

Algorithms and Data Structures

Kurt Mehlhorn • Peter Sanders

Algorithms and
Data Structures
The Basic Toolbox

Prof. Dr. Kurt Mehlhorn Prof. Dr. Peter Sanders
Max-Planck-Institut für Informatik Universität Karlsruhe
Saarbrücken Germany
Germany sanders@ira.uka.de
mehlhorn@mpi-inf.mpg.de

ISBN 978-3-540-77977-3 e-ISBN 978-3-540-77978-0

DOI 10.1007/978-3-540-77978-0

Library of Congress Control Number: 2008926816

ACM Computing Classification (1998): F.2, E.1, E.2, G.2, B.2, D.1, I.2.8

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

To all algorithmicists

Preface

Algorithms are at the heart of every nontrivial computer application. Therefore every
computer scientist and every professional programmer should know about the basic
algorithmic toolbox: structures that allow efficient organization and retrieval of data,
frequently used algorithms, and generic techniques for modeling, understanding, and
solving algorithmic problems.

This book is a concise introduction to this basic toolbox, intended for students
and professionals familiar with programming and basic mathematical language. We
have used the book in undergraduate courses on algorithmics. In our graduate-level
courses, we make most of the book a prerequisite, and concentrate on the starred
sections and the more advanced material. We believe that, even for undergraduates,
a concise yet clear and simple presentation makes material more accessible, as long
as it includes examples, pictures, informal explanations, exercises, and some linkage
to the real world.

Most chapters have the same basic structure. We begin by discussing a problem
as it occurs in a real-life situation. We illustrate the most important applications and
then introduce simple solutions as informally as possible and as formally as neces-
sary to really understand the issues at hand. When we move to more advanced and
optional issues, this approach gradually leads to a more mathematical treatment, in-
cluding theorems and proofs. This way, the book should work for readers with a wide
range of mathematical expertise. There are also advanced sections (marked with a *)
where we recommend that readers should skip them on first reading. Exercises pro-
vide additional examples, alternative approaches and opportunities to think about the
problems. It is highly recommended to take a look at the exercises even if there is
no time to solve them during the first reading. In order to be able to concentrate on
ideas rather than programming details, we use pictures, words, and high-level pseu-
docode to explain our algorithms. A section “implementation notes” links these ab-
stract ideas to clean, efficient implementations in real programming languages such
as C++ and Java. Each chapter ends with a section on further findings that provides
a glimpse at the state of the art, generalizations, and advanced solutions.

Algorithmics is a modern and active area of computer science, even at the level
of the basic toolbox. We have made sure that we present algorithms in a modern

VIII Preface

way, including explicitly formulated invariants. We also discuss recent trends, such
as algorithm engineering, memory hierarchies, algorithm libraries, and certifying
algorithms.

We have chosen to organize most of the material by problem domain and not by
solution technique. The final chapter on optimization techniques is an exception. We
find that presentation by problem domain allows a more concise presentation. How-
ever, it is also important that readers and students obtain a good grasp of the available
techniques. Therefore, we have structured the final chapter by techniques, and an ex-
tensive index provides cross-references between different applications of the same
technique. Bold page numbers in the Index indicate the pages where concepts are
defined.

Karlsruhe, Saarbrücken, Kurt Mehlhorn
February, 2008 Peter Sanders

Contents

1 Appetizer: Integer Arithmetics . 1
1.1 Addition . 2
1.2 Multiplication: The School Method . 3
1.3 Result Checking . 6
1.4 A Recursive Version of the School Method . 7
1.5 Karatsuba Multiplication . 9
1.6 Algorithm Engineering . 11
1.7 The Programs . 13
1.8 Proofs of Lemma 1.5 and Theorem 1.7 . 16
1.9 Implementation Notes . 17
1.10 Historical Notes and Further Findings . 18

2 Introduction . 19
2.1 Asymptotic Notation . 20
2.2 The Machine Model . 23
2.3 Pseudocode . 26
2.4 Designing Correct Algorithms and Programs 31
2.5 An Example – Binary Search . 34
2.6 Basic Algorithm Analysis . 36
2.7 Average-Case Analysis . 41
2.8 Randomized Algorithms. 45
2.9 Graphs . 49
2.10 P and NP . 53
2.11 Implementation Notes . 56
2.12 Historical Notes and Further Findings . 57

3 Representing Sequences by Arrays and Linked Lists 59
3.1 Linked Lists . 60
3.2 Unbounded Arrays . 66
3.3 *Amortized Analysis . 71
3.4 Stacks and Queues . 74

X Contents

3.5 Lists Versus Arrays . 77
3.6 Implementation Notes . 78
3.7 Historical Notes and Further Findings . 79

4 Hash Tables and Associative Arrays . 81
4.1 Hashing with Chaining . 83
4.2 Universal Hashing . 85
4.3 Hashing with Linear Probing . 90
4.4 Chaining Versus Linear Probing . 92
4.5 *Perfect Hashing . 92
4.6 Implementation Notes . 95
4.7 Historical Notes and Further Findings . 97

5 Sorting and Selection . 99
5.1 Simple Sorters . 101
5.2 Mergesort – an O(n logn) Sorting Algorithm 103
5.3 A Lower Bound . 106
5.4 Quicksort . 108
5.5 Selection . 114
5.6 Breaking the Lower Bound . 116
5.7 *External Sorting . 118
5.8 Implementation Notes . 122
5.9 Historical Notes and Further Findings . 124

6 Priority Queues . 127
6.1 Binary Heaps . 129
6.2 Addressable Priority Queues . 133
6.3 *External Memory . 139
6.4 Implementation Notes . 141
6.5 Historical Notes and Further Findings . 142

7 Sorted Sequences . 145
7.1 Binary Search Trees . 147
7.2 (a,b)-Trees and Red–Black Trees . 149
7.3 More Operations . 156
7.4 Amortized Analysis of Update Operations . 158
7.5 Augmented Search Trees . 160
7.6 Implementation Notes . 162
7.7 Historical Notes and Further Findings . 164

8 Graph Representation . 167
8.1 Unordered Edge Sequences . 168
8.2 Adjacency Arrays – Static Graphs . 168
8.3 Adjacency Lists – Dynamic Graphs . 170
8.4 The Adjacency Matrix Representation . 171
8.5 Implicit Representations . 172

Contents XI

8.6 Implementation Notes . 172
8.7 Historical Notes and Further Findings . 174

9 Graph Traversal . 175
9.1 Breadth-First Search . 176
9.2 Depth-First Search . 178
9.3 Implementation Notes . 188
9.4 Historical Notes and Further Findings . 189

10 Shortest Paths . 191
10.1 From Basic Concepts to a Generic Algorithm 192
10.2 Directed Acyclic Graphs . 195
10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm) 196
10.4 *Average-Case Analysis of Dijkstra’s Algorithm 199
10.5 Monotone Integer Priority Queues . 201
10.6 Arbitrary Edge Costs (Bellman–Ford Algorithm) 206
10.7 All-Pairs Shortest Paths and Node Potentials 207
10.8 Shortest-Path Queries . 209
10.9 Implementation Notes . 213
10.10 Historical Notes and Further Findings . 214

11 Minimum Spanning Trees . 217
11.1 Cut and Cycle Properties . 218
11.2 The Jarník–Prim Algorithm . 219
11.3 Kruskal’s Algorithm . 221
11.4 The Union–Find Data Structure . 222
11.5 *External Memory . 225
11.6 Applications . 228
11.7 Implementation Notes . 231
11.8 Historical Notes and Further Findings . 231

12 Generic Approaches to Optimization . 233
12.1 Linear Programming – a Black-Box Solver . 234
12.2 Greedy Algorithms – Never Look Back . 239
12.3 Dynamic Programming – Building It Piece by Piece 243
12.4 Systematic Search – When in Doubt, Use Brute Force 246
12.5 Local Search – Think Globally, Act Locally 249
12.6 Evolutionary Algorithms . 259
12.7 Implementation Notes . 261
12.8 Historical Notes and Further Findings . 262

A Appendix . 263
A.1 Mathematical Symbols . 263
A.2 Mathematical Concepts . 264
A.3 Basic Probability Theory . 266
A.4 Useful Formulae . 269

XII Contents

References . 273

Index . 285

1

Appetizer: Integer Arithmetics

An appetizer is supposed to stimulate the appetite at the beginning of a meal. This is
exactly the purpose of this chapter. We want to stimulate your interest in algorithmic1

techniques by showing you a surprising result. The school method for multiplying in-
tegers is not the best multiplication algorithm; there are much faster ways to multiply
large integers, i.e., integers with thousands or even millions of digits, and we shall
teach you one of them.

Arithmetic on long integers is needed in areas such as cryptography, geometric
computing, and computer algebra and so an improved multiplication algorithm is not
just an intellectual gem but also useful for applications. On the way, we shall learn
basic analysis and basic algorithm engineering techniques in a simple setting. We
shall also see the interplay of theory and experiment.

We assume that integers are represented as digit strings. In the base B number
system, where B is an integer larger than one, there are digits 0, 1, to B− 1 and a
digit string an−1an−2 . . .a1a0 represents the number ∑0≤i<n aiBi. The most important
systems with a small value of B are base 2, with digits 0 and 1, base 10, with digits 0
to 9, and base 16, with digits 0 to 15 (frequently written as 0 to 9, A, B, C, D, E, and
F). Larger bases, such as 28, 216, 232, and 264, are also useful. For example,

“10101” in base 2 represents 1 ·24 +0 ·23 +1 ·22 +0 ·21 +1 ·20 = 21,

“924” in base 10 represents 9 ·102 +2 ·101 +4 ·100 = 924 .

We assume that we have two primitive operations at our disposal: the addition
of three digits with a two-digit result (this is sometimes called a full adder), and the

1 The Soviet stamp on this page shows Muhammad ibn Musa al-Khwarizmi (born approxi-
mately 780; died between 835 and 850), Persian mathematician and astronomer from the
Khorasan province of present-day Uzbekistan. The word “algorithm” is derived from his
name.

2 1 Appetizer: Integer Arithmetics

multiplication of two digits with a two-digit result.2 For example, in base 10, we
have

3
5
5

13

and 6 ·7 = 42 .

We shall measure the efficiency of our algorithms by the number of primitive opera-
tions executed.

We can artificially turn any n-digit integer into an m-digit integer for any m≥ n by
adding additional leading zeros. Concretely, “425” and “000425” represent the same
integer. We shall use a and b for the two operands of an addition or multiplication
and assume throughout this section that a and b are n-digit integers. The assumption
that both operands have the same length simplifies the presentation without changing
the key message of the chapter. We shall come back to this remark at the end of the
chapter. We refer to the digits of a as an−1 to a0, with an−1 being the most significant
digit (also called leading digit) and a0 being the least significant digit, and write
a = (an−1 . . .a0). The leading digit may be zero. Similarly, we use bn−1 to b0 to
denote the digits of b, and write b = (bn−1 . . .b0).

1.1 Addition

We all know how to add two integers a = (an−1 . . .a0) and b = (bn−1 . . .b0). We
simply write one under the other with the least significant digits aligned, and sum
the integers digitwise, carrying a single digit from one position to the next. This digit
is called a carry. The result will be an n+1-digit integer s = (sn . . .s0). Graphically,

an−1 . . . a1 a0 first operand
bn−1 . . . b1 b0 second operand

cn cn−1 . . . c1 0 carries
sn sn−1 . . . s1 s0 sum

where cn to c0 is the sequence of carries and s = (sn . . .s0) is the sum. We have c0 = 0,
ci+1 ·B+ si = ai +bi + ci for 0 ≤ i < n and sn = cn. As a program, this is written as

c = 0 : Digit // Variable for the carry digit
for i :=0 to n−1 do add ai, bi, and c to form si and a new carry c
sn := c

We need one primitive operation for each position, and hence a total of n primi-
tive operations.

Theorem 1.1. The addition of two n-digit integers requires exactly n primitive oper-
ations. The result is an n+1-digit integer.

2 Observe that the sum of three digits is at most 3(B−1) and the product of two digits is at
most (B−1)2, and that both expressions are bounded by (B−1) ·B1 +(B−1) ·B0 = B2−1,
the largest integer that can be written with two digits.

1.2 Multiplication: The School Method 3

1.2 Multiplication: The School Method

We all know how to multiply two integers. In this section, we shall review the “school
method”. In a later section, we shall get to know a method which is significantly
faster for large integers.

We shall proceed slowly. We first review how to multiply an n-digit integer a by
a one-digit integer b j. We use b j for the one-digit integer, since this is how we need
it below. For any digit ai of a, we form the product ai · b j. The result is a two-digit
integer (cidi), i.e.,

ai ·b j = ci ·B+di .

We form two integers, c = (cn−1 . . .c0 0) and d = (dn−1 . . .d0), from the c’s and d’s,
respectively. Since the c’s are the higher-order digits in the products, we add a zero
digit at the end. We add c and d to obtain the product p j = a ·b j. Graphically,

(an−1 . . .ai . . .a0) ·b j −→
cn−1 cn−2 . . . ci ci−1 . . . c0 0

dn−1 . . . di+1 di . . . d1 d0

sum of c and d

Let us determine the number of primitive operations. For each i, we need one prim-
itive operation to form the product ai ·b j, for a total of n primitive operations. Then
we add two n+1-digit numbers. This requires n+1 primitive operations. So the total
number of primitive operations is 2n+1.

Lemma 1.2. We can multiply an n-digit number by a one-digit number with 2n + 1
primitive operations. The result is an n+1-digit number.

When you multiply an n-digit number by a one-digit number, you will probably
proceed slightly differently. You combine3 the generation of the products ai ·b j with
the summation of c and d into a single phase, i.e., you create the digits of c and d
when they are needed in the final addition. We have chosen to generate them in a
separate phase because this simplifies the description of the algorithm.

Exercise 1.1. Give a program for the multiplication of a and b j that operates in a
single phase.

We can now turn to the multiplication of two n-digit integers. The school method
for integer multiplication works as follows: we first form partial products p j by mul-
tiplying a by the j-th digit b j of b, and then sum the suitably aligned products p j ·B j

to obtain the product of a and b. Graphically,

p0,n p0,n−1 . . . p0,2 p0,1 p0,0

p1,n p1,n−1 p1,n−2 . . . p1,1 p1,0

p2,n p2,n−1 p2,n−2 p2,n−3 . . . p2,0

. . .
pn−1,n . . . pn−1,3 pn−1,2 pn−1,1 pn−1,0

sum of the n partial products

3 In the literature on compiler construction and performance optimization, this transforma-
tion is known as loop fusion.

4 1 Appetizer: Integer Arithmetics

The description in pseudocode is more compact. We initialize the product p to zero
and then add to it the partial products a ·b j ·B j one by one:

p = 0 : N
for j :=0 to n−1 do p := p+a ·b j ·B j

Let us analyze the number of primitive operations required by the school method.
Each partial product p j requires 2n + 1 primitive operations, and hence all partial
products together require 2n2 + n primitive operations. The product a · b is a 2n-
digit number, and hence all summations p + a · b j ·B j are summations of 2n-digit
integers. Each such addition requires at most 2n primitive operations, and hence all
additions together require at most 2n2 primitive operations. Thus, we need no more
than 4n2 +n primitive operations in total.

A simple observation allows us to improve this bound. The number a ·b j ·B j has
n + 1 + j digits, the last j of which are zero. We can therefore start the addition in
the j +1-th position. Also, when we add a ·b j ·B j to p, we have p = a · (b j−1 · · ·b0),
i.e., p has n+ j digits. Thus, the addition of p and a ·b j ·B j amounts to the addition
of two n + 1-digit numbers and requires only n + 1 primitive operations. Therefore,
all additions together require only n2 + n primitive operations. We have thus shown
the following result.

Theorem 1.3. The school method multiplies two n-digit integers with 3n2 +2n prim-
itive operations.

We have now analyzed the numbers of primitive operations required by the
school methods for integer addition and integer multiplication. The number Mn of
primitive operations for the school method for integer multiplication is 3n2 + 2n.
Observe that 3n2 + 2n = n2(3 + 2/n), and hence 3n2 + 2n is essentially the same as
3n2 for large n. We say that Mn grows quadratically. Observe also that

Mn/Mn/2 =
3n2 +2n

3(n/2)2 +2(n/2)
=

n2(3+2/n)
(n/2)2(3+4/n)

= 4 · 3n+2
3n+4

≈ 4 ,

i.e., quadratic growth has the consequence of essentially quadrupling the number of
primitive operations when the size of the instance is doubled.

Assume now that we actually implement the multiplication algorithm in our fa-
vorite programming language (we shall do so later in the chapter), and then time the
program on our favorite machine for various n-digit integers a and b and various n.
What should we expect? We want to argue that we shall see quadratic growth. The
reason is that primitive operations are representative of the running time of the al-
gorithm. Consider the addition of two n-digit integers first. What happens when the
program is executed? For each position i, the digits ai and bi have to be moved to the
processing unit, the sum ai +bi + c has to be formed, the digit si of the result needs
to be stored in memory, the carry c is updated, the index i is incremented, and a test
for loop exit needs to be performed. Thus, for each i, the same number of machine
cycles is executed. We have counted one primitive operation for each i, and hence
the number of primitive operations is representative of the number of machine cy-
cles executed. Of course, there are additional effects, for example pipelining and the

1.2 Multiplication: The School Method 5

n Tn (sec) Tn/Tn/2

8 0.00000469
16 0.0000154 3.28527
32 0.0000567 3.67967
64 0.000222 3.91413

128 0.000860 3.87532
256 0.00347 4.03819
512 0.0138 3.98466

1024 0.0547 3.95623
2048 0.220 4.01923
4096 0.880 4
8192 3.53 4.01136

16384 14.2 4.01416
32768 56.7 4.00212
65536 227 4.00635

131072 910 4.00449

 100

 10

 1

 0.1

 0.01

 0.001

 0.0001

216214212210282624
tim

e
[s

ec
]

n

school method

Fig. 1.1. The running time of the school method for the multiplication of n-digit integers. The
three columns of the table on the left give n, the running time Tn of the C++ implementation
given in Sect. 1.7, and the ratio Tn/Tn/2. The plot on the right shows logTn versus logn, and we

see essentially a line. Observe that if Tn = αnβ for some constants α and β , then Tn/Tn/2 = 2β

and logTn = β logn+ logα , i.e., logTn depends linearly on logn with slope β . In our case, the
slope is two. Please, use a ruler to check

complex transport mechanism for data between memory and the processing unit, but
they will have a similar effect for all i, and hence the number of primitive operations
is also representative of the running time of an actual implementation on an actual
machine. The argument extends to multiplication, since multiplication of a number
by a one-digit number is a process similar to addition and the second phase of the
school method for multiplication amounts to a series of additions.

Let us confirm the above argument by an experiment. Figure 1.1 shows execution
times of a C++ implementation of the school method; the program can be found in
Sect. 1.7. For each n, we performed a large number4 of multiplications of n-digit
random integers and then determined the average running time Tn; Tn is listed in
the second column. We also show the ratio Tn/Tn/2. Figure 1.1 also shows a plot
of the data points5 (logn, logTn). The data exhibits approximately quadratic growth,
as we can deduce in various ways. The ratio Tn/Tn/2 is always close to four, and
the double logarithmic plot shows essentially a line of slope two. The experiments

4 The internal clock that measures CPU time returns its timings in some units, say millisec-
onds, and hence the rounding required introduces an error of up to one-half of this unit. It
is therefore important that the experiment timed takes much longer than this unit, in order
to reduce the effect of rounding.

5 Throughout this book, we use logx to denote the logarithm to base 2, log2 x.

6 1 Appetizer: Integer Arithmetics

are quite encouraging: our theoretical analysis has predictive value. Our theoretical
analysis showed quadratic growth of the number of primitive operations, we argued
above that the running time should be related to the number of primitive operations,
and the actual running time essentially grows quadratically. However, we also see
systematic deviations. For small n, the growth from one row to the next is less than by
a factor of four, as linear and constant terms in the running time still play a substantial
role. For larger n, the ratio is very close to four. For very large n (too large to be timed
conveniently), we would probably see a factor larger than four, since the access time
to memory depends on the size of the data. We shall come back to this point in
Sect. 2.2.

Exercise 1.2. Write programs for the addition and multiplication of long integers.
Represent integers as sequences (arrays or lists or whatever your programming lan-
guage offers) of decimal digits and use the built-in arithmetic to implement the prim-
itive operations. Then write ADD, MULTIPLY1, and MULTIPLY functions that add
integers, multiply an integer by a one-digit number, and multiply integers, respec-
tively. Use your implementation to produce your own version of Fig. 1.1. Experiment
with using a larger base than base 10, say base 216.

Exercise 1.3. Describe and analyze the school method for division.

1.3 Result Checking

Our algorithms for addition and multiplication are quite simple, and hence it is fair
to assume that we can implement them correctly in the programming language of our
choice. However, writing software6 is an error-prone activity, and hence we should
always ask ourselves whether we can check the results of a computation. For multi-
plication, the authors were taught the following technique in elementary school. The
method is known as Neunerprobe in German, “casting out nines” in English, and
preuve par neuf in French.

Add the digits of a. If the sum is a number with more than one digit, sum its
digits. Repeat until you arrive at a one-digit number, called the checksum of a. We
use sa to denote this checksum. Here is an example:

4528 → 19 → 10 → 1 .

Do the same for b and the result c of the computation. This gives the checksums
sb and sc. All checksums are single-digit numbers. Compute sa · sb and form its
checksum s. If s differs from sc, c is not equal to a · b. This test was described by
al-Khwarizmi in his book on algebra.

Let us go through a simple example. Let a = 429, b = 357, and c = 154153.
Then sa = 6, sb = 6, and sc = 1. Also, sa · sb = 36 and hence s = 9. So sc �= s and

6 The bug in the division algorithm of the floating-point unit of the original Pentium chip
became infamous. It was caused by a few missing entries in a lookup table used by the
algorithm.

1.4 A Recursive Version of the School Method 7

hence sc is not the product of a and b. Indeed, the correct product is c = 153153.
Its checksum is 9, and hence the correct product passes the test. The test is not fool-
proof, as c = 135153 also passes the test. However, the test is quite useful and detects
many mistakes.

What is the mathematics behind this test? We shall explain a more general
method. Let q be any positive integer; in the method described above, q = 9. Let sa

be the remainder, or residue, in the integer division of a by q, i.e., sa = a−�a/q� ·q.
Then 0 ≤ sa < q. In mathematical notation, sa = a mod q.7 Similarly, sb = b mod q
and sc = c mod q. Finally, s = (sa · sb) mod q. If c = a · b, then it must be the case
that s = sc. Thus s �= sc proves c �= a ·b and uncovers a mistake in the multiplication.
What do we know if s = sc? We know that q divides the difference of c and a · b.
If this difference is nonzero, the mistake will be detected by any q which does not
divide the difference.

Let us continue with our example and take q = 7. Then a mod 7 = 2, b mod 7 = 0
and hence s = (2 ·0) mod 7 = 0. But 135153 mod 7 = 4, and we have uncovered that
135153 �= 429 ·357.

Exercise 1.4. Explain why the method learned by the authors in school corresponds
to the case q = 9. Hint: 10k mod 9 = 1 for all k ≥ 0.

Exercise 1.5 (Elferprobe, casting out elevens). Powers of ten have very simple re-
mainders modulo 11, namely 10k mod 11 = (−1)k for all k ≥ 0, i.e., 1 mod 11 = 1,
10 mod 11 =−1, 100 mod 11 = +1, 1000 mod 11 =−1, etc. Describe a simple test
to check the correctness of a multiplication modulo 11.

1.4 A Recursive Version of the School Method

We shall now derive a recursive version of the school method. This will be our first
encounter with the divide-and-conquer paradigm, one of the fundamental paradigms
in algorithm design.

Let a and b be our two n-digit integers which we want to multiply. Let k = �n/2�.
We split a into two numbers a1 and a0; a0 consists of the k least significant digits and
a1 consists of the n− k most significant digits.8 We split b analogously. Then

a = a1 ·Bk +a0 and b = b1 ·Bk +b0 ,

and hence
a ·b = a1 ·b1 ·B2k +(a1 ·b0 +a0 ·b1) ·Bk +a0 ·b0 .

This formula suggests the following algorithm for computing a ·b:

7 The method taught in school uses residues in the range 1 to 9 instead of 0 to 8 according to
the definition sa = a− (a/q
−1) ·q.

8 Observe that we have changed notation; a0 and a1 now denote the two parts of a and are
no longer single digits.

8 1 Appetizer: Integer Arithmetics

(a) Split a and b into a1, a0, b1, and b0.
(b) Compute the four products a1 ·b1, a1 ·b0, a0 ·b1, and a0 ·b0.
(c) Add the suitably aligned products to obtain a ·b.

Observe that the numbers a1, a0, b1, and b0 are 	n/2
-digit numbers and hence the
multiplications in step (b) are simpler than the original multiplication if 	n/2
 < n,
i.e., n > 1. The complete algorithm is now as follows. To multiply one-digit numbers,
use the multiplication primitive. To multiply n-digit numbers for n ≥ 2, use the three-
step approach above.

It is clear why this approach is called divide-and-conquer. We reduce the problem
of multiplying a and b to some number of simpler problems of the same kind. A
divide-and-conquer algorithm always consists of three parts: in the first part, we split
the original problem into simpler problems of the same kind (our step (a)); in the
second part we solve the simpler problems using the same method (our step (b)); and,
in the third part, we obtain the solution to the original problem from the solutions to
the subproblems (our step (c)).

..

..

a0

a0

a0

a1

a1

a1 b0b0 b0

b1b1 b1

Fig. 1.2. Visualization of the school method and
its recursive variant. The rhombus-shaped area
indicates the partial products in the multiplication
a · b. The four subareas correspond to the partial
products a1 ·b1, a1 ·b0, a0 ·b1, and a0 ·b0. In the
recursive scheme, we first sum the partial prod-
ucts in the four subareas and then, in a second
step, add the four resulting sums

What is the connection of our recursive integer multiplication to the school
method? It is really the same method. Figure 1.2 shows that the products a1 · b1,
a1 ·b0, a0 ·b1, and a0 ·b0 are also computed in the school method. Knowing that our
recursive integer multiplication is just the school method in disguise tells us that the
recursive algorithm uses a quadratic number of primitive operations. Let us also de-
rive this from first principles. This will allow us to introduce recurrence relations, a
powerful concept for the analysis of recursive algorithms.

Lemma 1.4. Let T (n) be the maximal number of primitive operations required by
our recursive multiplication algorithm when applied to n-digit integers. Then

T (n) ≤
{

1 if n = 1,

4 ·T (n/2
)+3 ·2 ·n if n ≥ 2.

Proof. Multiplying two one-digit numbers requires one primitive multiplication.
This justifies the case n = 1. So, assume n ≥ 2. Splitting a and b into the four pieces
a1, a0, b1, and b0 requires no primitive operations.9 Each piece has at most 	n/2

9 It will require work, but it is work that we do not account for in our analysis.

1.5 Karatsuba Multiplication 9

digits and hence the four recursive multiplications require at most 4 ·T (n/2
) prim-
itive operations. Finally, we need three additions to assemble the final result. Each
addition involves two numbers of at most 2n digits and hence requires at most 2n
primitive operations. This justifies the inequality for n ≥ 2. ��

In Sect. 2.6, we shall learn that such recurrences are easy to solve and yield the
already conjectured quadratic execution time of the recursive algorithm.

Lemma 1.5. Let T (n) be the maximal number of primitive operations required by
our recursive multiplication algorithm when applied to n-digit integers. Then T (n)≤
7n2 if n is a power of two, and T (n) ≤ 28n2 for all n.

Proof. We refer the reader to Sect. 1.8 for a proof. ��

1.5 Karatsuba Multiplication

In 1962, the Soviet mathematician Karatsuba [104] discovered a faster way of multi-
plying large integers. The running time of his algorithm grows like nlog3 ≈ n1.58. The
method is surprisingly simple. Karatsuba observed that a simple algebraic identity al-
lows one multiplication to be eliminated in the divide-and-conquer implementation,
i.e., one can multiply n-bit numbers using only three multiplications of integers half
the size.

The details are as follows. Let a and b be our two n-digit integers which we want
to multiply. Let k = �n/2�. As above, we split a into two numbers a1 and a0; a0

consists of the k least significant digits and a1 consists of the n− k most significant
digits. We split b in the same way. Then

a = a1 ·Bk +a0 and b = b1 ·Bk +b0

and hence (the magic is in the second equality)

a ·b = a1 ·b1 ·B2k +(a1 ·b0 +a0 ·b1) ·Bk +a0 ·b0

= a1 ·b1 ·B2k +((a1 +a0) · (b1 +b0)− (a1 ·b1 +a0 ·b0)) ·Bk +a0 ·b0 .

At first sight, we have only made things more complicated. A second look, how-
ever, shows that the last formula can be evaluated with only three multiplications,
namely, a1 · b1, a1 · b0, and (a1 + a0) · (b1 + b0). We also need six additions.10 That
is three more than in the recursive implementation of the school method. The key
is that additions are cheap compared with multiplications, and hence saving a mul-
tiplication more than outweighs three additional additions. We obtain the following
algorithm for computing a ·b:

10 Actually, five additions and one subtraction. We leave it to readers to convince themselves
that subtractions are no harder than additions.

10 1 Appetizer: Integer Arithmetics

(a) Split a and b into a1, a0, b1, and b0.
(b) Compute the three products

p2 = a1 ·b1, p0 = a0 ·b0, p1 = (a1 +a0) · (b1 +b0).

(c) Add the suitably aligned products to obtain a ·b, i.e., compute a ·b according to
the formula

a ·b = p2 ·B2k +(p1 − (p2 + p0)) ·Bk + p0.

The numbers a1, a0, b1, b0, a1 + a0, and b1 + b0 are 	n/2
+ 1-digit numbers and
hence the multiplications in step (b) are simpler than the original multiplication if
	n/2
+ 1 < n, i.e., n ≥ 4. The complete algorithm is now as follows: to multiply
three-digit numbers, use the school method, and to multiply n-digit numbers for n ≥
4, use the three-step approach above.

 10

 1

 0.1

 0.01

 0.001

 0.0001

 1e-05

214212210282624

tim
e

[s
ec

]

n

school method
Karatsuba4

Karatsuba32

Fig. 1.3. The running times of implemen-
tations of the Karatsuba and school meth-
ods for integer multiplication. The run-
ning times for two versions of Karatsuba’s
method are shown: Karatsuba4 switches to
the school method for integers with fewer
than four digits, and Karatsuba32 switches
to the school method for integers with
fewer than 32 digits. The slopes of the
lines for the Karatsuba variants are approx-
imately 1.58. The running time of Karat-
suba32 is approximately one-third the run-
ning time of Karatsuba4.

Figure 1.3 shows the running times TK(n) and TS(n) of C++ implementations
of the Karatsuba method and the school method for n-digit integers. The scales on
both axes are logarithmic. We see, essentially, straight lines of different slope. The
running time of the school method grows like n2, and hence the slope is 2 in the
case of the school method. The slope is smaller in the case of the Karatsuba method
and this suggests that its running time grows like nβ with β < 2. In fact, the ratio11

TK(n)/TK(n/2) is close to three, and this suggests that β is such that 2β = 3 or

11 TK(1024) = 0.0455, TK(2048) = 0.1375, and TK(4096) = 0.41.

1.6 Algorithm Engineering 11

β = log3 ≈ 1.58. Alternatively, you may determine the slope from Fig. 1.3. We
shall prove below that TK(n) grows like nlog3. We say that the Karatsuba method has
better asymptotic behavior. We also see that the inputs have to be quite big before the
superior asymptotic behavior of the Karatsuba method actually results in a smaller
running time. Observe that for n = 28, the school method is still faster, that for n = 29,
the two methods have about the same running time, and that the Karatsuba method
wins for n = 210. The lessons to remember are:

• Better asymptotic behavior ultimately wins.
• An asymptotically slower algorithm can be faster on small inputs.

In the next section, we shall learn how to improve the behavior of the Karatsuba
method for small inputs. The resulting algorithm will always be at least as good as
the school method. It is time to derive the asymptotics of the Karatsuba method.

Lemma 1.6. Let TK(n) be the maximal number of primitive operations required by
the Karatsuba algorithm when applied to n-digit integers. Then

TK(n) ≤
{

3n2 +2n if n ≤ 3,

3 ·TK(n/2
+1)+6 ·2 ·n if n ≥ 4.

Proof. Multiplying two n-bit numbers using the school method requires no more
than 3n2 + 2n primitive operations, by Lemma 1.3. This justifies the first line. So,
assume n ≥ 4. Splitting a and b into the four pieces a1, a0, b1, and b0 requires no
primitive operations.12 Each piece and the sums a0 + a1 and b0 + b1 have at most
	n/2
+ 1 digits, and hence the three recursive multiplications require at most 3 ·
TK(n/2
+ 1) primitive operations. Finally, we need two additions to form a0 + a1

and b0 + b1, and four additions to assemble the final result. Each addition involves
two numbers of at most 2n digits and hence requires at most 2n primitive operations.
This justifies the inequality for n ≥ 4. ��

In Sect. 2.6, we shall learn some general techniques for solving recurrences of
this kind.

Theorem 1.7. Let TK(n) be the maximal number of primitive operations required by
the Karatsuba algorithm when applied to n-digit integers. Then TK(n) ≤ 99nlog3 +
48 ·n+48 · logn for all n.

Proof. We refer the reader to Sect. 1.8 for a proof. ��

1.6 Algorithm Engineering

Karatsuba integer multiplication is superior to the school method for large inputs.
In our implementation, the superiority only shows for integers with more than 1 000

12 It will require work, but it is work that we do not account for in our analysis.

12 1 Appetizer: Integer Arithmetics

digits. However, a simple refinement improves the performance significantly. Since
the school method is superior to the Karatsuba method for short integers, we should
stop the recursion earlier and switch to the school method for numbers which have
fewer than n0 digits for some yet to be determined n0. We call this approach the
refined Karatsuba method. It is never worse than either the school method or the
original Karatsuba algorithm.

 0.4

 0.3

 0.2

 0.1

 1024 512 256 128 64 32 16 8 4

recursion threshold

Karatsuba, n = 2048
Karatsuba, n = 4096

Fig. 1.4. The running time of the Karat-
suba method as a function of the recursion
threshold n0. The times consumed for mul-
tiplying 2048-digit and 4096-digit integers
are shown. The minimum is at n0 = 32

What is a good choice for n0? We shall answer this question both experimentally
and analytically. Let us discuss the experimental approach first. We simply time the
refined Karatsuba algorithm for different values of n0 and then adopt the value giving
the smallest running time. For our implementation, the best results were obtained for
n0 = 32 (see Fig. 1.4). The asymptotic behavior of the refined Karatsuba method is
shown in Fig. 1.3. We see that the running time of the refined method still grows
like nlog3, that the refined method is about three times faster than the basic Karatsuba
method and hence the refinement is highly effective, and that the refined method is
never slower than the school method.

Exercise 1.6. Derive a recurrence for the worst-case number TR(n) of primitive op-
erations performed by the refined Karatsuba method.

We can also approach the question analytically. If we use the school method
to multiply n-digit numbers, we need 3n2 + 2n primitive operations. If we use one
Karatsuba step and then multiply the resulting numbers of length 	n/2
+ 1 using
the school method, we need about 3(3(n/2 + 1)2 + 2(n/2 + 1))+ 12n primitive op-
erations. The latter is smaller for n ≥ 28 and hence a recursive step saves primitive
operations as long as the number of digits is more than 28. You should not take this
as an indication that an actual implementation should switch at integers of approx-
imately 28 digits, as the argument concentrates solely on primitive operations. You
should take it as an argument that it is wise to have a nontrivial recursion threshold
n0 and then determine the threshold experimentally.

Exercise 1.7. Throughout this chapter, we have assumed that both arguments of a
multiplication are n-digit integers. What can you say about the complexity of mul-
tiplying n-digit and m-digit integers? (a) Show that the school method requires no

1.7 The Programs 13

more than α · nm primitive operations for some constant α . (b) Assume n ≥ m and
divide a into 	n/m
 numbers of m digits each. Multiply each of the fragments by b
using Karatsuba’s method and combine the results. What is the running time of this
approach?

1.7 The Programs

We give C++ programs for the school and Karatsuba methods below. These programs
were used for the timing experiments described in this chapter. The programs were
executed on a machine with a 2 GHz dual-core Intel T7200 processor with 4 Mbyte
of cache memory and 2 Gbyte of main memory. The programs were compiled with
GNU C++ version 3.3.5 using optimization level -O2.

A digit is simply an unsigned int and an integer is a vector of digits; here, “vector”
is the vector type of the standard template library. A declaration integer a(n) declares
an integer with n digits, a.size() returns the size of a, and a[i] returns a reference to the
i-th digit of a. Digits are numbered starting at zero. The global variable B stores the
base. The functions fullAdder and digitMult implement the primitive operations on
digits. We sometimes need to access digits beyond the size of an integer; the function
getDigit(a, i) returns a[i] if i is a legal index for a and returns zero otherwise:

typedef unsigned int digit;
typedef vector<digit> integer;
unsigned int B = 10; // Base, 2 <= B <= 2^16

void fullAdder(digit a, digit b, digit c, digit& s, digit& carry)
{ unsigned int sum = a + b + c; carry = sum/B; s = sum - carry*B; }

void digitMult(digit a, digit b, digit& s, digit& carry)
{ unsigned int prod = a*b; carry = prod/B; s = prod - carry*B; }

digit getDigit(const integer& a, int i)
{ return (i < a.size()? a[i] : 0); }

We want to run our programs on random integers: randDigit is a simple random
generator for digits, and randInteger fills its argument with random digits.

unsigned int X = 542351;
digit randDigit() { X = 443143*X + 6412431; return X % B ; }
void randInteger(integer& a)
{ int n = a.size(); for (int i=0; i<n; i++) a[i] = randDigit();}

We come to the school method of multiplication. We start with a routine that
multiplies an integer a by a digit b and returns the result in atimesb. In each itera-
tion, we compute d and c such that c ∗B + d = a[i] ∗ b. We then add d, the c from
the previous iteration, and the carry from the previous iteration, store the result in
atimesb[i], and remember the carry. The school method (the function mult) multi-
plies a by each digit of b and then adds it at the appropriate position to the result (the
function addAt).

14 1 Appetizer: Integer Arithmetics

void mult(const integer& a, const digit& b, integer& atimesb)
{ int n = a.size(); assert(atimesb.size() == n+1);

digit carry = 0, c, d, cprev = 0;

for (int i = 0; i < n; i++)
{ digitMult(a[i],b,d,c);

fullAdder(d, cprev, carry, atimesb[i], carry); cprev = c;
}

d = 0;
fullAdder(d, cprev, carry, atimesb[n], carry); assert(carry == 0);

}
void addAt(integer& p, const integer& atimesbj, int j)
{ // p has length n+m,

digit carry = 0; int L = p.size();
for (int i = j; i < L; i++)

fullAdder(p[i], getDigit(atimesbj,i-j), carry, p[i], carry);
assert(carry == 0);

}
integer mult(const integer& a, const integer& b)
{ int n = a.size(); int m = b.size();

integer p(n + m,0); integer atimesbj(n+1);
for (int j = 0; j < m; j++)

{ mult(a, b[j], atimesbj); addAt(p, atimesbj, j); }
return p;

}

For Karatsuba’s method, we also need algorithms for general addition and sub-
traction. The subtraction method may assume that the first argument is no smaller
than the second. It computes its result in the first argument:

integer add(const integer& a, const integer& b)
{ int n = max(a.size(),b.size());

integer s(n+1); digit carry = 0;
for (int i = 0; i < n; i++)
fullAdder(getDigit(a,i), getDigit(b,i), carry, s[i], carry);
s[n] = carry;
return s;

}
void sub(integer& a, const integer& b) // requires a >= b
{ digit carry = 0;

for (int i = 0; i < a.size(); i++)
if (a[i] >= (getDigit(b,i) + carry))

{ a[i] = a[i] - getDigit(b,i) - carry; carry = 0; }
else { a[i] = a[i] + B - getDigit(b,i) - carry; carry = 1;}

assert(carry == 0);
}

The function split splits an integer into two integers of half the size:

void split(const integer& a,integer& a1, integer& a0)
{ int n = a.size(); int k = n/2;

for (int i = 0; i < k; i++) a0[i] = a[i];
for (int i = 0; i < n - k; i++) a1[i] = a[k+ i];

}

1.7 The Programs 15

The function Karatsuba works exactly as described in the text. If the inputs have
fewer than n0 digits, the school method is employed. Otherwise, the inputs are split
into numbers of half the size and the products p0, p1, and p2 are formed. Then p0 and
p2 are written into the output vector and subtracted from p1. Finally, the modified p1
is added to the result:

integer Karatsuba(const integer& a, const integer& b, int n0)
{ int n = a.size(); int m = b.size(); assert(n == m); assert(n0 >= 4);

integer p(2*n);

if (n < n0) return mult(a,b);

int k = n/2; integer a0(k), a1(n - k), b0(k), b1(n - k);

split(a,a1,a0); split(b,b1,b0);

integer p2 = Karatsuba(a1,b1,n0),
p1 = Karatsuba(add(a1,a0),add(b1,b0),n0),
p0 = Karatsuba(a0,b0,n0);

for (int i = 0; i < 2*k; i++) p[i] = p0[i];
for (int i = 2*k; i < n+m; i++) p[i] = p2[i - 2*k];

sub(p1,p0); sub(p1,p2); addAt(p,p1,k);

return p;
}

The following program generated the data for Fig. 1.3:

inline double cpuTime() { return double(clock())/CLOCKS_PER_SEC; }

int main(){

for (int n = 8; n <= 131072; n *= 2)
{ integer a(n), b(n); randInteger(a); randInteger(b);

double T = cpuTime(); int k = 0;
while (cpuTime() - T < 1) { mult(a,b); k++; }
cout << "\n" << n << " school = " << (cpuTime() - T)/k;

T = cpuTime(); k = 0;
while (cpuTime() - T < 1) { Karatsuba(a,b,4); k++; }
cout << " Karatsuba4 = " << (cpuTime() - T) /k; cout.flush();

T = cpuTime(); k = 0;
while (cpuTime() - T < 1) { Karatsuba(a,b,32); k++; }
cout << " Karatsuba32 = " << (cpuTime() - T) /k; cout.flush();

}
return 0;
}

16 1 Appetizer: Integer Arithmetics

1.8 Proofs of Lemma 1.5 and Theorem 1.7

To make this chapter self-contained, we include proofs of Lemma 1.5 and Theo-
rem 1.7. We start with an analysis of the recursive version of the school method.
Recall that T (n), the maximal number of primitive operations required by our recur-
sive multiplication algorithm when applied to n-digit integers, satisfies

T (n) ≤
{

1 if n = 1,

4 ·T (n/2
)+3 ·2 ·n if n ≥ 2.

We use induction on n to show that T (n) ≤ 7n2 −6n when n is a power of two. For
n = 1, we have T (1) ≤ 1 = 7n2 −6n. For n > 1, we have

T (n) ≤ 4T (n/2)+6n ≤ 4(7(n/2)2 −6n/2)+6n = 7n2 −6n ,

where the second inequality follows from the induction hypothesis. For general n, we
observe that multiplying n-digit integers is certainly no more costly than multiplying
2	logn
-digit integers and hence T (n) ≤ T (2	logn
). Since 2	logn
 ≤ 2n, we conclude
that T (n) ≤ 28n2 for all n.

Exercise 1.8. Prove a bound on the recurrence T (1) ≤ 1 and T (n) ≤ 4T (n/2)+ 9n
when n is a power of two.

How did we know that “7n2−6n” was the bound to be proved? There is no magic
here. For n = 2k, repeated substitution yields

T (2k) ≤ 4 ·T (2k−1)+6 ·2k ≤ 42T (2k−2)+6 · (41 ·2k−1 +2k)

≤ 43T (2k−3)+6 · (42 ·2k−2 +41 ·2k−1 +2k) ≤ . . .

≤ 4kT (1)+6 ∑
0≤i≤k−1

4i2k−i ≤ 4k +6 ·2k ∑
0≤i≤k−1

2i

≤ 4k +6 ·2k(2k −1) = n2 +6n(n−1) = 7n2 −6n .

We turn now to the proof of Theorem 1.7. Recall that TK satisfies the recurrence

TK(n) ≤
{

3n2 +2n if n ≤ 3,

3 ·TK(n/2
+1)+12n if n ≥ 4.

The recurrence for the school method has the nice property that if n is a power of two,
the arguments of T on the right-hand side are again powers of two. This is not true
for TK . However, if n = 2k + 2 and k ≥ 1, then 	n/2
+ 1 = 2k−1 + 2, and hence we
should now use numbers of the form n = 2k +2, k ≥ 0, as the basis of the inductive
argument. We shall show that

TK(2k +2) ≤ 33 ·3k +12 · (2k+1 +2k−2)

for k ≥ 0. For k = 0, we have

1.9 Implementation Notes 17

TK(20 +2) = TK(3) ≤ 3 ·32 +2 ·3 = 33 = 33 ·20 +12 · (21 +2 ·0−2) .

For k ≥ 1, we have

TK(2k +2) ≤ 3TK(2k−1 +2)+12 · (2k +2)

≤ 3 ·
(

33 ·3k−1 +12 · (2k +2(k−1)−2)
)

+12 · (2k +2)

= 33 ·3k +12 · (2k+1 +2k−2) .

Again, there is no magic in coming up with the right induction hypothesis. It is
obtained by repeated substitution. Namely,

TK(2k +2) ≤ 3TK(2k−1 +2)+12 · (2k +2)

≤ 3kTK(20 +2)+12 · (2k +2+2k−1 +2+ . . .+21 +2)

≤ 33 ·3k +12 · (2k+1 −2+2k) .

It remains to extend the bound to all n. Let k be the minimal integer such that
n ≤ 2k +2. Then k ≤ 1 + logn. Also, multiplying n-digit numbers is no more costly
than multiplying (2k +2)-digit numbers, and hence

TK(n) ≤ 33 ·3k +12 · (2k+1 −2+2k)

≤ 99 ·3logn +48 · (2logn −2+2(1+ logn))

≤ 99 ·nlog3 +48 ·n+48 · logn ,

where the equality 3logn = 2(log3)·(logn) = nlog3 has been used.

Exercise 1.9. Solve the recurrence

TR(n) ≤
{

3n2 +2n if n < 32,

3 ·TR(n/2
+1)+12n if n ≥ 4.

1.9 Implementation Notes

The programs given in Sect. 1.7 are not optimized. The base of the number system
should be a power of two so that sums and carries can be extracted by bit operations.
Also, the size of a digit should agree with the word size of the machine and a little
more work should be invested in implementing primitive operations on digits.

1.9.1 C++

GMP [74] and LEDA [118] offer high-precision integer, rational, and floating-point
arithmetic. Highly optimized implementations of Karatsuba’s method are used for
multiplication.

18 1 Appetizer: Integer Arithmetics

1.9.2 Java

java.math implements arbitrary-precision integers and floating-point numbers.

1.10 Historical Notes and Further Findings

Is the Karatsuba method the fastest known method for integer multiplication? No,
much faster methods are known. Karatsuba’s method splits an integer into two parts
and requires three multiplications of integers of half the length. The natural exten-
sion is to split integers into k parts of length n/k each. If the recursive step requires �
multiplications of numbers of length n/k, the running time of the resulting algorithm
grows like nlogk �. In this way, Toom [196] and Cook [43] reduced the running time
to13 O

(
n1+ε) for arbitrary positive ε . The asymptotically most efficient algorithms

are the work of Schönhage and Strassen [171] and Schönhage [170]. The former
multiplies n-bit integers with O(n logn log logn) bit operations, and it can be imple-
mented to run in this time bound on a Turing machine. The latter runs in linear time
O(n) and requires the machine model discussed in Sect. 2.2. In this model, integers
with logn bits can be multiplied in constant time.

13 The O(·) notation is defined in Sect. 2.1.

2

Introduction

When you want to become a sculptor1 you have to learn some basic techniques:
where to get the right stones, how to move them, how to handle the chisel, how to
erect scaffolding, Knowing these techniques will not make you a famous artist,
but even if you have a really exceptional talent, it will be very difficult to develop
into a successful artist without knowing them. It is not necessary to master all of the
basic techniques before sculpting the first piece. But you always have to be willing
to go back to improve your basic techniques.

This introductory chapter plays a similar role in this book. We introduce basic
concepts that make it simpler to discuss and analyze algorithms in the subsequent
chapters. There is no need for you to read this chapter from beginning to end before
you proceed to later chapters. On first reading, we recommend that you should read
carefully to the end of Sect. 2.3 and skim through the remaining sections. We begin in
Sect. 2.1 by introducing some notation and terminology that allow us to argue about
the complexity of algorithms in a concise way. We then introduce a simple machine
model in Sect. 2.2 that allows us to abstract from the highly variable complications
introduced by real hardware. The model is concrete enough to have predictive value
and abstract enough to allow elegant arguments. Section 2.3 then introduces a high-
level pseudocode notation for algorithms that is much more convenient for express-
ing algorithms than the machine code of our abstract machine. Pseudocode is also
more convenient than actual programming languages, since we can use high-level
concepts borrowed from mathematics without having to worry about exactly how
they can be compiled to run on actual hardware. We frequently annotate programs
to make algorithms more readable and easier to prove correct. This is the subject
of Sect. 2.4. Section 2.5 gives the first comprehensive example: binary search in a
sorted array. In Sect. 2.6, we introduce mathematical techniques for analyzing the
complexity of programs, in particular, for analyzing nested loops and recursive pro-

1 The above illustration of Stonehenge is from [156].

20 2 Introduction

cedure calls. Additional analysis techniques are needed for average-case analysis;
these are covered in Sect. 2.7. Randomized algorithms, discussed in Sect. 2.8, use
coin tosses in their execution. Section 2.9 is devoted to graphs, a concept that will
play an important role throughout the book. In Sect. 2.10, we discuss the question of
when an algorithm should be called efficient, and introduce the complexity classes
P and NP. Finally, as in every chapter of this book, there are sections containing im-
plementation notes (Sect. 2.11) and historical notes and further findings (Sect. 2.12).

2.1 Asymptotic Notation

The main purpose of algorithm analysis is to give performance guarantees, for ex-
ample bounds on running time, that are at the same time accurate, concise, general,
and easy to understand. It is difficult to meet all these criteria simultaneously. For
example, the most accurate way to characterize the running time T of an algorithm is
to view T as a mapping from the set I of all inputs to the set of nonnegative numbers
R+. For any problem instance i, T (i) is the running time on i. This level of detail is
so overwhelming that we could not possibly derive a theory about it. A useful theory
needs a more global view of the performance of an algorithm.

We group the set of all inputs into classes of “similar” inputs and summarize the
performance on all instances in the same class into a single number. The most useful
grouping is by size. Usually, there is a natural way to assign a size to each problem
instance. The size of an integer is the number of digits in its representation, and the
size of a set is the number of elements in the set. The size of an instance is always
a natural number. Sometimes we use more than one parameter to measure the size
of an instance; for example, it is customary to measure the size of a graph by its
number of nodes and its number of edges. We ignore this complication for now. We
use size(i) to denote the size of instance i, and In to denote the instances of size n
for n ∈N. For the inputs of size n, we are interested in the maximum, minimum, and
average execution times:2

worst case: T (n) = max{T (i) : i ∈ In}
best case: T (n) = min{T (i) : i ∈ In}
average case: T (n) =

1
|In| ∑

i∈In

T (i) .

We are interested most in the worst-case execution time, since it gives us the
strongest performance guarantee. A comparison of the best case and the worst case
tells us how much the execution time varies for different inputs in the same class. If
the discrepancy is big, the average case may give more insight into the true perfor-
mance of the algorithm. Section 2.7 gives an example.

We shall perform one more step of data reduction: we shall concentrate on growth
rate or asymptotic analysis. Functions f (n) and g(n) have the same growth rate if

2 We shall make sure that {T (i) : i ∈ In} always has a proper minimum and maximum, and
that In is finite when we consider averages.

2.1 Asymptotic Notation 21

there are positive constants c and d such that c ≤ f (n)/g(n) ≤ d for all sufficiently
large n, and f (n) grows faster than g(n) if, for all positive constants c, we have
f (n) ≥ c · g(n) for all sufficiently large n. For example, the functions n2, n2 + 7n,
5n2 − 7n, and n2/10 + 106n all have the same growth rate. Also, they grow faster
than n3/2, which in turn grows faster than n logn. The growth rate talks about the
behavior for large n. The word “asymptotic” in “asymptotic analysis” also stresses
the fact that we are interested in the behavior for large n.

Why are we interested only in growth rates and the behavior for large n? We are
interested in the behavior for large n because the whole purpose of designing efficient
algorithms is to be able to solve large instances. For large n, an algorithm whose
running time has a smaller growth rate than the running time of another algorithm
will be superior. Also, our machine model is an abstraction of real machines and
hence can predict actual running times only up to a constant factor, and this suggests
that we should not distinguish between algorithms whose running times have the
same growth rate. A pleasing side effect of concentrating on growth rate is that we
can characterize the running times of algorithms by simple functions. However, in
the sections on implementation, we shall frequently take a closer look and go beyond
asymptotic analysis. Also, when using one of the algorithms described in this book,
you should always ask yourself whether the asymptotic view is justified.

The following definitions allow us to argue precisely about asymptotic behavior.
Let f (n) and g(n) denote functions that map nonnegative integers to nonnegative real
numbers:

O(f (n)) = {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≤ c · f (n)} ,

Ω(f (n)) = {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≥ c · f (n)} ,

Θ(f (n)) = O(f (n))∩Ω(f (n)) ,
o(f (n)) = {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≤ c · f (n)} ,

ω(f (n)) = {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≥ c · f (n)} .

The left-hand sides should be read as “big O of f ”, “big omega of f ”, “theta of f ”,
“little o of f ”, and “little omega of f ”, respectively.

Let us see some examples. O
(
n2

)
is the set of all functions that grow at most

quadratically, o
(
n2

)
is the set of functions that grow less than quadratically, and

o(1) is the set of functions that go to zero as n goes to infinity. Here “1” stands
for the function n �→ 1, which is one everywhere, and hence f ∈ o(1) if f (n) ≤
c · 1 for any positive c and sufficiently large n, i.e., f (n) goes to zero as n goes to
infinity. Generally, O(f (n)) is the set of all functions that “grow no faster than” f (n).
Similarly, Ω(f (n)) is the set of all functions that “grow at least as fast as” f (n). For
example, the Karatsuba algorithm for integer multiplication has a worst-case running
time in O

(
n1.58

)
, whereas the school algorithm has a worst-case running time in

Ω
(
n2

)
, so that we can say that the Karatsuba algorithm is asymptotically faster than

the school algorithm. The “little o” notation o(f (n)) denotes the set of all functions
that “grow strictly more slowly than” f (n). Its twin ω(f (n)) is rarely used, and is
only shown for completeness.

22 2 Introduction

The growth rate of most algorithms discussed in this book is either a polynomial
or a logarithmic function, or the product of a polynomial and a logarithmic func-
tion. We use polynomials to introduce our readers to some basic manipulations of
asymptotic notation.

Lemma 2.1. Let p(n) = ∑k
i=0 aini denote any polynomial and assume ak > 0. Then

p(n) ∈ Θ
(
nk

)
.

Proof. It suffices to show that p(n)∈ O
(
nk

)
and p(n)∈ Ω

(
nk

)
. First observe that for

n > 0,

p(n) ≤
k

∑
i=0

|ai|ni ≤ nk
k

∑
i=0

|ai| ,

and hence p(n) ≤ (∑k
i=0 |ai|)nk for all positive n. Thus p(n) ∈ O

(
nk

)
.

Let A = ∑k−1
i=0 |ai|. For positive n we have

p(n) ≥ aknk −Ank−1 =
ak

2
nk +nk−1

(ak

2
n−A

)

and hence p(n) ≥ (ak/2)nk for n > 2A/ak. We choose c = ak/2 and n0 = 2A/ak in
the definition of Ω

(
nk

)
, and obtain p(n) ∈ Ω

(
nk

)
.
�

Exercise 2.1. Right or wrong? (a) n2 +106n ∈O
(
n2

)
, (b) n logn∈ O(n), (c) n logn∈

Ω(n), (d) logn ∈ o(n).

Asymptotic notation is used a lot in algorithm analysis, and it is convenient to
stretch mathematical notation a little in order to allow sets of functions (such as
O

(
n2

)
) to be treated similarly to ordinary functions. In particular, we shall always

write h = O(f) instead of h ∈ O(f), and O(h) = O(f) instead of O(h) ⊆ O(f). For
example,

3n2 +7n = O
(
n2) = O

(
n3) .

Be warned that sequences of equalities involving O-notation should only be read
from left to right.

If h is a function, F and G are sets of functions, and ◦ is an operator such as
+, ·, or /, then F ◦G is a shorthand for { f ◦g : f ∈ F,g ∈ G}, and h ◦F stands for
{h} ◦F . So f (n)+ o(f (n)) denotes the set of all functions f (n)+ g(n) where g(n)
grows strictly more slowly than f (n), i.e., the ratio (f (n)+ g(n))/ f (n) goes to one
as n goes to infinity. Equivalently, we can write (1+o(1)) f (n). We use this notation
whenever we care about the constant in the leading term but want to ignore lower-
order terms.

Lemma 2.2. The following rules hold for O-notation:

c f (n) = Θ(f (n)) for any positive constant,

f (n)+g(n) = Ω(f (n)) ,
f (n)+g(n) = O(f (n)) if g(n) = O(f (n)) ,

O(f (n)) ·O(g(n)) = O(f (n) ·g(n)) .

2.2 The Machine Model 23

Exercise 2.2. Prove Lemma 2.2.

Exercise 2.3. Sharpen Lemma 2.1 and show that p(n) = aknk +o
(
nk

)
.

Exercise 2.4. Prove that nk = o(cn) for any integer k and any c > 1. How does nlog logn

compare with nk and cn?

2.2 The Machine Model

Fig. 2.1. John von Neumann
born Dec. 28, 1903 in Budapest,
died Feb. 8, 1957 in Washing-
ton, DC

In 1945, John von Neumann (Fig. 2.1) introduced a
computer architecture [201] which was simple, yet
powerful. The limited hardware technology of the
time forced him to come up with an elegant de-
sign that concentrated on the essentials; otherwise,
realization would have been impossible. Hardware
technology has developed tremendously since 1945.
However, the programming model resulting from von
Neumann’s design is so elegant and powerful that it is
still the basis for most of modern programming. Usu-
ally, programs written with von Neumann’s model
in mind also work well on the vastly more complex
hardware of today’s machines.

The variant of von Neumann’s model used in al-
gorithmic analysis is called the RAM (random access
machine) model. It was introduced by Sheperdson
and Sturgis [179]. It is a sequential machine with uni-
form memory, i.e., there is a single processing unit,
and all memory accesses take the same amount of
time. The memory or store, consists of infinitely many cells S[0], S[1], S[2], . . . ;
at any point in time, only a finite number of them will be in use.

The memory cells store “small” integers, also called words. In our discussion of
integer arithmetic in Chap. 1, we assumed that “small” meant one-digit. It is more
reasonable and convenient to assume that the interpretation of “small” depends on
the size of the input. Our default assumption is that integers bounded by a polynomial
in the size of the data being processed can be stored in a single cell. Such integers
can be represented by a number of bits that is logarithmic in the size of the input.
This assumption is reasonable because we could always spread out the contents of a
single cell over logarithmically many cells with a logarithmic overhead in time and
space and obtain constant-size cells. The assumption is convenient because we want
to be able to store array indices in a single cell. The assumption is necessary because
allowing cells to store arbitrary numbers would lead to absurdly overoptimistic al-
gorithms. For example, by repeated squaring, we could generate a number with 2n

bits in n steps. Namely, if we start with the number 2 = 21, squaring it once gives
4 = 22 = 221

, squaring it twice gives 16 = 24 = 222
, and squaring it n times gives 22n

.

24 2 Introduction

Our model supports a limited form of parallelism. We can perform simple operations
on a logarithmic number of bits in constant time.

In addition to the main memory, there are a small number of registers R1, . . . , Rk.
Our RAM can execute the following machine instructions:

• Ri := S[R j] loads the contents of the memory cell indexed by the contents of R j

into register Ri.
• S[R j] :=Ri stores register Ri into the memory cell indexed by the contents of R j.
• Ri := R j �R� is a binary register operation where “�” is a placeholder for a va-

riety of operations. The arithmetic operations are the usual +, −, and ∗ but also
the bitwise operations | (OR), & (AND), >> (shift right), << (shift left), and ⊕
(exclusive OR, XOR). The operations div and mod stand for integer division and
the remainder, respectively. The comparison operations ≤, <, >, and ≥ yield
true (= 1) or false (= 0). The logical operations ∧ and ∨ manipulate the truth
values 0 and 1. We may also assume that there are operations which interpret the
bits stored in a register as a floating-point number, i.e., a finite-precision approx-
imation of a real number.

• Ri :=�R j is a unary operation using the operators −, ¬ (logical NOT), or ~
(bitwise NOT).

• Ri :=C assigns a constant value to Ri.
• JZ j,Ri continues execution at memory address j if register Ri is zero.
• J j continues execution at memory address j.

Each instruction takes one time step to execute. The total execution time of a program
is the number of instructions executed. A program is a list of instructions numbered
starting at one. The addresses in jump-instructions refer to this numbering. The input
for a computation is stored in memory cells S[1] to S[R1].

It is important to remember that the RAM model is an abstraction. One should
not confuse it with physically existing machines. In particular, real machines have
a finite memory and a fixed number of bits per register (e.g., 32 or 64). In contrast,
the word size and memory of a RAM scale with input size. This can be viewed as
an abstraction of the historical development. Microprocessors have had words of 4,
8, 16, and 32 bits in succession, and now often have 64-bit words. Words of 64 bits
can index a memory of size 264. Thus, at current prices, memory size is limited by
cost and not by physical limitations. Observe that this statement was also true when
32-bit words were introduced.

Our complexity model is also a gross oversimplification: modern processors at-
tempt to execute many instructions in parallel. How well they succeed depends on
factors such as data dependencies between successive operations. As a consequence,
an operation does not have a fixed cost. This effect is particularly pronounced for
memory accesses. The worst-case time for a memory access to the main memory
can be hundreds of times higher than the best-case time. The reason is that modern
processors attempt to keep frequently used data in caches – small, fast memories
close to the processors. How well caches work depends a lot on their architecture,
the program, and the particular input.

2.2 The Machine Model 25

We could attempt to introduce a very accurate cost model, but this would miss the
point. We would end up with a complex model that would be difficult to handle. Even
a successful complexity analysis would lead to a monstrous formula depending on
many parameters that change with every new processor generation. Although such
a formula would contain detailed information, the very complexity of the formula
would make it useless. We therefore go to the other extreme and eliminate all model
parameters by assuming that each instruction takes exactly one unit of time. The
result is that constant factors in our model are quite meaningless – one more reason
to stick to asymptotic analysis most of the time. We compensate for this drawback
by providing implementation notes, in which we discuss implementation choices and
trade-offs.

2.2.1 External Memory

The biggest difference between a RAM and a real machine is in the memory: a
uniform memory in a RAM and a complex memory hierarchy in a real machine.
In Sects. 5.7, 6.3, and 7.6, we shall discuss algorithms that have been specifically
designed for huge data sets which have to be stored on slow memory, such as disks.
We shall use the external-memory model to study these algorithms.

The external-memory model is like the RAM model except that the fast memory
S is limited in size to M words. Additionally, there is an external memory with un-
limited size. There are special I/O operations, which transfer B consecutive words
between slow and fast memory. For example, the external memory could be a hard
disk, M would then be the size of the main memory, and B would be a block size
that is a good compromise between low latency and high bandwidth. With current
technology, M = 2 Gbyte and B = 2 Mbyte are realistic values. One I/O step would
then take around 10 ms which is 2 · 107 clock cycles of a 2 GHz machine. With an-
other setting of the parameters M and B, we could model the smaller access time
difference between a hardware cache and main memory.

2.2.2 Parallel Processing

On modern machines, we are confronted with many forms of parallel processing.
Many processors have 128–512-bit-wide SIMD registers that allow the parallel exe-
cution of a single instruction on multiple data objects. Simultaneous multithreading
allows processors to better utilize their resources by running multiple threads of ac-
tivity on a single processor core. Even mobile devices often have multiple processor
cores that can independently execute programs, and most servers have several such
multicore processors accessing the same shared memory. Coprocessors, in particu-
lar those used for graphics processing, have even more parallelism on a single chip.
High-performance computers consist of multiple server-type systems interconnected
by a fast, dedicated network. Finally, more loosely connected computers of all types
interact through various kinds of network (the Internet, radio networks, . . .) in dis-
tributed systems that may consist of millions of nodes. As you can imagine, no single
simple model can be used to describe parallel programs running on these many levels

26 2 Introduction

of parallelism. We shall therefore restrict ourselves to occasional informal arguments
as to why a certain sequential algorithm may be more or less easy to adapt to paral-
lel processing. For example, the algorithms for high-precision arithmetic in Chap. 1
could make use of SIMD instructions.

2.3 Pseudocode

Our RAM model is an abstraction and simplification of the machine programs exe-
cuted on microprocessors. The purpose of the model is to provide a precise definition
of running time. However, the model is much too low-level for formulating complex
algorithms. Our programs would become too long and too hard to read. Instead, we
formulate our algorithms in pseudocode, which is an abstraction and simplification of
imperative programming languages such as C, C++, Java, C#, and Pascal, combined
with liberal use of mathematical notation. We now describe the conventions used in
this book, and derive a timing model for pseudocode programs. The timing model is
quite simple: basic pseudocode instructions take constant time, and procedure and
function calls take constant time plus the time to execute their body. We justify the
timing model by outlining how pseudocode can be translated into equivalent RAM
code. We do this only to the extent necessary to understand the timing model. There
is no need to worry about compiler optimization techniques, since constant factors
are outside our theory. The reader may decide to skip the paragraphs describing the
translation and adopt the timing model as an axiom. The syntax of our pseudocode
is akin to that of Pascal [99], because we find this notation typographically nicer for
a book than the more widely known syntax of C and its descendants C++ and Java.

2.3.1 Variables and Elementary Data Types

A variable declaration “v = x : T ” introduces a variable v of type T , and initializes
it with the value x. For example, “answer = 42 : N” introduces a variable answer
assuming integer values and initializes it to the value 42. When the type of a variable
is clear from the context, we shall sometimes omit it from the declaration. A type
is either a basic type (e.g., integer, Boolean value, or pointer) or a composite type.
We have predefined composite types such as arrays, and application-specific classes
(see below). When the type of a variable is irrelevant to the discussion, we use the
unspecified type Element as a placeholder for an arbitrary type. We take the liberty
of extending numeric types by the values −∞ and ∞ whenever this is convenient.
Similarly, we sometimes extend types by an undefined value (denoted by the symbol
⊥), which we assume to be distinguishable from any “proper” element of the type T .
In particular, for pointer types it is useful to have an undefined value. The values of
the pointer type “Pointer to T ” are handles of objects of type T . In the RAM model,
this is the index of the first cell in a region of storage holding an object of type T .

A declaration “a : Array [i.. j] of T ” introduces an array a consisting of j− i+1
elements of type T , stored in a[i], a[i+1], . . . , a[j]. Arrays are implemented as con-
tiguous pieces of memory. To find an element a[k], it suffices to know the starting

2.3 Pseudocode 27

address of a and the size of an object of type T . For example, if register Ra stores the
starting address of array a[0..k] and the elements have unit size, the instruction se-
quence “R1 :=Ra +42; R2 :=S[R1]” loads a[42] into register R2. The size of an array
is fixed at the time of declaration; such arrays are called static. In Sect. 3.2, we show
how to implement unbounded arrays that can grow and shrink during execution.

A declaration “c : Class age : N, income : N end” introduces a variable c whose
values are pairs of integers. The components of c are denoted by c.age and c.income.
For a variable c, addressof c returns the address of c. We also say that it returns a
handle to c. If p is an appropriate pointer type, p :=addressof c stores a handle to c in
p and ∗p gives us back c. The fields of c can then also be accessed through p → age
and p → income. Alternatively, one may write (but nobody ever does) (∗p).age and
(∗p).income.

Arrays and objects referenced by pointers can be allocated and deallocated by
the commands allocate and dispose. For example, p := allocate Array [1..n] of T
allocates an array of n objects of type T . That is, the statement allocates a contiguous
chunk of memory of size n times the size of an object of type T , and assigns a handle
of this chunk (= the starting address of the chunk) to p. The statement dispose p frees
this memory and makes it available for reuse. With allocate and dispose, we can cut
our memory array S into disjoint pieces that can be referred to separately. These
functions can be implemented to run in constant time. The simplest implementation
is as follows. We keep track of the used portion of S by storing the index of the
first free cell of S in a special variable, say free. A call of allocate reserves a chunk
of memory starting at free and increases free by the size of the allocated chunk. A
call of dispose does nothing. This implementation is time-efficient, but not space-
efficient. Any call of allocate or dispose takes constant time. However, the total
space consumption is the total space that has ever been allocated and not the maximal
space simultaneously used, i.e., allocated but not yet freed, at any one time. It is
not known whether an arbitrary sequence of allocate and dispose operations can
be realized space-efficiently and with constant time per operation. However, for all
algorithms presented in this book, allocate and dispose can be realized in a time-
and space-efficient way.

We borrow some composite data structures from mathematics. In particular, we
use tuples, sequences, and sets. Pairs, triples, and other tuples are written in round
brackets, for example (3,1), (3,1,4), and (3,1,4,1,5). Since tuples only contain a
constant number of elements, operations on them can be broken into operations on
their constituents in an obvious way. Sequences store elements in a specified order;
for example “s = 〈3,1,4,1〉 : Sequence of Z” declares a sequence s of integers and
initializes it to contain the numbers 3, 1, 4, and 1 in that order. Sequences are a natural
abstraction of many data structures, such as files, strings, lists, stacks, and queues. In
Chap. 3, we shall study many ways to represent sequences. In later chapters, we shall
make extensive use of sequences as a mathematical abstraction with little further
reference to implementation details. The empty sequence is written as 〈〉.

Sets play an important role in mathematical arguments and we shall also use them
in our pseudocode. In particular, you shall see declarations such as “M = {3,1,4}

28 2 Introduction

: Set of N” that are analogous to declarations of arrays or sequences. Sets are usually
implemented as sequences.

2.3.2 Statements

The simplest statement is an assignment x := E, where x is a variable and E is an
expression. An assignment is easily transformed into a constant number of RAM
instructions. For example, the statement a :=a+bc is translated into “R1 :=Rb ∗Rc;
Ra := Ra + R1”, where Ra, Rb, and Rc stand for the registers storing a, b, and c,
respectively. From C, we borrow the shorthands ++ and -- for incrementing and
decrementing variables. We also use parallel assignment to several variables. For
example, if a and b are variables of the same type, “(a,b):=(b,a)” swaps the contents
of a and b.

The conditional statement “if C then I else J”, where C is a Boolean expression
and I and J are statements, translates into the instruction sequence

eval(C); JZ sElse, Rc; trans(I); J sEnd; trans(J) ,

where eval(C) is a sequence of instructions that evaluate the expression C and leave
its value in register Rc, trans(I) is a sequence of instructions that implement state-
ment I, trans(J) implements J, sElse is the address of the first instruction in trans(J),
and sEnd is the address of the first instruction after trans(J). The sequence above first
evaluates C. If C evaluates to false (= 0), the program jumps to the first instruction
of the translation of J. If C evaluates to true (= 1), the program continues with the
translation of I and then jumps to the instruction after the translation of J. The state-
ment “if C then I” is a shorthand for “if C then I else ;”, i.e., an if–then–else with an
empty “else” part.

Our written representation of programs is intended for humans and uses less
strict syntax than do programming languages. In particular, we usually group state-
ments by indentation and in this way avoid the proliferation of brackets observed in
programming languages such as C that are designed as a compromise between read-
ability for humans and for computers. We use brackets only if the program would be
ambiguous otherwise. For the same reason, a line break can replace a semicolon for
the purpose of separating statements.

The loop “repeat I until C” translates into trans(I); eval(C); JZ sI, Rc, where sI
is the address of the first instruction in trans(I). We shall also use many other types
of loop that can be viewed as shorthands for repeat loops. In the following list, the
shorthand on the left expands into the statements on the right:

while C do I if C then repeat I until ¬C
for i :=a to b do I i :=a; while i ≤ b do I; i++
for i :=a to ∞ while C do I i :=a; while C do I; i++
foreach e ∈ s do I for i :=1 to |s| do e := s[i]; I

Many low-level optimizations are possible when loops are translated into RAM code.
These optimizations are of no concern for us. For us, it is only important that the
execution time of a loop can be bounded by summing the execution times of each of
its iterations, including the time needed for evaluating conditions.

2.3 Pseudocode 29

2.3.3 Procedures and Functions

A subroutine with the name foo is declared in the form “Procedure foo(D) I”, where
I is the body of the procedure and D is a sequence of variable declarations specify-
ing the parameters of foo. A call of foo has the form foo(P), where P is a parameter
list. The parameter list has the same length as the variable declaration list. Parameter
passing is either “by value” or “by reference”. Our default assumption is that basic
objects such as integers and Booleans are passed by value and that complex objects
such as arrays are passed by reference. These conventions are similar to the con-
ventions used by C and guarantee that parameter passing takes constant time. The
semantics of parameter passing is defined as follows. For a value parameter x of type
T , the actual parameter must be an expression E of the same type. Parameter passing
is equivalent to the declaration of a local variable x of type T initialized to E. For a
reference parameter x of type T , the actual parameter must be a variable of the same
type and the formal parameter is simply an alternative name for the actual parameter.

As with variable declarations, we sometimes omit type declarations for parame-
ters if they are unimportant or clear from the context. Sometimes we also declare pa-
rameters implicitly using mathematical notation. For example, the declaration Pro-
cedure bar(〈a1, . . . ,an〉) introduces a procedure whose argument is a sequence of n
elements of unspecified type.

Most procedure calls can be compiled into machine code by simply substitut-
ing the procedure body for the procedure call and making provisions for parameter
passing; this is called inlining. Value passing is implemented by making appropriate
assignments to copy the parameter values into the local variables of the procedure.
Reference passing to a formal parameter x : T is implemented by changing the type
of x to Pointer to T , replacing all occurrences of x in the body of the procedure
by (∗x) and initializing x by the assignment x := addressof y, where y is the actual
parameter. Inlining gives the compiler many opportunities for optimization, so that
inlining is the most efficient approach for small procedures and for procedures that
are called from only a single place.

Functions are similar to procedures, except that they allow the return statement to
return a value. Figure 2.2 shows the declaration of a recursive function that returns n!
and its translation into RAM code. The substitution approach fails for recursive pro-
cedures and functions that directly or indirectly call themselves – substitution would
never terminate. Realizing recursive procedures in RAM code requires the concept
of a recursion stack. Explicit subroutine calls over a stack are also used for large
procedures that are called multiple times where inlining would unduly increase the
code size. The recursion stack is a reserved part of the memory; we use RS to denote
it. RS contains a sequence of activation records, one for each active procedure call.
A special register Rr always points to the first free entry in this stack. The activation
record for a procedure with k parameters and � local variables has size 1+k+�. The
first location contains the return address, i.e., the address of the instruction where
execution is to be continued after the call has terminated, the next k locations are
reserved for the parameters, and the final � locations are for the local variables. A
procedure call is now implemented as follows. First, the calling procedure caller

30 2 Introduction

Function factorial(n) : Z
if n = 1 then return 1 else return n · factorial(n−1)

factorial : // the first instruction of factorial
Rn :=RS[Rr −1] // load n into register Rn

JZ thenCase, Rn // jump to then case, if n is zero
RS[Rr] = aRecCall // else case; return address for recursive call
RS[Rr +1] :=Rn −1 // parameter is n−1
Rr :=Rr +2 // increase stack pointer
J factorial // start recursive call
aRecCall : // return address for recursive call
Rresult :=RS[Rr −1]∗Rresult // store n∗ factorial(n−1) in result register
J return // goto return
thenCase : // code for then case
Rresult :=1 // put 1 into result register
return : // code for return
Rr :=Rr −2 // free activation record
J RS[Rr] // jump to return address

Fig. 2.2. A recursive function factorial and the corresponding RAM code. The RAM code
returns the function value in register Rresult

aRecCall

aRecCall

afterCall

5

4

3

Rr

Fig. 2.3. The recursion stack of a call factorial(5) when the recursion
has reached factorial(3)

pushes the return address and the actual parameters onto the stack, increases Rr ac-
cordingly, and jumps to the first instruction of the called routine called. The called
routine reserves space for its local variables by increasing Rr appropriately. Then
the body of called is executed. During execution of the body, any access to the i-th
formal parameter (0 ≤ i < k) is an access to RS[Rr − �− k + i] and any access to the
i-th local variable (0 ≤ i < �) is an access to RS[Rr − �+ i]. When called executes a
return statement, it decreases Rr by 1+k+� (observe that called knows k and �) and
execution continues at the return address (which can be found at RS[Rr]). Thus con-
trol is returned to caller. Note that recursion is no problem with this scheme, since
each incarnation of a routine will have its own stack area for its parameters and local
variables. Figure 2.3 shows the contents of the recursion stack of a call factorial(5)
when the recursion has reached factorial(3). The label afterCall is the address of
the instruction following the call factorial(5), and aRecCall is defined in Fig. 2.2.

2.4 Designing Correct Algorithms and Programs 31

Exercise 2.5 (sieve of Eratosthenes). Translate the following pseudocode for find-
ing all prime numbers up to n into RAM machine code. Argue correctness first.

a = 〈1, . . . ,1〉 : Array [2..n] of {0,1} // if a[i] is false, i is known to be nonprime
for i :=2 to �

√
n� do

if a[i] then for j :=2i to n step i do a[j] :=0
// if a[i] is true, i is prime and all multiples of i are nonprime

for i :=2 to n do if a[i] then output “i is prime”

2.3.4 Object Orientation

We also need a simple form of object-oriented programming so that we can separate
the interface and the implementation of the data structures. We shall introduce our
notation by way of example. The definition

Class Complex(x,y : Element) of Number
Number r := x
Number i := y
Function abs : Number return

√
r2 + i2

Function add(c′ : Complex) : Complex return Complex(r + c′.r, i+ c′.i)

gives a (partial) implementation of a complex number type that can use arbitrary
numeric types for the real and imaginary parts. Very often, our class names will begin
with capital letters. The real and imaginary parts are stored in the member variables r
and i, respectively. Now, the declaration “c : Complex(2,3) of R” declares a complex
number c initialized to 2+3i; c.i is the imaginary part, and c.abs returns the absolute
value of c.

The type after the of allows us to parameterize classes with types in a way similar
to the template mechanism of C++ or the generic types of Java. Note that in the light
of this notation, the types “Set of Element” and “Sequence of Element” mentioned
earlier are ordinary classes. Objects of a class are initialized by setting the member
variables as specified in the class definition.

2.4 Designing Correct Algorithms and Programs

An algorithm is a general method for solving problems of a certain kind. We describe
algorithms using natural language and mathematical notation. Algorithms, as such,
cannot be executed by a computer. The formulation of an algorithm in a program-
ming language is called a program. Designing correct algorithms and translating a
correct algorithm into a correct program are nontrivial and error-prone tasks. In this
section, we learn about assertions and invariants, two useful concepts for the design
of correct algorithms and programs.

32 2 Introduction

2.4.1 Assertions and Invariants

Assertions and invariants describe properties of the program state, i.e., properties
of single variables and relations between the values of several variables. Typical
properties are that a pointer has a defined value, an integer is nonnegative, a list
is nonempty, or the value of an integer variable length is equal to the length of a
certain list L. Figure 2.4 shows an example of the use of assertions and invariants
in a function power(a,n0) that computes an0 for a real number a and a nonnegative
integer n0.

We start with the assertion assert n0 ≥ 0 and ¬(a = 0∧n0 = 0). This states that
the program expects a nonnegative integer n0 and that not both a and n0 are allowed to
be zero. We make no claim about the behavior of our program for inputs that violate
this assertion. This assertion is therefore called the precondition of the program.
It is good programming practice to check the precondition of a program, i.e., to
write code which checks the precondition and signals an error if it is violated. When
the precondition holds (and the program is correct), a postcondition holds at the
termination of the program. In our example, we assert that r = an0 . It is also good
programming practice to verify the postcondition before returning from a program.
We shall come back to this point at the end of this section.

One can view preconditions and postconditions as a contract between the caller
and the called routine: if the caller passes parameters satisfying the precondition, the
routine produces a result satisfying the postcondition.

For conciseness, we shall use assertions sparingly, assuming that certain “ob-
vious” conditions are implicit from the textual description of the algorithm. Much
more elaborate assertions may be required for safety-critical programs or for formal
verification.

Preconditions and postconditions are assertions that describe the initial and the
final state of a program or function. We also need to describe properties of interme-
diate states. Some particularly important consistency properties should hold at many
places in a program. These properties are called invariants. Loop invariants and data
structure invariants are of particular importance.

Function power(a : R; n0 : N) : R
assert n0 ≥ 0 and ¬(a = 0∧n0 = 0) // It is not so clear what 00 should be
p = a : R; r = 1 : R; n = n0 : N // we have: pnr = an0

while n > 0 do
invariant pnr = an0

if n is odd then n--; r := r · p // invariant violated between assignments
else (n, p) :=(n/2, p · p) // parallel assignment maintains invariant

assert r = an0 // This is a consequence of the invariant and n = 0
return r

Fig. 2.4. An algorithm that computes integer powers of real numbers

2.4 Designing Correct Algorithms and Programs 33

2.4.2 Loop Invariants

A loop invariant holds before and after each loop iteration. In our example, we claim
that pnr = an0 before each iteration. This is true before the first iteration. The ini-
tialization of the program variables takes care of this. In fact, an invariant frequently
tells us how to initialize the variables. Assume that the invariant holds before exe-
cution of the loop body, and n > 0. If n is odd, we decrement n and multiply r by
p. This reestablishes the invariant (note that the invariant is violated between the as-
signments). If n is even, we halve n and square p, and again reestablish the invariant.
When the loop terminates, we have pnr = an0 by the invariant, and n = 0 by the
condition of the loop. Thus r = an0 and we have established the postcondition.

The algorithm in Fig. 2.4 and many more algorithms described in this book have
a quite simple structure. A few variables are declared and initialized to establish
the loop invariant. Then, a main loop manipulates the state of the program. When the
loop terminates, the loop invariant together with the termination condition of the loop
implies that the correct result has been computed. The loop invariant therefore plays
a pivotal role in understanding why a program works correctly. Once we understand
the loop invariant, it suffices to check that the loop invariant is true initially and after
each loop iteration. This is particularly easy if the loop body consists of only a small
number of statements, as in the example above.

2.4.3 Data Structure Invariants

More complex programs encapsulate their state in objects whose consistent repre-
sentation is also governed by invariants. Such data structure invariants are declared
together with the data type. They are true after an object is constructed, and they
are preconditions and postconditions of all methods of a class. For example, we
shall discuss the representation of sets by sorted arrays. The data structure invari-
ant will state that the data structure uses an array a and an integer n, that n is the size
of a, that the set S stored in the data structure is equal to {a[1], . . . ,a[n]}, and that
a[1] < a[2] < .. . < a[n]. The methods of the class have to maintain this invariant and
they are allowed to leverage the invariant; for example, the search method may make
use of the fact that the array is sorted.

2.4.4 Certifying Algorithms

We mentioned above that it is good programming practice to check assertions. It
is not always clear how to do this efficiently; in our example program, it is easy to
check the precondition, but there seems to be no easy way to check the postcondition.
In many situations, however, the task of checking assertions can be simplified by
computing additional information. This additional information is called a certificate
or witness, and its purpose is to simplify the check of an assertion. When an algorithm
computes a certificate for the postcondition, we call it a certifying algorithm. We
shall illustrate the idea by an example. Consider a function whose input is a graph
G = (V,E). Graphs are defined in Sect. 2.9. The task is to test whether the graph is

34 2 Introduction

bipartite, i.e., whether there is a labeling of the nodes of G with the colors blue and
red such that any edge of G connects nodes of different colors. As specified so far,
the function returns true or false – true if G is bipartite, and false otherwise. With this
rudimentary output, the postcondition cannot be checked. However, we may augment
the program as follows. When the program declares G bipartite, it also returns a two-
coloring of the graph. When the program declares G nonbipartite, it also returns a
cycle of odd length in the graph. For the augmented program, the postcondition is
easy to check. In the first case, we simply check whether all edges connect nodes of
different colors, and in the second case, we do nothing. An odd-length cycle proves
that the graph is nonbipartite. Most algorithms in this book can be made certifying
without increasing the asymptotic running time.

2.5 An Example – Binary Search

Binary search is a very useful technique for searching in an ordered set of items. We
shall use it over and over again in later chapters.

The simplest scenario is as follows. We are given a sorted array a[1..n] of pair-
wise distinct elements, i.e., a[1] < a[2] < .. . < a[n], and an element x. Now we are
required to find the index i with a[i−1] < x ≤ a[i]; here, a[0] and a[n+1] should be
interpreted as fictitious elements with values −∞ and +∞, respectively. We can use
these fictitious elements in the invariants and the proofs, but cannot access them in
the program.

Binary search is based on the principle of divide-and-conquer. We choose an
index m ∈ [1..n] and compare x with a[m]. If x = a[m], we are done and return i = m.
If x < a[m], we restrict the search to the part of the array before a[m], and if x > a[m],
we restrict the search to the part of the array after a[m]. We need to say more clearly
what it means to restrict the search to a subinterval. We have two indices � and r, and
maintain the invariant

(I) 0 ≤ � < r ≤ n+1 and a[�] < x < a[r] .

This is true initially with � = 0 and r = n+1. If � and r are consecutive indices, x is
not contained in the array. Figure 2.5 shows the complete program.

The comments in the program show that the second part of the invariant is main-
tained. With respect to the first part, we observe that the loop is entered with � < r.
If �+1 = r, we stop and return. Otherwise, �+2 ≤ r and hence � < m < r. Thus m is
a legal array index, and we can access a[m]. If x = a[m], we stop. Otherwise, we set
either r = m or � = m and hence have � < r at the end of the loop. Thus the invariant
is maintained.

Let us argue for termination next. We observe first that if an iteration is not the
last one, then we either increase � or decrease r, and hence r− � decreases. Thus the
search terminates. We want to show more. We want to show that the search terminates
in a logarithmic number of steps. To do this, we study the quantity r− �− 1. Note
that this is the number of indices i with � < i < r, and hence a natural measure of the

2.5 An Example – Binary Search 35

size of the current subproblem. We shall show that each iteration except the last at
least halves the size of the problem. If an iteration is not the last, r− �−1 decreases
to something less than or equal to

max{r−�(r + �)/2�−1,�(r + �)/2�− �−1}
≤ max{r− ((r + �)/2−1/2)−1,(r + �)/2− �−1}
= max{(r− �−1)/2,(r− �)/2−1} = (r− �−1)/2 ,

and hence it is at least halved. We start with r− �−1 = n+1−0−1 = n, and hence
have r−�−1 ≤

⌊
n/2k

⌋
after k iterations. The (k+1)-th iteration is certainly the last

if we enter it with r = �+1. This is guaranteed if n/2k < 1 or k > logn. We conclude
that, at most, 2+ logn iterations are performed. Since the number of comparisons is
a natural number, we can sharpen the bound to 2+ �logn�.

Theorem 2.3. Binary search finds an element in a sorted array of size n in 2+�logn�
comparisons between elements.

Exercise 2.6. Show that the above bound is sharp, i.e., for every n there are instances
where exactly 2+ �logn� comparisons are needed.

Exercise 2.7. Formulate binary search with two-way comparisons, i.e., distinguish
between the cases x < a[m], and x ≥ a[m].

We next discuss two important extensions of binary search. First, there is no need
for the values a[i] to be stored in an array. We only need the capability to compute
a[i], given i. For example, if we have a strictly monotonic function f and arguments i
and j with f (i) < x < f (j), we can use binary search to find m such that f (m)≤ x <
f (m+1). In this context, binary search is often referred to as the bisection method.

Second, we can extend binary search to the case where the array is infinite. As-
sume we have an infinite array a[1..∞] with a[1] ≤ x and want to find m such that
a[m] ≤ x < a[m + 1]. If x is larger than all elements in the array, the procedure is
allowed to diverge. We proceed as follows. We compare x with a[21], a[22], a[23],
. . . , until the first i with x < a[2i] is found. This is called an exponential search. Then
we complete the search by binary search on the array a[2i−1..2i].

(�,r) :=(0,n+1)
while true do

invariant I // i.e., invariant (I) holds here
if �+1 = r then return “a[�] < x < a[�+1]”
m := �(r + �)/2� // � < m < r
s := compare(x,a[m]) // −1 if x < a[m], 0 if x = a[m], +1 if x > a[m]
if s = 0 then return “x is equal to a[m]”;
if s < 0

then r :=m // a[�] < x < a[m] = a[r]
else � :=m // a[�] = a[m] < x < a[r]

Fig. 2.5. Binary search for x in a sorted array a[1..n]

36 2 Introduction

Theorem 2.4. The combination of exponential and binary search finds x in an un-
bounded sorted array in at most 2logm+3 comparisons, where a[m]≤ x < a[m+1].

Proof. We need i comparisons to find the first i such that x < a[2i], followed by
log(2i −2i−1)+2 comparisons for the binary search. This gives a total of 2i + 1
comparisons. Since m ≥ 2i−1, we have i ≤ 1+ logm and the claim follows.
�

Binary search is certifying. It returns an index m with a[m] ≤ x < a[m + 1]. If
x = a[m], the index proves that x is stored in the array. If a[m] < x < a[m + 1] and
the array is sorted, the index proves that x is not stored in the array. Of course, if the
array violates the precondition and is not sorted, we know nothing. There is no way
to check the precondition in logarithmic time.

2.6 Basic Algorithm Analysis

Let us summarize the principles of algorithm analysis. We abstract from the compli-
cations of a real machine to the simplified RAM model. In the RAM model, running
time is measured by the number of instructions executed. We simplify the analy-
sis further by grouping inputs by size and focusing on the worst case. The use of
asymptotic notation allows us to ignore constant factors and lower-order terms. This
coarsening of our view also allows us to look at upper bounds on the execution time
rather than the exact worst case, as long as the asymptotic result remains unchanged.
The total effect of these simplifications is that the running time of pseudocode can be
analyzed directly. There is no need to translate the program into machine code first.

We shall next introduce a set of simple rules for analyzing pseudocode. Let T (I)
denote the worst-case execution time of a piece of program I. The following rules
then tell us how to estimate the running time for larger programs, given that we know
the running times of their constituents:

• T (I; I′) = T (I)+T (I′).
• T (if C then I else I′) = O(T (C)+max(T (I),T (I′))).
• T (repeat I until C) = O

(
∑k

i=1 T (i)
)
, where k is the number of loop iterations,

and T (i) is the time needed in the i-th iteration of the loop, including the test C.

We postpone the treatment of subroutine calls to Sect. 2.6.2. Of the rules above, only
the rule for loops is nontrivial to apply; it requires evaluating sums.

2.6.1 “Doing Sums”

We now introduce some basic techniques for evaluating sums. Sums arise in the
analysis of loops, in average-case analysis, and also in the analysis of randomized
algorithms.

For example, the insertion sort algorithm introduced in Sect. 5.1 has two nested
loops. The outer loop counts i, from 2 to n. The inner loop performs at most i− 1
iterations. Hence, the total number of iterations of the inner loop is at most

2.6 Basic Algorithm Analysis 37

n

∑
i=2

(i−1) =
n−1

∑
i=1

i =
n(n−1)

2
= O

(
n2) ,

where the second equality comes from (A.11). Since the time for one execution of
the inner loop is O(1), we get a worst-case execution time of Θ

(
n2

)
. All nested

loops with an easily predictable number of iterations can be analyzed in an analogous
fashion: work your way outwards by repeatedly finding a closed-form expression for
the innermost loop. Using simple manipulations such as ∑i cai = c∑i ai, ∑i(ai +bi) =
∑i ai + ∑i bi, or ∑n

i=2 ai = −a1 + ∑n
i=1 ai, one can often reduce the sums to simple

forms that can be looked up in a catalog of sums. A small sample of such formulae
can be found in Appendix A. Since we are usually interested only in the asymptotic
behavior, we can frequently avoid doing sums exactly and resort to estimates. For
example, instead of evaluating the sum above exactly, we may argue more simply as
follows:

n

∑
i=2

(i−1) ≤
n

∑
i=1

n = n2 = O
(
n2) ,

n

∑
i=2

(i−1) ≥
n

∑
i=�n/2�

n/2 = �n/2� ·n/2 = Ω
(
n2) .

2.6.2 Recurrences

In our rules for analyzing programs, we have so far neglected subroutine calls. Non-
recursive subroutines are easy to handle, since we can analyze the subroutine sepa-
rately and then substitute the bound obtained into the expression for the running time
of the calling routine. For recursive programs, however, this approach does not lead
to a closed formula, but to a recurrence relation.

For example, for the recursive variant of the school method of multiplica-
tion, we obtained T (1) = 1 and T (n) = 6n + 4T (�n/2�) for the number of prim-
itive operations. For the Karatsuba algorithm, the corresponding expression was
T (n) = 3n2 + 2n for n ≤ 3 and T (n) = 12n + 3T (�n/2�+ 1) otherwise. In general,
a recurrence relation defines a function in terms of the same function using smaller
arguments. Explicit definitions for small parameter values make the function well
defined. Solving recurrences, i.e., finding nonrecursive, closed-form expressions for
them, is an interesting subject in mathematics. Here we focus on the recurrence re-
lations that typically emerge from divide-and-conquer algorithms. We begin with a
simple case that will suffice for the purpose of understanding the main ideas. We
have a problem of size n = bk for some integer k. If k > 1, we invest linear work cn
in dividing the problem into d subproblems of size n/b and combining the results. If
k = 0, there are no recursive calls, we invest work a, and are done.

Theorem 2.5 (master theorem (simple form)). For positive constants a, b, c, and
d, and n = bk for some integer k, consider the recurrence

r(n) =

{
a if n = 1 ,

cn+d · r(n/b) if n > 1 .

38 2 Introduction

Then

r(n) =

⎧
⎪⎨

⎪⎩

Θ(n) if d < b ,

Θ(n logn) if d = b ,

Θ
(
nlogb d

)
if d > b .

Figure 2.6 illustrates the main insight behind Theorem 2.5. We consider the amount
of work done at each level of recursion. We start with a problem of size n. At the i-th
level of the recursion, we have di problems, each of size n/bi. Thus the total size of
the problems at the i-th level is equal to

di n
bi = n

(
d
b

)i

.

The work performed for a problem is c times the problem size, and hence the work
performed at any level of the recursion is proportional to the total problem size at
that level. Depending on whether d/b is less than, equal to, or larger than 1, we have
different kinds of behavior.

If d < b, the work decreases geometrically with the level of recursion and the
first level of recursion accounts for a constant fraction of the total execution time.

If d = b, we have the same amount of work at every level of recursion. Since
there are logarithmically many levels, the total amount of work is Θ(n logn).

Finally, if d > b, we have a geometrically growing amount of work at each level
of recursion so that the last level accounts for a constant fraction of the total running
time. We formalize this reasoning next.

d=2, b=4

d=3, b=2

d = b = 4

Fig. 2.6. Examples of the three cases of the master theorem. Problems are indicated by hor-
izontal line segments with arrows at both ends. The length of a segment represents the size
of the problem, and the subproblems resulting from a problem are shown in the line below it.
The topmost part of figure corresponds to the case d = 2 and b = 4, i.e., each problem gen-
erates two subproblems of one-fourth the size. Thus the total size of the subproblems is only
half of the original size. The middle part of the figure illustrates the case d = b = 2, and the
bottommost part illustrates the case d = 3 and b = 2

2.6 Basic Algorithm Analysis 39

Proof. We start with a single problem of size n = bk. W call this level zero of the
recursion.3 At level 1, we have d problems, each of size n/b = bk−1. At level 2, we
have d2 problems, each of size n/b2 = bk−2. At level i, we have di problems, each
of size n/bi = bk−i. At level k, we have dk problems, each of size n/bk = bk−k = 1.
Each such problem has a cost a, and hence the total cost at level k is adk.

Let us next compute the total cost of the divide-and-conquer steps at levels 1 to
k−1. At level i, we have di recursive calls each for subproblems of size bk−i. Each
call contributes a cost of c ·bk−i, and hence the cost at level i is di · c ·bk−i. Thus the
combined cost over all levels is

k−1

∑
i=0

di · c ·bk−i = c ·bk ·
k−1

∑
i=0

(
d
b

)i

= cn ·
k−1

∑
i=0

(
d
b

)i

.

We now distinguish cases according to the relative sizes of d and b.

Case d = b. We have a cost adk = abk = an = Θ(n) for the bottom of the recursion
and cnk = cn logb n = Θ(n logn) for the divide-and-conquer steps.

Case d < b. We have a cost adk < abk = an = O(n) for the bottom of the recursion.
For the cost of the divide-and-conquer steps, we use (A.13) for a geometric series,
namely ∑0≤i<k xi = (1− xk)/(1− x) for x > 0 and x �= 1, and obtain

cn ·
k−1

∑
i=0

(
d
b

)i

= cn · 1− (d/b)k

1−d/b
< cn · 1

1−d/b
= O(n)

and

cn ·
k−1

∑
i=0

(
d
b

)i

= cn · 1− (d/b)k

1−d/b
> cn = Ω(n) .

Case d > b. First, note that

dk = 2k logd = 2k logb
logb logd = bk logd

logb = bk logb d = nlogb d .

Hence the bottom of the recursion has a cost of anlogb d = Θ
(
nlogb d

)
. For the divide-

and-conquer steps we use the geometric series again and obtain

cbk (d/b)k −1
d/b−1

= c
dk −bk

d/b−1
= cdk 1− (b/d)k

d/b−1
= Θ

(
dk

)
= Θ

(
nlogb d

)
.

�

We shall use the master theorem many times in this book. Unfortunately, the re-
currence T (n) = 3n2 + 2n for n ≤ 3 and T (n) ≤ 12n + 3T (�n/2�+ 1), governing

3 In this proof, we use the terminology of recursive programs in order to give an intuitive
idea of what we are doing. However, our mathematical arguments apply to any recurrence
relation of the right form, even if it does not stem from a recursive program.

40 2 Introduction

Karatsuba’s algorithm, is not covered by our master theorem, which neglects round-
ing issues. We shall now show how to extend the master theorem to the following
recurrence:

r(n) ≤
{

a if n ≤ n0,

cn+d · r(�n/b�+ e) if n > n0,

where a, b, c, d, and e are constants, and n0 is such that �n/b�+e < n for n > n0. We
proceed in two steps. We first concentrate on n of the form bk +z, where z is such that
�z/b�+e = z. For example, for b = 2 and e = 3, we would choose z = 6. Note that for
n of this form, we have �n/b�+e =

⌈
(bk + z)/b

⌉
+e = bk−1 +�z/b�+e = bk−1 + z,

i.e., the reduced problem size has the same form. For the n’s in this special form, we
then argue exactly as in Theorem 2.5.

How do we generalize to arbitrary n? The simplest way is semantic reasoning. It
is clear4 that the cost grows with the problem size, and hence the cost for an input of
size n will be no larger than the cost for an input whose size is equal to the next input
size of special form. Since this input is at most b times larger and b is a constant, the
bound derived for special n is affected only by a constant factor.

The formal reasoning is as follows (you may want to skip this paragraph and
come back to it when the need arises). We define a function R(n) by the same recur-
rence, with ≤ replaced by equality: R(n) = a for n ≤ n0 and R(n) = cn+dR(�n/b�+
e) for n > n0. Obviously, r(n) ≤ R(n). We derive a bound for R(n) and n of special
form as described above. Finally, we argue by induction that R(n) ≤ R(s(n)), where
s(n) is the smallest number of the form bk + z with bk + z ≥ n. The induction step is
as follows:

R(n) = cn+dR(�n/b�+ e) ≤ cs(n)+dR(s(�n/b�+ e)) = R(s(n)) ,

where the inequality uses the induction hypothesis and n ≤ s(n). The last equality
uses the fact that for s(n) = bk + z (and hence bk−1 + z < n), we have bk−2 + z <
�n/b�+ e ≤ bk−1 + z and hence s(�n/b�+ e) = bk−1 + z = �s(n)/b�+ e.

There are many generalizations of the master theorem: we might break the re-
cursion earlier, the cost for dividing and conquering may be nonlinear, the size of
the subproblems might vary within certain bounds, the number of subproblems may
depend on the input size, etc. We refer the reader to the books [81, 175] for further
information.

Exercise 2.8. Consider the recurrence

C(n) =

{
1 if n = 1,

C(�n/2�)+C(�n/2�)+ cn if n > 1.

Show that C(n) = O(n logn).

4 Be aware that most errors in mathematical arguments are near occurrences of the word
“clearly”.

2.7 Average-Case Analysis 41

*Exercise 2.9. Suppose you have a divide-and-conquer algorithm whose running
time is governed by the recurrence T (1) = a, T (n) = cn + �

√
n �T (�n/�

√
n ��).

Show that the running time of the program is O(n log logn).

Exercise 2.10. Access to data structures is often governed by the following recur-
rence: T (1) = a, T (n) = c+T (n/2). Show that T (n) = O(logn).

2.6.3 Global Arguments

The algorithm analysis techniques introduced so far are syntax-oriented in the fol-
lowing sense: in order to analyze a large program, we first analyze its parts and then
combine the analyses of the parts into an analysis of the large program. The combi-
nation step involves sums and recurrences.

We shall also use a completely different approach which one might call semantics-
oriented. In this approach we associate parts of the execution with parts of a combi-
natorial structure and then argue about the combinatorial structure. For example, we
might argue that a certain piece of program is executed at most once for each edge
of a graph or that the execution of a certain piece of program at least doubles the size
of a certain structure, that the size is one initially, and at most n at termination, and
hence the number of executions is bounded logarithmically.

2.7 Average-Case Analysis

In this section we shall introduce you to average-case analysis. We shall do so by
way of three examples of increasing complexity. We assume that you are familiar
with basic concepts of probability theory such as discrete probability distributions,
expected values, indicator variables, and the linearity of expectations. Section A.3
reviews the basics.

2.7.1 Incrementing a Counter

We begin with a very simple example. Our input is an array a[0..n− 1] filled with
digits zero and one. We want to increment the number represented by the array by
one.

i :=0
while (i < n and a[i] = 1) do a[i] = 0; i++;
if i < n then a[i] = 1

How often is the body of the while loop executed? Clearly, n times in the worst
case and 0 times in the best case. What is the average case? The first step in an
average-case analysis is always to define the model of randomness, i.e., to define the
underlying probability space. We postulate the following model of randomness: each
digit is zero or one with probability 1/2, and different digits are independent. The
loop body is executed k times, 0 ≤ k ≤ n, iff the last k + 1 digits of a are 01k or k

42 2 Introduction

is equal to n and all digits of a are equal to one. The former event has probability
2−(k+1), and the latter event has probability 2−n. Therefore, the average number of
executions is equal to

∑
0≤k<n

k2−(k+1) +n2−n ≤ ∑
k≥0

k2−k = 2 ,

where the last equality is the same as (A.14).

2.7.2 Left-to-Right Maxima

Our second example is slightly more demanding. Consider the following simple pro-
gram that determines the maximum element in an array a[1..n]:

m :=a[1]; for i :=2 to n do if a[i] > m then m :=a[i]

How often is the assignment m := a[i] executed? In the worst case, it is executed in
every iteration of the loop and hence n−1 times. In the best case, it is not executed
at all. What is the average case? Again, we start by defining the probability space.
We assume that the array contains n distinct elements and that any order of these
elements is equally likely. In other words, our probability space consists of the n!
permutations of the array elements. Each permutation is equally likely and therefore
has probability 1/n!. Since the exact nature of the array elements is unimportant,
we may assume that the array contains the numbers 1 to n in some order. We are
interested in the average number of left-to-right maxima. A left-to-right maximum in
a sequence is an element which is larger than all preceding elements. So, (1,2,4,3)
has three left-to-right-maxima and (3,1,2,4) has two left-to-right-maxima. For a
permutation π of the integers 1 to n, let Mn(π) be the number of left-to-right-maxima.
What is E[Mn]? We shall describe two ways to determine the expectation. For small
n, it is easy to determine E[Mn] by direct calculation. For n = 1, there is only one
permutation, namely (1), and it has one maximum. So E[M1] = 1. For n = 2, there
are two permutations, namely (1,2) and (2,1). The former has two maxima and the
latter has one maximum. So E[M2] = 1.5. For larger n, we argue as follows.

We write Mn as a sum of indicator variables I1 to In, i.e., Mn = I1 + . . . + In,
where Ik is equal to one for a permutation π if the k-th element of π is a left-to-right
maximum. For example, I3((3,1,2,4)) = 0 and I4((3,1,2,4)) = 1. We have

E[Mn] = E[I1 + I2 + . . .+ In]
= E[I1]+E[I2]+ . . .+E[In]
= prob(I1 = 1)+prob(I2 = 1)+ . . .+prob(In = 1) ,

where the second equality is the linearity of expectations (A.2) and the third equality
follows from the Ik’s being indicator variables. It remains to determine the probabil-
ity that Ik = 1. The k-th element of a random permutation is a left-to-right maximum
if and only if the k-th element is the largest of the first k elements. In a random per-
mutation, any position is equally likely to hold the maximum, so that the probability
we are looking for is prob(Ik = 1) = 1/k and hence

2.7 Average-Case Analysis 43

E[Mn] = ∑
1≤k≤n

prob(Ik = 1) = ∑
1≤k≤n

1
k

.

So, E[M4] = 1+1/2+1/3+1/4 =(12+6+4+3)/12 = 25/12. The sum ∑1≤k≤n 1/k
will appear several times in this book. It is known under the name “n-th harmonic
number” and is denoted by Hn. It is known that lnn ≤ Hn ≤ 1 + lnn, i.e., Hn ≈ lnn;
see (A.12). We conclude that the average number of left-to-right maxima is much
smaller than in the worst case.

Exercise 2.11. Show that
n

∑
k=1

1
k
≤ lnn+1. Hint: show first that

n

∑
k=2

1
k
≤

∫ n

1

1
x

dx.

We now describe an alternative analysis. We introduce An as a shorthand for
E[Mn] and set A0 = 0. The first element is always a left-to-right maximum, and each
number is equally likely as the first element. If the first element is equal to i, then only
the numbers i + 1 to n can be further left-to-right maxima. They appear in random
order in the remaining sequence, and hence we shall see an expected number of An−i

further maxima. Thus

An = 1+

(

∑
1≤i≤n

An−i

)

/n or nAn = n+ ∑
0≤i≤n−1

Ai .

A simple trick simplifies this recurrence. The corresponding equation for n− 1 in-
stead of n is (n− 1)An−1 = n− 1 + ∑1≤i≤n−2 Ai. Subtracting the equation for n− 1
from the equation for n yields

nAn − (n−1)An−1 = 1+An−1 or An = 1/n+An−1 ,

and hence An = Hn.

2.7.3 Linear Search

We come now to our third example; this example is even more demanding. Consider
the following search problem. We have items 1 to n, which we are required to arrange
linearly in some order; say, we put item i in position �i. Once we have arranged the
items, we perform searches. In order to search for an item x, we go through the
sequence from left to right until we encounter x. In this way, it will take �i steps to
access item i.

Suppose now that we also know that we shall access the items with different
probabilities; say, we search for item i with probability pi, where pi ≥ 0 for all i,
1 ≤ i ≤ n, and ∑i pi = 1. In this situation, the expected or average cost of a search
is equal to ∑i pi�i, since we search for item i with probability pi and the cost of the
search is �i.

What is the best way of arranging the items? Intuition tells us that we should
arrange the items in order of decreasing probability. Let us prove this.

44 2 Introduction

Lemma 2.6. An arrangement is optimal with respect to the expected search cost if it
has the property that pi > p j implies �i < � j. If p1 ≥ p2 ≥ . . . ≥ pn, the placement
�i = i results in the optimal expected search cost Opt = ∑i pii.

Proof. Consider an arrangement in which, for some i and j, we have pi > p j and
�i > � j, i.e., item i is more probable than item j and yet placed after it. Interchanging
items i and j changes the search cost by

−(pi�i + p j� j)+(pi� j + p j�i) = (pi − p j)(�i − � j) < 0 ,

i.e., the new arrangement is better and hence the old arrangement is not optimal.
Let us now consider the case p1 > p2 > .. . > pn. Since there are only n! possible

arrangements, there is an optimal arrangement. Also, if i < j and i is placed after
j, the arrangement is not optimal by the argument in the preceding paragraph. Thus
the optimal arrangement puts item i in position �i = i and its expected search cost is
∑i pii.

If p1 ≥ p2 ≥ . . . ≥ pn, the arrangement �i = i for all i is still optimal. However,
if some probabilities are equal, we have more than one optimal arrangement. Within
blocks of equal probabilities, the order is irrelevant.
�

Can we still do something intelligent if the probabilities pi are not known to us?
The answer is yes, and a very simple heuristic does the job. It is called the move-to-
front heuristic. Suppose we access item i and find it in position �i. If �i = 1, we are
happy and do nothing. Otherwise, we place it in position 1 and move the items in
positions 1 to �i −1 one position to the rear. The hope is that, in this way, frequently
accessed items tend to stay near the front of the arrangement and infrequently ac-
cessed items move to the rear. We shall now analyze the expected behavior of the
move-to-front heuristic.

Consider two items i and j and suppose that both of them were accessed in the
past. Item i will be accessed before item j if the last access to item i occurred after the
last access to item j. Thus the probability that item i is before item j is pi/(pi + p j).
With probability p j/(pi + p j), item j stands before item i.

Now, �i is simply one plus the number of elements before i in the list. Thus
the expected value of �i is equal to 1 + ∑ j; j �=i p j/(pi + p j), and hence the expected
search cost in the move-to-front heuristic is

CMTF = ∑
i

pi

(

1+ ∑
j; j �=i

p j

pi + p j

)

= ∑
i

pi + ∑
i, j; i �= j

pi p j

pi + p j
.

Observe that for each i and j with i �= j, the term pi p j/(pi + p j) appears twice in
the sum above. In order to proceed with the analysis, we assume p1 ≥ p2 ≥ . . .≥ pn.
This is an assumption used in the analysis, the algorithm has no knowledge of this.
Then

2.8 Randomized Algorithms 45

CMTF = ∑
i

pi +2 ∑
j; j<i

pi p j

pi + p j
= ∑

i
pi

(

1+2 ∑
j; j<i

p j

pi + p j

)

≤ ∑
i

pi

(

1+2 ∑
j; j<i

1

)

< ∑
i

pi2i = 2∑
i

pii = 2Opt .

Theorem 2.7. The move-to-front heuristic achieves an expected search time which is
at most twice the optimum.

2.8 Randomized Algorithms

Suppose you are offered the chance to participate in a TV game show. There are 100
boxes that you can open in an order of your choice. Box i contains an amount mi of
money. This amount is unknown to you but becomes known once the box is opened.
No two boxes contain the same amount of money. The rules of the game are very
simple:

• At the beginning of the game, the presenter gives you 10 tokens.
• When you open a box and the contents of the box are larger than the contents of

all previously opened boxes, you have to hand back a token.5

• When you have to hand back a token but have no tokens, the game ends and you
lose.

• When you manage to open all of the boxes, you win and can keep all the money.

There are strange pictures on the boxes, and the presenter gives hints by suggesting
the box to be opened next. Your aunt, who is addicted to this show, tells you that
only a few candidates win. Now, you ask yourself whether it is worth participating
in this game. Is there a strategy that gives you a good chance of winning? Are the
presenter’s hints useful?

Let us first analyze the obvious algorithm – you always follow the presenter.
The worst case is that he makes you open the boxes in order of increasing value.
Whenever you open a box, you have to hand back a token, and when you open the
11th box you are dead. The candidates and viewers would hate the presenter and
he would soon be fired. Worst-case analysis does not give us the right information
in this situation. The best case is that the presenter immediately tells you the best
box. You would be happy, but there would be no time to place advertisements, so
that the presenter would again be fired. Best-case analysis also does not give us the
right information in this situation. We next observe that the game is really the left-to-
right maxima question of the preceding section in disguise. You have to hand back
a token whenever a new maximum shows up. We saw in the preceding section that
the expected number of left-to-right maxima in a random permutation is Hn, the n-th

5 The contents of the first box opened are larger than the contents of all previously opened
boxes, and hence the first token goes back to the presenter in the first round.

46 2 Introduction

harmonic number. For n = 100, Hn < 6. So if the presenter were to point to the boxes
in random order, you would have to hand back only 6 tokens on average. But why
should the presenter offer you the boxes in random order? He has no incentive to
have too many winners.

The solution is to take your fate into your own hands: open the boxes in random
order. You select one of the boxes at random, open it, then choose a random box from
the remaining ones, and so on. How do you choose a random box? When there are k
boxes left, you choose a random box by tossing a die with k sides or by choosing a
random number in the range 1 to k. In this way, you generate a random permutation of
the boxes and hence the analysis in the previous section still applies. On average you
will have to return fewer than 6 tokens and hence your 10 tokens suffice. You have
just seen a randomized algorithm. We want to stress that, although the mathematical
analysis is the same, the conclusions are very different. In the average-case scenario,
you are at the mercy of the presenter. If he opens the boxes in random order, the
analysis applies; if he does not, it does not. You have no way to tell, except after
many shows and with hindsight. In other words, the presenter controls the dice and
it is up to him whether he uses fair dice. The situation is completely different in the
randomized-algorithms scenario. You control the dice, and you generate the random
permutation. The analysis is valid no matter what the presenter does.

2.8.1 The Formal Model

Formally, we equip our RAM with an additional instruction: Ri :=randInt(C) assigns
a random integer between 0 and C−1 to Ri. In pseudocode, we write v :=randInt(C),
where v is an integer variable. The cost of making a random choice is one time unit.
Algorithms not using randomization are called deterministic.

The running time of a randomized algorithm will generally depend on the random
choices made by the algorithm. So the running time on an instance i is no longer a
number, but a random variable depending on the random choices. We may eliminate
the dependency of the running time on random choices by equipping our machine
with a timer. At the beginning of the execution, we set the timer to a value T (n),
which may depend on the size n of the problem instance, and stop the machine once
the timer goes off. In this way, we can guarantee that the running time is bounded by
T (n). However, if the algorithm runs out of time, it does not deliver an answer.

The output of a randomized algorithm may also depend on the random choices
made. How can an algorithm be useful if the answer on an instance i may depend
on the random choices made by the algorithm – if the answer may be “Yes” today
and “No” tomorrow? If the two cases are equally probable, the answer given by the
algorithm has no value. However, if the correct answer is much more likely than the
incorrect answer, the answer does have value. Let us see an example.

Alice and Bob are connected over a slow telephone line. Alice has an integer
xA and Bob has an integer xB, each with n bits. They want to determine whether
they have the same number. As communication is slow, their goal is to minimize the
amount of information exchanged. Local computation is not an issue.

2.8 Randomized Algorithms 47

In the obvious solution, Alice sends her number to Bob, and Bob checks whether
the numbers are equal and announces the result. This requires them to transmit n
digits. Alternatively, Alice could send the number digit by digit, and Bob would
check for equality as the digits arrived and announce the result as soon as he knew it,
i.e., as soon as corresponding digits differed or all digits had been transmitted. In the
worst case, all n digits have to be transmitted. We shall now show that randomization
leads to a dramatic improvement. After transmission of only O(logn) bits, equality
and inequality can be decided with high probability.

Alice and Bob follow the following protocol. Each of them prepares an ordered
list of prime numbers. The list consists of the smallest L primes with k or more bits
and leading bit 1. Each such prime has a value of at least 2k. We shall say more
about the choice of L and k below. In this way, it is guaranteed that both Alice and
Bob generate the same list. Then Alice chooses an index i, 1 ≤ i ≤ L, at random and
sends i and xA mod pi to Bob. Bob computes xB mod pi. If xA mod pi �= xB mod pi,
he declares that the numbers are different. Otherwise, he declares the numbers the
same. Clearly, if the numbers are the same, Bob will say so. If the numbers are
different and xA mod pi �= xB mod pi, he will declare them different. However, if
xA �= xB and yet xA mod pi = xB mod pi, he will erroneously declare the numbers
equal. What is the probability of an error?

An error occurs if xA �= xB but xA ≡ xB(mod pi). The latter condition is equiv-
alent to pi dividing the difference D = xA − xB. This difference is at most 2n in
absolute value. Since each prime pi has a value of at least 2k, our list contains at
most n/k primes that divide6 the difference, and hence the probability of error is at
most (n/k)/L. We can make this probability arbitrarily small by choosing L large
enough. If, say, we want to make the probability less than 0.000001 = 10−6, we
choose L = 106(n/k).

What is the appropriate choice of k? Out of the numbers with k bits, approxi-
mately 2k/k are primes.7 Hence, if 2k/k ≥ 106n/k, the list will contain only k-bit
integers. The condition 2k ≥ 106n is tantamount to k ≥ logn + 6log10. With this
choice of k, the protocol transmits logL+k = logn+12log10 bits. This is exponen-
tially better than the naive protocol.

What can we do if we want an error probability less than 10−12? We could redo
the calculations above with L = 1012n. Alternatively, we could run the protocol twice
and declare the numbers different if at least one run declares them different. This
two-stage protocol errs only if both runs err, and hence the probability of error is at
most 10−6 ·10−6 = 10−12.

Exercise 2.12. Compare the efficiency of the two approaches for obtaining an error
probability of 10−12.

6 Let d be the number of primes on our list that divide D. Then 2n ≥ |D| ≥ (2k)d = 2kd and
hence d ≤ n/k.

7 For any integer x, let π(x) be the number of primes less than or equal to x. For example,
π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10.
Then x/(lnx + 2) < π(x) < x/(lnx− 4) for x ≥ 55. See the Wikipedia entry on “prime
numbers” for more information.

48 2 Introduction

Exercise 2.13. In the protocol described above, Alice and Bob have to prepare
ridiculously long lists of prime numbers. Discuss the following modified protocol.
Alice chooses a random k-bit integer p (with leading bit 1) and tests it for primality.
If p is not prime, she repeats the process. If p is prime, she sends p and xA mod p to
Bob.

Exercise 2.14. Assume you have an algorithm which errs with a probability of at
most 1/4 and that you run the algorithm k times and output the majority output.
Derive a bound on the error probability as a function of k. Do a precise calculation
for k = 2 and k = 3, and give a bound for large k. Finally, determine k such that the
error probability is less than a given ε .

2.8.2 Las Vegas and Monte Carlo Algorithms

Randomized algorithms come in two main varieties, the Las Vegas and the Monte
Carlo variety. A Las Vegas algorithm always computes the correct answer but its
running time is a random variable. Our solution for the game show is a Las Vegas
algorithm; it always finds the box containing the maximum; however, the number of
left-to-right maxima is a random variable. A Monte Carlo algorithm always has the
same run time, but there is a nonzero probability that it gives an incorrect answer. The
probability that the answer is incorrect is at most 1/4. Our algorithm for comparing
two numbers over a telephone line is a Monte Carlo algorithm. In Exercise 2.14, it is
shown that the error probability can be made arbitrarily small.

Exercise 2.15. Suppose you have a Las Vegas algorithm with an expected execution
time t(n), and that you run it for 4t(n) steps. If it returns an answer within the alloted
time, this answer is returned, otherwise an arbitrary answer is returned. Show that
the resulting algorithm is a Monte Carlo algorithm.

Exercise 2.16. Suppose you have a Monte Carlo algorithm with an execution time
m(n) that gives a correct answer with probability p and a deterministic algorithm
that verifies in time v(n) whether the Monte Carlo algorithm has given the correct
answer. Explain how to use these two algorithms to obtain a Las Vegas algorithm
with expected execution time (m(n)+ v(n))/(1− p).

We come back to our game show example. You have 10 tokens available to you.
The expected number of tokens required is less than 6. How sure should you be that
you will go home a winner? We need to bound the probability that Mn is larger than
11, because you lose exactly if the sequence in which you order the boxes has 11
or more left-to-right maxima. Markov’s inequality allows you to bound this prob-
ability. It states that, for a nonnegative random variable X and any constant c ≥ 1,
prob(X ≥ c ·E[X])≤ 1/c; see (A.4) for additional information. We apply the inequal-
ity with X = Mn and c = 11/6. We obtain

prob(Mn ≥ 11) ≤ prob

(
Mn ≥

11
6

E[Mn]
)
≤ 6

11
,

and hence the probability of winning is more than 5/11.

2.9 Graphs 49

2.9 Graphs

Graphs are an extremely useful concept in algorithmics. We use them whenever we
want to model objects and relations between them; in graph terminology, the objects
are called nodes, and the relations between nodes are called edges. Some obvious
applications are road maps and communication networks, but there are also more ab-
stract applications. For example, nodes could be tasks to be completed when building
a house, such as “build the walls” or “put in the windows”, and edges could model
precedence relations such as “the walls have to be built before the windows can be
put in”. We shall also see many examples of data structures where it is natural to
view objects as nodes and pointers as edges between the object storing the pointer
and the object pointed to.

When humans think about graphs, they usually find it convenient to work with
pictures showing nodes as bullets and edges as lines and arrows. To treat graphs algo-
rithmically, a more mathematical notation is needed: a directed graph G = (V,E) is a
pair consisting of a node set (or vertex set) V and an edge set (or arc set) E ⊆V ×V .
We sometimes abbreviate “directed graph” to digraph. For example, Fig. 2.7 shows
the graph G =({s, t,u,v,w,x,y,z} , {(s, t), (t,u), (u,v),(v,w),(w,x),(x,y),(y,z),(z,s),
(s,v),(z,w),(y, t),(x,u)}). Throughout this book, we use the convention n = |V | and
m = |E| if no other definitions for n or m are given. An edge e = (u,v)∈ E represents
a connection from u to v. We call u and v the source and target, respectively, of e.
We say that e is incident on u and v and that v and u are adjacent. The special case
of a self-loop (v,v) is disallowed unless specifically mentioned.

The outdegree of a node v is the number of edges leaving it, and its indegree
is the number of edges ending at it, formally, outdegree(v) = |{(v,u) ∈ E}| and
indegree(v) = |{(u,v) ∈ E}|. For example, node w in graph G in Fig. 2.7 has in-
degree two and outdegree one.

A bidirected graph is a digraph where, for any edge (u,v), the reverse edge (v,u)
is also present. An undirected graph can be viewed as a streamlined representation of
a bidirected graph, where we write a pair of edges (u,v), (v,u) as the two-element set
{u,v}. Figure 2.7 shows a three-node undirected graph and its bidirected counterpart.
Most graph-theoretic terms for undirected graphs have the same definition as for

undirected bidirected

K5

K3,3

self−loop

u

w v

u

w v

u

w v

s

t

x

U

t

u

yz

s

x

1

1

1

1

1

2 −2

2

2

1

1

G

H w

1
v

w

1
v

Fig. 2.7. Some graphs

50 2 Introduction

their bidirected counterparts, and so this section will concentrate on directed graphs
and only mention undirected graphs when there is something special about them.
For example, the number of edges of an undirected graph is only half the number
of edges of its bidirected counterpart. Nodes of an undirected graph have identical
indegree and outdegree, and so we simply talk about their degree. Undirected graphs
are important because directions often do not matter and because many problems are
easier to solve (or even to define) for undirected graphs than for general digraphs.

A graph G′ = (V ′,E ′) is a subgraph of G if V ′ ⊆V and E ′ ⊆ E. Given G = (V,E)
and a subset V ′ ⊆ V , the subgraph induced by V ′ is defined as G′ = (V ′,E ∩ (V ′ ×
V ′)). In Fig. 2.7, the node set {v,w} in G induces the subgraph H = ({v,w} ,{(v,w)}).
A subset E ′ ⊆ E of edges induces the subgraph (V,E ′).

Often, additional information is associated with nodes or edges. In particular,
we shall often need edge weights or costs c : E → R that map edges to some numeric
value. For example, the edge (z,w) in graph G in Fig. 2.7 has a weight c((z,w)) =−2.
Note that an edge {u,v} of an undirected graph has a unique edge weight, whereas,
in a bidirected graph, we can have c((u,v)) �= c((v,u)).

We have now seen quite many definitions on one page of text. If you want to see
them at work, you may jump to Chap. 8 to see algorithms operating on graphs. But
things are also becoming more interesting here.

An important higher-level graph-theoretic concept is the notion of a path. A path
p = 〈v0, . . . ,vk〉 is a sequence of nodes in which consecutive nodes are connected
by edges in E, i.e., (v0,v1) ∈ E, (v1,v2) ∈ E, . . . , (vk−1,vk) ∈ E; p has length k and
runs from v0 to vk. Sometimes a path is also represented by its sequence of edges.
For example, 〈u,v,w〉 = 〈(u,v),(v,w)〉 is a path of length 2 in Fig. 2.7. A path is
simple if its nodes, except maybe for v0 and vk, are pairwise distinct. In Fig. 2.7,
〈z,w,x,u,v,w,x,y〉 is a nonsimple path.

Cycles are paths with a common first and last node. A simple cycle visit-
ing all nodes of a graph is called a Hamiltonian cycle. For example, the cycle
〈s, t,u,v,w,x,y,z,s〉 in graph G in Fig. 2.7 is Hamiltonian. A simple undirected cycle
contains at least three nodes, since we also do not allow edges to be used twice in
simple undirected cycles.

The concepts of paths and cycles help us to define even higher-level concepts.
A digraph is strongly connected if for any two nodes u and v there is a path from
u to v. Graph G in Fig. 2.7 is strongly connected. A strongly connected component
of a digraph is a maximal node-induced strongly connected subgraph. If we remove
edge (w,x) from G in Fig. 2.7, we obtain a digraph without any directed cycles. A di-
graph without any cycles is called a directed acyclic graph (DAG). In a DAG, every
strongly connected component consists of a single node. An undirected graph is con-
nected if the corresponding bidirected graph is strongly connected. The connected
components are the strongly connected components of the corresponding bidirected
graph. For example, graph U in Fig. 2.7 has connected components {u,v,w}, {s, t},
and {x}. The node set {u,w} induces a connected subgraph, but it is not maximal
and hence not a component.

2.9 Graphs 51

Exercise 2.17. Describe 10 substantially different applications that can be modeled
using graphs; car and bicycle networks are not considered substantially different. At
least five should be applications not mentioned in this book.

Exercise 2.18. A planar graph is a graph that can be drawn on a sheet of paper such
that no two edges cross each other. Argue that street networks are not necessarily
planar. Show that the graphs K5 and K33 in Fig. 2.7 are not planar.

2.9.1 A First Graph Algorithm

It is time for an example algorithm. We shall describe an algorithm for testing
whether a directed graph is acyclic. We use the simple observation that a node v
with outdegree zero cannot appear in any cycle. Hence, by deleting v (and its incom-
ing edges) from the graph, we obtain a new graph G′ that is acyclic if and only if G is
acyclic. By iterating this transformation, we either arrive at the empty graph, which
is certainly acyclic, or obtain a graph G∗ where every node has an outdegree of at
least one. In the latter case, it is easy to find a cycle: start at any node v and construct
a path by repeatedly choosing an arbitrary outgoing edge until you reach a node v′

that you have seen before. The constructed path will have the form (v, . . . ,v′, . . . ,v′),
i.e., the part (v′, . . . ,v′) forms a cycle. For example, in Fig. 2.7, graph G has no node
with outdegree zero. To find a cycle, we might start at node z and follow the path
〈z,w,x,u,v,w〉 until we encounter w a second time. Hence, we have identified the
cycle 〈w,x,u,v,w〉. In contrast, if the edge (w,x) is removed, there is no cycle. In-
deed, our algorithm will remove all nodes in the order w, v, u, t, s, z, y, x. In Chap. 8,
we shall see how to represent graphs such that this algorithm can be implemented
to run in linear time. See also Exercise 8.3. We can easily make our algorithm cer-
tifying. If the algorithm finds a cycle, the graph is certainly cyclic. If the algorithm
reduces the graph to the empty graph, we number the nodes in the order in which
they are removed from G. Since we always remove a node v of outdegree zero from
the current graph, any edge out of v in the original graph must go to a node that
was removed previously and hence has received a smaller number. Thus the ordering
proves acyclicity: along any edge, the node numbers decrease.

Exercise 2.19. Show an n-node DAG that has n(n−1)/2 edges.

2.9.2 Trees

An undirected graph is a tree if there is exactly one path between any pair of nodes;
see Fig. 2.8 for an example. An undirected graph is a forest if there is at most one
path between any pair of nodes. Note that each component of a forest is a tree.

Lemma 2.8. The following properties of an undirected graph G are equivalent:

1. G is a tree.
2. G is connected and has exactly n−1 edges.
3. G is connected and contains no cycles.

52 2 Introduction

rooted

directed expressionundirected rootedundirected
r

s ut

v

r

s ut

v

a

r

s ut

v

r

s t

vu

+

/

2 b

Fig. 2.8. Different kinds of trees. From left to right, we see an undirected tree, an undirected
rooted tree, a directed out-tree, a directed in-tree, and an arithmetic expression

Proof. In a tree, there is a unique path between any two nodes. Hence the graph
is connected and contains no cycles. Conversely, if there are two nodes that are
connected by more than one path, the graph contains a cycle. Thus (1) and (3) are
equivalent. We next show the equivalence of (2) and (3). Assume that G = (V,E) is
connected, and let m = |E|. We perform the following experiment: we start with the
empty graph and add the edges in E one by one. Addition of an edge can reduce
the number of connected components by at most one. We start with n components
and must end up with one component. Thus m ≥ n− 1. Assume now that there is
an edge e = {u,v} whose addition does not reduce the number of connected compo-
nents. Then u and v are already connected by a path, and hence addition of e creates
a cycle. If G is cycle-free, this case cannot occur, and hence m = n− 1. Thus (3)
implies (2). Assume next that G is connected and has exactly n− 1 edges. Again,
add the edges one by one and assume that adding e = {u,v} creates a cycle. Then u
and v are already connected, and hence e does not reduce the number of connected
components. Thus (2) implies (3).
�

Lemma 2.8 does not carry over to digraphs. For example, a DAG may have many
more than n−1 edges. A directed graph is an out-tree with a root node r, if there is
exactly one path from r to any other node. It is an in-tree with a root node r if there
is exactly one path from any other node to r. Figure 2.8 shows examples. The depth
of a node in a rooted tree is the length of the path to the root. The height of a rooted
tree is the maximum over the depths of its nodes.

We can also make an undirected tree rooted by declaring one of its nodes to be the
root. Computer scientists have the peculiar habit of drawing rooted trees with the root
at the top and all edges going downwards. For rooted trees, it is customary to denote
relations between nodes by terms borrowed from family relations. Edges go between
a unique parent and its children. Nodes with the same parent are siblings. Nodes
without children are leaves. Nonroot, nonleaf nodes are interior nodes. Consider a
path such that u is between the root and another node v. Then u is an ancestor of v,
and v is a descendant of u. A node u and its descendants form a subtree rooted at u.
For example, in Fig. 2.8, r is the root; s, t, and v are leaves; s, t, and u are siblings
because they are children of the same parent r; u is an interior node; r and u are
ancestors of v; s, t, u, and v are descendants of r; and v and u form a subtree rooted
at u.

2.10 P and NP 53

Function eval(r) : R
if r is a leaf then return the number stored in r
else // r is an operator node

v1 := eval(first child of r)
v2 := eval(second child of r)
return v1operator(r)v2 // apply the operator stored in r

Fig. 2.9. Recursive evaluation of an expression tree rooted at r

2.9.3 Ordered Trees

Trees are ideally suited to representing hierarchies. For example, consider the ex-
pression a + 2/b. We have learned that this expression means that a and 2/b are
added. But deriving this from the sequence of characters 〈a,+,2,/,b〉 is difficult. For
example, it requires knowledge of the rule that division binds more tightly than addi-
tion. Therefore compilers isolate this syntactical knowledge in parsers that produce
a more structured representation based on trees. Our example would be transformed
into the expression tree given in Fig. 2.8. Such trees are directed and, in contrast to
graph-theoretic trees, they are ordered. In our example, a is the first, or left, child of
the root, and / is the right, or second, child of the root.

Expression trees are easy to evaluate by a simple recursive algorithm. Figure 2.9
shows an algorithm for evaluating expression trees whose leaves are numbers and
whose interior nodes are binary operators (say +, −, ·, /).

We shall see many more examples of ordered trees in this book. Chapters 6 and
7 use them to represent fundamental data structures, and Chapter 12 uses them to
systematically explore solution spaces.

2.10 P and NP

When should we call an algorithm efficient? Are there problems for which there is no
efficient algorithm? Of course, drawing the line between “efficient” and “inefficient”
is a somewhat arbitrary business. The following distinction has proved useful: an
algorithm A runs in polynomial time, or is a polynomial-time algorithm, if there is
a polynomial p(n) such that its execution time on inputs of size n is O(p(n)). If not
otherwise mentioned, the size of the input will be measured in bits. A problem can be
solved in polynomial time if there is a polynomial-time algorithm that solves it. We
equate “efficiently solvable” with “polynomial-time solvable”. A big advantage of
this definition is that implementation details are usually not important. For example,
it does not matter whether a clever data structure can accelerate an O

(
n3

)
algorithm

by a factor of n. All chapters of this book, except for Chap. 12, are about efficient
algorithms.

There are many problems for which no efficient algorithm is known. Here, we
mention only six examples:

54 2 Introduction

• The Hamiltonian cycle problem: given an undirected graph, decide whether it
contains a Hamiltonian cycle.

• The Boolean satisfiability problem: given a Boolean expression in conjunctive
form, decide whether it has a satisfying assignment. A Boolean expression in
conjunctive form is a conjunction C1 ∧C2 ∧ . . .∧Ck of clauses. A clause is a
disjunction �1 ∨ �2 ∨ . . .∨ �h of literals, and a literal is a variable or a negated
variable. For example, v1 ∨¬v3 ∨¬v9 is a clause.

• The clique problem: given an undirected graph and an integer k, decide whether
the graph contains a complete subgraph (= a clique) on k nodes.

• The knapsack problem: given n pairs of integers (wi, pi) and integers M and P,
decide whether there is a subset I ⊆ [1..n] such that ∑i∈I wi ≤ M and ∑i∈I pi ≥ P.

• The traveling salesman problem: given an edge-weighted undirected graph and
an integer C, decide whether the graph contains a Hamiltonian cycle of length at
most C. See Sect. 11.6.2 for more details.

• The graph coloring problem: given an undirected graph and an integer k, decide
whether there is a coloring of the nodes with k colors such that any two adjacent
nodes are colored differently.

The fact that we know no efficient algorithms for these problems does not imply
that none exists. It is simply not known whether an efficient algorithm exists or not.
In particular, we have no proof that such algorithms do not exist. In general, it is
very hard to prove that a problem cannot be solved in a given time bound. We shall
see some simple lower bounds in Sect. 5.3. Most algorithmicists believe that the six
problems above have no efficient solution.

Complexity theory has found an interesting surrogate for the absence of lower-
bound proofs. It clusters algorithmic problems into large groups that are equiva-
lent with respect to some complexity measure. In particular, there is a large class of
equivalent problems known as NP-complete problems. Here, NP is an abbreviation
for “nondeterministic polynomial time”. If the term “nondeterministic polynomial
time” does not mean anything to you, ignore it and carry on. The six problems men-
tioned above are NP-complete, and so are many other natural problems. It is widely
believed that P is a proper subset of NP. This would imply, in particular, that NP-
complete problems have no efficient algorithm. In the remainder of this section, we
shall give a formal definition of the class NP. We refer the reader to books about
theory of computation and complexity theory [14, 72, 181, 205] for a thorough treat-
ment.

We assume, as is customary in complexity theory, that inputs are encoded in
some fixed finite alphabet Σ . A decision problem is a subset L ⊆ Σ ∗. We use χL

to denote the characteristic function of L, i.e., χL(x) = 1 if x ∈ L and χL(x) = 0 if
x �∈ L. A decision problem is polynomial-time solvable iff its characteristic function
is polynomial-time computable. We use P to denote the class of polynomial-time-
solvable decision problems.

A decision problem L is in NP iff there is a predicate Q(x,y) and a polynomial p
such that

(1) for any x ∈ Σ ∗, x ∈ L iff there is a y ∈ Σ ∗ with |y| ≤ p(|x|) and Q(x,y), and

2.10 P and NP 55

(2) Q is computable in polynomial time.

We call y a witness or proof of membership. For our example problems, it is easy
to show that they belong to NP. In the case of the Hamiltonian cycle problem, the
witness is a Hamiltonian cycle in the input graph. A witness for a Boolean formula is
an assignment of truth values to variables that make the formula true. The solvability
of an instance of the knapsack problem is witnessed by a subset of elements that fit
into the knapsack and achieve the profit bound P.

Exercise 2.9. Prove that the clique problem, the traveling salesman problem, and the
graph coloring problem are in NP.

A decision problem L is polynomial-time reducible (or simply reducible) to a de-
cision problem L′ if there is a polynomial-time-computable function g such that for
all x ∈ Σ ∗, we have x ∈ L iff g(x) ∈ L′. Clearly, if L is reducible to L′ and L′ ∈ P,
then L ∈ P. Also, reducibility is transitive. A decision problem L is NP-hard if every
problem in NP is polynomial-time reducible to it. A problem is NP-complete if it
is NP-hard and in NP. At first glance, it might seem prohibitively difficult to prove
any problem NP-complete – one would have to show that every problem in NP was
polynomial-time reducible to it. However, in 1971, Cook and Levin independently
managed to do this for the Boolean satisfiability problem [44, 120]. From that time
on, it was “easy”. Assume you want to show that a problem L is NP-complete. You
need to show two things: (1) L ∈ NP, and (2) there is some known NP-complete
problem L′ that can be reduced to it. Transitivity of the reducibility relation then
implies that all problems in NP are reducible to L. With every new complete prob-
lem, it becomes easier to show that other problems are NP-complete. The website
http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html

maintains a compendium of NP-complete problems. We give one example of a re-
duction.

Lemma 2.10. The Boolean satisfiability problem is polynomial-time reducible to the
clique problem.

Proof. Let F = C1∧ . . .∧Ck, where Ci = �i1∨ . . .∨�ihi and �i j = x
βi j
i j , be a formula in

conjunctive form. Here, xi j is a variable and βi j ∈ {0,1}. A superscript 0 indicates a
negated variable. Consider the following graph G. Its nodes V represent the literals
in our formula, i.e., V =

{
ri j : 1 ≤ i ≤ k and 1 ≤ j ≤ hi

}
. Two nodes ri j and ri′ j′ are

connected by an edge iff i �= i′ and either xi j �= xi′ j′ or βi j = βi′ j′ . In words, the repre-
sentatives of two literals are connected by an edge if they belong to different clauses
and an assignment can satisfy them simultaneously. We claim that F is satisfiable iff
G has a clique of size k.

Assume first that there is a satisfying assignment α . The assignment must satisfy
at least one literal in every clause, say literal �i ji in clause Ci. Consider the subgraph
of G spanned by the ri ji , 1 ≤ i ≤ k. This is a clique of size k. Assume otherwise; say,
ri ji and ri′ ji′

are not connected by an edge. Then, xi ji = xi′ ji′
and βi ji �= βi′ ji′

. But then
the literals �i ji and �i′ ji′

are complements of each other, and α cannot satisfy them
both.

http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html

56 2 Introduction

Conversely, assume that there is a clique K of size k in G. We can construct a
satisfying assignment α . For each i, 1 ≤ i ≤ k, K contains exactly one node ri ji . We
construct a satisfying assignment α by setting α(xi ji) = βi ji . Note that α is well
defined because xi ji = xi′ ji′

implies βi ji = βi′ ji′
; otherwise, ri ji and ri′ ji′

would not be
connected by an edge. α clearly satisfies F .
�

Exercise 2.20. Show that the Hamiltonian cycle problem is polynomial-time re-
ducible to the traveling salesman problem.

Exercise 2.21. Show that the clique problem is polynomial-time reducible to the
graph-coloring problem.

All NP-complete problems have a common destiny. If anybody should find a
polynomial time algorithm for one of them, then NP = P. Since so many people
have tried to find such solutions, it is becoming less and less likely that this will ever
happen: The NP-complete problems are mutual witnesses of their hardness.

Does the theory of NP-completeness also apply to optimization problems? Opti-
mization problems are easily turned into decision problems. Instead of asking for an
optimal solution, we ask whether there is a solution with an objective value greater
than or equal to k, where k is an additional input. Conversely, if we have an algorithm
to decide whether there is a solution with a value greater than or equal to k, we can
use a combination of exponential and binary search (see Sect. 2.5) to find the optimal
objective value.

An algorithm for a decision problem returns yes or no, depending on whether
the instance belongs to the problem or not. It does not return a witness. Frequently,
witnesses can be constructed by applying the decision algorithm repeatedly. Assume
we want to find a clique of size k, but have only an algorithm that decides whether
a clique of size k exists. We select an arbitrary node v and ask whether G′ = G \ v
has a clique of size k. If so, we recursively search for a clique in G′. If not, we know
that v must be part of the clique. Let V ′ be the set of neighbors of v. We recursively
search for a clique Ck−1 of size k−1 in the subgraph spanned by V ′. Then v∪Ck−1

is a clique of size k in G.

2.11 Implementation Notes

Our pseudocode is easily converted into actual programs in any imperative program-
ming language. We shall give more detailed comments for C++ and Java below. The
Eiffel programming language [138] has extensive support for assertions, invariants,
preconditions, and postconditions.

Our special values ⊥, −∞, and ∞ are available for floating-point numbers. For
other data types, we have to emulate these values. For example, one could use the
smallest and largest representable integers for −∞ and ∞, respectively. Undefined
pointers are often represented by a null pointer null. Sometimes we use special values
for convenience only, and a robust implementation should avoid using them. You will
find examples in later chapters.

2.12 Historical Notes and Further Findings 57

Randomized algorithms need access to a random source. You have a choice be-
tween a hardware generator that generates true random numbers and an algorith-
mic generator that generates pseudo-random numbers. We refer the reader to the
Wikipedia page on “random numbers” for more information.

2.11.1 C++

Our pseudocode can be viewed as a concise notation for a subset of C++. The mem-
ory management operations allocate and dispose are similar to the C++ operations
new and delete. C++ calls the default constructor for each element of an array, i.e.,
allocating an array of n objects takes time Ω(n) whereas allocating an array n of ints
takes constant time. In contrast, we assume that all arrays which are not explicitly
initialized contain garbage. In C++, you can obtain this effect using the C functions
malloc and free. However, this is a deprecated practice and should only be used when
array initialization would be a severe performance bottleneck. If memory manage-
ment of many small objects is performance-critical, you can customize it using the
allocator class of the C++ standard library.

Our parameterizations of classes using of is a special case of the C++-template
mechanism. The parameters added in brackets after a class name correspond to the
parameters of a C++ constructor.

Assertions are implemented as C macros in the include file assert.h. By de-
fault, violated assertions trigger a runtime error and print their position in the pro-
gram text. If the macro NDEBUG is defined, assertion checking is disabled.

For many of the data structures and algorithms discussed in this book, excellent
implementations are available in software libraries. Good sources are the standard
template library STL [157], the Boost [27] C++ libraries, and the LEDA [131, 118]
library of efficient algorithms and data structures.

2.11.2 Java

Java has no explicit memory management. Rather, a garbage collector periodically
recycles pieces of memory that are no longer referenced. While this simplifies pro-
gramming enormously, it can be a performance problem. Remedies are beyond the
scope of this book. Generic types provide parameterization of classes. Assertions are
implemented with the assert statement.

Excellent implementations for many data structures and algorithms are available
in the package java.util and in the JDSL [78] data structure library.

2.12 Historical Notes and Further Findings

Sheperdson and Sturgis [179] defined the RAM model for use in algorithmic analy-
sis. The RAM model restricts cells to holding a logarithmic number of bits. Dropping
this assumption has undesirable consequences; for example, the complexity classes

58 2 Introduction

P and PSPACE collapse [87]. Knuth [113] has described a more detailed abstract
machine model.

Floyd [62] introduced the method of invariants to assign meaning to programs
and Hoare [91, 92] systemized their use. The book [81] is a compendium on sums
and recurrences and, more generally, discrete mathematics.

Books on compiler construction (e.g., [144, 207]) tell you more about the com-
pilation of high-level programming languages into machine code.

3

Representing Sequences by Arrays and Linked Lists

Perhaps the world’s oldest data structures were the tablets in cuneiform script1 used
more than 5 000 years ago by custodians in Sumerian temples. These custodians
kept lists of goods, and their quantities, owners, and buyers. The picture on the left
shows an example. This was possibly the first application of written language. The
operations performed on such lists have remained the same – adding entries, storing
them for later, searching entries and changing them, going through a list to compile
summaries, etc. The Peruvian quipu [137] that you see in the picture on the right
served a similar purpose in the Inca empire, using knots in colored strings arranged
sequentially on a master string. It is probably easier to maintain and use data on
tablets than to use knotted string, but one would not want to haul stone tablets over
Andean mountain trails. It is apparent that different representations make sense for
the same kind of data.

The abstract notion of a sequence, list, or table is very simple and is independent
of its representation in a computer. Mathematically, the only important property is
that the elements of a sequence s = 〈e0, . . . ,en−1〉 are arranged in a linear order – in
contrast to the trees and graphs discussed in Chaps. 7 and 8, or the unordered hash
tables discussed in Chap. 4. There are two basic ways of referring to the elements of
a sequence.

One is to specify the index of an element. This is the way we usually think about
arrays, where s[i] returns the i-th element of a sequence s. Our pseudocode supports
static arrays. In a static data structure, the size is known in advance, and the data
structure is not modifiable by insertions and deletions. In a bounded data structure,
the maximal size is known in advance. In Sect. 3.2, we introduce dynamic or un-

1 The 4 600 year old tablet at the top left is a list of gifts to the high priestess of Adab (see
commons.wikimedia.org/wiki/Image:Sumerian_26th_c_Adab.jpg).

commons.wikimedia.org/wiki/Image:Sumerian_26th_c_Adab.jpg

60 3 Representing Sequences by Arrays and Linked Lists

bounded arrays, which can grow and shrink as elements are inserted and removed.
The analysis of unbounded arrays introduces the concept of amortized analysis.

The second way of referring to the elements of a sequence is relative to other
elements. For example, one could ask for the successor of an element e, the prede-
cessor of an element e′, or for the subsequence 〈e, . . . ,e′〉 of elements between e and
e′. Although relative access can be simulated using array indexing, we shall see in
Sect. 3.1 that a list-based representation of sequences is more flexible. In particular,
it becomes easier to insert or remove arbitrary pieces of a sequence.

Many algorithms use sequences in a quite limited way. Only the front and/or the
rear of the sequence are read and modified. Sequences that are used in this restricted
way are called stacks, queues, and deques. We discuss them in Sect. 3.4. In Sect. 3.5,
we summarize the findings of the chapter.

3.1 Linked Lists

In this section, we study the representation of sequences by linked lists. In a doubly
linked list, each item points to its successor and to its predecessor. In a singly linked
list, each item points to its successor. We shall see that linked lists are easily modified
in many ways: we may insert or delete items or sublists, and we may concatenate
lists. The drawback is that random access (the operator [·]) is not supported. We
study doubly linked lists in Sect. 3.1.1, and singly linked lists in Sect. 3.1.2. Singly
linked lists are more space-efficient, and somewhat faster, and should therefore be
preferred whenever their functionality suffices. A good way to think of a linked list
is to imagine a chain, where one element is written on each link. Once we get hold
of one link of the chain, we can retrieve all elements.

3.1.1 Doubly Linked Lists

Figure 3.1 shows the basic building blocks of a linked list. A list item stores an
element, and pointers to its successor and predecessor. We call a pointer to a list item
a handle. This sounds simple enough, but pointers are so powerful that we can make
a big mess if we are not careful. What makes a consistent list data structure? We

Class Handle = Pointer to Item

Class Item of Element // one link in a doubly linked list
e : Element
next : Handle // �

�
�

�
�

�
prev : Handle
invariant next→prev = prev→next = this

Fig. 3.1. The items of a doubly linked list

3.1 Linked Lists 61

�
⊥

�
�

e1

· · ·
· · ·
�

en

�
�

Fig. 3.2. The representation of a sequence 〈e1, . . . ,en〉 by a doubly linked list. There are n+1
items arranged in a ring, a special dummy item h containing no element, and one item for
each element of the sequence. The item containing ei is the successor of the item containing
ei−1 and the predecessor of the item containing ei+1. The dummy item is between the item
containing en and the item containing e1

require that for each item it, the successor of its predecessor is equal to it and the
predecessor of its successor is also equal to it.

A sequence of n elements is represented by a ring of n+1 items. There is a special
dummy item h, which stores no element. The successor h1 of h stores the first element
of the sequence, the successor of h1 stores the second element of the sequence, and
so on. The predecessor of h stores the last element of the sequence; see Fig. 3.2.
The empty sequence is represented by a ring consisting only of h. Since there are no
elements in that sequence, h is its own successor and predecessor. Figure 3.4 defines
a representation of sequences by lists. An object of class List contains a single list
item h. The constructor of the class initializes the header h to an item containing ⊥
and having itself as successor and predecessor. In this way, the list is initialized to
the empty sequence.

We implement all basic list operations in terms of the single operation splice
shown in Fig. 3.3. splice cuts out a sublist from one list and inserts it after some
target item. The sublist is specified by handles a and b to its first and its last element,
respectively. In other words, b must be reachable from a by following zero or more
next pointers but without going through the dummy item. The target item t can be
either in the same list or in a different list; in the former case, it must not be inside
the sublist starting at a and ending at b.

splice does not change the number of items in the system. We assume that there is
one special list, freeList, that keeps a supply of unused elements. When inserting new
elements into a list, we take the necessary items from freeList, and when removing
elements, we return the corresponding items to freeList. The function checkFreeList
allocates memory for new items when necessary. We defer its implementation to
Exercise 3.3 and a short discussion in Sect. 3.6.

With these conventions in place, a large number of useful operations can be im-
plemented as one-line functions that all run in constant-time. Thanks to the power of
splice, we can even manipulate arbitrarily long sublists in constant-time. Figures 3.4
and 3.5 show many examples. In order to test whether a list is empty, we simply
check whether h is its own successor. If a sequence is nonempty, its first and its last
element are the successor and predecessor, respectively, of h. In order to move an
item b to the positions after an item a′, we simply cut out the sublist starting and
ending at b and insert it after a′. This is exactly what splice(b,b,a′) does. We move

62 3 Representing Sequences by Arrays and Linked Lists

// Remove 〈a, . . . ,b〉 from its current list and insert it after t
// . . . ,a′,a, . . . ,b,b′, . . .+ . . . , t, t ′, . . . �→ . . . ,a′,b′, . . .+ . . . , t,a, . . . ,b, t ′, . . .
Procedure splice(a,b,t : Handle)

assert a and b belong to the same list, b is not before a, and t �∈ 〈a, . . . ,b〉

// cut out 〈a, . . . ,b〉 a′ a b b′

· · · · · ·
�� �� �� ��a′ :=a → prev

b′ :=b → next
a′ → next :=b′ //
b′ → prev :=a′ // · · · · · ·

�
� �� �� �

�

// insert 〈a, . . . ,b〉 after t
t ′ := t → next //

t a b t ′

· · · · · ·
�

� � � �
�

b → next := t ′ //
a → prev := t // · · · · · ·

�
� �� �� �

�
t → next :=a //
t ′ → prev :=b // · · · · · ·

�� �� �� ��

Fig. 3.3. Splicing lists

Class List of Element
// Item h is the predecessor of the first element and the successor of the last element.

h =

(⊥
this
this

)
: Item // init to empty sequence

⊥
�

�

// Simple access functions
Function head() : Handle; return address of h // Pos. before any proper element

Function isEmpty : {0,1}; return h.next = this // 〈〉?
Function first : Handle; assert ¬isEmpty; return h.next
Function last : Handle; assert ¬isEmpty; return h.prev

// Moving elements around within a sequence.
// (〈. . . ,a,b,c . . . ,a′,c′, . . .〉) �→ (〈. . . ,a,c . . . ,a′,b,c′, . . .〉)
Procedure moveAfter(b, a′ : Handle) splice(b,b,a′)
Procedure moveToFront(b : Handle) moveAfter(b,head)
Procedure moveToBack(b : Handle) moveAfter(b, last)

Fig. 3.4. Some constant-time operations on doubly linked lists

an element to the first or last position of a sequence by moving it after the head
or after the last element, respectively. In order to delete an element b, we move it to
freeList. To insert a new element e, we take the first item of freeList, store the element
in it, and move it to the place of insertion.

3.1 Linked Lists 63

// Deleting and inserting elements.
// 〈. . . ,a,b,c, . . .〉 �→ 〈. . . ,a,c, . . .〉
Procedure remove(b : Handle) moveAfter(b, freeList.head)
Procedure popFront remove(first)
Procedure popBack remove(last)

// 〈. . . ,a,b, . . .〉 �→ 〈. . . ,a,e,b, . . .〉
Function insertAfter(x : Element; a : Handle) : Handle

checkFreeList // make sure freeList is nonempty. See also Exercise 3.3
a′ := f reeList. f irst // Obtain an item a′ to hold x,
moveAfter(a′,a) // put it at the right place.
a′ → e := x // and fill it with the right content.
return a′

Function insertBefore(x : Element; b : Handle) : Handle return insertAfter(e, pred(b))
Procedure pushFront(x : Element) insertAfter(x, head)
Procedure pushBack(x : Element) insertAfter(x, last)

// Manipulations of entire lists
// (〈a, . . . ,b〉,〈c, . . . ,d〉) �→ (〈a, . . . ,b,c, . . . ,d〉,〈〉)
Procedure concat(L′ : List)

splice(L′.first, L′.last, last)

// 〈a, . . . ,b〉 �→ 〈〉
Procedure makeEmpty

freeList.concat(this) //
�⊥ �

� · · ·
· · ·� �

� �→
⊥

�
�

Fig. 3.5. More constant-time operations on doubly linked lists

Exercise 3.1 (alternative list implementation). Discuss an alternative implementa-
tion of List that does not need the dummy item h. Instead, this representation stores a
pointer to the first list item in the list object. The position before the first list element
is encoded as a null pointer. The interface and the asymptotic execution times of all
operations should remain the same. Give at least one advantage and one disadvantage
of this implementation compared with the one given in the text.

The dummy item is also useful for other operations. For example, consider the
problem of finding the next occurrence of an element x starting at an item from. If x
is not present, head should be returned. We use the dummy element as a sentinel. A
sentinel is an element in a data structure that makes sure that some loop will termi-
nate. In the case of a list, we store the key we are looking for in the dummy element.
This ensures that x is present in the list structure and hence a search for it will al-
ways terminate. The search will terminate in a proper list item or the dummy item,
depending on whether x was present in the list originally. It is no longer necessary,
to test whether the end of the list has been reached. In this way, the trick of using the
dummy item h as a sentinel saves one test in each iteration and significantly improves
the efficiency of the search:

64 3 Representing Sequences by Arrays and Linked Lists

Function findNext(x : Element; from : Handle) : Handle
h.e = x // Sentinel

�
x

�
� · · ·

· · ·� �
�while from → e �= x do

from := from → next
return from

Exercise 3.2. Implement a procedure swap that swaps two sublists in constant time,
i.e., sequences (〈. . . ,a′,a, . . . ,b,b′, . . .〉,〈. . . ,c′,c, . . . ,d,d′, . . .〉) are transformed into
(〈. . . ,a′,c, . . . ,d,b′, . . .〉,〈. . . ,c′,a, . . . ,b,d′, . . .〉). Is splice a special case of swap?

Exercise 3.3 (memory management). Implement the function checkFreelist called
by insertAfter in Fig. 3.5. Since an individual call of the programming-language
primitive allocate for every single item might be too slow, your function should allo-
cate space for items in large batches. The worst-case execution time of checkFreeList
should be independent of the batch size. Hint: in addition to freeList, use a small ar-
ray of free items.

Exercise 3.4. Give a constant-time implementation of an algorithm for rotating a
list to the right: 〈a, . . . ,b,c〉 �→ 〈c,a, . . . ,b〉. Generalize your algorithm to rotate
〈a, . . . ,b,c, . . . ,d〉 to 〈c, . . . ,d,a, . . . ,b〉 in constant time.

Exercise 3.5. findNext using sentinels is faster than an implementation that checks
for the end of the list in each iteration. But how much faster? What speed difference
do you predict for many searches in a short list with 100 elements, and in a long list
with 10 000 000 elements, respectively? Why is the relative speed difference depen-
dent on the size of the list?

Maintaining the Size of a List

In our simple list data type, it is not possible to determine the length of a list in
constant time. This can be fixed by introducing a member variable size that is updated
whenever the number of elements changes. Operations that affect several lists now
need to know about the lists involved, even if low-level functions such as splice only
need handles to the items involved. For example, consider the following code for
moving an element a from a list L to the position after a′ in a list L′:

Procedure moveAfter(a, a′ : Handle; L, L′ : List)
splice(a,a,a′); L.size--; L′.size++

Maintaining the size of lists interferes with other list operations. When we move
elements as above, we need to know the sequences containing them and, more seri-
ously, operations that move sublists between lists cannot be implemented in constant
time anymore. The next exercise offers a compromise.

Exercise 3.6. Design a list data type that allows sublists to be moved between lists
in constant time and allows constant-time access to size whenever sublist operations
have not been used since the last access to the list size. When sublist operations have
been used, size is recomputed only when needed.

3.1 Linked Lists 65

Exercise 3.7. Explain how the operations remove, insertAfter, and concat have to be
modified to keep track of the length of a List.

3.1.2 Singly Linked Lists

The two pointers per item of a doubly linked list make programming quite easy.
Singly linked lists are the lean sisters of doubly linked lists. We use SItem to refer
to an item in a singly linked list. SItems scrap the predecessor pointer and store only
a pointer to the successor. This makes singly linked lists more space-efficient and
often faster than their doubly linked brothers. The downside is that some operations
can no longer be performed in constant time or can no longer be supported in full
generality. For example, we can remove an SItem only if we know its predecessor.

We adopt the implementation approach used with doubly linked lists. SItems
form collections of cycles, and an SList has a dummy SItem h that precedes the first
proper element and is the successor of the last proper element. Many operations on
Lists can still be performed if we change the interface slightly. For example, the
following implementation of splice needs the predecessor of the first element of the
sublist to be moved:

// (〈. . . ,a′,a, . . . ,b,b′ . . .〉,〈. . . , t, t ′, . . .〉) �→ (〈. . . ,a′,b′ . . .〉,〈. . . , t,a, . . . ,b, t ′, . . .〉)

Procedure splice(a′,b,t : SHandle)(
a′ → next
t → next
b → next

)
:=

(
b → next
a′ → next
t → next

)
//

a′ a b b′

�
�

� · · · �
�

�

�� �
t t ′

Similarly, findNext should not return the handle of the SItem with the next hit
but its predecessor, so that it remains possible to remove the element found. Con-
sequently, findNext can only start searching at the item after the item given to it. A
useful addition to SList is a pointer to the last element because it allows us to support
pushBack in constant time.

Exercise 3.8. Implement classes SHandle, SItem, and SList for singly linked lists in
analogy to Handle, Item, and List. Show that the following functions can be imple-
mented to run in constant time. The operations head, first, last, isEmpty, popFront,
pushFront, pushBack, insertAfter, concat, and makeEmpty should have the same in-
terface as before. The operations moveAfter, moveToFront, moveToBack, remove,
popFront, and findNext need different interfaces.

We shall see several applications of singly linked lists in later chapters, for exam-
ple in hash tables in Sect. 4.1 and in mergesort in Sect. 5.2. We may also use singly
linked lists to implement free lists of memory managers – even for items in doubly
linked lists.

66 3 Representing Sequences by Arrays and Linked Lists

3.2 Unbounded Arrays

Consider an array data structure that, besides the indexing operation [·], supports the
following operations pushBack, popBack, and size:

〈e0, . . . ,en〉.pushBack(e) = 〈e0, . . . ,en,e〉 ,

〈e0, . . . ,en〉.popBack = 〈e0, . . . ,en−1〉 ,

size(〈e0, . . . ,en−1〉) = n .

Why are unbounded arrays important? Because in many situations we do not know in
advance how large an array should be. Here is a typical example: suppose you want
to implement the Unix command sort for sorting the lines of a file. You decide
to read the file into an array of lines, sort the array internally, and finally output the
sorted array. With unbounded arrays, this is easy. With bounded arrays, you would
have to read the file twice: once to find the number of lines it contains, and once
again to actually load it into the array.

We come now to the implementation of unbounded arrays. We emulate an un-
bounded array u with n elements by use of a dynamically allocated bounded array b
with w entries, where w ≥ n. The first n entries of b are used to store the elements
of u. The last w− n entries of b are unused. As long as w > n, pushBack simply
increments n and uses the first unused entry of b for the new element. When w = n,
the next pushBack allocates a new bounded array b′ that is larger by a constant factor
(say a factor of two). To reestablish the invariant that u is stored in b, the contents of
b are copied to the new array so that the old b can be deallocated. Finally, the pointer
defining b is redirected to the new array. Deleting the last element with popBack
is even easier, since there is no danger that b may become too small. However, we
might waste a lot of space if we allow b to be much larger than needed. The wasted
space can be kept small by shrinking b when n becomes too small. Figure 3.6 gives
the complete pseudocode for an unbounded-array class. Growing and shrinking are
performed using the same utility procedure reallocate. Our implementation uses con-
stants α and β , with β = 2 and α = 4. Whenever the current bounded array becomes
too small, we replace it by an array of β times the old size. Whenever the size of the
current array becomes α times as large as its used part, we replace it by an array of
size βn. The reasons for the choice of α and β shall become clear later.

3.2.1 Amortized Analysis of Unbounded Arrays: The Global Argument

Our implementation of unbounded arrays follows the algorithm design principle
“make the common case fast”. Array access with [·] is as fast as for bounded ar-
rays. Intuitively, pushBack and popBack should “usually” be fast – we just have to
update n. However, some insertions and deletions incur a cost of Θ(n). We shall
show that such expensive operations are rare and that any sequence of m operations
starting with an empty array can be executed in time O(m).

Lemma 3.1. Consider an unbounded array u that is initially empty. Any sequence
σ = 〈σ1, . . . ,σm〉 of pushBack or popBack operations on u is executed in time O(m).

3.2 Unbounded Arrays 67

Class UArray of Element
Constant β = 2 : R+ // growth factor
Constant α = 4 : R+ // worst case memory blowup
w = 1 : N // allocated size
n = 0 : N // current size.
invariant n ≤ w < αn or n = 0 and w ≤ β
b : Array [0..w−1] of Element // b → e0 · · · en−1

n
· · ·

w

Operator [i : N] : Element
assert 0 ≤ i < n
return b[i]

Function size : N return n

Procedure pushBack(e : Element) // Example for n = w = 4:
if n = w then // b → 0 1 2 3

reallocate(βn) // b → 0 1 2 3
b[n] := e // b → 0 1 2 3 e
n++ // b → 0 1 2 3 e

Procedure popBack // Example for n = 5, w = 16:
assert n > 0 // b → 0 1 2 3 4
n-- // b → 0 1 2 3 4
if αn ≤ w∧n > 0 then // reduce waste of space

reallocate(βn) // b → 0 1 2 3

Procedure reallocate(w′ : N) // Example for w = 4, w′ = 8:
w :=w′ // b → 0 1 2 3

b′ :=allocate Array [0..w′ −1] of Element // b′ →
(b′[0], . . . ,b′[n−1]) :=(b[0], . . . ,b[n−1]) // b′ → 0 1 2 3

dispose b // b → 0 1 2 3

b :=b′ // pointer assignment b → 0 1 2 3

Fig. 3.6. Pseudocode for unbounded arrays

Lemma 3.1 is a nontrivial statement. A small and innocent-looking change to the
program invalidates it.

Exercise 3.9. Your manager asks you to change the initialization of α to α = 2. He
argues that it is wasteful to shrink an array only when three-fourths of it are unused.
He proposes to shrink it when n≤w/2. Convince him that this is a bad idea by giving
a sequence of m pushBack and popBack operations that would need time Θ

(
m2

)
if

his proposal was implemented.

68 3 Representing Sequences by Arrays and Linked Lists

Lemma 3.1 makes a statement about the amortized cost of pushBack and popBack
operations. Although single operations may be costly, the cost of a sequence of m op-
erations is O(m). If we divide the total cost of the operations in σ by the number of
operations, we get a constant. We say that the amortized cost of each operation is
constant. Our usage of the term “amortized” is similar to its usage in everyday lan-
guage, but it avoids a common pitfall. “I am going to cycle to work every day from
now on, and hence it is justified to buy a luxury bike. The cost per ride will be very
small – the investment will be amortized.” Does this kind of reasoning sound famil-
iar to you? The bike is bought, it rains, and all good intentions are gone. The bike
has not been amortized. We shall instead insist that a large expenditure is justified by
savings in the past and not by expected savings in the future. Suppose your ultimate
goal is to go to work in a luxury car. However, you are not going to buy it on your
first day of work. Instead, you walk and put a certain amount of money per day into
a savings account. At some point, you will be able to buy a bicycle. You continue to
put money away. At some point later, you will be able to buy a small car, and even
later you can finally buy a luxury car. In this way, every expenditure can be paid for
by past savings, and all expenditures are amortized. Using the notion of amortized
costs, we can reformulate Lemma 3.1 more elegantly. The increased elegance also
allows better comparisons between data structures.

Corollary 3.2. Unbounded arrays implement the operation [·] in worst-case constant
time and the operations pushBack and popBack in amortized constant time.

To prove Lemma 3.1, we use the bank account or potential method. We asso-
ciate an account or potential with our data structure and force every pushBack and
popBack to put a certain amount into this account. Usually, we call our unit of cur-
rency a token. The idea is that whenever a call of reallocate occurs, the balance in
the account is sufficiently high to pay for it. The details are as follows. A token can
pay for moving one element from b to b′. Note that element copying in the proce-
dure reallocate is the only operation that incurs a nonconstant cost in Fig. 3.6. More
concretely, reallocate is always called with w′ = 2n and thus has to copy n elements.
Hence, for each call of reallocate, we withdraw n tokens from the account. We charge
two tokens for each call of pushBack and one token for each call of popBack. We now
show that these charges suffice to cover the withdrawals made by reallocate.

The first call of reallocate occurs when there is one element already in the array
and a new element is to be inserted. The element already in the array has deposited
two tokens in the account, and this more than covers the one token withdrawn by
reallocate. The new element provides its tokens for the next call of reallocate.

After a call of reallocate, we have an array of w elements: n = w/2 slots are
occupied and w/2 are free. The next call of reallocate occurs when either n = w or
4n ≤ w. In the first case, at least w/2 elements have been added to the array since
the last call of reallocate, and each one of them has deposited two tokens. So we
have at least w tokens available and can cover the withdrawal made by the next call
of reallocate. In the second case, at least w/2 − w/4 = w/4 elements have been
removed from the array since the last call of reallocate, and each one of them has
deposited one token. So we have at least w/4 tokens available. The call of reallocate

3.2 Unbounded Arrays 69

needs at most w/4 tokens, and hence the cost of the call is covered. This completes
the proof of Lemma 3.1. �

Exercise 3.10. Redo the argument above for general values of α and β , and charge
β/(β − 1) tokens for each call of pushBack and β/(α − β) tokens for each call
of popBack. Let n′ be such that w = βn′. Then, after a reallocate, n′ elements are
occupied and (β −1)n′ = ((β −1)/β)w are free. The next call of reallocate occurs
when either n = w or αn ≤ w. Argue that in both cases there are enough tokens.

Amortized analysis is an extremely versatile tool, and so we think that it is worth-
while to know some alternative proof methods. We shall now give two variants of the
proof above.

Above, we charged two tokens for each pushBack and one token for each
popBack. Alternatively, we could charge three tokens for each pushBack and not
charge popBack at all. The accounting is simple. The first two tokens pay for the
insertion as above, and the third token is used when the element is deleted.

Exercise 3.11 (continuation of Exercise 3.10). Show that a charge of β/(β −1)+
β/(α − β) tokens for each pushBack is enough. Determine values of α such that
β/(α −β) ≤ 1/(β −1) and β/(α −β) ≤ β/(β −1), respectively.

3.2.2 Amortized Analysis of Unbounded Arrays: The Local Argument

We now describe our second modification of the proof. In the argument above, we
used a global argument in order to show that there are enough tokens in the account
before each call of reallocate. We now show how to replace the global argument by a
local argument. Recall that, immediately after a call of reallocate, we have an array
of w elements, out of which w/2 are filled and w/2 are free. We argue that at any
time after the first call of reallocate, the following token invariant holds:

the account contains at least max(2(n−w/2),w/2−n) tokens.

Observe that this number is always nonnegative. We use induction on the number of
operations. Immediately after the first reallocate, there is one token in the account
and the invariant requires none. A pushBack increases n by one and adds two tokens.
So the invariant is maintained. A popBack removes one element and adds one token.
So the invariant is again maintained. When a call of reallocate occurs, we have either
n = w or 4n ≤ w. In the former case, the account contains at least n tokens, and n
tokens are required for the reallocation. In the latter case, the account contains at
least w/4 tokens, and n are required. So, in either case, the number of tokens suffices.
Also, after the reallocation, n = w/2 and hence no tokens are required.

Exercise 3.12. Charge three tokens for a pushBack and no tokens for a popBack.
Argue that the account contains always at least n + max(2(n − w/2),w/2 − n) =
max(3n−w,w/2) tokens.

70 3 Representing Sequences by Arrays and Linked Lists

Exercise 3.13 (popping many elements). Implement an operation popBack(k) that
removes the last k elements in amortized constant time independent of k.

Exercise 3.14 (worst-case constant access time). Suppose, for a real-time applica-
tion, you need an unbounded array data structure with a worst-case constant execu-
tion time for all operations. Design such a data structure. Hint: store the elements in
up to two arrays. Start moving elements to a larger array well before a small array is
completely exhausted.

Exercise 3.15 (implicitly growing arrays). Implement unbounded arrays where the
operation [i] allows any positive index. When i ≥ n, the array is implicitly grown to
size n = i + 1. When n ≥ w, the array is reallocated as for UArray. Initialize entries
that have never been written with some default value ⊥.

Exercise 3.16 (sparse arrays). Implement bounded arrays with constant time for
allocating arrays and constant time for the operation [·]. All array elements should
be (implicitly) initialized to ⊥. You are not allowed to make any assumptions about
the contents of a freshly allocated array. Hint: use an extra array of the same size,
and store the number t of array elements to which a value has already been assigned.
Therefore t = 0 initially. An array entry i to which a value has been assigned stores
that value and an index j, 1 ≤ j ≤ t, of the extra array, and i is stored in that index of
the extra array.

3.2.3 Amortized Analysis of Binary Counters

In order to demonstrate that our techniques for amortized analysis are also useful for
other applications, we shall now give a second example. We look at the amortized
cost of incrementing a binary counter. The value n of the counter is represented by a
sequence . . .βi . . .β1β0 of binary digits, i.e., βi ∈ {0,1} and n = ∑i≥0 βi2i. The initial
value is zero. Its representation is a string of zeros. We define the cost of incrementing
the counter as one plus the number of trailing ones in the binary representation, i.e.,
the transition

. . .01k → . . .10k

has a cost k +1. What is the total cost of m increments? We shall show that the cost
is O(m). Again, we give a global argument first and then a local argument.

If the counter is incremented m times, the final value is m. The representation of
the number m requires L = 1 + �logm� bits. Among the numbers 0 to m− 1, there
are at most 2L−k−1 numbers whose binary representation ends with a zero followed
by k ones. For each one of them, an increment costs 1+ k. Thus the total cost of the
m increments is bounded by

∑
0≤k<L

(k +1)2L−k−1 = 2L ∑
1≤k≤L

k/2k ≤ 2L ∑
k≥1

k/2k = 2 ·2L ≤ 4m ,

where the last equality uses (A.14). Hence, the amortized cost of an increment is
O(1).

3.3 *Amortized Analysis 71

The argument above is global, in the sense that it requires an estimate of the
number of representations ending in a zero followed by k ones. We now give a local
argument which does not need such a bound. We associate a bank account with
the counter. Its balance is the number of ones in the binary representation of the
counter. So the balance is initially zero. Consider an increment of cost k +1. Before
the increment, the representation ends in a zero followed by k ones, and after the
increment, the representation ends in a one followed by k− 1 zeros. So the number
of ones in the representation decreases by k − 1, i.e., the operation releases k − 1
tokens from the account. The cost of the increment is k +1. We cover a cost of k−1
by the tokens released from the account, and charge a cost of two for the operation.
Thus the total cost of m operations is at most 2m.

3.3 *Amortized Analysis

We give here a general definition of amortized time bounds and amortized analysis.
We recommend that one should read this section quickly and come back to it when
needed. We consider an arbitrary data structure. The values of all program variables
comprise the state of the data structure; we use S to denote the set of states. In the first
example in the previous section, the state of our data structure is formed by the values
of n, w, and b. Let s0 be the initial state. In our example, we have n = 0, w = 1, and
b is an array of size one in the initial state. We have operations to transform the data
structure. In our example, we had the operations pushBack, popBack, and reallocate.
The application of an operation X in a state s transforms the data structure to a new
state s′ and has a cost TX (s). In our example, the cost of a pushBack or popBack is 1,
excluding the cost of the possible call to reallocate. The cost of a call reallocate(βn)
is Θ(n).

Let F be a sequence of operations Op1, Op2, Op3, . . . , Opn. Starting at the initial
state s0, F takes us through a sequence of states to a final state sn:

s0
Op1−→ s1

Op2−→ s2
Op3−→ ·· · Opn−→ sn .

The cost T (F) of F is given by

T (F) = ∑
1≤i≤n

TOpi
(si−1) .

A family of functions AX (s), one for each operation X , is called a family of amortized
time bounds if, for every sequence F of operations,

T (F) ≤ A(F) := c+ ∑
1≤i≤n

AOpi
(si−1)

for some constant c not depending on F , i.e., up to an additive constant, the total
actual execution time is bounded by the total amortized execution time.

72 3 Representing Sequences by Arrays and Linked Lists

There is always a trivial way to define a family of amortized time bounds,
namely AX (s) := TX (s) for all s. The challenge is to find a family of simple func-
tions AX (s) that form a family of amortized time bounds. In our example, the func-
tions ApushBack(s) = ApopBack(s) = A[·](s) = O(1) and Areallocate(s) = 0 for all s form
a family of amortized time bounds.

3.3.1 The Potential or Bank Account Method for Amortized Analysis

We now formalize the technique used in the previous section. We have a function
pot that associates a nonnegative potential with every state of the data structure, i.e.,
pot : S −→ R≥0. We call pot(s) the potential of the state s, or the balance of the
savings account when the data structure is in the state s. It requires ingenuity to
come up with an appropriate function pot. For an operation X that transforms a state
s into a state s′ and has cost TX (s), we define the amortized cost AX (s) as the sum of
the potential change and the actual cost, i.e., AX (s) = pot(s′)− pot(s)+ TX (s). The
functions obtained in this way form a family of amortized time bounds.

Theorem 3.3 (potential method). Let S be the set of states of a data structure, let
s0 be the initial state, and let pot : S −→ R≥0 be a nonnegative function. For an

operation X and a state s with s
X−→ s′, we define

AX (s) = pot(s′)−pot(s)+TX (s).

The functions AX (s) are then a family of amortized time bounds.

Proof. A short computation suffices. Consider a sequence F = 〈Op1, . . . ,Opn〉 of
operations. We have

∑
1≤i≤n

AOpi
(si−1) = ∑

1≤i≤n

(pot(si)−pot(si−1)+TOpi
(si−1))

= pot(sn)−pot(s0)+ ∑
1≤i≤n

TOpi
(si−1)

≥ ∑
1≤i≤n

TOpi
(si−1)−pot(s0),

since pot(sn) ≥ 0. Thus T (F) ≤ A(F)+pot(s0). �

Let us formulate the analysis of unbounded arrays in the language above. The
state of an unbounded array is characterized by the values of n and w. Following
Exercise 3.12, the potential in state (n,w) is max(3n−w,w/2). The actual costs T of
pushBack and popBack are 1 and the actual cost of reallocate(βn) is n. The potential
of the initial state (n,w) = (0,1) is 1/2. A pushBack increases n by 1 and hence
increases the potential by at most 3. Thus its amortized cost is bounded by 4. A
popBack decreases n by 1 and hence does not increase the potential. Its amortized
cost is therefore at most 1. The first reallocate occurs when the data structure is in
the state (n,w) = (1,1). The potential of this state is max(3− 1,1/2) = 2, and the

3.3 *Amortized Analysis 73

actual cost of the reallocate is 1. After the reallocate, the data structure is in the
state (n,w) = (1,2) and has a potential max(3− 2,1) = 1. Therefore the amortized
cost of the first reallocate is 1−2+1 = 0. Consider any other call of reallocate. We
have either n = w or 4n ≤ w. In the former case, the potential before the reallocate
is 2n, the actual cost is n, and the new state is (n,2n) and has a potential n. Thus the
amortized cost is n−2n+n = 0. In the latter case, the potential before the operation
is w/2, the actual cost is n, which is at most w/4, and the new state is (n,w/2)
and has a potential w/4. Thus the amortized cost is at most w/4−w/2 + w/4 = 0.
We conclude that the amortized costs of pushBack and popBack are O(1) and the
amortized cost of reallocate is zero or less. Thus a sequence of m operations on an
unbounded array has cost O(m).

Exercise 3.17 (amortized analysis of binary counters). Consider a nonnegative in-
teger c represented by an array of binary digits, and a sequence of m increment and
decrement operations. Initially, c = 0. This exercise continues the discussion at the
end of Sect. 3.2.

(a) What is the worst-case execution time of an increment or a decrement as a func-
tion of m? Assume that you can work with only one bit per step.

(b) Prove that the amortized cost of the increments is constant if there are no decre-
ments. Hint: define the potential of c as the number of ones in the binary repre-
sentation of c.

(c) Give a sequence of m increment and decrement operations with cost Θ(m logm).
(d) Give a representation of counters such that you can achieve worst-case constant

time for increments and decrements.
(e) Allow each digit di to take values from {−1,0,1}. The value of the counter is

c = ∑i di2i. Show that in this redundant ternary number system, increments and
decrements have constant amortized cost. Is there an easy way to tell whether
the value of the counter is zero?

3.3.2 Universality of Potential Method

We argue here that the potential-function technique is strong enough to obtain any
family of amortized time bounds.

Theorem 3.4. Let BX (s) be a family of amortized time bounds. There is then a po-
tential function pot such that AX (s) ≤ BX (s) for all states s and all operations X,
where AX (s) is defined according to Theorem 3.3.

Proof. Let c be such that T (F)≤ B(F)+c for any sequence of operations F starting
at the initial state. For any state s, we define its potential pot(s) by

pot(s) = inf{B(F)+ c−T (F) : F is a sequence of operations with final state s} .

We need to write inf instead of min, since there might be infinitely many sequences
leading to s. We have pot(s)≥ 0 for any s, since T (F)≤B(F)+c for any sequence F .
Thus pot is a potential function, and the functions AX (s) form a family of amortized

74 3 Representing Sequences by Arrays and Linked Lists

time bounds. We need to show that AX (s) ≤ BX (s) for all X and s. Let ε > 0 be
arbitrary. We shall show that AX (s) ≤ BX (s)+ε . Since ε is arbitrary, this proves that
AX (s) ≤ BX (s).

Let F be a sequence with final state s and B(F)+ c−T (F) ≤ pot(s)+ ε . Let F ′

be F followed by X , i.e.,

s0
F−→ s

X−→ s′ .

Then pot(s′) ≤ B(F ′)+ c−T (F ′) by the definition of pot(s′), pot(s) ≥ B(F)+ c−
T (F)− ε by the choice of F , B(F ′) = B(F) + BX (s) and T (F ′) = T (F) + TX (s)
since F ′ = F ◦X , and AX (s) = pot(s′)− pot(s)+ TX (s) by the definition of AX (s).
Combining these inequalities, we obtain

AX (s) ≤ (B(F ′)+ c−T (F ′))− (B(F)+ c−T (F)− ε)+TX (s)
= (B(F ′)−B(F))− (T (F ′)−T (F)−TX (s))+ ε
= BX (s)+ ε . �

3.4 Stacks and Queues

Sequences are often used in a rather limited way. Let us start with some examples
from precomputer days. Sometimes a clerk will work in the following way: the clerk
keeps a stack of unprocessed files on her desk. New files are placed on the top of
the stack. When the clerk processes the next file, she also takes it from the top of
the stack. The easy handling of this “data structure” justifies its use; of course, files
may stay in the stack for a long time. In the terminology of the preceding sections,
a stack is a sequence that supports only the operations pushBack, popBack, and last.
We shall use the simplified names push, pop, and top for the three stack operations.

The behavior is different when people stand in line waiting for service at a post
office: customers join the line at one end and leave it at the other end. Such sequences
are called FIFO (first in, first out) queues or simply queues. In the terminology of
the List class, FIFO queues use only the operations first, pushBack, and popFront.

...
stack

...
FIFO queue

...

pushBack popBackpushFrontpopFront

deque

Fig. 3.7. Operations on stacks, queues, and double-ended queues (deques)

3.4 Stacks and Queues 75

The more general deque (pronounced “deck”), or double-ended queue, allows the
operations first, last, pushFront, pushBack, popFront, and popBack and can also be
observed at a post office when some not so nice individual jumps the line, or when
the clerk at the counter gives priority to a pregnant woman at the end of the line.
Figure 3.7 illustrates the access patterns of stacks, queues, and deques.

Exercise 3.18 (the Tower of Hanoi). In the great temple of Brahma in Benares,
on a brass plate under the dome that marks the center of the world, there are 64
disks of pure gold that the priests carry one at a time between three diamond needles
according to Brahma’s immutable law: no disk may be placed on a smaller disk. At
the beginning of the world, all 64 disks formed the Tower of Brahma on one needle.
Now, however, the process of transfer of the tower from one needle to another is in
mid-course. When the last disk is finally in place, once again forming the Tower of
Brahma but on a different needle, then the end of the world will come and all will
turn to dust, [93].2

Describe the problem formally for any number k of disks. Write a program that
uses three stacks for the piles and produces a sequence of stack operations that trans-
form the state (〈k, . . . ,1〉,〈〉,〈〉) into the state (〈〉,〈〉,〈k, . . . ,1〉).

Exercise 3.19. Explain how to implement a FIFO queue using two stacks so that
each FIFO operation takes amortized constant time.

Why should we care about these specialized types of sequence if we already
know a list data structure which supports all of the operations above and more in con-
stant time? There are at least three reasons. First, programs become more readable
and are easier to debug if special usage patterns of data structures are made explicit.
Second, simple interfaces also allow a wider range of implementations. In particu-
lar, the simplicity of stacks and queues allows specialized implementations that are
more space-efficient than general Lists. We shall elaborate on this algorithmic aspect
in the remainder of this section. In particular, we shall strive for implementations
based on arrays rather than lists. Third, lists are not suited for external-memory use
because any access to a list item may cause an I/O operation. The sequential access
patterns to stacks and queues translate into good reuse of cache blocks when stacks
and queues are represented by arrays.

Bounded stacks, where we know the maximal size in advance, are readily imple-
mented with bounded arrays. For unbounded stacks, we can use unbounded arrays.
Stacks can also be represented by singly linked lists: the top of the stack corresponds
to the front of the list. FIFO queues are easy to realize with singly linked lists with
a pointer to the last element. However, deques cannot be represented efficiently by
singly linked lists.

We discuss next an implementation of bounded FIFO queues by use of arrays; see
Fig. 3.8. We view an array as a cyclic structure where entry zero follows the last entry.
In other words, we have array indices 0 to n, and view the indices modulo n+1. We

2 In fact, this mathematical puzzle was invented by the French mathematician Edouard Lucas
in 1883.

76 3 Representing Sequences by Arrays and Linked Lists

Class BoundedFIFO(n : N) of Element
b : Array [0..n] of Element
h = 0 : N // index of first element
t = 0 : N // index of first free entry

h

t0n

b

Function isEmpty : {0,1}; return h = t

Function first : Element; assert ¬isEmpty; return b[h]

Function size : N; return (t −h+n+1) mod (n+1)

Procedure pushBack(x : Element)
assert size< n
b[t] :=x
t :=(t +1) mod (n+1)

Procedure popFront assert ¬isEmpty; h :=(h+1) mod (n+1)

Fig. 3.8. An array-based bounded FIFO queue implementation

maintain two indices h and t that delimit the range of valid queue entries; the queue
comprises the array elements indexed by h..t−1. The indices travel around the cycle
as elements are queued and dequeued. The cyclic semantics of the indices can be
implemented using arithmetics modulo the array size.3 We always leave at least one
entry of the array empty, because otherwise it would be difficult to distinguish a full
queue from an empty queue. The implementation is readily generalized to bounded
deques. Circular arrays also support the random access operator [·]:

Operator [i : N] : Element; return b[i+h mod n]

Bounded queues and deques can be made unbounded using techniques similar to
those used for unbounded arrays in Sect. 3.2.

We have now seen the major techniques for implementing stacks, queues, and
deques. These techniques may be combined to obtain solutions that are particularly
suited for very large sequences or for external-memory computations.

Exercise 3.20 (lists of arrays). Here we aim to develop a simple data structure for
stacks, FIFO queues, and deques that combines all the advantages of lists and un-
bounded arrays and is more space-efficient than either lists or unbounded arrays.
Use a list (doubly linked for deques) where each item stores an array of K elements
for some large constant K. Implement such a data structure in your favorite program-
ming language. Compare the space consumption and execution time with those for
linked lists and unbounded arrays in the case of large stacks.

Exercise 3.21 (external-memory stacks and queues). Design a stack data struc-
ture that needs O(1/B) I/Os per operation in the I/O model described in Sect. 2.2. It

3 On some machines, one might obtain significant speedups by choosing the array size to be
a power of two and replacing mod by bit operations.

3.5 Lists Versus Arrays 77

suffices to keep two blocks in internal memory. What can happen in a naive imple-
mentation with only one block in memory? Adapt your data structure to implement
FIFO queues, again using two blocks of internal buffer memory. Implement deques
using four buffer blocks.

3.5 Lists Versus Arrays

Table 3.1 summarizes the findings of this chapter. Arrays are better at indexed ac-
cess, whereas linked lists have their strength in manipulations of sequences at ar-
bitrary positions. Both of these approaches realize the operations needed for stacks
and queues efficiently. However, arrays are more cache-efficient here, whereas lists
provide worst-case performance guarantees.

Table 3.1. Running times of operations on sequences with n elements. The entries have an
implicit O(·) around them. List stands for doubly linked lists, SList stands for singly linked
lists, UArray stands for unbounded arrays, and CArray stands for circular arrays

Operation List SList UArray CArray Explanation of “∗”
[·] n n 1 1
size 1∗ 1∗ 1 1 Not with interlist splice
first 1 1 1 1
last 1 1 1 1
insert 1 1∗ n n insertAfter only
remove 1 1∗ n n removeAfter only
pushBack 1 1 1∗ 1∗ Amortized
pushFront 1 1 n 1∗ Amortized
popBack 1 n 1∗ 1∗ Amortized
popFront 1 1 n 1∗ Amortized
concat 1 1 n n
splice 1 1 n n
findNext,. . . n n n∗ n∗ Cache-efficient

Singly linked lists can compete with doubly linked lists in most but not all re-
spects. The only advantage of cyclic arrays over unbounded arrays is that they can
implement pushFront and popFront efficiently.

Space efficiency is also a nontrivial issue. Linked lists are very compact if the
elements are much larger than the pointers. For small Element types, arrays are usu-
ally more compact because there is no overhead for pointers. This is certainly true
if the sizes of the arrays are known in advance so that bounded arrays can be used.
Unbounded arrays have a trade-off between space efficiency and copying overhead
during reallocation.

78 3 Representing Sequences by Arrays and Linked Lists

3.6 Implementation Notes

Every decent programming language supports bounded arrays. In addition, un-
bounded arrays, lists, stacks, queues, and deques are provided in libraries that are
available for the major imperative languages. Nevertheless, you will often have to
implement listlike data structures yourself, for example when your objects are mem-
bers of several linked lists. In such implementations, memory management is often
a major challenge.

3.6.1 C++

The class vector〈Element〉 in the STL realizes unbounded arrays. However, most
implementations never shrink the array. There is functionality for manually setting
the allocated size. Usually, you will give some initial estimate for the sequence size n
when the vector is constructed. This can save you many grow operations. Often, you
also know when the array will stop changing size, and you can then force w = n. With
these refinements, there is little reason to use the built-in C-style arrays. An added
benefit of vectors is that they are automatically destroyed when the variable goes out
of scope. Furthermore, during debugging, you may switch to implementations with
bound checking.

There are some additional issues that you might want to address if you need very
high performance for arrays that grow or shrink a lot. During reallocation, vector has
to move array elements using the copy constructor of Element. In most cases, a call
to the low-level byte copy operation memcpy would be much faster. Another low-
level optimization is to implement reallocate using the standard C function realloc.
The memory manager might be able to avoid copying the data entirely.

A stumbling block with unbounded arrays is that pointers to array elements be-
come invalid when the array is reallocated. You should make sure that the array does
not change size while such pointers are being used. If reallocations cannot be ruled
out, you can use array indices rather than pointers.

The STL and LEDA [118] offer doubly linked lists in the class list〈Element〉,
and singly linked lists in the class slist〈Element〉. Their memory management uses
free lists for all objects of (roughly) the same size, rather than only for objects of the
same class.

If you need to implement a listlike data structure, note that the operator new can
be redefined for each class. The standard library class allocator offers an interface
that allows you to use your own memory management while cooperating with the
memory managers of other classes.

The STL provides the classes stack〈Element〉 and deque〈Element〉 for stacks
and double-ended queues, respectively. Deques also allow constant-time indexed ac-
cess using [·]. LEDA offers the classes stack〈Element〉 and queue〈Element〉 for un-
bounded stacks, and FIFO queues implemented via linked lists. It also offers bounded
variants that are implemented as arrays.

Iterators are a central concept of the STL; they implement our abstract view of
sequences independent of the particular representation.

3.7 Historical Notes and Further Findings 79

3.6.2 Java

The util package of the Java 6 platform provides ArrayList for unbounded arrays and
LinkedList for doubly linked lists. There is a Deque interface, with implementations
by use of ArrayDeque and LinkedList. A Stack is implemented as an extension to
Vector.

Many Java books proudly announce that Java has no pointers so that you might
wonder how to implement linked lists. The solution is that object references in Java
are essentially pointers. In a sense, Java has only pointers, because members of non-
simple type are always references, and are never stored in the parent object itself.

Explicit memory management is optional in Java, since it provides garbage col-
lections of all objects that are not referenced any more.

3.7 Historical Notes and Further Findings

All of the algorithms described in this chapter are “folklore”, i.e., they have been
around for a long time and nobody claims to be their inventor. Indeed, we have seen
that many of the underlying concepts predate computers.

Amortization is as old as the analysis of algorithms. The bank account and po-
tential methods were introduced at the beginning of the 1980s by R. E. Brown, S.
Huddlestone, K. Mehlhorn, D. D. Sleator, and R. E. Tarjan [32, 95, 182, 183]. The
overview article [188] popularized the term amortized analysis, and Theorem 3.4
first appeared in [127].

There is an arraylike data structure that supports indexed access in constant time
and arbitrary element insertion and deletion in amortized time O(

√
n). The trick is

relatively simple. The array is split into subarrays of size n′ = Θ(
√

n). Only the last
subarray may contain fewer elements. The subarrays are maintained as cyclic arrays,
as described in Sect. 3.4. Element i can be found in entry i mod n′ of subarray �i/n′�.
A new element is inserted into its subarray in time O(

√
n). To repair the invariant that

subarrays have the same size, the last element of this subarray is inserted as the first
element of the next subarray in constant time. This process of shifting the extra ele-
ment is repeated O(n/n′) = O(

√
n) times until the last subarray is reached. Deletion

works similarly. Occasionally, one has to start a new last subarray or change n′ and
reallocate everything. The amortized cost of these additional operations can be kept
small. With some additional modifications, all deque operations can be performed in
constant time. We refer the reader to [107] for more sophisticated implementations
of deques and an implementation study.

4

Hash Tables and Associative Arrays

If you want to get a book from the central library of the University of Karlsruhe,
you have to order the book in advance. The library personnel fetch the book from
the stacks and deliver it to a room with 100 shelves. You find your book on a shelf
numbered with the last two digits of your library card. Why the last digits and not the
leading digits? Probably because this distributes the books more evenly among the
shelves. The library cards are numbered consecutively as students sign up, and the
University of Karlsruhe was founded in 1825. Therefore, the students enrolled at the
same time are likely to have the same leading digits in their card number, and only a
few shelves would be in use if the leading digits were used.

The subject of this chapter is the robust and efficient implementation of the above
“delivery shelf data structure”. In computer science, this data structure is known as
a hash1 table. Hash tables are one implementation of associative arrays, or dictio-
naries. The other implementation is the tree data structures which we shall study in
Chap. 7. An associative array is an array with a potentially infinite or at least very
large index set, out of which only a small number of indices are actually in use. For
example, the potential indices may be all strings, and the indices in use may be all
identifiers used in a particular C++ program. Or the potential indices may be all ways
of placing chess pieces on a chess board, and the indices in use may be the place-
ments required in the analysis of a particular game. Associative arrays are versatile
data structures. Compilers use them for their symbol table, which associates iden-
tifiers with information about them. Combinatorial search programs often use them
for detecting whether a situation has already been looked at. For example, chess pro-
grams have to deal with the fact that board positions can be reached by different
sequences of moves. However, each position needs to be evaluated only once. The
solution is to store positions in an associative array. One of the most widely used
implementations of the join operation in relational databases temporarily stores one
of the participating relations in an associative array. Scripting languages such as AWK

1 Photograph of the mincer above by Kku, Rainer Zenz (Wikipedia), Licence CC-by-SA 2.5.

82 4 Hash Tables and Associative Arrays

[7] and Perl [203] use associative arrays as their main data structure. In all of the
examples above, the associative array is usually implemented as a hash table. The
exercises in this section ask you to develop some further uses of associative arrays.

Formally, an associative array S stores a set of elements. Each element e has an
associated key key(e) ∈ Key. We assume keys to be unique, i.e., distinct elements
have distinct keys. Associative arrays support the following operations:

• S.insert(e : Element): S :=S∪{e}.
• S.remove(k : Key): S :=S\{e}, where e is the unique element with key(e) = k.
• S.find(k : Key): If there is an e ∈ S with key(e) = k, return e; otherwise, return ⊥.

In addition, we assume a mechanism that allows us to retrieve all elements in S. Since
this forall operation is usually easy to implement, we discuss it only in the exercises.
Observe that the find operation is essentially the random access operator for an array;
hence the name “associative array”. Key is the set of potential array indices, and the
elements of S are the indices in use at any particular time. Throughout this chapter,
we use n to denote the size of S, and N to denote the size of Key. In a typical appli-
cation of associative arrays, N is humongous and hence the use of an array of size N
is out of the question. We are aiming for solutions which use space O(n).

In the library example, Key is the set of all library card numbers, and elements are
the book orders. Another precomputer example is provided by an English–German
dictionary. The keys are English words, and an element is an English word together
with its German translations.

The basic idea behind the hash table implementation of associative arrays is sim-
ple. We use a hash function h to map the set Key of potential array indices to a small
range 0..m−1 of integers. We also have an array t with index set 0..m−1, the hash
table. In order to keep the space requirement low, we want m to be about the num-
ber of elements in S. The hash function associates with each element e a hash value
h(key(e)). In order to simplify the notation, we write h(e) instead of h(key(e)) for the
hash value of e. In the library example, h maps each library card number to its last
two digits. Ideally, we would like to store element e in the table entry t[h(e)]. If this
works, we obtain constant execution time2 for our three operations insert, remove,
and find.

Unfortunately, storing e in t[h(e)] will not always work, as several elements might
collide, i.e., map to the same table entry. The library example suggests a fix: allow
several book orders to go to the same shelf. The entire shelf then has to be searched
to find a particular order. A generalization of this fix leads to hashing with chaining.
We store a set of elements in each table entry, and implement the set using singly
linked lists. Section 4.1 analyzes hashing with chaining using some rather optimistic
(and hence unrealistic) assumptions about the properties of the hash function. In this
model, we achieve constant expected time for all three dictionary operations.

In Sect. 4.2, we drop the unrealistic assumptions and construct hash functions that
come with (probabilistic) performance guarantees. Even our simple examples show

2 Strictly speaking, we have to add additional terms for evaluating the hash function and for
moving elements around. To simplify the notation, we assume in this chapter that all of this
takes constant time.

4.1 Hashing with Chaining 83

that finding good hash functions is nontrivial. For example, if we apply the least-
significant-digit idea from the library example to an English–German dictionary, we
might come up with a hash function based on the last four letters of a word. But then
we would have many collisions for words ending in “tion”, “able”, etc.

We can simplify hash tables (but not their analysis) by returning to the original
idea of storing all elements in the table itself. When a newly inserted element e finds
the entry t[h(x)] occupied, it scans the table until a free entry is found. In the library
example, assume that shelves can hold exactly one book. The librarians would then
use adjacent shelves to store books that map to the same delivery shelf. Section 4.3
elaborates on this idea, which is known as hashing with open addressing and linear
probing.

Why are hash tables called hash tables? The dictionary defines “to hash” as “to
chop up, as of potatoes”. This is exactly what hash functions usually do. For example,
if keys are strings, the hash function may chop up the string into pieces of fixed size,
interpret each fixed-size piece as a number, and then compute a single number from
the sequence of numbers. A good hash function creates disorder and, in this way,
avoids collisions.

Exercise 4.1. Assume you are given a set M of pairs of integers. M defines a binary
relation RM . Use an associative array to check whether RM is symmetric. A relation
is symmetric if ∀(a,b) ∈ M : (b,a) ∈ M.

Exercise 4.2. Write a program that reads a text file and outputs the 100 most frequent
words in the text.

Exercise 4.3 (a billing system). Assume you have a large file consisting of triples
(transaction, price, customer ID). Explain how to compute the total payment due for
each customer. Your algorithm should run in linear time.

Exercise 4.4 (scanning a hash table). Show how to realize the forall operation for
hashing with chaining and for hashing with open addressing and linear probing. What
is the running time of your solution?

4.1 Hashing with Chaining

Hashing with chaining maintains an array t of linear lists (see Fig. 4.1). The
associative-array operations are easy to implement. To insert an element e, we in-
sert it somewhere in the sequence t[h(e)]. To remove an element with key k, we scan
through t[h(k)]. If an element e with h(e) = k is encountered, we remove it and re-
turn. To find the element with key k, we also scan through t[h(k)]. If an element e
with h(e) = k is encountered, we return it. Otherwise, we return ⊥.

Insertions take constant time. The space consumption is O(n+m). To remove or
find a key k, we have to scan the sequence t[h(k)]. In the worst case, for example if
find looks for an element that is not there, the entire list has to be scanned. If we are

84 4 Hash Tables and Associative Arrays

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

<chop, lop>

<axe,dice,cube>

<fell>
<hack>

<slash,hash>

remove

"clip"

insert

"slash"

<chop, clip, lop>

<axe,dice,cube>

<fell>
<hack>

<slash,hash>

<chop, clip, lop>

<axe,dice,cube>

<fell>
<hack>

<hash>

ttt

Fig. 4.1. Hashing with chaining. We have a table t of sequences. The figure shows an example
where a set of words (short synonyms of “hash”) is stored using a hash function that maps the
last character to the integers 0..25. We see that this hash function is not very good

unlucky, all elements are mapped to the same table entry and the execution time is
Θ(n). So, in the worst case, hashing with chaining is no better than linear lists.

Are there hash functions that guarantee that all sequences are short? The answer
is clearly no. A hash function maps the set of keys to the range 0..m−1, and hence
for every hash function there is always a set of N/m keys that all map to the same
table entry. In most applications, n < N/m and hence hashing can always deteriorate
to a linear search. We shall study three approaches to dealing with the worst-case
behavior. The first approach is average-case analysis. We shall study this approach
in this section. The second approach is to use randomization, and to choose the hash
function at random from a collection of hash functions. We shall study this approach
in this section and the next. The third approach is to change the algorithm. For ex-
ample, we could make the hash function depend on the set of keys in actual use.
We shall investigate this approach in Sect. 4.5 and shall show that it leads to good
worst-case behavior.

Let H be the set of all functions from Key to 0..m− 1. We assume that the hash
function h is chosen randomly3 from H and shall show that for any fixed set S of n
keys, the expected execution time of remove or find will be O(1+n/m).

Theorem 4.1. If n elements are stored in a hash table with m entries and a random
hash function is used, the expected execution time of remove or find is O(1+n/m).

3 This assumption is completely unrealistic. There are mN functions in H, and hence it re-
quires N logm bits to specify a function in H. This defeats the goal of reducing the space
requirement from N to n.

4.2 Universal Hashing 85

Proof. The proof requires the probabilistic concepts of random variables, their ex-
pectation, and the linearity of expectations as described in Sect. A.3. Consider the
execution time of remove or find for a fixed key k. Both need constant time plus
the time for scanning the sequence t[h(k)]. Hence the expected execution time is
O(1+E[X]), where the random variable X stands for the length of the sequence
t[h(k)]. Let S be the set of n elements stored in the hash table. For each e ∈ S, let Xe

be the indicator variable which tells us whether e hashes to the same location as k,
i.e., Xe = 1 if h(e) = h(k) and Xe = 0 otherwise. In shorthand, Xe = [h(e) = h(k)].
We have X = ∑e∈S Xe. Using the linearity of expectations, we obtain

E[X] = E[∑
e∈S

Xe] = ∑
e∈S

E[Xe] = ∑
e∈S

prob(Xi = 1) .

A random hash function maps e to all m table entries with the same probability,
independent of h(k). Hence, prob(Xe = 1) = 1/m and therefore E[X] = n/m. Thus,
the expected execution time of find and remove is O(1+n/m). ��

We can achieve a linear space requirement and a constant expected execution
time of all three operations by guaranteeing that m = Θ(n) at all times. Adaptive
reallocation, as described for unbounded arrays in Sect. 3.2, is the appropriate tech-
nique.

Exercise 4.5 (unbounded hash tables). Explain how to guarantee m = Θ(n) in
hashing with chaining. You may assume the existence of a hash function h′ : Key →
N. Set h(k) = h′(k) mod m and use adaptive reallocation.

Exercise 4.6 (waste of space). The waste of space in hashing with chaining is due
to empty table entries. Assuming a random hash function, compute the expected
number of empty table entries as a function of m and n. Hint: define indicator random
variables Y0, . . . , Ym−1, where Yi = 1 if t[i] is empty.

Exercise 4.7 (average-case behavior). Assume that the hash function distributes
the set of potential keys evenly over the table, i.e., for each i, 0 ≤ i ≤ m−1, we have
|{k ∈ Key : h(k) = i}| ≤ �N/m�. Assume also that a random set S of n keys is stored
in the table, i.e., S is a random subset of Key of size n. Show that for any table position
i, the expected number of elements in S that hash to i is at most �N/m� ·n/N ≈ n/m.

4.2 Universal Hashing

Theorem 4.1 is unsatisfactory, as it presupposes that the hash function is chosen
randomly from the set of all functions4 from keys to table positions. The class of
all such functions is much too big to be useful. We shall show in this section that
the same performance can be obtained with much smaller classes of hash functions.
The families presented in this section are so small that a member can be specified in
constant space. Moreover, the functions are easy to evaluate.

4 We shall usually talk about a class of functions or a family of functions in this chapter, and
reserve the word “set” for the set of keys stored in the hash table.

86 4 Hash Tables and Associative Arrays

Definition 4.2. Let c be a positive constant. A family H of functions from Key to
0..m−1 is called c-universal if any two distinct keys collide with a probability of at
most c/m, i.e., for all x, y in Key with x �= y,

|{h ∈ H : h(x) = h(y)}| ≤ c
m
|H| .

In other words, for random h ∈ H,

prob(h(x) = h(y)) ≤ c
m

.

This definition has been constructed such that the proof of Theorem 4.1 can be ex-
tended.

Theorem 4.3. If n elements are stored in a hash table with m entries using hashing
with chaining and a random hash function from a c-universal family is used, the
expected execution time of remove or find is O(1+ cn/m).

Proof. We can reuse the proof of Theorem 4.1 almost word for word. Consider the
execution time of remove or find for a fixed key k. Both need constant time plus
the time for scanning the sequence t[h(k)]. Hence the expected execution time is
O(1+E[X]), where the random variable X stands for the length of the sequence
t[h(k)]. Let S be the set of n elements stored in the hash table. For each e ∈ S, let Xe

be the indicator variable which tells us whether e hashes to the same location as k,
i.e., Xe = 1 if h(e) = h(k) and Xe = 0 otherwise. In shorthand, Xe = [h(e) = h(k)].
We have X = ∑e∈S Xe. Using the linearity of expectations, we obtain

E[X] = E[∑
e∈S

Xe] = ∑
e∈S

E[Xe] = ∑
e∈S

prob(Xi = 1) .

Since h is chosen uniformly from a c-universal class, we have prob(Xe = 1) ≤ c/m,
and hence E[X] = cn/m. Thus, the expected execution time of find and remove is
O(1+ cn/m). ��

Now it remains to find c-universal families of hash functions that are easy to
construct and easy to evaluate. We shall describe a simple and quite practical 1-
universal family in detail and give further examples in the exercises. We assume that
our keys are bit strings of a certain fixed length; in the exercises, we discuss how
the fixed-length assumption can be overcome. We also assume that the table size m
is a prime number. Why a prime number? Because arithmetic modulo a prime is
particularly nice; in particular, the set Zm = {0, . . . ,m−1} of numbers modulo m
form a field.5 Let w = �logm�. We subdivide the keys into pieces of w bits each, say
k pieces. We interpret each piece as an integer in the range 0..2w − 1 and keys as
k-tuples of such integers. For a key x, we write x = (x1, . . . ,xk) to denote its partition

5 A field is a set with special elements 0 and 1 and with addition and multiplication oper-
ations. Addition and multiplication satisfy the usual laws known for the field of rational
numbers.

4.2 Universal Hashing 87

into pieces. Each xi lies in 0..2w −1. We can now define our class of hash functions.
For each a = (a1, . . . ,ak)∈ {0..m−1}k, we define a function ha from Key to 0..m−1
as follows. Let x = (x1, . . . ,xk) be a key and let a · x = ∑k

i=1 aixi denote the scalar
product of a and x. Then

ha(x) = a ·x mod m .

It is time for an example. Let m = 17 and k = 4. Then w = 4 and we view keys as
4-tuples of integers in the range 0..15, for example x = (11,7,4,3). A hash function
is specified by a 4-tuple of integers in the range 0..16, for example a = (2,4,7,16).
Then ha(x) = (2 ·11+4 ·7+7 ·4+16 ·3) mod 17 = 7.

Theorem 4.4.
H · =

{
ha : a ∈ {0..m−1}k

}

is a 1-universal family of hash functions if m is prime.

In other words, the scalar product between a tuple representation of a key and a
random vector modulo m defines a good hash function.

Proof. Consider two distinct keys x = (x1, . . . ,xk) and y = (y1, . . . ,yk). To determine
prob(ha(x) = ha(y)), we count the number of choices for a such that ha(x) = ha(y).
Fix an index j such that x j �= y j. Then (x j − y j) �≡ 0(mod m), and hence any equa-
tion of the form a j(x j − y j) ≡ b(mod m), where b ∈ Zm, has a unique solution in
a j, namely a j ≡ (x j − y j)−1b(mod m). Here (x j − y j)−1 denotes the multiplicative
inverse6 of (x j − y j).

We claim that for each choice of the ai’s with i �= j, there is exactly one choice
of a j such that ha(x) = ha(y). Indeed,

ha(x) = ha(y) ⇔ ∑
1≤i≤k

aixi ≡ ∑
1≤i≤k

aiyi (mod m)

⇔ a j(x j − y j) ≡ ∑
i �= j

ai(yi − xi) (mod m)

⇔ a j ≡ (y j − x j)−1 ∑
i �= j

ai(xi − yi) (mod m) .

There are mk−1 ways to choose the ai with i �= j, and for each such choice there is a
unique choice for a j. Since the total number of choices for a is mk, we obtain

prob(ha(x) = ha(y)) =
mk−1

mk =
1
m

. ��

Is it a serious restriction that we need prime table sizes? At first glance, yes. We
certainly cannot burden users with the task of providing appropriate primes. Also,
when we adaptively grow or shrink an array, it is not clear how to obtain prime

6 In a field, any element z �= 0 has a unique multiplicative inverse, i.e., there is a unique
element z−1 such that z−1 ·z = 1. Multiplicative inverses allow one to solve linear equations
of the form zx = b, where z �= 0. The solution is x = z−1b.

88 4 Hash Tables and Associative Arrays

numbers for the new value of m. A closer look shows that the problem is easy to
resolve. The easiest solution is to consult a table of primes. An analytical solution is
not much harder to obtain. First, number theory [82] tells us that primes are abundant.
More precisely, for any integer k there is a prime in the interval [k3,(k+1)3]. So, if we
are aiming for a table size of about m, we determine k such that k3 ≤m≤ (k+1)3 and
then search for a prime in this interval. How does this search work? Any nonprime
in the interval must have a divisor which is at most

√
(k +1)3 = (k + 1)3/2. We

therefore iterate over the numbers from 1 to (k + 1)3/2, and for each such j remove
its multiples in [k3,(k + 1)3]. For each fixed j, this takes time ((k + 1)3 − k3)/ j =
O

(
k2/ j

)
. The total time required is

∑
j≤(k+1)3/2

O

(
k2

j

)
= k2 ∑

j≤(k+1)3/2

O

(
1
j

)

= O
(

k2 ln
(
(k +1)3/2)) = O

(
k2 lnk

)
= o(m)

and hence is negligible compared with the cost of initializing a table of size m. The
second equality in the equation above uses the harmonic sum (A.12).

Exercise 4.8 (strings as keys). Implement the universal family H · for strings. As-
sume that each character requires eight bits (= a byte). You may assume that the
table size is at least m = 257. The time for evaluating a hash function should be pro-
portional to the length of the string being processed. Input strings may have arbitrary
lengths not known in advance. Hint: compute the random vector a lazily, extending
it only when needed.

Exercise 4.9 (hashing using bit matrix multiplication). For this exercise, keys are
bit strings of length k, i.e., Key = {0,1}k, and the table size m is a power of two, say
m = 2w. Each w× k matrix M with entries in {0,1} defines a hash function hM . For
x ∈ {0,1}k, let hM(x) = Mx mod 2, i.e., hM(x) is a matrix–vector product computed
modulo 2. The resulting w-bit vector is interpreted as a number in [0 . . .m−1]. Let

H lin =
{

hM : M ∈ {0,1}w×k
}

.

For M =
(1 0 1 1

0 1 1 1

)
and x = (1,0,0,1)T , we have Mx mod 2 = (0,1)T . Note that

multiplication modulo two is the logical AND operation, and that addition modulo
two is the logical exclusive-OR operation ⊕.

(a) Explain how hM(x) can be evaluated using k bit-parallel exclusive-OR opera-
tions. Hint: the ones in x select columns of M. Add the selected columns.

(b) Explain how hM(x) can be evaluated using w bit-parallel AND operations and w
parity operations. Many machines provide an instruction parity(y) that returns
one if the number of ones in y is odd, and zero otherwise. Hint: multiply each
row of M by x.

4.2 Universal Hashing 89

(c) We now want to show that H lin is 1-universal. (1) Show that for any two keys
x �= y, any bit position j, where x and y differ, and any choice of the columns Mi

of the matrix with i �= j, there is exactly one choice of a column Mj such that
hM(x) = hM(y). (2) Count the number of ways to choose k− 1 columns of M.
(3) Count the total number of ways to choose M. (4) Compute the probability
prob(hM(x) = hM(y)) for x �= y if M is chosen randomly.

*Exercise 4.10 (more matrix multiplication). Define a class of hash functions

H× =
{

hM : M ∈ {0..p−1}w×k
}

that generalizes the class H lin by using arithmetic modulo p for some prime number
p. Show that H× is 1-universal. Explain how H · is a special case of H×.

Exercise 4.11 (simple linear hash functions). Assume that Key = 0..p− 1 = Zp

for some prime number p. For a,b ∈ Zp, let h(a,b)(x) = ((ax + b) mod p) mod m,
and m ≤ p. For example, if p = 97 and m = 8, we have h(23,73)(2) = ((23 · 2 +
73) mod 97) mod 8 = 22 mod 8 = 6. Let

H∗ =
{

h(a,b) : a,b ∈ 0..p−1
}

.

Show that this family is (�p/m�/(p/m))2-universal.

Exercise 4.12 (continuation). Show that the following holds for the class H∗ defined
in the previous exercise. For any pair of distinct keys x and y and any i and j in
0..m−1, prob(h(a,b)(x) = i and h(a,b)(y) = j) ≤ c/m2 for some constant c.

Exercise 4.13 (a counterexample). Let Key = 0..p−1, and consider the set of hash
functions

Hfool =
{

h(a,b) : a,b ∈ 0..p−1
}

with h(a,b)(x) = (ax +b) mod m. Show that there is a set S of �p/m� keys such that
for any two keys x and y in S, all functions in Hfool map x and y to the same value.
Hint: let S = {0,m,2m, . . . ,�p/m�m}.

Exercise 4.14 (table size 2�). Let Key = 0..2k − 1. Show that the family of hash
functions

H� =
{

ha : 0 < a < 2k ∧ a is odd
}

with ha(x) = (ax mod 2k)div2k−� is 2-universal. Hint: see [53].

Exercise 4.15 (table lookup). Let m = 2w, and view keys as k +1-tuples, where the
zeroth element is a w-bit number and the remaining elements are a-bit numbers for
some small constant a. A hash function is defined by tables t1 to tk, each having a
size s = 2a and storing bit strings of length w. We then have

90 4 Hash Tables and Associative Arrays

h⊕(t1,...,tk)((x0,x1, . . . ,xk)) = x0 ⊕
k⊕

i=1

ti[xi] ,

i.e., xi selects an element in table ti, and then the bitwise exclusive-OR of x0 and the
ti[xi] is formed. Show that

H⊕[] =
{

h(t1,...,tk) : ti ∈ {0..m−1}s}

is 1-universal.

4.3 Hashing with Linear Probing

Hashing with chaining is categorized as a closed hashing approach because each
table entry has to cope with all elements hashing to it. In contrast, open hashing
schemes open up other table entries to take the overflow from overloaded fellow
entries. This added flexibility allows us to do away with secondary data structures
such as linked lists – all elements are stored directly in table entries. Many ways
of organizing open hashing have been investigated [153]. We shall explore only the
simplest scheme. Unused entries are filled with a special element ⊥. An element e is
stored in the entry t[h(e)] or further to the right. But we only go away from the index
h(e) with good reason: if e is stored in t[i] with i > h(e), then the positions h(e) to
i−1 are occupied by other elements.

The implementations of insert and find are trivial. To insert an element e, we
linearly scan the table starting at t[h(e)], until a free entry is found, where e is then
stored. Figure 4.2 gives an example. Similarly, to find an element e, we scan the
table, starting at t[h(e)], until the element is found. The search is aborted when an
empty table entry is encountered. So far, this sounds easy enough, but we have to
deal with one complication. What happens if we reach the end of the table during
an insertion? We choose a very simple fix by allocating m′ table entries to the right
of the largest index produced by the hash function h. For “benign” hash functions,
it should be sufficient to choose m′ much smaller than m in order to avoid table
overflows. Alternatively, one may treat the table as a cyclic array; see Exercise 4.16
and Sect. 3.4. This alternative is more robust but slightly slower.

The implementation of remove is nontrivial. Simply overwriting the element
with ⊥ does not suffice, as it may destroy the invariant. Assume that h(x) = h(z),
h(y) = h(x)+1, and x, y, and z are inserted in this order. Then z is stored at position
h(x)+ 2. Overwriting y with ⊥ will make z inaccessible. There are three solutions.
First, we can disallow removals. Second, we can mark y but not actually remove it.
Searches are allowed to stop at ⊥, but not at marked elements. The problem with
this approach is that the number of nonempty cells (occupied or marked) keeps in-
creasing, so that searches eventually become slow. This can be mitigated only by in-
troducing the additional complication of periodic reorganizations of the table. Third,
we can actively restore the invariant. Assume that we want to remove the element
at i. We overwrite it with ⊥ leaving a “hole”. We then scan the entries to the right

4.3 Hashing with Linear Probing 91

: axe, chop, clip, cube, dice, fell, hack, hash, lop, slashinsert

axechop clip cube dice fellhackhash lop

clipremove

axechop clip cube dice fellhackhash lop slash

axechop cube dice fellhackhash lop slash

chop cube dice fellhackhashaxelop slash

chop cube dice fellhackhash slashaxelop

chop cube dice fellhackhashaxelop slash

clip

lop

slash

0 1 5 7 9 10 11
c d g ip q t w y zna bo
2 3 4

er fs
6

hu
8
v j kx l m

12

axechop clip

axechop clip cube

axechop clip cube dice

axechop clip cube dice fell

axe

axechop

axechop clip cube dice fell

axechop clip cube dice fellhash

hack

t

Fig. 4.2. Hashing with linear probing. We have a table t with 13 entries storing synonyms
of “(to) hash”. The hash function maps the last character of the word to the integers 0..12 as
indicated above the table: a and n are mapped to 0, b and o are mapped to 1, and so on. First,
the words are inserted in alphabetical order. Then “clip” is removed. The figure shows the state
changes of the table. Gray areas show the range that is scanned between the state changes

of i to check for violations of the invariant. We set j to i + 1. If t[j] = ⊥, we are
finished. Otherwise, let f be the element stored in t[j]. If h(f) > i, there is nothing to
do and we increment j. If h(f) ≤ i, leaving the hole would violate the invariant, and
f would not be found anymore. We therefore move f to t[i] and write ⊥ into t[j]. In
other words, we swap f and the hole. We set the hole position i to its new position j
and continue with j := j +1. Figure 4.2 gives an example.

Exercise 4.16 (cyclic linear probing). Implement a variant of linear probing, where
the table size is m rather than m+m′. To avoid overflow at the right-hand end of the
array, make probing wrap around. (1) Adapt insert and remove by replacing incre-
ments with i := i+1 mod m. (2) Specify a predicate between(i, j,k) that is true if and
only if i is cyclically between j and k. (3) Reformulate the invariant using between.
(4) Adapt remove.

Exercise 4.17 (unbounded linear probing). Implement unbounded hash tables us-
ing linear probing and universal hash functions. Pick a new random hash function
whenever the table is reallocated. Let α , β , and γ denote constants with 1 < γ < β <

92 4 Hash Tables and Associative Arrays

α that we are free to choose. Keep track of the number of stored elements n. Expand
the table to m = βn if n > m/γ . Shrink the table to m = βn if n < m/α . If you do not
use cyclic probing as in Exercise 4.16, set m′ = δm for some δ < 1 and reallocate
the table if the right-hand end should overflow.

4.4 Chaining Versus Linear Probing

We have seen two different approaches to hash tables, chaining and linear probing.
Which one is better? This question is beyond theoretical analysis, as the answer de-
pends on the intended use and many technical parameters. We shall therefore discuss
some qualitative issues and report on some experiments performed by us.

An advantage of chaining is referential integrity. Subsequent find operations for
the same element will return the same location in memory, and hence references to
the results of find operations can be established. In contrast, linear probing moves
elements during element removal and hence invalidates references to them.

An advantage of linear probing is that each table access touches a contiguous
piece of memory. The memory subsystems of modern processors are optimized for
this kind of access pattern, whereas they are quite slow at chasing pointers when
the data does not fit into cache memory. A disadvantage of linear probing is that
search times become high when the number of elements approaches the table size.
For chaining, the expected access time remains small. On the other hand, chaining
wastes space on pointers that linear probing could use for a larger table. A fair com-
parison must be based on space consumption and not just on table size.

We have implemented both approaches and performed extensive experiments.
The outcome was that both techniques performed almost equally well when they
were given the same amount of memory. The differences were so small that details
of the implementation, compiler, operating system, and machine used could reverse
the picture. Hence we do not report exact figures.

However, we found chaining harder to implement. Only the optimizations dis-
cussed in Sect. 4.6 made it competitive with linear probing. Chaining is much slower
if the implementation is sloppy or memory management is not implemented well.

4.5 *Perfect Hashing

The hashing schemes discussed so far guarantee only expected constant time for the
operations find, insert, and remove. This makes them unsuitable for real-time appli-
cations that require a worst-case guarantee. In this section, we shall study perfect
hashing, which guarantees constant worst-case time for find. To keep things simple,
we shall restrict ourselves to the static case, where we consider a fixed set S of n
elements with keys k1 to kn.

In this section, we use Hm to denote a family of c-universal hash functions with
range 0..m− 1. In Exercise 4.11, it is shown that 2-universal classes exist for every

4.5 *Perfect Hashing 93

m. For h ∈ Hm, we use C(h) to denote the number of collisions produced by h, i.e.,
the number of pairs of distinct keys in S which are mapped to the same position:

C(h) = {(x,y) : x,y ∈ S, x �= y and h(x) = h(y)} .

As a first step, we derive a bound on the expectation of C(h).

Lemma 4.5. E[C(h)] ≤ cn(n−1)/m. Also, for at least half of the functions h ∈ Hm,
we have C(h) ≤ 2cn(n−1)/m.

Proof. We define n(n−1) indicator random variables Xi j(h). For i �= j, let Xi j(h) = 1
iff h(ki) = h(k j). Then C(h) = ∑i j Xi j(h), and hence

E[C] = E[∑
i j

Xi j] = ∑
i j

E[Xi j] = ∑
i j

prob(Xi j = 1) ≤ n(n−1) · c/m ,

where the second equality follows from the linearity of expectations (see (A.2)) and
the last equality follows from the universality of Hm. The second claim follows from
Markov’s inequality (A.4). ��

If we are willing to work with a quadratic-size table, our problem is solved.

Lemma 4.6. If m ≥ cn(n− 1)+ 1, at least half of the functions h ∈ Hm operate in-
jectively on S.

Proof. By Lemma 4.5, we have C(h) < 2 for half of the functions in Hm. Since C(h)
is even, C(h) < 2 implies C(h) = 0, and so h operates injectively on S. ��

So we choose a random h ∈ Hm with m ≥ cn(n−1)+ 1 and check whether it is
injective on S. If not, we repeat the exercise. After an average of two trials, we are
successful.

In the remainder of this section, we show how to bring the table size down to
linear. The idea is to use a two-stage mapping of keys (see Fig. 4.3). The first stage
maps keys to buckets of constant average size. The second stage uses a quadratic
amount of space for each bucket. We use the information about C(h) to bound the
number of keys hashing to any table location. For � ∈ 0..m−1 and h ∈ Hm, let Bh

� be
the elements in S that are mapped to � by h and let bh

� be the cardinality of Bh
� .

Lemma 4.7. C(h) = ∑� bh
�(b

h
� −1).

Proof. For any �, the keys in Bh
� give rise to bh

�(b
h
� −1) pairs of keys mapping to the

same location. Summation over � completes the proof. ��

The construction of the perfect hash function is now as follows. Let α be a con-
stant, which we shall fix later. We choose a hash function h ∈ H�αn� to split S into
subsets B�. Of course, we choose h to be in the good half of H�αn�, i.e., we choose
h ∈ H�αn� with C(h)≤ 2cn(n−1)/�αn� ≤ 2cn/α . For each �, let B� be the elements
in S mapped to � and let b� = |B�|.

94 4 Hash Tables and Associative Arrays

o

o

o

o

o

o

S

B0

B�
h h�

s�

s� +m� −1

s�+1

Fig. 4.3. Perfect hashing. The top-level hash function h splits S into subsets B0, . . . , B�,
Let b� = |B�| and m� = cb�(b� − 1)+ 1. The function h� maps B� injectively into a table of
size m�. We arrange the subtables into a single table. The subtable for B� then starts at position
s� = m0 + . . .+m�−1 and ends at position s� +m� −1

Now consider any B�. Let m� = cb�(b� −1)+1. We choose a function h� ∈ Hm�

which maps B� injectively into 0..m� − 1. Half of the functions in Hm�
have this

property by Lemma 4.6 applied to B�. In other words, h� maps B� injectively into
a table of size m�. We stack the various tables on top of each other to obtain one
large table of size ∑� m�. In this large table, the subtable for B� starts at position
s� = m0 +m1 + . . .+m�−1. Then

� :=h(x); return s� +h�(x)

computes an injective function on S. This function is bounded by

∑
�

m� ≤ �αn�+ c ·∑
�

b�(b�−1)

≤ 1+αn+ c ·C(h)
≤ 1+αn+ c ·2cn/α

≤ 1+(α +2c2/α)n ,

and hence we have constructed a perfect hash function that maps S into a linearly
sized range, namely 0..(α + 2c2/α)n. In the derivation above, the first inequality
uses the definition of the m�’s, the second inequality uses Lemma 4.7, and the third
inequality uses C(h)≤ 2cn/α . The choice α =

√
2c minimizes the size of the range.

For c = 1, the size of the range is 2
√

2n.

Theorem 4.8. For any set of n keys, a perfect hash function with range 0..2
√

2n can
be constructed in linear expected time.

Constructions with smaller ranges are known. Also, it is possible to support in-
sertions and deletions.

4.6 Implementation Notes 95

Exercise 4.18 (dynamization). We outline a scheme for “dynamization” here. Con-
sider a fixed S, and choose h ∈ H2�αn�. For any �, let m� = 2cb�(b� −1)+ 1, i.e., all
m’s are chosen to be twice as large as in the static scheme. Construct a perfect hash
function as above. Insertion of a new x is handled as follows. Assume that h maps
x onto �. If h� is no longer injective, choose a new h�. If b� becomes so large that
m� = cb�(b�−1)+1, choose a new h.

4.6 Implementation Notes

Although hashing is an algorithmically simple concept, a clean, efficient, robust im-
plementation can be surprisingly nontrivial. Less surprisingly, the hash functions are
the most important issue. Most applications seem to use simple, very fast hash func-
tions based on exclusive-OR, shifting, and table lookup rather than universal hash
functions; see, for example, www.burtleburtle.net/bob/hash/doobs.html
or search for “hash table” on the Internet. Although these functions seem to work
well in practice, we believe that the universal families of hash functions described in
Sect. 4.2 are competitive. Unfortunately, there is no implementation study covering
all of the fastest families. Thorup [191] implemented a fast family with additional
properties. In particular, the family H⊕[] considered in Exercise 4.15 should be suit-
able for integer keys, and Exercise 4.8 formulates a good function for strings. It
might be possible to implement the latter function to run particularly fast using the
SIMD instructions of modern processors that allow the parallel execution of several
operations.

Hashing with chaining uses only very specialized operations on sequences, for
which singly linked lists are ideally suited. Since these lists are extremely short,
some deviations from the implementation scheme described in Sect. 3.1 are in order.
In particular, it would be wasteful to store a dummy item with each list. Instead, one
should use a single shared dummy item to mark the ends of all lists. This item can
then be used as a sentinel element for find and remove, as in the function findNext in
Sect. 3.1.1. This trick not only saves space, but also makes it likely that the dummy
item will reside in the cache memory.

With respect to the first element of the lists, there are two alternatives. One can
either use a table of pointers and store the first element outside the table, or store
the first element of each list directly in the table. We refer to these alternatives as
slim tables and fat tables, respectively. Fat tables are usually faster and more space-
efficient. Slim tables are superior when the elements are very large. Observe that a
slim table wastes the space occupied by m pointers and that a fat table wastes the
space of the unoccupied table positions (see Exercise 4.6). Slim tables also have the
advantage of referential integrity even when tables are reallocated. We have already
observed this complication for unbounded arrays in Sect. 3.6.

Comparing the space consumption of hashing with chaining and hashing with
linear probing is even more subtle than is outlined in Sect. 4.4. On the one hand,
linked lists burden the memory management with many small pieces of allocated
memory; see Sect. 3.1.1 for a discussion of memory management for linked lists.

www.burtleburtle.net/bob/hash/doobs.html

96 4 Hash Tables and Associative Arrays

On the other hand, implementations of unbounded hash tables based on chaining can
avoid occupying two tables during reallocation by using the following method. First,
concatenate all lists into a single list L. Deallocate the old table. Only then, allocate
the new table. Finally, scan L, moving the elements to the new table.

Exercise 4.19. Implement hashing with chaining and hashing with linear probing
on your own machine using your favorite programming language. Compare their
performance experimentally. Also, compare your implementations with hash tables
available in software libraries. Use elements of size eight bytes.

Exercise 4.20 (large elements). Repeat the above measurements with element sizes
of 32 and 128. Also, add an implementation of slim chaining, where table entries
only store pointers to the first list element.

Exercise 4.21 (large keys). Discuss the impact of large keys on the relative merits
of chaining versus linear probing. Which variant will profit? Why?

Exercise 4.22. Implement a hash table data type for very large tables stored in a file.
Should you use chaining or linear probing? Why?

4.6.1 C++

The C++ standard library does not (yet) define a hash table data type. However,
the popular implementation by SGI (http://www.sgi.com/tech/stl/) of-
fers several variants: hash_set, hash_map, hash_multiset, and hash_multimap.7 Here
“set” stands for the kind of interface used in this chapter, whereas a “map” is an as-
sociative array indexed by keys. The prefix “multi” indicates data types that allow
multiple elements with the same key. Hash functions are implemented as function
objects, i.e., the class hash<T> overloads the operator “()” so that an object can be
used like a function. The reason for this approach is that it allows the hash function
to store internal state such as random coefficients.

LEDA [118] offers several hashing-based implementations of dictionaries. The
class h_array〈Key,T〉 offers associative arrays for storing objects of type T . This
class requires a user-defined hash function int Hash(Key&) that returns an integer
value which is then mapped to a table index by LEDA. The implementation uses
hashing with chaining and adapts the table size to the number of elements stored.
The class map is similar but uses a built-in hash function.

Exercise 4.23 (associative arrays). Implement a C++ class for associative arrays.
Support operator[] for any index type that supports a hash function. Make sure that
H[x]=... works as expected if x is the key of a new element.

4.6.2 Java

The class java.util.HashMap implements unbounded hash tables using the function
hashCode defined in the class Object as a hash function.

7 Future versions of the standard will have these data types using the word “unordered”
instead of the word “hash”.

http://www.sgi.com/tech/stl/

4.7 Historical Notes and Further Findings 97

4.7 Historical Notes and Further Findings

Hashing with chaining and hashing with linear probing were used as early as the
1950s [153]. The analysis of hashing began soon after. In the 1960s and 1970s,
average-case analysis in the spirit of Theorem 4.1 and Exercise 4.7 prevailed. Vari-
ous schemes for random sets of keys or random hash functions were analyzed. An
early survey paper was written by Morris [143]. The book [112] contains a wealth of
material. For example, it analyzes linear probing assuming random hash functions.
Let n denote the number of elements stored, let m denote the size of the table and set
α = n/m. The expected number Tfail of table accesses for an unsuccessful search and
the number Tsuccess for a successful search are about

Tfail ≈
1
2

(
1+

(
1

1−α

)2
)

and Tsuccess ≈
1
2

(
1+

1
1−α

)
,

respectively. Note that these numbers become very large when n approaches m, i.e.,
it is not a good idea to fill a linear-probing table almost completely.

Universal hash functions were introduced by Carter and Wegman [34]. The orig-
inal paper proved Theorem 4.3 and introduced the universal classes discussed in
Exercise 4.11. More on universal hashing can be found in [10].

Perfect hashing was a black art until Fredman, Komlos, and Szemeredi [66] intro-
duced the construction shown in Theorem 4.8. Dynamization is due to Dietzfelbinger
et al. [54]. Cuckoo hashing [152] is an alternative approach to perfect hashing.

A minimal perfect hash function bijectively maps a set S ⊆ 0..U −1 to the range
0..n− 1, where n = |S|. The art is to do this in constant time and with very little
space – Ω(n) bits is a lower bound. There are now practicable schemes that achieve
this bound [29]. One variant assumes three truly random hash functions8 hi : 0..U −
1 → im/3..(i + 1)m/3−1 for i ∈ 0..2 and m ≈ 1.23n. In a first mapping step, a key
k ∈ 0..U −1 is mapped to

p(k) = hi(k), where i = g(h0(k))⊕g(h1(k))⊕g(h2(k)) mod 3 ,

and g : 0..αn → {0,1,2} is a lookup table that is precomputed using some simple
greedy algorithm. In a second ranking step, the set 0..αn is mapped to 0..n−1, i.e.,
h(k) = rank(p(k)), where rank(i) = |{k ∈ S : p(k) ≤ i}|. This ranking problem is a
standard problem in the field of succinct data structures and can be supported in
constant time using O(n) bits of space.

Universal hashing bounds the probability of any two keys colliding. A more gen-
eral notion is k-way independence, where k is a positive integer. A family H of hash
functions is k-way independent if for some constant c, any k distinct keys x1 to xk, and
any k hash values a1 to ak, prob(h(x1) = a1 ∧ ·· · ∧ h(xk) = ak) ≤ c/mk. The poly-
nomials of degree k− 1 with random coefficients are a simple k-wise independent
family of hash functions [34] (see Exercise 4.12).

8 Actually implementing such hash functions would require Ω(n logn) bits. However, this
problem can be circumvented by first splitting S into many small buckets. We can then use
the same set of fully random hash functions for all the buckets [55].

98 4 Hash Tables and Associative Arrays

Cryptographic hash functions need stronger properties than what we need for
hash tables. Roughly, for a value x, it should be difficult to come up with a value x′

such that h(x′) = h(x).

5

Sorting and Selection

Telephone directories are sorted alphabetically by last name. Why? Because a sorted
index can be searched quickly. Even in the telephone directory of a huge city, one
can usually find a name in a few seconds. In an unsorted index, nobody would even
try to find a name. To a first approximation, this chapter teaches you how to turn
an unordered collection of elements into an ordered collection, i.e., how to sort the
collection. However, sorting has many other uses as well. An early example of a
massive data-processing task was the statistical evaluation of census data; 1500
people needed seven years to manually process data from the US census in 1880.
The engineer Herman Hollerith,1 who participated in this evaluation as a statisti-
cian, spent much of the ten years to the next census developing counting and sorting
machines for mechanizing this gigantic endeavor. Although the 1890 census had
to evaluate more people and more questions, the basic evaluation was finished in
1891. Hollerith’s company continued to play an important role in the development
of the information-processing industry; since 1924, it has been known as Interna-
tional Business Machines (IBM). Sorting is important for census statistics because
one often wants to form subcollections, for example, all persons between age 20 and
30 and living on a farm. Two applications of sorting solve the problem. First, we sort
all persons by age and form the subcollection of persons between 20 and 30 years of
age. Then we sort the subcollection by home and extract the subcollection of persons
living on a farm.

Although we probably all have an intuitive concept of what sorting is about,
let us give a formal definition. The input is a sequence s = 〈e1, . . . ,en〉 of n ele-
ments. Each element ei has an associated key ki = key(ei). The keys come from an
ordered universe, i.e., there is a linear order ≤ defined on the keys.2 For ease of
notation, we extend the comparison relation to elements so that e ≤ e′ if and only

1 The photograph was taken by C. M. Bell (see US Library of Congress’s Prints and Pho-
tographs Division, ID cph.3c15982).

2 A linear order is a reflexive, transitive, and weakly antisymmetric relation. In contrast to a
total order, it allows equivalent elements (see Appendix A for details).

100 5 Sorting and Selection

if key(e) ≤ key(e′). The task is to produce a sequence s′ = 〈e′1, . . . ,e′n〉 such that s′

is a permutation of s and such that e′1 ≤ e′2 ≤ ·· · ≤ e′n. Observe that the ordering of
equivalent elements is arbitrary.

Although different comparison relations for the same data type may make sense,
the most frequent relations are the obvious order for numbers and the lexicographic
order (see Appendix A) for tuples, strings, and sequences. The lexicographic order
for strings comes in different flavors. We may treat corresponding lower-case and
upper-case characters as being equivalent, and different rules for treating accented
characters are used in different contexts.

Exercise 5.1. Given linear orders ≤A for A and ≤B for B, define a linear order on
A×B.

Exercise 5.2. Define a total order for complex numbers with the property that x ≤ y
implies |x| ≤ |y|.

Sorting is a ubiquitous algorithmic tool; it is frequently used as a preprocessing
step in more complex algorithms. We shall give some examples.

• Preprocessing for fast search. In Sect. 2.5 on binary search, we have already
seen that a sorted directory is easier to search, both for humans and computers.
Moreover, a sorted directory supports additional operations, such as finding all
elements in a certain range. We shall discuss searching in more detail in Chap. 7.
Hashing is a method for searching unordered sets.

• Grouping. Often, we want to bring equal elements together to count them, elimi-
nate duplicates, or otherwise process them. Again, hashing is an alternative. But
sorting has advantages, since we shall see rather fast, space-efficient, determinis-
tic sorting algorithm that scale to huge data sets.

• Processing in a sorted order. Certain algorithms become very simple if the inputs
are processed in sorted order. Exercise 5.3 gives an example. Other examples are
Kruskal’s algorithm in Sect. 11.3 and several of the algorithms for the knapsack
problem in Chap. 12. You may also want to remember sorting when you solve
Exercise 8.6 on interval graphs.

In Sect. 5.1, we shall introduce several simple sorting algorithms. They have
quadratic complexity, but are still useful for small input sizes. Moreover, we shall
learn some low-level optimizations. Section 5.2 introduces mergesort, a simple
divide-and-conquer sorting algorithm that runs in time O(n logn). Section 5.3 estab-
lishes that this bound is optimal for all comparison-based algorithms, i.e., algorithms
that treat elements as black boxes that can only be compared and moved around. The
quicksort algorithm described in Sect. 5.4 is again based on the divide-and-conquer
principle and is perhaps the most frequently used sorting algorithm. Quicksort is
also a good example of a randomized algorithm. The idea behind quicksort leads to a
simple algorithm for a problem related to sorting. Section 5.5 explains how the k-th
smallest of n elements can be selected in time O(n). Sorting can be made even faster
than the lower bound obtained in Sect. 5.3 by looking at the bit patterns of the keys,
as explained in Sect. 5.6. Finally, Section 5.7 generalizes quicksort and mergesort to
very good algorithms for sorting inputs that do not fit into internal memory.

5.1 Simple Sorters 101

Exercise 5.3 (a simple scheduling problem). A hotel manager has to process n ad-
vance bookings of rooms for the next season. His hotel has k identical rooms. Book-
ings contain an arrival date and a departure date. He wants to find out whether there
are enough rooms in the hotel to satisfy the demand. Design an algorithm that solves
this problem in time O(n logn). Hint: consider the set of all arrivals and departures.
Sort the set and process it in sorted order.

Exercise 5.4 (sorting with a small set of keys). Design an algorithm that sorts n
elements in O(k logk +n) expected time if there are only k different keys appearing
in the input. Hint: combine hashing and sorting.

Exercise 5.5 (checking). It is easy to check whether a sorting routine produces a
sorted output. It is less easy to check whether the output is also a permutation of the
input. But here is a fast and simple Monte Carlo algorithm for integers: (a) Show that
〈e1, . . . ,en〉 is a permutation of 〈e′1, . . . ,e′n〉 iff the polynomial

q(z) :=
n

∏
i=1

(z− ei)−
n

∏
i=1

(z− e′i)

is identically zero. Here, z is a variable. (b) For any ε > 0, let p be a prime with p >
max{n/ε,e1, . . . ,en,e′1, . . . ,e

′
n}. Now the idea is to evaluate the above polynomial

mod p for a random value z ∈ [0..p−1]. Show that if 〈e1, . . . ,en〉 is not a permutation
of 〈e′1, . . . ,e′n〉, then the result of the evaluation is zero with probability at most ε .
Hint: a nonzero polynomial of degree n has at most n zeros.

5.1 Simple Sorters

We shall introduce two simple sorting techniques here: selection sort and insertion
sort.

Selection sort repeatedly selects the smallest element from the input sequence,
deletes it, and adds it to the end of the output sequence. The output sequence is
initially empty. The process continues until the input sequence is exhausted. For
example,

〈〉,〈4,7,1,1〉 � 〈1〉,〈4,7,1〉 � 〈1,1〉,〈4,7〉 � 〈1,1,4〉,〈7〉 � 〈1,1,4,7〉,〈〉 .

The algorithm can be implemented such that it uses a single array of n elements
and works in-place, i.e., it needs no additional storage beyond the input array and a
constant amount of space for loop counters, etc. The running time is quadratic.

Exercise 5.6 (simple selection sort). Implement selection sort so that it sorts an ar-
ray with n elements in time O

(
n2

)
by repeatedly scanning the input sequence. The

algorithm should be in-place, i.e., the input sequence and the output sequence should
share the same array. Hint: the implementation operates in n phases numbered 1 to
n. At the beginning of the i-th phase, the first i−1 locations of the array contain the
i−1 smallest elements in sorted order and the remaining n− i+1 locations contain
the remaining elements in arbitrary order.

102 5 Sorting and Selection

In Sect. 6.5, we shall learn about a more sophisticated implementation where the
input sequence is maintained as a priority queue. Priority queues support efficient
repeated selection of the minimum element. The resulting algorithm runs in time
O(n logn) and is frequently used. It is efficient, it is deterministic, it works in-place,
and the input sequence can be dynamically extended by elements that are larger than
all previously selected elements. The last feature is important in discrete-event sim-
ulations, where events are to be processed in increasing order of time and processing
an event may generate further events in the future.

Selection sort maintains the invariant that the output sequence is sorted by care-
fully choosing the element to be deleted from the input sequence. Insertion sort
maintains the same invariant by choosing an arbitrary element of the input sequence
but taking care to insert this element at the right place in the output sequence. For
example,

〈〉,〈4,7,1,1〉 � 〈4〉,〈7,1,1〉 � 〈4,7〉,〈1,1〉 � 〈1,4,7〉,〈1〉 � 〈1,1,4,7〉,〈〉 .

Figure 5.1 gives an in-place array implementation of insertion sort. The implementa-
tion is straightforward except for a small trick that allows the inner loop to use only
a single comparison. When the element e to be inserted is smaller than all previously
inserted elements, it can be inserted at the beginning without further tests. Otherwise,
it suffices to scan the sorted part of a from right to left while e is smaller than the
current element. This process has to stop, because a[1] ≤ e.

In the worst case, insertion sort is quite slow. For example, if the input is sorted
in decreasing order, each input element is moved all the way to a[1], i.e., in iteration
i of the outer loop, i elements have to be moved. Overall, we obtain

n

∑
i=2

(i−1) = −n+
n

∑
i=1

i =
n(n+1)

2
−n =

n(n−1)
2

= Ω
(
n2)

movements of elements (see also (A.11)).
Nevertheless, insertion sort is useful. It is fast for small inputs (say, n ≤ 10) and

hence can be used as the base case in divide-and-conquer algorithms for sorting.

Procedure insertionSort(a : Array [1..n] of Element)
for i :=2 to n do

invariant a[1] ≤ ·· · ≤ a[i−1]
// move a[i] to the right place
e :=a[i]
if e < a[1] then // new minimum

for j := i downto 2 do a[j] :=a[j−1]
a[1] := e

else // use a[1] as a sentinel
for j := i downto −∞ while a[j−1] > e do a[j] :=a[j−1]
a[j] := e

Fig. 5.1. Insertion sort

5.2 Mergesort – an O(n logn) Sorting Algorithm 103

Furthermore, in some applications the input is already “almost” sorted, and in this
situation insertion sort will be fast.

Exercise 5.7 (almost sorted inputs). Prove that insertion sort runs in time O(n+D)
where D = ∑i |r(ei)− i| and r(ei) is the rank (position) of ei in the sorted output.

Exercise 5.8 (average-case analysis). Assume that the input to an insertion sort is
a permutation of the numbers 1 to n. Show that the average execution time over all
possible permutations is Ω

(
n2

)
. Hint: argue formally that about one-third of the input

elements in the right third of the array have to be moved to the left third of the array.
Can you improve the argument to show that, on average, n2/4−O(n) iterations of
the inner loop are needed?

Exercise 5.9 (insertion sort with few comparisons). Modify the inner loops of the
array-based insertion sort algorithm in Fig. 5.1 so that it needs only O(n logn) com-
parisons between elements. Hint: use binary search as discussed in Chap. 7. What is
the running time of this modification of insertion sort?

Exercise 5.10 (efficient insertion sort?). Use the data structure for sorted sequences
described in Chap. 7 to derive a variant of insertion sort that runs in time O(n logn).

*Exercise 5.11 (formal verification). Use your favorite verification formalism, for
example Hoare calculus, to prove that insertion sort produces a permutation of the
input (i.e., it produces a sorted permutation of the input).

5.2 Mergesort – an O(n logn) Sorting Algorithm

Mergesort is a straightforward application of the divide-and-conquer principle. The
unsorted sequence is split into two parts of about equal size. The parts are sorted
recursively, and the sorted parts are merged into a single sorted sequence. This ap-
proach is efficient because merging two sorted sequences a and b is quite simple.
The globally smallest element is either the first element of a or the first element of
b. So we move the smaller element to the output, find the second smallest element
using the same approach, and iterate until all elements have been moved to the out-
put. Figure 5.2 gives pseudocode, and Figure 5.3 illustrates a sample execution. If
the sequences are represented as linked lists (see, Sect. 3.1), no allocation and deal-
location of list items is needed. Each iteration of the inner loop of merge performs
one element comparison and moves one element to the output. Each iteration takes
constant time. Hence, merging runs in linear time.

Theorem 5.1. The function merge, applied to sequences of total length n, executes
in time O(n) and performs at most n−1 element comparisons.

For the running time of mergesort, we obtain the following result.

Theorem 5.2. Mergesort runs in time O(n logn) and performs no more than �n logn�
element comparisons.

104 5 Sorting and Selection

Function mergeSort(〈e1, . . . ,en〉) : Sequence of Element
if n = 1 then return 〈e1〉
else return merge(mergeSort(〈e1, . . . ,e	n/2
〉),

mergeSort(〈e	n/2
+1, . . . ,en〉))

// merging two sequences represented as lists
Function merge(a,b : Sequence of Element) : Sequence of Element

c := 〈〉
loop

invariant a, b, and c are sorted and ∀e ∈ c,e′ ∈ a∪b : e ≤ e′

if a.isEmpty then c.concat(b); return c
if b.isEmpty then c.concat(a); return c
if a.first ≤ b.first then c.moveToBack(a.first)
else c.moveToBack(b.first)

Fig. 5.2. Mergesort

〈2,7,1,8,2,8,1〉

〈1,1,2,2,7,8,8〉

〈2,7,1〉

〈1,2,7〉

〈2〉

〈2〉

〈7,1〉

〈1,7〉

〈7〉

〈8,2,8,1〉

〈1,2,8,8〉

〈8,1〉

〈1,8〉

〈1〉〈1〉 〈8〉〈8〉

〈8,2〉

〈2,8〉
merge

merge

merge

split

split

split a b c operation
〈1,2,7〉 〈1,2,8,8〉 〈〉 move a
〈2,7〉 〈1,2,8,8〉 〈1〉 move b
〈2,7〉 〈2,8,8〉 〈1,1〉 move a
〈7〉 〈2,8,8〉 〈1,1,2〉 move b
〈7〉 〈8,8〉 〈1,1,2,2〉 move a
〈〉 〈8,8〉 〈1,1,2,2,7〉 concat b
〈〉 〈〉 〈1,1,2,2,7,8,8〉

Fig. 5.3. Execution of mergeSort(〈2,7,1,8,2,8,1〉). The left part illustrates the recursion in
mergeSort and the right part illustrates the merge in the outermost call

Proof. Let C(n) denote the worst-case number of element comparisons performed.
We have C(1) = 0 and C(n)≤C(n/2
)+C(�n/2�)+n−1, using Theorem 5.1. The
master theorem for recurrence relations (2.5) suggests that C(n) = O(n logn). We
shall give two proofs. The first proof shows that C(n) ≤ 2n�logn�, and the second
proof shows that C(n) ≤ n�logn�.

For n a power of two, we define D(1) = 0 and D(n) = 2D(n/2)+n. Then D(n) =
n logn for n a power of two, by the master theorem for recurrence relations. We claim
that C(n) ≤ D(2k), where k is such that 2k−1 < n ≤ 2k. Then C(n) ≤ D(2k) = 2kk ≤
2n�logn�. It remains to argue the inequality C(n) ≤ D(2k). We use induction on k.
For k = 0, we have n = 1 and C(1) = 0 = D(1), and the claim certainly holds. For
k > 1, we observe that 	n/2
 ≤ �n/2� ≤ 2k−1, and hence

C(n) ≤C(n/2
)+C(�n/2�)+n−1 ≤ 2D(2k−1)+2k −1 ≤ D(2k) .

This completes the first proof. We turn now to the second, refined proof. We prove
that

5.2 Mergesort – an O(n logn) Sorting Algorithm 105

C(n) ≤ n�logn�−2�logn� +1 ≤ n logn

by induction over n. For n = 1, the claim is certainly true. So, assume n > 1. We
distinguish two cases. Assume first that we have 2k−1 < 	n/2
 ≤ �n/2� ≤ 2k for
some integer k. Then �log	n/2
� = �log�n/2�� = k and �logn� = k +1, and hence

C(n) ≤C(n/2
)+C(�n/2�)+n−1

≤
(
	n/2
k−2k +1

)
+

(
�n/2�k−2k +1

)
+n−1

= nk +n−2k+1 +1 = n(k +1)−2k+1 +1 = n�logn�−2�logn� +1 .

Otherwise, we have 	n/2
 = 2k−1 and �n/2� = 2k−1 + 1 for some integer k, and
therefore �log	n/2
� = k−1, �log�n/2�� = k, and �logn� = k +1. Thus

C(n) ≤C(n/2
)+C(�n/2�)+n−1

≤
(
2k−1(k−1)−2k−1 +1

)
+

(
(2k−1 +1)k−2k +1

)
+2k +1−1

= (2k +1)k−2k−1 −2k−1 +1+1

= (2k +1)(k +1)−2k+1 +1 = n�logn�−2�logn� +1 .

The bound for the execution time can be verified using a similar recurrence relation.
�

Mergesort is the method of choice for sorting linked lists and is therefore fre-
quently used in functional and logical programming languages that have lists as their
primary data structure. In Sect. 5.3, we shall see that mergesort is basically optimal as
far as the number of comparisons is concerned; so it is also a good choice if compar-
isons are expensive. When implemented using arrays, mergesort has the additional
advantage that it streams through memory in a sequential way. This makes it efficient
in memory hierarchies. Section 5.7 has more on that issue. Mergesort is still not the
usual method of choice for an efficient array-based implementation, however, since
merge does not work in-place. (But see Exercise 5.17 for a possible way out.)

Exercise 5.12. Explain how to insert k new elements into a sorted list of size n in
time O(k logk +n).

Exercise 5.13. We discussed merge for lists but used abstract sequences for the de-
scription of mergeSort. Give the details of mergeSort for linked lists.

Exercise 5.14. Implement mergesort in a functional programming language.

Exercise 5.15. Give an efficient array-based implementation of mergesort in your fa-
vorite imperative programming language. Besides the input array, allocate one aux-
iliary array of size n at the beginning and then use these two arrays to store all inter-
mediate results. Can you improve the running time by switching to insertion sort for
small inputs? If so, what is the optimal switching point in your implementation?

106 5 Sorting and Selection

Exercise 5.16. The way we describe merge, there are three comparisons for each
loop iteration – one element comparison and two termination tests. Develop a variant
using sentinels that needs only one termination test. Can you do this task without
appending dummy elements to the sequences?

Exercise 5.17. Exercise 3.20 introduced a list-of-blocks representation for sequences.
Implement merging and mergesort for this data structure. During merging, reuse
emptied input blocks for the output sequence. Compare the space and time efficiency
of mergesort for this data structure, for plain linked lists, and for arrays. Pay attention
to constant factors.

5.3 A Lower Bound

Algorithms give upper bounds on the complexity of a problem. By the preceding
discussion, we know that we can sort n items in time O(n logn). Can we do better,
and maybe even achieve linear time? A “yes” answer requires a better algorithm
and its analysis. But how could we potentially argue a “no” answer? We would have
to argue that no algorithm, however ingenious, can run in time o(n logn). Such an
argument is called a lower bound. So what is the answer? The answer is both no and
yes. The answer is no, if we restrict ourselves to comparison-based algorithms, and
the answer is yes if we go beyond comparison-based algorithms. We shall discuss
non-comparison-based sorting in Sect. 5.6.

So what is a comparison-based sorting algorithm? The input is a set {e1, . . . ,en}
of n elements, and the only way the algorithm can learn about its input is by compar-
ing elements. In particular, it is not allowed to exploit the representation of keys, for
example as bit strings. Deterministic comparison-based algorithms can be viewed as
trees. They make an initial comparison; for instance, the algorithms asks “ei ≤ e j?”,
with outcomes yes and no. On the basis of the outcome, the algorithm proceeds to
the next comparison. The key point is that the comparison made next depends only
on the outcome of all preceding comparisons and nothing else. Figure 5.4 shows a
sorting tree for three elements.

When the algorithm terminates, it must have collected sufficient information so
that it can commit to a permutation of the input. When can it commit? We perform the
following thought experiment. We assume that the input keys are distinct, and con-
sider any of the n! permutations of the input, say π . The permutation π corresponds
to the situation that eπ(1) < eπ(2) < .. . < eπ(n). We answer all questions posed by the
algorithm so that they conform to the ordering defined by π . This will lead us to a
leaf �π of the comparison tree.

Lemma 5.3. Let π and σ be two distinct permutations of n elements. The leaves �π
and �σ must then be distinct.

Proof. Assume otherwise. In a leaf, the algorithm commits to some ordering of the
input and so it cannot commit to both π and σ . Say it commits to π . Then, on an input
ordered according to σ , the algorithm is incorrect, which is a contradiction. �

5.3 A Lower Bound 107

The lemma above tells us that any comparison tree for sorting must have at least
n! leaves. Since a tree of depth T has at most 2T leaves, we must have

2T ≥ n! or T ≥ logn! .

Via Stirling’s approximation to the factorial (A.9), we obtain

T ≥ logn! ≥ log
(n

e

)n
= n logn−n loge .

Theorem 5.4. Any comparison-based sorting algorithm needs n logn−O(n) com-
parisons in the worst case.

We state without proof that this bound also applies to randomized sorting algo-
rithms and to the average-case complexity of sorting, i.e., worst-case instances are
not much more difficult than random instances. Furthermore, the bound applies even
if we only want to solve the seemingly simpler problem of checking whether some
element appears twice in a sequence.

Theorem 5.5. Any comparison-based sorting algorithm needs n logn−O(n) com-
parisons on average, i.e.,

∑π dπ
n!

= n logn−O(n) ,

where the sum extends over all n! permutations of the n elements and dπ is the depth
of the leaf �π .

Exercise 5.18. Show that any comparison-based algorithm for determining the small-
est of n elements requires n−1 comparisons. Show also that any comparison-based
algorithm for determining the smallest and second smallest elements of n elements
requires at least n−1+ logn comparisons. Give an algorithm with this performance.

≤

≤

≤

≤

≤

>

>

>

>

>
e1?e2

e2?e3 e2?e3

e1?e3 e1?e3e1 ≤ e2 ≤ e3

e1 ≤ e3 < e2 e3 < e1 ≤ e2 e2 < e1 ≤ e3 e2 ≤ e3 < e1

e1 > e2 > e3

Fig. 5.4. A tree that sorts three elements. We first compare e1 and e2. If e1 ≤ e2, we compare
e2 with e3. If e2 ≤ e3, we have e1 ≤ e2 ≤ e3 and are finished. Otherwise, we compare e1 with
e3. For either outcome, we are finished. If e1 > e2, we compare e2 with e3. If e2 > e3, we have
e1 > e2 > e3 and are finished. Otherwise, we compare e1 with e3. For either outcome, we are
finished. The worst-case number of comparisons is three. The average number is (2+3+3+
2+3+3)/6 = 8/3

108 5 Sorting and Selection

Exercise 5.19. The element uniqueness problem is the task of deciding whether in
a set of n elements, all elements are pairwise distinct. Argue that comparison-based
algorithms require Ω(n logn) comparisons. Why does this not contradict the fact that
we can solve the problem in linear expected time using hashing?

Exercise 5.20 (lower bound for average case). With the notation above, let dπ be
the depth of the leaf �π . Argue that A = (1/n!)∑π dπ is the average-case complexity
of a comparison-based sorting algorithm. Try to show that A ≥ logn!. Hint: prove
first that ∑π 2−dπ ≤ 1. Then consider the minimization problem “minimize ∑π dπ
subject to ∑π 2−dπ ≤ 1”. Argue that the minimum is attained when all di’s are equal.

Exercise 5.21 (sorting small inputs optimally). Give an algorithm for sorting k el-
ements using at most �logk!� element comparisons. (a) For k ∈ {2,3,4}, use merge-
sort. (b) For k = 5, you are allowed to use seven comparisons. This is difficult. Merge-
sort does not do the job, as it uses up to eight comparisons. (c) For k ∈ {6,7,8}, use
the case k = 5 as a subroutine.

5.4 Quicksort

Quicksort is a divide-and-conquer algorithm that is complementary to the mergesort
algorithm of Sect. 5.2. Quicksort does all the difficult work before the recursive calls.
The idea is to distribute the input elements into two or more sequences that represent
nonoverlapping ranges of key values. Then, it suffices to sort the shorter sequences
recursively and concatenate the results. To make the duality to mergesort complete,
we would like to split the input into two sequences of equal size. Unfortunately, this
is a nontrivial task. However, we can come close by picking a random splitter ele-
ment. The splitter element is usually called the pivot. Let p denote the pivot element
chosen. Elements are classified into three sequences a, b, and c of elements that are
smaller than, equal to, or larger than p, respectively. Figure 5.5 gives a high-level
realization of this idea, and Figure 5.6 depicts a sample execution. Quicksort has an
expected execution time of O(n logn), as we shall show in Sect. 5.4.1. In Sect. 5.4.2,
we discuss refinements that have made quicksort the most widely used sorting algo-
rithm in practice.

Function quickSort(s : Sequence of Element) : Sequence of Element
if |s| ≤ 1 then return s // base case
pick p ∈ s uniformly at random // pivot key
a := 〈e ∈ s : e < p〉
b := 〈e ∈ s : e = p〉
c := 〈e ∈ s : e > p〉
return concatenation of quickSort(a), b, and quickSort(c)

Fig. 5.5. High-level formulation of quicksort for lists

5.4 Quicksort 109

〈3,6,8,1,0,7,2,4,5,9〉

〈1,0,2〉

〈0〉 〈1〉 〈2〉

〈3〉 〈6,8,7,4,5,9〉

〈4,5〉

〈〉 〈4〉 〈5〉

〈6〉 〈8,7,9〉

〈7〉 〈8〉 〈9〉

Fig. 5.6. Execution of quickSort (Fig. 5.5) on 〈3,6,8,1,0,7,2,4,5,9〉 using the first element
of a subsequence as the pivot. The first call of quicksort uses 3 as the pivot and generates the
subproblems 〈1,0,2〉, 〈3〉, and 〈6,8,7,4,5,9〉. The recursive call for the third subproblem uses
6 as a pivot and generates the subproblems 〈4,5〉, 〈6〉, and 〈8,7,9〉

5.4.1 Analysis

To analyze the running time of quicksort for an input sequence s = 〈e1, . . . ,en〉, we
focus on the number of element comparisons performed. We allow three-way com-
parisons here, with possible outcomes “smaller”, “equal”, and “larger”. Other op-
erations contribute only constant factors and small additive terms to the execution
time.

Let C(n) denote the worst-case number of comparisons needed for any input
sequence of size n and any choice of pivots. The worst-case performance is easily
determined. The subsequences a, b, and c in Fig. 5.5 are formed by comparing the
pivot with all other elements. This makes n− 1 comparisons. Assume there are k
elements smaller than the pivot and k′ elements larger than the pivot. We obtain
C(0) = C(1) = 0 and

C(n) ≤ n−1+max
{

C(k)+C(k′) : 0 ≤ k ≤ n−1,0 ≤ k′ < n− k
}

.

It is easy to verify by induction that

C(n) ≤ n(n−1)
2

= Θ
(
n2) .

The worst case occurs if all elements are different and we always pick the largest or
smallest element as the pivot. Thus C(n) = n(n−1)/2.

The expected performance is much better. We first argue for an O(n logn) bound
and then show a bound of 2n lnn. We concentrate on the case where all elements are
different. Other cases are easier because a pivot that occurs several times results in
a larger middle sequence b that need not be processed any further. Consider a fixed
element ei, and let Xi denote the total number of times ei is compared with a pivot
element. Then ∑i Xi is the total number of comparisons. Whenever ei is compared
with a pivot element, it ends up in a smaller subproblem. Therefore, Xi ≤ n − 1,
and we have another proof for the quadratic upper bound. Let us call a comparison
“good” for ei if ei moves to a subproblem of at most three-quarters the size. Any ei

110 5 Sorting and Selection

can be involved in at most log4/3 n good comparisons. Also, the probability that a
pivot which is good for ei is chosen, is at least 1/2; this holds because a bad pivot
must belong to either the smallest or the largest quarter of the elements. So E[Xi] ≤
2log4/3 n, and hence E[∑i Xi] = O(n logn). We shall now give a different argument
and a better bound.

Theorem 5.6. The expected number of comparisons performed by quicksort is

C̄(n) ≤ 2n lnn ≤ 1.45n logn .

Proof. Let s′ = 〈e′1, . . . ,e′n〉 denote the elements of the input sequence in sorted order.
Elements e′i and e′j are compared at most once, and only if one of them is picked as a
pivot. Hence, we can count comparisons by looking at the indicator random variables
Xi j, i < j, where Xi j = 1 if e′i and e′j are compared and Xi j = 0 otherwise. We obtain

C̄(n) = E

[
n

∑
i=1

n

∑
j=i+1

Xi j

]

=
n

∑
i=1

n

∑
j=i+1

E[Xi j] =
n

∑
i=1

n

∑
j=i+1

prob(Xi j = 1) .

The middle transformation follows from the linearity of expectations (A.2). The
last equation uses the definition of the expectation of an indicator random variable
E[Xi j] = prob(Xi j = 1). Before we can further simplify the expression for C̄(n), we
need to determine the probability of Xi j being 1.

Lemma 5.7. For any i < j, prob(Xi j = 1) =
2

j− i+1
.

Proof. Consider the j− i+1-element set M = {e′i, . . . ,e
′
j}. As long as no pivot from

M is selected, e′i and e′j are not compared, but all elements from M are passed to the
same recursive calls. Eventually, a pivot p from M is selected. Each element in M has
the same chance 1/|M| of being selected. If p = e′i or p = e′j we have Xi j = 1. The
probability for this event is 2/|M| = 2/(j− i+1). Otherwise, e′i and e′j are passed to
different recursive calls, so that they will never be compared. �

Now we can finish proving Theorem 5.6 using relatively simple calculations:

C̄(n) =
n

∑
i=1

n

∑
j=i+1

prob(Xi j = 1) =
n

∑
i=1

n

∑
j=i+1

2
j− i+1

=
n

∑
i=1

n−i+1

∑
k=2

2
k

≤
n

∑
i=1

n

∑
k=2

2
k

= 2n
n

∑
k=2

1
k

= 2n(Hn −1) ≤ 2n(1+ lnn−1) = 2n lnn .

For the last three steps, recall the properties of the n-th harmonic number Hn :=
∑n

k=1 1/k ≤ 1+ lnn (A.12). �

Note that the calculations in Sect. 2.8 for left-to-right maxima were very similar,
although we had quite a different problem at hand.

5.4 Quicksort 111

5.4.2 *Refinements

We shall now discuss refinements of the basic quicksort algorithm. The resulting
algorithm, called qsort, works in-place, and is fast and space-efficient. Figure 5.7
shows the pseudocode, and Figure 5.8 shows a sample execution. The refinements
are nontrivial and we need to discuss them carefully.

Procedure qSort(a : Array of Element; �,r : N) // Sort the subarray a[�..r]
while r− �+1 > n0 do // Use divide-and-conquer.

j :=pickPivotPos(a, �,r) // Pick a pivot element and
swap(a[�],a[j]) // bring it to the first position.
p :=a[�] // p is the pivot now.
i := �; j := r
repeat // a: � i→ j← r

while a[i] < p do i++ // Skip over elements
while a[j] > p do j-- // already in the correct subarray.
if i ≤ j then // If partitioning is not yet complete,

swap(a[i],a[j]); i++; j-- // (*) swap misplaced elements and go on.
until i > j // Partitioning is complete.
if i < (�+ r)/2 then qSort(a, �, j); � := i // Recurse on
else qSort(a, i ,r); r := j // smaller subproblem.

endwhile
insertionSort(a[�..r]) // faster for small r− �

Fig. 5.7. Refined quicksort for arrays

The function qsort operates on an array a. The arguments � and r specify the sub-
array to be sorted. The outermost call is qsort(a,1,n). If the size of the subproblem is
smaller than some constant n0, we resort to a simple algorithm3 such as the insertion
sort shown in Fig. 5.1. The best choice for n0 depends on many details of the ma-
chine and compiler and needs to be determined experimentally; a value somewhere
between 10 and 40 should work fine under a variety of conditions.

The pivot element is chosen by a function pickPivotPos that we shall not specify
further. The correctness does not depend on the choice of the pivot, but the efficiency
does. Possible choices are the first element; a random element; the median (“middle”)
element of the first, middle, and last elements; and the median of a random sample
consisting of k elements, where k is either a small constant, say three, or a number
depending on the problem size, say

⌈√
r− �+1

⌉
. The first choice requires the least

amount of work, but gives little control over the size of the subproblems; the last
choice requires a nontrivial but still sublinear amount of work, but yields balanced

3 Some authors propose leaving small pieces unsorted and cleaning up at the end using a
single insertion sort that will be fast, according to Exercise 5.7. Although this nice trick
reduces the number of instructions executed, the solution shown is faster on modern ma-
chines because the subarray to be sorted will already be in cache.

112 5 Sorting and Selection

i → ← j
3 6 8 1 0 7 2 4 5 9
2 6 8 1 0 7 3 4 5 9
2 0 8 1 6 7 3 4 5 9
2 0 1 8 6 7 3 4 5 9

j i

3 6 8 1 0 7 2 4 5 9
2 0 1|8 6 7 3 4 5 9

|
1 0|2|5 6 7 3 4|8 9

| | |
0 1| |4 3|7 6 5|8 9

	3 4	5 6	7
		5 6	

Fig. 5.8. Execution of qSort (Fig. 5.7) on 〈3,6,8,1,0,7,2,4,5,9〉 using the first element as the
pivot and n0 = 1. The left-hand side illustrates the first partitioning step, showing elements
in bold that have just been swapped. The right-hand side shows the result of the recursive
partitioning operations

subproblems with high probability. After selecting the pivot p, we swap it into the
first position of the subarray (= position � of the full array).

The repeat–until loop partitions the subarray into two proper (smaller) subarrays.
It maintains two indices i and j. Initially, i is at the left end of the subarray and j is at
the right end; i scans to the right, and j scans to the left. After termination of the loop,
we have i = j +1 or i = j +2, all elements in the subarray a[�.. j] are no larger than
p, all elements in the subarray a[i..r] are no smaller than p, each subarray is a proper
subarray, and, if i = j +2, a[i+1] is equal to p. So, recursive calls qSort(a, �, j) and
qsort(a, i,r) will complete the sort. We make these recursive calls in a nonstandard
fashion; this is discussed below.

Let us see in more detail how the partitioning loops work. In the first iteration
of the repeat loop, i does not advance at all but remains at �, and j moves left to the
rightmost element no larger than p. So j ends at � or at a larger value; generally, the
latter is the case. In either case, we have i ≤ j. We swap a[i] and a[j], increment i,
and decrement j. In order to describe the total effect more generally, we distinguish
cases.

If p is the unique smallest element of the subarray, j moves all the way to �, the
swap has no effect, and j = �− 1 and i = �+ 1 after the increment and decrement.
We have an empty subproblem �..�− 1 and a subproblem � + 1..r. Partitioning is
complete, and both subproblems are proper subproblems.

If j moves down to i + 1, we swap, increment i to � + 1, and decrement j to
�. Partitioning is complete, and we have the subproblems �..� and � + 1..r. Both
subarrays are proper subarrays.

If j stops at an index larger than i+1, we have � < i ≤ j < r after executing the
line in Fig. 5.7 marked (*). Also, all elements left of i are at most p (and there is at
least one such element), and all elements right of j are at least p (and there is at least
one such element). Since the scan loop for i skips only over elements smaller than
p and the scan loop for j skips only over elements larger than p, further iterations
of the repeat loop maintain this invariant. Also, all further scan loops are guaranteed
to terminate by the claims in parentheses and so there is no need for an index-out-
of-bounds check in the scan loops. In other words, the scan loops are as concise as
possible; they consist of a test and an increment or decrement.

5.4 Quicksort 113

Let us next study how the repeat loop terminates. If we have i ≤ j + 2 after the
scan loops, we have i ≤ j in the termination test. Hence, we continue the loop. If
we have i = j− 1 after the scan loops, we swap, increment i, and decrement j. So
i = j + 1, and the repeat loop terminates with the proper subproblems �.. j and i..r.
The case i = j after the scan loops can occur only if a[i] = p. In this case, the swap
has no effect. After incrementing i and decrementing j, we have i = j+2, resulting in
the proper subproblems �.. j and j +2..r, separated by one occurrence of p. Finally,
when i > j after the scan loops, then either i goes beyond j in the first scan loop,
or j goes below i in the second scan loop. By our invariant, i must stop at j + 1 in
the first case, and then j does not move in its scan loop or j must stop at i−1 in the
second case. In either case, we have i = j + 1 after the scan loops. The line marked
(*) is not executed, so that we have subproblems �.. j and i..r, and both subproblems
are proper.

We have now shown that the partitioning step is correct, terminates, and generates
proper subproblems.

Exercise 5.22. Is it safe to make the scan loops skip over elements equal to p? Is this
safe if it is known that the elements of the array are pairwise distinct?

The refined quicksort handles recursion in a seemingly strange way. Recall that
we need to make the recursive calls qSort(a, �, j) and qSort(a, i,r). We may make
these calls in either order. We exploit this flexibility by making the call for the smaller
subproblem first. The call for the larger subproblem would then be the last thing
done in qSort. This situation is known as tail recursion in the programming-language
literature. Tail recursion can be eliminated by setting the parameters (� and r) to the
right values and jumping to the first line of the procedure. This is precisely what
the while loop does. Why is this manipulation useful? Because it guarantees that
the recursion stack stays logarithmically bounded; the precise bound is �log(n/n0)�.
This follows from the fact that we make a single recursive call for a subproblem
which is at most half the size.

Exercise 5.23. What is the maximal depth of the recursion stack without the “smaller
subproblem first” strategy? Give a worst-case example.

*Exercise 5.24 (sorting strings using multikey quicksort [22]). Let s be a se-
quence of n strings. We assume that each string ends in a special character that is
different from all “normal” characters. Show that the function mkqSort(s,1) below
sorts a sequence s consisting of different strings. What goes wrong if s contains
equal strings? Solve this problem. Show that the expected execution time of mkqSort
is O(N +n logn) if N = ∑e∈s |e|.

Function mkqSort(s : Sequence of String, i : N) : Sequence of String
assert ∀e,e′ ∈ s : e[1..i−1] = e′[1..i−1]
if |s| ≤ 1 then return s // base case
pick p ∈ s uniformly at random // pivot character
return concatenation of mkqSort(〈e ∈ s : e[i] < p[i]〉 , i),

mkqSort(〈e ∈ s : e[i] = p[i]〉 , i+1), and
mkqSort(〈e ∈ s : e[i] > p[i]〉 , i)

114 5 Sorting and Selection

Exercise 5.25. Implement several different versions of qSort in your favorite pro-
gramming language. Use and do not use the refinements discussed in this section,
and study the effect on running time and space consumption.

5.5 Selection
Selection refers to a class of problems that are easily reduced to sorting but do not
require the full power of sorting. Let s = 〈e1, . . . ,en〉 be a sequence and call its sorted
version s′ = 〈e′1, . . . ,e′n〉. Selection of the smallest element requires determining e′1,
selection of the largest requires determining e′n, and selection of the k-th smallest
requires determining e′k. Selection of the median refers to selecting e	n/2
. Selection
of the median and also of quartiles is a basic problem in statistics. It is easy to de-
termine the smallest element or the smallest and the largest element by a single scan
of a sequence in linear time. We now show that the k-th smallest element can also be
determined in linear time. The simple recursive procedure shown in Fig. 5.9 solves
the problem.

This procedure is akin to quicksort and is therefore called quickselect. The key
insight is that it suffices to follow one of the recursive calls. As before, a pivot is
chosen, and the input sequence s is partitioned into subsequences a, b, and c contain-
ing the elements smaller than the pivot, equal to the pivot, and larger than the pivot,
respectively. If |a| ≥ k, we recurse on a, and if k > |a|+ |b|, we recurse on c with
a suitably adjusted k. If |a| < k ≤ |a|+ |b|, the task is solved: the pivot has rank k
and we return it. Observe that the latter case also covers the situation |s| = k = 1,
and hence no special base case is needed. Figure 5.10 illustrates the execution of
quickselect.

// Find an element with rank k
Function select(s : Sequence of Element; k : N) : Element

assert |s| ≥ k
pick p ∈ s uniformly at random // pivot key
a :=〈e ∈ s : e < p〉
if |a| ≥ k then return select(a,k) // a

k

b :=〈e ∈ s : e = p〉
if |a|+ |b| ≥ k then return p // a b = 〈p, . . . , p〉

k

c :=〈e ∈ s : e > p〉
return select(c,k−|a|− |b|) // a b c

k

Fig. 5.9. Quickselect

s k p a b c
〈3,1,4,5,9,2,6,5,3,5,8〉 6 2 〈1〉 〈2〉 〈3,4,5,9,6,5,3,5,8〉
〈3,4,5,9,6,5,3,5,8〉 4 6 〈3,4,5,5,3,4〉 〈6〉 〈9,8〉

〈3,4,5,5,3,5〉 4 5 〈3,4,3〉 〈5,5,5〉 〈〉

Fig. 5.10. The execution of select(〈3,1,4,5,9,2,6,5,3,5,8,6〉,6). The middle element (bold)
of the current s is used as the pivot p

5.5 Selection 115

As for quicksort, the worst-case execution time of quickselect is quadratic. But
the expected execution time is linear and hence is a logarithmic factor faster than
quicksort.

Theorem 5.8. The quickselect algorithm runs in expected time O(n) on an input of
size n.

Proof. We shall give an analysis that is simple and shows a linear expected execution
time. It does not give the smallest constant possible. Let T (n) denote the expected
execution time of quickselect. We call a pivot good if neither |a| nor |c| is larger than
2n/3. Let γ denote the probability that a pivot is good; then γ ≥ 1/3. We now make
the conservative assumption that the problem size in the recursive call is reduced
only for good pivots and that, even then, it is reduced only by a factor of 2/3. Since
the work outside the recursive call is linear in n, there is an appropriate constant c
such that

T (n) ≤ cn+ γT

(
2n
3

)
+(1− γ)T (n) .

Solving for T (n) yields

T (n) ≤ cn
γ

+T

(
2n
3

)
≤ 3cn+T

(
2n
3

)
≤ 3c

(
n+

2n
3

+
4n
9

+ . . .

)

≤ 3cn ∑
i≥0

(
2
3

)i

≤ 3cn
1

1−2/3
= 9cn .

�

Exercise 5.26. Modify quickselect so that it returns the k smallest elements.

Exercise 5.27. Give a selection algorithm that permutes an array in such a way that
the k smallest elements are in entries a[1], . . . , a[k]. No further ordering is required
except that a[k] should have rank k. Adapt the implementation tricks used in the
array-based quicksort to obtain a nonrecursive algorithm with fast inner loops.

Exercise 5.28 (streaming selection).

(a) Develop an algorithm that finds the k-th smallest element of a sequence that
is presented to you one element at a time in an order you cannot control. You
have only space O(k) available. This models a situation where voluminous data
arrives over a network or at a sensor.

(b) Refine your algorithm so that it achieves a running time O(n logk). You may
want to read some of Chap. 6 first.

*(c) Refine the algorithm and its analysis further so that your algorithm runs in
average-case time O(n) if k = O(n/ logn). Here, “average” means that all or-
ders of the elements in the input sequence are equally likely.

116 5 Sorting and Selection

5.6 Breaking the Lower Bound

The title of this section is, of course, nonsense. A lower bound is an absolute state-
ment. It states that, in a certain model of computation, a certain task cannot be carried
out faster than the bound. So a lower bound cannot be broken. But be careful. It can-
not be broken within the model of computation used. The lower bound does not
exclude the possibility that a faster solution exists in a richer model of computation.
In fact, we may even interpret the lower bound as a guideline for getting faster. It
tells us that we must enlarge our repertoire of basic operations in order to get faster.

What does this mean in the case of sorting? So far, we have restricted ourselves
to comparison-based sorting. The only way to learn about the order of items was
by comparing two of them. For structured keys, there are more effective ways to
gain information, and this will allow us to break the Ω(n logn) lower bound valid for
comparison-based sorting. For example, numbers and strings have structure; they are
sequences of digits and characters, respectively.

Let us start with a very simple algorithm Ksort that is fast if the keys are small
integers, say in the range 0..K − 1. The algorithm runs in time O(n+K). We use
an array b[0..K − 1] of buckets that are initially empty. We then scan the input and
insert an element with key k into bucket b[k]. This can be done in constant time per
element, for example by using linked lists for the buckets. Finally, we concatenate all
the nonempty buckets to obtain a sorted output. Figure 5.11 gives the pseudocode.
For example, if the elements are pairs whose first element is a key in the range 0..3
and

s = 〈(3,a),(1,b),(2,c),(3,d),(0,e),(0, f),(3,g),(2,h),(1, i)〉 ,

we obtain b = [〈(0,e),(0, f)〉, 〈(1,b),(1, i)〉, 〈(2,c),(2,h)〉, 〈(3,a),(3,d),(3,g)〉]
and output 〈(0,e),(0, f),(1,b),(1, i),(2,c),(2,h),(3,a),(3,d),(3,g)〉. This example
illustrates an important property of Ksort. It is stable, i.e., elements with the same key
inherit their relative order from the input sequence. Here, it is crucial that elements
are appended to their respective bucket.

KSort can be used as a building block for sorting larger keys. The idea behind
radix sort is to view integer keys as numbers represented by digits in the range
0..K−1. Then KSort is applied once for each digit. Figure 5.12 gives a radix-sorting
algorithm for keys in the range 0..Kd − 1 that runs in time O(d(n+K)). The ele-
ments are first sorted by their least significant digit (LSD radix sort), then by the
second least significant digit, and so on until the most significant digit is used for
sorting. It is not obvious why this works. The correctness rests on the stability of

Procedure KSort(s : Sequence of Element)
b = 〈〈〉, . . . ,〈〉〉 : Array [0..K −1] of Sequence of Element
foreach e ∈ s do b[key(e)].pushBack(e) //

s e

b[0] b[1] b[2] b[3] b[4]

s := concatenation of b[0], . . . ,b[K −1]

Fig. 5.11. Sorting with keys in the range 0..K −1

5.6 Breaking the Lower Bound 117

Procedure LSDRadixSort(s : Sequence of Element)
for i :=0 to d −1 do

redefine key(x) as (x div Ki) mod K // d−1 ...
digits

... 1 0x
key(x)

i
KSort(s)
invariant s is sorted with respect to digits i..0

Fig. 5.12. Sorting with keys in 0..Kd −1 using least significant digit (LSD) radix sort

Procedure uniformSort(s : Sequence of Element)
n := |s|
b = 〈〈〉, . . . ,〈〉〉 : Array [0..n−1] of Sequence of Element
foreach e ∈ s do b[key(e) ·n
].pushBack(e)
for i :=0 to n−1 do sort b[i] in time O(|b[i]| log |b[i]|)
s := concatenation of b[0], . . . ,b[n−1]

Fig. 5.13. Sorting random keys in the range [0,1)

Ksort. Since KSort is stable, the elements with the same i-th digit remain sorted
with respect to digits i− 1..0 during the sorting process with respect to digit i. For
example, if K = 10, d = 3, and

s =〈017,042,666,007,111,911,999〉, we successively obtain

s =〈111,911,042,666,017,007,999〉 ,

s =〈007,111,911,017,042,666,999〉 , and

s =〈007,017,042,111,666,911,999〉 .

Radix sort starting with the most significant digit (MSD radix sort) is also pos-
sible. We apply KSort to the most significant digit and then sort each bucket recur-
sively. The only problem is that the buckets might be much smaller than K, so that
it would be expensive to apply KSort to small buckets. We then have to switch to
another algorithm. This works particularly well if we can assume that the keys are
uniformly distributed. More specifically, let us now assume that the keys are real
numbers with 0 ≤ key(e) < 1. The algorithm uniformSort in Fig. 5.13 scales these
keys to integers between 0 and n − 1 = |s| − 1, and groups them into n buckets,
where bucket b[i] is responsible for keys in the range [i/n,(i + 1)/n). For example,
if s = 〈0.8,0.4,0.7,0.6,0.3〉, we obtain five buckets responsible for intervals of size
0.2, and

b = [〈〉, 〈0.3〉, 〈0.4〉, 〈0.7,0.6〉, 〈0.8〉] ;

only b[3] = 〈0.7,0.6〉 is a nontrivial subproblem. uniformSort is very efficient for
random keys.

Theorem 5.9. If the keys are independent uniformly distributed random values in
[0,1), uniformSort sorts n keys in expected time O(n) and worst-case time O(n logn).

118 5 Sorting and Selection

Proof. We leave the worst-case bound as an exercise and concentrate on the average
case. The total execution time T is O(n) for setting up the buckets and concatenating
the sorted buckets, plus the time for sorting the buckets. Let Ti denote the time for
sorting the i-th bucket. We obtain

E [T] = O(n)+E

[

∑
i<n

Ti

]

= O(n)+ ∑
i<n

E[Ti] = O(n)+nE[T0] .

The second equality follows from the linearity of expectations (A.2), and the third
equality uses the fact that all bucket sizes have the same distribution for uniformly
distributed inputs. Hence, it remains to show that E[T0] = O(1). We shall prove the
stronger claim that E[T0] = O(1) even if a quadratic-time algorithm such as insertion
sort is used for sorting the buckets. The analysis is similar to the arguments used to
analyze the behavior of hashing in Chap. 4.

Let B0 = |b[0]|. We have E[T0] = O
(
E[B2

0]
)
. The random variable B0 obeys a

binomial distribution (A.7) with n trials and success probability 1/n, and hence

prob(B0 = i) =
(

n
i

)(
1
n

)i (
1− 1

n

)n−i

≤ ni

i!
1
ni =

1
i!
≤

(e
i

)i
,

where the last inequality follows from Stirling’s approximation to the factorial (A.9).
We obtain

E[B2
0] = ∑

i≤n
i2prob(B0 = i) ≤ ∑

i≤n
i2

(e
i

)i

≤ ∑
i≤5

i2
(e

i

)i
+ e2 ∑

i≥6

(e
i

)i−2

≤ O(1)+ e2 ∑
i≥6

(
1
2

)i−2

= O(1) ,

and hence E[T] = O(n) (note that the split at i = 6 allows us to conclude that e/i ≤
1/2). �

*Exercise 5.29. Implement an efficient sorting algorithm for elements with keys in
the range 0..K −1 that uses the data structure of Exercise 3.20 for the input and out-
put. The space consumption should be n+O(n/B+KB) for n elements, and blocks
of size B.

5.7 *External Sorting

Sometimes the input is so huge that it does not fit into internal memory. In this
section, we shall learn how to sort such data sets in the external-memory model
introduced in Sect. 2.2. This model distinguishes between a fast internal memory
of size M and a large external memory. Data is moved in the memory hierarchy in

5.7 *External Sorting 119

formRuns formRuns formRuns formRuns

merge merge

make_things_

__aeghikmnst

as_simple_as

__aaeilmpsss

_possible_bu

__aaeilmpsss

t_no_simpler

__eilmnoprst

____aaaeeghiiklmmnpsssst ____bbeeiillmnoopprssstu

merge

________aaabbeeeeghiiiiklllmmmnnooppprsssssssttu

Fig. 5.14. An example of two-way mergesort with initial runs of length 12

blocks of size B. Scanning data is fast in external memory and mergesort is based
on scanning. We therefore take mergesort as the starting point for external-memory
sorting.

Assume that the input is given as an array in external memory. We shall describe
a nonrecursive implementation for the case where the number of elements n is di-
visible by B. We load subarrays of size M into internal memory, sort them using our
favorite algorithm, for example qSort, and write the sorted subarrays back to exter-
nal memory. We refer to the sorted subarrays as runs. The run formation phase takes
n/B block reads and n/B block writes, i.e., a total of 2n/B I/Os. We then merge pairs
of runs into larger runs in �log(n/M)� merge phases, ending up with a single sorted
run. Figure 5.14 gives an example for n = 48 and runs of length 12.

How do we merge two runs? We keep one block from each of the two input runs
and from the output run in internal memory. We call these blocks buffers. Initially,
the input buffers are filled with the first B elements of the input runs, and the output
buffer is empty. We compare the leading elements of the input buffers and move the
smaller element to the output buffer. If an input buffer becomes empty, we fetch the
next block of the corresponding input run; if the output buffer becomes full, we write
it to external memory.

Each merge phase reads all current runs and writes new runs of twice the length.
Therefore, each phase needs n/B block reads and n/B block writes. Summing over
all phases, we obtain (2n/B)(1 + �logn/M�) I/Os. This technique works provided
that M ≥ 3B.

5.7.1 Multiway Mergesort

In general, internal memory can hold many blocks and not just three. We shall de-
scribe how to make full use of the available internal memory during merging. The
idea is to merge more than just two runs; this will reduce the number of phases.
In k-way merging, we merge k sorted sequences into a single output sequence. In
each step we find the input sequence with the smallest first element. This element
is removed and appended to the output sequence. External-memory implementation
is easy as long as we have enough internal memory for k input buffer blocks, one
output buffer block, and a small amount of additional storage.

120 5 Sorting and Selection

For each sequence, we need to remember which element we are currently con-
sidering. To find the smallest element out of all k sequences, we keep their current
elements in a priority queue. A priority queue maintains a set of elements support-
ing the operations of insertion and deletion of the minimum. Chapter 6 explains how
priority queues can be implemented so that insertion and deletion take time O(logk)
for k elements. The priority queue tells us at each step, which sequence contains
the smallest element. We delete this element from the priority queue, move it to the
output buffer, and insert the next element from the corresponding input buffer into
the priority queue. If an input buffer runs dry, we fetch the next block of the corre-
sponding sequence, and if the output buffer becomes full, we write it to the external
memory.

How large can we choose k? We need to keep k + 1 blocks in internal memory
and we need a priority queue for k keys. So we need (k + 1)B + O(k) ≤ M or k =
O(M/B). The number of merging phases is reduced to �logk(n/M)�, and hence the
total number of I/Os becomes

2
n
B

(
1+

⌈
logM/B

n
M

⌉)
. (5.1)

The difference from binary merging is the much larger base of the logarithm. In-
terestingly, the above upper bound for the I/O complexity of sorting is also a lower
bound [5], i.e., under fairly general assumptions, no external sorting algorithm with
fewer I/O operations is possible.

In practice, the number of merge phases will be very small. Observe that a single
merge phase suffices as long as n ≤ M2/B. We first form M/B runs of length M each
and then merge these runs into a single sorted sequence. If internal memory stands
for DRAM and “external memory” stands for hard disks, this bound on n is no real
restriction, for all practical system configurations.

Exercise 5.30. Show that a multiway mergesort needs only O(n logn) element com-
parisons.

Exercise 5.31 (balanced systems). Study the current market prices of computers,
internal memory, and mass storage (currently hard disks). Also, estimate the block
size needed to achieve good bandwidth for I/O. Can you find any configuration where
multiway mergesort would require more than one merging phase for sorting an input
that fills all the disks in the system? If so, what fraction of the cost of that system
would you have to spend on additional internal memory to go back to a single merg-
ing phase?

5.7.2 Sample Sort

The most popular internal-memory sorting algorithm is not mergesort but quicksort.
So it is natural to look for an external-memory sorting algorithm based on quicksort.
We shall sketch sample sort. In expectation, it has the same performance guarantees
as multiway mergesort (5.1). Sample sort is easier to adapt to parallel disks and

5.7 *External Sorting 121

parallel processors than merging-based algorithms. Furthermore, similar algorithms
can be used for fast external sorting of integer keys along the lines of Sect. 5.6.

Instead of the single pivot element of quicksort, we now use k − 1 splitter el-
ements s1,. . . , sk−1 to split an input sequence into k output sequences, or buckets.
Bucket i gets the elements e for which si−1 ≤ e < si. To simplify matters, we define
the artificial splitters s0 = −∞ and sk = ∞ and assume that all elements have differ-
ent keys. The splitters should be chosen in such a way that the buckets have a size
of roughly n/k. The buckets are then sorted recursively. In particular, buckets that fit
into the internal memory can subsequently be sorted internally. Note the similarity
to MSD-radix sort described in Sect. 5.6.

The main challenge is to find good splitters quickly. Sample sort uses a fast, sim-
ple randomized strategy. For some integer a, we randomly choose (a+1)k−1 sam-
ple elements from the input. The sample S is then sorted internally, and we define the
splitters as si = S[(a+1)i] for 1≤ i≤ k−1, i.e., consecutive splitters are separated by
a samples, the first splitter is preceded by a samples, and the last splitter is followed
by a samples. Taking a = 0 results in a small sample set, but the splitting will not
be very good. Moving all elements to the sample will result in perfect splitters, but
the sample will be too big. The following analysis shows that setting a = O(logk)
achieves roughly equal bucket sizes at low cost for sampling and sorting the sample.

The most I/O-intensive part of sample sort is the k-way distribution of the input
sequence to the buckets. We keep one buffer block for the input sequence and one
buffer block for each bucket. These buffers are handled analogously to the buffer
blocks in k-way merging. If the splitters are kept in a sorted array, we can find the
right bucket for an input element e in time O(logk) using binary search.

Theorem 5.10. Sample sort uses

O
(n

B

(
1+

⌈
logM/B

n
M

⌉))

expected I/O steps for sorting n elements. The internal work is O(n logn).

We leave the detailed proof to the reader and describe only the key ingredient
of the analysis here. We use k = Θ(min(n/M,M/B)) buckets and a sample of size
O(k logk). The following lemma shows that with this sample size, it is unlikely that
any bucket has a size much larger than the average. We hide the constant factors
behind O(·) notation because our analysis is not very tight in this respect.

Lemma 5.11. Let k ≥ 2 and a+1 = 12lnk. A sample of size (a+1)k−1 suffices to
ensure that no bucket receives more than 4n/k elements with probability at least 1/2.

Proof. As in our analysis of quicksort (Theorem 5.6), it is useful to study the sorted
version s′ = 〈e′1, . . . ,e′n〉 of the input. Assume that there is a bucket with at least 4n/k
elements assigned to it. We estimate the probability of this event.

We split s′ into k/2 segments of length 2n/k. The j-th segment t j contains ele-
ments e′2 jn/k+1 to e′2(j+1)n/k. If 4n/k elements end up in some bucket, there must be
some segment t j such that all its elements end up in the same bucket. This can only

122 5 Sorting and Selection

happen if fewer than a+1 samples are taken from t j, because otherwise at least one
splitter would be chosen from t j and its elements would not end up in a single bucket.
Let us concentrate on a fixed j.

We use a random variable X to denote the number of samples taken from t j.
Recall that we take (a + 1)k− 1 samples. For each sample i, 1 ≤ i ≤ (a + 1)k− 1,
we define an indicator variable Xi with Xi = 1 if the i-th sample is taken from t j

and Xi = 0 otherwise. Then X = ∑1≤i≤(a+1)k−1 Xi. Also, the Xi’s are independent,
and prob(Xi = 1) = 2/k. Independence allows us to use the Chernoff bound (A.5) to
estimate the probability that X < a+1. We have

E[X] = ((a+1)k−1) · 2
k

= 2(a+1)− 2
k
≥ 3(a+1)

2
.

Hence X < a+1 implies X < (1−1/3)E[X], and so we can use (A.5) with ε = 1/3.
Thus

prob(X < a+1) ≤ e−(1/9)E[X]/2 ≤ e−(a+1)/12 = e− lnk =
1
k

.

The probability that an insufficient number of samples is chosen from a fixed t j is
thus at most 1/k, and hence the probability that an insufficient number is chosen
from some t j is at most (k/2) · (1/k) = 1/2. Thus, with probability at least 1/2, each
bucket receives fewer than 4n/k elements. �

Exercise 5.32. Work out the details of an external-memory implementation of sam-
ple sort. In particular, explain how to implement multiway distribution using 2n/B+
k + 1 I/O steps if the internal memory is large enough to store k + 1 blocks of data
and O(k) additional elements.

Exercise 5.33 (many equal keys). Explain how to generalize multiway distribution
so that it still works if some keys occur very often. Hint: there are at least two differ-
ent solutions. One uses the sample to find out which elements are frequent. Another
solution makes all elements unique by interpreting an element e at an input position
i as the pair (e, i).

*Exercise 5.34 (more accurate distribution). A larger sample size improves the
quality of the distribution. Prove that a sample of size O

(
(k/ε2) log(k/εm)

)
guar-

antees, with probability (at least 1−1/m), that no bucket has more than (1 + ε)n/k
elements. Can you get rid of the ε in the logarithmic factor?

5.8 Implementation Notes

Comparison-based sorting algorithms are usually available in standard libraries, and
so you may not have to implement one yourself. Many libraries use tuned implemen-
tations of quicksort.

Canned non-comparison-based sorting routines are less readily available. Fig-
ure 5.15 shows a careful array-based implementation of Ksort. It works well for

5.8 Implementation Notes 123

Procedure KSortArray(a,b : Array [1..n] of Element)
c = 〈0, . . . ,0〉 : Array [0..K −1] of N // counters for each bucket
for i :=1 to n do c[key(a[i])]++ // Count bucket sizes

C :=0
for k :=0 to K −1 do (C,c[k]) :=(C + c[k],C) // Store ∑i<k c[k] in c[k].

for i :=1 to n do // Distribute a[i]
b[c[key(a[i])]] :=a[i]
c[key(a[i])]++

Fig. 5.15. Array-based sorting with keys in the range 0..K −1. The input is an unsorted array
a. The output is b, containing the elements of a in sorted order. We first count the number of
inputs for each key. Then we form the partial sums of the counts. Finally, we write each input
element to the correct position in the output array

small to medium-sized problems. For large K and n, it suffers from the problem that
the distribution of elements to the buckets may cause a cache fault for every element.

To fix this problem, one can use multiphase algorithms similar to MSD radix sort.
The number K of output sequences should be chosen in such a way that one block
from each bucket is kept in the cache (see also [134]). The distribution degree K can
be larger when the subarray to be sorted fits into the cache. We can then switch to a
variant of uniformSort (see Fig. 5.13).

Another important practical aspect concerns the type of elements to be sorted.
Sometimes we have rather large elements that are sorted with respect to small keys.
For example, you may want to sort an employee database by last name. In this sit-
uation, it makes sense to first extract the keys and store them in an array together
with pointers to the original elements. Then, only the key–pointer pairs are sorted.
If the original elements need to be brought into sorted order, they can be permuted
accordingly in linear time using the sorted key–pointer pairs.

Multiway merging of a small number of sequences (perhaps up to eight) deserves
special mention. In this case, the priority queue can be kept in the processor registers
[160, 206].

5.8.1 C/C++

Sorting is one of the few algorithms that is part of the C standard library. However,
the C sorting routine qsort is slower and harder to use than the C++ function sort.
The main reason is that the comparison function is passed as a function pointer and is
called for every element comparison. In contrast, sort uses the template mechanism
of C++ to figure out at compile time how comparisons are performed so that the
code generated for comparisons is often a single machine instruction. The parame-
ters passed to sort are an iterator pointing to the start of the sequence to be sorted,
and an iterator pointing after the end of the sequence. In our experiments using an
Intel Pentium III and GCC 2.95, sort on arrays ran faster than our manual implemen-
tation of quicksort. One possible reason is that compiler designers may tune their

124 5 Sorting and Selection

code optimizers until they find that good code for the library version of quicksort is
generated. There is an efficient parallel-disk external-memory sorter in STXXL [48],
an external-memory implementation of the STL. Efficient parallel sorters (parallel
quicksort and parallel multiway mergesort) for multicore machines are available with
the Multi-Core Standard Template Library [180, 125].

Exercise 5.35. Give a C or C++ implementation of the procedure qSort in Fig. 5.7.
Use only two parameters: a pointer to the (sub)array to be sorted, and its size.

5.8.2 Java

The Java 6 platform provides a method sort which implements a stable binary merge-
sort for Arrays and Collections. One can use a customizable Comparator, but there
is also a default implementation for all classes supporting the interface Comparable.

5.9 Historical Notes and Further Findings

In later chapters, we shall discuss several generalizations of sorting. Chapter 6 dis-
cusses priority queues, a data structure that supports insertions of elements and re-
moval of the smallest element. In particular, inserting n elements followed by re-
peated deletion of the minimum amounts to sorting. Fast priority queues result in
quite good sorting algorithms. A further generalization is the search trees introduced
in Chap. 7, a data structure for maintaining a sorted list that allows searching, insert-
ing, and removing elements in logarithmic time.

We have seen several simple, elegant, and efficient randomized algorithms in
this chapter. An interesting question is whether these algorithms can be replaced
by deterministic ones. Blum et al. [25] described a deterministic median selection
algorithm that is similar to the randomized algorithm discussed in Sect. 5.5. This
deterministic algorithm makes pivot selection more reliable using recursion: it splits
the input set into subsets of five elements, determines the median of each subset by
sorting the five-element subset, then determines the median of the n/5 medians by
calling the algorithm recursively, and finally uses the median of the medians as the
splitter. The resulting algorithm has linear worst-case execution time, but the large
constant factor makes the algorithm impractical. (We invite the reader to set up a
recurrence for the running time and to show that it has a linear solution.)

There are quite practical ways to reduce the expected number of comparisons re-
quired by quicksort. Using the median of three random elements yields an algorithm
with about 1.188n logn comparisons. The median of three medians of three-element
subsets brings this down to ≈ 1.094n logn [20]. The number of comparisons can be
reduced further by making the number of elements considered for pivot selection de-
pendent on the size of the subproblem. Martinez and Roura [123] showed that for a
subproblem of size m, the median of Θ(

√
m) elements is a good choice for the pivot.

With this approach, the total number of comparisons becomes (1+o(1))n logn, i.e.,
it matches the lower bound of n logn−O(n) up to lower-order terms. Interestingly,

5.9 Historical Notes and Further Findings 125

the above optimizations can be counterproductive. Although fewer instructions are
executed, it becomes impossible to predict when the inner while loops of quicksort
will be aborted. Since modern, deeply pipelined processors only work efficiently
when they can predict the directions of branches taken, the net effect on perfor-
mance can even be negative [102]. Therefore, in [167] , a comparison-based sorting
algorithm that avoids conditional branch instructions was developed. An interesting
deterministic variant of quicksort is proportion-extend sort [38].

A classical sorting algorithm of some historical interest is Shell sort [174, 100],
a generalization of insertion sort, that gains efficiency by also comparing nonadja-
cent elements. It is still open whether some variant of Shell sort achieves O(n logn)
average running time [100, 124].

There are some interesting techniques for improving external multiway merge-
sort. The snow plow heuristic [112, Sect. 5.4.1] forms runs of expected size 2M using
a fast memory of size M: whenever an element is selected from the internal priority
queue and written to the output buffer and the next element in the input buffer can
extend the current run, we add it to the priority queue. Also, the use of tournament
trees instead of general priority queues leads to a further improvement of multiway
merging [112].

Parallelism can be used to improve the sorting of very large data sets, either in the
form of a uniprocessor using parallel disks or in the form of a multiprocessor. Mul-
tiway mergesort and distribution sort can be adapted to D parallel disks by striping,
i.e., any D consecutive blocks in a run or bucket are evenly distributed over the disks.
Using randomization, this idea can be developed into almost optimal algorithms that
also overlap I/O and computation [49]. The sample sort algorithm of Sect. 5.7.2 can
be adapted to parallel machines [24] and results in an efficient parallel sorter.

We have seen linear-time algorithms for highly structured inputs. A quite general
model, for which the n logn lower bound does not hold, is the word model. In this
model, keys are integers that fit into a single memory cell, say 32- or 64-bit keys,
and the standard operations on words (bitwise-AND, bitwise-OR, addition, . . .) are
available in constant time. In this model, sorting is possible in deterministic time
O(n log logn) [11]. With randomization, even O

(
n
√

log logn
)

is possible [85]. Flash
sort [149] is a distribution-based algorithm that works almost in-place.

Exercise 5.36 (Unix spellchecking). Assume you have a dictionary consisting of
a sorted sequence of correctly spelled words. To check a text, you convert it to a
sequence of words, sort it, scan the text and dictionary simultaneously, and output
the words in the text that do not appear in the dictionary. Implement this spellchecker
using Unix tools in a small number of lines of code. Can you do this in one line?

6

Priority Queues

The company TMG markets tailor-made first-rate garments. It organizes marketing,
measurements, etc., but outsources the actual fabrication to independent tailors. The
company keeps 20% of the revenue. When the company was founded in the 19th
century, there were five subcontractors. Now it controls 15% of the world market
and there are thousands of subcontractors worldwide.

Your task is to assign orders to the subcontractors. The rule is that an order is
assigned to the tailor who has so far (in the current year) been assigned the smallest
total value of orders. Your ancestors used a blackboard to keep track of the current
total value of orders for each tailor; in computer science terms, they kept a list of
values and spent linear time to find the correct tailor. The business has outgrown this
solution. Can you come up with a more scalable solution where you have to look
only at a small number of values to decide who will be assigned the next order?

In the following year the rules are changed. In order to encourage timely delivery,
the orders are now assigned to the tailor with the smallest value of unfinished orders,
i.e., whenever a finished order arrives, you have to deduct the value of the order from
the backlog of the tailor who executed it. Is your strategy for assigning orders flexible
enough to handle this efficiently?

Priority queues are the data structure required for the problem above and for
many other applications. We start our discussion with the precise specification. Pri-
ority queues maintain a set M of Elements with Keys under the following operations:

• M.build({e1, . . . ,en}): M :={e1, . . . ,en}.
• M.insert(e): M :=M∪{e}.
• M.min: return minM.
• M.deleteMin: e :=minM; M :=M \{e}; return e.

This is enough for the first part of our example. Each year, we build a new priority
queue containing an Element with a Key of zero for each contract tailor. To assign an
order, we delete the smallest Element, add the order value to its Key, and reinsert it.
Section 6.1 presents a simple, efficient implementation of this basic functionality.

0 The photograph shows a queue at the Mao Mausoleum (V. Berger, see
http://commons.wikimedia.org/wiki/Image:Zhengyangmen01.jpg).

http://commons.wikimedia.org/wiki/Image:Zhengyangmen01.jpg

128 6 Priority Queues

Addressable priority queues additionally support operations on arbitrary ele-
ments addressed by an element handle h:

• insert: as before, but return a handle to the element inserted.
• remove(h): remove the element specified by the handle h.
• decreaseKey(h,k): decrease the key of the element specified by the handle h to k.
• M.merge(Q): M :=M∪Q; Q := /0.

In our example, the operation remove might be helpful when a contractor is fired
because he/she delivers poor quality. Using this operation together with insert, we
can also implement the “new contract rules”: when an order is delivered, we remove
the Element for the contractor who executed the order, subtract the value of the order
from its Key value, and reinsert the Element. DecreaseKey streamlines this process
to a single operation. In Sect. 6.2, we shall see that this is not just convenient but that
decreasing keys can be implemented more efficiently than arbitrary element updates.

Priority queues have many applications. For example, in Sect. 12.2, we shall
see that our introductory example can also be viewed as a greedy algorithm for
a machine-scheduling problem. Also, the rather naive selection-sort algorithm of
Sect. 5.1 can be implemented efficiently now: first, insert all elements into a priority
queue, and then repeatedly delete the smallest element and output it. A tuned version
of this idea is described in Sect. 6.1. The resulting heapsort algorithm is popular
because it needs no additional space and is worst-case efficient.

In a discrete-event simulation, one has to maintain a set of pending events. Each
event happens at some scheduled point in time and creates zero or more new events
in the future. Pending events are kept in a priority queue. The main loop of the simu-
lation deletes the next event from the queue, executes it, and inserts newly generated
events into the priority queue. Note that the priorities (times) of the deleted elements
(simulated events) increase monotonically during the simulation. It turns out that
many applications of priority queues have this monotonicity property. Section 10.5
explains how to exploit monotonicity for integer keys.

Another application of monotone priority queues is the best-first branch-and-
bound approach to optimization described in Sect. 12.4. Here, the elements are par-
tial solutions of an optimization problem and the keys are optimistic estimates of
the obtainable solution quality. The algorithm repeatedly removes the best-looking
partial solution, refines it, and inserts zero or more new partial solutions.

We shall see two applications of addressable priority queues in the chapters on
graph algorithms. In both applications, the priority queue stores nodes of a graph. Di-
jkstra’s algorithm for computing shortest paths (Sect. 10.3) uses a monotone priority
queue where the keys are path lengths. The Jarník–Prim algorithm for computing
minimum spanning trees (Sect. 11.2) uses a (nonmonotone) priority queue where the
keys are the weights of edges connecting a node to a partial spanning tree. In both
algorithms, there can be a decreaseKey operation for each edge, whereas there is
at most one insert and deleteMin for each node. Observe that the number of edges
may be much larger than the number of nodes, and hence the implementation of
decreaseKey deserves special attention.

6.1 Binary Heaps 129

Exercise 6.1. Show how to implement bounded nonaddressable priority queues us-
ing arrays. The maximal size of the queue is w and when the queue has a size n, the
first n entries of the array are used. Compare the complexity of the queue operations
for two implementations: one by unsorted arrays and one by sorted arrays.

Exercise 6.2. Show how to implement addressable priority queues using doubly
linked lists. Each list item represents an element in the queue, and a handle is a
handle of a list item. Compare the complexity of the queue operations for two imple-
mentations: one by sorted lists and one by unsorted lists.

6.1 Binary Heaps

Heaps are a simple and efficient implementation of nonaddressable bounded priority
queues [208]. They can be made unbounded in the same way as bounded arrays can
be made unbounded (see Sect. 3.2). Heaps can also be made addressable, but we
shall see better addressable queues in later sections.

a

c g

hpdr

zj sw q

a c g hpdr zj sw q

10 11 12 13 1310 11 12

a

c

hdr

zj sw q p

g

b

a

c g

hpdr

zj sw q

hpr

zj sw

g

c

d

q

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

h:

j:

insert(b)

deleteMin

Fig. 6.1. The top part shows a heap with n = 12 elements stored in an array h with w = 13
entries. The root corresponds to index 1. The children of the root correspond to indices 2 and
3. The children of node i have indices 2i and 2i + 1 (if they exist). The parent of a node i,
i ≥ 2, has index �i/2�. The elements stored in this implicitly defined tree fulfill the invariant
that parents are no larger than their children, i.e., the tree is heap-ordered. The left part shows
the effect of inserting b. The thick edges mark a path from the rightmost leaf to the root. The
new element b is moved up this path until its parent is smaller. The remaining elements on
the path are moved down to make room for b. The right part shows the effect of deleting the
minimum. The thick edges mark the path p that starts at the root and always proceeds to the
child with the smaller Key. The element q is provisionally moved to the root and then moves
down p until its successors are larger. The remaining elements move up to make room for q

130 6 Priority Queues

Class BinaryHeapPQ(w : N) of Element
h : Array [1..w] of Element // The heap h is
n = 0 : N // initially empty and has the
invariant ∀ j ∈ 2..n : h[� j/2�] ≤ h[j] // heap property which implies that
Function min assert n > 0 ; return h[1] // the root is the minimum.

Fig. 6.2. A class for a priority queue based on binary heaps whose size is bounded by w

We use an array h[1..w] that stores the elements of the queue. The first n entries
of the array are used. The array is heap-ordered, i.e.,

for j with 2 ≤ j ≤ n: h[� j/2�] ≤ h[j].

What does "heap-ordered" mean? The key to understanding this definition is a bijec-
tion between positive integers and the nodes of a complete binary tree, as illustrated
in Fig. 6.1. In a heap the minimum element is stored in the root (= array position 1).
Thus min takes time O(1). Creating an empty heap with space for w elements also
takes constant time, as it only needs to allocate an array of size w. Figure 6.2 gives
pseudocode for this basic setup.

The minimum of a heap is stored in h[1] and hence can be found in constant time;
this is the same as for a sorted array. However, the heap property is much less restric-
tive than the property of being sorted. For example, there is only one sorted version
of the set {1,2,3}, but both 〈1,2,3〉 and 〈1,3,2〉 are legal heap representations.

Exercise 6.3. Give all representations of {1,2,3,4} as a heap.

We shall next see that the increased flexibility permits efficient implementations
of insert and deleteMin. We choose a description which is simple and can be easily
proven correct. Section 6.4 gives some hints toward a more efficient implementation.
An insert puts a new element e tentatively at the end of the heap h, i.e., into h[n], and
then moves e to an appropriate position on the path from leaf h[n] to the root:

Procedure insert(e : Element)
assert n < w
n++; h[n] := e
siftUp(n)

Here siftUp(s) moves the contents of node s toward the root until the heap property
holds (see. Fig. 6.1).

Procedure siftUp(i : N)
assert the heap property holds except maybe at position i
if i = 1∨h[�i/2�] ≤ h[i] then return
assert the heap property holds except for position i
swap(h[i],h[�i/2�])
assert the heap property holds except maybe for position �i/2�
siftUp(�i/2�)

6.1 Binary Heaps 131

Correctness follows from the invariants stated.

Exercise 6.4. Show that the running time of siftUp(n) is O(logn) and hence an insert
takes time O(logn).

A deleteMin returns the contents of the root and replaces them by the contents of
node n. Since h[n] might be larger than h[2] or h[3], this manipulation may violate the
heap property at position 2 or 3. This possible violation is repaired using siftDown:

Function deleteMin : Element
assert n > 0
result = h[1] : Element
h[1] :=h[n]; n--
siftDown(1)
return result

The procedure siftDown(1) moves the new contents of the root down the tree until
the heap property holds. More precisely, consider the path p that starts at the root
and always proceeds to the child with the smaller key (see Fig. 6.1); in the case of
equal keys, the choice is arbitrary. We extend the path until all children (there may
be zero, one, or two) have a key no larger than h[1]. We put h[1] into this position
and move all elements on path p up by one position. In this way, the heap property is
restored. This strategy is most easily formulated as a recursive procedure. A call of
the following procedure siftDown(i) repairs the heap property in the subtree rooted
at i, assuming that it holds already for the subtrees rooted at 2i and 2i + 1; the heap
property holds in the subtree rooted at i if we have h[� j/2�] ≤ h[j] for all proper
descendants j of i:

Procedure siftDown(i : N)
assert the heap property holds for the trees rooted at j = 2i and j = 2i+1
if 2i ≤ n then // i is not a leaf

if 2i+1 > n∨h[2i] ≤ h[2i+1] then m :=2i else m :=2i+1
assert the sibling of m does not exist or it has a larger key than m
if h[i] > h[m] then // the heap property is violated

swap(h[i],h[m])
siftDown(m)

assert the heap property holds for the tree rooted at i

Exercise 6.5. Our current implementation of siftDown needs about 2 logn element
comparisons. Show how to reduce this to logn + O(log logn). Hint: determine the
path p first and then perform a binary search on this path to find the proper position
for h[1]. Section 6.5 has more on variants of siftDown.

We can obviously build a heap from n elements by inserting them one after the
other in O(n logn) total time. Interestingly, we can do better by establishing the heap
property in a bottom-up fashion: siftDown allows us to establish the heap property
for a subtree of height k + 1 provided the heap property holds for its subtrees of
height k. The following exercise asks you to work out the details of this idea.

132 6 Priority Queues

Exercise 6.6 (buildHeap). Assume that you are given an arbitrary array h[1..n] and
want to establish the heap property on it by permuting its entries. Consider two pro-
cedures for achieving this:

Procedure buildHeapBackwards
for i := �n/2� downto 1 do siftDown(i)

Procedure buildHeapRecursive(i : N)
if 4i ≤ n then

buildHeapRecursive(2i)
buildHeapRecursive(2i+1)

siftDown(i)

(a) Show that both buildHeapBackwards and buildHeapRecursive(1) establish the
heap property everywhere.

(b) Implement both algorithms efficiently and compare their running times for ran-
dom integers and n ∈

{
10i : 2 ≤ i ≤ 8

}
. It will be important how efficiently you

implement buildHeapRecursive. In particular, it might make sense to unravel the
recursion for small subtrees.

*(c) For large n, the main difference between the two algorithms is in memory hierar-
chy effects. Analyze the number of I/O operations required by the two algorithms
in the external-memory model described at the end of Sect. 2.2. In particular,
show that if the block size is B and the fast memory has size M = Ω(B logB),
then buildHeapRecursive needs only O(n/B) I/O operations.

The following theorem summarizes our results on binary heaps.

Theorem 6.1. The heap implementation of nonaddressable priority queues realizes
creating an empty heap and finding the minimum element in constant time, deleteMin
and insert in logarithmic time O(logn), and build in linear time.

Proof. The binary tree represented by a heap of n elements has a height of k =
�logn�. insert and deleteMin explore one root-to-leaf path and hence have logarith-
mic running time; min returns the contents of the root and hence takes constant time.
Creating an empty heap amounts to allocating an array and therefore takes constant
time. build calls siftDown for at most 2� nodes of depth �. Such a call takes time
O(k− �). Thus total the time is

O

(

∑
0≤�<k

2�(k− �)

)

= O

(

2k ∑
0≤�<k

k− �

2k−�

)

= O

(

2k ∑
j≥1

j
2 j

)

= O(n) .

The last equality uses (A.14). �

Heaps are the basis of heapsort. We first build a heap from the elements and then
repeatedly perform deleteMin. Before the i-th deleteMin operation, the i-th smallest
element is stored at the root h[1]. We swap h[1] and h[n− i + 1] and sift the new
root down to its appropriate position. At the end, h stores the elements sorted in

6.2 Addressable Priority Queues 133

decreasing order. Of course, we can also sort in increasing order by using a max-
priority queue, i.e., a data structure supporting the operations of insert and of deleting
the maximum.

Heaps do not immediately implement the data type addressable priority queue,
since elements are moved around in the array h during insertion and deletion. Thus
the array indices cannot be used as handles.

Exercise 6.7 (addressable binary heaps). Extend heaps to an implementation of
addressable priority queues. How many additional pointers per element do you need?
There is a solution with two additional pointers per element.

*Exercise 6.8 (bulk insertion). Design an algorithm for inserting k new elements
into an n-element heap. Give an algorithm that runs in time O(k + logn). Hint: use a
bottom-up approach similar to that for heap construction.

6.2 Addressable Priority Queues

Binary heaps have a rather rigid structure. All n elements are arranged into a single
binary tree of height �logn�. In order to obtain faster implementations of the oper-
ations insert, decreaseKey, remove, and merge, we now look at structures which are
more flexible. The single, complete binary tree is replaced by a collection of trees
(i.e., a forest) with arbitrary shape. Each tree is still heap-ordered, i.e., no child is
smaller than its parent. In other words, the sequence of keys along any root-to-leaf
path is nondecreasing. Figure 6.4 shows a heap-ordered forest. Furthermore, the el-
ements of the queue are now stored in heap items that have a persistent location in
memory. Hence, pointers to heap items can serve as handles to priority queue ele-
ments. The tree structure is explicitly defined using pointers between items.

We shall discuss several variants of addressable priority queues. We start with
the common principles underlying all of them. Figure 6.3 summarizes the common-
alities.

In order to keep track of the current minimum, we maintain the handle to the
root containing it. We use minPtr to denote this handle. The forest is manipulated
using three simple operations: adding a new tree (and keeping minPtr up to date),
combining two trees into a single one, and cutting out a subtree, making it a tree of
its own.

An insert adds a new single-node tree to the forest. So a sequence of n inserts
into an initially empty heap will simply create n single-node trees. The cost of an
insert is clearly O(1).

A deleteMin operation removes the node indicated by minPtr. This turns all chil-
dren of the removed node into roots. We then scan the set of roots (old and new)
to find the new minimum, a potentially very costly process. We also perform some
rebalancing, i.e., we combine trees into larger ones. The details of this process dis-
tinguish different kinds of addressable priority queue and are the key to efficiency.

We turn now to decreaseKey(h,k) which decreases the key value at a handle h
to k. Of course, k must not be larger than the old key stored with h. Decreasing the

134 6 Priority Queues

Class Handle = Pointer to PQItem

Class AddressablePQ
minPtr : Handle // root that stores the minimum
roots : Set of Handle // pointers to tree roots

roots
minPtr

Function min return element stored at minPtr

Procedure link(a,b : Handle)
assert a ≤ b
remove b from roots
make a the parent of b //

b a a

b

Procedure combine(a,b : Handle)
assert a and b are tree roots
if a ≤ b then link(a,b) else link(b,a)

Procedure newTree(h : Handle)
roots := roots∪{h}
if ∗h < min then minPtr :=h

Procedure cut(h : Handle)
remove the subtree rooted at h from its tree //

h

h
newTree(h)

Function insert(e : Element) : Handle
i:=a Handle for a new PQItem storing e
newTree(i)
return i

Function deleteMin : Element
e:= the Element stored in minPtr
foreach child h of the root at minPtr do cut(h) //

e

dispose minPtr
perform some rebalancing and update minPtr // uses combine
return e

Procedure decreaseKey(h : Handle, k : Key)
change the key of h to k
if h is not a root then

cut(h); possibly perform some rebalancing

Procedure remove(h : Handle) decreaseKey(h,−∞); deleteMin

Procedure merge(o : AddressablePQ)
if ∗minPtr > ∗(o.minPtr) then minPtr :=o.minPtr
roots := roots∪o.roots
o.roots := /0; possibly perform some rebalancing

Fig. 6.3. Addressable priority queues

1 4

785 3

0

Fig. 6.4. A heap-ordered forest representing the set {0,1,3,4,5,7,8}

6.2 Addressable Priority Queues 135

key associated with h may destroy the heap property because h may now be smaller
than its parent. In order to maintain the heap property, we cut the subtree rooted at
h and turn h into a root. This sounds simple enough, but may create highly skewed
trees. Therefore, some variants of addressable priority queues perform additional
operations to keep the trees in shape.

The remaining operations are easy. We can remove an item from the queue by
first decreasing its key so that it becomes the minimum item in the queue, and then
perform a deleteMin. To merge a queue o into another queue we compute the union of
roots and o.roots. To update minPtr, it suffices to compare the minima of the merged
queues. If the root sets are represented by linked lists, and no additional balancing is
done, a merge needs only constant time.

In the remainder of this section we shall discuss particular implementations of
addressable priority queues.

6.2.1 Pairing Heaps

Pairing heaps [67] use a very simple technique for rebalancing. Pairing heaps are
efficient in practice; however a full theoretical analysis is missing. They rebalance
only in deleteMin. If 〈r1, . . . ,rk〉 is the sequence of root nodes stored in roots, then
deleteMin combines r1 with r2, r3 with r4, etc., i.e., the roots are paired. Figure 6.5
gives an example.

cab f ed g

b d

a

f

gec
roots roots

≤ ≥≥

Fig. 6.5. The deleteMin operation for pairing heaps combines pairs of root nodes

Exercise 6.9 (three-pointer items). Explain how to implement pairing heaps using
three pointers per heap item i: one to the oldest child (i.e., the child linked first to i),
one to the next younger sibling (if any), and one to the next older sibling. If there is
no older sibling, the third pointer goes to the parent. Figure 6.8 gives an example.

*Exercise 6.10 (two-pointer items). Explain how to implement pairing heaps using
two pointers per heap item: one to the oldest child and one to next younger sibling.
If there is no younger sibling, the second pointer goes to the parent. Figure 6.8 gives
an example.

6.2.2 *Fibonacci Heaps

Fibonacci heaps [68] use more intensive balancing operations than do pairing heaps.
This paves the way to a theoretical analysis. In particular, we obtain logarithmic

136 6 Priority Queues

feg

roots
ab

ba
c

g d ab

b

a

f

dc

b

dcgedc

c

f

e a

Fig. 6.6. An example of the development of the bucket array during execution of deleteMin
for a Fibonacci heap. The arrows indicate the roots scanned. Note that scanning d leads to a
cascade of three combine operations

amortized time for remove and deleteMin and worst-case constant time for all other
operations.

Each item of a Fibonacci heap stores four pointers that identify its parent, one
child, and two siblings (see Fig. 6.8). The children of each node form a doubly linked
circular list using the sibling pointers. The sibling pointers of the root nodes can be
used to represent roots in a similar way. Parent pointers of roots and child pointers
of leaf nodes have a special value, for example, a null pointer.

In addition, every heap item contains a field rank. The rank of an item is the
number of its children. In Fibonacci heaps, deleteMin links roots of equal rank r.
The surviving root will then obtain a rank of r + 1. An efficient method to combine
trees of equal rank is as follows. Let maxRank be an upper bound on the maximal
rank of any node. We shall prove below that maxRank is logarithmic in n. Maintain a
set of buckets, initially empty and numbered from 0 to maxRank. Then scan the list
of old and new roots. When scanning a root of rank i, inspect the i-th bucket. If the
i-th bucket is empty, then put the root there. If the bucket is nonempty, then combine
the two trees into one. This empties the i-th bucket and creates a root of rank i + 1.
Treat this root in the same way, i.e., try to throw it into the i + 1-th bucket. If it is
occupied, combine When all roots have been processed in this way, we have a
collection of trees whose roots have pairwise distinct ranks (see Figure 6.6).

A deleteMin can be very expensive if there are many roots. For example, a
deleteMin following n insertions has a cost Ω(n). However, in an amortized sense,
the cost of deletemin is O(maxRank). The reader must be familiar with the technique
of amortized analysis (see Sect. 3.3) before proceeding further. For the amortized
analysis, we postulate that each root holds one token. Tokens pay for a constant
amount of computing time.

Lemma 6.2. The amortized complexity of deleteMin is O(maxRank).

Proof. A deleteMin first calls newTree at most maxRank times (since the degree
of the old minimum is bounded by maxRank) and then initializes an array of size
maxRank. Thus its running time is O(maxRank) and it needs to create maxRank new
tokens. The remaining time is proportional to the number of combine operations
performed. Each combine turns a root into a nonroot and is paid for by the token
associated with the node turning into a nonroot. �

6.2 Addressable Priority Queues 137

How can we guarantee that maxRank stays small? Let us consider a simple sit-
uation first. Suppose that we perform a sequence of insertions followed by a one
deleteMin. In this situation, we start with a certain number of single-node trees and
all trees formed by combining are binomial trees, as shown in Fig. 6.7. The binomial
tree B0 consists of a single node, and the binomial tree Bi+1 is obtained by combin-
ing two copies of Bi. This implies that the root of Bi has rank i and that Bi contains
exactly 2i nodes. Thus the rank of a binomial tree is logarithmic in the size of the
tree.

B0

B1

B2

B3

B4 B5

Fig. 6.7. The binomial trees of ranks zero to five

B3

binomial heaps
pairing heaps

3 pointers:

Fibonacci heaps
4 pointers:

Exercise 6.10
2 pointers:,

Fig. 6.8. Three ways to represent trees of nonuniform degree. The binomial tree of rank three,
B3, is used as an example

Unfortunately, decreaseKey may destroy the nice structure of binomial trees.
Suppose an item v is cut out. We now have to decrease the rank of its parent w. The
problem is that the size of the subtrees rooted at the ancestors of w has decreased
but their rank has not changed, and hence we can no longer claim that the size of
a tree stays exponential in the rank of its root. Therefore, we have to perform some
rebalancing to keep the trees in shape. An old solution [202] is to keep all trees in
the heap binomial. However, this causes logarithmic cost for a decreaseKey.

*Exercise 6.11 (binomial heaps). Work out the details of this idea. Hint: cut the
following links. For each ancestor of v and for v itself, cut the link to its parent. For

138 6 Priority Queues

✖

de
cr

ea
se

K
ey

(
,6

)

✖

✖

✖

de
cr

ea
se

K
ey

(
,4

)

de
cr

ea
se

K
ey

(
,2

)

1

3

5

7

9 8

3

5

7

9

6

3

7 5 6 5 27141461

Fig. 6.9. An example of cascading cuts. Marks are drawn as crosses. Note that roots are never
marked

each sibling of v of rank higher than v, cut the link to its parent. Argue that the trees
stay binomial and that the cost of decreaseKey is logarithmic.

Fibonacci heaps allow the trees to go out of shape but in a controlled way. The
idea is surprisingly simple and was inspired by the amortized analysis of binary
counters (see Sect. 3.2.3). We introduce an additional flag for each node. A node may
be marked or not. Roots are never marked. In particular, when newTree(h) is called
in deleteMin, it removes the mark from h (if any). Thus when combine combines two
trees into one, neither node is marked.

When a nonroot item x loses a child because decreaseKey has been applied to
the child, x is marked; this assumes that x is not already marked. Otherwise, when
x was already marked, we cut x, remove the mark from x, and attempt to mark x’s
parent. If x’s parent is already marked, then This technique is called cascading
cuts. In other words, suppose that we apply decreaseKey to an item v and that the
k nearest ancestors of v are marked. We turn v and the k nearest ancestors of v into
roots, unmark them, and mark the k + 1-th nearest ancestor of v (if it is not a root).
Figure 6.9 gives an example. Observe the similarity to carry propagation in binary
addition.

For the amortized analysis, we postulate that each marked node holds two tokens
and each root holds one token. Please check that this assumption does not invalidate
the proof of Lemma 6.2.

Lemma 6.3. The amortized complexity of decreaseKey is constant.

Proof. Assume that we decrease the key of item v and that the k nearest ancestors of
v are marked. Here, k ≥ 0. The running time of the operation is O(1+ k). Each of the
k marked ancestors carries two tokens, i.e., we have a total of 2k tokens available.
We create k +1 new roots and need one token for each of them. Also, we mark one
unmarked node and need two tokens for it. Thus we need a total of k + 3 tokens.
In other words, k − 3 tokens are freed. They pay for all but O(1) of the cost of
decreaseKey. Thus the amortized cost of decreaseKey is constant. �

How do cascading cuts affect the size of trees? We shall show that it stays ex-
ponential in the rank of the root. In order to do so, we need some notation. Recall

6.3 *External Memory 139

the sequence 0, 1, 1, 2, 3, 5, 8, . . . of Fibonacci numbers. These are defined by the
recurrence F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 for i ≥ 2. It is well known that
Fi+1 ≥ ((1+

√
5)/2)i ≥ 1.618i for all i ≥ 0.

Exercise 6.12. Prove that Fi+2 ≥ ((1+
√

5)/2)i ≥ 1.618i for all i ≥ 0 by induction.

Lemma 6.4. Let v be any item in a Fibonacci heap and let i be the rank of v. The
subtree rooted at v then contains at least Fi+2 nodes. In a Fibonacci heap with n
items, all ranks are bounded by 1.4404logn.

Proof. Consider an arbitrary item v of rank i. Order the children of v by the time at
which they were made children of v. Let w j be the j-th child, 1 ≤ j ≤ i. When w j

was made a child of v, both nodes had the same rank. Also, since at least the nodes
w1, . . . ,w j−1 were children of v at that time, the rank of v was at least j−1 then. The
rank of w j has decreased by at most 1 since then, because otherwise w j would no
longer be a child of v. Thus the current rank of w j is at least j−2.

We can now set up a recurrence for the minimal number Si of nodes in a tree
whose root has rank i. Clearly, S0 = 1, S1 = 2, and Si ≥ 2 + S0 + S1 + · · ·+ Si−2.
The latter inequality follows from the fact that for j ≥ 2, the number of nodes in
the subtree with root w j is at least S j−2, and that we can also count the nodes v and
w1. The recurrence above (with = instead of ≥) generates the sequence 1, 2, 3, 5, 8,
. . . which is identical to the Fibonacci sequence (minus its first two elements).

Let us verify this by induction. Let T0 = 1, T1 = 2, and Ti = 2 + T0 + · · ·+ Ti−2

for i ≥ 2. Then, for i ≥ 2, Ti+1 −Ti = 2+T0 + · · ·+Ti−1 −2−T0 −·· ·−Ti−2 = Ti−1,
i.e., Ti+1 = Ti +Ti−1. This proves Ti = Fi+2.

For the second claim, we observe that Fi+2 ≤ n implies i · log((1 +
√

5)/2) ≤
logn, which in turn implies i ≤ 1.4404logn. �

This concludes our treatment of Fibonacci heaps. We have shown the following
result.

Theorem 6.5. The following time bounds hold for Fibonacci heaps: min, insert, and
merge take worst-case constant time; decreaseKey takes amortized constant time,
and remove and deleteMin take an amortized time logarithmic in the size of the
queue.

Exercise 6.13. Describe a variant of Fibonacci heaps where all roots have distinct
ranks.

6.3 *External Memory

We now go back to nonaddressable priority queues and consider their cache effi-
ciency and I/O efficiency. A weakness of binary heaps is that the siftDown operation
goes down the tree in an unpredictable fashion. This leads to many cache faults and
makes binary heaps prohibitively slow when they do not fit into the main memory.

140 6 Priority Queues

We now outline a data structure for (nonadressable) priority queues with more regu-
lar memory accesses. It is also a good example of a generally useful design principle:
construction of a data structure out of simpler, known components and algorithms.

In this case, the components are internal-memory priority queues, sorting, and
multiway merging (see also Sect. 5.7.1). Figure 6.10 depicts the basic design. The
data structure consists of two priority queues Q and Q′ (e.g., binary heaps) and k
sorted sequences S1, . . . , Sk. Each element of the priority queue is stored either in
the insertion queue Q, in the deletion queue Q′, or in one of the sorted sequences.
The size of Q is limited to a parameter m. The deletion queue Q′ stores the small-
est element of each sequence, together with the index of the sequence holding the
element.

New elements are inserted into the insertion queue. If the insertion queue is full,
it is first emptied. In this case, its elements form a new sorted sequence:

Procedure insert(e : Element)
if |Q| = m then

k++; Sk := sort(Q); Q := /0; Q′.insert((Sk.popFront,k))
Q.insert(e)

The minimum is stored either in Q or in Q′. If the minimum is in Q′ and comes
from sequence Si, the next largest element of Si is inserted into Q′:

Function deleteMin
if minQ ≤ minQ′ then e :=Q.deleteMin // assume min /0 = ∞
else (e, i) :=Q′.deleteMin

if Si �= 〈〉 then Q′.insert((Si.popFront, i))
return e

It remains to explain how the ingredients of our data structure are mapped to the
memory hierarchy. The queues Q and Q′ are stored in internal memory. The size
bound m for Q should be a constant fraction of the internal-memory size M and a
multiple of the block size B. The sequences Si are largely kept externally. Initially,
only the B smallest elements of Si are kept in an internal-memory buffer bi. When
the last element of bi is removed, the next B elements of Si are loaded. Note that we
are effectively merging the sequences Si. This is similar to our multiway merging

...

S1 S2 Sk

Q′

Q

B m

ex
te

rn
al

so
rt

insert

min

Fig. 6.10. Schematic view of an external-memory priority queue

6.4 Implementation Notes 141

algorithm described in Sect. 5.7.1. Each inserted element is written to disk at most
once and fetched back to internal memory at most once. Since all disk accesses are
in units of at least a full block, the I/O requirement of our algorithm is at most n/B
for n queue operations.

Our total requirement for internal memory is at most m+ kB+2k. This is below
the total fast-memory size M if m = M/2 and k ≤ �(M/2−2k)/B� ≈ M/(2B). If
there are many insertions, the internal memory may eventually overflow. However,
the earliest this can happen is after m(1 + �(M/2−2k)/B�) ≈ M2/(4B) insertions.
For example, if we have 1 Gbyte of main memory, 8-byte elements, and 512 Kbyte
disk blocks, we have M = 227 and B = 216 (measured in elements). We can then
perform about 236 insertions – enough for 128 Gbyte of data. Similarly to external
mergesort, we can handle larger amounts of data by performing multiple phases of
multiway merging (see, [31, 164]). The data structure becomes considerably more
complicated, but it turns out that the I/O requirement for n insertions and deletions
is about the same as for sorting n elements. An implementation of this idea is two
to three times faster than binary heaps for the hierarchy between cache and main
memory [164]. There are also implementations for external memory [48].

6.4 Implementation Notes

There are various places where sentinels (see Chap. 3) can be used to simplify or
(slightly) accelerate the implementation of priority queues. Since sentinels may re-
quire additional knowledge about key values, this could make a reusable implemen-
tation more difficult, however.

• If h[0] stores a Key no larger than any Key ever inserted into a binary heap, then
siftUp need not treat the case i = 1 in a special way.

• If h[n+1] stores a Key no smaller than any Key ever inserted into a binary heap,
then siftDown need not treat the case 2i + 1 > n in a special way. If such large
keys are stored in h[n+1..2n+1], then the case 2i > n can also be eliminated.

• Addressable priority queues can use a special dummy item rather than a null
pointer.

For simplicity we have formulated the operations siftDown and siftUp for binary
heaps using recursion. It might be a little faster to implement them iteratively instead.
Similarly, the swap operations could be replaced by unidirectional move operations
thus halving the number of memory accesses.

Exercise 6.14. Give iterative versions of siftDown and siftUp. Also replace the swap
operations.

Some compilers do the recursion elimination for you.
As for sequences, memory management for items of addressable priority queues

can be critical for performance. Often, a particular application may be able to do this
more efficiently than a general-purpose library. For example, many graph algorithms
use a priority queue of nodes. In this case, items can be incorporated into nodes.

142 6 Priority Queues

There are priority queues that work efficiently for integer keys. It should be noted
that these queues can also be used for floating-point numbers. Indeed, the IEEE
floating-point standard has the interesting property that for any valid floating-point
numbers a and b, a ≤ b if and only if bits(a) ≤ bits(b), where bits(x) denotes the
reinterpretation of x as an unsigned integer.

6.4.1 C++

The STL class priority_queue offers nonaddressable priority queues implemented
using binary heaps. The external-memory library STXXL [48] offers an external-
memory priority queue. LEDA [118] implements a wide variety of addressable pri-
ority queues, including pairing heaps and Fibonacci heaps.

6.4.2 Java

The class java.util.PriorityQueue supports addressable priority queues to the extent
that remove is implemented. However, decreaseKey and merge are not supported.
Also, it seems that the current implementation of remove needs time Θ(n)! JDSL [78]
offers an addressable priority queue jdsl.core.api.PriorityQueue, which is currently
implemented as a binary heap.

6.5 Historical Notes and Further Findings

There is an interesting Internet survey1 of priority queues. It lists the following appli-
cations: (shortest-) path planning (see Chap. 10), discrete-event simulation, coding
and compression, scheduling in operating systems, computing maximum flows, and
branch-and-bound (see Sect. 12.4).

In Sect. 6.1 we saw an implementation of deleteMin by top-down search that
needs about 2 logn element comparisons, and a variant using binary search that needs
only logn+O(log logn) element comparisons. The latter is mostly of theoretical in-
terest. Interestingly, a very simple “bottom-up” algorithm can be even better: The old
minimum is removed and the resulting hole is sifted down all the way to the bottom
of the heap. Only then, the rightmost element fills the hole and is subsequently sifted
up. When used for sorting, the resulting Bottom-up heapsort requires 3

2 n logn+O(n)
comparisons in the worst case and n logn+O(1) in the average case [204, 61, 169].
While bottom-up heapsort is simple and practical, our own experiments indicate that
it is not faster than the usual top-down variant (for integer keys). This surprised
us. The explanation might be that the outcomes of the comparisons saved by the
bottom-up variant are easy to predict. Modern hardware executes such predictable
comparisons very efficiently (see [167] for more discussion).

The recursive buildHeap routine in Exercise 6.6 is an example of a cache-
oblivious algorithm [69]. This algorithm is efficient in the external-memory model
even though it does not explicitly use the block size or cache size.

1 http://www.leekillough.com/heaps/survey_results.html

http://www.leekillough.com/heaps/survey_results.html

6.5 Historical Notes and Further Findings 143

Pairing heaps [67] have constant amortized complexity for insert and merge [96]
and logarithmic amortized complexity for deleteMin. The best analysis is that due to
Pettie [154]. Fredman [65] has given operation sequences consisting of O(n) inser-
tions and deleteMins and O(n logn) decreaseKeys that require time Ω(n logn log logn)
for a family of addressable priority queues that includes all previously proposed vari-
ants of pairing heaps.

The family of addressable priority queues is large. Vuillemin [202] introduced
binomial heaps, and Fredman and Tarjan [68] invented Fibonacci heaps. Høyer [94]
described additional balancing operations that are akin to the operations used for
search trees. One such operation yields thin heaps [103], which have performance
guarantees similar to Fibonacci heaps and do without parent pointers and mark bits.
It is likely that thin heaps are faster in practice than Fibonacci heaps. There are
also priority queues with worst-case bounds asymptotically as good as the amortized
bounds that we have seen for Fibonacci heaps [30]. The basic idea is to tolerate
violations of the heap property and to continuously invest some work in reducing
these violations. Another interesting variant is fat heaps [103].

Many applications need priority queues for integer keys only. For this special
case, there are more efficient priority queues. The best theoretical bounds so far are
constant time for decreaseKey and insert and O(log logn) time for deleteMin [193,
136]. Using randomization, the time bound can even be reduced to O

(√
log logn

)

[85]. The algorithms are fairly complex. However, integer priority queues that also
have the monotonicity property can be simple and practical. Section 10.3 gives exam-
ples. Calendar queues [33] are popular in the discrete-event simulation community.
These are a variant of the bucket queues described in Sect. 10.5.1.

7

Sorted Sequences

All of us spend a significant part of our time on searching, and so do computers:
they look up telephone numbers, balances of bank accounts, flight reservations, bills
and payments, In many applications, we want to search dynamic collections of
data. New bookings are entered into reservation systems, reservations are changed or
cancelled, and bookings turn into actual flights. We have already seen one solution
to the problem, namely hashing. It is often desirable to keep a dynamic collection
sorted. The “manual data structure” used for this purpose is a filing-card box. We
can insert new cards at any position, we can remove cards, we can go through the
cards in sorted order, and we can use some kind of binary search to find a particular
card. Large libraries used to have filing-card boxes with hundreds of thousands of
cards.1

Formally, we want to maintain a sorted sequence, i.e. a sequence of Elements
sorted by their Key value, under the following operations:

• M.locate(k : Key): return min{e ∈ M : e ≥ k}.
• M.insert(e : Element): M :=M∪{e}.
• M.remove(k : Key): M :=M \{e ∈ M : key(e) = k}.

Here, M is the set of elements stored in the sequence. For simplicity, we assume
that the elements have pairwise distinct keys. We shall reconsider this assumption
in Exercise 7.10. We shall show that these operations can be implemented to run in
time O(logn), where n denotes the size of the sequence. How do sorted sequences
compare with the data structures known to us from previous chapters? They are more
flexible than sorted arrays, because they efficiently support insert and remove. They
are slower but also more powerful than hash tables, since locate also works when
there is no element with key k in M. Priority queues are a special case of sorted
sequences; they can only locate and remove the smallest element.

Our basic realization of a sorted sequence consists of a sorted doubly linked list
with an additional navigation data structure supporting locate. Figure 7.1 illustrates
this approach. Recall that a doubly linked list for n elements consists of n+1 items,

1 The above photograph is from the catalogue of the University of Graz (Dr. M. Gossler).

146 7 Sorted Sequences

2 195 73 11 13 17

navigation data structure

∞

Fig. 7.1. A sorted sequence as a doubly linked list plus a navigation data structure

one for each element and one additional “dummy item”. We use the dummy item
to store a special key value +∞ which is larger than all conceivable keys. We can
then define the result of locate(k) as the handle to the smallest list item e ≥ k. If
k is larger than all keys in M, locate will return a handle to the dummy item. In
Sect. 3.1.1, we learned that doubly linked lists support a large set of operations; most
of them can also be implemented efficiently for sorted sequences. For example, we
“inherit” constant-time implementations for first, last, succ, and pred. We shall see
constant-amortized-time implementations for remove(h : Handle), insertBefore, and
insertAfter, and logarithmic-time algorithms for concatenating and splitting sorted
sequences. The indexing operator [·] and finding the position of an element in the
sequence also take logarithmic time. Before we delve into a description of the navi-
gation data structure, let us look at some concrete applications of sorted sequences.

Best-first heuristics. Assume that we want to pack some items into a set of bins. The
items arrive one at a time and have to be put into a bin immediately. Each item i has
a weight w(i), and each bin has a maximum capacity. The goal is to minimize the
number of bins used. One successful heuristic solution to this problem is to put item i
into the bin that fits best, i.e., the bin whose remaining capacity is the smallest among
all bins that have a residual capacity at least as large as w(i) [41]. To implement this
algorithm, we can keep the bins in a sequence q sorted by their residual capacity. To
place an item, we call q.locate(w(i)), remove the bin that we have found, reduce its
residual capacity by w(i), and reinsert it into q. See also Exercise 12.8.

Sweep-line algorithms. Assume that you have a set of horizontal and vertical line
segments in the plane and want to find all points where two segments intersect. A
sweep-line algorithm moves a vertical line over the plane from left to right and main-
tains the set of horizontal lines that intersect the sweep line in a sorted sequence q.
When the left endpoint of a horizontal segment is reached, it is inserted into q, and
when its right endpoint is reached, it is removed from q. When a vertical line segment
is reached at a position x that spans the vertical range [y,y′], we call s.locate(y) and
scan q until we reach the key y′.2 All horizontal line segments discovered during this
scan define an intersection. The sweeping algorithm can be generalized to arbitrary
line segments [21], curved objects, and many other geometric problems [46].

2 This range query operation is also discussed in Sect. 7.3.

7.1 Binary Search Trees 147

Database indexes. A key problem in databases is to make large collections of data
efficiently searchable. A variant of the (a,b)-tree data structure described in Sect. 7.2
is one of the most important data structures used for databases.

The most popular navigation data structure is that of search trees. We shall fre-
quently use the name of the navigation data structure to refer to the entire sorted
sequence data structure.3 We shall introduce search tree algorithms in three steps. As
a warm-up, Sect. 7.1 introduces (unbalanced) binary search trees that support locate
in O(logn) time under certain favorable circumstances. Since binary search trees are
somewhat difficult to maintain under insertions and removals, we then switch to a
generalization, (a,b)-trees that allows search tree nodes of larger degree. Section 7.2
explains how (a,b)-trees can be used to implement all three basic operations in log-
arithmic worst-case time. In Sects. 7.3 and 7.5, we shall augment search trees with
additional mechanisms that support further operations. Section 7.4 takes a closer
look at the (amortized) cost of update operations.

7.1 Binary Search Trees

Navigating a search tree is a bit like asking your way around in a foreign city. You
ask a question, follow the advice given, ask again, follow the advice again, . . . , until
you reach your destination.

A binary search tree is a tree whose leaves store the elements of a sorted sequence
in sorted order from left to right. In order to locate a key k, we start at the root of
the tree and follow the unique path to the appropriate leaf. How do we identify the
correct path? To this end, the interior nodes of a search tree store keys that guide the
search; we call these keys splitter keys. Every nonleaf node in a binary search tree
with n ≥ 2 leaves has exactly two children, a left child and a right child. The splitter
key s associated with a node has the property that all keys k stored in the left subtree
satisfy k ≤ s and all keys k stored in the right subtree satisfy k > s.

With these definitions in place, it is clear how to identify the correct path when
locating k. Let s be the splitter key of the current node. If k ≤ s, go left. Otherwise,
go right. Figure 7.2 gives an example. Recall that the height of a tree is the length
of its longest root–leaf path. The height therefore tells us the maximum number of
search steps needed to locate a leaf.

Exercise 7.1. Prove that a binary search tree with n ≥ 2 leaves can be arranged such
that it has height �logn�.

A search tree with height �logn� is called perfectly balanced. The resulting loga-
rithmic search time is a dramatic improvement compared with the Ω(n) time needed
for scanning a list. The bad news is that it is expensive to keep perfect balance when
elements are inserted and removed. To understand this better, let us consider the
“naive” insertion routine depicted in Fig. 7.3. We locate the key k of the new element
e before its successor e′, insert e into the list, and then introduce a new node v with

3 There is also a variant of search trees where the elements are stored in all nodes of the tree.

148 7 Sorted Sequences

2 5 7 11 133 17 19

191152

133

7

17

∞ rotate left

rotate rightx

x

y

y
A

A BB C

C

Fig. 7.2. Left: the sequence 〈2,3,5,7,11,13,17,19〉 represented by a binary search tree. In
each node, we show the splitter key at the top and the pointers to the children at the bot-
tom. Right: rotation of a binary search tree. The triangles indicate subtrees. Observe that the
ancestor relationship between nodes x and y is interchanged

e′ e′ e′e′ ee

u

u
u

u

TTT T

vv
insert einsert e

Fig. 7.3. Naive insertion into a binary search tree. A triangle indicates an entire subtree

∞∞∞∞

insert 17 insert 13 insert 11

11

11

13
13

1313

17
17

1717

17

1719

19
19

19
19

191919

Fig. 7.4. Naively inserting sorted elements leads to a degenerate tree

left child e and right child e′. The old parent u of e′ now points to v. In the worst
case, every insertion operation will locate a leaf at the maximum depth so that the
height of the tree increases every time. Figure 7.4 gives an example: the tree may
degenerate to a list; we are back to scanning.

An easy solution to this problem is a healthy portion of optimism; perhaps it will
not come to the worst. Indeed, if we insert n elements in random order, the expected
height of the search tree is ≈ 2.99logn [51]. We shall not prove this here, but outline
a connection to quicksort to make the result plausible. For example, consider how
the tree in Fig. 7.2 can be built using naive insertion. We first insert 17; this splits
the set into subsets {2,3,5,7,11,13} and {19}. From the elements in the left subset,

7.2 (a,b)-Trees and Red–Black Trees 149

we first insert 7; this splits the left subset into {2,3,5} and {11,13}. In quicksort
terminology, we would say that 17 is chosen as the splitter in the top-level call and
that 7 is chosen as the splitter in the left recursive call. So building a binary search tree
and quicksort are completely analogous processes; the same comparisons are made,
but at different times. Every element of the set is compared with 17. In quicksort,
these comparisons take place when the set is split in the top-level call. In building
a binary search tree, these comparisons take place when the elements of the set are
inserted. So the comparison between 17 and 11 takes place either in the top-level
call of quicksort or when 11 is inserted into the tree. We have seen (Theorem 5.6)
that the expected number of comparisons in a randomized quicksort of n elements
is O(n logn). By the above correspondence, the expected number of comparisons in
building a binary tree by random insertions is also O(n logn). Thus any insertion
requires O(logn) comparisons on average. Even more is true; with high probability
each single insertion requires O(logn) comparisons, and the expected height is ≈
2.99logn.

Can we guarantee that the height stays logarithmic in the worst case? Yes and
there are many different ways to achieve logarithmic height. We shall survey these
techniques in Sect. 7.7 and discuss two solutions in detail in Sect. 7.2. We shall
first discuss a solution which allows nodes of varying degree, and then show how to
balance binary trees using rotations.

Exercise 7.2. Figure 7.2 indicates how the shape of a binary tree can be changed by
a transformation called rotation. Apply rotations to the tree in Fig. 7.2 so that the
node labelled 11 becomes the root of the tree.

Exercise 7.3. Explain how to implement an implicit binary search tree, i.e., the tree is
stored in an array using the same mapping of the tree structure to array positions as in
the binary heaps discussed in Sect. 6.1. What are the advantages and disadvantages
compared with a pointer-based implementation? Compare searching in an implicit
binary tree with binary searching in a sorted array.

7.2 (a,b)-Trees and Red–Black Trees

An (a,b)-tree is a search tree where all interior nodes, except for the root, have
an outdegree between a and b. Here, a and b are constants. The root has degree
one for a trivial tree with a single leaf. Otherwise, the root has a degree between 2
and b. For a ≥ 2 and b ≥ 2a− 1, the flexibility in node degrees allows us to effi-
ciently maintain the invariant that all leaves have the same depth, as we shall see
in a short while. Consider a node with outdegree d. With such a node, we associate
an array c[1..d] of pointers to children and a sorted array s[1..d −1] of d −1 splitter
keys. The splitters guide the search. To simplify the notation, we additionally define
s[0] = −∞ and s[d] = ∞. The keys of the elements e contained in the i-th child c[i],
1 ≤ i ≤ d, lie between the i− 1-th splitter (exclusive) and the i-th splitter (inclu-
sive), i.e., s[i−1] < key(e) ≤ s[i]. Figure 7.5 shows a (2,4)-tree storing the sequence
〈2,3,5,7,11,13,17,19〉.

150 7 Sorted Sequences

2 195 73 11 13 17

5

2 3 19

17

7 11 13

∞

r

�
he

ig
ht

=
2

Fig. 7.5. Representation of 〈2,3,5,7,11,13,17,19〉 by a (2,4)-tree. The tree has height 2

Class ABHandle : Pointer to ABItem or Item
// an ABItem (Item) is an item in the navigation data structure (doubly linked list)

Class ABItem(splitters : Sequence of Key, children : Sequence of ABHandle)
d = |children| : 1..b // outdegree
s = splitters : Array [1..b−1] of Key
c = children : Array [1..b] of Handle

Function locateLocally(k : Key) : N
return min{i ∈ 1..d : k ≤ s[i]}

Function locateRec(k : Key, h : N) : Handle
i:=locateLocally(k)
if h = 1 then return c[i]
else return c[i]→locateRec(k, h−1) //

7 11 13

13

1 2 4

12

3
i

k = 12

h = 1 h > 1

Class ABTree(a ≥ 2 : N, b ≥ 2a−1 : N) of Element
� = 〈〉 : List of Element
r : ABItem(〈〉,〈�.head〉)
height = 1 : N //

r

�
∞

// Locate the smallest Item with key k′ ≥ k
Function locate(k : Key) : Handle return r.locateRec(k,height)

Fig. 7.6. (a,b)-trees. An ABItem is constructed from a sequence of keys and a sequence of
handles to the children. The outdegree is the number of children. We allocate space for the
maximum possible outdegree b. There are two functions local to ABItem: locateLocally(k)
locates k among the splitters and locateRec(k,h) assumes that the ABItem has height h and
descends h levels down the tree. The constructor for ABTree creates a tree for the empty
sequence. The tree has a single leaf, the dummy element, and the root has degree one. Locating
a key k in an (a,b)-tree is solved by calling r.locateRec(k,h), where r is the root and h is the
height of the tree

Lemma 7.1. An (a,b)-tree for n elements has a height at most

1+
⌊

loga
n+1

2

⌋
.

7.2 (a,b)-Trees and Red–Black Trees 151

Proof. The tree has n+1 leaves, where the “+1” accounts for the dummy leaf +∞.
If n = 0, the root has degree one and there is a single leaf. So, assume n ≥ 1. Let h
be the height of the tree. Since the root has degree at least two and every other node
has degree at least a, the number of leaves is at least 2ah−1. So n + 1 ≥ 2ah−1, or
h ≤ 1+ loga(n+1)/2. Since the height is an integer, the bound follows. �

Exercise 7.4. Prove that the height of an (a,b)-tree for n elements is at least
�logb(n+1)�. Prove that this bound and the bound given in Lemma 7.1 are tight.

Searching in an (a,b)-tree is only slightly more complicated than searching in a
binary tree. Instead of performing a single comparison at a nonleaf node, we have to
find the correct child among up to b choices. Using binary search, we need at most
�logb� comparisons for each node on the search path. Figure 7.6 gives pseudocode
for (a,b)-trees and the locate operation. Recall that we use the search tree as a way to
locate items of a doubly linked list and that the dummy list item is considered to have
key value ∞. This dummy item is the rightmost leaf in the search tree. Hence, there
is no need to treat the special case of root degree 0, and the handle of the dummy
item can serve as a return value when one is locating a key larger than all values in
the sequence.

Exercise 7.5. Prove that the total number of comparisons in a search is bounded by
�logb�(1 + loga(n + 1)/2). Assume b ≤ 2a. Show that this number is O(logb) +
O(logn). What is the constant in front of the logn term?

To insert an element e, we first descend the tree recursively to find the smallest
sequence element e′ ≥ e. If e and e′ have equal keys, e′ is replaced by e.

Otherwise, e is inserted into the sorted list � before e′. If e′ was the i-th child
c[i] of its parent node v, then e will become the new c[i] and key(e) becomes the
corresponding splitter element s[i]. The old children c[i..d] and their corresponding
splitters s[i..d−1] are shifted one position to the right. If d was less than b, d can be
incremented and we are finished.

The difficult part is when a node v already has a degree d = b and now would
get a degree b + 1. Let s′ denote the splitters of this illegal node, c′ its children, and

c1c1 c2c2 c3c3 c4c4 c5c5

u u

vv t

k

k

Fig. 7.7. Node splitting: the node v of degree b + 1 (here 5) is split into a node of degree
�(b+1)/2� and a node of degree �(b+1)/2�. The degree of the parent increases by one. The
splitter key separating the two “parts” of v is moved to the parent

152 7 Sorted Sequences

// Example:

5

2 3 12

122

3

5

5

2 3

2 53

5122

2 3 12

5

∞

∞

∞
r

r

r

k=3,t =

// 〈2,3,5〉.insert(12)
Procedure ABTree::insert(e : Element)

(k, t) := r.insertRec(e,height, �)
if t �= null then // root was split

r :=allocate ABItem(〈k〉,〈r, t〉)
height++

// Insert a new element into a subtree of height h.
// If this splits the root of the subtree,
// return the new splitter and subtree handle
Function ABItem::insertRec(e : Element, h : N, � : List of Element) : Key×ABHandle

i := locateLocally(e)
if h = 1 then // base case

if key(c[i]→ e) = key(e) then
c[i]→ e := e
return (⊥,null)

else
(k, t) :=(key(e), �.insertBefore(e,c[i])) //

2 3 5

2 3 5 12

∞

∞
e c[i]

c[i]

else
(k, t) := c[i]→ insertRec(e,h−1, �)
if t = null then return (⊥,null)

endif

s′ := 〈s[1], . . . ,s[i−1],k,s[i], . . . ,s[d −1]〉
c′ := 〈c[1], . . . ,c[i−1], t,c[i], . . . ,c[d]〉 //

5

5

2 3 12

2 3

t

∞

s′

c′
12 = k

if d < b then // there is still room here
(s,c,d) :=(s′,c′,d +1)
return (⊥,null)

else // split this node
d := �(b+1)/2�
s := s′[b+2−d..b]
c := c′[b+2−d..b+1] //

5

5

2

2 3 12

12

return(3,)

∞

s
c

return (s′[b+1−d],allocate ABItem(s′[1..b−d],c′[1..b+1−d]))

Fig. 7.8. Insertion into an (a,b)-tree

u the parent of v (if it exists). The solution is to split v in the middle (see Fig. 7.7).
More precisely, we create a new node t to the left of v and reduce the degree of v
to d = �(b+1)/2� by moving the b + 1− d leftmost child pointers c′[1..b + 1− d]
and the corresponding keys s′[1..b− d]. The old node v keeps the d rightmost child
pointers c′[b+2−d..b+1] and the corresponding splitters s′[b+2−d..b].

7.2 (a,b)-Trees and Red–Black Trees 153

The “leftover” middle key k = s′[b+1−d] is an upper bound for the keys reach-
able from t. It and the pointer to t are needed in the predecessor u of v. The situation
for u is analogous to the situation for v before the insertion: if v was the i-th child
of u, t displaces it to the right. Now t becomes the i-th child, and k is inserted as the
i-th splitter. The addition of t as an additional child of u increases the degree of u. If
the degree of u becomes b + 1, we split u. The process continues until either some
ancestor of v has room to accommodate the new child or the root is split.

In the latter case, we allocate a new root node pointing to the two fragments of
the old root. This is the only situation where the height of the tree can increase. In this
case, the depth of all leaves increases by one, i.e., we maintain the invariant that all
leaves have the same depth. Since the height of the tree is O(logn) (see Lemma 7.1),
we obtain a worst-case execution time of O(logn) for insert. Pseudocode is shown
in Fig. 7.8.4

We still need to argue that insert leaves us with a correct (a,b)-tree. When we
split a node of degree b+1, we create nodes of degree d = �(b+1)/2� and b+1−d.
Both degrees are clearly at most b. Also, b + 1 − �(b+1)/2� ≥ a if b ≥ 2a − 1.
Convince yourself that b = 2a−2 will not work.

Exercise 7.6. It is tempting to streamline insert by calling locate to replace the initial
descent of the tree. Why does this not work? Would it work if every node had a
pointer to its parent?

We now turn to the operation remove. The approach is similar to what we already
know from our study of insert. We locate the element to be removed, remove it
from the sorted list, and repair possible violations of invariants on the way back up.
Figure 7.9 shows pseudocode. When a parent u notices that the degree of its child
c[i] has dropped to a− 1, it combines this child with one of its neighbors c[i− 1]
or c[i + 1] to repair the invariant. There are two cases illustrated in Fig. 7.10. If the
neighbor has degree larger than a, we can balance the degrees by transferring some
nodes from the neighbor. If the neighbor has degree a, balancing cannot help since
both nodes together have only 2a− 1 children, so that we cannot give a children to
both of them. However, in this case we can fuse them into a single node, since the
requirement b ≥ 2a−1 ensures that the fused node has degree b at most.

To fuse a node c[i] with its right neighbor c[i + 1], we concatenate their child
arrays. To obtain the corresponding splitters, we need to place the splitter s[i] of the
parent between the splitter arrays. The fused node replaces c[i+1], c[i] is deallocated,
and c[i], together with the splitter s[i], is removed from the parent node.

Exercise 7.7. Suppose a node v has been produced by fusing two nodes as de-
scribed above. Prove that the ordering invariant is maintained: an element e reachable
through child v.c[i] has key v.s[i−1] < key(e) ≤ v.s[i] for 1 ≤ i ≤ v.d.

Balancing two neighbors is equivalent to first fusing them and then splitting the
result, as in the operation insert. Since fusing two nodes decreases the degree of their

4 We borrow the notation C :: m from C++ to define a method m for class C.

154 7 Sorted Sequences

// Example: 〈2,3,5〉.remove(5)
Procedure ABTree::remove(k : Key) // 5

2 3

2

3

5

...

∞

r

k
r.removeRec(k,height, �)
if r.d = 1∧height > 1 then

r′ := r; r := r′.c[1]; dispose r′ //
2 3

2 3

∞

r

Procedure ABItem::removeRec(k : Key,h : N, � : List of Element)
i := locateLocally(k)
if h = 1 then // base case

if key(c[i]→ e) = k then // there is sth to remove
�.remove(c[i])
removeLocally(i) //

2

3

2 3

i

∞

r

s
c

else
c[i]→ removeRec(e,h−1, �)
if c[i]→ d < a then // invariant needs repair

if i = d then i-- // make sure i and i+1 are valid neighbors
s′ := concatenate(c[i]→ s,〈s[i]〉,c[i+1]→ s))
c′ := concatenate(c[i]→ c,c[i+1]→ c)
d′ := |c′|
if d′ ≤ b then // fuse

(c[i+1]→ s,c[i+1]→ c,c[i+1]→ d) :=(s′,c′,d′)
dispose c[i]; removeLocally(i) //

2 3

2 3

∞

r
s
c

s′

c′

i

else // balance
m := �d′/2�
(c[i]→ s,c[i]→ c,c[i]→ d) :=(s′[1..m−1],c′[1..m],m)
(c[i+1]→ s, c[i+1]→ c, c[i+1]→ d) :=

(s′[m+1..d′ −1], c′[m+1..d′], d′ −m)
s[i] := s′[m]

// Remove the i-th child from an ABItem
Procedure ABItem::removeLocally(i : N)

c[i..d −1] := c[i+1..d]
s[i..d −2] := s[i+1..d −1] // b c da a c d

zxx zy
i i

c
s

d--

Fig. 7.9. Removal from an (a,b)-tree

parent, the need to fuse or balance might propagate up the tree. If the degree of the
root drops to one, we do one of two things. If the tree has height one and hence
contains only a single element, there is nothing to do and we are finished. Otherwise,
we deallocate the root and replace it by its sole child. The height of the tree decreases
by one.

The execution time of remove is also proportional to the height of the tree and
hence logarithmic in the size of the sorted sequence. We summarize the performance
of (a,b)-trees in the following theorem.

7.2 (a,b)-Trees and Red–Black Trees 155

c1 c1c1 c1 c2 c2c2 c2 c3 c3c3 c3c4 c4

vv v

k1

k1k2

k2 k

k

Fig. 7.10. Node balancing and fusing in (2,4)-trees: node v has degree a− 1 (here 1). In the
situation on the left, it has a sibling of degree a + 1 or more (here 3), and we balance the
degrees. In the situation on the right, the sibling has degree a and we fuse v and its sibling.
Observe how keys are moved. When two nodes are fused, the degree of the parent decreases

or

Fig. 7.11. The correspondence between (2,4)-trees and red–black trees. Nodes of degree 2, 3,
and 4 as shown on the left correspond to the configurations on the right. Red edges are shown
in bold

Theorem 7.2. For any integers a and b with a ≥ 2 and b ≥ 2a−1, (a,b)-trees sup-
port the operations insert, remove, and locate on sorted sequences of size n in time
O(logn).

Exercise 7.8. Give a more detailed implementation of locateLocally based on binary
search that needs at most �logb� comparisons. Your code should avoid both explicit
use of infinite key values and special case treatments for extreme cases.

Exercise 7.9. Suppose a = 2k and b = 2a. Show that (1+ 1
k) logn+1 element com-

parisons suffice to execute a locate operation in an (a,b)-tree. Hint: it is not quite
sufficient to combine Exercise 7.4 with Exercise 7.8 since this would give you an
additional term +k.

Exercise 7.10. Extend (a,b)-trees so that they can handle multiple occurrences of
the same key. Elements with identical keys should be treated last-in first-out, i.e.,
remove(k) should remove the least recently inserted element with key k.

*Exercise 7.11 (red–black trees). A red–black tree is a binary search tree where
the edges are colored either red or black. The black depth of a node v is the number
of black edges on the path from the root to v. The following invariants have to hold:

156 7 Sorted Sequences

(a) All leaves have the same black depth.
(b) Edges into leaves are black.
(c) No path from the root to a leaf contains two consecutive red edges.

Show that red–black trees and (2,4)-trees are isomorphic in the following sense:
(2,4)-trees can be mapped to red–black trees by replacing nodes of degree three
or four by two or three nodes, respectively, connected by red edges as shown in
Fig. 7.11. Red–black trees can be mapped to (2,4)-trees using the inverse transfor-
mation, i.e., components induced by red edges are replaced by a single node. Now
explain how to implement (2,4)-trees using a representation as a red–black tree.5 Ex-
plain how the operations of expanding, shrinking, splitting, merging, and balancing
nodes of the (2,4)-tree can be translated into recoloring and rotation operations in
the red–black tree. Colors are stored at the target nodes of the corresponding edges.

7.3 More Operations

Search trees support many operations in addition to insert, remove, and locate. We
shall study them in two batches. In this section, we shall discuss operations directly
supported by (a,b)-trees, and in Sect. 7.5 we shall discuss operations that require
augmentation of the data structure.

• min/max. The constant-time operations first and last on a sorted list give us the
smallest and the largest element in the sequence in constant time. In particular,
search trees implement double-ended priority queues, i.e., sets that allow locat-
ing and removing both the smallest and the largest element in logarithmic time.
For example, in Fig. 7.5, the dummy element of list � gives us access to the
smallest element, 2, and to the largest element, 19, via its next and prev pointers,
respectively.

• Range queries. To retrieve all elements with keys in the range [x,y], we first locate
x and then traverse the sorted list until we see an element with a key larger than
y. This takes time O(logn+output size). For example, the range query [4,14]
applied to the search tree in Fig. 7.5 will find the 5, it subsequently outputs 7, 11,
13, and it stops when it sees the 17.

• Build/rebuild. Exercise 7.12 asks you to give an algorithm that converts a sorted
list or array into an (a,b)-tree in linear time. Even if we first have to sort the
elements, this operation is much faster than inserting the elements one by one.
We also obtain a more compact data structure this way.

Exercise 7.12. Explain how to construct an (a,b)-tree from a sorted list in linear
time. Which (2,4)-tree does your routine construct for the sequence 〈1..17〉? Next,
remove the elements 4, 9, and 16.

5 This may be more space-efficient than a direct representation, if the keys are large.

7.3 More Operations 157

7.3.1 *Concatenation

Two sorted sequences can be concatenated if the largest element of the first se-
quence is smaller than the smallest element of the second sequence. If sequences
are represented as (a,b)-trees, two sequences q1 and q2 can be concatenated in time
O(logmax(|q1|, |q2|)). First, we remove the dummy item from q1 and concatenate
the underlying lists. Next, we fuse the root of one tree with an appropriate node of
the other tree in such a way that the resulting tree remains sorted and balanced. More
precisely, if q1.height ≥ q2.height, we descend q1.height−q2.height levels from the
root of q1 by following pointers to the rightmost children. The node v, that we reach
is then fused with the root of q2. The new splitter key required is the largest key in
q1. If the degree of v now exceeds b, v is split. From that point, the concatenation
proceeds like an insert operation, propagating splits up the tree until the invariant
is fulfilled or a new root node is created. The case q1.height < q2.height is a mir-
ror image. We descend q2.height−q1.height levels from the root of q2 by following
pointers to the leftmost children, and fuse If we explicitly store the heights of the
trees, the operation runs in time O(1+ |q1.height−q2.height|) = O(log(|q1|+ |q2|)).
Figure 7.12 gives an example.

175

19

197 11 13 172 5

2 3

3 197 11 13 17

7 11 13

2 5

2 3

3

5 11 13 19

17 5:insert

1:delete 2:concatenate

3:fuse

4:split

∞

∞∞

q1

q2

Fig. 7.12. Concatenating (2,4)-trees for 〈2,3,5,7〉 and 〈11,13,17,19〉

7.3.2 *Splitting

We now show how to split a sorted sequence at a given element in logarithmic time.
Consider a sequence q = 〈w, . . . ,x,y, . . . ,z〉. Splitting q at y results in the sequences
q1 = 〈w, . . . ,x〉 and q2 = 〈y, . . . ,z〉. We implement splitting as follows. Consider the
path from the root to leaf y. We split each node v on this path into two nodes, v�

and vr. Node v� gets the children of v that are to the left of the path and vr gets the
children, that are to the right of the path. Some of these nodes may get no children.
Each of the nodes with children can be viewed as the root of an (a,b)-tree. Concate-
nating the left trees and a new dummy sequence element yields the elements up to
x. Concatenating 〈y〉 and the right trees produces the sequence of elements starting
from y. We can do these O(logn) concatenations in total time O(logn) by exploiting
the fact that the left trees have a strictly decreasing height and the right trees have
a strictly increasing height. Let us look at the trees on the left in more detail. Let

158 7 Sorted Sequences

r1, r2 to rk be the roots of the trees on the left and let h1, h2 to hh be their heights.
Then h1 ≥ h2 ≥ . . . ≥ hk. We first concatenate rk−1 and rk in time O(1+hk−1 −hk),
then concatenate rk−2 with the result in time O(1+hk−2 −hk−1), then concatenate
rk−3 with the result in time O(1+hk−2 −hk−1), and so on. The total time needed
for all concatenations is O

(
∑1≤i<k(1+hi −hi+1)

)
= O(k +h1 −hk) = O(logn). Fig-

ure 7.13 gives an example.

Exercise 7.13. We glossed over one issue in the argument above. What is the height
of the tree resulting from concatenating the trees with roots rk to ri? Show that the
height is hi +O(1).

Exercise 7.14. Explain how to remove a subsequence 〈e ∈ q : α ≤ e ≤ β 〉 from an
(a,b)-tree q in time O(logn).

1913

1911 13 17

2 3

2 5 73 2 5 73

3

2 5 7

11 17 1913

11

13

17 19

∞∞∞ ∞

split < 2,3,5,7,11,13,17,19 > at 11

Fig. 7.13. Splitting the (2,4)-tree for 〈2,3,5,7,11,13,17,19〉 shown in Fig. 7.5 produces the
subtrees shown on the left. Subsequently concatenating the trees surrounded by the dashed
lines leads to the (2,4)-trees shown on the right

7.4 Amortized Analysis of Update Operations

The best-case time for an insertion or removal is considerably smaller than the worst-
case time. In the best case, we basically pay for locating the affected element, for
updating the sequence, and for updating the bottommost internal node. The worst
case is much slower. Split or fuse operations may propagate all the way up the tree.

Exercise 7.15. Give a sequence of n operations on (2,3)-trees that requires Ω(n logn)
split and fuse operations.

We now show that the amortized complexity is essentially equal to that of the
best case if b is not at its minimum possible value but is at least 2a. In Sect. 7.5.1,
we shall see variants of insert and remove that turn out to have constant amortized
complexity in the light of the analysis below.

Theorem 7.3. Consider an (a,b)-tree with b ≥ 2a that is initially empty. For any
sequence of n insert or remove operations, the total number of split or fuse operations
is O(n).

7.4 Amortized Analysis of Update Operations 159

cost

remove

insert

balance: or

for parent+ for fuse +

splitfor+ + for parent

operation

operand

token
=leftover

split:
fuse:

Fig. 7.14. The effect of (a,b)-tree operations on the token invariant. The upper part of the
figure illustrates the addition or removal of a leaf. The two tokens charged for an insert are
used as follows. When the leaf is added to a node of degree three or four, the two tokens are
put on the node. When the leaf is added to a node of degree two, the two tokens are not needed,
and the token from the node is also freed. The lower part illustrates the use of the tokens in
balance, split, and fuse operations

Proof. We give the proof for (2,4)-trees and leave the generalization to Exer-
cise 7.16. We use the bank account method introduced in Sect. 3.3. Split and fuse
operations are paid for by tokens. These operations cost one token each. We charge
two tokens for each insert and one token for each remove. and claim that this suffices
to pay for all split and fuse operations. Note that there is at most one balance opera-
tion for each remove, so that we can account for the cost of balance directly without
an accounting detour. In order to do the accounting, we associate the tokens with the
nodes of the tree and show that the nodes can hold tokens according to the following
table (the token invariant):

degree 1 2 3 4 5
tokens ◦◦ ◦ ◦◦ ◦◦◦◦

Note that we have included the cases of degree 1 and 5 that occur during rebalancing.
The purpose of splitting and fusing is to remove these exceptional degrees.

Creating an empty sequence makes a list with one dummy item and a root of
degree one. We charge two tokens for the create and put them on the root. Let us
look next at insertions and removals. These operations add or remove a leaf and
hence increase or decrease the degree of a node immediately above the leaf level.
Increasing the degree of a node requires up to two additional tokens on the node (if
the degree increases from 3 to 4 or from 4 to 5), and this is exactly what we charge for
an insertion. If the degree grows from 2 to 3, we do not need additional tokens and
we are overcharging for the insertion; there is no harm in this. Similarly, reducing the
degree by one may require one additional token on the node (if the degree decreases

160 7 Sorted Sequences

from 3 to 2 or from 2 to 1). So, immediately after adding or removing a leaf, the
token invariant is satisfied.

We need next to consider what happens during rebalancing. Figure 7.14 summa-
rizes the following discussion graphically.

A split operation is performed on nodes of (temporary) degree five and results
in a node of degree three and a node of degree two. It also increases the degree of
the parent. The four tokens stored on the degree-five node are spent as follows: one
token pays for the split, one token is put on the new node of degree two, and two
tokens are used for the parent node. Again, we may not need the additional tokens
for the parent node; in this case, we discard them.

A balance operation takes a node of degree one and a node of degree three or
four and moves one child from the high-degree node to the node of degree one. If the
high-degree node has degree three, we have two tokens available to us and need two
tokens; if the high-degree node has degree four, we have four tokens available to us
and need one token. In either case, the tokens available are sufficient to maintain the
token invariant.

A fuse operation fuses a degree-one node with a degree-two node into a degree-
three node and decreases the degree of the parent. We have three tokens available.
We use one to pay for the operation and one to pay for the decrease of the degree of
the parent. The third token is no longer needed, and we discard it.

Let us summarize. We charge two tokens for sequence creation, two tokens for
each insert, and one token for each remove. These tokens suffice to pay one token
each for every split or fuse operation. There is at most a constant amount of work for
everything else done during an insert or remove operation. Hence, the total cost for n
update operations is O(n), and there are at most 2(n+1) split or fuse operations. �

*Exercise 7.16. Generalize the above proof to arbitrary a and b with b ≥ 2a. Show
that n insert or remove operations cause only O(n/(b−2a+1)) fuse or split opera-
tions.

*Exercise 7.17 (weight-balanced trees [150]). Consider the following variant of
(a,b)-trees: the node-by-node invariant d ≥ a is relaxed to the global invariant that
the tree has at least 2aheight−1 leaves. A remove does not perform any fuse or balance
operations. Instead, the whole tree is rebuilt using the routine described in Exer-
cise 7.12 when the invariant is violated. Show that remove operations execute in
O(logn) amortized time.

7.5 Augmented Search Trees

We show here that (a,b)-trees can support additional operations on sequences if
we augment the data structure with additional information. However, augmentations
come at a cost. They consume space and require time for keeping them up to date.
Augmentations may also stand in each other’s way.

7.5 Augmented Search Trees 161

Exercise 7.18 (reduction). Some operations on search trees can be carried out with
the use of the navigation data structure alone and without the doubly linked list. Go
through the operations discussed so far and discuss whether they require the next and
prev pointers of linear lists. Range queries are a particular challenge.

7.5.1 Parent Pointers

Suppose we want to remove an element specified by the handle of a list item. In the
basic implementation described in Sect. 7.2, the only thing we can do is to read the
key k of the element and call remove(k). This would take logarithmic time for the
search, although we know from Sect. 7.4 that the amortized number of fuse opera-
tions required to rebalance the tree is constant. This detour is not necessary if each
node v of the tree stores a handle indicating its parent in the tree (and perhaps an
index i such that v.parent.c[i] = v).

Exercise 7.19. Show that in (a,b)-trees with parent pointers, remove(h : Item) and
insertAfter(h : Item) can be implemented to run in constant amortized time.

*Exercise 7.20 (avoiding augmentation). Outline a class ABTreeIterator that al-
lows one to represent a position in an (a,b)-tree that has no parent pointers. Creating
an iterator I is an extension of search and takes logarithmic time. The class should
support the operations remove and insertAfter in constant amortized time. Hint: store
the path to the current position.

*Exercise 7.21 (finger search). Augment search trees such that searching can profit
from a “hint” given in the form of the handle of a finger element e′. If the sought
element has rank r and the finger element e′ has rank r′, the search time should be
O(log |r− r′|). Hint: one solution links all nodes at each level of the search tree into
a doubly linked list.

*Exercise 7.22 (optimal merging). Explain how to use finger search to implement
merging of two sorted sequences in time O(n log(m/n)), where n is the size of the
shorter sequence and m is the size of the longer sequence.

7.5.2 Subtree Sizes

Suppose that every nonleaf node t of a search tree stores its size, i.e., t.size is the
number of leaves in the subtree rooted at t. The k-th smallest element of the sorted
sequence can then be selected in a time proportional to the height of the tree. For
simplicity, we shall describe this for binary search trees. Let t denote the current
search tree node, which is initialized to the root. The idea is to descend the tree while
maintaining the invariant that the k-th element is contained in the subtree rooted at
t. We also maintain the number i of elements that are to the left of t. Initially, i = 0.
Let i′ denote the size of the left subtree of t. If i + i′ ≥ k, then we set t to its left
successor. Otherwise, t is set to its right successor and i is increased by i′. When a
leaf is reached, the invariant ensures that the k-th element is reached. Figure 7.15
gives an example.

162 7 Sorted Sequences

3

7

1952

2 195 7 11 13 173

17

11

134

7

222

select 6th element 9
subtree
size

2

3

∞

0+7≥6

4+2≥6

0+4<6

4+1<6

i=0

i=4

i=4

i=5

Fig. 7.15. Selecting the 6th smallest
element from 〈2,3,5,7,11,13,17,19〉
represented by a binary search tree.
The thick arrows indicate the search
path

Exercise 7.23. Generalize the above selection algorithm to (a,b)-trees. Develop two
variants: one that needs time O(b loga n) and stores only the subtree size and another
variant that needs only time O(logn) and stores d−1 sums of subtree sizes in a node
of degree d.

Exercise 7.24. Explain how to determine the rank of a sequence element with key k
in logarithmic time.

Exercise 7.25. A colleague suggests supporting both logarithmic selection time
and constant amortized update time by combining the augmentations described in
Sects. 7.5.1 and 7.5.2. What will go wrong?

7.6 Implementation Notes

Our pseudocode for (a,b)-trees is close to an actual implementation in a language
such as C++ except for a few oversimplifications. The temporary arrays s′ and c′ in
the procedures insertRec and removeRec can be avoided by appropriate case distinc-
tions. In particular, a balance operation will not require calling the memory manager.
A split operation of a node v might be slightly faster if v keeps the left half rather than
the right half. We did not formulate the operation this way because then the cases of
inserting a new sequence element and splitting a node would no longer be the same
from the point of view of their parent.

For large b, locateLocally should use binary search. For small b, a linear search
might be better. Furthermore, we might want to have a specialized implementation
for small, fixed values of a and b that unrolls6 all the inner loops. Choosing b to be a
power of two might simplify this task.

Of course, the values of a and b are important. Let us start with the cost of locate.
There are two kinds of operation that dominate the execution time of locate: besides
their inherent cost, element comparisons may cause branch mispredictions (see also
Sect. 5.9); pointer dereferences may cause cache faults. Exercise 7.9 indicates that

6 Unrolling a loop “for i :=1 to K do bodyi” means replacing it by the straight-line program
“body1; . . . ; bodyK”. This saves the overhead required for loop control and may give other
opportunities for simplifications.

7.6 Implementation Notes 163

element comparisons can be minimized by choosing a as a large power of two and
b = 2a. Since the number of pointer dereferences is proportional to the height of the
tree (see Exercise 7.4), large values of a are also good for this measure. Taking this
reasoning to the extreme, we would obtain the best performance for a ≥ n, i.e., a
single sorted array. This is not astonishing. We have concentrated on searches, and
static data structures are best if updates are neglected.

Insertions and deletions have an amortized cost of one locate plus a constant
number of node reorganizations (split, balance, or fuse) with cost O(b) each. We
obtain a logarithmic amortized cost for update operations if b = O(logn). A more
detailed analysis (see Exercise 7.16) would reveal that increasing b beyond 2a makes
split and fuse operations less frequent and thus saves expensive calls to the memory
manager associated with them. However, this measure has a slightly negative effect
on the performance of locate and it clearly increases space consumption. Hence, b
should remain close to 2a.

Finally, let us take a closer look at the role of cache faults. A cache of size M can
hold Θ(M/b) nodes. These are most likely to be the frequently accessed nodes close
to the root. To a first approximation, the top loga(M/b) levels of the tree are stored
in the cache. Below this level, every pointer dereference is associated with a cache
fault, i.e., we will have about loga(bn/Θ(M)) cache faults in each locate operation.
Since the cache blocks of processor caches start at addresses that are a multiple of
the block size, it makes sense to align the starting addresses of search tree nodes with
a cache block, i.e., to make sure that they also start at an address that is a multiple of
the block size. Note that (a,b)-trees might well be more efficient than binary search
for large data sets because we may save a factor of loga in cache faults.

Very large search trees are stored on disks. Under the name B-trees [16], (a,b)-
trees are the workhorse of the indexing data structures in databases. In that case,
internal nodes have a size of several kilobytes. Furthermore, the items of the linked
list are also replaced by entire data blocks that store between a′ and b′ elements, for
appropriate values of a′ and b′ (see also Exercise 3.20). These leaf blocks will then
also be subject to splitting, balancing, and fusing operations. For example, assume
that we have a = 210, the internal memory is large enough (a few megabytes) to cache
the root and its children, and the data blocks store between 16 and 32 Kbyte of data.
Then two disk accesses are sufficient to locate any element in a sorted sequence that
takes 16 Gbyte of storage. Since putting elements into leaf blocks dramatically de-
creases the total space needed for the internal nodes and makes it possible to perform
very fast range queries, this measure can also be useful for a cache-efficient internal-
memory implementation. However, note that update operations may now move an
element in memory and thus will invalidate element handles stored outside the data
structure. There are many more tricks for implementing (external-memory) (a,b)-
trees. We refer the reader to [79] and [141, Chaps. 2 and 14] for overviews. A good
free implementation of B-trees is available in STXXL [48].

From the augmentations discussed in Sect. 7.5 and the implementation trade-
offs discussed here, it becomes evident that the optimal implementation of sorted se-
quences does not exist but depends on the hardware and the operation mix relevant to
the actual application. We believe that (a,b)-trees with b = 2k = 2a = O(logn), aug-

164 7 Sorted Sequences

mented with parent pointers and a doubly linked list of leaves, are a sorted-sequence
data structure that supports a wide range of operations efficiently.

Exercise 7.26. What choice of a and b for an (a,b)-tree guarantees that the number
of I/O operations required for insert, remove, or locate is O(logB(n/M))? How many
I/O operations are needed to build an n-element (a,b)-tree using the external sorting
algorithm described in Sect. 5.7 as a subroutine? Compare this with the number of
I/Os needed for building the tree naively using insertions. For example, try M =
229 bytes, B = 218 bytes7, n = 232, and elements that have 8-byte keys and 8 bytes of
associated information.

7.6.1 C++

The STL has four container classes set, map, multiset, and multimap for sorted se-
quences. The prefix multi means that there may be several elements with the same
key. Maps offer the interface of an associative array (see also Chap. 4). For example,
someMap[k] := x inserts or updates the element with key k and sets the associated
information to x.

The most widespread implementation of sorted sequences in STL uses a variant
of red–black trees with parent pointers, where elements are stored in all nodes rather
than only in the leaves. None of the STL data types supports efficient splitting or
concatenation of sorted sequences.

LEDA [118] offers a powerful interface sortseq that supports all important op-
erations on sorted sequences, including finger search, concatenation, and splitting.
Using an implementation parameter, there is a choice between (a,b)-trees, red–black
trees, randomized search trees, weight-balanced trees, and skip lists.

7.6.2 Java

The Java library java.util offers the interface classes SortedMap and SortedSet, which
correspond to the STL classes set and map, respectively. The corresponding imple-
mentation classes TreeMap and TreeSet are based on red–black trees.

7.7 Historical Notes and Further Findings

There is an entire zoo of sorted sequence data structures. Just about any of them will
do if you just want to support insert, remove, and locate in logarithmic time. Perfor-
mance differences for the basic operations are often more dependent on implementa-
tion details than on the fundamental properties of the underlying data structures. The
differences show up in the additional operations.

7 We are making a slight oversimplification here, since in practice one will use much smaller
block sizes for organizing the tree than for sorting.

7.7 Historical Notes and Further Findings 165

The first sorted-sequence data structure to support insert, remove, and locate in
logarithmic time was AVL trees [4]. AVL trees are binary search trees which main-
tain the invariant that the heights of the subtrees of a node differ by one at the most.
Since this is a strong balancing condition, locate is probably a little faster than in
most competitors. On the other hand, AVL trees do not have constant amortized up-
date costs. Another small disadvantage is that storing the heights of subtrees costs
additional space. In comparison, red–black trees have slightly higher costs for locate,
but they have faster updates and the single color bit can often be squeezed in some-
where. For example, pointers to items will always store even addresses, so that their
least significant bit could be diverted to storing color information.

(2,3)-trees were introduced in [6]. The generalization to (a,b)-trees and the
amortized analysis of Sect. 3.3 come from [95]. There, it was also shown that the
total number of splitting and fusing operations at the nodes of any given height de-
creases exponentially with the height.

Splay trees [183] and some variants of randomized search trees [176] work even
without any additional information besides one key and two successor pointers. A
more interesting advantage of these data structures is their adaptability to nonuni-
form access frequencies. If an element e is accessed with probability p, these search
trees will be reshaped over time to allow an access to e in a time O(log(1/p)). This
can be shown to be asymptotically optimal for any comparison-based data structure.
However, this property leads to improved running time only for quite skewed access
patterns because of the large constants.

Weight-balanced trees [150] balance the size of the subtrees instead of the height.
They have the advantage that a node of weight w (= number of leaves of its subtree)
is only rebalanced after Ω(w) insertions or deletions have passed through it [26].

There are so many search tree data structures for sorted sequences that these two
terms are sometimes used as synonyms. However, there are also some equally inter-
esting data structures for sorted sequences that are not based on search trees. Sorted
arrays are a simple static data structure. Sparse tables [97] are an elegant way to make
sorted arrays dynamic. The idea is to accept some empty cells to make insertion eas-
ier. Reference [19] extended sparse tables to a data structure which is asymptotically
optimal in an amortized sense. Moreover, this data structure is a crucial ingredient
for a sorted-sequence data structure [19] that is cache-oblivious [69], i.e., it is cache-
efficient on any two levels of a memory hierarchy without even knowing the size of
caches and cache blocks. The other ingredient is oblivious static search trees [69];
these are perfectly balanced binary search trees stored in an array such that any search
path will exhibit good locality in any cache. We describe here the van Emde Boas
layout used for this purpose, for the case where there are n = 22k

leaves for some
integer k. We store the top 2k−1 levels of the tree at the beginning of the array. After
that, we store the 2k−1 subtrees of depth 2k−1, allocating consecutive blocks of mem-
ory for them. We recursively allocate the resulting 1 + 2k−1 subtrees of depth 2k−1.
Static cache-oblivious search trees are practical in the sense that they can outperform
binary search in a sorted array.

Skip lists [159] are based on another very simple idea. The starting point is a
sorted linked list �. The tedious task of scanning � during locate can be accelerated

166 7 Sorted Sequences

by producing a shorter list �′ that contains only some of the elements in �. If corre-
sponding elements of � and �′ are linked, it suffices to scan �′ and only descend to �
when approaching the searched element. This idea can be iterated by building shorter
and shorter lists until only a single element remains in the highest-level list. This data
structure supports all important operations efficiently in an expected sense. Random-
ness comes in because the decision about which elements to lift to a higher-level list
is made randomly. Skip lists are particularly well suited for supporting finger search.

Yet another family of sorted-sequence data structures comes into play when
we no longer consider keys as atomic objects. If keys are numbers given in bi-
nary representation, we can obtain faster data structures using ideas similar to the
fast integer-sorting algorithms described in Sect. 5.6. For example, we can obtain
sorted sequences with w-bit integer keys that support all operations in time O(logw)
[198, 129]. At least for 32-bit keys, these ideas bring a considerable speedup in prac-
tice [47]. Not astonishingly, string keys are also important. For example, suppose we
want to adapt (a,b)-trees to use variable-length strings as keys. If we want to keep
a fixed size for node objects, we have to relax the condition on the minimal degree
of a node. Two ideas can be used to avoid storing long string keys in many nodes.
Common prefixes of keys need to be stored only once, often in the parent nodes.
Furthermore, it suffices to store the distinguishing prefixes of keys in inner nodes,
i.e., just enough characters to be able to distinguish different keys in the current
node [83]. Taking these ideas to the extreme results in tries [64], a search tree data
structure specifically designed for string keys: tries are trees whose edges are labeled
by characters or strings. The characters along a root–leaf path represent a key. Using
appropriate data structures for the inner nodes, a trie can be searched in time O(s)
for a string of size s.

We shall close with three interesting generalizations of sorted sequences. The
first generalization is multidimensional objects, such as intervals or points in d-
dimensional space. We refer to textbooks on geometry for this wide subject [46].
The second generalization is persistence. A data structure is persistent if it supports
nondestructive updates. For example, after the insertion of an element, there may be
two versions of the data structure, the one before the insertion and the one after the
insertion – both can be searched [59]. The third generalization is searching many
sequences [36, 37, 130]. In this setting, there are many sequences, and searches need
to locate a key in all of them or a subset of them.

8

Graph Representation

Scientific results are mostly available in the form of articles in journals and con-
ference proceedings, and on various Web1 resources. These articles are not self-
contained, but cite previous articles with related content. However, when you read
an article from 1975 with an interesting partial result, you may often ask yourself
what the current state of the art is. In particular, you would like to know which newer
articles cite the old article. Projects such as Google Scholar provide this functional-
ity by analyzing the reference sections of articles and building a database of articles
that efficiently supports looking up articles that cite a given article.

We can easily model this situation by a directed graph. The graph has a node for
each article and an edge for each citation. An edge (u,v) from article u to article v
means that u cites v. In this terminology, every node (= article) stores all its outgoing
edges (= the articles cited by it) but not the incoming edges (the articles citing it). If
every node were also to store the incoming edges, it would be easy to find the citing
articles. One of the main tasks of Google Scholar is to construct the reversed edges.
This example shows that the cost of even a very basic elementary operation on a
graph, namely finding all edges entering a particular node, depends heavily on the
representation of the graph. If the incoming edges are stored explicitly, the operation
is easy; if the incoming edges are not stored, the operation is nontrivial.

In this chapter, we shall give an introduction to the various possibilities for repre-
senting graphs in a computer. We focus mostly on directed graphs and assume that an
undirected graph G = (V,E) is represented as the corresponding (bi)directed graph
G′ = (V,

⋃
{u,v}∈E {(u,v),(v,u)}). Figure 8.1 illustrates the concept of a bidirected

graph. Most of the data structures presented also allow us to represent multiple par-
allel edges and self-loops. We start with a survey of the operations that we may want
to support.

• Accessing associated information. Given a node or an edge, we frequently want
to access information associated with it, for example the weight of an edge or
the distance to a node. In many representations, nodes and edges are objects,
and we can store this information directly as a member of these objects. If not
otherwise mentioned, we assume that V = 1..n so that information associated

1 The picture above shows a spider web (USFWS, see http://commons.wikimedia.
org/wiki/Image:Water_drops_on_spider_web.jpg).

http://commons.wikimedia.org/wiki/Image:Water_drops_on_spider_web.jpg
http://commons.wikimedia.org/wiki/Image:Water_drops_on_spider_web.jpg

168 8 Graph Representation

with nodes can be stored in arrays. When all else fails, we can always store node
or edge information in a hash table. Hence, accesses can be implemented to run in
constant time. In the remainder of this book we abstract from the various options
for realizing access by using the data types NodeArray and EdgeArray to indicate
array-like data structures that can be indexed by nodes and by edges, respectively.

• Navigation. Given a node, we may want to access its outgoing edges. It turns out
that this operation is at the heart of most graph algorithms. As we have seen in
the example above, we sometimes also want to know the incoming edges.

• Edge queries. Given a pair of nodes (u,v), we may want to know whether this
edge is in the graph. This can always be implemented using a hash table, but we
may want to have something even faster. A more specialized but important query
is to find the reverse edge (v,u) of a directed edge (u,v) ∈ E if it exists. This
operation can be implemented by storing additional pointers connecting edges
with their reversals.

• Construction, conversion and output. The representation most suitable for the
algorithmic problem at hand is not always the representation given initially. This
is not a big problem, since most graph representations can be translated into each
other in linear time.

• Update. Sometimes we want to add or remove nodes or edges. For example, the
description of some algorithms is simplified if a node is added from which all
other nodes can be reached (e.g. Fig. 10.10).

8.1 Unordered Edge Sequences

Perhaps the simplest representation of a graph is as an unordered sequence of edges.
Each edge contains a pair of node indices and, possibly, associated information such
as an edge weight. Whether these node pairs represent directed or undirected edges is
merely a matter of interpretation. Sequence representation is often used for input and
output. It is easy to add edges or nodes in constant time. However, many other op-
erations, in particular navigation, take time Θ(m), which is forbiddingly slow. Only
a few graph algorithms work well with the edge sequence representation; most al-
gorithms require easy access to the edges incident on any given node. In this case
the ordered representations discussed in the following sections are appropriate. In
Chap. 11, we shall see two minimum-spanning-tree algorithms: one works well with
an edge sequence representation and the other needs a more sophisticated data struc-
ture.

8.2 Adjacency Arrays – Static Graphs

To support easy access to the edges leaving any particular node, we can store the
edges leaving any node in an array. If no additional information is stored with the
edges, this array will just contain the indices of the target nodes. If the graph is static,
i.e., does not change over time, we can concatenate all these little arrays into a single

8.2 Adjacency Arrays – Static Graphs 169

4

1

2

31

4

3

2

2

1
4

1
2

4
2

4
3

2
3

1
2 4 1 3 4 2 4 1 2 3

1

1

3 4

2 1

2

34

4

1

1 n

nn

m

⎛

⎜
⎜
⎝

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠

Fig. 8.1. The first row shows an undirected graph and the corresponding bidirected graph.
The second row shows the adjacency array and adjacency list representations of this bidirected
graph. The third row shows the linked-edge-objects representation and the adjacency matrix

edge array E. An additional array V stores the starting positions of the subarrays,
i.e., for any node v, V [v] is the index in E of the first edge out of V . It is convenient
to add a dummy entry V [n + 1] with V [n + 1] = m + 1. The edges out of any node v
are then easily accessible as E[V [v]], . . . , E[V [v + 1]− 1]; the dummy entry ensures
that this also holds true for node n. Figure 8.1 shows an example.

The memory consumption for storing a directed graph using adjacency arrays is
n + m + Θ(1) words. This is even more compact than the 2m words needed for an
edge sequence representation.

Adjacency array representations can be generalized to store additional informa-
tion: we may store information associated with edges in separate arrays or within the
edge array. If we also need incoming edges, we may use additional arrays V ′ and E ′

to store the reversed graph.

Exercise 8.1. Design a linear-time algorithm for converting an edge sequence repre-
sentation of a directed graph into an adjacency array representation. You should use

170 8 Graph Representation

only O(1) auxiliary space. Hint: view the problem as the task of sorting edges by
their source node and adapt the integer-sorting algorithm shown in Fig. 5.15.

8.3 Adjacency Lists – Dynamic Graphs

Edge arrays are a compact and efficient graph representation. Their main disadvan-
tage is that it is expensive to add or remove edges. For example, assume that we want
to insert a new edge (u,v). Even if there is room in the edge array E to accommodate
it, we still have to move the edges associated with nodes u + 1 to n one position to
the right, which takes time O(m).

In Chap. 3, we learned how to implement dynamic sequences. We can use any
of the solutions presented there to produce a dynamic graph data structure. For each
node v, we represent the sequence Ev of outgoing (or incoming, or outgoing and
incoming) edges by an unbounded array or by a (singly or doubly) linked list. We
inherit the advantages and disadvantages of the respective sequence representations.
Unbounded arrays are more cache-efficient. Linked lists allow constant-time inser-
tion and deletion of edges at arbitrary positions. Most graphs arising in practice are
sparse in the sense that every node has only a few incident edges. Adjacency lists
for sparse graphs should be implemented without the dummy item introduced in
Sect. 3.1, because an additional item would waste considerable space. In the exam-
ple in Fig. 8.1, we show circularly linked lists.

Exercise 8.2. Suppose the edges adjacent to a node u are stored in an unbounded
array Eu, and an edge e = (u,v) is specified by giving its position in Eu. Explain how
to remove e = (u,v) in constant amortized time. Hint: you do not have to maintain
the relative order of the other edges.

Exercise 8.3. Explain how to implement the algorithm for testing whether a graph is
acyclic discussed in Chap. 2.9 so that it runs in linear time, i.e., design an appropriate
graph representation and an algorithm using it efficiently. Hint: maintain a queue of
nodes with outdegree zero.

Bidirected graphs arise frequently. Undirected graphs are naturally presented as
bidirected graphs, and some algorithms that operate on directed graphs need access
not only to outgoing edges but also to incoming edges. In these situations, we fre-
quently want to store the information associated with an undirected edge or a directed
edge and its reversal only once. Also, we may want to have easy access from an edge
to its reversal.

We shall describe two solutions. The first solution simply associates two addi-
tional pointers with every directed edge. One points to the reversal, and the other
points to the information associated with the edge.

The second solution has only one item for each undirected edge (or pair of di-
rected edges) and makes this item a member of two adjacency lists. So, the item for
an undirected edge {u,v} would be a member of lists Eu and Ev. If we want doubly

8.4 The Adjacency Matrix Representation 171

linked adjacency information, the edge object for any edge {u,v} stores four point-
ers: two are used for the doubly linked list representing Eu, and two are used for the
doubly linked list representing Ev. Any node stores a pointer to some edge incident
on it. Starting from it, all edges incident on the node can be traversed. The bottom
part of Fig. 8.1 gives an example. A small complication lies in the fact that finding
the other end of an edge now requires some work. Note that the edge object for an
edge {u,v} stores the endpoints in no particular order. Hence, when we explore the
edges out of a node u, we must inspect both endpoints and then choose the one which
is different from u. An elegant alternative is to store u⊕ v in the edge object [145].
An exclusive OR with either endpoint then yields the other endpoint. Also, this rep-
resentation saves space.

8.4 The Adjacency Matrix Representation

An n-node graph can be represented by an n×n adjacency matrix A. Ai j is 1 if (i, j)∈
E and 0 otherwise. Edge insertion or removal and edge queries work in constant time.
It takes time O(n) to obtain the edges entering or leaving a node. This is only efficient
for very dense graphs with m = Ω

(
n2

)
. The storage requirement is n2 bits. For very

dense graphs, this may be better than the n+m+O(1) words required for adjacency
arrays. However, even for dense graphs, the advantage is small if additional edge
information is needed.

Exercise 8.4. Explain how to represent an undirected graph with n nodes and without
self-loops using n(n−1)/2 bits.

Perhaps more important than actually storing the adjacency matrix is the con-
ceptual link between graphs and linear algebra introduced by the adjacency matrix.
On the one hand, graph-theoretic problems can be solved using methods from linear
algebra. For example, if C = Ak, then Ci j counts the number of paths from i to j with
exactly k edges.

Exercise 8.5. Explain how to store an n× n matrix A with m nonzero entries using
storage O(m+n) such that a matrix–vector multiplication Ax can be performed in
time O(m+n). Describe the multiplication algorithm. Expand your representation
so that products of the form xT A can also be computed in time O(m+n).

On the other hand, graph-theoretic concepts can be useful for solving problems
from linear algebra. For example, suppose we want to solve the matrix equation Bx =
c, where B is a symmetric matrix. Now consider the corresponding adjacency matrix
A where Ai j = 1 if and only if Bi j �= 0. If an algorithm for computing connected
components finds that the undirected graph represented by A contains two distinct
connected components, this information can be used to reorder the rows and columns
of B such that we obtain an equivalent equation of the form

(
B1 0
0 B2

)(
x1

x2

)

=
(

c1

c2

)

.

172 8 Graph Representation

This equation can now be solved by solving B1x1 = c1 and B2x2 = c2 separately. In
practice, the situation is more complicated, since we rarely have matrices whose cor-
responding graphs are disconnected. Still, more sophisticated graph-theoretic con-
cepts such as cuts can help to discover structure in the matrix which can then be
exploited in solving problems in linear algebra.

8.5 Implicit Representations

Many applications work with graphs of special structure. Frequently, this structure
can be exploited to obtain simpler and more efficient representations. We shall give
two examples.

The grid graph Gk� with node set V = [0..k−1]× [0..�−1] and edge set

E =
{
((i, j),(i, j′)) ∈V 2 : | j− j′| = 1

}
∪

{
((i, j),(i′, j)) ∈V 2 : |i− i′| = 1

}

is completely defined by the two parameters k and �. Figure 8.2 shows G3,4. Edge
weights could be stored in two two-dimensional arrays, one for the vertical edges
and one for the horizontal edges.

An interval graph is defined by a set of intervals. For each interval, we have a
node in the graph, and two nodes are adjacent if the corresponding intervals overlap.

Fig. 8.2. The grid graph G34 (left) and
an interval graph with five nodes and six
edges (right)

Exercise 8.6 (representation of interval graphs).

(a) Show that for any set of n intervals there is a set of intervals whose endpoints are
integers in [1..2n] and that defines the same graph.

(b) Devise an algorithm that decides whether the graph defined by a set of n intervals
is connected. Hint: sort the endpoints of the intervals and then scan over the
endpoints in sorted order. Keep track of the number of intervals that have started
but not ended.

(c*) Devise a representation for interval graphs that needs O(n) space and supports
efficient navigation. Given an interval I, you need to find all intervals I′ inter-
secting it; I′ intersects I if I contains an endpoint of I′ or I ⊆ I′. How can you
find the former and the latter kinds of interval?

8.6 Implementation Notes

We have seen several representations of graphs in this chapter. They are suitable
for different sets of operations on graphs, and can be tuned further for maximum

8.6 Implementation Notes 173

performance in any particular application. The edge sequence representation is good
only in specialized situations. Adjacency matrices are good for rather dense graphs.
Adjacency lists are good if the graph changes frequently. Very often, some variant
of adjacency arrays is fastest. This may be true even if the graph changes, because
often there are only a few changes, or all changes happen in an initialization phase
of a graph algorithm, or changes can be agglomerated into occasional rebuildings of
the graph, or changes can be simulated by building several related graphs.

There are many variants of the adjacency array representation. Information asso-
ciated with nodes and edges may be stored together with these objects or in separate
arrays. A rule of thumb is that information that is frequently accessed should be
stored with the nodes and edges. Rarely used data should be kept in separate arrays,
because otherwise it would often be moved to the cache without being used. How-
ever, there can be other, more complicated reasons why separate arrays may be faster.
For example, if both adjacency information and edge weights are read but only the
weights are changed, then separate arrays may be faster because the amount of data
written back to the main memory is reduced.

Unfortunately, no graph representation is best for all purposes. How can one cope
with the zoo of graph representations? First, libraries such as LEDA and the Boost
graph library offer several different graph data types, and one of them may suit your
purposes. Second, if your application is not particularly time- or space-critical, sev-
eral representations might do and there is no need to devise a custom-built repre-
sentation for the particular application. Third, we recommend that graph algorithms
should be written in the style of generic programming [71]. The algorithms should
access the graph data structure only through a small set of operations, such as iterat-
ing over the edges out of a node, accessing information associated with an edge, and
proceeding to the target node of an edge. The interface can be captured in an inter-
face description, and a graph algorithm can be run on any representation that realizes
the interface. In this way, one can experiment with different representations. Fourth,
if you have to build a custom representation for your application, make it available
to others.

8.6.1 C++

LEDA [131, 118, 145] offers a powerful graph data type that supports a large variety
of operations in constant time and is convenient to use, but is also space-consuming.
Therefore LEDA also implements several more space-efficient adjacency array rep-
resentations.

The Boost graph library [27, 119] emphasizes a strict separation of representa-
tion and interface. In particular, Boost graph algorithms run on any representation
that realizes the Boost interface. Boost also offers its own graph representation class
adjacency_list. A large number of parameters allow one to choose between variants
of graphs (directed and undirected graphs and multigraphs2), types of navigation
available (in-edges, out-edges, . . .), and representations of vertex and edge sequences

2 Multigraphs allow multiple parallel edges.

174 8 Graph Representation

(arrays, linked lists, sorted sequences, . . .). However, it should be noted that the array
representation uses a separate array for the edges adjacent to each vertex.

8.6.2 Java

JDSL [78] offers rich support for graphs in jdsl.graph. It has a clear separation be-
tween interfaces, algorithms, and representation. It offers an adjacency list represen-
tation of graphs that supports directed and undirected edges.

8.7 Historical Notes and Further Findings

Special classes of graphs may result in additional requirements for their representa-
tion. An important example is planar graphs – graphs that can be drawn in the plane
without edges crossing. Here, the ordering of the edges adjacent to a node should
be in counterclockwise order with respect to a planar drawing of the graph. In ad-
dition, the graph data structure should efficiently support iterating over the edges
along a face of the graph, a cycle that does not enclose any other node. LEDA offers
representations for planar graphs.

Recall that bipartite graphs are special graphs where the node set V = L ∪ R
can be decomposed into two disjoint subsets L and R such that the edges are only
between nodes in L and R. All representations discussed here also apply to bipartite
graphs. In addition, one may want to store the two sides L and R of the graph.

Hypergraphs H = (V,E) are generalizations of graphs, where edges can connect
more than two nodes. Hypergraphs are conveniently represented as the correspond-
ing bipartite graph BH = (E ∪V,{(e,v) : e ∈ E,v ∈V,v ∈ e}).

Cayley graphs are an interesting example of implicitly defined graphs. Recall
that a set V is a group if it has an associative multiplication operation ∗, a neutral
element, and a multiplicative inverse operation. The Cayley graph (V,E) with respect
to a set S ⊆ V has the edge set {(u,u∗ s) : u ∈V,s ∈ S}. Cayley graphs are useful
because graph-theoretic concepts can be useful in group theory. On the other hand,
group theory yields concise definitions of many graphs with interesting properties.
For example, Cayley graphs have been proposed as interconnection networks for
parallel computers [12].

In this book, we have concentrated on convenient data structures for processing
graphs. There is also a lot of work on storing graphs in a flexible, portable, space-
efficient way. Significant compression is possible if we have a priori information
about the graphs. For example, the edges of a triangulation of n points in the plane
can be represented with about 6n bits [42, 168].

9

Graph Traversal

Suppose you are working in the traffic planning department of a town with a nice
medieval center1. An unholy coalition of shop owners, who want more street-side
parking, and the Green Party, which wants to discourage car traffic altogether, has
decided to turn most streets into one-way streets. You want to avoid the worst by
checking whether the current plan maintains the minimal requirement that one can
still drive from every point in town to every other point.

In the language of graphs (see Sect. 2.9), the question is whether the directed
graph formed by the streets is strongly connected. The same problem comes up in
other applications. For example, in the case of a communication network with unidi-
rectional channels (e.g., radio transmitters), we want to know who can communicate
with whom. Bidirectional communication is possible within the strongly connected
components of the graph.

We shall present a simple, efficient algorithm for computing strongly connected
components (SCCs) in Sect. 9.2.2. Computing SCCs and many other fundamental
problems on graphs can be reduced to systematic graph exploration, inspecting each
edge exactly once. We shall present the two most important exploration strategies:
breadth-first search , in Sect. 9.1, and depth-first search, in Sect. 9.2. Both strategies
construct forests and partition the edges into four classes: tree edges comprising
the forest, forward edges running parallel to paths of tree edges, backward edges
running antiparallel to paths of tree edges, and cross edges that connect two different
branches of a tree in the forest. Figure 9.1 illustrates the classification of edges.

forward

backward

cross

s
tree

Fig. 9.1. Graph edges classified as tree edges, forward edges, backward edges, and cross edges

1 The copper engraving above shows a part of Frankfurt around 1628 (M. Merian).

176 9 Graph Traversal

9.1 Breadth-First Search

A simple way to explore all nodes reachable from some node s is breadth-first search
(BFS). BFS explores the graph layer by layer. The starting node s forms layer 0. The
direct neighbors of s form layer 1. In general, all nodes that are neighbors of a node
in layer i but not neighbors of nodes in layers 0 to i−1 form layer i+1.

The algorithm in Fig. 9.2 takes a node s and constructs the BFS tree rooted at s.
For each node v in the tree, the algorithm records its distance d(v) from s, and the
parent node parent(v) from which v was first reached. The algorithm returns the pair
(d,parent). Initially, s has been reached and all other nodes store some special value
⊥ to indicate that they have not been reached yet. Also, the depth of s is zero. The
main loop of the algorithm builds the BFS tree layer by layer. We maintain two sets
Q and Q′; Q contains the nodes in the current layer, and we construct the next layer
in Q′. The inner loops inspect all edges (u,v) leaving nodes u in the current layer
Q. Whenever v has no parent pointer yet, we put it into the next layer Q′ and set its
parent pointer and distance appropriately. Figure 9.3 gives an example of a BFS tree
and the resulting backward and cross edges.

BFS has the useful feature that its tree edges define paths from s that have a
minimum number of edges. For example, you could use such paths to find railway
connections that minimize the number of times you have to change trains or to find
paths in communication networks with a minimal number of hops. An actual path
from s to a node v can be found by following the parent references from v backwards.

Exercise 9.1. Show that BFS will never classify an edge as forward, i.e., there are no
edges (u,v) with d(v) > d(u)+1.

Function bfs(s : NodeId) : (NodeArray of NodeId)× (NodeArray of 0..n)
d = 〈∞, . . . ,∞〉 : NodeArray of NodeId // distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId
d[s] :=0
parent[s] := s // self-loop signals root
Q = 〈s〉 : Set of NodeId // current layer of BFS tree
Q′ = 〈〉 : Set of NodeId // next layer of BFS tree
for � :=0 to ∞ while Q �= 〈〉 do // explore layer by layer

invariant Q contains all nodes with distance � from s
foreach u ∈ Q do

foreach (u,v) ∈ E do // scan edges out of u
if parent(v) = ⊥ then // found an unexplored node

Q′ :=Q′ ∪{v} // remember for next layer
d[v] := �+1
parent(v) :=u // update BFS tree

(Q,Q′) :=(Q′,〈〉) // switch to next layer
return (d,parent) // the BFS tree is now {(v,w) : w ∈V,v = parent(w)}

Fig. 9.2. Breadth-first search starting at a node s

9.1 Breadth-First Search 177

s
s

1 2 30

cross
backward
tree

forward

b

b
c

cd
d

e

e

f

f

g

g

Fig. 9.3. An example of how BFS (left) and DFS (right) classify edges into tree edges, back-
ward edges, cross edges, and forward edges. BFS visits the nodes in the order s, b, c, d, e, f ,
g. DFS visits the nodes in the order s, b, e, g, f , c, d

Exercise 9.2. What can go wrong with our implementation of BFS if parent[s] is
initialized to ⊥ rather than s? Give an example of an erroneous computation.

Exercise 9.3. BFS trees are not necessarily unique. In particular, we have not speci-
fied in which order nodes are removed from the current layer. Give the BFS tree that
is produced when d is removed before b when one performs a BFS from node s in
the graph in Fig. 9.3.

Exercise 9.4 (FIFO BFS). Explain how to implement BFS using a single FIFO
queue of nodes whose outgoing edges still have to be scanned. Prove that the re-
sulting algorithm and our two-queue algorithm compute exactly the same tree if the
two-queue algorithm traverses the queues in an appropriate order. Compare the FIFO
version of BFS with Dijkstra’s algorithm described in Sect. 10.3, and the Jarník–Prim
algorithm described in Sect. 11.2. What do they have in common? What are the main
differences?

Exercise 9.5 (graph representation for BFS). Give a more detailed description of
BFS. In particular, make explicit how to implement it using the adjacency array rep-
resentation described in Sect. 8.2. Your algorithm should run in time O(n+m).

Exercise 9.6 (connected components). Explain how to modify BFS so that it com-
putes a spanning forest of an undirected graph in time O(m+n). In addition, your
algorithm should select a representative node r for each connected component of the
graph and assign it to component[v] for each node v in the same component as r.
Hint: scan all nodes s ∈V and start BFS from any node s that it still unreached when
it is scanned. Do not reset the parent array between different runs of BFS. Note that
isolated nodes are simply connected components of size one.

Exercise 9.7 (transitive closure). The transitive closure G+ = (V,E+) of a graph
G = (V,E) has an edge (u,v) ∈ E+ whenever there is a path from u to v in E. Design
an algorithm for computing transitive closures. Hint: run bfs(v) for each node v to
find all nodes reachable from v. Try to avoid a full reinitialization of the arrays d and
parent at the beginning of each call. What is the running time of your algorithm?

178 9 Graph Traversal

9.2 Depth-First Search

You may view breadth-first search as a careful, conservative strategy for systematic
exploration that looks at known things before venturing into unexplored territory. In
this respect, depth-first search (DFS) is the exact opposite: whenever it finds a new
node, it immediately continues to explore from it. It goes back to previously explored
nodes only if it runs out of options. Although DFS leads to unbalanced, strange-
looking exploration trees compared with the orderly layers generated by BFS, the
combination of eager exploration with the perfect memory of a computer makes
DFS very useful. Figure 9.4 gives an algorithm template for DFS. We can derive
specific algorithms from it by specifying the subroutines init, root, traverseTreeEdge,
traverseNonTreeEdge, and backtrack.

DFS marks a node when it first discovers it; initially, all nodes are unmarked.
The main loop of DFS looks for unmarked nodes s and calls DFS(s,s) to grow a
tree rooted at s. The recursive call DFS(u,v) explores all edges (v,w) out of v. The
argument (u,v) indicates that v was reached via the edge (u,v) into v. For root nodes
s, we use the “dummy” argument (s,s). We write DFS(∗,v) if the specific nature of
the incoming edge is irrelevant to the discussion at hand. Assume now that we are
exploring edge (v,w) within the call DFS(∗,v).

If w has been seen before, w is already a node of the DFS forest. So (v,w) is not a
tree edge, and hence we call traverseNonTreeEdge(v,w) and make no recursive call
of DFS.

If w has not been seen before, (v,w) becomes a tree edge. We therefore call
traverseTreeEdge(v,w), mark w, and make the recursive call DFS(v,w). When we
return from this call, we explore the next edge out of v. Once all edges out of v
have been explored, we call backtrack on the incoming edge (u,v) to perform any
summarizing or cleanup operations needed and return.

At any point in time during the execution of DFS, there are a number of ac-
tive calls. More precisely, there are nodes v1, v2, . . . vk such that we are currently
exploring edges out of vk, and the active calls are DFS(v1,v1), DFS(v1,v2), . . . ,
DFS(vk−1,vk). In this situation, we say that the nodes v1, v2, . . . , vk are active and
form the DFS recursion stack. The node vk is called the current node. We say that
a node v has been reached when DFS(∗,v) is called, and is finished when the call
DFS(∗,v) terminates.

Exercise 9.8. Give a nonrecursive formulation of DFS. You need to maintain a stack
of active nodes and, for each active node, the set of unexplored edges.

9.2.1 DFS Numbering, Finishing Times, and Topological Sorting

DFS has numerous applications. In this section, we use it to number the nodes in
two ways. As a by-product, we see how to detect cycles. We number the nodes in
the order in which they are reached (array dfsNum) and in the order in which they
are finished (array finishTime). We have two counters dfsPos and finishingTime, both
initialized to one. When we encounter a new root or traverse a tree edge, we set the

9.2 Depth-First Search 179

Depth-first search of a directed graph G = (V,E)
unmark all nodes
init
foreach s ∈V do

if s is not marked then
mark s // make s a root and grow
root(s) // a new DFS tree rooted at it.
DFS(s,s)

Procedure DFS(u,v : NodeId) // Explore v coming from u.
foreach (v,w) ∈ E do

if w is marked then traverseNonTreeEdge(v,w) // w was reached before
else traverseTreeEdge(v,w) // w was not reached before

mark w
DFS(v,w)

backtrack(u,v) // return from v along the incoming edge

Fig. 9.4. A template for depth-first search of a graph G = (V,E). We say that a call DFS(∗,v)
explores v. The exploration is complete when we return from this call

dfsNum of the newly encountered node and increment dfsPos. When we backtrack
from a node, we set its finishTime and increment finishingTime. We use the following
subroutines:

init: dfsPos = 1 : 1..n; finishingTime = 1 : 1..n
root(s): dfsNum[s] :=dfsPos++
traverseTreeEdge(v,w): dfsNum[w] :=dfsPos++
backtrack(u,v): finishTime[v] :=finishingTime++

The ordering by dfsNum is so useful that we introduce a special notation ‘≺’ for
it. For any two nodes u and v, we define

u ≺ v ⇔ dfsNum[u] < dfsNum[v] .

The numberings dfsNum and finishTime encode important information about the
execution of DFS, as we shall show next. We shall first show that the DFS numbers
increase along any path of the DFS tree, and then show that the numberings together
classify the edges according to their type.

Lemma 9.1. The nodes on the DFS recursion stack are sorted with respect to ≺.

Proof. dfsPos is incremented after every assignment to dfsNum. Thus, when a node
v becomes active by a call DFS(u,v), it has just been assigned the largest dfsNum so
far. �

dfsNums and finishTimes classify edges according to their type, as shown in Ta-
ble 9.1. The argument is as follows. Two calls of DFS are either nested within each
other, i.e., when the second call starts, the first is still active, or disjoint, i.e., when the

180 9 Graph Traversal

Table 9.1. The classification of an edge (v,w). Tree and forward edges are also easily distin-
guished. Tree edges lead to recursive calls, and forward edges do not

Type dfsNum[v] < dfsNum[w] finishTime[w] < FinishTime[v]
Tree Yes Yes
Forward Yes Yes
Backward No No
Cross No Yes

second starts, the first is already completed. If DFS(∗,w) is nested in DFS(∗,v), the
former call starts after the latter and finishes before it, i.e., dfsNum[v] < dfsNum[w]
and finishTime[w] < finishTime[v]. If DFS(∗,w) and DFS(∗,v) are disjoint and the
former call starts before the latter, it also ends before the latter, i.e., dfsNum[w] <
dfsNum[v] and finishTime[w] < finishTime[v]. The tree edges record the nesting struc-
ture of recursive calls. When a tree edge (v,w) is explored within DFS(∗,v), the call
DFS(v,w) is made and hence is nested within DFS(∗,v). Thus w has a larger DFS
number and a smaller finishing time than v. A forward edge (v,w) runs parallel to a
path of tree edges and hence w has a larger DFS number and a smaller finishing time
than v. A backward edge (v,w) runs antiparallel to a path of tree edges, and hence
w has a smaller DFS number and a larger finishing time than v. Let us look, finally,
at a cross edge (v,w). Since (v,w) is not a tree, forward, or backward edge, the calls
DFS(∗,v) and DFS(∗,w) cannot be nested within each other. Thus they are disjoint.
So w is marked either before DFS(∗,v) starts or after it ends. The latter case is impos-
sible, since, in this case, w would be unmarked when the edge (v,w) was explored,
and the edge would become a tree edge. So w is marked before DFS(∗,v) starts and
hence DFS(∗,w) starts and ends before DFS(∗,v). Thus dfsNum[w] < dfsNum[v] and
finishTime[w] < finishTime[v]. The following Lemma summarizes the discussion.

Lemma 9.2. Table 9.1 shows the characterization of edge types in terms of dfsNum
and finishTime.

Exercise 9.9. Modify DFS such that it labels the edges with their type. What is the
type of an edge (v,w) when w is on the recursion stack when the edge is explored?

Finishing times have an interesting property for directed acyclic graphs.

Lemma 9.3. The following properties are equivalent: (i) G is an acyclic directed
graph (DAG); (ii) DFS on G produces no backward edges; (iii) all edges of G go
from larger to smaller finishing times.

Proof. Backward edges run antiparallel to paths of tree edges and hence create cy-
cles. Thus DFS on an acyclic graph cannot create any backward edges. All other
types of edge run from larger to smaller finishing times according to Table 9.1. As-
sume now that all edges run from larger to smaller finishing times. In this case the
graph is clearly acyclic. �

An order of the nodes of a DAG in which all edges go from left to right is called
a topological sorting. By Lemma 9.3, the ordering by decreasing finishing time is a

9.2 Depth-First Search 181

topological ordering. Many problems on DAGs can be solved efficiently by iterating
over the nodes in a topological order. For example, in Sect. 10.2 we shall see a fast,
simple algorithm for computing shortest paths in acyclic graphs.

Exercise 9.10 (topological sorting). Design a DFS-based algorithm that outputs the
nodes in topological order if G is a DAG. Otherwise, it should output a cycle.

Exercise 9.11. Design a BFS-based algorithm for topological sorting.

Exercise 9.12. Show that DFS on an undirected graph does not produce any cross
edges.

9.2.2 Strongly Connected Components

We now come back to the problem posed at the beginning of this chapter. Recall that
two nodes belong to the same strongly connected component (SCC) of a graph iff
they are reachable from each other. In undirected graphs, the relation “being reach-
able” is symmetric, and hence strongly connected components are the same as con-
nected components. Exercise 9.6 outlines how to compute connected components
using BFS, and adapting this idea to DFS is equally simple. For directed graphs,
the situation is more interesting; see Fig. 9.5 for an example. We shall show that an
extension of DFS computes the strongly connected components of a digraph G in
linear time O(n+m). More precisely, the algorithm will output an array component
indexed by nodes such that component[v] = component[w] iff v and w belong to the
same SCC. Alternatively, it could output the node set of each SCC.

Exercise 9.13. Show that the node sets of distinct SCCs are disjoint. Hint: assume
that SCCs C and D have a common node v. Show that any node in C can reach any
node in D and vice versa.

aa bb

c

d e

e

f

g
i

i
h

c,d, f ,g,h

Fig. 9.5. A digraph G and the corresponding shrunken graph Gs. The SCCs of G have node
sets {a}, {b}, {c,d, f ,g,h}, {e}, and {i}

182 9 Graph Traversal

a

a

b

b

c

d

e
e

f

g

h
cd

fgh

open nodes b c d f g h
representatives b c f

Fig. 9.6. A snapshot of DFS on the graph of Fig. 9.5 and the corresponding shrunken graph.
The first DFS was started at node a and a second DFS was started at node b, the current node is
g, and the recursion stack contains b, c, f , g. The edges (g, i) and (g,d) have not been explored
yet. Edges (h, f) and (d,c) are back edges, (e,a) is a cross edge, and all other edges are tree
edges. Finished nodes and closed components are shaded. There are closed components {a}
and {e} and open components {b}, {c,d}, and { f ,g,h}. The open components form a path in
the shrunken graph with the current node g belonging to the last component. The representa-
tives of the open components are the nodes b, c, and f , respectively. DFS has reached the open
nodes in the order b, c, d, f , g, h. The representatives partition the sequence of open nodes
into the SCCs of Gc

The idea underlying the algorithm is simple. We imagine that the edges of G are
added one by one to an initially edgeless graph. We use Gc = (V,Ec) to denote the
current graph, and keep track of how the SCCs of Gc evolve as edges are added.
Initially, there are no edges and each node forms an SCC of its own. For the addition
step, it is helpful to introduce the notion of a shrunken graph. We use Gs

c to denote
the shrunken graph corresponding to Gc. The nodes of Gs

c are the SCCs of Gc. If C
and D are distinct SCCs of Gc, we have an edge (C,D) in Gs

c iff there are nodes u ∈C
and v ∈ D where (u,v) is an edge of Gc. Figure 9.5 shows an example.

Lemma 9.4. The shrunken graph Gs
c is acyclic.

Proof. Assume otherwise, and let C1,C2, . . . ,Ck−1,Ck with Ck = C1 be a cycle in
Gs

c. Recall that the Ci are SCCs of Gc. By the definition of Gs
c, Gc contains an edge

(vi,wi+1) with vi ∈ Ci and wi+1 ∈ Ci+1 for 0 ≤ i < k. Define vk = v1. Since Ci is
strongly connected, Gc contains a path from wi+1 to vi+1, 0 ≤ i < k.Thus all the vi’s
belong to the same SCC, a contradiction. �

How do the SCCs of Gc and Gs
c change when we add an edge e to Gc? There

are three cases to consider. (1) Both endpoints of e belong to the same SCC of Gc.
The shrunken graph and the SCCs do not change. (2) e connects nodes in different
SCCs but does not close a cycle. The SCCs do not change, and an edge is added to
the shrunken graph. (3) e connects nodes in different SCCs and closes one or more

9.2 Depth-First Search 183

cycles. In this case, all SCCs lying on one of the newly formed cycles are merged
into a single SCC, and the shrunken graph changes accordingly.

In order to arrive at an efficient algorithm, we need to describe how we maintain
the SCCs as the graph evolves. If the edges are added in arbitrary order, no efficient
simple method is known. However, if we use DFS to explore the graph, an efficient
solution is fairly simple to obtain. Consider a depth-first search on G and let Ec

be the set of edges already explored by DFS. A subset Vc of the nodes is already
marked. We distinguish between three kinds of SCC of Gc: unreached, open, and
closed. Unmarked nodes have indegree and outdegree zero in Gc and hence form
SCCs consisting of a single node. This node is isolated in the shrunken graph. We
call these SCCs unreached. The other SCCs consist of marked nodes only. We call
an SCC consisting of marked nodes open if it contains an active node, and closed
if it contains only finished nodes. We call a marked node “open” if it belongs to
an open component and “closed” if it belongs to a closed component. Observe that a
closed node is always finished and that an open node may be either active or finished.
For every SCC, we call the node with the smallest DFS number in the SCC the
representative of the SCC. Figure 9.6 illustrates these concepts. We state next some
important invariant properties of Gc; see also Fig. 9.7:

(1) All edges in G (not just Gc) out of closed nodes lead to closed nodes. In our
example, the nodes a and e are closed.

(2) The tree path to the current node contains the representatives of all open com-
ponents. Let S1 to Sk be the open components as they are traversed by the tree
path to the current node. There is then a tree edge from a node in Si−1 to the
representative of Si, and this is the only edge into Si, 2 ≤ i ≤ k. Also, there is no
edge from an S j to an Si with i < j. Finally, all nodes in S j are reachable from
the representative ri of Si for 1 ≤ i ≤ j ≤ k. In short, the open components form
a path in the shrunken graph. In our example, the current node is g. The tree path
〈b,c, f ,g〉 to the current node contains the open representatives b, c, and f .

(3) Consider the nodes in open components ordered by their DFS numbers. The rep-
resentatives partition the sequence into the open components. In our example,
the sequence of open nodes is 〈b,c,d, f ,g,h〉 and the representatives partition
this sequence into the open components {b}, {c,d}, and { f ,g,h}.

We shall show below that all three properties hold true generally, and not only for
our example. The three properties will be invariants of the algorithm to be developed.
The first invariant implies that the closed SCCs of Gc are actually SCCs of G, i.e., it
is justified to call them closed. This observation is so important that it deserves to be
stated as a lemma.

Lemma 9.5. A closed SCC of Gc is an SCC of G.

Proof. Let v be a closed vertex, let S be the SCC of G containing v, and let Sc be
the SCC of Gc containing v. We need to show that S = Sc. Since Gc is a subgraph
of G, we have Sc ⊆ S. So, it suffices to show that S ⊆ Sc. Let w be any vertex in S.
There is then a cycle C in G passing through v and w. The first invariant implies that

184 9 Graph Traversal

all vertices of C are closed. Since closed vertices are finished, all edges out of them
have been explored. Thus C is contained in Gc, and hence w ∈ Sc. �

The Invariants (2) and (3) suggest a simple method to represent the open SCCs
of Gc. We simply keep a sequence oNodes of all open nodes in increasing order of
DFS numbers, and the subsequence oReps of open representatives. In our example,
we have oNodes = 〈b,c,d, f ,g,h〉 and oReps = 〈b,c, f 〉. We shall later see that the
type Stack of NodeId is appropriate for both sequences.

Let us next see how the SCCs of Gc develop during DFS. We shall discuss the
various actions of DFS one by one and show that the invariants are maintained. We
shall also discuss how to update our representation of the open components.

When DFS starts, the invariants clearly hold: no node is marked, no edge has
been traversed, Gc is empty, and hence there are neither open nor closed components
yet. Our sequences oNodes and oReps are empty.

Just before a new root will be marked, all marked nodes are finished and hence
there cannot be any open component. Therefore, both of the sequences oNodes and
oReps are empty, and marking a new root s produces the open component {s}. The
invariants are clearly maintained. We obtain the correct representation by adding s to
both sequences.

If a tree edge e = (v,w) is traversed and hence w becomes marked, {w} becomes
an open component on its own. All other open components are unchanged. The first
invariant is clearly maintained, since v is active and hence open. The old current node
is v and the new current node is w. The sequence of open components is extended by
{w}. The open representatives are the old open representatives plus the node w. Thus
the second invariant is maintained. Also, w becomes the open node with the largest
DFS number and hence oNodes and oReps are both extended by w. Thus the third
invariant is maintained.

Now suppose that a nontree edge e = (v,w) out of the current node v is explored.
If w is closed, the SCCs of Gc do not change when e is added to Gc since, by
Lemma 9.5, the SCC of Gc containing w is already an SCC of G before e is tra-
versed. So, assume that w is open. Then w lies in some open SCC Si of Gc. We claim

open nodes ordered by dfsNum

current
node

S1 S2 Sk

r1 r2 rk

Fig. 9.7. The open SCCs are shown as ovals, and the current node is shown as a bold circle.
The tree path to the current node is indicated. It enters each component at its representative.
The horizontal line below represents the open nodes, ordered by dfsNum. Each open SCC
forms a contiguous subsequence, with its representative as its leftmost element

9.2 Depth-First Search 185

current
nodev

w

ri rk

Si Sk

Fig. 9.8. The open SCCs are shown as ovals and their representatives as circles to the left of an
oval. All representatives lie on the tree path to the current node v. The nontree edge e = (v,w)
ends in an open SCC Si with representative ri. There is a path from w to ri since w belongs to
the SCC with representative ri. Thus the edge (v,w) merges Si to Sk into a single SCC

that the SCCs Si to Sk are merged into a single component and all other components
are unchanged; see Fig. 9.8. Let ri be the representative of Si. We can then go from ri

to v along a tree path by invariant (2), then follow the edge (v,w), and finally return
to ri. The path from w to ri exists, since w and ri lie in the same SCC of Gc. We
conclude that any node in an S j with i ≤ j ≤ k can be reached from ri and can reach
ri. Thus the SCCs Si to Sk become one SCC, and ri is their representative. The S j

with j < i are unaffected by the addition of the edge.
The third invariant tells us how to find ri, the representative of the component

containing w. The sequence oNodes is ordered by dfsNum, and the representative of
an SCC has the smallest dfsNum of any node in that component. Thus dfsNum[ri] ≤
dfsNum[w] and dfsNum[w] < dfsNum[r j] for all j > i. It is therefore easy to update our
representation. We simply delete all representatives r with dfsNum[r] > dfsNum[w]
from oReps.

Finally, we need to consider finishing a node v. When will this close an SCC?
By invariant (2), all nodes in a component are tree descendants of the representative
of the component, and hence the representative of a component is the last node to
be finished in the component. In other words, we close a component iff we finish
a representative. Since oReps is ordered by dfsNum, we close a component iff the
last node of oReps finishes. So, assume that we finish a representative v. Then, by
invariant (3), the component Sk with representative v = rk consists of v and all nodes
in oNodes following v. Finishing v closes Sk. By invariant (2), there is no edge out
of Sk into an open component. Thus invariant (1) holds after Sk is closed. The new
current node is the parent of v. By invariant (2), the parent of v lies in Sk−1. Thus
invariant (2) holds after Sk is closed. Invariant (3) holds after v is removed from
oReps, and v and all nodes following it are removed from oNodes.

It is now easy to instantiate the DFS template. Fig. 9.10 shows the pseudocode,
and Fig. 9.9 illustrates a complete run. We use an array component indexed by nodes
to record the result, and two stacks oReps and oNodes. When a new root is marked or
a tree edge is explored, a new open component consisting of a single node is created
by pushing this node onto both stacks. When a cycle of open components is created,
these components are merged by popping representatives from oReps as long as the
top representative is not to the left of the node w closing the cycle. An SCC S is
closed when its representative v finishes. At that point, all nodes of S are stored

186 9 Graph Traversal

marked finished

representative node

nonrepresentative node closed SCC

open SCC

nontraversed edge

traversed edge

unmarked

backtrack(d,d)

backtrack(e,h) backtrack(d,e)

traverse(i,e)

traverse(j,c)traverse(i,j) traverse(j,k)

traverse(k,d)

backtrack(j,k) backtrack(i,j) backtrack(h,i)

traverse(e,g) traverse(e,h) traverse(h,i)

root(a) traverse(a,b) traverse(b,c)

traverse(c,a)

backtrack(b,c) backtrack(a,b)

backtrack(a,a)

root(d) traverse(d,e) traverse(e,f) traverse(f,g)

backtrack(f,g) backtrack(e,f)

aa bb cc dd ee ff gg ii hh jj kk

Fig. 9.9. An example of the development of open and closed SCCs during DFS. Unmarked
nodes are shown as empty circles, marked nodes are shown in gray, and finished nodes are
shown in black. Nontraversed edges are shown in gray, and traversed edges are shown in
black. Open SCCs are shown as empty ovals, and closed SCCs are shown as gray ovals. We
start in the situation shown at the upper left. We make a a root and traverse the edges (a,b)
and (b,c). This creates three open SSCs. The traversal of edge (c,a) merges these components
into one. Next, we backtrack to b, then to a, and finally from a. At this point, the component
becomes closed. Please complete the description

above v in oNodes. The operation backtrack therefore closes S by popping v from
oReps, and by popping the nodes w ∈ S from oNodes and setting their component to
the representative v.

Note that the test w ∈ oNodes in traverseNonTreeEdge can be done in constant
time by storing information with each node that indicates whether the node is open or
not. This indicator is set when a node v is first marked, and reset when the component
of v is closed. We give implementation details in Sect. 9.3. Furthermore, the while
loop and the repeat loop can make at most n iterations during the entire execution
of the algorithm, since each node is pushed onto the stacks exactly once. Hence, the
execution time of the algorithm is O(m+n). We have the following theorem.

9.2 Depth-First Search 187

init:
component : NodeArray of NodeId // SCC representatives
oReps = 〈〉 : Stack of NodeId // representatives of open SCCs
oNodes = 〈〉 : Stack of NodeId // all nodes in open SCCs

root(w) or traverseTreeEdge(v,w):
oReps.push(w) // new open
oNodes.push(w) // component

traverseNonTreeEdge(v,w):
if w ∈ oNodes then

while w ≺ oReps.top do oReps.pop // collapse components on cycle

backtrack(u,v):
if v = oReps.top then

oReps.pop // close
repeat // component

w :=oNodes.pop
component[w] := v

until w = v

Fig. 9.10. An instantiation of the DFS template that computes strongly connected components
of a graph G = (V,E)

Fig. 9.11. The graph has two 2-edge con-
nected components, namely {0,1,2,3,4}
and {5}. The graph has three bicon-
nected components, namely the subgraphs
spanned by the sets {0,1,2}, {1,3,4} and
{2,5}. The vertices 1 and 2 are articulation
points

Theorem 9.6. The algorithm in Fig. 9.10 computes strongly connected components
in time O(m+n).

Exercise 9.14 (certificates). Let G be a strongly connected graph and let s be a node
of G. Show how to construct two trees rooted at s. The first tree proves that all nodes
can be reached from s, and the second tree proves than s can be reached from all
nodes.

Exercise 9.15 (2-edge-connected components). An undirected graph is 2-edge-
connected if its edges can be oriented so that the graph becomes strongly connected.
The 2-edge-connected components are the maximal 2-edge-connected subgraphs;
see Fig. 9.11. Modify the SCC algorithm shown in Fig. 9.10 so that it computes 2-
edge-connected components. Hint: show first that DFS of an undirected graph never
produces any cross edges.

188 9 Graph Traversal

Exercise 9.16 (biconnected components). Two nodes of an undirected graph be-
long to the same biconnected component (BCC) iff they are connected by an edge
or there are two edge-disjoint paths connecting them; see Fig. 9.11. A node is an
articulation point if it belongs to more than one BCC. Design an algorithm that com-
putes biconnected components using a single pass of DFS. Hint: adapt the strongly-
connected-components algorithm. Define the representative of a BCC as the node
with the second smallest dfsNum in the BCC. Prove that a BCC consists of the par-
ent of the representative and all tree descendants of the representative that can be
reached without passing through another representative. Modify backtrack. When
you return from a representative v, output v, all nodes above v in oNodes, and the
parent of v.

9.3 Implementation Notes

BFS is usually implemented by keeping unexplored nodes (with depths d and d +1)
in a FIFO queue. We chose a formulation using two separate sets for nodes at depth d
and nodes at depth d +1 mainly because it allows a simple loop invariant that makes
correctness immediately evident. However, our formulation might also turn out to be
somewhat more efficient. If Q and Q′ are organized as stacks, we will have fewer
cache faults than with a queue, in particular if the nodes of a layer do not quite fit
into the cache. Memory management becomes very simple and efficient when just a
single array a of n nodes is allocated for both of the stacks Q and Q′. One stack grows
from a[1] to the right and the other grows from a[n] to the left. When the algorithm
switches to the next layer, the two memory areas switch their roles.

Our SCC algorithm needs to store four kinds of information for each node v:
an indication of whether v is marked, an indication of whether v is open, something
like a DFS number in order to implement “≺”, and, for closed nodes, the NodeId
of the representative of its component. The array component suffices to keep this
information. For example, if NodeIds are integers in 1..n, component[v] = 0 could
indicate an unmarked node. Negative numbers can indicate negated DFS numbers, so
that u≺ v iff component[u] > component[v]. This works because “≺” is never applied
to closed nodes. Finally, the test w∈ oNodes simply becomes component[v] < 0. With
these simplifications in place, additional tuning is possible. We make oReps store
component numbers of representatives rather than their IDs, and save an access to
component[oReps.top]. Finally, the array component should be stored with the node
data as a single array of records. The effect of these optimization on the performance
of our SCC algorithm is discussed in [132].

9.3.1 C++

LEDA [118] has implementations for topological sorting, reachability from a node
(DFS), DFS numbering, BFS, strongly connected components, biconnected compo-
nents, and transitive closure. BFS, DFS, topological sorting, and strongly connected

9.4 Historical Notes and Further Findings 189

components are also available in a very flexible implementation that separates rep-
resentation and implementation, supports incremental execution, and allows various
other adaptations.

The Boost graph library [27] uses the visitor concept to support graph traversal.
A visitor class has user-definable methods that are called at event points during the
execution of a graph traversal algorithm. For example, the DFS visitor defines event
points similar to the operations init, root, traverse∗, and backtrack used in our DFS
template; there are more event points in Boost.

9.3.2 Java

The JDSL [78] library [78] supports DFS in a very flexible way, not very much dif-
ferent from the visitor concept described for Boost. There are also more specialized
algorithms for topological sorting and finding cycles.

9.4 Historical Notes and Further Findings

BFS and DFS were known before the age of computers. Tarjan [185] discovered
the power of DFS and provided linear-time algorithms for many basic problems re-
lated to graphs, in particular biconnected and strongly connected components. Our
SCC algorithm was invented by Cheriyan and Mehlhorn [39] and later rediscovered
by Gabow [70]. Yet another linear-time SCC algorithm is that due to Kosaraju and
Sharir [178]. It is very simple, but needs two passes of DFS. DFS can be used to solve
many other graph problems in linear time, for example ear decomposition, planarity
testing, planar embeddings, and triconnected components.

It may seem that problems solvable by graph traversal are so simple that little
further research is needed on them. However, the bad news is that graph traversal
itself is very difficult on advanced models of computation. In particular, DFS is a
nightmare for both parallel processing [161] and memory hierarchies [141, 128].
Therefore alternative ways to solve seemingly simple problems are an interesting
area of research. For example, in Sect. 11.8 we describe an approach to constructing
minimum spanning trees using edge contraction that also works for finding con-
nected components. Furthermore, the problem of finding biconnected components
can be reduced to finding connected components [189]. The DFS-based algorithms
for biconnected components and strongly connected components are almost identi-
cal. But this analogy completely disappears for advanced models of computation, so
that algorithms for strongly connected components remain an area of intensive (and
sometimes frustrating) research. More generally, it seems that problems for undi-
rected graphs (such as finding biconnected components) are often easier to solve
than analogous problems for directed graphs (such as finding strongly connected
components).

10

Shortest Paths
M

G

F

N

PK

S

Q
O

R

L

0

5

11

13

15

17
18

19
20

Distance to M

17

C

H
V

J

W

E

The problem of the shortest, quickest or cheapest path is ubiquitous. You solve it
daily. When you are in a location s and want to move to a location t, you ask for the
quickest path from s to t. The fire department may want to compute the quickest routes
from a fire station s to all locations in town – the single-source problem. Sometimes
we may even want a complete distance table from everywhere to everywhere – the
all-pairs problem. In a road atlas, you will usually find an all-pairs distance table
for the most important cities.

Here is a route-planning algorithm that requires a city map and a lot of dexterity
but no computer. Lay thin threads along the roads on the city map. Make a knot
wherever roads meet, and at your starting position. Now lift the starting knot until
the entire net dangles below it. If you have successfully avoided any tangles and the
threads and your knots are thin enough so that only tight threads hinder a knot from
moving down, the tight threads define the shortest paths. The introductory figure of
this chapter shows the campus map of the University of Karlsruhe1 and illustrates
the route-planning algorithm for the source node M.

Route planning in road networks is one of the many applications of shortest-
path computations. When an appropriate graph model is defined, many problems
turn out to profit from shortest-path computations. For example, Ahuja et al. [8]
mentioned such diverse applications as planning flows in networks, urban housing,
inventory planning, DNA sequencing, the knapsack problem (see also Chap. 12),
production planning, telephone operator scheduling, vehicle fleet planning, approx-
imating piecewise linear functions, and allocating inspection effort on a production
line.

The most general formulation of the shortest-path problem looks at a directed
graph G = (V,E) and a cost function c that maps edges to arbitrary real-number

1 (c) Universität Karlsruhe (TH), Institut für Photogrammetrie und Fernerkundung.

192 10 Shortest Paths

costs. It turns out that the most general problem is fairly expensive to solve. So we
are also interested in various restrictions that allow simpler and more efficient al-
gorithms: nonnegative edge costs, integer edge costs, and acyclic graphs. Note that
we have already solved the very special case of unit edge costs in Sect. 9.1 – the
breadth-first search (BFS) tree rooted at node s is a concise representation of all
shortest paths from s. We begin in Sect. 10.1 with some basic concepts that lead to
a generic approach to shortest-path algorithms. A systematic approach will help us
to keep track of the zoo of shortest-path algorithms. As our first example of a re-
stricted but fast and simple algorithm, we look at acyclic graphs in Sect. 10.2. In
Sect. 10.3, we come to the most widely used algorithm for shortest paths: Dijkstra’s
algorithm for general graphs with nonnegative edge costs. The efficiency of Dijk-
stra’s algorithm relies heavily on efficient priority queues. In an introductory course
or at first reading, Dijkstra’s algorithm might be a good place to stop. But there are
many more interesting things about shortest paths in the remainder of the chapter.
We begin with an average-case analysis of Dijkstra’s algorithm in Sect. 10.4 which
indicates that priority queue operations might dominate the execution time less than
one might think. In Sect. 10.5, we discuss monotone priority queues for integer keys
that take additional advantage of the properties of Dijkstra’s algorithm. Combining
this with average-case analysis leads even to a linear expected execution time. Sec-
tion 10.6 deals with arbitrary edge costs, and Sect. 10.7 treats the all-pairs problem.
We show that the all-pairs problem for general edge costs reduces to one general
single-source problem plus n single-source problems with nonnegative edge costs.
This reduction introduces the generally useful concept of node potentials. We close
with a discussion of shortest path queries in Sect. 10.8.

10.1 From Basic Concepts to a Generic Algorithm

We extend the cost function to paths in the natural way. The cost of a path is the
sum of the costs of its constituent edges, i.e., if p = 〈e1,e2, . . . ,ek〉, then c(p) =
∑1≤i≤k c(ei). The empty path has cost zero.

For a pair s and v of nodes, we are interested in a shortest path from s to v. We
avoid the use of the definite article “the” here, since there may be more than one
shortest path. Does a shortest path always exist? Observe that the number of paths
from s to v may be infinite. For example, if r = pCq is a path from s to v containing a
cycle C, then we may go around the cycle an arbitrary number of times and still have
a path from s to v; see Fig. 10.1. More precisely, p is a path leading from s to u, C is
a path leading from u to u, and q is a path from u to v. Consider the path r(i) = pCiq
which first uses p to go from s to u, then goes around the cycle i times, and finally
follows q from u to v. The cost of r(i) is c(p)+ i ·c(C)+c(q). If C is a negative cycle,
i.e., c(C) < 0, then c(r(i+1)) < c(r(i)). In this situation, there is no shortest path from
s to v. Assume otherwise: say, P is a shortest path from s to v. Then c(r(i)) < c(P)
for i large enough2, and so P is not a shortest path from s to v. We shall show next
that shortest paths exist if there are no negative cycles.

2 i > (c(p)+ c(q)− c(P))/|c(C)| will do.

10.1 From Basic Concepts to a Generic Algorithm 193

...(2)p ps sq q
CC

v v
uu

Fig. 10.1. A nonsimple path pCq from s to v

Lemma 10.1. If G contains no negative cycles and v is reachable from s, then a
shortest path P from s to v exists. Moreover P can be chosen to be simple.

Proof. Let x be a shortest simple path from s to v. If x is not a shortest path from s
to v, there is a shorter nonsimple path r from s to v. Since r is nonsimple we can,
as in Fig. 10.1, write r as pCq, where C is a cycle and pq is a simple path. Then
c(x) ≤ c(pq), and hence c(pq)+ c(C) = c(r) < c(x) ≤ c(pq). So c(C) < 0 and we
have shown the existence of a negative cycle. ��

Exercise 10.1. Strengthen the lemma above and show that if v is reachable from s,
then a shortest path from s to v exists iff there is no negative cycle that is reachable
from s and from which one can reach v.

For two nodes s and v, we define the shortest-path distance μ(s,v) from s to v as

μ(s,v) :=

⎧
⎪⎨

⎪⎩

+∞ if there is no path from s to v,

−∞ if there is no shortest path from s to v,

c(a shortest path from s to v) otherwise.

Since we use s to denote the source vertex most of the time, we also use the shorthand
μ(v) :=μ(s,v). Observe that if v is reachable from s but there is no shortest path from
s to v, then there are paths of arbitrarily large negative cost. Thus it makes sense to
define μ(v) = −∞ in this case. Shortest paths have further nice properties, which we
state as exercises.

Exercise 10.2 (subpaths of shortest paths). Show that subpaths of shortest paths
are themselves shortest paths, i.e., if a path of the form pqr is a shortest path, then q
is also a shortest path.

Exercise 10.3 (shortest-path trees). Assume that all nodes are reachable from s and
that there are no negative cycles. Show that there is an n-node tree T rooted at s
such that all tree paths are shortest paths. Hint: assume first that shortest paths are
unique, and consider the subgraph T consisting of all shortest paths starting at s. Use
the preceding exercise to prove that T is a tree. Extend this result to the case where
shortest paths are not unique.

Our strategy for finding shortest paths from a source node s is a generaliza-
tion of the BFS algorithm shown in Fig. 9.3. We maintain two NodeArrays d and
parent. Here, d[v] contains our current knowledge about the distance from s to v, and
parent[v] stores the predecessor of v on the current shortest path to v. We usually

194 10 Shortest Paths

42

0

0

0

0

5
2

2−1

−1
−1−2

−2

−2
−3

−3

+∞

−∞−∞ −∞

−∞

a b d f g

hijk s

Fig. 10.2. A graph with shortest-path distances μ(v). Edge costs are shown as edge labels, and
the distances are shown inside the nodes. The thick edges indicate shortest paths

refer to d[v] as the tentative distance of v. Initially, d[s] = 0 and parent[s] = s. All
other nodes have infinite distance and no parent.

The natural way to improve distance values is to propagate distance information
across edges. If there is a path from s to u of cost d[u], and e = (u,v) is an edge out
of u, then there is a path from s to v of cost d[u] + c(e). If this cost is smaller than
the best previously known distance d[v], we update d and parent accordingly. This
process is called edge relaxation:

Procedure relax(e = (u,v) : Edge)
if d[u]+ c(e) < d[v] then d[v] :=d[u]+ c(e); parent[v] :=u

Lemma 10.2. After any sequence of edge relaxations, if d[v] < ∞, then there is a
path of length d[v] from s to v.

Proof. We use induction on the number of edge relaxations. The claim is certainly
true before the first relaxation. The empty path is a path of length zero from s to
s, and all other nodes have infinite distance. Consider next a relaxation of an edge
e = (u,v). By the induction hypothesis, there is a path p of length d[u] from s to u
and a path of length d[v] from s to v. If d[u]+ c(e) ≥ d[v], there is nothing to show.
Otherwise, pe is a path of length d[u]+ c(e) from s to v. ��

The common strategy of the algorithms in this chapter is to relax edges until ei-
ther all shortest paths have been found or a negative cycle is discovered. For example,
the (reversed) thick edges in Fig. 10.2 give us the parent information obtained after a
sufficient number of edge relaxations: nodes f , g, i, and h are reachable from s using
these edges and have reached their respective μ(·) values 2, −3, −1, and −3. Nodes
b, j, and d form a negative-cost cycle so that their shortest-path cost is −∞. Node a
is attached to this cycle, and thus μ(a) = −∞.

What is a good sequence of edge relaxations? Let p = 〈e1, . . . ,ek〉 be a path from
s to v. If we relax the edges in the order e1 to ek, we have d[v] ≤ c(p) after the
sequence of relaxations. If p is a shortest path from s to v, then d[v] cannot drop
below c(p), by the preceding lemma, and hence d[v] = c(p) after the sequence of
relaxations.

Lemma 10.3 (correctness criterion). After performing a sequence R of edge re-
laxations, we have d[v] = μ(v) if, for some shortest path p = 〈e1,e2, . . . ,ek〉 from

10.2 Directed Acyclic Graphs 195

s to v, p is a subsequence of R, i.e., there are indices t1 < t2 < · · · < tk such that
R[t1] = e1,R[t2] = e2, . . . ,R[tk] = ek. Moreover, the parent information defines a path
of length μ(v) from s to v.

Proof. The following is a schematic view of R and p: the first row indicates the time.
At time t1, the edge e1 is relaxed, at time t2, the edge e2 is relaxed, and so on:

1,2, . . . , t1, . . . , t2, ,tk, . . .
R := 〈 . . . ,e1, . . . , e2, ,ek, . . .〉
p:= 〈e1, e2, . . . ,ek〉

We have μ(v) = ∑1≤ j≤k c(e j). For i ∈ 1..k, let vi be the target node of ei, and we
define t0 = 0 and v0 = s. Then d[vi]≤ ∑1≤ j≤i c(e j) after time ti, as a simple induction
shows. This is clear for i = 0, since d[s] is initialized to zero and d-values are only
decreased. After the relaxation of ei = R[ti] for i > 0, we have d[vi]≤ d[vi−1]+c(ei)≤
∑1≤ j≤i c(e j). Thus, after time tk, we have d[v] ≤ μ(v). Since d[v] cannot go below
μ(v), by Lemma 10.2, we have d[v] = μ(v) after time tk and hence after performing
all relaxations in R.

Let us prove next that the parent information traces out shortest paths. We shall
do so under the additional assumption that shortest paths are unique, and leave the
general case to the reader. After the relaxations in R, we have d[vi] = μ(vi) for 1 ≤
i ≤ k. When d[vi] was set to μ(vi) by an operation relax(u,vi), the existence of a path
of length μ(vi) from s to vi was established. Since, by assumption, the shortest path
from s to vi is unique, we must have u = vi−1, and hence parent[vi] = vi−1. ��

Exercise 10.4. Redo the second paragraph in the proof above, but without the as-
sumption that shortest paths are unique.

Exercise 10.5. Let S be the edges of G in some arbitrary order and let S(n−1) be
n− 1 copies of S. Show that μ(v) = d[v] for all nodes v with μ(v) 	= −∞ after the
relaxations S(n−1) have been performed.

In the following sections, we shall exhibit more efficient sequences of relaxations
for acyclic graphs and for graphs with nonnegative edge weights. We come back to
general graphs in Sect. 10.6.

10.2 Directed Acyclic Graphs

In a directed acyclic graph (DAG), there are no directed cycles and hence no negative
cycles. Moreover, we have learned in Sect. 9.2.1 that the nodes of a DAG can be
topologically sorted into a sequence 〈v1,v2, . . . ,vn〉 such that (vi,v j) ∈ E implies
i < j. A topological order can be computed in linear time O(m+n) using either
depth-first search or breadth-first search. The nodes on any path in a DAG increase
in topological order. Thus, by Lemma 10.3, we can compute correct shortest-path
distances if we first relax the edges out of v1, then the edges out of v2, etc.; see
Fig. 10.3 for an example. In this way, each edge is relaxed only once. Since every
edge relaxation takes constant time, we obtain a total execution time of O(m+n).

196 10 Shortest Paths

3

9

s
1

4
5

2 7

6
8

Fig. 10.3. Order of edge relaxations for the computation of the shortest paths from node s in a
DAG. The topological order of the nodes is given by their x-coordinates

Theorem 10.4. Shortest paths in acyclic graphs can be computed in time O(m+n).

Exercise 10.6 (route planning for public transportation). Finding the quickest
routes in public transportation systems can be modeled as a shortest-path problem
for an acyclic graph. Consider a bus or train leaving a place p at time t and reaching
its next stop p′ at time t ′. This connection is viewed as an edge connecting nodes
(p, t) and (p′, t ′). Also, for each stop p and subsequent events (arrival and/or depar-
ture) at p, say at times t and t ′ with t < t ′, we have the waiting link from (p, t) to
(p, t ′). (a) Show that the graph obtained in this way is a DAG. (b) You need an ad-
ditional node that models your starting point in space and time. There should also
be one edge connecting it to the transportation network. What should this edge be?
(c) Suppose you have computed the shortest-path tree from your starting node to all
nodes in the public transportation graph reachable from it. How do you actually find
the route you are interested in?

10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm)

We now assume that all edge costs are nonnegative. Thus there are no negative cycles,
and shortest paths exist for all nodes reachable from s. We shall show that if the edges
are relaxed in a judicious order, every edge needs to be relaxed only once.

What is the right order? Along any shortest path, the shortest-path distances in-
crease (more precisely, do not decrease). This suggests that we should scan nodes (to
scan a node means to relax all edges out of the node) in order of increasing shortest-
path distance. Lemma 10.3 tells us that this relaxation order ensures the computation
of shortest paths. Of course, in the algorithm, we do not know the shortest-path dis-
tances; we only know the tentative distances d[v]. Fortunately, for an unscanned node
with minimal tentative distance, the true and tentative distances agree. We shall prove
this in Theorem 10.5. We obtain the algorithm shown in Fig. 10.4. This algorithm is
known as Dijkstra’s shortest-path algorithm. Figure 10.5 shows an example run.

Note that Dijkstra’s algorithm is basically the thread-and-knot algorithm we saw
in the introduction to this chapter. Suppose we put all threads and knots on a table
and then lift the starting node. The other knots will leave the surface of the table in
the order of their shortest-path distances.

Theorem 10.5. Dijkstra’s algorithm solves the single-source shortest-path problem
for graphs with nonnegative edge costs.

10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm) 197

Dijkstra’s Algorithm
declare all nodes unscanned and initialize d and parent
while there is an unscanned node with tentative distance < +∞ do

u := the unscanned node with minimal tentative distance
relax all edges (u,v) out of u and declare u scanned

s

scanned

u

Fig. 10.4. Dijkstra’s shortest-path algorithm for nonnegative edge weights

Operation Queue
insert(s) 〈(s,0)〉
deleteMin� (s,0) 〈〉
relax s

2→ a 〈(a,2)〉
relax s

10→ d 〈(a,2),(d,10)〉
deleteMin� (a,2) 〈(d,10)〉
relax a

3→ b 〈(b,5),(d,10)〉
deleteMin� (b,5) 〈(d,10)〉
relax b

2→ c 〈(c,7),(d,10)〉
relax b

1→ e 〈(e,6),(c,7),(d,10)〉
deleteMin� (e,6) 〈(c,7),(d,10)〉
relax e

9→ b 〈(c,7),(d,10)〉
relax e

8→ c 〈(c,7),(d,10)〉
relax e

0→ d 〈(d,6),(c,7)〉
deleteMin� (d,6) 〈(c,7)〉
relax d

4→ s 〈(c,7)〉
relax d

5→ b 〈(c,7)〉
deleteMin� (c,7) 〈〉

1
9

3 2

8

70

5

2 5 7

66

0
10

2

4

a

s

d e

b c

f

∞

Fig. 10.5. Example run of Dijkstra’s algorithm
on the graph given on the right. The bold edges
form the shortest-path tree, and the numbers in
bold indicate shortest-path distances. The table
on the left illustrates the execution. The queue
contains all pairs (v,d[v]) with v reached and
unscanned. A node is called reached if its ten-
tative distance is less than +∞. Initially, s is
reached and unscanned. The actions of the al-
gorithm are given in the first column. The sec-
ond column shows the state of the queue after
the action

Proof. We proceed in two steps. In the first step, we show that all nodes reachable
from s are scanned. In the second step, we show that the tentative and true distances
agree when a node is scanned. In both steps, we argue by contradiction.

For the first step, assume the existence of a node v that is reachable from s, but
never scanned. Consider a shortest path p = 〈s = v1,v2, . . . ,vk = v〉 from s to v, and
let i be minimal such that vi is not scanned. Then i > 1, since s is the first node
scanned (in the first iteration, s is the only node whose tentative distance is less than
+∞) . By the definition of i, vi−1 has been scanned. When vi−1 is scanned, d[vi]
is set to d[vi−1] + c(vi−1,vi), a value less than +∞. So vi must be scanned at some
point during the execution, since the only nodes that stay unscanned are nodes u with
d[u] = +∞ at termination.

For the second step, consider the first point in time t, when a node v is scanned
with μ [v] < d(v). As above, consider a shortest path p =〈s = v1,v2, . . . ,vk = v〉 from
s to v, and let i be minimal such that vi is not scanned before time t. Then i > 1, since s
is the first node scanned and μ(s) = 0 = d[s] when s is scanned. By the definition of i,

198 10 Shortest Paths

Function Dijkstra(s : NodeId) : NodeArray×NodeArray // returns (d,parent)
d = 〈∞, . . . ,∞〉 : NodeArray of R∪{∞} // tentative distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId
parent[s] := s // self-loop signals root
Q : NodePQ // unscanned reached nodes
d[s] :=0; Q.insert(s)
while Q 	= /0 do

u :=Q.deleteMin // we have d[u] = μ(u)
foreach edge e = (u,v) ∈ E do

s

scanned

u

if d[u]+ c(e) < d[v] then // relax
d[v] :=d[u]+ c(e)
parent[v] :=u // update tree
if v ∈ Q then Q.decreaseKey(v)
else Q.insert(v)

u v

reached
return (d,parent)

Fig. 10.6. Pseudocode for Dijkstra’s algorithm

vi−1 was scanned before time t. Hence d[vi−1] = μ(vi−1) when vi−1 is scanned. When
vi−1 is scanned, d[vi] is set to d[vi−1]+c(vi−1,vi) = μ(vi−1)+c(vi−1,vi) = μ(vi). So,
at time t, we have d[vi] = μ(vi) ≤ μ(vk) < d[vk] and hence vi is scanned instead of
vk, a contradiction. ��

Exercise 10.7. Let v1, v2, . . . be the order in which the nodes are scanned. Show that
μ(v1) ≤ μ(v2) ≤ . . ., i.e., the nodes are scanned in order of increasing shortest-path
distance.

Exercise 10.8 (checking of shortest-path distances). Assume that all edge costs are
positive, that all nodes are reachable from s, and that d is a node array of nonnegative
reals satisfying d[s] = 0 and d[v] = min(u,v)∈E d[u] + c(u,v) for v 	= s. Show that
d[v] = μ(v) for all v. Does the claim still hold in the presence of edges of cost zero?

We come now to the implementation of Dijkstra’s algorithm. We store all un-
scanned reached nodes in an addressable priority queue (see Sect. 6.2) using their
tentative-distance values as keys. Thus, we can extract the next node to be scanned
using the queue operation deleteMin. We need a variant of a priority queue where the
operation decreaseKey addresses queue items using nodes rather than handles. Given
an ordinary priority queue, such a NodePQ can be implemented using an additional
NodeArray translating nodes into handles. We can also store the priority queue items
directly in a NodeArray. We obtain the algorithm given in Fig. 10.6. Next, we analyze
its running time in terms of the running times for the queue operations. Initializing
the arrays d and parent and setting up a priority queue Q = {s} takes time O(n).
Checking for Q = /0 and loop control takes constant time per iteration of the while
loop, i.e., O(n) time in total. Every node reachable from s is removed from the queue
exactly once. Every reachable node is also inserted exactly once. Thus we have at
most n deleteMin and insert operations. Since each node is scanned at most once,

10.4 *Average-Case Analysis of Dijkstra’s Algorithm 199

each edge is relaxed at most once, and hence there can be at most m decreaseKey
operations. We obtain a total execution time of

TDijkstra = O
(
m ·TdecreaseKey(n)+n · (TdeleteMin(n)+Tinsert(n))

)
,

where TdeleteMin, Tinsert, and TdecreaseKey denote the execution times for deleteMin,
insert, and decreaseKey, respectively. Note that these execution times are a function
of the queue size |Q| = O(n).

Exercise 10.9. Design a graph and a nonnegative cost function such that the relax-
ation of m− (n−1) edges causes a decreaseKey operation.

In his original 1959 paper, Dijkstra proposed the following implementation of
the priority queue: maintain the number of reached unscanned nodes, and two arrays
indexed by nodes – an array d storing the tentative distances and an array storing,
for each node, whether it is unscanned or reached. Then insert and decreaseKey take
time O(1). A deleteMin takes time O(n), since it has to scan the arrays in order to
find the minimum tentative distance of any reached unscanned node. Thus the total
running time becomes

TDijkstra59 = O
(
m+n2) .

Much better priority queue implementations have been invented since Dijkstra’s
original paper. Using the binary heap and Fibonacci heap priority queues described
in Sect. 6.2, we obtain

TDijkstraBHeap = O((m+n) logn)

and

TDijkstraFibonacci = O(m+n logn) ,

respectively. Asymptotically, the Fibonacci heap implementation is superior except
for sparse graphs with m = O(n). In practice, Fibonacci heaps are usually not the
fastest implementation, because they involve larger constant factors and the actual
number of decreaseKey operations tends to be much smaller than what the worst case
predicts. This experimental observation will be supported by theoretical analysis in
the next section.

10.4 *Average-Case Analysis of Dijkstra’s Algorithm

We shall show that the expected number of decreaseKey operations is O(n log(m/n)).
Our model of randomness is as follows. The graph G and the source node s

are arbitrary. Also, for each node v, we have an arbitrary set C(v) of indegree(v)
nonnegative real numbers. So far, everything is arbitrary. The randomness comes
now: we assume that, for each v, the costs in C(v) are assigned randomly to the
edges into v, i.e., our probability space consists of ∏v∈V indegree(v)! assignments of

200 10 Shortest Paths

edge costs to edges. We want to stress that this model is quite general. In particular,
it covers the situation where edge costs are drawn independently from a common
distribution.

Theorem 10.6. Under the assumptions above, the expected number of decreaseKey
operations is O(n log(m/n)).

Proof. We present a proof due to Noshita [151]. Consider a particular node v. In
any run of Dijkstra’s algorithm, the edges whose relaxation can cause decreaseKey
operations for v have the form ei := (ui,v), where μ(ui) ≤ μ(v). Say there are k
such edges e1, . . . , ek. We number them in the order in which their source nodes ui

are scanned. We then have μ(u1) ≤ μ(u2) ≤ . . . ≤ μ(uk) ≤ μ(v). These edges are
relaxed in the order e1, . . . , ek, no matter how the costs in C(v) are assigned to them.
If ei causes a decreaseKey operation, then

μ(ui)+ c(ei) < min
j<i

μ(u j)+ c(e j) .

Since μ(u j) ≤ μ(ui), this implies

c(ei) < min
j<i

c(e j),

i.e., only left-to-right minima of the sequence c(e1), . . . , c(ek) can cause decreaseKey
operations. We conclude that the number of decreaseKey operations on v is bounded
by the number of left-to-right minima in the sequence c(e1), . . . , c(ek) minus one;
the “−1” accounts for the fact that the first element in the sequence counts as a left-
to-right minimum but causes an insert and no decreaseKey. In Sect. 2.8, we have
shown that the expected number of left-to-right maxima in a permutation of size k
is bounded by Hk. The same bound holds for minima. Thus the expected number
of decreaseKey operations is bounded by Hk − 1, which in turn is bounded by lnk.
Also, k ≤ indegree(v). Summing over all nodes, we obtain the following bound for
the expected number of decreaseKey operations:

∑
v∈V

ln indegree(v) ≤ n ln
m
n

,

where the last inequality follows from the concavity of the ln function (see (A.15)).
��

We conclude that the expected running time is O(m+n log(m/n) logn) with the
binary heap implementation of priority queues. For sufficiently dense graphs (m >
n logn log logn), we obtain an execution time linear in the size of the input.

Exercise 10.10. Show that E[TDijkstraBHeap] = O(m) if m = Ω(n logn log logn).

10.5 Monotone Integer Priority Queues 201

10.5 Monotone Integer Priority Queues

Dijkstra’s algorithm is designed to scan nodes in order of nondecreasing distance
values. Hence, a monotone priority queue (see Chapter 6) suffices for its implemen-
tation. It is not known whether monotonicity can be exploited in the case of general
real edge costs. However, for integer edge costs, significant savings are possible. We
therefore assume in this section that edge costs are integers in the range 0..C for
some integer C. C is assumed to be known when the queue is initialized.

Since a shortest path can consist of at most n− 1 edges, the shortest-path dis-
tances are at most (n− 1)C. The range of values in the queue at any one time is
even smaller. Let min be the last value deleted from the queue (zero before the first
deletion). Dijkstra’s algorithm maintains the invariant that all values in the queue are
contained in min..min +C. The invariant certainly holds after the first insertion. A
deleteMin may increase min. Since all values in the queue are bounded by C plus
the old value of min, this is certainly true for the new value of min. Edge relaxations
insert priorities of the form d[u]+ c(e) = min+ c(e) ∈ min..min+C.

10.5.1 Bucket Queues

A bucket queue is a circular array B of C + 1 doubly linked lists (see Figs. 10.7
and 3.8). We view the natural numbers as being wrapped around the circular array;
all integers of the form i +(C +1) j map to the index i. A node v ∈ Q with tentative
distance d[v] is stored in B[d[v] mod (C + 1)]. Since the priorities in the queue are
always in min..min+C, all nodes in a bucket have the same distance value.

Initialization creates C + 1 empty lists. An insert(v) inserts v into B[d[v] mod
C + 1]. A decreaseKey(v) removes v from the list containing it and inserts v into
B[d[v] mod C +1]. Thus insert and decreaseKey take constant time if buckets are
implemented as doubly linked lists.

A deleteMin first looks at bucket B[min mod C + 1]. If this bucket is empty, it
increments min and repeats. In this way, the total cost of all deleteMin operations
is O(n+nC) = O(nC), since min is incremented at most nC times and at most n
elements are deleted from the queue. Plugging the operation costs for the bucket
queue implementation with integer edge costs in 0..C into our general bound for the
cost of Dijkstra’s algorithm, we obtain

TDijkstraBucket = O(m+nC) .

*Exercise 10.11 (Dinic’s refinement of bucket queues [57]). Assume that the edge
costs are positive real numbers in [cmin,cmax]. Explain how to find shortest paths in
time O(m+ncmax/cmin). Hint: use buckets of width cmin. Show that all nodes in the
smallest nonempty bucket have d[v] = μ(v).

10.5.2 *Radix Heaps

Radix heaps [9] improve on the bucket queue implementation by using buckets of
different widths. Narrow buckets are used for tentative distances close to min, and

202 10 Shortest Paths

b, 30 30c,

e, 33

d, 31

a, 29

f, 35

g, 36

g, 36 f, 35 e, 33b, 30 d, 31 30c,a, 29

0
1

2
3

45
6

7

8
9

min

−1

11101 11100 1111* 110** 10***

0 1 2 3

mod 10

Binary Radix Heap

content=

bucket queue with C = 9

4 = K

≥ 100000

〈(a,29),(b,30),(c,30),(d,31),(e,33),(f ,35),(g,36)〉 =

〈(a,11101),(b,11110),(c,11110),(d,11111),(e,100001),(f ,100011),(g,100100)〉

Fig. 10.7. Example of a bucket queue (upper part) and a radix heap (lower part). Since C = 9,
we have K = 1+�logC� = 4. The bit patterns in the buckets of the radix heap indicate the set
of keys they can accommodate

wide buckets are used for tentative distances far away from min. In this subsection,
we shall show how this approach leads to a version of Dijkstra’s algorithm with
running time

TDijkstraRadix :=O(m+n logC) .

Radix heaps exploit the binary representation of tentative distances. We need
the concept of the most significant distinguishing index of two numbers. This is the
largest index where the binary representations differ, i.e., for numbers a and b with
binary representations a = ∑i≥0 αi2i and b = ∑i≥0 βi2i, we define the most significant
distinguishing index msd(a,b) as the largest i with αi 	= βi, and let it be −1 if a = b.
If a < b, then a has a zero bit in position i = msd(a,b) and b has a one bit.

A radix heap consists of an array of buckets B[−1], B[0], . . . , B[K], where K =
1 + �logC�. The queue elements are distributed over the buckets according to the
following rule:

any queue element v is stored in bucket B[i], where i = min(msd(min,d[v]),K).

We refer to this rule as the bucket queue invariant. Figure 10.7 gives an example. We
remark that if min has a one bit in position i for 0 ≤ i < K, the corresponding bucket
B[i] is empty. This holds since any d[v] with i = msd(min,d[v]) would have a zero bit
in position i and hence be smaller than min. But all keys in the queue are at least as
large as min.

How can we compute i :=msd(a,b)? We first observe that for a 	= b, the bitwise
exclusive OR a⊕ b of a and b has its most significant one in position i and hence
represents an integer whose value is at least 2i and less than 2i+1. Thus msd(a,b) =

10.5 Monotone Integer Priority Queues 203

�log(a⊕b)�, since log(a⊕b) is a real number with its integer part equal to i and the
floor function extracts the integer part. Many processors support the computation of
msd by machine instructions.3 Alternatively, we can use lookup tables or yet other
solutions. From now on, we shall assume that msd can be evaluated in constant time.

We turn now to the queue operations. Initialization, insert, and decreaseKey work
completely analogously to bucket queues. The only difference is that bucket indices
are computed using the bucket queue invariant.

A deleteMin first finds the minimum i such that B[i] is nonempty. If i = −1,
an arbitrary element in B[−1] is removed and returned. If i ≥ 0, the bucket B[i] is
scanned and min is set to the smallest tentative distance contained in the bucket.
Since min has changed, the bucket queue invariant needs to be restored. A crucial
observation for the efficiency of radix heaps is that only the nodes in bucket i are
affected. We shall discuss below how they are affected. Let us consider first the
buckets B[j] with j 	= i. The buckets B[j] with j < i are empty. If i = K, there are
no j’s with j > K. If i < K, any key a in bucket B[j] with j > i will still have
msd(a,min) = j, because the old and new values of min agree at bit positions greater
than i.

What happens to the elements in B[i]? Its elements are moved to the appro-
priate new bucket. Thus a deleteMin takes constant time if i = −1 and takes time
O(i+ |B[i]|) = O(K + |B[i]|) if i ≥ 0. Lemma 10.7 below shows that every node in
bucket B[i] is moved to a bucket with a smaller index. This observation allows us to
account for the cost of a deleteMin using amortized analysis. As our unit of cost (one
token), we shall use the time required to move one node between buckets.

We charge K + 1 tokens for operation insert(v) and associate these K + 1 to-
kens with v. These tokens pay for the moves of v to lower-numbered buckets in
deleteMin operations. A node starts in some bucket j with j ≤ K, ends in bucket
−1, and in between never moves back to a higher-numbered bucket. Observe that a
decreaseKey(v) operation will also never move a node to a higher-numbered bucket.
Hence, the K + 1 tokens can pay for all the node moves of deleteMin operations.
The remaining cost of a deleteMin is O(K) for finding a nonempty bucket. With
amortized costs K +1+O(1) = O(K) for an insert and O(1) for a decreaseKey, we
obtain a total execution time of O(m+n · (K +K)) = O(m+n logC) for Dijkstra’s
algorithm, as claimed.

It remains to prove that deleteMin operations move nodes to lower-numbered
buckets.

Lemma 10.7. Let i be minimal such that B[i] is nonempty and assume i ≥ 0. Let min
be the smallest element in B[i]. Then msd(min,x) < i for all x ∈ B[i].

3 ⊕ is a direct machine instruction, and �logx� is the exponent in the floating-point represen-
tation of x.

204 10 Shortest Paths

1

1

1

1

j 0
0

0

1

h
Case i=K

min
i 0
0

min

x

o

Case i<K

α

α

α

α

α

α

β

β

Fig. 10.8. The structure of the keys relevant to the proof of Lemma 10.7. In the proof, it is
shown that β starts with j−K zeros

Proof. Observe first that the case x = min is easy, since msd(x,x) = −1 < i. For the
nontrivial case x 	= min, we distinguish the subcases i < K and i = K. Let mino be the
old value of min. Figure 10.8 shows the structure of the relevant keys.

Case i < K. The most significant distinguishing index of mino and any x ∈ B[i] is
i, i.e., mino has a zero in bit position i, and all x ∈ B[i] have a one in bit position
i. They agree in all positions with an index larger than i. Thus the most significant
distinguishing index for min and x is smaller than i.

Case i = K. Consider any x ∈ B[K]. Let j = msd(mino,min). Then j ≥ K, since
min ∈ B[K]. Let h = msd(min,x). We want to show that h < K. Let α comprise the
bits in positions larger than j in mino, and let A be the number obtained from mino by
setting the bits in positions 0 to j to zero. Then α followed by j+1 zeros is the binary
representation of A. Since the j-th bit of mino is zero and that of min is one, we have
mino < A+2 j and A+2 j ≤ min. Also, x ≤ mino +C < A+2 j +C ≤ A+2 j +2K . So

A+2 j ≤ min ≤ x < A+2 j +2K ,

and hence the binary representations of min and x consist of α followed by a 1,
followed by j −K zeros, followed by some bit string of length K. Thus min and x
agree in all bits with index K or larger, and hence h < K.

In order to aid intuition, we give a second proof for the case i = K. We first
observe that the binary representation of min starts with α followed by a one. We
next observe that x can be obtained from mino by adding some K-bit number. Since
min ≤ x, the final carry in this addition must run into position j. Otherwise, the j-th
bit of x would be zero and hence x < min. Since mino has a zero in position j, the
carry stops at position j. We conclude that the binary representation of x is equal to
α followed by a 1, followed by j −K zeros, followed by some K-bit string. Since
min ≤ x, the j−K zeros must also be present in the binary representation of min. ��

*Exercise 10.12. Radix heaps can also be based on number representations with base
b for any b ≥ 2. In this situation we have buckets B[i, j] for i = −1,0,1, . . . ,K and
0 ≤ j ≤ b, where K = 1 + �logC/ logb�. An unscanned reached node x is stored in
bucket B[i, j] if msd(min,d[x]) = i and the i-th digit of d[x] is equal to j. We also
store, for each i, the number of nodes contained in the buckets ∪ jB[i, j]. Discuss
the implementation of the priority queue operations and show that a shortest-path

10.5 Monotone Integer Priority Queues 205

algorithm with running time O(m+n(b+ logC/ logb)) results. What is the optimal
choice of b?

If the edge costs are random integers in the range 0..C, a small change to Dijk-
stra’s algorithm with radix heaps guarantees linear running time [139, 76]. For every
node v, let cin

min(v) denote the minimum cost of an incoming edge. We divide Q into
two parts, a set F which contains unscanned nodes whose tentative-distance label
is known to be equal to their exact distance from s, and a part B which contains all
other reached unscanned nodes. B is organized as a radix heap. We also maintain a
value min. We scan nodes as follows.

When F is nonempty, an arbitrary node in F is removed and the outgoing edges
are relaxed. When F is empty, the minimum node is selected from B and min is set
to its distance label. When a node is selected from B, the nodes in the first nonempty
bucket B[i] are redistributed if i ≥ 0. There is a small change in the redistribution
process. When a node v is to be moved, and d[v] ≤ min + cin

min(v), we move v to F .
Observe that any future relaxation of an edge into v cannot decrease d[v], and hence
d[v] is known to be exact at this point.

We call this algorithm ALD (average-case linear Dijkstra). The algorithm ALD
is correct, since it is still true that d[v] = μ(v) when v is scanned. For nodes removed
from F , this was argued in the previous paragraph, and for nodes removed from B,
this follows from the fact that they have the smallest tentative distance among all
unscanned reached nodes.

Theorem 10.8. Let G be an arbitrary graph and let c be a random function from E
to 0..C. The algorithm ALD then solves the single-source problem in expected time
O(m+n).

Proof. We still need to argue the bound on the running time. To do this, we modify
the amortized analysis of plain radix heaps. As before, nodes start out in B[K]. When
a node v has been moved to a new bucket but not yet to F , d[v] > min+ cin

min(v), and
hence v is moved to a bucket B[i] with i ≥ logcin

min(v). Hence, it suffices if insert pays
K − logcin

min(v)+1 tokens into the account for node v in order to cover all costs due
to decreaseKey and deleteMin operations operating on v. Summing over all nodes,
we obtain a total payment of

∑
v

(K − logcin
min(v)+1) = n+∑

v
(K − logcin

min(v)) .

We need to estimate this sum. For each vertex, we have one incoming edge contribut-
ing to this sum. We therefore bound the sum from above if we sum over all edges,
i.e.,

∑
v

(K − logcin
min(v)) ≤ ∑

e
(K − logc(e)) .

K− logc(e) is the number of leading zeros in the binary representation of c(e) when
written as a K-bit number. Our edge costs are uniform random numbers in 0..C, and
K = 1+�logC�. Thus prob(K− logc(e) = i) = 2−i. Using (A.14), we conclude that

206 10 Shortest Paths

E

[

∑
e

(k− logc(e))
]

= ∑
e

∑
i≥0

i2−i = O(m) .

Thus the total expected cost of the deleteMin and decreaseKey operations is O(m+n).
The time spent outside these operations is also O(m+n). ��

It is a little odd that the maximum edge cost C appears in the premise but not in
the conclusion of Theorem 10.8. Indeed, it can be shown that a similar result holds
for random real-valued edge costs.

**Exercise 10.13. Explain how to adapt the algorithm ALD to the case where c is
a random function from E to the real interval (0,1]. The expected time should still
be O(m+n). What assumptions do you need about the representation of edge costs
and about the machine instructions available? Hint: you may first want to solve Ex-
ercise 10.11. The narrowest bucket should have a width of mine∈E c(e). Subsequent
buckets have geometrically growing widths.

10.6 Arbitrary Edge Costs (Bellman–Ford Algorithm)

For acyclic graphs and for nonnegative edge costs, we got away with m edge re-
laxations. For arbitrary edge costs, no such result is known. However, it is easy to
guarantee the correctness criterion of Lemma 10.3 using O(n ·m) edge relaxations:
the Bellman–Ford algorithm [18, 63] given in Fig. 10.9 performs n− 1 rounds. In
each round, it relaxes all edges. Since simple paths consist of at most n− 1 edges,
every shortest path is a subsequence of this sequence of relaxations. Thus, after the
relaxations are completed, we have d[v] = μ(v) for all v with −∞ < d[v] < ∞, by
Lemma 10.3. Moreover, parent encodes the shortest paths to these nodes. Nodes v
unreachable from s will still have d[v] = ∞, as desired.

It is not so obvious how to find the nodes v with μ(v) = −∞. Consider any edge
e = (u,v) with d[u] + c(e) < d[v] after the relaxations are completed. We can set
d[v] :=−∞ because if there were a shortest path from s to v, we would have found it
by now and relaxing e would not lead to shorter distances anymore. We can now also
set d[w] = −∞ for all nodes w reachable from v. The pseudocode implements this
approach using a recursive function infect(v). It sets the d-value of v and all nodes
reachable from it to −∞. If infect reaches a node w that already has d[w] = −∞,
it breaks the recursion because previous executions of infect have already explored
all nodes reachable from w. If d[v] is not set to −∞ during postprocessing, we have
d[x]+c(e)≥ d[y] for any edge e = (x,y) on any path p from s to v. Thus d[s]+c(p)≥
d[v] for any path p from s to v, and hence d[v]≤ μ(v). We conclude that d[v] = μ(v).

Exercise 10.14. Show that the postprocessing runs in time O(m). Hint: relate infect
to DFS.

Exercise 10.15. Someone proposes an alternative postprocessing algorithm: set d[v]
to −∞ for all nodes v for which following parents does not lead to s. Give an example
where this method overlooks a node with μ(v) = −∞.

10.7 All-Pairs Shortest Paths and Node Potentials 207

Function BellmanFord(s : NodeId) : NodeArray×NodeArray
d = 〈∞, . . . ,∞〉 : NodeArray of R∪{−∞,∞} // distance from root
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId
d[s] :=0; parent[s] := s // self-loop signals root
for i :=1 to n−1 do

forall e ∈ E do relax(e) // round i

forall e = (u,v) ∈ E do // postprocessing
if d[u]+ c(e) < d[v] then infect(v)

return (d,parent)

Procedure infect(v)
if d[v] > −∞ then

d[v] :=−∞
foreach (v,w) ∈ E do infect(w)

Fig. 10.9. The Bellman–Ford algorithm for shortest paths in arbitrary graphs

Exercise 10.16 (arbitrage). Consider a set of currencies C with an exchange rate
of ri j between currencies i and j (you obtain ri j units of currency j for one unit of
currency i). A currency arbitrage is possible if there is a sequence of elementary
currency exchange actions (transactions) that starts with one unit of a currency and
ends with more than one unit of the same currency. (a) Show how to find out whether
a matrix of exchange rates admits currency arbitrage. Hint: log(xy) = logx+ logy. (b)
Refine your algorithm so that it outputs a sequence of exchange steps that maximizes
the average profit per transaction.

Section 10.10 outlines further refinements of the Bellman–Ford algorithm that
are necessary for good performance in practice.

10.7 All-Pairs Shortest Paths and Node Potentials

The all-pairs problem is tantamount to n single-source problems and hence can be
solved in time O

(
n2m

)
. A considerable improvement is possible. We shall show

that it suffices to solve one general single-source problem plus n single-source
problems with nonnegative edge costs. In this way, we obtain a running time of
O(nm+n(m+n logn)) = O

(
nm+n2 logn

)
. We need the concept of node potentials.

A (node) potential function assigns a number pot(v) to each node v. For an edge
e = (v,w), we define its reduced cost c̄(e) as

c̄(e) = pot(v)+ c(e)−pot(w) .

Lemma 10.9. Let p and q be paths from v to w. Then c̄(p) = pot(v)+c(p)−pot(w)
and c̄(p)≤ c̄(q) iff c(p)≤ c(q). In particular, the shortest paths with respect to c̄ are
the same as those with respect to c.

208 10 Shortest Paths

All-Pairs Shortest Paths in the Absence of Negative Cycles
add a new node s and zero length edges (s,v) for all v // no new cycles, time O(m)
compute μ(v) for all v with Bellman–Ford // time O(nm)
set pot(v) = μ(v) and compute reduced costs c̄(e) for e ∈ E // time O(m)
forall nodes x do // time O(n(m+n logn))

use Dijkstra’s algorithm to compute the reduced shortest-path distances μ̄(x,v)
using source x and the reduced edge costs c̄

// translate distances back to original cost function // time O(m)
forall e = (v,w) ∈V ×V do μ(v,w) := μ̄(v,w)+pot(w)−pot(v) // use Lemma 10.9

Fig. 10.10. Algorithm for all-pairs shortest paths in the absence of negative cycles

Proof. The second and the third claim follow from the first. For the first claim, let
p = 〈e0, . . . ,ek−1〉, where ei = (vi,vi+1), v = v0, and w = vk. Then

c̄(p) =
k−1

∑
i=0

c̄(ei) = ∑
0≤i<k

(pot(vi)+ c(ei)−pot(vi+1))

= pot(v0)+ ∑
0≤i<k

c(ei)−pot(vk) = pot(v0)+ c(p)−pot(vk) . ��

Exercise 10.17. Node potentials can be used to generate graphs with negative edge
costs but no negative cycles: generate a (random) graph, assign to every edge e a
(random) nonnegative cost c(e), assign to every node v a (random) potential pot(v),
and set the cost of e = (u,v) to c̄(e) = pot(u) + c(e)− pot(v). Show that this rule
does not generate negative cycles.

Lemma 10.10. Assume that G has no negative cycles and that all nodes can be
reached from s. Let pot(v) = μ(v) for v ∈V . With these node potentials, the reduced
edge costs are nonnegative.

Proof. Since all nodes are reachable from s and since there are no negative cycles,
μ(v)∈R for all v. Thus the reduced costs are well defined. Consider an arbitrary edge
e = (v,w). We have μ(v)+c(e)≥ μ(w), and thus c̄(e) = μ(v)+c(e)−μ(w)≥ 0. ��

Theorem 10.11. The all-pairs shortest-path problem for a graph without negative
cycles can be solved in time O

(
nm+n2 logn

)
.

Proof. The algorithm is shown in Fig. 10.10. We add an auxiliary node s and zero-
cost edges (s,v) for all nodes of the graph. This does not create negative cycles
and does not change μ(v,w) for any of the existing nodes. Then we solve the single-
source problem for the source s, and set pot(v) = μ(v) for all v. Next we compute the
reduced costs and then solve the single-source problem for each node x by means of
Dijkstra’s algorithm. Finally, we translate the computed distances back to the original
cost function. The computation of the potentials takes time O(nm), and the n shortest-
path calculations take time O(n(m+n logn)). The preprocessing and postprocessing
take linear time. ��

10.8 Shortest-Path Queries 209

The assumption that G has no negative cycles can be removed [133].

Exercise 10.18. The diameter D of a graph G is defined as the largest distance be-
tween any two of its nodes. We can easily compute it using an all-pairs compu-
tation. Now we want to consider ways to approximate the diameter of a strongly
connected graph using a constant number of single-source computations. (a) For
any starting node s, let D′(s) := maxu∈V μ(u). Show that D′(s) ≤ D ≤ 2D′(s) for
undirected graphs. Also, show that no such relation holds for directed graphs. Let
D′′(s) :=maxu∈V μ(u,s). Show that max(D′(s),D′′(s))≤ D ≤ D′(s)+D′′(s) for both
undirected and directed graphs. (b) How should a graph be represented to support
both forward and backward search? (c) Can you improve the approximation by con-
sidering more than one node s?

10.8 Shortest-Path Queries

We are often interested in the shortest path from a specific source node s to a spe-
cific target node t; route planning in a traffic network is one such scenario. We shall
explain some techniques for solving such shortest-path queries efficiently and argue
for their usefulness for the route-planning application.

We start with a technique called early stopping. We run Dijkstra’s algorithm to
find shortest paths starting at s. We stop the search as soon as t is removed from the
priority queue, because at this point in time the shortest path to t is known. This helps
except in the unfortunate case where t is the node farthest from s. On average, early
stopping saves a factor of two in scanned nodes in any application. In practical route
planning, early stopping saves much more because modern car navigation systems
have a map of an entire continent but are mostly used for distances up to a few
hundred kilometers.

Another simple and general heuristic is bidirectional search, from s forward and
from t backward until the search frontiers meet. More precisely, we run two copies
of Dijkstra’s algorithm side by side, one starting from s and one starting from t (and
running on the reversed graph). The two copies have their own queues, say Qs and
Qt , respectively. We grow the search regions at about the same speed, for example
by removing a node from Qs if minQs ≤ minQt and a node from Qt otherwise.

It is tempting to stop the search once the first node u has been removed from
both queues, and to claim that μ(t) = μ(s,u) + μ(u, t). Observe that execution of
Dijkstra’s algorithm on the reversed graph with a starting node t determines μ(u, t).
This is not quite correct, but almost so.

Exercise 10.19. Give an example where u is not on the shortest path from s to t.

However, we have collected enough information once some node u has been
removed from both queues. Let ds and dt denote the tentative-distance labels at the
time of termination in the runs with source s and source t, respectively. We show
that μ(t) < μ(s,u) + μ(u, t) implies the existence of a node v ∈ Qs with μ(t) =
ds[v]+dt [v].

210 10 Shortest Paths

Let p = 〈s = v0, . . . ,vi,vi+1, . . . ,vk = t〉 be a shortest path from s to t. Let i be
maximal such that vi has been removed from Qs. Then ds[vi+1] = μ(s,vi+1) and
vi+1 ∈ Qs when the search stops. Also, μ(s,u) ≤ μ(s,vi+1), since u has already been
removed from Qs, but vi+1 has not. Next, observe that

μ(s,vi+1)+ μ(vi+1, t) = c(p) < μ(s,u)+ μ(u, t) ,

since p is a shortest path from s to t. By subtracting μ(s,vi+1), we obtain

μ(vi+1, t) < μ(s,u)−μ(s,vi+1)
︸ ︷︷ ︸

≤0

+μ(u, t) ≤ μ(u, t)

and hence, since u has been scanned from t, vi+1 must also have been scanned from
t, i.e., dt [vi+1] = μ(vi+1, t) when the search stops. So we can determine the shortest
distance from s to t by inspecting not only the first node removed from both queues,
but also all nodes in, say, Qs. We iterate over all such nodes v and determine the
minimum value of ds[v]+dt [v].

Dijkstra’s algorithm scans nodes in order of increasing distance from the source.
In other words, it grows a circle centered on the source node. The circle is defined by
the shortest-path metric in the graph. In the route-planning application for a road net-
work, we may also consider geometric circles centered on the source and argue that
shortest-path circles and geometric circles are about the same. We can then estimate
the speedup obtained by bidirectional search using the following heuristic argument:
a circle of a certain diameter has twice the area of two circles of half the diameter.
We could thus hope that bidirectional search will save a factor of two compared with
unidirectional search.

Exercise 10.20 (bidirectional search). (a) Consider bidirectional search in a grid
graph with unit edge weights. How much does it save over unidirectional search? (*b)
Try to find a family of graphs where bidirectional search visits exponentially fewer
nodes on average than does unidirectional search. Hint: consider random graphs or
hypercubes. (c) Give an example where bidirectional search in a real road network
takes longer than unidirectional search. Hint: consider a densely inhabitated city
with sparsely populated surroundings. (d) Design a strategy for switching between
forward and backward search such that bidirectional search will never inspect more
than twice as many nodes as unidirectional search.

We shall next describe two techniques that are more complex and less generally
applicable: however, if they are applicable, they usually result in larger savings. Both
techniques mimic human behavior in route planning.

10.8.1 Goal-Directed Search

The idea is to bias the search space such that Dijkstra’s algorithm does not grow
a disk but a region protruding toward the target; see Fig. 10.11. Assume we know
a function f : V → R that estimates the distance to the target, i.e., f (v) estimates

10.8 Shortest-Path Queries 211

μ(v, t) for all nodes v. We use the estimates to modify the distance function. For
each e = (u,v), let4 c̄(e) = c(e) + f (v)− f (u). We run Dijkstra’s algorithm with
the modified distance function. We know already that node potentials do not change
shortest paths, and hence correctness is preserved. Tentative distances are related via
d̄[v] = d[v] + f (v)− f (s). An alternative view of this modification is that we run
Dijkstra’s algorithm with the original distance function but remove the node with
minimal value d[v]+ f (v) from the queue. The algorithm just described is known as
A∗-search.

ss tt

Fig. 10.11. The standard Dijkstra search grows a circular region centered on the source; goal-
directed search grows a region protruding toward the target

Before we state requirements on the estimate f , let us see one specific example.
Assume, in a thought experiment, that f (v) = μ(v, t). Then c̄(e) = c(e)+ μ(v, t)−
μ(u, t) and hence edges on a shortest path from s to t have a modified cost equal to
zero and all other edges have a positive cost. Thus Dijkstra’s algorithm only follows
shortest paths, without looking left or right.

The function f must have certain properties to be useful. First, we want the
modified distances to be nonnegative. So, we need c(e)+ f (v) ≥ f (u) for all edges
e = (u,v). In other words, our estimate of the distance from u should be at most our
estimate of the distance from v plus the cost of going from u to v. This property is
called consistency of estimates. We also want to be able to stop the search when t
is removed from the queue. This works if f is a lower bound on the distance to the
target, i.e., f (v) ≤ μ(v, t) for all v ∈ V . Then f (t) = 0. Consider the point in time
when t is removed from the queue, and let p be any path from s to t. If all edges of p
have been relaxed at termination, d[t] ≤ c(p). If not all edges of p have been relaxed
at termination, there is a node v on p that is contained in the queue at termination.
Then d(t)+ f (t) ≤ d(v)+ f (v), since t was removed from the queue but v was not,
and hence

d[t] = d[t]+ f (t) ≤ d[v]+ f (v) ≤ d[v]+ μ(v, t) ≤ c(p) .

In either case, we have d[t] ≤ c(p), and hence the shortest distance from s to t is
known as soon as t is removed from the queue.

What is a good heuristic function for route planning in a road network? Route
planners often give a choice between shortest and fastest connections. In the case

4 In Sect. 10.7, we added the potential of the source and subtracted the potential of the target.
We do exactly the opposite now. The reason for changing the sign convention is that in
Lemma 10.10, we used μ(s,v) as the node potential. Now, f estimates μ(v, t).

212 10 Shortest Paths

of shortest paths, a feasible lower bound f (v) is the straight-line distance between v
and t. Speedups by a factor of roughly four are reported in the literature. For fastest
paths, we may use the geometric distance divided by the speed assumed for the best
kind of road. This estimate is extremely optimistic, since targets are frequently in the
center of a town, and hence no good speedups have been reported. More sophisticated
methods for computing lower bounds are known; we refer the reader to [77] for a
thorough discussion.

10.8.2 Hierarchy

Road networks usually contain a hierarchy of roads: throughways, state roads, county
roads, city roads, and so on. Average speeds are usually higher on roads of higher
status, and therefore the fastest routes frequently follow the pattern that one starts
on a road of low status, changes several times to roads of higher status, drives the
largest fraction of the path on a road of high status, and finally changes down to
lower-status roads near the target. A heuristic approach may therefore restrict the
search to high-status roads except for suitably chosen neighborhoods of the source
and target. Observe, however, that the choice of neighborhood is nonobvious, and
that this heuristic sacrifices optimality. You may be able to think of an example from
your driving experience where shortcuts over small roads are required even far away
from the source and target. Exactness can be combined with the idea of hierarchies if
the hierarchy is defined algorithmically and is not taken from the official classifica-
tion of roads. We now outline one such approach [165], called highway hierarchies.
It first defines a notion of locality, say anything within a distance of 10 km from
either the source or the target. An edge (u,v) ∈ E is a highway edge with respect to
this notion of locality if there is a source node s and a target node t such that (u,v)
is on the fastest path from s to t, v is not within the local search radius of s, and u
is not within the local (backward) search radius of t. The resulting network is called
the highway network. It usually has many vertices of degree two. Think of a fast road
to which a slow road connects. The slow road is not used on any fastest path outside
the local region of a nearby source or nearby target, and hence will not be in the
highway network. Thus the intersection will have degree three in the original road
network, but will have degree two in the highway network. Two edges joined by a
degree-two node may be collapsed into a single edge. In this way, the core of the
highway network is determined. Iterating this procedure of finding a highway net-
work and contracting degree-two nodes leads to a hierarchy of roads. For example,
in the case of the road networks of Europe and North America, a hierarchy of up
to ten levels resulted. Route planning using the resulting highway hierarchy can be
several thousand times faster than Dijkstra’s algorithm.

10.8.3 Transit Node Routing

Using another observation from daily life, we can get even faster [15]. When you
drive to somewhere “far away”, you will leave your current location via one of only
a few “important” traffic junctions. It turns out that in real-world road networks about

10.9 Implementation Notes 213

Fig. 10.12. Finding the optimal travel time between two points (the flags) somewhere be-
tween Saarbrücken and Karlsruhe amounts to retrieving the 2× 4 access nodes (diamonds),
performing 16 table lookups between all pairs of access nodes, and checking that the two disks
defining the locality filter do not overlap. The small squares indicate further transit nodes

99% of all quickest paths go through about O(
√

n) important transit nodes that can be
automatically selected, for example using highway hierarchies. Moreover, for each
particular source or target node, all long-distance connections go through one of
about ten of these transit nodes – the access nodes. During preprocessing, we com-
pute a complete distance table between the transit nodes, and the distances from all
nodes to their access nodes. Now, suppose we have a way to tell that a source s and
a target t are sufficiently far apart.5 There must then be access nodes as and at such
that μ(t) = μ(as)+ μ(as,at)+ μ(at , t). All these distances have been precomputed
and there are only about ten candidates for as and for at , respectively, i.e., we need
(only) about 100 accesses to the distance table. This can be more than 1 000 000
times faster than Dijkstra’s algorithm. Local queries can be answered using some
other technique that will profit from the closeness of the source and target. We can
also cover local queries using additional precomputed tables with more local infor-
mation. Figure 10.12 from [15] gives an example.

10.9 Implementation Notes

Shortest-path algorithms work over the set of extended reals R∪ {+∞,−∞}. We
may ignore −∞, since it is needed only in the presence of negative cycles and, even
there, it is needed only for the output; see Sect. 10.6. We can also get rid of +∞ by
noting that parent(v) = ⊥ iff d[v] = +∞, i.e., when parent(v) = ⊥, we assume that
d[v] = +∞ and ignore the number stored in d[v].

5 We may need additional preprocessing to decide this.

214 10 Shortest Paths

A refined implementation of the Bellman–Ford algorithm [187, 131] explicitly
maintains a current approximation T of the shortest-path tree. Nodes still to be
scanned in the current iteration of the main loop are stored in a set Q. Consider
the relaxation of an edge e = (u,v) that reduces d[v]. All descendants of v in T will
subsequently receive a new d-value. Hence, there is no reason to scan these nodes
with their current d-values and one may remove them from Q and T . Furthermore,
negative cycles can be detected by checking whether v is an ancestor of u in T .

10.9.1 C++

LEDA [118] has a special priority queue class node_pq that implements priority
queues of graph nodes. Both LEDA and the Boost graph library [27] have imple-
mentations of the Dijkstra and Bellman–Ford algorithms and of the algorithms for
acyclic graphs and the all-pairs problem. There is a graph iterator based on Dijkstra’s
algorithm that allows more flexible control of the search process. For example, one
can use it to search until a given set of target nodes has been found. LEDA also pro-
vides a function that verifies the correctness of distance functions (see Exercise 10.8).

10.9.2 Java

JDSL [78] provides Dijkstra’s algorithm for integer edge costs. This implementation
allows detailed control over the search similarly to the graph iterators of LEDA and
Boost.

10.10 Historical Notes and Further Findings

Dijkstra [56], Bellman [18], and Ford [63] found their algorithms in the 1950s. The
original version of Dijkstra’s algorithm had a running time O

(
m+n2

)
and there

is a long history of improvements. Most of these improvements result from better
data structures for priority queues. We have discussed binary heaps [208], Fibonacci
heaps [68], bucket heaps [52], and radix heaps [9]. Experimental comparisons can
be found in [40, 131]. For integer keys, radix heaps are not the end of the story. The
best theoretical result is O(m+n log logn) time [194]. Interestingly, for undirected
graphs, linear time can be achieved [190]. The latter algorithm still scans nodes one
after the other, but not in the same order as in Dijkstra’s algorithm.

Meyer [139] gave the first shortest-path algorithm with linear average-case run-
ning time. The algorithm ALD was found by Goldberg [76]. For graphs with bounded
degree, the Δ -stepping algorithm [140] is even simpler. This uses bucket queues and
also yields a good parallel algorithm for graphs with bounded degree and small di-
ameter.

Integrality of edge costs is also of use when negative edge costs are allowed.
If all edge costs are integers greater than −N, a scaling algorithm achieves a time
O(m

√
n logN) [75].

10.10 Historical Notes and Further Findings 215

In Sect. 10.8, we outlined a small number of speedup techniques for route plan-
ning. Many other techniques exist. In particular, we have not done justice to ad-
vanced goal-directed techniques, combinations of different techniques, etc. Recent
overviews can be found in [166, 173]. Theoretical performance guarantees beyond
Dijkstra’s algorithm are more difficult to achieve. Positive results exist for special
families of graphs such as planar graphs and when approximate shortest paths suf-
fice [60, 195, 192].

There is a generalization of the shortest-path problem that considers several cost
functions at once. For example, your grandfather might want to know the fastest
route for visiting you but he only wants routes where he does not need to refuel his
car, or you may want to know the fastest route subject to the condition that the road
toll does not exceed a certain limit. Constrained shortest-path problems are discussed
in [86, 135].

Shortest paths can also be computed in geometric settings. In particular, there
is an interesting connection to optics. Different materials have different refractive
indices, which are related to the speed of light in the material. Astonishingly, the
laws of optics dictate that a ray of light always travels along a shortest path.

Exercise 10.21. An ordered semigroup is a set S together with an associative and
commutative operation +, a neutral element 0, and a linear ordering ≤ such that for
all x, y, and z, x ≤ y implies x + z ≤ y + z. Which of the algorithms of this chapter
work when the edge weights are from an ordered semigroup? Which of them work
under the additional assumption that 0 ≤ x for all x?

11

Minimum Spanning Trees

The atoll of Taka-Tuka-Land in the South Seas asks you for help.1 The people want
to connect their islands by ferry lines. Since money is scarce, the total cost of the
connections is to be minimized. It needs to be possible to travel between any two
islands; direct connections are not necessary. You are given a list of possible con-
nections together with their estimated costs. Which connections should be opened?

More generally, we want to solve the following problem. Consider a connected
undirected graph G = (V,E) with real edge costs c : E → R+. A minimum spanning
tree (MST) of G is defined by a set T ⊆ E of edges such that the graph (V,T) is a
tree where c(T) := ∑e∈T c(e) is minimized. In our example, the nodes are islands,
the edges are possible ferry connections, and the costs are the costs of opening a
connection. Throughout this chapter, G denotes an undirected connected graph.

Minimum spanning trees are perhaps the simplest variant of an important family
of problems known as network design problems. Because MSTs are such a simple
concept, they also show up in many seemingly unrelated problems such as clus-
tering, finding paths that minimize the maximum edge cost used, and finding ap-
proximations for harder problems. Sections 11.6 and 11.8 discuss this further. An
equally good reason to discuss MSTs in a textbook on algorithms is that there are
simple, elegant, fast algorithms to find them. We shall derive two simple properties
of MSTs in Sect. 11.1. These properties form the basis of most MST algorithms. The
Jarník–Prim algorithm grows an MST starting from a single node and will be dis-
cussed in Sect. 11.2. Kruskal’s algorithm grows many trees in unrelated parts of the
graph at once and merges them into larger and larger trees. This will be discussed in
Sect. 11.3. An efficient implementation of the algorithm requires a data structure for
maintaining partitions of a set of elements under two operations: “determine whether
two elements are in the same subset” and “join two subsets”. We shall discuss the
union–find data structure in Sect. 11.4. This has many applications besides the con-
struction of minimum spanning trees.

1 The figure was drawn by A. Blancani.

218 11 Minimum Spanning Trees

Exercise 11.1. If the input graph is not connected, we may ask for a minimum span-
ning forest – a set of edges that defines an MST for each connected component of
G. Develop a way to find minimum spanning forests using a single call of an MST
routine. Do not find connected components first. Hint: insert n−1 additional edges.

Exercise 11.2 (spanning sets). A set T of edges spans a connected graph G if (V,T)
is connected. Is a minimum-cost spanning set of edges necessarily a tree? Is it a tree
if all edge costs are positive?

Exercise 11.3. Reduce the problem of finding maximum-cost spanning trees to the
minimum-spanning-tree problem.

11.1 Cut and Cycle Properties

We shall prove two simple Lemmas which allow one to add edges to an MST and
to exclude edges from consideration for an MST. We need the concept of a cut in
a graph. A cut in a connected graph is a subset E ′ of edges such that G \E ′ is not
connected. Here, G \E ′ is an abbreviation for (V,E \E ′). If S is a set of nodes with
/0 �= S �= V , the set of edges with exactly one endpoint in S forms a cut. Figure 11.1
illustrates the proofs of the following lemmas.

Lemma 11.1 (cut property). Let E ′ be a cut and let e be a minimal-cost edge in
E ′. There is then an MST T of G that contains e. Moreover, if T ′ is a set of edges
that is contained in some MST and T ′ contains no edge from E ′, then T ′ ∪{e} is also
contained in some MST.

Proof. We shall prove the second claim. The first claim follows by setting T ′ = /0.
Consider any MST T of G with T ′ ⊆ T . Let u and v be the endpoints of e. Since T is a
spanning tree, it contains a path from u to v, say p. Since E ′ is a cut separating u and

u

u

v

v

u′ v′

e

e

e′

e′

E ′

p p

Tu Tv

C

Fig. 11.1. Cut and cycle properties. The left part illustrates the proof of the cut property. e is
an edge of minimum cost in the cut E ′, and p is a path in the MST connecting the endpoints
of e. p must contain an edge in E ′. The figure on the right illustrates the proof of the cycle
property. C is a cycle in G, e is an edge of C of maximal weight, and T is an MST containing
e. Tu and Tv are the components of T \ e; and e′ is an edge in C connecting Tu and Tv

11.2 The Jarník–Prim Algorithm 219

v, p must contain an edge from E ′, say e′. Now, T ′′ :=(T \ e′)∪ e is also a spanning
tree, because removal of e′ splits T into two subtrees, which are then joined together
by e. Since c(e) ≤ c(e′), we have c(T ′′) ≤ c(T), and hence T ′′ is also an MST. 	

Lemma 11.2 (cycle property). Consider any cycle C ⊆ E and an edge e ∈ C with
maximal cost among all edges of C. Then any MST of G′ = (V,E \ {e}) is also an
MST of G.

Proof. Consider any MST T of G. Suppose T contains e = (u,v). Edge e splits T
into two subtrees Tu and Tv. There must be another edge e′ = (u′,v′) from C such that
u′ ∈ Tu and v′ ∈ Tv. T ′ :=(T \{e})∪{e′} is a spanning tree which does not contain
e. Since c(e′) ≤ c(e), T ′ is also an MST. 	

The cut property yields a simple greedy algorithm for finding an MST. Start with
an empty set T of edges. As long as T is not a spanning tree, let E ′ be a cut not
containing any edge from T . Add a minimal-cost edge from E ′ to T .

Different choices of E ′ lead to different specific algorithms. We discuss two ap-
proaches in detail in the following sections and outline a third approach in Sect. 11.8.
Also, we need to explain how to find a minimum cost edge in the cut.

The cycle property also leads to a simple algorithm for finding an MST. Set T to
the set of all edges. As long as T is not a spanning tree, find a cycle in T and delete
an edge of maximal cost from T . No efficient implementation of this approach is
known, and we shall not discuss it further.

Exercise 11.4. Show that the MST is uniquely defined if all edge costs are different.
Show that in this case the MST does not change if each edge cost is replaced by its
rank among all edge costs.

11.2 The Jarník–Prim Algorithm

The Jarník–Prim (JP) algorithm [98, 158, 56] for MSTs is very similar to Dijkstra’s
algorithm for shortest paths.2 Starting from an (arbitrary) source node s, the JP al-
gorithm grows an MST by adding one node after another. At any iteration, S is the
set of nodes already added to the tree, and the cut E ′ is the set of edges with exactly
one endpoint in S. A minimum-cost edge leaving S is added to the tree in every iter-
ation. The main challenge is to find this edge efficiently. To this end, the algorithm
maintains the shortest connection between any node v ∈ V \ S and S in a priority
queue Q. The smallest element in Q gives the desired edge. When a node is added to
S, its incident edges are checked to see whether they yield improved connections to
nodes in V \S. Fig. 11.2 illustrates the operation of the JP algorithm, and Figure 11.3
shows the pseudocode. When node u is added to S and an incident edge e = (u,v) is
inspected, the algorithm needs to know whether v ∈ S. A bitvector could be used to

2 Actually, Dijkstra also described this algorithm in his seminal 1959 paper on shortest paths
[56]. Since Prim described the same algorithm two years earlier, it is usually named after
him. However, the algorithm actually goes back to a 1930 paper by Jarník [98].

220 11 Minimum Spanning Trees

encode this information. If all edge costs are positive, we can reuse the d-array for
this purpose. For any node v, d[v] = 0 indicates v ∈ S and d[v] > 0 encodes v �∈ S.

In addition to the space savings, this trick also avoids a comparison in the inner-
most loop. Observe that c(e) < d[v] is only true if d[v] > 0, i.e., v �∈ S, and e is an
improved connection from v to S.

The only important difference from Dijkstra’s algorithm is that the priority queue
stores edge costs rather than path lengths. The analysis of Dijkstra’s algorithm carries
over to the JP algorithm, i.e., the use of a Fibonacci heap priority queue yields a
running time O(n logn+m).

Exercise 11.5. Dijkstra’s algorithm for shortest paths can use monotone priority
queues. Show that monotone priority queues do not suffice for the JP algorithm.

*Exercise 11.6 (average-case analysis of the JP algorithm). Assume that the edge
costs 1, . . . , m are assigned randomly to the edges of G. Show that the expected
number of decreaseKey operations performed by the JP algorithm is then bounded
by O(n log(m/n)). Hint: the analysis is very similar to the average-case analysis of
Dijkstra’s algorithm in Theorem 10.6.

b

c

b

c

b 7

4

26
9

7

4

2
9

7

4

26
9

3 c 3 3d d d
6

a aa
Fig. 11.2. A sequence of cuts (dotted lines)
corresponding to the steps carried out by the
Jarník–Prim algorithm with starting node a. The
edges (a,c), (c,b), and (b,d) are added to the
MST

Function jpMST : Set of Edge
d = 〈∞, . . . ,∞〉 : NodeArray[1..n] of R∪{∞} // d[v] is the distance of v from the tree
parent : NodeArray of NodeId // parent[v] is shortest edge between S and v
Q : NodePQ // uses d[·] as priority
Q.insert(s) for some arbitrary s ∈V
while Q �= /0 do

u :=Q.deleteMin
d[u] :=0 // d[u] = 0 encodes u ∈ S
foreach edge e = (u,v) ∈ E do

if c(e) < d[v] then // c(e) < d[v] implies d[v] > 0 and hence v �∈ S
d[v] := c(e)
parent[v] :=u
if v ∈ Q then Q.decreaseKey(v) else Q.insert(v)

invariant ∀v ∈ Q : d[v] = min{c((u,v)) : (u,v) ∈ E ∧u ∈ S}
return {(v,parent[v]) : v ∈V \{s}}

Fig. 11.3. The Jarník–Prim MST algorithm. Positive edge costs are assumed

11.3 Kruskal’s Algorithm 221

11.3 Kruskal’s Algorithm

The JP algorithm is probably the best general-purpose MST algorithm. Nevertheless,
we shall now present an alternative algorithm, Kruskal’s algorithm [116]. It also has
its merits. In particular, it does not need a sophisticated graph representation, but
works even when the graph is represented by its sequence of edges. Also, for sparse
graphs with m = O(n), its running time is competitive with the JP algorithm.

The pseudocode given in Fig. 11.4 is extremely compact. The algorithm scans
over the edges of G in order of increasing cost and maintains a partial MST T ; T is
initially empty. The algorithm maintains the invariant that T can be extended to an
MST. When an edge e is considered, it is either discarded or added to the MST. The
decision is made on the basis of the cycle or cut property. The endpoints of e either
belong to the same connected component of (V,T) or do not. In the former case,
T ∪ e contains a cycle and e is an edge of maximum cost in this cycle. Since edges
are considered in order of increasing cost, e can be discarded, by the cycle property.
If e connects distinct components, e is a minimum-cost edge in the cut E ′ consisting
of all edges connecting distinct components of (V,T); again, it is essential that edges
are considered in order of increasing cost. We may therefore add e to T , by the cut
property. The invariant is maintained. Figure 11.5 gives an example.

In an implementation of Kruskal’s algorithm, we have to find out whether an edge
connects two components of (V,T). In the next section, we shall see that this can be
done so efficiently that the main cost factor is sorting the edges. This takes time
O(m logm) if we use an efficient comparison-based sorting algorithm. The constant
factor involved is rather small, so that for m = O(n) we can hope to do better than
the O(m+n logn) JP algorithm.

Function kruskalMST(V, E, c) : Set of Edge
T := /0
invariant T is a subforest of an MST
foreach (u,v) ∈ E in ascending order of cost do

if u and v are in different subtrees of T then
T :=T ∪{(u,v)} // join two subtrees

return T

Fig. 11.4. Kruskal’s MST algorithm

c

b

c

b

c

b

c

b 7

4

26
9

3

7

4

26
9

3

7

4

26
9

3

7

4

26
9

3 d d d d

aa aa

Fig. 11.5. In this example, Kruskal’s algorithm first proves that (b,d) and (b,c) are MST
edges using the cut property. Then (c,d) is excluded because it is the heaviest edge on the
cycle 〈b,c,d〉, and, finally, (a,c) completes the MST

222 11 Minimum Spanning Trees

Exercise 11.7 (streaming MST). Suppose the edges of a graph are presented to
you only once (for example over a network connection) and you do not have enough
memory to store all of them. The edges do not necessarily arrive in sorted order.

(a) Outline an algorithm that nevertheless computes an MST using space O(V).
(*b) Refine your algorithm to run in time O(m logn). Hint: process batches of O(n)

edges (or use the dynamic tree data structure described by Sleator and Tarjan
[182]).

11.4 The Union–Find Data Structure

A partition of a set M is a collection M1, . . . , Mk of subsets of M with the property that
the subsets are disjoint and cover M, i.e., Mi∩Mj = /0 for i �= j and M = M1∪·· ·∪Mk.
The subsets Mi are called the blocks of the partition. For example, in Kruskal’s algo-
rithm, the forest T partitions V . The blocks of the partition are the connected com-
ponents of (V,T). Some components may be trivial and consist of a single isolated
node. Kruskal’s algorithm performs two operations on the partition: testing whether
two elements are in the same subset (subtree) and joining two subsets into one (in-
serting an edge into T).

The union–find data structure maintains a partition of the set 1..n and supports
these two operations. Initially, each element is a block on its own. Each block chooses
one of its elements as its representative; the choice is made by the data structure and
not by the user. The function find(i) returns the representative of the block containing
i. Thus, testing whether two elements are in the same block amounts to comparing
their respective representatives. An operation link(i, j) applied to representatives of
different blocks joins the blocks.

A simple solution is as follows. Each block is represented as a rooted tree3, with
the root being the representative of the block. Each element stores its parent in this
tree (the array parent). We have self-loops at the roots.

The implementation of find(i) is trivial. We follow parent pointers until we en-
counter a self-loop. The self-loop is located at the representative of i. The implemen-
tation of link(i, j) is equally simple. We simply make one representative the parent of
the other. The latter has ceded its role to the former, which is now the representative
of the combined block. What we have described so far yields a correct but inefficient
union–find data structure. The parent references could form long chains that are tra-
versed again and again during find operations. In the worst case, each operation may
take linear time.

Exercise 11.8. Give an example of an n-node graph with O(n) edges where a naive
implementation of the union–find data structure without union by rank and path com-
pression would lead to quadratic execution time for Kruskal’s algorithm.

3 Note that this tree may have a structure very different from the corresponding subtree in
Kruskal’s algorithm.

11.4 The Union–Find Data Structure 223

Class UnionFind(n : N) // Maintain a partition of 1..n

parent = 〈1,2, . . . ,n〉 : Array [1..n] of 1..n ...
1 2 nrank = 〈0, . . . ,0〉 : Array [1..n] of 0.. logn // rank of representatives

Function find(i : 1..n) : 1..n
if parent[i] = i then return i
else i′ :=find(parent[i]) // path compression

parent[i]

i

i′

parent[i] := i′

return i′

Procedure link(i, j : 1..n)
assert i and j are representatives of different blocks
if rank[i] < rank[j] then parent[i] := j
else

2 3

3

3

2 2
i

ii

ij j

jj

parent[j] := i
if rank[i] = rank[j] then rank[i]++

Procedure union(i, j : 1..n)
if find(i) �= find(j) then link(find(i), find(j))

Fig. 11.6. An efficient union–find data structure that maintains a partition of the set {1, . . . ,n}

Therefore, Figure 11.6 introduces two optimizations. The first optimization limits
the maximal depth of the trees representing blocks. Every representative stores a
nonnegative integer, which we call its rank. Initially, every element is a representative
and has rank zero. When we link two representatives and their ranks are different, we
make the representative of smaller rank a child of the representative of larger rank.
When their ranks are the same, the choice of the parent is arbitrary; however, we
increase the rank of the new root. We refer to the first optimization as union by rank.

Exercise 11.9. Assume that the second optimization (described below) is not used.
Show that the rank of a representative is the height of the tree rooted at it.

Theorem 11.3. Union by rank ensures that the depth of no tree exceeds logn.

Proof. Without path compression, the rank of a representative is equal to the height
of the tree rooted at it. Path compression does not increase heights. It therefore suf-
fices to prove that the rank is bounded by logn. We shall show that a tree whose root
has rank k contains at least 2k elements. This is certainly true for k = 0. The rank of
a root grows from k−1 to k when it receives a child of rank k−1. Thus the root had
at least 2k−1 descendants before the link operation and it receives a child which also
had at least 2k−1 descendants. So the root has at least 2k descendants after the link
operation. 	

The second optimization is called path compression. This ensures that a chain of
parent references is never traversed twice. Rather, all nodes visited during an op-

224 11 Minimum Spanning Trees

eration find(i) redirect their parent pointers directly to the representative of i. In
Fig. 11.6, we have formulated this rule as a recursive procedure. This procedure
first traverses the path from i to its representative and then uses the recursion stack to
traverse the path back to i. When the recursion stack is unwound, the parent pointers
are redirected. Alternatively, one can traverse the path twice in the forward direction.
In the first traversal, one finds the representative, and in the second traversal, one
redirects the parent pointers.

Exercise 11.10. Describe a nonrecursive implementation of find.

Union by rank and path compression make the union–find data structure “breath-
takingly” efficient – the amortized cost of any operation is almost constant.

Theorem 11.4. The union–find data structure of Fig. 11.6 performs m find and n−1
link operations in time O(mαT (m,n)). Here,

αT (m,n) = min{i ≥ 1 : A(i,�m/n�) ≥ logn} ,

where

A(1, j) = 2 j for j ≥ 1,

A(i,1) = A(i−1,2) for i ≥ 2,

A(i, j) = A(i−1,A(i, j−1)) for i ≥ 2 and j ≥ 2.

Proof. The proof of this theorem is beyond the scope of this introductory text. We
refer the reader to [186, 177]. 	

You will probably find the formulae overwhelming. The function4 A grows
extremely rapidly. We have A(1, j) = 2 j, A(2,1) = A(1,2) = 22 = 4, A(2,2) =

A(1,A(2,1)) = 24 = 16, A(2,3) = A(1,A(2,2)) = 216, A(2,4) = 2216
, A(2,5) = 22216

,
A(3,1) = A(2,2) = 16, A(3,2) = A(2,A(3,1)) = A(2,16), and so on.

Exercise 11.11. Estimate A(5,1).

For all practical n, we have αT (m,n)≤ 5, and union–find with union by rank and
path compression essentially guarantees constant amortized cost per operation.

We close this section with an analysis of union–find with path compression but
without union by rank. The analysis illustrates the power of path compression and
also gives a glimpse of how Theorem 11.4 can be proved.

Theorem 11.5. The union–find data structure with path compression but without
union by rank processes m find and n−1 link operations in time O((m+n) logn).

4 The usage of the letter A is a reference to the logician Ackermann [3], who first studied a
variant of this function in the late 1920s.

11.5 *External Memory 225

Proof. A link operation has cost one and adds one edge to the data structure. The
total cost of all links is O(n). The difficult part is to bound the cost of the finds. Note
that the cost of a find is O(1+number of edges constructed in path compression). So
our task is to bound the total number of edges constructed.

In order to do so, every node v is assigned a weight w(v) that is defined as
the maximum number of descendants of v (including v) during the evolution of the
data structure. Observe that w(v) may increase as long as v is a representative, w(v)
reaches its maximal value when v ceases to be a representative (because it is linked to
another representative), and w(v) may decrease afterwards (because path compres-
sion removes a child of v to link it to a higher node). The weights are integers in the
range 1..n.

All edges that ever exist in our data structure go from nodes of smaller weight to
nodes of larger weight. We define the span of an edge as the difference between the
weights of its endpoints. We say that an edge has a class i if its span lies in the range
2i..2i+1 −1. The class of any edge lies between 0 and �logn�.

Consider a particular node x. The first edge out of x is created when x ceases to
be a representative. Also, x receives a new parent whenever a find operation passes
through the edge (x,parent(x)) and this edge is not the last edge traversed by the
find. The new edge out of x has a larger span.

We account for the edges out of x as follows. The first edge is charged to the union
operation. Consider now any edge e = (x,y) and the find operation which destroys
it. Let e have class i. The find operation traverses a path of edges. If e is the last (=
topmost) edge of class i traversed by the find, we charge the construction of the new
edge out of x to the find operation; otherwise, we charge it to x. Observe that in this
way, at most 1 + �logn� edges are charged to any find operation (because there are
only 1+�logn� different classes of edges). If the construction of the new edge out of
x is charged to x, there is another edge e′ = (x′,y′) in class i following e on the find
path. Also, the new edge out of x has a span at least as large as the sum of the spans
of e and e′, since it goes to an ancestor (not necessarily proper) of y′. Thus the new
edge out of x has a span of at least 2i +2i = 2i+1 and hence is in class i+1 or higher.
We conclude that at most one edge in each class is charged to each node x. Thus the
total number of edges constructed is at most n +(n + m)(1 + �logn�), and the time
bound follows. 	

11.5 *External Memory

The MST problem is one of the very few graph problems that are known to have
an efficient external-memory algorithm. We shall give a simple, elegant algorithm
that exemplifies many interesting techniques that are also useful for other external-
memory algorithms and for computing MSTs in other models of computation. Our
algorithm is a composition of techniques that we have already seen: external sorting,
priority queues, and internal union–find. More details can be found in [50].

226 11 Minimum Spanning Trees

11.5.1 A Semiexternal Kruskal Algorithm

We begin with an easy case. Suppose we have enough internal memory to store the
union–find data structure of Sect. 11.4 for n nodes. This is enough to implement
Kruskal’s algorithm in the external-memory model. We first sort the edges using the
external-memory sorting algorithm described in Sect. 5.7. Then we scan the edges
in order of increasing weight, and process them as described by Kruskal’s algorithm.
If an edge connects two subtrees, it is an MST edge and can be output; otherwise, it
is discarded. External-memory graph algorithms that require Θ(n) internal memory
are called semiexternal algorithms.

11.5.2 Edge Contraction

If the graph has too many nodes for the semiexternal algorithm of the preceding
subsection, we can try to reduce the number of nodes. This can be done using edge
contraction. Suppose we know that e = (u,v) is an MST edge, for example because
e is the least-weight edge incident on v. We add e, and somehow need to remember
that u and v are already connected in the MST under construction. Above, we used
the union–find data structure to record this fact; now we use edge contraction to
encode the information into the graph itself. We identify u and v and replace them
by a single node. For simplicity, we again call this node u. In other words, we delete
v and relink all edges incident on v to u, i.e., any edge (v,w) now becomes an edge
(u,w). Figure 11.7 gives an example. In order to keep track of the origin of relinked
edges, we associate an additional attribute with each edge that indicates its original
endpoints. With this additional information, the MST of the contracted graph is easily
translated back to the original graph. We simply replace each edge by its original.

We now have a blueprint for an external MST algorithm: repeatedly find MST
edges and contract them. Once the number of nodes is small enough, switch to a
semiexternal algorithm. The following subsection gives a particularly simple imple-
mentation of this idea.

11.5.3 Sibeyn’s Algorithm

Suppose V = 1..n. Consider the following simple strategy for reducing the number
of nodes from n to n′ [50]:

for v :=1 to n−n′ do
find the lightest edge (u,v) incident on v and contract it

Figure 11.7 gives an example, with n = 4 and n′ = 2. The strategy looks deceptively
simple. We need to discuss how we find the cheapest edge incident on v and how
we relink the other edges incident on v, i.e., how we inform the neighbors of v that
they are receiving additional incident edges. We can use a priority queue for both
purposes. For each edge e = (u,v), we store the item

(min(u,v),max(u,v),weight of e,origin of e)

11.5 *External Memory 227

output relink

was

...

output

relinkwas
c c

b

c

3

9

2
4

7
7

4

26
9

3

b 7

4

2
9

3

b
c

7 3

4 9d d d

d

a a
(a,b)

(a
,b
)

(a,d)

(a,d)

(a,c)

(b,c)

(c,b)
(c,d)

(c,d)

(d,b)

Fig. 11.7. An execution of Sibeyn’s algorithm with n′ = 2. The edge (c,a,6) is the cheapest
edge incident on a. We add it to the MST and merge a into c. The edge (a,b,7) becomes an
edge (c,b,7) and (a,d,9) becomes (c,d,9). In the new graph, (d,b,2) is the cheapest edge
incident on b. We add it to the spanning tree and merge b into d. The edges (b,c,3) and
(b,c,7) become (d,c,3) and (d,c,7), respectively. The resulting graph has two nodes that are
connected by four parallel edges of weight 3, 4, 7, and 9, respectively

Function sibeynMST(V, E, c) : Set of Edge
let π be a random permutation of 1..n
Q: priority queue // Order: min node, then min edge weight
foreach e = (u,v) ∈ E do

Q.insert(min{π(u),π(v)} ,max{π(u),π(v)} ,c(e),u,v))
current := 0 // we are just before processing node 1
loop

(u,v,c,u0,v0) :=minQ // next edge
if current �= u then // new node

if u = n−n′ +1 then break loop // node reduction completed
Q.deleteMin
output (u0,v0) // the original endpoints define an MST edge
(current,relinkTo) :=(u,v) // prepare for relinking remaining u-edges

else if v �= relinkTo then
Q.insert((min{v,relinkTo} ,max{v,relinkTo} ,c,u0,v0)) // relink

S := sort(Q) // sort by increasing edge weight
apply semiexternal Kruskal to S

Fig. 11.8. Sibeyn’s MST algorithm

in the priority queue. The ordering is lexicographic by the first and third compo-
nents, i.e., edges are first ordered by the lower-numbered endpoint and then ac-
cording to weight. The algorithm operates in phases. In each phase, we select all
edges incident on the current node. The lightest edge (= first edge delivered by
the queue), say (current,relinkTo), is added to the MST, and all others are re-
linked. In order to relink an edge (current,z,c,u0,v0) with z �= RelinkTo, we add
(min(z,RelinkTo),max(z,RelinkTo),c,u0,v0) to the queue.

Figure 11.8 gives the details. For reasons that will become clear in the analysis,
we renumber the nodes randomly before starting the algorithm, i.e., we chose a ran-
dom permutation of the integers 1 to n and rename node v as π(v). For any edge
e = (u,v) we store (min{π(u),π(v)} ,max{π(u),π(v)} ,c(e),u,v)) in the queue.
The main loop stops when the number of nodes is reduced to n′. We complete the

228 11 Minimum Spanning Trees

construction of the MST by sorting the remaining edges and then running the semiex-
ternal Kruskal algorithm on them.

Theorem 11.6. Let sort(x) denote the I/O complexity of sorting x items. The expected
number of I/O steps needed by the algorithm sibeynMST is O(sort(m ln(n/n′))).

Proof. From Sect. 6.3, we know that an external-memory priority queue can execute
K queue operations using O(sort(K)) I/Os. Also, the semiexternal Kruskal step re-
quires O(sort(m)) I/Os. Hence, it suffices to count the number of operations in the
reduction phases. Besides the m insertions during initialization, the number of queue
operations is proportional to the sum of the degrees of the nodes encountered. Let the
random variable Xi denote the degree of node i when it is processed. By the linearity
of expectations, we have E[∑1≤i≤n−n′ Xi] = ∑1≤i≤n−n′ E[Xi]. The number of edges in
the contracted graph is at most m, so that the average degree of a graph with n− i+1
remaining nodes is at most 2m/(n− i+1). We obtain.

E

[
∑

1≤i≤n−n′
Xi

]
= ∑

1≤i≤n−n′
E[Xi] ≤ ∑

1≤i≤n−n′

2m
n− i+1

= 2m

(
∑

1≤i≤n

1
i
− ∑

1≤i≤n′

1
i

)
= 2m(Hn −Hn′)

= 2m(lnn− lnn′)+O(1) = 2m ln
n
n′

+O(1) ,

where Hn :=∑1≤i≤n 1/i = lnn+Θ(1) is the n-th harmonic number (see (A.12)). 	

Note that we could do without switching to the semiexternal Kruskal algorithm.
However, then the logarithmic factor in the I/O complexity would become lnn rather
than ln(n/n′) and the practical performance would be much worse. Observe that
n′ = Θ(M) is a large number, say 108. For n = 1012, lnn is three times ln(n/n′).

Exercise 11.12. For any n, give a graph with n nodes and O(n) edges where Sibeyn’s
algorithm without random renumbering would need Ω

(
n2

)
relink operations.

11.6 Applications

The MST problem is useful in attacking many other graph problems. We shall discuss
the Steiner tree problem and the traveling salesman problem.

11.6.1 The Steiner Tree Problem

We are given a nonnegatively weighted undirected graph G = (V,E) and a set S of
nodes. The goal is to find a minimum-cost subset T of the edges that connects the
nodes in S. Such a T is called a minimum Steiner tree. It is a tree connecting a set
U with S ⊆ U ⊆ V . The challenge is to choose U so as to minimize the cost of

11.6 Applications 229

the tree. The minimum-spanning-tree problem is the special case where S consists
of all nodes. The Steiner tree problem arises naturally in our introductory example.
Assume that some of the islands in Taka-Tuka-Land are uninhabited. The goal is to
connect all the inhabited islands. The optimal solution will, in general, have some of
the uninhabited islands in the solution.

The Steiner tree problem is NP-complete (see Sect. 2.10). We shall show how to
construct a solution which is within a factor of two of the optimum. We construct an
auxiliary complete graph with node set S: for any pair u and v of nodes in S, the cost
of the edge (u,v) in the auxiliary graph is their shortest-path distance in G. Let TA

be an MST of the auxiliary graph. We obtain a Steiner tree of G by replacing every
edge of TA by the path it represents in G. The resulting subgraph of G may contain
cycles. We delete edges from cycles until the remaining subgraph is cycle-free. The
cost of the resulting Steiner tree is at most the cost of TA.

Theorem 11.7. The algorithm above constructs a Steiner tree which has at most
twice the cost of an optimal Steiner tree.

Proof. The algorithm constructs a Steiner tree of cost at most c(TA). It therefore
suffices to show that c(TA) ≤ 2c(Topt), where Topt is a minimum Steiner tree for S
in G. To this end, it suffices to show that the auxiliary graph has a spanning tree of
cost 2c(Topt). Figure 11.9 indicates how to construct such a spanning tree. “Walking
once around the Steiner tree” defines a cycle in G of cost 2c(Topt); observe that every
edge in Topt occurs exactly twice in this path. Deleting the nodes outside S in this
path gives us a cycle in the auxiliary graph. The cost of this path is at most 2c(Topt),
because edge costs in the auxiliary graph are shortest-path distances in G. The cycle
in the auxiliary graph spans S, and therefore the auxiliary graph has a spanning tree
of cost at most 2c(Topt). 	

Exercise 11.13. Improve the above bound to 2(1−1/|S|) times the optimum.

The algorithm can be implemented to run in time O(m+n logn) [126]. Algo-
rithms with better approximation ratios exist [163].

Exercise 11.14. Outline an implementation of the algorithm above and analyze its
running time.

node in S

node in V \S
a b

c

v

w x

yz

Fig. 11.9. Once around the tree. We have S = {v,w,x,y,z}, and the minimum Steiner tree is
shown. The Steiner tree also involves the nodes a, b, and c in V \S. Walking once around the
tree yields the cycle 〈v,a,b,c,w,c,x,c,b,y,b,a,z,a,v〉. It maps into the cycle 〈v,w,x,y,z,v〉 in
the auxiliary graph

230 11 Minimum Spanning Trees

11.6.2 Traveling Salesman Tours

The traveling salesman problem is one of the most intensively studied optimiza-
tion problems [197, 117, 13]: given an undirected complete graph on a node set V
with edge weights c(e), the goal is to find the minimum-weight simple cycle passing
through all nodes. This is the path a traveling salesman would want to take whose
goal it is to visit all nodes of the graph. We assume in this section that the edge
weights satisfy the triangle inequality, i.e., c(u,v)+ c(v,w) ≥ c(u,w) for all nodes
u, v, and w. There is then always an optimal round trip which visits no node twice
(because leaving it out would not increase the cost).

Theorem 11.8. Let Copt and CMST be the cost of an optimal tour and of an MST,
respectively. Then

CMST ≤Copt ≤ 2CMST .

Proof. Let C be an optimal tour. Deleting any edge from C yields a spanning tree.
Thus CMST ≤ Copt. Conversely, let T be an MST. Walking once around the tree as
shown in Fig. 11.9 gives us a cycle of cost at most 2CMST, passing through all nodes.
It may visit nodes several times. Deleting an extra visit to a node does not increase
the cost, owing to the triangle inequality. 	

In the remainder of this section, we shall briefly outline a technique for improving
the lower bound of Theorem 11.8. We need two additional concepts: 2-trees and node
potentials. Let G′ be obtained from G by deleting node 1 and the edges incident on
it. A minimum 2-tree consists of the two cheapest edges incident on node 1 and an
MST of G′. Since deleting the two edges incident on node 1 from a tour C yields a
spanning tree of G′, we have C2 ≤ Copt, where C2 is the minimum cost of a 2-tree.
A node potential is any real-valued function π defined on the nodes of G. Any node
potential yields a modified cost function cπ by defining

cπ(u,v) = c(u,v)+π(v)+π(u)

for any pair u and v of nodes. For any tour C, the costs under c and cπ differ by
2Sπ :=2∑v π(v), since a tour uses exactly two edges incident on any node. Let Tπ be
a minimum 2-tree with respect to cπ . Then

cπ(Tπ) ≤ cπ(Copt) = c(Copt)+2Sπ ,

and hence
c(Copt) ≥ max

π
(cπ(Tπ)−2Sπ) .

This lower bound is known as the Held–Karp lower bound [88, 89]. The maximum
is over all node potential functions π . It is hard to compute the lower bound exactly.
However, there are fast iterative algorithms for approximating it. The idea is as fol-
lows, and we refer the reader to the original papers for details. Assume we have a
potential function π and the optimal 2-tree Tπ with respect to it. If all nodes of Tπ
have degree two, we have a traveling salesman tour and stop. Otherwise, we make

11.8 Historical Notes and Further Findings 231

the edges incident on nodes of degree larger than two a little more expensive and the
edges incident on nodes of degree one a little cheaper. This can be done by modifying
the node potential of v as follows. We define a new node potential π ′ by

π ′(v) = π(v)+ ε · (deg(v,Tπ)−2)

where ε is a parameter which goes to zero with increasing iteration number, and
deg(v,Tπ) is the degree of v in Tπ . We next compute an optimal 2-tree with respect
to π ′ and hope that it will yield a better lower bound.

11.7 Implementation Notes

The minimum-spanning-tree algorithms discussed in this chapter are so fast that the
running time is usually dominated by the time required to generate the graphs and ap-
propriate representations. The JP algorithm works well for all m and n if an adjacency
array representation (see Sect. 8.2) of the graph is available. Pairing heaps [142] are
a robust choice for the priority queue. Kruskal’s algorithm may be faster for sparse
graphs, in particular if only a list or array of edges is available or if we know how to
sort the edges very efficiently.

The union–find data structure can be implemented more space-efficiently by ex-
ploiting the observation that only representatives need a rank, whereas only nonrep-
resentatives need a parent. We can therefore omit the array rank in Fig. 11.4. Instead,
a root of rank g stores the value n+1+g in parent. Thus, instead of two arrays, only
one array with values in the range 1..n + 1 + �logn� is needed. This is particularly
useful for the semiexternal algorithm.

11.7.1 C++

LEDA [118] uses Kruskal’s algorithm for computing MSTs. The union–find data
structure is called partition in LEDA. The Boost graph library [27] gives a choice
between Kruskal’s algorithm and the JP algorithm. Boost offers no public access to
the union–find data structure.

11.7.2 Java

JDSL [78] uses the JP algorithm.

11.8 Historical Notes and Further Findings

The oldest MST algorithm is based on the cut property and uses edge contractions.
Boruvka’s algorithm [28, 148] goes back to 1926 and hence represents one of the
oldest graph algorithms. The algorithm operates in phases, and identifies many MST
edges in each phase. In a phase, each node identifies the lightest incident edge. These

232 11 Minimum Spanning Trees

edges are added to the MST (here it is assumed that the edge costs are pairwise
distinct) and then contracted. Each phase can be implemented to run in time O(m).
Since a phase at least halves the number of remaining nodes, only a single node is
left after O(logn) phases, and hence the total running time is O(m logn). Boruvka’s
algorithm is not often used, because it is somewhat complicated to implement. It is
nevertheless important as a basis for parallel MST algorithms.

There is a randomized linear-time MST algorithm that uses phases of Boruvka’s
algorithm to reduce the number of nodes [105, 111]. The second building block of
this algorithm reduces the number of edges to about 2n: we sample O(m/2) edges
randomly, find an MST T ′ of the sample, and remove edges e ∈ E that are the heav-
iest edge in a cycle in e∪T ′. The last step is rather difficult to implement efficiently.
But, at least for rather dense graphs, this approach can yield a practical improve-
ment [108]. The linear-time algorithm can also be parallelized [84]. An adaptation
to the external-memory model [2] saves a factor ln(n/n′) in the asymptotic I/O com-
plexity compared with Sibeyn’s algorithm but is impractical for currently interesting
values of n owing to its much larger constant factor in the O-notation.

The theoretically best deterministic MST algorithm [35, 155] has the interesting
property that it has optimal worst-case complexity, although it is not exactly known
what this complexity is. Hence, if you come up with a completely different deter-
ministic MST algorithm and prove that your algorithm runs in linear time, then we
would know that the old algorithm also runs in linear time.

Minimum spanning trees define a single path between any pair of nodes. Interest-
ingly, this path is a bottleneck shortest path [8, Application 13.3], i.e., it minimizes
the maximum edge cost for all paths connecting the nodes in the original graph.
Hence, finding an MST amounts to solving the all-pairs bottleneck-shortest-path
problem in much less time than that for solving the all-pairs shortest-path problem.

A related and even more frequently used application is clustering based on the
MST [8, Application 13.5]: by dropping k− 1 edges from the MST, it can be split
into k subtrees. The nodes in a subtree T ′ are far away from the other nodes in the
sense that all paths to nodes in other subtrees use edges that are at least as heavy as
the edges used to cut T ′ out of the MST.

Many applications lead to MST problems on complete graphs. Frequently, these
graphs have a compact description, for example if the nodes represent points in the
plane and the edge costs are Euclidean distances (these MSTs are called Euclidean
minimum spanning trees). In these situations, it is an important concern whether one
can rule out most of the edges as too heavy without actually looking at them. This
is the case for Euclidean MSTs. It can be shown that Euclidean MSTs are contained
in the Delaunay triangulation [46] of the point set. This triangulation has linear size
and can be computed in time O(n logn). This leads to an algorithm of the same time
complexity for Euclidean MSTs.

We discussed the application of MSTs to the Steiner tree and the traveling sales-
man problem. We refer the reader to the books [8, 13, 117, 115, 200] for more infor-
mation about these and related problems.

12

Generic Approaches to Optimization

A smuggler in the mountainous region of Profitania has n items in his cellar. If he
sells an item i across the border, he makes a profit pi. However, the smuggler’s trade
union only allows him to carry knapsacks with a maximum weight of M. If item i has
weight wi, what items should he pack into the knapsack to maximize the profit from
his next trip?

This problem, usually called the knapsack problem, has many other applications.
The books [122, 109] describe many of them. For example, an investment bank might
have an amount M of capital to invest and a set of possible investments. Each invest-
ment i has an expected profit pi for an investment of cost wi. In this chapter, we
use the knapsack problem as an example to illustrate several generic approaches to
optimization. These approaches are quite flexible and can be adapted to complicated
situations that are ubiquitous in practical applications.

In the previous chapters we have considered very efficient specific solutions for
frequently occurring simple problems such as finding shortest paths or minimum
spanning trees. Now we look at generic solution methods that work for a much larger
range of applications. Of course, the generic methods do not usually achieve the same
efficiency as specific solutions. However, they save development time.

Formally, an optimization problem can be described by a set U of potential so-
lutions, a set L of feasible solutions, and an objective function f : L → R. In a
maximization problem, we are looking for a feasible solution x∗ ∈L that maximizes
the value of the objective function over all feasible solutions. In a minimization prob-
lem, we look for a solution that minimizes the value of the objective. In an existence
problem, f is arbitrary and the question is whether the set of feasible solutions is
nonempty.

For example, in the case of the knapsack problem with n items, a potential so-
lution is simply a vector x = (x1, . . . ,xn) with xi ∈ {0,1}. Here xi = 1 indicates that
“element i is put into the knapsack” and xi = 0 indicates that “element i is left out”.
Thus U = {0,1}n. The profits and weights are specified by vectors p = (p1, . . . , pn)
and w = (w1, . . . ,wn). A potential solution x is feasible if its weight does not exceed

234 12 Generic Approaches to Optimization

1

2
2

3

1

2

1 2 3 410
20

42

30

Instance

5 5 5

3

fractionaloptimalgreedy

Solutions:

p

w
M =

Fig. 12.1. The left part shows a knapsack instance with p = (10,20,15,20), w = (1,3,2,4),
and M = 5. The items are indicated as rectangles whose width and height correspond to weight
and profit, respectively. The right part shows three solutions: the one computed by the greedy
algorithm from Sect. 12.2, an optimal solution computed by the dynamic programming al-
gorithm from Sect. 12.3, and the solution of the linear relaxation (Sect. 12.1.1). The optimal
solution has weight 5 and profit 35

the capacity of the knapsack, i.e., ∑1≤i≤n wixi ≤ M. The dot product w · x is a con-
venient shorthand for ∑1≤i≤n wixi. We can then say that L = {x ∈ U : w · x ≤ M} is
the set of feasible solutions and f (x) = p · x is the objective function.

The distinction between minimization and maximization problems is not essen-
tial because setting f :=− f converts a maximization problem into a minimization
problem and vice versa. We shall use maximization as our default simply because
our example problem is more naturally viewed as a maximization problem.1

We shall present seven generic approaches. We start out with black-box solvers
that can be applied to any problem that can be formulated in the problem specification
language of the solver. In this case, the only task of the user is to formulate the
given problem in the language of the black-box solver. Section 12.1 introduces this
approach using linear programming and integer linear programming as examples.
The greedy approach that we have already seen in Chap. 11 is reviewed in Sect. 12.2.
The approach of dynamic programming discussed in Sect. 12.3 is a more flexible way
to construct solutions. We can also systematically explore the entire set of potential
solutions, as described in Sect. 12.4. Constraint programming, SAT solvers, and ILP
solvers are special cases of systematic search. Finally, we discuss two very flexible
approaches to exploring only a subset of the solution space. Local search, discussed
in Sect. 12.5, modifies a single solution until it has the desired quality. Evolutionary
algorithms, described in Sect. 12.6, simulate a population of candidate solutions.

12.1 Linear Programming – a Black-Box Solver

The easiest way to solve an optimization problem is to write down a specification of
the space of feasible solutions and of the objective function and then use an existing
software package to find an optimal solution. Of course, the question is, for what

1 Be aware that most of the literature uses minimization as the default.

12.1 Linear Programming – a Black-Box Solver 235

kinds of specification are general solvers available? Here, we introduce a particularly
large class of problems for which efficient black-box solvers are available.

Definition 12.1. A linear program (LP)2 with n variables and m constraints is a max-
imization problem defined on a vector x = (x1, . . . ,xn) of real-valued variables. The
objective function is a linear function f of x, i.e., f : Rn → R with f (x) = c ·x, where
c = (c1, . . . ,cn) is called cost or profit3 vector. The variables are constrained by m
linear constraints of the form ai · x ��i bi, where ��i∈ {≤,≥,=}, ai = (ai1, . . . ,ain) ∈
Rn, and bi ∈ R for i ∈ 1..m. The set of feasible solutions is given by

L =
{

x ∈ Rn : ∀i ∈ 1..m and j ∈ 1..n : x j ≥ 0∧ai · x ��i bi
}

.

feasible solutions

better
solutions

x

y

y ≤ 6

x+ y ≤ 8
2x− y ≤ 8

x+4y ≤ 26

(2,6)

Fig. 12.2. A simple two-dimensional linear program in variables x and y, with three constraints
and the objective “maximize x + 4y”. The feasible region is shaded, and (x,y) = (2,6) is the
optimal solution. Its objective value is 26. The vertex (2,6) is optimal because the half-plane
x+4y ≤ 26 contains the entire feasible region and has (2,6) in its boundary

Figure 12.2 shows a simple example. A classical application of linear program-
ming is the diet problem. A farmer wants to mix food for his cows. There are n dif-
ferent kinds of food on the market, say, corn, soya, fish meal, One kilogram of
a food j costs c j euros. There are m requirements for healthy nutrition; for example
the cows should get enough calories, protein, vitamin C, and so on. One kilogram of
food j contains ai j percent of a cow’s daily requirement with respect to requirement
i. A solution to the following linear program gives a cost-optimal diet that satisfies
the health constraints. Let x j denote the amount (in kilogram) of food j used by the

2 The term “linear program” stems from the 1940s [45] and has nothing to do with the mod-
ern meaning of “program” as in “computer program”.

3 It is common to use the term “profit” in maximization problems and “cost” in minimization
problems.

236 12 Generic Approaches to Optimization

farmer. The i-th nutritional requirement is modeled by the inequality ∑ j ai jx j ≥ 100.
The cost of the diet is given by ∑ j c jx j. The goal is to minimize the cost of the diet.

Exercise 12.1. How do you model supplies that are available only in limited amounts,
for example food produced by the farmer himself? Also, explain how to specify ad-
ditional constraints such as “no more than 0.01mg cadmium contamination per cow
per day”.

Can the knapsack problem be formulated as a linear program? Probably not. Each
item either goes into the knapsack or it does not. There is no possibility of adding an
item partially. In contrast, it is assumed in the diet problem that any arbitrary amount
of any food can be purchased, for example 3.7245 kg and not just 3 kg or 4 kg. Integer
linear programs (see Sect. 12.1.1) are the right tool for the knapsack problem.

We next connect linear programming to the problems that we have studied in
previous chapters of the book. We shall show how to formulate the single-source
shortest-path problem with nonnegative edge weights as a linear program. Let G =
(V,E) be a directed graph, let s ∈ V be the source node, and let c : E → R≥0 be the
cost function on the edges of G. In our linear program, we have a variable dv for
every vertex of the graph. The intention is that dv denotes the cost of the shortest
path from s to v. Consider

maximize ∑
v∈V

dv

subject to ds = 0

dw ≤ dv + c(e) for all e = (v,w) ∈ E .

Theorem 12.2. Let G = (V,E) be a directed graph, s ∈ V a designated vertex, and
c : E → R≥0 a nonnegative cost function. If all vertices of G are reachable from s, the
shortest-path distances in G are the unique optimal solution to the linear program
above.

Proof. Let μ(v) be the length of the shortest path from s to v. Then μ(v)∈R≥0, since
all nodes are reachable from s, and hence no vertex can have a distance +∞ from s.
We observe first that dv := μ(v) for all v satisfies the constraints of the LP. Indeed,
μ(s) = 0 and μ(w) ≤ μ(v)+ c(e) for any edge e = (v,w).

We next show that if (dv)v∈V satisfies all constraints of the LP above, then dv ≤
μ(v) for all v. Consider any v, and let s = v0,v1, . . . ,vk = v be a shortest path from s
to v. Then μ(v) = ∑0≤i<k c(vi,vi+1). We shall show that dv j ≤ ∑0≤i< j c(vi,vi+1) by
induction on j. For j = 0, this follows from ds = 0 by the first constraint. For j > 0,
we have

dv j ≤ dv j−1 + c(v j−1,v j) ≤ ∑
0≤i< j−1

c(vi,vi+1)+ c(v j−1,v j) = ∑
0≤i< j

c(vi,vi+1) ,

where the first inequality follows from the second set of constraints of the LP and
the second inequality comes from the induction hypothesis.

12.1 Linear Programming – a Black-Box Solver 237

We have now shown that (μ(v))v∈V is a feasible solution, and that dv ≤ μ(v) for
all v for any feasible solution (dv)v∈V . Since the objective of the LP is to maximize
the sum of the dv’s, we must have dv = μ(v) for all v in the optimal solution to the
LP. 	

Exercise 12.2. Where does the proof above fail when not all nodes are reachable
from s or when there are negative weights? Does it still work in the absence of neg-
ative cycles?

The proof that the LP above actually captures the shortest-path problem is non-
trivial. When you formulate a problem as an LP, you should always prove that the
LP is indeed a correct description of the problem that you are trying to solve.

Exercise 12.3. Let G = (V,E) be a directed graph and let s and t be two nodes. Let
cap : E → R≥0 and c : E → R≥0 be nonnegative functions on the edges of G. For an
edge e, we call cap(e) and c(e) the capacity and cost, respectively, of e. A flow is a
function f : E → R≥0 with 0 ≤ f (e) ≤ cap(e) for all e and flow conservation at all
nodes except s and t, i.e., for all v �= s, t, we have

flow into v = ∑
e=(u,v)

f (e) = ∑
e=(v,w)

f (e) = flow out of v .

The value of the flow is the net flow out of s, i.e., ∑e=(s,v) f (e)−∑e=(u,s) f (e). The
maximum-flow problem asks for a flow of maximum value. Show that this problem
can be formulated as an LP.

The cost of a flow is ∑e f (e)c(e). The minimum-cost maximum-flow problem asks
for a maximum flow of minimum cost. Show how to formulate this problem as an
LP.

Linear programs are so important because they combine expressive power with
efficient solution algorithms.

Theorem 12.3. Linear programs can be solved in polynomial time [110, 106].

The worst-case running time of the best algorithm known is O
(
max(m,n)7/2L

)
.

In this bound, it is assumed that all coefficients c j, ai j, and bi are integers with ab-
solute value bounded by 2L; n and m are the numbers of variables and constraints,
respectively. Fortunately, the worst case rarely arises. Most linear programs can be
solved relatively quickly by several procedures. One, the simplex algorithm, is briefly
outlined in Sect. 12.5.1. For now, we should remember two facts: first, many prob-
lems can be formulated as linear programs, and second, there are efficient linear-
program solvers that can be used as black boxes. In fact, although LP solvers are
used on a routine basis, very few people in the world know exactly how to imple-
ment a highly efficient LP solver.

238 12 Generic Approaches to Optimization

12.1.1 Integer Linear Programming

The expressive power of linear programming grows when some or all of the vari-
ables can be designated to be integral. Such variables can then take on only integer
values, and not arbitrary real values. If all variables are constrained to be integral,
the formulation of the problem is called an integer linear program (ILP). If some
but not all variables are constrained to be integral, the formulation is called a mixed
integer linear program (MILP). For example, our knapsack problem is tantamount
to the following 0 –1 integer linear program:

maximize p · x

subject to
w · x ≤ M, and xi ∈ {0,1} for i ∈ 1..n .

In a 0 –1 integer linear program, the variables are constrained to the values 0 and 1.

Exercise 12.4. Explain how to replace any ILP by a 0 –1 ILP, assuming that you
know an upper bound U on the value of any variable in the optimal solution. Hint:
replace any variable of the original ILP by a set of O(logU) 0 –1 variables.

Unfortunately, solving ILPs and MILPs is NP-hard. Indeed, even the knapsack
problem is NP-hard. Nevertheless, ILPs can often be solved in practice using linear-
programming packages. In Sect. 12.4, we shall outline how this is done. When an
exact solution would be too time-consuming, linear programming can help to find
approximate solutions. The linear-program relaxation of an ILP is the LP obtained
by omitting the integrality constraints on the variables. For example, in the knapsack
problem we would replace the constraint xi ∈ {0,1} by the constraint xi ∈ [0,1].

An LP relaxation can be solved by an LP solver. In many cases, the solution
to the relaxation teaches us something about the underlying ILP. One observation
always holds true (for maximization problems): the objective value of the relaxation
is at least as large as the objective value of the underlying ILP. This claim is trivial,
because any feasible solution to the ILP is also a feasible solution to the relaxation.
The optimal solution to the LP relaxation will in general be fractional, i.e., variables
will take on rational values that are not integral. However, it might be the case that
only a few variables have nonintegral values. By appropriate rounding of fractional
variables to integer values, we can often obtain good integer feasible solutions.

We shall give an example. The linear relaxation of the knapsack problem is given
by

maximize p · x

subject to
w · x ≤ M, and xi ∈ [0,1] for i ∈ 1..n .

This has a natural interpretation. It is no longer required to add items completely to
the knapsack; one can now take any fraction of an item. In our smuggling scenario,
the fractional knapsack problem corresponds to a situation involving divisible goods
such as liquids or powders.

12.2 Greedy Algorithms – Never Look Back 239

The fractional knapsack problem is easy to solve in time O(n logn); there is no
need to use a general-purpose LP solver. We renumber (sort) the items by profit
density such that

p1

w1
≥ p2

w2
≥ ·· · ≥ pn

wn
.

We find the smallest index j such that ∑ j
i=1 wi > M (if there is no such index, we can

take all knapsack items). Now we set

x1 = · · · = x j−1 = 1,x j =

(

M−
j−1

∑
i=1

wi

)

/w j, and x j+1 = · · · = xn = 0 .

Figure 12.1 gives an example. The fractional solution above is the starting point for
many good algorithms for the knapsack problem. We shall see more of this later.

Exercise 12.5 (linear relaxation of the knapsack problem).

(a) Prove that the above routine computes an optimal solution. Hint: you might want
to use an exchange argument similar to the one used to prove the cut property of
minimum spanning trees in Sect. 11.1.

(b) Outline an algorithm that computes an optimal solution in linear expected time.
Hint: use a variant of quickSelect, described in Sect. 5.5.

A solution to the fractional knapsack problem is easily converted to a feasible
solution to the knapsack problem. We simply take the fractional solution and round
the sole fractional variable x j to zero. We call this algorithm roundDown.

Exercise 12.6. Formulate the following set-covering problem as an ILP. Given a set
M, subsets Mi ⊆ M for i ∈ 1..n with

⋃n
i=1 Mi = M, and a cost ci for each Mi, select

F ⊆ 1..n such that
⋃

i∈F Mi = M and ∑i∈F ci is minimized.

12.2 Greedy Algorithms – Never Look Back

The term greedy algorithm is used for a problem-solving strategy where the items
under consideration are inspected in some order, usually some carefully chosen or-
der, and a decision about an item, for example, whether to include it in the solution
or not, is made when the item is considered. Decisions are never reversed. The algo-
rithm for the fractional knapsack problem given in the preceding section follows the
greedy strategy; we consider the items in decreasing order of profit density. The al-
gorithms for shortest paths in Chap. 10 and for minimum spanning trees in Chap. 11
also follow the greedy strategy. For the single-source shortest-path problem with
nonnegative weights, we considered the edges in order of the tentative distance of
their source nodes. For these problems, the greedy approach led to an optimal solu-
tion.

Usually, greedy algorithms yield only suboptimal solutions. Let us consider the
knapsack problem again. A typical greedy approach would be to scan the items in

240 12 Generic Approaches to Optimization

1

42

2 2

M

3
3

1 2 1

3 3

4
2

1

M

1

1 M

1

Instance Solutions:

ro
un

dD
ow

n

gr
ee

dy

Instance Solutions: optimal

roundDown,
greedy

ww

p
p

M =

Fig. 12.3. Two instances of the knapsack problem. Left: for p = (4,4,1), w = (2,2,1), and
M = 3, greedy performs better than roundDown. Right: for p = (1,M − 1) and w = (1,M),
both greedy and roundDown are far from optimal

order of decreasing profit density and to include items that still fit into the knap-
sack. We shall give this algorithm the name greedy. Figures 12.1 and 12.3 give ex-
amples. Observe that greedy always gives solutions at least as good as roundDown
gives. Once roundDown encounters an item that it cannot include, it stops. How-
ever, greedy keeps on looking and often succeeds in including additional items
of less weight. Although the example in Fig. 12.1 gives the same result for both
greedy and roundDown, the results generally are different. For example, with profits
p = (4,4,1), weights w = (2,2,1), and M = 3, greedy includes the first and third
items yielding a profit of 5, whereas roundDown includes just the first item and ob-
tains only a profit of 4. Both algorithms may produce solutions that are far from op-
timum. For example, for any capacity M, consider the two-item instance with profits
p = (1,M − 1) and weights w = (1,M). Both greedy and roundDown include only
the first item, which has a high profit density but a very small absolute profit. In this
case it would be much better to include just the second item.

We can turn this observation into an algorithm, which we call round. This com-
putes two solutions: the solution xd proposed by roundDown and the solution xc

obtained by choosing exactly the critical item x j of the fractional solution.4 It then
returns the better of the two.

We can give an interesting performance guarantee. The algorithm round always
achieves at least 50% of the profit of the optimal solution. More generally, we say
that an algorithm achieves an approximation ratio of α if for all inputs, its solution
is at most a factor α worse than the optimal solution.

Theorem 12.4. The algorithm round achieves an approximation ratio of 2.

Proof. Let x∗ denote any optimal solution, and let x f be the optimal solution to the
fractional knapsack problem. Then p ·x∗ ≤ p ·x f . The value of the objective function
is increased further by setting x j = 1 in the fractional solution. We obtain

p · x∗ ≤ p · x f ≤ p · xd + p · xc ≤ 2max
{

p · xd , p · xc
}

.

	

4 We assume here that “unreasonably large” items with wi > M have been removed from the

problem in a preprocessing step.

12.2 Greedy Algorithms – Never Look Back 241

There are many ways to refine the algorithm round without sacrificing this ap-
proximation guarantee. We can replace xd by the greedy solution. We can similarly
augment xc with any greedy solution for a smaller instance where item j is removed
and the capacity is reduced by w j.

We now come to another important class of optimization problems, called
scheduling problems. Consider the following scenario, known as the scheduling
problem for independent weighted jobs on identical machines. We are given m iden-
tical machines on which we want to process n jobs; the execution of job j takes t j

time units. An assignment x : 1..n → 1..m of jobs to machines is called a schedule.
Thus the load � j assigned to machine j is ∑{i:x(i)= j} ti. The goal is to minimize the
makespan Lmax = max1≤ j≤m � j of the schedule.

One application scenario is as follows. We have a video game processor with
several identical processor cores. The jobs would be the tasks executed in a video
game such as audio processing, preparing graphics objects for the image processing
unit, simulating physical effects, and simulating the intelligence of the game.

We give next a simple greedy algorithm for the problem above [80] that has the
additional property that it does not need to know the sizes of the jobs in advance.
We assign jobs in the order they arrive. Algorithms with this property (“unknown
future”) are called online algorithms. When job i arrives, we assign it to the ma-
chine with the smallest load. Formally, we compute the loads � j = ∑h<i∧x(h)= j th of
all machines j, and assign the new job to the least loaded machine, i.e., x(i) := ji,
where ji is such that � ji = min1≤ j≤m � j. This algorithm is frequently referred to as
the shortest-queue algorithm. It does not guarantee optimal solutions, but always
computes nearly optimal solutions.

Theorem 12.5. The shortest-queue algorithm ensures that

Lmax ≤
1
m

n

∑
i=1

ti +
m−1

m
max

1≤i≤n
ti .

Proof. In the schedule generated by the shortest-queue algorithm, some machine has
a load Lmax. We focus on the job ı̂ that is the last job that has been assigned to the
machine with the maximum load. When job ı̂ is scheduled, all m machines have a
load of at least Lmax − tı̂, i.e.,

∑
i�=ı̂

ti ≥ (Lmax − tı̂) ·m .

Solving this for Lmax yields

Lmax ≤
1
m ∑

i�=ı̂

ti + tı̂ =
1
m ∑

i
ti +

m−1
m

tı̂ ≤
1
m

n

∑
i=1

ti +
m−1

m
max

1≤i≤n
ti .

	

We are almost finished. We now observe that ∑i ti/m and maxi ti are lower bounds
on the makespan of any schedule and hence also the optimal schedule. We obtain the
following corollary.

242 12 Generic Approaches to Optimization

Corollary 12.6. The approximation ratio of the shortest-queue algorithm is 2−1/m.

Proof. Let L1 = ∑i ti/m and L2 = maxi ti. The makespan of the optimal solution is at
least max(L1,L2). The makespan of the shortest-queue solution is bounded by

L1 +
m−1

m
L2 ≤

mL1 +(m−1)L2

m
≤ (2m−1)max(L1,L2)

m

= (2− 1
m

) ·max(L1,L2) .

	

The shortest-queue algorithm is no better than claimed above. Consider an in-
stance with n = m(m−1)+1, tn = m, and ti = 1 for i < n. The optimal solution has a
makespan Lopt

max = m, whereas the shortest-queue algorithm produces a solution with
a makespan Lmax = 2m− 1. The shortest-queue algorithm is an online algorithm. It
produces a solution which is at most a factor 2− 1/m worse than the solution pro-
duced by an algorithm that knows the entire input. In such a situation, we say that
the online algorithm has a competitive ratio of α = 2−1/m.

*Exercise 12.7. Show that the shortest-queue algorithm achieves an approximation
ratio of 4/3 if the jobs are sorted by decreasing size.

*Exercise 12.8 (bin packing). Suppose a smuggler boss has perishable goods in
her cellar. She has to hire enough porters to ship all items tonight. Develop a greedy
algorithm that tries to minimize the number of people she needs to hire, assuming
that they can all carry a weight M. Try to obtain an approximation ratio for your
bin-packing algorithm.

Boolean formulae provide another powerful description language. Here, vari-
ables range over the Boolean values 1 and 0, and the connectors ∧, ∨, and ¬ are
used to build formulae. A Boolean formula is satisfiable if there is an assignment of
Boolean values to the variables such that the formula evaluates to 1. As an example,
we now formulate the pigeonhole principle as a satisfiability problem: it is impos-
sible to pack n + 1 items into n bins such that every bin contains one item at most.
We have variables xi j for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n. So i ranges over items and j
ranges over bins. Every item must be put into (at least) one bin, i.e., xi1 ∨ . . .∨xin for
1 ≤ i ≤ n + 1. No bin should receive more than one item, i.e., ¬(∨1≤i<h≤n+1xi jxh j)
for 1 ≤ j ≤ n. The conjunction of these formulae is unsatisfiable. SAT solvers de-
cide the satisfiability of Boolean formulae. Although the satisfiability problem is
NP-complete, there are now solvers that can solve real-world problems that involve
hundreds of thousands of variables.5

Exercise 12.9. Formulate the pigeonhole principle as an integer linear program.

5 See http://www.satcompetition.org/.

http://www.satcompetition.org/

12.3 Dynamic Programming – Building It Piece by Piece 243

12.3 Dynamic Programming – Building It Piece by Piece

For many optimization problems, the following principle of optimality holds: an op-
timal solution is composed of optimal solutions to subproblems. If a subproblem has
several optimal solutions, it does not matter which one is used.

The idea behind dynamic programming is to build an exhaustive table of optimal
solutions. We start with trivial subproblems. We build optimal solutions for increas-
ingly larger problems by constructing them from the tabulated solutions to smaller
problems.

Again, we shall use the knapsack problem as an example. We define P(i,C) as
the maximum profit possible when only items 1 to i can be put in the knapsack and
the total weight is at most C. Our goal is to compute P(n,M). We start with trivial
cases and work our way up. The trivial cases are “no items” and “total weight zero”.
In both of these cases, the maximum profit is zero. So

P(0,C) = 0 for all C and P(i,0) = 0 .

Consider next the case i > 0 and C > 0. In the solution that maximizes the profit, we
either use item i or do not use it. In the latter case, the maximum achievable profit is
P(i−1,C). In the former case, the maximum achievable profit is P(i−1,C−wi)+ pi,
since we obtain a profit of pi for item i and must use a solution of total weight at most
C −wi for the first i− 1 items. Of course, the former alternative is only feasible if
C ≥ wi. We summarize this discussion in the following recurrence for P(i,C):

P(i,C) =

{
max(P(i−1,C),P(i−1,C−wi)+ pi) if wi ≤C

P(i−1,C) if wi > C

Exercise 12.10. Show that the case distinction in the definition of P(i,C) can be
avoided by defining P(i,C) = −∞ for C < 0.

Using the above recurrence, we can compute P(n,M) by filling a table P(i,C)
with one column for each possible capacity C and one row for each item i. Table 12.1
gives an example. There are many ways to fill this table, for example row by row. In
order to reconstruct a solution from this table, we work our way backwards, starting
at the bottom right-hand corner of the table. We set i = n and C = M. If P(i,C) =
P(i−1,C), we set xi = 0 and continue to row i−1 and column C. Otherwise, we set
xi = 1. We have P(i,C) = P(i− 1,C−wi)+ pi, and therefore continue to row i− 1
and column C −wi. We continue with this procedure until we arrive at row 0, by
which time the solution (x1, . . . ,xn) has been completed.

Exercise 12.11. Dynamic programming, as described above, needs to store a table
containing Θ(nM) integers. Give a more space-efficient solution that stores only a
single bit in each table entry except for two rows of P(i,C) values at any given time.
What information is stored in this bit? How is it used to reconstruct a solution? How
can you get down to one row of stored values? Hint: exploit your freedom in the
order of filling in table values.

244 12 Generic Approaches to Optimization

Table 12.1. A dynamic-programming table for the knapsack instance with p = (10,20,15,20),
w = (1,3,2,4), and M = 5. Bold-face entries contribute to the optimal solution

i\C 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 10 10 10 10 10
2 0 10 10 20 30 30
3 0 10 15 25 30 35
4 0 10 15 25 30 35

P(i−1,C)
P(i−1,C−wi)+ pi

Fig. 12.4. The solid step function shows C �→ P(i−1,C), and the dashed step function shows
C �→ P(i− 1,C−wi)+ pi. P(i,C) is the pointwise maximum of the two functions. The solid
step function is stored as the sequence of solid points. The representation of the dashed step
function is obtained by adding (wi, pi) to every solid point. The representation of C �→ P(i,C)
is obtained by merging the two representations and deleting all dominated elements

We shall next describe an important improvement with respect to space con-
sumption and speed. Instead of computing P(i,C) for all i and all C, the Nemhauser–
Ullmann algorithm [146, 17] computes only Pareto-optimal solutions. A solution x
is Pareto-optimal if there is no solution that dominates it, i.e., has a greater profit
and no greater cost or the same profit and less cost. In other words, since P(i,C) is
an increasing function of C, only the pairs (C,P(i,C)) with P(i,C) > P(i,C−1) are
needed for an optimal solution. We store these pairs in a list Li sorted by C value. So
L0 = 〈(0,0)〉, indicating that P(0,C) = 0 for all C ≥ 0, and L1 = 〈(0,0),(w1, p1)〉,
indicating that P(1,C) = 0 for 0 ≤C < w1 and P(i,C) = p1 for C ≥ w1.

How can we go from Li−1 to Li? The recurrence for P(i,C) paves the way; see
Fig. 12.4. We have the list representation Li−1 for the function C �→ P(i−1,C). We
obtain the representation L′

i−1 for C �→ P(i− 1,C−wi)+ pi by shifting every point
in Li−1 by (wi, pi). We merge Li−1 and L′

i−1 into a single list by order of first compo-
nent and delete all elements that are dominated by another value, i.e., we delete all
elements that are preceded by an element with a higher second component, and, for
each fixed value of C, we keep only the element with the largest second component.

Exercise 12.12. Give pseudocode for the above merge. Show that the merge can be
carried out in time |Li−1|. Conclude that the running time of the algorithm is propor-
tional to the number of Pareto-optimal solutions.

12.3 Dynamic Programming – Building It Piece by Piece 245

The basic dynamic-programming algorithm for the knapsack problem and also its
optimization require Θ(nM) worst-case time. This is quite good if M is not too large.
Since the running time is polynomial in n and M, the algorithm is called pseudo-
polynomial. The “pseudo” means that it is not necessarily polynomial in the input
size measured in bits; however, it is polynomial in the natural parameters n and M.
There is, however, an important difference between the basic and the refined ap-
proach. The basic approach has best-case running time Θ(nM). The best case for the
refined approach is O(n). The average-case complexity of the refined algorithm is
polynomial in n, independent of M. This holds even if the averaging is done only
over perturbations of an arbitrary instance by a small amount of random noise. We
refer the reader to [17] for details.

Exercise 12.13 (dynamic programming by profit). Define W (i,P) to be the small-
est weight needed to achieve a profit of at least P using knapsack items 1..i.

(a) Show that W (i,P) = min{W (i−1,P),W (i−1,P− pi)+wi}.
(b) Develop a table-based dynamic-programming algorithm using the above recur-

rence that computes optimal solutions to the knapsack problem in time O(np∗),
where p∗ is the profit of the optimal solution. Hint: assume first that p∗, or at
least a good upper bound for it, is known. Then remove this assumption.

Exercise 12.14 (making change). Suppose you have to program a vending machine
that should give exact change using a minimum number of coins.

(a) Develop an optimal greedy algorithm that works in the euro zone with coins
worth 1, 2, 5, 10, 20, 50, 100, and 200 cents and in the dollar zone with coins
worth 1, 5, 10, 25, 50, and 100 cents.

(b) Show that this algorithm would not be optimal if there were also a 4 cent coin.
(c) Develop a dynamic-programming algorithm that gives optimal change for any

currency system.

Exercise 12.15 (chained matrix products). We want to compute the matrix product
M1M2 · · ·Mn, where Mi is a ki−1 × ki matrix. Assume that a pairwise matrix product
is computed in the straightforward way using mks element multiplications to ob-
tain the product of an m× k matrix with a k × s matrix. Exploit the associativity
of matrix products to minimize the number of element multiplications needed. Use
dynamic programming to find an optimal evaluation order in time O

(
n3

)
. For ex-

ample, the product of a 4× 5 matrix M1, a 5× 2 matrix M2, and a 2× 8 matrix M3

can be computed in two ways. Computing M1(M2M3) takes 5 · 2 · 8 + 4 · 5 · 8 = 240
multiplications, whereas computing (M1M2)M3 takes only 4 · 5 · 2 + 4 · 2 · 8 = 104
multiplications.

Exercise 12.16 (minimum edit distance). The minimum edit distance (or Leven-
shtein distance) L(s, t) between two strings s and t is the minimum number of char-
acter deletions, insertions, and replacements applied to s that produces the string t.
For example, L(graph,group) = 3 (delete h, replace a by o, insert u before p).
Define d(i, j) = L(〈s1, . . . ,si〉,〈t1, . . . , t j〉). Show that

246 12 Generic Approaches to Optimization

d(i, j) = min
{

d(i−1, j)+1,d(i, j−1)+1,d(i−1, j−1)+ [si �= t j]
}

where [si �= t j] is one if si and t j are different and is zero otherwise.

Exercise 12.17. Does the principle of optimality hold for minimum spanning trees?
Check the following three possibilities for definitions of subproblems: subsets of
nodes, arbitrary subsets of edges, and prefixes of the sorted sequence of edges.

Exercise 12.18 (constrained shortest path). Consider a directed graph G = (V,E)
where edges e ∈ E have a length �(e) and a cost c(e). We want to find a path from
node s to node t that minimizes the total length subject to the constraint that the total
cost of the path is at most C. Show that subpaths 〈s′, t ′〉 of optimal solutions are not
necessarily shortest paths from s′ to t ′.

12.4 Systematic Search – When in Doubt, Use Brute Force

In many optimization problems, the universe U of possible solutions is finite, so that
we can in principle solve the optimization problem by trying all possibilities. Naive
application of this idea does not lead very far, however, but we can frequently restrict
the search to promising candidates, and then the concept carries a lot further.

We shall explain the concept of systematic search using the knapsack problem
and a specific approach to systematic search known as branch-and-bound. In Exer-
cises 12.20 and 12.21, we outline systematic-search routines following a somewhat
different pattern.

Figure 12.5 gives pseudocode for a systematic-search routine bbKnapsack for
the knapsack problem and Figure 12.6 shows a sample run. Branching is the most
fundamental ingredient of systematic-search routines. All sensible values for some
piece of the solution are tried. For each of these values, the resulting problem is
solved recursively. Within the recursive call, the chosen value is fixed. The routine
bbKnapsack first tries including an item by setting xi := 1, and then excluding it by
setting xi :=0. The variables are fixed one after another in order of decreasing profit
density. The assignment xi :=1 is not tried if this would exceed the remaining knap-
sack capacity M′. With these definitions, after all variables have been set, in the n-th
level of recursion, bbKnapsack will have found a feasible solution. Indeed, without
the bounding rule below, the algorithm would systematically explore all possible so-
lutions and the first feasible solution encountered would be the solution found by
the algorithm greedy. The (partial) solutions explored by the algorithm form a tree.
Branching happens at internal nodes of this tree.

Bounding is a method for pruning subtrees that cannot contain optimal solutions.
A branch-and-bound algorithm keeps the best feasible solution found in a global
variable x̂; this solution is often called the incumbent solution. It is initialized to a
solution determined by a heuristic routine and, at all times, provides a lower bound
p · x̂ on the value of the objective function that can be obtained. This lower bound is
complemented by an upper bound u for the value of the objective function obtainable
by extending the current partial solution x to a full feasible solution. In our example,

12.4 Systematic Search – When in Doubt, Use Brute Force 247

Function bbKnapsack((p1, . . . , pn),(w1, . . . ,wn),M) : L
assert p1/w1 ≥ p2/w2 ≥ ·· · ≥ pn/wn // assume input sorted by profit density
x̂ = heuristicKnapsack((p1, . . . , pn),(w1, . . . ,wn),M) : L // best solution so far
x : L // current partial solution
recurse(1,M,0)
return x̂

// Find solutions assuming x1, . . . ,xi−1 are fixed, M′ = M−∑
k<i

xiwi, P = ∑
k<i

xi pi.

Procedure recurse(i,M′,P : N)
u :=P+upperBound((pi, . . . , pn),(wi, . . . ,wn),M′)
if u > p · x̂ then // not bounded

if i > n then x̂ := x
else // branch on variable xi

if wi ≤ M′ then xi :=1; recurse(i+1,M′ −wi,P+ pi)
if u > p · x̂ then xi :=0; recurse(i+1,M′,P)

Fig. 12.5. A branch-and-bound algorithm for the knapsack problem. An initial feasible so-
lution is constructed by the function heuristicKnapsack using some heuristic algorithm. The
function upperBound computes an upper bound for the possible profit

110? 35

1100 30

 no capacity leftC
boundedB

10??

100?

1010 25

30

35

101? 35

37

01??

011?

0110

0???

35

35

35

35

11?? 37

improved solution

37

B C

B

B

C

C

C

????

1???

Fig. 12.6. The search space explored by knapsackBB for a knapsack instance with p =
(10,20,15,20), w = (1,3,2,4), and M = 5, and an empty initial solution x̂ = (0,0,0,0). The
function upperBound is computed by rounding down the optimal value of the objective func-
tion for the fractional knapsack problem. The nodes of the search tree contain x1 · · ·xi−1 and
the upper bound u. Left children are explored first and correspond to setting xi := 1. There
are two reasons for not exploring a child: either there is not enough capacity left to include
an element (indicated by C), or a feasible solution with a profit equal to the upper bound is
already known (indicated by B)

the upper bound could be the profit for the fractional knapsack problem with items
i..n and capacity M′ = M−∑ j<i xiwi.

Branch-and-bound stops expanding the current branch of the search tree when
u ≤ p · x̂, i.e., when there is no hope of an improved solution in the current subtree
of the search space. We test u > p · x̂ again before exploring the case xi = 0 because
x̂ might change when the case xi = 1 is explored.

248 12 Generic Approaches to Optimization

Exercise 12.19. Explain how to implement the function upperBound in Fig. 12.5 so
that it runs in time O(logn). Hint: precompute the prefix sums ∑k≤i wi and ∑k≤i pi

and use binary search.

Exercise 12.20 (the 15-puzzle). The 15-puzzle is a popular sliding-block puzzle.
You have to move 15 square tiles in a 4×4 frame into the right order. Define a move
as the action of interchanging a square and the hole in the array of tiles.

Design an algorithm that finds a shortest-move sequence

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3

6 7

8 10 11

12 13 14 15

4

5 9

1 2 3

from a given starting configuration to the ordered configu-
ration shown at the bottom of the figure on the left. Use it-
erative deepening depth-first search [114]: try all one-move
sequences first, then all two-move sequences, and so on. This
should work for the simpler 8-puzzle. For the 15-puzzle, use
the following optimizations. Never undo the immediately
preceding move. Use the number of moves that would be
needed if all pieces could be moved freely as a lower bound
and stop exploring a subtree if this bound proves that the cur-
rent search depth is too small. Decide beforehand whether
the number of moves is odd or even. Implement your algo-
rithm to run in constant time per move tried.

Exercise 12.21 (constraint programming and the eight-queens problem). Con-
sider a chessboard. The task is to place eight queens on the board so that they do
not attack each other, i.e., no two queens should be placed in the same row, column,
diagonal, or antidiagonal. So each row contains exactly one queen. Let xi be the po-
sition of the queen in row i. Then xi ∈ 1..8. The solution must satisfy the following
constraints: xi �= x j, i + xi �= j + x j, and xi − i �= x j − j for 1 ≤ i < j ≤ 8. What do
these conditions express? Show that they are sufficient. A systematic search can use
the following optimization. When a variable xi is fixed at some value, this excludes
some values for variables that are still free. Modify the systematic search so that it
keeps track of the values that are still available for free variables. Stop exploration
as soon as there is a free variable that has no value available to it anymore. This
technique of eliminating values is basic to constraint programming.

12.4.1 Solving Integer Linear Programs

In Sect. 12.1.1, we have seen how to formulate the knapsack problem as a 0 –1 in-
teger linear program. We shall now indicate how the branch-and-bound procedure
developed for the knapsack problem can be applied to any 0 –1 integer linear pro-
gram. Recall that in a 0 –1 integer linear program the values of the variables are
constrained to 0 and 1. Our discussion will be brief, and we refer the reader to a
textbook on integer linear programming [147, 172] for more information.

The main change is that the function upperBound now solves a general linear
program that has variables xi,. . . ,xn with range [0,1]. The constraints for this LP

12.5 Local Search – Think Globally, Act Locally 249

come from the input ILP, with the variables x1 to xi−1 replaced by their values. In the
remainder of this section, we shall simply refer to this linear program as “the LP”.

If the LP has a feasible solution, upperBound returns the optimal value for the
LP. If the LP has no feasible solution, upperBound returns −∞ so that the ILP solver
will stop exploring this branch of the search space. We shall describe next several
generalizations of the basic branch-and-bound procedure that sometimes lead to con-
siderable improvements.

Branch Selection: We may pick any unfixed variable x j for branching. In particular,
we can make the choice depend on the solution of the LP. A commonly used rule is
to branch on a variable whose fractional value in the LP is closest to 1/2.

Order of Search Tree Traversal: In the knapsack example, the search tree was
traversed depth-first, and the 1-branch was tried first. In general, we are free to
choose any order of tree traversal. There are at least two considerations influenc-
ing the choice of strategy. If no good feasible solution is known, it is good to use a
depth-first strategy so that complete solutions are explored quickly. Otherwise, it is
better to use a best-first strategy that explores those search tree nodes that are most
likely to contain good solutions. Search tree nodes are kept in a priority queue, and
the next node to be explored is the most promising node in the queue. The priority
could be the upper bound returned by the LP. However, since the LP is expensive to
evaluate, one sometimes settles for an approximation.

Finding Solutions: We may be lucky in that the solution of the LP turns out to assign
integer values to all variables. In this case there is no need for further branching.
Application-specific heuristics can additionally help to find good solutions quickly.

Branch-and-Cut: When an ILP solver branches too often, the size of the search
tree explodes and it becomes too expensive to find an optimal solution. One way to
avoid branching is to add constraints to the linear program that cut away solutions
with fractional values for the variables without changing the solutions with integer
values.

12.5 Local Search – Think Globally, Act Locally

The optimization algorithms we have seen so far are applicable only in special cir-
cumstances. Dynamic programming needs a special structure of the problem and
may require a lot of space and time. Systematic search is usually too slow for large
inputs. Greedy algorithms are fast but often yield only low-quality solutions. Local
search is a widely applicable iterative procedure. It starts with some feasible solution
and then moves from feasible solution to feasible solution by local modifications.
Figure 12.7 gives the basic framework. We shall refine it later.

Local search maintains a current feasible solution x and the best solution x̂ seen
so far. In each step, local search moves from the current solution to a neighboring
solution. What are neighboring solutions? Any solution that can be obtained from
the current solution by making small changes to it. For example, in the case of the

250 12 Generic Approaches to Optimization

knapsack problem, we might remove up to two items from the knapsack and replace
them by up to two other items. The precise definition of the neighborhood depends on
the application and the algorithm designer. We use N (x) to denote the neighborhood
of x. The second important design decision is which solution from the neighborhood
is chosen. Finally, some heuristic decides when to stop.

In the rest of this section, we shall tell you more about local search.

12.5.1 Hill Climbing

Hill climbing is the greedy version of local search. It moves only to neighbors that
are better than the currently best solution. This restriction further simplifies the local
search. The variables x̂ and x are the same, and we stop when there are no improved
solutions in the neighborhood N . The only nontrivial aspect of hill climbing is the
choice of the neighborhood. We shall give two examples where hill climbing works
quite well, followed by an example where it fails badly.

Our first example is the traveling salesman problem described in Sect. 11.6.2.
Given an undirected graph and a distance function on the edges satisfying the triangle
inequality, the goal is to find a shortest tour that visits all nodes of the graph. We
define the neighbors of a tour as follows. Let (u,v) and (w,y) be two edges of the
tour, i.e., the tour has the form (u,v), p,(w,y),q, where p is a path from v to w and q
is a path from y to u. We remove these two edges from the tour, and replace them by
the edges (u,w) and (v,y). The new tour first traverses (u,w), then uses the reversal
of p back to v, then uses (v,y), and finally traverses q back to u. This move is known
as a 2-exchange, and a tour that cannot be improved by a 2-exchange is said to be 2-
optimal. In many instances of the traveling salesman problem, 2-optimal tours come
quite close to optimal tours.

Exercise 12.22. Describe a scheme where three edges are removed and replaced by
new edges.

An interesting example of hill climbing with a clever choice of the neighborhood
function is the simplex algorithm for linear programming (see Sect. 12.1). This is
the most widely used algorithm for linear programming. The set of feasible solu-
tions L of a linear program is defined by a set of linear equalities and inequalities
ai · x �� bi, 1 ≤ i ≤ m. The points satisfying a linear equality ai · x = bi form a hyper-
plane in Rn, and the points satisfying a linear inequality ai ·x ≤ bi or ai ·x ≥ bi form a

find some feasible solution x ∈ L
x̂ := x // x̂ is best solution found so far
while not satisfied with x̂ do

x:=some heuristically chosen element from N (x)∩L
if f (x) > f (x̂) then x̂ := x

Fig. 12.7. Local search

12.5 Local Search – Think Globally, Act Locally 251

half-space. Hyperplanes are the n-dimensional analogues of planes and half-spaces
are the analogues of half-planes. The set of feasible solutions is an intersection of
m half-spaces and hyperplanes and forms a convex polytope. We have already seen
an example in two-dimensional space in Fig. 12.2. Figure 12.8 shows an example
in three-dimensional space. Convex polytopes are the n-dimensional analogues of
convex polygons. In the interior of the polytope, all inequalities are strict (= satisfied
with inequality); on the boundary some inequalities are tight (= satisfied with equal-
ity). The vertices and edges of the polytope are particularly important parts of the
boundary. We shall now sketch how the simplex algorithm works. We assume that
there are no equality constraints. Observe that an equality constraint c can be solved
for any one of its variables; this variable can then be removed by substituting into the
other equalities and inequalities. Afterwards, the constraint c is redundant and can
be dropped.

The simplex algorithm starts at an arbitrary vertex of the feasible region. In each
step, it moves to a neighboring vertex, i.e., a vertex reachable via an edge, with a
larger objective value. If there is more than one such neighbor, a common strategy is
to move to the neighbor with the largest objective value. If there is no neighbor with
a larger objective value, the algorithm stops. At this point, the algorithm has found
the vertex with the maximal objective value. In the examples in Figs. 12.2 and 12.8,
the captions argue why this is true. The general argument is as follows. Let x∗ be
the vertex at which the simplex algorithm stops. The feasible region is contained in
a cone with apex x∗ and spanned by the edges incident on x∗. All these edges go
to vertices with smaller objective values and hence the entire cone is contained in
the half-space {x : c · x ≤ c · x∗}. Thus no feasible point can have an objective value

(0,0,0) (1,0,0)

(1,0,1)

(1,1,1)

Fig. 12.8. The three-dimensional unit cube is defined by the inequalities x ≥ 0, x ≤ 1, y ≥ 0,
y ≤ 1, z ≥ 0, and z ≤ 1. At the vertices (1,1,1) and (1,0,1), three inequalities are tight, and on
the edge connecting these vertices, the inequalities x ≤ 1 and z ≤ 1 are tight. For the objective
“maximize x + y + z”, the simplex algorithm starting at (0,0,0) may move along the path
indicated by arrows. The vertex (1,1,1) is optimal, since the half-space x+y+ z ≤ 3 contains
the entire feasible region and has (1,1,1) in its boundary

252 12 Generic Approaches to Optimization

larger than x∗. We have described the simplex algorithm as a walk on the boundary
of a convex polytope, i.e., in geometric language. It can be described equivalently
using the language of linear algebra. Actual implementations use the linear-algebra
description.

In the case of linear programming, hill climbing leads to an optimal solution. In
general, however, hill climbing will not find an optimal solution. In fact, it will not
even find a near-optimal solution. Consider the following example. Our task is to
find the highest point on earth, i.e., Mount Everest. A feasible solution is any point
on earth. The local neighborhood of a point is any point within a distance of 10 km.
So the algorithm would start at some point on earth, then go to the highest point
within a distance of 10 km, then go again to the highest point within a distance of 10
km, and so on. If one were to start from the first author’s home (altitude 206 meters),
the first step would lead to an altitude of 350 m, and there the algorithm would stop,
because there is no higher hill within 10 km of that point. There are very few places
in the world where the algorithm would continue for long, and even fewer places
where it would find Mount Everest.

Why does hill climbing work so nicely for linear programming, but fail to find
Mount Everest? The reason is that the earth has many local optima, hills that are the
highest point within a range of 10 km. In contrast, a linear program has only one local
optimum (which then, of course, is also a global optimum). For a problem with many
local optima, we should expect any generic method to have difficulties. Observe that
increasing the size of the neighborhoods in the search for Mount Everest does not
really solve the problem, except if the neighborhoods are made to cover the entire
earth. But finding the optimum in a neighborhood is then as hard as the full problem.

12.5.2 Simulated Annealing – Learning from Nature

If we want to ban the bane of local optima in local search, we must find a way to es-
cape from them. This means that we sometimes have to accept moves that decrease
the objective value. What could “sometimes” mean in this context? We have contra-
dictory goals. On the one hand, we must be willing to make many downhill steps
so that we can escape from wide local optima. On the other hand, we must be suffi-
ciently target-oriented so that we find a global optimum at the end of a long narrow
ridge. A very popular and successful approach for reconciling these contradictory
goals is simulated annealing; see Fig. 12.9. This works in phases that are controlled
by a parameter T , called the temperature of the process. We shall explain below why
the language of physics is used in the description of simulated annealing. In each
phase, a number of moves are made. In each move, a neighbor x′ ∈ N (x)∩L is
chosen uniformly at random, and the move from x to x′ is made with a certain prob-
ability. This probability is one if x′ improves upon x. It is less than one if the move
is to an inferior solution. The trick is to make the probability depend on T . If T is
large, we make the move to an inferior solution relatively likely; if T is close to zero,
we make such a move relatively unlikely. The hope is that, in this way, the process
zeros in on a region containing a good local optimum in phases of high tempera-
ture and then actually finds a near-optimal solution in the phases of low temperature.

12.5 Local Search – Think Globally, Act Locally 253

find some feasible solution x ∈ L
T :=some positive value // initial temperature of the system
while T is still sufficiently large do

perform a number of steps of the following form
pick x′ from N (x)∩L uniformly at random

with probability min(1,exp(f (x′)− f (x)
T) do x := x′

decrease T // make moves to inferior solutions less likely

Fig. 12.9. Simulated annealing

liquid
shock cool anneal

glass crystal

Fig. 12.10. Annealing versus shock cooling

The exact choice of the transition probability in the case where x′ is an inferior so-
lution is given by exp((f (x′)− f (x))/T). Observe that T is in the denominator and
that f (x′)− f (x) is negative. So the probability decreases with T and also with the
absolute loss in objective value.

Why is the language of physics used, and why this apparently strange choice of
transition probabilities? Simulated annealing is inspired by the physical process of
annealing, which can be used to minimize6 the global energy of a physical system.
For example, consider a pot of molten silica (SiO2); see Fig. 12.10. If we cool it very
quickly, we obtain a glass – an amorphous substance in which every molecule is in
a local minimum of energy. This process of shock cooling has a certain similarity to
hill climbing. Every molecule simply drops into a state of locally minimal energy;
in hill climbing, we accept a local modification of the state if it leads to a smaller
value of the objective function. However, a glass is not a state of global minimum
energy. A state of much lower energy is reached by a quartz crystal, in which all
molecules are arranged in a regular way. This state can be reached (or approximated)
by cooling the melt very slowly. This process is called annealing. How can it be
that molecules arrange themselves into a perfect shape over a distance of billions
of molecular diameters although they feel only local forces extending over a few
molecular diameters?

Qualitatively, the explanation is that local energy minima have enough time to
dissolve in favor of globally more efficient structures. For example, assume that a
cluster of a dozen molecules approaches a small perfect crystal that already consists
of thousands of molecules. Then, with enough time, the cluster will dissolve and

6 Note that we are talking about minimization now.

254 12 Generic Approaches to Optimization

its molecules can attach to the crystal. Here is a more formal description of this
process, which can be shown to hold for a reasonable model of the system: if cooling
is sufficiently slow, the system reaches thermal equilibrium at every temperature.
Equilibrium at temperature T means that a state x of the system with energy Ex is
assumed with probability

exp(−Ex/T)
∑y∈L exp(−Ey/T)

where T is the temperature of the system and L is the set of states of the system.
This energy distribution is called the Boltzmann distribution. When T decreases, the
probability of states with a minimal energy grows. Actually, in the limit T → 0, the
probability of states with a minimal energy approaches one.

The same mathematics works for abstract systems corresponding to a maximiza-
tion problem. We identify the cost function f with the energy of the system, and a
feasible solution with the state of the system. It can be shown that the system ap-
proaches a Boltzmann distribution for a quite general class of neighborhoods and the
following rules for choosing the next state:

pick x′ from N (x)∩L uniformly at random
with probability min(1,exp((f (x′)− f (x))/T)) do x := x′ .

The physical analogy gives some idea of why simulated annealing might work,7

but it does not provide an implementable algorithm. We have to get rid of two in-
finities: for every temperature, we wait infinitely long to reach equilibrium, and do
that for infinitely many temperatures. Simulated-annealing algorithms therefore have
to decide on a cooling schedule, i.e., how the temperature T should be varied over
time. A simple schedule chooses a starting temperature T0 that is supposed to be just
large enough so that all neighbors are accepted. Furthermore, for a given problem
instance, there is a fixed number N of iterations to be used at each temperature. The
idea is that N should be as small as possible but still allow the system to get close
to equilibrium. After every N iterations, T is decreased by multiplying it by a con-
stant α less than one. Typically, α is between 0.8 and 0.99. When T has become so
small that moves to inferior solutions have become highly unlikely (this is the case
when T is comparable to the smallest difference in objective value between any two
feasible solutions), T is finally set to 0, i.e., the annealing process concludes with a
hill-climbing search.

Better performance can be obtained with dynamic schedules. For example, the
initial temperature can be determined by starting with a low temperature and in-
creasing it quickly until the fraction of transitions accepted approaches one. Dy-
namic schedules base their decision about how much T should be lowered on the
actually observed variation in f (x) during the local search. If the temperature change
is tiny compared with the variation, it has too little effect. If the change is too close
to or even larger than the variation observed, there is a danger that the system will
be prematurely forced into a local optimum. The number of steps to be made until
the temperature is lowered can be made dependent on the actual number of moves

7 Note that we have written “might work” and not “works”.

12.5 Local Search – Think Globally, Act Locally 255

5

6

8

4

7

3

9

6

8

1 9 5

7

6

3

2

8

4 1

6

3

1

6

82

5

7

1

1

1 11

1

2

22

2

3 3 44

v

H

K

Fig. 12.11. The figure on the left shows a partial coloring of the graph underlying sudoku
puzzles. The bold straight-line segments indicate cliques consisting of all nodes touched by
the line. The figure on the right shows a step of Kempe chain annealing using colors 1 and 2
and a node v

accepted. Furthermore, one can use a simplified statistical model of the process to
estimate when the system is approaching equilibrium. The details of dynamic sched-
ules are beyond the scope of this exposition. Readers are referred to [1] for more
details on simulated annealing.

Exercise 12.23. Design a simulated-annealing algorithm for the knapsack problem.
The local neighborhood of a feasible solution is all solutions that can be obtained by
removing up to two elements and then adding up to two elements.

Graph Coloring

We shall now exemplify simulated annealing on the graph-coloring problem already
mentioned in Sect. 2.10. Recall that we are given an undirected graph G = (V,E)
and are looking for an assignment c : V → 1..k such that no two adjacent nodes are
given the same color, i.e., c(u) �= c(v) for all edges {u,v} ∈ E. There is always a
solution with k = |V | colors; we simply give each node its own color. The goal is
to minimize k. There are many applications of graph coloring and related problems.
The most “classical” one is map coloring – the nodes are countries and edges indicate
that these countries have a common border, and thus these countries should not be
rendered in the same color. A famous theorem of graph theory states that all maps
(i.e. planar graphs) can be colored with at most four colors [162]. Sudoku puzzles
are a well-known instance of the graph-coloring problem, where the player is asked
to complete a partial coloring of the graph shown in Fig. 12.11 with the digits 1..9.
We shall present two simulated-annealing approaches to graph coloring; many more
have been tried.

Kempe Chain Annealing

Of course, the obvious objective function for graph coloring is the number of colors
used. However, this choice of objective function is too simplistic in a local-search

256 12 Generic Approaches to Optimization

framework, since a typical local move will not change the number of colors used.
We need an objective function that rewards local changes that are “on a good way”
towards using fewer colors. One such function is the sum of the squared sizes of
the color classes. Formally, let Ci = {v ∈V : c(v) = i} be the set of nodes that are
colored i. Then

f (c) = ∑
i
|Ci|2 .

This objective function is to be maximized. Observe that the objective function in-
creases when a large color class is enlarged further at the cost of a small color class.
Thus local improvements will eventually empty some color classes, i.e., the number
of colors decreases.

Having settled the objective function, we come to the definition of a local change
or a neighborhood. A trivial definition is as follows: a local change consists in re-
coloring a single vertex; it can be given any color not used on one of its neighbors.
Kempe chain annealing uses a more liberal definition of “local recoloring”. Alfred
Bray Kempe (1849–1922) was one of the early investigators of the four-color prob-
lem; he invented Kempe chains in his futile attempts at a proof. Suppose that we
want to change the color c(v) of node v from i to j. In order to maintain feasibil-
ity, we have to change some other node colors too: node v might be connected to
nodes currently colored j. So we color these nodes with color i. These nodes might,
in turn, be connected to other nodes of color j, and so on. More formally, consider
the node-induced subgraph H of G which contains all nodes with colors i and j. The
connected component of H that contains v is the Kempe chain K we are interested
in. We maintain feasibility by swapping colors i and j in K. Figure 12.11 gives an
example. Kempe chain annealing starts with any feasible coloring.

*Exercise 12.24. Use Kempe chains to prove that any planar graph G can be colored
with five colors. Hint: use the fact that a planar graph is guaranteed to have a node
of degree five or less. Let v be any such node. Remove it from G, and color G− v
recursively. Put v back in. If at most four different colors are used on the neighbors of
v, there is a free color for v. So assume otherwise. Assume, without loss of generality,
that the neighbors of v are colored with colors 1 to 5 in clockwise order. Consider
the subgraph of nodes colored 1 and 3. If the neighbors of v with colors 1 and 3 are
in distinct connected components of this subgraph, a Kempe chain can be used to
recolor the node colored 1 with color 3. If they are in the same component, consider
the subgraph of nodes colored 2 and 4. Argue that the neighbors of v with colors 2
and 4 must be in distinct components of this subgraph.

The Penalty Function Approach

A generally useful idea for local search is to relax some of the constraints on feasible
solutions in order to make the search more flexible and to ease the discovery of a
starting solution. Observe that we have assumed so far that we somehow have a
feasible solution available to us. However, in some situations, finding any feasible
solution is already a hard problem; the eight-queens problem of Exercise 12.21 is an
example. In order to obtain a feasible solution at the end of the process, the objective

12.5 Local Search – Think Globally, Act Locally 257

function is modified to penalize infeasible solutions. The constraints are effectively
moved into the objective function.

In the graph-coloring example, we now also allow illegal colorings, i.e., colorings
in which neighboring nodes may have the same color. An initial solution is generated
by guessing the number of colors needed and coloring the nodes randomly. A neigh-
bor of the current coloring c is generated by picking a random color j and a random
node v colored j, i.e., x(v) = j. Then, a random new color for node v is chosen from
all the colors already in use plus one fresh, previously unused color.

As above, let Ci be the set of nodes colored i and let Ei = E ∩Ci ×Ci be the set
of edges connecting two nodes in Ci. The objective is to minimize

f (c) = 2∑
i
|Ci| · |Ei|−∑

i
|Ci|2 .

The first term penalizes illegal edges; each illegal edge connecting two nodes of
color i contributes the size of the i-th color class. The second term favors large color
classes, as we have already seen above. The objective function does not necessarily
have its global minimum at an optimal coloring, however, local minima are legal
colorings. Hence, the penalty version of simulated annealing is guaranteed to find a
legal coloring even if it starts with an illegal coloring.

Exercise 12.25. Show that the objective function above has its local minima at legal
colorings. Hint: consider the change in f (c) if one end of a legally colored edge is
recolored with a fresh color. Prove that the objective function above does not neces-
sarily have its global optimum at a solution using the minimal number of colors.

Experimental Results

Johnson et al. [101] performed a detailed study of algorithms for graph coloring,
with particular emphasis on simulated annealing. We shall briefly report on their
findings and then draw some conclusions. Most of their experiments were performed
on random graphs in the Gn,p-model or on random geometric graphs.

In the Gn,p-model, where p is a parameter in [0,1], an undirected random graph
with n nodes is built by adding each of the n(n− 1)/2 candidate edges with prob-
ability p. The random choices for distinct edges are independent. In this way, the
expected degree of every node is p(n − 1) and the expected number of edges is
pn(n−1)/2. For random graphs with 1 000 nodes and edge probability 0.5, Kempe
chain annealing produced very good colorings, given enough time. However, a so-
phisticated and expensive greedy algorithm, XRLF, produced even better solutions
in less time. For very dense random graphs with p = 0.9, Kempe chain annealing
performed better than XRLF. For sparser random graphs with edge probability 0.1,
penalty function annealing outperformed Kempe chain annealing and could some-
times compete with XRLF.

Another interesting class of random inputs is random geometric graphs. Here,
we choose n random, uniformly distributed points in the unit square [0,1]× [0,1].
These points represent the nodes of the graph. We connect two points by an edge
if their Euclidean distance is less than or equal to some given range r. Figure 12.12

258 12 Generic Approaches to Optimization

0
0 1

1
r

Fig. 12.12. Left: a random graph with 10
nodes and p = 0.5. The edges chosen are
drawn solid, and the edges rejected are
drawn dashed. Right: a random geometric
graph with 10 nodes and range r = 0.27

gives an example. Such instances are frequently used to model situations where the
nodes represent radio transmitters and colors represent frequency bands. Nodes that
lie within a distance r from one another must not use the same frequency, to avoid
interference. For this model, Kempe chain annealing performed well, but was out-
performed by a third annealing strategy, called fixed-K annealing.

What should we learn from this? The relative performance of the simulated-
annealing approaches depends strongly on the class of inputs and the available com-
puting time. Moreover, it is impossible to make predictions about their performance
on any given instance class on the basis of experience from other instance classes.
So be warned. Simulated annealing is a heuristic and, as for any other heuristic, you
should not make claims about its performance on an instance class before you have
tested it extensively on that class.

12.5.3 More on Local Search

We close our treatment of local search with a discussion of three refinements that can
be used to modify or replace the approaches presented so far.

Threshold Acceptance

There seems to be nothing magic about the particular form of the acceptance rule
used in simulated annealing. For example, a simpler yet also successful rule uses the
parameter T as a threshold. New states with a value f (x) below the threshold are
accepted, whereas others are not.

Tabu Lists

Local-search algorithms sometimes return to the same suboptimal solution again and
again – they cycle. For example, simulated annealing might have reached the top of
a steep hill. Randomization will steer the search away from the optimum, but the
state may remain on the hill for a long time. Tabu search steers the search away from
local optima by keeping a tabu list of “solution elements” that should be “avoided” in
new solutions for the time being. For example, in graph coloring, a search step could
change the color of a node v from i to j and then store the tuple (v, i) in the tabu list to
indicate that color i is forbidden for v as long as (v, i) is in the tabu list. Usually, this
tabu condition is not applied if an improved solution is obtained by coloring node v

12.6 Evolutionary Algorithms 259

with color i. Tabu lists are so successful that they can be used as the core technique
of an independent variant of local search called tabu search.

Restarts

The typical behavior of a well-tuned local-search algorithm is that it moves to an
area with good feasible solutions and then explores this area, trying to find better
and better local optima. However, it might be that there are other, far away areas
with much better solutions. The search for Mount Everest illustrates this point. If
we start in Australia, the best we can hope for is to end up at Mount Kosciusko
(altitude 2229 m), a solution far from optimum. It therefore makes sense to run the
algorithm multiple times with different random starting solutions because it is likely
that different starting points will explore different areas of good solutions. Starting
the search for Mount Everest at multiple locations and in all continents will certainly
lead to a better solution than just starting in Australia. Even if these restarts do not
improve the average performance of the algorithm, they may make it more robust in
the sense that it will be less likely to produce grossly suboptimal solutions. Several
independent runs are also an easy source of parallelism: just run the program on
several different workstations concurrently.

12.6 Evolutionary Algorithms

Living beings are ingeniously adaptive to their environment, and master the problems
encountered in daily life with great ease. Can we somehow use the principles of life
for developing good algorithms? The theory of evolution tells us that the mechanisms
leading to this performance are mutation, recombination, and survival of the fittest.
What could an evolutionary approach mean for optimization problems?

The genome describing an individual corresponds to the description of a feasible
solution. We can also interpret infeasible solutions as dead or ill individuals. In na-
ture, it is important that there is a sufficiently large population of genomes; otherwise,
recombination deteriorates to incest, and survival of the fittest cannot demonstrate its
benefits. So, instead of one solution as in local search, we now work with a pool of
feasible solutions.

The individuals in a population produce offspring. Because resources are lim-
ited, individuals better adapted to the environment are more likely to survive and to
produce more offspring. In analogy, feasible solutions are evaluated using a fitness
function f , and fitter solutions are more likely to survive and to produce offspring.
Evolutionary algorithms usually work with a solution pool of limited size, say N.
Survival of the fittest can then be implemented as keeping only the N best solutions.

Even in bacteria, which reproduce by cell division, no offspring is identical to
its parent. The reason is mutation. When a genome is copied, small errors happen.
Although mutations usually have an adverse effect on fitness, some also improve
fitness. Local changes in a solution are the analogy of mutations.

260 12 Generic Approaches to Optimization

Create an initial population population =
{

x1, . . . ,xN
}

while not finished do
if matingStep then

select individuals x1, x2 with high fitness and produce x′ :=mate(x1,x2)
else select an individual x1 with high fitness and produce x′ = mutate(x1)
population :=population∪{x′}
population :={x ∈ population : x is sufficiently fit}

Fig. 12.13. A generic evolutionary algorithm

An even more important ingredient in evolution is recombination. Offspring con-
tain genetic information from both parents. The importance of recombination is easy
to understand if one considers how rare useful mutations are. Therefore it takes much
longer to obtain an individual with two new useful mutations than it takes to combine
two individuals with two different useful mutations.

We now have all the ingredients needed for a generic evolutionary algorithm; see
Fig. 12.13. As with the other approaches presented in this chapter, many details need
to be filled in before one can obtain an algorithm for a specific problem. The algo-
rithm starts by creating an initial population of size N. This process should involve
randomness, but it is also useful to use heuristics that produce good initial solutions.

In the loop, it is first decided whether an offspring should be produced by mu-
tation or by recombination. This is a probabilistic decision. Then, one or two indi-
viduals are chosen for reproduction. To put selection pressure on the population, it is
important to base reproductive success on the fitness of the individuals. However, it is
usually not desirable to draw a hard line and use only the fittest individuals, because
this might lead to too uniform a population and incest. For example, one can instead
choose reproduction candidates randomly, giving a higher selection probability to
fitter individuals. An important design decision is how to fix these probabilities. One
choice is to sort the individuals by fitness and then to define the reproduction proba-
bility as some decreasing function of rank. This indirect approach has the advantage
that it is independent of the objective function f and the absolute fitness differences
between individuals, which are likely to decrease during the course of evolution.

The most critical operation is mate, which produces new offspring from two an-
cestors. The “canonical” mating operation is called crossover. Here, individuals are
assumed to be represented by a string of n bits. An integer k is chosen. The new
individual takes its first k bits from one parent and its last n− k bits from the other
parent. Figure 12.14 shows this procedure. Alternatively, one may choose k random
positions from the first parent and the remaining bits from the other parent. For our
knapsack example, crossover is a quite natural choice. Each bit decides whether the
corresponding item is in the knapsack or not. In other cases, crossover is less natural
or would require a very careful encoding. For example, for graph coloring, it would
seem more natural to cut the graph into two pieces such that only a few edges are cut.
Now one piece inherits its colors from the first parent, and the other piece inherits its
colors from the other parent. Some of the edges running between the pieces might

12.7 Implementation Notes 261

(3)

2 1 3

2

12

2

2 3

3

2

12
1

42

2 3

3

2

12
1

4

2

2

3

1 1

4

1

32
2

2

3

1 1

4

1

32

42 3

x1

x2

x′
k

Fig. 12.14. Mating using crossover (left) and by stitching together pieces of a graph coloring
(right)

now connect nodes with the same color. This could be repaired using some heuris-
tics, for example choosing the smallest legal color for miscolored nodes in the part
corresponding to the first parent. Figure 12.14 gives an example.

Mutations are realized as in local search. In fact, local search is nothing but an
evolutionary algorithm with population size one.

The simplest way to limit the size of the population is to keep it fixed by remov-
ing the least fit individual in each iteration. Other approaches that provide room for
different “ecological niches” can also be used. For example, for the knapsack prob-
lem, one could keep all Pareto-optimal solutions. The evolutionary algorithm would
then resemble the optimized dynamic-programming algorithm.

12.7 Implementation Notes

We have seen several generic approaches to optimization that are applicable to a
wide variety of problems. When you face a new application, you are therefore likely
to have a choice from among more approaches than you can realistically implement.
In a commercial environment, you may even have to home in on a single approach
quickly. Here are some rules of thumb that may help.

• Study the problem, relate it to problems you are familiar with, and search for it
on the Web.

• Look for approaches that have worked on related problems.
• Consider blackbox solvers.
• If the problem instances are small, systematic search or dynamic programming

may allow you to find optimal solutions.
• If none of the above looks promising, implement a simple prototype solver using

a greedy approach or some other simple, fast heuristic; the prototype will help
you to understand the problem and might be useful as a component of a more
sophisticated algorithm.

262 12 Generic Approaches to Optimization

• Develop a local-search algorithm. Focus on a good representation of solutions
and how to incorporate application-specific knowledge into the searcher. If you
have a promising idea for a mating operator, you can also consider evolutionary
algorithms. Use randomization and restarts to make the results more robust.

There are many implementations of linear-programming solvers. Since a good
implementation is very complicated, you should definitely use one of these packages
except in very special circumstances. The Wikipedia page on “linear programming”
is a good starting point. Some systems for linear programming also support integer
linear programming.

There are also many frameworks that simplify the implementation of local-search
or evolutionary algorithms. Since these algorithms are fairly simple, the use of these
frameworks is not as widespread as for linear programming. Nevertheless, the imple-
mentations available might have nontrivial built-in algorithms for dynamic setting of
search parameters, and they might support parallel processing. The Wikipedia page
on “evolutionary algorithm” contains pointers.

12.8 Historical Notes and Further Findings

We have only scratched the surface of (integer) linear programming. Implementing
solvers, clever modeling of problems, and handling huge input instances have led to
thousands of scientific papers. In the late 1940s, Dantzig invented the simplex algo-
rithm [45]. Although this algorithm works well in practice, some of its variants take
exponential time in the worst case. It is a famous open problem whether some vari-
ant runs in polynomial time in the worst case. It is known, though, that even slightly
perturbing the coefficients of the constraints leads to polynomial expected execu-
tion time [184]. Sometimes, even problem instances with an exponential number of
constraints or variables can be solved efficiently. The trick is to handle explicitly
only those constraints that may be violated and those variables that may be nonzero
in an optimal solution. This works if we can efficiently find violated constraints or
possibly nonzero variables and if the total number of constraints and variables gen-
erated remains small. Khachiyan [110] and Karmakar [106] found polynomial-time
algorithms for linear programming. There are many good textbooks on linear pro-
gramming (e.g. [23, 58, 73, 147, 172, 199]).

Another interesting blackbox solver is constraint programming [90, 121]. We
hinted at the technique in Exercise 12.21. Here, we are again dealing with vari-
ables and constraints. However, now the variables come from discrete sets (usu-
ally small finite sets). Constraints come in a much wider variety. There are equali-
ties and inequalities, possibly involving arithmetic expressions, but also higher-level
constraints. For example, allDifferent(x1, . . . ,xk) requires that x1, . . . ,xk all receive
different values. Constraint programs are solved using a cleverly pruned systematic
search. Constraint programming is more flexible than linear programming, but re-
stricted to smaller problem instances. Wikipedia is a good starting point for learning
more about constraint programming.

A

Appendix

A.1 Mathematical Symbols

{e0, . . . ,en−1}: set containing elements e0, . . . , en−1.

{e : P(e)}: set of all elements that fulfill the predicate P.

〈e0, . . . ,en−1〉: sequence consisting of elements e0, . . . , en−1.

〈e ∈ S : P(e)〉: subsequence of all elements of sequence S that fulfill the predicate P.

|x|: the absolute value of x.

�x�: the largest integer ≤ x.

�x	: the smallest integer ≥ x.

[a,b] := {x ∈ R : a ≤ x ≤ b}.

i.. j: abbreviation for {i, i+1, . . . , j}.

AB: when A and B are sets, this is the set of all functions that map B to A.

A×B: the set of pairs (a,b) with a ∈ A and b ∈ B.

⊥: an undefined value.

(−)∞: (minus) infinity.

∀x : P(x): for all values of x, the proposition P(x) is true.

∃x : P(x): there exists a value of x such that the proposition P(x) is true.

N: nonnegative integers; N = {0,1,2, . . .}.

N+: positive integers; N+ = {1,2, . . .}.

264 A Appendix

Z: integers.

R: real numbers.

Q: rational numbers.

|, &, «, », ⊕: bitwise OR, bitwise AND, leftshift, rightshift, and exclusive OR re-
spectively.

∑n
i=1 ai = ∑1≤i≤n ai = ∑i∈{1,...,n} ai := a1 +a2 + · · ·+an.

∏n
i=1 ai = ∏1≤i≤n ai = ∏i∈{1,...,n} ai := a1 ·a2 · · ·an.

n! := ∏n
i=1 i, the factorial of n.

Hn := ∑n
i=1 1/i, the n-th harmonic number (Equation (A.12)).

logx: The logarithm to base two of x, log2 x.

μ(s, t): the shortest-path distance from s to t; μ(t) := μ(s, t).

div: integer division; mdivn := �m/n�.

mod : modular arithmetic; m mod n = m−n(mdivn).

a ≡ b(mod m): a and b are congruent modulo m, i.e., a+ im = b for some integer i.

≺: some ordering relation. In Sect. 9.2, it denotes the order in which nodes are
marked during depth-first search.

1, 0: the boolean values “true” and “false”.

A.2 Mathematical Concepts

antisymmetric: a relation ∼ is antisymmetric if for all a and b, a ∼ b and b ∼ a
implies a = b.

asymptotic notation:

O(f (n)) := {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≤ c · f (n)} .

Ω(f (n)) := {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≥ c · f (n)} .

Θ(f (n)) := O(f (n))∩Ω(f (n)) .
o(f (n)) := {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≤ c · f (n)} .

ω(f (n)) := {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n ≥ n0 : g(n) ≥ c · f (n)} .

See also Sect. 2.1.

A.2 Mathematical Concepts 265

concave: a function f is concave on an interval [a,b] if

∀x,y ∈ [a,b] : ∀t ∈ [0,1] : f (tx+(1− t)y) ≥ t f (x)+(1− t) f (y).

convex: a function f is convex on an interval [a,b] if

∀x,y ∈ [a,b] : ∀t ∈ [0,1] : f (tx+(1− t)y) ≤ t f (x)+(1− t) f (y).

equivalence relation: a transitive, reflexive, symmetric relation.

field: a set of elements that support addition, subtraction, multiplication, and divi-
sion by nonzero elements. Addition and multiplication are associative and com-
mutative, and have neutral elements analogous to zero and one for the real num-
bers. The prime examples are R, the real numbers; Q, the rational numbers; and
Zp, the integers modulo a prime p.

iff: abbreviation for “if and only if”.

lexicographic order: the canonical way of extending a total order on a set of ele-
ments to tuples, strings, or sequences over that set. We have 〈a1,a2, . . . ,ak〉 <
〈b1,b2, . . . ,bk〉 if and only if a1 < b1 or a1 = b1 and 〈a2, . . . ,ak〉 < 〈b2, . . . ,bk〉.

linear order: a reflexive, transitive, weakly antisymmetric relation.

median: an element with rank �n/2	 among n elements.

multiplicative inverse: if an object x is multiplied by a multiplicative inverse x−1 of
x, we obtain x · x−1 = 1 – the neutral element of multiplication. In particular, in
a field, every element except zero (the neutral element of addition) has a unique
multiplicative inverse.

prime number: an integer n, n ≥ 2, is a prime iff there are no integers a,b > 1 such
that n = a ·b.

rank: a one-to-one mapping r : S → 1..n is a ranking function for the elements of a
set S = {e1, . . . ,en} if r(x) < r(y) whenever x < y.

reflexive: a relation ∼⊆ A×A is reflexive if ∀a ∈ A : (a,a) ∈ R.

relation: a set of pairs R. Often, we write relations as operators; for example, if ∼
is a relation, a ∼ b means (a,b) ∈∼.

symmetric relation: a relation ∼ is symmetric if for all a and b, a∼ b implies b∼ a.

total order: a reflexive, transitive, antisymmetric relation.

transitive: a relation ∼ is transitive if for all a, b, c, a ∼ b and b ∼ c imply a ∼ c.

weakly antisymmetric: a relation ≤ is weakly antisymmetric if for all a, b, a ≤ b or
b ≤ a. If a ≤ b and b ≤ a, we write a ≡ b. Otherwise, we write a < b or b < a.

266 A Appendix

A.3 Basic Probability Theory

Probability theory rests on the concept of a sample space S . For example, to de-
scribe the rolls of two dice, we would use the 36-element sample space {1, . . . ,6}×
{1, . . . ,6}, i.e., the elements of the sample space are the pairs (x,y) with 1 ≤ x,y ≤ 6
and x,y ∈N. Generally, a sample space is any set. In this book, all sample spaces are
finite. In a random experiment, any element of s ∈ S is chosen with some elemen-
tary probability ps, where ∑s∈S ps = 1. A sample space together with a probability
distribution is called a probability space. In this book, we use uniform probabilities
almost exclusively; in this case ps = p = 1/|S |. Subsets E of the sample space are
called events. The probability of an event E ⊆ S is the sum of the probabilities of
its elements, i.e., prob(E) = |E |/|S | in the uniform case. So the probability of the
event {(x,y) : x+ y = 7} = {(1,6),(2,5), . . . ,(6,1)} is equal to 6/36 = 1/6, and the
probability of the event {(x,y) : x+ y ≥ 8} is equal to 15/36 = 5/12.

A random variable is a mapping from the sample space to the real numbers.
Random variables are usually denoted by capital letters to distinguish them from
plain values. For example, the random variable X could give the number shown by
the first die, the random variable Y could give the number shown by the second
die, and the random variable S could give the sum of the two numbers. Formally,
if (x,y) ∈ S , then X((x,y)) = x, Y ((x,y)) = y, and S((x,y)) = x + y = X((x,y))+
Y ((x,y)).

We can define new random variables as expressions involving other random vari-
ables and ordinary values. For example, if V and W are random variables, then
(V +W)(s) = V (s)+W (s), (V ·W)(s) = V (s) ·W (s), and (V +3)(s) = V (s)+3.

Events are often specified by predicates involving random variables. For exam-
ple, X ≤ 2 denotes the event {(1,y),(2,y) : 1 ≤ y ≤ 6}, and hence prob(X ≤ 2) =
1/3. Similarly, prob(X +Y = 11) = prob({(5,6),(6,5)}) = 1/18.

Indicator random variables are random variables that take only the values zero
and one. Indicator variables are an extremely useful tool for the probabilistic analysis
of algorithms because they allow us to encode the behavior of complex algorithms
into simple mathematical objects. We frequently use the letters I and J for indicator
variables.

The expected value of a random variable Z : S → R is

E[Z] = ∑
s∈S

ps ·Z(s) = ∑
z∈R

z ·prob(Z = z) , (A.1)

i.e., every sample s contributes the value of Z at s times its probability. Alternatively,
we can group all s with Z(s) = z into the event Z = z and then sum over the z ∈ R.

In our example, E[X] = (1+2+3+4+5+6)/6 = 21/6 = 3.5, i.e., the expected
value of the first die is 3.5. Of course, the expected value of the second die is also
3.5. For an indicator random variable I, we have

E[I] = 0 ·prob(I = 0)+1 ·prob(I = 1) = prob(I = 1) .

Often, we are interested in the expectation of a random variable that is defined
in terms of other random variables. This is easy for sums owing to the linearity of

A.3 Basic Probability Theory 267

expectations of random variables: for any two random variables V and W ,

E[V +W] = E[V]+E[W] . (A.2)

This equation is easy to prove and extremely useful. Let us prove it. It amounts
essentially to an application of the distributive law of arithmetic. We have

E[V +W] = ∑
s∈S

ps · (V (s)+W (s))

= ∑
s∈S

ps ·V (s)+ ∑
s∈S

ps ·W (s)

= E[V]+E[W] .

As our first application, let us compute the expected sum of two dice. We have

E[S] = E[X +Y] = E[X]+E[Y] = 3.5+3.5 = 7 .

Observe that we obtain the result with almost no computation. Without knowing
about the linearity of expectations, we would have to go through a tedious calcula-
tion:

E[S] = 2 · 1
36 +3 · 2

36 +4 · 3
36 +5 · 4

36 +6 · 5
36 +7 · 6

36 +8 · 5
36 +9 · 4

36 + . . .+12 · 1
36

=
2 ·1+3 ·2+4 ·3+5 ·4+6 ·5+7 ·6+8 ·5+ . . .+12 ·1

36
= 7 .

Exercise A.1. What is the expected sum of three dice?

We shall now give another example with a more complex sample space. We con-
sider the experiment of throwing n balls into m bins. The balls are thrown at random
and distinct balls do not influence each other. Formally, our sample space is the set of
all functions f from 1..n to 1..m. This sample space has size mn, and f (i), 1 ≤ i ≤ n,
indicates the bin into which the ball i is thrown. All elements of the sample space
are equally likely. How many balls should we expect in bin 1? We use I to denote
the number of balls in bin 1. To determine E[I], we introduce indicator variables
Ii, 1 ≤ i ≤ n. The variable Ii is 1, if ball i is thrown into bin 1, and is 0 otherwise.
Formally, Ii(f) = 0 iff f (i) �= 1. Then I = ∑i Ii. We have

E[I] = E[∑
i

Ii] = ∑
i

E[Ii] = ∑
i

prob(Ii = 1) ,

where the first equality is the linearity of expectations and the second equality follows
from the Ii’s being indicator variables. It remains to determine the probability that
Ii = 1. Since the balls are thrown at random, ball i ends up in any bin1 with the same
probability. Thus prob(Ii = 1) = 1/m, and hence

E[I] = ∑
i

prob(Ii = 1) = ∑
i

1
m

=
n
m

.

1 Formally, there are exactly mn−1 functions f with f (i) = 1.

268 A Appendix

Products of random variables behave differently. In general, we have E[X ·Y] �=
E[X] ·E[Y]. There is one important exception: if X and Y are independent, equality
holds. Random variables X1, . . . , Xk are independent if and only if

∀x1, . . . ,xk : prob(X1 = x1 ∧·· ·∧Xk = xk) = ∏
1≤i≤k

prob(Xi = xi) . (A.3)

As an example, when we roll two dice, the value of the first die and the value of the
second die are independent random variables. However, the value of the first die and
the sum of the two dice are not independent random variables.

Exercise A.2. Let I and J be independent indicator variables and let X = (I +J) mod
2, i.e., X is one iff I and J are different. Show that I and X are independent, but that
I, J, and X are dependent.

Assume now that X and Y are independent. Then

E[X] ·E[Y] =
(

∑
x

x ·prob(X = x)
)
·
(

∑
y

y ·prob(X = y)

)

= ∑
x,y

x · y ·prob(X = x) ·prob(X = y)

= ∑
x,y

x · y ·prob(X = x∧Y = y)

= ∑
z

∑
x,y with z=x·y

z ·prob(X = x∧Y = y)

= ∑
z

z · ∑
x,y with z=x·y

prob(X = x∧Y = y)

= ∑
z

z ·prob(X ·Y = z)

= E[X ·Y] .

How likely is it that a random variable will deviate substantially from its expected
value? Markov’s inequality gives a useful bound. Let X be a nonnegative random
variable and let c be any constant. Then

prob(X ≥ c ·E[X]) ≤ 1
c

. (A.4)

The proof is simple. We have

E[X] = ∑
z∈R

z ·prob(X = z)

≥ ∑
z≥c·E[X]

z ·prob(X = z)

≥ c ·E[X] ·prob(X ≥ c ·E[X]) ,

A.4 Useful Formulae 269

where the first inequality follows from the fact that we sum over a subset of the
possible values and X is nonnegative, and the second inequality follows from the
fact that the sum in the second line ranges only over z such that z ≥ cE[X].

Much tighter bounds are possible for some special cases of random variables.
The following situation arises several times, in the book. We have a sum X = X1 +
· · ·+ Xn of n independent indicator random variables X1,. . . , Xn and want to bound
the probability that X deviates substantially from its expected value. In this situation,
the following variant of the Chernoff bound is useful. For any ε > 0, we have

prob(X < (1− ε)E[X]) ≤ e−ε2E[X]/2 , (A.5)

prob(X > (1+ ε)E[X]) ≤
(

eε

(1+ ε)(1+ε)

)E[X]

. (A.6)

A bound of the form above is called a tail bound because it estimates the “tail” of
the probability distribution, i.e., the part for which X deviates considerably from its
expected value.

Let us see an example. If we throw n coins and let Xi be the indicator variable
for the i-th coin coming up heads, X = X1 + · · ·+ Xn is the total number of heads.
Clearly, E[X] = n/2. The bound above tells us that prob(X ≤ (1−ε)n/2) ≤ e−ε2n/4.
In particular, for ε = 0.1, we have prob(X ≤ 0.9 ·n/2)≤ e−0.01·n/4. So, for n = 10000,
the expected number of heads is 5 000 and the probability that the sum is less than
4 500 is smaller than e−25, a very small number.

Exercise A.3. Estimate the probability that X in the above example is larger than
5 050.

If the indicator random variables are independent and identically distributed with
prob(Xi = 1) = p, X is binomially distributed, i.e.,

prob(X = k) =
(

n
k

)
pk(1− p)(n−k) . (A.7)

Exercise A.4 (balls and bins continued). Let, as above, I denote the number of balls
in bin 1. Show

prob(I = k) =
(

n
k

)(
1
m

)k (
1− 1

m

)(n−k)

,

and then attempt to compute E[I] as ∑k prob(I = k)k.

A.4 Useful Formulae

We shall first list some useful formulae and then prove some of them.

270 A Appendix

• A simple approximation to the factorial:
(n

e

)n
≤ n! ≤ nn. (A.8)

• Stirling’s approximation to the factorial:

n! =
(

1+O

(
1
n

))√
2πn

(n
e

)n
. (A.9)

• An approximation to the binomial coefficients:
(

n
k

)
≤

(n · e
k

)k
. (A.10)

• The sum of the first n integers:

n

∑
i=1

i =
n(n+1)

2
. (A.11)

• The harmonic numbers:

lnn ≤ Hn =
n

∑
i=1

1
i
≤ lnn+1. (A.12)

• The geometric series:

n−1

∑
i=0

qi =
1−qn

1−q
for q �= 1 and ∑

i≥0
qi =

1
1−q

for 0 ≤ q < 1. (A.13)

∑
i≥0

2−i = 2 and ∑
i≥0

i ·2−i = ∑
i≥1

i ·2−i = 2. (A.14)

• Jensen’s inequality:
n

∑
i=1

f (xi) ≤ n · f

(
∑n

i=1 xi

n

)
(A.15)

for any concave function f . Similarly, for any convex function f ,

n

∑
i=1

f (xi) ≥ n · f

(
∑n

i=1 xi

n

)
. (A.16)

A.4 Useful Formulae 271

A.4.1 Proofs

For (A.8), we first observe that n! = n(n− 1) · · ·1 ≤ nn. Also, for all i ≥ 2, ln i ≥∫ i
i−1 lnxdx, and therefore

lnn! = ∑
2≤i≤n

ln i ≥
∫ n

1
lnxdx =

[
x(lnx−1)

]x=n

x=1
≥ n(lnn−1) .

Thus
n! ≥ en(lnn−1) = (elnn−1)n =

(n
e

)n
.

Equation (A.10) follows almost immediately from (A.8). We have

(
n
k

)
=

n(n−1) · · ·(n− k +1)
k!

≤ nk

(k/e)k =
(n · e

k

)k
.

Equation (A.11) can be computed by a simple trick:

1+2+ . . .+n =
1
2

((1+2+ . . .+n−1+n)+(n+n−1+ . . .+2+1))

=
1
2

((n+1)+(2+n−1)+ . . .+(n−1+2)+(n+1))

=
n(n+1)

2
.

The sums of higher powers are estimated easily; exact summation formulae are also
available. For example,

∫ i
i−1 x2 dx ≤ i2 ≤

∫ i+1
i x2 dx, and hence

∑
1≤i≤n

i2 ≤
∫ n+1

1
x2 dx =

[x3

3

]x=n+1

x=1
=

(n+1)3 −1
3

and

∑
1≤i≤n

i2 ≥
∫ n

0
x2 dx =

[x3

3

]x=n

x=0
=

n3

3
.

For (A.12), we also use estimation by integral. We have
∫ i+1

i (1/x)dx ≤ 1/i ≤∫ i
i−1(1/x)dx, and hence

lnn =
∫ n

1

1
x

dx ≤ ∑
1≤i≤n

1
i
≤ 1+

∫ n

1

1
x

dx = 1+ lnn .

Equation (A.13) follows from

(1−q) · ∑
0≤i≤n−1

qi = ∑
0≤i≤n−1

qi − ∑
1≤i≤n

qi = 1−qn .

272 A Appendix

Letting n pass to infinity yields ∑i≥0 qi = 1/(1−q) for 0 ≤ q < 1. For q = 1/2, we
obtain ∑i≥0 2−i = 2. Also,

∑
i≥1

i ·2−i = ∑
i≥1

2−i + ∑
i≥2

2−i + ∑
i≥3

2−i + . . .

= (1+1/2+1/4+1/8+ . . .) ·∑
i≥1

2−i

= 2 ·1 = 2 .

For the first equality, observe that the term 2−i occurs in exactly the first i sums of
the right-hand side.

Equation (A.15) can be shown by induction on n. For n = 1, there is nothing
to show. So assume n ≥ 2. Let x∗ = ∑1≤i≤n xi/n and x̄ = ∑1≤i≤n−1 xi/(n−1). Then
x∗ = ((n−1)x̄+ xn)/n, and hence

∑
1≤i≤n

f (xi) = f (xn)+ ∑
1≤i≤n−1

f (xi)

≤ f (xn)+(n−1) · f (x̄) = n ·
(

1
n
· f (xn)+

n−1
n

· f (x̄)
)

≤ n · f (x∗) ,

where the first inequality uses the induction hypothesis and the second inequality
uses the definition of concavity with x = xn, y = x̄, and t = 1/n. The extension to
convex functions is immediate, since convexity of f implies concavity of − f .

References

[1] E. H. L. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines.
Wiley, 1989.

[2] J. Abello, A. Buchsbaum, and J. Westbrook. A functional approach to external
graph algorithms. Algorithmica, 32(3):437–458, 2002.

[3] W. Ackermann. Zum hilbertschen Aufbau der reellen Zahlen. Mathematische
Annalen, 99:118–133, 1928.

[4] G. M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the organization
of information. Soviet Mathematics Doklady, 3:1259–1263, 1962.

[5] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and re-
lated problems. Communications of the ACM, 31(9):1116–1127, 1988.

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[7] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The AWK Programming
Language. Addison-Wesley, 1988.

[8] R. K. Ahuja, R. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall,
1993.

[9] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for
the shortest path problem. Journal of the ACM, 3(2):213–223, 1990.

[10] N. Alon, M. Dietzfelbinger, P. B. Miltersen, E. Petrank, and E. Tardos. Linear
hash functions. Journal of the ACM, 46(5):667–683, 1999.

[11] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman Sorting in linear time?
Journal of Computer and System Sciences, 57(1):74–93, 1998.

[12] F. Annexstein, M. Baumslag, and A. Rosenberg. Group action graphs and
parallel architectures. SIAM Journal on Computing, 19(3):544–569, 1990.

[13] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Sales-
man Problem: A Computational Study. Princeton University Press, 2007.

[14] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Springer, 1999.

[15] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road networks
with transit nodes. Science, 316(5824):566, 2007.

274 References

[16] R. Bayer and E. M. McCreight. Organization and maintenance of large or-
dered indexes. Acta Informatica, 1(3):173–189, 1972.

[17] R. Beier and B. Vöcking. Random knapsack in expected polynomial time.
Journal of Computer and System Sciences, 69(3):306–329, 2004.

[18] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[19] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-
trees. In 41st Annual Symposium on Foundations of Computer Science, pages
399–409, 2000.

[20] J. L. Bentley and M. D. McIlroy. Engineering a sort function. Software Prac-
tice and Experience, 23(11):1249–1265, 1993.

[21] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geo-
metric intersections. IEEE Transactions on Computers, pages 643–647, 1979.

[22] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching
strings. In 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
360–369, 1997.

[23] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

[24] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,
and M. Zagha. A comparison of sorting algorithms for the connection ma-
chine CM-2. In 3rd ACM Symposium on Parallel Algorithms and Architec-
tures, pages 3–16, 1991.

[25] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. Journal of Computer and System Sciences, 7(4):448, 1972.

[26] N. Blum and K. Mehlhorn. On the average number of rebalancing operations
in weight-balanced trees. Theoretical Computer Science, 11:303–320, 1980.

[27] Boost.org. Boost C++ Libraries. www.boost.org.
[28] O. Boruvka. O jistém problému minimálním. Pràce, Moravské

Prirodovedecké Spolecnosti, pages 1–58, 1926.
[29] F. C. Botelho, R. Pagh, and N. Ziviani. Simple and space-efficient minimal

perfect hash functions. In 10th Workshop on Algorithms and Data Structures,
volume 4619 of Lecture Notes in Computer Science, pages 139–150. Springer,
2007.

[30] G. S. Brodal. Worst-case efficient priority queues. In 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 52–58, 1996.

[31] G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority
queues. In 6th Scandinavian Workshop on Algorithm Theory, volume 1432 of
Lecture Notes in Computer Science, pages 107–118. Springer, 1998.

[32] M. R. Brown and R. E. Tarjan. Design and analysis of a data structure for
representing sorted lists. SIAM Journal of Computing, 9:594–614, 1980.

[33] R. Brown. Calendar queues: A fast O(1) priority queue implementation for
the simulation event set problem. Communications of the ACM, 31(10):1220–
1227, 1988.

[34] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2):143–154, Apr. 1979.

www.boost.org

References 275

[35] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann
type complexity. Journal of the ACM, 47:1028–1047, 2000.

[36] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring tech-
nique. Algorithmica, 1(2):133–162, 1986.

[37] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorith-
mica, 1(2):163–191, 1986.

[38] J.-C. Chen Proportion extend sort. SIAM Journal on Computing, 31(1):323–
330, 2001.

[39] J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks. Al-
gorithmica, 15(6):521–549, 1996.

[40] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest path algorithms:
Theory and experimental evaluation. Mathematical Programming, 73:129–
174, 1996.

[41] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing: A survey. In D. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems, pages 46–93. PWS, 1997.

[42] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary
triangular meshes. In IEEE Conference on Visualization, pages 67–72, 1999.

[43] S. A. Cook. On the Minimum Computation Time of Functions. PhD thesis,
Harvard University, 1966.

[44] S. A. Cook. The complexity of theorem proving procedures. In 3rd ACM Sym-
posium on Theory of Computing, pages 151–158, 1971.

[45] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In T. C. Koopmans, editor, Activity Analysis of Production and
Allocation, pages 339–347. Wiley, 1951.

[46] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry – Algorithms and Applications. Springer, 2nd edition, 2000.

[47] R. Dementiev, L. Kettner, J. Mehnert, and P. Sanders. Engineering a sorted list
data structure for 32 bit keys. In 6th Workshop on Algorithm Engineering &
Experiments, New Orleans, 2004.

[48] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard Template Library
for XXL data sets. Software: Practice and Experience, 2007. To appear, see
also http://stxxl.sourceforge.net/.

[49] R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In 15th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 138–
148, San Diego, 2003.

[50] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an external
memory minimum spanning tree algorithm. In IFIP TCS, Toulouse, 2004.

[51] L. Devroye. A note on the height of binary search trees. Journal of the ACM,
33:289–498, 1986.

[52] R. B. Dial. Shortest-path forest with topological ordering. Communications of
the ACM, 12(11):632–633, 1969.

[53] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable
randomized algorithm for the closest-pair problem. Journal of Algorithms,
1(25):19–51, 1997.

http://www.mpi-sb.mpg.de/~mehlhorn/ftp/CM-dense-graphs.ps
http://stxxl.sourceforge.net/

276 References

[54] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohn-
ert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds.
SIAM Journal of Computing, 23(4):738–761, 1994.

[55] M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. Theoretical Computer Science, 380(1–
2):47–68, 2007.

[56] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[57] E. A. Dinic. Economical algorithms for finding shortest paths in a network. In
Transportation Modeling Systems, pages 36–44, 1978.

[58] W. Domschke and A. Drexl. Einführung in Operations Research. Springer,
2007.

[59] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data struc-
tures persistent. Journal of Computer and System Sciences, 38(1):86–124,
1989.

[60] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, short-
est paths, and near linear time. Journal of Computer and System Sciences,
72(5):868–889, 2006.

[61] R. Fleischer. A tight lower bound for the worst case of Bottom-Up-Heapsort.
Algorithmica, 11(2):104–115, 1994.

[62] R. Floyd. Assigning meaning to programs. In J. Schwarz, editor, Mathemati-
cal Aspects of Computer Science, pages 19–32. AMS, 1967.

[63] L. R. Ford. Network flow theory. Technical Report P-923, Rand Corporation,
Santa Monica, California, 1956.

[64] E. Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1960.
[65] M. L. Fredman. On the efficiency of pairing heaps and related data structures.

Journal of the ACM, 46(4):473–501, 1999.
[66] M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with O(1)

worst case access time. Journal of the ACM, 31:538–544, 1984.
[67] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing

heap: A new form of self-adjusting heap. Algorithmica, 1:111–129, 1986.
[68] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34:596–615, 1987.
[69] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In 40th IEEE Symposium on Foundations of Computer Science,
pages 285–298, 1999.

[70] H. N. Gabow. Path-based depth-first search for strong and biconnected com-
ponents. Information Processing Letters, pages 107–114, 2000.

[71] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[72] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[73] B. Gärtner and J. Matousek. Understanding and Using Linear Programming.
Springer, 2006.

http://www.mpi-sb.mpg.de/~mehlhorn/ftp/DynamicPerfectHashing.ps

References 277

[74] GMP (GNU Multiple Precision Arithmetic Library). http://gmplib.
org/.

[75] A. V. Goldberg. Scaling algorithms for the shortest path problem. SIAM Jour-
nal on Computing, 24:494–504, 1995.

[76] A. V. Goldberg. A simple shortest path algorithm with linear average time.
In 9th European Symposium on Algorithms, volume 2161 of Lecture Notes in
Computer Science, pages 230–241. Springer, 2001.

[77] A. V. Goldberg and C. Harrelson. Computing the shortest path: A∗ meets graph
theory. In 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
156–165, 2005.

[78] M. T. Goodrich and R. Tamassia. JDSL – the data structures library in Java.
http://www.jdsl.org/.

[79] G. Graefe and P.-A. Larson. B-tree indexes and CPU caches. In 17th Interna-
tional Conference on Data Engineering, pages 349–358. IEEE, 2001.

[80] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45:1563–1581, 1966.

[81] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, 2nd edition, 1994.

[82] J. F. Grantham and C. Pomerance. Prime numbers. In K. H. Rosen, editor,
Handbook of Discrete and Combinatorial Mathematics, chapter 4.4, pages
236–254. CRC Press, 2000.

[83] R. Grossi and G. Italiano. Efficient techniques for maintaining multi-
dimensional keys in linked data structures. In 26th International Colloquium
on Automata, Languages and Programming, volume 1644 of Lecture Notes
in Computer Science, pages 372–381. Springer, 1999.

[84] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for
finding spanning forests and for other basic graph connectivity problems. In
7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 438–447,
1996.

[85] Y. Han and M. Thorup. Integer sorting in O
(
n
√

log logn
)

expected time and
linear space. In 42nd IEEE Symposium on Foundations of Computer Science,
pages 135–144, 2002.

[86] G. Handler and I. Zang. A dual algorithm for the constrained shortest path
problem. Networks, 10:293–309, 1980.

[87] J. Hartmanis and J. Simon. On the power of multiplication in random ac-
cess machines. In 5th IEEE Symposium on Foundations of Computer Science,
pages 13–23, 1974.

[88] M. Held and R. Karp. The traveling-salesman problem and minimum span-
ning trees. Operations Research, 18:1138–1162, 1970.

[89] M. Held and R. Karp. The traveling-salesman problem and minimum span-
ning trees, part II. Mathematical Programming, 1:6–25, 1971.

[90] P. V. Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press,
2005.

[91] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12:576–585, 1969.

http://gmplib.org/
http://gmplib.org/
http://www.jdsl.org/

278 References

[92] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

[93] R. D. Hofstadter. Metamagical themas. Scientific American, pages 16–22, Jan-
uary 1983.

[94] P. Høyer. A general technique for implementation of efficient priority queues.
In 3rd Israeli Symposium on Theory of Computing and Systems, pages 57–66,
1995.

[95] S. Huddlestone and K. Mehlhorn. A new data structure for representing sorted
lists. Acta Informatica, 17:157–184, 1982.

[96] J. Iacono. Improved upper bounds for pairing heaps. In 7th Scandinavian
Workshop on Algorithm Theory, volume 1851 of Lecture Notes in Computer
Science, pages 32–45. Springer, 2000.

[97] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of
priority queues. In 8th International Colloquium on Automata, Languages and
Programming, volume 115 of Lecture Notes in Computer Science, pages 417–
431. Springer, 1981.

[98] V. Jarník. O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké
Spolec̆nosti, 6:57–63, 1930.

[99] K. Jensen and N. Wirth. Pascal User Manual and Report: ISO Pascal Stan-
dard. Springer, 1991.

[100] T. Jiang, M. Li, and P. Vitányi. Average-case complexity of shellsort. In 26th
International Colloquium on Automata, Languages and Programming, vol-
ume 1644 of Lecture Notes in Computer Science, pages 453–462. Springer,
1999.

[101] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization
by simulated annealing: Experimental evaluation; part II, graph coloring and
number partitioning. Operations Research, 39(3):378–406, 1991.

[102] K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort. In
14th European Symposium on Algorithms, volume 4168 of Lecture Notes in
Computer Science, pages 780–791. Springer, 2006.

[103] H. Kaplan and R. E. Tarjan. New heap data structures. Technical Report TR-
597-99, Princeton University, 1999.

[104] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on au-
tomata. Soviet Physics Doklady, 7(7):595–596, 1963.

[105] D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm
for finding minimum spanning trees. Journal of the ACM, 42:321–329, 1995.

[106] N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, pages 373–395, 1984.

[107] J. Katajainen and B. B. Mortensen. Experiences with the design and imple-
mentation of space-efficient deque. In Workshop on Algorithm Engineering,
volume 2141 of Lecture Notes in Computer Science, pages 39–50. Springer,
2001.

[108] I. Katriel, P. Sanders, and J. L. Träff. A practical minimum spanning tree al-
gorithm using the cycle property. Technical Report MPI-I-2002-1-003, MPI
Informatik, Germany, October 2002.

References 279

[109] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
[110] L. Khachiyan. A polynomial time algorithm in linear programming. Soviet

Mathematics Doklady, 20(1):191–194, 1979.
[111] V. King. A simpler minimum spanning tree verification algorithm. Algorith-

mica, 18:263–270, 1997.
[112] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, vol-

ume 3. Addison-Wesley, 2nd edition, 1998.
[113] D. E. Knuth. MMIXware: A RISC Computer for the Third Millennium, volume

1750 of Lecture Notes in Computer Science. Springer, 1999.
[114] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27:97–109, 1985.
[115] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer, 2000.
[116] J. Kruskal. On the shortest spanning subtree of a graph and the traveling sales-

man problem. Proceedings of the American Mathematical Society, 7:48–50,
1956.

[117] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys. The
Traveling Salesman Problem. Wiley, 1985.

[118] LEDA (Library of Efficient Data Types and Algorithms). www.
algorithmic-solutions.com.

[119] L. Q. Lee, A. Lumsdaine, and J. G. Siek. The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley, 2002.

[120] L. Levin. Universal search problems. Problemy Peredachi Informatsii,
9(3):265–266, 1973.

[121] I. Lustig and J.-F. Puget. Program does not equal program: Constraint pro-
gramming and its relationship to mathematical programming. Interfaces,
31:29–53, 2001.

[122] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. Wiley, 1990.

[123] C. Martínez and S. Roura. Optimal sampling strategies in Quicksort and
Quickselect. SIAM Journal on Computing, 31(3):683–705, 2002.

[124] C. McGeoch, P. Sanders, R. Fleischer, P. R. Cohen, and D. Precup. Using finite
experiments to study asymptotic performance. In Experimental Algorithmics
— From Algorithm Design to Robust and Efficient Software, volume 2547 of
Lecture Notes in Computer Science, pages 1–23. Springer, 2002.

[125] MCSTL: The Multi-Core Standard Template Library. http://algo2.
iti.uni-karlsruhe.de/singler/mcstl/.

[126] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in
graphs. Information Processing Letters, 27(3):125–128, Mar. 1988.

[127] K. Mehlhorn. Amortisierte Analyse. In T. Ottmann, editor, Prinzipien des Al-
gorithmenentwurfs, pages 91–102. Spektrum Lehrbuch, 1998.

[128] K. Mehlhorn and U. Meyer. External memory breadth-first search with sublin-
ear I/O. In 10th European Symposium on Algorithms, volume 2461 of Lecture
Notes in Computer Science, pages 723–735. Springer, 2002.

http://www.algorithmic-solutions.com
http://www.algorithmic-solutions.com
http://algo2.iti.uni-karlsruhe.de/singler/mcstl/
http://algo2.iti.uni-karlsruhe.de/singler/mcstl/
http://www.mpi-sb.mpg.de/~mehlhorn/ftp/Amortization.ps

280 References

[129] K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log logN) time
and O(n) space. Information Processing Letters, 35(4):183–189, 1990.

[130] K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica,
5:215–241, 1990.

[131] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

[132] K. Mehlhorn, S. Näher, and P. Sanders. Engineering DFS-based graph algo-
rithms. Submitted, 2007.

[133] K. Mehlhorn, V. Priebe, G. Schäfer, and N. Sivadasan. All-pairs shortest-paths
computation in the presence of negative cycles. Information Processing Let-
ters, 81(6):341–343, 2002.

[134] K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory.
Algorithmica, 35(1):75–93, 2003.

[135] K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. In 8th
European Symposium on Algorithms, volume 1879 of Lecture Notes in Com-
puter Science, pages 326–337, 2000.

[136] R. Mendelson, R. E. Tarjan, M. Thorup, and U. Zwick. Melding priority
queues. In 9th Scandinavian Workshop on Algorithm Theory, pages 223–235,
2004.

[137] Meyers Konversationslexikon. Bibliographisches Institut, 1888.
[138] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,

1997.
[139] U. Meyer. Average-case complexity of single-source shortest-path algorithms:

Lower and upper bounds. Journal of Algorithms, 48(1):91–134, 2003.
[140] U. Meyer and P. Sanders. Δ -stepping: A parallel shortest path algorithm. In

6th European Symposium on Algorithms, number 1461 in Lecture Notes in
Computer Science, pages 393–404. Springer, 1998.

[141] U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierar-
chies, volume 2625 of Lecture Notes in Computer Science. Springer, 2003.

[142] B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms for
constructing a minimum spanning tree. In 2nd Workshop on Algorithms and
Data Structures, volume 519 of Lecture Notes in Computer Science, pages
400–411. Springer, 1991.

[143] R. Morris. Scatter storage techniques. Communications of the ACM, 11(1):38–
44, 1968.

[144] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[145] S. Näher and O. Zlotowski. Design and implementation of efficient data types
for static graphs. In 10th European Symposium on Algorithms, volume 2461
of Lecture Notes in Computer Science, pages 748–759. Springer, 2002.

[146] G. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital
allocation. Management Science, 15(9):494–505, 1969.

[147] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wi-
ley, 1988.

http://www.mpi-sb.mpg.de/~mehlhorn/ftp/DynamicFractionalCascading.pdf
http://www.mpi-sb.mpg.de/~mehlhorn/ftp/rcsp.ps

References 281

[148] J. Nes̆etr̆il, H. Milková, and H. Nes̆etr̆ilová. Otakar Boruvka on minimum
spanning tree problem: Translation of both the 1926 papers, comments, his-
tory. Discrete Mathematics, 233(1–3):3–36, 2001.

[149] K. S. Neubert. The flashsort1 algorithm. Dr. Dobb’s Journal, pages 123–125,
February 1998.

[150] J. Nievergelt and E. Reingold. Binary search trees of bounded balance. SIAM
Journal of Computing, 2:33–43, 1973.

[151] K. Noshita. A theorem on the expected complexity of Dijkstra’s shortest path
algorithm. Journal of Algorithms, 6(3):400–408, 1985.

[152] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms, 51:122–144,
2004.

[153] W. W. Peterson. Addressing for random access storage. IBM Journal of Re-
search and Development, 1(2), Apr. 1957.

[154] S. Pettie. Towards a final analysis of pairing heaps. In 46th IEEE Symposium
on Foundations of Computer Science, pages 174–183, 2005.

[155] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algo-
rithm. In 27th International Colloquium on Automata, Languages and Pro-
gramming, volume 1853 of Lecture Notes in Computer Science, pages 49–60.
Springer, 2000.

[156] J. Pinkerton. Voyages and Travels, volume 2. 1808.
[157] P. J. Plauger, A. A. Stepanov, M. Lee, and D. R. Musser. The C++ Standard

Template Library. Prentice Hall, 2000.
[158] R. C. Prim. Shortest connection networks and some generalizations. Bell Sys-

tems Technical Journal, pages 1389–1401, Nov. 1957.
[159] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communica-

tions of the ACM, 33(6):668–676, 1990.
[160] A. Ranade, S. Kothari, and R. Udupa. Register efficient mergesorting. In High

Performance Computing, volume 1970 of Lecture Notes in Computer Science,
pages 96–103. Springer, 2000.

[161] J. H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229–234, 1985.

[162] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently four-
coloring planar graphs. In 28th ACM Symposium on Theory of Computing,
pages 571–575, 1996.

[163] G. Robins and A. Zelikwosky. Improved Steiner tree approximation in graphs.
In 11th ACM-SIAM Symposium on Discrete Algorithms, pages 770–779,
2000.

[164] P. Sanders. Fast priority queues for cached memory. ACM Journal of Experi-
mental Algorithmics, 5(7), 2000.

[165] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path
queries. In 13th European Symposium on Algorithms, volume 3669 of Lecture
Notes in Computer Science, pages 568–579. Springer, 2005.

[166] P. Sanders and D. Schultes. Engineering fast route planning algorithms. In
6th Workshop on Experimental Algorithms, volume 4525 of Lecture Notes in
Computer Science, pages 23–36. Springer, 2007.

282 References

[167] P. Sanders and S. Winkel. Super scalar sample sort. In 12th European Sym-
posium on Algorithms, volume 3221 of Lecture Notes in Computer Science,
pages 784–796. Springer, 2004.

[168] R. Santos and F. Seidel. A better upper bound on the number of triangulations
of a planar point set. Journal of Combinatorial Theory, Series A, 102(1):186–
193, 2003.

[169] R. Schaffer and R. Sedgewick. The analysis of heapsort. Journal of Algo-
rithms, 15:76–100, 1993.

[170] A. Schönhage. Storage modification machines. SIAM Journal on Computing,
9:490–508, 1980.

[171] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Com-
puting, 7:281–292, 1971.

[172] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[173] D. Schultes. Route Planning in Road Networks. PhD thesis, 2008.
[174] R. Sedgewick. Analysis of shellsort and related algorithms. In 4th European

Symposium on Algorithms, volume 1136 of Lecture Notes in Computer Sci-
ence, pages 1–11. Springer, 1996.

[175] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 1996.

[176] R. Seidel and C. Aragon. Randomized search trees. Algorithmica, 16(4–
5):464–497, 1996.

[177] R. Seidel and M. Sharir. Top-down analysis of path compression. SIAM Jour-
nal of Computing, 34(3):515–525, 2005.

[178] M. Sharir. A strong-connectivity algorithm and its applications in data flow
analysis. Computers and Mathematics with Applications, 7(1):67–72, 1981.

[179] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions.
Journal of the ACM, 10(2):217–255, 1963.

[180] J. Singler, P. Sanders, and F. Putze. MCSTL: The Multi-Core Standard Tem-
plate Library. In Euro-Par, volume 4641 of Lecture Notes in Computer Sci-
ence, pages 682–694. Springer, 2007.

[181] M. Sipser. Introduction to the Theory of Computation. MIT Press, 1998.
[182] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences, 26(3):362–391, 1983.
[183] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of

the ACM, 32(3):652–686, 1985.
[184] D. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the sim-

plex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–
463, 2004.

[185] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972.

[186] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal
of the ACM, 22(2):215–225, 1975.

[187] R. E. Tarjan. Shortest paths. Technical report, AT&T Bell Laboratories, 1981.
[188] R. E. Tarjan. Amortized computational complexity. SIAM Journal on Alge-

braic and Discrete Methods, 6(2):306–318, 1985.

References 283

[189] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm.
SIAM Journal on Computing, 14(4):862–874, 1985.

[190] M. Thorup. Undirected single source shortest paths in linear time. Journal of
the ACM, 46:362–394, 1999.

[191] M. Thorup. Even strongly universal hashing is pretty fast. In 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 496–497, 2000.

[192] M. Thorup. Compact oracles for reachability and approximate distances in
planar digraphs. Journal of the ACM, 51(6):993–1024, 2004.

[193] M. Thorup. Integer priority queues with decrease key in constant time and the
single source shortest paths problem. In 35th ACM Symposium on Theory of
Computing, pages 149–158, 2004.

[194] M. Thorup. Integer priority queues with decrease key in constant time and
the single source shortest paths problem. Journal of Computer and System
Sciences, 69(3):330–353, 2004.

[195] M. Thorup and U. Zwick. Approximate distance oracles. In 33rd ACM Sym-
posium on the Theory of Computing, pages 183–192, 2001.

[196] A. Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics Doklady, 150(3):496–498,
1963.

[197] Unknown. Der Handlungsreisende – wie er sein soll und was er zu thun
hat, um Auftraege zu erhalten und eines gluecklichen Erfolgs in seinen
Geschaeften gewiss zu sein – Von einem alten Commis-Voyageur. 1832.

[198] P. van Emde Boas. Preserving order in a forest in less than logarithmic time.
Information Processing Letters, 6(3):80–82, 1977.

[199] R. Vanderbei. Linear Programming: Foundations and Extensions. Springer,
2001.

[200] V. Vazirani. Approximation Algorithms. Springer, 2000.
[201] J. von Neumann. First draft of a report on the EDVAC. Technical report, Uni-

versity of Pennsylvania, 1945.
[202] J. Vuillemin. A data structure for manipulating priority queues. Communica-

tions of the ACM, 21:309–314, 1978.
[203] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, 3rd edi-

tion, 2000.
[204] I. Wegener. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT beat-

ing, on an average, QUICKSORT (if n is not very small). Theoretical Com-
puter Science, 118(1):81–98, 1993.

[205] I. Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer, 2005.

[206] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting
using registers and caches. ACM Journal of Experimental Algorithmics, 7(9),
2002.

[207] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.
[208] J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,

7:347–348, 1964.

Index

15-puzzle, 248

Aarts, E. H. L., 255
(a,b)-tree, see under sorted sequence
Abello, J., 232
Ackermann, W., 224
Ackermann function (inverse), 224
addition, 2
address, 24, 27
Adel’son-Vel’skii, G. M., 165
adjacency array, see under graph
adjacency list, see under graph
adjacency matrix, see under graph
adjacent, 49
Aggarwal, A., 120
Aho, A. V., 165
Ahuja, R. K., 201
al-Khwarizmi, Muhammad ibn Musa, 1, 6
ALD, see under shortest path
algorithm, 1
algorithm analysis, 36, see also

running time, 36
amortized, 60, 135, 158, 203

accounting method, 68
binary counter, 70
deamortization, 70
general definition, 71
operation sequence, 71
potential method, 68
token, 68
unbounded array, 66
universality of potential method, 73

approximation algorithm, 241

average case, 41, 84, 103, 107, 109, 115,
117, 124, 148, 199, 205, 245

global, 41
master theorem, 37, 104
randomized, 45, 107, 109, 115, 121
recursion, 9, 16, 37, 104
recursive, 9, 12
smoothed analysis, 262
sum, 4, 36
worst case, 109

algorithm design, 1
“make the common case fast”, 66
algebraic, 9, 86, 87, 89, 101, 171, 174
black-box solvers, 234, 248, 261
certificate, 33, 36, 51, 187
deterministic, 46, 100
divide-and-conquer, 7, 34, 37, 103

building a heap, 131
mergesort, 103
MSD radix sort, 117
multiplication, 7
multiway mergesort, 119
quicksort, 108, 114

dynamic programming, 243, 261
Bellman–Ford algorithm, 206
changing money, 245
knapsack, 243, 245
matrix products, chained, 245
minimum edit distance, 245
principle of optimality, 243, 246
shortest paths, 193

evolutionary algorithm, 259, 262
greedy, 101, 239, 257, 261

286 Index

changing money, 245
cycle detection, 51
Dijkstra’s algorithm, 196
Jarník–Prim algorithm, 219
knapsack, 239, 240
Kruskal’s algorithm, 221
machine scheduling, 241

local search, 249, 262
hill climbing, 250
relaxing constraints, 256
restarts, 259
simplex algorithm, 250
simulated annealing, 252
tabu search, 258
threshold acceptance, 258

lookup table, 203
preprocessing, 34, 100
random sampling, 120, 232
randomized, 45, 92, 125, 165, 226, 262

Las Vegas, 48, 85, 108, 114
Monte Carlo, 48, 101

recursion, 7, 9, 53, 104, 108, 113, 114,
117, 131, 178, 246

result checking, 6, 33, 101, 198
systematic search, 246, 248, 261

constraint programming, 248, 262
ILP solving, 248
iterative deepening, 248
knapsack, 246

use of sorting, 34, 99–101, 125, 172, 239
algorithm engineering, 1, 5, 10, 11, 92, 95,

111, 120, 123, 125, 163, 199, 209,
257, 261

alignment, 8, 163
all-pairs shortest path, see under

shortest path
allocate, 27
Alon, N., 97
amortized, see under algorithm analysis
analysis, see also algorithm analysis
ancestor, 52
AND, 24
Andersson, A, 125
antisymmetric, 264
Applegate, D. L., 230
approximation algorithm, 217, 240
approximation ratio, 240
Aragon, C. R., 257
Aragon, S. R., 165

arbitrage, 207
Arge, L., 123
arithmetic, 26
arithmetics, 24
array, 26, 26, 59

access [·], 66
associative, 81

find, 82
forall, 82
insert, 82
remove, 82

circular, 75, 201
growing, 66
popBack, 66
pushBack, 66
reallocate, 66
shrinking, 66
size, 66
sorting, 111
unbounded, 170

assertion, 32
assignment, 28
asymptotic, 11, 20, 21, 25
Ausiello, G., 54
average case, see under running time
AVL tree, see under sorted sequence
AWK, 81

B (block size), 25
B-tree, 163
bandwidth, 25
base, 1
Bast, H., 212
Bayer, R., 163
Beier, R., 245
Bellman, R., 206
Bellman–Ford algorithm, see under

shortest path
Bender, M. A., 165
Bentley, J. L., 124
Bertsekas, D. P., 262
best case, see under running time
best-first branch-and-bound, 128
bin packing, 146, 242
binary heap, see under priority queue
binary operation, 24
binary search, see under searching
binary search tree, see under

sorted sequence

Index 287

binomial coefficient, 270
binomial heap, see under priority queue
binomial tree, 137
bisection method, 35
bit operation, 24
Bixby, E. E., 230
Blelloch, G. E., 125
block, see memory block
Blum, N., 124, 165
Boolean formula, 242
Boolean value, 26
Boost, 57

Bellman–Ford algorithm, 214
Dijkstra’s algorithm, 214
graph, 173
graph traversal, 189
union–find, 231

Boruvka, O., 231
Botelho, F., 97
bottleneck shortest path, 217
bottom-up heap operation, 131
bounded array, 59
branch, 24
branch prediction, 125, 162
branch-and-bound, 128, 246
branch-and-cut, 249
Bro Miltersen, P., 97
Brodal, G., 141, 143
Brown, M. R., 79
Brown, R., 143
Buchsbaum, A., 232
bucket, 121
bucket sort, see under sorting

C, 26
C++, 17, 26, 31, 57, 78, 96, 123, 142, 164,

173, 214, 231
cache, 24

limited associativity, 123
cache-oblivious, 142, 165
calendar queue, see under priority queue
call by reference, 29
call by value, 29
carry, 1, 2
Carter, J., 97
cascading cut, 138
casting out nines, 6
Cayley, A., 174
census, 99

certificate, see algorithm design
certifying algorithm, 33
changing money, 245
characteristic function, 54
Chase, S., 123
Chazelle, B., 166, 232
checksum, 6
Cheriyan, J., 189
Cherkassky, B., 214
Chernoff bound, 122, 269
chess, 81
child, 52
Chvátal, V., 230
class, 26, 27, 31
clique, see under graph
clock cycle, 25
clustering, 217
Coffman, E. G., 146
Cohen-Or, D., 174
collision, 82
combinatorial search, 81
comparison, 24

three-way, 34, 108, 109
two-way, 35

comparison-based algorithm, 34, 106
competitive ratio, 242
compiler, 3, 26, 58, 81, 123

symbol table, 81
complex number, 31, 100
complexity, 24, see also running time
complexity theory, 54
composite data structure, 27
composite type, 26
computation, model of, 24
concave function, 200, 265
conditional branch instruction, 125
conditional statement, 28
cone, 251
congruent, 264
constant, 24
constant factor, 21, 25
constraint, 235
constraint programming, see under

algorithm design, systematic search
contract, 32
convex, 265
convex polytope, 251
Cook, W. J., 18, 230
cooling schedule, 254

288 Index

coprocessor, 25
core, 25
correctness, 31
cost vector, 235
crossover operation, 260
C#, 26
cuneiform script, 59
cycle, 50

Hamiltonian, 50, 54
simple, 50
testing for, 51

DAG, see graph, directed, acyclic
Dantzig, G. B., 235
data dependency, 24
data struct. inv., see under invariant
data structure, VII
data type, see type
database, 147, 163
database join, 81
decision problem, 54
declaration, 26, 29

implicit, 29
decrement (--), 28
degree, 49
Delaunay triangulation, 232
Demaine, E. D., 165
Dementiev, R., 124, 125, 166, 225
deque, 75, 79

first, 75
last, 75
popBack, 75
pushFront, 75
pushBack, 75
pushFront, 75

dereference, 27
descendant, 52
design by contract, 32
deterministic algorithm, see under

algorithm design
Devroye, L., 148
dictionary, 81, 99
diet problem, 235
Dietzfelbinger, M., 97
digit, 1
digraph, see graph, directed
Dijkstra’s algorithm, see under

shortest path
Dijkstra, E., 196, 219

discrete-event simulation, 128
disk, see hard disk
dispose, 27
distributed system, 25
div, 24
division (integer), 6
Driscoll, J., 166
dynamic programming, see under

algorithm design
dynamic tree, 222

edge, 49
associated information, 167
backward, 175, 179
contraction, 189
cost, 50
cross, 175, 179, 181
crossing, 51
forward, 175, 179
parallel, 167, 173
reduced cost, 207, see also

node potential
tree, 175, 179
weight, 50, 167

edge contraction, 226
edge query, 168, 171
edgeArray, 168
efficiency, see running time
Eiffel, 56
eight-queens problem, 248, 256
element, 26, 99
empty sequence 〈〉, 27
equals (=), 24
equivalence relation, 265
Eratosthenes, 31
event, 266
evolutionary algorithm, see under

algorithm design
exchange argument, 219, 239
exclusive OR (⊕), 24
execution time, see running time
existence problem, 233
expected value, 41, 266
exponential search, 35
external memory, see also machine model

building heap, 132
lower bound, 120
merging, 119
MST, 225

Index 289

parallel disks, 120, 125
priority queue, 139
queue, 76
scanning, 119
semiexternal algorithm, 226
sorting, 118, 120, 124
stack, 76

Fakcharoenphol, J., 215
false, 24
Farach-Colton, M., 165
fast memory, 25
ferry connections, 217
Fibonacci, L., 135
Fibonacci heap, see under priority queue
field (algebraic), 86, 265
field (of variable), 27
FIFO queue, 74, 177

external-memory, 76
first, 74
popFront, 74
pushBack, 74
using circular array, 75
using two stacks, 75

file, 27
filing card, 145
Flajolet, P., 40
Fleischer, R., 142
floating-point, 24, 56, 203
flow, 237
Floyd, R. W., 58, 124
“folklore” (result), 79
for, 28
Ford, L. R., Jr., 206
forest, 51
Fredkin, E., 166
Fredman, M. L., 97, 135, 143
frequency allocation, 258
Frigo, M., 142
function object, 96
function pointer, 123
Funke, S., 212

Gabow, H., 189
Gärtner, B., 262
garbage collection, 57
Garey, M. R., 54, 146
generic methods, 233
generic programming, 31, 173

genome, 259
geometric series, see under sum
geometry, 252
GMP, 17
Goldberg, A., 205, 212, 214
Goodrich, M. T., 174
Graefe, G., 163
Graham, R. L., 40, 58, 241
graph, 49

2-edge-connected components, 187
adjacency array, 168
adjacency list, 170
adjacency matrix, 171

undirected, 171
average degree, 228
BFS, 176, 192

implementation, 188
biconnected components, 188, 189
bidirected, 49, 167, 170
bipartite, 34, 174
breadth-first search, see BFS
Cayley, 174
citation network, 167
clique, 54, 55
coloring, 34, 54, 55, 255, 257

fixed-K annealing, 258
Kempe chain annealing, 255
penalty function annealing, 256
XRLF greedy algorithm, 257

communication network, 175
complete, 54
component, 50
compression, 174
connected components, 50, 177
construction, 168
conversion, 168, 169
counting paths, 171
cut, 172, 218
cycle detection, 170
DAG, see graph, directed, acyclic (DAG)
dense, 171
depth-first search, see DFS
DFS, 175, 178, 206

backtrack, 178
init, 178
root, 178
traverseNonTreeEdge, 178
traverseTreeEdge, 178

diameter, 209

290 Index

directed, 49
acyclic (DAG), 50, 51, 52, 180

dynamic, 168, 170
ear decomposition, 189
edge, see under edge
edge sequence, 168, 221
exploration, see graph traversal
face, 174
grid, 172
hypergraph, 174
input, 168
interval graph, 172
interval-, 100
Kempe chain, 255
layer, 176
linked edge objects, 170
minimum spanning tree, see

MST
MST, see MST
multigraph, 167, 173
navigation, 168
negative cycle, see under shortest path
network design, 217
node, see node
output, 168
planar, 51, 174

4-coloring, 255
5-coloring, 256
embedding, 189
testing planarity, 189

random, 208, 257
random geometric graph, 257
representation, 167
reversal information, 168
SCC, see graph, strongly connected

component
shortest path, see shortest path
shrunken graph, 182
sparse, 170
static, 168
Steiner tree, 228

2-approximation, 228
street network, 51
strongly connected component

certificate, 187
open, 182

strongly connected components, 50, 175,
181

closed, 183

implementation, 188
invariant, 182
more algorithms, 189
open, 183

subgraph (induced), 50
topological sorting, 180, 195
transitive closure, 177
traversal, 175
triconnected components, 189
undirected, 49
vertex, see node
visitor, 189

graphics processor, 25
greater than (>), 24
greedy algorithm, see under algorithm

design
Grossi, R., 166
group, 174
grouping, 100
growth rate, 20
Guibas, L. J., 166

Hagerup, T., 125
half-space, 251
Halperin, S., 232
Hamilton, W. R., 50
Han, Y., 125, 143
handle, 26, 60, 128, 146
Handler, G., 215
hard disk, 25
harmonic sum, see under sum
Harrelson, C., 212
hash function, 82
hash table, see hashing
hashing, 81, 100

closed, 90
large elements, 96
large keys, 96
linear probing, 83, 90

cyclic, 91
find, 90
insert, 90
remove, 90
unbounded, 91

open, 90
perfect, 92
perfect (dynamic), 95
realistic analysis, 86
universal, 85

Index 291

bit strings, 86
by integer multiplication, 89
by shifting, 89
by table lookup, 89
simple linear, 89
using bit matrix multiplication, 88
using scalar products, 87

universal family, 86
unrealistic analysis, 84
use of, 100, 101, 108, 168
with chaining, 82, 83

average case, 85
fat, 95
find, 83
implementation, 95
insert, 83
remove, 83
slim, 95
unbounded, 85

heap property, 130, see also
priority queue

heapsort, see under sorting
Held, M., 230
Held–Karp lower bound, see under

MST
heuristic, 44
high-performance computing, 25
hill climbing, see under algorithm design,

local search
Hn, see sum, harmonic
Hoare, C. A. R., 58
Hollerith, H., 99
Hopcroft, J, 165
Huddlestone, S., 79, 165
hyperplane, 250
Høyer, P., 143

I/O step, 25
Iacono, J., 143
IBM, 99
IEEE floating-point, 56
if, 28
iff, 265
ILP, see linear program, integer
imperative programming, 26
implementation note, 25
incident, 49
increment (++), 28
incumbent, 246

indentation, 28
independent random variable, 268
index, 26, 59
indicator random variable, 41, 110
inequality

Chernoff, 269
Jensen’s, 270
Markov’s, 48, 268

infinity (∞), 26, 56
initialization, 26
inlining, 29
input, 24
input size, 20, 23
inserting into a sequence, 60
insertion sort, see under sorting
instance, 20
instruction, 24, 24
integer, 26
integer arithmetics, 1
internal memory, 25
invariant, 32, 182

data structure invariant, 32, 33, 60, 129,
133, 149, 159, 165, 202, 222

loop invariant, 32, 34, 90, 102
inverse, 265
Itai, A., 165
Italiano, G., 166
item, 60
iteration, 28
iterative deepening search, 248
iterator, see under STL

Jarník, V., 219
Jarník–Prim algorithm, see under

MST
Java, 18, 26, 31, 57, 79, 96, 124, 164, 214,

231
deque, 79
hashCode, 96
hashMap, 96
linked list, 79
memory management, 79
PriorityQueue, 142
SortedMap, 164
SortedSet, 164
sorting, 124
stack, 79
TreeMap, 164
TreeSet, 164

292 Index

vector, 79
JDSL, 57

Dijkstra’s algorithm, 214
graph, 174
graph traversal, 189
MST, 231
PriorityQueue, 142

Jiang, T., 125
Johnson, D. S., 54, 146, 257
jump, 24

Kaligosi, K., 125
Kaplan, H., 143
Karatsuba, A., 9
Karger, D., 232
Karlin, A., 97
Karmakar, N., 237
Karp, R., 230
Katajainen, J., 79, 141
Katriel, I., 232
Kellerer, H., 233
Kempe, A. B., 256
Kempe chain, see under graph
Kettner, L., 124, 166
key, 82, 99, 127
Khachian, L., 237
King, V., 232
Klein, P., 232
knapsack, 54, 191
knapsack problem, 233

2-approximation (round), 240
as an ILP, 238
average case, 245
branch-and-bound algorithm, 246
dynamic programming, 243

by profit, 245
evolutionary algorithm, 260
fractional, 238, 239, 247
fractional solver, 239
greedy algorithm, 240
local search, 250
simulated annealing, 255
use of, 233

knot, 59
Knuth, D., 40, 58, 97, 125
Komlos, J., 97
Konheim, A. G., 165
Korf, R. E., 248
Korst, J., 255

Korte, B., 232
Kosaraju, S. R., 189
Kothari, S., 123
Kruskal, J., 221

Landis, E. M., 165
Larsen, P.-A., 163
Las Vegas algorithm, see under

algorithm design, randomized
latency, 25
Lawler, E. L., 230
leading term, 22
leaf, 52
LEDA, 17, 57

Bellman–Ford algorithm, 214
bounded stack, 78
Dijkstra’s algorithm, 214
graph, 173
graph traversal, 188
h_array, 96
list, 78
map, 96
MST, 231
node_pq, 214
priority queue, 142
queue, 78
sortseq, 164
stack, 78
static graph, 173
union–find, 231

Lee, L. W., 173
left-to-right maximum, 42, 46, 110, 200
Leiserson, C. E., 125, 142
Lenstra, J. K., 230
less than (<), 24
Levenshtein distance, 245
Levin, D., 174
lexicographic order, 100, 265
Li, M., 125
linear algebra, 171, 252
linear order, 99, 215, 265
linear program (LP), 234

fractional solution, 238
integer (ILP), 236, 238

0 –1 ILP, 238, 248
branch-and-cut, 249
knapsack, 238
pigeonhole principle, 242
set covering, 239

Index 293

maximum flow, 237
minimum-cost flow, 237
mixed integer (MILP), 238
relaxation of ILP, 238
rounding, 238
shortest path, 236
simplex algorithm, 250
smoothed analysis, 262
solver, 262
strict inequality, 251
tight inequality, 251

linearity of expectations, 41, 85, 86, 110,
228, 267

list, 27, 59, 83, 170
blocked, 76, 106, 118
bulk insert, 105
circular, 136, 170
concat, 64, 65
concatenate, 60, 65
doubly linked, 60, 145
dummy item, 61, 170
empty, 61
find, 63, 65
findNext, 64, 65
first, 64, 65
head, 64, 65
insert, 62, 64, 65
interference between ops., 64
invariant, 60
isEmpty, 64, 65
last, 64, 65
linked, 60
makeEmpty, 64, 65
memory management, 61, 64
move item, 61
popBack, 64
popFront, 64, 65
pushBack, 64, 65
pushFront, 64, 65
remove, 61, 64, 65
rotation, 64
singly linked, 65, 95
size, 64
sorting, 105
splice, 61, 65
swapping sublists, 64

load instruction, 24
local search, see under algorithm design
locate, see under sorted sequence

logarithm, 264
logical operations, 24
loop, 28, 36
loop fusion, 3
loop invariant, see under invariant
lower bound, 241

“breaking”, 116
element uniqueness, 108
external sorting, 120
minimum, 107
pairing heap priority queue, 143
sorting, 106

lower-order term, 22
LP, see linear program
Lucas, E., 75
Lumsdaine, A., 173
Lustig, I. J., 262

M (size of fast memory), 25
machine instruction, see instruction
machine model, 21, 23

accurate, 25
complex, 25
external memory, 25
parallel, 24, 25
RAM, 23, 26
real, 24
sequential, 23
simple, 25
von Neumann, 23
word, 125

machine program, 24, 26
machine scheduling, 241

decreasing-size algorithm, 242
online algorithm, 241
shortest-queue algorithm, 241

machine word, 23, 24
Maggs, B. M., 125
makespan, 241
map coloring, 255
Markov, A., 48
Markov’s inequality, see under

inequality
Martello, S., 233
Martinez, C., 124
master theorem, see under algorithm

analysis
mating, 260
Matousek, J., 262

294 Index

matrix, 171
matrix products, chained, 245
Mauer, D., 58
maximization problem, 233
maximum flow, 237
McCreight, E. M., 163
McGeoch, L. A., 257
McIlroy, M. D., 124
median, 114, see also selection, 265
Mehlhorn, K., 79, 97, 165, 166, 189, 201,

209, 215, 229
Mehnert, J., 166
member variable, 31
memcpy, 78
memory access, 24
memory block, 25
memory cell, 23, see also machine word
memory management, 27
memory size, 24
Mendelson, R., 143
mergesort, see under sorting
merging, 103, 244

external, 119
multiway, 119

Meyer auf der Heide, F., 97
Meyer, B., 56
Meyer, U., 189, 205, 214
Michel, L., 262
minimization problem, 233
minimum edit distance, 245
minimum spanning forest, see

MST
minimum spanning tree, see

MST
mobile device, 25
mod, 24
modulo, 7, 264
Monte Carlo algorithm, see under

algorithm design, randomized
Moret, B., 231
Morris, R., 97
most significant distinguishing index, 202
move-to-front, 44
msd, see most significant distinguishing

index
MST, 217

2-approximation of TSP, 230
Boruvka’s algorithm, 231
clustering, 217, 232

cut property, 218, 221
cycle property, 219, 221, 232
Euclidean, 232
external memory, 225
Held–Karp lower bound, 230
Jarník–Prim algorithm, 219
maximum-cost spanning tree, 218
parallel, 232
semiexternal Kruskal algorithm, 226
streaming algorithm, 222
uniqueness conditions, 219
use of, 217, 228, 232

multicore processor, 25
multigraph, 167, 173
multikey quicksort, 113
multiplication (integer)

Karatsuba, 9
refined, 12

recursive, 7
school method, 1, 3
use of, 1

multithreading, 25
mutation, 259

Näher, S., 166, 171
Nemhauser, G., 244, 248
network, 25, see also graph

communication network, 49
design, 217

Neubert, K. S., 125
Nilsson, S., 125
node, 49

active, 178
associated info., 167
depth, 52, 176
dfsNum, 178
finishing time, 178
interior, 52
marked, 178
numbering, 167
ordering relation (≺), 179
potential, 207, 211, 230
reached, 176, 197
representative, 177, 182
scanned, 196

NodeArray, 168, 173
Noshita, K., 200
NOT, 24
NP, 53

Index 295

NP-complete, 54
NP-hard, 55, 238
numeric type, 26

O(·), 21
o(·), 21
object, 26
object-oriented, 31
objective function, 233
of (in type declaration), 26, 27, 31
Ofman, Y., 9
Ω(·), 21
ω(·), 21
online algorithm, 44, 241
optimization, 233
optimization problem, 56, 233
OR, 24
Orlin, J., 201
oversampling, 121

P, 53
Pagh, R., 97
pair, 27
pairing heap, see under priority queue
parallel assignment, 28
parallel processing, 24, 25, 121, 214, 232,

259, 262
parameter, 29

actual, 29
formal, 29

parameterized class, 31
parent, 52
Pareto, V., 244
Pareto-optimal, 244, 261
parser, 53
partition, 222
Pascal, 26
Patashnik, O., 40, 58
path, 50

simple, 50
Perl, 81
permutation, 42, 100, 101, 106

random, 42, 45
persistent data structure, 166
Peru, 59
Peterson, W. W., 90
Petrank, E., 97
Pettie, S., 143, 232
Pferschy, U., 233

pigeonhole principle, 242
pipelining, 4
Pisinger, D., 233
pivot, 108, 121

selection, 111, 124
Plaxton, C. G., 125
pointer, 26
polynomial, 22, 101, see also under

running time
polytope, 251
population, 259
postcondition, 32
potential function, see node, potential
powers (of numbers), 32
Pratt, V. R., 124
precedence relation, 49
precondition, 32
predecessor, 60, 60
Priebe, V., 209
Prim, R. C., 219
Prim’s algorithm, see MST, Jarník–Prim alg.
prime number, 31, 86, 101, 265

abundance, 88
primitive operation

full adder, 1
product, 2

principle of optimality, 243, 246
priority queue, 127

addressable, 128, 133, 198
binary heap, 129, 199

addressable, 129, 133
bottom-up deleteMin, 142
building, 131
bulk insertion, 133
deleteMin, 131
insert, 130
invariant, 129
siftDown, 131
siftUp, 130

binomial heap, 137
bounded, 129
bucket, 143
bucket queue, 201

invariant, 202
calendar queue, 143
decrease key, 128, 199
deleteMin, 127
double-ended, 156
external, 139

296 Index

fat heap, 143
Fibonacci heap, 135, 199, see also

priority queue, heap-ordered forest
decreaseKey, 138
deleteMin, 136
item, 136
rank, 136

heap-ordered forest, 133
cut, 133
decreaseKey, 133
deleteMin, 133
insert, 133
invariant, 133
link, 133
merge, 135
new tree, 133
remove, 135

insert, 128
integer, 142, 143, 201
item, 133
memory management, 141
merge, 128
minimum, 127, 130, 133
monotone, 128, 143, 198, 201
naive, 129, 199
pairing heap, 135, see also

priority q., heap-ordered forest
complexity, 143
three-pointer items, 135
two-pointer items, 135

radix heap, 201
base b, 204

remove, 128
thin heap, 143
unbounded, 129
use of, 102, 120, 125, 128, 198, 226

probability, 266
probability space, 41, 266
problem instance, 20
procedure, 29
profit vector, see cost vector
program, 24
program analysis, see algorithm analysis
programming language, 26, 28, 58

functional, 105
logical, 105

programming model, see machine model
Prokop, H., 142
pseudo-polynomial algorithm, 245

pseudocode, 26, 56
Puget, J.-F., 262
Pugh, W., 165

quartile, 114, see also selection
queue, 27, 170, see also FIFO
quickselect, see under selection
quicksort, see under sorting
quipu, 59

radix sort, see under sorting
Radzik, T., 214
RAM model, see under machine model
Ramachandran, S., 142
Ramachandran, V., 232
Raman, R., 125
Ranade, A., 123
random experiment, 266
random number, 46
random source, 57
random variable, 41, 266

independent, 268
indicator, 266
product, 268

randomized algorithm, see under
algorithm design; algorithm analysis

rank, 103, 265
Rao, S., 215
realloc, 78
recombination, 259, 260
record, see composite type
recurrence relation, 9, 16, 35, 37, 58
recursion, 29, see also under

alg. design; alg. analysis
elimination, 113, 141

red–black tree, see under sorted sequence
reduction, 55
reflexive, 265
register, 24, 24, 25
Reif, J., 189
relation, 265

antisymmetric, 264
equivalence, 265
reflexive, 265
symmetric, 265
transitive, 265
weakly antisymmetric, 265

relaxation, 256, see also under
linear program

Index 297

remainder, 24
Remez, O., 174
removing from a sequence, 60
repeat, 28
result checking, see under algorithm design
return, 29
Rivest, R. L., 124
road map, 49
Robertson, N., 255
Robins, G., 229
Rodeh, M., 165
root, see under tree
Roura, S., 124
run, see under sorting
running time, 20, 24, 28, 36, see also

algorithm analysis
average case, 20, 41
best case, 20, 24
polynomial, 53
worst case, 20

sample space, 266
Sanders, D. P., 255
Sanders, P., 124, 125, 141, 142, 166, 212,

214, 215, 225, 232
Santos, R., 174
Sarnak, N., 166
SAT solver, 242
satisfiability problem, 54
satisfiable, 242
Schäfer, G., 209
Schaffer, R., 142
scheduling, 128, 191, 241
Schevon, C., 257
Schönhage, A., 18
Schrijver, A., 262
Schultes, D., 212, 225
search tree, see sorted sequence
searching, 145, see also sorted sequence

binary search, 34, 56, 100, 121, 151
dynamic, 43
exponential, 35, 56
linear, 43
range, 100
shortest path, see under shortest path

Sedgewick, R., 40, 125, 142, 143
Seidel, R., 165, 174, 224
selection, 114

deterministic, 124

quickselect, 114
streaming, 115

self-loop, 49
semicolon (in pseudocode), 28
sentinel, 63, 95, 102, 106, 141
sequence, 27, 27, 59, 100

overview of operations, 77
space efficiency, 77

series, see sum
server, 25
set, 27
set covering, 239
Seymour, P., 255
Shapiro, H. D., 231
shared memory, 25
Sharir, M., 189
Shell sort, see under sorting
Sheperdson, J., 23
shift, 24
Shmoys, D. B., 230
shortest path, 191

acyclic, 192
ALD (average linear Dijkstra), 205, 214
all-pairs, 191
all-pairs with negative costs, 207
arbitrary edge costs, 206
as a linear program, 236
A∗-search, 211
Bellman–Ford algorithm, 206

refined, 214
bidirectional search, 209
bottleneck, 217, 232
by table lookup, 212
constrained, 215, 246
correctness criterion, 194
DAG, 195
Dijkstra’s algorithm, 196

invariant, 201
edge relaxation, 194
geometric, 215
goal-directed search, 211
hierarchical search, 212
integer edge cost, 192
linear average time, 205
multicriteria, 215
negative cycle, 192
nonnegative edge cost, 192
parallel, 214
parent pointer, 193

298 Index

public transportation, 196
query, 209
relaxing of edges, 194
single-source, 191
subpath, 193
tentative distance, 194
transit node routing, 212
tree, 193
uniqueness, 193
unit edge cost, 192
use of, 191, 207

shortest-queue algorithm, 241
shrunken graph, 182
Sibeyn, J., 225
sibling, 52
sibling pointer, 136
Siek, J. G., 173
sieve of Eratosthenes, 31
SIMD, 25, 95
simplex algorithm, see under

linear programming
simulated annealing, see under

algorithm design, local search
Singler, J., 124
Sipser, M., 54
Sivadasan, N., 209
Sleator, D., 79, 143, 165, 166, 222
slow memory, 25
Smith, S. J., 125
snow plow heuristic, 125
solution

feasible, 233
potential, 233

sorted sequence, 34, 145
(a,b)-tree, 149

split (node), 152
amortized update cost, 158
augmentation, 160
balance, 153
build/rebuild, 156
concatenation, 157
fusing, 153
height, 150
insert, 151
invariant, 149
item, 150
locate, 150
parent pointer, 161
reduction, 161

remove, 153
removing a range, 158
splitter, 149
splitting, 157

adaptable, 165
AVL tree, 165
binary search tree, 147

degenerate, 148
expected height, 148
implicit, 149
insert, 147
locate, 147
perfect balance, 147
rotation, 149
selection, 161

cache-oblivious, 165
finger search, 161
first, 146, 156
insert, 145
integer, 166
last, 146, 156
locate, 145, 146
merging, 161
navigation, 145
persistent, 166
pred, 146
randomized search tree, 165
range searching, 156
red–black tree, 155, 164
remove, 145
skip list, 165
sparse table, 165
splay tree, 165
strings, 166
succ, 146
trie, 166
use of, 146, 147
weight-balanced tree, 160, 165

sorting, 99
almost sorted inputs, 103
bottom-up heapsort, 142
bucket, 116
comparison-based, 116
dynamic, 102
external, 118
flash, 125
heapsort, 128, 132
in-place, 101, 111
insertion, 36, 102, 105

Index 299

large elements, 123
list, 105
lower bound, 116
mechanical, 99
mergesort, 103, 124
multiway merge, 119
numbers, 116, 116, 122, 170
parallel, 121, 125
parallel disks, 125
quicksort, 108, 123, 124, 148
radix, 116

LSD, 116
MSD, 117, 123

random numbers, 117
run formation, 119, 125
sample, 120, 125
selection, 101, 128
Shell sort, 125
small inputs, 102, 108
small subproblems, 111
stable algorithm, 116
strings, 113, 116
use of, 34, 99–101, 125, 172, 226, 239
word model, 125

source node, 49
spellchecking, 125
Spielmann, D., 262
splitter, 121, 147
stack, 27, 29, 74, 75

bounded, 75
external-memory, 76
pop, 74
push, 74
top, 74
unbounded, 75

statement, 28
static array, 27, 59
statistics, 114
Stirling’s approximation, 107, 118, 270
STL, 13, 57, 164

deque, 78
hash_map, 96
hash_multimap, 96
hash_multiset, 96
hash_set, 96
iterator, 78, 123
list, 78
map, 164
multimap, 164

multiset, 164
priority_queue, 142
set, 164
sort, 123
stack, 78

store instruction, 24
Strassen, V., 18
streaming algorithm, 115, 222
string, 27, 59, 100
striping, 125
struct, see composite type
Sturgis, H., 23
STXXL, 124, 141, 142
subroutine, 29
successor, 60, 60
succinct data structure, 97
Sudoku, 255
sum, 58, see also under algorithm analysis

estimation by integral, 271
geometric, 38, 270
harmonic, 43, 46, 88, 110, 200, 228, 264,

270
Sumerian, 59
survival of the fittest, 259
swap, 28
sweep-line algorithm, 146
symmetric, 265
syntax, 26
Szemeredi, E., 97

table, 59
tablet, 59
tabu list, see tabu search
tabu search, see under algorithm design,

local search
tail bound, 269
tail recursion, see recursion, elimination
Tamassia, R., 174
Tardos, E., 97
target node, 49
Tarjan, R. E., 79, 97, 124, 135, 143, 165,

166, 189, 201, 214, 222, 224, 232
telephone book, 99
template programming, 31, 123
Teng, S. H., 262
termination, 33, 34
Θ(·), 21
Thomas, R., 255
Thompson, K., 246

300 Index

Thorup, M., 95, 125, 143, 214
thread, 25
threshold acceptance, see under

algorithm design, local search
time, see running time
time step, 24
Toom, A., 18
total order, 99, 265, 265
Toth, P., 233
tournament tree, 125
Tower of Hanoi, 75
Träff, J. L., 232
transitive, 265
translation, 27–30
traveling salesman problem, 54, 55, 56, 230

2-exchange, 250
3-exchange, 250
Held–Karp lower bound, 230
hill climbing, 250

tree, 51, 147
depth, 52
dynamic, 222
expression tree, 53
height, 52
implicitly defined, 129
interior node, 52
ordered, 53
representation, 136
root, 52
sorting tree, 106
traversal, 53

triangle inequality, 230, 250
trie, see under sorted sequence
triple, 27
true, 24
truth value, 24
Tsitsiklis, J. N., 262
TSP, see traveling salesman problem
tuple, 27, 100
type, 26

Udupa, R., 123
Ullman, J., 165
Ullmann, Z., 244
unary operation, 24
unbounded array, 60, 66
undefined value (⊥), 26
uniform memory, 23
union–find, 222

path compression, 223
union by rank, 223

universe (U), 233
upper bound, see worst case

Vöcking, B., 245
van Emde Boas layout, 165
van Emde Boas, P., 166
Van Hentenryck, P., 262
Vanderbei, R. J., 262
variable, 26, 235
Vazirani, V., 232
vector (in C++), 78
verification, 32, 103
vertex, see node
Vishkin, U., 189
visitor, see under graph
Vitányi, P., 125
Vitter, J. S., 120, 123
von Neumann, J., 23
von Neumann machine, see under

machine model
Vuillemin, J., 137
Vygen, J., 232

weakly antisymmetric, 265
Wegener, I., 54, 142
Wegman, M., 97
Weidling, C., 97
Westbrook, J., 232
while, 28
Wickremsinghe, R., 123
Wilhelm, R., 58
Williams, J. W. J., 129
Winkel, S., 125, 142
witness, see algorithm design, certificate
Wolsey, L., 248
word, see machine word
worst case, see under running time

XOR (⊕), 24, 203

Zagha, M., 125
Zang, I., 215
Zelikowski, A., 229
Ziegelmann, M., 215
Ziviani, N., 97
Zlotowski, O., 171
Zwick, U., 143, 232

