1 = θC,

which implies:

k =
log θC

pfph

log[ps(1− ph)]
. (16.1)

There are a number of interesting features of Equation (16.1), which computes the
value of k. First, the only variable parameter in the equation is ph. All the others are
known beforehand. Todorova et al. [13] argued that the satellite maintains ph as the
ratio between the number of unsuccessful handoff attempts and the total number of
handoff attempts. Second, sinceph may change with the network conditions, the depth
k of the look-ahead horizon will also change accordingly. This interesting feature
shows that SILK is indeed adaptive to traffic conditions. Finally, k is dynamically
maintained by the satellite either on a per-connection or, better yet, on a per-service
class basis, depending on the amount of onboard resources and network traffic.

As it turns out, the above computed value of k is at the heart of SILK. The details
are spelled out as follows:

� In anticipation of its future handoff needs, bandwidth is allocated for connection
C in a number k of cells corresponding to the depth of its look-ahead horizon;
no allocation is made outside this group of cells.

� For 1 ≤ i ≤ k, allocate in cell N + i an amount of bandwidth equal to BN+i =
mCPr[Si].

� This amount of bandwidth will be allocated for connection C during the time
interval

IN+i = [tC + tf + (i− 1)ts, tC + tf + its]

where tC is the time connection C was admitted into the system.

As pointed out by Todorova et al. [13], SILK is lightweight. Indeed, the mobility
parameters tf and ts are readily available and the look-ahead horizon k is maintained
by the satellite for each service class. Similarly, since the trajectory of connection C
is a straight line, the task of computing for every 1 ≤ i ≤ k the amount of bandwidth
BN+i to allocate, as well as the time interval IN+i during which BN+i must be avail-
able is straightforward and can be easily computed by the satellite using its onboard
capabilities.

16.5.1.2 SILK—The Call Admission Strategy SILK’s call admission strategy
involves two criteria mentioned earlier. However, unlike [2], SILK only looks at the
first k cells on C’s trajectory. The connection satisfies the second criterion if all these
k cells have sufficient bandwidth to accommodate C, that is, for every i, (1 ≤ i ≤ k),
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the amount of residual bandwidth in the cell during the time interval IN+i must not
be less than BN+i. The motivation for this second criterion is very simple: if the
residual bandwidth available in cell N + i is less than the projected bandwidth needs
of connection C, it is very likely that C will he dropped. To avoid such a situation,
connection C is not admitted into the system. Thus, the second admission criterion
acts as an additional safeguard against a Class I connection to be accepted, only to be
dropped at some later point.

16.5.2 Q-WIN—A Predictive Allocation and Management Scheme

The main goal of this section is to discuss in full detail the Q-WIN protocol proposed
in the study of Olariu et al. [9]. A key ingredient of Q-WIN is a novel predictive
resource allocation protocol. Q-WIN involves some processing overhead. However,
as it turns out, this overhead is transparent to the MHs, being absorbed by the onboard
processing capabilities of the satellite. Consequently, Q-WIN is expected to scale and
to accommodate a large population of MHs.

16.5.2.1 Q-WIN—The Data Structures A Class I connection C in a generic
cell N is said to be

� Regular if C has confirmed bandwidth reservations in cells N + 1 and N + 2.
The regular connections in cell N are maintained in the queue R(N).

� One-short if C has confirmed bandwidth reservation in cellN + 1 but not in cell
N + 2. The one-short connections in cell N are maintained in the queue S1(N).

� Two-short if C has no confirmed reservation in cells N + 1 and N + 2. The
2-short connections in cell N are maintained in the queue S2(N).

� Finally, we note that Class II connections in cell N are maintained in a separate
queueQ(N).

From the above classification, observe that two-short connections are liable to be
dropped at the next handoff attempt, while one-short connections are in no imminent
danger of being dropped. The stated goal of our bandwidth allocation scheme is to
minimize the likelihood of a connection being dropped. It is widely acknowledged
that priority should be given to calls-in-progress versus primary call requests. The
intuition in prioritizing handoff calls are that voice users are bothered more by a
dropped call than had the call never been accepted. (Note, this is not necessarily true
for data traffic where users may be satisfied to transfer some of their files during a
short connection time.) The principle vehicle for achieving this goal is a judicious
priority-based bandwidth allocation strategy.

16.5.2.2 Q-WIN—The Call Admission Strategy Consider a request for a new
connection C in cell N. Very much like SILK [13], Q-WIN [9] bases its connection
admission control on a novel scheme that combines the following two criteria:
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� Local availability: The first call admission criterion, which is local in scope,
ensures that the originating cell N has sufficient resources to provide the con-
nection with its desired amount of bandwidth MC. Both Class I and Class II
connections are subject to this first admission criterion. A Class II connection
request that satisfies the first admission criterion is accepted into the system and
placed into the queue Q(N) of Class II connections currently in cell N. On the
contrary, if the first admission criterion is not satisfied, the connection request
is immediately rejected.

� Short-term guarantees: The second admission control criterion, which is non-
local in scope, applies to Class I connections only, attempting to minimize the
chances that, once accepted, the connection will be dropped later due to a lack
of bandwidth in some cell into which it may handoff.

In general, the satellite does not know the exact position of a new call request in
generic cell N. This makes the computation of the bandwidth committed to connec-
tions in areas A and B difficult to assess (see Fig. 16.3). In what follows, we describe a
heuristic that attempts to approximate the bandwidth held by the connections in A and
B. For this purpose, we partition the union of cells N andN + 1 intom+ 1 virtual win-
dowsW0,W1, . . . ,Wm each of width ts. In this sequence,W0 is the base window, and
its left boundary is normalized to 0. For every i, 0 ≤ i ≤ m, windowWi stretches from

i× ts
m

to ts + i× ts
m

(16.2)

In particular, by Equation (16.2), window W0 coincides with cell N, and window
Wm with cellN + 1. We refer the reader to Figure 16.4 for an illustration, withm = 5.
All the virtual windows have the exact shape and size of a cell (shown with different
sizes in Fig. 16.4).

ts =65 s 

                                    N+1Cells                          N 

MH 

W0     W1     W2         W3       W4     W5    

FIGURE 16.4 Illustration of the virtual windows.
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For later reference, we partition a generic window Wi into a left subwindow WNi
and a right subwindowWN+1

i denoting, respectively, the intersection ofWi with cells
N and N + 1.

We distinguish between mobile hosts that have experienced a handoff (referred to
as old) from those that have not (referred to as new). As we are about to describe,
mobile hosts may or may not be assigned timers. Specifically, each old mobile host
is assigned a timer θ; no timer is assigned to new mobile hosts. Upon entering a
new cell, θ is set to ts (the time it takes to traverse a cell). Every time unit, θ is
decremented by 1, making it close to zero by the time the MH is about to reach the
next handoff. For illustration purposes, we note that in Figure 16.4, sincem = 5,WN1
contains the old users in cell N with θ ≤ 65− 65/5 = 52; likewise, WN+1

1 contains
the old users in cell N + 1 with θ > 52.WN2 contains the old users in cell N with
θ ≤ 65− 2× 65/5 = 39, and so on.

Let Bi and Di denote, respectively, the total amount of bandwidth in use by the
old and new mobile hosts in window Wi. Notice that the amount of bandwidth Bi is
easy to compute by the satellite since, by virtue of timers, the position of old mobile
hosts, up to the granularity of a virtual window, is known.

The location of new mobile hosts defined earlier is unknown. It is, therefore,
difficult to determineDi exactly. However, it is reasonable to assume that, within each
of the cells N andN + 1, these mobile hosts are uniformly distributed. Notice that this
does not imply a uniform distribution of new mobile hosts across the union of cells N
andN + 1. LetnN andnN+1 stand, respectively, for the number of new mobile hosts in
cells N andN + 1. As illustrated in Figure 16.5, the assumption of uniform distribution
of new mobile hosts in cell N implies that the expected number of mobile hostsWNi is
nN (1− i/m). Likewise, since the new mobile hosts are uniformly distributed in cell
N + 1, the expected number of new mobile hosts WN+1

i is nN+1 × i/m. Thus, by a
simple computation we obtain the following approximation for Di:

Di = nN + i

m
[nN+1 − nN ]. (16.3)

Let M stand for the total bandwidth capacity of a cell. Using Bi and the value of
Di from Equation (16.3), the virtual window Wi determines the residual bandwidth
Ri = M − Bi −Di. If Ri ≥ MC, Wi votes in favor of accepting the new request C
with desired bandwidthMc; otherwise it votes against its admittance. After counting
the votes, if the majority of the virtual windows had voted in favor of admittance, the
new connection request is admitted into the system. Otherwise, it is rejected. Once
admitted, the desired bandwidth of connection C is reserved in the current cell, and
the connection is placed in queue S2(N).

16.5.3 OSCAR: An Opportunistic Resource Management Scheme

The main idea behind OSCAR [10] is a multiple virtual window call admission pro-
tocol and average line mechanism based on dynamic channel reservation for handoff
calls for multimedia LEO satellite networks. The essence of this predictive resource
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FIGURE 16.5 Illustration of the computation of Di.

allocation protocol is that it achieves results comparable to those of Q-WIN but elim-
inates the queues. Even though it uses up more processing time, the overhead of
maintaining queues during heavy traffic is avoided and hence makes this algorithm
simpler and less dependent on buffers. Moreover, the processing time is transparent
to the MH, being absorbed by the onboard processing capabilities of the satellite.
Consequently, OSCAR scales to a large number of users.

Consider a request for a new connection C in cell N. Very much like SILK and
Q-WIN, OSCAR bases its connection admission control on a novel scheme that
combines the two call admission criteria. However, unlike both SILK and Q-WIN that
either look at a distant horizon or maintain rather complicated data structures, OSCAR
looks ahead only one cell. Surprisingly, simulation results indicate that this short
horizon works well when supplemented by an opportunistic bandwidth allocation
scheme. OSCAR’s second admission criterion relies on a novel idea that is discussed
in full detail below.

16.5.3.1 OSCAR—The Average Load Line Concept OSCAR implements
the predictive strategy combined with an opportunistic handoff management scheme.
In OSCAR, handoff calls fall into one of the two types discussed below:

� Type 1: those that are still not assigned a timer, that is, newly admitted calls that
are about to make their first handoff.

� Type 2: those that are assigned a timer, that is, the calls that have already made
one or more handoffs.

It is important to observe that by virtue of OSCAR’s call admission scheme that is
looking at both the originating cell and the next one along the MH’s path, handoffs of
Type 1 succeed with high probability. We will, therefore, show only how to manage
Type 2 handoffs. The details of this scheme are discussed below.

Each cell in the network dynamically reserves a small amount of bandwidth specif-
ically for handoffs of Type 2. When a Type 2 handoff request is made, the algorithm
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FIGURE 16.6 Illustration of the handoff scheme in OSCAR.

will first try to satisfy the request by allotting the bandwidth from the reserved amount.
If the reserved bandwidth has already been used, the request will be allotted the band-
width from the remaining available bandwidth of the cell. Otherwise, the handoff
request is dropped.

Let the maximum amount of bandwidth that could be reserved be βmax (a small
percentage of total available bandwidth). The amount of bandwidth reserved for Type
2 handoffs dynamically varies between 0 and βmax depending on the relative position
of the average load line in the previous neighboring cell.

To explain the concept of average load line, consider a cell N, and refer to
Figure 16.6. Assume that cell N − 1 contains k Type 2 handoff calls with residual
residence times in cell N − 1 denoted by t1, t2, · · · , tk such that t1 ≤ t2 ≤ · · · ≤ tk
and let the corresponding amounts of bandwidth allocated to the calls be by
b1, b2, · · · , bk. Let B be the sum total of bj where j ranges from 1 to k. The average
load line L is defined as the average of ti and ti+1 where i is the smallest subscript
for which the inequality below holds.

i∑
j=1

bj

⌈
B

2

⌉
.

We note that, from a computational standpoint, determining the average load line
L is a simple instance of the prefix sums problem and can be handled easily by the
satellite.

16.5.3.2 OSCAR—The Dynamic Reservation Scheme The dynamic band-
width reservation scheme in cell N can be explained as follows. Since cell N knows
about its neighbors, it can track all the Type 2 handoff calls in cellN − 1 as shown in
Figure 16.6.A1,A2, andA3 represent equal-sized areas of a cellN − 1. The average
load line L will always fall into one of these three areas depending upon the distri-
bution of Type 2 handoff calls. The bandwidth for Type 2 calls in cell N is reserved
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depending upon the position of the average load line as detailed below:

� If the position of average load line L is at α1 in areaAl, then it can be inferred that
roughly half of the bandwidth required by Type 2 handoff calls is concentrated
in areaAl. Since L is relatively far from cell N, an amount βmax/3 of bandwidth
is reserved for Type 2 handoff calls in cell N as shown, in such a way that more
bandwidth is available for other call requests.

� If the average load line L is at α2 in A2, then an amount βmax/2 of bandwidth is
reserved in cell N.

� If the average load line L is at α3 in A3, then an amount βmax of bandwidth is
reserved in cell N.

16.5.4 RADAR: A Refined Call Admission Control Strategy

A key ingredient in RADAR [12] is a novel predictive resource allocation protocol.
This scheme was named RADAR because the absence region detection technique
refines the similar call admission control scheme used in Q-WIN [9], and consequently
the bandwidth utilization was increased. RADAR overcomes the problem faced by
Q-WIN and OSCAR in their call admission scheme where they have assumed a
uniform distribution of the MHs that are newly accepted and have not experienced
any handoff. As in Q-WIN, all the mobile hosts can be divided into two types:

� Those that have experienced a handoff (referred to as old).
� Those that have not experienced a handoff (referred to as new).

Unlike in Q-WIN and OSCAR, in the RADAR protocol, all the mobile hosts are
assigned timers. Each old mobile host is assigned a timer θ; whereas a timer α is
assigned to the new mobile hosts. This timer α, assigned to the new mobile hosts, is
an essential element of the RADAR scheme because this timer α helps to detect the
absence region for thenew mobile host. This unique characteristic, the absence region
detection, of the RADAR scheme is explained in the following paragraphs. Similar
to Q-WIN, when a MH enters a new cell, θ is set to ts (the time it takes to traverse a
cell). Every time unit, θ is decremented by 1, making it close to zero by the time the
MH is about to reach the next handoff. Similarly, as soon as a MH is accepted into the
system and is in its new MH state, that is, the MH has not yet experienced a handoff,
α is set to 0. Every time unit, α is incremented by 1.

When a new MH is accepted into the system, that is, bandwidth is allocated to it,
the major problem encountered is to determine its relative location with respect to the
current cell and neighboring cells. This is not in case for old MHs because the timer
θ helps determine its relative position with respect to the current cell and neighboring
cells. Once accepted into the system, a new MH could be located anywhere in its cell
of origin. As shown in Figure 16.7, let a new MH z originate in cellN + 1. For z, with
timer αz, the rectangle cdmn such cn = dm = αz forms the absence region where it
is impossible for z to be present. This is concluded by taking into consideration the
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FIGURE 16.7 Illustration of the computation of Di.

worst case scenario for z that it originated from the extreme left side cd of the cell
N + 1. In other words, in time αz, even if z originated from the extreme left side cd, it
would have traveled the distance cn = dm = αz, hence be absent from the area cdmn.
Let Bi and Di denote, respectively, the total amount of bandwidth in use by the old
and new mobile hosts in windowWi. Notice that the amount of bandwidth Bi is easy
to compute by the satellite since, by virtue of timers, the position of old mobile hosts,
up to the granularity of a virtual window, is known.

The location of new mobile hosts (i.e., newly accepted ones that have not yet
experienced their first handoff) is unknown. It is, therefore, difficult to determine
Di exactly. Q-WIN and OSCAR assumed that, within each of the cells N and N + 1,
these mobile hosts are uniformly distributed. Notice that this does not imply a uniform
distribution of new mobile hosts across the union of cells N andN + 1. No doubt this
assumption makes the computation of Di simple, but it might calculate an estimated
Di different from the actual Di, in the particular case of highly variable and heavy
loads. As we are about to see, the RADAR scheme uses the absence region detection
method to find the MH absence region for one part of the virtual window along with
the uniform distribution assumption for the rest of the virtual window, thus making
the MH’s distribution nonuniform across the virtual window. Let d nN and dnN+1
stand, respectively, for the sum total of bandwidth consumed by the new mobile
hosts in cells N and N + 1. As illustrated in Figure 16.7, the assumption of uniform
distribution of new mobile hosts in cell N implies that the consumed bandwidth of
new mobile hosts WNi is dnN (1− i/m). Likewise, since the new mobile hosts are
uniformly distributed in cell N + 1 except for the new MHs that are absent in the
right side of the virtual window; the expected bandwidth of new mobile hostsWN+1

i

is dnN+1 × i/m− (dnN+1 with α>i/m). Thus, by a simple computation, we obtain
the following approximation for Di:

Di = nN + i

m
[nN+1 − nN ]− (dnN+1 withα>i/m) (16.4)
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Notice that the RADAR scheme uses the absence region detection method to
determine the region where the MH will be absent, thus the computation for the
consumed bandwidth is done with partial nonuniform distribution across the virtual
window for the new users.

Let M stand for the total bandwidth capacity of a cell. Using Bi and the value of
Di from Equation (16.4), the virtual window Wi determines the residual bandwidth
Ri = M − Bi −Di. If Ri ≥ MC, Wi votes in favor of accepting the new request C
with desired bandwidthMc; otherwise it votes against its admittance. After counting
the votes, if the majority of the virtual windows have voted in favor of admittance, the
new connection request is admitted into the system. Otherwise, it is rejected. Once
admitted, the desired bandwidth of connection C is reserved in the current cell, and
the connection is placed in queue S2(N).

16.6 PERFORMANCE EVALUATION

16.6.1 Simulation Model

Based on the description of the queue management, virtual windows, and the call
admission control algorithm in Sections 16.4 and 16.5, we have developed a simulation
program based on the one used in the work by El-Kadi et al. [2] to evaluate the
performances of the proposed scheme.

16.6.1.1 Server Functions The server functions implemented are

� To monitor the amount of available bandwidth in the spotbeam.
� To reserve bandwidth required by future connections.
� To accept or reject new call requests.
� To accept or reject handoff requests.

The system parameters used in our simulation experiments are described in Ta-
ble 16.1 and are based on the well-known Iridium satellite system [3]. New call
arrival rate follows a Poisson distribution and connection duration is exponentially
distributed. We define six types of services with different QoS requirements and as-
sume equal mean arrival rate for each service type and a fixed bandwidth in each
spotbeam [11].

16.6.2 Simulation Results

The simulation results are shown in Figures 16.8–16.12. We compare the CDP, CBP,
and BU performances of the following schemes:

� Q-WIN [9] with 13 virtual windows.
� SILK [13].
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TABLE 16.1 Simulation Parameters

Spotbeam parameters
1.0 Radius 212.5
1.0 Capacity30,000 kbit
1.0 Speed 26,000 km/h

Service parameters Class 1 Class2

Type1 Type2 Type3Type1Type2Type3

Mean duration (s) 180 300 600 30 180 120
Maximum bandwidth (kbps) 30 256 6000 20 512 10,000
Minimum bandwidth (kbps) 30 256 1000 5 64 1000

� OSCAR [10] with three zones within each cell to compute the average load line.
� RADAR [12] with 13 virtual windows.

The results of our simulation, summarized in Figures 16.8 and 16.9 show that the
CDP for Class I connections in RADAR is better than in SILK and OSCAR, since
RADAR takes into account the well-determined horizon limited to two cells. Also
the CDP for Class II gains better performance in RADAR.

Figure 16.10 shows that the CBP for all traffic in RADAR is better than in SILK,
Q-WIN, and OSCAR, since RADAR involves the refined admission technique with
multiple virtual window approach for new call admissions.

Figure 16.12 shows that the bandwidth utilization with RADAR is the best out of
all the competing schemes. It is well known that the goals of keeping the CDP low
and that of keeping the bandwidth utilization high are conflicting. It is easy to ensure
a low CDP at the expense of bandwidth utilization and similarly, it is easy to ensure
high bandwidth utilization at the expense of CDP. The challenge, of course, is to come
up with a handoff management protocol that strikes a sensible balance between the
two.
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FIGURE 16.8 CDP of Class I traffic.
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FIGURE 16.9 CDP of Class II traffic.
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FIGURE 16.10 New CBR of Class I traffic.
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FIGURE 16.11 New CBR of Class II traffic.
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FIGURE 16.12 Bandwidth utilization.

16.7 CONCLUDING REMARKS

LEO satellites are expected to support multimedia traffic and to provide their users
with the appropriate QoS. However, the limited bandwidth of the satellite channel,
satellite rotation around the Earth, and mobility of MHs makes QoS provisioning
and mobility management a challenging task. In this chapter we have surveyed four
recent resource management protocols for LEO satellite networks that use a novel
call admission control based on a sliding widow concept. These protocols are specif-
ically tailored to meet the QoS needs of multimedia connections, as real-time and
non-real-time service classes are differently treated. Also, they do not use GPS for
MH locations. Each of these protocols features a different philosophy of bandwidth
management. But, in a sense, they complement each other since the solutions they
offer may each appeal to a different set of applications, or to different specific network
configurations or network performance goals.

We have implemented these protocols and have evaluated their performance by
simulation. Our simulation results expose the differences in performance due to de-
sign decisions. In summary, these protocols are well suited for QoS provisioning in
multimedia LEO satellite networks.
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CHAPTER 17

Resilient Recursive Routing in
Communication Networks

COSTAS C. CONSTANTINOU, ALEXANDER S. STEPANENKO,
THEODOROS N. ARVANITIS, KEVIN J. BAUGHAN, and BIN LIU

17.1 INTRODUCTION

The function of routing in communication networks is to determine a consistent
set of local switching decisions at all the nodes such that data can be transported
from any source to any destination. In general, routing algorithms can be loosely
classified in many ways, for example, unicast versus multicast, centralized versus
distributed, proactive versus reactive, single-path versus multipath, and so on, but in
practice, routing algorithms can fall in between such simplistic classifications whose
discussion is beyond the scope of this chapter. Furthermore, routing is frequently cast
as an optimization problem, which can be either static or dynamic in nature (although
in some instances routing can and is formulated as a constraint satisfaction problem).

This chapter will concentrate on a dynamic, unicast, proactive, link-state rout-
ing algorithm only. The aim of the algorithm is to achieve a scalable approach to
the representation and exploitation of path diversity in communication networks. By
“scalable” we here mean that the number of message updates needed to support adap-
tation to changes in the state of the network scales well (i.e., as a polynomial) with
respect to the number of nodes and links in the network. After a brief critique of well-
established routing algorithms and their application to communication networks, we
discuss the desirable properties of adaptive routing protocols. We then introduce a
graph-theoretic framework on which a dynamic routing protocol can be constructed in
a scalable fashion. This framework is a recursive abstraction of the physical network
topology that can be also employed in analyzing the network path diversity, as well as
the applicability of various types of dynamic routing protocols to a network belonging
to a specific topology class. Finally, we present our routing protocol, called resilient
recursive routing, which is built upon this framework, and demonstrate through sim-
ulations that it meets the desirable properties of adaptive routing protocols identified
earlier.

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
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The chapter concludes with presenting a collection of open problems that arise
from both the network abstraction and the routing protocol itself.

17.2 OVERVIEW AND CRITIQUE OF CURRENT ROUTING
PROTOCOLS

One of the cornerstones of routing algorithms is to ensure that data are correctly
delivered to its destination by following a path that is loop-free. We exclude from
our discussion exceptional cases such as deflection routing in optical networks where
looping is employed to compensate for the fact that there are no optical buffers that can
be used to “hold” data during localized congestion events. Frequently, the underlying
physical network possesses a rich topology and many loop-free paths exist. The role
of the routing protocol is to compute one such path to the destination. In essence,
the routing protocol takes as an input the physical topology of the network, that is, a
mathematical graph, and for every node, reduces this to a spanning tree, routed at this
node. As a tree is a loop-free structure by construction, there cannot be any looping
of data traffic once the protocol has converged. Furthermore, at a practical level a
spanning tree can be trivially implemented as a set of unique routing table entries to all
destinations. Multipath routing protocols are often computed as a collection of distinct
trees so that alternative paths to the same destination consist of edges that are disjoint.

There is always an implicit assumption that protocol freedom from data loops can
only be guaranteed if the spanning subgraph employed in constructing routing tables
is itself loop-free; that is, it is a tree. As we shall see shortly, this is an assumption that
can in fact be relaxed and still result in routing protocols that are loop-free in their
operation.

The spanning trees used to construct routing tables have to generate unique paths
between all pairs of nodes in the network to ensure loop-free data forwarding opera-
tion. The choice of these paths is made unique by imposing some optimality criteria,
for example, having the smallest number of hops, or edge-weighted hops, thus yield-
ing a shortest path tree (SPT).

Several algorithms exist to compute the SPT for a network graph. The two most
widespread methods are based either on Dijkstra’s [1] or the Bellman–Ford [2,3]
algorithm. Both algorithms work by computing some minimal spanning tree at each
node that contains a consistent set of shortest paths between any pair of nodes.

Dijkstra’s algorithm requires that the complete graph of the network is known in
advance at each node and that the costs of edges between nodes are nonnegative.
Dijkstra’s algorithm has (computation) time complexity O(m+ n log n), where n is
the number of nodes in the graph and m is the number of edges. In the case of a
completely connected graph, m = n(n− 1)/2 (for a review cf. the work by Zwick
[4]), it yields a worst-case performance of O(n2). However, Dijkstra’s algorithm
incurs a significant communication overhead (or communication complexity) in order
to disseminate the topology information through a flooding procedure that does not
scale well with increasing n, whereby all nodes advertise the weights of the links to
their neighbors through networkwide broadcasts.
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On the other hand, the Bellman–Ford algorithm has a time complexity of O(mn),
which for a completely connected graph yields a worst-case performance ofO(n3) [4],
albeit often at a much lower communication overhead cost, as messages are restricted
to immediate neighbor exchanges of SPTs. The lower overheads make the algorithm
scalable to large networks, but at the expense of convergence delay. This delay arises
from the iterative nature of the algorithm and the exchange of local information only.

The above considerations focus on the relative merits of the two algorithms during
network initialization. Another important issue is the performance of a routing algo-
rithm in response to a change in the network topology (e.g., the failure of a node, or
the addition of a new link): Dijkstra’s algorithm in fully distributed nonhierarchical
networks requires the complete dissemination of updated topology information to be
flooded throughout the network (called link-state advertisements), which is expensive
in terms of communication overhead and does not scale well with increasing network
size, but is fast. The computation overhead of Dijkstra’s algorithm can be further
improved if an incremental version is employed [5]. The Bellman–Ford algorithm has
a re-convergence time that is highly topology dependent and in some cases infinite, as
is evident from the count-to-infinity problem [6]. Furthermore, during re-convergence,
both types of routing protocols can loop and possibly drop data.

A generalization of the Bellman–Ford algorithm that eliminates many of the prob-
lems associated with re-convergence is EIGRP [7]. This exploits the concept of diffus-
ing computations [8,9] to enable the algorithm to compute shortest paths distributively
and as quickly as link-state routing protocols based on flooding while maintaining
loop-free operation at all times. However, these operational properties presuppose
the presence of a transport mechanism used to exchange update messages amongst
routers that is not only reliable but also guarantees ordered delivery [7]. A detailed
discussion of EIGRP is beyond the scope of this chapter.

A further class of routing protocols of interest here avoids global topology change
information dissemination. This is achieved by implementing local restoration algo-
rithms and thus computing suboptimal paths to destinations once a re-convergence
is necessitated [10,11] through node or link failure, or link cost change. Naturally, if
the shortest path to each destination needs to be computed, it is still possible to avoid
global flooding, but the number of nodes involved in the re-convergence procedure
increases significantly [12].

Irrespective of which of the above-described algorithms is employed in a
routing protocol, changes to the network topology always necessitate protocol
re-convergence. Some of the more advanced algorithms referred to above can avoid
data looping. However, data may become nonroutable during the topology informa-
tion update and shortest path algorithm re-computation, which then results in packets
being dropped. The only way of endowing networks with resilience to failures is to
compute more than one disjoint path to each destination and either make use of both
paths simultaneously (thus also providing a load balancing capability in the network)
or switch over to the second path immediately after the first one fails. A number
of such multipath routing schemes have been proposed, the most widely adopted
one being the equal cost multipath (ECMP) extension to link-state routing protocols
[13,14].



488 RESILIENT RECURSIVE ROUTING IN COMMUNICATION NETWORKS

Hitherto we have discussed routing protocols that assume that the average time
between topology updates or changes is much longer than the routing protocol
re-convergence time, which includes the time necessary for sending topology up-
dates to relevant nodes, as well as the time required to perform the SPT re-computation
(whether distributed or not). If the network state varies on a shorter timescale, not only
does the re-computation become very expensive, but data losses become unacceptably
high as well. A class of networks that is susceptible to frequent changes is mobile
ad hoc networks (MANETs), which are decentralized wireless networks where each
node is both router and host [15]. In such networks, dynamic routing protocols that
discover paths to a destination on demand (i.e., reactively rather than proactively)
tend to be favored. Two examples of such routing protocols are the dynamic source
routing (DSR) and the ad hoc on demand distance vector (AODV) routing protocols
[16]. As expected, MANET routing protocols not only discover routes dynamically
but sometimes also adopt a local route restoration mechanism to cope with a rapidly
changing network topology.

All of the above protocols determine an optimal or near-optimal SPT for every
source. However, when all sources are considered simultaneously, the overall solution
is not necessarily optimal for the entire network in terms of traffic load distribution, as
some links or nodes could become congested. In this sense, the “optimality” of SPTs
is not network oriented when traffic is taken into account. One approach of making
such solutions optimal for the network as a whole is to make link weights change
dynamically in response to traffic loading. However, this needs to be done on a slower
timescale than the time taken for the information on the changing network link weights
to propagate across the entire network. Provided this is the case, the expensive (in
terms of communication and computation overheads) process of re-convergence of
all the SPTs can occur repeatedly until an overall optimal solution for the network is
reached. This assumes that the external offered traffic to the network does not change
significantly during the re-convergence time, which is often not the case.

At the root of this problem lies a fundamental issue: Adaptation requires path
choices to be available without delay and SPTs eliminate such choices by decimat-
ing the complete network graph into a tree. Since SPTs are global structures, their
recalculation takes time, which, in turn, hampers the adaptation process.

In order to build dynamic routing protocols that optimize the operation of a
network as a whole, we first need to understand the relevant timescales of all the
underlying dynamical processes and their interrelations. The relevant timescales are
(1) the timescale for network topology discovery and dissemination, (2) the timescale
for topology change, (3) the timescale for external offered traffic change, (4) the
timescale for route discovery (route is defined henceforth to mean the collection of
paths to a destination that a routing protocol can admit), (5) the timescale for a path
selection from a route, and (6) the timescale for making switching decisions (we take
this to be the shortest characteristic timescale in the network).

Existing routing protocols often force a number of these timescales to be either
identical or of the same magnitude, which impacts the scalability of the routing
protocol, its convergence properties, and performance. As an example, we cannot
apply conventional distance-vector or link-state routing protocols to MANETs, as the
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topology change timescale is comparable to the topology discovery timescale and
such protocols assume that the topology change timescale is much larger than that
for topology discovery and dissemination.

17.2.1 Desirable Dynamic Routing Protocol Properties

A dynamic routing protocol should (1) avoid the creation of congestion hot spots
and adapt to changes in offered traffic, (2) make maximum use of underlying network
capacity according to some optimality criteria that may or may not be global, (3) adapt
to topology changes in the network, and (4) be scalable with respect to increasing
network size.

It should be evident from the discussion of the preceding subsection that global
optimality in network operation is desirable, but may not be attainable given the range
of timescales characterizing all the relevant dynamic processes. In such a case, local
optimality needs to be considered instead. However, this raises an important question:
What is locality in this context? It is our contention that a topological locality must be
associated with an elementary routing protocol function, which, in turn, is ascribed an
operational timescale. As we have a range of different timescales, this implies that we
should consider a hierarchy of localities, and routing protocol adaptation must occur
at both the appropriate timescale and its associated appropriate locality. For example,
since we require the routing protocol to react fast to link failures, the pertinent locality
must relate to the immediate “neighborhood” of the failure and must contain a local
restoration path in order to be able to select this very quickly.

17.3 LOGICAL NETWORK ABRIDGEMENT PROCEDURE

The first challenge to be met is to define a graph-theoretic framework for considering
a hierarchy of localities in networks.

When considering the connection diversity and thus resiliency in a network, it is
important to quantify the number of distinct paths between any pair of end nodes. The
loss of one path is insignificant if numerous other paths exist. At the other extreme,
if only a single path exists, loss of any of its component nodes or links results in
the network becoming disconnected into two disjoint subnetworks. The simplest and
most elementary form of diversity is when two disjoint paths connect two nodes;
that is, these nodes belong to a ring, or cycle in graph-theoretic terminology (see
Fig. 17.1). We shall refer to such a topological relation, as a simple neighborhood
(elementary locality), and all nodes belonging to the same cycle are thus neighbors.

Every cycle can be represented by an incidence vector of its constituent edges.
Given an exhaustive enumerated list of all m edges in a graph, the incidence vector
is anm-dimensional vector of binary elements, where a 1 denotes an edge belonging
to the cycle and a 0 if it does not. These incidence vectors form an algebra relative to
the binary addition operation. The binary addition (or symmetric difference) of two
vectors (and thus their associated cycles) is the set of edges, which are in either cycle,
but not in both [17]. This operation is the set-theoretic equivalent of the XOR operation
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FIGURE 17.1 Simplest form of path diversity in a graph is a simple cycle, which is abstracted
to a logical node (left). Definition of a connection (adjacency) between two logical nodes (right).

in Boolean logic. Cycle independence is then defined as a linear independence of
associated incidence vectors in this space [17]. Any connected graph with n nodes and
m edges has ν = m− n+ 1 independent cycles, where ν is defined as the cyclomatic
number of the connected graph [17]. A maximal set of independent cycles forms a
basis from which all the remaining cycles can be generated. The choice of a basis set
of cycles is not unique as we shall see shortly.

Every independent cycle or neighborhood of nodes can be abstracted to a logical
node (e.g., the gray node in Fig. 17.1), intended to represent a diversity unit. In the
context of a communication network, this logical node represents shared routing state
information among all the nodes that belong to this cycle. Two cycles are defined to be
adjacent (in a diversity sense) if they share at least one common edge (e.g., the edge
and its incident nodes highlighted in dotted black in Fig. 17.1). This can be justified
since two adjacent cycles have at least two nodes in common and are thus connected
diversely. The nodes incident to the common edge are gateway nodes between the
two cycles, and in the context of a communication network, they are responsible for
the exchange of the routing information between these two logical nodes. Connecting
logical nodes (e.g., the gray nodes in Fig. 17.1) with their associated logical edges
(e.g., the gray edge in Fig. 17.1), we can construct the next logical level graph that
is an abstraction of the physical network. Any connected linear set of nodes ending
in a leaf node is implicitly eliminated from the next level abstracted graph, as this
is tantamount to the logical collapsing of such subtrees into their root node, which
is a member of a cycle. The reason for this is that there is no path choice (i.e., no
path diversity) on a subtree. If the abstracted logical level description of the network
contains cycles, we can repeat the above procedure as many times as required, or
until it terminates in a highest-level loop-free logical network structure at logical
level � = L. In Figure 17.2, we have the original physical level (level � = 0) and
logical levels � = 1 and � = L = 2 (the latter being trivially a single logical node
rather than a tree). We call this recursive procedure logical network abridgment, or
LNA for short. We label nodes as �.n, where � denotes the level of abstraction and
n is the node number at that level. Thus, 1.2 is node 2 at level 1 (identified with the
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FIGURE 17.2 Logical network abridgement (LNA) procedure applied to a simple network.
The LNA abstraction is the ensemble of levels 0, 1, and 2. Physical cycles at level 0 are identified
as logical nodes at level 1; common links between cycles at level 0 correspond to logical links
at level 1; the abstraction is iterated until a highest level 2 (loop-free) graph is arrived at. The
labeling of nodes has two parts: the first one corresponding to the level of abstraction and the
second enumerating the node at this level.

cycle 0.2− 0.4− 0.5− 0.2 at level 0 in Fig. 17.2). It is worth pointing out that when
we refer to the LNA abstraction, we signify the entire ensemble of levels.

The choice of basis cycle set is usually far from unique [18]: The presence of a
K4 subgraph is sufficient to destroy uniqueness. In weighted graphs, it is possible to
ensure uniqueness through a slight perturbation of edge weights [19]. However, it is
known that the number of different choices of minimal cycle bases for a graph can be
potentially exponential with respect to the size of the graph [20].

Since the choice of basis cycle set is not unique, it follows trivially that the LNA
procedure is also not unique, as it is dependent on this choice at each step of recursion.
Additional criteria suited to the problem or application at hand need to be employed to
make the choice of basis cycle set unique. The number of logical nodes at level �+ 1
is determined by the cyclomatic number, ν�, of level �. However, the number of logical
links at level �+ 1 is determined by our nonunique choice of the set of independent
cycles at level �. For the purposes of our discussion, we choose to minimize the
number of logical links at the next level of abstraction, as this will not only speed up
the convergence of the LNA, but will also minimize the amount of control information
overhead incurred in routing. To the best of our knowledge, there is no polynomial
algorithm currently in existence that can be used to determine the basis set of cycles
that minimizes the number of logical links at the next logical level of abstraction.
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The problem of minimizing the number of logical levels of abstraction, L, is even
more complex because it implies a global minimization procedure across all levels of
abstraction.

In the absence of a polynomial complexity algorithm discussed above, we currently
use the minimal cycle basis of a reduced graph, determined as follows: We first
remove all nodes of degree 1, repeatedly, until no such nodes remain. We subsequently
“eliminate” transient nodes of degree 2 by contracting [17] either of the edges incident
on each such node (this is equivalent to removing the transient node and inserting
a new edge between the nodes adjacent to the removed one). Finally, we remove
all parallel edges, as they constitute trivial cycles that can be reinserted later. The
computational complexity of the basic Horton’s minimum cycle basis algorithm that
can be used is O(m3n) (cf. [18]). However, improved versions have been reported
[18], especially for sparse graphs. The above operations still do not yield a unique
cycle basis, but significantly reduce the algorithm’s running time by reducing the
size of the problem, as well as the number of different cycle bases that often helps
minimize the number of logical links at the next level.

The convergence of the LNA procedure to a loop-free graph in a finite number
of steps is guaranteed for finite planar graphs. The reason for this lies in the fact
that for a particular embedding of a planar graph (with basis cycle set chosen as
the set of faces of this embedding), the LNA procedure is tantamount to finding
the modified dual of a graph minus the exterior node and ignoring parallel edges
and loops. As two consecutive dual graph transformations yield the original graph,
the LNA in this case will always give a smaller planar graph, thus guaranteeing
convergence in a finite number of steps. We conjecture that for sparse nonplanar
graphs, the procedure will also converge, while the question of how many steps it
takes to reach convergence still remains. This is supported by numerous applications
for the LNA procedure to nonplanar sparse graphs derived from actual Internet service
provider core networks. For arbitrarily large, densely connected graphs, such as fully
connected graphs (cliques), the LNA convergence remains an open question.

Every level of abstraction conveys summarized path diversity information for the
previous level, which can aid both the visualization and analysis of this diversity.
The summarization is not done on an arbitrary clustering basis, but is dictated by
the underlying network topology and introduces a natural measure for the network
diversity, L ≡ min[L]. The minimum is taken over all choices of sets of independent
cycles across all levels. This is an open graph-theoretic problem that merits further
study. Clearly, the bigger theL, the more intrinsic path diversity exists in a network. If
the graph at any level of abstraction becomes disconnected, it indicates the existence
of a path diversity bottleneck at the previous level. An example of the application of
the LNA procedure to a graph illustrating the above point is shown in Figure 17.3.

17.4 NETWORK DIVERSITY

We now consider the application of the LNA to routing in communication networks,
and specifically to routing in packet-switched networks such as the Internet. The
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Level 3 

(disjoint)

FIGURE 17.3 Logical network abridgment abstraction of a graph that results in a disjointed
logical level 3. The disjoint nature of logical level 3 is a characteristic signature of reduced
path diversity between more highly connected clusters in the physical level 0 network (i.e., path
diversity is not homogeneous across the network) and must not be confused with the absence
of connectivity.

network diversity index, D, is the simplest global measure of diversity in a network
and can be defined as D ≡ L/n. We note that any graph consisting of n nodes can
be derived from the completely connected graphKn by removing a number of edges.
Therefore, we can conclude that the diversity index of any graph is bounded as follows:
0 ≤ D ≤ DKn . The lower bound arises trivially if the original network is a forest (i.e.,
loop-free). The upper bound arises as the removal of edges from Kn results in the
reduction of both the numbers of logical nodes and edges at the higher levels of
abstraction. Unfortunately, we do not have at present any exact results or conjectures
for DKn , which could even be infinite for sufficiently large n.

Irrespective of the actual value of DKn , the diversity index D can be used to
determine the type of routing protocol best suited to the network. If D>∼ 0, the
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network is dominated by trees and a shortest path type protocol is highly scalable
and efficient. An adaptive routing protocol in this case will not bring any benefits,
but will simply incur internal communication overheads. At the other extreme, if
D<∼DKn , the network is very close to being fully meshed and random deflection
routing is scalable (has very low internal communication overheads), robust, and
sufficient, because if a destination is not reachable directly there is a high proba-
bility that it can be reached through any one of the neighboring nodes chosen at
random.

Away from these two extreme cases, a shortest path type protocol fails to exploit
the underlying network diversity and will take time to re-converge if congestion or
failures arise, while on the other hand random deflection routing is unlikely to result
in the successful delivery of data to its intended destination, as nodes are likely to
be separated by many hops. To exploit the underlying network diversity, a dynamic,
adaptive routing protocol is then required.

In cases where the path diversity in a network is inhomogeneous (e.g., a typical
well-engineered ISP network tends to have a highly meshed core of nodes), then a
global measure such as D fails to capture this fact. A local version of the diversity
index can in principle be defined on a set of subgraphs of the original graph. We
can then analyze the local diversity index of each subgraph to determine the most
pertinent type of routing protocol, which may then lead us to the conclusion that
a nonuniform routing procedure is required. For example, if a network contains a
number of cliques, Kc where c > 3, then we could abstract each clique to a logical
node with its own internal routing procedure and then apply the LNA to such a
modified network. Such an approach would lead to a faster LNA convergence and
smaller internal communication overheads.

17.5 RESILIENT RECURSIVE ROUTING

The LNA can be augmented with a number of forwarding rules to create a
resilient recursive routing (R3) protocol. Here we consider the high-level generic
features of such a protocol that adheres to the properties discussed in Section 17.2.1.
There can be more than one specific implementation of the generic algorithm,
and we shall describe our specific choice that we have proceeded to simulate in
Section 17.5.2.

17.5.1 Generic R3 Algorithm

The routing algorithm must operate recursively at each level of abstraction of the net-
work either to route a packet around a single cycle or along a tree. Routing information
on a tree is a trivial exercise in the sense that all forwarding decisions are determinis-
tic, and we shall not discuss this any further. The fundamental algorithm must route a
packet from a source to a destination, both of which are members of the same level 1
logical node and thus are members of the same cycle at level 0 (hereafter referred
to as level 0 neighbors). The algorithm must be capable of (i) loop-free data routing
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across the cycle, (ii) load balancing across the cycle, and (iii) fast reaction to link
or node failures in the cycle of nodes. A specific implementation of the fundamental
routing algorithm will be discussed in the next section.

If the source and destination are members of the same level 2 logical node (i.e.,
they belong to the same level 1 cycle and are thus level 1 neighbors), the fundamental
routing algorithm should be applied iteratively twice, once at level 1 and once at the
current (local) level 0 cycle.

For source and destination nodes that are level � neighbors, the fundamental routing
algorithm needs to be applied �+ 1 times iteratively, from the current highest level �
down to the local level 0 cycle.

If at some level of abstraction �′ the LNA graph of the network is disjoint (in
Fig. 17.3, e.g., �′ = 3), the fundamental routing algorithm cannot find a level 3 cycle
or tree across some source and destination pairs. In this case, the algorithm must
drop down to level �′ − 1, where at least one cut-node (in the case of Fig. 17.3 two
cut-nodes and a cut-edge) needs to be traversed deterministically at the �′ − 1 level
of abstraction, just as routing on a tree needs to operate. This implies that cut-nodes
need to exchange reachability information about their corresponding bi-connected
parts of the network.

The routing methodology embodied in the generic algorithm enables us to route a
packet in a loop-free manner, while performing load balancing and enabling failure
recovery across the network. The iterative nature of the algorithm though does not
on its own guarantee the scalability of all the properties of the fundamental rout-
ing algorithm to the entire network. The first condition necessary for the scalabil-
ity of the routing protocol is the need to have the minimum number of levels of
abstraction L to be significantly smaller than the number of nodes n in the original
network, as the size of the network grows, that is, L. n, or equivalently D . 1.
The second condition for scalability relates to the characteristic reaction times of
the fundamental routing algorithm to congestion and failures at the higher levels
of abstraction. The higher levels must use summarized information, for example,
for congestion along their logical cycles, over longer timescales to reflect the sum-
marized nature of this higher-level neighborhood. For example, if for a sufficiently
sparse class of network graphs it were to turn out that L ∼ log n, as n→∞, it
would be natural to select adaptation/update time intervals, τ�, for higher levels that
grow exponentially, τ� ≈ τ0 b�, � = 0, . . . ,L, for some base b > 1 that depends
on the sparsity of the graph and a desirable fastest adaptation time, τ0, at physical
level � = 0.

Naturally, the adaptation can be “terminated” prematurely at an earlier level of
abstraction and the higher-level iterations of the fundamental routing algorithm can
become static, if the network operation is deemed to be sufficiently adaptive by the
protocol designer.

It should be noted that the proposed scheme bears some similarities to rout-
ing in networks based on abstraction hierarchies (see e.g., works by other authors
[21–23]), but differs fundamentally in that both the number of hierarchy levels and
their clustering structure are not determined a priori, or through extrinsic criteria to
the network, but arise naturally from the topology itself.
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17.5.2 A Specific Implementation of the R3 Algorithm

We now proceed to discuss a practical implementation of R3 through a simple example.
Even though we can devise a topology discovery and destination host advertisement
mechanism based on R3, we choose to adopt for simplicity a standard link-state routing
protocol such as IS–IS [25] or OSPF [13] to achieve both of these network functions
the initialization stage only. This is done in order to concentrate on developing the
routing function of the protocol alone.

Routing is achieved by employing labels hereafter called circulation vectors, which
are also implemented recursively (i.e., they are nested in the header of each packet).
For a level � destination, each circulation vector describes a local level 0 simple path
that is a subgraph of the local level 0 cycle (i.e., loop segment or arc on the local
level 0 cycle) toward the destination, a level 1 arc on the local level 1 cycle toward
the destination, and so on, all the way up to a “local” level � arc on the “local” level
� cycle, containing the destination.

Note that this routing scheme is not the same as source routing [16], as it does not
specify a precise path to the destination, but rather a progressively abstracted route
(in the sense of an ensemble of many physical level 0 paths defined in Section 17.2)
to the destination. This provides a connectionless service that gives specific physical
path selection on the shortest timescale of a level 0 neighborhood, but as a result of the
increasing levels of abstraction provides more flexibility in subsequent physical path
selections across any remaining higher-level neighborhoods, on a longer timescale.
This retained flexibility is then used at subsequent nodes to make local forward-
ing decisions in order to overcome any congestion and failure situations that might
arise.

A selected cycle segment at level � requires that the packet be forwarded from
one node to an adjacent node using a link, all at level �. Each node at level � is in
fact a representation of a neighborhood/cycle at level �− 1. Therefore, the link at
level � is in fact a representation of the nodes held in common between two adjacent
neighborhoods at level �− 1. These common nodes are gateways and thus represent
an intermediate destination at level �− 1 of a selected path at level �. Nodes receiving
a packet will forward the packet so as to maintain its given direction of circulation on
the designated cycle, until it reaches the gateway. Once the packet reaches a gateway,
the circulation vectors of all completed arcs are removed and new ones are added,
based on more recent information regarding congestion and even failures, until the
packet is routed to its final destination.

The above procedure can be best illustrated using the simple two-level network of
Figure 17.4. In sending a packet from a host A connected directly to node 0.1 to a host
B connected directly to node 0.11, host A generates a packet with destination address
B. Node 0.1 will have knowledge of the existence of B through the advertisement
protocol (borrowed unchanged from IS–IS for this particular implementation) only
as a level 2 destination attached to the level 2 node 2.3. As the level 2 network
description is a simple tree, the routing on it is deterministic and we omit the use of
level 2 circulation vectors in our discussion for simplicity and clarity. The omitted
circulation vector lists the deterministic hops to the destination node 2.3.
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FIGURE 17.4 Routing on a simple network.

The routing required at level 2 is from neighborhood 2.1, to which node 0.1 belongs,
to neighborhood 2.3, to which node 0.11 belongs, with the immediate next hop at level
2 being 2.1 → 2.2. The link from 2.1 to 2.2 is represented by the nodes that cycles
2.1 and 2.2 have in common at the next lower level, that is, gateway nodes 1.2 and
1.3. At level 1 there is path diversity, as node 0.1 may send the packet either clockwise
around cycle 2.1 to gateway 1.2 or anticlockwise around cycle 2.1 to gateway 1.3.
Node 0.1 must then select one of these two paths, for example, cycle 2.1 clockwise
to gateway 1.2, based on summarized performance information around the level 1
cycle 2.1 on a longer timescale, and attaches an inner label containing the selected
circulation vector to the packet.

The routing required at level 1 is to forward the packet from neighborhood 1.1 to
neighborhood 1.2. The link from cycle 1.1 to cycle 1.2 is represented by the nodes that
1.1 and 1.2 have in common as the next lower level, that is, nodes 0.2 and 0.3. At level
1 there is, therefore, path diversity, as node 0.1 may send the packet either clockwise
around cycle 1.1 to gateway 0.2 or anticlockwise around cycle 1.1 to gateway 0.3.
Node 0.1 selects one of these two paths, for example, cycle 1.1 clockwise to gateway
0.2, based on measured performance information around the level 0 cycle 1.1 on
the shortest timescale, and attaches an outer label containing the selected circulation
vector to the packet.

The routing required at level 0 is now to forward the packet from node 0.1
to node 0.2, according to the attached circulation vectors. As the link from 0.1 to
0.2 corresponds to a physical link between these nodes, there is no further path
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FIGURE 17.5 Set of routing decisions on the network of Figure 17.4.

diversity that can be exploited and the packet is forwarded along the physical link to
node 0.2.

In each cycle, there are always two possible circulation directions. The sense of
circulation direction, denoted by positive or negative, does not need to be defined
globally, but needs to be unambiguously defined only for the member nodes of the
cycle. In our planar graph example of Figure 17.4, we denote positive (negative)
circulation around a cycle to be clockwise (anticlockwise) for ease of illustration.
A possible packet structure corresponding to the first routing decision, shown in
Figure 17.5, would be label 1 (inner label): 2.1+ to 1.2 and label 0 (outer label): 1.1+
to 0.2. When this packet arrives at the level 0 node 0.2, this node identifies itself as
being 0.2, the destination gateway, of the outer label, and so strips the outer label.
It also identifies itself as being a member of the neighborhood 1.2, the destination
gateway of the inner label, and so strips the inner label as well.

This occurs because neither of the circulation vectors is required in addition to
the destination host address B to ensure deterministic routing. Indeed, it is quite
acceptable to adopt a policy of penultimate node label stripping, so that labels are
stripped if the adjacent node that the packet is being sent to is in fact the label desti-
nation. Labels are, therefore, only needed in order to ensure that packets are correctly
transited through intermediate nodes at all levels in the abstraction. Implicit in this
statement is the fact that all transit nodes must respect the circulation vector at their
relevant level, unless there is a failure. In our example, there was no need to add any
labels to the packet leaving node 0.1. However, for clarity, all labels will continue to
be shown throughout this example.

Node 0.2 follows the same process of establishing the associated path diversity
and then making path selections based on performance information associated with
each level in the LNA. The packet leaves node 0.2 toward 0.3, for example, with
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an inner label, abbreviated as L1, of 2.2− to 1.5 and an outer label, L0, of 1.2−
to 0.3.

Upon reaching node 0.3, the outer L0 label reaches its destination and is removed,
but the inner L1 label has not and so it is retained and the next level 0 path is selected.
Node 0.3 must maintain the circulation at level 1 of 2.2− to 1.5 and as node 0.3
belongs to neighborhood 1.3, it must forward the packet along 2.2− from gateways
1.3 to 1.5. As the common nodes between cycles 1.3 and 1.5 are gateways 0.6 and
0.7, node 0.3 can forward the packet on either 1.3+ to 0.6, or 1.3− to 0.7. Node 0.3
selects one of these two paths, for example, 1.3+ to 0.6 using a single label L0, based
on the most recent level 0 performance (e.g., congestion) information.

Upon reaching node 0.6, both the outer and inner labels have reached their
destination and are thus removed. New labels are inserted following the same process
that occurred at node 0.2.

Upon reaching node 0.7, neither the outer label L0 nor the inner label L1 gateway
destinations have been reached, and 0.7 simply maintains both circulation vectors
and the packet is forwarded without choice to node 0.10 without any change to the
labels.

Upon reaching node 0.10, the outer label L0 and the inner label L1 have both
reached their destination and are removed. Node 0.10 has knowledge of the existence
of B through the advertisement protocol as a level 0 destination as nodes 0.10 and
0.11 are both members of neighborhood 1.6. Node 0.10, therefore, follows the same
process but only has to consider whether to send the packet on either 1.6+ to 0.11 or
1.6− to 0.11. In this example, the packet is forwarded on 1.6− to 0.11 based on the
most recent level 0 performance information.

The simplest performance information we employ in our protocol is the measured
cumulative delay that a modified “hello” packet experiences per hop in traversing
each loop in each of the circulation directions, approximately every 100 ms. Each
router time stamps a cycle-specific “hello” packet upon processing it, together with
its router address and forwards this to the next router in the cycle. Each node then
computes the associated delay to each other node on the same cycle in both direc-
tions of circulation. For a given destination node on the same cycle, new packets are
forwarded using the direction of circulation that is currently experiencing the lowest
delay.

Higher-level summarized performance information is computed from the average
cycle delay in both directions and is disseminated through restricted flooding on
progressively longer timescales: A router that is not a member of the logical abstracted
node for which the summarized performance information is intended simply discards
the packet. In our implementation, level 1 summarized performance information was
updated on the order of ∼1 s, while higher levels were static.

We want to stress here that labels are not path specific but network specific. The
labels are determined by the LNA and thus are tied to the network topology. Here,
we need to introduce a further refinement in our terminology of paths. A level � path
is an arc on a level � cycle, which in turn contains a set of level �− 1 paths. Routes
(the ensemble of paths), which are instantiated as circulation vectors, are thus fixed,
or at least determined on the same long timescale as the topology itself. The choice
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of a particular physical path to a destination is not determined in advance but is done
progressively as the packet is forwarded through the network, based on up-to-date,
local congestion information.

As data flows can suffer from jitter in any multipath routing scheme, a further
improvement in our protocol can be to perform per flow routing (using hash tables),
with lower quality of service (QoS) flows being switched to alternative paths earlier
than higher QoS flows if the need arises, say due to congestion.

17.5.3 Simulations

R3 has been implemented in the discrete-event network simulator OPNET r© [24] and
has been used in extensive simulation experiments, which fall into three large sets:
First, we have simulated congestion that might arise at the BGP gateway of a core IP
network of a medium-sized European Internet Service Provider, examining the end-
to-end delay and packet-loss-rate characteristics of the network with ECMP IS–IS
[14,25] as a baseline routing protocol for comparison. A second set of simulations
concentrated on the study of similar metrics in scale-free networks [26] suffering
asymmetric attacks (i.e., single as well as multiple highly connected node attrition).
ECMP IS–IS was also used as a benchmark in this set of simulations. Finally, we have
also studied the impact of unstable links and restricted endhost mobility in a tactical
network example under many simulation scenarios, comparing the performance of
R3 against ECMP IS–IS as well as AODV [16]. In all three cases, R3 outperformed
the remaining protocols, as it indeed managed to spread the data traffic load evenly
across all available network resources and was capable of operating in “broken” net-
works on a reduced set of circulation vectors without the need for any re-convergence
whatsoever. For highly mobile networks where the rate of link breakage and forma-
tion is large, R3 cannot at present outperform any of the current MANET protocols.
In order to improve its performance, we need to fundamentally rethink the physical
level abstraction, as wireless networks cannot be appropriately abstracted by simple
graphs. This discussion is beyond the scope of this chapter.

As we can see from Table 17.1 the good performance of R3 was achieved without
a complete implementation of its adaptation functionality.

Here we discuss only one simulation example due to space limitations. We concen-
trate on asymmetric attacks on scale-free networks with multiple highly connected
node failures.

Scale-free networks arise naturally in many contexts, including the Internet, when
new nodes attach themselves preferentially to the existing highly connected nodes.
This makes the network efficient in terms of routing, as it limits the number of
end-to-end hops significantly (the diameter of scale-free networks is small). Also,
scale-free networks are quite robust to random node failures. However, when highly
connected nodes are preferentially targeted by an attacker, such networks can be
easily compromised.

The scale-free network model we used has been developed on the basis of measure-
ments of the Internet. The Albert–Barabási algorithm [26] outlined below summa-
rizes how to generate a scale-free network: When new nodes are to be connected to an
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TABLE 17.1 Implementation Versions of R3

R3v4 R3v5 R3v6 R3v7 R3v8 R3v9

R3 routes
initialization Dynamic

R3 route
labeling All levels

R3 path
selection Dynamic

R3 stub
collapsing

Level 0 All levels

Node/link
failure Level 0 nodes
adaptation

Level 0
nodes
and links

All levels nodes and links

Traffic
congestion
adaptation

Level 0 Levels 0 and 1

LNA Static/scripted
Partially
dynamic

existing network nucleus of nodes, they connect each of their q available links to an
existing network node i with probability P(qi) = qi/

∑
j qj , where qi is the current

node degree for the already existing nodes in the network.
Such a model creates networks where the node degree (connectivity) distribution

has a power-law behavior, with most nodes having a low degree and a very small
proportion of the nodes being highly connected. Consequently, such a network has
the advantage of providing highly efficient communication through small number of
key, highly connected nodes that act as hubs.

We generated a 120-node, 117-link scale-free network using the Albert–Barabási
algorithm [26], starting with a core of nine highly meshed nodes. We subsequently
simplified this network in order to speed up the simulation by removing stubs and
purely transit nodes that do not play a role in routing, as all their switching decisions
are trivial. To further simplify the LNA so as to aid graph visualization, we removed
17 nonplanar links. This made the network more vulnerable to the loss of highly
connected nodes, as these links provided alternative distant connections across the
network. The resulting modified scale-free network had 39 nodes and 70 links, and
its R3 levels of abstraction are shown in Figure 17.6.

For the purposes of our simulation analysis, we started with realistic values for
bandwidth, packet size, and so on, but used bit and time scaling in order to speed up
the rather lengthy simulations. The scaled simulation parameters were the following:
All links had a bandwidth of 1 Mb/s; we employed 4000-bit-long constant-length
packets; the node buffers had a capacity of 2000 packets per outgoing link (incoming
links were nonblocking); the packet generation rate was 142 packets/s per node; the
packets generated at each node had a stochastic destination address with probability
proportional to the destination node degree; the level 0 adaptation time was 1 s; and
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FIGURE 17.6 LNA of modified scale-free network used in the simulations.

the level 1 adaptation time was 5 s. The simulation was run for 100 s, with node 0.2
(with degree 10—the second most connected node) failing at 30 s and node 0.30 (with
degree 5—the fourth most connected node) failing at 60 s. Once a node failed, the
data traffic destined for that node was dropped in order to avoid simulating artificial,
meaningless losses. It is also worth pointing out that the cascade failures of nodes 0.2
and 0.30 result in a level 1 logical link failure, which is a relatively severe test for R3.

We avoided simulating the most highly connected node failing (node 0.7), as this
represented 20 percent of all links failing, making this an excessively compromised
network. This decision was supported by earlier simulations that demonstrated quan-
titatively that excessive attrition of links and nodes in scale-free networks often left
little or no scope for adaptation in routing.

The results of the simulation are shown in Figures 17.7–17.9. The network traffic
generation rate was chosen in such a way that the network is originally neither lightly
loaded nor congested, but had average buffer occupancies at around 1 percent of their
capacity and maximum buffer occupancies at around 25 percent as can be seen in
Figure 17.8. Once node 0.2 fails, IS–IS dropped a few hundreds of packets during
the re-convergence period (see Fig. 17.7), whereas R3 immediately rerouted data
around the failure. Prior to this first node failure, IS–IS had the lowest average buffer
occupancies and shortest end-to-end packet transport delays (Fig. 17.8), as it always
selected the shortest paths, and all the nodes along these paths were not congested.

The severely reduced number of available paths in the network resulted in a gentle
increase in traffic at the nodes along the surviving paths as time progressed, and
at around 50 s both IS–IS ECMP and R3v4, which adapt and thus perform load
balancing only at the physical level (i.e., level 0), started experiencing the onset of
congestion and hence dropped packet at hot spot nodes along their chosen routes. As
R3v4 exploits more level 0 paths than IS–IS ECMP, its loss rate (i.e., the slope of the
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FIGURE 17.7 Comparative cumulative packet loss rate of different R3 versions and IS–IS
ECMP operating on the scale-free network of Figure 17.6 when node 0.2 fails at 30 s and node
0.30 fails at 60 s (R3 versions 7 and 8 have zero no route losses).

graph in Fig. 17.7) is about half that of IS–IS. R3v7 adapts to logical link failures but
fails to perform higher-level load balancing and was also beginning to show signs of
congestion, albeit with some delay. However, R3v8, which adapts both to logical link
failures and performs load balancing at levels 0 and 1, did not experience losses due
to congestion.

When the node 0.30 also failed, the data packets destined for this node were
dropped and R3v7 came out of congestion, whereas R3v4 temporarily came out of
congestion, but through physical level adaptation only re-developed it a short time
later at around 78 s. Being unable to exploit the inherent path diversity in the decimated
network, IS–IS ECMP continued to experience packet losses. In contrast to all these
protocols, R3v8 only experienced a small transient packet loss during the time it
needed to adapt to the failure of a logical link at level 1, as adaptation at this level was
slower than adaptation at level 0 by design, in order to make the protocol scalable.
The final observation worth making, was that in this failing scale-free network, the
end-to-end packet transfer delays of all the protocols were comparable, even though
their corresponding path hop counts were significantly different, as can be seen in
Figure 17.9. This was the case because the shorter hop-count paths were always chosen
first and thus experienced congestion earlier. The significant difference between the
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FIGURE 17.8 Comparative queue buffer occupancy analysis for the same simulation
scenario as Figure 17.7.

protocols was in their ability to deliver successfully significantly different numbers
of packets in this simulation scenario.

17.6 CONCLUDING REMARKS AND OPEN PROBLEMS

The simulation results of Section 17.5.3 demonstrate that routing protocols that exhibit
only local adaptation to failures and congestion will often fail to yield the desired result
in achieving better network operation. Global adaptation on the other hand will work
if it is capable of exploiting all the paths in a network, but at a high overhead cost,
which will not scale well for very large networks. The approach taken by R3 is to
adapt to changes on appropriate range of localities and timescales for the specific
network topology, thus reaping the desired benefits while minimizing the adaptation
overhead costs and maintaining reasonable scalability.

The routing protocol presented here is only one implementation of a very general
and novel class of LNA-based protocols. Variants of our implementation of R3 might
employ different ways of summarizing information to be used by the adaptation
mechanism at different levels of abstraction. Furthermore, the relative timescales



CONCLUDING REMARKS AND OPEN PROBLEMS 505

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10
5

0

5

10

15
D

el
ay

 (
s)

Cumulative end-to-end delay

Number of successfully delivered packets

R3 v4
R3 v7
R3 v8
IS−IS

0 0.5 1 1.5 2 2.5 3 3.5 4

× 10
5

0

5

10

15

20

25

H
op

s

Cumulative number of hops

Number of successfully delivered packets

R3 v4
R3 v7
R3 v8
IS−IS

FIGURE 17.9 Comparative cumulative end-to-end packet transfer delay and cumulative hop
count for the same simulation scenario as Figure 17.7.

of adaptation at different logical levels were chosen on the basis of a plausibility
argument that merits a much more thorough investigation.

The practical implementation issues of R3 are also an interesting subject for further
study, as our chosen mechanism of employing labels to instantiate circulation vectors
carries a significant overhead. For example, only circulation vectors that are not
changed in traversing a node need to be explicitly declared. However, employing
explicitly circulation vectors at all times endows the protocol with the ability to
perform data backtracking if the network links are particularly unstable, which may
be a desirable property for some types of networks and/or applications. The current
implementation simply drops packets rather than employing backtracking, which
gives pessimistic performance results for R3.

Most importantly, there is scope for significant further work on the graph theoretic
aspects of the LNA, as well as the corresponding algorithms. As mentioned in this
chapter, the choice of cycle basis is not unique and requires additional, possibly
application-specific, criteria. The sensitivity of the LNA and its convergence to such
additional criteria is an open question.

The computational complexity of the LNA algorithm as a whole is also intimately
dependent on the cycle basis choice criteria. The detailed study of the computational
complexity of the LNA algorithms is also an important topic for further work. How-
ever, this needs to be preceded by a rigorous study of the convergence of the LNA
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procedure on a number of graph families, such as large densely connected graphs,
sparse graphs, Erdös–Rényi, and scale-free graphs.
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Wiley-IEEE Press; 2004.

16. Perkins CE, editor. Ad Hoc Networking. Addison-Wesley; 2001.

17. Diestel R. Graph Theory. Graduate Texts in Mathematics. Volume 173, Berlin: Springer;
2000.

18. Berger F. Minimum Cycle Bases in Graphs. Shaker-Verlag; 2004



REFERENCES 507

19. Mardon R. Optimal cycle and cut bases in graphs. Ph.D. thesis, Northwestern University,
1990.

20. Vismara P. Union of all the minimum cycle bases of a graph. Electr J Comb 1997; 4(1):R9.

21. Kleinrock L, Kamoun F. Optimal clustering structures for hierarchical topological design
of large computer networks. Networks 1980;10(3):221–248.

22. McQuillan JM, Richer I, Rosen EC. The new routing algorithm for the arpanet. IEEE Trans
Commun 1980;COM-28:711–719.

23. Tsai WT, Ramamoorthy CV, Tsai WK, Nishiguchi O. An adaptive hierarchical routing
protocol. IEEE Trans Comput 1989;38(8):1059–1075.

24. http://www.opnet.com/

25. Callon R. Use of OSI IS–IS routing in TCP/IP and dual environments. IETF 1990;RFC
1195.

26. Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod Phys
2002;74:47–97.





CHAPTER 18

Routing Algorithms on WDM
Optical Networks

QIAN-PING GU

18.1 INTRODUCTION

The bandwidth of an optical fiber is about four orders of magnitude higher than a
peak electronic data rate of a few Gbps. A bottleneck in realizing the huge bandwidth
of optical fibers is this opto-electronic bandwidth mismatch. Wavelength division
multiplexing (WDM) is the current favorite technology to eliminate this bottleneck.
In WDM networks, the transmission spectrum of an optical fiber is partitioned into
multiple wavelengths, each wavelength supports a channel that is usually operated at
a peak electronic data rate. The bandwidth of a wavelength channel may be further
shared by multiple low-rate traffic demands. A WDM network consists of network
nodes connected by point-to-point optical links. A network node provides the switch-
ing between optical links connected to it and the interface between end users (at
electronic domain) and the optical network. An optical link consists of an optical
fiber (or multiple parallel fibers) that carries optical signals from one node to another.
To transmit data from a source node s to a destination node t, electronic data are con-
verted to optical signals at s, the optical signals are transmitted to t via a sequence of
optical links (an optical path), and converted to electronic data at t. The transmission
is called all-optical or one-hop of optical routing. The opto-electronic conversions
at s and t are also known as add data to network and drop data from network oper-
ations, respectively. Interested readers are referred to the works of Ramaswami and
Sivarajan [38], Sivalingam and Subramaniyam [40], and Stern and Bala [41] for de-
tails of WDM networks.

A communication application on a WDM network can be specified by a set D =
{(s, t, dst)} of traffic demands, each demand (s, t, dst) requires a bandwidth dst from
source node s to destination node t of the network. It is preferred that all traffic demands
are realized by all-optical routing. However, due to some constraints such as limited
wavelength channels, all-optical routing may not be available for all traffic demands.
In this case, some traffic demands may have to be realized by multihop routing: data
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are added to one wavelength channel at source, dropped at an intermediate node,
and then added to another wavelength channel at the intermediate node, and the
routing is repeated until data are dropped at the destination. In general, to realize
a communication application specified by a set of traffic demands, algorithms are
required to solve the following problems.

� The logical topology design problem: Given a WDM network G, define a set
R = {(u, v)} of connection requests over a set V of nodes of G such that for
every pair of nodes s and t in V there is a path from s to t in Rwhen R is viewed
as a graph with a connection request as an edge. For each request (u, v) ∈ R,
data from u to v are transmitted by all-optical routing inG. Usually V is the set
of all nodes of G or the set of nodes in a given set D of traffic demands. Graph
R is known as the logical topology and a connection request in R is called a
logical link of the network.

� The routing and wavelength assignment (RWA) problem: Given a set R of con-
nection requests in a WDM network G, find a routing path in G for every
(u, v) ∈ R and assign each path a wavelength such that the paths with the same
wavelength do not share any common link in G. The routing path with an as-
signed wavelength is called a light path.

� The traffic grooming problem: Given a setD of traffic demands and a set of light
paths in a WDM network G, multiplex the traffic demands of D into the light
paths subject to the bandwidth constraint of the light paths. The multiplexing is
realized by a device called add-drop multiplexer (ADM) at nodes of G.

A general goal in the study of the above problems is to determine the resources
required to achieve a given connectivity as a function of network size and func-
tionality of network nodes. Much of the discussions for the goal is on minimizing
the number of wavelength channels and the number of ADMs for realizing a given
communication application. These optimization problems have been extensively stud-
ied in both communication and graph algorithms communities for WDM networks
[1,2,9,15,38,40,41]. Since the quality of the solutions for these optimization prob-
lems is critical for the performance of WDM networks, it is extremely important
to have efficient algorithms with good guaranteed performance for those problems.
However, it is challenging to develop such algorithms in most cases. For example, the
RWA problem is NP-hard for even very simple networks like rings and trees [9,19].
Inapproximability results are known for the RWA problem in networks with more
complex topologies when the routing paths are given [32]. Similar hardness results
are known for the other optimization problems as well. For those problems on sim-
ple networks like rings and trees, many efficient algorithms with good guaranteed
performance have been known. But for the problems on more complex networks, no
effective approach has been developed and the existing algorithms are based on the
integer linear programming or ad hoc heuristics. The performance of those algorithms
are not guaranteed. Readers may refer to other works on the subject [1,32,38,40,41]
for more details on the minimization problems on complex networks. In this chapter,
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we focus on reviewing algorithms with guaranteed performance for the minimization
problems on networks with simple and well-used topologies.

The rest of this chapter is organized as follows. In Section 18.2, we describe the
network model and give the preliminaries. The logical topology design problem is
addressed in Section 18.3. Algorithms for the RWA problem and traffic grooming
problem are introduced in Sections 18.4 and 18.5, respectively. The final section
summarizes the chapter.

18.2 NETWORK MODEL

A WDM network consists of a set of nodes connected by a set of point-to-point optical
links and can be modeled as a graph G(V,E) with V (G) for the nodes and E(G) for
the links in the network, respectively. In practice, an optical link is unidirectional
and a WDM network is expressed by a directed graph. However, undirected graphs
are often used as an abstract model in theoretical and algorithmic studies for WDM
networks. Both directed and undirected graphs will be used in this chapter. We use
(u, v) for an edge from node u to node v in a directed graph and {u, v} for an edge
between u and v in an undirected graph. Readers may refer to works by other authors
[38,40,41] for more technical details on optical networks.

We assume that each optical link consists of a single optical fiber. The bandwidth
of an optical link is partitioned into a number of channels, each channel is supported
by a wavelength and usually has a bandwidth of a peak electronic data rate. The
bandwidth of a wavelength channel may be further shared by multiple traffic streams
of low data rates. In the study of WDM networks, a wavelength is often called a
color, and these two terms are used interchangeably in this chapter. A network node
provides the optical switching between optical links and the interface (opto-electronic
conversion) between optical networks and end users. Major devices in a network node
include demultiplexers (DEMUX), optical switches, optical add-drop multiplexers
(OADM), multiplexers (MUX), and add-drop multiplexers (ADM). Figure 18.1 gives
conceptual structures of network nodes. A DEMUX demultiplexes the wavelength
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FIGURE 18.1 Conceptual structures of WDM network nodes.
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channels from an input optical link. An optical switch connects a wavelength channel
from a DEMUX to a channel to a MUX using the circuit switching. When an optical
wavelength converter is not available, the two channels connected by the switch
must be supported by the same color. An OADM on a wavelength channel may drop
optical signals from the channel to an ADM, bypass the optical signals in the channel,
or/and add the optical signals from an ADM to the channel. A MUX multiplexes the
wavelength channels into an output optical link. An ADM may convert the optical
signals from an OADM into electronic ones (drop data from network) and convert
the electronic signals from end users into optical ones to an OADM (add data to
network). The DEMUX, OADM, optical switch, and MUX work at optical domain.
The ADM provides the interface between the optical network and end users. Since
optical wavelength converters are expensive and not commonly used, we introduce
algorithms for networks without such converters. In this case, a light path of all-optical
routing is supported by the same color.

In practice, the bandwidth requirement of a single traffic demand is usually much
smaller than the capacity provided by a wavelength channel. So multiple lowrate
traffics are multiplexed to share a high-rate wavelength channel. Synchronous Op-
tical Network (SONET) is the current transmission and multiplexing standard for
high speed digital transmission on optical fibers in North America. In SONET/WDM
networks, the multiplexing is known as traffic grooming and the maximum num-
ber of traffics that can be multiplexed into a wavelength channel is called grooming
factor. For example, 16 OC-3 (155.52 Mbps) traffics can be multiplexed into a wave-
length channel operated at OC-48 (2488.32 Mbps), giving a grooming factor of 16.
In SONET/WDM networks, traffic grooming is carried out by ADMs (known as
SONET ADMs or SADMs). With the current technology, SADMs dominate the cost
of WDM/SONET networks.

A communication application on a WDM network is specified by a set of traffic
demands. Each traffic demand is defined by three parameters: a source node, a desti-
nation node or a set of destination nodes, and a required bandwidth. In this chapter,
we focus our discussion on the traffic demands with a single destination node in
each demand. Such a demand is called a one-to-one or unicast demand. So a com-
munication application on a network G can be specified by a traffic demand matrix
D = {(s, t, dst)}, where s ∈ V (G) is the source node, t ∈ V (G) is the destination node,
and dst is the bandwidth required by the demand (usually the number of low-rate chan-
nels). A static or off-line routing problem is to connect the source–destination pairs of
D after all the traffic demands ofD are given. A dynamic or on-line routing problem is
that the traffic demands ofD arrive in sequence (s1, t1, ds1t1 ), ..., (si, ti, dsiti ), ..., and
the connection for si and ti is realized without information on the demands arriving
after (si, ti, dsiti ). In this chapter, we restrict our discussion on static routing problems.

The readers may refer to a graph theory book such as that by Berge [3] for basic
graph definitions and terminology. For undirected graph G, the degree δ(u) for u ∈
V (G) is the number of edges incident to u. For directed graph G, δ(u) is defined as
the number of edges originated at u (out degree of u). The maximum node degree of
graphG is�(G) = max{δ(u)|u ∈ V (G)}. We use a path for a simple path in G (i.e.,
repetition of nodes is not allowed). Two paths in G intersect if they have a common
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link. A set of paths in G is edge-disjoint if any two paths in the set do not intersect.
The distance d(u, v) from u to v is the minimum number of edges in a path from u
to v in G. The diameter of graph G is d(G) = max{d(u, v)|u, v ∈ V (G)}. A clique
of G is a complete subgraph of G. The number of nodes in the largest clique of G is
the clique number of G, denoted by ρ(G).

Let G be an undirected (multi)graph. The vertex coloring of G is to assign each
node of G a color such that any pair of adjacent nodes are given distinct colors.
The minimum number of colors for the vertex coloring of G is called the chromatic
number ofG, denoted by λ(G). It is known that ρ(G) ≤ λ(G) ≤ �(G)+ 1. The edge
coloring ofG is to assign each edge ofG a color such that any pair of edges incident
to the same node are given distinct colors. The minimum number of colors for the
edge coloring of G is called the chromatic index of G, denoted by μ(G). It is known
that �(G) ≤ μ(G) ≤ 3�(G)/2�. It is NP-hard to find λ(G) and μ(G) for arbitrary
graphs [23]. An edge coloring ofG using at most 3�(G)/2� colors [39] and a vertex
coloring using at most �(G)+ 1 colors can be found (in polynomial time).

For an NP-hard minimization problem, an algorithm is an α-approximation algo-
rithm if for any instance of the problem,α is an upper bound on the ratio of the solution
produced by the algorithm over the optimal solution. We also say the algorithm has
the guaranteed performance ratio α.

Popular topologies for WDM networks include rings, trees, and trees of rings
(see Fig. 18.2). We define the undirected ring network with n nodes as Cn with
V (Cn) = {u|0 ≤ u ≤ n− 1} andE(Cn) = {{u, v}|u = v± 1 mod n}. A directed ring

Cn is defined as the graph obtained by replacing every edge inCn by a pair of directed
edges, one in each direction. Given a pair of nodes u and v in a ring network, we define
the segment from node u to node v, denoted as [u, v], to be the subgraph induced by
the nodes from u to v in the clockwise direction in the ring. We define the undirected
tree network with n nodes as Tn which is a connected undirected graph with n− 1
edges. A directed tree 
Tn is defined as the graph obtained by replacing every edge
in Tn by a pair of directed edges, one in each direction. An undirected tree of rings,
denoted as TR, is defined as follows: A single ring is a tree of rings, and the graph
obtained by adding a node-disjoint ring to an existing tree of rings and then merging
one node of the ring and one node of the tree of rings into one node is also a tree of
rings. Similarly, we can define the directed tree of rings 
TR.
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18.3 LOGICAL TOPOLOGY DESIGN PROBLEM

Given a set D of traffic demands in a WDM network G, it is preferred to realize
all demands of D by all-optical routing. However, this may not be possible due
to some constraints such as limited wavelength channels. In this case, some traffic
demands may have to be realized by multihop routing. If data are routed via k
intermediate nodes, the routing is called (k + 1)-hop routing. The logical topology
design problem is to define a logical topology R over V (G) (or the set of nodes in
D) such that every pair of nodes of V (G) (or the set of nodes in D) is connected by
R. To realize R on G, each connection request (u, v) ∈ R is realized by a light path
in G (all-optical routing). This is also known as the embedding R to G. For a traffic
demand (s, t, dst) ∈ D, if s and t are connected by a logical path of length k in R
then the routing from s to t is realized by k-hops of routing. A primary goal in the
logical topology design is to provide the connectivity required by the nodes of G (or
D) using a minimum number of colors. Since add/drop operations at intermediate
nodes are the major bottleneck for data transmission, another key issue in the design
is to provide the connectivity using a minimum number of hops. This is equivalent
to define a topology R with small diameter. The logical topology design problem is
difficult for arbitrary network G and arbitrary set D of traffic demands. The design
problem may depend on the RWA problem and the traffic grooming problem. In
most cases, the problem is modeled as an integer linear programming problem with
specified optimization goals. Readers may refer to other works [16,41] for more
details.

18.3.1 Full Connectivity on Rings

An important problem in WDM networks is to support the full connectivity (or all-
to-all connection) of a network G. To do so for every pair of nodes s, t ∈ V (G), we
need to find a light path or a sequence of light paths to connect s and t such that the
light paths of the same color are edge-disjoint. The full connectivity on rings have
been well studied and the following results are known.

Theorem 1 (Bermond et al. [4], Ellinas and Bala [17]) The necessary and sufficient
number of colors for realizing the full connectivity on 
Cn by all optical routing is
(n2 − 1)/8 for n odd, (n2 + 4)/8 for n/2 odd, and n2/8 for n/2 even.

Outline of Proof. The algorithm in Figure 18.3 is given in the work by Ellinas and
Bala [17] (also see work by Stern and Bala [41]) for realizing the full connectivity on

Cn for n odd. For k = 3, the algorithm uses (k2 − 1)/8 = 1 color to realize the full
connectivity on 
Ck. Assume that the algorithm uses (k2 − 1)/8 colors for k ≥ 3. For
k + 2, there are four sets of new paths:P1 = {u→ i|0 ≤ i ≤ (k − 1)/2},P2 = {u→
v, u→ i|(k + 1)/2 ≤ i ≤ k − 1}, P3 = {v→ i|0 ≤ i ≤ (k − 1)/2}, and P4 = {v→
u, v→ i|(k + 1)/2 ≤ i ≤ k − 1} (see Fig. 18.4a). Obviously every set has (k+1)/2
paths and for any path p ∈ Pi and q ∈ Pj with i �= j, p and q are edge-disjoint. So the
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Procedure Full-Connectivity on Ring(
Cn)
Input: A directed ring network 
Cn.
Output: A set of light paths realizing the full-

connectivity on 
Cn by all-optical routing.
begin

k := 3.
For every pair of nodes u,v ∈ V(
Ck), connect (u,v) and

(v,u) by the shortest paths and assign each path the
same color.

while (k ≤ n) {
Insert node u between k − 1 and 0, and

insert node v between (k − 1)/2 and (k + 1)/2 in 
Ck.
Connect u to every i ∈ V(
Ck) ∪ {v} by the shortest path.
Connect v to every i ∈ V(
Ck) ∪ {u} by the shortest path.
Assign the paths above new colors not used for the

full-connectivity of 
Ck s.t. the paths with the
same color are edge-disjoint.

k := k+ 2 and relabeling the nodes of 
Ck from 0 to k − 1.
}

end.

FIGURE 18.3 Algorithm for the full connectivity on 
Cn for n odd.

paths of P1, P2, P3, and P4 can be colored by (k + 1)/2 colors. The total number of
colors required for 
Ck+2 is (k2 − 1)/8+ (k + 1)/2 = ((k + 2)2 − 1)/8. This shows
that the full connectivity on 
Cn can be realized by (n2 − 1)/8 colors for n odd. The
proof for other values of n are similar and readers may refer to Bermond et al. [4] and
Ellinas and Bala [17] for details. �

The full connectivity on 
Cn by all-optical routing requires about n2/8 colors which
could be beyond the number of available colors for even moderate value of n. There is
a simple logical topology to realize the full connectivity of 
Cn by �(n− 1)/2� colors
in two-hops routing [36]: Select a hub node u in 
Cn and defineR = {(v, u), (u, v)|v ∈
V (
Cn), v �= u}. It is known that the full connectivity on 
Cn requires about n/3 colors
by two-hops of routing [13].

Theorem 2 (Choplin et al. [13]) The number of colors for realizing the full
connectivity on 
Cn by two-hops of routing is at least (n− 1)/3� and at most
(n+ 1)/3�.

Outline of Proof. The upper bound of the theorem can be shown by designing
a logical topology of diameter 2 as follows (see Fig. 18.4b): Three hub nodes
u, v, and w are selected such that the three nodes cut the ring into three segments
[u, v− 1], [v,w− 1], and [w, u− 1], with each segment having at most (n+ 1)/3�
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FIGURE 18.4 Full connectivity on ring networks.

nodes, where the arithmetic operations on the nodes are modulo n. For every node
x in segment [u, v− 1], there are logical links (x, u), (u, x), (x, v), and (v, x). For
every node x in segment [v,w− 1], there are logical links (x, v), (v, x), (x,w),
and (w, x). For every node x in the segment [w, u− 1], there are logical links
(x,w), (w, x), (x, u), and (u, x). It is easy to see that every pair of nodes of 
Cn is
connected by a logical path of length at most two and at most (n+ 1)/3� colors are
needed to realize this logical topology. Due to the limited space, we omit the proof
for the lower bound of the theorem and readers may refer to the work by Choplin et
al. [13] for details. �

It is conjectured in the work by Choplin et al. [13] that (n+ 1)/3� is the necessary
number of colors as well.

To realize the full connectivity of 
Cn by the logical topology given in the proof of
Theorem 2, the working load of the hub nodes u, v, and w may be much higher than
that of other nodes. It is desirable that every node in the network has the same working
load. To do so, we need to design a logical topology R with the same node degree for
every node inR. The following result has been known on the regular logical topology
for the full connectivity on 
Cn [27].

Theorem 3 (Gu and Peng [27]) The full connectivity on 
Cn can be real-
ized by ckn1+1/k colors, where ck ≈ 1/22+1/k, using a regular logical topology of
diameter k.

Outline of Proof. For k = 2, 
Cn is partitioned into n/l segments, each of which has
l = (n/2)1/2 nodes. For each segment j (1 ≤ j ≤ n/l), the nodes in the segment are
labeled from j1 to jl. For every pair of node ji in segment j and node j′i in segment j′
(1 ≤ j �= j′ ≤ n/l, 1 ≤ i ≤ l) there are logical links (ji, j′i) and (j′i, ji), and for every
pair of nodes ji and ji′ (i �= i′) in the same segment j there are logical links (ji, ji′ )
and (ji′ , ji) (see Fig. 18.4c). Obviously, the logical topology, given above realizes the
full connectivity on 
Cn and has diameter 2. It is easy to check that the logical topology
can be realized by c2n

1+1/2 colors, where c2 ≈ 1/22+1/2. Readers may refer to the
work by Gu and Peng [27] for the full proof. �
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18.4 RWA PROBLEM

The RWA problem is that given a set R of connection requests on a networkG, find a
routing path inG for every (u, v) ∈ R and assign each path a color such that the paths
with the same color are edge-disjoint. A general goal in this study is to determine
the number of colors needed to achieve a given connectivity as a function of network
size.

18.4.1 Lower Bounds on the Number of Colors

We first give some lower bounds on the number of colors for realizing a given setR of
connection requests on a networkG. A lower bound on the number of colors needed
for realizingR onG can be derived from the distance d(u, v) for every (u, v) ∈ R and
the number of links inG. This lower bound is called the aggregate network capacity
bound [41], denoted by

WNetcap ≥
∑

(u,v)∈R

d(u, v)

|E(G)| .

Another lower bound is known as limiting cut bound [41]. This lower bound on the
number of colors is based the maximum flow and minimum cut theorem. Partition the
nodes ofV (G) into two subsetsX and Y . LetEX,Y be the set of all links (u, v) ∈ E(G)
with u ∈ X and v ∈ Y (EX,Y is called a cut set). Let RX,Y = {(u, v)|(u, v) ∈ R, u ∈
X, v ∈ Y}. Then the number of colors for realizingRX,Y onG is at least |RX,Y |/|EX,Y |.
Taking the maximum over all cuts in G,

Wlimcut =
⌈

max
EX,Y

.
|RX,Y |
|EX,Y |

⌉
.

Those lower bounds can be used to evaluate the performance of routing algorithms
on WDM networks. For the bidirectional ring 
Cn and R = {(u, v)|u, v ∈ V (
Cn), u �=
v} (full connectivity):Wlimcut ≥ (n2 − 1)/8 for n odd andWlimcut ≥ n2/8 for n even.
The lower bounds show that the upper bounds in Theorem 1 are optimal.

18.4.2 Wavelength Assignment and Vertex Coloring

In the RWA problem, when the set of paths is given, we only need to assign the set of
paths colors to meet the distinct color assignment constraint. The color assignment
is known as the wavelength assignment (WA) problem. Given a setW = {λ1, λ2, ...}
of colors and a set P of paths, a color assignment from W to P is called a valid
coloring if each path in P is assigned a single color of W and the paths with the
same color are edge-disjoint. Finding a valid coloring for P is also called coloring
P . Given a set P of paths in G, let L be the maximum number of paths of P on any
link of G, wopt be the minimum number of colors for coloring P , and wup denote
an upper bound on the number of colors for coloring P . Then L ≤ wopt ≤ wup. L is
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also known as link load. The WA problem for a set P of paths in a network has a
close relation with the vertex coloring problem of the path conflict graph GP (V,E)
defined as follows: V (GP ) = {pi|pi ∈ P} and {pi, pj} ∈ E(GP ) if and only if paths
pi and pj share a common link of the network. Obviously, a vertex coloring of GP
gives a valid coloring for the set P of paths and wopt = λ(GP ). From this, we have
ρ(GP ) ≤ λ(GP ) = wopt ≤ �(GP )+ 1.

A well used strategy for the WA problem is the first-fit coloring: Given a set
W = {λ1, λ2, ...} of colors and a set P of paths, the paths in P are colored one by
one in arbitrary order, and a path p ∈ P is assigned a color λi with the smallest index
i such that no path of P\{p} already colored by λi intersects with p. We say a set
of elements is assigned distinct colors if any two different elements in the set are
assigned different colors. We say a path is on a link (resp. a node) if the path contains
the link (resp. the node). We say a path is on a graph (e.g., a ring) if the path contains
a link of the graph. We denote WP as the set of colors assigned to a set P of paths,
and denote Wuv as the set of colors assigned to the paths on a link (u, v) (or {u, v})
of G.

18.4.3 RWA Problem on Rings

The ring topology is popular for optical networks due to its simple structure and
symmetric property. The RWA and WA problems on ring networks have been
extensively studied. In Section 18.3, the number of colors for supporting the full
connectivity on 
Cn is given. We now introduce well-known algorithms for the WA
and RWA problems for arbitrary connection requests on ring networks. We first
discuss the WA problem.

18.4.3.1 WA Problem Given a setP of directed paths on 
Cn,P can be partitioned
into two subsets, one is the subset of clockwise paths and the other is the subset of
counter-clockwise paths. A clockwise path only uses links of 
Cn in the clockwise
direction and does not share a link with any counter-clockwise path. So the WA
problem on 
Cn can be solved for each subset independently. The WA problem on 
Cn
for each subset can be studied as the WA problem on the undirected ring Cn.

Given a set P of paths on Cn, the conflict graph GP is a circular arc graph [42].
It is known that for circular arc graphGP the clique number ρ(GP ) can be computed
in polynomial time [24] but finding the chromatic number λ(GP ) is NP-hard [22].
Algorithms that use at most 2L− 1 and 3ρ(GP )/2� colors are known [31,42]. To
describe those algorithms, we first introduce some new notation. A path p on Cn is
identified by the segment [p/,p0], where p/ and p0 are end nodes of p. Given a
node u, a ≤ b (resp. a ≥ b) if a ∈ [u, b] (resp. a ∈ [b, u]).

Theorem 4 (Tucker [42]) The WA problem for a set P of paths on Cn with link
load L can be solved by at most 2L− 1 colors.
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Outline of Proof. Let p ∈ P be an arbitrary path. Then there are at most L− 1 paths
of P other than p that are on link {p/, p/ + 1} of Cn. We color these L− 1 paths by
L− 1 colors by the first-fit coloring. For the other paths of P , none of them contains
node p/ as an internal node. So the other paths of P can be viewed as a set of paths
on a segment obtained by cutting Cn at node p/. The link load of the paths on the
segment is at most L. The WA problem on a segment with link load L can be solved
by L colors. �

The algorithm of Tucker [42] is a 2-approximation algorithm. The following ex-
ample [42] shows that the upper bound of 2L− 1 given in Theorem 4 is tight. Let n
be an odd integer and P = {pi|0 ≤ i ≤ n− 1}, where pi is the path with p/i = i and
p0i = (n+ 2i+ 1)/2 (arithmetic operations are modulo n). It is easy to check that
the load of P on Cn is L = (n+ 1)/2 and |P | = 2L− 1. The conflict graph GP is
complete and the WA problem for P requires at least 2L− 1 colors. It is conjectured
in the work by Tucker [42] that the WA problem on Cn can be solved by at most
3ρ(GP )/2� colors and this conjecture is proved in the work by Karapetian [31].

Theorem 5 (Karapetian [31]) The WA problem for a set P of paths on Cn can be
solved by at most 3ρ(GP )/2� colors.

We introduce the algorithm of Karapetian but omit the proof details due to the lim-
ited space. Readers may refer to the work by Karapetian [31] for details. The key
components of the algorithm are the clockwise sweep and counter-clockwise sweep.
In each run of the clockwise sweep, a set of paths that can share a same color is
found. To do so, a path p is first included into a set A. Then another path that can
share a color with the paths in A is searched in the clockwise direction. If there are
multiple candidates then the path q with the smallest end node q/ is included into
A. The process is repeated until no path can be included in A. Similarly, in each run
of the counter-clockwise sweep, a set of paths that can share a same color is found.
To do so, a path p is first included into a set B. Then another path that can share a
color with the paths in B is searched in the counter-clockwise direction. If there are
multiple candidates then the path q with the largest end node q0 is included into B.
The process is repeated until no path can be included in B. The algorithm calls the
clockwise sweep at most ρ(GP )/2 times and calls the counter-clockwise sweep at
most ρ(GP ) times. The algorithm of Karapetian [31] is given in Figure 18.5.

The algorithm of Karapetian [31] is a 1.5-approximation algorithm. The upper
bound 3ρ(GP )/2� is tight in the sense that there are instances of the WA problem
on Cn that require at least 3ρ(GP )/2� colors. An example of such instances can
be constructed as follows: Let n = 5k (k ≥ 1) and P = P0 ∪ P1 ∪ P2 ∪ P3 ∪ P4,
where Pi (0 ≤ i ≤ 4) is a set of L paths between node i× k and node (i+ 1)× k + 1
(arithmetic operations are modulo n). Then the clique number ρ(GP ) is 2L and any
valid coloring for P requires at least 3L colors.

18.4.3.2 RWA Problem For the RWA problem on the ring network, a well-used
approach for paths selection is the edge avoidance routing in which every routing path
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Procedure WA on Ring(Cn,P)
Input: A set P of paths in Cn.
Output: A valid coloring from W = {λ1, λ2, ...} to P.
begin

Compute ρ(GP) and add dummy paths to P to make L = ρ(GP).
Label paths of P s.t. P = {p1, ..., pL, ...},

p1, ..., pL contain node u, and p0i ≤ p0j for i < j.
R = P \ {p1, ..., pL}.
for i = 1, ..., L/2� {

Find pi ∈ R s.t. p/i is minimum.
Ai =Clockwise-sweep (R,pi) is colored by color λL+i.
R = R \ Ai.

}
R = R ∪ {p1, ..., pL}.
for i = L, ..., 1 {

Bi =Counter-clockwise-sweep(R, pi) is colored by color
λi R = R \ Bi.

}
end.
Subroutine Clockwise-sweep (R,p)
Input: A set R of paths and a path p in Cn.
Output: A set of paths which can be colored by one color.
begin

A = {p} and Q = {q ∈ P, q ∩ p = ∅}.
while (Q �= ∅) {

Find a q̂ ∈ Q s.t. q̂/ is minimum;
A = A ∪ {q̂};
Q = Q \ {q ∈ Q, q ∩ q̂ �= ∅}

}
end.
Subroutine Counter-clockwise-sweep (R,p)
Input: A set R of paths and a path p in Cn.
Output: A set of paths which can be colored by one color.
begin

B = {p} and Q = {q ∈ P, q ∩ p = ∅};
while (Q �= ∅) {

Find a q̂ ∈ Q s.t. q̂0 is maximum;
B = B ∪ {q̂};
Q = Q \ {q ∈ Q, q ∩ q̂ �= ∅};

}
end.

FIGURE 18.5 3ρ(GP )/2� algorithm for the WA problem on Cn.
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is selected in such a way that a prespecified ring edge is avoided [10]. The approach
can be further generalized as the weight-based routing in which each ring edge is
assigned a weight and the routing paths are selected subject to the constraint on the
weights of the ring edges in the path [10]. For example, if we assign the prespecified
edge weight 1 and all the other edges weight 0, and the routing paths are selected
such that the weight of the ring edges in the path is 0, then it is the edge avoidance
routing. After the routing paths are selected, the WA problem for the selected paths
is solved by the algorithms described above. It is NP-hard to find wopt for the RWA
problem on ring networks [19]. The RWA problem can be solved by at most 2wopt

colors for both Cn [37] and 
Cn [29]. For the RWA problem on Cn, both randomized
and deterministic algorithms with wup < 2wopt have been developed [12,34].

18.4.4 RWA Problem on Trees

For any pair (u, v) of nodes in a tree network, there is a unique path from u to v in the
tree. So the RWA problem in a tree network becomes the WA problem. It is NP-hard
to find the wopt for the WA problem on both undirected tree Tn [37] and directed tree

Tn [20]. Given a setP of paths on Tn with loadL, an algorithm solves the WA problem
using at most 3L/2� colors is known [37]. The idea of the algorithm is to reduce the
WA problem into the edge-coloring problem of a multigraph. For an internal node u
of Tn and the set of paths on u, a multigraph Gu can be constructed as follows: For
every edge ei incident to node u there is a corresponding vertex ei in Gu. Since each
path on u can be on at most two edges incident to u, for every path p on u a unique
edge in Gu can be defined. To eliminate the self loops, an additional vertex fi is
introduced for every ei. More precisely, V (Gu) = {ei, fi|ei is an edge incident to u}
and

E(Gu) = {(ei, ej, p)|path p is on edges ei and ej}
∪ {(ei, fi, p)|path p is on edge ei only},

where (x, y, p) is an edge between x and y with label p. Obviously, an edge coloring
ofGu gives a valid coloring for the paths containing node u. Notice that�(Gu) ≤ L.
To solve the WA problem on Tn, Tn is viewed as a rooted tree and the internal nodes
of Tn can be processed in a breadth first search (BFS) order, starting from the root. In
processing a node u, the paths on u are colored by the edge coloring ofGu. Since the
edge coloring of Gu can be solved by at most 3�(Gu)/2� colors [39], �(Gu) ≤ L
for P with load L, the WA problem on Tn can be solved by 3L/2� colors.

Theorem 6 (Raghavan and Upfal [37]) The WA problem on Tn can be solved using
at most 3L/2� colors.

The algorithm in the work of Ragavan and Upfal [37] is a 1.5-approximation
algorithm for the WA problem on Tn. The upper bound 3L/2� is tight in the sense
that there are instances requiring at least 3L/2� colors [37]. Here is an example
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FIGURE 18.6 Instances for lower bounds for WA problem on trees.

of such instances. Let T be the tree with three edges {u, u1}, {u, u2}, {u, u3} and
P = A ∪ B ∪ C, where A is a set of L/2 (L is even) paths on edges {u, u1} and
{u, u2}, B is a set of L/2 paths on edges {u, u2} and {u, u3}, and C is a set of L/2
paths on edges {u, u3} and {u, u1} (see Fig. 18.6a). Then the load of P on T is L and
the conflict graph of P is a complete graph of 3L/2 nodes. At least 3L/2 colors are
needed to color P .

For the WA problem on directed trees 
Tn, there are a number of algorithms that
follow a general approach described in Figure 18.7 [8,9,29,30,33]. In the coloring
procedure, a path is called colored if it has been assigned a color, otherwise uncol-
ored. Processing a node u means coloring the uncolored paths on u. The nodes of 
Tn
is processed in the BFS order. A number of techniques have been developed for pro-
cessing a node in the above approach, giving a number of algorithms. One technique
is to reduce the coloring of paths containing node u to an edge-coloring problem on
a bipartite graph Gu(U,V,E) [8,29,30,33]. 
Tn is viewed as a rooted tree and for a
node u in 
Tn, assume that v0 is the parent and v1, ..., vk are children of u. The graph
Gu is constructed as follows: For each node vi, there are four vertices ai, bi, ci, di
andU = {ai, di|0 ≤ i ≤ k} and V = {bi, ci|0 ≤ i ≤ k}. For a path on links (vi, u) and
(u, vj), there is an edge {ai, bj} ∈ E(Gu). For a path on link (vi, u) and u is the end
node of the path, there is an edge {ai, ci} ∈ E(Gu). For each path on link (u, vi) and
u is the start node of the path, there is an edge {di, bi} ∈ E(Gu). It is shown that an
edge coloring of Gu(U,V,E) gives a valid coloring of paths on u [8,29,30,33].

Procedure WA Tree(
Tn,P)
Input: A set P of paths in 
Tn.
Output: A valid coloring from W = {λ1, λ2, ...} to P.
begin
1. Fix a BFS (Breadth-first search) order, starting from

a node (say u0), on the nodes of 
Tn.
2. Process the starting node u0.
3. Process the other nodes u in the BFS order.
end.

FIGURE 18.7 A framework of algorithms for the WA problem on directed trees.
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Theorem 7 (Kaklamanis et al. [30]) The WA problem on 
Tn can be solved using
at most 5L/3 colors.

The algorithm in work of Kaklamanis et al. [30] is a (5/3)-approximation algorithm
for the WA problem on 
Tn. For the WA problem on 
Tn, there are instances requiring
at least 5L/4 colors [33]. An example of such instances is shown in Figure 18.6 b. In
the figure, each set has L/2 paths. The load on T is L and there are 5L/2 paths. It is
easy to check that at most two paths can be given the same color. From this, at least
(5L/2)/2 = 5L/4 colors are needed.

18.4.5 RWA on Tree of Rings

A tree of rings is another important topology for WDM networks. We first discuss the
WA problem on trees of rings. Similar to the WA problem on rings, the WA problem
on directed trees of rings can be studied as the WA problem on undirected trees of
rings. In a tree of rings TR, any two rings have at most one node in common, and for
any pair of nodes u and v in TR there are exactly two edge-disjoint paths between
u and v. TR remains connected even if an arbitrary link fails in each ring, and thus
provides a better fault tolerance than a tree network. Many research efforts have been
devoted to the study of the WA problem on TR [6,14,18]. An important property for
the paths on TR is that for any node u ∈ V (TR), a path on u can be on at most two
rings that contain u. For a node u in a ring of TR, we denote u− as the neighbor of
u in the counter-clockwise direction and u+ as the neighbor of u in the clockwise
direction in the ring (see Fig. 18.8a). Given a set P of paths on TR of arbitrary node
degree with link loadL, it is known that the WA problem can be solved by at most 3L
colors [6]. The upper bound is tight in the sense that there are instances of the problem
that require at least 3L colors. For the WA problem on TR of degree at most 6 (each
node can appear in at most three rings), an algorithm that uses at most 2wopt colors
is known [6]. Both algorithms follow a same framework as shown in Figure 18.9.

At any stage of the coloring procedure, a path is called colored if it has been
assigned a color, otherwise uncolored. Processing a node u means coloring the

FIGURE 18.8 Illustration of some terms defined on a tree of rings TR.
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Procedure Framework(TR,P)
Input: A set P of paths in TR.
Output: A valid coloring from W = {λ1, λ2, ...} to P.
begin
1. Fix a DFS (depth-first search) order, starting from

a node (say u0) of degree two, on the nodes of TR.
2. Process the starting node u0.
3. Process the other nodes u in the DFS order.

Let r0 be the ring which contains u and the parent of u.
3.1 Color the set P0 of uncolored paths on u and r0.
3.2 Color the set P1 of other uncolored paths on u.

end.

FIGURE 18.9 A framework of algorithms for the WA problem on trees of rings.

uncolored paths on u. We call a node u processed if the coloring process for u
has been completed, otherwise unprocessed. The nodes of TR is processed in the
depth-first search (DFS) order introduced in the work by Erlebach [18]. For a node
u, its parent is the node from which u is reached in the DFS order (see Fig. 18.8b).
A link is called special if it connects a processed node and an unprocessed node
(see Fig. 18.8b). There are either 0 or 2 special links in a ring in TR. A path on a
special link is colored and only such a path has a possibility to intersect with an
uncolored path. We assume that in Step 1, the nodes in the same ring are searched in
the clockwise direction in the DFS order.

18.4.5.1 WA Problem on TR of Arbitrary Degree Algorithm A1 for the WA
problem on TR of arbitrary degree follows the framework of Figure 18.9. In Step 2,
the paths on links {u0, u0

−} and {u0, u
+
0 } are assigned distinct colors of W . In Step

3, the parent of node u in the DFS order is node u− in some ring that is called r0. If u
appears in k + 1 rings, the other k rings are denoted by ri, 1 ≤ i ≤ k (see Fig. 18.8b).
Let Q0 be the set of paths on special links {u, u−} or {w,w−}. In Step 3.1, P0 is
colored using the colors ofW \WQ0 by the first-fit coloring. It is easy to see that the
paths ofQ0 ∪ P0 are given distinct colors in Step 3.1. This is critical for Step 3.2.

In Step 3.2, the path-coloring problem is converted to the edge-coloring problem
of a multigraph Gu with rings ri (0 ≤ i ≤ k) as vertices and all paths on u as edges.
Notice that a path on u is on either one ring or two rings of ri. A path on u is called
a long path if it is on two rings, otherwise a short path (see Fig. 18.8b). To eliminate
self-loops, we introduce a vertex si for every ri inGu. More specifically,Gu is defined
as: V (Gu) = {ri, si|0 ≤ i ≤ k}, and

E(Gu) = {(ri, rj, p)|p is a long path on ri and rj, 0 ≤ i < j ≤ k}
∪ {(ri, si, p)|p is a short path on u and ri, 0 ≤ i ≤ k},
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FIGURE 18.10 An instance for the 3L lower bound.

where (x, y, p) denotes an undirected edge between vertices x and y with label p.
There is a one-to-one correspondence between the paths on u and the edges inGu. We
color the paths of P1 by solving the edge coloring of Gu. To apply the edge coloring
of Gu in Step 3.2 as shown above, it is required that Q0 ∪ P0 is assigned distinct
colors.

Theorem 8 (Bian et al. [6]) Algorithm A1 solves the WA problem on TR by at most
3L colors.

Algorithm A1 is a 3-approximation algorithm for the WA problem on TR of arbi-
trary degree. The 3L upper bound is tight. Below is an example that requires at least
3L colors [6]. Let P = A ∪ B ∪ C ∪D ∪ E ∪ F be the set of paths, with each subset
having L/2 (L is even) paths, as shown in Figure 18.10. The maximum number of
paths on any link in the tree of rings is L. The conflict graphGP is a complete graph
of 3L nodes and thus any coloring of P requires at least 3L colors.

18.4.5.2 WA Problem on TR of Degree 6 Algorithm A2 for the WA problem
on TR of degree at most 6 follows the framework of Figure 18.9 too. In Algorithm
A1, to apply the edge coloring of Gu in Step 3.2, it is required that Q0 ∪ P0 has
been assigned distinct colors. This requirement may be too strict for solving the WA
problem on TR since two paths in Q0 ∪ P0 can have the same color if they are edge
disjoint. In Algorithm A2, instead of using edge-coloring approach for Step 3.2, a
different path-coloring scheme that is designed specifically for TR of degree 6 is
used. Recall that P0 and P1 are the sets of paths to be colored in Step 3.1 and Step
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FIGURE 18.11 The sets of paths related to Schemes S31 and S32.

3.2 of the framework in Figure 18.9, respectively. We first introduce a scheme for
coloring P0 and a scheme for coloring a subset of P1. The scheme for P0, called
S31, works as follows. Let A and B be the sets of paths on special links {u, u−} and
{w,w−}, respectively. Then Q0 = A ∪ B. Define A0 ⊆ A (resp. B0 ⊆ B) to be the
set of paths on link {u, u−} (resp. on {w,w−}), each of which has a color inWA \WB
(see Fig. 18.11a). We construct a graph G0 with

V (G0) = P0 ∪ A0 and E(G0) = {{p, q} | p and q are edge disjoint}.

We find a maximum matching M0 of G0. Notice that G0 is bipartite and for each
pair {p, q} ∈ M0, p ∈ P0, and q ∈ A0. For each pair {p, q} ∈ M0, assign the color of
q ∈ A0 to p.

The second scheme, called S32, is used to color the subset P12 of P1 that contains
the long paths on rings r1 and r2 (see Fig. 18.11b). Let A and B be the sets of long
paths on links {u, u−} and {u, u+}, respectively. Then Q1 = A ∪ B. Define A0 ⊆ A
(resp. B0 ⊆ B) to be the set of paths on link {u, u−} (resp. on {u, u+}), each of which
has a color inWA \WB (see Fig. 18.11b). We construct a graph G0 with

V (G1) = P12 ∪ A1 and E(G1) = {{p, q} | p and q are edge disjoint}.

We find a maximum matching M1 of G1. For each pair {p, q} ∈ M1, either p ∈ P12
and q ∈ A1 or p, q ∈ P12. For each pair {p, q} with q ∈ A1, assign the color of q to
p. For each pair {p, q} with p, q ∈ P12, assign the pair a same color.

Algorithm A2 follows the framework in Figure 18.9. Step 2 of A2 is the same as
that in Algorithm A1. Step 3.1 uses Scheme S31. In Step 3.2, we first use Scheme
S32 to color the long paths in P12. Then we color the short paths on r1 and those on
r2. LetQ′ be the set of all long paths on u and r1. We assign the short paths on r1 the
colors ofW \WQ′ by the first-fit coloring such that the set of short paths is assigned
distinct colors. Let Q′′ be the set of all long paths on u and r2. We assign the short
paths on r2 the colors of W \WQ′′ by the first-fit coloring such that the set of short
paths is assigned distinct colors.
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Theorem 9 (Bian et al. [6]) Algorithm A2 solves the WA problem on TR with n
nodes and degree at most 6 using at most 2wopt colors.

Algorithm A2 is a 2-approximation algorithm for the WA problem on TR of degree
at most 6.

18.4.5.3 RWA Problem The RWA problem on trees of rings is NP-hard [21].
The edge avoidance routing approach has been used to solve this problem [29,37].
In this approach, one link (or a pair of links) is removed from each ring to get a tree
network and the solution of the WA problem on the tree is used as the solution of the
RWA problem on the tree of rings. By this approach and the upper bound of 3L/2
colors for the WA problem on Tn, a 3-approximation algorithm is known for the RWA
problem on TR [37]. For the RWA problem on 
TR, by the upper bound of 5L/3 colors
on 
Tn [30] and the edge avoidance routing, a (10/3)-approximation algorithm can be
obtained.

Algorithm A1 for the WA problem on TR can be used to obtain a 3-approximation
algorithm for the RWA problem on TR as follows. First, for a given set of con-
nection requests, a path for each request can be found efficiently such that L is
minimized [18]. Then, the set of found paths is colored by Algorithm A1 using at
most 3L colors. Since the load L is optimal, it is also a lower bound on the num-
ber of colors for the original RWA problem. In this way, the 3-approximation ratio
is achieved without using the edge avoidance routing approach. Algorithm A1 can
also be used for the RWA problem on 
TR but only guarantees an approximation ratio
of 6.

18.5 TRAFFIC GROOMING PROBLEM

Traffic grooming is to multiplex/demultiplex low-rate traffic demands by SADMs
to share a wavelength channel in SONET/WDM networks. A general goal in the
traffic grooming problem is to realize a connectivity as a function of the network size
and the functionality of network nodes. Major optimization goals are to minimize
the number of SADMs and the number of colors (wavelength channels). It is
known that the two optimization goals cannot be achieved simultaneously for many
cases [5,25,35]. It has received much attention to minimize SADMs subject to using
the minimum number of colors [5,28,35,45].

18.5.1 Traffic Grooming for Unidirectional Path-Switched Ring

A main network architecture for SONET/WDM networks is the Unidirectional Path-
Switched Ring (UPSR) in which there are two optical fibers between each pair of
adjacent nodes. These fibers constitute two unidirectional rings with one in the clock-
wise direction and the other in the counter-clockwise direction, where one ring (e.g.,
the clockwise ring) is used as the working ring and the other as the protecting ring.



528 ROUTING ALGORITHMS ON WDM OPTICAL NETWORKS

A network traffic demand from node u to node v is routed on the unique path from u
to v in the working ring.

A set of traffic demands is unitary if each demand requires one unit of band-
width. A unitary demand from node u to node v is denoted by pair (u, v). We as-
sume that every traffic demand is realized by one-hop of optical routing and use
R to denote the set of traffic demands. A set R of traffic demands is symmetric if
(u, v) ∈ R implies (u, v) ∈ R. Symmetric traffic demands are very common in many
applications, for example, TCP connections and IP telephony. We use {u, v} to de-
note the unitary symmetric pair (u, v) and (v, u), and we say nodes u and v are
involved in {u, v}. Given a set R of unitary symmetric traffic demands, the traffic
grooming problem can be solved by partitioning R into subsets, each of which has
at most k demand pairs, and multiplexing each subset into one wavelength chan-
nel. For each node involved in at least one symmetric pair of a subset carried by
a color λ, we need one SADM for λ at the node, and minimizing the total num-
ber of used SADMs is equivalent to minimizing the sum of the number of distinct
nodes involved in each subset. The traffic grooming problem for unitary symmetric
traffic demands has been widely discussed [35,45]. For algorithms with guaranteed
performance, a graph partition approach has been used [5,7,26]. In this approach, a
simple undirected graph G(V,E), called traffic graph, is constructed based on the
set R, where node set V (G) denotes the set of nodes in the UPSR and there is an
edge {u, v} ∈ E(G) between nodes u and v if and only if there is a unitary symmetric
pair {u, v} ∈ R. The traffic grooming problem is then formulated as the following
k-edge-partitioning problem on G: Given a positive integer k, partition the edge set
E(G) into a collection of subsets E = {E1, E2, . . . , Ewup} with

⋃wup
i=1Ei = E(G) and

Ei ∩ Ej = ∅ for i �= j, such that |Ei| ≤ k for each Ei ∈ E and
∑
Ei∈E |Vi| is mini-

mized, where Vi is the set of nodes in the subgraph induced by edge set Ei ∈ E . It
is observed that integer k corresponds to the grooming factor, wup corresponds to
the number of used colors and

∑
Ei∈E |Vi| corresponds to the total number of used

SADMs.
A trivial lower bound on the number of used colors is �|E(G)|/k� (i.e.,

wup ≥ �|E(G)|/k�). A lower bound on the number of used SADMs has been
shown [5,26].

∑
Ei∈E |Vi| ≥ |E(G)|/gmax(k), where gmax(k) = max{|Ei|/|Vi|||Ei| ≤

k}. The value of |Ei|/|Vi| reaches the maximum when Ei forms a complete graph.
For a complete graph of k edges, there are (

√
8k + 1+ 1)/2 nodes and |Ei|/|Vi| =

2k/(
√

8k + 1+ 1).
It is NP-hard to find the minimum number of SADMs for arbitrary graph G

[26]. The minimum number of SADMs and the minimum number of colors can-
not be obtained simultaneously even for complete graph [5]. A number of heuristics
have been known for partitioning E(G) into subgraphs to minimize the number of
SADMs. Those approaches including spanning tree based partitioning, Euler path
based partitioning, skeleton based partitioning, and design theory based partitioning
[5,7,26,43,44].

The spanning tree based partitioning algorithm [26] works as follows: First, a
spanning tree T of the traffic graph G is found. Next, for every edge {u, v} not
included in T , a new node uv and an edge {u, uv} are created to form a new tree TG
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Procedure GraphPartition SpanningTree(G,k)
Input: An undirected graph G and grooming factor k.
Output: A partition E1, ..., Ewup of E(G) s.t. |Ei| ≤ k.
begin

Find a spanning tree T of G.
For each {u, v} ∈ E(G) \ E(T), add node uv and edge {u, uv} to

T to get a tree TG containing all edges of G.
Partition TG into subtrees T1, ..., Twup with �k/2� ≤ |E(Ti)| ≤ k.

end.

FIGURE 18.12 Spanning tree based graph partitioning algorithm.

that contains all edges of G (viewing edge {u, uv} as edge {u, v}). Finally, tree TG is
partitioned into subtrees, each of which has at most k edges. The algorithm is shown in
Figure 18.12. As shown in the work by Goldschmidt et al. [26], the number of edges
in each subtree obtained from the partition is between �k/2� and k. This implies
that E(G) is partitioned into at most �2|E(G)|/k� subsets. Since each subtree is a
connected graph, the subtree has at most (k + 1) nodes. Thus, we have the following
result.

Theorem 10 (Goldschmidt et al. [26]) The traffic grooming problem on an arbitrary
traffic graph G can be solved using at most �2|E(G)|/k� colors and at most �(1+
2/k)|E(G)|� SADMs.

The number of colors used in the algorithm can be as twice as the minimum in the
worst case (each subtree has k/2 edges).

The Euler path based partitioning algorithm [7] is given in Figure 18.13. In the
algorithm, dummy edges are added to the traffic graph G to make every node of G
having even degree and then an Euler path ofG is found. The Eular path is partitioned
into segments, each of which has exactly k real edges ofG. This implies that E(G) is
partitioned into �|E(G)|/k� subsets. If the subgraph reduced from the k edges of each
subset is connected then there are at most k + 1 nodes in each subgraph. However,
a subgraph may not be connected due to the removal of dummy edges. Removing
one dummy edge increases the number of SADMs by 1 and there are nodd/2 dummy
edges, where nodd is the number of odd degree nodes. Thus, we have the following
result.

Theorem 11 (Brauner et al. [7]) The traffic grooming problem on an arbitrary
traffic graph G can be solved using at most �|E(G)|/k� colors and at most �(1+
(1/k))|R|� + nodd/2 SADMs, where nodd is the number of odd-degree nodes in G.

This algorithm uses the minimum number of colors (i.e., wup = wopt).
Intuitively, to achieve good solutions for the k-edge-partitioning problem, we need

partition traffic graph G into subgraphs of at most k edges such that each subgraph
contains as few nodes as possible. One key observation is that given a fixed number of
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Procedure GraphPartition EulerPath(G,k)
Input: An undirected graph G and grooming factor k.
Output: A partition E1, ..., Ewup of E(G) s.t. |Ei| ≤ k.
begin

Adding dummy edges into G to make each node of G

having even degree.
Finding an Euler path of G.
Partition the Euler path into subgraphs,

each of which contains exactly k real edges of G.
end.

FIGURE 18.13 Euler path based graph partitioning algorithm.

edges ofG, a subgraph induced by the edges more likely contains fewer nodes if there
are fewer connected components in the subgraph. This is the basic idea behind the
algorithms given in other studies [7,26]. The algorithm in the work by Goldschmidt
et al. [26] guarantees that each subgraph is connected, while every subgraph might
contain only �k/2� edges in the worst case. The algorithm in the work by Brauner
et al. [7] does not guarantee that each subgraph is connected, instead it guarantees
that the total number of connected components over all subgraphs is bounded above
and each subgraph contains exactly k edges. Following a similar idea, an approach
that partitionsG into a special subgraphs called skeletons is proposed in the work by
Wang and Gu [44].

A skeleton S of G is a connected subgraph of G that consists of a backbone and
a set of branches, where the backbone is a path of G, and each branch is an edge
of G such that the edge is incident to at least one node in the backbone. A skeleton
cover S of graphG is a set of skeletons {S1, . . . , Ss} that form an edge partition ofG
(i.e.,

⋃s
i=1 E(Si) = E(G) and E(Si) ∩ E(Sj) = ∅ for i �= j). It is known that for any

skeleton S and integer t with 0 < t < |E(S)|, S can be partitioned into two skeletons
S1 and S2 such that |E(S1)| = t and |E(S2)| = |E(S)| − t. From this property, it is
easy to transform a skeleton cover to a k-edge partition of G with each subgraph
containing exactly k edges: we add s− 1 dummy edges to connect the s skeletons
into one virtual skeleton and then partition the virtual skeleton into subgraphs, each
of which contains exactly k real edges.

Based on the above approach, a skeleton based partitioning algorithm was proposed
[44]. The algorithm is given in Figure 18.14.

Theorem 12 (Wang and Gu [44]) The traffic grooming problem on an arbitrary
traffic graphG of n nodes can be solved using at most �|E(G)|/k� colors and at most
�(1+ 1/k)|R|� + (n/4) SADMs.

The algorithm uses the minimum number of colors.
A special case of the traffic grooming problem is the all-to-all traffic pattern,

in which there is a traffic demand pair {u, v} for every two nodes u and v in the
UPSR. For the all-to-all traffic pattern, the traffic graph is complete. Using the results
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Procedure GraphPartition TreeSkeleton(G, k)
Input: An undirected graph G and grooming factor k.
Output: A partition E1, ..., Ewup of E(G) s.t. |Ei| ≤ k.
begin

Find a spanning tree T of G.
Find a skeleton cover S with edges of E(T ) as

backbones and edges of E(G) \ E(T ) as branches for
Si ∈ S.

Add |S| − 1 dummy edges to connect the skeletons of
S into one skeleton S.

Partition S into subgraphs, each has k real edges.
end.

FIGURE 18.14 Skeleton based graph partitioning algorithm.

of design theory [11], the k-edge partitioning problem on complete graphs can be
solved optimally if grooming factor k is a practical value or in the infinite congruence
classes of values [5]. It was shown that for complete graph G, the minimum number
of SADMs cannot be obtained using the minimum number of colors for some values
of k and n [5]. For example, the minimum number of SADMs for k = 6 and n = 13
is 52 which is obtained with wup = 13. Any partition of the complete graph of 13
nodes into wopt = 12 subgraphs requires at least 54 SADMs. An open problem here
is whether the minimum number of SADMs can be obtained using the minimum
number of colors when n(n− 1)/2k is an integer for complete graph.

18.5.2 Traffic Grooming on Other Networks

The discussion on UPSR is based on the assumption that every traffic demand is
realized by one hop of optical routing. If we relax this constraint and allow multihops
of optical routing to minimize the number of SADMs, then finding the minimum
number of SADMs in the traffic grooming problem becomes more difficult. It is shown
that the problem is NP-hard even in the network topologies of path, star, and trees
[15]. Ad hoc heuristics and integer linear programming have been main approaches
for the traffic grooming problem on arbitrary networks but the performance of existing
algorithms are not guaranteed.

18.6 SUMMARY

Routing is a critical issue for WDM networks. The routing problem on WDM networks
is challenging due to the complex hierarchical structure for multiplexing communi-
cation channels. Algorithms with guaranteed performance are known only for simple
and regular networks. This chapter introduced a number of such algorithms for rings,
trees, and trees of rings. There are many open problems in the routing on the WDM
networks. It is especially interesting to develop efficient algorithms with guaranteed
performance for the RWA problem and traffic grooming problem on networks with
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more complex topologies than those discussed in this chapter. Such topologies may
include those used in the backbone of the Internet and metropolitan area networks.
The routing problem can be studied from a different point of view as well: to maximize
the connectivity subject to the given resources in the networks.
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