HANDBOOK OF APPLIED
ALGORITHMS

Solving Scientific, Engineering, and Practical Problems

3

Edited by
AMIYA NAYAK
IVAN STOJMENOVIC

HANDBOOK OF

APPLIED ALGORITHMS
SOLVING SCIENTIFIC,

ENGINEERING AND
PRACTICAL PROBLEMS

Edited by

Amiya Nayak

SITE, University of Ottawa
Ottawa, Ontario, Canada

lvan Stojmenovic
EECE, University of Birmingham, UK

@ WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

HANDBOOK OF
APPLIED ALGORITHMS

HANDBOOK OF

APPLIED ALGORITHMS
SOLVING SCIENTIFIC,

ENGINEERING AND
PRACTICAL PROBLEMS

Edited by

Amiya Nayak

SITE, University of Ottawa
Ottawa, Ontario, Canada

lvan Stojmenovic
EECE, University of Birmingham, UK

@ WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to teh Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commerical damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at 877-762-2974, outside the United States at
317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Handbook of applied algorithms: solving scientific, engineering, and practical
problem / edited by Amiya Nayak & Ivan Stojmenovic.
p.cm.
ISBN 978-0-470-04492-6
1. Computer algorithms. I. Nayak, Amiya. II. Stojmenovic, Ivan.
QA76.9.A43H353 2007
005.1-dc22
2007010253
Printed in the United States of America

10987654321

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

I CONTENTS

Preface
Abstracts
Contributors

1. Generating All and Random Instances of
a Combinatorial Object

Ivan Stojmenovic

2. Backtracking and Isomorph-Free Generation of Polyhexes

Lucia Moura and Ivan Stojmenovic

3. Graph Theoretic Models in Chemistry and Molecular Biology
Debra Knisley and Jeff Knisley

4. Algorithmic Methods for the Analysis of
Gene Expression Data

Hongbo Xie, Uros Midic, Slobodan Vucetic, and Zoran Obradovic

5. Algorithms of Reaction-Diffusion Computing

Andrew Adamatzky

6. Data Mining Algorithms I: Clustering

Dan A. Simovici

7. Data Mining Algorithms lI: Frequent Item Sets

Dan A. Simovici

8. Algorithms for Data Streams

Camil Demetrescu and Irene Finocchi

Vii

XV

XXiii

39

85

115

147

177

219

241

vi

10.

Applying Evolutionary Algorithms to Solve
the Automatic Frequency Planning Problem

Francisco Luna, Enrique Alba, Antonio J. Nebro, Patrick Mauroy,
and Salvador Pedraza
Algorithmic Game Theory and Applications

Marios Mavronicolas, Vicky Papadopoulou, and Paul Spirakis

11. Algorithms for Real-Time Object Detection in Images
Milos Stojmenovic

12. 2D Shape Measures for Computer Vision
Paul L. Rosin and Jovisa Zunié

13. Cryptographic Algorithms
Bimal Roy and Amiya Nayak

14. Secure Communication in Distributed Sensor
Networks (DSN)
Subhamoy Maitra and Bimal Roy

15. Localized Topology Control Algorithms for Ad Hoc and
Sensor Networks
Hannes Frey and David Simplot-Ryl

16. A Novel Admission Control for Multimedia LEO
Satellite Networks
Syed R. Rizvi, Stephan Olariu, and Mona E. Rizvi

17. Resilient Recursive Routing in Communication Networks
Costas C. Constantinou, Alexander S. Stepanenko,
Theodoros N. Arvanitis, Kevin J. Baughan, and Bin Liu

18. Routing Algorithms on WDM Optical Networks
Qian-Ping Gu

Index

CONTENTS

271

287

317

347

373

407

439

465

485

509

535

I PREFACE

Although vast activity exists, especially recent, the editors did not find any book
that treats applied algorithms in a comprehensive manner. The editors discovered a
number of graduate courses in computer science programs with titles such as “Design
and Analysis of Algorithms, “Combinatorial Algorithms” “Evolutionary Algorithms”
and “Discrete Mathematics.” However, when glancing through the course contents,
it appears that they were detached from the real-world applications. On the contrary,
recently some graduate courses such as “Algorithms in Bioinformatics” emerged,
which treat one specific application area for algorithms. Other graduate courses heav-
ily use algorithms but do not mention them anywhere explicitly. Examples are courses
on computer vision, wireless networks, sensor networks, data mining, swarm intelli-
gence, and so on.

Generally, it is recognized that software verification is a necessary step in the design
of large commercial software packages. However, solving the problem itself in an
optimal manner precedes software verification. Was the problem solution (algorithm)
verified? One can verify software based on good and bad solutions. Why not start
with the design of efficient solutions in terms of their time complexities, storage, and
even simplicity? One needs a strong background in design and analysis of algorithms
to come up with good solutions.

This book is designed to bridge the gap between algorithmic theory and its ap-
plications. It should be the basis for a graduate course that will contain both basic
algorithmic, combinatorial and graph theoretical subjects, and their applications in
other disciplines and in practice. This direction will attract more graduate students
into such courses. The students themselves are currently divided. Those with weak
math backgrounds currently avoid graduate courses with a theoretical orientation,
and vice versa. It is expected that this book will provide a much-needed textbook for
graduate courses in algorithms with an orientation toward their applications.

This book will also make an attempt to bring together researchers in design and
analysis of algorithms and researchers that are solving practical problems. These com-
munities are currently mostly isolated. Practitioners, or even theoretical researchers
from other disciplines, normally believe that they can solve problems themselves
with some brute force techniques. Those that do enter into different areas looking
for “applications” normally end up with theoretical assumptions, suitable for proving
theorems and designing new algorithms, not having much relevance for the claimed
application area. On the contrary, the algorithmic community is mostly engaged in
their own problems and remains detached from reality and applications. They can
rarely answer simple questions about the applications of their research. This is valid

vii

viii PREFACE

even for the experimental algorithms community. This book should attract both sides
and encourage collaboration. The collaboration should lead toward modeling prob-
lems with sufficient realism for design of practical solutions, also allowing a sufficient
level of tractability.

The book is intended for researchers and graduate students in computer science and
researchers from other disciplines looking for help from the algorithmic community.
The book is directed to both people in the area of algorithms, who are interested
in some applied and complementary aspects of their activity, and people that want
to approach and get a general view of this area. Applied algorithms are gaining
popularity, and a textbook is needed as a reference source for the use by students and
researchers.

This book is an appropriate and timely forum, where researchers from academics
(both with and without a strong background in algorithms) and emerging industry in
new application areas for algorithms (e.g., sensor networks and bioinformatics) learn
more about the current trends and become aware of the possible new applications of
existing and new algorithms. It is often not the matter of designing new algorithms,
but simply the recognition that certain problems have been already solved efficiently.
What is needed is a starting reference point for such resources, which this book could
provide.

Handbook is based on a number of stand-alone chapters that together cover the
subject matter in a comprehensive manner. The book seeks to provide an opportunity
for researchers, graduate students, and practitioners to explore the application of al-
gorithms and discrete mathematics for solving scientific, engineering, and practical
problems. The main direction of the book is to review various applied algorithms
and their currently “hot” application areas such as computational biology, computa-
tional chemistry, wireless networks, and computer vision. It also covers data mining,
evolutionary algorithms, game theory, and basic combinatorial algorithms and their
applications. Contributions are made by researchers from United States, Canada,
United Kingdom, Italy, Greece, Cyprus, France, Denmark, Spain, and India.

Recently, a number of application areas for algorithms have been emerging into
their own disciplines and communities. Examples are computational biology, com-
putational chemistry, computational physics, sensor networks, computer vision, and
others. Sensor networks and computational biology are currently among the top
research priorities in the world. These fields have their own annual conferences
and books published. The algorithmic community also has its own set of annual
meetings, and journals devoted to algorithms. Apparently, it is hard to find a mix-
ture of the two communities. There are no conferences, journals, or even books
with mixed content, providing forum for establishing collaboration and providing
directions.

BRIEF OUTLINE CONTENT

This handbook consists of 18 self-contained chapters. Their content will be described
briefly here.

PREFACE ix

Many practical problems require an exhaustive search through the solution space,
which are represented as combinatorial structures such as permutations, combinations,
set partitions, integer partitions, and trees. All combinatorial objects of a certain
kind need to be generated to test all possible solutions. In some other problems, a
randomly generated object is needed, or an object with an approximately correct
ranking among all objects, without using large integers. Chapter 1 describes fast
algorithms for generating all objects, random object, or object with approximate
ranking, for basic types of combinatorial objects.

Chapter 2 presents applications of combinatorial algorithms and graph theory to
problems in chemistry. Most of the techniques used are quite general, applicable to
other problems from various fields. The problem of cell growth is one of the classical
problems in combinatorics. Cells are of the same shape and are in the same plane,
without any overlap. The central problem in this chapter is the study of hexagonal
systems, which represent polyhexes or benzenoid hydrocarbons in chemistry. An
important issue for enumeration and exhaustive generation is the notion of isomorphic
or equivalent objects. Usually, we are interested in enumerating or generating only
one copy of equivalent objects, thatis, only one representative from each isomorphism
class. Polygonal systems are considered different if they have different shapes; their
orientation and location in the plane are not important. The main theme in this chapter
is isomorph-free exhaustive generation of polygonal systems, especially polyhexes.
In general, the main algorithmic framework employed for exhaustive generation is
backtracking, and several techniques have been developed for handling isomorphism
issues within this framework. This chapter presents several of these techniques and
their application to exhaustive generation of hexagonal systems.

Chapter 3 describes some graph-theoretic models in chemistry and molecular biol-
ogy. RNA, proteins, and other structures are described as graphs. The chapter defines
and illustrates a number of important molecular descriptors and related concepts.
Algorithms for predicting biological activity of given molecule and its structure are
discussed. The ability to predict a molecule’s biological activity by computational
means has become more important as an ever-increasing amount of biological infor-
mation is being made available by new technologies. Annotated protein and nucleic
databases and vast amounts of chemical data from automated chemical synthesis and
high throughput screening require increasingly more sophisticated efforts. Finally,
this chapter describes popular machine learning techniques such as neural networks
and support vector machines.

A major paradigm shift in molecular biology occurred recently with the introduc-
tion of gene-expression microarrays that measure the expression levels of thousands
of genes at once. These comprehensive snapshots of gene activity can be used to
investigate metabolic pathways, identify drug targets, and improve disease diagnosis.
However, the sheer amount of data obtained using the high throughput microarray
experiments and the complexity of the existing relevant biological knowledge is be-
yond the scope of manual analysis. Chapter 4 discusses the bioinformatics algorithms
that help analyze such data and are a very valuable tool for biomedical science.

Activities of contemporary society generate enormous amounts of data that are
used in decision-support processes. Many databases have current volumes in the

X PREFACE

hundreds of terabytes. The difficulty of analyzing this kind of data volumes by hu-
man operators is clearly insurmountable. This lead to a rather new area of com-
puter science, data mining, whose aim is to develop automatic means of data anal-
ysis for discovering new and useful patterns embedded in data. Data mining builds
on several disciplines: statistics, artificial intelligence, databases, visualization tech-
niques, and others and has crystallized as a distinct discipline in the last decade
of the past century. The range of subjects in data mining is very broad. Among
the main directions of this branch of computer science, one should mention identi-
fication of associations between data items, clustering, classification, summariza-
tion, outlier detection, and so on. Chapters 6 and 7 concentrate on two classes
of data mining algorithms: clustering algorithms and identification of association
rules.

Data stream processing has recently gained increasing popularity as an effective
paradigm for processing massive data sets. A wide range of applications in compu-
tational sciences generate huge and rapidly changing data streams that need to be
continuously monitored in order to support exploratory analyses and to detect corre-
lations, rare events, fraud, intrusion, unusual, or anomalous activities. Relevant exam-
ples include monitoring network traffic, online auctions, transaction logs, telephone
call records, automated bank machine operations, and atmospheric and astronomical
events. Due to the high sequential access rates of modern disks, streaming algorithms
can also be effectively deployed for processing massive files on secondary storage,
providing new insights into the solution of several computational problems in ex-
ternal memory. Streaming models constrain algorithms to access the input data in
one or few sequential passes, using only a small amount of working memory and
processing each input item quickly. Solving computational problems under these re-
strictions poses several algorithmic challenges. Chapter 8 is intended as an overview
and survey of the main models and techniques for processing data streams and of
their applications.

Frequency assignment is a well-known problem in operations research for which
different mathematical models exist depending on the application-specific conditions.
However, most of these models are far from considering actual technologies currently
deployed in GSM networks, such as frequency hopping. In these networks, interfer-
ences provoked by channel reuse due to the limited available radio spectrum result
in a major impact of the quality of service (QoS) for subscribers. In Chapter 9, the
authors focus on optimizing the frequency planning of a realistic-sized, real-world
GSM network by using evolutionary algorithms.

Methods from game theory and mechanism design have been proven to be a power-
ful mathematical tool in order to understand, control and efficiently design dynamic,
complex networks, such as the Internet. Game theory provides a good starting point
for computer scientists in order to understand selfish rational behavior of complex
networks with many agents. Such a scenario is readily modeled using game theory
techniques, in which players with potentially different goals participate under a com-
mon setting with well-prescribed interactions. Nash equilibrium stands out as the
predominant concept of rationality in noncooperative settings. Thus, game theory
and its notions of equilibria provide a rich framework for modeling the behavior of

PREFACE Xi

selfish agents in these kinds of distributed and networked environments and offering
mechanisms to achieve efficient and desirable global outcomes in spite of the selfish
behavior. In Chapter 10, we review some of the most important algorithmic solutions
and advances achieved through game theory.

Real-time face detection in images received growing attention recently. Recogni-
tion of other objects, such as cars, is also important. Applications are in similar and
content-based real-time image retrieval. The task is currently achieved by designing
and applying automatic or semisupervised machine learning algorithms. Chapter 11
will review some algorithmic solutions to these problems. Existing real-time object
detection systems appear to be based primarily on the AdaBoost framework, and this
chapter will concentrate on it. Emphasis is given on approaches that build fast and
reliable object recognizers in images based on small training sets. This is important
in cases where the training set needs to be built manually, as in the case of detecting
back of cars, studied as a particular example.

Existing computer vision applications that demonstrated their validity are mostly
based on shape analysis. A number of shapes, such as linear or elliptic ones, are
well studied. More complex classification and recognition tasks require new shape
descriptors. Chapter 12 reviews some algorithmic tools for measuring and detecting
shapes. Since shape descriptors are expected to be applied not only to a single object
but also to a multiobject or dynamic scene, time complexity of the proposed algorithms
is an issue, in addition to accuracy.

Cryptographic algorithms are extremely important for secure communication over
an insecure channel and have gained significant importance in modern day technol-
ogy. Chapter 13 introduces the basic concepts of cryptography, and then presents
general principles, algorithms, and designs for block and stream ciphers, public key
cryptography, and key agreement. The algorithms largely use mathematical tools from
algebra, number theory, and algebraic geometry and have been explained as and when
required.

Chapter 14 studies the issues related to secure communication among sensor nodes.
The sensor nodes are usually of limited computational ability having low CPU power,
small amount of memory, and constrained power availability. Thus, the standard cryp-
tographic algorithms suitable for state of the art computers may not be efficiently
implemented in sensor nodes. This chapter describes strategies that can work in con-
strained environment. It first presents basic introduction to the security issues in
distributed wireless sensor networks. As implementation of public key infrastructure
may not be recommendable in low end hardware platforms, chapter describes key pre-
distribution issues in detail. Further it investigates some specific stream ciphers for
encrypted communication that are suitable for implementation in low end hardware.

In Chapter 15, the authors consider localized algorithms, as opposed to centralized
algorithms, which can be used in topology control for wireless ad hoc or sensor
networks. The aim of topology control can be to minimize energy consumption, or
to reduce interferences by organizing/structuring the network. This chapter focuses
on neighbor elimination schemes, which remove edges from the initial connection
graph in order to generate energy efficient, sparse, planar but still connected network
in localized manner.

xii PREFACE

Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to ter-
restrial wireless networks in order to provide broadband services to users regardless
of their location. LEO satellites are expected to support multimedia traffic and to
provide their users with some form of QoS guarantees. However, the limited band-
width of the satellite channel, satellite rotation around the Earth, and mobility of
end users makes QoS provisioning and mobility management a challenging task.
One important mobility problem is the intrasatellite handoff management. Chapter
16 proposes RADAR—refined admission detecting absence region, a novel call ad-
mission control and handoff management scheme for LEO satellite networks. A key
ingredient in the scheme is a companion predictive bandwidth allocation strategy that
exploits the topology of the network and contributes to maintaining high bandwidth
utilization.

After a brief review of conventional approaches to shortest path routing, Chapter 17
introduces an alternative algorithm that abstracts a network graph into a logical tree.
The algorithm is based on the decomposition of a graph into its minimum cycle basis
(a basis of the cycle vector space of a graph having least overall weight or length).
A procedure that abstracts the cycles and their adjacencies into logical nodes and
links correspondingly is introduced. These logical nodes and links form the next level
logical graph. The procedure is repeated recursively, until a loop-free logical graph
is derived. This iterative abstraction is called a logical network abstraction procedure
and can be used to analyze network graphs for resiliency, as well as become the basis
of a new routing methodology. Both these aspects of the logical network abstraction
procedure are discussed in some detail.

With the tremendous growth of bandwidth-intensive networking applications, the
demand for bandwidth over data networks is increasing rapidly. Wavelength di-
vision multiplexing (WDM) optical networks provide promising infrastructures to
meet the information networking demands and have been widely used as the back-
bone networks in the Internet, metropolitan area networks, and high capacity local
area networks. Efficient routing on WDM networks is challenging and involves hard
optimization problems. Chapter 18 introduces efficient algorithms with guaranteed
performance for fundamental routing problems on WDM networks.

ACKNOWLEDGMENTS

The editors are grateful to all the authors for their contribution to the quality of this
handbook. The assistance of reviewers for all chapters is also greatly appreciated.
The University of Ottawa (with the help of NSERC) provided an ideal working en-
vironment for the preparation of this handbook. This includes computer facilities
for efficient Internet search, communication by electronic mail, and writing our own
contributions.

The editors are thankful to Paul Petralia and Whitney A. Lesch from Wiley for their
timely and professional cooperation, and for their decisive support of this project. We
thank Milos Stojmenovic for proposing and designing cover page for this book.

PREFACE xiii

Finally, we thank our families for their encouragement, making this effort worth-
while, and for their patience during the numerous hours at home that we spent in front
of the computer.

We hope that the readers will find this handbook informative and worth reading.
Comments received by readers will be greatly appreciated.

AMiYA NAYAK
SITE, University of Ottawa, Ottawa, Ontario, Canada

IVAN STOJIMENOVIC
EECE, University of Birmingham, UK
November 2007

I ABSTRACTS

1 GENERATING ALL AND RANDOM INSTANCES OF A
COMBINATORIAL OBJECT

Many practical problems require an exhaustive search through the solution space,
which are represented as combinatorial structures, such as, permutations, combina-
tions, set partitions, integer partitions, and trees. All combinatorial objects of a certain
kind need to be generated to test all possible solutions. In some other problems, a
randomly generated object is needed, or an object with an approximately correct
ranking among all objects, without using large integers. Fast algorithms for generat-
ing all objects, random object, or object with approximate ranking for basic types of
combinatorial objects are described.

2 BACKTRACKING AND ISOMORPH-FREE
GENERATION OF POLYHEXES

General combinatorial algorithms and their application to enumerating molecules in
chemistry are presented and classical and new algorithms for the generation of com-
plete lists of combinatorial objects that contain only inequivalent objects (isomorph-
free exhaustive generation) are discussed. We introduce polygonal systems, and how
polyhexes and hexagonal systems relate to benzenoid hydrocarbons. The central
theme is the exhaustive generation of nonequivalent hexagonal systems, which is
used to walk the reader through several algorithmic techniques of general appli-
cability. The main algorithmic framework is backtracking, which is coupled with
sophisticated methods for dealing with isomorphism or symmetries. Triangular and
square systems, as well as the problem of matchings in hexagonal systems and their
relationship to Kékule structures in chemistry are also presented.

3 GRAPH THEORETIC MODELS IN CHEMISTRY
AND MOLECULAR BIOLOGY

The field of chemical graph theory utilizes simple graphs as models of molecules.
These models are called molecular graphs, and quantifiers of molecular graphs are

XV

Xvi ABSTRACTS

known as molecular descriptors or topological indices. Today’s chemists use molec-
ular descriptors to develop algorithms for computer aided drug designs, and com-
puter based searching algorithms of chemical databases and the field is now more
commonly known as combinatorial or computational chemistry. With the comple-
tion of the human genome project, related fields are emerging such as chemical
genomics and pharmacogenomics. Recent advances in molecular biology are driv-
ing new methodologies and reshaping existing techniques, which in turn produce
novel approaches to nucleic acid modeling and protein structure prediction. The
origins of chemical graph theory are revisited and new directions in combinato-
rial chemistry with a special emphasis on biochemistry are explored. Of particular
importance is the extension of the set of molecular descriptors to include graph-
ical invariants. We also describe the use of artificial neural networks (ANNS) in
predicting biological functional relationships based on molecular descriptor values.
Specifically, a brief discussion of the fundamentals of ANNs together with an ex-
ample of a graph theoretic model of RNA to illustrate the potential for ANN cou-
pled with graphical invariants to predict function and structure of biomolecules is
included.

4 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE
EXPRESSION DATA

The traditional approach to molecular biology consists of studying a small number
of genes or proteins that are related to a single biochemical process or pathway.
A major paradigm shift recently occurred with the introduction of gene-expression
microarrays that measure the expression levels of thousands of genes at once. These
comprehensive snapshots of gene activity can be used to investigate metabolic path-
ways, identify drug targets, and improve disease diagnosis. However, the sheer
amount of data obtained using high throughput microarray experiments and the
complexity of the existing relevant biological knowledge is beyond the scope
of manual analysis. Thus, the bioinformatics algorithms that help analyze such
data are a very valuable tool for biomedical science. First, a brief overview of
the microarray technology and concepts that are important for understanding the
remaining sections are described. Second, microarray data preprocessing, an
important topic that has drawn as much attention from the research community as
the data analysis itself is discussed. Finally, some of the more important methods
for microarray data analysis are described and illustrated with examples and case
studies.

5 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

A case study introduction to the novel paradigm of wave-based computing in chem-
ical systems is presented in Chapter 5. Selected problems and tasks of computa-
tional geometry, robotics and logics can be solved by encoding data in configuration

ABSTRACTS xvii

of chemical medium’s disturbances and programming wave dynamics and interac-
tion.

6 DATA MINING ALGORITHMS I: CLUSTERING

Clustering is the process of grouping together objects that are similar. The similarity
between objects is evaluated by using a several types of dissimilarities (particularly,
metrics and ultrametrics). After discussing partitions and dissimilarities, two basic
mathematical concepts important for clustering, we focus on ultrametric spaces that
play a vital role in hierarchical clustering. Several types of agglomerative hierarchical
clustering are examined with special attention to the single-link and complete link
clusterings. Among the nonhierarchical algorithms we present the k-means and the
PAM algorithm. The well-known impossibility theorem of Kleinberg is included
in order to illustrate the limitations of clustering algorithms. Finally, modalities of
evaluating clustering quality are examined.

7 DATA MINING ALGORITHMS II: FREQUENT ITEM SETS

The identification of frequent item sets and of association rules have received a lot
of attention in data mining due to their many applications in marketing, advertis-
ing, inventory control, and many other areas. First the notion of frequent item set is
introduced and we study in detail the most popular algorithm for item set identifi-
cation: the Apriori algorithm. Next we present the role of frequent item sets in the
identification of association rules and examine the levelwise algorithms, an important
generalization of the Apriori algorithm.

8 ALGORITHMS FOR DATA STREAMS

Data stream processing has recently gained increasing popularity as an effective
paradigm for processing massive data sets. A wide range of applications in com-
putational sciences generate huge and rapidly changing data streams that need to
be continuously monitored in order to support exploratory analyses and to detect
correlations, rare events, fraud, intrusion, and unusual or anomalous activities. Rele-
vant examples include monitoring network traffic, online auctions, transaction logs,
telephone call records, automated bank machine operations, and atmospheric and as-
tronomical events. Due to the high sequential access rates of modern disks, streaming
algorithms can also be effectively deployed for processing massive files on secondary
storage, providing new insights into the solution of several computational problems
in external memory. Streaming models constrain algorithms to access the input data
in one or few sequential passes, using only a small amount of working memory
and processing each input item quickly. Solving computational problems under these
restrictions poses several algorithmic challenges.

Xviii ABSTRACTS

9 APPLYING EVOLUTIONARY ALGORITHMS TO SOLVE THE
AUTOMATIC FREQUENCY PLANNING PROBLEM

Frequency assignment is a well-known problem in operations research for which dif-
ferent mathematical models exist depending on the application-specific conditions.
However, most of these models are far from considering actual technologies currently
deployed in GSM networks, such as frequency hopping. In these networks, interfer-
ences provoked by channel reuse due to the limited available radio spectrum result in
a major impact of the quality of service (QoS) for subscribers. Therefore, frequency
planning is of great importance for GSM operators. We here focus on optimizing
the frequency planning of a realistic-sized, real-world GSM network by using evo-
Iutionary algorithms (EAs). Results show that a (1+10) EA developed by the chapter
authors for which different seeding methods and perturbation operators have been
analyzed is able to compute accurate and efficient frequency plans for real-world
instances.

10 ALGORITHMIC GAME THEORY AND APPLICATIONS

Methods from game theory and mechanism design have been proven to be a powerful
mathematical tool in order to understand, control, and efficiently design dynamic,
complex networks, such as the Internet. Game theory provides a good starting point
for computer scientists to understand selfish rational behavior of complex networks
with many agents. Such a scenario is readily modeled using game theory techniques,
in which players with potentially different goals participate under a common setting
with well prescribed interactions. The Nash equilibrium stands out as the predom-
inant concept of rationality in noncooperative settings. Thus, game theory and its
notions of equilibria provide a rich framework for modeling the behavior of selfish
agents in these kinds of distributed and networked environments and offering mecha-
nisms to achieve efficient and desirable global outcomes despite selfish behavior. The
most important algorithmic solutions and advances achieved through game theory are
reviewed.

11 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

Real time face detection images has received growing attention recently. Recognition
of other objects, such as cars, is also important. Applications are similar and content
based real time image retrieval. Real time object detection in images is currently
achieved by designing and applying automatic or semi-supervised machine learning
algorithms. Some algorithmic solutions to these problems are reviewed. Existing real
time object detection systems are based primarily on the AdaBoost framework, and
the chapter will concentrate on it. Emphasis is given to approaches that build fast and
reliable object recognizers in images based on small training sets. This is important

ABSTRACTS Xix

in cases where the training set needs to be built manually, as in the case of detecting
the back of cars, studied here as a particular example.

12 2D SHAPE MEASURES FOR COMPUTER VISION

Shape is a critical element of computer vision systems, and can be used in many ways
and for many applications. Examples include classification, partitioning, grouping,
registration, data mining, and content based image retrieval. A variety of schemes
that compute global shape measures, which can be categorized as techniques based
on minimum bounding rectangles, other bounding primitives, fitted shape models,
geometric moments, and Fourier descriptors are described.

13 CYPTOGRAPHIC ALGORITHMS

Cryptographic algorithms are extremely important for secure communication over an
insecure channel and have gained significant importance in modern day technology.
First the basic concepts of cryptography are introduced. Then general principles,
algorithms and designs for block ciphers, stream ciphers, public key cryptography,
and protocol for key-agreement are presented in details. The algorithms largely use
mathematical tools from algebra, number theory, and algebraic geometry and have
been explained as and when required.

14 SECURE COMMUNICATION IN DISTRIBUTED SENSOR
NETWORKS (DSN)

The motivation of this chapter is to study the issues related to secure communication
among sensor nodes. Sensor nodes are usually of limited computational ability having
low CPU power, a small amount of memory, and constrained power availability. Thus
the standard cryptographic algorithms suitable for state of the art computers may not
be efficiently implemented in sensor nodes. In this regard we study the strategies that
can work in constrained environments. First we present a basic introduction to the se-
curity issues in distributed wireless sensor networks. As implementation of public key
infrastructure may not be recommendable in low end hardware platforms, we describe
key predistribution issues in detail. Further we study some specific stream ciphers for
encrypted communication that are suitable for implementation in low end hardware.

15 LOCALIZED TOPOLOGY CONTROL ALGORITHMS
FOR AD HOC AND SENSOR NETWORKS

Localized algorithms, in opposition to centralized algorithms, which can be used in
topology control for wireless ad hoc or sensor networks are considered. The aim of
topology control is to minimize energy consumption, or to reduce interferences by

XX ABSTRACTS

organizing/structuring the network. Neighbor elimination schemes, which consist of
removing edges from the initial connection graph are focused on.

16 A NOVEL ADMISSION FOR CONTROL OF MULTIMEDIA
LEO SATELLITE NETWORKS

Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terres-
trial wireless networks in order to provide broadband services to users regardless of
their location. In addition to global coverage, these satellite systems support commu-
nications with hand-held devices and offer low cost-per-minute access cost, making
them promising platforms for personal communication services (PCS). LEO satel-
lites are expected to support multimedia traffic and to provide their users with some
form of quality of service (QoS) guarantees. However, the limited bandwidth of the
satellite channel, satellite rotation around the Earth and mobility of end-users makes
QoS provisioning and mobility management a challenging task. One important mo-
bility problem is the intra-satellite handoff management. While global positioning
systems (GPS)-enabled devices will become ubiquitous in the future and can help
solve a major portion of the problem, at present the use of GPS for low-cost cellu-
lar networks is unsuitable. RADAR—refined admission detecting absence region—
a novel call admission control and handoff management scheme for LEO satellite
networks is proposed in this chapter. A key ingredient in this scheme is a companion
predictive bandwidth allocation strategy that exploits the topology of the network
and contributes to maintaining high bandwidth utilization. Our bandwidth allocation
scheme is specifically tailored to meet the QoS needs of multimedia connections.
The performance of RADAR is compared to that of three recent schemes proposed
in the literature. Simulation results show that our scheme offers low call dropping
probability, providing for reliable handoff of on-going calls, and good call blocking
probability for new call requests, while ensuring high bandwidth utilization.

17 RESILIENT RECURSIVE ROUTING IN COMMUNICATION
NETWORKS

After a brief review of conventional approaches to shortest path routing an alternative
algorithm that abstracts a network graph into a logical tree is introduced. The algorithm
is based on the decomposition of a graph into its minimum cycle basis (a basis of the
cycle vector space of a graph having least overall weight or length). A procedure that
abstracts the cycles and their adjacencies into logical nodes and links correspondingly
is introduced. These logical nodes and links form the next level logical graph. The
procedure is repeated recursively, until a loop-free logical graph is derived. This
iterative abstraction is called a logical network abstraction procedure and can be used
to analyze network graphs for resiliency, as well as become the basis of a new routing
methodology. Both these aspects of the logical network abstraction procedure are
discussed in some detail.

ABSTRACTS xxXi

18 ROUTING ALGORITHMS ON WDM OPTICAL NETWORKS

With the tremendous growth of bandwidth-intensive networking applications, the de-
mand for bandwidth over data networks is increasing rapidly. Wavelength division
multiplexing (WDM) optical networks provide promising infrastructures to meet
the information networking demands and have been widely used as the backbone
networks in the Internet, metropolitan area networks, and high-capacity local area
networks. Efficient routing on WDM networks is challenging and involves hard op-
timization problems. This chapter introduces efficient algorithms with guaranteed
performance for fundamental routing problems on WDM networks.

I CONTRIBUTORS

Editors

Amiya Nayak, received his B.Math. degree in Computer Science and Combina-
torics and Optimization from University of Waterloo in 1981, and Ph.D. in Systems
and Computer Engineering from Carleton University in 1991. He has over 17 years
of industrial experience, working at CMC Electronics (formerly known as Canadian
Marconi Company), Defence Research Establishment Ottawa (DREO), EER Sys-
tems and Nortel Networks, in software engineering, avionics, and navigation systems,
simulation and system level performance analysis. He has been an Adjunct Research
Professor in the School of Computer Science at Carleton University since 1994. He
had been the Book Review and Canadian Editor of VLSI Design from 1996 till 2002.
He is in the Editorial Board of International Journal of Parallel, Emergent and Dis-
tributed Systems, and the Associate Editor of International Journal of Computing
and Information Science. Currently, he is a Full Professor at the School of Informa-
tion Technology and Engineering (SITE) at the University of Ottawa. His research
interests are in the area of fault tolerance, distributed systems/algorithms, and mo-
bile ad hoc networks with over 100 publications in refereed journals and conference
proceedings.

Ivan Stojmenovic, received his Ph.D. degree in mathematics in 1985. He earned a
third degree prize at the International Mathematics Olympiad for high school stu-
dents in 1976. He held positions in Serbia, Japan, United States, Canada, France, and
Mexico. He is currently a Chair Professor in Applied Computing at EECE, the
University of Birmingham, UK. He published over 200 different papers, and edited
three books on wireless, ad hoc, and sensor networks with Wiley/IEEE. He is cur-
rently editor of over ten journals, and founder and editor-in-chief of three journals.
Stojmenovic was cited >3400 times and is in the top 0.56% most cited authors in
Computer Science (Citeseer 2006). One of his articles was recognized as the Fast
Breaking Paper, for October 2003 (as the only one for all of computer science), by
Thomson ISI Essential Science Indicators. He coauthored over 30 book chapters,
mostly very recent. He collaborated with over 100 coauthors with Ph.D. and a num-
ber of their graduate students from 22 different countries. He (co)supervised over
40 Ph.D. and master theses, and published over 120 joint articles with supervised
students. His current research interests are mainly in wireless ad hoc, sensor, and
cellular networks. His research interests also include parallel computing, multiple-
valued logic, evolutionary computing, neural networks, combinatorial algorithms,
computational geometry, graph theory, computational chemistry, image processing,

xxiii

xxiv CONTRIBUTORS

programming languages, and computer science education. More details can be seen
at www.site.uottawa.ca/~ivan.

Authors

Andrew Adamatzky, Faculty of Computing, Engineering and Mathemati-
cal Science University of the West of England, Bristol, BS16 1QY, UK
[andrew.adamatzky @uwe.ac.uk]

Enrique Alba, Dpto. de Lenguajes y Ciencias de la Computacién, E.T.S.
Ing. Informatica, Campus de Teatinos, 29071 Malaga, Spain [eat@Ilcc.uma.es
www.lcc.uma.es/~eat.]

Theodoros N. Arvanitis, Electronics, Electrical, and Computer Engineer-
ing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
[T.Arvanitis @bham.ac.uk]

Kevin J. Baughan, Electronics, Electrical, and Computer Engineering, University of
Birmingham, Edgbaston, Birmingham B15 2TT, UK

Costas C. Constantinou, Electronics, Electrical, and Computer Engineering, Uni-
versity of Birmingham, and Prolego Technologies Ltd., Edgbaston, Birmingham B15
2TT, UK [C.Constantinou@bham.ac.uk]

Camil Demetrescu, Department of Computer and Systems Science, Univer-
sity of Rome “La Sapienza”, Via Salaria 113, 00198 Rome, Italy [demetres
@dis.uniromal..it]

Irene Finocchi, Department of Computer and Systems Science, University of Rome
“La Sapienza”, Via Salaria 113, 00198 Rome, Italy

Hannes Frey, Department of Mathematics and Computer Science, Univer-
sity of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
[frey @imada.sdu.dk]

Qianping Gu, Department of Computing Science, Simon Fraser University, Burnaby,
BC V5A 156, Canada [qgu@cs.sfu.ca]

Debra Knisley, Department of Mathematics, East Tennessee State University,
Johnson City, TN 37614-0663, USA [knisleyd @mail.etsu.edu]

Jeff Knisley, Department of Mathematics, East Tennessee State University, Johnson
City, TN 37614-0663, USA [knisleyj@etsu.edu]

Bin Liu, Electronics, Electrical, and Computer Engineering, University of Birming-
ham, Edgbaston, Birmingham B15 2TT, UK

Francisco Luna, Universidad de Malaga, ETS. Ing. Informatica, Campus de Teatinos,
29071 Mélaga, Spain [flv@Icc.uma.es]

CONTRIBUTORS XXV

Subhamoy Maitra, Applied Statistical Unit, Indian Statistical Institute, 203 B.T.
Road, Koltkata, India [subho@isical.ac.in]

Patrick Mauroy, Universidad de Malaga, ETS. Ing. Informatica, Campus de
Teatinos, 29071 Malaga, Spain [Patrick.Mauroy @optimi.com]

Marios Mavronicolas, Department of Computer Science, University of Cyprus,
Nicosia CY-1678, Cyprus [mavronic@cs.ucy.ac.cy]

Uros Midic, Center for Information Science and Technology, Temple University, 300
Wachman Hall, 1805 N. Broad St., Philadelphia, PA 19122, USA

Lucia Moura, School of Information Technology and Engineering, University of
Ottawa, Ottawa, ON K1N 6NS5, Canada [lucia@site.uottawa.ca]

Amiya Nayak, SITE, University of Ottawa, 800 King Edward Ave., Ottawa, ON KIN
6N5, Canada [anayak @site.uottawa.ca]

Antonio J. Nebro, Universidad de Malaga, ETS. Ing. Informatica, Campus de
Teatinos, 29071 Malaga, Spain [antonio @lcc.uma.es]

Zoran Obradovic, Center for Information Science and Technology, Temple Uni-
versity, 300 Wachman Hall, 1805 N. Broad St., Philadelphia, PA 19122, USA
[zoran @ist.temple.edu]

Stephan Olariu, Department of Computer Science, Old Dominion University,
Norfolk, Virginia, 23529, USA [olariu@cs.odu.edu]

Vicky Papadopoulou, Department of Computer Science, University of Cyprus,
Nicosia CY-1678, Cyprus [viki@cs.ucy.ac.cy]

Salvador Pedraza, Universidad de Malaga, ETS. Ing. Informatica, Campus de
Teatinos, 29071 Malaga, Spain [Salvador.Pedraza@optimi.com]

Mona E. Rizvi, Department of Computer Science, Norfolk State University, 700 Park
Avenue, Norfolk, VA 23504, USA [mrizvi@nsu.edu]

Syed R. Rizvi, Department of Computer Science, Old Dominion University, Norfolk,
VA 23529, USA

Paul L. Rosin, School of Computer Science, Cardiff University, Cardiff CF24 3AA,
Wales, UK [Paul.Rosin@cs.cf.ac.uk]

Bimal Roy, Applied Statistical Unit, Indian Statistical Institute, 203 B.T. Road,
Kolkata, India [bimal @isical.ac.in]

Dan A. Simovici, Department of Mathematics and Computer Science, University of
Massachusetts at Boston, Boston, MA 02125, USA [dsim@cs.umb.edu]

David Simplot-Ryl, IRCICA/LIFL, Univ. Lille 1, CNRS UMR 8022, INRIA Futurs,
POPS Research Group, Bat. M3, Cita Scientifique, 59655 Villeneuve d’ Ascq Cedex,
France [David.Simplot @lifl.fr]

XXVi CONTRIBUTORS

Paul Spirakis, University of Patras, School of Engineering, GR 265 00, Patras, Greece
[spirakis@cti.gr]
Alexander S. Stepanenko, Electronics, Electrical, and Computer Engineer-

ing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
[ass@th.ph.bham.ac.uk]

Ivan Stojmenovic, SITE, University of Ottawa, Ottawa, ON KIN 6N5, Canada
[ivan @site.uottawa.ca]

Milos Stojmenovic, School of Information Technology and Engineering, University
of Ottawa, Ottawa, ON KIN 6N5, Canada [mstoj075 @site.uottawa.ca]

Slobodan Vucetic, Center for Information Science and Technology, Temple Uni-
versity, 300 Wachman Hall, 1805 N. Broad St., Philadelphia, PA 19122, USA
[vucetic @ist.temple.edu]

Hongbo Xie, Center for Information Science and Technology, Temple University,
300 Wachman Hall, 1805 N. Broad St., Philadelphia, PA 19122, USA

Jovisa iunié, Department of Computer Science, University of Exeter, Harrison Build-
ing North Park Road, Exeter EX4 4QF, UK [j.zunic @exeter.ac.uk]

I CHAPTER 1

Generating All and Random Instances
of a Combinatorial Object

IVAN STOJMENOVIC

1.1 LISTING ALL INSTANCES OF A COMBINATORIAL OBJECT

The design of algorithms to generate combinatorial objects has long fascinated math-
ematicians and computer scientists. Some of the earliest papers on the interplay be-
tween mathematics and computer science are devoted to combinatorial algorithms.
Because of its many applications in science and engineering, the subject continues
to receive much attention. In general, a list of all combinatorial objects of a given
type might be used to search for a counterexample to some conjecture, or to test and
analyze an algorithm for its correctness or computational complexity.

This branch of computer science can be defined as follows: Given a combinatorial
object, design an efficient algorithm for generating all instances of that object. For
example, an algorithm may be sought to generate all n-permutations. Other combina-
torial objects include combinations, derangements, partitions, variations, trees, and
SO on.

When analyzing the efficiency of an algorithm, we distinguish between the cost of
generating and cost of listing all instances of a combinatorial object. By generating we
mean producing all instances of a combinatorial object, without actually outputting
them. Some properties of objects can be tested dynamically, without the need to check
each element of a new instance. In case of listing, the output of each object is required.
The lower bound for producing all instances of a combinatorial object depends on
whether generating or listing is required. In the case of generating, the time required
to “create” the instances of an object, without actually producing the elements of each
instance as output, is counted. Thus, for example, an optimal sequential algorithm
in this sense would generate all n-permutations in 6(n!) time, that is, time linear in
the number of instances. In the case of listing, the time to actually “output” each
instance in full is counted. For instance, an optimal sequential algorithm generates
all n-permutations in f(nn!) time, since it takes 6(n) time to produce a string.

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenovi¢ Copyright © 2008 John Wiley & Sons, Inc.

2 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Let P be the number of all instances of a combinatorial object, and N be the average
size of an instance. The delay when generating these instances is the time needed to
produce the next instance from the current one. We list some desirable properties of
generating or listing all instances of a combinatorial object.

Property 1. The algorithm lists all instances in asymptotically optimal time, that is,
in time O(NP).

Property 2. The algorithm generates all instances with constant average delay. In
other words, the algorithm takes O(P) time to generate all instances. We say that a
generating algorithm has constant average delay if the time to generate all instances
is O(P); that is, the ratio T/P of the time T needed to generate all instances and the
number of generated instances P is bounded by a constant.

Property 3. The algorithm generates all instances with constant (worst case) delay.
That is, the time to generate the next instance from the current one is bounded by a
constant. Constant delay algorithms are also called loopless algorithms, as the code
for updating given instance contains no (repeat, while, or for) loops.

Obviously, an algorithm satisfying Property 3 also satisfies Property 2. However,
in some cases, an algorithm having constant delay property is considerably more so-
phisticated than the one satisfying merely constant average delay property. Moreover,
sometimes an algorithm having constant delay property may need more time to gen-
erate all instances of the same object than an algorithm having only constant average
delay property. Therefore, it makes sense to consider Property 3 independently of
Property 2.

Property 4. The algorithm does not use large integers in generating all instances of
an object. In some papers, the time needed to “deal” with large integers is not properly
counted in.

Property 5. The algorithm is the fastest known algorithm for generating all instances
of given combinatorial object. Several papers deal with comparing actual (not asymp-
totic) times needed to generate all instances of given combinatorial object, in order
to pronounce a “winner,’ that is, to extract the one that needs the least time. Here,
the fastest algorithm may depend on the choice of computer. Some computers support
fast recursion giving the recursive algorithm advantage over iterative one. Therefore,
the ratio of the time needed for particular instructions over other instructions may
affect the choice of the fastest algorithm.

We introduce the lexicographic order among sequences. Let a = a1, az, ... ,ap
and b = by, by, . .., by be two sequences. Then a precedes b(a < b) in lexicographic
order if and only if there exists i such that a; = b; for j<i and either p =i+ 1<gq
or a; < b;. The lexicographic order corresponds to dictionary order. For example,
112 <221 (where i = 1 from the definition).

LISTING ALL INSTANCES OF A COMBINATORIAL OBJECT 3

For example, the lexicographic order of subsets of {1, 2,3} in the set repre-
sentation is @, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}. In binary notation, the
order of subsets is somewhat different: 000, 001, 010, 011, 100, 101, 110, 111,
which correspond to subsets @, {3}, {2}, {2, 3}, {1}, {1,3}, {1,2}, {1,2,3}, re-
spectively. Clearly the lexicographic order of instances depends on their rep-
resentation. Different notations may lead to different listing order of same
instances.

Algorithms can be classified into recursive or iterative, depending on whether or
not they use recursion. The iterative algorithms usually have advantage of giving
easy control over generating the next instance from the current one, which is often a
desirable characteristic. Also some programming languages do not support recursion.
In this chapter we consider only iterative algorithms, believing in their advantage over
recursive ones.

Almost all sequential generation algorithms rely on one of the following three
ideas:

1. Unranking, which defines a bijective function from consecutive integers to
instances of combinatorial objects. Most algorithms in this group do not satisfy
Property 4.

2. Lexicographic updating, which finds the rightmost element of an instance that
needs “updating” or moving to a new position.

3. Minimal change, which generates instances of acombinatorial object by making
as little as possible changes between two consecutive objects. This method can
be further specified as follows:

¢ Gray code generation, where changes made are theoretically minimal possi-
ble.

e Transpositions, where instances are generated by exchanging pairs of (not
necessarily adjacent) elements.

¢ Adjacent interchange, where instances are generated by exchanging pairs of
adjacent elements.

The algorithms for generating combinatorial objects can thus be classified
into those following lexicographic order and those following a minimal change
order. Both orders have advantages, and the choice depends on the applica-
tion. Unranking algorithms usually follow lexicographic order but they can fol-
low minimal change one (normally with more complex ranking and unranking
functions).

Many problems require an exhaustive search to be solved. For example, finding
all possible placements of queens on chessboard so that they do not attack each other,
finding a path in a maze, choosing packages to fill a knapsack with given capacity
optimally, satisfy a logic formula, and so on. There exist a number of such problems
for which polynomial time (or quick) solutions are not known, leaving only a kind of
exhaustive search as the method to solve them.

4 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Since the number of candidates for a solution is often exponential to input size,
systematic search strategies should be used to enhance the efficiency of exhaustive
search. One such strategy is the backtrack. Backtrack, in general, works on partial
solutions to a problem. The solution is extended to a larger partial solution if there is
a hope to reach a complete solution. This is called an extend phase. If an extension
of the current solution is not possible, or a complete solution is reached and another
one is sought, it backtracks to a shorter partial solution and tries again. This is called
a reduce phase. Backtrack strategy is normally related to the lexicographic order of
instances of a combinatorial object. A very general form of backtrack method is as
follows:

initialize;

repeat
if current partial solution is extendable then extend else reduce;
if current solution is acceptable then report it;

until search is over

This form may not cover all the ways by which the strategy is applied, and, in the
sequel, some modifications may appear. In all cases, the central place in the method
is finding an efficient test as to whether current solution is extendable. The backtrack
method will be applied in this chapter to generate all subsets, combinations, and other
combinatorial objects in lexicographic order.

Various algorithms for generating all instances of a combinatorial object can
be found in the journal Communications of ACM (between 1960 and 1975) and
later in ACM Transactions of Mathematical Software and Collected Algorithms
from ACM, in addition to hundreds of other journal publications. The generation
of ranking and unranking combinatorial objects has been surveyed in several books
[6,14,21,25,30,35,40].

1.2 LISTING SUBSETS AND INTEGER COMPOSITIONS

Without loss of generality, the combinatorial objects are assumed to be taken from the
set{1,2,...,n}, which is also called n-set. We consider here the problem of generat-
ing subsets in their set representation. Every subset [or (n,n)-subset] is represented in
the set notation by a sequence X1, x2, ..., X, 1 <r <n, 1l <xj<xp<...<x, <n.
An (m,n)-subset is a subset with exactly m elements.

Ehrlich [11] described a loopless procedure for generating subsets of an n-set.
An algorithm for generating all (m,n)-subsets in the lexicographic order is given in
the work by Nijenhius and Wilf [25]. Semba [33] improved the efficiency of the
algorithm; the algorithm is modified in the work by Stojmenovi¢ and Miyakawa [37]
and presented in Pascal-like notation without goto statements. We present here the
algorithm from the work by Stojmenovi¢ and Miyakawa [37]. The generation goes
in the following manner (e.g., let n = 5):

LISTING SUBSETS AND INTEGER COMPOSITIONS 5

1 12 123 1234 12345

1235
124 1245
125
13 134 1345
135
14 145
15
2 23 234 2345
235
24 245
25
3 34 345
35
45

The algorithm is in extend phase when it goes from left to right staying in the same
row. If the last element of a subset is n, the algorithm shifts to the next row. We call
this the reduce phase.

read(n); r < 0; x, < O;

repeat
if x,<n then extend else reduce;
print out x1, x2, ..., Xr

until x; =n

extend = {x;4+| < x, + 1, r < r+ 1}
reduce = {r < r —1; x, < x, + 1}.

The algorithm is loopless, that is, has constant delay. To generate (m,n)-subsets,
the if instruction in the algorithm should be changed to

if x,<n and r<m then {x,;| < x, + 1; r < r + 1} (* extend *)
else if x,<n then x, < x, + 1 (*cut *)
else {r < r — 1; x, < x, + 1} (* reduce *).

The new cut phase will be used when the algorithm goes from one subset to a
subset in a lower row, skipping several subsets (having more than m elements). For
example, form = 3 and n = 5, the first three columns of the last table of subsets are

6 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

(3,5)-subsets. This illustrates the backtrack process applied on all subsets to extract
(m,n)-subsets.

We now present the algorithm for generating variations. A (m,n)-variation out of
{p1, p2, ..., pn} can be represented as a sequence cic3 . .. c,, Where p1 < ¢; < py.
Let z1z2 ...z, be the corresponding array of indices, that is, ¢; = p;;, 1 <i < m.
The next variation can be determined by a backtrack search that finds an element ¢,
with the greatest possible index ¢ such that z; <n, therefore increasable (the index ¢ is
called the turning point). The value of z; is increased by 1 while the new value of z;
fori >t is 1. The algorithm is as follows.

fori < 0 to mdoz; < 1;

repeat
printout p;,, 1 <i <m;
1 <—m;
whilez;, =n dot < 1t—1;
<z + 1
fori < t+1 to m doz; < 1
until r = 0.

‘We now prove that the algorithm has constant average delay property. Every step
will be assigned to the current value of 7; in this way the time complexity 7 is sub-
divided into m portions T1, T», ..., T,,. In the process of a backtrack search and the
update of elements, every portion 7; for + < i < m increases by a constant amount.
After the update, ith element does not change (moreover, the backtrack search does
not reach it) during the next 1™~ variations (i.e., T; does not increase). Therefore,
on average, T; increases by O(1/n™~") . It follows that the average delay is, up to a
constant,

m
1 1 m+1 -1
3 =T T _on.

npm=l pm p_1

Subsets may be also represented in binary notation, where each “1” corresponds
to the element from the subset. For example, subset {1,3,4} for n = 5 is represented
as 11010. Thus, subsets correspond to integers written in the binary number system
(i.e., counters) and to bitstrings, giving all possible information contents in a com-
puter memory. A simple recursive algorithm for generating bitstrings is given in the
work by Parberry [28]. A call to bitstring (n) produces all bitstrings of length n as
follows:

procedure bitstring(m);
if m = 0 then print out ¢;;
else ¢, < 0; bitstring(m — 1);
cm < 1; bitstring(m — 1) .

LISTING COMBINATIONS 7

Given an integer n, it is possible to represent it as the sum of one or more positive
integers (called parts) g; thatis,n = x1 + x3 + - - - 4+ x,,. This representation is called
an integer partition if the order of parts is of no consequence. Thus, two partitions of
an integer n are distinct if they differ with respect to the x; they contain. For example,
there are seven distinct partitions of the integer 5: 5,4+ 1,3+2,34+1+1, 2+
241,24+ 14+1+1, 1 +1+ 14 1+ 1. If the order of parts is important then the
representation of n as a sum of some positive integers is called integer composition.
For example, integer compositions of 5 are the following:

5,441, 1+4,3+2,243,3+1+1, 1+3+1, 1+1+3,2+2+1,
24142, 14242, 2+1+1+1L 1424141, 1+1+2+1,
I+1+1+2, 14+1+14+1+1.

Compositions of an integer n into m parts are representations of » in the form
of the sum of exactly m positive integers. These compositions can be written in the
formxy + .-+ 4 x, = n,wherex; >0, ..., x, > 0. We will establish the correspon-
dence between integer compositions and either combinations or subsets, depending
on whether or not the number of parts is fixed.

Consider a composition of n = x| + - - - + x,,, where m is fixed or not fixed.
Let y1, ..., ym be the following sequence: y; = x1 + --- 4+ x;, 1 <i < m. Clearly,
ym =n . The sequence yi, y2,..., ym—1 1S a subset of {1,2,...,n — 1}. If the
number of parts m is not fixed then compositions of n into any number of parts
correspond to subsets of {1,2,...,n — 1}. The number of such compositions is
in this case CM(n) = 2"~!. If the number of parts m is fixed then the sequence
Y1, ..., Ym—1 is a combinations of m — 1 out of n — 1 elements from {1, ..., n — 1},
and the number of compositions in question is CO(m,n) = C(m — 1,n — 1). Each
sequence X1 . .. X, can easily be obtained from y1, ..., y;, since x; = y; — y;—1 (with
yo=0).

To design a loopless algorithm for generating integer compositions of 7, one can
use this relation between compositions of # and subsets of {1, 2, ..., n — 1}, and the
subset generation algorithm above.

1.3 LISTING COMBINATIONS

A (m,n)-combination out of {pi1, p2,..., pn} can be represented as a se-
quence c1,c2,...,Cnm, Where p; < cj<ca<---<cm < pn. Let z1, 22,...,2m be
the corresponding array of indices, that is, ¢; = p;,1 <i <m. Then 1 <
721<22<---<zm=<n, and therefore z; <n —m +i for 1 <i < m. The number of
(m,n)-combinations is binomial coefficient C(m, n) = n!/(m!(n — m)!). In this sec-
tion, we investigate generating the C(m,n) (m,n)-combinations, in lexicographically
ascending order. Various sequential algorithms have been given for this problem.

8 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Comparisons of combination generation techniques are given in the works by Akl
[1] and Payne and Ives [29]. Akl [1] reports algorithm by Misfud [23] to be the fastest
while Semba [34] improved the speed of algorithm [23].

The sequential algorithm [23] for generating (m,n)-combinations determines the
next combination by a backtrack search that finds an element ¢, with the greatest
possible index ¢ such that z,<n — m + t, therefore increasable (the index 7 is called
the turning point). The new value of z; fori > tisz; +i—t+ 1.

The average delay of the algorithm is O(n/(n — m)) [34]. The delay is constant
whenever m = o(n). On the contrary, the average delay may be nonconstant in some
cases (e.g., whenn — m = O(/n)). Semba [34] modified the algorithm by noting that
there is no need to search for the turning point as it can be updated directly from one
combination to another, and that there is no need to update the elements with indices
between ¢ and m if they do not change from one combination to another. If z;,<n —
m + t — 1 then all elements in the next combination will be less that their appropriate
maximal values and the turning point of the next combination will be index . In this
case, a total of d = m — ¢ + 1 elements change their value in the next combination.
Otherwise, that is, when z; =n —m +t — 1, the new value for the turning point
element becomes its maximal possible value n — m + ¢, elements between ¢ and m
remain unchanged (with their maximal possible values), and the turning point for the
next combination is the element with index ¢ — 1. Only one element is checked in
this case. The following table gives values of # and d for (4,6)-combinations.

1234 1235 1236 1245 1246 1256 1345 1346 1356 1456 2345 2346 2356 2456 3456
t=4 4 3 4 3 2 4 3 2 1 4 3 2 1 0
d=11 2 1 1 3 1 1 1 4 1 1 1 1

The algorithm [34] is coded in FORTRAN language using goto statements. Here
we code it in PASCAL-like style.

z0 < 1;t < m;
fori <1 to m doz; < i
repeat

print out p,,, 1 <i <m;

% <+ 1

ifz;=n—m+1t thent<«t—1

else fori=tr+1tomdoz; < z;+i—t; t < m

until r = 0.

The algorithm always does one examination to determine the turning point. We
now determine the average number d of changed elements. For a fixed 7, the num-
ber of (m,n)-combinations that have ¢ as the turning point with z;<n —m + ¢t — 1
is C(t,n — m + t — 2). This follows because z; = n — m + i when i>t for each of
these combinations while z1, z2, . .., z; can be any (¢, n — m + t — 2) -combination.
The turning point element is always updated. In addition, m — ¢ elements when-
ever z;<n —m +t — 1, which happens C(t,n — m 4 t — 2) times. Therefore, the

LISTING PERMUTATIONS 9

total number of updated elements (in addition to the turning point) to generate all
combinations is

m—1

m
S m—nCtn—m+1-2)=> jCn—j-2,n—m=2)
t=1 j=0

m

Cn—m—-—1,n—-1)—m

n—m

m
—C(m,n) —m.
n

Thus, the algorithms updates, on the average, less than m/n + 1<2 elements and
therefore the average delay is constant for any m and n(m < n).

1.4 LISTING PERMUTATIONS

A sequence pi, p2, ..., pp, of mutually distinct elements is a permutation of S =
{s1,82,...,sy}ifandonlyif{p1, p2, ..., pn} = {51, 52, ..., s} = S.Inother words,
an n-permutation is an ordering, or arrangement, of n given elements. For example,
there are six permutations of the set {A, B, C}. These are ABC, ACB, BAC, BCA,
CAB, and CBA.

Many algorithms have been published for generating permutations. Surveys and
bibliographies on the generation of permutations can be found in the Ord-Smith [27]
and Sedgewick [31] [27,31]. Lexicographic generation presented below is credited to
L.L. Fisher and K.C. Krause in 1812 by Reingold et al. [30].

Following the backtrack method, permutations can be generated in lexicographic
order as follows. The next permutation of xjx;...x, is determined by scanning
from right to left, looking for the rightmost place where x;<x;41 (called again the
turning point). By another scan, the smallest element x; that is still greater than
x; is found and interchanged with x;. Finally, the elements x;y1, ..., x, (which
are in decreasing order) are reversed. For example, for permutation 3, 9, 4, 8, 7,
6, 5, 2, 1, the turning point x3 = 4 is interchanged with x; =5 and 8, 7, 6, 4,
2, 1 is reversed to give the new permutation 3, 9, 5, 1, 2, 4, 6, 7, 8. The fol-
lowing algorithm is the implementation of the method for generating permutations
of {p1, p2, ..., pn}. The algorithm updates the indices z; (such that x; = p,,,),
1<i<n.

fori < 0 tondoz; < 1i;
i< 1;
whilei # 0 do {
print out p;,, 1 <i < n;

i< n—1;
while z; > z;11 doi < i—1;
Jj < n;

whilez; > z; doj < j—1;

10 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

ch < zi5 zi < 2j5 2j < ch;

v<n;u<i+1;

while v>u do {ch < zy; 7y < Zu; Zu < ch;v <~ v —1;
u < u—+1}}.

We prove that the algorithm has constant average delay property. The time
complexity of the algorithm is clearly proportional to the number of tests z; > z;41
in the first while inside loop. If ith element is the turning point, the array z;+1, ..., 2,
is decreasing and it takes (n — 1) tests to reach z;. The array z1z...z; is a
(m,n)-permutation. It can be uniquely completed to n-permutation z1z2...Zn
such that z;41>--->z,. Although only these permutations for which z;<z;1
are valid for z; to be the turning point, we relax the condition and artificially
increase the number of tests in order to simplify the proof. Therefore for each
i,1 <i<n-—1 there are at most P(i,n)=n(n —1)---(n —i+ 1) arrays such
that z; is the turning point of n-permutation z1z3...z,. Since each of them
requires n — i tests, the total number of tests is at most Zl'.’:_ll P, n)(n—1i)=
S =) — i+ D — D)= Y nl /(=i — D =nl S5 1)1
Since j!l=2-3---j>2x2---x2=2/"1 the average number of tests is
<2+ Z'};g 1/2/~1Y=241/241/4+...<3. Therefore the algorithm has
constant delay property. It is proved [27] that the algorithm performs about 1.5n!
interchanges.

The algorithm can be used to generate the permutations with repetitions. Let
ni, na, ..., n; be the multiplicities of elements pi, pa, ..., pk, respectively, such
that the total number of elements is nj + ny + - - - + nx = n. The above algorithm
uses no arithmetic with indices z; and we can observe that the same algorithm gener-
ates permutations with repetitions if the initialization step (the first instruction, i.e.,
for loop) is replaced by the following instructions that find the first permutation with
repetitions.

n<0;z9 <0
fori < 1 to k do
for j < 1 ton; do{n < n+1; z, < j};

Permutations of combinations (or (m,n)-permutations) can be found by gener-
ating all (m,n)-combinations and finding all (m,m)-permutations for each (m,n)-
combination. The algorithm is then obtained by combining combination and permu-
tation generating algorithms. In the standard representation of (m,n)-permutations as
an array x1x»2 . . . X, the order of instances is not lexicographic. Let cic . . . ¢, be the
corresponding combination for permutation x1xz, ..., X,, that is, c;<c2< - - - <cpy
and {ci,c2,...,cm} = {x1,x2,...,x,}. Then we can observe that the obtained
order of generating (m,n)-permutations is lexicographic if they are represented
as an array of 2m elements cicy...cCp, X1X2 ... Xy, composed of corresponding
(m,n)-combination followed by the (m,n)-permutation. In other words, the order
is lexicographic if corresponding combinations are compared before comparing
permutations.

LISTING EQUIVALENCE RELATIONS OR SET PARTITIONS 11

1.5 LISTING EQUIVALENCE RELATIONS OR SET PARTITIONS

Anequivalencerelation of theset Z = {py, ..., p,}consists of classes 1, w2, . .., 7k
such that the intersection of every two classes is empty and their union is
equal to Z. Equivalence relations are often referred to as set partitions. For
example, let Z = {A, B, C}. Then there are four equivalence relations of Z :
{{A, B, C}}, {{A, BY{C}}, {{A, CH{B}}, {{A}, {B. C}}, and {{A}, {B}, {C}}.

Equivalence relations of Z can be conveniently represented by codewords
cic2 ... ¢y suchthate; = jifand only if element p; isin class ;. Because equivalence
classes may be numbered in various ways (k! ways), such codeword representation is
not unique. For example, set partition {{A, B}{C}} is represented with codeword 112
while the same partition {{C}{A, B}} is coded as 221.

In order to obtain a unique codeword representation for given equivalence rela-
tion, we choose lexicographically minimal one among all possible codewords. Clearly
c1 = 1 since we can choose 71 to be the class containing p;. All elements that are in
mrp are also coded with 1. The class containing element that is not in 71 and has the
minimal possible index is m> and so on. For example, let {{C, D, E}, {B}, {A, F}}
be a set partition of {A, B, C, D, E, F}. The first equivalence class is {A, F},
the second is {B}, and the third is {C, D, E}. The corresponding codeword is
123331.

A codeword c; ...c, represents an equivalence relation of the set Z if and
onlyifci=1and 1 <¢, <gr—1+1for2<r=<n, where ¢; = jif iisin mj,
and g, = max(cy, ..., c,) for 1 <r <n . This follows from the definition of lex-
icographically minimal codeword. Element p, is either one of the equivalence
classes with some other element p;(i<t) in which case ¢; receives one of exist-
ing codes assigned to elements pi, pa2,..., pr—1 Or in none of previous classes,
in which case it starts a new class with index one higher than previously maximal
index.

Sequential algorithms [9,12,25,32] generate set partitions represented by code-
words in lexicographic order. The next equivalence relation is found from the current
one by a backtracking or recursive procedure in all known sequential generating tech-
niques that maintain the lexicographic order of elements; in both cases an increasable
element (one for which x;< g; — 1 is satisfied) with the largest possible index 7 is
found (f < n — 2); we call this element the furning point. For example, the turning
point of the equivalence relation 1123 is the second element (t = 2).

A list of codewords and corresponding partitions forn =4 and Z = {A, B, C, D}
is, in lexicographic order, as follows:

1111 = {{A, B, C, D}}, 1112 = {{A, B, C}, {D}}, 1121 = {{A, B, D}, {C}},
1122 = {{A, B}, {C, D}}, 1123 = {{A, B}, {C}, {D}},
1211 = {{A, C, D}, {B}}, 1212 = {{A, C}, {B, D}},

1213 = {{A, C}, {B}, {D}}, 1221 = {{A, D}, {B, C}},
1222 = {{A}, {B, C,D}}, 1223 = {{A}, {B, C}, {D}}, 1231 = {{A, D}, {B}, {C}},

{
1232 = {{A}, {B, D}, {C}}, 1233 = {{A}, {B}, {C, D}}, 1234 = {{A}, {B}, {C}, {D}}.

12 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

We present an iterative algorithm from the work by Djokic et al. [9] for generating
all set partitions in the codeword representation. The algorithm follows backtrack
method for finding the largest » having an increasable c;, thatis, ¢, <g,—1 + 1.

program setpart(n);
r<1l;c1«1; j<«<0;bp < 1;nl < n—1;

repeat
whiler<nl dof{r < r+1;¢, < 1; j < j+1;bj < r};
fori < 1 ton — j do{c, < i; printoutcy, ¢, ..., cp};

r<bjc <—c+1;
ifc,>r— j then j < j—1
until »r = 1

In the presented iterative algorithm b; is the position where current position r
should backtrack after generating all codewords beginning with ¢y, ¢, ..., c,—1.
Thus the backtrack is applied on n — 1 elements of codeword while direct generation
of the last element in its range speeds the algorithm up significantly (in most set
partitions the last element in the codeword is increasable). An element of b is defined
whenever g, = g,—1, which is recognized by either ¢, = 1 or ¢,>r — j in the algo-
rithm. It is easy to see that the relation r = g,_1 + j holds whenever j is defined. For
example, for the codeword ¢ = 111211342 we have g = 111222344 and b = 235609.
Array b hasn — g, = 9 — 4 = 5 elements.

In the algorithm, backtrack is done on array b and finds the increasable element in
constant time; however, updating array b for future backtrack calls is not a constant
time operation (while loop in the program). The number of backtrack calls is B,
(recall that B, is the number of set partitions over n elements).

The algorithm has been compared with other algorithms that perform the same
generation and it was shown to be the fastest known iterative algorithm. A recursive
algorithm is proposed in the work by Er [12]. The iterative algorithm is faster than
recursive one on some architectures and slower on other [9].

The constant average time property of the algorithm can be shown as in the work
by Semba [32]. The backtrack step returns to position r exactly B, — B,_1 times, and
each time it takes n — r 4 1 for update (while loop), for 2 < r <n — 1. Therefore,
up to a constant, the backtrack steps require (B, — B1)(n — 1) + (B3 — Ba)(n — 2) +
-oo 4+ (By—1 — By—2)2 + B3 + - - - + B,_2 + 2B,,_1. The update of nth element
is performed B,, — B,_| times. Since B;1>2B;, the average delay, up to a constant,
is bounded by

B B, ---+ B 1 1
n+ Bp—1 + +2<1+7+

1
B, PR T

n—2

1.6 GENERATING INTEGER COMPOSITIONS AND PARTITIONS

Given an integer n, it is possible to represent it as the sum of one or more positive
integers (called parts) x;, thatis,n = x; + x2 + - - - + x;,,. Thisrepresentation is called

GENERATING INTEGER COMPOSITIONS AND PARTITIONS 13

an integer partition if the order of parts is of no consequence. Thus, two partitions of
an integer n are distinct if they differ with respect to the x; they contain. For example,
there are seven distinct partitions of the integer 5:

504+ 1L,34+2,3+1+1,24+2+1,241+1+1, 1+1+1+1+1

In the standard representation, a partition of n is given by a sequence x1, ..., X,
where x; > xp > --- > x,, and x1 + x2 + - - - + x;,;, = n. In the sequel x will denote
an arbitrary partition and m will denote the number of parts of x (m is not fixed). It
is sometimes more convenient to use a multiplicity representation for partitions in
terms of a list of the distinct parts of the partition and their respective multiplicities.
Let y;> --->yg4 be all distinct parts in a partitions, and c1, ..., ¢4 their respective
(positive) multiplicities. Clearly c1y; + - - - 4+ cqyq = n.

We first describe an algorithm for generating integer compositions of n into
any number of parts and in lexicographic order. For example, compositions of 4
in lexicographic order are the following: 1 +1+ 14+ 1, 1 +14+2, 1 +24+1, 1 +
3,24+1+1,2+42,3+1,4. Let x1...x,, where x; +x2+---4+x,, =n be a
composition. The next composition, following lexicographic order, is x1, . . ., X;—1 +
1, 1,..., 1(x;, — 1 1s). In other words, the next to last part is increased by one and
the x,, — 1, 1s are added to complete the next composition. This can be coded as
follows:

program composition(n);
m < 1; x; < n;
repeat
for j < 1 to m do printout x1, x2, ..., Xp;
m<—m—1; xp < xpn +1;
for j < 1 tox,+1 —1 do{m < m+1; x,, < 1}
until m = n.

In antilexicographic order, a partition is derived from the previous one by subtract-
ing 1 from the rightmost part greater than 1, and distributing the remainder as quickly
as possible. For example, the partitions following9 +7+6+14+14+1+14+141
189 4+ 7 4+ 5 + 5 + 2. In standard representation and antilexicographic order, the next
partition is determined from current one x1x3 . . . X, in the following way. Let / be the
number of parts of x greater than 1, thatis, x;>1for1 <i < h,andx; = lforh <i <

m. If x,,>1 (or h = m) then the next partition is x{, X2, ..., X;—1, Xm — 1, L.
Otherwise (i.e., h <m), the next partition is obtained by replacing xj, xp4+1 =
1,...,x, = 1lwith(xp — 1), (xp, — 1), ..., (x5 — 1), d, containing c elements, where

O<d<xy,—land(xp, — I)(c—1)+d=x, +m — h.

We describe two algorithms from the work by Zoghbi and Stojmenovic [43] for
generating integer partitions in standard representation and prove that they have con-
stant average delay property. The first algorithm, named ZS1, generates partitions in
antilexicographic order while the second, named ZS2, uses lexicographic order.

Recall that & is the index of the last part of partition, which is greater than 1
while m is the number of parts. The major idea in algorithm ZS1 is coming from the

14 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

observation on the distribution of x;,. An empirical and theoretical study shows that
x;, = 2 has growing frequencys; it appears in 66 percent of cases for n = 30 and in 78
percent of partitions for n = 90 and appears to be increasing with n. Each partition
of n containing a part of size 2 becomes, after deleting the part, a partition of n — 2
(and vice versa). Therefore the number of partitions of n containing at least one part
of size 2is P(n — 2). The ratio P(n — 2)/ P(n) approaches 1 with increasing n. Thus,
almost all partitions contain at least one part of size 2. This special case is treated
separately, and we will prove that it suffices to argue the constant average delay of
algorithm ZS1. Moreover, since more than 15 instructions in known algorithms that
were used for all cases are replaced by 4 instructions in cases of at least one part of size
2 (which happens almost always), the speed up of about four times is expected even
before experimental measurements. The case x;>2 is coded in a similar manner as
earlier algorithm, except that assignments of parts that are supposed to receive value
1 is avoided by an initialization step that assigns 1 to each part and observation that
inactive parts (these with index >m) are always left at value 1. The new algorithm
is obtained when the above observation is applied to known algorithms and can be
coded as follows.

Algorithm ZS1
fori < 1 to n dox; < 1;
X] < n;m < 1;h < 1; output xy;
while x; # 1 do {
ifx,=2then{m < m+1;x, < 1;h < h—1}
else{r < x, — Lt < m—h+1;x, <r,
whilet >r do{h < h+1; x;, < r;t <t —r}
ift=0 thenm < h
elsem < h+1
ifr>1 then {h < h + 1; x5, < t}}
output X1, x2, ..., Xn}}.

We now describe the method for generating partitions in lexicographic order and
standard representation of partitions. Each partition of n containing two parts of size
1 (i.e., m — h>1) becomes, after deleting these parts, a partition of n — 2 (and vice
versa). Therefore the number of integer partitions containing at least two parts of size
1is P(n — 2), as in the case of previous algorithm. The coding in this case is made
simpler, in fact with constant delay, by replacing first two parts of size 1 by one part of
size 2. The position A of last part >1 is always maintained. Otherwise, to find the next
partition in the lexicographic order, an algorithm will do a backward search to find the
first part that can be increased. The last part x,, cannot be increased. The next to last
part x,,—1 can be increased only if x,,,_>>x,,—1. The element that will be increased
is xj where x;_1>xj and x; = x;41 = ... = xp—1. The jth part becomes x; + 1, h
receives value j, and appropriate number of parts equal to 1 is added to complete the
sum to n. For example, in the partition 5+ 5+ 544 4+ 4 44 4- 1 the leftmost 4 is
increased, and the next partitionis5 +5+5+5+14+14+1+14+14+1+141.
The following is a code of appropriate algorithm ZS2:

GENERATING INTEGER COMPOSITIONS AND PARTITIONS 15

Algorithm ZS2
fori < 1 to n dox; < 1;outputx;, i=1,2,...,n;
xo < L3x1 < 2;h < 1;m<n—1l;outputx;, i =1,2,...,m;

while x; # n do {
ifm—h>1 then{h < h+1;,x, < 2;m <« m—1}
else {j <« m —2;

while x; = x,, 1 do{x; < 1;j < j—1};
h<—j+1xp < xp1+1;
r<—Xm+xm_1m—h—1); x,, < 1;
ifm —h>1 thenx,,_| < 1;
m<h+r—1;

output X1, X2, ..., Xm}

We now prove the constant average delay property of algorithms ZS1 and ZS2.

Theorem 1 Algorithms ZS1 and ZS2 generate unrestricted integer partitions in
standard representation with constant average delay, exclusive of the output.

Proof. Consider part x; > 3 in the current partition. It received its value after
a backtracking search (starting from last part) was performed to find an index
Jj <, called the turning point, that should change its value by 1 (increase/decrease
for lexicographic/antilexicographic order) and to update values x; for j < i. The time
to perform both backtracking searches is O(r;), where rj =n — x; —x3 — - - — x;
is the remainder to distribute after first j parts are fixed. We decide to charge the
cost of the backtrack search evenly to all “swept” parts, such that each of them re-
ceives constant O(1) time. Part x; will be changed only after a similar backtracking
step “swept” over ith part or recognized ith part as the turning point (note that ith
part is the turning point in at least one of the two backtracking steps). There are
RP(r;, x;) such partitions that keep all x; intact. For x; > 3 the number of such par-
titions, is > ri2 /12. Therefore the average number of operations that are performed
by such part i during the “run” of RP(r;, x;), including the change of its value, is
O(1)/RP(ri, x;) < O(1)/r? = O(1/r?) < q;/r?, where g; is a constant. Thus the aver-
age number of operations for all parts of size > 3is < q1/r? + q2/15 + - -+ + q5/12 <
q(1/r}+ -+ 1/r) <q(1/n® + 1/(n — 1)> + - - - + 1/12) < 2q (the last inequality
can be obtained easily by applying integral operation on the last sum), which is a
constant. The case that was not counted in is when x; < 2 . However, in this case both
algorithms ZS1 and ZS2 perform constant number of steps altogether on all such
parts. Therefore the algorithm has overall constant time average delay. W

The performance evaluation of known integer partition generation methods is per-
formed in the work by Zoghbi and Stojmenovic [43]. The results show clearly that
both algorithms ZS1 and ZS2 are superior to all other known algorithms that gener-
ate partitions in the standard representation. Moreover, both algorithms SZ1 and ZS2
were even faster than any algorithm for generating integer partitions in the multiplicity
representation.

16 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

1.7 LISTING -ARY TREES

The -ary trees are data structures consisting of a finite set of n nodes, which either
is empty (n = 0) or consists of a root and ¢ disjoint children. Each child is a z-ary
subtree, recursively defined. A node is the parent of another node if the latter is a
child of the former. For r = 2, one gets the special case of rooted binary trees, where
each node has a left and a right child, where each child is either empty or is a binary
tree. A computer representation of t-ary trees with n nodes is achieved by an array
of n records, each record consisting of several data fields, ¢ pointers to children and
a pointer to the parent. All pointers to empty trees are nil. The number of t-ary trees
with n nodes is B(n, t) = (tn)!/(n!(tn — n)))/((t — Dn + 1) (cf. [19,42]).

If the data fields are disregarded, the combinatorial problem of generating binary
and, in general, t-ary trees is concerned with generating all different shapes of z-ary
trees with n nodes in some order. The lexicographic order of trees refers to the lex-
icographic order of the corresponding tree sequences. There are over 30 ingenious
generating algorithms for generating binary and r-ary trees. In most references, tree
sequences are generated in lexicographic order. Each of these generation algorithms
causes trees to be generated in a particular order. Almost all known sequential algo-
rithms generate tree sequences, and the inclusion of parent—child relations requires
adding a decoding procedure, usually at a cost of greatly complicating the algorithm
and/or invalidating the run time analysis. Exceptions are the works by Akl et al. [4]
and Lucas et al. [22].

Parent array notation [4] provides a simple sequential algorithm that extends triv-
ially to add parent—children relations. Consider a left-to-right breadth first search
(BFS) labeling of a given tree. All nodes are labeled by consecutive integers
1,2, ..., n such that nodes on a lower level are labeled before those on a higher
level, while nodes on the same level are labeled from left to right. Children are or-
dered as L =1, ..., t. Parent array py, ..., p, can be defined as follows: p; = 1,
pi =t(j — 1)+ L 4 1ifiis the Lth child of node j, 2 <i < n, and it has property
pi—1 <pi <ti —t+ 1for2 <i < n.Forexample, the binary tree on Figure 1.1 has
parent array 1, 3, 4, 5, 7, 8; the 3-ary tree on Figure 1.1 has parent array 1, 2, 3, 4, 8,
10, 18.

The algorithm [4] for generating all parent arrays is extended from the work by
Zaks [42] to include parent—children relations (the same sequence in the works by
Zaks [42] and Akl et al. [4] refers to different trees). The Lth children of node i is
denoted by child; 1 (it is O if no such child exist) while parent; denotes the parent

. |
2 2/f3\.54
3 W 4)-ﬂ/\6?

a5 '3{ 79

FIGURE 1.1 Binary tree 1, 3, 4, 5, 7, 8 and ternary tree 1, 2, 3, 4, 8, 10, 18.

LISTING r-ARY TREES 17

node of i. Integer division is used throughout the algorithm. The algorithm generates
tree sequences in lexicographic order.

fori < 1 to n do
for L <~ 1 to ¢ do child;; < 0;
fori < 1 to n do {p; < i; parent; < (i —2)/t+ 1;
L < p; — 1 —t(parent; — 1); child;_2)/111,L < i}

repeat

report r-ary tree;

j < n;

while p; <2j —1and j>1 do {i < parent;;

L < pi—1—t(i—1);childip < 0; j < j—1}

pj<pj+L

fori < j+1 to n dop; < pi_1+1;

fori < j to n do {k < (p; —2)/t + 1; parent; < k;

L < pi — 1 —t(k —1); childy 1 < i}

until p; =2.

Consider now generating f-ary trees in the children array notation. A tree is repre-
sented using a children array cjcs, 3, .. ., ¢i, as follows:

e The jth children of node i is stored in ¢j—1y+j+1 forl <i <m—1landl < j <
t; missing children are denoted by 0. The array is, for convenience, completed
with ¢; = 1 and ¢, —1)142 = - - - = ¢4y = 0 (node n has no children).

For example, the children array notations for trees in FIGURE 1.1 are
102340560000 and 123400050600000007000. Here we give a simple algorithm to
generate children array tree sequences, for the case of t-ary trees (generalized from
the work by Akl et al. [4] that gives corresponding generation of binary trees).

The rightmost element of array c that can be occupied by an integer j>0, repre-
senting node j, is obtained when j is #th child of node j — 1, that is, it is ¢(j—1)/+1-
We say that an integer j is mobile if it is not in ¢(j_1),+1 and all (nonzero) integers
to its right occupy their rightmost positions. A simple sequential algorithm that uses
this notation to generate all z-ary trees with n nodes is given below. If numerical order
0 <1< --- <nis assumed, the algorithm generates children array sequences in an-
tilexicographic order. Alternatively, the order may be interpreted as lexicographic if
0, 1, ---, naretreated as symbols, ordered as “1” < “2” < ... < “n” < “0”. Numeric
lexicographic order may be obtained if O is replaced by a number larger than n (the
algorithm should always report that number instead of 0).

fori < 1 to n doc; < i;
fori < n+1 to tn doc; < 0;
repeat

printout ¢y, ..., Cm;

i< (n— D

18 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

while (¢ =Oorc; =51 +1) and (i > 1) doi < i 1;
Cit1 < Cis
ci < 0;
fork < 1 ton —cijy1 do cjtxy1 < Cigr + 1
fork < i4+n—cit1+2ton—1)t+1 docy <0
untili = 1.

We leave as an exercise to design an algorithm to generate well-formed parenthesis
sequences. This can be done by using the relation between well-formed parenthesis
sequences and binary trees in the children representation, and applying the algorithm
given in this section.

An algorithm for generating B-trees is described in the work by Gupta et al.
[16]. It is based on backtrack search, and produces B-trees with worst case delay
proportional to the output size. The order of generating B-trees becomes lexicographic
if B-trees are coded as a B-tree sequence, defined in [5]. The algorithm [16] has
constant expected delay in producing next B-tree, exclusive of the output, which is
proven in the work by Belbaraka and Stojmenovic [5]. Using a decoding procedure, an
algorithm that generates the B-tree data structure (meaning that the parent—children
links are established) from given B-tree sequence can be designed, with constant
average delay.

1.8 LISTING SUBSETS AND BITSTRINGS IN A GRAY CODE ORDER

It is sometimes desirable to generate all instances of a combinatorial object in such
a way that successive instances differ as little as possible. An order of all instances
that minimizes the difference between any two neighboring instances is called mini-
mal change order. Often the generation of objects in minimal change order requires
complicated and/or computationally expensive procedures. When new instances are
generated with the least possible changes (by a single insertion of an element, single
deletion or single replacement of one element by another, interchange of two ele-
ments, updating two elements only, etc.), corresponding sequences of all instances of
a combinatorial objects are refereed to as Gray codes. In addition, the same property
must be preserved when going from the last to first sequence. In most cases, there is
no difference between minimal change and Gray code orders. They may differ when
for a given combinatorial object there is no known algorithm to list all instances in
Gray code order. The best existing algorithm (e.g., one in which two instances differ
at two positions whereas instances may differ in one position only) then is referred
to achieving minimal change order but not in Gray code order.

We describe a procedure for generating subsets in binary notation, which is
equivalent to generating all bitstrings of given length. It is based on a backtrack
method and sequence comparison rule. Lete; = O0ande; = x1 +x2 + -+ - + x;_1 for
1 <i < n. Then the sequence that follows xjx;...x, is x1x3.. .xi_lxgx,url e Xp,
where i is the largest index such that e¢; + x; is even and / is complement function

GENERATING PERMUTATIONS IN A MINIMAL CHANGE ORDER 19

0 =1,1 =0;alsox’ = x+ 1 mod 2).

read(n);
fori < 0 to n do {x; < 0; ¢; < 0};
repeat
print out x1, X2, ..., X,;
i < n;
while x; +¢;isodd doi < i —1;
Xi < X3
forj<i+1tondoe; < ¢
untili = 0.

The procedure has O(n) worst case delay and uses no large integers. We will prove
that it generates Gray code sequences with constant average delay. The element x;
changes 2! times in the algorithm, and each time it makes n — i + 1 steps back and
forth to update x;. Since the time for each step is bounded by a constant, the time
to generate all Gray code sequences is > 7 c2=Y(n — i + 1). The average delay is
obtained when the last number is divided by the number of generated sequences 2",
and is therefore

n n
_ 4 n 1
szfnﬂ*l(n_i_kl):c E 21i=C<2—2n_2n_1) <2c.
i=1 =1

An algorithm for generating subsets in the binary notation in the binary reflected
Gray code that has constant delay in the worst case is described in the work by
Reingold et al. [30]. Efficient loopless algorithms for generating k-ary trees are
described in the Xiang et al. [41].

1.9 GENERATING PERMUTATIONS IN A MINIMAL CHANGE ORDER

In this section we consider generating the permutations of {pi, p2,..., pn}
(p1 < --- < pyp) in a minimum change order. We present one that is based on the
idea of adjacent transpositions, and is independently proposed by Johnson [18] and
Trotter [39]. It is then simplified by Even [14]. In the work by Even [14], a method
by Ehrlich is presented, which has constant delay. The algorithm presented here is a
further modification of the technique, also having constant delay, and suitable as a
basis for a parallel algorithm [36].

The algorithm is based on the idea of generating the permutations of
{p1, p2, ..., pu} from the permutations of {p|, pa2,..., pp—1} by taking each such
permutation and inserting p, in all n possible positions of it. For example, tak-
ing the permutation p; ps...py—1 of {p1, p2,..., pu—1} We get n permutations
of {p1, p2,..., pn} as follows:

20 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

P1 P2 ... Pn=2 Pn—1 Pn
P1 P2 --- Pn-2 Pn Pn—1
P1pP2...Dn Pn—2 Pn—1

Pn P1--- Pn-3 Pn-2 Pn—1-

The nth element sweeps from one end of the (n — 1) -permutation to the other by a
sequence of adjacent swaps, producing a new n-permutation each time. Each time the
nth element arrives at one end, a new (n — 1) -permutation is needed. The (n — 1)-
permutations are produced by placing the (n — 1)th element at each possible position
within an (n — 2) -permutation. That is, by applying the algorithm recursively to the
(n — 1) elements.

The first permutation of the set {pi, p2, ..., pn} iS p1, P2, ..., pn. Assign a
direction to every element, denoted by an arrow above the element. Initially all arrows
point to the left. Thus if the permutations of {p1, p2, p3, pa} are to be generated, we
would have

Now an element is said to be mobile if its direction points to a smaller adjacent
neighbor. In the above example, p>, p3 and p4 are mobile, while in

only p3 is mobile. The algorithm is as follows:

While there are mobile elements do
(i) find the largest mobile element; call it p,,
(ii) reverse the direction of all elements larger than p,,
(iii) switch p,, with the adjacent neighbor to which its direction points
endwhile.

The straightforward implementation of the algorithm leads to an algorithm that
exhibits a linear time delay. The algorithm is modified to achieve a constant delay.
After initial permutation, the following steps are then repeated until termination:

1. Move element p,, to the left, by repeatedly exchanging it with its left neighbor,
and do (i) and (ii) in the process.

2. Generate the next permutation of {p1, p2, ..., pn—1} (i.e., do step (iii)).

3. Move element p, to the right, by repeatedly exchanging it with its right neigh-
bor, and do (i) and (ii) in the process.

GENERATING PERMUTATIONS IN A MINIMAL CHANGE ORDER 21
4. Generate the next permutation of {p1, p2, ..., pn—1} (i.e., do step (iii)).

For example, permutations of {1, 2, 3, 4} are generated in the following order:

1234, 1243, 1423, 4123 move element 4 to the left

4132 132 is the next permutation of 123, with
3 moving to the left

1432, 1342, 1324 move 4 to the right

3124 312 s the next permutation following 132, with
3 moving to the left

3142, 3412, 4312 4 moves to the left

4321 321 is the next permutation following 312;
2in 12 moves to the left

3421, 3241, 3214 4 moves to the right

2314 231 follows 321, where 3 moves to the right

2341, 2431, 4231 4 moves to the left

4213 213 follows 231, 3 moved to the right

2413, 2143, 2134 4 moves to the right.

The constant delay is achieved by observing that the mobility of p, has a regular
pattern (moves n — 1 times and then some other element moves once). It takes n — 1
steps to move p, to the left or right while (i), (ii), and (iii) together take O(n) time.
Therefore, if steps (i), (ii), and (iii) are performed after p,, has already finished moving
in a given direction, the algorithm will have constant average delay. If the work in steps
(i) and (ii) [step (iii) requires constant time] is evenly distributed between consecutive
permutations, the algorithm will achieve constant worst case delay. More precisely,
finding largest mobile element takes n — 1 steps, updating directions takes alson — 1
steps. Thus it suffices to perform two such steps per move of element p,, to achieve
constant delay per permutation.

The current permutation is denoted d;, da, ..., d,. The direction is stored in a vari-
able a, where a; = —1 for left and a; = 1 for right direction. When two elements are
interchanged, their directions are also interchanged implicitly. The algorithm termi-
nates when no mobile element is found. For algorithm conciseness, we assume that
two more elements pg and p,4; are added such that pg < p; < ... < pn < Pp+1-
Variable i is used to move p,, from right to left i =n, n — 1, ..., 2) or from left
toright (= 1,2,...,n — 1). The work in steps (i) and (ii) is done by two “sweep-
ing” variables [(from left to right) and r (from right to left). They update the largest
mobile elements dlm and drm, respectively, and their indices /m and rm, respec-
tively, that they detect in the sweep. When they “meet” (I = rorl = r — 1) the largest
mobile element dim and its index /m is decided, and the information is broadcast
(when [>r) to all other elements who use it to update their directions. Obviously the

22

GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

sweep of variable i coincides with either the sweep of / or sweep of . For clarity, the
code below considers these three sweeps separately. The algorithm works correctly

for n>2.

procedure output;
{fors < 1 to n do write(d[s]); writeln}

procedure exchange (¢, b: integer);
{ch < d[c + b]; d[c + b] < d|[c]; d[c] < ch; ch < a[c + D],
alc + b] < alcl; alc] < ch};

procedure updatelm; {
I <1+ 1;if (d[l] = pp)or(d[l + dir] = p,) thenl <[+ 1;
if />r then {
ifd[l—1]# p, then/l <[—1 elsell <[-2,
ifd[l+1]# p, thenl2 < [+ 1 elsel2 < [+ 2;
if (((a[ll = —1)and (d[I1] < d[l])) or ((a[l]] = 1) and
(d[12] < d[1]))) and (d[I]>dIm)
then {Im < [; dim < d[11};};
if (I =r)or(I =r—1))and (drm>dIm) then {Im < rm;
dim < drm};
if (I>r) and (d[r]>dlm) then a[r] < —alr];
r < r—1; if (d[r] = pn) or (d[r + dir] = p,) thenr < r —1;
ifl <r then {
ifdlr — 1] # p, thenll <—r —1 elsell < r—2;
ifdlr —1]# p, thenl2 < r+1 elsel2 < r+2;
if (((a[r] = —1)and (d[I1] < d[r])) or
((a[r] = D and (d[I2] < d[r)))) and (d[r]>drm)
then {rm < r; drm < d[r]1}; };
if (I=r)or(Il=r—1))and (drm>dim) then
{Im < rm; dlm < drm};
if (ler) and (d[r]>dlm) then a[r] — a[r];
exchange(i, dir);
if i +dir =Im thenim <« i
ifi +dir = rm thenrm < i;
output; };
read(n); fori < 0 ton + 1 doread p;;
d[0] < pusi; din+ 11 < pusi din + 2] < po;
fori < 1 to n do {d[i] < p;; ali] < —1};
repeat
output;
l<—Lir<n+1;Im<n+2;dlm < pop;rm < n+2;
drm < po;dir < —1;
for i < n downto 2 do updatelm;
exchange (Im, a[lm]);

RANKING AND UNRANKING OF COMBINATORIAL OBJECTS 23

output;
I <~ Lir<—n+1;Im < n+2;dlm < po;
drm < po; rm < n + 2; dir < 1,
fori < 1 ton — 1 do updatelm;
exchange (Im, a[lm]);
until /m = n + 2.

1.10 RANKING AND UNRANKING OF COMBINATORIAL OBJECTS

Once the objects are ordered, it is possible to establish the relations between in-
tegers 1,2,..., N and all instances of a combinatorial object, where N is the
total number of instances under consideration. The mapping of all instances
of a combinatorial object into integers is called ranking. For example, let f{X)
be ranking procedure for subsets of the set {1,2,3}. Then, in lexicographic
order, fO) = 1, f({1}) = 2, f({1,2)) =3, f({1,2.3]) = 4, f({1,3) =5, f({2}) =
6, f({2,3}) = 7and f({3}) = 8. The inverse of ranking, called unranking, is mapping
of integers 1, 2, ..., N to corresponding instances. For instance, f _1(4) ={1,2,3}
in the last example.

The objects can be enumerated in a systematic manner, for some combinatorial
classes, so that one can easily construct the sth element in the enumeration. In such
cases, an unbiased generator could be obtained by generating a random number s
in the appropriate range (/,N) and constructing the sth object. In practice, random
number procedures generate a number r in interval [0,1); then s = [rN1 is required
integer.

Ranking and unranking functions exist for almost every kind of combinatorial ob-
jects, which has been studied in literature. They also exist for some objects listed in
minimal change order. The minimal change order has more use when all instances
are to be generated since in this case either the time needed to generate is less or the
minimal change order of generating is important characteristics of some applications.
In case of generating an instance at random, the unranking functions for minimal
change order is usually more sophisticated than the corresponding one following lex-
icographic order. We use only lexicographic order in ranking and unranking functions
presented in this chapter.

In most cases combinatorial objects of given kind are represented as integer
sequences. Let ajaz...a, be such a sequence. Typically each element a; has
its range that depends on the choice of elements aj, aa, ..., a;—1. For example,
if ayay...a, represents a (m,n)-combination out of {1,2,...,n} then 1 <a; <
n—m+1,a<a<n—-m+2,..., an_1 <ay < n. Therefore element a; has
n —m + 1 — a;_ different choices.

Let N(ay, aa, . . ., a;) be the number of combinatorial objects of given kind whose
representation starts with aja; .. . a;. For instance, in the set of (4,6)-combinations
we have N(2, 3) = 3 since 23 can be completed to (4,6)-combination in three ways:
2345, 2346, and 2356.

24 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

To find the rank of an object aja; . . .a;,, one should find the number of objects
preceding it. It can be found by the following function:

function rank(ay, ay, ..., ay)
rank <1 ;
fori < 1 to m do
for each x < q;
rank < rank + N(ai,az, ..., ai_1, X).

Obviously in the last for loop only such values x for which ajas . ..a;—1x can be
completed to represent an instance of a combinatorial object should be considered
(otherwise adding O to the rank does not change its value). We now consider a general
procedure for unranking. It is the inverse of ranking function and can be calculated
as follows.

procedure unrank (rank, n, ay, az, ..., any)
i< 0;
repeat
I <—i+1;
x < first possible value;
while N(a;, ay, ...,ai—1,x) < rank do
{rank < rank — N(ay, ay, ..., ai_1, x);
x < next possible value};
a; < X

until rank = 0;
aiay . ..a, < lexicographically first object starting by ajas . . . a;.

We now present ranking and unranking functions for several combinatorial objects.
In case of ranking combinations out of {1, 2, ..., n}, x is ranged between a;_1 + 1
and a; — 1. Any (m, n)-combination that starts with aja; ...a;_1x is in fact a (m —
i, n — x)- combination. The number of such combinations is C(m — i, n — x). Thus
the ranking algorithm for combinations out of {1, 2, ..., n} can be written as follows
(ap = 0 in the algorithm):

function rankcomb (ay, as, .. ., a)
rank <1 ;
fori < 1 to m do
forx < ai_1+1 toa; — 1 do
rank < rank + C(m — i, n — x).

In lexicographic order, C(4, 6) = 15 (4,6)-combinations are listed as 1234, 1235,
1236, 1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456.
The rank of 2346 is determined as 1 +C(4 —-1,6—-1)+C4 —4,6—-5) =1+
10 4+ 1 = 12 where last two summands correspond to combinations that start with
1 and 2345, respectively. Let us consider a larger example. The rank of 3578 in

RANKING AND UNRANKING OF COMBINATORIAL OBJECTS 25

(4,9)-combinations is 1+C4—-1,9—-1)+C4—-1,9—-2)+C4—-2,9—-4)+
C(4 —3,9 — 6) = 104 where four summands correspond to combinations starting
with 1, 2, 34, and 356, respectively.

A simpler formula is given in the work by Lehmer [21]: the rank of combination
aiay ...a, is C(m,n) — Z?LIC(j, n—1—ap_jy1). It comes from the count of
the number of combinations that follow ajay .. .a, in lexicographic order. These
are all combinations of j out of elements {ay,—j+1 + 1, ap—jr1 +2,...,a,}, forall
J» 1 < j < m.Inthelastexample, combinations that follow 3578 are all combinations
of 4 outof {4, 5, 6,7, 8,9}, combinations with first element 3 and three others taken
from {6, 7, 8, 9}, combinations which start with 35 and having two more elements
out of set {8, 9} and combination 3579.

The function calculates the rank in two nested for loops while the formula would
require one for loop. Therefore general solutions are not necessarily best in the partic-
ular case. The following unranking procedure for combinations follows from general
method.

procedure unrankcomb (rank, n, ay, az, ..., am)
i< 0; a9« 0;
repeat
i<—i+1;
X <ai-1+1;
while C(m — i, n — x) < rank do
{rank <— rank — C(m —i, n — x); x < x + 1};
a; <— X
until rank = 0;
for j=i+1tomdoaj<«~n—m+j

Whatis 104th (4,9)-combination? There are C(3, 8) = 56 (4,9)-combinations start-
ing with a 1 followed by C(3, 7) = 35 starting with 2 and C(3, 6) = 20 starting with 3.
Since 56 + 35 < 104 but 56 + 35 4 20 > 104 the requested combination begins with
a 3, and the problem is reduced to finding 104 — 56 — 35 = 13th (3,6)-combination.
There are C(2, 5) = 10 combinations starting with 34 and C(2, 4) = 6 starting with a
5. Since 13 > 10 but 13 < 10 + 6 the second element in combination is 5, and we need
to find 13 — 10 = 3rd (2,4)-combination out of {6, 7, 8, 9}, which is 78, resulting in
combination 3578 as the 104th (4,9)-combination.

We also consider the ranking of subsets. The subsets in the set and in the binary
representation are listed in different lexicographic orders. In binary representation,
the ranking corresponds to finding decimal equivalent of an integer in binary system.
Therefore the rank of a subset by, by, . .., by i8S by + 2by_1 + 4bp_s + - - - + 2" b,
For example, the rank of 100101 is 1 44 4 32 = 37 . The ranks are here between
0 and 2" — 1 since in many applications empty subset (here with rank 0) is not
taken into consideration. The ranking functions can be generalized to variations out
of {0, 1,...,m — 1} by simply replacing all “2” by “m” in the rank expression. It
corresponds to decimal equivalent of a corresponding number in number system
with base m.

26 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Similarly, the unranking of subsets in binary representation is equivalent to
converting a decimal number to binary one, and can be achieved by the following
procedure that uses the mod or remainder function. The value rank mod 2 is O or
1, depending whether rank is even or odd, respectively. It can be generalized for
m-variations if all “2” are replaced by “m”.

function unranksetb(n, ajas .. .a;)
rank <— m; ag < 0;
for i < m downto 1 do
{bi < rank mod 2; rank < rank — b;2""1}.

In the set representation, the rank of n-subsetaja; . . . a,, is found by the following
function from the work by Djoki¢ et al. [10].

function rankset(n, ajas . ..ay)
rank < m; ag < 0;
fori < 1 tom —1 do
for j < a;+1 toai+1 — 1 do
rank < rank 4+ 2"/,

The unranking function [10] gives n-subset with given rank in both representations
but the resulting binary string b1 b; . . . b, is assigned its rank in the lexicographic order
of the set representation of subsets.

function unranksets(rank, n, ajar . ..ay)
m<«0;k<«1; fori <1 tondob; < 0;
repeat
if rank < 2" then {by < 1; m < m + 1; a,, < k};
rank < rank — (1 — by)2" % — by;
k<—k+1
until k>n or rank = 0.

As noted in the work by Djoki¢ [10], the rank of a subset aja3 . . . a, among all
(m, n)-subsets is given by

ranks(aa;y . . .a,) = rankcomb(aja, . . .a,) + rankcomb(ajay . .. aym—1) + - - -

+ rankcomb(ajaz) + rankcomb(ay).

Let Lm, n)=C(1,n)+ CQ2, n)+ ---+ C(n, m) be the number of (m, n)-
subsets. The following unranking algorithm [10] returns the subset aja; . . . a,, with
given rank.

function unranklim (rank, n, m, aas .. .a,)
r<0;i«<1;
repeat
s<«<t—1—Lm—-—r—1,n—1i);

RANKING AND UNRANKING OF SUBSETS AND VARIATIONS IN GRAY CODES 27

if s>0 thenr < s else {r < r + 1; a, < i; rank < rank — 1};
i<i+1
until i =n + 1 or rank = 0.

Note that the (m, n)-subsets in lexicographic order also coincide with a minimal
change order of them. This is arare case. Usually it is trivial to show that lexicographic
order of instances of an object is not a minimal change order.

Ranking and unranking functions for integer compositions can be described by
using the relation between compositions and either subsets or combinations (discussed
above).

A ranking algorithm for n-permutations is as follows [21]:

function rankperm(ajaz . ..an)
rank <1 ;
fori < 1 to n do
rank < rank + k(n —i)!wherek = [{1,2,...,a; — 1}\
{a1, a2, ..., a1}l

For example, the rank of permutation 35142is1 +2 x 4! +3 x 3! 4+ 1 x 1! = 68
where permutations starting with 1, 2, 31, 32, 34, and 3512 should be taken into
account. The unranking algorithm for permutations is as follows [21]. Integer division
is used (i.e., 13/5=2).

procedure unrankperm(rank, n, ajas .. .a,)
fori < 1 to n do{

< rank — 1 :
(n—10)!
a; < kthelement of {1, 2, ...,n}\{a1, a2, ...,ai—1};

rank < rank — (k — 1)(n — i)!}.

The number of instances of a combinatorial object is usually exponential in size of
objects. The ranks, being large integers, may need O(n) or similar number of memory
location to be stored and also O(n) time for the manipulation with them. Avoiding large
integers is a desirable property in random generation in some cases. The following
two sections offer two such approaches.

1.11 RANKING AND UNRANKING OF SUBSETS AND VARIATIONS
IN GRAY CODES

In a Gray code (or minimal change) order, instances of a combinatorial object are listed
such that successive instances differ as little as possible. In this section we study Gray
codes of subsets in binary representation. Gray code order of subsets is an ordered
cyclic sequence of 2" n-bit strings (or codewords) such that successive codewords
differ by the complementation of a single bit. If the codewords are considered to be

28 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

vertices of an n-dimensional binary cube, it is easy to conclude that Gray code order
of subsets corresponds to a Hamiltonian path in the binary cube. We will occasionally
refer in the sequel to nodes of binary cubes instead of subsets. Although a binary cube
may have various Hamiltonian paths, we will define only one such path, called the
binary-reflected Gray code [17] that has a number of advantages, for example, easy
generation and traversing a subcube in full before going to other subcube. The (binary
reflected) Gray code order of nodes of n-dimensional binary cube can be defined in
the following way:

e For n = 1 the nodes are numbered g(0) = 0 and g(1) = 1, in this order,

e If g(0), g(1), ..., g(2" — 1) is the Gray code order of nodes of an n-dimensional
binary cube, then g(0) = 0g(0), g(1) =0g(1),..., g2" — 1) =0g(2" —

1), g2") =1g(2" = 1), g2"+1)=1g(2" —2), ..., g" —2)=1g(1),
g(Z"‘H — 1) = 1g(0) is a Gray code order of nodes of a (n + 1)-dimensional
binary cube.

As an example, for n =3 the order is g(0) =000, g(1) =001, g(2) =
011, g(3) =010, g(4) =110, g(5) = 111, g(6) = 101, g(7) = 100. First, letus see
how two nodes u and v can be compared in Gray code order. We assume that a node
x is represented by a bitstring x; > x> ... x,. This corresponds to decimal node ad-
dress x =2""1x; + 2" 2x, + ... 4+ 2x,_1 + x, where 0 < x < 2" — 1. Let i be the
most significant (or leftmost) bit where u and v differ, that is, u[/] = v[/] for / <i and
uli] # v[i]. Thenu < vif and only if u[1] + u[2] + - - - + u[i] is an even number. For
instance, 11100 < 10100 < 10110.

The above comparison method gives a way to find Gray code address 7 of a node
u (satisfying g(f) = u), using the following simple procedure; it ranks the Gray code
sequences.

procedure rank_GC(n, u, t);
sum < 0; ¢t < 0;
for/ < 1 to n do{
sum <— sum + u[l];
if sumisodd thenr < 142"},

The inverse operation, finding the binary address u of node having Gray code
address # (0 < t < 2" — 1), can be performed by the following procedure; it unranks
the Gray code sequences.

procedure unrank_GC(n,u,t);
sum < 0; g < t; size < 2";
for/ <1 to n do {
size < size/2;
if g > size then{q < g — size;s < 1} elses < 0;
if sum + s is even then u[l] <— 0 else u[/] < 1;
sum < sum + u[l]}.

RANKING AND UNRANKING OF SUBSETS AND VARIATIONS IN GRAY CODES 29

The important property of the Gray code order is that corresponding nodes of a
binary cube define an edge of the binary cube whenever they are neighbors in the Gray
code order (this property is not valid for the lexicographic order 0, 1, 2, ..., 2" — 1
of binary addresses).

The reflected Gray code order for subsets has been generalized for variations
[7,15]. Gray codes of variations have application in analog to digital conversion of
data.

We establish a n-ary reflected Gray code order of variations as follows. Let
X=Xx1>x2...Xpand y = y;y2...y, be two variations. Then x < y iff there exist
i, 0 <i <m, such that x; = y; for j<i and either x; +xp + ...+ x;_1 is even
and x; <yjorx; +x 4+ ---+ x;_1 is odd and x;>y;. We now prove that the order
is a minimal change order. Let x and y be two consecutive variations in given order,
x <y, and let x; = y; for j<i and x; # y;. There are two cases. If x; < y; then
Xi=x1+x2+4+---+x;—1 is even and y; = x; + 1. Thus X;;+ and Y;4; have dif-
ferent parity, since Y;y1 = X;41 + 1. It means that either x; | = y;+1 = 0orx;1| =
vi+1 = n — 1 (the (i + 1)th element in x is the maximum at that position while the
(i + 1) —the element in y is the minimum at given position, and they are the same
because of different parity checks). Similarly we conclude Y; = X; + 1 and x; = y;
forall j>i 4 1. The case x;>Yy; can be analyzed in analogous way, leading to the same
conclusion.

As an example, 3-ary reflected Gray code order of variations out of {0, 1, 2} is as
follows (the variations are ordered columnwise):

000 122 200
001 121 201
002 120 202
012 110 212
011 111 211
010 112 210
020 102 220
021 101 221
022 100 222.

It is easy to check that, at position i(1 < i < m), each element repeats n™~ times.
The repetition goes as follows, in a cyclic manner: 0 repeats n”~/ times, 1 repeats
n™times,...,n —1 repeats n™~! times, and then these repetitions occur in reverse
order, that is n — 1 repeats n”~/ times, . .., 0 repeats n"" ' times.

Ranking and unranking procedures for variations in the n-ary reflected Gray code
are described in the work by Flores [15].

30 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

1.12 GENERATING COMBINATORIAL OBJECTS AT RANDOM

In many cases (e.g., in probabilistic algorithms), it is useful to have means of gen-
erating elements from a class of combinatorial objects uniformly at random (an un-
biased generator). Instead of testing new hypothesis on all objects of given kind,
which may be time consuming, several objects chosen at random can be used for
testing, and likelihood of hypothesis can be established with some certainty. There
are several ways of choosing a random object of given kind. All known ways are
based on the correspondence between integer or real number(s) and combinatorial
objects. This means that objects should be ordered in a certain fashion. We already
described two general ways for choosing a combinatorial object at random. We now
describe one more way, by using random number series. This method uses a series
of random numbers in order to avoid large integers in generating a random instance
of an object. Most known techniques in fact generate a series of random numbers.
This section will present methods for generating random permutations and integer
partitions. A random subset can easily be generated by flipping coin for each of its
elements.

1.12.1 Random Permutation and Combination

There exist a very simple idea of generating a random permutation of
A ={ay,...,ap}. One can generate an array Xxi,Xx2,...,X, of random num-
bers, sort them, and obtain the destination indices for each element of A in a
random permutation. The first m elements of the array can be used to determine
a random (m, n)-combination (the problem of generating combinations at random
is sometimes called random sampling). Although very simple, the algorithm has
O(n log n) time complexity [if random number generation is allowed at most O(log
n) time]. We therefore describe an alternative solution that leads to a linear time
performance. Such techniques for generating permutations of A = {aj,...,a,}
at random first appeared in the works by the Durstenfeld [8] and Hoses [24], and
repeated in the works by Nijeshius [25] and Reingold [30]. The algorithm uses a
function random (x) that generates a random number x from interval (0,1), and is as
follows.

fori < 1 ton—1 do{
random(x;);
cilxim—i+1)]+1;
j<—i—1+4c¢;
exchange a; witha; }.

As an example, we consider generating a permutation of {a, b, ¢, d, e, f} at ran-
dom. Random number x; = 0.7 will choose |6 x 0.7] + 1 = Sthelement e as the first
element in a random permutation, and decides the other elements considering the set
{b, c,d, a, f} (eexchanged with a). The process is repeated: another random number,
say xo = 0.45, chooses |5 x 0.45] + 1 = 3rd element d from {b, ¢, d, a, f} to be the

GENERATING COMBINATORIAL OBJECTS AT RANDOM 31

second element in a random permutation, and b and d are exchanged. Thus, random
permutation begins with e, d, and the other elements are decided by continuing same
process on the set {c, b, a, f}.

Assuming that random number generator takes constant time, the algorithm runs in
linear time. The same algorithm can be used to generate combinations at random. The
first m iterations of the for loop determine (after sorting, if such output is preferable)
a combination of m out of n elements.

Uniformly distributed permutations cannot be generated by sampling a finite por-
tion of a random sequence and the standard method [8] does not preserve randomness
of the x-values due to computer truncations. Truncation problems appear with other
methods as well.

1.12.2 Random Integer Partition

We now present an algorithm from the work by Nijenhius and Wilf [26] that generates
arandom integer partition. It uses the distribution of the number of partitions RP(n,m)
of n into parts not greater than m.

First, we determine the first part. An example of generating random partition
of 12 will be easier to follow than to show formulas. Suppose a random number
generator gives us r; = 0.58. There are 77 partitions of 12. In lexicographic or-
der, the random number should point to 0.58 x 77 = 44.66th integer partition. We
want to avoid rounding and unranking here. Thus, we merely determine the largest
part such. Looking at the distribution RP(12,m) of partitions of 12 (Section 1.2),
we see that all integer partitions with ranks between 35 and 47 have the largest
part equal to 5. What else we need in a random partition of 12? We need a ran-
dom partition of 12 — 5 = 7 such that its largest part is 5 (the second part cannot
be larger than the first part). There are RP(7, 5) = 13 such partitions. Let the sec-
ond random number be r, = 0.78. The corresponding partition of 7 has the rank
0.78 x 13 = 10.14. Partitions of 7 ranked between 9 and 11 have the largest part
equal to 4. It remains to find a random partition of 7 — 4 = 3 with largest part 4
(which in this case is not a real restriction). There are RP(3, 3) = 3 partitions as
candidates let r3 = 0.20. Then 0.20 x 3 = 0.6 points to the third (and remaining)
parts of size 1. However, since the random number is taken from open interval (0,1),
in our scheme the partition n = n will never be chosen unless some modification
to our scheme is made. Among few possibilities, we choose that the value < 1 as
the rank actually points to the available partition with the maximal rank. Thus, we
decide to choose partition 3 = 3, and the random partition of 12 that we obtained is
12=5+4+3.

An algorithm for generating random rooted trees with prescribed degrees (where
the number of nodes of each down degree is specified in advance) is described in
the work by Atkinson [3]. A linear time algorithm to generate binary trees uniformly
at random, without dealing with large integers is given in the work by Korsch [20].
An algorithm for generating valid parenthesis strings (each open parenthesis has its
matching closed one and vice versa) uniformly at random is described in the work

32 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

by Arnold and Sleep [2]. It can be modified to generate binary trees in the bitstring
notation at random.

1.13 UNRANKING WITHOUT LARGE INTEGERS

Following the work by Stojmenovic [38], this section describes functions mapping
the interval [0 . . . 1) into the set of combinatorial objects of certain kind, for example,
permutations, combinations, binary and t-ary trees, subsets, variations, combinations
with repetitions, permutations of combinations, and compositions of integers. These
mappings can be used for generating these objects at random, with equal probability of
each object to be chosen. The novelty of the technique is that it avoids the use of very
large integers and applies the random number generator only once. The advantage of
the method is that it can be applied for both random object generation and dividing
all objects into desirable sized groups.

We restrict ourselves to generating only one random number to obtain a random
instance of a combinatorial object but request no manipulation with large integers.
Once a random number g in [0,1) is taken, it is mapped into the set of instances
of given combinatorial object by a function f{g) in the following way. Let N be the
number of all instances of a combinatorial object. The algorithm finds the instance
x such that the ratio of the number of instances that precede x and the total number
of instances is < g . In other words, it finds the instance f{g) with the ordinal number
LgN] + 1. In all cases that will be considered in this section, each instance of given
combinatorial object may be represented as a sequence X1 . . . X;;, where x; may have
integer values between 0 and n (i and n are two fixed numbers), subject to constraints
that depend on particular case.

Suppose that the first k — 1 elements in given instance are fixed, that is, x; =
ai, 1 <i<k.Wecall them (k — 1) -fixed instances. Leta} < - -- < a), be all possible
values of x; of a given (k — 1) -fixed instance. By S(k, u), S(k, < u), and S(k, > u),
we denote the ratio of the number of (k — 1) -fixed instances for which x; = a,(xx <
al,, and xx > a, respectively) and the number of (k — 1) -fixed instances. In other
words, these are the probabilities (under uniform distribution) that an instance for
which x; = a;, 1 < i <k, has the value in variable x; whichis = a/,, < @/, and > d,,
respectively.

Clearly, Sk, u) = Sk, <u) — Stk,<u—1)and S(k, > u) =1 — Sk, <u — 1).
Thus

Stk,u) — Stk,<u)— Sk, <u—1)
Stk,>u) 1—Stk,<u—1

Therefore
Sk, u)

Sk, <u) =Sk, <u—1D+1—-Sk <u-— l))S(k, >u)

Our method is based on the last equation. The large numbers can be avoided in
cases when S(k, u)/S(k, > u) is explicitly found and is not a very large integer. This

UNRANKING WITHOUT LARGE INTEGERS 33

condition is satisfied for combinations, permutations, ¢-ary trees, variations, subsets,
and other combinatorial objects.

Given g from [0, ..., 1), let / be chosen such that S(1, <u — 1) < g < S(1, < u).
Then x; = «/, and the first element of combinatorial object ranked g is decided. To
decide the second element, the interval [S(1, < u — 1) ... S(1, < u)) containing g can
be linearly mapped to interval [0. .. 1) to give the new value of g as follows:

< .
S, =uw) -8, =u—-1)

The search for the second element proceeds with the new value of g. Similarly the
third, ..., mth elements are found. The algorithm can be written formally as follows,
where pr and p stand for S(k, < u — 1) and S(k, < u) , respectively.

procedure object(m, n, g);
p/ < 0;

fork<—1t0md0{

u <~ 1;
p < S(k, 1);

while p < g do

p/ <~ p;
u<—u+l; &
Sk, u)
porra-mgil
X < a;
Pl }
p—p
Therefore the technique does not involve large integers iff S(k, u)/S(k, > u) is not
a large integer for any k and u in the appropriate ranges (note that S(k, > 1) =1).
The method gives theoretically correct result. However, in practice the random
number g and intermediate values of p are all truncated. This may result in com-
putational imprecision for larger values of m or n. The instance of a combinatorial
object obtained by a computer implementation of above procedure may differ from the
theoretically expected one. However, the same problem is present with other known
methods (as noted in the previous section) and thus this method is comparable with
others in that sense. Next, in applications, randomness is practically preserved despite
computational errors.

1.13.1 Mapping [0...1) Into the Set of Combinations

Each (m, n)-combination is specified as an integer sequence xi, ..., X, such that
1 <xy<--- <xp, <n. The mapping f{g) is based on the following lemma. Recall
that (k-7)-fixed combinations are specified by x; = @;, 1 < i <k. Clearly, possible
values for x; are @) = a1+ 1,a5 =ar—1+2,...,a, =n (thush =n —ar_1).

34 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Lemma 1. The ratio of the number of (k — 1)-fixed (m,n)-combinations for which
X = j and the number of (k — 1)-fixed combinations for which x; > jis (m — k +
1)/(n — j+ 1) whenever j>aj_.

Proof. Let yy—; = x; — j, k <i < n.The (k — 1)-fixed (m,n)-combinations for which

X = j correspond to (m — k, n — j) -combinations yi, ..., Ym—k, and their num-

beris C(m — k,n — j). Now let yx_j+1 = x; — j+ 1,k <i < n. The (k — 1)-fixed

combinations for which x; > j correspondto (m — k + 1,n — j 4 1) -combinations

Y1 ... Ym—k+1, and their number is C(m — k + 1, n — j 4 1). The ratio in question is
Cim—k,n—j) m—k+1

Cm—k+1,n—j+1) n—j+1’

Using the notation introduced in former section for any combinatorial objects, let
u = j — ax—1. Then, from Lemma 1 it follows that
Sk, u) m—k+1

S(k,Zu)_n—u—ak_l—i—l

for the case of (m,n)-combinations, and we arrive at the following procedure that
finds the (m,n)-combination with ordinal number |gC(m,n)| + 1. The procedure
uses variable j instead of u, for simplicity.

procedure combination(m,n,g);
j < 0; pr<0;
fork < 1 to m do
j<—Jj+1
m—k+1
——
n—j+1
while p < g do {

p/ < p;
j<Jj+1L
1 /)m —k+1
<« — -
p=r P j+1
Xk < s
g—w}
g < .
p—p
A random sample of size m out of the set of n objects, that is, a random (m,n)-
combination can be found by choosing a real number g in [0, . .., 1) and applying the
map f(g) = combination(m,n,g).
Each time the procedure combination (,n,g) enters for or while loop, the index
Jj increases by 1; since j has n as upper limit, the time complexity of the algorithm
is O(n), that is, linear in n. Using the correspondences established in Chapter 1, the
same procedure may be applied to the case of combinations with repetitions and
compositions of n into m parts.

UNRANKING WITHOUT LARGE INTEGERS 35

1.13.2 Random Permutation

Using the definitions and obvious properties of permutations, we conclude that, after
choosing k — 1 beginning elements in a permutation, each of the remainingn — k + 1
elements has equal chance to be selected next. The list of unselected elements is kept in
an array remlist. This greatly simplifies the procedure that determines the permutation
X1 ...X, with index |gP(n)| + 1.

procedure permutation(1, g);
fori < 1 to n doremlist; < i;
fork < 1 to n do {
u <« lgh—k+1)]+1,;
Xi < remlisty;
for i < u ton —k do remlist; < remlisti1;
g<—gn—k+1)—u+1}

The procedure is based on the same choose and exchange idea as the one used in
the previous section but requires one random number generator instead of a series
of n generators. Because the lexicographic order of permutations and the ordering of
real numbers in [0 . . . 1) coincide, the list of remaining elements is kept sorted, which
causes higher time complexity O(n?) of the algorithm.

Consider an example. Let n = 8 and g = 0.1818. Then [0.1818 % 8!] +1 = 7331
and the first element of 733 1st 8-permutation is # = [0.1818 x 8] + 1 = 2; the re-
maining list is 1,3,4,5,6,7,8 (7331 — 1 x 5040 = 2291; this step is for verification
only, and is not part of the procedure). The new value of g is g = 0.1818 x 8 —
2+ 1=0.4544, and new u is u = [0.4544 x 7] + 1 = 4; the second element is 4th
one in the remaining list, which is 5; the remaining list is 1,3,4,6,7,8. Next update
is g =0.4544 x 7 -3 =0.1808 and u = |0.1808 x 6] + 1 = 2; the 3rd element is
the 2nd in the remaining list, that is, 3; the remaining list is 1,4,6,7,8. The new
iteration is g = 0.1808 x 6 — 1 = 0.0848 and u = [0.0848 x 5] + 1 = 1; the 4th
element is 1st in the remaining list, that is, 1; the remaining list is 4,6,7,8. Fur-
ther, g = 0.0848 x 5 = 0.424 and u = [0.424 x 4] + 1 = 2; the 5th element is 2nd
in the remaining list, that is, 6; the new remaining list is 4,7,8. The next values
of gand u are g =0.424 x4 —1=0.696 and u = [0.696 x 3] + 1 = 3; the 6th
element is 3rd in the remaining list, that is, 8; the remaining list is 4,7. Finally,
g=0.696 x 3 —2=0.088 and u = [0.088 x 2] + 1 = 1; the 7th element is 1st in
the remaining list, that is, 4; now 7 is left, which is the last, 8th element. Therefore,
the required permutation is 2,5,3,1,6,8,4,7.

All (m,n)-permutations can be obtained by taking all combinations and listing
permutations for each combination. Such an order that is not lexicographic one,
and (m,n)-permutations are in this case refereed to as the permutations of combina-
tions. Permutation of combinations with given ordinal number can be obtained by
running the procedure combination first, and continuing the procedure permutation
afterwards, with the new value of g that is determined at the end of the procedure
combination.

36 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

1.13.3 Random t-Ary Tree

The method requires to determine S(k, 1), S(k, u), and S(k, > u). Each element by
has two possible values, that is, by = a] = 0or by = a = 1; thus it is sufficient to
find S(k, 1) and S(k, > 1). S(k, > 1) is clearly equal to 1. Let the sequence by . . . by,

contains g ones, the number of such sequences is D(k — 1, ¢). Furthermore, D(k,q)
of these sequences satisfy by = 0. Then

Dk,q) (tn—q)—k+1)in—k—q+2)
Dk—1,90 (tn—q)—k+2)(tn—k+1)

Sk, 1) =

This leads to the following simple algorithm that finds the ¢-ary tree f{g) with
the ordinal number | gB(t, n)] + 1.

procedure tree(¢, n, g);
p! < 0; g < n;
for k < 1to mdo
bk <—O;
tn—q—k+1D)in—k—q+2)
tn—q)—k+2)tn—k+1) °
if p < g then {
Pl < p;
b < 1;
q<q-1
p<1}

}
g
p p/

The time complexity of the above procedure is clearly linear, that is, O(tn).

1.13.4 Random Subset and Variation

There is a fairly simple mapping procedure for subsets in binary representation. Let
g=0.a...a,a,41 ... Dbe number g written in the binary numbering system. Then
the subset with ordinal number |gS(n)| + 1 is coded as aj .. .a,. Using a relation
between subsets and compositions of » into any number of parts, described procedure
can be also used to find the composition with ordinal number |[gCM(n)] + 1.

A mapping procedure for variations is a generalization of the one used for sub-
sets. Suppose that the variations are taken out of the set {0, 1,...,n — 1}. Let
g=0. a1az...a,a;,+1 - ..bethe number g written in the number system with the base
n,thatis,0 < a; <n — 1 for 1 <i < m. Then the variation indexed | gV (m, n)] + 1
iscoded asajay .. .ay.

If variations are ordered in the n-ary reflected Gray code then the variation indexed
lgV(m,n)] + 1iscoded as b1b; ...b,,, where by = ay, b; =a; ifa; +ax +--- +
a;_jisevenand b; =n — 1 — a; otherwise 2 <i <m).

REFERENCES 37

REFERENCES

1.

O 0 3

10.

11.

12.
13.
14.
15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

Akl SG. A comparison of combination generation methods. ACM Trans Math Software
1981;7(1):42-45.

. Arnold DB. Sleep MR. Uniform random generation of balanced parenthesis strings. ACM

Trans Prog Lang Syst 1980;2(1):122-128.

. Atkinson M. Uniform generation of rooted ordered trees with prescribed degrees. Comput

J1993;36(6):593-594.

. AKI SG, Olariu S, Stojmenovic I. A new BFS parent array encoding of t-ary trees, Comput

Artif Intell 2000;19:445-455.

. Belbaraka M, Stojmenovic I. On generating B-trees with constant average delay and in

lexicographic order. Inform Process Lett 1994;49(1):27-32.

. Brualdi RA. Introductory Combinatorics. North Holland; 1977.

. Cohn M. Affine m-ary gray codes, Inform Control 1963;6:70-78.

. Durstenfeld R. Random permutation (algorithm 235). Commun ACM 1964;7:420.

. Djoki¢ B, Miyakawa M, Sekiguchi S, Semba I, Stojmenovié 1. A fast iterative algorithm

for generating set partitions. Comput J 1989;32(3):281-282.

Djoki¢ B, Miyakawa M, Sekiguchi S, Semba I, Stojmenovi¢ I. Parallel algorithms for
generating subsets and set partitions. In: Asano T, Ibaraki T, Imai H, Nishizeki T, editors.
Proceedings of the SIGAL International Symposium on Algorithms; August 1990; Tokyo,
Japan. Lecture Notes in Computer Science. Volume 450. p 76-85.

Ehrlich G. Loopless algorithms for generating permutations, combinations and other com-
binatorial configurations.] ACM 1973;20(3):500-513.

Er MC. Fast algorithm for generating set partitions. Comput J 1988;31(3):283-284.
Er MC. Lexicographic listing and ranking t-ary trees. Comp J 1987;30(6):569-572.
Even S. Algorithmic Combinatorics. New York: Macmillan; 1973.

Flores 1. Reflected number systems. IRE Trans Electron Comput 1956;EC-5:79-82.

Gupta Ul, Lee DT, Wong CK. Ranking and unranking of B-trees. J Algor 1983;4:
51-60.

Heath FG. Origins of the binary code. Sci Am 1972;227(2):76-83.

Johnson SM. Generation of permutations by adjacent transposition, Math Comput
1963;282-285.

Knuth DE. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Read-
ing, MA: Addison-Wesley; 1968.

Korsch JE. Counting and randomly generating binary trees. Inform Process Lett
1993;45:291-294.

Lehmer DH. The machine tools of combinatorics. In: Beckenbach E, editor. Applied Com-
binatorial Mathematics. Chapter 1. New York: Wiley; 1964. p 5-31.

Lucas J, Roelants van Baronaigien D, Ruskey F. On rotations and the generation of binary
trees. J Algor 1993;15:343-366.

Misfud CJ, Combination in lexicographic order (Algorithm 154). Commun ACM
1963;6(3):103.

Moses LE, Oakford RV. Tables of Random Permutations. Stanford: Stanford University
Press; 1963.

38

25.
26.

27.

28.
29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.
40.
41.

42.
43.

GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Nijenhius A, Wilf H. Combinatorial Algorithms. Academic Press; 1978.

Nijenhius A, Wilf HS. A method and two algorithms on the theory of partitions.] Comb
Theor A 1975;18:219-222.

Ord-Smith RJ. Generation of permutation sequences. Comput J 1970;13:152-155 and
1971;14:136-139.

Parberry 1. Problems on Algorithms. Prentice Hall; 1995.

Payne WH, Ives FM. Combination generators. ACM Transac Math Software
1979;5(2):163-172.

Reingold EM, Nievergelt J, Deo N. Combinatorial Algorithms. Englewood Cliffs, NJ:
Prentice Hall; 1977.

Sedgewick R. Permutation generation methods. Comput Survey 1977;9(2):137-164.

Semba I. An efficient algorithm for generating all partitions of the set {1, ..., n}. J Inform
Process 1984;7:41-42.

Semba 1. An efficient algorithm for generating all k-subsets (1 < k < m < n) of the set
{1,2, ..., n}in lexicographic order. J Algor 1984;5:281-283.

Semba I. A note on enumerating combinations in lexicographic order. J Inform Process
1981;4(1):35-37.

Skiena S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica. Addison-Wesley; 1990.

Stojmenovic I. Listing combinatorial objects in parallel. Int J Parallel Emergent Distrib
Syst 2006;21(2):127-146.

Stojmenovié I, Miyakawa M. Applications of a subset generating algorithm to base enu-
meration, knapsack and minimal covering problems. Comput J 1988;31(1):65-70.

Stojmenovi¢ 1. On random and adaptive parallel generation of combinatorial objects. Int J
Comput Math 1992;42:125-135.

Trotter HF, Algorithm 115. Commun ACM 1962;5:434-435.
Wells MB, Elements of Combinatorial Computing. Pergamon Press; 1971.

Xiang L, Ushijima K, Tang C. Efficient loopless generation of Gray codes for k-ary trees.
Inform Process Lett 2000;76:169-174.

Zaks S. Lexicographic generation of ordered trees. Theor Comput Sci 1980;10:63-82.

Zoghbi A, Stojmenovi¢ 1. Fast algorithms for generating integer partitions. Int J Comput
Math 1998;70:319-332.

I CHAPTER 2

Backtracking and Isomorph-Free
Generation of Polyhexes

LUCIA MOURA and IVAN STOJMENOQVIC

2.1 INTRODUCTION

This chapter presents applications of combinatorial algorithms and graph theory to
problems in chemistry. Most of the techniques used are quite general, applicable to
other problems from various fields.

The problem of cell growth is one of the classical problems in combinatorics. Cells
are of the same shape and are in the same plane, without any overlap. If & copies of the
same shape are connected (two cells are connected by sharing a common edge), then
they form an z-mino, polyomino, animal, or polygonal system (various names given
in the literature for the same notion). Three special cases of interest are triangular,
square, and hexagonal systems, which are composed of equilateral triangles, squares,
and regular hexagons, respectively. Square and hexagonal systems are of genuine
interest in physics and chemistry, respectively. The central problem in this chapter is
the study of hexagonal systems. Figure 2.1 shows a molecule and its corresponding
hexagonal system.

Enumeration and exhaustive generation of combinatorial objects are central topics
in combinatorial algorithms. Enumeration refers to counting the number of distinct
objects, while exhaustive generation consists of listing them. Therefore, exhaustive
generation is typically more demanding than enumeration. However, in many cases,
the only available methods for enumeration rely on exhaustive generation as a way
of counting the objects. In the literature, sometimes “enumeration” or “construc-
tive enumeration” are also used to refer to what we call here “exhaustive genera-
tion.”

An important issue for enumeration and exhaustive generation is the notion of
isomorphic or equivalent objects. Usually, we are interested in enumerating or gen-
erating only one copy of equivalent objects, that is, only one representative from
each isomorphism class. Polygonal systems are considered different if they have

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenovi¢ Copyright © 2008 John Wiley & Sons, Inc.

39

40 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

.

C—C

/A

Nl
H—C// \\C—H
/

C—C

/ N

H 11
(a))
FIGURE 2.1 (a) A benzenoid hydrocarbon and (b) its skeleton graph.

different shapes; their orientation and location in the plane are not important. For
example, the two hexagonal systems in Figure 2.2b are isomorphic. The main theme
in this chapter is isomorph-free exhaustive generation of polygonal systems, especially
polyhexes.

Isomorph-free generation provides at the same time computational challenges and
opportunities. The computational challenge resides in the need to recognize or avoid
isomorphs, which consumes most of the running time of these algorithms. On the
contrary, the fact that equivalent objects do not need to be generated can substantially
reduce the search space, if adequately exploited. In general, the main algorithmic
framework employed for exhaustive generation is backtracking, and several tech-
niques have been developed for handling isomorphism issues within this framework.
In this chapter, we present several of these techniques and their application to exhaus-
tive generation of hexagonal systems.

In Section 2.2, we present benzenoid hydrocarbons, a class of molecules in organic
chemistry, and their relationship to hexagonal systems and polyhexes. We also take
a close look at the parameters that define hexagonal systems, and at the topic of
symmetries in hexagonal systems. In Section 2.3, we introduce general algorithms
for isomorph-free exhaustive generation of combinatorial structures, which form the

(@) (b)
FIGURE 2.2 Hexagonal systems with (a) # = 11 and (b) h = 4 hexagons.

POLYHEXES AND HEXAGONAL SYSTEMS 41

theoretical framework for the various algorithms presented in the sections that follow.
In Section 2.4, we provide a historical overview of algorithms used for enumeration
and generation of hexagonal systems. In Sections 2.5-2.7, we present some of the main
algorithmic techniques used for the generation of polyhexes. We select algorithms
that illustrate the use of different general techniques, and that were responsible for
breakthroughs regarding the sizes of problems they were able to solve at the time they
appeared. Section 2.5 presents a basic backtracking algorithm for the generation of
hexagonal, square, and triangular systems. In Section 2.6, we describe a lattice-based
algorithm that uses a “cage” to reduce the search space. In Section 2.7, we present
two algorithms based on McKay’s canonical construction path, each combined with
a different way of representing a polyhex. Finally, Section 2.8 deals with a different
problem involving chemistry, polygonal systems, and graph theory, namely perfect
matchings in hexagonal systems and the Kekulé structure of benzenoid hydrocarbons.

2.2 POLYHEXES AND HEXAGONAL SYSTEMS

2.2.1 Benzenoid Hydrocarbons

We shall study an important class of molecules in organic chemistry, the class of ben-
zenoid hydrocarbons. A benzenoid hydrocarbon is a molecule composed of carbon
(C) and hydrogen (H) atoms. Figure 2.1a shows a benzenoid called naphthalene, with
molecular formula C19Hg (i.e., 10 carbon atoms and 8 hydrogen atoms). In general,
a class of benzenoid isomers is defined by a pair of invariants (n, s) and written as
the chemical formula C,,H;, where n and s are the numbers of carbons and hydro-
gens, respectively. Every carbon atom with two neighboring carbon atoms bears a
hydrogen, while no hydrogen is attached to the carbon atoms with three neighbor-
ing carbon atoms. A simplified representation of the molecule as a (skeleton) graph
is given in Figure 2.1b. Carbon atoms form six-membered rings, and each of them
has four valences. Hydrogen atoms (each with one valence) and double valences be-
tween carbon atoms are not indicated in the corresponding graph, which has carbon
atoms as vertices with edges joining two carbon atoms linked by one or two va-
lences. In the sequel, we shall study the skeleton graphs, which will be called polyhex
systems.

A polyhex (system) is a connected system of congruent regular hexagons such that
any two hexagons either share exactly one edge or are disjoint. The formula C¢Hg
is represented by only one hexagon and is the simplest polyhex, called benzene.
Presently, we shall be interested only in the class of geometrically planar, simply
connected polyhexes. A polyhex is geometrically planar when it does not contain
any overlapping edges, and it is simply connected when it has no holes. The geo-
metrically planar, simply connected polyhexes may conveniently be defined in terms
of a cycle on a hexagonal lattice; the system is found in the interior of this cycle,
which represents the boundary (usually called the “perimeter”) of the system. With
the aim of avoiding confusion, we have adopted the term “hexagonal system” (HS)
for a geometrically planar, simply connected polyhex (see Fig. 2.2a for an HS with

42 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

h = 11 hexagons). A plethora of names has been proposed in the literature for what
we just defined (or related objects), such as benzenoid systems, benzenoid hydrocar-
bons, hexagonal systems, hexagonal animal, honeycomb system, fusene, polycyclic
aromatic hydrocarbon, polyhex, and hexagonal polyomino, among others.

A polyhex in plane that has holes is called circulene; it has one outer cycle (perime-
ter) and one or a few inner cycles. The holes may have the size of one or more hexagons.
Coronoids are circulenes such that all holes have the size of at least two hexagons.
There are other classes of polyhexes; for instance, a helicenic system is a polyhex with
overlapping edges or hexagons if drawn in a plane (or a polyhex in three-dimensional
space). Fusenes are generalizations of polyhexes in which the hexagons do not need
to be regular.

2.2.2 Parameters of a Hexagonal System

We shall introduce some parameters and properties of HSs in order to classify them.
The leading parameter is usually the number of hexagons 4 in an HS (it is sometimes
called the “area”). For example, HSs in Figures 2.1b, 2.2a and b have 7 = 2, 11, and
4 hexagons, respectively. The next parameter is the perimeter p, or the number of
vertices (or edges) on its outer boundary. The HSs in Figures 2.1b, 2.2a and b have
perimeter p = 10, 32, and 16, respectively. A vertex of an HS is called internal (exter-
nal) if it does not (does, respectively) belong to the outer boundary. A vertex is internal
if and only if it belongs to three hexagons from the given HS. The number of internal
vertices i of HSs in Figures 2.1b, 2.2aand bisi = 0,7 and 1, respectively. Let the total
number of vertices and edges in HSsben = p + i and m, respectively. From Euler the-
orem, it follows that n — m + h = 1. There are p external and m — p internal edges.
Since every internal edge belongs to two hexagons, we obtain 62 = 2(m — p) + p,
that is, m = 3h + p/2. Therefore,n —2h — p/2 =1andi =2h — p/2+ 1 [31]. It
follows that p must be even, and that i is odd if and only if p is divisible by 4.
Consider now the relation between invariants n and s of a benzenoid isomer class
C,H; and other parameters of an HS. The number of verticesisn =i+ p = 2h +
p/2 + 1 =4h — i + 2. We shall find the number of hydrogen atoms s, which is equal
to the number of degree-2 vertices in an HS (all such vertices belong to the perimeter).
Let # be the number of tertiary (degree 3) carbon atoms on the perimeter. Therefore,
p = s + t since each vertex on the perimeter has degree either 2 or 3. We have already
derived m = 3h + p/2. Now, if one assigns each vertex to all its incident edges, then
each edge will be “covered” twice; since each internal vertex has degree 3, it follows
that 2m = 3i + 3¢ 4+ 2s. Thus, 64 + p = 3i + 3t + 2s, that is, 3t = 6h + p — 3i —
2s.Byreplacingt = p — s,one gets 3p — 3s = 6h 4+ p — 3i — 25, which implies s =
2p — 6h + 3i.Next,i = 2h — p/2 + 1leadstos = p/2 + 3.Itisinteresting thatsisa
function of p independent of /. The reverse relation reads p = 2s — 6, which, together
with p = s 4 ¢, gives another direct relation t = s — 6. Finally, h = (n —5)/2 41
follows easily from 27 = n — p/2 — 1 and p = 2s — 6. Therefore, there exists a one-
to-one correspondence between pairs (4, p) and (n, s). More precisely, the number
of different HSs corresponding to the same benzenoid isomer class C, H; is equal
to the number of (nonisomorphic) HSs with area 7 = (n — 5)/2 + 1 and perimeter

POLYHEXES AND HEXAGONAL SYSTEMS 43

p = 25 — 6. The study of benzenoid isomers is surveyed by Brunvoll et al. [9] and
Cyrin et al. [15].

We shall list all the types of chemical isomers of HSs for increasing values of
h <5;h = 1:CeHg; h = 2: CyoHg; h = 3: Ci3Hy, C14H10; & = 4: Cy6Hy0, C17Hi1,
CigHiz; h = 5: CoHyy, CooHi2, C21Hyz, CoHig.

The number of edges m of all isomers with given formula C,Hyism = (3n — 5)/2.
The number of edges m and number of internal vertices i are sometimes used as basic
parameters; for example, n = (4m — i + 6)/5, s = 2m — 3i + 18)/5.

The Dias parameter is an invariant for HSs and is defined as the difference between
the number of vertices and number of edges in the graph of internal edges, obtained by
deleting the perimeter from a given HS, reduced by 1. In other words, it is the number
of tree disconnections of internal edges. The number of vertices of the graph of inter-
nal edges is i 4 ¢ (only s vertices with degree 2 on the perimeter do not “participate”),
and the number of internal edges is m — p. Thus, the Dias parameter foran HSisd =
i+t—m+p—1=h—i—2=p/2—h—3. The pair of invariants (d, i) plays
an important role in connection with the periodic table for benzenoid hydrocarbons
[19,21]. The other parameters of an HS can be expressed in terms of d and i as follows:
n=4d+3i4+10,s=2d+i+8 h=d+i+ 2, and p = 4d + 2i + 10. The pair
(d, i) can be obtained from pair (n, s) as follows:d = 3s —n)/2 —7,i =n — 25 + 6.

There are several classifications of HSs. They are naturally classified with re-
spect to their area and perimeter. Another classification is according to the number
of internal vertices: catacondensed systems have no internal vertices (i = 0), while
pericondensed systems have at least one internal vertex (i > 0). For example, HSs
in Figures 2.1a, 2.3b, ¢ and d are catacondensed, while HSs in Figures 2.2a,b and
2.3a are pericondensed. An HS is catacondensed if and only if p = 4h 4 2. Thus,
the perimeter of a catacondensed system is an even number not divisible by 4. All
catacondensed systems are Hamiltonian, since the outer boundary passes through
all vertices. Catacondensed HSs are further subdivided into unbranched (also called
chains, where each hexagon, except two, has two neighbors) and branched (where
at least one hexagon has three neighboring hexagons). Pericondensed HSs are either
basic or composite, depending on whether they cannot (or can, respectively) be cut
into two pieces by cutting along only one edge.

2.2.3 Symmetries of a Hexagonal System

We introduce the notion of free and fixed HSs. Free HSs are considered distinct if they
have different shapes; that is they are not congruent in the sense of Euclidean geometry.
Their orientation and location in the plane are of no importance. For example, the
two systems shown in Figure 2.2b represent the same free HS. Different free HSs
are nonisomorphic. Fixed HSs are considered distinct if they have different shapes or
orientations. Thus, the two systems shown in Figure 2.2b are different fixed HSs.
The key to the difference between fixed and free HSs lies in the symmetries of the
HSs. An HS is said to have a certain symmetry when it is invariant under the transfor-
mation(s) associated with that symmetry. In other words, two HSs are considered to be
the same fixed HSs, if one of them can be obtained by translating the other, while two

44 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

HSs are considered the same free HSs, if one of then can be obtained by a sequence
of translations and rotations that may or may not be followed by a central symmetry.
A regular hexagon has 12 different transformations that map it back to itself. These
are rotations for 0°, 60°, 120°, 180°, 240°, 300°, and central symmetry followed by the
same six rotations. Let us denote the identity transformation (or rotation for 0°) by &,
rotation for 60° by p, and central symmetry by p (alternatively, a mirror symmetry
can be used). Then, these 12 transformation can be denoted as ¢, p, p%, p°, p*, p°, i,
oL, P21, P21, p* e, and p° u, respectively. They form a group generated by p and .
When these transformations are applied on a given HS, one may or may not obtain
the same HS, depending on the kinds of symmetries that it has. The transformations
of an HS that produce the same fixed HS form a subgroup of the transformation group
G = {e, p, P>, P, p* P, pi, P2, PP, pri, pP). Every free HS corresponds
to 1,2,3,4,6, or 12 fixed HSs, depending on its symmetry properties. Thus, the
HSs are classified into symmetry groups of which there are eight possibilities, which
are defined here as subgroups of G: Dg;, = G, Cgj, = {¢, p, ,02, ,03, p4, p5}, Ds3j; =
{e, p2, p*, 1w, PP, PP}, Can = {e, p2, p*), Do = {e, p°, i, PP1}, Con = {e, 03},
Coy = {&, n}, and C; = {e}. The number of fixed HSs for each free HS under these
symmetry groups are specifically (in the same order): 1, 2, 2, 4, 3, 6, 6, and 12. Note
that the number of elements in the subgroup multiplied by the number of fixed HSs
for each free HS is 12 for each symmetry group. For example, HS in Figure 2.1b
has symmetry group D»j, while HSs in Figure 2.2a and b are associated with Cj
(have no symmetries). Examples of HSs with other symmetry groups are given
in Figure 2.3.

Dsn

Can

FIGURE 2.3 Hexagonal systems and their symmetry groups.

POLYHEXES AND HEXAGONAL SYSTEMS 45

Let H(h) and N(h) denote the number of fixed and free (nonisomorphic) HSs
with & hexagons, respectively. Furthermore, N(h) can be split into the numbers
for the different symmetries, say N(G,h), where G indicates the symmetry
group. Then H(h) = N(Dep, h) +2N(Cep, h) + 2N(D3p, h) + 4N(Cap, h) +
3N(Dap, h) + 6 N(Cap, h) + 6N(C2y, h) + 12N(Cs, h). For the free HSs, N(h) =
N(Dgp, h) + N(Cep, h) + N(D3p, h) + N(C3p, h) + N(Dap, h) + N(Cap, h)+
N(C2y, h) + N(Cs, h). Eliminating N(Cs, h), we get

N(h) = {5 [1IN(Dgp,) + 10N(Cen, h) + 10N(D3j,, h) + 8N(Csp, h)
+IN(Dap, h) + 6N(Cop, h) + 6N(Coy, h) + H(h)] . 2.1)

As we will see later, some algorithms use the above formula in order to compute
N(h) via computing the quantities on the right-hand side and avoiding the often costly
computation of N(Cj, h).

2.2.4 Exercises

1. Letn = p + i be the number of vertices and m be the number of edges of an
HS. Show thatm = 5h + 1 —i.

2. Prove that the maximal number of internal vertices of a HS, for fixed area £, is
2h + 1 — +/12h — 3 [30,37]. Also, show that the perimeter of an HS satisfies
24/12h —3 < p <4h + 2.

3. Prove that 0 < A < |h/3]and1/2(1 — (=1)) < A < i [9].

4. Prove the following upper and lower bounds for the Dias parameter [9]:
VI2h=3—-h-3<d<h-2.

5. Prove that 2k + 1+ /12h —3 < n < 4h + 2 [37].

6. Prove that 3 + +/12h — 3 < s < 2h + 4 [33].

7. Prove that 3k + [+/12h — 3| <m < 5h + 1 [30,37].

8. Prove that the possible values of s are within the range [30,37]

2[1/2(n 4+ Von)| —n <5 <n+2-2[(n —2)/4].
9. Prove thatn — 1 + [(n — 2)/4] <m < 2n — [(n + +/6n)/2] [37].
10. Show that s +3[s/2] —9 <m < s+ L(s2 - 6s)/12J —2[15].
11. Prove that [(m — 1)/5] <h <m — [2m — 2+ /4m + 1)/3] [37].
12. Provethat 1 4+ [2m — 2+ /A4m + 1)/3] <n <m+1— [(m — 1)/5] [37].

13. Show that 3—2m+3[2m -2+ /4m+1)/3| <s<m+3—
3[(m —1)/51 [9].

14. Let d(r, s) be the distance between the vertices r and s in an HS (which is the
length of the shortest path between them) [32]. The Wiener index W is the
sum of all distances (between all pairs of vertices) in a given HS. Show that

if By and B, are catacondensed HSs with an equal number of hexagons, then
W(B1) = W(B2) (mod 8).

46 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

2.3 GENERAL ALGORITHMS FOR ISOMORPH-FREE
EXHAUSTIVE GENERATION

In this section, we present general algorithms for generating exactly one representative
of each isomorphism class of any kind of combinatorial objects. The reader is referred
to the works by Brinkmann [6] and McKay [46] for more information on this type of
methods and to the survey by Faulon et al. [26] for a treatment of these methods in
the context of enumerating molecules.

The algorithms in this section generate combinatorial objects of size n + 1 from
objects of size n via backtracking, using a recursive procedure that should be first
called with parameters of an empty object, namely X = [] and n = 0. They are
presented in a very general form that can be tailored to the problem at hand. In
particular, procedures IsComplete (X) and IsExtendible (X) can be set to
ensure that all objects of size up to n or exactly n are generated, depending on the
application. In addition, properties of the particular problem can be used in order to
employ further prunings, which cannot be specified in such a general framework but
which are of crucial importance.

The basic algorithms we consider here (Algorithms BasicGenA and BasicGenB)
exhaustively generate all objects using backtracking and only keep one representative
from each isomorphism class. They both require a method for checking whether the
current object generated is the one to be kept in its isomorphism class. In Algorithm
BasicGenA, this is done by remembering previously generated objects, which are
always checked for isomorphism against the current object.

Algorithm BasicGenA (X = [x1, x2, ..., x,], n)
redundancyFound = false
if (IsComplete (X)) then
if (forall Y € GenList: = AreIsomorphic (X,Y)) then
GenList = GenList U { X}
process X
else redundancyFound = true
if ((—redundancyFound) and (IsExtendible (X))) then
for all extensions of X: X' = [x1, x2, ..., Xn, X']
if (IsFeasible(X’)) then
BasicGenA(X',n + 1)

The third line of Algorithm BasicGenA is quite expensive in terms of time, since
an isomorphism test AreIsomorphic (X, Y) between X and each element Y in
Gen List must be computed; see the works by Kocay [43] and McKay [44] for more
information on isomorphism testing and by McKay [45] for an efficient software
package for graph isomorphism. In addition, memory requirements for this algorithm
become a serious issue as all the previously generated objects must be kept.

In Algorithm BasicGenB, deciding whether the current object is kept is done by a
rule specifying who is the canonical representative of each isomorphism class. Based
on this rule, the current object is only kept if it is canonical within its isomorphism
class. A commonly used rule is that the canonical object be the lexicographically

GENERAL ALGORITHMS FOR ISOMORPH-FREEEXHAUSTIVE GENERATION 47

smallest one in its isomorphism class. In this case, a simple method for canonicity
testing (a possible implementation of procedure IsCanonical (X) below) is one
that generates all objects isomorph to the current object X by applying all possible
symmetries, and rejecting X if it finds a lexicographically smaller isomorph.

Algorithm BasicGenB (X = [x, x2, ..., x,], 1)

redundancyFound = false
if (IsComplete (X)) then

if (IsCanonical (X)) then process X

else redundancyFound = true

if ((—redundancyFound) and (IsExtendible(X))) then

for all extensions of X: X’ = [x1, X2, ..., Xn, X']

if (IsFeasible(X’)) then
BasicGenB(X',n + 1)

In Algorithm BasicGenB, the pruning given by the use of flag redundancy Found
assumes that the canonicity rule guarantees that a complete canonical object that has
a complete ancestor must have a canonical complete ancestor. This is a reasonable
assumption, which is clearly satisfied when using the “lexicographically smallest”
rule.

The next two algorithms substantially reduce the size of the backtracking tree by
making sure it contains only one copy of each nonisomorphic partial object. That
is, instead of testing isomorphism only for complete objects, isomorphism is tested
at each tree level. Faradzev [24] and Read [50] independently propose an orderly
generation algorithm. This algorithm also generates objects of size n by extending
objects of size n — 1 via backtracking. Like in Algorithm BasicGenB, it uses the idea
that there is a canonical representative of every isomorphism class that is the object
that needs to be generated (say, the lexicographically smallest). When a subobject
of certain size is generated, canonicity testing is performed, and if the subobject is
not canonical, the algorithm backtracks. Note that the canonical labeling and the
extensions of an object must be defined so that each canonically labeled object is the
extension of exactly one canonical object. In this way, canonical objects of size n are
guaranteed to be the extension of exactly one previously generated canonical object
of sizen — 1.

Algorithm OrderlyGeneration (X = [x1, x2, ..., x,], n)
if (IsComplete (X)) then process X.
if (IsExtendible (X)) then
for all extensions of X: X’ = [x1, X2, ..., Xn, X']
if (IsFeasible(X’)) then
if (IsCanonical (X)) then
OrderlyGeneration(X’, n + 1)

McKay [46] proposes a related but distinct general approach, where generation
is done via a canonical construction path, instead of a canonical representation. In
this method, objects of size n are generated from objects of size n — 1, where only
canonical augmentations are accepted. So, in this method the canonicity testing is

48 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

substituted by testing whether the augmentation from the smaller object is a canonical
one; the canonicity of the augmentation is verified by the test IsParent (X, X') in
the next algorithm. The canonical labeling does not need to be fixed as in the orderly
generation algorithm. Indeed, the relabeling of an object of size n — 1 must not affect
the production of an object of size n via a canonical augmentation.

Algorithm McKayGenerationl (X = [x{, x2, ..., x,], n)
if (IsComplete (X)) then process X.
if (IsExtendible (X)) then
for all inequivalent extensions of X: X' = [x1, x2, ..., X, X']
if (IsFeasible(X’)) then
if (IsParent (X, X’)) then /*if augmentation is canonical */
McKayGeneration1(X’, n + 1)

The previous algorithm may appear simpler than it is, because a lot of its key
features are hidden in the test (IsParent (X, X’)). This test involves several
concepts and computations related to isomorphism. We delay discussing more
of these details until they are needed in the second application of this method in
Section 2.7.2. The important and nontrivial fact established by McKay regarding
this algorithm is that if X has two extensions X/ and X/, for which X is the parent,
then it is enough that these objects be inequivalent extensions to guarantee that they
are inequivalent. In other words, Algorithm McKayGenerationl produces the same
generation as Algorithm McKayGeneration2 below:

Algorithm McKayGeneration2 (X = [x{, x2, ..., x,], 1)
if (IsComplete (X)) then process X.
if (IsExtendible (X)) then
S=0
for all extensions of X: X’ = [x1, X2, ..., Xn, X']
if (IsFeasible(X’)) then
if (IsParent (X, X’) then /* if augmentation is canonical */
S =SU{X'}
Remove isomorph copies from S
for all X’ € S do
McKayGeneration2(X’, n + 1)

Indeed, McKay establishes that in Algorithm McKayGeneration2 the isomorph
copies removed from set S must come from symmetrical extensions with respect to
the parent object X, provided that the function IsParent (X, X’) is defined as
prescribed in his article [46]. Algorithm McKayGenerationl is the stronger, more
efficient version of this method, but for some applications it may be more convenient
to use the simpler form of Algorithm McKayGeneration2. McKay’s method is related
to the reverse search method of Avis and Fukuda [1]. Both are based on the idea of
having a rule for deciding parenthood for objects, which could otherwise be generated
as extensions of several smaller objects. However, they differ in that Avis and Fukuda’s
method is not concerned with eliminating isomorphs, but simply repeated objects.

Note that all the given algorithms allow for generation from scratch when called
with parameters X = [] and n = 0, as well as from the complete isomorph-free list

HISTORICAL OVERVIEW OF HEXAGONALSYSTEM ENUMERATION 49

of objects at level n by calling the algorithm once for each object. In the latter case, for
Algorithms BasicGenB and OrderlyGeneration, the list of objects at level n must be
canonical representatives, while for Algorithms BasicGenA and McKayGeneration,
any representative of each isomorphism class can be used.

2.4 HISTORICAL OVERVIEW OF HEXAGONAL
SYSTEM ENUMERATION

In this section, we concentrate on the main developments in the enumeration and
generation of hexagonal systems, which are geometrically planar and simply con-
nected polyhexes, as defined earlier. A similar treatment can be found in the article
by Brinkmann et al. [8]. For more information on the enumeration and generation of
hexagonal systems and other types of polyhexes, the reader is referred to the books by
Dias [19,20], Gutman and Cyvin [17,33,34], Gutman et al. [36], and Trinajstic [59].
For a recent treatment on generating and enumerating molecules, see the survey by
Faulon et al. [26].

The enumeration of HSs is initiated by Klarner [40] who listsall HSsfor 1 < h <5
and is followed by a race for counting HSs for larger values of /. The presence of
faster computers and development of better algorithms enabled the expansion of
known generation and enumeration results.

The first class of algorithms is based on the boundary code. Knop et al. [42] used
this method for counting and even drawing HSs for 2 < 10. Using the same approach,
HSs were exhaustively generated for 2 = 11 [53]and 4 = 12 [38]. The boundary code
is explained in Section 2.5, where we give a basic backtracking algorithm (following
the framework of Algorithm BasicGenB) for the generation of triangular, square, and
hexagonal systems.

The next generation of algorithms uses the dualistic angle-restricted spanning
tree (DAST) code [49], which is based on the dualistic approach associated with a
general polyhex [3]. This approach was used for generating all HSs with h = 13 [47],
h = 14 [48], h = 15 [49], and h = 16 [41]. This method uses a graph embedded on
the regular hexagonal lattice containing the HS. Each vertex is associated with the
center of a hexagon, and two vertices are connected if they share an edge. This graph
is rigid; that is, angles between adjacent edges are fixed. Therefore, any spanning tree
of this graph completely determines the HS. DAST algorithms exhaustively generate
canonical representatives of dualist spanning trees using again a basic backtracking
algorithm.

The next progress was made by Tosic et al. [56], who propose a lattice-based
method that uses a “cage,” which led to the enumeration of HSs for 2 = 17. This
is a completely different method from the previous ones. The lattice-based approach
focuses on counting the number of HSs on the right-hand side of equation (2.1) in order
to compute N(h). This algorithm accomplishes this by generating nonisomorphic
HSs with nontrivial symmetry group based on a method of Redelmeier [51], and by
generating all fixed HSs by enclosing them on a triangular region of the hexagonal
lattice, which they call a cage. The cage algorithm is described in Section 2.6.

50 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

The boundary edge code algorithm by Caporossi and Hansen [12] enabled the
generation of all HSs for 7 = 18 to h = 21. The labeled inner dual algorithm
by Brinkmann et al. [7] holds the current record for the exhaustive generation of
polyhexes, having generated all polyhexes for # = 22 to h = 24. Each of these two
algorithms use a different representation for the HSs, but both use the generation by
canonical path introduced by McKay [46] given by the framework of Algorithms
McKayGenerationl and McKayGeneration2 from Section 2.3. Both algorithms are
described in Section 2.7.

TABLE 2.1 Results on the Enumeration and Exhaustive Generation of HSs

h N(h) Algorithm Type Year Reference

1 1 - -

2 1 - -

3 3 - -

4 7 - -

5 22 - -

6 81 - -

7 331 - -

8 1453 - -

9 6505 - - 1965 [40]
10 30086 BC G 1983 [42]
11 141229 BC G 1986 [53]
12 669584 BC G 1988 [38]
13 3198256 DAST G 1989 [47]
14 15367577 DAST G 1990 [48]
15 74207910 DAST G 1990 [49]
16 359863778 DAST G 1990 [41]
17 1751594643 CAGE E 1995 [56]
18 8553649747 BEC G
19 41892642772 BEC G
20 205714411986 BEC G
21 1012565172403 BEC G 1998 [12]
22 4994807695197 LID G
23 24687124900540 LID G
24 122238208783203 LID G 2002 [7]
25 606269126076178 FLM E
26 3011552839015720 FLM E
27 14980723113884739 FLM E
28 74618806326026588 FLM E
29 372132473810066270 FLM E
30 1857997219686165624 FLM E
31 9286641168851598974 FLM E
32 46463218416521777176 FLM E
33 232686119925419595108 FLM E
34 1166321030843201656301 FLM E
35 5851000265625801806530 FLM E 2002 [60]

BACKTRACKING FOR HEXAGONAL, SQUARE,AND TRIANGULAR SYSTEMS 51

Finally, Voge et al. [60] give an algorithm that enables a breakthrough on the enu-
meration of HSs, allowing for the counting of all HSs with 4 = 25to s = 35. Like the
cage algorithm, they use a lattice-based approach, but instead of brute force genera-
tion of all fixed HSs, they employ transfer matrices and the finite lattice method by
Enting [23] to compute H (). Their algorithm is based on counting using generating
functions, so they enumerate rather than exhaustively generate HSs.

Table 2.1 provides a summary of the results obtained by enumeration and
exhaustive generation algorithms. For each 4, it shows in order: the number N (%) of
free HSs with i hexagons, the first algorithmic approach that computed it, whether
the algorithm’s type was exhaustive generation (G) or enumeration (E), publication
year, and reference. When the year and reference are omitted, it is to be understood
that it can be found in the next row for which these entries are filled.

2.5 BACKTRACKING FOR HEXAGONAL, SQUARE,
AND TRIANGULAR SYSTEMS

In this section, we presents a basic backtracking algorithm, based on the boundary
code, for listing all nonisomorphic polygonal systems. This algorithm is applicable
for hexagonal [53], triangular [22], and square [54] systems. First, each of these
“animals” is decoded as a word over an appropriate alphabet. A square system can
be drawn such that each edge is either vertical or horizontal. If a counterclockwise
direction along the perimeter of a square system is followed, each edge can be coded
with one of four characters, say from the alphabet {0, 1, 2, 3}, where O, 1, 2, and 3
correspond to four different edge orientations (see Fig. 2.4b). For example, the square
system in Figure 2.4a can be coded, starting from the bottom-left corner, as the word
001001221000101221012232212332330333. The representation of a square system
is obviously not unique, since it depends on the starting point.

Similarly, each hexagonal or triangular system can be coded using words from the
alphabet {0, 1, 2, 3, 4, 5}, where each character corresponds to one of six possible edge
orientations, as indicated in Figure 2.4d. Figure 2.4c shows a triangular system that
can be coded, starting from bottommost vertex and following counterclockwise order,
as 11013242345405; the hexagonal system in Figure 2.4e can be coded, starting from
the bottom-left vertex and following counterclockwise direction, as 01210123434505.

Let/;(u) denote the number of appearances of the letter i in the word u. For example,
14(01210123434505) = 2, since exactly two characters in the word are equal to 4.

Lemmal [54] A wordu corresponds to a square system if and only if the following
conditions are satisfied:

1. lo(u) = L(u) and Iy (u) = I3(u), and
2. for any nonempty proper subword w of u, lo(w) # lr(w) or l1(w) # I3(w).

Proof. A given closed path along the perimeter can be projected onto Cartesian co-
ordinate axes such that 0 and 2 correspond to edges in the opposite directions (and,

52 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

2 h 212k
1
; 212 (]
3 1 2
2 2 "
0 2 1]
3 [}] 0 y
-
'3 N2z
3 1
o] o 3
3 1
v]

(a) (b

AVAVA
AVAVAVAVAVA
\VAVAVAVAVAV

\VAVAVAVAY

(c) (d) (¢)
FIGURE 2.4 Boundary codes for polygonal systems.

similarly, edges 1 and 3), as indicated in Figure 2.4b. Since the number of projected
“unit” edges in direction 0 must be equal to the number of projected unit edges
in direction 2, it follows that lo(#) = lp(u). Similarly, /() = l3(u). To avoid self-
intersections along the perimeter, both equalities shall not be met simultaneously for
any proper subword of u. l

Lemma 2 [53] A word u = uyuy...u, corresponds to a hexagonal system if and
only if the following conditions are satisfied:

L lo(u) = 13(u), 11 (u) = la(u), and lr(u) = Is(u),

2. for any nonempty proper subword w of u, lo(w) # [3(w) or 1 (w) # l4(w), or
L(w) # Is(w), and

3. Uj+1 = U; +1 (mod 6), I = 1, 2, s p— 1.

Proof. Condition 3 follows easily from the hexagonal grid properties. To verify con-
dition 1, consider, for example, a vertical line passing through the middle of each
horizontal edge (denoted by O or 3). Each such vertical line intersects only edges
marked by O or 3, and no other edge. Therefore, in order to return to the starting

BACKTRACKING FOR HEXAGONAL, SQUARE,AND TRIANGULAR SYSTEMS 53

point of the perimeter, each path along the boundary must make equal number of
moves to the right and to the left; thus, the number of Os and 3s in a hexagonal system
is equal. The other two equalities in 1 follow similarly. Condition 2 assures that no
self-intersection of the boundary occurs. l

Lemma 3 [22] A word u corresponds to a triangular system if and only if the
following conditions are satisfied:

L lo(u) — I3(u) = la(u) — Li(u) = lo(u) — Is(u), and
2. no proper subword of u satisfies condition 1.

Proof. Project all edges of a closed path onto a line normal to directions 2 and 5. All
edges corresponding to characters 2 and 5 have zero projections while the length of
projections of edges 0, 1, 3, and 4 are equal; edges 0 and 1 have equal sign, which is
opposite to the sign of projections of edges 3 and 4. The sum of all projections for
a closed path is 0 and therefore lo(u) + {1 (1) = I3(u) + l4(u). Analogously, I1(u) +
I(u) = l4(u) + Is(u). A

The same polygonal system can be represented by different words. Since the
perimeter can be traversed starting from any vertex, there are p words in the clockwise
and p words in the counterclockwise direction for the same fixed polygonal sys-
tem ujusz...up. In addition, central symmetry and rotations can produce additional
isomorphic polygonal systems. In the case of hexagonal and triangular systems,
each free polygonal system corresponds to at most 12 fixed ones, as discussed
above (the symmetry groups for hexagonal and triangular systems coincide). Thus,
each HS or TS (triangular system) may have up to 24 p isomorphic words (words
that define the same free system). They can be generated by repeated applica-
tion and combination of the following transformations: a(uuz...up) = upu3...upi1,
Bluruy..up) = upup_1..upuy and o(uiuz...up) = o(uy)o(uz)...o(up), where o is
an arbitrary element of the transformation group G described above. G is generated
by permutations p = 123450 (u(t) =t + 1 (mod 6)) and p = 345012 (p(t) = 3+
t (mod 6)).

In the case of square systems, each word has similarly up to 2p words ob-
tained by starting from an arbitrary vertex and following (counter) clockwise di-
rection, and up to eight isomorphic systems corresponding to the symmetry group
of a square. The group is generated by a rotation of 7/4 and a central symmetry,
which correspond to permutations u = 1230 (u(¢) = ¢+ (mod 4)) and p = 2301
(p(t) =2+t (mod 4)), respectively. The transformation group contains eight ele-
ments {&, w, u%, 13, p, up, u?p, 1 p}.

In summary, each polygonal system can be coded by up to 24p words and only
one of them shall be selected to represent it. We need a procedure to determine
whether or not a word that corresponds to a polygonal system is the representative
among all words that correspond to the same polygonal system. As discussed in
Section 2.3, Algorithm BasicGenA is time and space inefficient when used for large
computations, where there are millions of representatives. Instead, we employ

54 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

Algorithm BasicGenB. We may select, say, the lexicographically first word among
all isomorphic words as the canonical representative.

We shall now determine the area of a polygonal system, that is the number of
polygons in its interior. Given a closed curve, it is well known that the curvature
integration gives the area of the interior of the curve. Let (x;, y;) be the Cartesian
coordinates of the vertex where the ith edge (corresponding to the element u; in the
word u) starts. Then, the area obtained by curvature integration along the perime-
ter of a given polygonal system that is represented by a word u = ujuy ... u, is
P=1/23F | (xix1 — x)(it1 — yi) = 1/23°7_ | (xiyis1 — xiv1i). The number of
polygons & in the interior of a polygonal system is then obtained when P is divided
by the area of one polygon, namely +/3/4, 3+/3/2, and 1 for triangular, hexagonal,
and square systems, respectively, where each edge is assumed to be of length 1. It
remains to compute the coordinates (x;, y;) of vertices along the perimeter. They can
be easily obtained by projecting each of the unit vectors corresponding to directions
0,1,2,3,4, and 5 of triangular/hexagonal and O, 1, 2, and 3 of square system onto
the Cartesian coordinates.

Letu = ujuy...uj be a given word over the appropriate alphabet. If it represents a
polygonal system, then conditions 1 and 2 are satisfied from the appropriate lemma
(Lemma 1, 2, or 3). Condition 1 means that the corresponding curve is closed and
condition 2 that it has no self-intersections. Suppose that condition 2 is satisfied
but not condition 1; that is, the corresponding curve has no self-intersections and is
not closed. We call such a word addable. 1t is clear that u can be completed to a
word u’ = ujuy...up, for some p > j, representing a polygonal system if and only
if u is addable. If u is addable, then it can be extended to a word ujus...ujuji1,
where u j 1 has the following possible values: u; — 1, u; + 1 (mod 6) for hexagonal,
uj+4,uj+5 uj,u;j+1,and u; + 2 (mod 6) for triangular (note that obviously
ujpr1 #uj+3 (mod6)), and u; — 1, u;, and u; + 1 (mod 4) for square (note that
Ujp1 # uj+ 2 (mod 4)) systems.

Algorithm BacktrackS; n(p)
Procedure GenPolygonalSystem(U = [uy, ..., u;l, j, p) {
if (U = [uz, ..., uj] represents a polygonal system) then
if (U = [uy, ..., u;] is a canonical representative) then {
find its area h;
Sih < Sjn+ 13
printuy, ..., u;
}
else
if (U = (u1,...,ujis addable) and (j < p) then
for all feasible values of u j 1 with respect to U do
GenPolygonalSystem([u1, ..., uj, ujy1], j+ 1, p)
}
begin main
up < 0;
GenPolygonalSystem([u1], 1, p)
end main

BACKTRACKING FOR HEXAGONAL, SQUARE,AND TRIANGULAR SYSTEMS 55

TABLE 2.2 Number of Square and Triangle Systems with /2 Polygons
h

._.
™)
w
~
W

6 7 8 9 10 11 12 13

S|{1 1 2 5 12 25 107 363 1248 4460
rT|{1 1 1 3 4 12 24 66 159 444 1161 3226 8785

Algorithm BacktrackS;,(p) determines the numbers S;, of polygonal
systems with perimeter j and area h, for j < p (i.e., for all perimeters <p
simultaneously). Due to symmetry and lexicographical ordering for the choice of a
canonical representative, one can fix u; = 0. This algorithm follows the framework
given by Algorithm BasicGenB in Section 2.3.

This algorithm was used to produce the numbers S, , and the results were obtained
for the following ranges: p < 15 for triangular [22], p < 22 for square [54], and p <
46 for hexagonal [53] systems. Using the relation p < 4h + 2 for hexagonal, p < h +
2 for triangular, and p < 2k + 2 for square systems, the numbers of polygonal systems
with exactly & polygons are obtained for the following ranges of 2: & < 13 (triangular),
h < 10 (square),and h < 11 (hexagonal systems). These numbers are given for square
and triangular systems in Table 2.2. The data for hexagonal systems can be found in
the corresponding entries in Table 2.1. Table 2.3 gives some enumeration results [53]
for the number of nonisomorphic HSs with area & and perimeter p.

TABLE 2.3 Hexagonal Systems with Area & and Perimeter p

h

1 2 3 4 5 6 7 8 9
p= 1 — — — — — — - —
p=38 — — — — — — — - -
p=10 — 1 — — — — — — —
p=14 — — 2 1 — — — — —
p=16 — — — 1 1 — = — —
p=18 — — — 5 3 3 1 — —
p=20 — — — — 6 4 3 1 —
p=22 — — — — 12 14 10 9 4
p=24 — — — — — 24 25 21 15
p =26 — — — — — 36 68 67 55
p =28 — — — — — — 106 144 154
p =230 — — - — — — 118 329 396
p=232 — — — — — — — 453 825
p =34 — — — — — — — 411 1601
p =36 _ _ _ _ — — — — 1966
p =238 — — — — — — — — 1489
z 1 1 3 7 22 81 331 1435 6505

56 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

2.5.1 Exercises

1. Prove that p < h + 2 for triangular systems.
2. Prove that p < 2h + 2 for square systems.

3. Find the projections of each unit vector corresponding to directions
0,1,2,3,4, and 5 of triangular/hexagonal and 0, 1, 2, and 3 of square sys-
tem onto the x and y coordinate axes.

4. An unbranched catacondensed HS can be coded as a word u = ujus...up
over the alphabet {0, 1,2, 3,4,5}, where u; corresponds to the vector
joining ith and (i 4+ /)th hexagon in the HS (the vector notation being
as defined in Fig. 2.4). Prove that a word u is the path code of an
unbranched catacondensed HS if and only if for every subword y of
u, [lo(y) + Is(y) = 13(y) — (W) + [11(y) + 12(y) — l4(y) — Is(y)| > 1. Show
that there always exist a representative of an equivalence class beginning
with 0 and having 1 as the first letter different from 0 [55].

5. Describe an algorithm for generating and counting unbranched catacondensed
HSs [55].

6. The test for self-intersection given as condition 2 in Lemmas 1-3 requires
O(n) time (it suffices to apply it only for subwords that have different
beginning but the same ending as the tested word). Show that one can use
an alternative testing that will require constant time, by using a matrix
corresponding to the appropriate grid that stores 1 for every grid vertex
occupied by a polygon and 0 otherwise.

7. Design an algorithm for generating and counting branched catacondensed
HSs [11].

8. Design an algorithm for generating and enumerating coronoid hydrocarbons,
which are HSs with one hole (they have outer and inner perimeters) [10].

9. Letujus ...u, be a boundary code of an HS as defined above. Suppose that
an HS is traced along the perimeter in the counterclockwise direction. A new
boundary code x = x1x3...x, is defined over the alphabet {0, 1} such that
xi =0ifu; =u;—y +1(mod 6) and x; = 1 if u; = u;_; — 1 (mod 6) (where
Yo = ¥p). Show that the number of 1s is ¢t while the number of Os is s, where
s and ¢ are defined in Section 2.2.2. Design an algorithm for generating and
counting HSs based on the new code.

10. Design an algorithm for generating HSs with area & which would be based
on adding a new hexagon to each HS of area i — 1.

11. Leth, p, i, m, n,and d be defined for square (triangular, respectively) systems
analogously to their definitions for HSs. Find the corresponding relations
between them.

2.5.2 Open Problems

Find a closed formula or a polynomial time algorithm to compute the number of
nonisomorphic hexagonal (triangular, square) systems with area A.

GENERATION OF HEXAGONAL SYSTEMSBY A CAGE ALGORITHM 57

2.6 GENERATION OF HEXAGONAL SYSTEMS
BY A CAGE ALGORITHM

This section describes an algorithm by Tosic et al. [56] that enumerates nonisomor-
phic hexagonal systems and classifies them according to their perimeter length. This
algorithm therefore performs the same counting as the one in the previous section
but is considerably faster (according to the experimental measurements), and was the
first to enumerate all HSs with 2 < 17.

The algorithm is a lattice-based method that uses the results of the enumera-
tion and classification of polyhex hydrocarbons according to their various kinds of
symmetry and equation (2.1). These enumerations are performed by separate pro-
grams, which are not discussed here. Known results on the enumeration and clas-
sification of HSs according to symmetries are surveyed by Cyrin et al. [14]. In the
present computation, the symmetry of the HSs is exploited by adopting the method
of Redelmeier [51]. This method is improved in some aspects by using a boundary
code (see the previous section) for the HSs. The exploitation of symmetry involves
separate enumeration of the fixed HSs on one hand (H(h)) and free HSs of spe-
cific (nontrivial) symmetries on the other (other values on the right-hand side of
equation (2.1)).

The easiest way to handle a beast (HS) is to put it in a cage. A cage is a rather
regular region of the hexagonal grid in which we try to catch all relevant hexagonal
systems. This algorithm uses a triangular cage. Let Cage(n) denote a triangular cage
with n hexagons along each side. Figure 2.5 shows Cage(9) and exemplifies how a
coordinate system can be introduced in Cage(n).

Itis almost obvious that each hexagonal system that fits inside a cage can be placed
in the cage in such a way that at least one of its hexagons is on the x-axis of the cage,
and at least one of its hexagons is on the y-axis of the cage. We say that such HSs
are properly placed in the cage. Thus, we generate and enumerate all HSs that are
properly placed in the cage.

FIGURE 2.5 A hexagonal system properly placed in a cage.

58 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

Let B be a free HS with & hexagons and let Gp be its symmetry group. It
can be easily shown that B can be properly placed in Cage(h) in exactly |G p|
ways. Therefore, we can use equation (2.1) in order to determine N(4). This re-
quires the knowledge of N(Dgp,, h), N(Cep, h), N(D3p, h), N(C3p,, h), N(Dap, h),
N(Cap, h), and N(Csy, h)), which are found by separate generation algorithms
not discussed here, as well as of H(h), the total number of fixed hexagons,
which is determined by the algorithm discussed in this section. By using this ap-
proach, we completely avoid isomorphism tests, which are considered to be the
most time-consuming parts of similar algorithms. Note that this is sufficient for
enumeration, but if we need exhaustive generation, isomorphism tests would be
required.

One needs Cage(h) to be able to catch all properly placed HSs with up to &
hexagons. However, it turns out that the beasts are not that wild. Almost all hexago-
nal systems with & hexagons appear in Cage(h — 1). This allows a significant speedup
due to the reduction in the search space. Those HSs that cannot be properly placed
in Cage(h — 1) can easily be enumerated (see Exercise 3). Therefore, we can re-
strict our attention to Cage(h — 1), when dealing with hexagonal systems with &
hexagons.

Let p and g be the smallest x- and y-coordinates (respectively) of all (centers of)
hexagons of an HS that is properly placed in Cage(k — 1). Hexagons with coordinates
(p, 0) and (0, g) (with respect to the coordinate system of the cage) are named key
hexagons. Let H(p, q) denote the set of all HSs with </ hexagons that are properly
placed in Cage(h — 1) and their key hexagons on x- and y-axes have coordinates
(p, 0) and (0, g), respectively. Figure 2.5 shows one element of H(4, 2).

The family {H(p,q) : 0 < p <h —2,0 < g < h — 2} is a partition of the set of
all hexagonal systems that are well placed in Cage(h — 1). Because of symmetry,
it can be verified that |H(p, q)| = |H(q, p)|, for all p,q € {0, 1, ..., h — 2}. Thus,
the job of enumeration of all properly placed hexagons is reduced to determining
|H(p. ¢)| forall p = g.

Given the numbers 0 < p < g < h — 2 and Cage(h — 1), determining |H(p, q)|
reduces to generating all hexagons systems from H(p, g). We do that by generating
their boundary line. A quick glance at Figure 2.5 reveals that the boundary line of a
hexagonal system can be divided into two parts: the left part of the boundary (from
the readers point of view), which starts on the y-axis below the key hexagon and
finishes at the first junction with x-axis, and the rest of the boundary, which we call
the right part of the boundary.

We recursively generate the left part of the boundary line. As soon as it reaches
the x-axis, we start generating the right part. We maintain the length of the bound-
ary line as well as the area of the hexagonal system. The trick that gives the area of
the hexagonal system is simple: hexagons are counted in each row separately, start-
ing from y-axis, such that their number is determined by their x-coordinate. Each
time the boundary goes up (down), we add (subtract, respectively) the corresponding
x-coordinate. When following the contour of HS in counterclockwise direction (i.e.,
in the direction of generating HS, see Fig. 2.5), there remain some hexagons out of
HS to the left of the vertical contour line that goes down while hexagons to the left of

GENERATION OF HEXAGONAL SYSTEMSBY A CAGE ALGORITHM 59

the vertical line that goes up belong to the HS. The “zigzag” movements do not inter-
fere with the area. Once the generation is over, the area of the HS gives the number
of hexagons circumscribed in this manner. The area count is used to eliminate HSs
with more than / hexagons, which appear during the generation of systems with A
hexagons that belong to H(p, q).

However, it would be a waste of time (and computing power) to insist on generating
elements of H(p, g) strictly. This would require additional tests to decide whether
the left part of the boundary has reached x-axis precisely at hexagon p or not. In
addition, once we find out we have reached the x-axis at hexagon, say, p + 2, why
should we ignore it for the calculation of H(p + 2, g)? We shall therefore introduce
another partition of the set of all properly placed HSs.

Given / and Cage(h — 1), let H*(q) = JI—§ H(j. q). forallg =0.1,....h —2.
It is obvious that {H*(q) : 0 < g < h — 2} is a partition of the set of all HSs with
h hexagons that are properly placed in Cage(h — 1). Instead of having two sepa-
rate phases (generating H(p, g) and adding appropriate number to total), we now
have one phase in which generating and counting are put together. We should
prevent appearances of hexagonal systems from H(p, g) with p < ¢. This re-
quires no computational overhead because it can be achieved by forbidding some
left and some down turns in the matrix representing the cage. On the contrary,
avoiding the forbidden turns accelerates the process of generating the boundary
line.

The algorithm is a school example of backtracking, thus facing all classical
problems of the technique: Even for small values of 4 the search tree misbehaves,
so it is essential to cut it as much as possible. One idea that cuts some edges of the
tree is based on the fact that for larger values of g there are some parts of the cage
that cannot be reached by hexagonal systems with </ hexagons, but can easily be
reached by useless HSs that emerge as a side effect. That is why we can, knowing g,
forbid some regions of the cage.

The other idea that reduces the search tree is counting the boundary hexagons.
A boundary hexagon is a hexagon that has at least one side in common with the
boundary line and that is in the interior of the hexagonal system we are generating. It
is obvious that boundary hexagons shall be part of the HS, so we keep track of their
number. We use that number as a very good criterion for cutting off useless edges
in the search tree. The idea is simple: further expansion of the left/right part of the
boundary line is possible if and only if there are less than & boundary hexagons the
boundary line has passed by.

The next idea that speeds up the algorithm is living on credit. When we start
generating the left part of the boundary, we do not know where exactly is it going
to finish on the x-axis, but we know that it is going to finish on the x-axis. In other
words, knowing that there is one hexagon on the x-axis that is going to become a part
of the HS, we can count it as a boundary hexagon in advance. It represents a credit
of the hexagonal bank, which is very eagerly exploited. Thus, many useless HSs are
discarded before the left part of the boundary lands on the x-axis.

All these ideas together represent the core of the algorithm, which can be outlined
as follows.

60 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

Algorithm CageAlgorithm(#)
procedure ExpandRightPart(ActualPos,BdrHexgns) {
if (EndOfRightPart) then {
n <NoOfHexagons()
if (n < h) then {
determine p;
if (p = q) then total[n] < total[n] + 1
else rotal[n] < total[n] + 2
}
}

else {
FindPossible(ActualPos,FuturePos)
while (RightPartCanBeExpanded(ActuallPos, FuturePos))
and (BdrHexgns< h) do {
ExpandRightPart(FuturePos,update(BdrHexgns))
CalcNewFuturePos(ActualPos,FuturePos)
}
}

}
procedure ExpandLeftPart(ActualPos,BdrHexgns) {

if (EndOfLeftPart) then
ExpandRightPart (RightlnitPos(q), updCredit(BdrHexgns))
else {
FindPossible(ActualPos,FuturePos)
while (LeftPartCanBeExpanded(ActualPos, FuturePos)) and
(BdrHexgns <h) do {
ExpandLeftPart(FuturePos,update(BdrHexgns))
CalcNewFuturePos(ActualPos,FuturePos)
}
}
}
begin main
initialize Cage(h-1);
total[1..h] < 0
forg <~ Otoh —2do{
initialize y-axis key hexagon(g)
ExpandLeftPart(LeftInitPos(g),InitBdrHexgns(q))
}

end main

2.6.1 Exercises

1. Design algorithms for counting square and triangular systems, using analogous
ideas as these presented in this section for HSs.

TWO ALGORITHMS FOR THE GENERATION OF HSs USING MCKAY’S METHOD 61

2. Design algorithms for generating all HSs with area 4 and perimeter p, which
belong to a given kind of symmetry of HSs (separate algorithms for each of
these symmetry classes).

3. Prove that the number of HSs with 4 hexagons that cannot be placed properly in
Cage(h — 1)is (h® — h + 4)2"=3. Show that, among them, there are (k> — 3h +
2)2h—4 pericondensed (with exactly one inner vertex) and (h% + h + 6)2h—
catacondensed HSs [56].

2.7 TWO ALGORITHMS FOR THE GENERATION OF HSs USING
MCKAY’S METHOD

2.7.1 Generation of Hexagonal Systems Using
the Boundary Edge Code

Caporossi and Hansen [12] give an algorithm, based on Algorithm McKayGenera-
tion2 seen in Section 2.3, for isomorph-free generation of hexagonal systems repre-
sented by their boundary edge code (BEC). Their algorithm was the first to generate
all the HSs with 2 = 18 to & = 21 hexagons.

We first describe the BEC representation of an HS, exemplified in Figure 2.6.
Select an arbitrary external vertex of degree 3, and follow the boundary of the HS
recording the number of boundary edges of each hexagon it traverses. Then, apply
circular shifts and/or a reversal, in order to obtain a lexicographically maximum code.
Note that each hexagon can appear one, two or three times as digits in the BEC code.
Caporossi and Hansen [12] prove that an HS always start with a digit greater than or
equal to 3.

Now, two aspects of the algorithm need specification: How to determine which
sub-HS (of order 4 — 1) of an HS of order 2 will be selected to be its parent in
the generation tree, and how hexagons are added to existing HSs to create larger
HSs.

In Figure 2.7, we show the generation tree explored by this algorithm for & = 4.
Note that, for example, from the HS with code 5351 we can produce six noniso-
morphic HSs, but only three of them are kept as its legitimate children. The rule for
determining the parent of an HS is to remove the hexagon corresponding to the first
digit of its BEC code. In other words, the parent of an HS is the one obtained by

+ —
15115315 | 51351151
51153151 15135115

11531515 | 51513511
15315151 | 15151351
11515135
31515115 | 51151513
15151153 | 35115151
51511531 | 13511515

=0 S 0 Qo

FIGURE 2.6 Boundary edge code for a hexagonal system.

62 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

533511 531531 515151 522522 532521 52441 4343
FIGURE 2.7 Isomorph-free search tree for h = 4.

removing its first hexagon. This operation in rare cases may disconnect the HS. This
occurs precisely when the first hexagon occurs twice rather than once in the code. In
such cases, the HS is orphan and cannot be generated via the algorithm’s generation
tree. A specially designed method for generation of orphan HSs must be devised in
these cases. However, Caporossi and Hansen [12] proved that orphan HSs do not
occur for 1 < 28, so they did not have to deal with the case of orphan HSs in their
search.

Next, we describe how hexagons are added to create larger HSs. There are three
ways in which a hexagon can be added to an HS, exemplified in Figure 2.8a:

1. A digit x > 3 in the BEC code corresponding to edges of a hexagon such that
one of the edges belong only to this hexagon can be replaced by a5b, where
a+b+1=xanda>1land b > 1.

2. A sequence xy in the BEC code with x > 2 and y > 2 can be replaced by

(x— DAy — D).
3. A sequence xly with x > 2 and y > 2 in the BEC code can be replaced by
(x— D3y — 1.

In each of the above cases, we must make sure that the addition of the hexagon
does not produce holes. This can be accomplished by checking for the presence of
a hexagon in up to three adjacent positions, as shown in Figure 2.8b; if any of these
hexagons is present, this addition is not valid.

Procedure GenerateKids that generates, from an HS P with j hexagons, its children
in the search with j + 1 hexagons is outlined next.

1. Addition of hexagons: Any attempt to add a hexagon in the steps below is
preceded by a test that guarantees that no holes are created.

TWO ALGORITHMS FOR THE GENERATION OF HSs USING MCKAY’S METHOD 63

X No hexagon in this position

% Added hexagon

/9y Positions to check

X 7

X X

<5

ey

AT
SRERRRERN
0004500
R

Ny

%

‘v‘v‘

,vﬂ’#"‘“'

X Bl
///\‘ .0‘0‘ ‘/\\
IR NCN

@)

2

B

3

(@) Q)
FIGURE 2.8 Ways of adding a hexagon to the boundary of an HS.

e Add a 5 in every possible way to the BEC code of P.

e If the BEC code of P does not begin with a 5, then add a 4 in every possible
way to the BEC code of P; otherwise, only consider the addition of a 4
adjacent to the initial 5.

e If the BEC code of P has no 5 and at most two 4s, consider the addition of a 3.

2. Parenthood validation: For each HS generated in the previous step, verify that
its BEC code can begin on the new hexagon. Reject the ones that cannot.

The correctness of the above procedure comes from the rule used to define who is
the parent of an HS, and from the lexicographical properties of the BEC code. Now,
putting this into the framework of Algorithm McKayGeneration2, from Section 2.3,

64 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

gives the final algorithm.

Algorithm BECGeneration(P, Pcode, j)
if (j = h) then output P
else {
S=GenerateKids(P, Pcode)
Remove isomorph copies from S
for all (P’, Pcode’) € S do
BECGeneration(P’, Pcode’, j + 1)

}

Caporossi and Hansen [12] discuss the possibility of using Algorithm McKay-
Generationl, which require computing the symmetries of the parent HS to avoid the
isomorphism tests on the fourth line of the above algorithm. However, they report that
experiments with this variant gave savings of only approximately 1 percent. Thus,
this seem to be a situation in which it is worth using the simpler algorithm given by
Algorithm McKayGeneration?2.

2.7.2 Generation of Hexagonal Systems and Fusenes
Using Labeled Inner Duals

Brinkmann et al. [7,8] exhaustively generate HSs using an algorithm that constructs
all fusenes and filters them for HSs. Fusenes are a generalization of polyhexes that
allows for irregular hexagons. They only consider simply connected fusenes, of
which HSs are therefore a special case. In this section, we shall describe their al-
gorithm for constructing fusenes. Testing whether a fusene fits the hexagonal lattice
(checking whether it is an HS) can be easily done, and it is not described here. This
algorithm was the first, and so far the only one, to exhaustively generate all HSs
withh =22 to h = 24.

We first describe the labeled inner dual graph representation of a fusene. The
inner dual graph has one vertex for each hexagon, and two vertices are connected if
their corresponding hexagons share an edge. This graph does not uniquely describe a
fusene, but using an appropriate labeling together with this graph does, see Figure 2.9.
Following the boundary cycle of the fusene, associate as many labels with a vertex
as the number of times its corresponding hexagon is traversed, so that each label
records the number of edges traversed each time. In the cases in which the hexagon
occurs only once in the boundary, the label is omitted, as the number of edges in the

3
&(} oo (50—0—® (5)
1

2
) ees gedes

FIGURE 2.9 Hexagonal systems, their inner dual, and labeled inner dual graphs.

TWO ALGORITHMS FOR THE GENERATION OF HSs USING MCKAY’S METHOD 65

boundary is completely determined from 6—deg(v), where deg(v) is the degree of the
corresponding vertex.

Brinkmann et al. characterize the graphs that are inner duals of fusenes, which
they call id-fusenes. They show that a planar embedded graph G is an id-fusene if and
only if (1) G is connected, (2) all bounded faces of G are triangles, (3) all vertices
not on the boundary have degree 6, and (4) for all vertices, the total degree, that is,
the degree plus the number of times it occurs in the boundary cycle of the outer face,
is at most 6.

Before we describe the algorithm, we need some basic definitions related to graph
isomorphisms. Two graphs G| and G are isomorphic if there exists a bijection
(isomorphism) from the vertex set of G| to the vertex set of G, that maps edges
to edges (and nonedges to nonedges). An isomorphism from a graph to itself is
called an automorphism (also called a symmetry). The set of all automorphisms of
a graph form a permutation group called the automorphism group of the graph, de-
noted Aut(G). The orbit of a vertex v under Aut(G) is the set of all images of v
under automorphisms of G; that is, orb(v) = {g(v) : g € Aut(G)}. This definition can
be naturally extended to a set S of vertices as orb(S) = {g(S) : g € Aut(G)}, where
8(8) = {gx) : x € §}.

In the first step of the algorithm, nonisomorphic inner dual graphs of fusenes (id-
fusenes) are constructed via Algorithm McKayGenerationl, described in Section 2.3.
This first step is going to be described in more detail later in this section. In the second
step, labeled inner duals are generated. We have to assign labels, in every possible
way, to the vertices that occur more than once on the boundary, so that the sum of
the labels plus the degrees of each vertex equals 6. In this process, we must make
sure that we do not construct isomorphic labeled inner dual graphs, which can be
accomplished by using some isomorphism testing method. To this end, the authors
use the homomorphism principle developed by Kerber and Laue (see, for instance,
the article by Griiner et al. [28]), which we do not describe here. However, it turns out
that isomorphism testing is not needed for the labelings of most inner dual graphs, as
discussed in the next paragraph, so the method that we choose for the second step is
not so relevant.

One of the reasons for the efficiency of this algorithm is given next. For two labeled
inner dual graphs to be isomorphic, we need that their inner dual graphs be isomorphic.
Since the first step of the algorithm generates only one representative of each isomor-
phism class of inner dual graphs, isomorphic labeled inner dual graphs can only result
from automorphisms of the same inner dual graph. So, if the inner dual graph has a
trivial automorphism group, each of its generated labelings do not have to be tested
for isomorphism. It turns out that the majority of fusene inner dual graphs have trivial
automorphism group. For instance, for n = 26 trivial automorphism groups occur in
99.9994% of the inner dual graphs, each of them with more than 7000 labelings in
average. So, this method saves a lot of unnecessary isomorphism tests in the second
step of the algorithm.

Now, we give more details on the first step of the algorithm, namely the isomorph-
free generation of the inner dual graphs via Algorithm McKayGenerationl, as
described by Brinkmann et al. [7]. We need to specify how hexagons are added to

66 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

Dot

2 &

FIGURE 2.10 Valid augmentations of an id-fusene.

|

existing id-fusenes to create larger ones and how to determine which subgraphs
(of order v — 1) of an id-fusene of order v will be selected to be its parent in the
generation tree.

In order to describe how we augment an id-fusene, we need some definitions. A
boundary segment of an id-fusene is a set of / — 1 consecutive edges of the boundary
cycle. The vertices of the boundary segment are the end vertices of its edges (there
are [of them). For convenience, a single vertex in the boundary cycle is a boundary
segment with / = 1. A boundary segment is said to be augmenting if the following
properties hold: / < 3, its first and last vertices have total degree at most 5, if / = 1
its only vertex has total degree at most 4, and if / = 3 and the middle occurs only
once in the boundary, it has total degree 6; see examples of valid augmentations in
Figure 2.10. The augmentation algorithm is based on the following lemma.

Lemmad Allid-fusenes can be constructed from the inner dual of a single hexagon
(a single vertex graph) by adding vertices and connecting them to each vertex of an
augmenting boundary segment.

McKay [46] describes a general way of determining parenthood in Algorithm
McKayGenerationl based on a canonical choice function f. When applied to the case
of the current algorithm with the given augmentation, f is chosen to be a function
that takes each id-fusene G to an orbit of vertices under the automorphism group of
G that satisfy the following conditions:

1. f(G) consists of boundary vertices that occur only once in the boundary cycle
and have degree at most 3;

2. f(G) is independent of the vertex numbering of G; that is, if ® is an isomor-
phism from G to G’, then ®(f(G)) = f(G').

Now, as described by McKay [46], graph G is defined to be the parent of graph
G U {v} if and only if v € f(G U {v}). The specific f used by Brinkmann et al. [7]
is a bit technical and would take a page or more to properly explain, so we refer the
interested reader to their paper.

Procedure GenerateKidsIDF that generates, from an id-fusene G with v hexagons,
its children in the search tree with v + 1 hexagons is outlined next.

TWO ALGORITHMS FOR THE GENERATION OF HSs USING MCKAY’S METHOD 67

1. Addition of hexagons:

e Compute the orbit of the set of vertices of each augmenting boundary segment
of G.

e Connect the new vertex n + 1 to the vertices in one representative of each
orbit, creating a new potential child graph G’ per orbit.

2. Parenthood validation: For each G’ created in the previous step, if n + 1 €
f(G’) then add G’ to S, the set of children of G.

As discussed in the presentation of Algorithm McKayGenerationl, from Section
2.3, no further isomorphism tests are needed between elements of S, unlike the al-
gorithm in Section 2.7.1. Now, putting all these elements into the given framework
gives the final algorithm for the isomorph-free generation of id-fusenes.

Algorithm IDFGeneration(G, n)
if (n = h) then output G
else {
S=GenerateKidsIDF(G, n)
for all G’ € S do
IDFGeneration(G’, n + 1)

}

For this algorithm and for the one in Section 2.7.1, it is possible and convenient
to distribute the generation among several computers, each expanding part of the
generation tree. This can be done by having each computer build the generation tree
up to certain level and then start the generation starting on a node at that level.

2.7.3 Exercises

1. Draw the edges and vertices in the next level (A = 5) of the search tree of
the BEC algorithm generation given in Figure 2.7. Recall that it must contain
exactly 22 nodes (and edges).

2. Prove that the BEC code of an HS always begins with a digit greater than or
equal to 3 [12] .

3. Prove that no HS obtained by the addition of a hexagon sharing more than three
consecutive edges with the current HS can be one of its legitimate children in
the search tree of Algorithm BECGeneration [12].

4. Consider the three types of addition of hexagons to an HS, given in Figure 2.8a.
For each of these cases, prove that the added hexagon creates a polyhex with
a hole if and only if at least one of the positions marked with “?” (in the
corresponding figure in Fig. 2.8b) contains a hexagon.

5. Prove that any HS with & > 2 can be obtained from the HS with 4 = 2 by
successive additions of hexagons satisfying rules 1-3 in Section 2.7.1 for
hexagon additions in the BEC code algorithm.

6. Prove, by induction on n, that a graph with n vertices is an id-fusene if and
only if the four properties listed in Section 2.7.2 are satisfied.

68 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

7. Give an example of an id-fusene graph that does not correspond to a hexagonal
system.

8. Write an algorithm for filtering fusenes for hexagonal systems, that is, an
algorithm that verifies whether a labeled inner dual graph of a fusene can be
embedded into the hexagonal lattice.

9. Prove Lemma 4 [7].

10. Prove that Algorithm IDFGeneration accepts exactly one member of every
isomorphism class of id-fusenes with n vertices [7,46].

2.8 PERFECT MATCHINGS IN HEXAGONAL SYSTEMS

The transformation from molecular structure (e.g., Fig. 2.1a) to an HS (e.g., Fig. 2.1b)
leaves out the information about double valences between carbon atoms. Clearly, each
carbon atom has a double valence link with exactly one of its neighboring carbon
atoms. Thus, double valences correspond to a perfect matching in an HS. Therefore,
an HS is the skeleton of a benzenoid hydrocarbon molecule if and only if it has a
perfect matching.

An HS that has at least one perfect matching is called Kekuléan; otherwise, it is
called non-Kekuléan. Kekuléan HSs are further classified as either normal (if every
edge belongs to at least one perfect matching) or essentially disconnected (otherwise).
Classification of HSs according to the perfect matching property is summarized by
Cyvin et al. [14]. An HS with a given perfect matching is called a Kekulé structure in
chemistry and has great importance. Figure 2.11a and b shows two Kekulé structures
that corresponds to the HS in Figure 2.1b.

If the number of vertices of an HS is odd, then clearly there is no perfect matching.
We denote by K(G) the number of perfect matchings of a graph G, and refer to it as the

(@) (b (c)
(d) (&)

0]
FIGURE 2.11 (a—c) Kekulé structures and (d—f) vertex coloring of hexagonal systems.

PERFECT MATCHINGS IN HEXAGONAL SYSTEMS 69

K number of G. When G is an HS, K(G) is the number of its Kekulé structures. The
edges belonging to a given Kekulé structure are double bonds while others are single
bonds. The stability and other properties of HSs have been found to correlate with
their K numbers. A whole book [17] is devoted to Kekulé structures in benzenoid
hydrocarbons. It contains a list of other references on the problem of finding the
“Kekulé structure count” for hydrocarbons.

The vertices of an HS may be divided into two groups, which are conveniently
called black and white. Choose a vertex and color it white, and color all its neighboring
vertices black. Continue the process such that all vertices adjacent to a black vertex
are white and vice versa. Figure 2.11d shows an example of such coloring. The black
and white internal vertices correspond to two different configurations of edges as
drawn in Figure 2.11e and f. Every edge joins a black and a white vertex; therefore,
HSs are bipartite graphs. Let the number of white and black vertices be nw and
nb, respectively, and A = |nw — nb|. Clearly, nw 4+ nb = p + i (recall that p is the
perimeter and i is the number of internal vertices of an HS). Every edge of a perfect
matching of a given HS joins a black and a white vertex. Therefore, if the HS is
Kekuléan then A = 0. The reverse is not always true. Non-Kekuléan HSs with A = 0
exist and are called concealed, while for A > 0 they are referred to as the obvious
non-Kekuléan.

2.8.1 K Numbers of Hexagonal, Square, and Pentagonal Chains

This section contains a study of the numbers of perfect matchings of square,
pentagonal, and hexagonal chains, that is the graphs obtained by concatenating
squares, pentagons, and hexagons, respectively. A mapping between square
(pentagonal) and hexagonal chains that preserves the number of perfect matchings
is established. The results in this section are by Tosic and Stojmenovic [58] (except
for the proof of Theorem 1, which is original).

By a polygonal chain Py we mean a finite graph obtained by concatenating s
k-gons in such a way that any two adjacent k-gons (cells) have exactly one edge in
common, and each cell is adjacent to exactly two other cells, except the first and
last cells (end cells) that are adjacent to exactly one other cell each. It is clear that
different polygonal chains will result, according to the manner in which the cells are
concatenated.

Figure 2.12a shows a hexagonal chain Pe 11. The L A-sequence of a hexagonal
chain is defined by Gutmann [29] as follows. A hexagonal chain Pg ; is represented
by a word of length s over the alphabet { A, L}. The ith letter is A (and the correspond-
ing hexagons is called a kink) if and only if 1 < i < s and the ith hexagon has an edge
that does not share a common vertex with any of its two neighbors. Otherwise, the
ith letter is L. For instance, the hexagonal chain in Figure 2.12a is represented by the
word LAALALLLALL,or,in abbreviated form, LA2LAL3AL?. The L A-sequence
of a hexagonal chain can always be written in the form Pg(x1, x2, ..., X,) to repre-
sent LXTAL*A...AL* ,where x; > 1,x, >1,x; >0fori=2,3,...,n— 1. For
instance, the L A-sequence of the hexagonal chain in Figure 2.12 may be written in
the form Pg(1, 0, 1, 3, 2), which represents LALOPALAL3ALZ?. 1tis well known that

70 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

“ i
S0V)
a)

((b)
FIGURE 2.12 L A-sequences of (a) hexagonal and (b) square chains.

the K number of a hexagonal chain is entirely determined by its L A-sequence, no
matter which way the kinks go [33]. The term isoarithmicity for this phenomenon
is coined. Thus, Pg(x1, x2,...,x,) represents a class of isoarithmic hexagonal
chains.

Figure 2.12b shows a square chain P4 11. We introduce a representation of square
chains in order to establish a mapping between square and hexagonal chains that
will enable us to obtain the K numbers for square chains. A square chain Py is
represented by a word of length s over the alphabet {A, L}, also called its LA-
sequence. The ith letter is A if and only if each vertex of the ith square also be-
longs to an adjacent square. Otherwise the ith letter is L. For instance, the square
chain in Figure 2.12b is represented by the word LAALALLLALL, or, in abbrevi-
ated form, LA2LAL3AL?. Clearly, the L A-sequence of a square chain can always
be written in the form Ps(xi, x2, ..., x,) to represent L** AL A ... AL*™, where
x1>1,x,>1,x; >0fori =2,3,...,n — 1. For example, the L A-sequence of the
square chain in Figure 2.12 may be written in the form P4 (1, 0, 1, 3, 2) to represent
LALCALAL3AL?. We show below that all square chains of the form Ps(xy, ..., x,)
are isoarithmic.

We will draw pentagonal chains so that each pentagon has two vertical edges and
a horizontal one that is adjacent to both vertical edges. The common edge of any two
adjacent pentagons is drawn vertical. We shall call such way of drawing a pentagonal
chain the horizontal representation of that pentagonal chain. From the horizontal
representation of a pentagonal chain one can see that it is composed of a certain
number (> 1) of segments; that is, two adjacent pentagons belong to the same segment
if and only if their horizontal edges are adjacent. We denote by Ps(xy, x2, ..., X;)
the pentagonal chain consisting of n segments of lengths x1, x3, ..., x,, where the
segments are taken from left to right. Figure 2.15a shows P5(3, 2, 4, 8, 5). Notice that
one can assume that x; > 1 and x,, > 1.

Among all polygonal chains, the hexagonal chains were studied the most
extensively, since they are of great importance in chemistry. We define Pg() as the
hexagonal chain with no hexagons.

PERFECT MATCHINGS IN HEXAGONAL SYSTEMS 71

Theorem 1 [58]
K(Ps()) =1,
K(Pg(x1)) =1+ x,
K(Ps{xt, ..., xn—1, X)) = (xn + DK(Ps(x1, ..., Xn—1))
+K(Ps(x1,....,xp=2)), forn > 2.

Proof. It is easy to deduce the K formula for a single linear chain (polyacene) of x|
hexagons, K(Ps(x1)) =1+ x1 [27]. Let H be the last kink (A-mode hexagon) of
(x1,...,x,) and u and v be the vertices belonging only to hexagon H (Fig. 2.13a).
We apply the method of fragmentation by attacking the bond uv (Fig. 2.13a). If a per-
fect matching (Kekulé structure) contains the double bond uv, then the rest of such a
perfect matching will be the perfect matching of the graph consisting of two compo-
nents: (x,) and (xy, ..., x,—1) (Fig. 2.13a). The number of such perfect matchings is
K(Pgs(xn))K(Pg(x1, ..., Xn—1)), that is, (x,, +)K(Pe(x1, ..., X,—1)). On the contrary,
each perfect matching not containing uv (uv is a single bond in the corresponding
Kekulé structure) must contain all the double bonds indicated in Figure 2.13b. The rest
of such a perfect matching will be a perfect matching of (x, x2, ..., x,—2) and the
number of such perfect matchings is K(Pg(x1, ..., x,—2)). The recurrence relation
now follows easily. H

1%
5” 0-0
Xll
: (@)
¢ n-1

FIGURE 2.13 Recurrence relation for the K number of hexagonal systems.

72 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

FIGURE 2.14 Transforming square chains into hexagonal chains.
Theorem 2 [58] K(Ps(x1, x2, ..., x,)) = K(Ps{(x1, X2, ..., xn)).

Proof. Referring to Figure 2.14, it is easy to see that if in a square chain some (or all)
structural details of the type A, B, and C are replaced by A*, B*, and C*, respectively,
the K number will remain the same. By accomplishing such replacements, each
square chain can be transformed into a hexagonal chain with the same L A-sequence.
Therefore, a square chain and corresponding hexagonal chain represented by the
same LA-sequence have the same K number. For example, the square chain in
Figure 2.12b can be transformed into the hexagonal chain in Figure 2.12a. Note that
the corner squares of a square chain correspond to the linear hexagons, and vice
versa, in this transformation. l

Itis clear that all other properties concerning the K numbers of square chains can be
derived from the corresponding results for hexagonal chains and that the investigation
of square chains as a separate class from that point of view is of no interest. Let us
now study the K number of pentagonal chains. First, let us recall a general result
concerning matchings of graphs. Let G be a graph and u, x, y, v distinct vertices,
such that ux, xy, yv are edges of G, u and v are not adjacent, and x and y have degree
2. Let the graph H be obtained from G by deleting the vertices x and y and by joining
u and v. Conversely, G can be considered as obtained from H by inserting two vertices
(x and y) into the edge uv). We say that G can be reduced to H, or that G is reducible
to H; clearly, K(G) = K(H).

Theorem 3 [58] If x1+x2+4+ -+ x, is odd, then K(Ps{(xi,...,x,))=0.

Otherwise (i.e., if the sequence xi,Xx3,...,X, contains an even number of
odd integers), let s(j1),s(j2),...,8(j1), j1 < jo <---<ji, be the odd num-
bers in the sequence s(ry=x1+---+x,r=12,...,n, and let s(jo) =

—1, and s(ji41) = s(n) +1; then K(Ps(x1,...,xp)) = K(Ps(y1,¥2, ..., yi+1))
where y1 = (s(j1) — 1)/2 = (s(j1) — s(jo) —2)/2, yr41 = (s(n) — s(jy) — 1)/2 =
(sCir+1) = s() —2)/2, and, for 2 < i < t, yi = (s(ji) — s(ji-1) —2)/2.

Proof. Clearly, a pentagonal chain consisting of p pentagons has 3p + 2 vertices.

Hence, a pentagonal chain with an odd number of pentagons has no perfect matching.
Therefore, we assume that it has an even number of segments of odd length.

PERFECT MATCHINGS IN HEXAGONAL SYSTEMS 73

L e e e L T

FIGURE 2.15 Transforming (a) pentagonal chains into (b) octagonal chains.

Consider a horizontal representation of Ps{(xy, x2, ..., x,) (Fig. 2.15a). Label the
vertical edges by 0, 1, ..., s(n), from left to right. Clearly, no edge labeled by an odd
number can be included in any perfect matching of Ps(xi, x2, ..., x,), since there
are an odd number of vertices on each side of such an edge. By removing all edges
labeled with odd numbers we obtain an octagonal chain consisting of s(n)/2 octagons
(Fig. 2.15b). This octagonal chain can be reduced to a hexagonal chain with s(n)/2
hexagons (Fig. 2.12a). It is evident that in the process of reduction, each octagon
obtained from the two adjacent pentagons of the same segment becomes an L-mode
hexagon, while each octagon obtained from the two adjacent pentagons of different
segments becomes a kink. The number of kinks is #, since each kink corresponds
to an odd s(r). It means that this hexagonal chain consists of # + 1 segments. Let
y; be the number of L-mode hexagons in the ith segment. Then the sequence y is
defined as given in the theorem. Since reducibility preserves K numbers, it follows
that K(Ps{(x1, x2, ..., Xp)) = K(Ps{(y1, y2, ..., yr+1)). &

Corollary 1 [58] Let x1,x2,...,x, be even positive integers, n > 1. Then,
K(Ps(x1,...,xs)) =1+ +x,)/2+ L

Proof. Since all partial sums s(r) in Theorem 3 are even, no kink is obtained in
the process of reduction to a hexagonal chain. Thus, a linear hexagonal chain con-
sisting of & = (x1 + x2 + - - - + x,,)/2 hexagons is obtained (i.e. Pg(h) = L"). Since
K(Pg(h)) = h + 1, it follows that K(Ps5{(x1,...,x,))=h+ 1.1

2.8.2 Clar Formula

A hexagon ¢ in an HS is said to be an aromatic sextet when it has exactly three
(alternating) single and three double bonds in a given perfect matching. In some
references, an aromatic sextet ¢ is called a resonant hexagon, defined as a hexagon
such that the subgraph of the HS obtained by deleting from it the vertices of g together
with their edges has at least one perfect matching. For instance, the upper hexagon
in Figure 2.11a is an aromatic sextet. When single and double bonds are exchanged
in an aromatic sextet (as in Fig. 2.11b), one obtains another Kekulé structure of the

74 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

same HS. Aromatic sextets are usually marked by circles inside the hexagon, and
such a circle corresponds to two possible matchings of the edges of the hexagon.
Figure 2.11c shows an HS with a circle that replaces matchings of Figure 2.11a and b.
Clearly, it is not allowed to draw circles in adjacent hexagons. Circles can be drawn
in hexagons if the rest of the hexagonal system has at least one perfect matching.

The so-called Clar formula of an HS is obtained when the maximal number of
circles is drawn such that it leads to a Kekulé structure of the HS. Therefore, not
all perfect matchings correspond to a Clar formula (only the maximal ones, when
the placement of additional circles is not possible by changing some edges of the
matching).

In this section, we shall study Clar formulas of hexagonal chains. We denote by
S(B) the number of circles in a Clar formula of a hexagonal chain B. The benzenoid
chains with a unique Clar formula (Clar chains) are characterized. All the results are
taken from the work by Tosic and Stojmenovic [57].

It is clear that the chain with exactly one hexagon (h = 1) is a Clar chain. The
following theorem describes Clar chains for 4 > 1.

Theoremd A hexagonal chain B is a Clar chain if and only if its L A-sequence is of
the form LAMLA™L ... LA™ L, where k > 1 and all the numbers m, my, ..., mg
are odd.

Proof. Let B be a benzenoid chain given by its L A-sequence
L0 AM L™ AM LS Lt AT L

wheremg, > I;m), > 1;m}; > 0fori =1,...,k— l;andmy > 1,fori =1,2,... k.

The part of this chain between the two successive appearances of the A-mode
hexagon is said to be an open segment of B. The first m, L-mode hexagons and m),
last L-mode hexagons also constitute the segments (end segments) of lengths m, and
m;,, respectively. An inner open segment may be without any hexagon: no-hexagon
segment. A closed segment is obtained by adding to an open segment two A-mode
hexagons that bound it, if it is an inner segment, or one A-mode hexagon that bounds
it, if it is an end segment. Two adjoined closed segments always have exactly one
common A-mode hexagon.

It easily follows that between any two circles in a Clar-type formula of a benzenoid
chain, there must be at least one A-mode hexagon (kink) of that chain. Also, each
closed segment of a benzenoid chain contains exactly one circle in any Clar formula
of that chain.

Let B be a Clar chain and let H be an A-mode hexagon of B, adjacent to at least
one L-mode hexagon of B. Consider a closed segment of B with at least one L-mode
hexagon. If any of the two A-mode hexagons of that segment is with circle in a Clar
formula of B, then that circle can be replaced by a circle in any of the L-mode hexagon
of that segment, producing another Clar formula of B. It is in contradiction with the
fact that B is a Clar chain. Thus, H is without circle in any Clar formula of B.

‘We now show that a Clar chain B does not contain two adjacent L-mode hexagons.
Consider a closed segment of B with at least two L-mode hexagons. Neither of the end

PERFECT MATCHINGS IN HEXAGONAL SYSTEMS 75

hexagons of that segment is circled in the Clar formula of B. According to the above
two observations, exactly one of the L-mode hexagons of that segment is circled.
However, it is clear that each of them can be chosen to be circled. So, the existence of
two adjacent L-mode hexagons imply that the Clar formula of B is not unique; that
is, B is not a Clar chain. Therefore, each L-mode hexagon of a Clar chain is circled
in the Clar formula of that chain.

A benzenoid chain with & hexagons in which all hexagons except the first and the
last are A-mode hexagons is called a zigzag chain and is denoted by A(h). We show
that a zigzag chain A(h) with h hexagons is a Clar chain if and only if £ is an odd
number. A chain with 4 hexagons cannot have more than [/4/2] circles in its Clar
formula. Now, if 7 = 2k + 1 is odd, then the choice of [#/2] = k + 1 nonadjacent
hexagons of A(h) is unique and obviously it determines the unique Clar formula of
A(h). Consider now an A(h) with 2 even. The number of circles in that Clar formula
is not greater than i /2. However, one can easily draw h/2 circles in every second
hexagon, thus obtaining two different Clar formulas. Thus, A(#) is not a Clar chain
for even h.

The proof proceeds by induction on k. If k = 1, then the statement of the theorem
follows from the last observation on zigzag chains. Consider the case when B is not
a zigzag chain. In that case, B has at least three L-mode hexagons.

(=) Suppose that B is a Clar chain and for some i, 1 < i < k, m; is even. Consider
the part of B corresponding to the subword A (Fig. 2.16), which is a zigzag chain
A(m;). Two L-mode hexagons that bound this zigzag chain in B are with circles in
the unique Clar formula of B. It follows that the first and the last hexagons of A(m;)
(numbered by 1 and m; in Fig. 2.16) are without circles in that formula. The remaining
part of A(m;) is a zigzag chain A(m; — 2) with an even number of hexagons and it is
independent from the rest of B with respect to the distribution of circles in the Clar
formula of B. So, A(m; — 2) itself must be a Clar chain. This is contradiction with
the previous observation on zigzag chains. It means that m; cannot be even. Thus, all
mi,i=1,2,...,k,are odd.

The number of hexagons of Bis h = m| +my + - - - + my + (k + 1), where all
mi, ma, -+ -, myg, are odd numbers; so 2 must be odd.

mj-1

FIGURE 2.16 Clar chain with an even m; (contradiction).

76 BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

FIGURE 2.17 L A-sequence with odd m;’s.

(<) Let B be a hexagonal chain with the L A-sequence LA™ LA™ L ... LA™kL,
where all the numbers mi,mo,...,my; are odd, and k > 1. Consider B as
obtained from two chains By and B; with L A-sequences, respectively, LA™! L and
LA™ LA™L ... LA™ L, by identifying the last L-mode hexagon of By and the first
L-mode hexagon of B; (the second L-mode hexagon in Fig. 2.17).

By induction hypothesis, both B; and B, are Clar chains. The common L-mode
hexagon of By and Bj; is with circle in both Clar formulas, for By and B;. Hence, B
is a Clar chain. H

Let B be a Clar chain with 4 hexagons. From the discussions in the proof of the
previous theorem it follows that, starting from a circled end hexagon, hexagons with
and without circle alternate. Thus, the number of circles in the unique Clar formula
of Bis S(B) = (h 4+ 1)/2.

We say that two L A-sequences are equivalent if they coincide or can be ob-
tained from each other by reversing. Two benzenoid chains with the same number
of hexagons h are isoarithmic if they have equivalent L A-sequences. So, the number
of nonisoarithmic chains with ~ hexagons is equal to the number of nonequivalent
L A-sequences of the length 4.

We shall determine the number of nonisoarithmic chains with # hexagons and with
a unique Clar formula. We denote this number by N (k). Clearly, N(h) = 0, if k is an
even number, and N(1) = 1.

Theorem S5 Let h be an odd positive integer, h > 1. Then

N(h) = 2h=9/2 4 plh=D/4)=1

Proof. From Theorem 4, it follows that N(h) is equal to the number of LA-
sequences LA™ LA™ L ...LA™XL, such that mi+mp+---+mpy=h—k—1,
k > 1, and all the numbers m, my, ..., my are odd. Now, the number of such LA-
sequences is equal to the number of compositions of # — 1 into even positive in-
tegers, that is, to the number of compositions of n = (h — 1)/2 into positive in-
tegers. This last number is equal to 2"~ ! = 2(*=3/2 Among these compositions
there are 217/2] = 2l(h—=1/4] of those that are symmetric, that is, those that correspond

PERFECT MATCHINGS IN HEXAGONAL SYSTEMS 77

to symmetric (self-reversible) L A-sequences. So, the number of nonequivalent L A-
sequences in question is

(z(h—3)/2 — 2L(h—1)/4J)/2 4 2L=D/41 _ o(h=5)/2 4 Hl(h=D/4]-1

That is at the same time the number of nonisoarithmic Clar chains. Among them,
2Lh=1/41 are self-isoarithmic. W

2.8.3

10.

Exercises

. Show that every catacondensed HS is normal [33].
. Assume that an HS is drawn so that some of its edges are vertical. Then, we

distinguish peaks and valleys among the vertices on the perimeter. A peak lies
above its nearest neighboring vertices, while a valley lies below its nearest
neighbors. Let np and nv denote the number of peaks and valleys in a given
HS. Prove that |np — nv| = |nb — nw| = A [17].

. Prove that an HS B is Kekuléan if and only if it has equal numbers of black

and white vertices, and if for all edge cuts of B, the fragment F; does not have
more white vertices than black vertices. An edge cut decomposes HS into two
parts Fy and F, (mutually disconnected but each of them is a one-component
graph) such that black end vertices of all edges in the cut belong to F; [63].

. Prove that the K number of an HS satisfies h +1 < K <21 4+ 1 [32].
. Let x, y, and z denote the number of double bounds of an HS for each of

three edge orientations (i.e., parallel to three alternating edges of a hexagon),
respectively. Prove that all Kekulé structures of an HS have the same triplet

{x, 5, z}.

. Prove that a triplet (x, y, z), x < y < z, corresponds to a catacondensed HS if

and only if x + y + zisodd and x + y > z + 1 [65].

. Prove that every perfect matching of an HS contains three edges, which cover

all the six vertices of a hexagon [31].

. Prove by induction that

K(P6<x17 sy x}’l*lv xl’l))

= fur1 + Z Jnvi—ig fir—iney -+ Sio—iy Jir Xiy Xig -+ Xigs

O<ij<-<ig<n,1<k<n

where f;, is the nth Fibonacci number [58].

. Prove that the K number for the chain LAP~'LAY™ L is fyg12 + fpt1 fot1

[35,58].
Prove that the K number for the hexagonal chain with n segments of the same
length m is [4]

78

11.

12.

13.

14.

15.

16.

17.

18.

19.

BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES
K(Ps(m, ..., m))

n+1 n+1
(m 14 Vo 10754)" — (1= Vont 12 14)"
27\ /(m + 1) + 4

Prove that the K number for the L A-sequence L AL™ 1A ... AL"1AL™
(withn — 1 As) is [2]

sz1_+4 (Vv +2) <m+ V2mz+4>

— 244 "

Prove that the K number for pentagonal chains is [58]
K(Ps(x1, ..., Xn—1,%n)) = fr42

.
+ > (Fraz-i)/2 T 6Gi) = G- = 2) fir—irs
O=ig<ij<--<ip<t+1, =1
1<r<t+1

where f; is the kth Fibonacci number and the sequence s is defined in the text.
Let m be an odd positive integer > 1. Then, K(Ps (m?)) = (m?* + 2m + 5)/4,
and K(Ps(m*)) = (m> + 2m? + 5m + 4)/4 [25,58].

Prove that the K number of the zigzag hexagonal chain with L A-sequence
LA*2L is fi42 [58,61].

Prove that the K number of pentagonal zigzag chain with 2k pentagons and
the K number of hexagonal zigzag chains with k hexagons are the same [58].
Prove that K(Ps5(1%%)) = fiys [25,58].

Design a general algorithm for the enumeration of Kekulé structures (K
numbers) of benzenoid chains and branched catacondensed benzenoids
[16,27].

Suppose that some edges of an HSs are vertical. Peaks (valleys) are vertices on
the perimeter with degree 2 such that both their neighbors are below (above,
respectively) them. Prove that the absolute magnitude of the difference be-
tween the numbers of peaks and valleys is equal to A. Show that the numbers
of peaks and valleys in a Kékulean HS are the same.

A monotonic path in an HS is a path connecting a pick with a valley, such
that starting at the pick we always go downward. Two paths are said to be
independent if they do not have common vertices. A monotonic path system
of an HS is a collection of independent monotonic paths that involve all the

REFERENCES 79

20.

21.

22,

23.

24,

25.

26.

27.

peaks and all the valleys of the HS. Prove that the number of Kekulé structures
of the HS is equal to the number of distinct monotonic path systems of the HS
[27,52].
Let p1, p2, ..., pk be the picks and vy, va, ..., v; the valleys of a given HS.
Define a square matrix W of order k such that (W);; is equal to the number
of monotonic paths in the HS starting at p; and ending at v;. Prove that the
number of Kekulé structures of the HS is | det(W)]| (i.e., the determinant of
matrix W) [39].
If A is the adjacency matrix of an HS B with n vertices, then prove that
det(A) = (—1)"2K(B)? [13,18].
The dual graph of an HS is obtained when the centers of all neighboring
hexagons are joined by an edge. The outer boundary of the dual graph of
a hexagon-shaped HS is a hexagon with parallel edges of size m, n, and k,
respectively. Prove that the number of Kekulé structures of such an HS is
IT1=0 (it)/ (i) 151

377 An+j
Suppose that some edges of an HS are drawn vertically. Prove that in
all perfect matchings of the HS a fixed horizontal line, passing through
the center of at least one hexagon, intersects an equal number of double
bonds [52].
Prove that all Kekulé structures of a given HS have an equal number of vertical
double bonds (again, some edges are drawn vertically) [64].
An edge of an HS is called a single (double) fixed bond if it does not belong
(belongs, respectively) to all perfect matchings of the HS. Design an O(h?)
algorithm for the recognition of all fixed bonds in an HS and for determining
whether or not a given HS is essentially disconnected [66].

A cycle of edges of an HS is called an alternating cycle if there exists a perfect
matching of the HS such that edges in the cycle alternatingly belong and do not
belong to the perfect matching. Prove that every hexagon of an HS is resonant
(i.e., an aromatic sextet) if and only if the perimeter of the HS is an alternating
cycle of the HS [62].

Determine the number of nonisoarithmic hexagonal chains with 4 hexagons
[17].

ACKNOWLEDGMENTS

The authors would like to thank Gilles Caporossi and Brendan McKay for valuable
feedback and suggestions on the presentation and contents of this chapter.

REFERENCES

1. Avis D, Fukuda K. Reverse search for enumeration. Discrete Appl Math 1996;6:
21-46.

80

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

Balaban AT, Tomescu I. Algebraic expressions for the number of Kekulé structure of
isoarithmic catacondensed benzenoid polycyclic hydrocarbons. Match 1983;14:155-182.

. Balasubramanian K, Kaufman JJ, Koski WS, Balaban AT. Graph theoretical characterisa-

tion and computer generation of certain carcinogenic benzenoid hydrocarbons and identi-
fication of bay regions.] Comput Chem 1980;1:149-157.

. Bergan JL, Cyvin BN, Cyvin SJ. The Fibonacci numbers and Kekulé structures of some

corona-condensed benzenoids (corannulenes). Acta Chim Hung 1987;124:299.

. Bodroza O, Gutman I, Cyvin SJ, Tosic R. Number of Kekulé structures of hexagon-shaped

benzenoids. J] Math Chem 1988;2:287-298.

. Brinkmann G. Isomorphism rejection in structure generation programs. In: Hansen P,

Fowler P, Zheng M, editors. Discrete Mathematical Chemistry. Providence, RI: American
Mathematical Society; 2000. p 25-38.

. Brinkmann G, Caporossi G, Hansen P. A constructive enumeration of fusenes and ben-

zenoids. J Algorithm 2002;45:155-166.

. Brinkmann G, Caporossi G, Hansen P. A survey and new results on computer enumer-

ation of polyhex and fusene hydrocarbons. J Chem Inform Comput Sci 2003;43:842—
851.

. Brunvoll J, Cyvin BN, Cyvin SJ. Benzenoid chemical isomers and their enumeration.

Topics in Current Chemistry. Volume 162. Springer-Verlag; 1992.

Brunvoll J, Cyvin SJ, Gutman I, Tosic R, Kovacevic M. Enumeration and classification of
coronoid hydrocarbons. J Mol Struct (Theochem) 1989;184:165-177.

Brunvoll J, Tosic R, Kovacevic M, Balaban AT, Gutman I, Cyvin SJ. Enumeration of cata-
condensed benzenoid hydrocarbons and their numbers of Kekulé structures. Rev Roumaine
Chim 1990;35:85.

Caporossi G, Hansen P. Enumeration of polyhex hydrocarbons to # = 21. J Chem Inform
Comput Sci 1998;38:610-619.

Cvetkovic D, Doob M, Sachs H. Spectra of Graphs, Theory and Applications. New York:
Academic Press; 1980.

Cyvin BN, Brunvoll J, Cyvin SJ. Enumeration of benzenoid systems and other polyhexes.
Topics in Current Chemistry. Volume 162. Springer-Verlag; 1992.

Cyvin SJ, Cyvin BN, Brunvoll J. Enumeration of benzenoid chemical isomers with a study
of constant-isomer series. Topics in Current Chemistry. Volume 166. Springer-Verlag;
1993.

Cyvin SJ, Gutman I. Topological properties of benzenoid systems. Part XXXVI. Algo-
rithm for the number of Kekulé structures in some pericondensed benzenoids. Match
1986;19:229-242.

Cyvin SJ, Gutman I. Kekulé Structures in Benzenoid Hydrocarbons. Berlin: Springer-
Verlag; 1988.

Dewar MJS, Longuet-Higgins HC. The correspondence between the resonance and molec-
ular orbital theories. Proc R Soc Ser A 1952;214:482-493.

Dias JR. Handbook of Polycyclic Hydrocarbons. Part A. Benzenoid Hydrocarbons.
Amsterdam: Elsevier; 1987.

Dias JR. Handbook of Polycyclic Hydrocarbons. Part B. Polycyclic Isomers and Het-
eroatom Analogs of Benzenoid Hydrocarbons. Amsterdam: Elsevier; 1989.

REFERENCES 81

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.
38.

39.

40.

Dias JR. Molecular Orbital Calculations Using Chemical Graph Theory. Berlin: Springer;
1993.

Doroslovacki R, Stojmenovic I, Tosic R. Generating and counting triangular systems, BIT
1987;27:18-24.

Enting IG. Generating functions for enumerating self-avoiding rings on the square lattice.
J Phys A 1980;13:3713-3722.

Faradzev IA. Constructive enumeration of combinatorial objects. Problemes Combina-
toires et Theorie des Graphes Colloque Internat. CNRS 260. Paris: CNRS; 1978. p 131-
135.

Farrell EJ. On the occurrences of Fibonacci sequences in the counting of matchings in
linear polygonal chains. Fibonacci Quart 1986;24:238-246.

Faulon JL, Visco DP, Roe D. Enumerating molecules. In: Lipkowitz K, editor, Reviews in
Computational Chemistry. Volume 21. Wiley-VCH; 2005.

Gordon M, Davison WHT. Resonance topology of fully aromatic hydrocarbons. J Chem
Phys 1952;20:428-435.

Griiner T, Laue R, Meringer M. Algorithms for group action applied to graph gener-
ation. In: Finkelstein L, Kantor WM, editors. Groups and Computation II, Workshop
on Groups and Computation. DIMACS Ser Discrete Math Theor Comput Sci 1997;28:
113-123.

Gutman I. Topological properties of benzenoid systems—an identity for the sextet poly-
nomial. Theor Chim Acta 1977;45:309-315.

Gutman 1. Topological properties of benzenoid molecules. Bull Soc Chim Beograd
1982:47:453-471.

Gutman I. Covering hexagonal systems with hexagons. Proceedings of the 4th Yu-
goslav Seminar on Graph Theory; University of Novi Sad, Novi Sad; 1983. p 151-
160.

Gutman I. Topological properties of benzenoid systems. Topics in Current Chemistry.
Volume 162. Springer-Verlag; 1992. p 1-28.

Gutman I, Cyvin SJ. Introduction to the Theory of Benzenoid Hydrocarbons. Springer-
Verlag; 1989.

Gutman I, Cyvin SJ. Advances in the Theory of Benzenoid Hydrocarbons. Springer-Verlag;
1990.

Gutman I, Cyvin SJ. A result on 1-factors related to Fibonacci numbers. Fibonacci Quart
1990; 81-84.

Gutman I, Cyvin SJ, Brunvoll J. Advances in the Theory of Benzenoid Hydrocarbons II.
Springer-Verlag; 1992.

Harary F, Harborth H. Extremal animals. J Comb Inform Syst Sci. 1976;1:1-8.

He WJ, He QX, Wang QX, Brunvoll J, Cyvin SJ. Supplements to enumeration of benzenoid
and coronoid hydrocarbons. Z Naturforsch. 1988;43a:693—694.

John P, Sachs H. Wegesysteme und Linearfaktoren in hexagonalen und quadratischen
Systemen (Path systems and linear factors in hexagonal and square systems). Graphen in
Forschung und Unterricht. Bad Salzdetfurth, Germany: Verlag Barbara Franzbecker; 1985.
p 85-101.

Klarner DA. Some results concerning polyominoes. Fibonacci Quart 1965;3:9-20.

82

41.

42.

43.

44.
45.

46.
47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.

BACKTRACKING AND ISOMORPH-FREE GENERATION OF POLYHEXES

Knop JV, Miiller WP, Szymanski K, Trinajstic N. Use of small computers for large compu-
tations: enumeration of polyhex hydrocarbons. J] Chem Inform Comput Sci 1990;30:159—
160.

Knop JV, Szymanski K, Jericevic Z, Trinajstic N. Computer enumeration and generation of
benzenoid hydrocarbons and identification of bay regions.] Comput Chem 1983;4:23-32.
Kocay W. On writing isomorphism programs. In: Wallis WD editor. Computational and
Constructive Design Theory. Kluwer; 1996. p 135-175.

McKay BD. Practical graph isomorphism. Congr Numer 1981;30:45-87.

McKay BD. Nauty user’s guide. Technical Report TR-CS-90-02. Computer Science De-
partment, Australian National University; 1990.

McKay BD. Isomorph-free exhaustive generation. J Algorithms 1998;26:306-324.
Miiller WR, Szymanski K, Knop JV. On counting polyhex hydrocarbons. Croat Chem
Acta 1989;62:481-483.

Miller WR, Szymanski K, Knop JV, Nikoli¢ S, Trinajsti¢ N. On the enumeration and
generation of polyhex hydrocarbons. J Comput Chem 1990;11:223-235.

Nikoli¢ S, Trinajsti¢ N, Knop JV, Miiller WR, Szymanski K. On the concept of the weighted
spanning tree of dualist. J Math Chem 1990;4:357-375.

Read RC. Every one a winner. Ann Discrete Math 1978;2:107-120.

Redelmeier DH. Counting polyominoes: yet another attack, Discrete Math 1981;36:191—
203.

Sachs H. Perfect matchings in hexagonal systems. Combinatorica 1984;4:89-99.
Stojmenovic I, Tosic R, Doroslovacki R. Generating and counting hexagonal systems.
Graph Theory. Proceedings of 6th Yugoslav Seminar on Graph Theory; Dubrovnik, 1985;
University of Novi Sad; 1986. p 189-198.

Tosic R, Doroslovacki R, Stojmenovic I. Generating and counting square systems. Graph
Theory. Proceedings of the 8th Yugoslav Seminar on Graph Theory; University of Novi
Sad, Novi Sad; 1987. p 127-136.

Tosic R, Kovacevic M. Generating and counting unbranched catacondensed benzenoids. J
Chem Inform Comput Sci 1988;28:29-31.

Tosic R, Masulovic D, Stojmenovic I, Brunvol J, Cyvin BN, Cyvin SJ. Enumer-
ation of polyhex hydrocarbons to & =17. J Chem Inform Comput Sci 1995;35:
181-187.

Tosic R, Stojmenovic I. Benzenoid chains with the unique Clarformula. J Mol Struct
(Theochem) 1990;207:285-291.

Tosic R, Stojmenovic L. Fibonacci numbers and the numbers of perfect matchings of square,
pentagonal, and hexagonal chains. The Fibonacci Quart 1992;30:315-321.

Trinajstic N. Chemical Graph Theory. Boca Raton: CRC Press; 1992.

Voge M, Guttman J, Jensen 1. On the number of benzenoid hydrocarbons. J Chem Inform
Comput Sci 2002;42:456-466.

Yen TE. Resonance topology of polynuclear aromatic hydrocarbons. Theor Chim Acta
1971;20:399-404.

Zhang F, Chen R. When each hexagon of a hexagonal system covers it. Discrete Appl Math
1991;30:63-75.

Zhang FJ, Chen RS, Guo XF. Perfect matchings in hexagonal systems. Graphs Comb
1985;1:383.

REFERENCES 83

64. Zhang FJ, Chen RS, Guo XF, Gutman I. An invariant of the Kekulé structures of benzenoid
hydrocarbons. J Serb Chem Soc 1986;51:537.

65. Zhang FJ, Guo XF. Characterization of an invariant for benzenoid systems. Match
1987;22:181-194.

66. Zhang F, Li X, Zhang H. Hexagonal systems with fixed bonds. Discrete Appl Math
1993;47:285-296.

I CHAPTER 3

Graph Theoretic Models in Chemistry
and Molecular Biology

DEBRA KNISLEY and JEFF KNISLEY

3.1 INTRODUCTION

3.1.1 Graphs as Models

A graph is a mathematical object that is frequently described as a set of points
(vertices) and a set of lines (edges) that connect some, possibly all, of the points.
If two vertices in the graph are connected by an edge, they are said to be adjacent,
otherwise they are nonadjacent. Every edge is incident to exactly two vertices; thus,
an edge cannot be drawn unless we identify the two vertices that are to be connected
by the edge. The number of edges incident to a vertex is the degree of the vertex.
How the edges are drawn, straight, curved, long, or short, is irrelevant, only the
connection is relevant. There are many families of graphs and sometimes the same
graph can belong to more than one family. For example, a cycle graph is a connected
graph where every vertex is of degree 2, meaning every vertex is incident to exactly
two edges. A bipartite graph is a graph with the property that there exists a partition
of the vertex set into two sets such that there are no edges between any two vertices in
the same set. Figure 3.1 shows two drawings of the same graph that can be described
both as a cycle on six vertices and as a bipartite graph. The two graphs in Figure 3.1
are said to be isomorphic. Two graphs are isomorphic if there exists a one-to-one
correspondence between the vertex sets that preserves adjacencies. In general, it is
a difficult problem to determine if two graphs are isomorphic.

An alternate definition of a graph is a set of elements with a well-defined relation.
Each element in the set can be represented by a point and if two elements in the set
are related by the given relationship, then the corresponding points are connected by
an edge. Thus, the common definition of a graph is really a visual representation of
a relationship that is defined on a set of elements. In graph theory, one then studies
the relational representation as an object in its own right, discerning properties of
the object and quantifying the results. These quantities are called graphical invariants

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenovi¢ Copyright © 2008 John Wiley & Sons, Inc.

85

86 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

=

(a) (b)
FIGURE 3.1 (a) A cycle. (b) A bipartite graph.

since their values are the same regardless of how the graph is drawn. The graphical
invariants, in turn, tell us about the consequences the relation has on the set. To
utilize a graph as a model, we must first determine the set and the relation on the
set that we want to study. For example, suppose we want to consider a group of
six people, three men and three women. None of the men have ever met each other
and none of the women have ever met, but some of the men have met some of the
women. Suppose the graph in Figure 3.1b models this set of people where the two
people are “related” or associated if they have previously met. Since the two graphs
in Figure 3.1 are isomorphic, we immediately know that it is possible to seat the six
people around a circular table so that each person is seated next to someone that they
have previously met. This illustration shows the usefulness of graphs even with a
very simple example. Graphs are frequently used in chemistry to model a molecule.
Given the atoms in a molecule as the set, whether or not a bond joins two atoms
is well defined and hence the graphical representation of a molecule is the familiar
representation.

What is a mathematical model? What is a graph theoretic model? Since graph
theory is a field of mathematics, one would assume that a graph theoretic model is a
special case or a particular kind of mathematical model. While this is true, the gen-
erally accepted definition of a mathematical model among applied mathematicians is
somewhat different from the idea of a model in graph theory. In mathematical settings,
a model is frequently associated with a set of equations. For example, a biological
system is often modeled by a system of equations, and solutions to the equations are
used to predict how the biological system responds to stimuli. Molecular biology and
biochemistry, however, are more closely aligned with chemistry methodology and
literature. Models of molecules in chemistry are often geometric representations of
the actual molecule in various formats such as the common ball and stick “model”
where balls are used to represent atoms and bonds between the atoms are represented
by sticks. As we have seen, this straightforward model of a molecule gives easy rise
to a graph where the balls are the vertices and the sticks are the edges. The first
appearance of a graph as a model or representation of a molecule appeared in the
early nineteenth century. In fact, chemistry and graph theory have been paired since
the inception of graph theory and we find that the early work in physical chemistry
coincided with the development of graph theory.

As we have seen, a graphical invariant is a measure of some aspect of a graph that
is not dependent upon how the graph is drawn. For example, the girth of a graph is the
length of its shortest cycle. A graph that has no cycle is said to be of infinite girth. The
most obvious of invariants are the order (number of vertices) and the size (number of
edges). The minimum number of vertices whose removal will disconnect the graph

INTRODUCTION 87

FIGURE 3.2 G.

is the (vertex) connectivity number. The graph in Figure 3.2 has girth 4, is of order 6,
size 7, and connectivity 2.

3.1.2 Early Models in Chemistry

One of the first theorems of graph theory can be stated as follows: The sum of the
degrees of a graph is twice the number of edges. Since the sum of the degrees of the
vertices of even degree is necessarily an even number, the sum of the degrees of the
vertices of odd degree must also be even. As a corollary to the above theorem, we
know that the number of vertices of odd degree must be even. As far back as 1843,
Laurent [1] and Gerhardt [2] established that the number of atoms of odd valence
(degree) in a molecule was always even. What constituted an edge was not well
established though. One of the earliest formulations of graphs appeared in 1854 in
the work by Couper [3], and in 1861, a chemical bond was represented by a graphical
edge following the introduction of the term “molecular structure” by Butlerov [4].
The concept of valence of an atom was later championed by Frankland whose work
was published in 1866 [5].

Arthur Cayley, a well-known mathematician from the late 1800s, used combi-
natorial mathematics to construct chemical graphs [6]. Using mathematics, Cayley
enumerated the saturated hydrocarbons by determining the generating function for
rooted trees. As an illustration, consider the expansion of the expression (a + b)°.
The coefficients of the terms are 1, 3, 3, and 1, respectively, in the expanded form:
1360 + 3a?b' + 3a'b? + 1a°b3. Note that the exponents in each term sum to 3 and
each term represents a distinct way we can obtain the sum of 3 using two distinct
ordered terms. If we let b represent the number of ways we can select to insert an
edge (or not to insert an edge), then the corresponding coefficients yield the number
of ways this selection can be done. Hence, corresponding to the coefficients, there
is one graph with no edges, three graphs with exactly one edge, three graphs with
exactly two edges, and one graph with three edges. These are drawn in Figure 3.3.
This is the idea behind generating functions. Since the graphical representations of
the saturated hydrocarbons are trees, Cayley determined how many such trees are
combinatorially possible. At that time, his count exceeded the number of known sat-
urated hydrocarbons by 2. Soon after, two additional hydrocarbons were found. How
does one prove that a graphical representation of a saturated hydrocarbon is a tree?
First, we must define a tree. A tree is a connected graph with no cycles. These two
properties, connected and acyclic, imply that any tree with n vertices must contain
exactly n — 1 edges.

88 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

S S

BN
So Lo

FIGURE 3.3 All possible graphs with three vertices.

A saturated hydrocarbon has the maximum possible number of hydrogen atoms for
the number of carbon atoms in a molecule and is denoted by the formula C,,Ha,42.
The tree representation of butane, C4Hjg, is shown in Figure 3.4.

In order to prove that a graphical representation of a molecule with the above
formula will always be represented by a tree, we must conclude that it is connected
and acyclic. Since it is molecule, it is inherently connected. Thus, we must show that
it will be impossible for a cycle to occur. This is equivalent to showing that there
will always be exactly one less edge than the number of vertices. So we proceed with
the counting argument. We know that there are m + 2m + 2 vertices total by adding
the carbon and hydrogen atoms. Thus, there are 3m + 2 vertices. To count the edges
we observe that each carbon atom is incident to exactly four edges and hence there are
4(m) edges associated with the carbon atoms. Also, each hydrogen atom is incident
to exactly one edge and thus we have 1(2m 4 2) additional edges. Since each edge
is incident to exactly two vertices, each edge has now been counted exactly twice.
Thus, the number of edges total is (1/2)(4m + 2m + 2) = 3m + 1. Note that 3m + 1
is exactly one less than the number of vertices.

The mathematician Clifford was first to demonstrate that a saturated hydrocarbon
could not possess any cycles and in fact showed that a hydrocarbon with the gen-
eral formula C,,,Hy,,, 422, must contain x cycles [7]. In 1878, Sylvester founded the
American Journal of Mathematics. In its very first issue he wrote a lengthy article
on atomic theory and graphical invariants. By labeling the vertices of the graphs,
Sylvester was able to devise a method for validating the existence of different types
of chemical graphs. This was the first usage of the word graph in the graph theoretic
sense [8]. Through the years, chemical graph theory has survived as a little known
niche in the field of graph theory. Most textbook applications of graphs have cen-
tered on computer networks, logistic problems, optimal assignments strategies, and
data structures. Chemical graph theorists persisted and developed a subfield of graph

H gH o H gH
c |C |C [C

H H™H TH
FIGURE 3.4 Butane.

INTRODUCTION 89

theory built upon molecular graphs. Quantifiers of the molecular graphs are known
as “descriptors” or topological indices. These topological indicators are equivalent
to graphical invariants in the realm of mathematical graph theory. In the following
sections we discuss some of the early graph theoretic models, as well as some of the
first graphical invariants and topological indices. For more information on chemical
graph theory see the works by Bonchev and Rouvray [9] and Trinajstic [10,11].

3.1.3 New Directions in Chemistry and Molecular Biology

Today graphs are being used extensively to model both chemical molecules and
biomolecules. Chemists use molecular descriptors that yield an accurate deter-
mination of structural properties to develop algorithms for computer-aided drug
designs and computer-based searching algorithms of chemical databases. Just as
bioinformatics is the field defined as belonging in the intersection of biology and
computer science, cheminformatics lies in the intersection of chemistry and computer
science. Cheminformatics can be defined as the application of computational tools to
address problems in the efficient storage and retrieval of chemical data. New related
fields are emerging, such as chemical genomics and pharmacogenomics. Organic
chemicals frequently referred to as “small molecules” are playing a significant part
in the discovery of new interacting roles of genes. The completion of the Human
Genome Project has changed the way new drugs are being targeted and the expansion
of chemical libraries aided by techniques from combinatorial chemistry is seeing
more and more graph theoretic applications. While it is generally accepted that
graphs are a useful tool for small molecules, graphs are also being utilized for larger
biomolecules as well. Graphs are appearing in the literature as DNA structures,
RNA structures, and various protein structures. We find that graphs are becoming
an invaluable tool for modeling techniques in proteomics and protein homology and
thus one could say that chemical graph theory has contributed indirectly to these
fields as well. Using graphs to model a molecule has evolved from the early days of
chemical graph theory to become an integral part of cheminformatics, combinatorial
and computational chemistry, chemical genomics, and pharmacogenomics.

Algorithms that determine maximum common induced subgraphs or other
structure similarity searches have played a key role in computational chemistry and
cheminformatics. An obvious problem associated with such algorithms is the rapid
increase in the number of possible configurations. The exponential growth of the
number of graphs with an increasing number of vertices is a difficult challenge that
must be addressed. Large graphs result in nonpolynomial time algorithms creating
excessive computational expense. In addition, intuition that can often be an aid in
determining appropriate molecular descriptors and thus the investigation is greatly
hindered by large graphs that cannot be visualized. Methods have been developed for
reducing the size of graphs, and such graphs are commonly referred to as reduced
graphs. These methods have had a significant impact on the ability to model the rel-
evant biomolecular structures and provide summary representations of chemical and
biochemical structures. Reduced graphs offer the ability to represent molecules in
terms of their high level features [12,13].

90 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

In 2005, in partial fulfillment of the NIH Roadmap stated objectives, NIH
announced a plan to fund 10 cheminformatic research centers in response to the iden-
tification of critical cheminformatics needs of the biomedical research community.
The centers will formulate the strategies to address those needs and will also allow
awardees to become familiar with the operation and interactions among the various
components of the NIH Molecular Libraries Initiative. These centers are intended to
promote multidisciplinary, multiinstitutional collaboration among researchers in com-
putational chemistry, chemical biology, data mining, computer science, and statistics.
Stated components of proposed research include the calculation of molecular descrip-
tors, similarity metrics, and specialized methodologies for chemical library design and
virtual screening. For example, the Carolina Exploratory Center for Cheminformatics
Research plans to establish and maintain an integrated publicly available Cheminfor-
matics Workbench (ChemBench) to support experimental chemists in the Chemical
Synthesis centers and quantitative biologists in the Molecular Libraries Screening
Centers Network. The Workbench is intended to be a data analytical extension to
PubChem.

3.2 GRAPHS AND ALGORITHMS IN CHEMINFORMATICS

3.2.1 Molecular Descriptors

Values calculated from a representation of a molecule that encode some aspect of
the chemical or biochemical structure and activities are called molecular descrip-
tors. There are an enormous number of descriptors that have been defined and uti-
lized by researchers in fields such as cheminformatics, computational chemistry, and
mathematical chemistry. The Handbook of Molecular Descriptors [14] is an ency-
clopedic collection of more than 3000 descriptors. Molecular descriptors fall into
three general categories. Molecular descriptors that quantify some measure of shape
and/or volume are called steric descriptors. Electronic descriptors are those that mea-
sure electric charge and electrostatic potential, and there are those that measure a
molecule’s affinity for a lipophilic environment such as log P. log P is calculated as
the log ratio of the concentration of the solute in the solvent. Examples of steric de-
scriptors are surface area and bond connectivity. Surface area is calculated by placing
a sphere on each atom with the radius given by the Van der Waals radius of the atom.
Electronic descriptors include the number of hydrogen bond donors and acceptors and
measures of the pi—pi donor—acceptor ability of molecules. With the support of the EU,
INTAS (the International Association for the Promotion of Cooperation with Scien-
tists) from the New Independent States (NIS) of the Former Soviet Union created The
Virtual Computational Chemistry Laboratory (VCCL) with the aim to promote free
molecular properties calculations and data analysis on the Internet [15]. E-Dragon,
a program developed by the Milano Chemometrics and QSAR Research Group [16]
and a contributor to the VCCL, can calculate more than 1600 molecular descrip-
tors that are divided into 20 categories. Its groups of indices include walk-and-path
counts, electronic, connectivity, and information indices. The molecular descriptors

GRAPHS AND ALGORITHMS IN CHEMINFORMATICS 91

that E-Dragon categorizes as topological indices are obtained from molecular graphs
(usually H-depleted) that are conformationally independent. E-Dragon is available at
VCCL.

All chemical structures can be represented by a simplified linear string using a
specific set of conversion and representation rules known as SMILES (Simplified
molecular input line entry system). SMILES strings can be converted to representative
3D conformations and 2D representations. While 1D representations are strings and
3D representations are geometric, 2D representations are primarily graphs consisting
of vertices (nodes) and their connecting edges. SMILES utilizes the concept of a graph
with vertices as atoms and edges as bonds to represent a molecule. The development of
SMILES was initiated by the author, David Weininger, at the Environmental Research
Laboratory, USEPA, Duluth, MN; the design was completed at Pomona College in
Claremont, CA. It was embodied in the Daylight Toolkit with the assistance of Cedar
River Software. Parentheses are used to indicate branching points and numeric labels
designate ring connection points [17].

Quantities derived from all three representations are considered molecular de-
scriptors. Since we are primarily concerned with graph theoretic models, we will
focus on 2D descriptors from graphs and refer to these as topological descriptors or
topological indices. Graphs are also useful for 3D models since 3D information can
be contained in vertex and edge labeling [18,19]. Descriptors calculated from these
types of representations are sometimes called information descriptors. While the 2D
graphical model neglects information on bond angles and torsion angles that one finds
in 3D models, this can be advantageous since it allows flexibility of the structure to
occur without a resulting change in the graph. Methods and tools from computational
geometry also often aid in the quantification and simulation of 3D models.

Molecular descriptors are a valuable tool in the retrieval of promising pharmaceu-
ticals from large databases and also in clustering applications. (ADAPT) (Automated
Data Analysis Using Pattern Recognition Toolkit) has a large selection of molecu-
lar descriptor generation routines (topological, geometrical, electronic, and physic-
ochemical) and the ability to generate hybrid descriptions that combine features.
ADAPT was developed by Peter Jurs, the Jurs Research Group at Penn State, and is
available over the Internet [20]. The Molecular operating environment (MOE) offered
by the Chemical Computing Group [21] has a developed a pedagogical toolkit for
educators including a cheminformatics package. This toolkit can calculate approx-
imately 300 descriptors including topological indices, structural keys, and E-state
indices.

3.2.2 Graphical Invariants and Topological Indices

A topological index is a number associated with a chemical structure represented by
a connected graph. The graph is usually a hydrogen-depleted graph, where atoms are
represented by vertices and covalent bonds by edges. On the contrary, many results
in graph theory have focused on large graphs and asymptotic results in general. Since
chemical graphs are comparatively small, it is not too surprising that graphical invari-
ants and topological indices have evolved separately. However, with the new avenues

92 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

of research in biochemical modeling of macromolecules, the field of mathematical
graph theory may bring new tools to the table. In chemical graph theory, the number
of edges, that is, the number of bonds, is an obvious and well-utilized molecular de-
scriptor. Theorems from graph theory or graphical invariants from related fields such
as computational complexity and computer architecture may begin to shed new light
on the structure and properties of proteins and other large molecules. In recent results
by Haynes et al., parameters based on graphical invariants from mathematical graph
theory showed promising results in this direction of research [22,23]. It certainly ap-
pears that a thorough review of theoretical graphical invariants with an eye toward
new applications in biomolecular structures is warranted

Without a doubt, there will be some overlap of concepts and definitions. For ex-
ample, one of the most highly used topological indices was defined by Hoyosa in
1971 [24]. This index is the sum of the number of ways k disconnected edges can be
distributed in a graph G.

n/2

1(G) = _6(G, k),

k=0

where 0(G, 0) = 1 and 6(G, 1) is the number of edges in G. Let us deviate for a
moment and define the graphical invariant, k-factor. To do so, we first define a few
other graph theoretic terms. A graph is k-regular if every vertex has degree k. A graph
H is a spanning subgraph of G if it is a subgraph that has the same vertex set of
G. A subgraph H is a k-factor if it is a k-regular spanning subgraph. A 1-factor is a
spanning set of edges and a 2-factor of a graph G is a collection of cycle subgraphs
that span the vertex set of G. If the collection of spanning cycles consists of a single
cycle, then the graph is Hamiltonian. Hamiltonian theory is an area that has received
substantial attention among graph theorists, as well as the topic of k-factors. We
note that (G, 1) is the number of edges in G and that 6(G, n/2) is equivalent to the
number of 1-factors in G [9]. In the following sections, we define selected graphical
invariants and topological indices, most of which were utilized in the work by Haynes
et al. [22,23].

Domination numbers of graphs have been utilized extensively in fields such as
computer network design and fault tolerant computing. The idea of domination is
based on sets of vertices that are near (dominate) all the vertices of a graph. A set of
vertices dominate the vertex set if every vertex in the graph is either in the dominating
set or adjacent to at least one vertex in the dominating set. The minimum cardinality
among all dominating sets of vertices in the graph is the domination number. For more
information on the domination number of graphs see Haynes [25]. If restrictions are
placed on the set of vertices that we may select to be in the dominating set, then we
obtain variations on the domination number. For example, the independent domination
number is the minimum number of nonadjacent vertices that can dominate the graph.
Consider Figure 3.5, which contains two trees of order 7, one with independent
domination number equal to 3 and the other with independent domination number
equal to 2. The vertices in each independent minimum dominating set are labeled
{u, w, z} and {u, z}, respectively. Domination numbers have been highly studied in

GRAPHS AND ALGORITHMS IN CHEMINFORMATICS 93

z

FIGURE 3.5 Dominating vertices {u, w, z} and {u, z}, respectively.

mathematical graph theory and have applications in many fields such as computer
networks and data retrieval algorithms.

The eccentricity of a vertex is the maximum distance from a vertex v to any other
vertex in the graph where distance is defined to be the length of the shortest path and
is denoted by d(u, v). The diameter of G, diam (G), is the maximum eccentricity
where this maximum is taken over all eccentricity values in the graph. That is,

diam(G) = un})ag/ d(v, u)

and the radius of a graph G, denoted by rad (G), is given by the minimum eccentricity
value, that is,

rad(G) = min max{d(x, y)}.
xeV yeV

The diameter and radius are both highly utilized graphical invariants and topological
indices.

The line graph of G, denoted by L(G), is a graph derived from G so that the edges
in G are replaced by vertices in L(G). Two vertices in L(G) are adjacent whenever
the corresponding edges in G share a common vertex. Beineke and Zamfirescu [26]
studied the kth ordered line graphs and Dix [27] applied the second ordered line graphs
to concepts in computational geometry. Figure 3.6 shows a graph G with L(G) and
L?(G), the second iterated line graph. Note that vertex x in L?(G) corresponds to the
edge x in L(G). The edge x in L(G) is defined by the two vertices a and b. These two
vertices in L(G) correspond to the two edges a and b in G. Topological indices do
not account for angle measures; however, two incident edges represent an angle and
thus vertex x in L?(G) corresponds to the angle, or path of length 2, namely {1, 3, 2}.

Given that there are over 3000 molecular descriptors defined in the Handbook
of Molecular Descriptors, we will make no attempt to provide an extensive list of
topological indices. Rather we have selected a few representatives that are classical
and well known as examples.

The Gordon—Scantlebury index is defined as the number of distinct ways a chain
fragment of length 2 can be embedded on the carbon skeleton of a molecule [28].
Thus, if G is the graph in Figure 3.6, then the Gordon—Scantlebury number is 4. The
second iterated line graph discussed above not only provides an easy way to determine
this index, but also tells us how these paths are related. Notice that the vertices z, w,
and y in L?(G) form a triangle; that is, they are all pairwise adjacent. This is because
they are all incident to vertex ¢ in L(G). Since vertex ¢ in L(G) corresponds to edge
c in G, we know that the three paths of length 2 corresponding to the vertices in z,
w, and y in L?(G) all share edge c.

94 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

2 5 b
b
d * % z ¥
1 a3 ¢ Tz wd w
L L(G) LHG)

FIGURE 3.6 A graph, its line graph, and the second iterated line graph.

Among the earliest topological indices are the connectivity indices. The classical
connectivity index defined by Randic [29] is given by

1
RoG) =)~

veV

Ri(G) =) L
The Randic numbers for the graph G in Figure 3.6 are Ro(G) =1+ 1+ 1//3 +
1/v/2+1=428 and R|(G) =2(1//1-3)4+1/4/2-34+1/4/1-2) =2.27. This
index can be generalized for paths of length / to define the generalized Randic number
R;(G). One can consider paths as a special type of subgraph. More recently, Bonchev
introduced the concept of overall connectivity of a graph G, denoted by TC(G), which
is defined to be the sum of vertex degrees of all subgraphs of G [30].

The adjacency matrix is a straightforward way to represent a graph in a computer.
Given a graph with n vertices labeled V = {vy, vy, ..., v,,}, the adjacency matrix A
is an n X n matrix with a 1 in the ith row and jth column if vertex v; is adjacent
to vertex v; and zeros elsewhere. The degree matrix D is the n x n matrix with
d; i = deg(v;) and d; i = 0if i # j. The Laplacian matrix is defined as the difference
of the adjacency matrix and the degree matrix, L = D — A. The spectrum of a graph
is the set of eigenvalues of the Laplacian matrix. The eigenvalues are related to the
density distribution of the edge set, and the pattern of a graph’s connectivity is closely
related to its spectrum. The second smallest eigenvalue, denoted by A, (often called
the Fiedler eigenvalue), is the best measure of the graph’s connectivity among all of the
eigenvalues. Large values for A, correspond to vertices of high degree that are in close
proximity whereas small values for A, correspond to a more equally dispersed edge set.

The Balaban index [31], sometimes called the distance sum connectivity index, is
considered to be a highly discriminating topological index. The Balaban index B(G)
of a graph G is defined as

q 1
B(G) = > T
wG)+1 edges $iSj
where s; is the sum of the distance of the ith vertex to the other vertices in the graph, ¢
is the number of edges, and u is the minimum number of edges whose removal results
in an acyclic graph. The distance matrix 7 is the n X n matrix with di_,. = dist(v;, v)).

GRAPHS AND ALGORITHMS IN CHEMINFORMATICS 95

djj = dist(v;, v;). The distance matrix and B(G) for G in Figure 3.6 are given below.

02123
20123
T=|11012],
22101
33210

1 1 1 1
B(G):“(m*m*ﬂ*m)'

The reverse Wiener index was introduced in 2000 [32]. Unlike the distance sums,
reverse Wiener indices increase from the periphery toward the center of the graph.
As we have seen, there are an enormous number of molecular descriptors utilized in
computational chemistry today. These descriptors are frequently used to build what are
known as quantitative structure—activity relationships (QSAR). A brief introduction
of QSAR is given in the following section.

3.2.3 Quantitative Structure—Activity Relationships

The structure of a molecule facilitates the molecule’s properties and its related
activities. This is the premise of a QSAR study. QSAR is a method for building models
that associate the structure of a molecule with the molecule’s corresponding biolog-
ical activity. QSAR was first developed by Hansch and Fujita in the early 1960s and
remains a key player in computational chemistry. The fundamental steps in QSAR are
molecular modeling, calculation of molecular descriptors, evaluation and reduction
of descriptor set, linear or nonlinear model design, and validation. Researchers at the
University of North Carolina at Chapel Hill recently extended the four steps to an
approach that employs various combinations of optimization methods and descriptory
types. Each descriptor type was used with every QSAR modeling technique, so in
total 16 combinations of techniques and descriptor types were considered [33].

A successful QSAR algorithm is predictive. That is, given a molecule and its struc-
ture, one can make a reasonable prediction of its biological activity. The ability to
predict a molecule’s biological activity by computational means has become more
important as an ever-increasing amount of biological information is being made avail-
able by new technologies. Annotated protein and nucleic databases and vast amounts
of chemical data from automated chemical synthesis and high throughput screening
require increasingly more sophisticated efforts.

QSAR modeling requires the selection of molecular descriptors that can then be
used for either a statistical model or a computational neural network model. Current
methods in QSAR development necessarily include feature selection. It is generally
accepted that after descriptors have been calculated, this set must be reduced to a set
of descriptors that measure the desired structural characteristics. This is obvious, but
not always as straightforward as one would hope since the interpretation of a large

96 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

number of descriptors is not always easy. Since many descriptors may be redundant
in the information that they contain, principal component analysis has been the
standard tool for descriptor reduction, often reducing the set of calculated invariants.
This is accomplished by a vector space description analysis that looks for descriptors
that are orthogonal to one another where descriptors that contain essentially the same
information are linearly dependent. For example, a QSAR algorithm was developed
by Viswanadahn et al. in which a set of 90 graph theoretic and information descriptors
representing various structural/topological characteristics of these molecules were
calculated. Principal component analysis was used to compress these 90 into the
8 best orthogonal composite descriptors [34]. Often molecular descriptors do not
contain molecular information that is relevant to the particular study, which is another
drawback one faces in selecting descriptors for a QSAR model. Due to the enormous
number of descriptors available, coupled with the lack of interpretation one has
for the molecular characteristics they exhibit, very little selection of descriptors
is made a priori. Randic and Zupan reexamined the structural interpretation of
several well-known indices and recommended partitioning indices into bond additive
terms [35]. Advances in neural network capabilities may allow for the intermediate
steps of molecular descriptor reduction and nonlinear modeling to be combined.
Consequently, neural network algorithms are discussed in greater detail in Section 3.4.

Applications of QSAR can be found in the design of chemical libraries, in
molecular similarity screening in chemical databases, and in virtual screening in
combinatorial libraries. Combinatorial chemistry is the science of synthesizing and
testing compound en masse and QSAR predictions have proven to be a valuable tool.
The QSAR and Modeling Society Web site is a good source for more information
on QSAR and its applications.

3.3 GRAPHS AS BIOMOLECULES

The Randic index is an example of a well-known and highly utilized topological
index in cheminformatics. In 2002, Randic and Basak used the term “biodescriptor”
when applying a QSAR model for a biomolecular study [36,37]. While graphs
have historically been used to model molecules in chemistry, they are beginning to
play a fundamental role in the quantification of biomolecules. A new technique for
describing the shape and property distribution of proteins, called PPEST (protein
property-encoded surface translator) has been developed to help elucidate the
mechanism behind protein interactions [38]. The utility of graphs as models of
proteins and nucleic acids is fertile ground for the discovery of new and innovative
methods for the numerical characterization of biomolecules.

3.3.1 Graphs as RNA

The information contained in DNA must be accessed by the cell in order to be utilized.
This is accomplished by what is known as transcription, a process that copies the
information contained in a gene for synthesis of genetic products. This copy, RNA,

GRAPHS AS BIOMOLECULES 97

is almost identical to the original DNA, but a letter substitution occurs as thymine
(T) is replaced by uracil (U). The other three bases A, C, and G are the same. Since
newly produced (synthesized) RNA is single stranded, it is flexible. This allows it to
bend back on itself to form weak bonds with another part of the same strand. The
initial string is known as the primary structure of RNA and the 2D representation in
Figure 3.7 is an example of secondary RNA structure.

While scientists originally believed that the sole function of RNA was to serve as
a messenger of DNA to encode proteins, it is now known that there are noncoding or
functional RNA sequences. In fact, the widespread conservation of secondary struc-
ture points to a very large number of functional RNAs in the human genome [39,40].
Many classes of RNA molecules are characterized by highly conserved secondary
structures that have very different primary structure (or primary sequence), which
implies that both sequential and structural information is required in order to expand
the current RNA databases [41]. RNA was once thought to be the least interesting
since it is merely a transcript of DNA. However, since it is now known that RNA is
involved in a large variety of processes, including gene regulation, the important task
of classifying RNA molecules remains far from complete. Graph theory is quickly
becoming one of the fundamental tools used in efforts to determine and identify RNA
molecules.

It is assumed that the natural tendency of the RNA molecule is to reach its most
energetically stable conformation and this is the premise behind many RNA folding
algorithms such as Zucker’s well-known folding algorithms [42]. More recently, how-
ever, the minimum free energy assumption has been revisited and one potential new
player is graph theoretic modeling and biodescriptors. Secondary structure has been
represented by various forms in the literature and representations of RNA molecules
as graphs is not new. In the classic work of Waterman [43], secondary RNA structure
is defined as a graph where each vertex a; represents a nucleotide base. If a; pairs
with a; and gy is paired with a; where i < k < j,theni </ < j.

More recently, secondary RNA structures have been represented by various mod-
eling methods as graph theoretic trees. RNA tree graphs were first developed by Le
et al. [44] and Benedetti and Morosetti [45] to determine structural similarities in
RNA.

FIGURE 3.7 Secondary RNA structure and its graph.

98 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

A modeling concept developed by Barash [46] and Heitsch et al. [47] who noted
that the essential arrangement of loops and stems in RNA secondary structure is cap-
tured by a tree if one excludes the pseudoknots. A pseudoknot can be conceptualized
as switchbacks in the folding of secondary structure. With the exclusion of pseudo-
knots, the geometric skeleton of secondary RNA structure is easily visualized as a tree
as in Figure 3.7. Unlike the classic model developed by Waterman et al. where atoms
are represented by vertices and bonds between the atoms by edges in the graph,
this model represents stems as edges and breaks in the stems that result in bulges
and loops as vertices. A nucleotide bulge, hairpin loop, or internal loop are each
represented by a vertex when there is more than one unmatched nucleotide or non-
complementary base pair.

Researchers at New York University in the Computational Biology Group led by
Tamar Schlick used this method to create an RNA topology database called RAG
(RNA As Graphs) that is published and available at BMC Bioinformatics and Bioin-
formatics [48,49]. The RNA motifs in RAG are cataloged by their vertex number
and Fiedler eigenvalues. This graph theoretic representation provides an alternative
approach for classifying all possible RNA structures based on their topological
properties. In this work, Schlick et al. find that existing RNA classes represent only
a small subset of possible 2D RNA motifs [50,51]. This indicates that there may be a
number of additional naturally occuring secondary structures that have not yet been
identified. It also points to possible structures that may be utilized in the synthesis
of RNA in the laboratory for drug design purposes. The discovery of new RNA
structures and motifs is increasing the size of specialized RNA databases. However,
a comprehensive method for quantifying and cataloging novel RNAs remains absent.
The tree representation utilized by the RAG database provides a useful resource to
that end. Other good online resources in addition to the RAG database include the
University of Indiana RNA Web site, RNA World, and RNA Base [52].

3.3.2 Graphs as Proteins

Proteins are molecules that consist of amino acids. There are 20 different amino acids;
hence, one can think of a chain or sequence from an alphabet of size 20 as the primary
structure of a protein. Each amino acid consists of a central carbon atom, an amino
group, a carboxyl group, and a unique “side chain” attached to the central carbon.
Differences in the side chains distinguish different amino acids. As this string is being
produced (synthesized) in the cell, it folds back onto itself creating a 3D object. For
several decades or more, biologists have tried to discover how a completely unfolded
protein with millions of potential folding outcomes almost instantaneously finds the
correct 3D structure. This process is very complex and often occurs with the aid of
other proteins known as chaperones that guide the folding protein. The majority of
protein structure prediction algorithms are primarily based on dynamic simulations
and minimal energy requirements. More recently, it has been suggested that the high
mechanical strength of a protein fiber, for example, is due to the folded structural
linking rather than thermodynamic stability. This suggest the feasibility and validity
of a graph theoretic approach as a model for the molecule.

GRAPHS AS BIOMOLECULES 99

The 3D structure of the protein is essential for it to carry out its specific function.
The 3D structure of a protein has commonly occurring substructures that are referred
to as secondary structures. The two most common are alpha helices and beta strands.
Bonds between beta strands form beta sheets. We can think of alpha helices and
beta sheets as building blocks of the 3D or tertiary structure. As in the case for the
secondary RNA trees, graph models can be designed for amino acids, secondary, and
tertiary protein structures. In addition to protein modeling, protein structure prediction
methods that employ graph theoretic modeling focus on predicting the general protein
topology rather than the 3D coordinates. When sequence similarity is poor, but the
essential topology is the same, these graph theoretic methods are more advantageous.

The idea of representing a protein structure as a graph is not new and there have
been a number of important results on protein structure problems obtained from
graphs. Graphs are used for identification of tertiary similarities between proteins by
Mitchell et al. [53] and Grindley et al [54]. Koch et al. apply graph theory to the
topology of structures in proteins to automate identification of certain motifs [55].
Graph spectral analysis has provided information on protein dynamics, protein motif
recognition, and fold. Identification of proteins with similar folds is accomplished
using the graph spectra in the work by Patra and Vishveshwara [56]. Clusters important
for function, structure, and folding were identified by cluster centers also using the
graph’s eigenvalues [57]. Fold and pattern identification information was gained by
identifying subgraph isomorphisms [58]. For additional information on these results,
see the work by Vishveshwara et al. [59]. It is worth noting that all of the above
methods relied heavily on spectral graph theory alone.

Some of the early work on amino acid structure by graph theoretic means was
accomplished in the QSAR arena. Use of crystal densities and specific rotations
of amino acids described by a set of molecular connectivity indices was utilized by
Pogliani in a QSAR study [60]. Pogliani also used linear combinations of connectivity
indices to model the water solubility and activity of amino acids [61]. Randic et al.
utilized a generalized topological index with a multivariate regression analysis QSAR
model to determine characteristics of the molar volumes of amino acids [62].

On a larger scale, a vertex can represent an entire amino acid and edges are present
if the amino acids are consecutive on the primary sequence or if they are within some
specified distance. The graph in the Figure 3.8 shows the modeling of an alpha helix
and a beta strand with a total of 24 amino acids.

By applying a frequent subgraph mining algorithm to graph representations of
a 3D protein structure, Huan et al. found recurring amino acid residue packing
patterns that are characteristic of protein structural families [63]. In their model,
vertices represent amino acids, and edges are chosen in one of three ways: first,
using a threshold for contact distance between residues; second, using Delaunay
tessellation; and third, using the recently developed almost-Delaunay edges. For
a set of graphs representing a protein family from the Structural Classification of
Proteins (SCOP) database [64], subgraph mining typically identifies several hundred
common subgraphs corresponding to the residue packing pattern. They demonstrate
that graphs based on almost-Delaunay edges significantly reduced the number of
edges in the graph representation and hence presented computational advantage.

100 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

Alpha helix Beta strand

3 4—5 6

=l

16—6—17+—18

\Backbone Y,

Connecting sections

FIGURE 3.8 An alpha helix and a beta strand.

Researchers at the University of California at Berkley and at the Dana Farber
Cancer Institute at Harvard Medical School have used aberration multigraphs to model
chromosome aberrations [65]. A multigraph is a graph that allows multiple edges
between two vertices. Aberration multigraphs characterize and interrelate three basic
aberration elements: (1) the initial configuration of a chromosome; (2) the exchange
process whose cycle structure helps to describe aberration complexity; and (3) the
final configuration of rearranged chromosomes. An aberration multigraph refers
in principle to the actual biophysical process of aberration formation. We find that
graphical invariants provide information about the processes involved in chromosome
aberrations. High diameter for the multigraph corresponds to many different cycles in
the exchange process, linked by the fact that they have some chromosomes in common.
Girth 2 in a multigraph usually corresponds to a ring formation and girth 3 to inver-
sions. Aberration multigraphs are closely related to cubic multigraphs. An enormous
amount is known about cubic multigraphs, mainly because they are related to work on
the four-color theorem. Results on cubic multigraphs suggest a mathematical classifi-
cation of aberration multigraphs. The aberration multigraph models the entire process
of DNA damage, beginning with an undamaged chromosome and ending with a
damaged one.

A relation is symmetric if “a is related to " implies “b is related to a." Clearly, not
all relations are symmetric. If a graph models a relation that is not symmetric, then
directions are assigned to the edges. Such graphs are known as digraphs and networks
are usually modeled by digraphs. Some network applications exist in chemical graph
theory [66]. Since a reaction network in chemistry is a generalization of a graph, the
decomposition of the associated graph reflects the submechanisms by closed directed
cycles. A reaction mechanism is direct if no distinct mechanisms for the same reaction
can be formed from a subset of the steps. Although the decomposition is not unique,
the set of all direct mechanisms for a reaction is a unique attribute of a directed graph.
Vingron and Waterman [67] utilized the techniques and concepts from electrical
networks to explore applications in molecular biology. A variety of novel modeling
methods that exploit various areas of mathematical graph theory such as random graph
theory are emerging with exciting results. For more examples applications of graphs
in molecular biology, see the work by Boncher et al. [68].

MACHINE LEARNING WITH GRAPHICAL INVARIANTS 101

3.4 MACHINE LEARNING WITH GRAPHICAL INVARIANTS

Graphical invariants of graph theoretic models of chemical and biological structures
can sometimes be used as descriptors [23] in a fashion similar to molecular descriptors
in QSPR and QSAR models. Over the past decade, the tools of choice for using
descriptors to predict such functional relationships have increasingly been artificial
neural networks (ANNs) or algorithms closely related to ANNs [69]. More recently,
however, support vector machines (SVMs) have begun to supplant the use of ANNs
in QSAR types of applications because of their ability to address issues such as
overfitting and hard margins (see, e.g., the works by Xao et al. [70] and Guler and
Kocer [71)).

Specifically, the possible properties or activities of a chemical or biological
structure define a finite number of specific classes. The ANNs and SVMs use descrip-
tors for a given structure to predict the class of the structure, so that properties and ac-
tivities are predicted via class membership. Algorithms that use descriptors to predict
properties and functions of structures are known as classifiers. Typically, a collection
of structures whose functional relationships have been classified a priori are used to
train the classifier so that the classifier can subsequently be used to predict the clas-
sification of a structure whose functional relationships have yet to be identified [72].

3.4.1 Mathematics of Classifiers

Before describing SVMs and ANNs more fully, let us establish a mathematical basis
for the study of classification problems. Because a descriptor such as a graphical
invariant is real valued, a number n of descriptors of a collection of biological struc-
tures form an n-tuple x = (x1, ..., X,) in n-dimensional real space. A classifier is a
method that partitions n-dimensional space so that each subset in the partition con-
tains points corresponding to only one class. Training corresponds to using a set of
n-tuples for structures with a priori classified functional relationships to approximate
such a partition. Classification corresponds to using the approximate partition to make
predictions about a biological structure whose class is not known [72].

If there are only two classes, as was the case in the work by Haynes et al. [23] where
graph theoretic trees were classified as either RNA-like or not RNA-like, the goal is
to partition an n-dimensional space into two distinct subsets. If the two subsets can
be separated by a hyperplane, then the two classes are said to be linearly separable.
An algorithm that identifies a suitable separating hyperplane is known as a linear
classifier (Fig. 3.9).

In a linearly separable classification problem, there are constants wi, ..., w, and b
such that

wixy+ -+ wpx, +b>0
when (x1, ..., x,) is in one class and

wixy+ -+ wpx, +b <0

102 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

FIGURE 3.9 Linear separability.

when (x1, ..., x,,) is in the other. Training reduces to choosing the constants so that the
distance between the hyperplane and the training data is maximized, and this maximal
distance is then known as the margin.

If there are more than two classes and the classes are not linearly separable, then
there are at least two different types of classifiers that can be used. An SVM supposes
that some mapping ¢(x) from n-space into a larger dimensional vector space known
as a feature space will lead to linear separability in the larger dimensional space, at
which point an optimal hyperplane is computed in the feature space by maximizing
the distance between the hyperplane and the closest training patterns. The training
patterns that determine the hyperplane are known as support vectors.

If K(x,y) is a symmetric, positive definite function, then it can be shown that there
exists a feature space with an inner product for which

KX, y)=¢0x) - ¢(y).

The function K(x,y) is known as the kernel of the transformation, and it follows that
the implementation of an SVM depends only on the choice of a kernel and does not
require the actual specification of the mapping or the feature space. Common kernels
include the following:

e Inner product: K(Xx,y)=x"Y.

Polynomial: K (x,y) = (x -y + 1)V, where N is a positive integer.
Radial: K (x,y) = e~Ix=¥I?,
Neural: K (x,y) = tanh (ax -y + b), where a and b are parameters.

Within the feature space, an SVM is analyzed as a linear classifier [73].

Several implementations of SVMs are readily available. For example, mySVM
and YALE, which can be found at http://www.support-vector-machines.org, can be
downloaded as windows executables or Java applications [74]. There are also several
books, tutorials, and code examples that describe in detail how SVMs are implemented
and trained [75].

MACHINE LEARNING WITH GRAPHICAL INVARIANTS 103

FIGURE 3.10 An artificial neuron.

ANN:Ss are alternatives to SVMs that use networks of linear-like classifiers to predict
structure—function classifications. Specifically, let us suppose that the two classes of a
linear classifier can be associated with the numbers 1 and 0. If we also define a firing
function by

(s) = 1if s >0, 3.1
§W= 0if s <O, ’

then the linear classifier can be interpreted to be a single artificial neuron, which is
shown in Figure 3.10. In this context, wy, ..., w, are known as synaptic weights and
b is known as a bias. The firing function is also known as the activation function, and
its output is known as the activation of the artificial neuron.

The terminology comes from the fact that artificial neurons began as a caricature
of real-world neurons, and indeed, real-world neurons are still used to guide the
development of ANNs [76]. The connections with neurobiology also suggest that the
activation function g(s) should be sigmoidal, which means that it is differentiable and
nondecreasing from 0 up to 1. A commonly used activation function is given by

g(s) = (3.2)

1+ e—%s ’

where xk > 0 is a parameter [77], which is related to the hyperbolic tangent via
g(s) = %tanh(/c s) + %

The choice of a smooth activation function allows two different approaches to
training—the synaptic weights can be estimated from a training set either using lin-
ear algebra and matrix arithmetic or via optimization with the synaptic weights as
dependent variables. The latter is the idea behind the backpropagation method, which
is discussed in more detail below.

A multilayer feedforward network (MLF) is a network of artificial neurons orga-
nized into layers as shown in Figure 3.11, where a layer is a collection of neurons
connected to all the neurons in the previous and next layers, but not to any neurons in
the layer itself. The first layer is known as the input layer, the last layer is known as
the output layer, and the intermediate layers are known as hidden layers. Figure 3.11
shows a typical three-layer MLF.

104 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

X4
X5
Xn—
xﬂ
Input Hidden Output
FIGURE 3.11 A three-layer MLP.
In the prediction or feedforward stage, the descriptors x1, - - -, x,, are presented to

the input layer neurons, and their activations are calculated as in Figure 3.10. Those
activations are multiplied by the synaptic weights w;; between the ith input neuron
and the jth output neuron and used to calculate the activations of the hidden layer
neurons. Similarly, the synaptic weights « jx between the kth hidden neurons and the
Jjth output neurons are used to calculate the activations y1, - - -, y from the output
neurons, which are also the predicted classification of the structure that generated the
initial descriptors.

If the classification q = (g1,..., g-) for an n-tuple of descriptors p =
(p1, - ., pn)isknown, then the pair (p, q) is known as a training pattern. Training a
three-layer MLF using a collection (p!, q'), (p'. q') of training patterns means

using nonlinear optimization to estimate the synaptic weights. In addition, the synap-
tic weights can be used for feature selection, which is to say that a neural network
can be used to determine how significant a descriptor is to a classification problem
by examining how sensitive the training process is to the values of that descriptor.

3.4.2 Implementation and Training

Both general-purpose and informatics-targeted implementations of MLFs are readily
available. For example, the neural network toolbox for MatLab and the modeling kit
ADAPT allow the construction of MLFs and other types of neural networks [75,77].
There are also many variations on the MLF ANN structure and training methods,
including self-organizing feature maps (SOFM) [78,79] and Bayesian regularized
neural network [80]. In addition, several different implementations of neural networks
in programming code are also available.

However, it is important not to treat ANNs or SVMs as “canned” routines, because
they are similar to other nonlinear regression methods in that they can overfit the data
and they can be overtrained to the training set [69]. Overtraining corresponds to
the network’s “memorizing” of the training set, thus leading to poor predictions for
structures not in the training set. This issue is often addressed using cross-validation
or “leave-one-out” training methods in which a part of the training set is removed,

MACHINE LEARNING WITH GRAPHICAL INVARIANTS 105

the network is trained on the remaining training patterns, and then the classification
of the removed training patterns is predicted.

Overfitting is a more serious and less avoidable problem [81]. Typically, there
is small variation or “noise” in the descriptor values, so that if there are too many
parameters—for example, too many neurons in the hidden layer—then training may
lead to an “interpolation” of the slightly flawed training set at the expense of poor gen-
eralization of the training set. In both overfitting and overtraining, convergence of the
nonlinear optimization algorithm is common, but predictions are either meaningless
in the case of overfitting or too dependent on the choice of the training.

Because graphical invariants are often discrete valued and highly dependent on the
construction of the graphical model, overfitting and overtraining are important issues
that cannot be overlooked. For this reason, we conclude with a more mathematical
exploration of the ANN algorithm so that their training and predictive properties can
be better understood.

To begin with, suppose thaty = (yy, ..., y,) denotes the output from a three-layer
MLF that has r input neurons connected to m hidden layer neurons that are connected
to n neurons in the output layer. It has been shown that with the appropriate selection
of synaptic weights, a three-layer MLF can approximate any absolutely integrable
mapping of the type

O, X)) =015y Yn)

to within any € > 0 [82]. That is, a three-layer MLP can theoretically approximation
the solution to any classification problem to within any given degree of accuracy, thus
leading MLFs to be known as universal classifiers. However, in practice the number
of hidden layer neurons may necessarily be large, thus contradicting the desire to use
small hidden layers to better avoid overfitting and overtraining.

To gain further insights into the innerworkings of a three-layer MLF, let wy =
(w1, - .., wg) denote the vector of weights between the input layer and the
kth-hidden neuron. It follows that y; = g (s; — b;), where b; denotes the bias of
the jth output neuron, where

sj= Z a kg (wi(x — k),

k=1

and where 6; denotes the bias for the kth hidden neuron. A common method for
estimating synaptic weights given a collection (pl, ql) ey (p’ . q) of training
patterns is to define an energy function

E= (y—4") (y—4").

t
=1

N =

1

106 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

Energy
surface

N

Local mimma

Local minimum

Global minimum

FIGURE 3.12 The energy surface.

and then train the MLP until we have closely approximated

oE oE
— =0 and — =0
owyy O ji.

at the inputs pi for all I=1,...,r, k=1,...,m, and j=1,...,n. Because
these equations cannot be solved directly, a gradient-following method called the
backpropagation algorithm is used instead.

The backpropagation algorithm is based on the fact that if g is the sigmoidal
function defined in equation (3.2), then

g =xg(l—yg).

In particular, for each training pattern (pi, qi), a three-layer MLP first calculates y
as the output to p’, which is the feedforward step. The weights « jk are subsequently
adjusted using

ajr — aji + A&,

where & = g (W - X — 6;), where A > Ois a fixed parameter called the learning rate,
and where

5=k (1=;) (=),
The weights wy, are adjusted using
Wk —> Wk + Api X1,
where x; = g (p} — 6;) and where
n
o= K€ (1 —&) > ajd;.
j=1

Cybenko’s theorem implies that the energy E should eventually converge to 0, so
training continues until the energy is sufficiently small in magnitude.

However, it is possible that the energy for a given training set does not converge.
For example, it is possible for training to converge to a local minimum of the energy
function, as depicted in Figure 3.12. When this happens, the network can make errant

GRAPHICAL INVARIANTS AS PREDICTORS 107

predictions known as spurious states. To avoid such local minima, it may be necessary
to add small random inputs into each neuron so that training continues beyond any
local minima, or it may be necessary to use a process such as simulated annealing to
avoid such local minima [77].

Similarly, if the synaptic weights are not initialized to small random values, then
the network tends to overtrain immediately on the first training pattern presented to
it and thus may converge only very slowly. Overtraining can often be avoided by
calculating the energy on both the training set and a validation set at each iteration.
However, overfitting may not necessarily be revealed by the behavior of the energy
during training.

This is because the quantities that define the training process are

8;=uky; (1-;) (Q} - yj)

and

pr=rE (1= &) > o),

j=1

both of which are arbitrarily close to 0 when §; is arbitrarily close to 0. In overfitting,
this means that once y; is sufficiently close to q; , the quantities & can vary greatly
without changing the convergence properties of the network. That is, convergence of
the output to the training set does not necessarily correspond to convergence of the
hidden layer to a definite state. Often this means that two different training sessions
with the same training set may lead to different values for the synaptic weights [69].

Careful design and deployment of the network can often avoid many of the issues
that may affect ANNs. Large hidden layers are typically not desirable, and often an
examination of the synaptic weights over several “test runs” will give some insight
into the arbitrariness of the dependent variables & for the hidden layer, thus indi-
cating when the hidden layer may possibly be too large. In addition, as the network
begins to converge, modifying the learning parameter A as the network converges may
“bump” the network out of a local minimum without affecting overall convergence
and performance.

3.5 GRAPHICAL INVARIANTS AS PREDICTORS

We conclude with an example of the usefulness of graphical invariants as predictors
of biomolecular structures. The RAG database [48] contains all possible unlabeled
trees of orders 2 through 10. For the trees of orders 2 through 8, each tree is classified
as an RNA tree, an RNA-like tree or not RNA-like tree. For the trees of order 9 and 10,
those that represent a known secondary RNA structure are identified as an RNA tree,
but no trees are shown to be candidate structures, that is, RNA-like. In the works by
Haynes et al. [22,23], the tree modeling method is used to quantify secondary RNA

108 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

structures with graphical parameters that are defined by variations of the domination
number of a graph.

Note that a single graphical invariant may not be sufficient to differentiate between
trees that are RNA-like and those that are not. For example, the domination number
for trees of order 7, 8, and 9 range from 1 to 4 with no discernable relationship between
the value of the invariant and the classification of the tree. However, defining three
parameters in terms of graphical invariants does prove to be predictive.

Specifically, an MLP with three input neurons, five hidden neurons, and two output
neurons is trained using values of the three parameters

p oYttt
n
py_ Nt
n
P diam(L(T)) 4 rad(L(T)) + | B|
3= ’

n

where y is the domination number, y is the total domination number, y,, is the global
alliance number, y is the locating domination number of the line graph, and yp
is the differentiating dominating number. For more on variations of the domination
numbers of graphs, see the work by Haynes et al. [25]. Additionally, diam(L(T)) is
the diameter of the line graph, rad(L(7T)) is the radius of the line graph, |B]| is the
number of blocks in the line graph of the tree, and n is the order of a tree. The use
of leave-one-out cross-validation during training addresses possible overfitting. We
also use the technique of predicting complements (also known as leave-v-out cross-
validation) with 6, 13, and 20 trees, respectively, in the complement. Table 3.1 shows
the average error and standard deviation in predicting either a “1” for a RNA tree or
a “0” for a tree that is not RNA-like.

The resulting MLP predicts whether trees of orders 7, 8, and 9 are RNA-like or
are not RNA-like. The results are shown in Table 3.2. For the trees of order 7 and 8,
the network predictions coincide with the RAG classification with the exception of 2
of the 34 trees. Also, the network was able to predict an additional 28 trees of order
9 as being RNA-like in structure. This information may assist in the development of
synthetic RNA molecules for drug design purposes [49].

The use of domination-based parameters as biomolecular descriptors supports
the concept of using graphical invariants that are normally utilized in fields such as
computer network design to quantify and identify biomolecules. By finding graphical
invariants of the trees of orders 7, 8, and using the four additional trees of order 9 in

TABLE 3.1 Accuracy Results for the RNA Classification

[Comp| =6 |Comp| = 13 |Comp| = 20

Average error 0.084964905 0.161629391 0.305193489
Standard deviation 0.125919698 0.127051425 0.188008046

REFERENCES 109

TABLE 3.2 RNA Prediction Results

RAG“ Class” Error® RAG Class Error RAG Class Error
7.4 0 0.00947 9.9 0 0.0554 931 1 0.0247
75 1 0.0245 9.10 1 265E-06 932 0 1.99E—-06
7.7 1 7.45E—-05 9.12 1 528E-07 933 1 0.0462
7.8 1 1.64E—-07 9.14 1 232E-07 934 1 0.00280
8.1 1 1.05E—-06 9.15 0 1.82E-04 935 0 2.46E—06
8.2 1 1.24E—06 9.16 1 535E-04 936 O 7.41E—05
8.4 1 0.0138 9.17 1 6.24E—-06 937 O 7.41E—-05
8.6 1 0.0138 9.18 1 4.87E-07 938 1 4.86E—05
8.8 1 5.43E-05 9.19 1 6.06E—-07 939 0 2.46E—06
8.12 1 3.59E—-06 9.20 1 0.0247 940 O 4.79E—08
8.13 0 0.0157 9.21 1 6.38E—05 941 0 4.79E-08
8.16 1 8.81E—06 9.22 1 0.0247 942 1 2.51E-07
9.1 1 1.48E—-07 9.23 0 741E-05 943 1 4.86E—05
9.2 1 0.0151 9.24 1 147E-05 944 1 0.0247
9.3 1 0.0121 9.25 0 385E-07 945 0 7.41E-05
9.4 1 4.05E—-07 9.26 1 1.48E—04 946 O 4.79E—-08
9.5 1 5.24E-05 9.28 0 741E-05 947 O 2.33E—-08
9.7 1 6.38E—05 9.29 1 3.61E-07
9.8 1 6.38E—05 9.30 1 1.47E—-05

@ Labels from the RAG RNA database [48].
b Class = 1 if predicted to be an RNA tree; class = 0 if not RNA-like.
¢ Average deviation from predicted class.

the RAG database, Knisley et al. [23] utilize a neural network to identify novel RNA-
like structures from among the unclassified trees of order 9 and thereby illustrate
the potential for neural networks coupled with mathematical graphical invariants to
predict function and structure of biomolecules.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Science Foundation, grant
number DMS-0527311.

REFERENCES

. Laurent A. Rev Sci 1843;14:314.

. Gerhardt C. Ann Chim Phys 1843;3(7):129.

. Russell C. The History of Valency. Leicester: Leicester University Press; 1971.
. Butlerov A. Zeitschr Chem Pharm 1861;4:549.

. Frankland E. Lecture Notes for Chemical Students. London: Van Voorst; 1866.
. Cayley A. Philos Mag 1874:;47:444.

AN N AW N =

110 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

7. Lodge O. Philos Mag 1875;50:367.

8. Sylvester J. On an application of the new atomic theory to the graphical representation of
the invariants and coinvariants of binary quantics. Am J Math 1878; 1:1.

9. Bonchev D. Rouvray D, editors. Chemical Graph Theory: Introduction and Fundamentals.
Abacus Press/Gordon & Breach Science Publishers; 1990.

10. Trinajstic N. Chemical Graph Theory. Volume 1. CRC Press; 1983.
11. Trinajstic N. Chemical Graph Theory. Volume 2. CRC Press; 1983.

12. Barker E, Gardiner E, Gillet V, Ketts P, Morris J. Further development of reduced graphs
for identifying bioactive compounds. J Chem Inform Comput Sci 2003;43:346-356.

13. Barker E, Buttar D, Cosgraove D, Gardiner E, Kitts P, Willett P, Gillet V. Scaffold hopping
using clique detection applied to reduced graphs. J Chem Inform Model 2006;46:503-511.

14. Todeschini R, Consonni V. In: Mannhold R, Kubinyi H, Timmerman H, editors. Hand-
book of Molecular Descriptors. Volume 11. Series of Methods and Principles in Medicinal
Chemistry. Wiley; 2000.

15. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko
EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV. Virtual computational
chemistry laboratory—design and description. J Comput Aided Mol Des 2005;19:453—
463. Available at http://www.vcclab.org/

16. Talete: http://www.talete.mi.it/.

17. Weininger D. SMILES, A chemical language and information system. J Chem Inform
Comput Sci 1988;28(1):31-36.

18. Schuffenhauer A, Gillet V, Willett P. Similarity searching in files of three-dimensional
chemical structures: analysis of the BIOSTER databases using two-dimensional fingerprints
and molecular field descriptors. J Chem Inform Comput Sci 2000;40:296-307.

19. Bemis G, Kuntz I. A fast and efficient method for 2D and 3D molecular shape description.
J Comput Aided Mol Des 1992;6(6):607-628.

20. Jurs Research Group, http://research.chem.psu.edu/pcjgroup/.
21. The Chemical Computing Group—MOE, http://www.chemcomp.com.

22. Haynes T, Knisley D, Seier E, Zou Y. A quantitative analysis of secondary RNA structure
using domination based parameters on trees. BMC Bioinform 2006;7:108,
doi:10.1186/1471-2105-7-108.

23. Haynes T, Knisley D, Knisley J, Zoe Y. Using a neural network to identify RNA structures
quantified by graphical invariants. Submitted.

24. Hoyosa HB. Chem Soc Jpn 1971;44:2332.

25. Haynes T, Hedetniemi S, Slater P. Fundamentals of Domination in Graphs. Marcel Dekker;
1998.

26. Beineke, L. Zamfirescu C. Connection digraphs and second order line graphs. Discrete
Math 1982;39:237-254.

27.Dix D. An application of iterated line graphs to biomolecular conformations. Preprint.
28. Gordon M, Scantlebury G. Trans Faraday Soc 1964;60:604.
29. Randic M. J Am Chem Soc 1975;97:6609.

30. Bonchev D. The overall Weiner index—a new tool for the characterization of molecular
topology. J Chem Inform Comput Sci 2001;41(3):582-592.

31. Balaban A. Chem Phys Lett 1982;89:399-404.

REFERENCES 111

32. Balaban A, Mills D, Ivanciuc O, Basak. Reverse wiener indices. CCACAA 2000;73(4):923—
941.

33.Lima P, Golbraikh A, Oloff S, Xiao Y, Tropsha. Combinatorial QSAR modeling of
P-glycoprotein substrates. J Chem Inform Model 2006;46:1245-1254.

34. Viswanadhan V, Mueller G, Basak S, Weinstein. Comparison of a neural net-based QSAR
algorithm with hologram and multiple linear regression-based QSAR approaches: appli-
cation to 1,4-dihydropyridine-based calcium channel antagonists. J Chem Inform Comput
Sci 2001;41:505-511.

35. Randic M, Zupan J. On interpretation of well-known topological indices. J Chem Inform
Comput Sci 2001;41:550-560.

36. Randic M, Basak S. A comparative study of proteomic maps using graph theoretical biode-
scriptors. J Chem Inform Comput Sci 2002;42:983-992.

37.Bajzer Z, Randic M, Plavisic M, Basak S. Novel map descriptors for characterization of
toxic effects in proteomics maps. J Mol Graph Model 2003;22(1):1-9.

38. Breneman, CM, Sundling, CM, Sukumar N, Shen L, Katt WP, Embrechts MJ. New
developments in PEST—shape/property hybrid descriptors. J Comput Aid Mol Design
2003;17:231-240.

39. Washietl S, Hofacker I, Stadler P. Fast and reliable prediction of noncoding RNAs. Proc
Natl Acad Sci USA 2005;101:2454-2459.

40. Washietl S, Hofacker I, Lukasser M, Huttenhofer A, Stadler P. Mapping of conserved
RNA secondary structures predicts thousands of functional noncoding RNAs in the human
genome. Nat Biotechnol 2005;23(11):1383-1390.

41. Backofen R, Will S. Local sequence—structure motifs in RNA. J Biol Comp Biol 2004;
2(4):681-698.

42.Zuker M, Mathews DH, Turner DH. Algorithms and thermodynamics for RNA sec-
ondary structure prediction: a practical guide. In: Barciszewski J, Clark BFC, editors.
RNA Biochemistry and Biotechnology. NATO ASI Series. Kluwer Academic Publishers;
1999.

43. Waterman M. An Introduction to Computational Biology: Maps, Sequences and Genomes.
Chapman Hall/CRC; 2000.

44. Le S, Nussinov R, Maziel J. Tree graphs of RNA secondary structures and their comparison.
Comput Biomed Res 1989;22:461-473.

45. Benedetti G, Morosetti S. A graph-topological approach to recognition of pattern and
similarity in RNA secondary structures. Biol Chem 1996;22:179-184.

46. Barash D. Spectral decomposition of the Laplacian matrix applied to RNA folding predic-
tion. Proceedings of the Computational Systems Bioinformatics (CSB); 2003. p 602-6031.

47. Heitsch C, Condon A, Hoos H. From RNA secondary structure to coding theory: a combi-
natorial approach. In: Hagiya M, Ohuchi A, editors. DNA 8; LNCS; 2003. p 215-228.

48. Fera D, Kim N, Shiffeidrim N, Zorn J. Laserson U, Gan H, Schlick, T. RAG: RNA-As-
Graphs web resource. BMC Bioinform 2004;5:88.

49. Gan H, Fera D, Zorn J, Shiffeldrim N, Laserson U, Kim N, Schlick T. RAG: RNA-As-
Graphs database—concepts, analysis, and features. Bioinformatics 2004;20:1285-1291.

50. Gan H, Pasquali S, Schlick T. Exploring the repertoire of RNA secondary motifs using
graph theory: implications for RNA design. Nucl Acids Res 2003;31(11):2926-2943.

112 GRAPH THEORETIC MODELS IN CHEMISTRY AND MOLECULAR BIOLOGY

51.Zorn J, Gan HH, Shiffeldrim N, Schlick T. Structural motifs in ribosomal RNAs: implica-
tions for RNA design and genomics. Biopolymers 2004;73:340-347.

52. RNA Resources (online): (1) www.indiana.edu/"tmrna; (2) www. imb-jena.de/RNA.html;
(3) www.rnabase.org.

53. Mitchell E, Artymiuk P, Rice D, Willet P. Use of techniques derived from graph theory to
compare secondary structure motifs in proteins. J Mol Biol 1989;212(1):151.

54. Grindley H, Artymiuk P, Rice D, Willet. Identification of tertiary structure resemblance in
proteins. J Mol Biol 1993;229(3):707.

55. Koch I, Kaden F, Selbig J. Analysis of protein sheet topologies by graph—theoretical tech-
niques. Proteins 1992;12:314-323.

56. Patra S, Vishveshwara S. Backbone cluster identification in proteins by a graph theoretical
method. Biophys Chem 2000;84:13-25.

57.Kannan K, Vishveshwara S. Identification of side-chain clusters in protein structures by a
graph spectral method. J Mol Biol 1999;292:441-464.

58. Samudrala R, Moult J. A graph—theoretic algorithm for comparative modeling of protein
structure. J Mol Biol 1998;279:287-302.

59. Vishveshwara S, Brinda K, Kannan N. Protein structures: insights from graph theory. J
Theor Comput Chem 2002;I(1):187-211.

60. Pogliani L. Structure property relationships of amino acids and some dipeptides. Amino
Acids 1994;6(2):141-153.

61. Pogliani L. Modeling the solubility and activity of amino acids with the LCCI method.
Amino Acids 1995;9(3):217-228.

62. Randic M, Mills D, Basak S. On characterization of physical properties of amino acids. Int
J Quantum Chem 2000;80:1199-1209.

63. Huan J, Bandyopadhyay D, Wang W, Snoeyink J, Prins J, Tropsha A. Comparing graph rep-
resentations of protein structure for mining family-specific residue-based packing motifs.
J Comput Biol 2005;12:(6):657-671.

64. Murzin A, Brenner S, Hubbard T, Chothia C. SCOP: a structural classification of proteins
database for the investigation of sequences and structures. J Mol Biol 1995;247(4):536-540.

65. Sachs R, Arsuaga J, Vazquez M, Hiatky L, Hahnfeldt P. Using graph theory to describe and
model chromosome aberrations. Radiat Res 2002;158:556-567.

66. Gleiss P, Stadler P, Wagner A. Relevant cycles in chemical reaction networks. Adv Complex
Syst 2001;1:1-18.

67. Vingron, Waterman M. Alignment networks and electrical networks. Discrete Appl Math:
Comput Mol Biol 1996.

68. Bonchev D, Rouvray D. Complexity in Chemistry, Biology and Ecology. Springer;
2005.

69. Winkler D. The role of quantitative structure—activity relationships (QSAR) in biomolecular
discovery. Briefings Bioinform 2002;3(1):73-86.

70. Xao XJ, Yao X, Panaye A, Doucet J, Zhang R, Chen H, Liu M, Hu Z, Fan B. Comparative
study of QSAR/QSPR correlations using support vector machines, radial basis function
neural networks, and multiple linear regression. J Chem Inform Comput Sci
2004;44(4):1257-1266.

71. Guler NF, Kocer S. Use of support vector machines and neural network in diagnosis of
neuromuscular disorders.] Med Syst 2005;29(3):271-284.

REFERENCES 113

72.Ivanciuc O. Molecular graph descriptors used in neural network models. In: Devillers J,
Balaban AT, editors. Topological Indices and Related Descriptors in QSAR and QSPR. The
Netherlands: Gordon and Breach Science Publishers; 1999. p 697-777.

73. Vapnik V. Statistical Learning Theory. New York: Wiley-Interscience; 1998.

74. Riiping S. mySVM, University of Dortmund,
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

75. Kecman V. Learning and Soft Computing: Support Vector Machines, Neural Networks, and
Fuzzy Logic Models. Cambridge, MA: The MIT Press; 2001.

76. Knisley J, Glenn L, Joplin K, Carey P. Artificial neural networks for data mining and
feature extraction. In: Hong D, Shyr Y, editors. Quantitative Medical Data Analysis Using
Mathematical Tools and Statistical Techniques. Singapore: World Scientific; forthcoming.

77.Bose NK, Liang P. Neural Network Fundamentals with Graphs, Algorithms, and Applica-
tions. New York: McGraw-Hill; 1996.

78. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander E, Golub T.
Interpreting patterns of gene expression with self-organizing maps methods and application
to hematopoietic differentiation. Proc Natl Acad Sci USA 1999;96:2907-2912.

79. Bienfait, B. Applications of high-resolution self-organizing maps to retrosynthetic and
QSAR analysis. J Chem Inform Comput Sci 1994;34:890-898.

80. Burden FR, Winkler DA. Robust QSAR models using Bayesian regularized neural net-
works. J Med Chem 1999;42(16):3183-3187.

81. Lawrence S, Giles C, Tsoi A. Lessons in neural network training: overfitting may be harder
than expected. Proceedings of the 14th National Conference on Artificial Intelligence.
AAAI-97; 1997. p 540-545.

82. Cybenko G. Approximation by superposition of a sigmoidal function. Math Control Signal
Syst 1989;2(4):303-314.

I CHAPTER 4

Algorithmic Methods for the Analysis
of Gene Expression Data

HONGBO XIE, UROS MIDIC, SLOBODAN VUCETIC, and
ZORAN OBRADQVIC

4.1 INTRODUCTION

The traditional approach to molecular biology consists of studying a small number of
genes or proteins that are related to a single biochemical process or pathway. A major
paradigm shift recently occurred with the introduction of gene expression microarrays
that measure the expression levels of thousands of genes at once. These comprehensive
snapshots of gene activity can be used to investigate metabolic pathways, identify drug
targets, and improve disease diagnosis. However, the sheer amount of data obtained
using the high throughput microarray experiments and the complexity of the existing
relevant biological knowledge are beyond the scope of manual analysis. Thus, the
bioinformatics algorithms that help to analyze such data are a very valuable tool
for biomedical science. This chapter starts with a brief overview of the microarry
technology and concepts that are important for understanding the remaining sections.
Second, microarray data preprocessing, an important topic that has drawn as much
attention from the research community as the data analysis itself, is addressed. Finally,
some of the most important methods for microarray data analysis are described and
illustrated with examples and case studies.

4.1.1 Biology Background

Most cells within the same living system have identical copies of DNA that store
inherited genetic traits. DNA and RNA are the carriers of the genetic information.
They are both polymers of nucleotides. There are four different types of nucleotides:
adenine (A), thymine/uracil (T/U), guanine (G), and cytosine (C). Thymine is present
in DNA, while uracil replaces it in RNA. Genes are fundamental blocks of DNA
that encode genetic information and are transcribed into messenger RNA, or mRNA

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenovi¢ Copyright © 2008 John Wiley & Sons, Inc.

115

116 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

- ., ‘\,/
{ = (/'-
S|))
y '\\ /
v NS
ACTGGCTAACTGTTAC... ACUGGCUAACUGUAC... MAKL. ..
AEREREERR R RN
TGACCGATTGACAATG. ..
DNA RNA Protein
— Trancription — — Translation —

FIGURE 4.1 Central dogma of molecular biology: DNA-RNA-—protein relationship.

(hereafter noted simply as “RNA”). RNA sequences are then translated into proteins,
which are the primary components of living systems and which regulate most of a
cell’s biological activities. Activities regulated and/or performed by a protein whose
code is contained in the specific gene are also considered functions of that gene.
For a gene, the abundance of the respective RNA in a cell (called the “expression
level” for that gene) is assumed to correlate with the abundance of the protein into
which the RNA translates. Therefore, the measurement of genes’ expression levels
elucidates the activities of the respective proteins. The relationship between DNA,
RNA, and proteins is summarized in the Central Dogma of molecular biology as
shown in Figure 4.1.

DNA consists of two helical strands; pairs of nucleotides from two strands are
connected by hydrogen bonds, creating the so-called base pairs. Due to the chemical
and steric properties of nucleotides, adenine can only form a base pair with thymine,
while cytosine can only form a base pair with guanine. As a result, if one strand of
DNA is identified, the other strand is completely determined. Similarly, the strand of
RNA produced during the transcription of one strand of DNA is completely deter-
mined by that strand of DNA. The only difference is that uracil replaces thymine as a
complement to adenine in RNA. Complementarity of nucleotide pairs is a very impor-
tant biological feature. Preferential binding—the fact that nucleotide sequences only
bind with their complementary nucleotide sequences—is the basis for the microarray
technology.

4.1.2 Microarray Technology

Microarray technology evolved from older technologies that are used to measure
the expression levels of a small number of genes at a time [1,2]. Microarrays con-
tain a large number—hundreds or thousands—of small spots (hence the term “mi-
croarray”), each of them designed to measure the expression level of a single gene.
Spots are made up of synthesized short nucleotide sequence segments called probes,
which are attached to the chip surface (glass, plastic, or other material). Probes

INTRODUCTION 117

®e

O
/\.
— @
@
//—_\.
— @
O
@

Doy HP AP Ep ap ap B g g
Q A Q@ Q& Q@ Qo aa 4 a
QE Q0 00 a0 ad ad e 38
Q =22 3P gp ap 93 B2 g
O B5a Q0 Q0 Q0 Q0 QA® QR
P A Q@ Q@ Q@ AQ Q@ B &
Q Ao QQ @O QaQ aQ oo Q O 7
= HP AP AP AP 43 P F
. mg . I F - - H H O
@cy3
® cy5

FIGURE 4.2 Binding of probes and nucleotide sequences. Probes in one spot are designed
to bind only to one particular type of RNA sequences. This simplified drawing illustrates how
only the complementary sequences bind to a probe, while other sequences do not bind to the
probe.

in each spot are designed to bind only to the RNA of a single gene through the
principle of preferential binding of complementary nucleotide sequences, as illus-
trated in Figure 4.2. The higher the RNA expression level is for a particular gene,
the more of its RNA will bind (or “hybridize”) to probes in the corresponding
spot.

Single-channel and dual-channel microarrays are the two major types of gene
expression microarrays. Single-channel microarrays measure the gene expression
levels in a single sample and the readings are reported as absolute (positive) values.
Dual-channel microarrays simultaneously measure the gene expression levels in two
samples and the readings are reported as relative differences in the expression between
the two samples. A sample (or two samples for dual-channel chips) and the microarray
chip are processed with a specific laboratory procedure (the technical details of which
are beyond the scope of this chapter). Part of the procedure is the attachment of a
special fluorescent substrate to all RNA in a sample (this is called the “labeling”).
When a finalized microarray chip is scanned with a laser, the substrate attached to
sequences excites and emits light. For dual-channel chips, two types of substrates
(cy3 and cy5) that emit light at two different wavelengths are used (Fig. 4.3). The
intensity of light is proportional to the quantity of RNA bound to a spot, and this
intensity correlates to the expression level of the corresponding gene.

118 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

© L]
e ‘e @]
.o e @
-] - e
] c @
o8 ok &
o - -]
[» o 4an
L) <
. suasn
L L] L
.
o e L L L B
. L] ® 6cC
-] . LI
L]
a o LJ
.. -

FIGURE 4.3 Dual-channel cDNA microarray. A sample of dual-channel microarray chip
images, obtained from an image scanner. All images contain only a portion of the chip. From
left to right: cy3 channel, cy5 channel, and the computer-generated joint image of cy3 and cy5
channels. A light gray spot in the joint image indicates that the intensity of the cy3 channel spot
is higher than intensity of the cy5 channel spot, a dark gray spot indicates a reverse situation,
and a white spot indicates similar intensities.

Images obtained from scanning are processed with image processing software.
This software transforms an image bitmap into a table of spot intensity levels ac-
companied by additional information such as estimated spot quality. The focus of
this chapter is on the analysis of microarray data starting from this level. The next
section describes methods for data preprocessing, including data cleaning, transfor-
mation, and normalization. Finally, the last section provides an overview of methods
for microarray data analysis and illustrates how these methods are used for knowledge

discovery. The overall process of microarray data acquisition and analysis is shown
in Figure 4.4.

Laboratory Image processing Data mining
work
L4

Comoes > Csamoiez Raw data
mRNA . L4 <
. Transformation
@j \ Preprocessing Normalization
Sample > 3 ' Missing data
labeling Identifying handling
differentially
expressed genes
‘ Analysis of
differentially
Hybridization Reading Functional expressed genes
and scanning intensities i :
4 analysis Unknown gene
l function analysis
. - Advanced | | Biomarker
° ° analysis identification
™Y L

FIGURE 4.4 Data flow schema of microarray data analysis.

MICROARRAY DATA PREPROCESSING 119

4.1.3 Microarray Data Sets

Microarray-based studies consider more than one sample and most often produce
several replicates for each sample. The minimum requirement for a useful biological
study is to have two samples that can be hybridized on a single dual-channel or on
two single-channel microarray chips.

A data set for a single-channel microarray experiment can be described as an
M x N matrix in which each column represents gene expression levels for one of the
N chips (arrays), and each row is a vector containing expression levels of one of the M
genes in different arrays (called “expression profile”). A data set for a dual-channel
microarray experiment can be observed as a similar matrix in which each chip is
represented by a single column of expression ratios between the two channels (cy3
and cy5), or by two columns of absolute expression values of the two channels. A
typical microarray data table has a fairly small number of arrays and a large number
of genes (M > N); for example, while microarrays can measure the expression of
thousands of genes, the number of arrays is usually in the range from less than 10 (in
small-scale studies) to several hundred (in large-scale studies).

Methods described in this chapter are demonstrated by case studies on acute
leukemia, Plasmodium falciparum intraerythrocytic developmental cycle, and chronic
fatigue syndrome microarray data sets. Acute leukemia data set [3] contains
7129 human genes with 47 arrays of acute lymphoblastic leukemia (ALL) sam-
ples and 25 arrays of acute myeloid leukemia (AML) samples. The data set is
used to demonstrate a generic approach to separating two types of human acute
leukemia (AML versus ALL) based on their gene expression patterns. This data set
is available at http://www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?
mode=view&paper_id=43. Plasmodium falciparum data set [4] contains 46 arrays
with samples taken during 48 h of intraerythrocytic developmental cycle of Plasmod-
ium falciparum to provide the comprehensive overview of the timing of transcrip-
tion throughout the cycle. Each array consists of 5080 spots, related to 3532 unique
genes. This data set is available at http://biology.plosjournals.org/archive/1545-
7885/1/1/supinfo/10.1371_journal.pbio.0000005.sd002.txt. Chronic fatigue syn-
drome (CFS) data set contains 79 arrays from 39 clinically identified CFS pa-
tients and 40 non-CFS (NF) patients [5]. Each chip measures expression levels
of 20,160 genes. This data set was used as a benchmark at the 2006 Critical
Assessment of Microarray Data Analysis (CAMDA) contest and is available at
http://www.camda.duke.edu/camda06/datasets.

4.2 MICROARRAY DATA PREPROCESSING

Images obtained by scanning microarray chips are preprocessed to identify the spots,
estimate their intensities, and flag the spots that cannot be read reliably. Data obtained
from a scanner are usually very noisy; the use of raw unprocessed data would likely
bias the study and possibly lead to false conclusions. In order to reduce these problems,
several preprocessing steps are typically performed and are described in this section.

120 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

4.2.1 Data Cleaning and Transformation

4.2.1.1 Reduction of Background Noise in Microarray Images The back-
ground area outside of the spots in a scanned microarray image should ideally be dark
(indicating no level of intensity), but in practice, the microarray image background
has a certain level of intensity known as background noise. It is an indicator of the sys-
tematic error introduced by the laboratory procedure and microarray image scanning.
This noise can often effectively be reduced by estimating and subtracting the mean
background intensity from spot intensities. A straightforward approach that uses the
mean background intensity of the whole chip is not appropriate when noise intensity
is not uniform in all parts of the chip. In such situations, local estimation methods
are used to estimate the background intensity individually for each spot from a small
area surrounding the spot.

4.2.1.2 Identification of Low Quality Gene Spots Chip scratching, poor
washing, bad hybridization, robot injection leaking, bad spot shape, and other rea-
sons can result in microarray chips containing many damaged spots. Some of these
gene spot problems are illustrated in Figure 4.5. Low quality gene spots are typically
identified by comparing the spot signal and its background noise [6,7]. Although
statistical techniques can provide a rough identification of problematic gene spots,
it is important to carefully manually evaluate the microarray image to discover the
source of the problem and to determine how to address problematic spots. The most
simplistic method is to remove all data for the corresponding genes from further anal-
ysis. However, when the spots in question are the primary focus of the biological
study, it is preferable to process microarray images using specialized procedures [8].
Unfortunately, such a process demands intensive manual and computational work. To
reduce the data uncertainty due to damaged spots, it is sometimes necessary to repeat
the hybridization of arrays with a large area or fraction of problematic spots.

o - = - .
.F = - i
e o

FIGURE 4.5 Examples of problematic spots. The light gray ovals in the left image are
examples of poor washing and scratching. The black circle spots in the right image are good-
quality spots. The light gray circles indicate empty (missing) spots. The dark gray circles mark
badly shaped spots.

MICROARRAY DATA PREPROCESSING 121

3000 T 400
350

2500
300

2000
250
1500 200
1000 e
100

500 1
I 50
0 . . 0
0 0.5 1 1.5 2 25 3 35 0 5 10 15

% 10°

FIGURE 4.6 Data distribution before and after logarithmic transformation. Histograms show
gene expression data distribution for patient sample #1 from acute lymphoblastic leukemia data
set (X-axis represents the gene expression levels and Y-axis represents the amount of genes
with given expression level). The distribution of raw data on the left is extremely skewed. The
log-2 transformed data have a bell-shaped, approximately normal distribution, shown on the
right.

4.2.1.3 Microarray Data Transformation After the numerical readings are ob-
tained from the image, the objective of microarray data transformation is to identify
outliers in the data and to adjust the data to meet the distribution assumptions implied
by statistical analysis methods. A simple logarithmic transformation illustrated in
Figure 4.6 is commonly used. It reshapes the data distribution into a bell shape that
resembles normal distribution. This transformation is especially beneficial for data
from dual-channel arrays, since data from these arrays are often expressed as ratios of
signal intensities of pairs of samples. Alternative transformations used in practice in-
clude arcsinh function, linlog transformation, curve-fitting transformations, and shift
transformation [9]; among them, the /inlog transformation was demonstrated to be
the most beneficial.

4.2.2 Handling Missing Values

Typical data sets generated by microarray experiments contain large fractions of miss-
ing values caused by low quality spots. Techniques for handling missing values have
to be chosen carefully, since they involve certain assumptions. When these assump-
tions are not correct, artifacts can be added into the data set that may substantially
bias the evaluation of biological hypotheses.

The straightforward approach is to completely discard genes with at least one
missing value. However, if a large fraction of genes are eliminated because of missing
values, then this approach is not appropriate.

A straightforward imputation method consists of replacing all missing values for
a given gene with the mean of its valid expression values among all available arrays.
This assumes that the data for estimating the most probable value of a missing gene
expression were derived under similar biological conditions; for instance, they could

122 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

be derived from replicate arrays. Most microarray experiments lack replicates due
to the experimental costs. When there are no replicates available, a better choice for
imputation is to replace all of the missing data in an array with the average of valid
expression values within the array.

The k-nearest-neighbor based method (KNN) does not demand experimental repli-
cates. Given a gene with missing gene expression readings, k genes with the most
similar expression patterns (i.e., its k neighbors) are found. The given gene’s miss-
ing values are imputed as the average expression values of its k neighbors [10], or
predicted with the local least squares (LLS) method [11]. Recent research has demon-
strated that the weighted nearest-neighbors imputation method (WeNNI), in which
both spot quality and correlations between genes were used in the imputation, is more
effective than the traditional KNN method [12].

Domain knowledge can help estimate missing values based on the assumption that
genes with similar biological functions have similar expression patterns. Therefore, a
missing value for a given gene can be estimated by evaluating the expression values
of all genes that have the same or similar functions [13]. Although such an approach
is reasonable in terms of biology, its applicability is limited when the function is
unknown for a large number of the genes.

In addition to the problems that are related to poor sample preparation, such as
chip scratching or poor washing, a major source of problematic gene spots is rela-
tively low signal intensity compared to background noise. It is important to check the
reasons for low signal intensity. Gene expression might be very low, for instance, if
the biological condition successfully blocks the gene expression. In this case, the low
gene expression signal intensity is correct and the imputation of values estimated by
the above-mentioned methods would probably produce a value that is too high. An
alternative is to replace such missing data with the lowest obtained intensity value
within the same chip or with an arbitrary small number.

4.2.3 Normalization

Microarray experiments are prone to systematic errors that cause changes in the data
distribution and make statistical inference unreliable. The objective of normalization
is to eliminate the variation in data caused by errors of the experimental methods,
making further analysis based only on the real variation in gene expression levels.
All normalization methods may introduce artifacts and should be used with care.
Most methods are sensitive to outliers, so outlier removal is crucial for the success of
normalization.

There are two major types of normalization methods: within-chip normaliza-
tion uses only the data within the same chip and is performed individually on each
chip, while between-chip normalization involves microarray data from all chips si-
multaneously. Reviews on microarray data normalization methods are provided in
[14-16].

4.2.3.1 Within-Chip Normalization Several within-chip normalization meth-
ods are based on linear transformations of the form new_value =(original _value—

MICROARRAY DATA PREPROCESSING 123

a)/b, where parameters a and b are fixed for one chip. Standardization normalization
assumes that the gene expression levels in one chip follow the standard normal dis-
tribution. Parameter a is set to the mean, while parameter b is set to the standard
deviation of gene expression levels in a chip. This method can be applied to both
dual-channel and single-channel microarray data.

Linear regression normalization [15] is another linear transformation that uses
a different way to choose parameters a and b. The basic assumption for dual-
channel arrays is that for a majority of genes, the intensity for the cy3 channel is
similar to intensity for the cy5 channel. As a result, the two intensities should be
highly correlated, and the fitted regression line should be very close to the main
diagonal of the scatterplot. Parameters a and b in linear transformation are cho-
sen so that the regression line for transformed data points aligns with the main
diagonal.

A more advanced normalization alternative is the loess transformation. It uses a
scatterplot of log ratio of two channel intensities (log(cy3/cy5)) against average value
of two channel intensities ((cy3 + cy5)/2). A locally weighted polynomial regression
is used on this scatterplot to form a smooth regression curve. Original data are then
transformed using the obtained regression curve. Loess normalization can also be
used with single-channel microarrays where two arrays are observed as two channels
and normalized together. For data from more than two arrays, loess normalization
can be iteratively applied on all distinct pairs of arrays, but this process has larger
computational cost. Some other forms of loess normalization are local loess [17],
global loess, and two-dimensional loess [18].

Several normalization methods make use of domain knowledge. All organisms
have a subset of genes—called housekeeping genes—that maintain necessary cell
activities, and, as a result, their expression levels are nearly constant under most
biological conditions. All the above-mentioned methods can be modified so that
all transformation parameters are calculated based only on the expression levels of
housekeeping genes.

4.2.3.2 Between-Chip Normalization Row-column normalization [19] is ap-
plied to a data set comprised of several arrays, observed as a matrix with M rows
(representing genes) and N columns (representing separate arrays and array chan-
nels). In one iteration, the mean value of a selected row (or column) is subtracted
from all of the elements in that row (or column). This is iteratively repeated for all
rows and columns of the matrix, until the mean values of all rows and columns ap-
proach zero. This method fixes variability among both genes and arrays. A major
problem with this method is its sensitivity to outliers, a problem that can significantly
increase computation time. Outlier removal is thus crucial for the performance of this
method. The computation time can also be improved if standardization is first applied
to all individual arrays.

Distribution (quantile) normalization [20] is based on the idea that a quantile—
quantile plot is a straight diagonal line if two sample vectors come from the same
distribution. Data samples can be forced to have the same distribution by project-
ing data points onto the diagonal line. For microarray data matrix with m rows

124 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

and n columns, each column is separately sorted in descending order, and the mean
values are calculated for all rows in the new matrix. Each value in the original ma-
trix is then replaced with the mean value of the row in the sorted matrix where
that value was placed during sorting. Distribution normalization may improve the
reliability of statistical inference. However, it may also introduce artifacts; after nor-
malization, low intensity genes may have the same (very low) intensity across all
arrays.

Statistical model-fitting normalization involves the fitting of gene expression level
data using a statistical model. The fitting residues can then be treated as bias-free
transformation of expression data. For example, for a given microarray data set with
genes g (g =1, ..., n), biological conditions T;(i =1, ..., m), and arrays A;(j =
1, ..., k), the intensity I of gene g at biological condition i and array j can be fitted
using a model [21]

Ijj=u+T + Aj+ (TA)ij + ;.

The fitting residues &g;; for this model can be treated as bias-free data for gene g
at biological condition i and array j after normalization.

In experiments with dual-channel arrays, it is possible to distribute (possibly mul-
tiple) samples representing m biological conditions over k arrays in many different
ways. Many statistical models have recently been proposed for model-fitting normal-
ization [22,23]. The normalization approaches of this type have been demonstrated to
be very effective in many applications, especially in the identification of differentially
expressed genes [21,24].

4.2.4 Data Summary Report

The data summary report is used to examine preprocessed data in order to find and
correct inconsistencies in the data that can reduce the validity of statistical inference.
Unlike other procedures, there are no golden standards for this step. Itis a good practice
to evaluate the data summary report before and after data preprocessing. Approaches
used to inspect the data include the evaluation of a histogram to provide information
about data distribution in one microarray, a boxplot of the whole data set to check the
similarities of all data distributions, and the evaluation of correlation coefficient maps
(see Fig. 4.7) to check consistency among arrays. Correlation coefficient heat maps
plot the values of correlation coefficients between pairs of arrays. For a given pair of
arrays, #i and #j, their expression profiles are observed as vectors and the correlation
coefficient between the two vectors is plotted as two pixels—in symmetrical positions
(ij) and (ji)—in the heat map (the magnitude of correlation coefficient is indicated
by the color of the pixel). Correlation coefficients are normally expected to be high,
since we assume that the majority of gene expression levels are similar in different
arrays. A horizontal (and the corresponding vertical) line in a heat map represents
all of the correlation coefficients between a given array and all other arrays. If a line
has a near-constant color representing a very low value, we should suspect a problem
with the corresponding array.

MICROARRAY DATA ANALYSIS 125

s B et VB,
5 10 15 20 25 30 35 40 45

FIGURE 4.7 Correlation coefficient heat maps. The left heat map shows the correlation
coefficients among the 79 samples of the CFS data set. The first 40 samples are from the
nonfatigue (control) group. The remaining 39 samples are from the group of CFS patients. The
shade of a pixel represents the magnitude of the correlation coefficient (as shown in the shaded
bar on the right). The correlation coefficients on the diagonal line are 1, since they compare
each sample to itself. There are two clearly visible horizontal and vertical lines in the heat map
on the left, corresponding to the sample #42. This indicates that this sample is different from the
others; its correlation coefficients with all other samples are near zero. Therefore, we need to
inspect this sample’s chip image. Another sample that draws our attention is sample #18, which
also has near-uniform correlation coefficients (around 0.5) with other samples. After inspecting
the sample’s chip image, we found that these correlation coefficients reflected sample variation
and that we should not exclude sample #18 from our study. A similar heat map on the right
shows the correlation coefficients among the 47 ALL samples from the acute leukemia data
set. Overall data consistency is fairly high with an average correlation coefficient over 0.89.

4.3 MICROARRAY DATA ANALYSIS

This section provides a brief outline of methods for the analysis of preprocessed mi-
croarray data that include the identification of differentially expressed genes, discov-
ery of gene expression patterns, characterization of gene functions, pathways analysis,
and discovery of diagnostic biomarkers. All methods described in this section assume
that the data have been preprocessed; see Section 4.2 for more details on microarray
data preprocessing methods.

4.3.1 Identification of Differentially Expressed Genes

A gene is differentially expressed if its expression level differs significantly for two
or more biological conditions. A straightforward approach for the identification of
differentially expressed genes is based on the selection of genes with absolute values
of log-2 ratio of expression levels larger than a prespecified threshold (such as 1).
This simple approach does not require replicates, but is subject to high error rate
(both false positive and false negative) due to the large variability in microarray
data.

126 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

More reliable identification is possible by using statistical tests. However, these
methods typically assume that the gene expression data follow a certain distribu-
tion, and require sufficiently large sample size that often cannot be achieved due
to microarray experimental conditions or budget constraints. Alternative techniques,
such as bootstrapping, impose less rigorous requirements on the sample size and
distribution while still providing reliable identification of differentially expressed
genes.

Given the data, a statistical test explores whether a null hypothesis is valid and
calculates the p-value, which refers to the probability that the observed statistics are
generated by the null model. If the p-value is smaller than some fixed threshold (e.g.,
0.05), the null hypothesis is rejected. If the p-value is above the threshold, however,
it should not be concluded that the original hypothesis is confirmed; the result of the
test is that the observed events do not provide a reason to overturn it [25]. The most
common null hypothesis in microarray data analysis is that there is no difference
between two groups of expression values for a given gene. In this section, we briefly
introduce the assumptions and requirements for several statistical tests that are often
used for the identification of differentially expressed genes.

4.3.1.1 Parametric Statistical Approaches The Student’s t-test examines
the null hypothesis that the means of distributions from which two samples are
obtained are equal. The assumptions required for 7-test are that the two distributions
are normal and that their variances are equal. The null hypothesis is rejected if the
p-value for the z-statistics is below some fixed threshold (e.g., 0.05). The z-test is
used in microarray data analysis to test—for each individual gene—the equality of
the means of expression levels under two different biological conditions. Genes for
which a 7-test rejects the null hypothesis are considered differentially expressed.

The t-test has two forms: dependent sample t-test and independent sample t-test.
Dependent sample t-test assumes that each member in one sample is related to a
specific member of the other sample; for example, this test can be used to evaluate the
drug effects by comparing the gene expression levels of a group of patients before and
after they are given a certain type of drug. Independent sample t-test is used when the
samples are independent of each other; for example, this test can be used to evaluate
the drug effects by comparing gene expression levels for a group of patients treated
with the drug to the gene expression levels of another group of patients treated with
a placebo. The problem with using the #-test in microarray data analysis is that the
distribution normality requirement is often violated in microarray data.

One-way analysis of variance (ANOVA) is a generalization of the 7-test to samples
from more than two distributions. ANOVA also requires that the observed distributions
are normal and that their variances are approximately equal. ANOVA is used in
microarray data analysis when gene expression levels are compared under two or
more biological conditions, such as for a comparison of gene expression levels for a
group of patients treated with drug A, a group of patients treated with drug B, and a
group of patients treated with placebo.

The volcano plot (see Fig. 4.8) is often used in practice for the identifica-
tion of differentially expressed genes; in this case, it is required that a gene both

MICROARRAY DATA ANALYSIS 127

16 : T r — 7 : T T
1 1
1 i
i i
141 I 1 -
A ' B A
i i
121 i PCe il
—_ 1 r
S B :
© 1 s
Z 10} 8 1
% : ',B o0
S S
=] %o °‘°u o° .
T 8 . ?.,i i“&ﬁ = =
4] L ® anl. L% ® ao
=t s 4
g of : S KA i
S . : ‘“ .
» 4l . e il
L]
ol ® .. * . “ il
. . B : ™ D .
° L]
0 1 L_® “-"; 1 |
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fold change (log, AML/ALL)

FIGURE 4.8 The volcano plot of significance versus fold change. This figure is a plot of the
significance (p-value from ANOVA test, on a —log-10 scale) against fold change (log-2 ratio),
for testing the hypothesis on the differences in gene expression levels between the AML group
and the ALL group in the acute leukemia data set. The horizontal line represents a significance
level threshold of 0.05. The two vertical lines represent the absolute fold-change threshold of
2. The genes plotted in the two “A” regions are detected as significant by both methods, while
the genes plotted in region “C” are detected as insignificant by both methods. This type of plot
demonstrates two types of errors that occur with the ratio-based method: false positive errors
plotted in the two “D” regions, and false negative errors plotted in the “B” region. A common
practice is to identify only the genes plotted in the two “A” regions as differentially expressed
and discard the genes plotted in the “B” region.

passes the significance test and that its expression level log ratio is above the
threshold.

4.3.1.2 Nonparametric Statistical Approaches Nonparametric tests relax
the assumptions posed by the parametric tests. Two popular nonparametric tests are
the Wilcoxon rank-sum test for equal median and the Kruskal-Wallis nonparametric
one-way analysis of variance test.

The Wilcoxon rank-sum test (also known as Mann—Whitney U-test) tests the hy-
pothesis that two independent samples come from distributions with equal medi-
ans. This is a nonparametric version of the r-test. It replaces real data values with
their sorted ranks and uses the sum of ranks to obtain a p-value. Kruskal-Wallis
test compares the medians of the samples. It is a nonparametric version of the one-
way ANOVA, and an extension of the Wilcoxon rank-sum test to more than two
groups.

128 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

12 5
45
10 4
5 3.5
3
6 2.5
2
4 1.5
. 1
0.5

0

0
11 115 12 125 13 135 14 145128 13 132134 136 138 14 142 144 146148
ALL gene # 583 AML gene # 563

FIGURE 4.9 Importance of data distribution type for the choice of statistical test. Two
histograms show the distribution of expression levels for gene #563 in two groups of samples
in the acute leukemia data set: ALL on the left and AML on the right. The two distributions
are clearly different. When testing the equality of means of two groups, the Kruskal-Wallis
test gives us the p-value of 0.16, and the ANOVA test gives us the p-value of 0.05. Since the
data distribution in the right panel has two major peaks, it is not close to normal distribution;
therefore, it is preferable to choose the Kruskal-Wallis test.

Nonparametric tests tend to reject less null hypotheses than the related parametric
tests and have lower sensitivity, which leads to an increased rate of false negative
errors. They are more appropriate when the assumptions for parametric tests are not
satisfied, as is often the case with microarray data (see Fig. 4.9). However, this does
not imply that nonparametric tests will necessarily identify a smaller number of genes
as differentially expressed than the parametric test, or that the sets of genes identified
by one parametric test and one nonparametric test will necessarily be in a subset
relationship. To illustrate the difference in results we used both ANOVA and the
Kruskal-Wallis test to identify differentially expressed genes in the acute leukemia
data set. Out of 7129 genes, 1030 genes were identified as differentially expressed by
both methods. In addition to that, 155 genes were identified only by ANOVA, while
210 genes were identified only by the Kruskal-Wallis test.

4.3.1.3 Advanced Statistical Models Recently, more sophisticated models
and methods for the identification of differentially expressed genes have been pro-
posed [26,27]. For example, when considering the factors of array (A), gene (G), and
biological condition (T), a two-step mix-model [21] first fits the variance of arrays,
biological conditions, and interactions between arrays and biological conditions us-
ing one model, and then uses the residues from fitting the first model to fit the second
model. An overview of mix-model methods is provided in the work by Wolfinger et al.
[28]. Other advanced statistical approaches with demonstrated good results in iden-
tifying differentially expressed genes include the significance analysis of microarray
(SAM) [29], regression model approaches [30], empirical Bayes analysis [31], and
the bootstrap approach to gene selection (see the case study below).

Case Study 4.1: Bootstrapping Procedure for Identification of
Differentially Expressed Genes

We illustrate the bootstrapping procedure for the identification of differentially expressed
genes on an acute leukemia data set. The objective is to identify the genes that are
differentially expressed between 47 ALL and 25 AML arrays. For each gene, we first
calculate the p-value p, of two-sample z-test on the gene’s expression levels in AML
group versus ALL group. Next, the set of samples is randomly split into two subsets
with 47 and 25 elements, and a similar #-test is performed with these random subsets and
p-value p; is obtained. This step is repeated a large number of times (n>1000), and as
a result we obtain p-values py, pa, p3, ..., p,. These p-values are then compared to the
original py. We define the bootstrap p-value as p, = c¢/n, where c is the number of times
when values p;(i =1, ..., n) are smaller than py. If p, is smaller than some threshold
(e.g., 0.05), then we consider the gene to be differentially expressed.
For the 88th gene in the data set, the expression levels are

ALL AML

759, 1656, 1130, 1062, 1801, 1024, 3084, 1974,
822, 1020, 1068, 1455, 1084, 1090, 908, 2474,
1099, 1164, 662, 753, 1635, 1591, 1323, 857,
728,918, 943, 644, 1872, 1593, 1981, 2668,
2703, 916, 677, 1251, 1128, 3601, 2153, 1603,
138, 1557, 750, 814, 769, 893, 2513, 2903,
667,616, 1187, 1214, 2147

1080, 1053, 674, 708,
1260, 1051, 1747, 1320,
730, 825, 1072, 774,
690, 1119, 866, 564,
958, 1377, 1357

800

BOOL

700

800

500

400

300r

200

100F

= 5 =4 =8 =2 - a
logyq pvalue
Figure 4.10

The p-value of the #-test for this gene is py = 3.4E — 007, which is smaller than
the threshold 0.05. The distribution of p-values obtained on randomly selected subsets
(p1s -+ -» Prooo) is shown in Figure 4.10. The bootstrap p-value is p, = 0, so the boot-
strapping procedure confirms the result of the #-test, that is, the 88th gene is differentially
expressed.

130 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

0.06 : : : —
0.05 A -

0.04r J

p-value
o
=)
(]
el

0.02f /

0.01 el

P

0 500 1000 1500 2000 2500
p-value rank

!
!

!

!

!

!

!

!

!

!

!

!

!

!

i

'
/ '
!

'

y '
!

!

'

It
o=
1

i

!

!

'

!

l

!

i

FIGURE 4.11 Benjamini-Hochberg FDR control. This figure compares the use of constant
p-value threshold (in this case 0.05) and the use of Benjamini—-Hochberg (BH) FDR control
method for the two-sample #-test on acute leukemia data set. The curve is the plot of the
original p-values obtained from the #-tests for individual genes, sorted in an increasing order.
The horizontal line represents the constant p-value threshold of 0.05. There are 2106 genes
with a p-value smaller than this threshold. The slanted line represents the p-value thresholds
pi = ap - i/N that BH method uses to control the FDR at level of op = 0.05 (N is the total
number of genes). It intersects with the curve at p-value 0.0075. Only the 1071 genes whose
p-values are smaller than 0.0075 are considered to be significantly differentially expressed. The
remaining 935 genes are considered to be false positive discoveries made by individual #-tests.

4.3.1.4 False Discovery Rate (FDR) Control Statistical procedures for the
identification of differentially expressed genes can be treated as multiple hypothe-
sis testing. A p-value threshold that is appropriate for a single test does not pro-
vide good control on false positive discovery for the overall procedure. For exam-
ple, testing of 10,000 genes with p-value threshold of 0.05 is expected to identify
10, 000 x 0.05 = 500 genes as differentially expressed even if none of the genes
are actually differentially expressed. The false positive rate can be controlled by
evaluating the expected proportion of true rejected null hypotheses out of the to-
tal number of rejected null hypothesis. An example of FDR control is shown in
Figure 4.11.

If N is the total number of genes, « is the p-value threshold, and p;(i = 1, ..., N)
are p-values in ascending order, then the ith ranked gene is selected if p; < «g -i/N
[32]. A comprehensive review of this statistical FDR control is presented in the work
by Qian and Huang [33]. It is worth noting that a bootstrap procedure for FDR control
has also been introduced [29] and was shown to be suitable for gene selecting when
data distribution deviates from normal distribution.

MICROARRAY DATA ANALYSIS 131

[G0:0008150:biological process]

T
1
1

[G0:0007275:development J [GO:0007582:physioIogical process}

T
I P
| - |

[GO:0007389:pattem specification} {GO:0007389:repr0duction} [G0:0008152:metabolism

P ™ T
- (N P N
- 1 SN - 1 ~
7 . [A - ' S

[GO:0007389:pattem specification]

™=
o~
| ~

GO:000738%:anterior/posterior axis
specification

FIGURE 4.12 Part of the Gene Ontology direct acyclic graph. The shortest path between
GO:0007275:development and GO:0009948:anterior/posterior axis specification is 3 (the near-
est common ancestor for the two terms is GO:0007275:development). The shortest path between
the terms GO:0007275:development and GO:0008152:metabolism is 3 but the only ancestor
for them is GO:0008150:biological processes, so the distance between them is 3 + 23, where
23 is the added penalty distance, which is the maximum distance in Biological Process part of
Gene Ontology DAG.

4.3.2 Functional Annotation of Genes

One of the goals of microarray data analysis is to aid in discovering biological func-
tions of genes. One of the most important sources of domain knowledge on gene
functions is Gene Ontology (GO), developed and maintained by the Gene Ontology
Consortium [34,35]. Using a controlled and limited vocabulary of terms describing
gene functions, each term in Gene Ontology consists of a unique identifier, a name,
and a definition that describes its biological characteristic. GO terms are split into
three major groups: biological processes, molecular functions, and cellular compo-
nent categories. Within each category, GO terms are organized in a direct acyclic graph
(DAGQG) structure, where each term is a node in the DAG, and each node can have sev-
eral child and parent nodes. The GO hierarchy is organized with a general-to-specific
relation between higher and lower level GO terms (see Fig. 4.12).

Sometimes, it is useful to compare several GO terms and determine if they are
similar. Although there is no commonly accepted similarity measure between different
GO terms, various distance measures were proposed for measuring the similarity
between GO terms [36,37]. For example, the distance between nodes X and Y in a
DAG can be measured as the length of the shortest path between X and Y within
the GO hierarchy normalized by the length of maximal chain from the top to the
bottom of the DAG [38]. One possible modification, illustrated in Figure 4.12, is to
add a large penalty for paths that cross the root of a DAG to account for unrelated
terms.

4.3.3 Characterizing Functions of Differentially Expressed Genes

After identifying differentially expressed genes, the next step in analysis is often to
explore the functional properties of these genes. This information can be extremely

132 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

useful to domain scientists for the understanding of biological properties of different
sample groups. Commonly used methods for such analysis are described in this sec-
tion. The chi-square and the Fisher’s exact tests are used to test whether the selected
genes are overannotated with a GO term F, as compared to the set of remaining genes
spotted on a microarray [39,40]. For instance, the following 2 x 2 contingency table
contains the data that can be used to test whether the frequency of genes annotated
with a GO term F among the selected genes is different than the same frequency
among the remaining genes:

Number of genes

Selected genes Remaining genes Total
Annotated with a GO term F fu fi2 r
Not annotated with a GO term F Sa f2 r
Total Cq Cy S

Chi-square test uses a x? statistic with formula

(fij — ricj/S)?
ZZ jr,cj/g‘ '

i=1 i=1

The chi-square test is not suitable when any of the expected values r;c;/S are smaller
than 10. Fisher’s exact test is more appropriate in such cases. In practice, all genes
annotated with term F and all terms in the subtree of term F are considered to be
annotated with F.

4.3.4 Functional Annotation of Uncharacterized Genes

The functional characterization of genes involves a considerable amount of biological
laboratory work. Therefore, only a small fraction of known genes and proteins is
functionally characterized. An important microarray application is the prediction of
gene functions in a cost-effective manner. Numerous approaches use microarray gene
expression patterns to identify unknown gene functions [41-43]. In the following
section, we outline some of the most promising ones.

4.3.4.1 Unsupervised Methods for Functional Annotation Gene expres-
sion profiles can be used to measure distances among genes. The basic assumption
in functional annotation is that genes with similar biological functions are likely to
have similar expression profiles. The functions of a given gene could be inferred by
considering the known functions of genes with similar expression profiles. A similar
approach is to group all gene expression profiles using clustering methods and to find
the overrepresented functions within each cluster [44,45]. Then, all genes within a
cluster are annotated with the overrepresented functions of that cluster. An alternative
is to first cluster only the genes with known functions. An averaged expression profile

MICROARRAY DATA ANALYSIS 133

of all genes within the cluster can then be used as the representative of a cluster [4].
The gene with the unknown function can be assigned functions based on its distance
to the representative expression profiles. Conclusions from these procedures are often
unreliable: a gene may have multiple functions that may be quite distinctive; also,
genes with the same function can have quite different expression profiles. Therefore,
it is often very difficult to select representative functions from a cluster of genes.

Many unsupervised methods for functional annotation face the issue of model
selection in clustering, such as choosing the proper number of clusters, so that the
genes within the cluster have similar functions. Domain knowledge is often very
helpful in the model selection [46].

As we already mentioned, nearest-neighbor and clustering methods for assigning
functions to genes are based on assumptions that genes with similar functions will
have similar expression profiles [47]. However, this assumption is violated for more
than half of the GO terms [48]. A more appropriate approach, therefore, is to first
determine a subset of GO terms for which the assumption is valid, and use only these
GO terms in gene function annotation.

4.3.4.2 Supervised Methods for Functional Annotation Supervised meth-
ods for functional characterization involve building classification models that predict
gene functions based on gene expression profiles. A predictor for a given function is
trained to predict whether a given gene has that function or not [49]. Such a predictor
is trained and tested on a collection of genes with known functions. If testing shows
that the accuracy of the predictor is significantly higher than that for a trivial predictor,
the predictor can then be used on the uncharacterized genes to annotate them. Previ-
ous research shows that the support-vector machines (SVM) model achieves the best
overall accuracy when compared to other competing prediction methods [50]. The
SVM-based predictor can overcome some of the difficulties that are present with the
unsupervised methods. It can flexibly select the expression profile similarity measure

Case Study 4.2: Identification of GO Terms with
Conserved Expression Profiles

We applied a bootstrapping procedure to identify GO terms that have conserved gene
expression profiles in the Plasmodium data set that contains 46 arrays. Each of the 46
arrays in the Plasmodium data set measures expression levels of 3532 genes at a specific
time point over the 48-h Plasmodium falciparum intraerythrocytic developmental cycle
(IDC). The bootstrap procedure was applied to 884 GO terms that are associated with
at least two genes. For a given GO term with / associated genes, we collected their
expression profiles and calculated the average pairwise correlation coefficients py. We
compared py to average expression profile correlation coefficients of randomly selected
pairs of genes. In each step of the bootstrap procedure, we randomly selected / genes
and computed their average correlation coefficient p;. This was repeated 10,000 times
to obtain py, 02, . .., P10.000- We counted the number ¢ of p; that are greater than py and
calculated the bootstrap p-value as p, = ¢/n. If p, is smaller than 0.05, the expression
profiles of the GO term are considered to be conserved.

134 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

0 5 10 15 20 25 80 35 40 45 50
600

Number of GO terms with p-value < X

0 5 10 15 20 25 30 35 40 45 S5C

10°® 107 107® 1072 107 10°
X

Figure 4.13

The plot in the left part of Figure 4.13 shows the cumulative number of GO terms
with p-value smaller than x. Four hundred and twenty-eight (48.4 percent) of the 884 GO
terms have p-value smaller than 0.05; 199 of these are molecular function and 229 are
biological process GO terms. This result validates to a large extent the hypothesis that
genes with identical functions have similar expression profiles. However, it also reveals
that for a given microarray experiment, a large fraction of functions do not follow this
hypothesis.

Figure 4.13 also contains expression profiles of genes annotated with GO term
GO0:0006206 (pyrimidine base metabolism; bootstrap p-value 0) and its representative
expression profile.

and handle a large feature space. The unresolved problem of the supervised approach
is the presence of multiple classes and class imbalance; a function can be associated
with only a few genes, and there are several thousand functions describing genes in
a given microarray data set.

4.3.5 Correlations Among Gene Expression Profiles

A major challenge in biological research is to understand the metabolic pathways and
mechanisms of biological systems. The identification of correlated gene expressions
in a microarray experiment is aimed at facilitating this objective. Several methods for
this task are described in this section.

4.3.5.1 Main Methods for Clustering of Gene Expression Profiles Hier-
archical clustering and K-means clustering are two of the most popular approaches
for the clustering of microarray data. The hierarchical clustering approach used with
microarray data is the bottom-up approach. This approach begins with single-member
clusters, and small clusters are iteratively grouped together to form larger clusters,

MICROARRAY DATA ANALYSIS 135

Precursor of merozoite surface

Postranslational modification

Proteasome

Nucleotide binding

Ribosomal protein

FIGURE 4.14 Visualization of hierarchically clustered data with identified functional cor-
relation. The Plasmodium data set was clustered using hierarchical clustering. Rows of pixels
represent genes’ expression levels at different time points. Columns of pixels represent the
expression level of all genes in one chip at one given time point in the IDC process, and their
order corresponds to the order of points in time. The cluster hierarchy tree is on the left side.
The image contains clearly visible patterns of dark gray and light gray pixels that correspond to
upregulated and downregulated expression levels, respectively. A domain expert investigated
the higher level nodes in the clustering tree, examining the similarity of functions in each clus-
ter for genes with known functions. Five examples of clusters for which the majority of genes
are annotated with a common function are marked using the shaded bars and the names of the
common functions. These clusters can be used to infer the functions of the genes within the
same cluster whose function is unknown or unclear.

136 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

until a single cluster containing the whole set is obtained. In each iteration, the two
clusters that are chosen for joining are two clusters with the closest distance to each
other. The result of hierarchical clustering is a binary tree; descendants of each clus-
ter in that tree are the two subclusters of which the cluster consists. The distance
between two clusters in the tree reflects their correlation distance. Hierarchical clus-
tering provides a visualization of the relationships between gene expression profiles
(see Fig. 4.14).

K-means clustering groups genes into a prespecified number of clusters by mini-
mizing the distances within each cluster and maximizing the distances between clus-
ters. The K-means clustering method first chooses k genes called centroids (which can
be done randomly or by making sure that their expression profiles are very different).
It then examines all gene expression profiles and assigns each of these to the cluster
with the closest centroid. The position of a centroid is recalculated each time a gene
expression profile is added to the cluster by averaging all profiles within the cluster.
This procedure is iteratively repeated until stable clusters are obtained, and no gene
expression profiles switch clusters between iterations. The K-means method is com-
putationally less demanding than hierarchical clustering. However, an obvious disad-
vantage is the need for the selection of parameter k, which is generally not a trivial task.

4.3.5.2 Alternative Clustering Methods for Gene Expression Profiles
Alternative clustering methods that are used with gene expression data include the
self-organizing map (SOM) and random forest (RF) clustering.

An SOM is a clustering method implemented with a neural network and a special
training procedure. The comparison of SOM with hierarchical clustering methods
shows that an SOM is superior in both robustness and accuracy [51]. However, as
K-means clusters, an SOM requires the value of parameter k to be prespecified.

RF clustering is based on an RF predictor that is a collection of individual classifi-
cation trees. After an RF is constructed, the similarity measure between two samples
can be defined as the number of times a tree predictor places the two samples in the
same terminal node. This similarity measure can be used to cluster gene expression
data [52]. It was demonstrated that the RF-based clustering of gene profiles is superior
compared to the standard Euclidean distance measure [53].

Other advanced techniques proposed for clustering gene expression data include
the mixture model approach [54], the shrinkage-based similarity procedure [55], the
kernel method [56], and bootstrapping analysis [57].

4.3.5.3 Distance of Gene Expression Profile Clusters There are many
ways to measure the distance between gene expression profiles and clusters of gene
expression profiles. The Pearson correlation coefficient and the Euclidean distance
are often used for well-normalized microarray data sets. However, microarray gene
expression profiles contain noise and outliers. Nonparametric distance measures pro-
vide a way to avoid these problems. For instance, the Spearman correlation replaces
gene expression values with their ranks before measuring the distance.

Average linkage, single linkage, and complete linkage are commonly used to
measure the distances between clusters of gene expression profiles. Average linkage

MICROARRAY DATA ANALYSIS 137

FIGURE 4.15 Cluster distance definitions. Hollow dots represent data points, and the two
circles represent two distinct clusters of data points, while black dots are weighted centers of
data points in each cluster. The bottom line illustrates the single linkage method of cluster
distance, the top line illustrates the complete linkage method, and the middle line represents
the average linkage method.

computes the distances between all pairs of gene expression profiles from two clus-
ters and the average of these distances becomes the distance between the clusters.
Single linkage defines the distance between two clusters as the distance between the
two closest representatives of these clusters. Complete linkage defines the distance
between two clusters as the distance between the two farthest representatives. The
difference between these three definitions is illustrated in Figure 4.15.

4.3.5.4 Cluster Validation Regardless of the type of clustering, all obtained
clusters need to be evaluated for biological validity before proceeding to further
analysis. Visual validation is aimed at determining whether there are outliers in clus-
ters or whether the gene expression profiles within each cluster are correlated to each
other. If a problem is detected by validation, clusters are often refined by adjusting the
number of clusters (parameter k), the distance measuring method, or even by repeat-
ing the clustering with a different clustering method. Microarray data sets are highly
dimensional. It is often difficult to provide a clear view of gene expression profile
types within each cluster. By reducing the dimension of the microarray data set to
two or three dimensions, analysis can be simplified and a visual overview of the data
can be generated, which may provide useful information on gene expression profile
clustering. Such a dimensionality reduction is typically achieved with principal com-
ponent analysis (PCA). This technique finds the orthogonal components (also called
principal components) of the input vectors and retains two or three orthogonal com-
ponents with the highest variance. A visual examination of the projected clusters can
help determine an appropriate number of distinct clusters for clustering as illustrated
in Figure 4.16.

138 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

Principal component scatter plot with colored clusters

10

oL R

-5

Second principal component

10

-15 1 1 1 1 L 1 1 1
-30 -25 -20 -15 -10 -5 0 5 10 15 20

First principal component

FIGURE 4.16 Principal component analysis. This scatterplot was obtained by plotting the
first and the second principal component of the first 100 genes in an acute leukemia data set.
It illustrates the benefit of PCA for visualizing data. There are apparently two to four clusters
(depending on the criteria of separation of clusters), which is valuable information for the
choice of parameter k in many clustering algorithms. A possible clustering to two groups of
genes is shown as light gray and dark gray points, while black and lighter gray (top right) points
can be discarded as outliers.

4.3.6 Biomarker Identification

One major challenge of microarray data analysis is sample classification. Examples
of classification include the separation of people with and without CFS, or the clas-
sification of cancer patients into prespecified subcategories. Classifier construction
includes the selection of the appropriate prediction model and the selection of fea-
tures. Feature selection is a technique whereby genes with the most useful expression
levels for classification are selected. Such genes can also be useful as biomarkers that
in turn can be used for practical and cost-effective classification systems.

4.3.6.1 Classical Feature Selection Methods Forwardfeature selection is an
iterative process. It starts with an empty set of genes and at each iteration step adds the
most informative of the remaining genes based on their ability to discriminate different
classes of samples. This process is repeated until no further significant improvement
of classification accuracy can be achieved. A reverse procedure, backward feature
elimination, is also widely applied. It begins by using all the available genes and
continues by dropping the least important genes until no significant improvement can
be achieved.

MICROARRAY DATA ANALYSIS 139

In the filter feature selection methods, various statistical measures are used to rank
genes by their discriminative powers. Successful measures include using the #-test,
the chi-square test, information gain, and the Kruskal-Wallis test.

A recently proposed biomarker identification approach involves clustering gene
expression profiles [58]. In such an approach, genes are clustered based on their
microarray expression profiles. Then, within each cluster, the most representative gene
is selected (the representative gene could be the gene closest to the mean or median
expression value within the cluster). The representative genes are collected and used as
selected features to build a predictor for classification of unknown samples. However,
selected sets of genes often lack biological justification and their size is usually too
large for experimental validation.

4.3.6.2 Domain Knowledge-Based Feature Selection A recently proposed
feature selection approach exploits the biological knowledge of gene functions as
a criterion for selection [59]. The underlying hypothesis for this approach is that
the difference between samples lies in a few key gene functions. Genes annotated
with those key functions are likely to be very useful for classification. To use this
observation, a statistical test is applied to microarray data in order to rank genes by
their p-values and generate a subset of significant genes. Selected genes are compared
to the overall population in order to identify the most significant function. Only
genes associated with the most significant function are selected for classification.
This approach results in a small set of genes that provide high accuracy (see the case
study below).

Case Study 4.3: Feature Selection for Classification

The CFS data set contains 39 test samples from patients clinically diagnosed with CFS
and 40 control samples from subjects without CES (nonfatigue, NF). The objective is to
develop a predictor that classifies new subjects either as CFS or NF based on their gene
expressions. Each microarray measures 20,160 genes.
We first used the Kruskal-Wallis test with p-value threshold of 0.05 for the initial gene
selection. For each GO term, we count how many genes in the original set of 20,160 genes,
as well as how many of the selected, are annotated with it. We then use the hypergeometric
test to evaluate whether the representation of this GO term in the selected subset of genes
is significantly greater than that in the original set of genes. We rank GO terms by their
p-values and find the most overrepresented (those with smallest p-value) GO term. We
narrow the selection of genes to include only the genes that are the most overrepresented
GO term. We then select these genes as features for classification. Feature selection
methods were tested using a leave-one-out cross-validation procedure. The prediction
model used in all experiments was an SVM with quadratic kernel k(x, y) = (C + xTy)%.
The Kruskal-Wallis test with a threshold of 0.05 produced the initial selection of 1296
genes. The overall accuracy of prediction with this feature selection method was 53
percent, which is barely better than the 50 percent accuracy of a random predictor. The

140 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

proposed procedure narrowed the selection down to 17 genes. Although the number of
features was reduced by almost two orders of magnitude, the overall accuracy of prediction
with this smaller feature set improved to 72 percent. The GO term that was most often
selected was GO:0006397 (mRNA processing). Interestingly, mRNA processing was
verified by unrelated biological research as very important for CFS diagnosis [60]. We
can compare the accuracy of the obtained predictor (72 percent) to the accuracy of a
predictor with 17 features with the smallest p-values selected by the Kruskal-Wallis test,
which was close to 50 percent; in other words, the predictor was not better than a trivial
random predictor.

4.3.7 Conclusions

Microarray data analysis is a significant and broad field with many unresolved prob-
lems. This chapter briefly introduces some of the most commonly used methods for
the analysis of microarray data, but many topics still remain. For example, microarray
data can be used to construct gene networks, which are made up of links that represent
relationships between genes, such as coregulation. Computational models for gene
networks include Bayesian networks [61], Boolean networks [62], Petri nets [63],
graphical Gaussian models [64], and stochastic process calculi [65].

Microarrays can also be studied in conjunction with other topics, such as
microarray-related text mining, microarray resources and database construction, drug
discovery, drug response study, and design clinical trials.

Several other types of microarrays are used in addition to gene expression mi-
croarrays: protein microarrays (including antibody microarrays), single-nucleotide
polymorphism (SNP) microarrays, and chemical compound microarrays. Other ex-
perimental technologies, such as mass spectrometry, also produce results at a high
throughput rate. Methods for the analysis of these various types of biological data
have a certain degree of similarity with microarray data analysis. For example, meth-
ods used for the identification of differentially expressed genes are similar to the
methods used for the identification of biomarkers in mass spectrometry data. Over-
all, there are many challenging open topics on analyzing high throughput biological
data that can provide research opportunities for the data mining and machine learning
community. Progress toward solving these challenges and the future directions of
research in this area are discussed at various bioinformatics meetings; these include a
specialized International Conference for the Critical Assessment of Microarray Data
Analysis (CAMDA) that was established in 2000, and that was aimed at the assess-
ment of the state-of-the-art methods in large-scale biological data mining. CAMDA
provided standard data sets and put an emphasis on various challenges of analyzing
large-scale biological data: time series cell cycle data analysis [45] and cancer sample
classification using microarray data [3], functional discovery [42] and drug response
[66], microarray data sample variance [67], integration of information from different
microarray lung cancer data sets [68—71], the malaria transcriptome monitored by
microarray data [4], and integration of different types of high throughput biological
data related to CFS.

REFERENCES 141

ACKNOWLEDGMENTS

This project is funded in part under a grant with the Pennsylvania Department of
Health. The Department specifically disclaims responsibility for any analyses, inter-
pretations, or conclusions. We thank Samidh Chatterjee, Omkarnath Prabhu, Vladan
Radosavljevi¢, Lining Yu, and Jingting Zeng at our laboratory for carefully reading
and reviewing this text. In addition, we would like to express special thanks to the
external reviewers for their valuable comments on a preliminary manuscript.

REFERENCES

12.

13.

14.

. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression

patterns with a complementary DNA microarray. Science 1995;270:467-470.

. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang

C, Kobayashi M, Horton H, Brown EL. Expression monitoring by hybridization to high-
density oligonucleotide arrays. Nat Biotechnol 1996;14:1675-1680.

. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh

ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification
of cancer: class discovery and class prediction by gene expression monitoring. Science
1999;286:531-537.

. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the

intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 2003;1:ES.

. Vernon SD, Reeves WC. The challenge of integrating disparate high-content data: epi-

demiological, clinical and laboratory data collected during an in-hospital study of chronic
fatigue syndrome. Pharmacogenomics 2006;7:345-354.

. Yang YH, Buckley MJ, Speed TP. Analysis of cDNA microarray images. Brief Bioinform

2001;2:341-349.

. Yap G. Affymetrix, Inc. Pharmacogenomics 2002;3:709-711.
. Kooperberg C, Fazzio TG, Delrow JJ, Tsukiyama T. Improved background correction for

spotted DNA microarrays. J] Comput Biol 2002;9:55-66.

. Cui X, KM, Churchill GA. Transformations for cDNA microarray data. Stat Appl Genet

Mol Biol 2003;2:article 4.

. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D,

Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics
2001;17:520-525.

. Kim H, Golub GH, Park H. Missing value estimation for DNA microarray gene expression

data: local least squares imputation. Bioinformatics 2005;21:187-198.

Johansson P, Hakkinen J. Improving missing value imputation of microarray data by using
spot quality weights. BMC Bioinform 2006;7:306.

Tuikkala J, Elo L, Nevalainen OS, Aittokallio T. Improving missing value estimation in
microarray data with gene ontology. Bioinformatics 2006;22:566-572.

Quackenbush J. Microarray data normalization and transformation. Nat Genet 2002;
32(Suppl):496-501.

142 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

15. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA
microarray data: arobust composite method addressing single and multiple slide systematic
variation. Nucleic Acids Res 2002;30:e15.

16. Smyth GK, Speed T. Normalization of cDNA microarray data. Methods 2003;31:
265-273.

17. BergerJA, Hautaniemi S, Jarvinen AK, Edgren H, Mitra SK, Astola J. Optimized LOWESS
normalization parameter selection for DNA microarray data. BMC Bioinform 2004;5:
194.

18. Colantuoni CHG, Zeger S, Pevsner J. Local mean normalization of microarray element sig-
nal intensities across an array surface: quality control and correction of spatially systematic
artifacts. Biotechniques 2002;32:1316-1320.

19. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV. Fundamental pat-
terns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci
USA 2000;97:8409-8414.

20. Bolstad BM, Irizarry RA, Astrand M, Speed TP, A comparison of normalization methods
for high density oligonucleotide array data based on variance and bias. Bioinformatics
2003;19:185-193.

21. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C,
Paules RS. Assessing gene significance from cDNA microarray expression data via mixed
models. J Comput Biol 2001;8:625-637.

22. Schadt EE, Li C, Ellis B, Wong WH, Feature extraction and normalization algorithms
for high-density oligonucleotide gene expression array data. J Cell Biochem Suppl
2001;37:120-125.

23. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP.
Exploration, normalization, and summaries of high density oligonucleotide array probe
level data. Biostatistics 2003;4:249-264.

24. Yu X, Chu TM, Gibson G, Wolfinger RD, A mixed model approach to identify yeast
transcriptional regulatory motifs via microarray experiments. Stat Appl Genet Mol Biol
2004;3:article22.

25. Ramsey FL, Shafer DW. The Statistical Sleuth: A Course in Methods of Data Analysis.
Belmont, CA: Duxbury Press; 1996.

26. Kerr MK, Martin M, Churchill GA, Analysis of variance for gene expression microarray
data. J Comput Biol 2000;7:819-837.

27. Pan WA. Comparative review of statistical methods for discovering differentially
expressed genes in replicated microarray experiments. Bioinformatics 2002;18:546—
554.

28. Singer JD. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and
individual growth models. J Educ Behav Stat 1998;24:323-355.

29. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied
to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116-
5121.

30. Thomas JG, Olson JM, Tapscott SJ, Zhao LP. An efficient and robust statistical modeling
approach to discover differentially expressed genes using genomic expression profiles.
Genome Res 2001;11:1227-1236.

31. Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays.
Genet Epidemiol 2002;23:70-86.

REFERENCES 143

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc Ser B 1995;57:289-300.

Qian HR, Huang S. Comparison of false discovery rate methods in identifying genes with
differential expression. Genomics 2005;86:495-503.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K,
Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese
JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25-29.

Gene Ontology Consortium. Creating the gene ontology resource: design and implemen-
tation. Genome Res 2001;11:1425-1433.

Lord PW, Stevens RD, Brass A, Goble CA. Investigating semantic similarity measures
across the Gene Ontology: the relationship between sequence and annotation. Bioinfor-
matics 2003;19:1275-1283.

Schlicker A, Domingues FS, Rahnenfuhrer J, Lengauer T. A new measure for func-
tional similarity of gene products based on Gene Ontology. BMC Bioinform 2006;
7:302.

Rada R, Mili H, Bicknell E, Blettner M. development and application of a metric on
semantic nets. IEEE Trans Syst Man Cybernet 1989;19:17-30.

Beissbarth T, Speed TP. GOstat: find statistically overrepresented Gene Ontologies within
a group of genes. Bioinformatics 2004;20:1464—-1465.

Dennis G, Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID:
Database for annotation, visualization, and integrated discovery. Genome Biol 2003;4:P3.
Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz 1. The tran-
scriptional program of sporulation in budding yeast. Science 1998;282:699-705.

Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA,
Coftey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants
SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH. Functional
discovery via a compendium of expression profiles. Cell 2000;102:109-126.

Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S. Whole-genome
annotation by using evidence integration in functional-linkage networks. Proc Natl Acad
Sci USA 2004;101:2888-2893.

Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-
wide expression patterns. Proc Natl Acad Sci USA 1998;95:14863-14868.

Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO,
Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of

the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998;9:
3273-3297.

Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC,
Perou CM, Hurt MM, Brown PO, Botstein D. Identification of genes periodically expressed
in the human cell cycle and their expression in tumors. Mol Biol Cell 2002;13:1977-2000.
Zhou X, Kao MC, Wong WH. Transitive functional annotation by shortest-path analysis
of gene expression data. Proc Natl Acad Sci USA 2002;99:12783-12788.

Xie H, Vucetic S, Sun H, Hedge P, Obradovic Z. Characterization of gene functional
expression profiles of Plasmodium falciparum. Proceedings of the 5th Conference on
Critical Assessment of Microarray Data Analysis; 2004.

144 ALGORITHMIC METHODS FOR THE ANALYSIS OF GENE EXPRESSION DATA

49. Barutcuoglu Z, Schapire RE, Troyanskaya OG. Hierarchical multi-label prediction of gene
function. Bioinformatics 2006;22:830-836.

50. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M Jr, Haussler
D. Knowledge-based analysis of microarray gene expression data by using support vector
machines. Proc Natl Acad Sci USA 2000;97:262-267.

51. Mangiameli P, Chen SK, West D. A comparison of SOM of neural network and hierarchical
methods. Eur J Oper Res 1996;93:402-417.

52. Breiman L. Random forests. Mach Learning 2001;45:5-32.

53. Shi T, S D, Belldegrun AS, Palotie A, Horvath S. Tumor classification by tissue mi-
croarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol
2005;18:547-557.

54. McLachlan GJ, Bean RW, Peel D. A mixture model-based approach to the clustering of
microarray expression data. Bioinformatics 2002;18:413—422.

55. Cherepinsky V, Feng J, Rejali M, Mishra B. Shrinkage-based similarity metric for cluster
analysis of microarray data. Proc Natl Acad Sci USA 2003;100:9668-9673.

56. Verri A. A novel kernel method for clustering. IEEE Trans Pattern Anal Mach Intell
2005;27:801-805.

57. Kerr K, Churchill GA. Bootstrapping cluster analysis: access the reliable of conclusions
from microarray experiments. Proc Natl Acad Sci USA 2001;98:8961-8965.

58. Au W, Chan K, Wong A, Wang Y. Attribute clustering for grouping, selection, and classifi-
cation of gene expression data. IEEE/ACM Trans Comput Biol Bioinform 2005;2:83—-101.

59. Xie H, Obradovic Z, Vucetic S. Mining of microarray, proteomics, and clinical data for
improved identification of chronic fatigue syndrome. In: Proceedings of the Sixth Interna-
tional Conference for the Critical Assessment of Microarray Data Analysis; 2006.

60. Whistler T, Unger ER, Nisenbaum R, Vernon SD. Integration of gene expression, clinical,
and epidemiologic data to characterize chronic fatigue syndrome. J Transl Med 2003;1:
10.

61. Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Combining location and expression
data for principled discovery of genetic regulatory network models. Pac Symp Biocomput
2002;437-449.

62. Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number
of gene expression patterns under the Boolean network model. Pac Symp Biocomput
1999;17-28.

63. Gambin A, Lasota S, Rutkowski M. Analyzing stationary states of gene regulatory network
using Petri nets. In Silico Biol 2006;6:0010.

64. Toh H, Horimoto K. Inference of a genetic network by a combined approach of cluster
analysis and graphical Gaussian modeling. Bioinformatics 2002;18:287-297.

65. Golightly A, Wilkinson DJ. Bayesian inference for stochastic kinetic models using a dif-
fusion approximation. Biometrics 2005;61:781-788.

66. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC,
Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D,
Brown PO, Weinstein JN. A gene expression database for the molecular pharmacology of
cancer. Nat Genet 2000;24:236-244.

67. Pritchard CC, Hsu L, Delrow J, Nelson PS. Project normal: defining normal variance in
mouse gene expression. Proc Natl Acad Sci USA 2001;98:13266-13271.

REFERENCES 145

68.

69.

70.

71.

Wigle DA, Jurisica I, Radulovich N, Pintilie M, Rossant J, Liu N, Lu C, Woodgett J, Seiden
I, Johnston M, Keshavjee S, Darling G, Winton T, Breitkreutz BJ, Jorgenson P, Tyers M,
Shepherd FA, Tsao MS. Molecular profiling of non-small cell lung cancer and correlation
with disease-free survival. Cancer Res 2002;62:3005-3008.

Beer DG, et al. Gene-expression profiles predict survival of patients with lung adenocar-
cinoma. Nat Med 2002;8:816-824.

Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach
M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D,
Petersen 1. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad
Sci USA 2001;98:13784—-13789.

Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J,
Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE,
Golub TR, Sugarbaker DJ, Meyerson M. Classification of human lung carcinomas by
mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad
Sci USA 2001;98: 13790-13795.

I CHAPTERS

Algorithms of Reaction—Diffusion
Computing

ANDREW ADAMATZKY

We give a case study introduction to the novel paradigm of wave-based computing
in chemical systems. We show how selected problems and tasks of computational
geometry, robotics, and logics can be solved by encoding data in configuration of
chemical medium’s disturbances and programming wave dynamics and interaction.

5.1 INTRODUCTION

It is usually very difficult, and sometimes impossible, to solve variational problems
explicitly in terms of formulas or geometric constructions involving known simple el-
ements. Instead, one is often satisfied with merely proving the existence of a solution
under certain conditions and afterward investigating properties of the solution. In many
cases, when such an existence proof turns to be more or less difficult, it is stimulat-
ing to realize the mathematical conditions of the problem by corresponding physical
devices, or rather, to consider mathematical problem as an interpretation of a physical
phenomenon. The existence of the physical phenomenon then represents the solution of
the mathematical problem [16].

In 1941, in their timeless treatise Courant and Robbins [16] discussed one of the
“classical examples of nonclassical computing”— an idea of physics-based compu-
tation, traced back to 1800s where Plateau experimented with the problem on cal-
culation of the surface of smallest area bounded by a given closed contour in space.
We will rephrase this as follows. Given a set of planar points, connect the points by a
graph with minimal sum of edge lengths (it is allowed to add more points; however,
a number of additional points should be minimal). The solution offered is extraordi-
narily simple and hence nontrivial. Mark given planar points on a flat surface. Insert
pins in the points. Place another sheet on top of the pins. Briefly immerse the device
in soap solution. Wait till the soap film dries. Record (draw, make a photo) topology
of dried soap film. This represents minimal Steiner tree spanning given planar points.

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenovi¢ Copyright © 2008 John Wiley & Sons, Inc.

147

148 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

=7
X/

FIGURE 5.1 Soap computer constructs spanning tree of four points [16].

An example of the computing device is shown in Figure 5.1. Owing to surface
tension the soap film between the pins, representing points, will try to minimize total
surface area. The shrinking can be constrained by a fixed pressure, assuming that the
foam film is a cross section of a three-dimensional foam. A length-minimizing curve
enclosing a fixed-area region consists of circular arcs of positive outward curvature
and line segments [41]. Curvature of the arcs is inversely proportional to pressure. By
gradually increasing pressure (Fig. 5.2) we transform arcs to straight lines, and thus
spanning tree is calculated.

In the nineteenth century many of the fundamental theorems of function theory were dis-
covered by Riemann by thinking of simple experiments concerning the flow of electricity
in thin metallic sheets [16].

At that time ideas on unconventional, or nature-inspired, computing were flourishing
as ever, and Lord Kelvin made his famous differential analyzer, a typical example
of a general-purpose analog computer generating functions of the time measure in
volts [37]. He wrote in 1876

t+ At t+ 2At

s

t+ 3At t+ 4At
FIGURE 5.2 Several steps of spanning tree constructions by soap film [41].

INTRODUCTION 149

IH

FIGURE 5.3 An electrical machine that computes connectivity of graph edges [50].

It may be possible to conceive that nature generates a computable function of a real
variable directly and not necessarily by approximation as in the traditional approach [37].

The main idea of a field computing on graphs and networks lies in the application of
avoltage to a graph, where edges and nodes are assumed to have certain resistance, and
measuring resistance or capacities of the networks. This technique was used, at least
implicitly, from the beginning of the century or even early but the earliest publication
with the emphasis on the algorithmic part is the paper by Vergis et al. [SO]. They solve
a well-known (s, f)-connectivity problem by constructing a virtual electrical model
of the given graph (Fig. 5.3): Given two vertexes s and ¢ of a graph, decide whether
there is a path from s to ¢. This is solved as follows. Put wires instead of edges and
connect them at the nodes. Apply a voltage between the nodes s and . Measure the
current. If near null current is recorded, there is no path between s and ¢.

The method works on the assumption that resistance is proportional only to the
length of a wire; therefore, if there is no path between s and ¢ then resistance is
nearly infinite high resistance, if there is no path between vy and v;. If lengths of
wires grow linearly with the number of graph nodes, the total capacity of the voltage
source and total resistance have the upper bound O(|E2|), which leads to the total size
and power consumption O(|E*|); that is, the electric machine operates polynomial
resources [50].

Surface tension, propagating waves, and electricity have been principal “engines”
of nature-inspired computers for over two centuries; even so they never were com-
bined together till Kuhnert’s pioneer work on image transformations in light-sensitive
Belousov—Zhabotinsky system [27]. A reaction—diffusion computer is a spatially ex-
tended chemical system, which processes information using interacting growing pat-
terns, and excitable and diffusive waves. In reaction—diffusion processors, both the
data and the results of the computation are encoded as concentration profiles of the
reagents. The computation is performed via the spreading and interaction of wave
fronts.

The reaction—diffusion computers are parallel because myriads of their
microvolumes update their states simultaneously, and molecules diffuse and react

150 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

in parallel. Liquid-phase chemical media are wet analogs of massive parallel
(millions of elementary processors in a small chemical reactor) and locally connected
(every microvolume of the medium changes its state depending on the states of its
closest neighbors) processors. They have parallel inputs and outputs; for example,
optical input is parallel because of the control of initial excitation dynamics by
illumination masks while, output is parallel because concentration profile repre-
senting results of computation is visualized by indicators. The reaction—diffusion
computers are fault tolerant and capable of automatic reconfiguration, namely if we
remove some quantity of the computing substrate, the topology is restored almost
immediately.

Reaction—diffusion computers are based on three principles of physics-inspired
computing. First, physical action measures amount of information: we exploit active
processes in nonlinear systems and interpret dynamics of the systems as computation.
Second, physical information travels only finite distance: this means that computation
is local and we can assume that the nonlinear medium is a spatial arrangement of
elementary processing units connected locally; that is, each unit interacts with closest
neighbors. Third, nature is governed by waves and spreading patterns: computation
is therefore spatial.

Reaction—diffusion computers give us best examples of unconventional computers;
their features follow Jonathan Mills’ classification of convention versus unconven-
tional [32]: wetware, nonsilicon computing substrate; parallel processing; compu-
tation occurring everywhere in substrate space; computation is based on analogies;
spatial increase in precision; holistic and spatial programming; visual structure; and
implicit error correcting.

A theory of reaction—diffusion computing was established and a range of practi-
cal applications are outlined in the work by Adamatzky [1]; recent discoveries are
published in a collective monograph [5]. The chapter in no way serves as a substitute
for these books but rather an introduction to the field and a case study of several
characteristic examples.

The chapter is populated with cellular automaton examples of reaction—diffusion
processes. We have chosen cellular automatons to study computation in reaction—
diffusion media because cellular automatons can provide just the right fast prototypes
of reaction—diffusion models. The examples of “best practice” include models of
BZ reactions and other excitable systems [21,31], chemical systems exhibiting Tur-
ing patterns [54,56,58], precipitating systems [5], calcium wave dynamics [55], and
chemical turbulence [23]. We therefore consider it reasonable to interpret the cellular
automaton local update rules in terms of reaction—diffusion chemical systems and
reinterpret the cellular automaton rules in novel designs of the chemical laboratory
reaction—diffusion computers.

Cellular automaton models of reaction—diffusion and excitable media capture es-
sential aspects of the natural media in a computationally tractable form. A cellular
automaton is a—in our case two-dimensional—lattice of finite automatons, or an ar-
ray of cells. The automatons evolve in a discrete time and take their states from a finite
set. All automatons of the lattice update their states simultaneously. Every automaton
calculates its next state depending on the states of its closest neighbors (throughout

COMPUTATIONAL GEOMETRY 151

the chapter we assume every nonedge cell x of a cellular automaton updates its state
depending on the states of its eight closest neighbors).

The best way to learn riding bicycle is to ride a bicycle. Therefore, instead of
wasting time on pointless theoretical constructions, we immediately describe and
analyze working reaction—diffusion algorithms for image processing, computational
geometry, logical and arithmetical circuits, memory devices, path planning and robot
navigation, and control of massive parallel actuators.

Just few words of warning—when thinking about chemical algorithms some of
you may realize that diffusive and phase waves are pretty slow in physical time. The
sluggishness of computation is the only point that may attract criticism to reaction—
diffusion chemical computers. There is however a solution—to speed up we are
implementing the chemical medium in silicon, microprocessor LSI analogs of
reaction—diffusion computers [11]. Further miniaturization of the reaction—diffusion
computers can be reached when the system is implemented as a two-dimensional
array of single-electron nonlinear oscillators diffusively coupled to each other [12].
Yet another point of developing reaction—diffusion computers is to design embedded
controllers for soft-bodied robots, where usage of conventional silicon materials
seem to be inappropriate.

5.2 COMPUTATIONAL GEOMETRY

In this section we discuss “mechanics” of reaction—diffusion computing on example
of plane subdivision. Let P be a nonempty finite set of planar points. A planar Voronoi
diagram of the set P is a partition of the plane into such regions that for any element
of P, a region corresponding to a unique point p contains all those points of the
plane that are closer to p than to any other node of P. A unique region vor(p) = {z €
R? : d(p, z) < d(p, m)Vm € R?, m # z} assigned to point p is called a Voronoi cell
of the point p. The boundary of the Voronoi cell of a point p is built of segments
of bisectors separating pairs of geographically closest points of the given planar set
P. A union of all boundaries of the Voronoi cells determines the planar Voronoi
diagram: VD(P) = U,cpd vor(p). A variety of Voronoi diagrams and algorithms of
their construction can be found in the work by Klein [26].

The basic concept of constructing Voronoi diagrams with reaction-diffusion sys-
tems is based on a very simple intuitive technique for detecting the bisector points
separating two given points of the set P. If we drop reagents at the two data points,
the diffusive waves, or phase waves if computing substrate is active, spread outward
from the drops with the same speed. The waves travel the same distance from the
sites of origination before they meet one another. The points, where the waves meet,
are the bisector points. This idea of a Voronoi diagram computation was originally
implemented in cellular automaton models and in experimental parallel chemical
processors (see extensive bibliography in the works by Adamatzky et al. [1,5]).

Assuming that the computational space is homogeneous and locally connected,
and every site (microvolume of the chemical medium or cell of the automaton array)
is coupled to its closest neighbors by the same diffusive links, we can easily draw

152 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

a parallel between distance and time, and thus put our wave-based approach into
action. In cellular automaton representation of physical reality, cell neighborhood u
determines that all processes in the cellular automaton model are constrained to the
discrete metric L. So, when studying automaton models we should think rather
about discrete Voronoi diagram than its Euclidean representation. Chemical labora-
tory prototypes of reaction—diffusion computers do approximate continuous Voronoi
diagram as we will see further.

A discrete Voronoi diagram can be defined on lattices or arrays of cells, for example,
a two-dimensional lattice Z2. The distance d (-, -) is calculated not in Euclidean but in
one of the discrete metrics, for example, L1 and L. A discrete bisector of nodes x and
y of Z? is determined as B(x, y) = {z € Z* : d(x, z) = d(y, z)}. However, following
such definition we sometimes generate bisectors that fill a quarter of the lattices
or produce no bisector at all [1]. If we want the constructed diagrams be closer to
the real world, then we could redefine discrete bisector as follows: B(x,y) = {z €
7% : |d(x, z) — d(y, z)| < 1}. The redefined bisector will comprise edges of Voronoi
diagrams constructed in discrete, cellular automaton models of reaction—diffusion
and excitable media.

Now we will discuss several versions of reaction—diffusion wave-based construc-
tion of Voronoi diagrams, from a naive model, where the number of reagents grow
proportionally to the number of data points, to a minimalist implementation with just
one reagent and one substrate [1].

Let us start with O(n)-reagent model. In a naive version of reaction—diffusion
computation of a Voronoi diagram, one needs two reagents and a precipitate to mark
a bisector separating two points. Therefore, n 4 2 reagents, including precipitate and
substrate, are required to approximate a Voronoi diagram of n points. When place n
unique reagents on n points of the given data set P, waves of these reagents spread
around the space and interact with each other where they meet. When at least two
different reagents meet at the same or adjacent sites of the space, they react and form a
precipitate—sites that contain the precipitate represent edges of the Voronoi cell, and
therefore constitute the Voronoi diagram. In “chemical reaction” equations, the idea
looks as follows: « and g are different reagents and # is a precipitate: o + § — #.
This can be converted to cellular automaton interpretation as follows:

o,if x' = eand W(x) C {p, o},
= L #, if X' £ #and W) /#] > 1,

x!, otherwise,

where e is a resting state (cell in this state does not contain any reagents), p € R is
a reagent from the set R of n reagents, and W(x)' = {y’ : y € u(x)} characterizes the
reagents that are present in the local neighborhood u(x) of the cell x at time step ¢.
The first transition of the above rule symbolizes diffusion. A resting cell takes
the state p if only this reagent is present in the cell’s neighborhood. If there are two
different reagents in the cell’s neighborhood, then the cell takes the precipitate state
#. Diffusing reagents halt because the formation of precipitate reduces the number
of “vacant” resting cells. Precipitate does not diffuse. Cell in state # remains in this

COMPUTATIONAL GEOMETRY 153

"o
O m N
=a "Lm EE m =
m == n_En

(a) (b) (c)

() () (i)

FIGURE 5.4 Computation of a Voronoi diagram in a cellular automaton model of a chem-
ical processor with O(n) reagents. Precipitate is shown in black (a)t = 1;(b)t = 3;(c)t = 5;
@t=06(e)t=T7,(f)t=8;(g)t =10;(h)t = 12; ()t = 15.

indefinitely. An example of a cellular automaton simulation of O(n)-reagent chemical
processor is shown in Figure 5.4.

The O(n)-reagent model is demonstrative; however, it is computationally inef-
ficient. Clearly, we can reduce number of reagents to four—using map coloring
theorems—but preprocessing time will be unfeasibly high. The number of participat-
ing reagents can be sufficiently reduced to O(1) when the topology of the spreading
waves is taken into account [1].

Now we go from one extreme to another and consider a model with just one reagent
and a substrate. The reagent « diffuses from sites corresponding two point of a data
planar set P. When two diffusing wave fronts meet a superthreshold concentration of
reagents, they do not spread further. A cellular automaton model represents this as
follows.

Every cell has two possible states: resting or substrate state e and reagent state
«. If the cell is in state «, it remains in this state indefinitely. If the cell is in state

154 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

e and between one and four of its neighbors are in state «, then the cell takes the
state . Otherwise, the cell remains in the state @ — this reflects the “superthreshold
inhibition” idea. A cell state transition rule is follows:

" {oc, if &' = eand 1 < o(x)' <4,
A =

x', otherwise,

where o(x)! = |y € u(x) : y' = «af.

Increasing number of reagents to two (one reagent and one precipitate) would
make life easy. A reagent § diffuses on a substrate, from the initial points (drop
of reagent) of P, and forms a precipitate in the reaction mpB — o, where 1 <
m < 4.

s Y. o By ®
L |:
®a B g .. B @

(a) (b (©)

FIGURES.5 Anexample of Voronoi diagram computing in an automaton model of reaction—
diffusion medium with one reagent and one substrate. Reactive parts of wave fronts are shown
in black. Precipitate is gray and edges of Voronoi diagram are white (a) t = 1;(b) t = 3;
©t=5dt=TEt=9(Ht=11;(t=13;(h)t =15;@) t = 17.

COMPUTATIONAL GEOMETRY 155

(a) (b)

FIGURE 5.6 Planar Voronoi diagram computed in (@) cellular automaton and () palladium
reaction—diffusion chemical processor [5].

Every cell takes three states: e (resting cell, no reagents), « (e.g., colored precipi-
tate), and B (reagent). The cell updates its states by the rule:

B, ifx' =eand1 < o(x) <4,
At =L@ ifx' = Band1 < o(x)' <4,

x!, otherwise,

where o(x)' = |y € u(x) : y' = 8.

An example of a Voronoi diagram computed in an automaton model of a reaction—
diffusion medium with one reagent and one substrate is shown in Figure 5.5.

By increasing number of cell state and enlarging cell neighborhood in cellular au-
tomaton model we can produce more realistic—almost perfectly matching outcomes
of chemical laboratory experiments—Voronoi diagrams (Fig. 5.6).

Let us consider the following model. Cells of the automaton take state from interval
[p,], where p is a minimum refractory value and « is maximum excitation value;
p = —2and @ = 5 in our experiments. Cell x’s state transitions are strongly deter-
mined by normalized local excitation o}, = >- ., ('/ /(Jux))). Every cell x updates
its state at time 7 + 1, depending on its state x” and state u’, of its neighborhood u ,—in
experiments we used 15 x 15 cell neighborhood—as follows:

o, if ' =0and o’ > o,

0, if X =0and o’ < «,
HH = x4+ 1,ifx <0,

xI—1,ifxf > 1,

p, ifx' = 1.

156 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

S

(a) (b)

FIGURE 5.7 Skeleton—internal Voronoi diagram—of planar T-shape constructed in multi-
state cellular automaton model (a) and chemical laboratory Prussian blue reaction—diffusion
processor (b) [10].

This rule represents spreading of “excitation,” or simply phase wave fronts, in com-
putational space, interaction, and annihilation of the wave fronts. To allow the
reaction—diffusion computer “memorize” sites of wave collision, we add a precip-
itate state p’.. Concentration p. of precipitate at site x at moment ¢ is calculated as
P~y eur iy = all.

As shown in Figure 5.7, the model represents cellular automaton Voronoi diagrams
in “unlike phase” with experimental chemical representation of the diagram. Sites of
higher concentration of precipitate in cellular automaton configurations correspond
to sites with lowest precipitate concentration in experimental processors.

5.3 LOGICAL UNIVERSALITY

Certain families of thin-layer reaction—diffusion chemical media can implement
sensible transformation of initial (data) spatial distribution of chemical species con-
centrations to final (result) concentration profile [1,45]. In these reaction—diffusion
computers, a computation is realized via spreading and interaction of diffusive or
phase waves. Specialized, intended to solve a particular problem, experimental chem-
ical processors implement basic operations of image processing [5,28,39,40], com-
putation of optimal paths [5,9,46], and control of mobile robots [5].

A device is called computationally universal if it implements a functionally com-
plete system of logical gates, for example, a tuple of negation and conjunction, in its
space—time dynamics.

A number of computationally universal reaction—diffusion devices were imple-
mented: the findings include logical gates [42,48] and diodes [17,29,34] in Belousov-
Zhabotinsky (BZ) medium, and xor gate in palladium processor [2]. All the known
so far experimental prototypes of reaction—diffusion processors exploit interaction of
wave fronts in a geometrically constrained chemical medium; that is, the computa-
tion is based on a stationary architecture of medium’s inhomogeneities. Constrained
by stationary wires and gates, chemical universal processors pose a little computa-

LOGICAL UNIVERSALITY 157

tional novelty and none dynamical reconfiguration ability because they simply imitate
architectures of silicon computing devices.

Experimental prototypes of reaction—diffusion processors exploit interaction of
wave fronts in a geometrically constrained chemical medium; that is, the computation
is based on a stationary architecture of medium’s inhomogeneities. Constrained by
stationary wires and gates reaction—diffusion chemical universal processors pose a lit-
tle computational novelty and no dynamic reconfiguration ability because they simply
imitate architectures of conventional silicon computing devices. To appreciate in full
massive parallelism of thin-layer chemical media and to free the chemical processors
from limitations of fixed computing architectures, we adopt an unconventional
paradigm of architectureless, or collision-based, computing. An architecture-based,
or stationary, computation implies that a logical circuit is embedded into the system
in such a manner that all elements of the circuit are represented by the system’s
stationary states. The architecture is static. If there is any kind of “artificial” or
“natural” compartmentalization, the medium is classified as an architecture-based
computing device. Personal computers, living neural networks, cells, and networks
of chemical reactors are typical examples of architecture-based computers.

A collision-based, or dynamical, computation employs mobile compact finite pat-
terns, mobile self-localized excitations or simply localizations, in active nonlinear
medium. Essentials of collision-based computing are the following. Information val-
ues (e.g., truth values of logical variables) are given by either absence or presence
of the localizations or other parameters of the localizations. The localizations travel
in space and do computation when they collide with each other. There are no prede-
termined stationary wires; a trajectory of the traveling pattern is a momentary wire.
Almost any part of the medium space can be used as a wire. Localizations can col-
lide anywhere within a space sample; there are no fixed positions at which specific
operations occur, nor location specified gates with fixed operations. The localizations
undergo transformations, form bound states, annihilate, or fuse when they interact
with other mobile patterns. Information values of localizations are transformed as a
result of collision and thus a computation is implemented [3].

The paradigm of collision-based computing originates from the technique of prov-
ing computational universality of game of life [14], conservative logic and billiard
ball model [20], and their cellular automaton implementations [30].

Solitons, defects in tubulin microtubules, excitons in Scheibe aggregates, and
breather in polymer chains are most frequently considered candidates for a role of
information carrier in nature-inspired collision-based computers (see overview in the
work by Adamatzky [1]). It is experimentally difficult to reproduce all these artifacts
in natural systems; therefore, existence of mobile localizations in an experiment-
friendly chemical media would open new horizons for fabrication of collision-based
computers.

The basis for material implementation of collision-based universality of reaction—
diffusion chemical media is discovered by Sendina-Nadal et al. [44]. They experi-
mentally proved the existence of localized excitations—traveling wave fragments that
behave like quasiparticles—in photosensitive subexcitable Belousov—Zhabotinsky
medium.

158 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

We show how logical circuits can be fabricated in a subexcitable BZ medium
via collisions between traveling wave fragments. While implementation of collision-
based logical operations is relatively straightforward [5], more attention should be
paid to control of signal propagation in the homogeneous medium. It has been demon-
strated that applying light of varying intensity we can control excitation dynamics in
Belousov—Zhabotinsky medium [13,22,36], wave velocity [47], and pattern forma-
tion [51]. Of particular interest are experimental evidences of light-induced back-
propagating waves, wave front splitting, and phase shifting [59]; we can also manip-
ulate medium’s excitability by varying intensity of the medium’s illumination [15].
On the basis of these facts we show how to control signal wave fragments by varying
geometric configuration of excitatory and inhibitory segments of impurity reflectors.

We built our model on a two-variable Oregonator equation [19,49] adapted to a
light-sensitive BZ reaction with applied illumination [13]:

ou 1 5 u—gq 2
— = - — — e D,V-u,
N 6(u u (fv+¢)u+q>+ uVu
ov

— =u—v,

ot

where variables u and v represent local concentrations of bromous acid (HBrO,) and
the oxidized form of the catalyst ruthenium (Ru(IIl)), respectively, € sets up a ratio
of timescale of variables u and v, g is a scaling parameter depending on reaction
rates, f is a stoichiometric coefficient, and ¢ is a light-induced bromide production
rate proportional to intensity of illumination (an excitability parameter—moderate
intensity of light will facilitate excitation process, higher intensity will produce ex-
cessive quantities of bromide which suppresses the reaction). We assumed that the
catalyst is immobilized in a thin layer of gel; therefore, there is no diffusion term
for v. To integrate the system we used the Euler method with five-node Laplacian
operator, time step At = 1073, and grid point spacing Ax = 0.15, with the following
parameters: ¢ = ¢o + A/2, A = 0.0011109, ¢o = 0.0766, ¢ = 0.03, f = 1.4, and
g = 0.002. Chosen parameters correspond to a region of “higher excitability of the
subexcitability regime” outlined in the work by Sedina-Nadal et al. [44] (see also how
to adjust f and ¢ in the work by Qian and Murray [38]) that supports propagation
of sustained wave fragments (Fig. 5.8a). These wave fragments are used as quanta of
information in our design of collision-based logical circuits. The waves were initi-
ated by locally disturbing initial concentrations of species; for example, 10 grid sites
in a chain are given value u = 1.0 each; this generated two or more localized wave
fragments, similarly to counterpropagating waves induced by temporary illumina-
tion in experiments [59]. The traveling wave fragments keep their shape for around
4 x 103-10* steps of simulation (4—10 time units), then decrease in size and vanish.
The wave’s lifetime is sufficient, however, to implement logical gates; this also allows
us not to worry about “garbage collection” in the computational medium.

We model signals by traveling wave fragments [13,44]: a sustainably propagating
wave fragment (Fig. 5.8a) represents TRUE value of a logical variable corresponding
to the wave’s trajectory (momentarily wire).

LOGICAL UNIVERSALITY 159

= N
= N
= »)l),/
2 Y,
D))
. J BN
= /_

FIGURE 5.8 Basic operations with signals. Overlay of images taken every 0.5 time units.
Exciting domains of impurities are shown in black; inhibiting domains of impurities are shown
in gray. (a) Wave fragment traveling north. (b) Signal branching without impurities: a wave
fragment traveling east splits into two wave fragments (traveling southeast and northeast) when
it collides with a smaller wave fragment traveling west. (c) Signal branching with impurity:
wave fragment traveling west is split by impurity (d) into two waves traveling northwest and
southwest. (e) Signal routing (U-turn) with impurities: a wave fragment traveling east is routed
north and then west by two impurities. (f) An impurity reflector consists of inhibitory (gray)
and excitatory (black) chains of grid sites.

To demonstrate that a physical system is logically universal, it is enough to im-
plement negation and conjunction or disjunction in spatiotemporal dynamics of the
system. To realize a fully functional logical circuit, we must also know how to op-
erate input and output signals in the system’s dynamics, namely to implement signal
branching and routing; delay can be realized via appropriate routing.

We can branch a signal using two techniques. First, we can collide a smaller
auxiliary wave to a wave fragment representing the signal, the signal wave will split
then into two signals (these daughter waves shrink slightly down to stable size and
then travel with constant shape further 4 x 103 time steps of the simulation) and the
auxiliary wave will annihilate (Fig. 5.8b).

Second, we can temporarily and locally apply illumination impurities on a signal’s
way to change properties of the medium and thus cause the signal to split (Fig. 5.8¢c
and d). We must mention, it was already demonstrated in the work by Yoneyama [59],
that wave front influenced by strong illumination (inhibitory segments of the impurity)
splits and its ends do not form spirals, as in typical situations of excitable media.

160 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

J I I I |
(a)

Xy

x}_~ {—X———i_ e A_‘J!
Y S\

Xy

(h)

FIGURE 5.9 Implementation of conservative gate in Belousov—Zhabotinsky system.
(a) Elastic co-collision of two wave fragments, one traveling west and the other east. The
fragments change directions of their motion to northwest and southeast, respectively, as a re-
sult of the collision. (b) Scheme of the gate. In (a), logical variables are represented as x = 1
and y = 1.

A control impurity, or reflector, consists of a few segments of sites whose illu-
mination level is slightly above or below overall illumination level of the medium.
Combining excitatory and inhibitory segments we can precisely control wave’s tra-
jectory, for example, realize U-turn of a signal (Fig. 5.8e and f).

A typical billiard ball model interaction gate [20,30] has two inputs—x and y,
and four outputs—xYy (ball x moves undisturbed in absence of ball y), Xy (ball y
moves undisturbed in absence of ball x), and twice xy (balls x and y change their
trajectories when collided with each other). Such conservative interaction gate can be
implemented via elastic collision of wave fragment see Fig. 5.9.

The elastic collision is not particularly common in laboratory prototypes of chem-
ical systems; more often interacting waves either fuse or one of the waves annihilates
as a result of the collision with another wave. This leads to nonconservative version

L)
(T

Ty

(a) (h)

FIGURE 5.10 Two wave fragments undergo angle collision and implement interaction gate
(x,y) = (xy, xy, Xy). (a) In this example x = 1 and y = 1, both wave fragments are present
initially. Overlay of images taken every 0.5 time units. (b) Scheme of the gate. In upper-left
and bottom-left corners of (a) we see domains of wave generation two echo wave fragments
are also generated; they travel outward gate area and thus do not interfere with computation.

MEMORY 161

of the interaction gate with two inputs and three outputs, that is, just one xy output
instead of two. Such collision gate is shown in Figure 5.10.

Rich dynamics of subexcitable Belousov-Zhabotinsky medium allows us also to
implement complicated logical operations just in a single interaction event (see details
in the work by Adamatzky et al. [5]).

5.4 MEMORY

Memory in chemical computers can be represented in several following ways. In
precipitating systems, any site with precipitate is amemory element. However, they are
not rewritable. In “classical” excitable chemical systems, like Belousov—Zhabotinsky
dynamics, one can construct memory as a configuration of sources of spiral or target
ways. We used this technique to program movement of wheeled robot controlled by
onboard chemical reactor with Belouso—Zhabotinsky system [5]. The method has the
same drawback as precipitating memory—as soon as reaction space is divided by
spiral or target waves, it is quite difficult if not impossible to sensibly move source
of the waves. This is only possible with external inhibition or complete reset of the
medium.

In geometrically constrained excitable chemical medium, as demonstrated in the
work by Motoike et al. [33], we can employ old-time techniques of storing information
in induction coils and other types of electrical circuits, that is, dynamical memory. A
ring with an input channel is prepared from reaction substrate. The ring is broken by a
small gap and the input is also separated from the ring with a gap of similar width [33];
the gaps play arole of one-way gates to prevent excitation from spreading backwards.
The waves enter the ring via input channel and travel along the ring “indefinitely”
(till substrate lasts) [33]. The approach aims to split reaction—diffusion system into
many compartments, and thus does not fit our paradigm of computing in uniform
medium.

In our search for real-life chemical systems exhibiting both mobile and stationary
localizations, we discovered a cellular automaton model [53] of an abstract activator—
inhibitor reaction—diffusion system, which ideally fits the framework of the collision-
based computing paradigm and reaction—diffusion computing. The phenomenology
of the automaton was discussed in detail in our previous work [53]; therefore, in the
present paper we draw together the computational properties of the reaction—diffusion
cellular hexagonal automaton. The automaton imitates spatiotemporal dynamics of
the following reaction equations:

A+65S—> A A+I1—1 A+31—> 1
A+2]—> S 2A — 1
3A— A BA — I

I— S.

162 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

Each cell of the automaton takes three states—substrate S, activator A, and in-
hibitor /. Adopting formalism from [7], we represent the cell state transition rule as
a matrix M = (m;;), where 0 <i < j<7,0<i+j<7,and m;; € {I, A, S}. The
output state of each neighborhood is given by the row index i, the number of neigh-
bors in cell state /, and column index j (the number of neighbors in cell state A). We
do not have to count the number of neighbors in cell state S, because it is given by
7 — (i + j). A cell with a neighborhood represented by indexes i and j will update
to cell state M;; that can be read off the matrix. In terms of the cell state transition
function, this can be presented as follows: Xt = M, (xyoy (xy » Where o; (x)" is a sum
of cell x’s neighbors in state i, i = 1, 2, at time step ¢. The exact matrix structure,
which corresponds to matrix M3 in the work by Wuensche and Adamatzky [53], is as
follows:

hinthnthnthn tn ”n n
N nn~Nunu~
~NONONON NN

o N S N S
~~~N~

~ O~

The cell state transition rule reflects the nonlinearity of activator—inhibitor interac-
tions for subthreshold concentrations of the activator. Namely, for small concentration
of the inhibitor and for threshold concentrations, the activator is suppressed by the
inhibitor, while for critical concentrations of the inhibitor both inhibitor and activator
dissociate producing the substrate. In exact words, Mp; = A symbolizes the diffusion
of activator A, M1 = I represents the suppression of activator A by the inhibitor 7,
and M, =1(z=0,---,5) can be interpreted as self-inhibition of the activator in
particular concentrations. M,3 = A(z = 0, ..., 4) means a sustained excitation under
particular concentrations of the activator. Mo = S (z = 1, ..., 7) means that the in-
hibitor is dissociated in absence of the activator, and that the activator does not diffuse
in subthreshold concentrations. And, finally, M, = I, p > 4 is an upper-threshold
self-inhibition.

Among nontrivial localizations, see full “catalog” in the work by Adamatzky and
Wuensche Study [8], found in the medium we selected eaters gliders G4 and G3g,
mobile localizations with activator head and inhibitor tail, and eaters Eg¢, stationary
localizations transforming gliders colliding into them, as components of the memory
unit.

The eater E¢ can play the role of a six-bit flip-flop memory device. The substrate
sites (bit-down) between inhibitor sites (Fig. 5.11) can be switched to an inhibitor state
(bit-up) by a colliding glider. An example of writing one bit of information in Eg is
shown in Figure 5.12. Initially, E¢ stores no information. We aim to write one bit in the
substrate site between the northern and northwestern inhibitor sites (Fig. 5.12a). We



MEMORY 163

(@) (b () (@)

FIGURE 5.11 Localizations in reaction—diffusion hexagonal cellular automaton. Cell with
inhibitor / are empty circles, and cells with activator A are black disks. (a) Stationary local-
ization eater E, (b), (¢) two forms of glider G4, and (d) glider G4 [8].

generate a glider G4 (Fig. 5.12b and c) traveling west. G34 collides with (or brushes
past) the north edge of Eg, resulting in G34 being transformed to a different type of
glider, G4 (Fig. 5.12g and h). There is now a record of the collision—evidence that
writing was successful. The structure of Eg now has one site (between the northern
and northwestern inhibitor sites) changed to an inhibitor state (Fig. 5.12j)—a bit was
saved [8].

To read a bit from the E¢ memory device with one bit-up (Fig. 5.13a), we collide
(or brush past) with glider G34 (Fig. 5.13b). Following the collision, the glider G34
is transformed into a different type of basic glider, G4 (Fig. 5.13g), and the bit is
erased (Fig. 5.13j).

0 (€9) (h) (O] ()]

FIGURE 5.12 Write bit [8]. (a)t;(b)t+ 15(c)t +2;(d)t + 3;(e)t +4;(f)t +5;(g) ¢t +
6;(h)t+ 7; (i)t + 8;(j) 1 + 9.



164 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

0 (€] (h) @ 0]

FIGURE 5.13 Read and erase bit [8]. (a)t;(b)t+5;(c)t +7;(d)t+ 8;(e)t +9;(f)t +
10; (@)t + 11;(h)t + 12; ()t + 13;(j) ¢ + 14.

5.5 PROGRAMMABILITY

When developing a coherent theoretical foundation of reaction—diffusion computing
in chemical media, one should pay particular attention to issues of programmability.
In chemical laboratory, the term programmability means controllability.

How real chemical systems can be controlled? The majority of the literature, related
to theoretical and experimental studies concerning the controllability of reaction—
diffusion medium, deals with the application of an electric field. For example, in a
thin-layer Belousov—Zhabotinsky reactor stimulated by an electric field the following
phenomena are observed. The velocity of excitation waves is increased by a negative
and decreased by a positive electric field. Very high electric field, applied across the
medium, splits a wave into two waves that move in opposite directions; stabilization
and destabilization of wave fronts are also observed (see [5]).

The other control parameters may include temperature (e.g., program transitions
between periodic and chaotic oscillations), substrate’s structure (controlling forma-
tion, annihilation, and propagation of waves), and illumination (inputting data and
routing signals in light-sensitive chemical systems).

Let us demonstrate a concept of control-based programmability in models of
reaction—diffusion processors. First, we show how to adjust reaction rates in chemical
medium to make it perform computation of Voronoi diagram over a set of given points.
Second, we show how to switch excitable system between specialized-processor and
universal-processor modes (see the work by Adamatzky et al. [5] for additional ex-
amples and details).

Let a cell x of a two-dimensional lattice take four states: resting o, excited (4),
refractory (—) and precipitate *, and update their states in discrete time ¢ depending



PROGRAMMABILITY 165

Refractory

) Excited
Resting

0 <o 0 <o, <0,

(%} .
‘ Precipitate

(a) (b)

FIGURE 5.14 Cell state transition diagrams: (@) model of precipitating reaction—diffusion
medium and (b) model of excitable system.

on the number o’(x) of excited neighbors in its eight-cell neighborhood as follows
(Fig. 5.14a):

o Aresting cell x becomes excitedif 0 < o'(x) < 6 and precipitatesif 9, < o’ (x).
o An excited cell “precipitates” if §; < o’ (x) or otherwise becomes refractory.

¢ Arefractory cell recovers to the resting state unconditionally, and the precipitate
cell does not change its state.

Initially, we perturb the medium, excite it in several sites, thus inputting data.
Waves of excitation are generated, they grow, collide with each other, and annihilate
as a result of the collision. They may form a stationary inactive concentration profile
of a precipitate, which represents the result of the computation. Thus, we can only

be concerned with reactions of precipitation: +E>* and ofH + g*, where ki and k>
are inversely proportional to 61 and 6;, respectively. Varying 6; and 6, from 1 to 8,
and thus changing precipitation rates from the maximum possible to the minimum,
we obtain various kinds of precipitate patterns, as shown in Figure 5.15.

Precipitate patterns developed for relatively high ranges of reaction rates (3 <
01,6, <4) represent discrete Voronoi diagrams (a given “planar” set, repre-
sented by sites of initial excitation, is visible in pattern 6y = 6, =3 as white
dots inside the Voronoi cells) derived from the set of initially excited sites (see
Fig. 5.16a and b). This example demonstrates that by externally controlling pre-
cipitation rates we can force the reaction—diffusion medium to compute a Voronoi
diagram.

When dealing with excitable media excitability is the key parameter for tuning
spatiotemporal dynamics. We demonstrated that by varying excitability we can force
the medium to exhibit almost all possible types of excitation dynamics [1].

Let each cell of 2D automaton take three states: resting (-), exciting (+), and
refractory (—), and update its state depending on number o of excited neighbors in its
eight-cell neighborhood (Fig. 5.14a). A cell goes from excited to refractory and from



166 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

FIGURE5.15 Final configurations of reaction—diffusion medium for 1 < 6, < 6, < 2.Rest-
ing sites are black, precipitate is white [4].

refractory to resting states unconditionally, and resting cell excites if o4 € [01, 03],
1 <61 <6, < 8. By changing 6; and 6, we can move the medium dynamics in a
domain of “conventional” excitation waves, useful for image processing and robot
navigation [5] (Fig. 5.17a), as well as make it exhibit mobile localized excitations

(a) (h)

FIGURE 5.16 Exemplary configurations of reaction—diffusion medium for (a) 6; = 3 and
6, = 3, and (b) 8; = 4 and 6, = 3. Resting sites are black, precipitate is white [5].



ROBOT NAVIGATION AND MASSIVE MANIPULATION 167

(@) (b)

FIGURE 5.17 Snapshots of space—time excitation dynamics for excitability o, € [1, 8] (a)
and o, € [2, 2] ().

(Fig. 5.17b), quasiparticles, and discrete analogs of dissipative solitons, employed in
collision-based computing [1].

5.6 ROBOT NAVIGATION AND MASSIVE MANIPULATION

As we have seen in previous sections, reaction—diffusion chemical systems can solve
complex problems and implement logical circuits. Embedded controllers for nontradi-
tional robotics architectures would be yet another potentially huge field of application
of reaction—diffusion computers. The physicochemical artifacts are well known to be
capable of sensible motion. Most famous are Belousov—Zhabotinsky vesicles [24],
self-propulsive chemosensitive drops [25,35], and ciliar arrays. Their motion is di-
rectional but somewhere lacks sophisticated control mechanisms.

At the present stage of reaction—diffusion computing research, it seems to be diffi-
cult to provide effective solutions for experimental prototyping of combined sensing,
decision making, and actuating. However, as a proof-of-concept we can always con-
sider hybrid “wetware + hardware” systems. For example, to fabricate a chemical
controller for robot, we can place a reactor with Belousov—Zhabotinsky solution
onboard of a wheeled robot and allow the robot to observer excitation wave dynamics
in the reactor. When the medium is stimulated at one point, target waves are formed.
The robot becomes aware of the direction toward source of stimulation from the
topology of the wave fronts [2,5].

A set of remarkable experiments were undertaken by Hiroshi Yokoi and Ben De
Lacy Costello. They built interface between robotic hand and Belousov—Zhabotinsky
chemical reactor [57]. Excitation waves propagating in the reactor were sensed by
photodiodes, which triggered finger motion. When the bending fingers touched the
chemical medium with their glass nails filled with colloid silver, circular waves were
triggered in the medium [5]. Starting from any initial configuration, the chemical
robotic system does always reach a coherent activity mode, where fingers move in



168 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

regular, somewhat melodic patterns, and few generators of target waves govern dy-
namics of excitation in the reactor [57].

The chemical processors for navigating wheeled robot and for controlling, and
actively interacting with, a robotic hand are well discussed in our recent mono-
graph [5]; therefore, we do not go into details in the present chapter. Instead, we
concentrate on rather novel findings on coupling of reaction—diffusion system with
massive parallel array of virtual actuators.

How areaction—diffusion medium can manipulate objects? To find out we couple a
simulated abstract parallel manipulator with an experimental Belousov—Zhabotinsky
(BZ) chemical medium, so the excitation dynamics in the chemical system are re-
flected in changing the OFF—ON mode of elementary actuating units. In this case,
we convert experimental snapshots of the spatially distributed chemical system to a
force vector field and then simulate the motion of manipulated objects in the force
field, thus achieving reaction—diffusion medium controlled actuation. To build an in-
terface between the recordings of space—time snapshots of the excitation dynamics
in BZ medium and simulated physical objects, we calculate force fields generated by
mobile excitation patterns and then simulate the behavior of an object in this force
field.

Chemical medium to perform actuation is prepared following the typical receipt!
(see the works by Adamatzky et al. [6] and Field and Winfee [18]), based on a
ferroin-catalyzed BZ reaction. A silica gel plate is cut and soaked in a ferroin
solution. The gel sheet is placed in a Petri dish and BZ solution is added. Dynamics
of the chemical system is recorded at 30-s intervals using a digital camera.

The cross-section profile of the BZ wave front recorded on a digital snapshot shows
a steep rise of red color values in the pixels at the wave front’s head and a gradual
descent in the pixels along the wave front’s tail. Assuming that excitation waves push
the object, local force vectors generated at each site—pixel of the digitized image—of
the medium should be oriented along local gradients of the red color values. From the
digitized snapshot of the BZ medium we extract an array of red components from the
snapshot’s pixels and then calculate the projection of a virtual vector force at the pixel.
Force fields generated by the excitation patterns in a BZ system (Fig. 5.18) result in
tangential forces being applied to a manipulated object, thus causing translational and
rotational motions of the object [6].

Nonlinear medium controlled actuators can be used for sorting and manipulating
both small objects, comparable in size to the elementary actuating unit, and larger
objects, with lengths of tens or hundreds of actuating units. Therefore, we demonstrate
here two types of experiments with BZ-based manipulation of pixel-sized objects and
of planar convex shapes.

Pixel objects, due to their small size, are subjected to random forces, caused by
impurities of the physical medium and imprecision of the actuating units. In this case,
no averaging of forces is allowed and the pixel objects themselves sensitively react
to a single force vector. Therefore, we adopt the following model of manipulating a

Chemical laboratory experiments are undertaken by Dr. Ben De Lacy Costello (UWE, Bristol, UK).



ROBOT NAVIGATION AND MASSIVE MANIPULATION 169

,%?‘fﬁi,

gﬂ%ﬁf%mm ity

Hi.i),g
o ;ﬁ@ﬁwﬁiﬂ :mmmgﬁ‘\*

. U **i??ﬁi‘fi‘i&w Wﬂuwﬂ“ﬁ

%lﬁw{ﬂlwlﬂlmw
u

(@) (b)
FIGURE 5.18 Force vector field (b) calculated from BZ medium’s image (a) [6].

pixel object: if all force vectors at the eight-pixel neighborhood of the current site of
the pixel object are nil, then the pixel object jumps to a randomly chosen neighboring
pixel of its neighborhood, otherwise the pixel object is translated by the maximum
force vector in its neighborhood.

‘When placed on the simulated manipulating surface, pixel objects move at random
in the domains of the resting medium; however, by randomly drifting each pixel object
does eventually encounter a domain of coaligned vectors (representing excitation
wave front in BZ medium) and is translated along the vectors. An example of several
pixel objects transported on a “frozen” snapshot of the chemical medium is shown
in Figure 5.19. Trajectories of pixel objects (Fig. 5.19a) show distinctive intermittent
modes of random motion separated by modes of directed “jumps” guided by traveling
wave fronts. Smoothed trajectories of pixel objects (Fig. 5.19b) demonstrate that
despite a very strong chaotic component in manipulation, pixel objects are transported
to the sites of the medium where two or more excitation wave fronts meet.

(a) (b)

FIGURE 5.19 Examples of manipulating five pixel objects using the BZ medium: (a) tra-
jectories of pixel objects, (b) jump trajectories of pixel objects recorded every 100th time step.
Initial positions of the pixel objects are shown by circles [6].



170 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

The overall speed of pixel object transportation depends on the frequency of wave
generations by sources of target waves. As a rule, the higher the frequency, the faster
the objects are transported. This is because in parts of the medium spanned by low
frequency target waves there are lengthy domains of resting system, where no force
vectors are formed. Therefore, pixel-sized object can wander randomly for a long
time till climbing next wave front [6].

To calculate the contribution of each force we partitioned the object into frag-
ments, using a square grid, in which each cell of the grid corresponds to one pixel of
the image. We assume that the magnitude of the force applied to each fragment above
given pixel is proportional to the area of the fragment and is codirectional with a force
vector. A momentum of inertia of the whole object with respect to axis normal to the
object and passing through the object’s center of mass is calculated from the position
of the center of mass and the mass of every fragment. Since the object’s shape and
size are constant, it is enough to calculate the moment of inertia only at the beginning
of simulation. We are also taking into account principal rotational momentum created
by forces and angular acceleration of the object around its center of mass. Therefore,
object motion in our case can be sufficiently described by coordinates of its center of
mass and its rotation at every moment of time [6].

Spatially extended objects follow the general pattern of motion observed for the
pixel-sized objects. However, due to integration of many force vectors the motion of
planar objects is smoother and less sensitive to the orientation of any particular force
vector.

(a) (b)

FIGURE5.20 Manipulating planar object in BZ medium. (a) Right-angled triangle moved by
fronts of target waves. (b) Square object moved by fronts of fragmented waves in subexcitable
BZ medium. Trajectories of center of mass of the square are shown by the dotted line. Exact
orientation of the objects is displayed every 20 steps. Initial position of the object is shown by
© and the final position by ® [6].



SUMMARY 171

Outcome of manipulation depends on the size of the object; with increas-
ing size of the object—due to larger numbers of local vector forces acting on
the object—the objects become more controllable by the excitation wave fronts
(Fig. 5.20).

5.7 SUMMARY

The field of reaction—diffusion computing started 20 years ago [27] as a subfield of
physics and chemistry dealing with image processing operations in uniform thin-layer
excitable chemical media. The basic idea was to apply input data as two-dimensional
profile of heterogeneous illumination, then allow excitation waves spread and inter-
act with each other, and then optically record result of the computation. The first
even reaction—diffusion computers were already massively parallel, with parallel op-
tical inputs and outputs. Later computer engineers entered the field and started to ex-
ploit traditional techniques—wires were implemented by channels where wave pulses
travel, and specifically shaped junctions acted as logical valves. In this manner, most
“famous” chemical computing devices were implemented, including Boolean gates,
coincidence detectors, memory units, and more. The upmost idea of reaction—
diffusion computation was if not ruined then forced into cul-de-sac of nonclassical
computation. The breakthrough happened when paradigms and solutions from the
field of dynamical, collision-based computing and conservative logic were mapped
onto realms of spatially extended chemical systems. The computers became uniform
and homogeneous.

In several examples we demonstrated that reaction—diffusion chemical systems
are capable of solving combinatorial problems with natural parallelism. In spatially
distributed chemical processors, the data and the results of the computation are en-
coded as concentration profiles of the chemical species. The computation per se is
performed via the spreading and interaction of wave fronts.

The reaction—diffusion computers are parallel because the chemical medium’s
microvolumes update their states simultaneously, and molecules diffuse and react in
parallel. During the last decades, a wide range of experimental prototypes of reaction—
diffusion computing devices have been fabricated and applied to solve various prob-
lems of computer science, including image processing, pattern recognition, path plan-
ning, robot navigation, computational geometry, logical gates in spatially distributed
chemical media, and arithmetical and memory units.

These important, but scattered across many scientific fields, results convince us that
reaction—diffusion systems can do a lot. Are they capable enough to be intelligent?
Yes, reaction—diffusion systems are smart—showing a state of readiness to respond,
able to cope with difficult situations, capable for determining something by mathemat-
ical and logical methods—and endowed with capacity to reason. Reaction—diffusion
computers allow for massive parallel input of data. Equivalently, reaction—diffusion
robots would need no dedicated sensors, each microvolume of the medium, each
site of the matrix gel, is sensitive to changes in one or another physical character-
istic of the environment. Electric field, temperature, and illumination are “sensed”



172 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

by reaction—diffusion devices, and these are three principal parameters in controlling
and programming reaction—diffusion robots.

Hard computational problems of geometry, image processing, and optimization
on graphs are resource efficiently solved in reaction—diffusion media due to intrinsic
natural parallelism of the problems [1]. In this chapter we demonstrated efficiency of
reaction—diffusion computers on example of construction of Voronoi diagram. The
Voronoi diagram is a subdivision of plane by data planar set. Each point of the data
set is represented by a drop of a reagent. The reagent diffuses and produces a color
precipitate when reacting with the substrate. When two or more diffusive fronts of
the “data” chemical species meet, no precipitate is produced (due to concentration-
dependent inhibition). Thus, uncolored domains of the computing medium represent
bisectors of the Voronoi diagram. The precipitating chemical processor can also com-
pute a skeleton. The skeleton of a planar shape is computed in the similar manner.
A contour of the shape is applied to computing substrate as a disturbance in reagent
concentrations. The contour concentration profile induces diffusive waves. A reagent
diffusing from the data contour reacts with the substrate and the precipitate is formed.
Precipitate is not produced at the sites of diffusive waves’ collision. The uncolored
domains correspond to the skeleton of the data shape. To compute a collision-free
shortest path in a space with obstacles, we can couple two reaction—diffusion media.
Obstacles are represented by local disturbances of concentration profiles in one of
the media. The disturbances induce circular waves traveling in the medium and ap-
proximating a scalar distance-to-obstacle field. This field is mapped onto the second
medium, which calculates a tree of “many-sources-one-destination” shortest paths by
spreading wave fronts [5].

There is still no rigorous theory of reaction—diffusion computing, and God knows if
one will ever be developed; however, algorithms are intuitively convincing and range
of applications is wide, and after all the whole field of nature-inspired computing is
built on interpretations:

Of course, this is only a plausible consideration and not a mathematical proof, since the
question still remains whether the mathematical interpretation of the physical event is
adequate in a strict sense, or whether it gives only an adequate image of physical reality.
Sometimes such experiments, even if performed only in imagination, are convincing
even to mathematicians [16].

5.8 ACKNOWLEDGEMENTS

Many thanks to Ben De Lacy Costello, who implemented chemical laboratory proto-
types of reaction—diffusion computers discussed in the chapter. I am grateful to Andy
Wuensche (hexagonal cellular automatons), Hiroshi Yokoi (robotic hand controlled
by Belousov—Zhabotinsky reaction), Chris Melhuish (control of robot navigation),
Sergey Skachek (massive parallel manipulation), Tetsuya Asai (LSI prototypes of
reaction—diffusion computers) and Genaro Martinez (binary-state cellular automa-
tons) for their cooperation. Some pictures, where indicated, where adopted from our



REFERENCES 173

coauthored publications. Special thanks to Ikuko Motoike for correcting the original
version of the chapter.

REFERENCES

. Adamatzky A. Computing in Nonlinear Media and Automata Collectives. Institute of

Physics Publishing; 2001.

. Adamatzky A, De Lacy Costello BPJ. Experimental logical gates in a reaction—diffusion

medium: the XOR gate and beyond. Phys Rev E 2002;66:046112.

. Adamatzky A, editor. Collision Based Computing. Springer; 2003.

. Adamatzky A. Programming reaction—diffusion computers. In: Unconventional Program-

ming Paradigms. Springer; 2005.

. Adamatzky A, De Lacy Costello B, Asai T. Reaction-Diftusion Computers. Elsevier; 2005.

6. Adamatzky A, De Lacy Costello B, Skachek S, Melhuish C. Manipulating objects with

10.

11.

12.

13.

14.

15.

16.
17.

18.

chemical waves: open loop case of experimental Belousov—Zhabotinsky medium. Phys
Lett A 2005.

. Adamatzky A, Wuensche A, De Lacy Costello B. Glider-based computation in reaction—

diffusion hexagonal cellular automata. Chaos, Solitons Fract 2006;27:287-295.

. Adamatzky A, Wuensche A. Computing in ‘spiral rule’ reaction—diffusion hexagonal

cellular automaton. Complex Syst. 2007;16:1-27.

. Agladze K, Magome N, Aliev R, Yamaguchi T, Yoshikawa K. Finding the optimal path

with the aid of chemical wave. Physica D 1997;106:247-254.

Asai T, De Lacy Costello B, Adamatzky A. Silicon implementation of a chemical
reaction-diffusion processor for computation of Voronoi diagram. Int J Bifurcation Chaos
2005;15(1).

Asai T, Kanazawa Y, Hirose T, Amemiya Y. Analog reaction—diffusion chip imitating
Belousov—Zhabotinsky reaction with hardware oregonator model. Int J Unconven Comput
2005;1:123-147.

Oya T, Asai T, Fukui T, Amemiya Y. Reaction—diffusion systems consisting of single-
electron oscillators. Int J Unconvent Comput 2005;1:179-196.

Beato V, Engel H. Pulse propagation in a model for the photosensitive Belousov—
Zhabotinsky reaction with external noise. In: Schimansky-Geier L, Abbott D, Neiman A,
Van den Broeck C, editors. Noise in Complex Systems and Stochastic Dynamics. Proc
SPIE 2003;5114:353-62.

Berlekamp ER, Conway JH, Guy RL. Winning Ways for Your Mathematical Plays.
Volume 2. Academic Press; 1982.

Brandtstadter H, Braune M, Schebesch I, Engel H. Experimental study of the dynamics
of spiral pairs in light-sensitive Belousov—Zhabotinskii media using an open-gel reactor.
Chem Phys Lett 2000;323:145-154.

Courant R, Robbins H. What is Mathematics? Oxford University Press; 1941.

Dupont C, Agladze K, Krinsky V. Excitable medium with left—right symmetry breaking.
Physica A 1998;249:47-52.

Field R, Winfree AT. Travelling waves of chemical activity in the Zaikin—Zhabotinsky—
Winfree reagent. ] Chem Educ 1979; 56:754.



174 ALGORITHMS OF REACTION-DIFFUSION COMPUTING

19. Field RJ, Noyes RM. Oscillations in chemical systems. I'V. Limit cycle behavior in a model
of a real chemical reaction. J Chem Phys 1974;60:1877-1884.

20. Fredkin F, Toffoli T. Conservative logic. Int ] Theor Phys 1982;21:219-253.

21. Gerhardt M, Schuster H, Tyson JJ. A cellular excitable media. Physica D 1990;46:392-415.

22. Grill S, Zykov VS, Miiller SC. Spiral wave dynamics under pulsatory modulation of ex-
citability. J Phys Chem 1996;100:19082-19088.

23. Hartman H, Tamayo P. Reversible cellular automata and chemical turbulence. Physica D
1990;45:293-306.

24. Kltahata H, Aihara R, Magome N, Yoshikawa K. Convective and periodic motion driven
by a chemical wave. J Chem Phys 2002;116:5666.

25. Kitahata H, Yoshikawa K. Chemo-mechanical energy transduction through interfacial in-
stability. Physica D 2005;205:283-291.

26. Klein R. Concrete and abstract Voronoi diagrams. Berlin: Springer-Verlag; 1990.

27. Kuhnert L. A new photochemical memory device in a light sensitive active medium. Nature
1986;319:393.

28. Kuhnert L, Agladze KL, Krinsky VI. Image processing using light-sensitive chemical
waves. Nature 1989;337:244-247.

29. Kusumi T, Yamaguchi T, Aliev R, Amemiya T, Ohmori T, Hashimoto H, Yoshikawa K.
Numerical study on time delay for chemical wave transmission via an inactive gap. Chem
Phys Lett 1997;271:355-360.

30. Margolus N. Physics-like models of computation. Physica D 1984;10:81-95.

31. Markus M, Hess B. Isotropic cellular automata for modelling excitable media. Nature
1990;347:56-58.

32. Mills J. The new computer science and its unifying principle: complementarity and uncon-
ventional computing. Position Papers. International Workshop on the Grand Challenge in
Nonclassical Computation; New York; 2005 Apr 18-19.

33. Motoike IN, Yoshikawa K, Iguchi Y, Nakata S. Real-time memory on an excitable field.
Phys Rev E 2001;63:036220.

34. Motoike IN, Yoshikawa K. Information operations with multiple pulses on an excitable
field. Chaos Solitons Fract 2003;17:455-461.

35. Nagai K, Sumino Y, Kitahata H, Yoshikawa K. Mode selection in the spontaneous motion
of an alcohol droplets. Phys Rev E 2005;71:065301.

36. Petrov V, Ouyang Q, Swinney HL. Resonant pattern formation in a chemical system.
Nature 1997;388:655-657.

37. Pour-El MB. Abstract computability and its relation to the general purpose analog com-
puter (some connections between logic, differential equations and analog computers). Trans
Am Math Soc 1974;199:1-28.

38. Qian H, Murray JD. A simple method of parameter space determination for diffusion-driven
instability with three species. Appl Math Lett 2001;14:405-411.

39. Rambidi NG. Neural network devices based on reaction—diffusion media: an approach to
artificial retina. Supramol Sci 1998;5:765-767.

40. Rambidi NG, Shamayaev KR, Peshkov GY. Image processing using light-sensitive chem-
ical waves. Phys Lett A 2002;298:375-382.

41. Saltenis V. Simulation of wet film evolution and the Euclidean Steiner problem. Informatica
1999;10:457-466.



REFERENCES 175

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Sielewiesiuk J, Gorecki J. Logical functions of a cross junction of excitable chemical
media. J Phys Chem A 2001;105:8189-8195.

Schenk CP, Or-Guil M, Bode M, Purwins HG. Interacting pulses in three-component
reaction—diffusion systems on two-dimensional domains. Phys Rev Lett 1997;78:3781—
3784.

Sedina-Nadal I, Mihaliuk E, Wang J, Pérez-Munuzuri V, Showalter K. Wave propagation in
subexcitable media with periodically modulated excitability. Phys Rev Lett 2001;86:1646—
1649.

Sienko T, Adamatzky A, Rambidi N, Conrad M, editors. Molecular Computing. The MIT
Press; 2003.

Steinbock O, Toth A, Showalter K. Navigating complex labyrinths: optimal paths from
chemical waves. Science 1995;267:868-871.

Schebesch I, Engel H. Wave propagation in heterogeneous excitable media. Phys Rev E
1998;57:3905-3910.

Téth A, Showalter K. Logic gates in excitable media. ] Chem Phys 1995;103:2058-2066.
Tyson JJ, Fife PC. Target patterns in a realistic model of the Belousov—Zhabotinskii reac-
tion. J] Chem Phys 1980;73:2224-2237.

Vergis A, Steiglitz K, Dickinson B. The complexity of analog computation. Math Comput
Simulat 1986;28:91-113.

Wang J. Light-induced pattern formation in the excitable Belousov—Zhabotinsky medium.
Chem Phys Lett 2001;339:357-361.

Weaire D, Hutzler S, Cox S, Kern N, Alonso MD Drenckhan W. The fluid dynamics of
foams. J Phys: Condens Matter 2003;15:S65-S73.

Wuensche A, Adamatzky A. On spiral glider-guns in hexagonal cellular automata:
activator-inhibitor paradigm. Int J Modern Phys C 2006;17.

Yaguma S, Odagiri K, Takatsuka K. Coupled-cellular-automata study on stochastic and
pattern-formation dynamics under spatiotemporal fluctuation of temperature. Physica D
2004;197:34-62.

Yang X. Computational modelling of nonlinear calcium waves. Appl Math Model
2006;30:200-208.

Yang X. Pattern formation in enzyme inhibition and cooperativity with parallel cellular
automata. Parallel Comput 2004;30:741-751.

Yokoi H, Adamatzky A, De Lacy Costello B, Melhuish C. Excitable chemical medium
controlled for a robotic hand: closed loop experiments. Int J Bifurcation Chaos 2004.
Young D. A local activator—inhibitor model of vertebrate skin patterns. Math Biosci
1984;72:51.

Yoneyama M. Optical modification of wave dynamics in a surface layer of the Mn-catalyzed
Belousov—Zhabotinsky reaction. Chem Phys Lett 1996;254:191-196.






I CHAPTER 6

Data Mining Algorithms I: Clustering

DAN A. SIMOVICI

6.1 INTRODUCTION

Activities of contemporary society generate enormous amounts of data that are used
in decision support processes. Many databases have current volumes in the hundreds
of terabytes. An academic estimate [4] puts the volume of data created in 2002 alone
at 5 hexabytes (the equivalent of 5 million terabytes). The difficulty of analyzing
these kinds of data volumes by human operators is clearly insurmountable. This lead
to a rather new area of computer science, data mining, whose aim is to develop
automatic means of data analysis for discovering new and useful patterns embedded
in data.

Data mining builds on several disciplines, statistics, artificial intelligence,
databases, visualization techniques, and others, and has crystallized as a distinct dis-
cipline in the last decade of the past century.

The range of subjects in data mining is very broad. Among the main directions
of this branch of computer science, one should mention identification of associations
between data items, clustering, classification, summarization, outlier detection, and so
on. The diversity of these preoccupations makes impossible an exhaustive presentation
of data mining algorithms in a very limited space. In this chapter, we concentrate
on clustering algorithms. This choice will allow us a presentation that is as self-
contained as possible and gives a quite accurate image of the challenges posed by data
mining.

6.2 CLUSTERING ALGORITHMS

Clustering is the process of grouping together objects that are similar. The groups
formed by clustering are referred to as clusters. Similarity between objects that belong
to a set S is usually measured using a dissimilarity d : § x § — R thatis definite
(see Section 6.3), this means that d(x, y) = Oifand only if x = yandd(x, y) = d(y, x)

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenovi¢ Copyright © 2008 John Wiley & Sons, Inc.

177



178 DATA MINING ALGORITHMS I: CLUSTERING

for every x, y € S. Two objects x, y are similar if the value of d(x, y) is small; what
“small” means depends on the context of the problem.

Clustering can be regarded as a special type of classification, where the clusters
serve as classes of objects. It is a widely used data mining activity with multiple
applications in a variety of scientific activities ranging from biology and astronomy
to economics and sociology.

There are several points of view for examining clustering techniques. We follow
here the taxonomy of clustering presented in the work by Jain et al. [5].

Clustering may or may not be exclusive, where an exclusive clustering technique
yields clusters that are disjoint, while a nonexclusive technique produces overlapping
clusters. From an algebraic point of view, an exclusive clustering generates a partition
of the set of objects, and most clustering algorithms fit in this category.

Clustering may be intrinsic or extrinsic. Intrinsic clustering is an unsupervised
activity that is based only on the dissimilarities between the objects to be clustered.
Most clustering algorithms fall into this category. Extrinsic clustering relies on
information provided by an external source that prescribes, for example, which
objects should be clustered together and which should not.

Finally, clustering may be hierarchical or partitional.

In hierarchical clustering algorithms, a sequence of partitions is constructed. In
hierarchical agglomerative algorithms, this sequence is increasing and it begins with
the least partition of the set of objects whose blocks consist of single objects; as
the clustering progresses, certain clusters are fused together. As a result, an agglom-
erative clustering is a chain of partitions on the set of objects that begins with the
least partition ag of the set of objects S and ends with the largest partition wg. In
a hierarchical divisive algorithm, the sequence of partitions is decreasing. Its first
member is the one-block partition wg and each partition is built by subdividing the
blocks of the previous partition.

A partitional clustering creates a partition of the set of objects whose blocks are
the clusters such that objects in a cluster are more similar to each other than to objects
that belong to different clusters. A typical representative algorithm is the k-means
algorithm and its many extensions.

Our presentation is organized around the last dichotomy. We start with a class
of hierarchical agglomerative algorithms. This is continued with a discussion of the
k-means algorithm, a representative of partitional algorithms. Then, we continue
with a discussion of certain limitations of clustering centered around Kleinberg’s
impossibility theorem. We conclude with an evaluation of clustering quality.

6.3 BASIC NOTIONS: PARTITIONS AND DISSIMILARITIES

Definition 1 Let S be a nonempty set. A partition of S is a nonempty collection
of nonempty subsets of S, 7 = {B;|i € I} such that i # j implies B; N B; = and
U{Biliel}=S.

The members of the collection 7 are the blocks of the partition . The collection
of partitions of a set S is denoted by PART(S).



BASIC NOTIONS: PARTITIONS AND DISSIMILARITIES 179

Example 1 Let S = {a, b, ¢, d, ¢} be a set. The following collections of subsets of §
are partitions of S:

mo = {{a}, {b}, {c}, {d}, {e}},
71 = {{a, b}, {c}, {d, e}},

m = {{a, c}, {b}, {d, e}},

73 = {{a, b, c}{d, e}},

w4 = {{a, b, c, d, e}}. 0

A partial order relation can be defined on PART(S) by taking w < ¢ if every block
of 7 is included in some block of o. It is easy to see that for the partitions defined in
Example 1, we have mgp < m1 < 73 < w4 and mp < mp < w3 < m4; however, we have
neither m; < o nor my < 7y.

The partially ordered set (PART(S), <) has as its least element the partition whose
blocks are singletons of the form {x},

as = {{x}|x € S},

and as its largest element the one-block partition ws = {S}. For the partitions defined
in Example 1 we have 7y = a5 and 14 = ws.

We refer the reader to the work by Birkhoff [1] for a detailed discussion of the
properties of this partial ordered set.

To obtain a quantitative expression of the differences that exist between objects
we use the notion of dissimilarity.

Definition 2 A dissimilarity on a set S is a function d : §> — R satisfying the
following conditions:

(i) d(x,x)=0forallx € §;
(i) d(x,y)=d(y,x)forall x,y € S.

The pair (S, d) is a dissimilarity space.

The set of dissimilarities defined on a set S is denoted by Dg.
The notion of dissimilarity can be strengthened in several ways by imposing certain
supplementary conditions. A nonexhaustive list of these conditions is given next.

1. d(x, y) = 0 implies d(x, z) = d(y, z) for every x, y, z € S (evenness);

2. d(x,y) = 0 implies x = y for every x, y (definiteness);

3. d(x,y) <d(x, z) 4+ d(z, y) for every x, y, z (triangular inequality);

4. d(x,y) < max{d(x, z), d(z, y)} for every x, y, z (the ultrametric inequality).



180 DATA MINING ALGORITHMS I: CLUSTERING
The set of definite dissimilarities on a set S is denoted by Df.
Example 2 Consider the mapping d : (Seq,,(S))> — R defined by

d(p,q) = {il0 =i =n—land p(i) # q(D)}|,

for every sequences p, q of length n on the set S.

Clearly, d is a dissimilarity that is both even and definite. Moreover, it satisfies the
triangular inequality. Indeed, let p, ¢, r be three sequences of length n on the set S.
If p(i) # q(i), then r(i) must be distinct from at least one of p(i) and q(i). Therefore,

{il0 <i <n—1and p(i) # q@i)}
C{il0 <i<n—Tlandp@) #r@}VU{il0 <i<n-—1andr@) # q@)},

which implies the triangular inequality. O

The ultrametric inequality implies the triangular inequality; both the triangular
inequality and definiteness imply evenness (see Exercise 10).

Definition 3 A dissimilarity d € Dy is

1. ametric, if it satisfies the definiteness property and the triangular inequality;

2. an ultrametric, if it satisfies the definiteness property and the ultrametric
inequality.

The set of metrics and the set of ultrametrics on a set S are denoted by Mg and
Us, respectively.

If d is a metric or an ultrametric on a set S, then (S, d) is a metric space or an
ultrametric space, respectively.

Definition 4 The diameter of a finite metric space (S, d) is the number diamg 4 =
max{d(x, y)|x, y € S}.

Exercise 10 implies that UUs € Mg C Ds.

Example 3 Let G = (V, E) be a connected graph. Define the mapping d : V2 —
R>o by d(x, y) = m, where m is the length of the shortest path that connects x and
y. Then, d is a metric.
Indeed, we have d(x, y) = 0 if and only if x = y. The symmetry of d is obvious.
If p is a shortest path that connects x to z and ¢ is a shortest path that connects
z to y, then pq is a path of length d(x, z) + d(z, y) that connects x to y. Therefore,
d(x,y) <d(x,z)+d(z,y). a

In this chapter, we shall use frequently the notion of sphere in a metric space.



ULTRAMETRIC SPACES 181

Definition 5 Let (S, d) be a metric space. The closed sphere centered in x € S of
radius r is the set

By(x,r) ={y € Sld(x, y) < r}.
The open sphere centered in x € S of radius r is the set
Cix,r)={y e Sldx,y) <r}.

Let d be a dissimilarity and let S(x, y) be the set of all nonnull sequences s =
(S1,.-.,8,) € Seq(S) suchthats; = xands, = y. The d-amplitude of s is the number
ampy(s) = max{d(s;, sis )1 < i <n— 1},

If d is a ultrametric we have d(x, y) < min{amp,(s)|s € S(x, y)} (Exercise 1).

Dissimilarities defined on finite sets can be represented by matrices. If S =
{x1,...,x,} is a finite set and d: § x § — Ry is a dissimilarity, let Dy €
(R>0)"*" be the matrix defined by (Dy);; = d(x;, x;) for 1 < i, j < n. Clearly, all
main diagonal elements of D, are 0 and the matrix D is symmetric.

6.4 ULTRAMETRIC SPACES

Ultrametrics represent a strengthening of the notion of metric, where the triangular

inequality is replaced by the stronger ultrametric inequality. They play an important

role in studying hierarchical clustering algorithm, which we discuss in Section 6.5.
A simple, interesting property of triangles in ultrametric spaces is given next.

Theorem 1 Let (S, d) be an ultrametric space. For every x, y, z € S, two of the num-
bers d(x, y), d(x, 2), d(y, z) are equal and the third is not larger than the other two
equal numbers.

Proof. Let d(x,y) be the least of the numbers d(x,y),d(x,z),d(y,z). We
have d(x, z) < max{d(x, y), d(y, z} = d(y, z) and d(y, z) < max{d(x, y), d(x, 2)} =
d(x, z). Therefore, d(y,z) =d(x,z) and d(x,y) is not larger than the other
two. H

Theorem 1 can be paraphrased by saying that in an ultrametric space any triangle
is isosceles and the side that is not equal to the other two cannot be longer than these.
In an ultrametric space, a closed sphere has all its points as centers.

Theorem 2 Let B(x,r) be a closed sphere in the ultrametric space (S, d). If z €

B(x, d), then B(x, r) = B(z, r). Moreover, if two closed spheres B(x, r), B(y, r') space
have a point in common, they one of the closed spheres is included in the other.

Proof. See Exercise 7.1

Theorem 2 implies § = B(x, diamg 4) for any point x € S.



182 DATA MINING ALGORITHMS I: CLUSTERING

6.4.1 Construction of Ultrametrics

There is a strong link between ultrametrics defined on a finite set S and chains of
equivalence relations on S (or chains of partitions on §). This is shown in the next
statement.

Theorem 3 Let S be afinite setand letd : S x S —> Rx( be a function whose range
isRan(d) = {r1, ..., rm}, wherery = O suchthatd(x, y) = Oifand only ifx = y. For
u € S and r € R> define the set D, , = {x € S|d(u, x) < r}. Define the collection
of sets w, = {D(u, ri)lu € S} for1 <i <m.

The function d is an ultrametric on S if and only if the sequence of collections

Ty - .. T, IS an increasing sequence of partitions on S such that w,, = as and
Ty, = WS.
Proof. Suppose that d is an ultrametric on S. Then, the sets of the form D(x, r)
are precisely the closed spheres B(x, r). Since x € B(x, r) for x € §, it follows that
none of these sets is empty and that J, g B(x, ) = S. Any two distinct spheres
B(x, r), B(y, r) are disjoint by Theorem 2.

It is straightforward to see that n"! < 7'2 < ... < 7' that is, this sequence of
relations is indeed a chain of equivalences.

Conversely, suppose that 7’1, ..., 7’ is an increasing sequence of partitions on
S such that 71 = a5 and 7' = wg, where 7"* consists of the sets of the form D, ,
foru € S.

Since Dy o = {x}, it follows that d(x, y) = 0 if and only if x = y.

We claim that

d(x,y) = min{r|{x, y} S B e n'}. 6.1)

Indeed, since 7' = wy, it is clear that there is a partition 7"* such that {x, y} C
B e n"i. If x and y belong to the same block of 7'#, the definition of 7' implies
d(x,y) < r;,sod(x,y) < min{r|{x, y} € B € n"}. This inequality can be easily seen
to become an equality since x, y € B € 74*Y)_ This implies immediately that d is
symmetric.

To prove that d satisfies the ultrametric inequality, let x, y, z be three members of
the set . Let p = max{d(x, z), d(z, y)}. Since {x, z} € b € 79%? < 7P and {z, y} C
B € @Y < 7P it follows that x, y belong to the same block of the partition 7.
Thus, d(x, y) < p = max{d(x, z), d(z, y)}, which proves the triangular inequality
ford. ®

6.4.2 Hierarchies and Ultrametrics
Definition 6 Let S be a set. A hierarchy on the set S is a collection of sets H € P(S)

that satisfies the following conditions:

(i) the members of H are nonempty sets;
(i) S eH;



ULTRAMETRIC SPACES 183

(iii) for every x € S we have {x} € H;
(iv) if H, H' € Hand H N H' # @, then we have either H C H' or H' C H.

Example 4 Let S = {s,t, u, v, w, x, y} be a finite set. It is easy to verify that the
family of subsets of S defined by

H = {{s}. {2}, {u}, {v}, {w}, {x}, {y},

{s.t,u}, {w, x}, {s, t,u, v}, {w, x, y}, {s, t, u, v, w, x, y}}
is a hierarchy on the set S. O
Chains of partitions defined on a set generate hierarchies as we show next.

Theorem 4 Let S be a set and let C = (1, w2, ..., T,) be an increasing chain of
partitions (PART(S), <) such that 71 = as and &, = wg. Then, the collection Hc =
(Ui, 7; that consists of the blocks of all partitions in the chain is a hierarchy on S.

Proof. The blocks of any of the partitions are nonempty sets, so H¢ satisfies the first
condition of Definition 6.

Note that S € H¢ because S is the unique block of m, = wg. Also, since all
singletons {x} are blocks of ag = 7 it follows that H¢ satisfies the second and
the third conditions of Definition 6. Finally, let H, H' be two sets of H¢ such that
H N H' # (. Because of this condition it is clear that these two sets cannot be blocks
of the same partition. Thus, there exist two partitions 7r; and 7; in the chain such that
H € mjand H' € 7. Suppose that i < j. Since every block of 7 is a union of blocks
of mr;, H' is a union of blocks of 7; and H N H' # () means that H is one of these
blocks. Thus, H € H’. If j > i, we obtain the reverse inclusion. This allows us to
conclude that Hc is indeed a hierarchy.

Of course, Theorem 4 could be stated in terms of chains of equivalences; we give
this alternative formulation for convenience.

Theorem 5 Let S be a finite set and let (p1, ..., pn) be a chain of equivalence re-
lations on S such that py = s and p, = 0s. Then, the collection of blocks of the
equivalence relations p,, that is, the set | J, <., S/ pr, is a hierarchy on S.

Proof. The proof is a mere restatement of the proof of Theorem 4. B

Define the relation “<” on a hierarchy H on Sby H < K if H, K € H, H C K,
and there isno set L € H suchthat H C L C K.

Lemma 1 Let ‘H be a hierarchy on a finite set S and let L € H. The collection
Pr ={H € H|H < L} is a partition of the set L.



184 DATA MINING ALGORITHMS I: CLUSTERING

Proof. We claim that L = | Pp. Indeed, it is clear that | JP; C L.

Conversely, suppose that z € L but z ¢ | JPp. Since {z} € H and there isno K €
‘PL, such that z € K, it follows that {z} € P, which contradicts the assumption that
z ¢ |JPr. This means that L = |J Pr.

Let Ko, K1 € Pr be two distinct sets. These sets are disjoint since otherwise we
would have either Ky C K1, or K; C Ky, and this would contradict the definition of
Pr.1

Theorem 6 Let H be a hierarchy on a set S. The graph of the relation < on 'H is a
tree whose root is S; its leaves are the singletons {x} for every x € S.

Proof. Since < is an antisymmetric relation on H it is clear that the graph (H, <) is
acyclic. Moreover, for each set K € H there is a unique path that joins K to S, so the
graph is indeed a rooted tree. B

Definition 7 Let H be a hierarchy on a set S. A grading function for H is a function
h : 'H —> R that satisfies the following conditions:

(i) h({x}) =0 forevery x € S, and
(i) if H, K € Hand H C K, then h(H) < h(K).

If & is a grading function for a hierarchy H, the pair (H, k) is a graded hierarchy.

Example 5 For the hierarchy H defined in Example 4 on the set S =
{s,t,u, v, w, x, y}, the function & : H — R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = A({y}) =0,
h({s, t,u}) =3, h({w, x}) =4, h({s, t,u, v}) =5, h({w, x, y}) = 6,
h({s,t,u,v,w,x,y}) =7

is a grading function and the pair (¥, %) is a graded hierarchy on S. O
Theorem 4 can be extended to graded hierarchies.

Theorem 7 Let S be a finite set and let C = (71, 7o, ..., T,) be an increasing chain
of partitions (PART(S), <) such that m; = as and 7, = ws.

Consider a function f : {1,...,n} —> Rxsq such that f(1) = 0. The function h :
Hc — Rso givenby h(K) = f (min{j|K € nj})forK € Hc is a grading function
for the hierarchy Hc.

Proof. Since {x} € m1 = «ag it follows that h({x}) = 0, so h satisfies the first condition
of Definition 7.

Suppose that H, K € Hc and H C K. If £ = min{j|H € 7}, it is impossible for
K to be a block of a partition that precedes my. Therefore, £ < min{j|K € 7}, so
h(H) < h(K), so (Hc, h) is indeed a graded hierarchy. &



ULTRAMETRIC SPACES 185
A graded hierarchy defines an ultrametric as shown next.

Theorem 8 Let (H, h) be a graded hierarchy on a finite set S. Define the function
d:S*> — Ras

d(x,y) = min{h(U)|U € H and {x, y} C U}
for x,y € S. The mapping d is an ultrametric on S.

Proof. Note that for every x, y € S there exists a set H € 'H such that {x, y} C H
because S € H.

It is immediate that d(x, x) = 0. Conversely, suppose that d(x, y) = 0. Then, there
exists H € H such that {x, y} € H and h(H) = 0. If x # y, then {x} C H; hence
0 = h({x}) < h(H), which contradicts the fact that #(H) = 0. Thus, x = y.

The symmetry of d is immediate.

To prove the ultrametric inequality, let x, y, z € S and suppose that d(x, y) = p,
d(x,z) = gq,and d(z, y) = r. There exist H, K, L € H such that {x, y} € H, h(H) =
p.{x,2} € K, h(K) =q,and {z, y} € L, h(L) = r. Since K N L # ¢ (because both
sets contain z), we have either K C L or L € K, so K U L equals either K or L, and
in either case, K U L € ‘H. Since {x, y} € K U L, it follows that

d(x,y) < (K U L) = max{h(K), H(L)} = max{d(x, z), d(z, y)},
which is the ultrametric inequality. B

We refer to the ultrametric d whose existence is shown in Theorem 8 as the ultra-
metric generated by the graded hierarchy (H, k).

Example 6 The values of the ultrametric generated by the graded hierarchy (H, &)
on the set S, introduced in Example 5, are given in the following table.

LA TN WO W~
LU IO W W
IO N e
aAbh o g4l
OO A
S AN <

“ % 8 ¢ & = un|Q,
LI W W O(m

d

The hierarchy introduced in Theorem 5 that is associated with an ultrametric space
can be naturally equipped with a grading function, as shown next.

Theorem 9 Let (S, d) be a finite ultrametric space. There exists a graded hierarchy
(H, h) on S such that d is the ultrametric associated to (H, h).



186 DATA MINING ALGORITHMS I: CLUSTERING

Proof. Let 'H be the collection of equivalence classes of the equivalences 1, =
{(x,y) € Sz|d(x, y) < r} defined by the ultrametric d on the finite set S, where the
index r takes its values in the range Ry of the ultrametric d. Define A(E) = min{r €
R4|E € S/n,} for every equivalence class E.

It is clear that 2({x}) = O because {x} is an ng-equivalence class for every x € S.

Let [x]; be the equivalence class of x relative to the equivalence ;.

Suppose that E, E’ belong to the hierarchy and E C E’. We have E = [x], and
E’ = [x]; for some x € X. Since E is strictly included in E’, there exists z € E' — E
such that d(x, z) < s and d(x, z) > r. This implies r < s. Therefore,

h(E) = min{r € Ry|E € S/n,} < min{s € Ry|E' € S/ns} = h(E'),

which proves that (H, k) is a graded hierarchy.
The ultrametric e generated by the graded hierarchy (7, k) is given by

e(x, y) = min{h(B)|B € H and {x, y} C B}

= min{r|(x, y) € n,}

= min{r|d(x, y) <r}
=d(x,y),

for x, y € §; in other words, we have e = d. l

Example 7 Starting from the ultrametric on the set S = {s, 7, u, v, w, x, y} defined
by the table given in Example 6, we obtain the following quotient sets:

Values of r S/n, ‘
[0, 3) {s}, {r}, {u}, {v}, {w}, {x}, {¥}
[3.4) {s, 2, u}, {v}, {w}, {x}, {y}
[4.5) {s, £, u}, {v}, {w, x}, {y}
[5,6) {s,t,u, v}, {w, x}, {y}
[6,7) {s, t, u, v}, {w, x, y}
[7, 00) {s,t,u, v, w, x, y} 0O

We shall draw the tree of a graded hierarchy (H, /) using a special representation
known as a dendrogram. In a dendrogram, an interior vertex K of the tree is repre-
sented by a horizontal line drawn at the height #(K). For example, the dendrogram
of the graded hierarchy of Example 5 is shown in Figure 6.1.

As we saw in Theorem 8, the value d(x, y) of the ultrametric d generated by a
hierarchy H is the smallest height of a set of a hierarchy that contains both x and y.
This allows us to “read” the value of the ultrametric generated by H directly from the
dendrogram of the hierarchy.

Example 8 For the graded hierarchy of Example 5, the ultrametric extracted from
Figure 6.1 is clearly the same as the one that was obtained in Example 6. O



ULTRAMETRIC SPACES 187

] w T I

FIGURE 6.1 Dendrogram of graded hierarchy of Example 5.

6.4.3 The Poset of Ultrametrics

Let S be a set. Recall that we denoted the set of dissimilarities by Dy. Define a partial
order <on Dg by d < d' if d(x, y) < d'(x, y) for every x, y € S. It is easy to verify
that (Dg, <) is a poset.

Note that {fs, the set of ultrametrics on S, is a subset of Dy.

Theorem 10 Let d be a dissimilarity on a set S and let U, be the set of ultrametrics:
Uy = {e € Usle < d}.
The set Uy has a largest element in the poset (Dg, <).

Proof. Note that the set U, is nonempty because the zero dissimilarity dy given by
do(x, y) = 0 for every x, y € S is an ultrametric and dy < d.

Since the set {e(x, y)|e € Uy} has d(x, y) as an upper bound, it is possible to define
the mapping e; : 2 —> Rxg as

e1(x, y) = sup{e(x, y)le € Uq}

for x, y € S. It is clear that e < e; for every ultrametric e. We claim that ¢ is an
ultrametric on S.
We prove only that e; satisfies the ultrametric inequality. Suppose that there exist
X, y, z € S such that e violates the ultrametric inequality, that is
max{e;(x, 2), e1(z, y)} < ei(x, y).
This is equivalent to
sup{e(x, y)le € Uq} > max{sup{e(x, z)le € Ug}, sup{e(z, y)le € Ua}}.

Thus, there exists ¢ € U, such that

é(x, y) > supfe(x, z)le € Ua},

e(x, y) > supfe(z, y)le € Ua}.



188 DATA MINING ALGORITHMS I: CLUSTERING

(a) (b)
FIGURE 6.2 Two ultrametrics on the set {x, y, z}.

In particular, e(x, y) > e(x, z) and e(x, y) > é(z, y), which contradicts the fact that
e is an ultrametric. W

The ultrametric defined by Theorem 10 is known as the maximal subdominant
ultrametric for the dissimilarity d.

The situation is not symmetric with respect to the infimum of a set of ultramet-
rics because, in general, the infimum of a set of ultrametrics is not necessarily an
ultrametric.

For example, consider a three-element set S = {x, y, z}, four distinct nonnegative
numbers a, b, ¢, d such thata > b > ¢ > d, and the ultrametrics d and d’ defined by
the triangles shown in Figure 6.2a and b, respectively. The dissimilarity dy defined
by do(u, v) = min{d(u, v), d'(u, v)} for u, v € § is given by

do(x,y) = b,do(y,z) =d, and dy(x, z) = c,

and dj is clearly not an ultrametric because the triangle xyz is not isosceles.

In the sequel, we give an algorithm for computing the maximal subdominant ul-
trametric for a dissimilarity defined on a finite set S.

We will define inductively an increasing sequence of partitions 11 < m < ---anda
sequence of dissimilarities d1, da, . . . on the sets of blocks of 1, 72, . . ., respectively.

For the initial phase, 71 = a5 and d;({x}, {y}) = d(x, y) forx, y € S.

Suppose that d; is defined on ;. If B, C € m; is a pair of blocks such that d;(B, C)
has the smallest value, define the partition ;41 by

wiv1 = (T — {B,CH U{BUC}.

In other words, to obtain ;11 we replace two of the closest blocks B, C of m; (in
terms of d;) with new block BU C. Clearly, 7; < m;+1 in PART(S) for i > 1. Note
that the collection of blocks of the partitions 77; form a hierarchy H,; on the set S. The
dissimilarity d;41 is given by

di+1(U, V) = min{d(x, y)|[x e U,y € V} (6.2)

for U,V € miy1.



ULTRAMETRIC SPACES 189

We introduce a grading function 44 on the hierarchy defined by this chain of
partitions starting from the dissimilarity d. The definition is done for the blocks of
the partitions 7; by induction on i.

For i = 1 the blocks of the partition ; are singletons; in this case we define
hqa({x}) =0forx € S.

Suppose that /4 is defined on the blocks of 7; and let D be the block of ;11 that
is generated by fusing the blocks B, C of m;. All other blocks of ;1 coincide with
the blocks of ;. The value of the function %, for the new block D is given by

hq(D) = min{d(x, y)|x € B,y € C}.

It is clear that &, satisfies the first condition of Definition 7.

For aset U of H, define py = min{i|U € m;} and gy = max{i|U € m;}. To verify
the second condition of Definition 7, let H, K € H; such that H C K. It is clear
that gy < pg. The construction of the sequence of partitions implies that there are
Hy, Hy € mp,—1 and Ko, K1 € p,—1 such that H = HyU Hy and K = Ko U K.
Therefore,

ha(H) = min{d(x, y)|x € Ho, y € Hi},
ha(K) = min{d(x, y)|x € Ko, y € K1}.
Since Hyp, Hy have been fused (to produce the partition 7, ) before Ko, K1 (to pro-
duce the partition 7 ), it follows that 2,(H) < hq(K).
By Theorem 8 the graded hierarchy (Hg4, k) defines an ultrametric; we denote

this ultrametric by e and we will prove that e is the maximal subdominant ultrametric
for d. Recall that e is given by

e(x, y) = min{hq(W)l{x, y} € W},

and that hy(W) is the least value of d(u, v) such that u € U,v € V if W € 7, is
obtained by fusing the blocks U and V of 7, _1. The definition of e(x, y) implies
that we have neither {x, y} C U nor {x, y} € V. Thus, wehaveeitherx € Uandy € V
orx € Vand y € U. Thus, e(x, y) < d(x, y).

We now prove that

e(x, y) = min{amp,(s)|s € S(x, y)},

forx,y e S.

Let D be the minimal set in H, that includes {x, y}. Then, D = B U C, where B, C
are two disjoint sets of H,; such that x € B and y € C. If s is a sequence included
in D, then there are two consecutive components of s, si, sx+1 such that s; € B and
sk+1 € C. This implies

e(x, y) = min{d(u, v)|lu € B,v € C}
< d(sk, Sk+1)

< ampy(s).



190 DATA MINING ALGORITHMS I: CLUSTERING

If s is not included in D, let sy, s4+1 be two consecutive components of s such that
sq € Dand sgy1 € D. Let E be the smallest set of H that includes {s4, s4+1}. Note
that D C E (because sy € D N E), and therefore, hy(D) < hg(E). If E is obtained as
the union of two disjoint sets E’, E” of H; such that sy € E" and s;4+1 € E”, we have
D C E'. Consequently,

hg(E) = min{d(u, v)|u € E',v e E"} < d(sk, Sk11),
which implies
e(x,y) = ha(D) < ha(E) < d(sk, sk+1) < amp,(s).

Therefore, we conclude that e(x, y) < amp,(s) for every s € S(x, y).

We show now that there is a sequence w € S(x, y) such that e(x, y) > amp,(w),
which implies the equality e(x, y) = amp,(w). To this end, we prove that for every
D e m € 'Hy there exists w € S(x, y) such that amp,(w) < hg(D). The argument is
by induction on k.

For k = 1, the statement obviously holds. Suppose that it holds for 1, ...,k — 1
and let D € my. The set D belongs to x—; or D is obtained by fusing the blocks B, C
of mr—1. In the first case, the statement holds by inductive hypothesis. The second
case has several subcases:

(1) If {x, y} C B, then by inductive hypothesis, there exists a sequence u €
S(x, y) such that amp,(u) < hy(B) < ha(D) = e(x, y).

(ii) The case {x, y} € C is similar to the first case.

(iii) If x € B and y € C, there exist u, v € D such that d(u, v) = hy(D). By the
inductive hypothesis, there is a sequence u € S(x, u) such that amp,(u) <
hq(B) and there is a sequence v € S(v, y) such that amp,(v) < hy(C). This
allows us to consider the sequence w obtained by concatenating the sequences
u, (u, v), v; clearly, we have w € S(x, y) and

amp,(w) = max{amp,(u), d(u, v), amp,(v)} < hq(D).

To complete the argument we need to show that if ¢’ is an other ultramet-
ric such that e(x, y) < €'(x, y) < d(x, y), then e(x, y) = €'(x, y) for every x,y €
S. By the previous argument there exists a sequence § = (sg, ..., Sy) € S(x, y)
such that amp,(s) = e(x, y). Since €'(x, y) < d(x, y) for every x, y € S, it follows
that ¢'(x, y) < amp,(s) = e(x, y). Thus, e(x, y) = €'(x, y) for every x, y € S, which
means that e = ¢’. This concludes our argument.

6.5 HIERARCHICAL CLUSTERING

Hierarchical clustering is a recursive process that begins with a metric space of objects
(S, d) and results in a chain of partitions of the set of objects. In each of the partitions,



HIERARCHICAL CLUSTERING 191

similar objects belong to the same block and objects that belong to distinct blocks
tend to be dissimilar.
In the agglomerative hierarchical clustering, the construction of this chain begins
with the unit partition 7! = «g. If the partition constructed at step k is
k k
={Uj,.... Uy},

then two distinct blocks Uf, and Ug of this partition are selected using a
selection criterion. These blocks are fused and a new partition

H=(Ul,.. . Uy Uy U UN L U U U
is formed. Clearly, we have 7 < 7**1. The process must end because the poset
(PART(S), <) is of finite height. The algorithm halts when the one-block partition wg
is reached.

As we saw in Theorem 4, the chain of partitions 7l 72, ... generates a hierarchy
on the set S. Therefore, all tools developed for hierarchies, including the notion of
dendrogram, can be used for hierarchical algorithms.

When data to be clustered is numerical, that is, when S € R”, we can define the
centroid of a nonempty subset U of S as

1
cy = |U| Z{olo e U}.

Ifr ={U, ..., U,}isapartition of S, then the sum of the squared errors of m is the
number

sse(rr) = Z Z{dZ(o, cu)lo € Uy}, (6.3)

where d is the Euclidean distance in R".
If two blocks U, V of a partition  are fused into a new block W to yield a new
partition 7’ that covers 7, then the variation of the sum of squared errors is given by

sse(rr') — sse(m) = Z{dz(o, cw)loeUNV}

— > {d*o.cp)lo € Uy =Y {d*(0, ev)lo € V}.

The centroid of the new cluster W is given by

w =g =S oo e W)

_ o,V
+7
iU T w



192 DATA MINING ALGORITHMS I: CLUSTERING
This allows us to evaluate the increase in the sum of squared errors:
sse(mr’) — sse(mr) = Z{dz(o, cw)lo e UU V)
= {d*o.cp)lo € Uy = {d*(0.cy)lo € V}
=Y {d*(0,cw) — d*(0, cp)lo € U}
+Y {d*0. cw) — d*(0. cy)lo € V).

Observe that

> {d*(0. ew) — d*(0. cv)lo € U)

= (0 —cw)(o —cw) — (0 — cv)(0 — cv))

ocU

= |Ul(cly — ci) +2cu —ew) Y o

oclU
= |U|(c} — ¢)) + 2|U|(cy — ew)eu
= (cw — cy) ([U|(ew + cv) — 2|U|cy)
= |U|(ew — cv)*.
Using the equality cw —cy = |Ul/|Wley + |VI/IWley — ey = [VI/|W]

(cy—cy), we obtain >_{d*(0, cw) — d*(0. cv)lo € U} = |U||V*/|W|* (ey — cu)*.
Similarly, we have

UV
D 1d*(0, ew) — d*(o, ev)lo € V} = | |v|v||2 ey — v,
SO
sse(rr') — sse(rw) = % (cy —cy)?. (6.4)

The dissimilarity between two clusters U, V can be defined using one of the
following real-valued, two-argument functions defined on the set of subsets of S:

sl(U, V) = min{d(u, v)lu € U,v € V};
cl(U, V) = max{d(u, v)lu € U,v € V};

Y Adu, vueUveV}

gav(U, V) = ;
U] - |V]




HIERARCHICAL CLUSTERING 193

cen(U, V) = (cy — ev)%

[U|IV] 2
ward(U, V) = ———— (cy — ¢cy)”.
[U| + |V]|

The names of the functions sl, cl, gav, and cen defined above are acronyms of the
terms “single link,” “complete link,” “group average,” and “centroid,” respectively.
They are linked to variants of the hierarchical clustering algorithms that we discuss
in later. Note that in the case of the ward function the value equals the increase in
the sum of the square errors when the clusters U, V are replaced with their union.

The specific selection criterion for fusing blocks defines the clustering algo-
rithm. All algorithms store the dissimilarities between the current clusters 7% =
{Uk, e, U,’flk} in a my x my matrix D¥ = (d{‘j), where d{‘/ is the dissimilarity be-
tween the clusters U, ,k and U ]/‘ As new clusters are created by merging two existing
clusters, the distance matrix must be adjusted to reflect the dissimilarities between
the new cluster and existing clusters.

The general form of the algorithm is

matrix_agglomerative_clustering {

compute the initial dissimilarity matrix D';

k=1,

while (¥ contains more than one block) do
merge a pair of two of the closest clusters;
k++;
compute the dissimilarity matrix D*;

endwhile;

}

Next, we show the computation of the dissimilarity between a new cluster and
existing clusters.

Theorem 11 Let U, V be two clusters of the clustering m that are joined into a new
cluster W. Then, if Q € m — {U, V} we have

s

sIW, Q) = 3sl(U, Q) + 3sI(V, Q) — %\sl(U, Q) —sl(V, Q)

(W, 0) = 3el(U, @) + Sel(V, @) + }[elw, ) - eIV, 0);

U] VI .
gav(W, Q) = IV |VlgaV(U, 0)+ TS |V|gaV(V, 0);

_ Ul 4 Ul V]
cen(W, Q) = ————-cen(U, Q) + ————-cen(V, Q) —

—— cen(U, V),
Ul + V] Ul + V] U+ 1V])? (V)



194 DATA MINING ALGORITHMS I: CLUSTERING

_Ul+10] VI+10|
ward(W- ) = 15y o VY D i v g v @)
S L
U+ VI+ 10l

Proof. The first two equalities follow from the fact that

min{a, b} = $(a +b) — 3la — bl
max{a, b} = 1(a+b) + Sla — b,

for every a, b € R.
For the third equality, we have

> dw, g)lw e W, q € 0}
[W1{-10|
_ 2Mdw, )lu € U, q € 0} N Y {dw, 9)lve V,q e Q)
(W 10] [W-10]
_ UL 2 Adu, lu e U, g€ Q} | VI Y Adw, @)lve V.q € 0}
(W] U] - 10| W] [Vi-10]
U] |V]

=TV |V|gaV(U’ Q)+ o+ v |V|gaV(V’ Q).

gav(W, Q) =

The equality involving the function cen is immediate. The last equality can be
easily translated into

101|W| (o ew)?
FE RS
wl+10  |UIIQ|

- N2
= Uixvi+10livi+10) e <)

2

n VI+109I Vi (co—cv)
UI+ VI + 10l VI + Q] 9
ul|lv
10| |UIIV] (v — e,

UL+ VI + QUL+ [V

which can be verified replacing |W| = |U|+ |V| and cw = |U|/|W|cy + |V|/
[Wiey. R

The equalities contained by Theorem 11 are often presented as a single equality
involving several coefficients.

Corollary 1 (The Lance-Williams formula) Let U, V be two clusters of the cluster-
ing 7 that are joined into a new cluster W. Then, if Q € w — {U, V} the dissimilarity



HIERARCHICAL CLUSTERING

195
between W and Q can be expressed as
d(W, Q) = ayd(U, Q) +avd(V, Q) + bd(U, V) + c|d(U, Q) — d(V, Q)I,

where the coefficients ay, ay, b, ¢ are given by the following table.

Function ay ay b c

sl 1/2 1/2 0 —(1/2)

c 172 1/2 0 1/2

gav [w1/qui+1vh VI/IUI+ VI 0 0

cen 1/qul+1vh IVI/IUI+ VI —(UNVIQUI+ VD 0

ward [UI+1Q1AUI+IVI+12D  IVI+IQI/IUT+IVI+IQ]  —(QIUI+1VI+12D 0

Proof. This statement is an immediate consequence of Theorem 9. B

The variant of the algorithm that makes use of the function sl is known as the
single-link clustering. It tends to favor elongated clusters.

Example 9 We use single-link clustering for the data set shown in Figure 6.3, S =

{o1, ..., 07}, that consists of seven objects.

The distances between the objects of S are specified by the 7 x 7 matrix

0 1 V5 V20 32 J61 /38
1 0 V2 V13 5 50 45
V3ioV2 0 V5 VI3 V32 V29
D'=|v20 V13 /5 0 2 VI3 J10
V32 N5 V132 0 5 V10
VoI /350 V32 J13 5 0 W5
V38 V45 V29 V10 V100 V5 0

Let us apply the hierarchical clustering algorithm using the single-link variant to the
set S. Initially, the clustering is

h O

=
£

(5

(7

- N W

g

01 2 3 4

5

6

4

FIGURE 6.3 Set of seven points in R”.



196 DATA MINING ALGORITHMS I: CLUSTERING

7! = {{o1}, {02}, {03}, {04}, {05}, {06}, {07}}.

The closest clusters are {0}, {02}; these clusters are fused into the cluster {0, 07},
the new partition is

7% = {{o1, 02}, {03}, {04}, {05}, {06}, {07}},

and the matrix of dissimilarities becomes the 6 x 6 matrix

0 V2 V13 5 /50 45
V200 V5 OV13 V32 V29
p_| VB Y5 0 2 VB VDD
1 5 JI3 2 0 5 Jio
V50 V32 V1350 00 V5

V45 V29 V10 V100 V500

Next, the closest clusters are {01, 0} and {03}. These clusters are fused into the cluster
{o1, 02, 03} and the new 5 x 5 matrix is

0 V5 VI3 V32 V29
V50 2 /13 V10
D’=| V13 2 0 V5 V10
V32 V1350 00 W5
V29 V10 V10 /5 0

which corresponds to the partition

(e

= {{o1, 02, 03}, {04}, {05}, {06}, {07}}.
Next, the closest clusters are {04} and {05}. Fusing these yields the partition
7 = {{o1, 02, 03}, {04, 05}, {05}, {07}

and the 4 x 4 matrix

0 V5 V32 V29
D4_\/§0«/§\/E
V32 V50 5

V29 J100 V5 0

We have two choices now: we could fuse {01, 02, 03} with {04, 05}, or {04, 05} with
{os} since in either case the intercluster dissimilarity is /5. We choose the first option
and we form the cluster {01, 02, 03, 04, 05}. Now the partition is

7° = {{01, 02, 03, 04, 05}, {06}, {07}}



HIERARCHICAL CLUSTERING 197

(17

(4

(5 a7

ra

Ug
O 1 2 3 4 5 6 7

FIGURE 6.4 Elongated cluster produced by the single-link algorithm.

and the matrix is

V50 W5
VIO /5 0

Observe that the large cluster formed so far has an elongated shape (see Fig. 6.4);
this is typical for single-link variant of the algorithm. Fusing now {01, 02, 03, 04, 05}
with {0¢} gives the two-block partition

0 35 V10
o )

6
m° = {{01, 02, 03, 04, 05, 06}, {07}}

and the 2 x 2 matrix

DG:(\% *ég)

In the final step, the two clusters are fused and the algorithm stops.
The dendrogram of the hierarchy produced by the algorithm is given in
Figure 6.5. O

The variant of the algorithm that uses the function cl is known as the complete-link
clustering. It tends to favor globular clusters.

S5l
:

\/5_
1

01 02 03 04 05 06 07
FIGURE 6.5 Dendrogram of single-link clustering.



198 DATA MINING ALGORITHMS I: CLUSTERING

Example 10 Now we apply the complete-link algorithm to the set S considered in
Example 9. It is easy to see that the initial two partitions and the initial matrix are the
same as for the single-link algorithm.

However, after creating the first cluster {01, 02}, the distance matrices begin to
differ. The next matrix is

0 5 V20 /32 61 /38
V50 V5 V13 V32 V29
D2 V20 5 0 2 V13 V10
V32 VI3o2 0 5 Jio |’
Vel V32 V13 M50 0 V5
V38 V29 J10 Y10 V5 0

which shows that the closest clusters are now {04} and {os}. Thus,

7 = {{o1, 02}, {03}, {04, 05}, {06}, {07}

and the new matrix is

0 V5 32 J61 /38
V50 V13 V32 V29
D’=|V32 V13 0 J10 V10
V61 /32 J13 0 V5

Now there are two pairs of clusters that correspond to the minimal value in D?:
{01, 02}, {03} and {o¢}, {07}; if we merge the last pair we get the partition 7t =
{{o1, 02}, {03}, {04, 05}, {06, 07}} and the matrix

0 32 61 /38
V32 0 J13 J/10
VeI V13 0 5
V38 V10 5 0

DY =

Next, the closest clusters are {01, 02}, {03}. Merging those clusters will result in the
partition 7° = {{01, 02, 03}, {04, 05}, {06, 07}} and the matrix

0 /32 46l
D’ = <~/32 0 «/13>
V61 /13 0
The current clustering is shown in Figure 6.6. Observe that in the case of the complete-

link method clusters that appear early tend to enclose objects that are closed in the
sense of the distance.



HIERARCHICAL CLUSTERING 199

(4

05 07

Og
0 1 2 3 4 5 6 7

FIGURE 6.6 Partial clustering obtained by complete-link method.

Now the closest clusters are {04, 05} and {0¢, 07}. Merging those clusters will give
the partition 7° = {{01, 02, 03}, {04, 05, 06, 07}} and the matrix

D6:<\/%—1 ‘/06_1)

The dendrogram of the resulting clustering is given in Figure 6.7. O

The group average method that makes use of the gav function is an intermediate
approach between the single-link and the complete-link method. What the methods
mentioned so far have in common is the monotonicity property expressed by the
following statement.

FIGURE 6.7 Dendrogram of complete-link clustering.



200 DATA MINING ALGORITHMS I: CLUSTERING

Theorem 12 Let (S, d) be finite metric space and let D!, ..., D" bethe sequence of
matrices constructed by any of the first three hierarchical methods (single, complete,
or average link), where m = |S|. If ju; is the smallest entry of the matrix D' for 1 <
i <m,then i < Uy <--+ < Wn. In other words, the dissimilarity between clusters
that are merged at each step is nondecreasing.

Proof. Suppose that the matrix D/*! is obtained from the matrix D/ by merging the
clusters C, and C, that correspond to the lines p, g and to columns p, g of D/. This
happens because dp; = dg is one of the minimal elements of the matrix D/. Then,
these lines and columns are replaced with a line and column that corresponds to the
new cluster C, and to the dissimilarities between this new cluster and the previous

clusters C;, where i # p, gq. The elements drjz_l of the new line (and column) are ob-

tained either as min{d”,, . &%, }, max{d’, . @’} oras (|C,|/|C,d%, + (1Cql/IC+1)d2,.

for the single-link, complete-link, or group average methods, respectively. In any of
these case, it is not possible to obtain a value for drj: ! that is less than the minimal
value of an element of D/. A

The last two methods captured by the Lance—Williams formula are, respectively,
the centroid method and the Ward method of clustering. As we observed before,
formula (6.4) shows that the dissimilarity of two cluster in the case of Ward’s method
equals the increase in the sum of the squared errors that results when the clusters are
merged. The centroid method adopts the distance between the centroids as the distance
between the corresponding clusters. Either method lacks the monotonicity properties.

To evaluate the space and time complexity of hierarchical clustering note that the
algorithm must handle the matrix of the dissimilarities between objects and this is
a symmetric n X n matrix having all elements on its main diagonal equal to 0; in
other words, the algorithm needs to store (n(n — 1)/2) numbers. To keep track of the
clusters, an extra space that does not exceed n — 1 is required. Thus, the total space
required is on?).

The time complexity of agglomerative clustering algorithms has been evaluated in
the work by Kurita [9]; the proposed implementation requires a heap that contains the
pairwise distances between clusters and therefore has a size of n?. The pseudocode
of this algorithm is

generic_agglomerative algorithm {
construct a heap H of size n>
for inter-cluster dissimilarities;

while the number of clusters is larger than 1 do
get the nearest pairs of clusters C,, C, that correspond to
HIO];
reduce the number of clusters by 1 through merging C, and
Cys
update the heap to reflect the revised distances and

remove unnecessary elements;



HIERARCHICAL CLUSTERING 201

endwhile;

}

Note that the while loop is performed n times as each execution reduces the
number of clusters by 1. The initial construction of the heap requires a time of
O(n*logn?) = O(n*logn). Then, each of operations inside the loop requires no
more than O(log n?) = O(logn) (because the heap has size n2). Thus, we conclude
that the time complexity is O(n? log n).

There exists an interesting link between the single-link clustering algorithm and
the subdominant ultrametric of a dissimilarity, which we examined in Section 6.4.3.

To construct the subdominant ultrametric for a dissimilarity dissimilarity space
(S, d), we built an increasing chain of partitions 7y, 72, ... of S (where 71 = ay)
and a sequence of dissimilarities d1, da, ... (where di = d) on the sets of blocks of
my, T2, . . ., respectively. We claim that this sequence of partitions 7, 72, . . . coincides
with the sequence of partitions al, 72, ..., and that the sequence of dissimilarities
dy, dy, ... coincides with the sequences of dissimilarities d 1 g2, ... defined by the
matrices D' constructed by the single-link algorithm. This is clearly the case fori = 1.

Suppose that the statement is true for i. The partition ;4 is obtained from 7; by
fusing the blocks B, C of & such that d;(B, C) has the smallest value, that is,

Tip1 = (m; —{B, CH U{BUC}.

Since this is exactly how the partition 7/+! is constructed from 7/, it follows that
7iy1 = w71 The inductive hypothesis implies that

d'(U, V) = dy(U, V) = min{d(u, v)|u € U, v € V}

forallU, V € m;. Since the dissimilarity d; 11 is dj+1(U, V) = min{d(u, v)|u € U, u €
V} for every pair of blocks U, V of mii1, it is clear that d;+ (U, V) = d;(U, V) =
di(U, V) = d'T1(U, V) when neither U nor V equal the block B U C. Then,

dit1(BUC, W)

= min{d(¢, w)|t € BUC,w € W}

= min{min{d(b, w)|b € B, w € W}, min{d(c, w)|c € C, w € W}}

= min{d;(B, W), d;(C, W)}

= min{d'(B, W), d'(C, W)}

=dtBUC,W).
Thus, di1 = d't!.

Let x, y be a pair of elements of S. The value of the subdominant ultrametric is
given by

e(x, y) = min{hy(W)|W € Hy and {x, y} € W}.



202 DATA MINING ALGORITHMS I: CLUSTERING

This is the height of W in the dendrogram of the single-link clustering, and therefore,
the subdominant ultrametric can be read directly from this dendrogram.

Example 11 The subdominant ultrametric of the Euclidean metric considered in
Example 9 is given by the following table.

le(0j,0)) o1 02 03 04 05 05 o07]
01 0 1 V2 2 V5 V5 5
07 1 0 \/§ \/g \/g \/3 ﬁ
03 V2 V2 0 V5 OV5 V55
04 2 V5 V5 0 V5 V505
os V5 V5 V5 M5 0 V55
06 V5 V5 V5 V5 V5 0 W5
07 N5 V5 V5 OV5 V5 V50

6.6 THE k-MEANS ALGORITHM

The k-means algorithm is a partitional algorithm that requires the specification of the
number of clusters k as an input. The set of objects to be clustered S = {01, ..., 0"}
is a subset of R™. Due to its simplicity and its many implementations, it is a very
popular algorithm despite this requirement.

The k-means algorithm begins with a randomly chosen collection of k points
¢!, ..., c* in R™ called centroids. An initial partition of the set S of objects is
computed by assigning each object o' to its closest centroid ¢/. Let U ; be the set of
points assigned to the centroid ¢/.

The assignments of objects to centroids are expressed by a matrix (b;;), where

) lifo' € Uj,
Y71 0 otherwise.

Since each object is assigned to exactly one cluster, we have lezl bij = 1. On the
contrary, Y i b;j equals the number of objects assigned to the centroid cl.

After these assignments, expressed by the matrix (b;;), the centroids ¢/ must be
recomputed using the formula

o = Xiz b ©.5)
> i1 bij
forl < j<k.
The sum of squared errors of a partition m = {Uj, ..., Ui} of a set of objects S

was defined in equality (6.3) as



THE k-MEANS ALGORITHM 203

k
sse(mr) = Z Z dz(o, cj),

j=1o0eUj

where ¢/ is the centroid of U jfor 1 < j < k. The error of such an assignment is the
sum of squared errors of the partition m = {Uj, ..., Ui} defined as

n k
sse(m) = Z ZbinOi —cJ|?

i=1 j=1

n k m ,' ; 2
B DDA

i=1 j=1 p=1

The mk necessary conditions for a local minimum of this function,

Bsse(m) _ i bij (—2(037 - C{’)) =0
i=1

J
acy

for] < p<mand1 < j <k, can be written as

n n n
ol — cond — ..
Zbl!op = Zbllcp = szblf’
i=1 i=1 i—1
or as

n N

j Diz bijo',

Cp = 7”
Zi:l bij

for 1 < p < m. In vectorial form, these conditions amount to

o = izt bijo"

>liz1 bij
which is exactly formula (6.5) that is used to update the centroids. Thus, the choice
of the centroids can be justified by the goal of obtaining local minima of the sum of
squared errors of the clusterings.

Since we have new centroids, objects must be reassigned, which means that the
values of b;; must be recomputed, which, in turn, will affect the values of the centroids,
and so on.

The halting criterion of the algorithm depends on particular implementations and
it may involve



204 DATA MINING ALGORITHMS I: CLUSTERING

(i) performing a certain number of iterations;
(i1) lowering the sum of squared errors sse(;r) below a certain limit;
(iii) the current partition coincides with the previous partition.

This variant of the k-means algorithm is known as Forgy’s algorithm:

k_means_forgy{
obtain a randomly chosen collection of
k points ¢y, ..., ¢ in R";

assign each object o' to the closest centroid ¢/;
let 7 = {Uy, ..., Ux} be the partition defined by
e, ...k
recompute the centroids of the clusters Uy, ..., Uy;
while (halting criterion is not met) do
compute the new value of the partition &
using the current centroids;
recompute the centroids of the blocks of ;
endwhile

The popularity of the k-means algorithm stems on its simplicity and its low time
complexity that is O(kn{), where n is the number of objects to be clustered and £ is
the number of iterations that the algorithm is performing.

Another variant of the k-means algorithm redistributes objects to clusters based on
the effect of such a reassignment on the objective function. If sse(r) decreases, the
object is moved and the two centroids of the affected clusters are recomputed. This
variant is carefully analyzed in the work by Berkin and Becher [3].

6.7 THE PAM ALGORITHM

Another algorithm named PAM (an acronym of partition around medoids) developed
by Kaufman and Rousseeuw [7] also requires as an input parameter the number k of
clusters to be extracted.

The k clusters are determined based on a representative object from each cluster
called the medoid of the cluster. The medoid is intended to have the most central
position in the cluster relative to all other members of the cluster. Once medoids are
selected, each remaining object o is assigned to a cluster represented by a medoid o;
if the dissimilarity d(o, 0;) is minimal.

In the second phase, swapping objects and existing medoids are considered. The
cost of a swap is defined with the intention of penalizing swaps that diminish the
centrality of the medoids in the clusters. Swapping continues as long as useful swaps
(i.e., swaps with negative costs) can be found.

PAM begins with a set of objects S, where |S| = n, adissimilarity n X n matrix D,
and a prescribed number of clusters k. The d;; entry of the matrix D is the dissimilarity



THE PAM ALGORITHM 205

d(0;, 0j) between the objects o; and 0;. PAM is more robust than Forgy’s variant of
k-clustering because it minimizes the sum of the dissimilarities instead of the sum of
the squared errors.

The algorithm has two distinct phases: the building phase and the swapping phase.

The building phase aims to construct a set L of selected objects, L € S. The set
or remaining objects is denoted by R; clearly, R = S — L. We begin by determining
the most centrally located object.

The quantities Q; = 27:1 d;j are computed starting from the matrix D. The most
central object o, is the determined by

q = arg min; Q;.

The set L is initialized as L = {o,}.

Suppose now that we have constructed a set of L of selected objects and |L| < k.
We need to add a new selected object to the set L. To do this, we need to examine all
objects that have not been included in L so far, that is, all objects in R. The selection
is determined by a merit function M : R — N.

To compute the merit M(o) of an object o € R, we scan all objects in R distinct
from o. Let o' € R — {0} be such an object. If d(0, 0') < d(L, 0'), then adding o to
L could benefit the clustering (from the point of view of 0’) because d(L, o') will
diminish. The potential benefitis d(o’, L) — d(o, 0’). Of course, if d(0, ') > d(L, o)
no such benefit exists (from the point of view of o). Thus, we compute the merit of
o0 as

M(o) = Z max{D(L, o) — d(o, 0), 0}.

o’'eR—{o}

We add to L the unselected object o that has the largest merit value. The building
phase halts when |L| = k.

The objects in set L are the potential medoids of the k clusters that we seek to build.
The second phase of the algorithm aims to improve the clustering by considering the
merit of swaps between selected and unselected objects. So, assume now that o; is a
selected object, 0; € L, and o, is an unselected object, o, € R = S — L. We need to
determine the cost C(o;, 05) of swapping o; and o0;,. Let 0 be an arbitrary unselected
object. The contribution ¢;;,; of 0 to the cost of the swap between o; and oy, is defined
as follows:

1. If d(o;, 0)) and d(oy, 0;) are greater than d(o, 0;) for any o € L — {o;}, then
Cihj =0.

2. If d(o;, 0j) = d(L, 0j), then two cases must be considered depending on the
distance e(o;) from e; to the second closest object of S.
(a) Ifd(on,o0)) < e(o0)), then cipj = d(on, 0j) — d(S, 0)).
(b) Ifd(op,0;) > e(0)), then ¢;j; = e(o;) — d(S, 0)).
In either of these two subcases, we have



206 DATA MINING ALGORITHMS I: CLUSTERING
cinj = min{d(op, 0j), ej} — d(0;, 0}).

3. If d(o;, 05) > d(L, 0}) (i.e., 0} is more distant from o; than from at least one
other selected object) and d(oy, 0j) < d(L, 0;) (which means that o; is closer
to oy, than to any selected object), then ¢;; = d(op, 0j) — d(S, 0)).

The cost of the swap is C(0;, o) = ZO,ER ¢ipj. The pair that minimizes C(0;, 0;)
is selected. If C(o;, 0;) < 0, then the swap is carried out. All potential swaps are
considered.

The algorithm halts when no useful swap exists, that is, no swap with negative cost
can be found.

The pseudocode of the algorithm is

k_means_PAM{
construct the set L of k medoids;
repeat
compute the costs C(o;, o) for 0; € L and o}, € R;
select the pair (0;, o) that corresponds to the minimum
m = C(o;, on);
until (m > 0);

}

Note that inside the loop repeat . .. until there are /(n — [) pairs of objects to be
examined and for each pair we need to involve n — [ nonselected objects. Thus, one
execution of the loop requires O(I(n — [)?) and the total execution may require up to

0] (Z;’:—II I(n — 1)2) , which is O(n*). Thus, the usefulness of PAM is limited to rather
small data set (no more than a few hundred objects).

6.8 LIMITATIONS OF CLUSTERING

As we stated before, an exclusive clustering of a set of objects S is a partition of S
whose blocks are the clusters. A clustering method starts with a definite dissimilarity
on S and generates a clustering. This is formalized in the next definition.

Definition 8 Let S be a set of objects and let DY be the set of definite dissimilarities
that can be defined on S.
A clustering function on S is a mapping f : Dy —> PART(S).

Example 12 Let g : R>9 —> R3¢ be a continuous, nondecreasing, and unbounded
function and let § € R” be a finite subset of R". For k € N and k > 2, define a
(g, k)-clustering function as follows.

Begin by selecting a set T of k points from S such that the function Afi(T ) =
> ves 8(d(x, T)) is minimized. Here d(x, T) = min{d(x, )|t € T}. Then, define a



LIMITATIONS OF CLUSTERING 207

partition of § into k clusters by assigning each point to the point in 7 that is the
closest and breaking the ties using a fixed (but otherwise arbitrary) order on the set
of points. The clustering function defined by (d, g), denoted by fé maps d to this

partition.
The k-median clustering function is obtained by choosing g(x) = x for x € Rxo;
the k-means clustering function is obtained by taking g(x) = x> for x € Rx. d

Definition 9 Let « be a partition of S and letd, d’ € Df. The definite dissimilarity d’
is a k-transformation of d if the following conditions are satisfied:

(i) If x =, y, thend'(x, y) < d(x, y);
(ii) If x #, y, thend'(x, y) > d(x, y).

In other words, d’ is a «-transformation of d if for two objects that belong to the same
k-cluster d’(x, y) is smaller than d(x, y), while for two objects that belong to two
distinct clusters d’(x, y) is larger than d(x, y).

Next, we consider three desirable properties of a clustering function.

Definition 10 Let S be a set and let f : Dy —> PART(S) be a clustering function.
The function f is

(i) scale invariant, if for every d € D and every a > 0 we have f(d) = f(ad);
(ii) rich, if Ran( f) = PART(S);
(iii) consistent, if for every d, d’ € D and k € PART(S) such that f(d) = « and
d' is a k-transformation of d we have f(d) = «,

Unfortunately, as we shall see in Theorem 14, established in the work by
Kleinburg [8], there is no clustering function that enjoys all three properties.
The following definition will be used in the proof of Lemma 2.

Definition 11 A dissimilarity d € DY is (a, b)-conformant to a clustering « if x =, y
implies d(x, y) < a and x #, y implies d(x, y) > b.

A dissimilarity is conformant to a clustering « if it is (a, b)-conformant to « for
some pair of numbers (a, b).

Note that if d’ is a k-transformation of d, and d is (a, b)-conformant to «, then d’
is also (a, b)-conformant to «.

Definition 12 Let « € PART(S) be a partition on S and f be a clustering function on
S. A pair of positive numbers (a, b) is k-forcing with respect to f if forevery d € D
that is (a, b)-conformant to x we have f(d) = «.

Lemma 2 If f is a consistent clustering function on a set S, then for any partition
k € Ran( f) there exist a, b € R~ such that the pair (a, b) is k-forcing.



208 DATA MINING ALGORITHMS I: CLUSTERING
Proof. For « € Ran( f) there exists d € DY such that f(d) = k. Define the numbers

g = min{d(x, y)lx # y, x =, y},
bia = max{d(x, y)|x #c y}.

In other words, a4 is the smallest d value for two distinct objects that belong to the
same k-cluster, and b, 4 is the largest d value for two objects that belong to different
Kk-clusters.

Let (a, b) a pair of positive numbers such that a < a, 4 and b > b, 4. If d' is a
definite dissimilarity that is (a, b)-conformant to «, then x =, y implies d’(x, y) <
a <agq <d(x,y) and x #, y implies d'(x, y) > b > by g > d(x, ), so d’ is a k-
transformation of d. By the consistency property of f, we have f(d') = k. This
implies that (a, b) is k-forcing. B

Theorem 13 If f is a scale-invariant and consistent clustering function on a set S,
then its range is an antichain in poset (PART(S), <).

Proof. This statement is equivalent to saying that for any scale-invariant and consistent
clustering function no two distinct partitions of S that are values of f are comparable.
Suppose that there are two clusterings, k¢ and «1, in the range of a scale-invariant
and consistent clustering such that ky < 1.
Let (a;, b;) be a k;-forcing pair fori = 0, 1, where ap < by and a; < b;. Letay be
a number such that ap < a; and choose ¢ such that
apaz

D<e< —=.
0

By Exercise 3 construct a distance d such that:

1. for any points x, y that belong to the same block of g, d(x, y) < €;

2. for points that belong to the same cluster of 1, but not to the same cluster of
7o, a2 < d(x,y) < ap;

3. for points that do not belong to the same cluster of 71, d(x, y) > b.

The distance d is (aj, b1)-conformant to 71 and so we have f(d) = m. Take o =
by /ay, and define d’ = ad. Since f is scale invariant, we have f(d") = f(d) = 7.
Note that for points x, y that belong to the same cluster of ¢ we have

b
d'(x,y) < 0 ap,
az

while for points x, y that do not belong to the same cluster of k9 we have

b
d'(x,y) > 22 > p.
aj



LIMITATIONS OF CLUSTERING 209

Thus, d’ is (ag, bg)-conformant to k¢, and so we must have f(d') = «g. Since kg # k1,
this is a contradiction. l

Theorem 14 (Kleinberg’s impossibility theorem) If|S| > 2, there is no clustering
function that is scale invariant, rich, and consistent.

Proof. If S contains at least two elements than the poset (PART(S), <) is not an
antichain. Therefore, this statement is a direct consequence of Theorem 13.

Theorem 15 Forevery antichain A of the poset (PART(S), <) there exists a clustering
function f that is scale invariant and consistent such that Ran(f) = A.

Proof. Suppose that A contains more than one partition. We define f(d) as the first
partition w € A (in some arbitrary but fixed order) that minimizes the quantity:

Dq(m) = > _ d(x, ).

X=q)y

Note that &, = a®P,4. Therefore, f is scale invariant.

We need to prove that every partition of A is in the range of f.

For a partition p € A define d such that d(x, y) < 1/|S|? if x =, yandd(x,y) > 1
otherwise. Observe that ®;(p) < 1. Suppose that ®;(0) < 1. The definition of d
means that

D) =Y d(x,y) <1,

X=gy

so for all pairs (x, y) €=y we have d(x, y) < 1/|S|3, which means that x =, y. There-
fore, we have m < p. Since A is an antichain, it follows that p must minimize 4 over
all partitions of A, and consequently, f(d) = p.

To verify the consistency of f suppose that f(d) = and let d’ be a =-
transformation of d. For o € PART(S) define §(o) as ®4(0) — &4 (0). For 0 € A
we have

80) =Y (dx,y) —d'(x, y))

X=q)y

< Y dxy—dy)

X =5y

and x =gy
(only terms corresponding to pairs in the same
cluster are nonnegative)

= &(m)

(every term corresponding to a pair in the same
cluster is nonnegative).



210 DATA MINING ALGORITHMS I: CLUSTERING

Consequently,
Q4(0) — Py (0) < Py(m) — Py (),

or ®,(0) — () < Dy(0) — @y (m). Thus, if 7 minimizes O4(), then ;(0) —
®,(w) > Oforevery o € A, and therefore, (o) — @ (7r) > 0, which means that &
also minimizes ®, (7). This implies f(d") = 7, which shows that f is consistent. B

Example 13 It is possible to show that for k > 2 and for sufficiently large sets of
objects the clustering function f¢ introduced in Example 12 is not consistent.

Suppose that « = {C1, Ca, ..., Ci} is a partition of S and d is a definite dissim-
ilarity on S such that d(x, y) = r; if x # y and {x, y} € C; for some 1 <i < k and
d(x,y) =r+ aif x and y belong to two distinct blocks of k, where r = max{r;|1 <
i <k}anda > 0.

Suppose that T is a set of k members of S. Then, the value of g(d(x, T)) is g(r)
if the closest member of T is in the same block as x and is g(r + a) otherwise. This
means that the smallest value of Ai(T) => xeC; g(d(x, T)) is obtained when each
block C; contains a member #; of T for 1 < i < k and the actual value is A§(T) =
I (C = D2 = (18] = kyr?.

Consider now a partition ¥ = {C}, C{, Ca, ..., C¢}, where C; = C; U C{, so
k' < k. Choose ' to be a positive number such that 7’ < r and define the dissim-
ilarity d’ on S such that d’'(x, y) =r" if x # y and x = y and d'(x, y) = d(x, y)
otherwise. Clearly, d’ is a k-transformation of d. The minimal value for A§(T’ ) will
be achieved when T’ consists of k + 1 points, one in each of the block of «’; as a
result, the value of the clustering function for d’ will be ¥’ # «, which shows that no
clustering function obtained by this technique is consistent. O

6.9 CLUSTERING QUALITY

There are two general approaches for evaluating the quality of a clustering:
unsupervised evaluation that measures the cluster cohesion and the separation be-
tween clusters and supervised evaluation that measures the extent to which the clus-
tering we analyze matches a partition of the set of objects that is specified by an
external labeling of the objects.

6.9.1 Object Silhouettes

The silhouette method is an unsupervised method for evaluation of clusterings that
computes certain coefficients for each object. The set of these coefficients allows an
evaluation of the quality of the clustering.

Let O = {uy, ..., u,} be acollection of objects, d : O x O — R be a dissim-
ilarity on O, and let k : O — {C7y, ..., Ci} be a clustering function.



CLUSTERING QUALITY 211

Suppose that «(u;) = Cy. The (k, d)-average dissimilarity is the function aj g4 :
O —> R given by

D Adu;, wl(u) = k(u;) and u # u;}
e d(;) = ,

[re(u;)]

that is, the average dissimilarity of u; to all objects of «(u;), the cluster to which u; is
assigned.
For a cluster C and an object u; let

2Ad i, wlk(u) = C}
IC]

d(u;, C) =

be the average dissimilarity between u; and the objects of the cluster C.

Definition 13 Letx : O — {Cy, ..., Ci}be aclustering function. A neighbor of u;
is a cluster C # «k(u;) for which d(u;, C) is minimal.

In other words, a neighbor of an object u; is “the second best choice” for a cluster for
u;. Let b : O — R be the function defined by

bia(ui) = minfd(u;, C)|C # K(u;)}.

If k and d are clear from context, we shall simply write a(u#;) and b(u;) instead of
ai,a(u;) and b, 4(u;), respectively.

Definition 14 The silhouette of the object u; for which |«(u;)| > 2 is the number
sil(u;) given by

| alu;) if () < blus)
— bGnn) if a(u;) < b(u;
sil(u;)) =< 0 if a(u;) = b(u;)
DU it aun) > buy),
alu;)
Equivalently, we have
sil(u) = b(u;) — a(u;)

foru; € O.
If k(u;) = 1, then s(u;) = 0.



212 DATA MINING ALGORITHMS I: CLUSTERING

Observe that —1 < sil(u#;) < 1. When sil(u;) is close to 1, this means that a(u;) is
much smaller than b(u;) and we may conclude that u; is well classified. When sil(x;)
is near 0, it is not clear which is the best cluster for u;. Finally, if sil(u;) is close to
—1, the average distance from u to its neighbor(s) is much smaller than the average
distance between u; and other objects that belong to the same cluster «(u;). In this
case, it is clear that u; is poorly classified.

Definition 15 Let average silhouette width of a cluster C is

> {sil(u)|u € C}

il(C) =
Sl C|

The average silhouette width of a clustering « is

S {sil(u)|u € O}

1) —
sil(k) 0|

The silhouette of a clustering can be used for determining the “optimal” number
of clusters. If the silhouette of the clustering is above 0.7, we have a strong clustering.

6.9.2 Supervised Evaluation

Suppose that we intend to evaluate the accuracy of a clustering algorithm 4 on a set
of objects S relative to a collection of classes on S that forms a partition o of S. In
other words, we wish to determine the extent to which the clustering produced by A
coincides with the partition determined by the classes.

If the set S is large, the evaluation can be performed by extracting a random sample
T from S, applying A to T, and then comparing the clustering partition of 7 computed
by A and the partition of T into the preexisting classes.

Let « = {Cq, ..., Cy} be the clustering partition of 7 and let 0 = {K1, ..., K,}
be the partition of 7" of classes. The evaluation is helped by n x m matrix Q, where
gij = |Ci N K ;| named the confusion matrix.

We can use distances associated with the generalized entropy, dg(k, o), to evaluate
the distinction between these partitions. This was already observed by Rand [11],
who proposed as a measure the cardinality of the symmetric difference of the sets of
pairs of objects that belong to the equivalences that correspond to the two partitions.

Frequently, one uses the conditional entropy

m
|Cil

Hiole) =) |(;| Hoc) =)
i=1

i=1

|Cil ¢~ 1Ci N K ICi N K|
log
7| ; Gl Il

to evaluate the “purity” of the clusters C; relative to the classes K, ..., K,. Low
values of this number indicate a high degree of purity.

Some authors [14] define the purity of a cluster C; as a as pur,(C;) =
max; |C; N K;|/|C;| and the purity of the clustering « relative to o as



FURTHER READINGS 213

n

ICil
purO'(K) = Z |Tl| puro(ci)~
i=1

Larger values of the purity indicate better clusterings (from the point of view of the
matching with the class partition of the set of objects).

Example 14 Suppose that a set of 1000 objects consists of three classes of objects
K1, K3, K3, where | K| = 500, |K>| = 300, and |K{| = 200. Two clustering algo-
rithms A and A’ yield the clusterings « = {Cy, C2, C3} and " = {C}, C}, C}} and
the confusion matrices Q and Q’, respectively:

Kl Kz K3 Kl K2 K3
C, | 400 O 25 and C, | 60 0 180
C, | 60 200 75 C, | 400 50 0
C; | 40 100 100 C, | 40 250 20

The distances ds(k, o) and dy (', o) are 0.5218 and 0.4204 suggesting that the clus-
tering «’ produced by the second algorithm is closer to the partition in classes.

As expected, the purity of the first clustering, 0.7, is smaller than the purity of the
second clustering, 0.83. O

Another measure of clustering quality proposed in the work by Ray and Turi [12]
applies to objects in R” and can be applied, for example, to the clustering that results
from the k-means method, the validity of clustering. Let m = {Uj, ..., Ui} be a
clustering of N objects, c1, ..., ¢k the centroids of the clusters, then the clustering
validity is

sse(r)

I() = .
va (T[) Nmini<j dz(c,-, Cj)

The variety of clustering algorithms is very impressive and it is very helpful to the
reader to consult two excellent surveys of clustering algorithms [2,5] before exploring
in depth this domain.

6.10 FURTHER READINGS

Several general introductions in data mining [13,14] provide excellent references for
clustering algorithms. Basic reference books for clustering algorithms are authored
by Jain and Dubes [6] and Kaufmann and Rousseeuw [7]. Recent surveys such as
those by Berkhin [2] and Jain et al. [5] allow the reader to get familiar with current
issues in clustering.



214

DATA MINING ALGORITHMS |: CLUSTERING

6.11 EXERCISES

1. Let d be a ultrametric and let S(x, y) be the set of all non-null sequences

s =(s1,...,5,) € Seq(S) such that s; = x and s, = y. If d is a ultrametric
prove that d(x, y) < min{amp,(s)|s € S(x, y)} (Exercise 1).

Let S be a set, w be a partition of S, and let a, b be two numbers such that
a < b. Prove that the mapping d : S> —> R given by d(x, x) = O forx € S,
d(x,y) = aif x # y and {x, y} C B for some block B of & and d(x, y) = b,
otherwise is an ultrametric on S.

Prove the following extension of the statement from Exercise 2.

Let S be a set, mg < 1 < --- < mx—1 be a chain of partitions on S, and let
ap < ap ... < ag—1 < ax be a chain of positive reals.

Prove that the mapping d : §* — R>o given by

0 ifx=y
ap ifx#yandx =z, y
d(x,y) =

ak—1 ifx #g_, yandx =5,_, y

ap fx#FEg |y

is an ultrametric on S.

Let f: R>9 —> Rx¢ be a function that satisfies the following conditions:

(a) f(x) =0if and only if x = 0;

(b) f is monotonic on Rxg, thatis, x < y implies f(x) < f(y) for x, y € Rxo;
(c) f is subadditive on R>, that is, f(x +y) < f(x) + f(y) for x, y € Rx.

(c) Prove that if d is a metric on a set S, then fd is also a metric on S.

(d) Prove that if d is a metric on S, the J/d and d/1 + d are also metrics on S;
what can be said about d??

A function F : R > 0 — R is convex if for every s,t € R>p and a € [0, 1]
we have F(as + (1 — a)t) < aF(s)+ (1 — DF(1).

(a) Prove that if F(0) = 0, F is monotonic and convex, then F is subadditive.
(b) Prove that if f is a metric on the set S, then the function given by

d'(x,y) =1 —e k)

where k is a positive constant and x, y € S is also a metric on S. This metric
is known as the Schoenberg transform of d.
Let S be a finite set and let d : S> —> R~ be a dissimilarity. Prove that there
exists a € Rx¢ such that the dissimilarity d, defined by d,(x, y) = (d(x, y))*
satisfies the triangular inequality.



EXERCISES 215

10.

11.

12.

13.

14.

Hint: Observe that lim,_, o d,(x, y) is a dissimilarity that satisfies the triangular
inequality.

Prove Theorem 2.

Let (S, d) be a finite metric space. Prove that the functions D, E : PS? — R
defined by

DU, V) = max{d(u, v)lu € U,v € V}

1
EWUV) = > {d(u, v)lu e U, v e V)

for U, V € P(S) are metrics on P(S).

Prove that if we replace max by min in Exercise 8, then the resulting function
F : P(S)> —> R defined by

DU, V) = min{d(u, v)lu € U,v € V}

for U, V € P(S) is not a metric on P(S), in general.

Prove that the ultrametric inequality implies the triangular inequality; also,
show that both the triangular inequality and definiteness imply evenness for an
ultrametric.

Let (7, vo) be a finite rooted tree, V be the set of vertices of the tree 7, and

let S be a finite, nonempty set such that the rooted tree (7, vg) has |S| leaves.

Consider a function M : V — P(S) defined as follows:

(a) the tree 7 has |S| leaves and each for each leaf v the set M(v) is a distinct
singleton of S;

(b) if an interior vertex v of the tree has the descendants vy, va, ..., v,, then
M) = U M.

Prove that the collection of sets {M(v)|v € V} is a hierarchy on S.

Apply hierarchical clustering to the data set given in Example 9 using the

average-link method, the centroid method and the Ward method. Compare the

shapes of the clusters that are formed during the aggregation process. Draw the

dendrograms of the clusterings.

Using a random number generator produce % sets of points in R” normally
distributed around % given points in R". Use k-means to cluster these points
with several values for k and compare the quality of the resulting clusterings.

A variant of the k-means clustering introduced in the work by Stainbach [13] is
the bisecting k-means algorithm described below. The parameters are S, the set
of objects to be clustered; k, the desired number of clusters; and nt, the number
of trial bisections.

bisecting k-means{
set_of clusters = {S};
while (|set_of _clusters| < k)



216 DATA MINING ALGORITHMS I: CLUSTERING

extract a cluster C from the set_of_clusters;
k=0;
fori = 1tontdo
let Cy;, Cy; be the two clusters obtained from C by bisecting C
using standard k-means (k = 2);
if i = 1) then s = sse({Co;, C1;});
if (sse({Coi, C1;}) < s) then

k=1,
s = sse({Coi, C1i});
endif;
endfor;
add Co, C1x to set_of _clusters;
endwhile

}

The cluster C that is bisected may be the largest cluster, or the cluster having
the largest sse.

Evaluate the time performance of bisecting k-means compared with the stan-
dard k-means and with some variant of a hierarchical clustering.

15. One of the issues that the k-means algorithm must confront is that the number
of clusters k must be provided as an input parameter. Using clustering validity
design an algorithm that identifies local maxima of validity (as a function of k)
to provide a basis for a good choice of k. For a solution that applies to image
segmentation, see the work by Ray and Turi.

REFERENCES

1. Birkhoft G. Lattice Theory. 3rd ed. Providence, RI: American Mathematical Society;
1967.

2. Berkhin P. A survey of clustering data mining techniques. In: Kogan J, Nicholas C, Teboulle
M, editors, Grouping Multidimensional Data—Recent Advances in Clustering. Berlin:
Springer-Verlag; 2006. p 25-72.

3. Berkhin P, Becher J. Learning simple relations: theory and applications. Proceedings of the
2nd SIAM International Conference on Data Mining; Arlington, VA; 2002.

4. http://www2.sims.berkeley.edu/research/projects/how-much-info/

5. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv 1999;31:264—
323.

6. Jain AK, Dubes RC. Algorithms for Clustering Data. Englewood Cliffs: Prentice Hall;
1988.

7. Kaufman L, Rousseeuw PJ. Finding Groups in Data— An Introduction to Cluster Analysis.
New York: Wiley-Interscience; 1990.

8. Kleinberg J. An impossibility theorem for clustering. Proceedings of the 16th Conference
on Neural Information Processing Systems; 2002.



REFERENCES 217

9. Kurita T. An efficient agglomerative clustering algorithm using a heap. Pattern Recogn
1991;24:205-209.

10. Ng RN, Han J. Efficient and effective clustering methods for spatial data mining. Proceed-
ings of the 20th VLDB Conference; Santiago, Chile; 1994. p 144-155.

11. Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc
1971;61:846-850.

12. Ray S, Turi R. Determination of number of clusters in k-means clustering in colour image
segmentation. Proceedings of the 4th International Conference on Advances in Pattern
Recognition and Digital Technology; Calcutta, India. New Delhi, India: Narosa Publishing
House. p 137-143.

13. Steinbach M, Karypis G, Kumar V. A comparison of document clustering techniques. KDD
Workshop on Text Mining; 2000.

14. Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. Reading, MA: Addison-
Wesley; 2005.






I CHAPTER 7

Data Mining Algorithms Il:
Frequent ltem Sets

DAN A. SIMOVICI

7.1 INTRODUCTION

Association rules have received a lot of attention in data mining due to their many
applications in marketing, advertising, inventory control, and many other areas. The
area of data mining has been initiated in the seminal paper [5].

A typical supermarket may well have several thousand items on its shelves. Clearly,
the number of subsets of the set of items is immense. Even though a purchase by a
customer involves a small subset of this set of items, the number of such subsets
is very large. In principle, there are Z,S: 1 (10?00) subsets 7" having no more than
5 elements of a set that has 10,000 items and this is indeed a large number!

The supermarket is interested in identifying associations between item sets; for
example, it may be interested to know how many of the customers who bought bread
and cheese also bought milk. This knowledge is important because if it turns out that
many of the customers who bought bread and cheese also bought milk, the supermarket
will place milk physically close to bread and cheese in order to stimulate the sales of
milk. Of course, such a piece of knowledge is especially interesting when there is a
substantial number of customers who buy all three items and a large fraction of those
individuals who buy bread and cheese also buy milk. Informally, if this is the case,
we shall say that we have identified the association rule bread cheese — milk. Two
numbers will play a role in evaluating such a rule: Nyey /N and Npem/Npe. Here, N
is the total number of purchases, Ny denotes the number of transactions involving
bread, cheese, and milk, and Ny gives the number of transactions involving bread and
cheese. The first number is known as the support of the association rule; the second
is its confidence and approximates the probability that a customer who bought bread
and cheese will buy milk.

Thus, identifying association rules requires the capability to identify item sets
that occur in large sets of transactions; these are the frequent item sets. Identify-
ing association rules amounts essentially to finding frequent item sets. If Npe i

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenovi¢ Copyright © 2008 John Wiley & Sons, Inc.

219



220 DATA MINING ALGORITHMS IIl: FREQUENT ITEM SETS

large, then Ny is larger still. We formalize this problem and explore its algorithmic
aspects.

7.2 FREQUENT ITEM SETS

Suppose that I is a finite set; we refer to the elements of [ as items.

Definition 1 A transaction data set over / is a function 7 : {1, ..., n} — P(I). The
set T'(k) is the kth transaction of 7. The numbers 1, . . . , n are the transaction identifiers
(tids).

An example of a transaction set is the set of items present in the shopping cart of a
consumer who completed a purchase in a store.

Example 1 The table below describes a transaction data set over the set of over-the-
counter medicines in a drugstore.

Transactions Content
T(1) {Aspirin, Vitamin C}
T(2) {Aspirin, Sudafed}
T(3) {Tylenol}
T(4) {Aspirin, Vitamin C, Sudafed}
T(5) {Tylenol, Cepacol }
T(6) {Aspirin, Cepacol }
T(7) {Aspirin, Vitamin C}

The same data set can be presented as a 0/1 table as follows:

Aspirin ~ Vitamin C ~ Sudafed Tylenol Cepacol
(1) 1 1 0 0 0
T(2) 1 0 1 0 0
T(3) 0 0 0 1 0
T4) 1 1 1 0 0
T(5) 1 0 0 0 1
T(6) 1 0 0 0 1
T(7) 1 1 0 0 0

The entry in the row T'(k) and the column i} is set to 1 if i; € T(k); otherwise, it is
set to 0. O

Example 1 shows that we have the option of two equivalent frameworks for studying
frequent item sets: tables or transaction item sets.



FREQUENT ITEM SETS 221

Given a transaction data set 7" on the set I, we would like to determine those subsets
of I that occur often enough as values of 7.

Definition 2 Let 7 : {1I,...,n} —> P(I) be a transaction data set over a set of
items /. The support count of a subset K of the set of items / in 7T is the number
suppcounty(K) given by

suppcounty(K) = [{k|1 <k <nand K C T(k)}|.
The support of an item set K is the number

suppcount(K)
suppr(K) = pp—T.

Example 2 For the transaction data set 7 considered in Example 1 we have
suppcountz({Aspirin, VitaminC}) = 3,

because {Aspirin, Vitamin C} is a subset of three of the sets T'(k). Therefore,
suppr({Aspirin, Vitamin C}) = % O

To simplify our notation we will denote item sets by the sequence of their elements.
For instance, a set {a, b, c} will be denoted from now on by abc.

Example 3 Let I = {i, iz, i3, i4} be a collection of items. Consider the transaction
data set T given by

(1) = iyiz,
T(2) = iyis,
T(3) = i1izig,
T(4) = iyi3ia,
T(5) = iyia,
T(6) = i3i4.

Thus, the support count of the item set iiy is 3; similarly, the support count of the
item set i1i3 is 2. Therefore, suppy(i1i2) = % and suppy(i1i3) = % a

The following rather straightforward statement is fundamental for the study of
frequent item sets.

Theorem 1 Let T : {1,...,n} —> P(I) be a transaction data set over a set of
items 1. If K and K’ are two item sets, then K’ C K implies suppy(K’) > suppy(K).



222 DATA MINING ALGORITHMS IIl: FREQUENT ITEM SETS

112

i1y
FIGURE 7.1 The Rymon tree of P({iy, i, i3}).

Proof. Note that every transaction that contains K also contains K’. The statement
follows immediately. B

If we seek those item sets that enjoy a minimum support level relative to a transac-
tion data set 7', then it is natural to start the process with the smallest nonempty item
sets.

Definition 3 An item set K is u-frequent relatively to the transaction data set T if
suppr(K) > u.

We denote by ]—"’T‘ the collection of all u-frequent item sets relative to the transaction
data set T, and by F, the collection of p-frequent item sets that contain r items for
r>1.

Note that
L L
FHE = F -

r>1

If w and T are clear from the context, then we may omit either or both adornments
from this notation.

Let I ={i,...,i,} be an item set that contains n elements. We use a graphical
representation of P([), the set of subsets of /, known as the Rymon tree.

The root of the tree is #. A vertex K =i, ---ip, withi, <ip, <--- <ip has
n — ip, children K U {j}, where i,, < j < n. We shall denote this tree by R;.

Example 4 Let I = {iy, i3, i3}. The Rymon tree R is shown in Figure 7.1. O

Let S, be the collection of item sets that have r elements. The next theorem suggests
a technique for generating S, starting from S,

Theorem 2  Let R be the Rymon tree of the set of subsets of [ = {iy, ..., i,}. If
W € 85,11, where r > 2, then there exists a unique pair of distinct sets U,V € S,
that has a common immediate ancestor T € S,_1 in Ry suchthatUNV € S,_| and
W=UUV.



FREQUENT ITEM SETS 223

I_‘géé, :‘_‘g!l Ilgé»l

111213

i1i2ig 119314 t2i3i4
i1i2t314

FIGURE 7.2 Rymon tree for P({iy, i», i3, i4}).

Proof. Let u, v be the largest and the second largest subscript of an item that occurs in
W, respectively. Consider the sets U = W — {u} and V = W — {v}. Both sets belong
to S,. Moreover, Z = U NV belongs to S, because it consists of the first r — 1
elements of W. Note that both U and V are descendants of Z andthat UUV = W.

The pair (U, V) is unique. Indeed, suppose that W can be obtained in the same
manner from another pair of distinct sets U’, V' € S,, such that U’, V' are immediate
descendants of a set Z' € S,_1. The definition of the Rymon tree R; implies that
U =Z7"U{in}and V' = Z' U {i,}, where the letters in Z’ are indexed by number
smaller than min{m, g}. Then, Z’ consists of the first » — 1 symbols of W,s0 Z' = Z.
If m < g, then m is the second highest index of a symbol in W and g is the highest
index of a symbolin W,soU’' =U and V' = V.1

Example 5 Consider the Rymon tree of the collection P({i1, iz, i3, i4) shown in Fig-
ure 7.2. The set iji3i4 is the union of the sets i1i3 and iji4 that have the common
ancestor ij. O

Next we discuss an algorithm that allows us to compute the collection f’T‘ of
all u-frequent item sets for a transaction data set 7. The algorithm is known as the
Apriori algorithm.

We begin with the procedure apriori_gen that starts with the collection - # i Of
frequent item sets for the transaction data set T that contain k elements and generates
acollection Cyt1 of sets of items that contains ]:’Tf kals the collection the frequent item
sets that have k + 1 elements. The justification of this procedure is based on the next
statement.

Theorem 3  Let T be a transaction data set over a set of items I and let k € N such
that k > 1.

If W is a pu-frequent item set and |W| = k + 1, then there exist a u-frequent item
set Z and two items i, and iy such that |Z| =k -1, ZC W, W = Z U {i;, iy} and
both Z U {i;,} and Z U {iy} are p-frequent item sets.



224 DATA MINING ALGORITHMS IIl: FREQUENT ITEM SETS

Proof. If W is an item set such that |W| = k + 1, then we already know that W is
the union of two subsets U, V of I such that |U| = |V| = k and that Z = U N V has
k — 1 elements. Since W is a u-frequent item set and Z, U, V are subsets of W, it
follows that each of these sets is also a u-frequent item set. l

Note that the reciprocal statement of Theorem 3 is not true, as the next example
shows.

Example 6 Let T be the transaction data set introduced in Example 3. Note that both
i1i2 and ii3 are %—frequent item sets; however,

suppr(i1iziz) = 0,
s0 i1ipi3 fails to be a %-frequent item set. O

The procedure apriori_gen mentioned above is introduced next. This proce-
dure starts with the collection of item sets Fr and produces a collection of item sets
Cri+1 that includes the collection of item sets Frxy1 of frequent item sets having
k + 1 elements.

apriori_gen(jL, f’Tfk){
C;kﬂ =0
foreach L, M € ]F’; , such that
L#Mand LNM € Fy,_, do
begin
add L UM to C’;JH_I;
remove all sets K in (C‘;’ k41 Where
there is a subset of K containing k elements
that does not belong to IF’; o
end

}

Note that in apriori_gen no access to the transaction data set is needed.

The Apriori algorithm is introduced next. The algorithm operates on “levels.” Each
level k consists of a collection C% « of candidate item sets of u-frequent item sets.
To build the initial collection of candidate item sets C%], every single item set is
considered for membership in C#,y The initial set of frequent item set consists of
those singletons that pass the minimal support test. The algorithm alternates between
a candidate generation phase (accomplished by using apriori_gen) and an evaluation
phase, which involves a data set scan and is, therefore, the most expensive component
of the algorithm.

Apriori(T, p){
Chy = iYli € 1
i=1;
while (C7; # ) do
/* evaluation phase */



FREQUENT ITEM SETS 225

Fr; = (L € Cqylsuppy(L) = u);
/* candidate generation */
Cl;,iﬂ = apriori_gen(F7));

i+ +;
endwhile;
output 71 = U,_; Fr ;3
}
Example 7 Let T be the data set given by
Transactions | iy | i | i3 | is | Is
T(1) 1{1]lolo]o
TQ2) 0|1 110 |0
T@3) 1 {0 |0 |01
T4) 1 01010 1
T(5) 0|1 1 10 |1
7(6) /I T O T O O B
T(7) 1{1]1]o]o0
T(8) o 1| 1| 1] 1
The support counts of various subsets of I = {iy, ..., is} are given below:
i1 i i3 iq is
5 6 5 2 5

i1ip ip1i3  ipia i1is i2i3 ipl4 ipls i3igq i3i5 i4is
3 2 1 3 5 2 3 2 3 2

i10213 i1i2i4 [11215 11034 110305 1i4i5 20314 [203i5 I2i4i5 i3i4i5
2 1 1 1 1 1 2 3 2 2

11021304 1101315 i1i0i4i5 111i314i5 121314i5
1 1 1 1 2
i1020314i5
0

Starting with © = 0.25 and with F’Tfo = {0}, the Apriori algorithm computes the
following sequence of sets:

122 . . . . .

CT;[ = {115127l3al4515}7

T.1 — 1112713714515}7

T2 = W12, 1113, 1114, 1115, 1213, 1214, 1215, 1314, 1315, 1415},

Fro = liria, 0113, i1is, 0203, U214, i205, 1314, i305, i4i5},



226 DATA MINING ALGORITHMS IIl: FREQUENT ITEM SETS

Cry = {iniais, iviais, ivizis, iaisia, inizis, iaiais, i3iais),
Frs = liriai3, izizia, i2isis, iziais, i3iis},
Cr4 = {inizisis},
Fry = lizizigis},
Crs=19.
Thus, the algorithm will output the collection:

Ff = Of‘;.

i=1
= {i1, i2, 13, i4, 5, i112, 1113, i115, 0203, I2l4, 205, [3i4, i3i5, i45,

i11213, 120314, 21315, i2i415, 131415, i213i415}.

O
Let I be a set of items and T : {1,...,n} — P(I) be a transaction data set.
Denote by D the set of transaction identifiers, D = {1, ..., n}. The functions itemsy :

P(D) —> P(I) and tids7 : P(I) —> P(D) are defined by

items7(E) = [ \(T(k)|k € E}.
tidsy(H) = {k € D|H < T(k)}

for every E € P(D) and every H € P(I).

Note that suppcounty(H) = [tids7(H)| for every item set H € P(I).

The next statement shows that the mappings itemsr and tidsy form a Galois con-
nection between the partial ordered sets P(D) and P(I) (see the works by Birkhoff
[7] and Ganter and Wille [10] for this concept and related results). The use of Ga-
lois connections in data mining was initiated in the work by Pasquier et al. [15] and
continued in the work by Zaki [19].

Theoremd4 LetT :{1,...,n} —> P(I) be a transaction data set. We have

if E C E', then itemsy(E') C items7(E),
if HC H/, then tidsy(H') C tidsy(H),
E C tidsy(itemsy(E)), and

H C itemsy(tidsp(H)),

N Wb~

for every E, E' € P(D) and every H, H € P(I).



FREQUENT ITEM SETS 227

Proof. The first two parts of the theorem follow immediately from the definitions of
the functions itemsy and tidsy.

To prove part (iii) let k € E be a transaction identifier. Then, the item set 7'(e)
includes items7(E), by the definition of itemsy(E). By part (ii), tids7(T(e)) €
tidsy(items7(E)). Since e € tidsy(T(e)) it follows that e € tidsy(itemsy(E)), so
E C tidsy(items7(E)).

The argument for part (iv) is similar. B

Corollary 1  Let T : D —> P(I) be a transaction data set and let I : P(I) —>
P(I)and D : P(D) —> P(D) be defined by I(H) = itemsy(tidsy(H)) for H € P(I)
and D(E) = tidsy(itemsy(E)) for E € P(D). Then, I and D are closure operators
on I and D, respectively.

Proof. Let H, H' be two subsets of I such that H C H'. By part (ii) of Theo-
rem 4 we have tidsp(H’) C tidsy(H); part (i) of the same theorem yields I(H) =
itemsy (tidsp(H)) C itemsz(tidsy(H’)) = I(H’), so I is monotonic. The proof of
monotonicity for D is similar.

Since E C tids7(items7(E)), by part (i) of Theorem 4 we have

itemsy (tids7(items7(E))) C itemsy(E).
On the contrary, by the expansiveness of I we can write
itemsy(E) C itemsy(tidsy(itemsy(E))),
which implies the equality
items7(tidsy (items7(E))) = items7(E) (7.1)
for every E € P(D). This, in turn means that
tidsy(itemsy (tidsy(items7(E)))) = tidsy(items7(E)),

which proves that D is idempotent. The proof for the idempotency of I makes use of
the equality

tidsy (items7(tids7(H))) = tidsy(H) (7.2)

and is similar; we omit it. ll

Clo