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Preface 

Scheduling theory is concerned with the optimal allocation of scarce resources (for instance, 
machines, processors, robots, operators, etc.) to activities over time, with the objective of 
optimizing one or several performance measures. The study of scheduling started about 
fifty years ago, being initiated by seminal papers by Johnson (1954) and Bellman (1956). 
Since then machine scheduling theory have received considerable development. As a result, 
a great diversity of scheduling models and optimization techniques have been developed 
that found wide applications in industry, transport and communications. Today, scheduling 
theory is an integral, generally recognized and rapidly evolving branch of operations 
research, fruitfully contributing to computer science, artificial intelligence, and industrial 
engineering and management. The interested reader can find many nice pearls of 
scheduling theory in textbooks, monographs and handbooks by Tanaev et al. (1994a,b), 
Pinedo (2001), Leung (2001), Brucker (2007), and Blazewicz et al. (2007).   
This book is the result of an initiative launched by Prof. Vedran Kordic, a major goal of 
which is to continue a good tradition - to bring together reputable researchers from different 
countries in order to provide a comprehensive coverage of advanced and modern topics in 
scheduling not yet reflected by other books. The virtual consortium of the authors has been 
created by using electronic exchanges; it comprises 50 authors from 18 different countries 
who have submitted 23 contributions to this collective product. In this sense, the volume in 
your hands can be added to a bookshelf with similar collective publications in scheduling, 
started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and 
Punnen (2002), and Leung (2004).  
This volume contains four major parts that cover the following directions: the state of the art 
in theory and algorithms for classical and non-standard scheduling problems; new exact 
optimization algorithms, approximation algorithms with performance guarantees, heuristics 
and metaheuristics; novel models and  approaches to scheduling; and, last but least, several 
real-life applications and case studies. 
The brief outline of the volume is as follows. 
Part I presents tutorials, surveys and comparative studies of several new trends and modern 
tools in scheduling theory.  Chapter 1 is a tutorial on theory of cyclic scheduling. It is 
included for those readers who are unfamiliar with this area of scheduling theory. Cyclic 
scheduling models are traditionally used to control repetitive industrial processes and 
enhance the performance of robotic lines in many industries. A brief overview of cyclic 
scheduling models arising in manufacturing systems served by robots is presented, started 
with a discussion of early works appeared in the 1960s.  Although the considered 
scheduling problems are, in general, NP-hard, a graph approach presented in this chapter 
permits to reduce some special cases to the parametric critical path problem in a graph and 
solve them in polynomial time.  
Chapter 2 describes the so-called multi-agent scheduling models applied to the situations in 
which the resource allocation process involves different stakeholders (“agents”), each 
having his/her own set of jobs and interests, and there is no central authority which can 
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solve possible conflicts in resource usage over time. In this case, standard scheduling models 
become invalid, since rather than computing "optimal solutions”, the model is asked to 
provide useful elements for the negotiation process, which eventually should lead to a 
stable and acceptable resource allocation. The chapter does not review the whole scope in 
detail, but rather concentrates on combinatorial models and their applications. Two major 
mechanisms for generating schedules, auctions and bargaining models, corresponding to 
different information exchange scenarios, are considered. Known results are reviewed and 
venues for future research are pointed out. 
Chapter 3 considers a class of scheduling problems under unavailability constraints 
associated, for example, with breakdown periods, maintenance durations and/or setup 
times. Such problems can be met in different industrial environments in numerous real-life 
applications. Recent algorithmic approaches proposed to solve these problems are 
presented, and their complexity and worst-case performance characteristics are discussed. 
The main attention is devoted to the flow-time minimization in the weighted and 
unweighted cases, for single-machine and parallel machine scheduling problems. 
Chapter 4 is devoted to the analysis of scheduling problems with communication delays. 
With the increasing importance of parallel computing, the question of how to schedule a set 
of precedence-constrained tasks on a given computer architecture, with communication 
delays taken into account, becomes critical. The chapter presents the principal results related 
to complexity, approximability and non-approximability of scheduling problems in 
presence of communication delays.   
Part II comprising eight chapters is devoted to the design of scheduling algorithms. Here the 
reader can find a wide variety of algorithms: exact, approximate with performance 
guarantees, heuristics and meta-heuristics; most algorithms are supplied by the complexity 
analysis and/or tested computationally. 
Chapter 5 deals with a batch version of the single-processor scheduling problem with batch 
setup times and batch delivery costs, the objective being to find a schedule which minimizes 
the sum of the weighted number of late jobs and the delivery costs. A new dynamic 
programming (DP) algorithm which runs in pseudo-polynomial time is proposed. By 
combining the techniques of binary range search and static interval partitioning, the DP 
algorithm is converted into a fully polynomial time approximation scheme for the general 
case. The DP algorithm becomes polynomial for the special cases when jobs have equal 
weights or equal processing times.   
Chapter 6 studies on-line approximation algorithms with performance guarantees for an 
important class of scheduling problems defined on identical machines, for jobs with 
arbitrary release times.  
Chapter 7 presents a new hybrid metaheuristic for solving the jobshop scheduling problem 
that combines augmented-neural-networks with genetic algorithm based search. 
In Chapter 8 heuristics based on a combination of the guided search and tabu search are 
considered to minimize the maximum completion time  and maximum tardiness in the 
parallel-machine scheduling problems. Computational characteristics of the proposed 
heuristics are evaluated through extensive experiments.  
Chapter 9 presents a hybrid meta-heuristics based on a combination of the genetic algorithm 
and the local search aimed to solve the re-entrant flowshop scheduling problems. The 
hybrid method is compared with the optimal solutions generated by the integer 
programming technique, and the near optimal solutions generated by a pure genetic 
algorithm. Computational experiments are performed to illustrate the effectiveness and 
efficiency of the proposed algorithm. 
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Chapter 10 is devoted to the design of different hybrid heuristics to schedule a bottleneck 
machine in a flexible manufacturing system problems with the objective to minimize the 
total weighted tardiness. Search algorithms based on heuristic improvement and local 
evolutionary procedures are formulated and computationally compared. 
Chapter 11 deals with a multi-objective no-wait flow shop scheduling problem in which the 
weighted mean completion time and the weighted mean tardiness are to be optimized 
simultaneously. To tackle this problem, a novel computational technique, inspired by 
immunology, has emerged, known as artificial immune systems. An effective multi-
objective immune algorithm is designed for searching the Pareto-optimal frontier.   In order 
to validate the proposed algorithm, various test problems are designed  and the algorithm is 
compared with a conventional multi-objective genetic  algorithm.  Comparison metrics, such 
as the number of Pareto optimal solutions found by the algorithm, error ratio, generational 
distance, spacing metric, and diversity metric, are applied to validate the algorithm 
efficiency. The experimental results indicated that the proposed algorithm outperforms the 
conventional genetic algorithm, especially for the large-sized problems.   
Chapter 12 considers a version of the open-shop problem called the concurrent open shop 
with the objective of  minimizing the weighted number of tardy jobs.  A branch and bound 
algorithm is developed. Then, in order to produce approximate solutions in a reasonable 
time, a heuristic and a tabu search algorithm are proposed.. Computational experiments 
support the validity and efficiency of the tabu search algorithm.   
Part III comprises seven chapters and deals with new models and decision making 
approaches to scheduling. Chapter 13 addresses an integrative view  for the production 
scheduling problem, namely resources integration, cost elements integration and solution 
methodologies integration. Among methodologies considered and being integrated together 
are mathematical programming, constraint programming and metaheuristics. Widely used 
models and representations for production scheduling problems are reconsidered, and 
optimization objectives are reviewed. An integration scheme is proposed and performance 
of  approaches is analyzed. 
Chapter 14 examines scheduling problems confronted by planners in multi product 
chemical plants that involve sequencing of jobs with sequence-dependent setup time.  Two 
mixed integer programming (MIP) formulations are suggested, the first one aimed to 
minimize the total tardiness while the second minimizing the sum of total 
earliness/tardiness for parallel machine problem. 
Chapter 15 presents a novel mixed-integer programming model of the flexible flow line 
problem that minimizes the makespan. The proposed model considers two main 
constraints, namely blocking processors and sequence-dependent setup time between jobs. 
Chapter 16 considers the so-called hybrid jobshop problem which is a combination of the 
standard jobshop and parallel machine scheduling problems with the objective of  
minimizing the total tardiness. The problem has real-life applications in the semiconductor 
manufacturing or in the paper industries. Efficient heuristic methods to solve the problem, 
namely, genetic algorithms and ant colony heuristics, are discussed.  
Chapter 17 develops the methodology of dynamical gradient Artificial Neural Networks for 
solving the identical parallel machine scheduling problem with the makespan criterion 
(which is known to be NP-hard even for the case of two identical parallel machines). A 
Hopfield-like network is proposed that uses time-varying penalty parameters. A novel time-
varying penalty method that guarantees feasible and near optimal solutions for solving the 
problem  is suggested and compared computationally with the known LPT heuristic. 
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In Chapter 18 a dynamic heuristic rule-based approach is proposed to solve the resource 
constrained scheduling problem in an FMS, and to determine the best routes of the parts, 
which have routing flexibility.  The performance of the proposed rule-based system is 
compared with single dispatching rules.   
Chapter 19 develops a geometric approach to modeling a large class of multithreaded 
programs sharing resources and to scheduling concurrent real-time processes. This chapter 
demonstrates a non-trivial interplay between geometric approaches and real-time 
programming. An experimental implementation allowed to validate the method and 
provided encouraging results. 
Part IV comprises four chapters and introduces real-life applications of scheduling theory 
and case studies in the sheet metal shop (Chapter 20), baggage handling systems (Chapter 
21), large-scale supply chains (Chapter 22), and semiconductor manufacturing and 
photolithography systems (Chapter 23). 
Summing up the wide range of issues presented in the book, it can be addressed to a quite 
broad audience, including both academic researchers and practitioners in halls of industries 
interested in scheduling theory and its applications. Also, it is heartily recommended to 
graduate and PhD students in operations research, management science, business 
administration, computer science/engineering, industrial engineering and management, 
information systems, and applied mathematics. 
This book is the result of many collaborating parties. I gratefully acknowledge the assistance 
provided by Dr. Vedran Kordic, Editor-in-Chief of the book series, who initiated this project, 
and thank all the authors who contributed to the volume. 
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Cyclic Scheduling in Robotic Cells:  
An Extension of Basic Models in Machine 

Scheduling Theory 

Eugene Levner1, Vladimir Kats2 and David Alcaide López De Pablo3

1Holon Institute of Technology, Holon, 2Institute of Industrial Mathematics, Beer-Sheva, 
3University of La Laguna, La Laguna, Tenerife 

1, 2 Israel, 3Spain 

1. Introduction 

There is a growing interest on cyclic scheduling problems both in the scheduling literature 
and among practitioners in the industrial world. There are numerous examples of 
applications of cyclic scheduling problems in different industries (see, e.g., Hall (1999), 
Pinedo (2001)), automatic control (Romanovskii (1967), Cohen et al. (1985)), multi-processor 
computations (Hanen and Munier (1995), Kats and Levner (2003)), robotics (Livshits et al. 
(1974), Kats and Mikhailetskii (1980), Kats (1982), Sethi et al. (1992), Lei (1993), Kats and 
Levner (1997a, 1997b), Hall (1999), Crama et al. (2000), Agnetis and Pacciarelli (2000), 
Dawande et al. (2005, 2007)), and in communications and transport (Dauscha et al. (1985), 
Sharma and Paradkar (1995), Kubiak (2005)). It is, perhaps, a surprising thing that many 
facts in scheduling theory obtained as early as in the 1960s, are re-discovered and re-
rediscovered by the next generations of researchers. About two decades ago, this fact was 
noticed by Serafini and Ukovich (1989).   
The present survey uniformly addresses cyclic scheduling problems through the prism of 
the classical machine scheduling theory focusing on their features that are common for all 
aforementioned applications. Historically, the scheduling literature considered periodic 
machine scheduling problems in two major classes – called flowshop and jobshop - in which 
setup and transportation times were assumed insignificant. Indeed, many machining centers 
can quickly switch tools, so the setup times for these situations may be small or negligible. 
There are a lot of results about cyclic flowshop and jobshop problems with negligible 
setup/transportation times. Advantages of cyclic scheduling policies over conventional 
(non-cyclic) scheduling in flexible manufacturing are widely discussed in the literature, we 
refer the interested reader to Karabati and Kouvelis (1996), Lee and Posner (1997), Hall et al. 
(2002), Seo and Lee (2002), Timkovsky (2004), Dawande et al. (2007), and numerous 
references therein.  
At the same time, modern flexible manufacturing systems are supplied by computer-
controlled hoists, robots and other material handling devices such that the transportation 
and setup operation times are significant and should not be ignored. Robots have become a 
standard tool to serve cyclic transportation and assembling/disassembling processes in 
manufacturing of airplanes, automobiles, semiconductors, printed circuit boards, food 
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products, pharmaceutics and cosmetics. Robots have expanded production capabilities in 
the manufacturing world making the assembly process faster, more efficient and precise 
than ever before. Robots save workers from tedious and dull assembly line jobs, and 
increase production and savings in the processes. As larger and more complex robotic cells 
are implemented, more sophisticated planning and scheduling models and algorithms are 
required to perform and optimize these processes. 
The cyclic scheduling problems, in which setup operations are performed by automatic 
transporting devices, constitute a vast subclass of cyclic problems. Robots or other automatic 
devices are explicitly introduced into the models and treated as special purpose machines. 
In this chapter, we will focus on three major classes of cyclic scheduling problems – 
flowshop, jobshop, and parallel machine shop.
The chapter is structured as follows. Section 2 is a historical overview, with the main 
attention being paid to the early works of the 1960s. Section 3 recalls three orthodox classes 
of scheduling theory: flowshop, jobshop, and PERT-shop. Each of these classes can be 
extended in two directions: (a) for describing periodic processes with negligible setups, and 
(b) for describing periodic processes in robotic cells where setups and transportation times 
are non-negligible. In Section 4 we consider an extension of the cyclic PERT-shop, called the 
cyclic FMS-shop and demonstrate that its important special case can be solved efficiently by 
using a graph approach. Section 5 concludes the chapter. 

2. Brief Historical Overview  

Cyclic scheduling problems have been introduced in the scheduling literature in the early 
1960s, some of them assuming setup/transportation times negligible while other explicitly 
treating material handling devices with non-negligible operation times.  
Cyclic Flowshop. Cuninghame-Greene (1960, 1962) has described periodic industrial 
processes, which in today’s terminology might be classified as a cyclic flowshop (without 
setups and robots), and suggested an algebraic method for finding minimum cycle time 
using matrix multiplication in which one writes “addition” in place of multiplication and 
operation “max” instead of addition. This (max, +)–algebra has become popular in the 1980s 
(see, e.g. Cuninghame-Greene (1979), Cohen et al. (1985), Baccelli et al. (1992)) and is 
presently used for solving the cyclic flowshop without robots, see, e.g., Hanen (1994), Hanen 
and Munier (1995),  Lee (2000), and Seo and Lee (2002).  
Independently of the latter research, Degtyarev and Timkovsky (1976) and Timkovsky 
(1977) have studied so-called spyral cyclograms widely used in the Soviet electronic industry; 
they introduced a generalized shop structure which they called a “cycle shop”. Using a more 
standard terminology, we might say that these authors have been the first to study a
flowshop with reentrant machines which includes, as special cases, many variants of the basic 
flowshop, for instance, the reentrant flowshop of Graves et al. (1983), V-shop of Lev and 
Adiri (1984), cyclic robotic flowshop of Kats and Levner (1997, 1998, 2002). The interested 
reader is referred to Middendorf and Timkovsky (2002) and Timkovsky (2004) for more 
details.                      
Cyclic Robotic Flowshop. In the beginning of 1960s, a group of Byelorussian mathematicians 
(Suprunenko et al. (1962), Aizenshtat (1963), Tanaev (1964), and others) investigated cyclic 
processes in manufacturing lines served by transporting devices. The latters differ from 
other machines in their physical characteristics and functioning. These authors have 
introduced a cyclic robotic flowshop problem and suggested, in particular, a combinatorial 
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method called the method of forbidden intervals which today is being developed further by 
different authors for various cyclic robotic scheduling problems (see, for example, Livshits 
et al. (1974), Levner et al. (1997), Kats et al. (1999), Che and Chu (2005a, 2005b), Chu (2006), 
Che et al. (2002, 2003)). A thorough review in this area can be found in the surveys by Hall 
(1999), Crama et al. (2000), Manier and Bloch (2003), and Dawande et al. (2005, 2007).                
Cyclic PERT-shop. The following cyclic PERT-shop problem has originated in the work by 
Romanovskii (1967). There is a set S of n partially ordered operations, called generic 
operations, to be processed on machines. As in the classic (non-cyclic) PERT/CPM problem, 
each operation is done by a dedicated machine and there is sufficiently many machines to 
perform all operations; so the question of scheduling operations on machines vanishes. Each 
operation i has processing time pi > 0 and must be performed periodically with the same 
period T, infinitely many times. 
For each operation i, let  <i, k> denote the kth execution (or, repetition) of operation i in a 
schedule (here k is any positive integer).  Precedence relations are defined as follows (here we 
use a slightly different notation than that given by Romanovskii). If a generic operation i
precedes a generic operation j, the corresponding edge (i, j) is introduced. Any edge (i,j) is 
supplied by two given values, Lij called the length, or delay, and Hij called the height of the 
corresponding edge (i, j). The former value is any rational number of any sign while the 
latter is integer. Then, for a pair of operations i and j, and the given length Lij and height Hij,

the following relations are given: for all k 1, t(i,k) + Lij t(j, k + Hij), where t(i,k) is the 
starting time of operation <i, k>. An edge is called interior if its end-nodes belong to the same 
iteration (or, one can say “to the same block, or pattern”) and backward (or, recycling) if its 
end-nodes belong to two consecutive blocks.  
A schedule is called  periodic (or cyclic) with cycle time T if  t(i, k) = t(i,1) + (k-1)T, for all 

integer k 1, and for all i S (see Fig. 1). The problem is to find a periodic schedule (i.e., the 
starting time t(i,1) of operations) providing a minimum cycle time T, in a graph with the 
infinite number of edges representing an infinitely repeating process. 

Figure 1. The cyclic PERT graph (from Romanovskii, (1967)) 

In the above seminal paper of 1967, Romanovskii proved the following claims which have 
been rediscovered later by numerous authors. 

Claim 1.  Let the heights of interior edges be 0 and the heights of backward edges 1. The 
minimum cycle time in a periodic PERT graph with the infinite number of edges is 
equal to the maximum circuit ratio in a corresponding double-weighted finite graph in 
which the first weight of the arc is its length and the second is its height: Tmin = maxC

Lij/ Hij, where maximum is taken over all circuits C; Lij denotes the total circuit 

length, and Hij  the total circuit height. 
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Claim 2.  The max circuit ratio problem and its version, called the max mean cycle 
problem, can be reformulated as linear programming problems. The dual to these 
problems is the parametric critical path problem. 

Claim 3. The above problems, namely, the max circuit ratio problem and the max mean 
cycle problem, can be solved by using the iterative Howard-type dynamic 
programming algorithm more efficiently than by linear programming. (The basic 
Howard algorithm is published in Howard (1960)). 

Claim 4. Mean cycle time counted for n repetitions of the first block in an optimal 
schedule differs from the optimal mean cycle time by O(1/n).

The interested reader can find these or similar claims discovered independently, for 
example, in Reiter (1968), Ramchandani (1973), Karp (1978), Gondran and Minoux (1985), 
Cohen et al. (1985), Hillion and Proth (1989), McCormick et al. (1989), Chretienne (1991), Lei 
and Liu (2001), Roundy (1992), Ioachim and Soumis (1995), Lee and Posner (1997), Hanen 
(1994), Hanen and Munier (1995), Levner and Kats (1998), Dasdan et al. (1999), Hall et al. 
(2002). In recent years, the cyclic PERT-shop has been studied for more sophisticated 
modifications, with the number of machines limited and resource constraints added (Lei 
(1993), Hanen (1994), Hanen and Munier (1995), Kats and Levner (2002), Brucker et al. 
(2002), Kampmeyer (2006)).

3. Basic Definitions and Illustrations  

In this section, we recall several basic definitions from the scheduling theory. Machine 
scheduling is the allocation of a set of machines and other well-defined resources to a set of 
given jobs, consisting of operations, subject to some pre-determined constraints, in order to 
satisfy a specific objective. A problem instance consists of a set of m machines, a set of n jobs 
is to be processed sequentially on all machines, where each operation is performed on 
exactly one machine; thus, each job is a set of operations each associated with a machine. 
Depending on how the jobs are executed at the shop (i.e. what is the routing in which jobs 
visit machines), the manufacturing systems are classified as: 

flow shops, where all jobs are performed sequentially, and have the same processing 
sequence (routing ) on all machines, or 

job shops, where the jobs are performed sequentially but each job has its own 
processing sequence through the machines, 

parallel machine shop, where sequence of operations is partially ordered and several 
operations of any individual job can be performed simultaneously on several parallel 
machines. 

Formal descriptions of these problems can be found in Levner (1991, 1992), Tanaev et al. 
(1994a, 1994b), Pinedo (2001), Leung (2004), Shtub et al. (1994), Gupta and Stafford (2006), 
Brucker (2007), Blazewicz et al. (2007). We will consider their cyclic versions.  
The cyclic shop problems are an extension of the classical shop problems. A problem 
instance again consists of a set of m machines and a set of n jobs (usually called products, or
part types) which is to be processed sequentially on all machines. The machines are 
requested to process repetitively a minimal part set, or MPS, where the MPS is defined as the 
smallest integer multiple of the periodic production requirements for every product. In 
other words, let r = (r1, r2,… ,  rn) be the production requirements vector defining how many 
units of each product (j=1,…,n) are to be produced over the planning horizon. Then the MPS 
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is the vector rMPS = (r1/q, r2/q, … ,  rn/q) where q is the greatest common divisor of integers 
r1, r2,… ,  rn. Identical products of different, periodically repeated, replicas of the MPS have 
the same processing sequences and processing times, whereas different products within an 
MPS may require different processing sequences of machines and the processing times. The 
replicas of the MPS are processed through equal time intervals T called cycle time and in 
each cycle, exactly one MPS’s replica is introduced into the process and exactly one MPS’s 
replica is completed. 
An important subclass of cyclic shop problems are the robotic scheduling problems, in 
which one or several robots perform transportation operations in the production process. 
The robot can be considered as an additional machine in the shop whose transportation 
operations are added to the set of processing operations. However, this “machine” has 
several specific properties: (i) it is re-entrant (that is, any product requires the utilization of 
the same robot several times during each cycle) and (ii) its setup operations, that is, the 
times of empty robots between the processing machines, are non-negligible.

3.1. Cyclic Robotic Flowshop  

In the cyclic robotic flowshop problem it is assumed that a technological processing 
sequence (route) for n products in an MPS is the same for all products and is repeated 
infinitely many times. The transportation and feeding operations are done by robots, and 
the sequences of the robotic operations and technological operations are repeated cyclically. 
The objective is to find the cyclic schedule with the maximum productivity, that is, the 
minimum cycle time. In the general case, the robot's route is not given and is to be found as 
a decision variable.
A possible layout of the cyclic robotic flowshop is presented in Fig. 2.   

Figure 2. Cyclic Robotic Flowshop 

A corresponding Gantt chart depicting coordinated movement of parts and robot is given in 
Fig. 3. Machines 0 and 6 stand for the loading and unloading stations, correspondingly. 
Three identical parts are introduced into the system at time 0, 47 and 94, respectively. The 
bold horizontal lines depict processing operations on the machines while a thin line depicts 
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the route of a single robot between the processing machines. More details can be found in 
Kats and Levner (1998). 

Figure 3. The Gantt chart for cyclic robotic flowshop (from Kats and Levner (1998)) 

3.2 Cyclic Robotic Jobshop 

The cyclic robotic jobshop differs from cyclic robotic flowshop only in that each of n
products in MPS has its own route as depicted in Fig. 4. 

5

4

3

2

1

Unloading
station ul

Loading 
station

Fig. 4. An example of a simple technological network with two linear product routes and 
five processing machines, depicted by the squares, where            denotes the route for 
product a, and                denotes the route for product b (from Kats et al. (2007)) 

The corresponding graphs depicting the sequence of technological operations and robot 
moves in a jobshop frame are presented in Fig. 5 and 6 . 
The corresponding Gantt chart depicting coordinated movement of parts and robots in time 
is in Fig. 7, where stations 1 to 5 stand for the processing machines and stations 0 and 6 are, 
correspondingly, the loading and unloading ones. In what follows, we refer to the machines 
and loading/unloading stations simply as the stations.
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Figure 5. The sequence of robot operations in two consecutive cycles (from Kats et al. (2007)) 

Cycle 1 

Cycle 2 

o2,b

o2,b

0,b
25,b-
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0,,b
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b5,a-

b5,a-

0 1,a

0 0,a 0 1,a

b4,b-

b4,b-

0 0,a

25,b-

Figure 6. Graph depicting the sequence of processing operations and robot moves for two 
successive cycles (Kats et al. (2007)).  The variables are presented as nodes and the constraints 
as arcs, where          denotes the robot operation sequence,             the processing time window 

constraints,   setup time constraints, and                  the cut-off line between two cycles 

b3,a- 0,a b5,a- 1,a

b4,b- o2,b 25,b-

1,b-

1,b-

  
Figure 7. The Gantt chart of coordinated movement of parts and a robot in time (Kats et al. 
(2007))
Figure 7. The Gantt chart of coordinated movement of parts and a robot in time (Kats et al. 
(2007))
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3.3 Cyclic Robotic PERT Shop 

This major class of cyclic scheduling problems which we will focus on in this sub-section, 
has several other names in the literature, for example, ‘the basic cyclic scheduling problem’, 
‘the multiprocessor cyclic scheduling problem’, ‘the general cyclic machine scheduling 
problem’. We will call this class the cyclic PERT shop due to its evident closeness to project 
scheduling, or PERT/CPM problems: when precedence relations between operations are 
given, and there is a sufficient number of machines, the parallel machine scheduling 
problem becomes the well-known PERT-time problem. 
We define the cyclic PERT shop as follows: A set of n products in an MPS is given and the 
technological process for each product is described by its own PERT graph. A product may be 
considered as assembly consisting of several parts. There are three types of technological 
operations: a) operations which can be done in parallel on several machines, i.e. the parts 
consisting the assembly are processed separately; b) assembling operations; c) disassembling 
operations. There are infinitely many replicas of the MPS and a new MPS’s replica is introduced 
in each cycle. In the cyclic robotic PERT shop, one or several robots are introduced for performing 
the transportation and feeding operations. The objective is to find the cyclic schedule and the 
robot route providing the maximum productivity, that is, the minimum cycle time. 

Classes of scheduling 
problems 

Subclasses of cyclic 
scheduling problems 

Representative references 

Models with negligible 
setups and no-robot 

Cuninghame-Greene (1960, 1962), 
Timkovsky (1977), Karabati and 
Kouvelis (1996), Lee and Posner 
(1997)

Cyclic Flowshop 

Models

Robotic models 

Suprunenko et al. (1962), Tanaev 
(1964),  Livshits et al. (1974),  
Phillips and Unger (1976), Kats 
and Mikhailetskii (1980), Kats 
(1982), Kats and Levner (1997a, 
1997b), Crama et al. (2000), 
Dawande et al. (2005, 2007). 

Models with negligible 
setups and no-robot 

Roundy (1992), Hanen and 
Munier (1995), Hall et al. (2002)

Cyclic Jobshop Models 

Robotic models Kampmeyer (2006), Kats et al. 
(2007)

Models with setups 
negligible, no-robot 

Romanovskii (1967), Chretienne 
(1991), Hanen and Munier (1995) 

PERT-shop Models 

Robotic models 
Lei (1993), Chen et al. (1998), 
Levner and Kats (1998), Alcaide 
et al. (2007), Kats et al. (2007) 

Remark. For completeness, we might mention three more groups of robotic (non-cyclic) scheduling 
problems which might be looked at as “atomic elements” of the cyclic problems: Robotic Non-cyclic 
Flowshop (Kise (1991), Levner et al. (1995a,1995b), Kogan and Levner 1998), Robotic Non-cyclic Jobshop 
(Hurink and Knust (2002)), and Robotic Non-cyclic PERT-shop (Levner et al. (1995c)). However, these 
problems lie out of the scope of the present survey. 

Table 1. Classification of major cyclic scheduling problems 
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The cyclic robotic PERT shop problems differs from the cyclic robotic jobshop in two main 
aspects: a) the operations are partially ordered, in contrast to the jobshop where operations are 
linearly ordered; b) there are sufficiently many processing machines, due to which the 
sequencing of operations on machines vanishes. This type of problems is overviewed in 
more detail in surveys by Hall (1999) and Crama et al. (2000).  
We conclude this section by the classification scheme for cyclic problems and the 
representative references (see Table 1). 

4. The Cyclic Robotic FMS-shop   

4.1. An Informal Description of the Cyclic Robotic FMS Shop 

The cyclic robotic FMS-shop can be looked at as an extension of the cyclic robotic jobshop in 
which there given PERT-type (not-only-chain) precedence relations between 
assembly/disassembly operations for each product. In other view, the robotic FMS-shop can 
be looked at as a generalized cyclic robotic PERT-shop in which a finite set of machines 
performing the operations are given. In what follows, we assume that K PERT projects 
representing the technological processes for K products in an MPS are given and to be 
repeated infinitely many times on m machines.  
Example. (Levner et al. (2007)). MPS consists of two products MPS ={a, b} with sequence of 
processing operations for products a and b given in the form of PERT graphs as shown in 
Fig. 8.  

      Product b    Product a

2
 6 

6

0

5

3

4

15
3

4

210

Figure 8. Two fragments of a technological network in which partially ordered (PERT-type) 
networks are given for two individual products in an FMS-shop 

There are five processing machines and loading and unloading stations (stations 0 and 6 
correspondingly). Infinite number of MPS replicas are waiting for processing and arrive 
periodically in process as shown in Fig. 9. 
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Figure 9. The Gantt chart of several MPS replicas arriving in the technological process 
through equal time intervals 
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We give the problem description basing on the model developed in Kats et al. (2007). The 
product (part type) processing time at any machine is not fixed, but defined by a pair of 
minimum and maximum time limits, called the time window constraints. The movements of 
parts between the machines and loading/unloading stations are performed by a robot, 
which travels in a non-negligible time. To move a part, the robot first travels to the station 
where the part is located, wait if the part is still in process, unload the part and then travels 
to the next station specified by a given sequence of material handling operations for the 
robot. The robot is supplied by multiple grippers in order to transport several parts 
simultaneously to an assembling machine or from an disassembling machine. There is no 
buffer available between the machines and each machine can process only one product at 
time. If different types of products are processed at the same machine, then a non-negligible 
setup time between the processing of these products may be required. The general problem 
is to determine the product sequence at each machine, the robot route and the exact 
processing time of each product at each machine so that the cycle time is minimized while 
the time windows, the setup times, and the robot traveling time constraints are satisfied.  
Scheduling of the material handling operations of robots to minimize the cycle time, even 
with a single part per MPS and a single one-gripper robot, has been known to be NP-hard in 
strong sense (Livshits et al. (1974); Lei and Wang (1989)).  
In this chapter, we are interested in a special case of the cyclic scheduling problem 
encountered in such a processing network. In particular, we solve the multiple-product 
problem of minimizing the cycle time for a processing network with a single multi-gripper 
robot, a fixed and known in advance sequence of material handling operations for the robot 
to be performed in each cycle and the known product sequence at each machine. 
Throughout the remaining analysis of this chapter, we shall denote this problem as Q.
Problem Q is a further extension of the scheduling problem P introduced and solved in Kats 
et al. (2007). The problem P is the jobshop scheduling problem where technological 
operations for each product are linked by simple chain-like precedence relations (see Fig. 5 
above). Like in P, in problem Q the sequence of robot moves is assumed to be fixed and 
known. With this special case, the sequencing issue for the robot moves vanishes, and the 
problem reduces to finding the exact processing times from the given intervals. This case 
has been shown to be polynomial solvable by several researchers independently via 
different approaches. Representative work on this can be found in the work by Livshits et al. 
(1974), Matsuo et al. (1991), Lei (1993), Ioachim and Soumis (1995), Chen et al. (1998), Van de 
Klundert (1996), Levner et al. (1996, 1997), Levner and Kats (1998), Crama et al. (2000), Lee 
(2000), Lei and Liu (2001), Alcaide at al. (2007), Kats et al. (2007).  
In this section, we analyze the properties of Q and show that it can be solved by the 
polynomial algorithm, originating from the parametric critical path method by Levner and Kats 
(1998) for the single-product version of the problem. Our main observation is that the 
technological processes for products presented by PERT-type graphs (see Fig. 8) can be 
treated by the same mathematical tools as more primitive processes presented by linear 
chains considered in Kats et al. (2007).  

4.2. A formal analysis of problem Q   

Each given instance of Q has a fixed sequence of material handling operations , and an 
associated MPS with K products and PERT-type precedence relations. The set of processing 
operations of a product in the MPS is not in the form of a simple chain like in problem P, but 
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rather linked into a technological graph, containing assembling and disassembling operations. 
Let G denote the associated integrated technological network which integrates K technological
graphs of all products in the MPS with the given sequence of processing operations on 
machines. In network G, each node specifies a machine or the loading station 0/unloading 
station ul, each arc specifies a particular precedence relationship between two consecutive 
processing operations of a product, and each technological graph to be performed for each 
product corresponds to a subgraph in network G.

Now, let  be the set of distinct stations/nodes in a given technological network G, j be the 

index to enumerate stations, ,j  and k be the index for product, .1 Kk  Each 

product k requires a total of nk partially ordered processing operations with each operation 
taking place at a respective workstation. In each material handling operation the robot 
removes a product (or a ”semi-product”) from a station. Therefore, 

is the total number of all operations to be performed by the robot 

in a cycle, including a total of K operations at station 0 (i.e., one for each product in the MPS 
to be introduced into the process in a cycle). The processing time for product k at station j,

 is a deterministic decision variable that must be confined within a given interval 

, for 1  k  K,  j=1,2,…,nk, and

Kk knKn ,...,2,1

,,kjp
],[ ,, kjkj ba ,0j where parameters aj,k and bj,k  are the 

given constants and define the time window constraints on the part processing time at 
workstation j. That is, after arriving at workstation j, a part of type k must immediately start 
processing and be processed there for a time interval no less than aj,k and no more than bj,k.
In the practices of assembling shops, the violating of the time window constraints, 

 may deteriorate the product quality and cause a defect product. ,,,, kjkjkj bpa
For any given instance of Q sequence ,  = <([i], r[i],  f(i)), i=1,2, …,n> specifies a total of n
(material handling) operations to be performed by the robot in each cycle. The ith operation 

in , ([i], r[i], f(i)) where },{\][,1 ulini },,...,2,1{][ Kir  f(i) {keep, load}

consists of the following sequential motions: 

Unload  product ][ir from station [i]; 

If  f(i) = load, then transport product ][ir to the next station on its technological route, s[i],

,][is  and load product ][ir to station s[i] which include the loading of all parts of the 
product kept by grippers.  
If  f(i) = keep, then keep the unloaded product in gripper.  
Travel to station [i+1], where },{\]1[ uli  and wait if necessary. When i=n, [n+1] =

0.
In each cycle, the given sequence of operations, , is performed exactly once, so that exactly 
one MPS is introduced into the process and exactly one MPS is completed and sent to 
station ul.  In this infinite cyclic process, parts being moved and processed within a cycle 
could belong to different MPS’s replicas introduced in different cycles and full processing 
time (life cycle) of one MPS could be much longer than cycle time T.
Network G introduces two types of precedence relationships. The first type of relationships 
ensures the processing time window constraints, and the second type refers to the setup time 
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constraints on sharing stations. The latter incorporates the corresponding setup times into the 
model when two or more part types are to be processed at the same station. 
Let time moment 0 be a reference time point in the infinite cyclic process and assume, 
without loss of generality, that the current cycle starts at time 0. Let MPS(q) be the qth replica 

of the MPS such that its first operation starts at time ,Tq  where q= 0, ±1, ±2,…     

Let be the moment when part ][],[ iriz )0(][ MPSir is removed from station [i]. Then  

ThzTzt iriiriiriiri ][],[][],[][],[][],[ )(mod  (2) 

is the moment within interval [0, T) when part r[i] MPS(-h[i],r[I] ) is removed from station [i]
To make a formal definition for problem Q, let’s introduce the following additional notation: 

][iL     The part loading time at station [i], };{\][ uli
][iU      The part unloading time at station [i], };0{\][i

]'[],[ iid    The robot traveling time from stations [i] to [i’];

ba
ig
,
][   The pre-specified setup time at shared station [i] between the processing  

  of part  a and the processing of part b, where a, b {1,…, K};  

  The given set of paired technological operations; 

Y[i]         Sequence ( -dependent binary constants: Y[i] =1 if (s[i], r[i]) and ([i], r[i])
are in the same cycle, and Y[i] = 0 otherwise (see Kats et al. (2007)).   

Problem Q can be described in the same terms as P in Kats et al. (2007): 

Q: TMinimize

subject to 
The multigripper robot traveling time constraints  
For all i, 1  i  n, such  that f(i) = load 

 t[i],r[i] + U[i] + d[i],s[i] + Ls[i] + ds[i], [i+1] t[i+1],r[i+1]  (3a) 

For all i, 1  i  n, such that f(i) = keep 

 t[i],r[i] + U[i] + d [i], [i+1] t[i+1],r[i+1],  (3b) 

where t[n+1],r[n+1] = t[1],r[1] + T.
The processing time window constraints  

For all i, 1  i  n,  such that f(i) = load 
if Y[i] = 0

.

,

][],[][][],[][][],[][],[

][],[][][],[][][],[][],[

irisisisiiiriiris

irisisisiiiriiris

bLdUtt

aLdUtt
 (4a) 
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if Y[i] = 1

T + ts[i],r[i]  - t[i],r[i]  U[i] + d[i],s[i] + Ls[i] + as[i],r[i],   (4b)

T + ts[i],r[i]  - t[i],r[i]  U[i] + d[i],s[i] + Ls[i] + bs[i],r[i].

The setup time constraints on sharing stations  
For all ])[],'[],([],[]'[,,'1,' iririandiiniiii

(5a),][],'[
][]'[],'[][],[

irir
iiriiri gtt

 (5b) 
]'[],[

]'[]'[],'[][],[ )( irir
iiriiri gttT

The non-negativity condition 
All variables T, ,1,][],[ nit iri  are non-negative. 

Constraints (3) ensure the robot to have enough time to operate and to travel between the 

starting times of two consecutive operations in sequence . Constraints (4) enforce the part 
processing time at a station to be in given windows. Constraints (5) ensure the required 
setup time at the shared stations to be guaranteed.  

The processing time window constraints (4a)-(4b) ensure aj,k  pj,,k bj,k, where 

stands for the actual processing time of part r[i] in station s[i] and is determined by the 
optimal solution to Q. The “no-wait” requirement means that a part, once introduced into 
the process, must be in the status of either being processed at a station or being transported 
by a material handling robot.   

][],[ irisp

One can easily observe that the relationships (3) - (6) are of the same form as those in the 
model P, and thus an extension of simple chains to the PERT-graphs for each product does 
not change the inherent mathematical structure of the model suggested by Kats et al. (2007), 
and the complexity of the algorithm proposed for solving P.    

4.3. A Polynomial Algorithm for Scheduling the FMS Shop 

In this section, we develop results contained in Alcaide et al. (2007) and Kats et al. (2007). 
Our considerations are based on the strongly polynomial algorithm for solving problem P
suggested by Kats et al. (2007). However, for reader’s convenience, we present the algorithm 
for problem Q in a simplified form, following the scheme and notation developed in Levner 
and Kats (1998).  To do so, let’s start with the following result. 
PROPOSITION 1. Problem Q is a parametric critical path (PCP) problem defined upon a directed 
network GP = (V, A) with parameter-dependent arc lengths. 
The proof is along the same line as for problem P in Kats et al. (2007). 
The algorithm below for solving Q is called the Parametric Critical Path (PCP) algorithm. As 
that for problem P, it consists of three steps (Table 2 below). The first step assigns initial 
labels to nodes in a given network GP, the second step corrects the labels, and the third step, 

based on the labels obtained, finds the set  of all feasible cycle times or discovers if this 
set is empty.  
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PARAMETRIC CRITICAL PATH (PCP) ALGORITHM  

Step 1 . // Initialization.

         Enumerate all the nodes of V {f} in an arbitrary order. 

        Assign labels p0(s)= p10= 0, pj0 =  w(s  j) if  j s;   

                 Pred(s) = , and p0(v) = –   to all other nodes v of V f.

Step 2. // Label correction.

For i := 1 to n -1 do

      For each arc e = (t(e), h(e)) A compute max{pi-1(h(e)), p i-1(t(e)) + w(e)}.
      Calculate 

    pi(h(e)):= ehuwu,pehp i-i-

ed(h(e))u

11

Pr

maxmax .                              (6) 

//Notice that for u  Pred(h(e)), u  h(e) denotes the existing arc from u to h(e)).

Step 3. //Finding all feasible T  values or displaying ‘no solution’.
For each arc e = (t(e), h(e)) A solve the following system of functional 
inequalities  

pn-1(t(e)) + w(e) pn-1(h(e)),                                                  (7) 

           with respect to T.

Let be the set of values of T satisfying (7) for all e A.
          If , then return  and stop. Otherwise return ‘no solution’. 

At termination, the algorithm either produces the set  of all feasible T, or it 

reveals that  = . In the case , then = [Tmin, Tmax] is an interval. 

Let be the set of values of feasible T satisfying (6)-(7) for all e A.

  If , then return  and stop. Otherwise return ‘No solution’ and stop. 

   

Table 2. The Parametric Critical Path (PCP) Algorithm 

The algorithm terminates with a non-empty set, ,  if there exists at least one feasible cycle 

time on GP.  By the definition of ,  the optimal cycle time 
*T is the minimal value in 

Once the value of T* is known, the optimal values of all the t-variables in model Q (i.e., the 

optimal starting times of robot operations in sequence ) are known as well, and the optimal 

processing time,  where 

.

,][],[ irisp ,][],[][],[][],[ irisirisiris bpa for each part 
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Kkir ,...,2,1][  in each respective station along its route,][is ,1 ni can be 

found.

For each arc e A(Gp),  let t(e), h(e), and w(e) denote the tail, the head, and the length of arc e,
respectively. Let j denote node ,12]),[],([ njjrj ,])[],([ Vjrj pji denote 

the distance label of node j found at the i-th iteration of the PCP algorithm, and (k  j) denote 
the arc from node k to j. Let N= n+1 be the total number of nodes of GP (counting for all the 
nodes in V plus the added dummy node f), and M the total number of iterations. 
It is worth noticing that  labels pi(u) in (6)–(7) are not numbers but the piecewise-linear 
functions of T.
PROPOSITION 2. The Parametric Critical Path algorithm finds the optimal solution to  problem Q
correctly. The complexity of the parametric critical path algorithm is O(n4), in the worst case. 
The proof is identical to that for problem P in Kats et al. (2007). 
The following example illustrates how an optimal schedule is obtained by the use of the 
proposed PCP algorithm. 

Example (Continued). The sequence   of robot moves is fixed and given: 

 = <(0,b0,U), (2,b0,L), (4,a-1,U), (1,b-1,U), (4,b-1,L), (3,a-1,U), (5,a-1,L),

(3,b-1,L), (0,a0,U), (1,a0,L), (5,a-1,U), (6,a-1,L), (3,b-1,U), (1,a0,U), (3,a0,L),  

(4,b-1,U), (5,b-1,L), (2,b0,U), (1,b0,L), (2,a0,L), (5,b-1,U), (6,b-1,L), (4,a0,L), 

(2,a0,U)>. 

Here we use a more detailed description of robot operations given in the form of triplets (*, 
*, *). A number in the first position determines the processing machine or 
loading/unloading station, numbered 0 and 6, respectively. A symbol in the second position 
determines the product type (a or b); a corresponding subscript determines to which MPS 
replica the product belongs. A symbol in the last position determines that a product is either 
loaded (symbol L) or unloaded (symbol U).  

Then the life cycle of the MPS is completed within two consecutive cycles || , and is 
shown in Fig. 6. The Gantt chart of the movements of  products and the robot under the 
optimal schedule are presented graphically in Fig.10. The minimum cycle time T* = 88. 
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Figure 10. The Gantt chart of product processing operations and robot movements 

We have studied a variation of the single multi-gripper robot cyclic scheduling problem 
with a fixed robot operation sequence and the time window constraints on the processing 
times.  It generalizes the known single-robot single-product problems into the one involving 
a processing network, multiple products, and general precedence relations between the 
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processing steps for different products in the form of PERT graphs. We reduced the problem 
to the parametric critical path problem and solved it in polynomial time by an extension to 
the Bellman-Ford algorithm. In particular, we simplified the description of the labeling 
procedure suggested by Kats et al. (2007) needed to solve the parametric version of the 
critical path problem in strongly polynomial time.  

5. Concluding Remarks 

Since Johnson’s (1954) and Bellman’s (1956) seminal papers, the machine scheduling theory 
have received considerable development and enhancement over the last fifty years. As a 
result, a variety of scheduling problems and optimization techniques have been developed. 
This chapter provides a brief survey of the evolution of basic cyclic scheduling problems 
and possible approaches for their solution started with a discussion of early works appeared 
in the 1960s. Although the cyclic scheduling problems are, in general, NP-hard, a graph 
approach described in the final sections of this chapter permits to reduce some special case 
to the parametric critical path problem in a graph and solve it in polynomial time. The 
proposed parametric critical path algorithm can be used to design new heuristic search 
algorithms for more general problems involving multiple multi-gripper robots, parallel 
machines/tanks at each workstation and more general scenarios of cyclic processes in the 
cells, like, for example, multi-degree periodic processes. These are the topics for future 
research.
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1. Abstract 

Scheduling models deal with the best way of carrying out a set of jobs on given processing 
resources. Typically, the jobs belong to a single decision maker, who wants to find the most 
profitable way of organizing and exploiting available resources, and a single objective 
function is specified. If different objectives are present, there can be multiple objective 
functions, but still the models refer to a centralized framework, in which a single decision 
maker, given data on the jobs and the system, computes the best schedule for the whole 
system. 
This approach does not apply to those situations in which the allocation process involves 
different subjects (agents), each having his/her own set of jobs, and there is no central 
authority who can solve possible conflicts in resource usage over time. In this case, the role 
of the model must be partially redefined, since rather than computing "optimal" solutions, 
the model is asked to provide useful elements for the negotiation process, which eventually 
leads to a stable and acceptable resource allocation. 
Multi-agent scheduling models are dealt with by several distinct disciplines (besides 
optimization, we mention game theory, artificial intelligence etc), possibly indicated by 
different terms. We are not going to review the whole scope in detail, but rather we will 
concentrate on combinatorial models, and how they can be employed for the purpose on 
hand. We will consider two major mechanisms for generating schedules, auctions and 
bargaining models, corresponding to different information exchange scenarios. 
Keywords: Scheduling, negotiation, combinatorial optimization, complexity, bargaining, 
games. 

2. Introduction 

In the classical approach to scheduling problems, all jobs conceptually belong to a single 
decision maker, who is obviously interested in arranging them in the most profitable (or less 
costly) way. This typically consists in optimizing a certain objective function. If more than 
one optimization criterion is present, the problem may become multi-criteria (see e.g. the 
thorough book by T'Kindt and Billaut [33]), but still decision problems and the 
corresponding solution algorithms are conceived in a centralized perspective. 
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This approach does not apply to situations in which, on the contrary, the allocation process 
involves different subjects (agents), each with its own set of jobs, requiring common 
resources, and there is no "superior" subject or authority who is in charge of solving conflicts 
on resource usage. In such cases, mathematical models can play the role of a negotiation 
support tool, conceived to help the agents to reach a mutually acceptable resource 
allocation. Optimization models are still important, but they must in general be integrated 
with other modeling tools, possibly derived from disciplines such as multi-agent systems, 
artificial intelligence or game theory. 
In this chapter we want to present a number of modeling tools for multi-agent scheduling 
problems. Here we always consider situations in which the utility (or cost) function of the 
agents explicitly depends on some scheduling performance indices. Also, we do not 
consider situations in which the agents receiving an unfavorable allocation can be 
compensated through money. Scheduling problems with transferable utility are a special 
class of cooperative games called sequencing games (for a thorough survey on sequencing 
games, see Curiel et al. [9]). While interesting per se, sequencing games address different 
situations, in which, in particular, an initial schedule exists, and utility transfers among the 
agents take into account the (more or less privileged) starting position of each agent. This 
case does not cover all situations, though. For instance, an agent may be willing to complete 
its jobs on time as much as possible, but the monetary loss for late jobs can be difficult to 
quantify.
A key point in multi-agent scheduling situations concerns how information circulates 
among the agents. In many circumstances, the individual agents do not wish to disclose the 
details of their own jobs (such as the processing times, or even their own objectives), either 
to the other agents, or to an external coordinator. In this case, in order to reach an allocation, 
some form of structured protocol has to be used, typically an auction mechanism. On the 
basis of their private information, the agents bid for the common resource. Auctions for 
scheduling problems are reviewed in Section 3, and two meaningful examples are described 
in some detail. A different situation is when the agents are prone to disclose information 
concerning their own jobs, to openly bargain for the resource. This situation is better 
captured by bargaining models (Section 4), in which the agents must reach an agreement over 
a bargaining set consisting of all or a number of relevant schedules. In this context, two 
distinct problems arise. First, the bargaining set has to be computed, possibly in an efficient 
way.
Second, within the bargaining set it may be of interest to single out schedules which are 
compatible with certain assumptions on the agents' rationality and behavior, as well as 
social welfare. The computation of these schedules can also be viewed as a tool for an 
external facilitator who wishes to drive the negotiation process towards a schedule 
satisfying given requirements of fairness and efficiency. These problems lead to a new, 
special class of multicriteria scheduling problems, which can be called multi-agent or 
competitive scheduling problems. Finally, in Section 5, we present some preliminary results 
which refer to structured protocols other than the auctions. In this case, the agents submit 
their jobs to an external coordinator, who selects the next job for processing. In all cases, we 
review known results and point out venues for future research. 
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3. Motivation and notation 

Multi-agent scheduling models arise in several applications.  Here we briefly review some 
examples.

Brewer and Plott [7] address a timetable design problem in which a central rail 
administration sells to private companies the right to use railroad tracks during given 
timeslots. Private companies behave as decentralized agents with conflicting objectives 
that compete for the usage of the railroad tracks through a competitive ascending-price 
auction.   Each company has a set of trains to route through the network and a certain 
ideal timetable. Agent preferences are private values, but delayed timeslots have less 
value than ideal timeslots. 
Decentralized multi-agents scheduling models have been studied also for many other 
transportation problems, e.g., for aiport take-off and landing slot allocation problems 
[27]. For a comprehensive analysis of agent-based approaches to transport logistics, see 
[10].

In [29, 4] the problem of integrating multimedia services for the standard SUMTS 
(Satellite-based Universal Mobile Telecommunication System) is considered.  In this 
case the problem is to assign radio resources to various types of packets, including 
voice, web browsing, file transfer via ftp etc.  Packet types correspond to agents, and 
have non-homogeneous objectives. For instance, the occasional loss of some voice-
packet can be tolerated, but the packets delay must not exceed a certain maximum 
value, not to compromise the quality of the conversation.  The transmission of a file via 
ftp requires that no packet is lost, while requirements on delays are soft. 

Multi-agent scheduling problems have been widely analyzed in the manufacturing 
context [30, 21, 32].   In this case the elements of the production process (machines, jobs, 
workers, tools...) may act as agents, each having its own objective (typically related to 
productivity maximization). Agents can also be implemented to represent physical 
aggregations of resources (e.g., the shop floor) or to encapsulate manufacturing 
activities (e.g., the planning function). In this case, using the autonomous agents 
paradigm is often motivated by the fact that it is too complex and expensive to have a 
single, centralized decision maker. 

Kubzin and Strusevich [16] address a maintenance planning problem in a two-machine 
shop. Here the maintenance periods are viewed as operations competing with the jobs 
for machines occupancy. An agent owns the jobs and aims to minimize the completion 
time of all jobs on all machines, while another agent owns the maintenance periods 
whose processing times are time dependent. 

We next introduce some notation, valid throughout the chapter. A set of m agents is given, 
each owning a set of jobs to be processed on a single machine. The machine can process only 

one job at a time. We let i denote an agent, i = 1,..., m,  its job set, and  the j-th of its 

jobs, having length . Let also . Depending on specific situations, there are 

other quantities associated to each job, such as a due date , a weight , which can be 

regarded as a measure of the job's importance (for agent i), a reward , which is obtained if 

the job is completed within its due date. We let denote a generic job, when agent's 

ownship is immaterial. Jobs are all available from the beginning and once started, jobs 
cannot be preeempted. A schedule is an assignment of starting times to the jobs. Hence, a 
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schedule is completely specified by the sequence in which the jobs are executed. Let be a 

schedule. We denote by  the completion time of job  in . If each agent owns 

exactly one job, we indicate the above quantities as .

Agent i has a utility function , which depends exclusively on the completion times of 

its own jobs. Function is nonincreasing as the completion times of its jobs grow. In 

some cases it will be more convenient to use a cost function , obviously nondecreasing 

for increasing completion times of the agent's jobs. 
Generally speaking, each agent aims at maximizing its own utility (or minimizing its costs). 
To pursue this goal, the agents have to make their decisions in an environment which is 
strongly characterized by the presence of the other agents, and will therefore have to carry 
out a suitable negotiation process. As a consequence, a decision support model must 
suitably represent the way in which the agents will interact to reach a mutually acceptable 
allocation. The next two chapters present in some detail two major modeling and procedural 
paradigms to address bargaining issues in a scheduling environment. 

4. Auctions for decentralized scheduling 

When dealing with decentralized scheduling methods, a key issue is how to reach a 
mutually acceptable allocation, complying with the fact that agents are not able (or willing) 
to exchange all the information they have. This has to do with the concept of private vs. 
public information. Agents are in general provided a certain amount of public information, 
but they will make their (bidding) decisions also on the basis of private information, which 
is not to be disclosed. Any method to reach a feasible schedule must therefore cope with the 
need of suitably representing and encoding public information, as well as other possible 
requirements, such as a reduced information exchange, and possibly yield "good" (from 
some individual and/or global viewpoint) allocations in reasonable computational time. 
Actually, several distributed scheduling approaches have been proposed, making use of some 
degree of negotiation and/or bidding among job-agents and resource-agents. Among the 
best known contributions, we cite here Lin and Solberg [21]. Pinedo [25] gives a concise 
overview of these methods, see also Sabuncuoglu and Toptal [28]. These approaches are 
typically designed to address dynamic, distributed scheduling problems in complex, large-
scale shop floor environments, for which a centralized computation of an overall "optimal" 
schedule may not be feasible due to communication and/or computation overhead. 
However, the conceptual framework is still that of a single subject (the system's owner) 
interested in driving the overall system performance towards a good result, disregarding 
jobs' ownship. In other words, in the context of distributed scheduling, market mechanisms 
are mainly a means to bypass technical and computational difficulties. Rather, we want to 
focus on formal models which explicitly address the fact that a limited number of agents, 
owning the jobs, bid for processing resources. In this respect, auction mechanisms display a 
number of positive features which make them natural candidates for complex, distributed 
allocation mechanisms, including scheduling situations. Auctions are usually simple to 
implement, and keep information exchange limited. The only information flow is in the 
format of bids (from the agents to the auctioneer) and prices (from the auctioneer to the 
agents). Also, the auction can be designed in a way that ensures certain properties of the 
final allocation. 
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Scheduling auctions regard the time as divided into time slots, which are the goods to be 
auctioned. The aim of the auction is to reach an allocation of time slots to the agents. This 
can be achieved by means of various, different auction mechanisms. Here we briefly review 
two examples of major auction types, namely an ascending auction and a combinatorial 
auction.
In this section we address the following situation. There is a set G of goods, consisting of T
time slots on the machine. Processing of a job requires an integer number of time slots 

on the machine, which can, in turn, process only one job at a time. If a job  is completed 

within slot , agent i obtains a reward . The agents bid for the time slots, and an 

auctioneer collects the bids and takes appropriate action to drive the bidding process 
towards a feasible (and hopefully, "good") allocation. We will suppose that each agent has a 
linear utility or value function (risk neutrality), which allows to compare the utility of 
different agents in monetary terms. The single-agent counterpart of the scheduling problem 
addressed here is the problem 1 .

What characterizes an auction mechanism is essentially how can the agents bid for the 
machine, and how the final allocation of time slots to the agents is reached. 

4.1 Prices and equilibria 

Wellman et al. [34] describe a scheduling economy in which the goods have prices, 
corresponding to amounts of money the agents have to spend to use such goods. An 
allocation is a partition of G into i subsets, X = {X1, X2,..., Xm}. Let vi (Xi) be the value function 

of agent i if it gets the subset of goods. The value of an allocation v (X) is the sum of 
all value functions, 

If slot t has price pt, the surplus for agent i is represented by 

Clearly, each agent would like to maximize its surplus, i.e. to obtain the set Xi* such that 

Now, if it happens that, for the current price vector p, each agent is assigned exactly the set 
Xi*, no agent has any interest in swapping or changing any of its goods with someone else's, 
and therefore the allocation is said to be in equilibrium for p1. An allocation 

                                                                
1 Actually, a more complete definition should include also the auctioneer, playing the role of the owner 

of the goods before they are auctioned. The value of good t to the auctioneer is qt, which is the starting 
price of each good, so that at the equilibrium pt = qt for the goods which are not being allocated. For the 
sake of simplicity, we will not focus on the auctioneer and implicitly assume that qt = 0 for all t.
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is optimal if its total value is maximum among all feasible 
allocations. 
Equilibrium (for some price vector p) and optimality are closely related concepts. In fact, the 
following property is well-known (for any exchange economy): 
Theorem 1: If an allocation X is in equilibrium at prices p, then it is optimal. 
In view of this (classical) result, one way to look at auctions is to analyze whether a certain 
auction mechanism may or may not lead to a price vector which supports equilibrium (and 
hence optimality). Actually, one may first question whether the converse of Theorem 1 
holds, i.e., an optimal allocation is in equilibrium for some price vector. Wellman et al. show 

that in the special case in which all jobs are unit-length ( = 1 for all , i = 1 , . . . , 

m) , an optimal allocation is supported by a price equilibrium (this is due to the fact that in 
this case each agent's preferences over time slots are additive, see Kelso and Crawford [15]). 
The rationale for this is quite simple. If jobs are unit-length, the different time slots are 
indeed independent goods in a market. No complementarities exist among goods, and the 
value of a good to an agent does not depend on whether the agent owns other goods. 
Instead, if one agent has one job of length pi = 2, obtaining a single slot is worthless to the 
agent if it does not get at least another. 
As a consequence, in the general case we cannot expect that any price formation mechanism 
reaches an equilibrium. Nonetheless, several auction mechanisms have been proposed and 
analyzed.

4.2 Interval scheduling 

Before describing the auction mechanisms, let us briefly introduce an optimization 
subproblem which arises in many auction mechanisms. 
Suppose that to use a certain time slot t, an agent i has to pay . Given the prices of the 

time slots, the problem is to select an appropriate subset of jobs from  and schedule them 
in order to maximize the agent i's revenue. Let ujt the utility (given the current prices) of 

starting job  at time t. Recalling that there is a reward for timely completion of job 

 (otherwise the agent may not have incentives to do any job), one has 

where  = 1 if x > 0 and  = 0 otherwise. Letting xjt = 1 if  is started in slot t, we

can formulate the problem as: 

(1)
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Elendner [11] formulates a special case of (1) (in which ujt = ut for all j) to model the winner 
determination problem in a sealed-bid combinatorial auction, and calls it Weighted Job 
Interval Scheduling Problem (WJISP), so we will also call it. In the next sections, we show 
that this problem arises from the agent's standpoint in several auction mechanisms. Problem 
(1) can be easily proved to be strongly NP-hard (reduction from 3-PARTITION).

4.3 Ascending auction 

The ascending auction is perhaps the best known auction mechanism, and in fact it is widely 
implemented in several contexts. Goods are auctioned separately and in parallel. At any 
point in time, each good t has a current price , which is the highest bid for t so far. The 

next bid for t will have to be at least (the ask price). Agents can asynchronously bid 

for any good in the market. When a certain amount of time elapses without any increase in a 
good's price, the good is allocated to the agent who bid last, for the current price. 
This auction scheme leaves a certain amount of freedom to the agent to figure out the next 
bid, and in fact a large amount of literature is devoted to the ascending auction in a myriad 
of application contexts. In our context, we notice that a reasonable strategy for agent i is to 
ask for the subset X(i) maximizing its surplus for the current ask prices. This is precisely an 
instance of WJISP, which can therefore be nontrivial to solve exactly. 
Even if, in the unit-length case, a price equilibrium does exist, a simple mechanism such as 
the ascending auction may fail to find one. However, Wellman et al. [34] show that the 
distance of the allocation provided by the auction from an equilibrium is bounded. In 
particular, suppose for simplicity that the number of agents m does not exceed the number 

of time slots. In the special case in which  = 1 and pi = 1 for all i, the following results 
hold: 
Theorem 2 The final price of any good in an ascending auction differs from the respective 
equilibrium price by at most .
Theorem 3 The difference between the value of the allocation produced by an ascending auction and 
the optimal value is at most .

4.4 Combinatorial mechanisms 

Despite their simplicity, mechanisms as the ascending auction may fail to return satisfactory 
allocations, since they neglect the fact that each agent is indeed interested in getting bundles 
of (consecutive) time slots. For this reason, one can think of generalizing the concept of price 
equilibrium to combinatorial markets, and analyze the relationship between these concepts 
and optimal allocations. This means that now the goods in the market are no more simple 
slots, but rather slot intervals [t1, t2]. This means that rather than considering the price of 
single slots, one should consider prices of slot intervals. Wellman et al. show that it is still 
possible to suitably generalize the concept of equilibrium, but some properties which were 
valid in the single-slot case do not hold anymore. In particular, some problems which do not 
admit a price equilibrium in the single-unit case do admit an equilibrium in the larger space 
of combinatorial equilibria, but on the other hand, even if it exists, a combinatorial price 
equilibrium may not result in an optimal allocation. 
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In any case, the need arises for combinatorial auction protocols, and in fact a number has 
appeared in the literature so far. These mechanisms have in common the fact that through 
an iterative information exchange between the agents and the auctioneer, a compromise 
schedule emerges. The amount and type of information exchanged characterizes the various 
auction protocols. Here we review one of these mechanisms, adapting it from Kutanoglu 
and Wu [17]2. The protocol works as follows. 
1. The auctioneer declares the prices of each time slot, let , t = 1,..., T indicate the price 

of time slot t. On this basis, each agent i prepares a bid Bi, i.e., indicates a set of (disjoint) 
time slot intervals that the agent is willing to purchase for the current prices.  Note that 

the bid is in the format of slot intervals, i.e.  Bi  = , meaning 

that it is worthless to the agent to get only a subset of each interval. 
2. The auctioneer collects all the bids. If it turns out that no slot is required by more than 

one agent, the set of all bids defines a feasible schedule and the procedure stops. Else, a 
feasible schedule is computed which is "as close as possible" to the infeasible schedule 
defined by the bids. 

3. The auctioneer modifies the prices of the time slots accounting for the level of conflict on 
each time slot, i.e., the number of agents that bid for that slot. The price modification 
scheme will tend to increase the price of the slots with a high level of conflict, while 
possibly decreasing the price of the slots which have not been required by anyone. 

4. The auctioneer checks a stopping criterion. If it is met, the best solution (from a global 
standpoint) so far is taken as final allocation.  Else, go back to step 1 and perform 
another round. 

Note that this protocol requires that a bid consists of a number of disjoint intervals, and each 
of them produces a certain utility if the agent obtains it. In other words, we assume that it is 
not possible for the agent to declare preferences such as "either interval [2,4] or [3,5]". This 
scheme leaves a number of issues to be decided, upon which the performance of the method 
may heavily depend. In particular: 

How should each agent prepare its bid 

How should the prices be updated 

What stopping criterion should be used. 

4.4.1 Bid preparation 

The problem of the agent is again in the format of WJISP. Given the prices of the time slots, 

the problem is to select an appropriate subset of jobs from  and schedule them in order 
to maximize the agent i's revenue, with those prices. The schedule of the selected jobs 
defines the bid. 
We note here that in the context of this combinatorial auction mechanism, solving (1) exactly 
may not be critical. In fact, the bid information is only used to update the slot prices, i.e., to 
figure out which are the most conflicting slots. Hence, a reasonable heuristic seems the most 
appropriate approach to address the agent's problem (1) in this type of combinatorial 
auctions.

                                                                
2 Unlike the original model by Kutanoglu and Wu, we consider here a single machine, agents owning 

multiple jobs, and having as objective the weighted number of tardy jobs.
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4.4.2 Price update 

Once the auctioneer has collected all agents' bids, it can compute how many agents actually 

request each slot. At the r-th round of the auction, the level of conflict of slot t is simply 

the number of agents requesting that slot, minus 1 (note that  = — 1 if no agent is 

currently requesting slot t). A simple rule to generate the new prices is to set them linearly 
in the level of conflict: 

where kr is a step parameter which can vary during the algorithm. For instance, one can start 
with a higher value of kr, and decrease it later on (this is called adaptive tatonnement by
Kutanoglu and Wu). 

4.4.3 Stopping criterion and feasibility restoration 

This combinatorial auction mechanism may stop either when no conflicts are present in the 
union of all bids, or because a given number of iterations is reached. In the latter case, the 
auctioneer may be left with the problem of solving the residual resource conflicts when the 
auction process stops. This task can be easy if few conflicts still exist in the current solution. 
Hence, one technical issue is how to design the auction in a way that produces a good 
tradeoff between convergence speed and distance from feasibility. In this respect, and when 
the objective function is total tardiness, Kutanoglu and Wu [17] show that introducing price 
discrimination policies (i.e., the price of a slot may not be the same for all agents) may be of 
help, though the complexity of the agent subproblem may grow. As an example of a 
feasibility restoration heuristic, Jeong and Leon [18] (in the context of another type of 
auction-based scheduling system) propose to simply schedule all jobs in ascending order of 
their start times in the current infeasible schedule. Actually, when dealing with the multi-

agent version of problem l , it may well be the case that a solution without conflicts 
is produced, since many jobs are already discarded by the agents when solving WJISP. 

4.4.4 Relationship to Lagrangean relaxation 

The whole idea of a combinatorial auction approach for scheduling has a strong relationship 
with Lagrange optimization. In fact, the need for an auction arises because the agents are 
either unwilling or unable to communicate all the relevant information concerning their jobs 
to a centralized supervisor. Actually, what makes things complicated is the obvious fact that 
the machine is able to process one job at a time only. If there were no such constraint, each 
agent could decide its own schedule simply disregarding the presence of the other agents. 
So, the prices play the role of multipliers corresponding to the capacity constraints. 
To make things more precise, consider the problem of maximizing the overall total revenue. 
Since it is indeed a centralized problem, we can disregard agent's ownship. and simply use j
to index the jobs. We can use the classical time-indexed formulation by Pritsker et al. [26]3.
The variable xjt is equal to 1 if job j has started by time slot t and 0 otherwise. Hence, the 

revenue is won by the agent if and only if job j has started by time slot dj —pj + l.

                                                                
3 The following is a simplification of the development presented by Kutanoglu and Wu, who deal with 

job shop problems.



Multiprocessor Scheduling: Theory and Applications 30

(2)

Constraints (2) express machine capacity. In fact, for each t there can be at most one job j
which has already started at slot t and had not yet started at time t — pj (which means that j
is currently under process in slot t) . Now, if we relax the machine capacity constraints in a 
Lagrangean fashion, we get the problem 

(3)

(Note that (3) can be solved by inspection, separately for each job.) The value  is an 
upper bound on the optimal solution to (2). In an optimization context. one is typically 
interested in finding the best such bound, i.e.. 

(4)

To solve (5), a very common approach is to iteratively update the multiplier vector  by the 
subgradient algorithm, i.e., indicating by the current optimal solution to (3) when  = r

(5)

where sr is an appropriate step size. Now, observe that the term in braces in (5) is precisely 
what we previously called the level of conflict. Hence, it turns out that the subgradient 
algorithm is equivalent to a particular case of combinatorial auction (with adaptive 
tatonnement). 

5. Bargaining problems and Pareto optimal schedules 

We next want to analyze the scheduling problem from a different perspective. So far we 
supposed that it is possible, to a certain extent, to give a monetary evaluation of the quality 
of a solution. Actually, the value function of each agent might depend on certain schedule-
related quantities which may not be easy to assess. For instance, completing a job beyond its 
due date may lead to some monetary loss, but also to other consequences (e.g. loss of 
customers' goodwill) which can be difficult to quantify exactly. In such cases, it appears 
more sensible that the agents directly negotiate upon possible schedules. 
Bargaining models are a special class of cooperative games with non-transferable utility. For 
our scheduling situations, this means that the agents are, in principle, willing to disclose 
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information concerning their jobs, and use this information to build a set of solutions and 
reach a satisfactory compromise schedule. Note that, unlike our previous assumptions, the 
agents may now have heterogeneous objectives. Also, for the sake of simplicity we deal here 
with the situation in which there are only two agents. However, the major concepts can be 
cast in a more general, m-agent, setting. 
The viewpoint of axiomatic bargaining models is to characterize certain schedules, 
displaying some desirable properties which make them special candidates to be the outcome 
of negotiation. Here we want to apply some of these concepts to the scheduling setting, 
pointing out key issues from the modeling and computational viewpoints. 

5.1 Bargaining problems 

In a bargaining problem, two players (Agent 1 and Agent 2) have to negotiate a common 
strategy, i.e., choose an element of a set S of possible agreements. Each point s S is a pair of 
payoffs for Agent 1 and 2 respectively, denoted by u1(s) and u2(s). If negotiation fails, 
Agents 1 and 2 get the payoff d1 and d2 respectively. A bargaining problem is a pair (S, d), 
where:

1.
2. d = (d1, d2) is the disagreement point, i.e. the results of the failure of negotiation 
3. at least one point (u1, u2) S exists such that u1 > d1 and u2 > d2.
We next want to suitably characterize certain agreements in terms of efficiency and fairness. 
In fact, even if negotiation is helped by an external entity, it makes sense to select a few 
among all possible schedules, in order not to confuse the players with an excessive amount 
of information. A solution of a bargaining problem is an application which assigns to any 
problem instance (S, d) a subset of agreements (possibly, a single agreement)  (S, d) S. 
Consider now the following four axioms. which may or may not be satisfied by a certain 
solution :
1. (Weak) Efficiency (PAR): 

if s  (S, d), then there is no t S such that t1 > S1 and t2 > S2

2. Symmetry (SYM) : 
if (S, d) is symmetric, (u1, u2)  (S, d) if and only if  (u1, u2)  (S, d)

3. Scale Covariance (SC) : 

 such that , if we let 

:  and , then 

4. Independence of Irrelevant Alternatives (HA) : 
if we restrict the bargaining set to a subset such that , then 

.
The meaning of these axioms should be apparent. PAR means that if s  (S, d), then there 
is no other agreement such that both agents are better off, i.e., s is Pareto optimal. SYM 
implies that whenever the two agents have identical job sets and payoff functions, the 
outcome should give both players the same payoff. SC is related to the classical concept of 
utility, and states that the solution should not change if we use equivalent payoff 
representations. Finally, IIA says that the solution of a problem should not change if some 
agreements (not containing the solution) are removed from the bargaining set. 
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The classical notion of bargaining problem assumes S be a compact, convex subset of .
For this case, Nash [23] proved that if and only if a solution  (S, d) satisfies all four axioms, 
then  (S, d) consists of a single agreement , given by: 

(6)

and is called the Nash bargaining solution (NBS). Since in our case the bargaining set is 
indeed a finite set of distinct schedules, the concept of NBS must be suitably extended. 
When S is a general, possibly discrete, set, Mariotti [22] showed that if and only if a solution 

satisfies all four axioms 1-4, then is given by 

(7)

The price we pay for this generalization is that may no longer consist of a single 

agreement. We still refer to set as the NBS. 

So far we considered the payoffs (u1, u2) associated with an agreement. For our purpose, it is 

convenient to associate with each agreement a pair of costs (c1,c2), and let be the set of all 
cost pairs. Let now  be the costs of the worst agreements for Agent 1 and 2 
respectively, i.e. 

(8)

In what follows, we assume that the players' costs in the event of breakdown are given by 

 respectively. This is equivalent to assuming that also includes the point .

Clearly, this models a situation in which the players are strongly encouraged to reach an 
agreement (other than ). Letting and , we can define a 

bargaining problem (S, d) in which S is obtained from by a symmetry with respect to the 
point , followed by a shift , so that the disagreement point is the origin. In 

other words, we use as value function of a given agreement the saving with respect to the 
most costly alternative. The disagreement point is hence mapped in (0, 0) and the NBS is 
therefore given by 

(9)

5.2 Application to scheduling problems 

Let us now turn to our scheduling scenario. We denote the two players as Agent 1 (having 

job set ) and Agent 2 (with job set ). We 

call 1-jobs and 2-jobs the jobs of the two sets. The players have to agree upon a schedule, i.e., 
an assignment of starting times to all jobs. Agents 1 and 2 are willing to minimize cost 
functions  respectively, where denotes a schedule of the n = n1 + n2 jobs, 
and both cost functions are nondecreasing as each job's completion time increases. Note that 
we can restrict our analysis to active schedules, i.e., schedules in which each job starts 
immediately after the completion of the previous job. As a consequence, a schedule is 
completely specified by the sequence in which the jobs are scheduled. Also, we can indeed 
restrict our attention to Pareto optimal schedules only, since it does not appear reasonable 
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that the agents ultimately agree on a situation from which penalizes both of them. In order 
to find Pareto-optimal schedules, consider the following problem: 

Figure 1. Scheme for the enumeration of Pareto optimal schedules 

. Given job sets J1, J2, cost functions c1(·), c2(· ), and an integer Q, find
* such that 

Note that if * is not Pareto optimal, a schedule of cost c1( *) which is also Pareto optimal 

can be found by solving a logarithmic number of instances of . In order to 

determine the whole set  of Pareto optimal schedules one can think of solving several 

instances of , for decreasing values of Q (see Fig. l). 

A related problem is to minimize a convex combination of the two agents' cost functions [5]: 

. Given job sets J1, J2, cost functions c1(·), c2(·), and  [0,1], 

find a schedule * such that  is minimum. 

The optimal solutions to , which are obtained for varying , are called 

extreme solutions. Clearly, all extreme solutions are also Pareto optimal, but not all Pareto 
optimal solutions are extreme. The following proposition holds. 
Proposition 1: If problem  is solvable in time , and S has size , then 

 is solvable in time  for a given .
Recalling (8) and (9), we can now formally define a scheduling bargaining problem. The 
bargaining set S consists of the origin d = (0, 0) plus the set of all pairs of payoffs 

. The set of Nash bargaining schedules is
then

(10)

In order to analyze a scheduling bargaining problem, one is therefore left with the following 
questions:

How hard is it to generate each point in S?
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How hard is it to generate extreme solutions in S?

How large is the bargaining set S?

How hard is it to compute the Nash bargaining solution? 
The answers to these questions strongly depend on the particular cost functions of the two 
agents. Though far from drawing a complete picture, a number of results in the literature 
exist, outlining a new class of scheduling problems. 
In view of (10), the problem of actually computing the set of Nash bargaining schedules is 
therefore a nonlinear optimization problem over a discrete set. In what follows, we study 
the computational complexity of generating the bargaining set S, for various cost functions 
c(·):

(maximum of regular functions) , where each  is 

nondecreasing in Cj . 

(number of tardy jobs) , where  = 1 if job Jj is late in  and 

 =  0 otherwise. 

(total weighted flow time) .

We next analyze some of the scenarios obtained for various combinations of these cost 
functions.

5.3

This case contains all cases in which each agent aims at minimizing the maximum of non-
decreasing functions, each depending on the completion time of a job. Particular cases 
include makespan Cmax, maximum lateness Lmax, maximum tardiness Tmax and so on. 
The problem of finding an optimal solution to  be efficiently solved by an 

easy reduction to the standard well-known, single-agent problem , which can be 
solved, for example, with an O(n2) algorithm by Lawler [19]. Lawler 's algorithm for this 
special case may be sketched as follows. At each step, the algorithm selects, among 
unscheduled jobs, the job to be scheduled last. If we let be the sum of the processing 

times of the unscheduled jobs, then any unscheduled 2-job  such that can be 

scheduled to end at . If there is no such 2-job, we schedule the 1-job  for which  is 

minimum. If, at a certain point in the algorithm, all 1-jobs have been scheduled and no 2-job 
can be scheduled last, the instance is not feasible. (We observe that the above algorithm can 
be easily extended to the case in which precedence constraints exist among jobs, even across 
the job sets J1 and J2. This may be the case, for instance, of assembly jobs that require 
components machined and released by the other agent.) 

For each 2-job , let us define a deadline and

. The job set J2 can be ordered a priori, in non-decreasing order of 

deadlines ., in time O(n2 Iog n2). At each step the only 2-job that needs to be considered is 

the unscheduled one with largest . On the other hand, for each job in J1, the 

corresponding value must be computed. Supposing that each  value can be 

computed in constant time, whenever no 2-job can be scheduled. all unscheduled 1-jobs may 
have to be tried out. Since this happens n1 times, we may conclude with the following 

Theorem 4: Problem can be solved in time .

Using the above algorithm, we get an optimal solution * to . Let 

. In general, we are not guaranteed that * is Pareto 

optimal. However, to find an optimal solution which is also Pareto optimal, we only need to 
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exchange the roles of the two agents, and solve an instance of  in which *
is the optimal value of  obtained with the Lawler's algorithm. Since this computation 

will require time , we may state the following 

Theorem 5: A Pareto optimal solution to Problem  can be computed in time 
.

The set of all Pareto optimal solutions (i.e., the bargaining set S) can be found by the 
algorithm in Fig.l in which the quantity must be small enough in order not to miss any 
other Pareto-optimal solution. The to be used depends on the actual shape of the f
functions. If their slope is small, small values of may be needed. Finally, in [1] it is shown 
that the following result holds. 

Theorem 6: There are at most n1n2 Pareto optimal schedules in .

As a consequence, and recalling Proposition 1, the problem  can be 

solved in time for any value of  [0, 1]. Similarly, from Theorem 6, 

finding the Nash bargaining solution simply requires to compute values u1( )u2( ) in 
equation (10) for all possible pairs of Pareto optimal solutions, which can be done in time 

.

5.4

This case contains all cases in which Agent 1 aims at minimizing the completion time of its 
jobs, while Agent 2 wants to minimize the maximum of nondecreasing functions, each 
depending on the completion time of the jobs in J2.

5.4.1

In this section we show that is polynomially solvable. Two lemmas 

allow us to devise the solution algorithm for this problem. 

Lemma 1: Consider a feasible instance of  and let . If there is a 
2-job such that , then there is an optimal schedule in which is scheduled last, and 
there is no optimal schedule in which a 1-job is scheduled last.
Proof. Let ' be an optimal schedule in which J| is not scheduled last, and let * be the 

schedule obtained by moving  in the last position. For any job other than ,

 and therefore, . In particular, if a 1-job is last 

in ', then , thus contradicting the optimality of '. For what 

concerns , its completion time is now , and by hypothesis . Hence, due to 

the regularity of for all k, the schedule * is still feasible and optimal.  

The second lemma specifies the order in which the 1-jobs must be scheduled. 

Lemma 2: Consider a feasible instance of  and let . If for all 1-
jobs , , then in any optimal schedule a longest l-job is scheduled last.
Proof. The result is established by a simple interchange argument.  
The solution algorithm is similar to the one in Section 5.3. At each step, the algorithm selects 
a job to be scheduled last among unscheduled jobs. If possible, a 2-job is selected. Else, the 
longest l-job is scheduled last. If all 1-jobs have been scheduled and no 2-job can be 
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scheduled last, the instance is infeasible. It is also easy to show that the complexity of this 
algorithm is dominated by the ordering phase, so that the following result holds. 

Theorem 7:  can be solved in time O(n1 log n1 + n2 log n2).

The optimal solution obtained by the above algorithm may not be Pareto optimal. The next 

lemma specifies the structure of any optimal solution to thus including 

the Pareto optimal ones. Given a feasible sequence , in what follows we define 2-block a
maximal set of consecutive 2-jobs in .
Lemma 3: Given a feasible instance of , for all optimal solutions:
(1) The partition of 2-jobs into 2-blocks is the same 
(2) The 2-blocks are scheduled in the same time intervals. 
Proof. See [1]. 
Lemma 3 completely characterizes the structure of the optimal solutions. The completion 
times of the 1-jobs are the same in all optimal solutions, modulo permutations of identical 
jobs. The 2-blocks are also the same in all optimal solutions, the only difference being the 
internal scheduling of each 2-block. Hence, to get a Pareto optimal schedule, it is sufficient 
to order the 2-jobs in each 2-block with the Lawler's algorithm [19]. Notice that selecting at 
each step the 2-job according to the Lawler's algorithm implies an explicit computation of 

the  functions. As a result, we cannot order the 2-jobs a priori, and the following 
theorem holds. 

Theorem 8: An optimal solution to  which is also Pareto optimal can be 
computed in time O(n1 log n1 + n2

2).
We next address the problem of determining the size of the bargaining set. From Lemma 2 
we know that in any Pareto optimal schedule, the jobs of J1 are SPT-ordered. As 

decreases, the optimal schedule for changes. It is possible to prove [1] 

that when the constraint on the objective function of agent 2 becomes tighter, the completion 
time of no 1-job can decrease. As a consequence. once a 2-job overtakes (i.e. it is done before) 
a 1-job in a Pareto optimal solution. As is decreased, no reverse overtake can occur when 

decreases further. Hence, the following result holds. 

Theorem 9: There are at most n1n2 Pareto optimal schedules in .

Finally, in view of Proposition 1 and Theorem 8, one has that an optimal solution to 

, as well as the Nash bargaining solution can be found in time. 

5.5

This case contains all cases in which Agent 1 aims at minimizing the weighted completion 
time of his/her jobs, while Agent 2 wants to minimize the maximum of nondecreasing 
functions, each depending on the completion time of the jobs in J2. The complexity of the 
weighted problem is different from the unweighted cases of previous section. For this 
reason we address this case separately from the unweighted one. 

5.5.1

We next address the weighted case of problem . A key result for the 

unweighted case, shown in Lemma 2 is that 1-jobs are SPT ordered in all optimal solutions, 

which would be also the optimal solution for the single agent problem . The 
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optimal solution for the single agent problem can be computed with the 

Smith's rule, i.e., ranking the jobs by nondecreasing values of the ratios  . The question 

then arises of whether 1-jobs are processed in this order also in the Pareto optimal solutions 

of . Unfortunately, it is easy to show that this is not the case in general. 

Consider the following example. 

Example 1: Suppose that set J2 consists of a single job having processing time  = 10, and that 
, i.e., that Agent 2 is only interested in competing his/her job within time  = 20. 

Agent 1 owns four jobs  with processing times and weights shown in table 1. 
Sequencing the 1-jobs with the Smith's rule and then inserting the only 2-job in the latest feasible 
position, one obtains the sequence , with  = 9*6+7*21+4*24+5* 28 = 

437, while the optimal solution is , with  = 9*6+5*10+7*25+4*28= 

391.

Table 1. Data for Agent 1 in Example 1 

We note that in the optimal solution of Example 1, Consecutive jobs of Agent 1 are WSPT-
ordered. Yet it is not trivial to decide how to insert the 2-jobs in the schedule. Indeed even 

when there is only one job of Agent 2 and its objective is to minimize , the 

problem turns out to be binary NP-hard. The reduction uses the well-known NP-hard 
KNAPSACK problem.
KNAPSACK. Given two sets of nonnegative integers {u1, u2, ···, un} and {w1, w2, ···, wn}, and

two integers b and W, find a subset S  {1,... ,n} such that and is
maximum. 

Theorem 10: is binary NP-hard.
Proof. We give a sketch of the proof, details can be found in [1]. Given an instance of 

KNAPSACK, we define an instance of as follows. Agent 1 has n jobs,

having processing times and weights , i = 1,..., n. Agent 2 has only one 

very long job, having processing time B. Also, we set the deadline for the 2-job to b+B. Now, 
the completion times of all the 1-jobs ending after the 2-job will pay B. If B is very large, the 
best thing one can do is therefore to maximize the total weight of the 1-jobs scheduled before 
the 2-job. Since these 1-jobs have to be scheduled in the interval [0,b], this is precisely 
equivalent to solving the original instance of KNAPSACK.

5.5.2 Generating extreme solutions 

Interestingly, while is NP-hard, the corresponding Problem 

 can be solved in polynomial time, as observed by Smith and 

Baker [5]. First note that, in any Pareto optimal solution, with no loss of generality Agent 2 
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may process its jobs consecutively, since it is only interested in its last job's completion time. 
Hence, we may replace the 2-jobs with a single (block) job for Agent 2. The processing time 
of the block job equals the sum of the processing times of the 2-jobs. Consider now 

. This problem is now equivalent to the classical (single- agent) 

with n+1 jobs where Agent 1 jobs have weights , j = 1, . . . , n, while the 

weight of the single 2-job is 1— . By applying the Smith's rule we may solve the problem in 
time O(n log n). Moreover. note that, varying the values of , the position of the 2-job 
changes in the schedule. while the 1-jobs remain in WSPT order. In conclusion, by 
repeatedly applying the above described procedure we are able to efficiently generate O(n1)
extreme Pareto optimal solutions. 

5.5.3 Generating the bargaining set 

Despite the fact that the number of extreme solutions is polynomial, Pareto optimal 
solutions are not polynomially many. 

Lemma 4: Consider an instance  in which Agent 2 has a single job of unit 
length, while Agent 1 has n1 jobs. For each 1-job i (i {1, 2, . . . , n1} = .
Then, for every active schedule, the quantity  is constant and equal to 

.
Proof. Given any active schedule , consider two adjacent 1-jobs j and k. Let t be the 
starting time of job j and t+pj the starting time of job k. The contribution to the objective 
function of the two jobs is then . Consider now the schedule 

in which the two jobs are switched: the contribution of the two jobs to the objective function 
is now . Observe now that wj pk = wk pj for any pair of jobs in 

 (since wi = pi for each job), thus proving that  and  have the same value of the 
objective function. This implies that any active schedule produces the same value of the 

quantity . This value can be computed, for example, by considering the 

sequence: . We have: 

Since  we can write: . Hence, 

we obtain: . In conclusion, the quantity 

 is equal to , and the thesis follows.  

Theorem 11: 
2

max|1 C  has an exponential number of Pareto optimal solutions. 
In order to prove that the instance of Lemma 4 has an exponential number of Pareto optimal 
pairs, consider that, for any value , there is a subset of J1 whose total length 

equals  — 1. This implies that there is a feasible solution to 2

max|1 C  where 

 and . This is clearly a Pareto optimal solution and 

therefore we have  Pareto optimal solutions.  
Finally, we observe that no polynomial algorithm is known for finding a Nash bargaining 
solution in the set of all Pareto optimal solutions and the complexity of this problem is still 
open.
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5.6 Other scenarios 

In the cases considered above, we observed that when problem  is poly-

nomially solvable, the number of Pareto optimal solutions is polynomially bounded, 
whereas if the same problem is NP-hard there are exponentially (pseudo-polynomially) 
many Pareto optima. Nonetheless, no general relationship links these two aspects. As an 

example, consider Problem which is NP-hard (this is a trivial 

consequence of Theorem 10). Clearly, the number of Pareto optimal solutions of any 

problem of the class cannot exceed n2, for any possible choice of Agent 1 

objective. 
Table 2 summarizes the complexity results of several two-agent scheduling problems. In 

particular, note that the complexity of is not known yet. In [24] it is 

shown that  is NP-hard under high multiplicity encoding (see also [6]), 
which does not rule out the possibility of a polynomial algorithm for the general case. If this 

problem were polynomially solvable, this would imply that is in 

P.
In [3], some extensions of the results reported in Table 2 to the case of k agents are 
addressed. When multiple agents want to minimize fmax objective functions, a simple 
separability procedure enables to solve an equivalent problem instance with a reduced 
number of agents. In Table 3 we report the complexity results for some maximal 
polinomially solvable cases. 

*The problem is NP-Hard under high multiplicity encoding [24] 
Table 2. Summary of complexity results for decision and Pareto optimization problems for 
two-agent scheduling problems 

Table 3. Maximal polynomially solvable cases of multi-agent scheduling problems 
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6. Single resource scheduling with an arbitrator 

In this section we briefly describe a different decentralized scheduling architecture, making 
use of a special coordination protocol. A preliminary version of the results presented here 
are reported in [2]. The framework considered is the same described in Section 5.2. Again, 
we consider a single machine (deterministic, non-preemptive) scheduling setting with two 

agents, owning job sets J1 =  and J2 =  respectively. Each agent 

wants to optimize its own cost function. 
In this scenario, the agents are not willing to disclose complete information concerning their 
jobs to the other agent, but only to an external coordination subject, called arbitrator. The 
protocol consists of iteratively performing the following steps: 
1. Each agent submits one job to the arbitrator for possible processing. 
2. The arbitrator selects one of the submitted jobs, according to a priority rule , and 

schedules it at the end of the current schedule. We assume the current schedule is 
initially empty. 

The priority rule is public information, whereas jobs characteristics are private information 
of the respective agent. The information disclosed by the agent concerns the processing time 
and/or other quantities relevant to apply the priority rule. After the job is selected and 
scheduled, its processing time is communicated also to the other agent. 

Let , be the cost function Agent h, h = 1,2, wants to minimize. We 

next report some results concerning the following cases for :
1. total completion time ;
2. total weighted completion time ; and 

3. number of late jobs .
As for the arbitrator rules , we consider 
1. Priority rules SPT, WSPT, and EDD if the arbitrator selects the next job to be scheduled 

between the two candidates according their minimum processing time, weighted 
processing time, and due date, respectively. 

2. Round-Robin rule RR: if agents' jobs are alternated. 
3. k- : a hybrid rule where at most k consecutive jobs of the same agents are selected 

according to rule .
In the following, we indicate the problem where the agents want to minimize cost functions 

 and the arbitrator rule is , as .

Example 2: Consider the two job sets in Table 4- Suppose the arbitrator has a rule R = EDD. Then, 
it will choose the earliest due date job between the two candidates. If the job is late in the sequence it is 
cancelled from the schedule. The resulting sequence is illustrated in Table 5.

Table 4. Job sets of Example 2 

On this basis, one is interested in investigating several scenarios, for different objective 
functions f1, f 2 and arbitrator rules . In particular, it is of interest to analyze the deviation 
of the resulting sequence from some "social welfare" solution (whatever the definition of 
such solution is). Of course, in an unconstrained scenario, one agent, say Agent 1, could 
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improve its objective function penalizing the objective of Agent 2 and the global 
performance. This would obviously occur if Agent 1 were free to decide the schedule of its 
jobs. As a consequence, one may ask if arbitrator's rules exist that make a fair behavior 
convenient for both agents. 
In the remainder of this section, we are addressing the latter problem in different scenarios, 
assuming as a social welfare solution one which minimizes the (unweighted) sum of the cost 
functions of the two agents. 
Definition 1: Given objective functions for the two agents, a global optimum is a 
sequence of minimizing the sum of the two objectives fl + f2.
Definition 2: Given objective functions for the two agents, and the priority rule 
R, an R -optimum is a sequence of minimizing the sum of the two objectives fl + f2,
among all the sequences which can be obtained applying rule R.

Table 5. Resulting sequence of Example 2 

Definition 3: Given the objective function  of Agent h (h = 1,2), and the priority rule , a h-

optimum is a sequence of jobs in that minimizes fh, among all the sequences which can be 
obtained applying rule .

6.1 WSPT rule 

We start our analysis with , that is the problem where both 

agents want to minimize their total (weighted) completion times and the arbitrator selects 
the next job choosing the one with the smallest processing time over weight ratio. Hereafter 

this ratio is referred to as density . For a job i, with processing time pi and positive weight 

wi , . In classical single machine scheduling, a sequence of jobs in non-decreasing 

order of density (WSPT-order) minimizes . By standard pairwise interchange 
arguments, it is easy to prove the following: 

Proposition 4: In the scenario , if both agents propose WSPT-
ordered candidate jobs, the resulting sequence is 1- optimal, 2-optimal, R -optimal and globally 
optimal. 

Figure 2. Schedule is a Nash Equilibrium 
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Note that if we view the scenario as a game in which each 

agent's strategy is the order in which the jobs are submitted, Proposition 4 can be 
equivalently stated saying that the pair of strategies consisting in ordering the jobs in WSPT 
is the only Nash equilibrium. 

6.2 Round Robin rules 

We call round-robin schedule a schedule where the jobs of the two agents are alternating. In 
this section, we deal with the problems arising when the arbitrator selects the candidate jobs 
according to a rule  = RR, i.e., the only feasible schedules are round-robin schedules. Note 
that this embodies a very simple notion of fairness: the agents take turns in using the 
resource. 
For simplicity, in the following we assume an equal number of jobs n1 = n2 = n for the two 
agents. With no loss of generality, we also suppose that each agent's jobs are numbered by 

nondecreasing length, , for all i = 1,..., n—1 and h = 1,2.

6.2.1

When the agents want to minimize their total completion times among all possible round-
robin rules, their strategy simply consists in presenting their jobs in SPT-order. Again by 
standard pairwise interchange arguments, one can show that the following propositions 
holds. 

Proposition 5: In the scenario , if both agents propose SPT-ordered 
candidate jobs, the resulting sequence is 1-optimal, 2-optimal and RR-optimal.
Let be the RR-optimal schedule. Since it may not be globally optimal, we want to 

investigate the competitive ratio of , i.e., the largest possible ratio between the cost of the 

RR-optimal schedule and the optimal value for an unconstrained schedule of the same 

jobs.
Let us denote with 

OPTSPT the cost of a global optimum of 

cSPT (A) the cost of an optimal solution of 

cSPT (B) the cost of an optimal solution of 

OPTRR: the total cost of .
The following proposition holds. 
Proposition 6: OPTRR 2OPTSPT

Proof sketch. It suffices to note that OPTRR 2cSPT(A) + 2cSPT(B) 2OPTSPT.

Figure 3. Istance with O(n) competitive ratio. The case with n - k - 1 < k is depicted 
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6.2.2

Hereafter, we consider a generalization of the round-robin rule. The arbitrator selects one 

between the two candidate jobs according rule R, but no more than k consecutive jobs 

of the same agent are allowed in the final sequence. We call k round-robin (briefly, k-RR) a

schedule produced by the above rule. (Note that for k = 1 we reobtain round-robin 
schedules.) 

Let us denote by a k-R -optimal schedule. One may show very easily that 

Proposition 7: In the scenario ; if both agents propose SPT-ordered 
candidate jobs, the resulting sequence is 1- optimal, 2- optimal and k — RR -optimal.

k-R

However, unlike the round-robin case, the competitive ratio 

for general values of k may be arbitrarily bad. The example illustrated in Figure 3, for 
sufficiently large values of M and small enough positive , has a O(n) ratio. 

6.3  EDD rules 

We conclude this section with an example in which  = EDD, i.e., the arbitrator schedules 
the most urgent between the two submitted. It is interesting to note as this rule may produce 

arbitrarily bad sequences in scenario .
Consider the instance of reported in Table 6, where n >> m >> 1.

Figure 4 illustrates a global optimum. Note that there are m + 1 tardy jobs for Agent 1 and 0 
for Agent 2. 

Table 6. An instance of 

A 1-optimal schedule is obtained if Agent 1 just skips A1 in the list of candidate jobs, and 
submits all the others, from 2 to m + 3. The resulting schedule is illustrated in Figure 5: in 
this case there are n + m + 1 tardy jobs and just one job of Agent 1 is tardy. Hence, again the 
competitive ratio is O(n). In such situations, the coordination rule turns out to be ineffective 
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and a preliminary negotiation between the two agents seems a much more recommendable 
strategy to obtain agreeable solutions for the two agents. 

Figure 4. Globally optimal schedule for the instance of Table 6 

Figure 5. 1-optimal schedule for the instance of Table 6 

7. Conclusions 

In this chapter we have described a number of models which are useful when several agents 
have to negotiate processing resources on the basis of their scheduling performance. 
Research in this area appears at a fairly initial stage. Among the topics for future research 
we can mention: 

An experimental comparison of different auction mechanisms for scheduling problems, 
in terms of possibly addressing general systems (shops, parallel machines...) 

Analyzing several optimization problems, related to finding "good" overall solutions to 
multi-agent scheduling problems 

Designing and analyzing effective scheduling protocols and the corresponding agents' 
strategies. 
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1. Introduction 

In this chapter, we consider some practical scheduling problems under unavailability 
constraints (breakdown periods, maintenance durations and/or setup times). Such 
problems can be met in different industrial environments and be associated to numerous 
real-life applications. This explains why many researchers have become interested in this 
subject. We aim to present the recent approaches proposed to solve these problems and to 
discuss their performances. This family of scheduling problems, addressed in this chapter, 
has been intensively studied (Kacem [8], Lee [17], Schmidt [24]). The studied criteria in this 
chapter are related to the flowtime minimization (the weighted and unweighted cases). The 
chapter is organized in two main parts. The first part focuses on the single machine 
scheduling problem (see Section 2). The second part is devoted to the parallel machine 
scheduling problem (see Section 3). In each part, we present the main contributions and 
explain their principles (complexity results, heuristic algorithms and their worstcase 
performance, existing approximation schemes, exact methods, branch-and-bound 
algorithms, dynamic programming, integer linear models, lower bounds. . .). Finally, Section 
4 concludes the paper. 

2. The single machine case 

The minimization of the total completion time on a single machine with a fixed non-
availability interval (denoted 1, ), is NP-Hard according to Adiri et al. [1] 

and Lee and Liman [18]. Several references proposed exact and heuristic methods (a sample 
of these papers includes Adiri et al. [1]; Lee and Liman [18]; Sadfi et al. [21] and Breit [3]). 
Numerous researchers addressed the problem of scheduling jobs and maintenance tasks 
together on a single machine (a sample of them includes Qi et al. [20] and Chen [4] who 
addressed the total flow-time minimization). Others recent references focused on the shop 
scheduling problems (parallel-machine, flow shop and job shop problems) and designed 
exact and heuristic approaches to solve them (Lee and Liman [19]; Lee [16]; Schmidt [24]; 
Lee [17]). 
This first part of this chapter addresses the following problem. We have n jobs {J1, J2, ..., Jn} to 
schedule on a single machine. To every job i it is associated a processing time pi and a 
weight wi. The machine is unavailable during a fixed interval [T1, T2) and it can process at 
most one job at a time. We assume that all data are integers and that jobs are sorted 



Multiprocessor Scheduling: Theory and Applications 48

according to the WSPT rule (i.e., ). It is well-known that the WSPT 

order is dominant (i.e., every optimal solution is composed of two sequences such that jobs 
are scheduled in the WSPT order in each sequence). The objective function to minimize is 
the total weighted completion time (flow-time). 
It is easy to verify that the studied problem (noted ) can be solved optimally by the WSPT 
rule (Smith [25]) if the total processing time is less than T1.

In the remainder of this chapter, *( ) represents the minimal weighted flow-time for the 

problem  and  ( )  is the weighted flow-time of sequence  for problem . We also 

define the non-availability interval length as follows: T = T2 – T1.
Moreover, we define  as the critical job in the WSPT sequence, i.e., 

and . Finally, let Qk and  be the variables defined as follows: 

(1)

(2)

Theorem 1 ([1]-[18]) The problem 1,  is NP-Hard.

Theorem 2 [18] The problem 1,  can be optimally solved using the Shortest Remaining 
Processing Time rule.

Theorem 3 [18] The problem 1,  is NP-Hard.

2.1 Mixed Integer Programming (Kacem, Chu and Souissi [12]) 

Kacem, Chu and Souissi proved that the problem  can be formulated using the following 
mixed integer model: 

Subject to: 

(3)

(4)

(5)

where xi  {0, 1} i  {1, 2, .., n}. Note that xi = 1 if job i is scheduled before T1 and xi = 0 if 
job i is scheduled after T2.
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The first constraint (3) determines the completion time Ci of job i if it is performed after T2.
Constraint (4) gives this completion time if job i is performed before T1. Finally, constraint 
(5) represents the workload constraint for processing jobs before the fixed non-availability 
interval.

2.2 Branch-and-bound procedures ([12]- [13]-[21]) 

The first branch-and-bound algorithm was proposed by Sadfi et al. [22] for solving the 
unweighted case (wi = 1 for every job i). The algorithm is based on the SRPT lower bound 
and the MSPT heuristic proposed by Sadfi et al. [21]. As it is mentioned before, the problem 
consists to find two subsets: the subsets of jobs to be scheduled before and after the non-
availability interval. Each subset respects the SPT order. Therefore, the branching scheme is 
based on considering the two possibilities of assignment for every job. 
Kacem and Chu [13] and Kacem et al. [12] considered the weighted case. Similarly, the 
problem is also reduced to determine if every job has to be scheduled before or after the 
unavailability period. Obviously, in the optimal solution, the subset of jobs scheduled before 
T1 and the subset of jobs scheduled after T2 are performed in the WSPT order. Consequently, 
every node is represented by the following elements: 

• the number of scheduled jobs denoted by k,

• a partial assignment vector: PA = {a1, a2, ..., ak} with ai  {0, 1} i k and ai = 1 if job i is 
performed before T1 and ai = 0 otherwise, 

• a lower bound LB formulated in Equation 11. 
The upper bound UB is obtained by taking the best result yielded by some heuristics 
(described later in this chapter). At each new branching step, one explore two possibilities; 
the first one is to perform job (k + 1) before T1 (ak+1 = 1) and the second possibility is to 
schedule it after T2 (ak+1 = 0). If the lower bound is greater than the current upper bound, 
then the corresponding node is removed. 
In the remainder of this subsection, we present the major results (i.e., the lower bounds) 
proposed in the above branch-and-bound algorithm. The heuristics used in such an 
algorithm will be described later in this section. 
Theorem 4 (Wang et al. [26], Lee [16]) Let ’ denote the resumable scenario of problem .

Therefore, the following relation holds: wg+1 T WSRPT ( ’) - *( ) where WSRPT (Weighted 
Shortest Remaining Processing Time) is the rule that consists in scheduling jobs according to the 
WSPT order under the resumable scenario.
Example 1 We consider the following four-job instance: p1 = 2; w1 = 4; p2 = 3; w2 = 5; p3 = 2; w3 = 
3; p4 = 1; w4 = 1; T1 = 6; T = 2. Given this instance, we have:  + 1 = 3. Figure 1 shows the 
schedules obtained by using the WSPT and the WSRPT rules.  
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J1

0         2 6               8

WSPT schedule  

J2 J3 J4

5  10     11

WSRPT schedule  

J1

        2 6               8

J2

5  9     10

J4J3J3

0

=1

Figure 1. Illustration of the rules WSPT and WSRPT

From Theorem 4, we can show the following proposition. 
Proposition 1 ([26], [16]) Let

(6)

The quantity lb1 is a lower bound on the optimal weighted flow-time for problem .
Theorem 5 (Kacem, Chu and Souissi [12]) Let

(7)

The quantity lb2 is a lower bound on the optimal weighted flow-time for problem  and it 
dominates lb1.
Theorem 6 (Kacem and Chu [13]) For every instance of , the lower bound lb2 is greater than lb0

(lb0 denotes the weighted flow-time value obtained by solving the relaxation of the linear model by 
assuming that xi  [0, 1]). 
In order to improve the lower bound lb2, Kacem and Chu proposed to use the fact that job 

 must be scheduled before or after the non-availability interval (i.e., either 

 or  must hold). By applying a clever lagrangian relaxation, a 

stronger lower bound lb3 has been proposed: 
Theorem 7 (Kacem and Chu [13]) Let

(8)

with

and .
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The quantity lb3 is a lower bound on the optimal weighted flow-time for problem and it dominates
lb2.
Another possible improvement can be carried out using the splitting principle (introduced 
by Belouadah et al. [2] and used by other authors [27] for solving flow-time minimization 
problems). The splitting consists in subdividing jobs into pieces so that the new problem can 
be solved exactly. Therefore, one divide every job i into ni pieces, such that each piece (i, k)

has a processing time  and a weight  ( 1 k ni), with  and 

.

Using the splitting principle, Kacem and Chu established the following theorem. 

Theorem 8 (Kacem and Chu [13]) Index z1 denotes the job such that and
and index z2 denotes the job such that and

. We also define and . Therefore,

the quantity lb4 = min ( 1, 2) is a lower bound on the optimal weighted flow-time for  and it 
dominates lb3, where

 (9) 

and 

 (10) 

By using another decomposition, Kacem and Chu have proposed another complementary 
lower bound: 
Theorem 9 (Kacem, Chu and Souissi [12]) Let

The quantity lb5 is a lower bound on the optimal weighted flow-time for problem and it dominates 
lb2.
In conclusion, these last two lower bounds (lb4 and lb5) are usually greater than the other 
bounds for every instance. These lower bounds have a complexity time of O(n) (since jobs 
are indexed according to the WSPT order). For this reason, Kacem and Chu used all of them 
(lb4 and lb5) as complementary lower bounds. The lower bound LB used in their branch-and-
bound algorithm is defined as follows: 

(11)
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2.3 Approximation algorithms 

2.3.1 Heuristics and worst-case analysis 

The problem (1, ) was studied by Kacem and Chu [11] under the non-

resumable scenario. They showed that both WSPT1 and MWSPT2 rules have a tight worst-
case performance ratio of 3 under some conditions. Kellerer and Strusevich [14] proposed a 
4-approximation by converting the resumable solution of Wang et al. [26] into a feasible 
solution for the non-resumable scenario. Kacem proposed a 2-approximation algorithm 
which can be implemented in O(n2) time [10]. Kellerer and Strusevich proposed also an 
FPTAS (Fully Polynomial Time Approximation Scheme) with O(n4/ 2) time complexity [14]. 
WSPT and MWSPT These heuristics were proposed by Kacem and Chu [11]. MWSPT 
heuristic consists of two steps. In the first step, we schedule jobs according to the WSPT 
order (  is the last job scheduled before T1). In the second step, we insert job i before T1 if pi

 (we test this possibility for each job i  {  + 2,  + 3, ..., n} and after every insertion, we 

set ).

To illustrate this heuristic, we consider the four-job instance presented in Example 1.  Figure 
2 shows the schedules obtained by using the WSPT and the MWSPT rules. Thus, it can be 
established that: WSPT ( )=  74 and MWSPT ( )= 69. 
Remark 1 The MWSPT rule can be implemented in O (n log (n)) time.
Theorem 10 (Kacem and Chu [11]) WSPT and MWSPT have a tight worst-case performance 
bound of 3 if t . Otherwise, this bound can be arbitrarily large. 

J1

0         2 6               8

WSPT schedule  

J2 J3 J4

5  10     11 

MWSPT schedule  

J1

        2 6               8

J2

5       10

J3J4

0

=1

Figure 2. Illustration of MWSPT 

MSPT: the weighted and the unweighted cases The weighted case of this heuristic can be 
described as follows (Kacem and Chu [13]). First, we schedule jobs according to the WSPT 
order (  is the last job scheduled before T1). In the second step, we try to improve the WSPT 

solution by testing an exchange of jobs i and j if possible, where i =1,…,  and j = +1,…, n.

The best exchange is considered as the obtained solution.

Remark 2 MSPT has a time complexity of O (n3). 
To illustrate this improved heuristic, we use the same example. For this example we have: 

                                                                
1 WSPT: Weighted Shortest Processing Time
2 MWSPT: Modified Weighted Shortest Processing Time
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+ 1 = 3. Therefore, four possible exchanges have to be distinguished: (J1 and J3), (J1 and J4),

(J2 and J3) and (J2 and J4). Figure 3 depicts the solutions corresponding to these exchanges. By 
computing the corresponding weighted flow-time, we obtain MSPT ( )= WSPT ( ).
The weighted version of this heuristic has been used by Kacem and Chu in their branch-
and-bound algorithm [13]. For the unweighted case (wi = 1), Sadfi et al. studied the worst-
case performance of the MSPT heuristic and established the following theorem: 
Theorem 11 (Sadfi et al. [21]) MSPT has a tight worst-case performance bound of 20/17 when 
wi=1 for every job i.
Recently, Breit improved the result obtained by Sadfi et al. and proposed a better worst-case 
performance bound for the unweighted case [3]. 

J1

0           2 6               8

WSPT schedule  

J2 J3 J4

5  10     11

Exchange J1 and J3

=1

J1

0                     3 6               8

J2 J3 J4

5  10     11

0                     3 6               8

J2 J3J4

4  10             12

Exchange J1 and J4

J1

Exchange J2 and J3

J3 J2 J4

0                2                4

J1

0            2 6               8

J3J2J4

3        11            13 

Exchange J2 and J4

J1

6               8  11     12 

Figure 3. Illustration of MSPT for the weighted case 
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Critical job-based heuristic (HS) [10] This heuristic represents an extension of the one 
proposed by Wang et al. [26] for the resumable scenario. It is based on the following 
algorithm (Kacem [10]):

i. Let l = 0 and  = .
ii. Let  (i, l) be the ith job in J –  according to the WSPT order. Construct a schedule l = 

 (1, l) ,  (2, l), ...,  (g (l) , l), ,  ( (l) + 1, l), ...,  (n –| |, l)  such that 

  and where jobs in 

are sequenced according to the WSPT order. 

iii. If , then: ; go 

to step (ii). Otherwise, go to step (iv). 

iv. .

Remark 3 HS can be implemented in O (n2) time.
We consider the previous example to illustrate HS. Figure 4 shows the sequences h (0 h
l) generated by the algorithm. For this instance, we have l = 2 and HS ( ) = WSPT ( ).

J1

0         2 6               8

Schedule 0

J2 J3 J4

5  10     11

Schedule 1

=1

J1

0         2 6               8

J2J3 J4

 4  11     12 

Schedule 2

J1

0                 3 6               8

J2 J3 J4

5  10     11

Figure 4. Illustration of heuristic HS

Theorem 12 (Kacem [10]) Heuristic HS is a 2-approximation algorithm for problem S and its 
worst-case performance ratio is tight.

2.3.2 Dynamic programming and FPTAS 

The problem can be optimally solved by applying the following dynamic programming 
algorithm AS, which is a weak version of the one proposed by Kacem et al [12]. This 
algorithm generates iteratively some sets of states. At every iteration k, a set k composed of 
states is generated (1 k n). Each state [t, f] in k can be associated to a feasible schedule 
for the first k jobs. 
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Variable t denotes the completion time of the last job scheduled before T1 and f is the total 
weighted flow-time of the corresponding schedule. This algorithm can be described as 
follows: 
Algorithm AS
i. Set 1 = {[0, w1(T2 + p1)] , [p1, w1p1]}.

ii. For k  {2, 3, ..., n},
For every state [t, f] in k –1:

1) Put  in k

2) Put in k if t + pk T1

Remove k –1

iii. *( ) = min[t, f] n {f}.
Let UB  be an upper bound on the optimal weighted flow-time for problem ( ). If we add 
the restriction that for every state [t, f] the relation f UB  must hold, then the running time 
of AS can be bounded by nT1UB  (by keeping only one vector for each state). Indeed, t and f
are integers and at each step k, we have to create at most T1UB  states to construct k.

Moreover, the complexity of AS is proportional to .

However, this complexity can be reduced to O (nT1) as it was done by Kacem et al [12], by 
choosing at each iteration k and for every t the state [t, f] with the smallest value of f.
In the remainder of this chapter, algorithm AS denotes the weak version of the dynamic 
programming algorithm by taking UB  = HS ( ), where HS is the heuristic proposed by 
Kacem [10]. 
The algorithm starts by computing the upper bound yielded by algorithm HS.
In the second step of our FPTAS, we modify the execution of algorithm AS in order to 
reduce the running time. The main idea is to remove a special part of the states generated by 
the algorithm. Therefore, the modified algorithm AS  becomes faster and yields an 
approximate solution instead of the optimal schedule. 
The approach of modifying the execution of an exact algorithm to design FPTAS, was initially 
proposed by Ibarra and Kim for solving the knapsack problem [7]. It is noteworthy that 
during the last decades numerous scheduling problems have been addressed by applying 
such an approach (a sample of these papers includes Gens and Levner [6], Kacem [8], Sahni 
[23], Kovalyov and Kubiak [15], Kellerer and Strusevich [14] and Woeginger [28]-[29]). 

Given an arbitrary  > 0, we define 

and . We split the interval [0, HS ( )] into m1 equal subintervals 

 of length 1. We also split the interval [0, T1] into m2 equal 

subintervals of length 2. The algorithm AS  generates 

reduced sets  instead of sets k. Also, it uses artificially an additional variable w+ for 

every state, which denotes the sum of weights of jobs scheduled after T2 for the 
corresponding state. It can be described as follows: 
Algorithm AS
i. Set ,

ii. For k  {2, 3, ..., n},

For every state [t, f,w+] in :
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1) Put  in 

2) Put  in if t + pk T1

Remove

Let [t, f,w+]r,s be the state in such that f  and t with  the  smallest  possible  

t (ties are broken by choosing the sate of the smallest f). Set =

.
iii. .

The worst-case analysis of this FPTAS is based on the comparison of the execution of 
algorithms AS and AS . In particular, we focus on the comparison of the states generated by 
each of the two algorithms. We can remark that the main action of algorithm AS  consists in 

reducing the cardinal of the state subsets by splitting  into m1m2

boxes  and by replacing all the vectors of k belonging to by a single 

"approximate" state with the smallest t.
Theorem 13 (Kacem [9]) Given an arbitrary  > 0, algorithm AS can be implemented in O (n2/ 2)

time and it yields an output  such that:  / * ( )  1 + .

From Theorem 13, algorithm AS  is an FPTAS for the problem 1, .

Remark 4 The approach of Woeginger [28]-[29] can also be applied to obtain FPTAS for this 
problem. However, this needs an implementation in O (|I|3 n3/ 3), where |I| is the input size. 

3. The two-parallel machine case 

This problem for the unweighted case was studied by Lee and Liman [19]. They proved that 
the problem is NP-complete and provided a pseudo-polynomial dynamic programming 
algorithm to solve it. They also proposed a heuristic that has a worst case performance ratio 
of 3/2. 
The problem is to schedule n jobs on two-parallel machines, with the aim of minimizing the 
total weighted completion time. Every job i has a processing time pi and a weight wi. The 
first machine is available for a specified period of time [0, T1] (i.e., after T1 it can no longer 
process any job). Every machine can process at most one job at a time. With no loss of 
generality, we consider that all data are integers and that jobs are indexed according to the 
WSPT rule: . Due to the dominance of the WSPT order, an optimal 

solution is composed of two sequences (one sequence for each machine) of jobs scheduled in 
non-decreasing order of their indexes (Smith [25]). In the remainder of the paper, ( )
denotes the studied problem, * (Q) denotes the minimal weighted sum of the completion 
times for problem Q and S (Q) is the weighted sum of the completion times of schedule S
for problem Q.

3.1 The unweighted case 

In this subsection, we consider the unweighted case of the problem, i.e., for every job i, we 
have wi = 1. Hence, the WSPT order becomes: p1 p2  ... pn.
In this case, we can easily remark the following property. 
Proposition 2 (Kacem [9]) If , then problem ( ) can be optimally solved in 
O(nlog (n)) time.
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Based on the result of Proposition 2, we only consider the case where  . 

3.1.1 Dynamic programming 

The problem can be optimally solved by applying the following dynamic programming 
algorithm A, which is a weak version of the one proposed by Lee and Liman [19]. This 
algorithm generates iteratively some sets of states. At every iteration k, a set  composed of 
states is generated (1 k n). Each state [t, f] in  can be associated to a feasible schedule 
for the first k jobs. Variable t denotes the completion time of the last job scheduled on the 
first machine before T1 and f is the total flow-time of the corresponding schedule. This 
algorithm can be described as follows: 
Algorithm A
i. Set .

ii. For k  {2, 3, ..., n},
For every state [t, f] in :

1) Put  in 

2) Put  in  if t + pk T1

Remove
iii. * ( ) = .

Let UB be an upper bound on the optimal flow-time for problem ( ). If we add the 
restriction that for every state [t, f] the relation f UB must hold, then the running time of A
can be bounded by nT1UB. Indeed, t and f are integers and at each iteration k, we have to 
create at most T1UB states to construct . Moreover, the complexity of A is proportional to 

.

However, this complexity can be reduced to O (nT1) as it was done by Lee and Liman [19], 
by choosing at each iteration k and for every t the state [t, f] with the smallest value of f. In 
the remainder of the paper, algorithm A denotes the weak version of the dynamic 
programming algorithm by taking UB = H ( ), where H is the heuristic proposed by Lee 
and Liman [19]. 

3.1.2 FPTAS (Kacem [9]) 

The FPTAS is based on two steps. First, we use the heuristic H by Lee and Liman [19]. Then, 
we apply a modified dynamic programming algorithm. Note that heuristic H has a worst-
case performance ratio of 3/2 and it can be implemented in O(n log (n)) time [19]. 
In the second step of our FPTAS, we modify the execution of algorithm A in order to reduce 
the running time. Therefore, the modified algorithm becomes faster and yields an 
approximate solution instead of the optimal schedule. 

Given an arbitrary  > 0, we define  and 

. We split the interval [0, H ( )] into q1 equal subintervals 

of length 1. We also split the interval [0, T1] into q2 equal subintervals 

 of length 2.

Our algorithm A  generates reduced sets  instead of sets . The algorithm can be 

described as follows: 
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Algorithm A
i. Set

ii. For k  {2, 3, ..., n},

For every state [t, f] in 

1) Put  in 

2) Put  in if t + pk T1

Remove

Let [t, f]r,s be the state in  such that f   and t  with the smallest possible t (ties are 

broken by choosing the state of the smallest f).

Set = .

iii. .

The worst-case analysis of our FPTAS is based on the comparison of the execution of 
algorithms A and A . In particular, we focus on the comparison of the states generated by 
each of the two algorithms. We can remark that the main action of algorithm A  consists in 

reducing the cardinal of the state subsets by splitting  into q1q2 boxes 

and by replacing all the vectors of  belonging to by a single 

"approximate" state with the smallest t.
Theorem 14 (Kacem [9]) Given an arbitrary  > 0, algorithm A can be implemented in O (n3/ 2)

time and it yields an output  such that: .

From Theorem 14, algorithm A   is an FPTAS for the unweighted version of the problem. 

3.2 The weighted case 

In this section, we consider the weighted case of the problem, i.e., for every job i, we have an 
arbitrary wi. Jobs are indexed in non-decreasing order of pi/wi.
In this case, we can easily remark the following property. 
Proposition 3 (Kacem [9]) If , then problem ( ) has an FPTAS.

Based on the result of Proposition 3, we only consider the case where .

3.2.1 Dynamic programming 

The problem can be optimally solved by applying the following dynamic programming 
algorithm AW, which is a weak extended version of the one proposed by Lee and Liman 
[19]. This algorithm generates iteratively some sets of states. At every iteration k, a set 
composed of states is generated (1 k n). Each state [t, p, f] in  can be associated to a 
feasible schedule for the first k jobs. Variable t denotes the completion time of the last job 
scheduled before T1 on the first machine, p is the completion time of the last job scheduled 
on the second machine and f is the total weighted flow-time of the corresponding schedule. 
This algorithm can be described as follows: 
Algorithm AW
i. Set .

ii. For k  {2, 3, ..., n},
For every state [t, p, f] in :
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1) Put  in 

2) Put  in if t + pk T1

Remove

iii. .
Let UB  be an upper bound on the optimal weighted flow-time for problem ( ). If we add 
the restriction that for every state [t, p, f] the relation f UB  must hold, then the running 
time of AW can be bounded by nPT1UB  (where P denotes the sum of processing times). 
Indeed, t, p and f are integers and at each iteration k, we have to create at most PT1UB  states 

to construct . Moreover, the complexity of AW is proportional to .

However, this complexity can be reduced to O(nT1) by choosing at each iteration k and for 
every t the state [t, p, f] with the smallest value of f.
In the remainder of the paper, algorithm AW denotes the weak version of this dynamic 
programming algorithm by taking UB  = HW ( ), where HW is the heuristic described later 
in the next subsection. 

3.2.2 FPTAS (Kacem [9]) 

Our FPTAS is based on two steps. First, we use the heuristic HW. Then, we apply a modified 
dynamic programming algorithm. 
The heuristic HW is very simple! We schedule all the jobs on the second machine in the 
WSPT order. It may appear that this heuristic is bad, however, the following Lemma shows 
that it has a worst-case performance ratio less than 2. Note also that it can be implemented 
in O(n log (n)) time. 
Lemma 1 (Kacem [9]) Let (HW) denote the worst-case performance ratio of heuristic HW. 
Therefore, the following relation holds:  (HW)  2. 
From Lemma 3, we can deduce that any heuristic for the problem has a worst-case 
performance bound less than 2 since it is better than HW.
In the second step of our FPTAS, we modify the execution of algorithm AW in order to 
reduce the running time. The main idea is similar to the one used for the unweighted case 
(i.e., modifying the execution of an exact algorithm to design FPTAS). In particular, we 
follow the splitting technique by Woeginger [28] to convert AW in an FPTAS. 
Using a similar notation to [28] and given an arbitrary  > 0, we define 

 and .

First, we remark that every state [t, p, f]  verifies 

Then, we split the interval [0,T1] into L1+1 subintervals .

We also split the intervals [0, P] and [1, HW ( )] respectively, into L2+1 subintervals 

  and into L3 subintervals .

Our algorithm AW  generates reduced sets  instead of sets . This algorithm can be 

described as follows: 
Algorithm AW
i. Set

ii. For k  {2, 3, ..., n},
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For every state [t, p, f] in 

1) Put  in 

2) Put  in  if t + pk T1

Remove

Let [t, p, f]r,s,l be the state in  such that t , p  and f  with the smallest 

possible t (ties are broken by choosing the state of the smallest f). 
Set = .

iii.

3.2.3 Worst-case analysis and complexity 

The worst-case analysis of the FPTAS is based on the comparison of the execution of 
algorithms AW and AW . In particular, we focus on the comparison of the states generated 
by each of the two algorithms. 

Theorem 15 (Kacem [9]) Given an arbitrary  > 0, algorithm AW yields an output
such that: and it can be implemented in O(|I|3 n3/ 3) time,
where |I| is the input size of I.
From Theorem 15, algorithm AW  an FPTAS for the weighted version of the problem. 

4. Conclusion 

In this chapter, we considered the non-resumable version of scheduling problems under 
availability constraint. We addressed the criterion of the weighted sum of the completion 
times. We presented the main works related to these problems. This presentation shows that 
some problems can be efficiently solved (as an example, some proposed FPTAS have a 
strongly polynomial running time). As future works, the idea to extend these results to other 
variants of problems is very interesting. The development of better approximation 
algorithms is also a challenging subject. 
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Scheduling with Communication Delays 
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1.1 Introduction 

More and more parallel and distributed systems (cluster, grid and global computing) are both 
becoming available all over the world, and opening new perspectives for developers of a large 
range of applications including data mining, multimedia, and bio-computing. However, this 
very large potential of computing power remains largely unexploited this being, mainly due to 
the lack of adequate and efficient software tools for managing this resource. 
Scheduling theory is concerned with the optimal allocation of scarce resources to activities over time. 
Of obvious practical importance, it has been the subject of extensive research since the early 
1950's and an impressive amount of literature now exists. The theory dealing with the design of 
algorithms dedicated to scheduling is much younger, but still has a significant history. 
An application which will be scheduled on a parallel architecture may be represented by an 
acyclic graph G = (V, E) (or precedence graph) where V designates the set of tasks, which 
will be executed on a set of m processors, and where E represents the set of precedence 
constraints. A processing time is allotted to each task i V.
From the very beginning of the study about scheduling problems, models kept up with 
changing and improving technology. Indeed, 

• In the PRAM' s model, in which communication is considered instantaneous, the 
critical path (the longest path from a source to a sink) gives the length of the schedule. 
So the aim, in this model, is to find a partial order on the tasks, in order to minimize an 
objective function. 

• In the homogeneous  scheduling delay model, each arc (i,j) E represents the potential 
data transfer between task i and task j provided that i and j are processed on two 
different processors.  So the aim, in this model, is to find a compromise between a 
sequential execution and a parallel execution. 

These two models have been extensively studied over the last few years from both the 
complexity and the (non)-approximability points of view (see (Graham et al., 1979) and 
(Chen et al., 1998)). 
With the increasing importance of parallel computing, the question of how to schedule a set 
of tasks on a given architecture becomes critical, and has received much attention. More 
precisely, scheduling problems involving precedence constraints are among the most 
difficult problems in the area of machine scheduling and they are part of the most studied 
problems in the domain. In this chapter, we adopt the hierarchical communication model 
(Bampis et al., 2003) in which we assume that the communication delays are not 
homogeneous anymore; the processors are connected into clusters and the communications 



Multiprocessor Scheduling: Theory and Applications 64

inside a same cluster are much faster than those between processors belonging to different 
ones.
This model incorporates the hierarchical nature of the communications using today's 
parallel computers, as shown by many PCs or workstations networks (NOWs) (Pfister, 1995; 
Anderson et al., 1995). The use of networks (clusters) of workstations as a parallel computer 
(Pfister, 1995; Anderson et al., 1995) has not only renewed the user's interest in the domain 
of parallelism, but it has also brought forth many new challenging problems related to the 
exploitation of the potential power of computation offered by such a system. 
Several approaches meant to try and model these systems were proposed taking into 
account this technological development: 

• One approach concerning the form of programming system, we can quote work 
(Rosenberg, 1999; Rosenberg, 2000; Blumafe and Park, 1994; Bhatt et al., 1997). 

• In abstract model approach, we can quote work (Turek et al., 1992; Ludwig, 1995; 
Mounié, 2000; Decker and Krandick, 1999; Blayo et al., 1999; Mounié et al., 1999; Dutot 
and Trystram, 2001) on malleable tasks introduced by (Blayo et al., 1999; Decker and 
Krandick, 1999).  A malleable task is a task which can be computed on several 
processors and of which the execution time depends on the number of processors used 
for its execution. 

As stated above, the model we adopt here is the hierarchical communication model which
addresses one of the major problems that arises in the efficient use of such architectures: the 
task scheduling problem. The proposed model includes one of the basic architectural features 
of NOWs: the hierarchical communication assumption i.e., a level-based hierarchy of 
communication delays with successively higher latencies. In a formal context where both a 
set of clusters of identical processors, and a precedence graph G = (V, E) are given, we 
consider that if two communicating tasks are executed on the same processor (resp. on 
different processors of the same cluster) then the corresponding communication delay is 
negligible (resp. is equal to what we call inter-processor communication delay). On the contrary, 
if these tasks are executed on different clusters, then the communication delay is more 
significant and is called inter-cluster communication delay. 
We are given m multiprocessor machines (or clusters denoted by ) that are used to process 
n precedence-constrained tasks. Each machine  (cluster) comprises several identical 

parallel processors (denoted by ). A couple  of communication delays is associated 
to each arc (i, j) between two tasks in the precedence graph. In what follows, cij (resp. ij ) is 
called inter-cluster (resp. inter-processor) communication, and we consider that cij ij . If 
tasks i and j are allotted on different machines  and , then j must be processed at least cij

time units after the completion of i. Similarly, if i and j are processed on the same machine 

 but on different processors , and  (with k  k’) then j can only start ij units of time 
after the completion of i. However, if i and j are executed on the same processor, then j can 
start immediately after the end of i. The communication overhead (inter-cluster or inter-
processor delay) does not interfere with the availability of processors and any processor 
may execute any task. Our goal is to find a feasible schedule of tasks minimizing the 
makespan, i.e., the time needed to process all tasks subject to the precedence graph. 
Formally, in the hierarchical scheduling delay model a hierarchical couple of values 

 will be associated with cij - (i, j) E such that: 

• if  =  and if  = then ti +pi tj
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• else if  =  and if , with k  k' then  ti +pi+ ij tj

• ti +pi+cij tj

where ti denotes the starting time of the task i and pi its duration. The objective is to find a 
schedule, i.e., an allocation of each task to a time interval on one processor, such that 
communication delays are taken into account and that completion time (makespan) is 
minimized (the makespan is denoted by Cmax and it corresponds to ). In
what follows, we consider the simplest case i V, pi = 1, cij = c 2, ij = c’ 1 with c  c'.
Note that the hierarchical model that we consider here is a generalization of classical 
scheduling model with communication delays ((Chen et al., 1998), (Chrétienne and 
Picouleau, 1995)). Consider, for instance, that for every arc (i, j) of the precedence graph we 
have cij = ij. In such a case, the hierarchical model is exactly the classical scheduling 
communication delays model.  
Note that the values c and l are considered as constant in the following. The chapter is 
organized as follow: In the next section, some results for UET-UCT model will be presented. 
In the section 1.3, a lower and upper bound for large communication delays scheduling 
problem will presented. In the section 1.4, the principal results in hierarchical 
communication delay model will be presented. In the section 1.5, an influence of an 
introduction of the duplication on the complexity of scheduling problem is presented. In the 
section 1.6, some results non-approximability results are given for the total sum of 
completion time minimization. In the section 1.7, we will conclude on the complexity and 
approximation scheduling problem in presence of communication delays. In Appendix 
section, some classical — complete problems are listed which are used in this chapter 
for the polynomial-time transformations. 

1.2 Some results for the UET-UCT model 

In the homogeneous scheduling delay model, each arc (i,j) E represents the potential data 
transfer between task i and task j provided that i and j are processed on two different 
processors. So the aim, in this model, is to find a compromise between a sequential 
execution and a parallel execution. These two models have been extensively studied over 
the last few years from both the complexity and the (non)-approximability points of view 
(see (Graham et al., 1979) and (Chen et al., 1998)). 
1. at any time, a processor executes at most one task; 
2. (i, j) E, if  =  then tj  ti + pi, otherwise tj ti+pi + cij.
The makespan of schedule is: 
In the UET-UCT model, we have i, pi = 1 and  (i, j) E, c{j = 1. 

1.2.1 Unbounded number of processors 

In the case of there is no communication delays, the problem becomes polynomial (even if 

we consider that i, pi  1). In fact, the Bellman algorithm can be used. 

Theorem 1.2.1 The problem of deciding whether an instance of ,pi = 1, cij = 
problem has a schedule of length 5 is polynomial, see (Veltman, 1993).
Proof 
The proof is based on the notion of total unimodularity matrix, see (Veltman, 1993) and see 
(Schrijver, 1998). 

Theorem 1.2.2 The problem of deciding whether an instance of , pi = 1, cij =  problem 
has a schedule of length 6 is —complete see (Veltman, 1993).
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Proof 
The proof is based on the following reduction 3SAT , pi = 1, cij =  = 6. 

Figure 1.1. The variables-tasks and the clauses-tasks 

It is clear that the problem is in .
Let be * an instance of 3SAT problem, we construct an instance of the problem , pi

= 1, cij = in the following way: 

• For each variable x, six tasks are introduced: x1, x2, x3, x, and x6; the precedence 
constraints are given by Figure 1.1. 

• For each clause c  = (xc, yc, zc), where the literals xc,  yc and zc are occurrences of negated 
or unnegated,  3 variables are introduced: 

and c: precedence constraints 
between these tasks are also given by Figure 1.1. 

• If the occurrence of variable x in the clause c is unnegated then we add 
.

• If the occurrence of variable x in the clause c is negated, then we add and
.

Clearly, xc represents the occurrence of variable x in the clause c; it precedes the 
corresponding variable tasks. This is a polynomial-time transformation illustrated by Figure 
1.1.
It can be proved that, there exists a schedule of length at most six if only if there is a truth 
assignment {0,1} such that each clause in has at least one true literal. 

Corollary 1.2.1 There is  no  polynomial-time  algorithm  for the  problem , pi = 1, cij

=  with performance bound smaller than 7/6 unless , see (Veltman, 1993).
Proof 
The proof of Corollary 1.2.1 is an immediate consequence of the Impossibility Theorem, (see 
(Chrétienne and Picouleau, 1995), (Garey and Johnson, 1979)). 

1.2.2 Approximate solutions with guaranteed performance 

Good approximation algorithms seem to be be very difficult to design, since the 
compromise between parallelism and communication delays is not easy to handle. In this 
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section, we will present a approximation algorithm with a performance ratio bounded by 

4/3 for the problem , pi = 1, cij = . This algorithm is based on a formulation on 
a integer linear program. A feasible schedule is obtained by a relaxation and rounding 
procedure. Notice that it exists a trivial 2-approximation algorithm: the tasks without 
predecessors are executed at t = 0, the tasks admitting predecessors scheduled at t = 0 are 
executed at t = 2 and so on. 
Given a precedence graph G = (V, E) a predecessor (resp. successor) of a task i is a task j such 
that (j, i) (resp. (i, j)) is an arc of G. For every task i V, (i)
(resp. (i)) denotes the set of immediate successors (resp. predecessors) of i. We denote the 
tasks without predecessor (resp. successor) by Z (resp. U). We call source every task 
belonging to Z.
The integer linear program    The aim of this section is to model the problem , pi = 1, 
cij = by an integer linear program (ILP) denoted, in what follows, by .
We model the scheduling problem by a set of equations defined on the starting times vector 
(t1,..., tn):
For every arc (i, j) E, we introduce a variable xij  {0, 1} which indicates the presence or not 
of an communication delay, and the following constraints: (i, j) E, ti+pi + xij  tj.
In every feasible schedule, every task i  V — U has at most one successor, w.l.o.g. call them 
j (i), that can be performed by the same processor as i at time tj = ti+pi. The other 
successors of i, if any, satisfy: k (i)—{j}, tk  ti+pi + l. Consequently, we add the 

constraints: .

Similarly, every task i of V — Z has at most one predecessor, w.l.o.g. call them j (i), that 
can be performed by the same processor as i at times tj satisfying ti — (tj +pj) 1. So, we add 

the following constraints: .

If we denote by Cmax the makespan of the schedule, i V, ti+pi < Cmax. Thus, in what 
follows,the following ILP will be considered: 

Let inf denote the linear program corresponding to  in which we relax the integrity 
constraints xij  {0, 1} by setting xij  [0, 1]. Given that the number of variables and the 
number of constraints are polynomially bounded, this linear program can be solved in 
polynomial time. The solution of inf will assign to every arc (i, j) E a value xij = eij with 0 

eij  1 and will determine a lower bound of the value of Cmax that we denote by .
Lemma 1.2.1  is a lower bound on the value of an optimal solution for , pi = 1, cij
= .
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Proof This is true since any optimal feasible solution of the scheduling problem must satisfy 
all the constraints of the integer linear program .

Algorithm 1 Rounding Algorithm and construction of the schedule 
 Step 1 [Rounding]

Let be eij the value of an arc (i, j) E given by 

Step 1 [Computation of starting time]
 if i Z then

ti = 0 
else

ti = max {tj + 1 + xji} with j (i) and (j, i) Ai,
end if
Step 2 
[Construction of the schedule]
Let be G' = (V; E') where  {G' is generated by the 0—arcs.}
Allotted each connected component of G' on a different processor. Each task is executed at it 
starting time. 
In the following, we call an arc (i,j) E a 0–arc (resp. 1–arc) if xij = 0 (resp. xij = 1). 
Lemma 1.2.2 Every job i  V has at most one successor (resp. predecessors) such that eij < 0.5 (resp. 
eji < 0.5).
Proof  We consider a task i V and his successors j1,..., jk such that .
We know that , then . Since that 

. Then, . Therefore l  {2,..., k} we have eij

0.5.We use the same arguments for the predecessors.  
Lemma 1.2.3 The scheduling algorithm described above provides a feasible schedule. 

Proof It is clear that each task i admits at most one incoming (resp. outcoming) 0-arcs. 
Theorem 1.2.3 The relative performance h of our heuristic is bounded above by  (Munier and 
König, 1997). 
Proof Let be a path constituted by (k + 1) tasks such that x (resp. (k
— x)) arcs values, given by linear programming, between two tasks are less (resp. least) than 
1/2. So the length of this path is less than k+l+l/2(k—x) = 3/2k — l/2x + 1. Moreover, by the 
rounding procedure, the length of this path at most 2k — x + 1. Thus, we obtain 

, x. Thus, for a given path, of value p* (resp. p) before (resp. after) the 

rounding, admitting x arcs values less than 1/2, we have . A 

critical path before the rounding phase is denoted by s*. It is true for the critical path after 

the rounding procedure p = s then, .

In fact, the bound is tight (see (Munier and König, 1997)). 

1.2.3 Bounded number of processors 

In this section, a lower and upper bound will be presented, 
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Theorem 1.2.4 The problem of deciding whether an instance of , pi = 1, cij =
problem has a schedule of length 3 is polynomial, see (Picouleau, 1995). 
Theorem 1.2.5 The problem of deciding whether an instance of , pi = 1, cij =
problem has a schedule of length 4 is -complete, see (Veltman, 1993). 
Proof 
The proof is based on the ATP-complete problem Clique.

Figure 1.2. Example of polynomial-time reduction clique , pi = 1, cij =

Let be ' the number of edges of a clique of size k. Let be m' = 

, the number of processors of an instance is m = 2(m'+l). It is clear 
that the problem is in . The proof is based on the polynomial-time reduction clique 

, pi = 1, cij = . Let be * a instance of the clique problem. An instance  of 
, pi = 1, cij =  problem is constructed in the following way: 

• v V the tasks Tv, Kv are introduced, 

• e E a task Le is created. 

• We add the following precedence constraints: Tv Kv, v V and Tv Le if v is an 
endpoint of e.

• Four sets of tasks are introduced: 

•
•
•
•

the precedence constraints are added: Uu Xx, Uu Yy, Ww  Yy.
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Figure 1.3. Example of construction in order to illustrate the proof of theorem 1.2.5 

It easy to see that the graph G admits a clique of size k if only if it exists a schedule of length 4. 

1.2.4 Approximation algorithm 

In this section, we will present a simple algorithm which gives a schedule on m
machines from a schedule  on unbounded number of processors for the , pi = 1, cij

= . The validity of this algorithm is based on the fact there is at most a matching 
between the tasks executed at ti and the tasks processed at ti + 1. 
Theorem 1.2.6 From all polynomial-time algorithm h* with performance guarantee  for the problem 

, pi = 1, cij = , we may obtain a polynomial-time algorithm with performance 
guarantee (1 + p) for the problem  pi = 1, cij = .
Proof 

For example, the 4/3-approximation algorithm gives a 7/3-approximation algorithm. 
Munier et al. (Munier and Hanen, 1996) propose a (7/3 — 4/3m)-approximation algorithm 
for the same problem. 

Algorithm 2 Scheduling on m machines from a schedule on unbounded number of 
processors

for i = 0 — 1 do
Let be Xi the set of tasks executed at ij in using a heuristic h*.
The Xi tasks are executed in units of time. 

end for

1.3 Large communications delays 

Scheduling in presence of large communication delays, is one most difficult problem in 
scheduling theory, since the starting time of tasks and the communication delay are not be 
synchronized.
If we consider the problem of scheduling a precedence graph with large communication 
delays and unit execution time (UET-LCT), on a restricted number of processors, Bampis et 
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al. in (Bampis et al., 1996) proved that the decision problem denoted by , cij = c  2, pi

= ; for Cmax = c + 3 is an -complete problem, and for Cmax = c + 2 (for the special 
case c = 2), they develop a polynomial-time algorithm. This algorithm can not be extended 
for c  3. Their proof is based on a reduction from the -complete problem Balanced 
Bipartite Complete Graph, BBCG (Garey and Johnson, 1979; Saad, 1995). Thus, Bampis et al. 
(Bampis et al., 1996) proved that the 

, cij = c  2, pi = problem does not possess a polynomial-time approximation 

algorithm with ratio guarantee better than , unless  = .

Figure 1.4. A partial precedence graph for the NT1 -completeness of the scheduling problem 
, cij = c  3, pi =

Theorem 1.3.1 T/ze problem of deciding whether an instance of , cij = c ; pi =  has a 
schedule of length equal or less than (c+4) is  -complete with c 3 (see (Giroudeau et al., 2005)).
Proof
It is easy to see that , cij = c ; pi = = c + 4 .
The proof is based on a reduction from 1. Given an instance * of 1, we construct an 

instance  of the problem , cij = c ; pi = = c + 4, in the following way (Figure 
1.4 helps understanding of the reduction): 
n denotes the number of variables of * . 

1. For all , we introduce (c + 6) variable-tasks:  with j  {1, 2, ... , c + 

2}. We add the precedence constraints: 

with j  {1, 2, . . . , c + 1}. 

2. For all clauses of length three denoted by Ci = , we introduce 2 x (2 + c) 

clause-tasks  and , j  {1, 2, ... c + 2}, with precedence constraints:  and 

, j  {1, 2, . . . , c + 1}. We add the constraints  with  and 

 with .

3. For all clauses of length two denoted by Ci = , we introduce (c + 3) clause-tasks 

, j  {1, 2, ... , c + 3} with precedence constraints:  with j  {1, 2, ... , c + 2} and 

 with .
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The above construction is illustrated in Figure 1.4.  This transformation can be clearly 
computed in polynomial time. 

Remark: is in the clause C' of length two associated with the path 

.

It easy to see that there is a schedule of length equal or less than (c + 4) if only if there is a 
truth assignment  such that each clause in has exactly one true literal (i.e. 
one literal equal to 1), see (Giroudeau et al., 2005). 
For the special case c = , by using another polynomial-time trnasformation, we state: 

Theorem 1.3.2 The problem of deciding whether an instance of , cij = 2; pi =  has a 
schedule of length equal or less than six is  -complete (see (Giroudeau et al., 2005)). 
Corollary 1.3.1 There is no polynomial-time algorithm for the  problem , cij 2; pi =
with performance bound smaller than  unless  (see (Giroudeau et al, 2005)). 
The limit between the -completeness and the polynomial-time algorithm by the 
following Theorem. 

Theorem 1.3.3 The problem of deciding whether an instance of , cij = c; pi =  with c 
{2, 3} has a schedule of length at most (c + 2) is solvable in polynomial time (see (Giroudeau et al., 2005)). 

1.3.1 Approximation by expansion 
In this section, a new polynomial-time approximation algorithm with performance 

guarantee non-trivial for the problem , cij 2; pi =  will be proposed. 
Notation: We denote by , the UET-UCT schedule, and by the UET-LCT schedule. 
Moreover, we denote by ti (resp. ) the starting time of the task i in the schedule  (resp. 
in the schedule ).
Principle: We keep an assignment for the tasks given by a "good" feasible schedule on an 
unrestricted number of processors . We proceed to an expansion of 
the makespan, while preserving communication delays  for two tasks, i
and j with (i, j)  E, processing on two different processors. Consider a precedence graph G = 
(V, E), we determine a feasible schedule , for the model UET-UCT, using a (4/3)—
approximation algorithm proposed by Munier and König (Munier and König, 1997). This 
algorithm gives a couple i V, (ti, ) on the schedule  corresponding to: ti the starting 
time of the task i for the schedule  and  the processor on which the task i is processed at 
ti. Now, we determine a couple i V, ( , ') on schedule  in the following way: The 

starting time  and,  = '. The justification of the expansion coefficient 

is given below. An illustration of the expansion is given in Figure 1.5. 

Lemma 1.3.1 The coefficient of an expansion is .
Proof Consider two tasks i and j such that (i, j) E, which are processed on two different 
processors in the feasible schedule . Let be d a coefficient d such that  and 

. After an expansion, in order to respect the precedence constraints and the 

communication delays we must have , and so 

 . It is sufficient to choose .d
Lemma 1.3.2 An expansion algorithm gives a feasible schedule for the problem denoted by ,
cij = c 2; pi = .
Proof It is sufficient to check that the solution given by an expansion algorithm produces a 
feasible schedule for the model UET-LCT. Consider two tasks i and j such that (i,j) E. We
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denote by i, (resp. j) the processor on which the task i (resp. the task j) is executed in the 

schedule . Moreover, we denote by  (resp. ) the processor on which the task i (resp.

the task j) is executed in the schedule . Thus, 

• If i = j then  = . Since the solution given by Munier and König (Munier and 

König, 1997) gives a feasible schedule on the model UET-UCT, then we have ,

• If i j then . We have 

Figure 1.5. Illustarion of notion of an expansion 

Theorem 1.3.4 An expansion algorithm gives a —approximation algorithm for the problem 
, cij = c 2; pi = .

Proof 
We denote by (resp. ) the makespan of the schedule computed by the Munier 

and König (resp. the optimal value of a schedule ). In the same way we denote by 

(resp. ) the makespan of the schedule computed by our algorithm (resp. the optimal 

value of a schedule ).

We know that . Thus, we obtain  

.
This expansion method can be used for other scheduling problems. 

1.4 Complexity and approximation of hierarchical scheduling model 

On negative side, Bampis et al. in (Bampis et al., 2002) studied the impact of the hierarchical 
communications on the complexity of the associated problem. They considered the simplest 
case, i.e., the problem , and they showed that 

this problem did not possess a polynomial-time approximation algorithm with a ratio 
guarantee better than 5/4 (unless  = ).



Multiprocessor Scheduling: Theory and Applications 74

Table 1.1:  Previous complexity results for unbounded number of machines for hierarchical 
communication delay model 

Recently, (Giroudeau, 2005) Giroudeau proved that there is no hope to find a -
approximation with  < 6/5 for the couple of communication delays (cij, ij) = (2,1). If 
duplication is allowed, Bampis et al. (Bampis et al., 2000a) extended the result of (Chrétienne 
and Colin, 1991) in the case of hierarchical communications, providing an optimal algorithm 

for ;pi = 1; . These complexity results are given in 

Table 1.1.  
On positive side, the authors presented in (Bampis et al., 2000b) a 8/5-approximation 

algorithm for the problem ;pi = 1 which is based on an 

integer linear programming formulation. They relax the integrity constraints and they 
produce a feasible schedule by rounding. This result is extended to the problem 

;pi = 1 leading to a -approximation algorithm (see 

below).
The challenge is to determinate a threshold for the approximation algorithm concerning the 

two more general problems: l  and 

 l with c' < c.  
Recently, in (Giroudeau et al., 2005), the authors proved that there is no possibility of 
finding a p-approximation with p < 1 + l/(c + 4) (unless  = ) for the case where all tasks 
of the precedence graph have unit execution times, where the multiprocessor is composed of 
an unrestricted number of machines, and where c denotes the communication delay 
between two tasks i and j both submitted to a precedence constraint and which have to be 
processed by two different machines (this problem is denoted in the following UET-LCT 
(Unit Execution Time Large Communication Time) homogeneous scheduling 
communication delays problem). The problem becomes polynomial whenever the 
makespan is at most (c + 1). The case of (c + 2) is still partially opened. In the same way as 
for the hierarchical communication delay model, for the couple of communication delay 
values (1,0), the authors proved in (Bampis et al., 2002) that there is no possibility of finding 
a -approximation with < 5/4 (this problem is detailed in following the UET-UCT 
hierarchical scheduling communication delay problem). 
Theorem 1.4.1 The problem of deciding whether an instance of 

 having a schedule of length at most (c + 3) is -complete, see 
(Giroudeau and König, 2004). 
Corollary 1.4.1 There is no polynomial-time algorithm for the problem 

 with c > d performance bound smaller than 1 +  unless 
, see (Giroudeau and König, 2004). 

The problem of deciding whether an instance of 

having a schedule of length at most (c + 1) is solvable in polynomial 

time since l and c are constant. 
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In the  same  way  as  the  section  1.2.2,   the  aim is  to model  the problem 

by an integer linear program (ILP) denoted, in 

what follows, by .
In this section, we will precise only the difference between the ILP given for the problem 

and .
In every feasible schedule, every task i V — U has at most two successors, w.l.o.g. call 
them ji and j2 (i), that can be performed by the same cluster as i at time tj1 = tj2 = ti + pi.
The other successors of i, if any, satisfy: k .
Consequently, the constraints:  are added. 

Similarly, every task i of V — Z has at most two predecessors, w.l.o.g. call them j1 and j2

(i), that can be performed by the same cluster as i at times tj1 , tj2 satisfying ti— (tj1 +pj1) <

1 and ti— (tj2 +pj2) < 1. So, the following constraints:  are added. 

The above constraints are necessary but not sufficient conditions in order to get a feasible 
schedule for the problem. For instance, a solution minimizing (Cmax for the graph of case (a) 
in Figure 1.6 will assign to every arc the value 0. However, since every cluster has two 
processors, and so at most two tasks can be processed on the same cluster simultaneously, 
the obtained solution is clearly not feasible. Thus, the relaxation of the integer constraints, 
by considering 0 xij 1, and the resolution of the resulting linear program with objective 
function the minimization of Cmax, gives just a lower bound of the value of Cmax.
In order to improve this lower bound, we consider every sub-graph of G that is isomorphic 
to the graphs given in Figure 1.6 -cases (a) and (b). It is easy to see that in any feasible 
schedule of G, at least one of the variables associated to the arcs of each one of these graphs 
must be set to one. So, the following constraints are added: 

• For the case (a): 
i, j, k, l, m V, such that (j, i), (j, k), (l, k), (l, m)  E, xji + xjk + xlk + xlm  1. 

• For the case (b): 
i, j, k, l, m V, such that (i, j), (k, j), (k, l), (m, l)  E, xij + xkj + xkl + xml  1. 

Thus, in what follows, the following ILP will be considered: 

Once again the integer linear program given above does not always imply a feasible solution 
for the scheduling problem. For instance, if the precedence graph given in Figure 1.7 is 
considered, the optimal solution of the integer linear program will set all the arcs to 0. 
Clearly, this is not a feasible solution for our scheduling problem. However, the goal in this 
step is to get a good lower bound of the makespan and a solution -eventually not feasible- 
that we will transform to a feasible one. 
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 case (a) case (b) 
Figure 1.6. Special sub-graphs considered in the ILP 

Figure 1.7 An optimal solution of the ILP  does not always imply a feasible solution 

Let inf denote the linear program corresponding to  in which we relax the integrability 
constraints xij  {0,1} by setting xij  [0,1]. Given that the number of variables and the number 
of constraints are polynomially bounded, this linear program can be solved in polynomial 
time. The solution of inf will assign to every arc (i, j) E a value xij = eij with 0 eij 1 and 

will determine a lower bound of the value of Cmax that we denote by .
Lemma 1.4.1  is a lower bound on the value of an optimal solution for 

.
Proof 
See the proof of Theorem 1.2.1. 
We use the algorithm 1 for the rounding algorithm by changing the value rounded: eij < 0.25 
instead eij < 0.5 The solution given by Step 1 is not necessarily a feasible solution (take for 
instance the precedence graph of Figure 1.7), so we must transform it to a feasible one. 
Notice that the cases given in Figure 1.6 are eliminated by the linear program. In the next 
step we need the following definition. 
Definition 1.4.1 A critical path with terminal vertex i  V is the longest path from an arbitrary 
source of G to task i. The length of a path is defined as the sum of the processing times of the tasks 
belonging to this path and of the values xij for every arc in the path. 
1. Step 2 [Feasible Rounding]: We change the integer solution as follows: 

a) If i is a source then we keep unchanged the values of xij obtained in Step 1.
b) Let i be a task such that all predecessors are already examined. Let Ai be the subset 

of incoming arcs of i belonging to a critical path with terminal vertex the task i.
i) If the set Ai, contains a 0-arc, then all the outcoming arcs xij take the value 1.  
ii) If the set Ai, does not contain any 0-arc (all the critical incoming arcs are valued to 

1), then the value of all the outcoming arcs xij remains the same as in Step 1, and all 
the incoming 0-arcs are transformed to I-arcs.

In Step l b) ii changing the value of an incoming 0-arc to 1 does not increase the length of any 
critical path having as terminal vertex i, because it exists at least one critical path with 
terminal vertex i such that an arc (j, i) E is valued by the linear program to at least 0.25 (eji

 0.25), and so xji is already equal to 1. 
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Lemma 1.4.2 Every job i  V has at most two successors (resp. predecessors) such that eij < 0.25
(resp. eji < 0.25) and The scheduling algorithm described above provides a feasible schedule. 
Theorem 1.4.2 The relative performance h of our heuristic is bounded above by  and the bound is 
tight, see (Bampis et al, 2003). 
Proof 
See the proof of the Theorem 1.2.3. 

1.5 Duplication 

The duplication of the tasks has been introduced first by Papadimitriou and Yannakakis 
(Papadimitriou and Yannakakis, 1990) in order to reduce an influence of the communication 
delays on the schedule. In (Papadimitriou and Yannakakis, 1990), the authors develop a 2-

approximation algorithm for the problem . The 

problem (the problem is a subproblem of 

) becomes easy. In the following, we will describe the procedure. We 
may assume w.l.o.g. that all the copies of any task i  V start their execution at the same 
time, call it ti.

1.5.1 Colin-Chrétienne Algorithm see (Chrétienne and Colin, 1991) 

The algorithm uses two steps: the first step computes the release times, and the second step 
use a critical determined from the first step in order to produces a optimal schedule in 
which all the tasks and their copies are executed at their release times. 

a 0
b 0
c 4
d 4
e 3
f 7
g 6
h 6
i 11

Figure 1.8. P0 problem 

The P0 problem given by Figure 1.8 will be illustrated the algorithm. The algorithm which 
computes the release times is given next: 

Algorithm 3 Release date algorithm and Earliest schedule  

for i := 1 to n do
if PRED(i) =  then 

bi := 0 
else

C := max{bk+pk + cki };

Let be s such that : bs + ps + csi = C;
bi := max{bs + ps : max{bk+pk + cki - {s}}}.

end if 
end for
Each connected component Gc = (V; Ec) on different processor;  
Each copy is executed at his release time. 
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Without lost of generality, all copies of the task i admit the same starting , denoted by ti, as 
the the task i. A arc (i, j) E is a critical arc if bi+pi +cij > bj. From this definition, it is clear that 
if (i, j) is a critical arc, then in all as soon as possible schedule, each copy of a task j must be 
preceded by a copy of a task i on the same processor. In order to construct a earliest 
schedule, each critical path is allotted on a processor, and each copy is executed at his 
release date. 
Theorem 1.5.1 Let be bi the starting time computed by the procedure. For all feasible schedule for a 
graph G, the release date of a task i cannot be less than bi. All sub-graph is spanning forest. The 
procedure gives a feasible schedule and the overall complexity is O(n2).

Table 1.2: Complexity results in presence of duplication 

Figure 1.9 The critical sub-graph 

An earliest schedule of the precedence graph P0 is given by Figure 1.10. 

Figure 1.10: An earliest schedule of P0

The study of duplication in presence of unbounded number of processors is theoretical. 
Indeed, the results on unbounded processors do not improved the results on limited 
number of processors. So, concerning the hierarchical model, since the number of processors 
per cluster is limited, the authors in (Bampis et al., 2000a) are investigate only on the 
theoretical aspect of associated scheduling problem. 
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Table 1.3. Approximation results in presence of duplication 

Table 1.4. Thresold for the total sum of completion time minimization of unbounded 
number of machines 

1.6 Total sum of completion time minimization 

In this section, a threshold for total sum of completion time minimization problem is 
presented for some problems in the homogeneous and hierarchical model. The following 
table summarize all the results in the homogeneous communication delay model and the 
hierarchical communication delay model. 

Theorem 1.6.1 There is no polynomial-time algorithm for the problem 
with performance bound smaller than 9/8 unless  see (Hoogeveen et al, 1998). 
Proof 
We suppose that there is a polynomial-time approximation algorithm denoted by A with 
performance guarantee bound smaller than 1 + . Let I be the instance of the problem 

obtained by a reduction (see Theorem 1.2.2). 

Let I' be the instance of the problem by adding x new tasks 

from an initial instance I. In the precedence constraints, each group of x (with x > )

new tasks is a successor of the old tasks (old tasks are from the polynomial transformation 
used for the proof of Theorem 1.2.2). We obtain a complete directed graph from old tasks to 
new tasks. 
Let A(I') (resp. A* (I')) be the result given by A (resp. an optimal result) on an instance I'.
1. If A(I') < 8 x + 6 n then A*(I') < 8 x + 6 n. So we can decide that there exists a 

scheduling of an instance I with Cmax 6. Indeed, we suppose that at most one (denoted 
by i) task of n old tasks is executed at t = 6. Among the x news tasks, at most one task 
may be executed on the same processor as i before t = 9. Then A* (I') > 9(x - 1). Thus, x < 
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. A contradiction with x > . Thus, it exists a schedule of length 6 on an old 

tasks. 
2. . We suppose that A(I') > 8 x + 6 n. So, A*(I') 8x + 6n because an algorithm A is a 

polynomial-time approximation algorithm with performance guarantee bound smaller 
than  < 9/8. There is no algorithm to decide whether the tasks from an instance I admit 
a schedule of length equal or less than 6. 
Indeed, if there exists such an algorithm, by executing the x tasks at time t = 8, we 
obtain a schedule with a completion time strictly less than 8x + 6n (there is at least one 
task which is executed before the time t = 6). This is a contradiction since A*(I') 8x +
6n.

This concludes the proof of Theorem 1.6.1. 

1.7 Conclusion 

Figure 1.11. Principal results in UET-UCT model for the minimization of the length of the 
schedule

With the Figure 1.11, a question arises: " It exists a -approximation algorithm with  INT 

for the problems ; and ?"

Moreover, the hierarchical communication delays model is a model more complex as the 
homogeneous communication delays model. However, this model is not too complex since 
some analytical results were produced. 
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1.8 Appendix 

In this section, we will give some fundamentals results in theory of complexity and 
approximation with guaranteed performance. A classical method in order to obtain a lower 
for none approximation algorithm is given by the following results called "Impossibility 
theorem" (Chrétienne and Picouleau, 1995) and gap technic see (Aussiello et al., 1999). 
Theorem 1.8.1 (Impossibility theorem) Consider a combinatorial optimization problem for which 
all feasible solutions have non-negative integer objective function value (in particular scheduling 
problem). Let c be a fixed positive integer. Suppose that the problem of deciding if there exists a 
feasible solution of value at most c is -complete. Then, for any  < (c + l)/c, there does not exist a 
polynomial-time -approximation algorithm A unless  = , see ((Chrétienne and Picouleau, 
1995), (Aussiello et al, 1999)) 
Theorem 1.8.2 (The gap technic) Let Q' be an -complete decision problem and let Q be an NPO 
minimization problem. Let us suppose that there exist two polynomial-time computable functions f : 

 and d :  IN and a constant gap > 0 such that, for any instance x of Q'. 

Then no polynomial-time r-approximate algorithm for Q with r < 1 + gap can exist, unless  = ,
see (Aussiello et al, 1999). 

1.8.1 List of -complete problems 

In this section, some classical . -complete problems are listed, which are used in this 
chapter for the polynomial-time transformation. 

problem
Instances: We consider a logic formula with clauses of size two or three, and each positive 
literal (resp. negative literal) occurs twice (resp. once). The aim is to find exactly one true 
literal per clause. Let n be a multiple of 3 and let  be a set of clauses of size 2 or 3. There are 
n clauses of size 2 and n/3 clauses of size 3 so that: 

• each clause of size 2 is equal to for some  with x  y.
• each of the n literals x (resp. of the literals ) for x  belongs to one of the n clauses of 

size 2, thus to only one of them. 

• each of the n literals x belongs to one of the n/3 clauses of size 3, thus to only one of them. 

• whenever is a clause of size 2 for some , then x and y belong to 

different clauses of size 3. 
We would insist on the fact that each clause of size three yields six clauses of size two. 
Question:
Is there a truth assignment for I:  {0,1} such that every clause in has exactly one true 
literal?
Clique problem 
Instances: Let be G = (V, E) a graph and k a integer. 
Question: There is a clique (a complete sub-graph) of size k in G ?
3 - SAT problem
Instances: 
• Let be  = {x1,..., xn} a set of n logical variables. 

• Let be = {C1, ... , Cm} a set of clause of length three: .
Question: There is I:  {0,1} a assignment 



Multiprocessor Scheduling: Theory and Applications 82

1.8.2 Ratio of approximation algorithm 

This value is defined as the maximum ratio, on all instances /, between maximum objective 

value given by algorithm h (denoted by (I)) and the optimal value (denoted by (I)),
i.e. 

Clearly, we have .

1.8.3 Notations 

The notations of this chapter will precised by using the three fields notation scheme , 
proposed by Graham et al. (Graham et al., 1979): 

•
• If the number of processors is limited, 

• If , then the number of processors is not limited, 

• If , then we have unbounded number of clusters constituted by two 
processors each, 

•  where: 

• If =prec (the precedence graph unspecified 
*

• If  (the communication delay between to tasks admitting a precedence 
constraint is equal to c)

*

• If  (the processing time of all the tasks is equal to one). 
*

• If  =dup (the duplication of task is allowed)

• Si  = . (the duplication of task is not allowed) 

•  is the objective function: 

• the minimization of the makespan, denoted by Cmax

• the minimization of the total sum of completion time, denoted by where Cj

= tj+pj
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1. Introduction 

We study a single machine scheduling problem with batch setup time and batch delivery 
cost. In this problem, n jobs have to be scheduled on a single machine and delivered to a 
customer. Each job has a due date, a processing time and a weight. To save delivery cost, 
several jobs can be delivered together as a batch including the late jobs. The completion 
(delivery) time of each job in the same batch coincides with the batch completion (delivery) 
time. A batch setup time has to be added before processing the first job in each batch. The 
objective is to find a batching schedule which minimizes the sum of the weighted number of 
late jobs and the delivery cost. Since the problem of minimizing the weighted number of late 
jobs on a single machine is already -hard [Karp, 1972], the above problem is also -
hard. We propose a new dynamic programming algorithm (DP), which runs in 
pseudopolynomial time. The DP runs in O(n5) time for the special cases of equal processing 
times or equal weights. By combining the techniques of binary range search and static 
interval partitioning, we convert the DP into a fully polynomial time approximation scheme 
(FPTAS) for the general case. The time complexity of this FPTAS is O(n4/  + n4logn).
Minimizing the total weighted number of late jobs on a single machine, denoted by 

[Graham et. al, 1979], is a classic scheduling problem that has been well studied in 
the last forty years. Moore [1968] proposed an algorithm for solving the unweighted 
problem on n jobs in O(nlogn) time. The weighted problem was in the original list of -
hard problems of Karp [1972]. Sahni [1976] presented a dynamic program and a fully 
polynomial time approximation scheme (FPTAS) for the maximization version of the 
weighted problem in which we want to maximize the total weight of on-time jobs. Gens and 
Levner [1979] developed an FPTAS solving the minimization version of the weighted 
problem in O(n3/ ) time. Later on, they developed another FPTAS that improved the time 
complexity to O(n2logn + n2/ ) [Gens and Levner, 1981]. 
In the batching version of the problem, denoted by , jobs are processed in batches 
which require setup time s, and every job's completion time is the completion time of the 
last job in its batch. Hochbaum and Landy [1994] proposed a dynamic programming 
algorithm for this problem, which runs in pseudopolynomial time. Brucker and Kovalyov 
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[1996] presented another dynamic programming algorithm for the same problem, which 
was then converted into an FPTAS with complexity O(n3/  + n3logn).
In this paper, we study the batch delivery version of the problem in which each job must be 
delivered to the customer in batches and incurs a delivery cost. Extending the classical 
three-field notation [Graham et. al., 1979], this problem can be denoted by bq, 
where b is the total number of batches and q is the batch delivery cost. The model, without 
the batch setup times, is similar to the single-customer version of the supplier's supply chain 
scheduling problem introduced by Hall and Potts [2003] in which the scheduling 
component of the objective is the minimization of the sum of the weighted number of late 
jobs (late job penalties). They show that the problem is -hard in the ordinary sense by 
presenting pseudopolynomial dynamic programming algorithms for both the single-and 
multi-customer case [Hall and Potts, 2003]. For the case of identical weights, the algorithms 
become polynomial. However, citing technical difficulties in scheduling late jobs for 
delivery [Hall and Potts, 2003] and [Hall, 2006], they gave pseudopolynomial solutions for 
the version of the problem where only early jobs get delivered. The version of the problem in 
which the late jobs also have to be delivered is more complex, as late jobs may need to be 
delivered together with some early jobs in order to minimize the batch delivery costs. In 
Hall and Potts [2005], the simplifying assumption was made that late jobs are delivered in a 
separate batch at the end of the schedule. Steiner and Zhang [2007] presented a 
pseudopolynomial dynamic programming solution for the multi-customer version of the 
problem which included the unrestricted delivery of late jobs. This proved that the problem 
with late deliveries is also -hard only in the ordinary sense. However, the algorithm had 
the undesirable property of having the (fixed) number of customers in the exponent of its 
complexity function. Furthermore, it does not seem to be convertible into an FPTAS. In this 
paper, we present for bq a different dynamic programming algorithm with 
improved pseudopolynomial complexity that also schedules the late jobs for delivery. 
Furthermore, the algorithm runs in polynomial time in the special cases of equal tardiness 
costs or equal processing times for the jobs. This proves that the polynomial solvability of 

can be extended to , albeit by a completely different algorithm. We 
also show that the new algorithm for the general case can be converted into an FPTAS.
The paper is organized as follows. In section 2, we define the bq problem in 
detail and discuss the structure of optimal schedules. In section 3, we propose our new 
dynamic programming algorithm for the problem, which runs in pseudopolynomial time. 
We also show that the algorithm becomes polynomial for the special cases when jobs have 
equal weights or equal processing times. In the next section, we develop a three-step fully 
polynomial time approximation scheme, which runs in O(n4/  + n4logn) time. The last 
section contains our concluding remarks. 

2. Problem definition and preliminaries 

The problem can be defined in detail as follows. We are given n jobs, J = {1,2,..., n}, with 
processing time pj, weight wj, delivery due date . Jobs have to be scheduled 

nonpreemptively on a single machine and delivered to the customer in batches. Several jobs 
could be scheduled and delivered together as a batch with a batch delivery cost q and 
delivery time . For each batch, a batch setup time s has to be added before processing the 
first job of the batch. Our goal is to find a batching schedule that minimizes the sum of the 
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weighted number of late jobs and delivery costs. Without loss of generality, we assume that 
all data are nonnegative integers. 
A job is late if it is delivered after its delivery due date, otherwise it is early. The batch 
completion time is defined as the completion time of the last job in the batch on the machine. 
Since the delivery of batches can happen simultaneously with the processing of some other 
jobs on the machine, it is easy to see that a job is late if and only if its batch completion time 
is greater than its delivery due date minus . This means that each job j has an implied due 
date on the machine. This implies that we do not need to explicitly schedule the 

delivery times and consider the delivery due dates, we can just use the implied due dates, or 
due dates in short, and job j is late if its batch completion time is greater than dj. (From this 
point on, we use the term due date always for the dj.) A batch is called an early batch if all 
jobs are early in this batch, it is called a late batch if every job is late in this batch, and a batch 
is referred to as mixed batch if it contains both early and late jobs. The batch due date is defined 
as the smallest due date of any job in the batch. The following simple observations 
characterize the structure of optimal schedules we will search for. They represent 
adaptations of known properties for the version of the problem in which there are no 
delivery costs and/or late jobs do not need to be delivered. 
Proposition 2.1. There exists an optimal schedule in which all early jobs are ordered in EDD 
(earliest due date first) order within each batch.
Proof. Since all jobs in the same batch have the same batch completion time and batch due 
date, the sequencing of jobs within a batch is immaterial and can be assumed to be EDD.
Proposition 2.2. There exists an optimal schedule in which all late jobs (if any) are scheduled in the 
last batch (either in a late batch or in a mixed batch that includes early jobs). 
Proof. Suppose that there is a late job in a batch which is scheduled before the last batch in an 
optimal schedule. If we move this job into this last batch, it will not increase the cost of the 
schedule. 
Proposition 2.3. There exists an optimal schedule in which all early batches are scheduled in EDD 
order with respect to their batch due date. 
Proof. Suppose that there are two early batches in an optimal schedule with batch 
completion times ti < tk and batch due dates di > dk. Since all jobs in both batches are early, 
we have di > dk  tk > ti. Thus if we schedule batch k before batch i, it does not increase the 
cost of the schedule. 
Proposition 2.4. There exists an optimal schedule such that if the last batch of the schedule is not a 
late batch, i.e., there is at least one early job in it, then all jobs whose due dates are greater than or 
equal to the batch completion time are scheduled in this last batch as early jobs. 
Proof. Let the batch completion time of the last batch be t. Since the last batch is not a late 
batch, there must be at least one early job in this last batch whose due date is greater than or 
equal to t. If there is another job whose due date is greater than or equal to t but it was 
scheduled in an earlier batch, then we can simply move this job into this last batch without 
increasing the cost of the schedule. 
Proposition 2.2 implies that the jobs which are first scheduled as late jobs can always be 
scheduled in the last batch when completing a partial schedule that contains only early jobs. 
The dynamic programming algorithm we present below uses this fact by generating all 
possible schedules on early jobs only and designating and putting aside the late jobs, which 
get scheduled only at the end in the last batch. It is important to note that when a job is 
designated to be late in a partial schedule, then its weighted tardiness penalty is added to 
the cost of the partial schedule. 
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3. The dynamic programming algorithm 

The known dynamic programming algorithms for do not have a straightforward 
extension to bq, because the delivery of late jobs complicates the matter. We 
know that late jobs can be delivered in the last batch, but setting them up in a separate batch 
could add the potentially unnecessary delivery cost q for this batch when in certain 
schedules it may be possible to deliver late jobs together with early jobs and save their 
delivery cost. Our dynamic programming algorithm gets around this problem by using the 
concept of designated late jobs, whose batch assignment will be determined only at the end. 
Without loss of generality, assume that the jobs are in EDD order, i.e., d1  d2  ...  dn and let 

. If d1 P + s, then it is easy to see that scheduling all jobs in a single batch will 

result in no late job, and this will be an optimal schedule. Therefore, we exclude this trivial 
case by assuming for the remainder of the paper that some jobs are due before P + s. The
state space used to represent a partial schedule in our dynamic programming algorithm is 
described by five entries {k, b, t, d, v}: 
k: the partial schedule is on the job set {1,2,..., k}, and it schedules some of these jobs as early 

while only designating the rest as late; 
b: the number of batches in the partial schedule; 
t: the batch completion time of the last scheduled batch in the partial schedule; 
d: the due date of the last batch in the partial schedule; 
v: the cost (value) of the partial schedule. 
Before we describe the dynamic programming algorithm in detail, let us consider how we 
can reduce the state space. Consider any two states (k, b, t1, d,v1) and (k, b, t2, d,v2). Without 
loss of generality, let t1 t2. If v1  v2, we can eliminate the second state because any later 
states which could be generated from the second state can not lead to better v value than the 
value of similar states generated from the first state. This validates the following elimination 
rule, and a similar argument could be used to justify the second remark. 
Remark 3.1. For any two states with the same entries {k,b,t,d, }, we can eliminate the state 
with larger v.
Remark 3.2. For any two states with the same entries {k, b, ,d,v}, we can eliminate the state 
with larger t.
The algorithm recursively generates the states for the partial schedules on batches of early
jobs and at the same time designates some other jobs to be late without actually scheduling 
these late jobs. The jobs designated late will be added in the last batch at the time when the 
partial schedule gets completed into a full schedule. The tardiness penalty for every job 
designated late gets added to the state variable v at the time of designation. We look for an 
optimal schedule that satisfies the properties described in the propositions of the previous 
section. By Proposition 2.2, the late jobs should all be in the last batch of a full schedule. It is 
equivalent to say that any partial schedule {k, b, t, d, v} with 1 b  n — 1 can be completed 
into a full schedule by one of the following two ways: 
1. Add all unscheduled jobs {k + 1, k + 2,..., n} and the previously designated late jobs to 

the end of the last batch b if the resulting batch completion time (P + bs) does not exceed 
the batch due date d (we call this a simple completion); or

2. Open a new batch b+1, and add all unscheduled jobs {k + 1, k + 2,..., n} and  the 
previously designated late jobs to the schedule in this batch. (We will call this a direct 
completion.)
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We have to be careful, however, as putting a previously designated late job into the last 
batch this way may make such a job actually early if its completion time (P+bs or P + (b + l)
s, respectively) is not greater than its due date. This situation would require rescheduling 
such a designated late job among the early jobs and removing its tardiness penalty from the 
cost v. Unfortunately, such rescheduling is not possible, since we do not know the identity 
of the designated late jobs from the state variables (we could only derive their total length 
and tardy weight). The main insight behind our approach is that there are certain special 
states, that we will characterize, whose completion never requires such a rescheduling. We 
proceed with the definition of these special states. 
It is clear that a full schedule containing exactly l (1 l n) batches will have its last batch 
completed at P + ls. We consider all these possible completion times and define certain 
marker jobs mi and batch counters i in the EDD sequence as follows: Let m0 be the last job with 

 < P + s and m0 +1 the first job with  P+s. If m0 +1 does not exist, i.e., m0 = n, then 
we do not need to define any other marker jobs, all due dates are less than P + s, and we will 
discuss this case separately later. Otherwise, define 0 = 0 and let 1 1 be the largest integer 

for which P + 1s. Let the marker job associated with 1 be the job m1 m0 + 1 whose 

due date is the largest due date strictly less than P + ( 1 +1)s, i.e., < P + ( 1 + 1)s and 

 P + ( 1 + 1)s. Define recursively for i = 2,3,...,h — 1, i i-1 + 1 to be the smallest counter for 

which there is a marker job mi mi-1 +1 such that  < P + ( i + 1) s and  P+( i + 1) s. 
The last marker job is mh = n and its counter h is the largest integer for which P + h s  dn < 
P + ( h + 1)s. We also define h+1 = h +1. Since the maximum completion time to be 
considered is P+ns for all possible schedules (when every job forms a separate batch), any 
due dates which are greater than or equal to P + ns can be reduced to P + ns without 
affecting the solution. Thus we assume that dn  P+ns for the rest of the paper, which also 
implies h +1 n+1.
For convenience, let us also define T1,0 = P + 1s, Ti,k = P + ( i + k)s for i = 1,..., h and k = 0,1,..., 

k(i), where each k(i) is the number for which Ti, k (i) = P + ( i + k(i))s = P + i+1 s = Ti+1,0 , and Th,1

= P + ( h + l)s. Note that this partitions the time horizon [P, P + ( h + l)s] into consecutive 
intervals of length s. We demonstrate these definitions in Figure 1. 

Figure 1. Marker Jobs and Corresponding Intervals 

We can distinguish the following two cases for these intervals: 
1. Ti,1 = Ti+1,0, i.e., k(i) = 1: This means that the interval immediately following Ii = [Ti,0, Ti,1)

contains a due date. This implies that i+1 = i + 1; 

2. Ti,1 Ti+1,0, i.e., k(i) > 1: This means that there are k(i) — 1 intervals of length s starting at 
P + ( i + 1)s in which no job due date is located. 

In either case, it follows that every job j > m0 has its due date in one of the intervals Ii = [Ti,0, Ti,1)
for some i  {1,..., h}, and the intervals [Ti,l, Ti,l+1) contain no due date for i = 1,...,h and l>0.
Figure 1 shows that jobs from m0+1 to m1 have their due date in the interval [T1,0, T1,1). Each 
marker job mi is the last job that has its due date in the interval Ii = [Ti,0, Ti,1) for i = 1,..., h, i.e., 
we have .
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Now let us group all jobs into h +1 non-overlapping job sets G0 = {1,..., m0}, G1 = {m0 + 1,..., 
m1} and Gi = {mi-1 + 1,..., mi} for i = 2,..., h. Then we have and i 1. We also 

define the job sets J0 = Go, Ji = G0 G1 ... Gi, for i = 1,2,..., h — 1 and Jh = G0 G1 ... Gh = J.
The special states for DP are defined by the fact that their (k, b) state variables belong to the 
set H defined below: 
If m0 = n, then let H = {(n, 1), (n, 2), ..., (n, n — 1)};
If m0 < n, then let H = H1 H2 H3, where 
1. If 1 > 1, then H1 = {(m0, 1), (m0, 2), ..., (m0, 1–1)}, otherwise H1 = ;

2. H2 = , ..., , ..., 
, ..., ;

3. If 1 < h < n, then H3 = , otherwise H3 = .
Note that mh = n and thus the pairs in H3 follow the same pattern as the pairs in the other 
parts of H. The dynamic program follows the general framework originally presented by 
Sahni [1976].
The Dynamic Programming Algorithm DP
[Initialization] Start with jobs in EDD order
1. Set (0, 0, 0, 0, 0) S(0), S(k) = , k = 1, 2, ..., n, * = , and define m0, i and mi , i = 1,2,..., h;

2. If m0 + 1 does not exist, i.e., m0 = n, then set H = {(n, 1), (n, 2), ..., (n, n — 1)}; Otherwise 
set H = H1 H2 H3.

Let I = the set of all possible pairs and =I—H , the complementary 
set of H.
[Generation] Generate set S(k) for k = 1 to n + 1 from S(k-1) as follows: 

Set  = ;
[Operations] Do the following for each state (k — 1,b,t, d, v) in S(k-1)

Case (k - 1, b)  H
1. If t < P + bs, set * = *  (n, b + 1, P + (b + 1)s, d', v + q) /* Generate the direct 

completion schedule and add it to the solution set *, where d' is defined as the due date of 
the first job in batch b+ 1; 

2. If t = P + bs, set * = *  (n, b, P + bs, d, v) /* We have  a partial schedule in which all 
jobs are early. (This can happen only when k — 1 = n.)

Case (k - 1, b) 
1. If t + pk d and k n, set  =  (k, b, t + pk, d, v) /* Schedule job k as an early job in 

the current batch;
2. If t + pk + s dk and k n, set  =  (k, b + 1, t + pk + s, dk, v + q) /* Schedule job k as 

an early job in a new batch;
3. If k n, set  =  (k, b, t, d, v + wk) /* Designate job k as a late job by adding its weight 

to v and reconsider it at the end in direct completions.
Endfor
[Elimination] Update set S(k)

1. For any two states (k, b, t, d, v) and (k, b, t, d, v') with v  v', eliminate the one with 
v' from set  based on Remark 3.1; 

2. For any two states (k, b, t, d, v) and (k, b, t', d, v) with t  t', eliminate the one with t' 
from set  based on Remark 3.2; 

3. Set S(k) = .
Endfor
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[Result] The optimal solution is the state with the smallest v in the set *.  Find the optimal 
schedule by backtracking through all ancestors of this state. 
We prove the correctness of the algorithm by a series of lemmas, which establish the crucial 
properties for the special states. 
Lemma 3.1. Consider a partial schedule (mi, b, t, d, v) on job set Ji, where (mi, b)  H. If its 
completion into a full schedule has b+1 batches, then the final cost of this completion is exactly v + q.
Proof. We note that completing a partial schedule on b batches into a full schedule on b + 1
batches means a direct completion, i.e., all the unscheduled jobs (the jobs in J — Ji, if any) 
and all the previously designated late jobs (if any) are put into batch b+1, with completion 
time P + (b + 1)s.
Since all the previously designated late jobs are from Ji for a partial schedule (mi, b, t, d, v), 
their due dates are not greater than . Therefore, all 
designated late jobs stay late when scheduled in batch b+1. Next we show that unscheduled 
jobs j  (J — Ji) must be early in batch b+1. We have three cases to consider. 
Case 1. m0 = n and i = 0:

In this case, H = {(n, 1), (n, 2),..., (n,n — 1)} and J0 = J, i.e. all jobs have been scheduled 
early or designated late in the state (m0, b, t, d, v). Therefore, there are no unscheduled 
jobs.

Case 2. m0 < n and b = i :
Since 0 = 0 by definition, we must have i 1 in this case. The first unscheduled job j  (J
— Ji) is job mi + 1 with due date . Thus mi +1 and all 
other jobs from J — Ji have a due date that is at least P + (b + 1)s, and therefore they will 
all be early in batch b+1.

Case 3. m0 < n and b > i :
This case is just an extension of the case of b = i.
If i = 0, then the first unscheduled job for the state (m0, b, t, d, v) is m0 +1. Thus every 
unscheduled job j has a due date , where the last 
inequality holds since (m0, b) Hi and therefore, b 1 — 1. 
If 1 i < h, then we cannot have k(i) = 1: By definition, if k(i) =1, then i + k(i)—1 = i = i

+1—1, which contradicts b > i and (mi,b) H. Therefore, we must have k(i) > 1, and b
could be any value from { i + 1,..., i + k(i) — 1}. This means that P + (b + l)s < P + ( i +
k(i))s = P + i+1 s. We know, however, that every unscheduled job has a due date that is 
at least Ti+1, 0 = P + i+1 s. Thus every job from J — Ji will be early indeed. 
If i = h, then we have mh = n and Jh = J, and thus all jobs have been scheduled early or 
designated late in the state (mi, b, t, d, v). Therefore, there are no unscheduled jobs. 

In summary, we have proved that all previously designated late jobs (if any) remain late in 
batch b+1, and all jobs from J — Ji (if any) will be early. This means that v correctly accounts 
for the lateness cost of the completed schedule, and we need to add to it only the delivery 
cost q for the additional batch b+1. Thus the cost of the completed schedule is v + q indeed. 
Lemma 3.2. Consider a partial schedule (mi, b, t, d, v) on job set Ji, where (mi, b)  H and b  n — 1.
Then any completion into a full schedule with more than b + 1 batches has a cost that is at least v + q, 
i.e., the direct completion has the minimum cost among all such completions of (mi, b,t,d, v).
Proof. If mi = n, then the partial schedule is of the form (n, b, t,d,v), (n,b) H, b  n — 1. (This
implies that either m0 = n with i = 0 or (mi, b) H3 with i = h.) Since there is no unscheduled 
job left, all the new batches in any completion are for previously designated late jobs. And 
since all the previously designated late jobs have due dates that are not greater than 
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, these jobs will stay late in the completion. The number of 
new batches makes no difference to the tardiness penalty cost of late jobs. Therefore, the best 
strategy is to open only one batch with cost q. Thus the final cost of the direct completion is 
minimum with cost v + q.
Consider now a partial schedule (mi, b, t, d, v), (mi, b) H, b  n—1 when mi < n. Since all the 
previously designated late jobs (if any) are from Ji, their due dates are not greater than 

. Furthermore, since all unscheduled jobs are from J — Ji, their
due dates are not less than . Thus scheduling all of these jobs 
into batch b + 1 makes them early without increasing the tardiness cost. It is clear that this is 
the best we can do for completing (mi, b, t, d, v) into a schedule with b + 1 or more batches. 
Thus the final cost of the direct completion is minimum again with cost v + q. 
Lemma 3.3. Consider a partial schedule (mi, b, t, d, v} on job set Ji (i  1), where (mi, b)  H and b > 
1. If it has a completion into a full schedule with exactly b batches and cost v', then there must exist 
either a partial schedule  whose direct completion is of the same cost v' or there exists 
a partial schedule  whose direct completion is of the same cost v'. 
Proof. To complete the partial schedule (mi,b,t,d,v) into a full schedule on b batches, all 
designated late jobs and unscheduled jobs have to be added into batch b.
Case 1. b > i:

Let us denote the early jobs by Ei Ji in batch b in the partial schedule (mi, b, t, d, v).
Adding the designated late jobs and unscheduled jobs to batch b will result in a batch 
completion time of P+bs. This makes all jobs in Ei late since 
for j Ei. Thus the cost of the full schedule should be . We cannot do this 

calculation, however, since there is no information available in DP about what Ei is. But 
if we consider the partial schedule  = 

with one less batch, where is the smallest due date in batch b — 1 in the 

partial schedule (mi, b, t, d, v), the final cost of the direct completion of the partial 

schedule would be exactly by

Lemma 3.1. We show next that this partial schedule 
does get generated in the algorithm. 

In order to see that DP will generate the partial schedule 
suppose that during the generation of the partial schedule (mi, b, t, d, v), DP starts batch b by
adding a job k as early. This implies that the jobs that DP designates as late on the path of 
states leading to (mi, b, t, d, v) are in the set Li = {k, k + 1, ..., mi } — Ei. In other words, DP has
in the path of generation for (mi ,b,t,d,v) a partial schedule .
Then it will also generate from the partial schedule 

by simply designating all jobs in Ei Li as late. 

Case 2. b = i 1:
Suppose the partial schedule (mi, b, t, d, v) has in batch b the sets of early jobs Ei-1 E,
where Ei-1  Ji-1 and E ( Ji — Ji-1). Adding the designated late jobs and unscheduled jobs 
to batch b will result in a batch completion time of P + bs. This makes all jobs in Ei-1 late 
since . On the other hand, if L  (Ji—Ji-1—E) denotes the 
previously designated late jobs from Ji — Ji-1 in (mi, b, t, d, v), then these jobs become 
early since +1 for j L. For similar reasons, all previously designated 

late jobs not in L stay late, jobs in E remain early and all other jobs from J — Ji will be 
early too. In summary, the cost for the full completed schedule derived from (mi,b,t,d,v)
should be . Again, we cannot do this calculation, since 
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there is no information about Ei-1 and L. However, suppose that Ei-1 , and consider 

the partial schedule  = 
 with one less batch, where d is the smallest due date in batch b — 1 in 

the partial schedule (mi, b, t, d, v). The final cost of the direct completion of the partial 
schedule would be exactly 

 by Lemma 3.1. Next, we show that this partial schedule 

does get generated during the 

execution of DP.
To see the existence of the partial schedule  = 

) note that DP must start batch b on the path of 

states leading to (mi, b, t, d, v) by scheduling a job k mi-1 early in iteration k from a state 

 (We cannot have k > 
mi-1 since this would contradict Ei-1 . Note also that accounts for the 

weight of those jobs from {k, k+l,..., mi-1} that got designated late between iterations k and mi-1

during the generation of the state (mi,b,t,d,v).) In this case, it is clear that DP will also 
generate from a

partial schedule on Ji-1 in which all jobs in Ei-1 are designated late, in addition to those jobs (if 
any) from {k, k+1,..., mi-1} that are designated late in (mi, b, t, d, v). Since this schedule will 
designate all of {k, k+1,..., mi-1} late, the lateness cost of this set of jobs must be added, which 
results in a state . This is the state 

whose existence we claimed. 
The remaining case is when Ei-1 = . In this case, batch b has no early jobs in the partial 
schedule (mi,b,t,d,v) from the set Ji-1 and if k again denotes the first early job in batch b, then k

Ji – Ji-1. This clearly implies that (mi,b,t,d,v) must have a parent partial schedule 

. Consider the direct completion of this schedule: All designated 
late jobs must come from Ji-1 and thus they stay late with a completion time of P + bs. 
Furthermore, all jobs from J – Ji-1 will be early, and therefore, the cost of this direct 
completion will be .
The remaining special cases of b = 1, which are not covered by the preceding lemma, are (mi,
b) = (m1, 1) or (mi, b) = (m0, 1), and they are easy: Since all jobs are delivered at the same time 
P + s, all jobs in J0 or J, respectively, are late, and the rest of the jobs are early. Thus there is 

only one possible full schedule with cost .
In summary, consider any partial schedule (mi, b, t, d, v) on job set Ji, where (mi, b) H , or a 
partial schedule (n, b, t, d, v) on job set J and assume that the full schedule S' = (n, b' , P + b's, 
d' , v') is a completion of this partial schedule and has minimum cost v'. Then the following 
schedules generated by DP will contain a schedule among them with the same minimum 
cost as S':

1. the direct completion of (mi,b,t,d,v), if (mi, b)  (mi, i) and b' > b, by Lemma 3.1 and 
Lemma 3.2; 

2. the direct completion of a partial schedule , if (mi, b)  (mi, i) and b' = 
b, by Lemma 3.3; 

3. the direct completion of a partial schedule , if (mi, b) = (mi, i), i > 1 and 
b' = b, by Lemma 3.3; 

4. the full schedule if m0 < n and b' b = 1 = 1 i.e., (mi, b) 

= (m1, 1); 
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5. the full schedule , if m0 = n and b' b = 1.   i.e., (mi, b) = 

(m0, 1).
Theorem 3.1. The dynamic programming algorithm DP is a pseudopolynomial algorithm, which 
finds an optimal solution for  in min  time and space, 
where .

Proof. The correctness of the algorithm follows from the preceding lemmas and discussion. 
It is clear that the time and space complexity of the procedures [Initialization] and [Result] is 
dominated by the [Generation] procedure. At the beginning of iteration k, the total number of 
possible values for the state variables {k, b, t, d, v} in S(k) is upperbounded as follows: n is the 
upper bound of k and b; n is the upper bound for the number of different d values; min{dn, P
+ ns} is an upper bound of t and W + nq is an upper bound of v, and because of the 
elimination rules, min{dn, P+ns, W+nq} is an upper bound for the number of different 
combinations of t and v. Thus the total number of different states at the beginning of each 
iteration k in the [Generation] procedure is at most O(n2 min{dn, P + ns, W + nq}). In each 
iteration k, there are at most three new states generated from each state in S(k-1) and this takes 
constant time. Since there are n iterations, the [Generations] procedure could indeed be done 
in O(n3 min{dn, P + ns, W + nq}) time and space. 
Corollary 3.1. For the case of equal weights, the dynamic programming algorithm DP finds an 
optimum solution in O(n5) time and space.
Proof. For any state, v is the sum of two different cost components: the delivery costs from {q, 
2q,..., nq} and the weighted number of late jobs from {0, w,..., nw}, where wj = w, .
Therefore, v can take at most n(n + 1) different values and the upper bound for the number 
of different states becomes O(n3 min{dn, P + ns, n2}) = O(n5).
Corollary 3.2. For the case of equal processing times, the dynamic programming algorithm DP finds 
an optimum solution in O(n5) time and space.
Proof. For any state, t is the sum of two different time components: the setup times from {s, 
...,ns} and the processing times from {0,p, ...,np}, where pj = p, . Thus, t can take at most 
n(n + 1) different values, and the upper bound for the number of different states becomes 
O(n3 min{dn, n2, W + nq}) = O(n5).

4. The Fully Polynomial Time Approximation Scheme 

To develop a fully polynomial time approximation scheme (FPTAS), we will use static 
interval partitioning originally suggested by Sahni [1976] for maximization problems. The 
efficient implementation of this approach for minimization problems is more difficult, as it 
requires prior knowledge of a lower (LB) and upper bound (UB) for the unknown optimum 
value v*, such that the UB is a constant multiple of LB. In order to develop such bounds, we 
propose first a range algorithm R(u, ), which for given u and , either returns a full schedule 
with cost v  u or verifies that (1 — ) u is a lower bound for the cost of any solution. In the 
second step, we use repeatedly the range algorithm in a binary search to narrow the range 
[LB, UB] so that UB 2LB at the end. Finally, we use static interval partitioning of the 
narrowed range in the algorithm DP to get the FPTAS. Similar techniques were used by 
Gens and Levner [1981] for the one-machine weighted-number-of-late-jobs problem 

and Brucker and Kovalyov [1996] for the one-machine weighted-number-of-late-
jobs batching problem without delivery costs .
The range algorithm is very similar to the algorithm DP with a certain variation of the 
[Elimination] and [Result] procedures. 
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The Range Algorithm R(u, )
[Initialization] The same as that in the algorithm DP.
[Partition] Partition the interval [0, u] into equal intervals of size u /n, with the last one 
possibly smaller. 
[Generation] Generate set S(k) for k = 1 to k = n + 1 from S(k-1) as follows: 

Set  = ;
[Operations] The same as those in the algorithm DP.  
[Elimination] Update set S(k)

1. Eliminate any state (k, b, t, d, v) if v > u.
2. If more than one state has a v value that falls into the same interval, then discard all 

but one of these states, keeping only the representative state with the smallest t
coordinate for each interval. 

3. For any two states (k, b, t, d, v) and (k, b, t, d, v') with v < v', eliminate the one with 
v' from set based on Remark 3.2; 

4. Set S(k) = .
Endfor
[Result]
If * = , then v* > (1 - ) u; 
If * , then v*  u.
Theorem 4.1. If at the end of the range algorithm R(u, ), we found * = , then v* > (1— )u; 
otherwise v*  u. The algorithm runs in O(n4/ ) time and space. 
Proof. If * is not empty, then there is at least one state (n, b, t, d, v) that has not been 
eliminated. Therefore, v is in some subinterval of [0, u] and v*  v  u. If * = , then all 
states with the first two entries (k, b) H have been eliminated. Consider any feasible 
schedule (n,b,t,d,v). The fact that * =  means that any ancestor state of (n,b,t,d,v) with cost 

must have been eliminated at some iteration k in the algorithm either because  > u 
or by interval partitioning, which kept some other representative state with cost ' and 
maximum error u/n. In the first case, we also have v > u. In the second case, 
let v' ' be the cost of a completion of the representative state and we must have v' > u 
since * = . Since the error introduced in one iteration is at most u/n, the overall error is at 
most n( u/n) = u, i.e., v  v'— n( u/n) = v' — u > u — u = (1 — )u. Thus v > (1 — )u for 
any feasible cost value v.
For the complexity, we note that  for k = 1,2,...,n. Since all operations on a single 
state can be performed in O(1) time, the overall time and space complexity is O(n4/ ).
The repeated application of the algorithm R(u, ) will allow us to narrow an initially wide 
range of upper and lower bounds to a range where our upper bound is only twice as large 
as the lower bound. We will start from an initial range v'  v*  nv'. Next, we discuss how 
we can find such an initial lower bound v'.
Using the same data, we construct an auxiliary batch scheduling problem in which we want 
to minimize the maximum weight of late jobs, batches have the same batch-setup time s, the 
completion time of each job is the completion time of its batch, but there are no delivery 
costs. We denote this problem by . It is clear that the minimum cost of this 
problem will be a lower bound for the optimal cost of our original problem. 
To solve the problem, we first sort all jobs into smallest-weight-first order, 
i.e., w[1]  w[2]  ...  w[n]. Here we are using [k] to denote the job with the kth smallest weight. 
Suppose that [k*] has the largest weight among the late jobs in an optimal schedule. It is 
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clear that there is also an optimal schedule in which every job [i], for i = 1,2,..., k*, is late, 
since we can always reschedule these jobs at the end of the optimal schedule without 
making its cost worse. It is also easy to see that we can assume without loss of generality 
that the early jobs are scheduled in EDD order in an optimal schedule. Thus we can restrict 
our search for an optimal schedule of the following form: 
There is a k  {0,1,..., n} such that jobs {[k + 1],..., [n]} are early and they are scheduled in EDD 
order in the first part of the schedule, followed by jobs {[1], [2],..., [k]} in the last batch in any 
order. The existence of such a schedule can be checked by the following simple algorithm. 
The Feasibility Checking Algorithm FC(k)
[Initialization] For the given k value, sort the jobs {[k + 1],..., [n]} into EDD order, and let this 

sequence be , where f = n — k.
Set i = 1, j = , t = s + pj and d = dj

lf t > d, no feasible schedule exists and goto [Report];
If t d, set i = 2 and goto [FeasibilityChecking].

[FeasibilityChecking] While i  f do

Set j = ,
If t + pj > d, start a new batch for job j;

if t + s + pj > dj, no feasible schedule exists and goto [Report};
if t+s+pj dj, set t = t+s+pj, d = dj, i = i+1 and goto [FeasibilityChecking].

If t + pj  d, set t = t + pj, i = i + 1 and goto [FeasibilityChecking].
Endwhile

[Report] If i  f, no feasible schedule exists.  Otherwise, there exists a feasible batching 
schedule for jobs in which these jobs are early. 

The problem can be solved by repeatedly calling FC(k) for increasing k to 
find the first k value, denoted by k*, for which FC(k) returns that a feasible schedule exists. 
The Min-Max Weight Algorithm MW
[Initialization] Sort the jobs into a nondecreasing sequence by their weight 

w[1]  w[2]  ...  w[n] and set k = 0.
[AlgorithmFC] While k n call algorithm FC(k).

If FC(k) reports that no feasible schedule exists, set k = k+1 and goto [AlgorithmFC] ;
Otherwise, set k* = k and goto [Result];
Endwhile 

[Result] If k* = 0 then there is a schedule in which all jobs are early and set w* = 0; otherwise, 
is the optimum. 

Theorem 4.2. The Min-Max Weight Algorithm MW  finds the optimal solution to the problem 
 in O(n2) time. 

Proof. For k = 0, FC(k) constructs the EDD sequence on the whole job set J, which requires 
O(nlogn) time. We can obtain the sequence  (f = n — k) in the initialization step of 
FC(k + 1), from the sequence  constructed for FC(k) in O(n) time by simply deleting 
the job [k] from it. It is clear that all other operations in FC(k) need at most O(n) time. Since MW 
calls FC(k) at most (n + 1) times, the overall complexity of the algorithm is O(n2) indeed. 
Corollary 4.1. The optimal solution v* to the problem of minimizing the sum of the weighted number 
of late jobs and the batch delivery cost on a single machine, , is in the interval 
[v', nv'], where v' = w* + q. 
Proof. It is easy to see that there is at least one batch and there are at most n — k* + 1 batches 
in a feasible schedule. Also the weighted number of late jobs is at least w* and at most k*w* 
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in an optimal schedule for . Thus v' = w* + q is a lower bound and k*w* +
(n — k* + 1)q  nw* + nq = n(w* + q) = nv' is an upper bound for the optimal solution v* of

.
Next, we show how to narrow the range of these bounds. Similarly to Gens and Levner [1981], 
we use the algorithm R(u, ) with  = 1/4 in a binary search to narrow the range [v', nv'].
The Range and Bound Algorithm RB
[Initialization] Set u' = nv'/2;
[BinarySearch] Call R(u', 1/4); 

If R(u', 1/4) reports that v* u', set u' = u' /2 and goto [BinarySearch];
If R(u', 1/4) reports v* > 3 u'/4, set u' = 3u'/2.

[Determination] Call R(u', 1/4). 
If R(u', 1/4) reports v*  u', set  = u'/2 and stop; 
If R(u', 1/4) reports v* > 3 u'/4, set  = 3u'/2 and stop. 

Theorem 4.3. The algorithm RB determines a lower bound  for v* such that  v* 2  and it 
requires O(n4logn) time. 
Proof. It can be easily checked that when the algorithm stops, we have  v* 2 . For each 
iteration of the range algorithm R(u', 1/4), the whole value interval is divided into 
subintervals with equal length  (the last subinterval may be less), where u'  v'. Since only 

values v  u' are considered in this range algorithm, the maximum number of subintervals is 
less than or equal to . By the proof of Theorem 4.1, the time complexity of 

one call to R(u', 1/4) is O(n4). It is clear that the binary search in RB will stop after at most 
O(logn) calls of R(u', 1/4), thus the total running time is bounded by O(n4logn).
Finally, to get an FPTAS, we need to run a slightly modified version of the algorithm DP
with static interval partitioning. We describe this below. 
Approximation Algorithm ADP
[Initialization] The same as that in the algorithm DP.
[Partition] Partition the interval [ , 2 ] into equal intervals of size /n, with the last 

one possibly smaller. 
[Generation] Generate set S(k) for k = 1 to k = n + 1 from S(k-1) as follows: 

Set  = ;
[Operations] The same as those in the algorithm DP.
[Elimination] Update set S(k).
1. If more than one state has a v value that falls into the same sub-interval, then 

discard all but one of these states, keeping only the representative state with the 
smallest t coordinate. 

2. For any two states (k, b, t, d, v) and (k, b, t, d, v') with v  v', eliminate the one with v'
from set  based on Remark 3.2; 

3. Set S(k) = .
Endfor
[Result] The best approximating solution corresponds to the state with the smallest v over all 
states in *. Find the final schedule by backtracking through the ancestors of this state. 
Theorem 4.4. For any > 0, the algorithm ADP finds in O(n4/ ) time a schedule with cost v for the 

 problem, such that v (1 + )v*.
Proof. For each iteration in the algorithm ADP, the whole value interval [ , 2 ] is divided 
into subintervals with equal length  (the last subinterval may be less). Thus the maximum 
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number of the subintervals is less than or equal to . By the proof of Theorem 3.1, 

the time complexity of the algorithm is O(n4/ ) indeed. 
To summarize, the FPTAS applies the following algorithms to obtain an -approximation for 
the problem.

The Fully Polynomial Time Approximation Scheme (FPTAS)
1. Run the algorithm MW by repeatedly calling FC(k) to determine v' = w* + q;
2. Run the algorithm RB by repeatedly calling R(u', 1/4) to determine ;
3. Run the algorithm ADP using the bounds  v*   2 .
Corollary 4.2. The time and space complexity of the FPTAS is O(n4logn + n4/ ).
Proof. The time and space complexity follows from the proven complexity of the component 
algorithms. 

5. Conclusions and further research 

We presented a pseudopolynomial time dynamic programming algorithm for minimizing the sum 
of the weighted number of late jobs and the batch delivery cost on a single machine. For the special 
cases of equal weights or equal processing times, the algorithm DP requires polynomial time. We 
also developed an efficient, fully polynomial time approximation scheme for the problem. 
One open question for further research is whether the algorithm DP and the FPTAS can be 
extended to the case of multiple customers. 
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1. Introduction 

In the theory of scheduling, a problem type is categorized by its machine environment, job 
characteristic and objective function. According to the way information on job characteristic 
being released to the scheduler, scheduling models can be classified in two categories. One 
is termed off-line in which the scheduler has full information of the problem instance, such 
as the total number of jobs to be scheduled, their release times and processing times, before 
scheduling decisions need to be made. The other is called on-line in which the scheduler 
acquires information about jobs piece by piece and has to make a decision upon a request 
without information of all the possible future jobs. For the later, it can be further classified 
into two paradigms. 
1. Scheduling jobs over the job list (or one by one). The jobs are given one by one 

according to a list. The scheduler gets to know a new job only after all earlier jobs have 
been scheduled. 

2. Scheduling jobs over the machines' processing time. All jobs are given at their release 
times. The jobs are scheduled with the passage of time.  At any point of the machines' 
processing time, the scheduler can decide whether any of the arrived jobs is to be 
assigned, but the scheduler has information only on the jobs that have arrived and has 
no clue on whether any more jobs will arrive. 

Most of the scheduling problems aim to minimize some sort of objectives. A common 
objective is to minimize the overall completion time Cmax, called makespan. In this chapter 
we also adopt the same objective and our problem paradigm is to schedule jobs on-line over 
a job list. We assume that there are a number of identical machines available and measure 
the performance of an algorithm by the worst case performance ratio. An on-line algorithm 

is said to have a worst case performance ratio σ if the objective of a schedule produced by 

the algorithm is at most σ times larger than the objective of an optimal off-line algorithm for 
any input instance. 
For scheduling on-line over a job list, Graham (1969) gave an algorithm called List 
Scheduling (LS) which assigns the current job to the least loaded machine and showed that 

LS has a worst case performance ratio of  where m denotes the number of machines 

available. Since then no better algorithm than LS had been proposed until Galambos & 
Woeginger (1993) and Chen et al. (1994) provided algorithms with better performance for 
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m  4. Essentially their approach is to schedule the current job to one of the two least loaded 
machines while maintaining some machines lightly loaded in anticipation of the possible 
arrival of a long job. However for large m, their performance ratios still approach 2 because 
the algorithms leave at most one machine lightly loaded. The first successful approach to 
bring down the ratio from 2 was given by Bartal et al. (1995), which keeps a constant fraction 
of machines lightly loaded. Since then a few other algorithms which are better than LS have 
been proposed (Karger et al. 1996, Albers 1999). As far as we know, the current best 
performance ratio is 1.9201 which was given by Fleischer & Wahl (2000). 
For scheduling on-line over the machines' processing time, Shmoys et al. (1995) designed a 
non-clairvoyant scheduling algorithm in which it is assumed any job's processing time is not 
known until it is completed. They proved that the algorithm has a performance ratio of 2. 
Some other work on the non-clairvoyant algorithm was done by Motwani et al. (1994). On 
the other hand, Chen & Vestjens (1997) considered the model in which jobs arrive over time 
and the processing time is known when a job arrives. They showed that a dynamic LPT 
algorithm, which schedules an available job with the largest processing time once a machine 
becomes available, has a performance ratio of 3/2. 
In the literature, when job's release time is considered, it is normally assumed that a job 
arrives before the scheduler needs to make an assignment on the job. In other words, the 
release time list synchronizes with the job list. However in a number of business operations, 
a reservation is often required for a machine and a time slot before a job is released. Hence 
the scheduler needs to respond to the request whenever a reservation order is placed. In this 
case, the scheduler is informed of the job's arrival and processing time and the job's request 
is made in form of order before its actual release or arrival time. Such a problem was first 
proposed by Li & Huang (2004), where it is assumed that the orders appear on-line and 
upon request of an order the scheduler must irrevocably pre-assign a machine and a time 
slot for the job and the scheduler has no clue or whatsoever of other possible future orders. 
This problem is referred to as an on-line job scheduling with arbitrary release times, which 
is the subject of study in the chapter. The problem can be formally defined as follows. For a 
business operation, customers place job orders one by one and specify the release time rj

and the processing time pj of the requested job Jj. Upon request of a customer's job order, the 
operation scheduler has to respond immediately to assign a machine out of the m available 
identical machines and a time slot on the chosen machine to process the job without 
interruption. This problem can be viewed as a generalization of the Graham's classical on-
line scheduling problem as the later assumes that all jobs' release times are zero. 
In the classical on-line algorithm, it is assumed that the scheduler has no information on the 
future jobs. Under this situation, it is well known that no algorithm has a better performance 
ratio than LS for m 3 (Faigle et al. 1989) . It is then interesting to investigate whether the 
performance can be improved with additional information. To respond to this question, the 
semi-online scheduling is proposed. In the semi-online version, the conditions to be 
considered online are partially relaxed or additional information about jobs is known in 
advance and one wishes to make improvement of the performance of the optimal algorithm 
with respect to the classical online version. Different ways of relaxing the conditions give 
rise to different semi-online versions (Kellerer et al. 1997). Similarly several types of 
additional information are proposed to get algorithms with better performance. Examples 
include the total length of all jobs is known in advance (Seiden et al. 2000), the largest length 
of jobs is known in advance (Keller 1991, He et al. 2007), the lengths of all jobs are known in 
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[p, rp] where p > 0 and r  1 which is called on-line scheduling for jobs with similar lengths 
(He & Zhang 1999, Kellerer 1991), and jobs arrive in the non- increasing order of their 
lengths (Liu et al. 1996, He & Tan 2001, 2002, Seiden et al. 2000). More recent publications on 
the semi-online scheduling can be found in Dosa et al. (2004) and Tan & He (2001, 2002). In 
the last section of this chapter we also extend our problem to be semi-online where jobs are 
assumed to have similar lengths. 
The rest of the chapter is organized as follows. Section 2 defines a few basic terms and the 
LS algorithm for our problem. Section 3 gives the worst case performance ratio of the LS 
algorithm. Section 4 presents two better algorithms, MLS and NMLS, for m  2. Section 5 
proves that NMLS has a worst case performance ratio not more than 2.78436. Section 6 
extends the problem to be semi-online by assuming that jobs have similar lengths. For 
simplicity of presentation, the job lengths are assumed to be in [l, r] or p is assumed to be 1. 
In this section the LS algorithm is studied. For m  2, it gives an upper bound for the 
performance ratio and shows that 2 is an upper bound when . For m = 1, it shows 

that the worst case performance ratio is and in addition it gives a lower bound for 

the performance ratio of any algorithm. 

2. Definitions and algorithm LS 

Definition 1. Let L = {J1, J2,... , Jn} be any list of jobs, where job Jj(j = 1, 2, ... , n) arrives at its 
release time rj and has a processing time of pj. There are m identical machines available. 
Algorithm A is a heuristic algorithm. and denote the makespans of 

algorithm A and an optimal off-line algorithm respectively. The worst case performance 
ratio of Algorithm A is defined as 

Definition 2. Suppose that Jj is the current job with release time rj and processing time pj.
Machine Mi is said to have an idle time interval for job Jj, if there exists a time interval [T1,T2]
satisfying the following conditions: 

1. Machine Mi is idle in interval [T1,T2J and a job has been assigned on Mi to start processing at time 
T2.
2. T2 – max{T1, rj}  pj.

It is obvious that if machine Mi has an idle time interval [T1,T2] for job Jj, then job Jj can be 
assigned to machine Mi in the idle interval. 
Algorithm LS 
Step 1. Assume that Li is the scheduled completion time of machine Mi (i = 1, 2, ... ,m).

Reorder machines such that L1  L2  ... Lm and let Jn be a new job given to the 
algorithm with release time rn and running time pn.

Step 2. If there exist some machines which have idle intervals for job Jn, then select a 
machine Mi which has an idle interval [T1,T2] for job Jn with minimal T1 and assign 
job Jn to machine Mi to be processed starting at time max{T1, rn} in the idle interval. 
Otherwise go to Step 3. 

Step 3. Let s = max{rn, L1}. Job Jn is assigned to machine M1 at time s to start the processing. 
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We say that a job sequence is assigned on machine Mi if starts at its 

release time and starts at its release time or the completion time of ,

depending on which one is bigger. 

In the following we let denote the job list assigned on machine 

Mi in the LS schedule and  denote the job list assigned on 

machine Mi in an optimal off-line schedule, where (s = 1, 2, ... , q).

3. Worst case performance of algorithm LS 

For any job list L = {J1, J2, ... , Jn}, if r1  r2  ...  rn, it is shown that R(m, LS)  2 in Hall and 
Shmoys(1989). In the next theorem we provide the exact performance ratio. 
Theorem 1 For any job list L = {J1, J2, ... , Jn}, if r1  r2  ...  rn, then we have 

(1)

Proof: We will prove this theorem by argument of contradiction. Suppose that there exists 
an instance L, called a counterexample, satisfying: 

Let L = {J1, J2, ... , Jn} be a minimal counterexample, i.e., a counterexample consisting of a 
minimum number of jobs. It is easy to show that, for a minimal counterexample L,

holds. 

Without loss of generality we can standardize L such that r1 = 0. Because if this does not 
hold, we can alter the problem instance by decreasing the releasing times of all jobs by r1.
After the altering, the makespans of both the LS schedule and the optimal schedule will 
decrease by r1, and correspondingly the ratio of the makespans will increase. Hence the 
altered instance provides a minimal counterexample with r1 = 0.
Next we show that, at any time point from 0 to , at least one machine is not idle in 

the LS schedule. If this is not true, then there is a common idle period within time interval 
[0, ] in the LS schedule. Note that, according to the LS rules and the assumption 

that r1  r2  ...  rn, jobs assigned after the common idle period must be released after this 
period. If we remove all the jobs that finish before this idle period, then the makespan of the 
LS schedule remains the same as before, whereas the corresponding optimal makespan does 
not increase. Hence the new instance is a smaller counterexample, contradicting the 
minimality. Therefore we may assume that at any time point from 0 to at least one 

machine is busy in the LS schedule. 
As r1  r2  ...  rn, it is also not difficult to see that no job is scheduled in Step 2 in the LS 
schedule. 
Now we consider the performance ratio according to the following two cases: 
Case 1. The LS schedule of L contains no idle time. 
In this case we have 
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Case 2. There exists at least a time interval during which a machine is idle in the LS
schedule. In this case, let [a, b] be such an idle time interval with a < b and b being the 
biggest end point among all of the idle time intervals. Set 

A = {Jj|Jj finishes after time b in the LS schedule}. 

Let B be the subset of A consisting of jobs that start at or before time a. Let S(Jj)(j = 1, 2, ... ,n)
denote the start time of job Jj in the LS schedule. Then set B can be expressed as follows: 

B = {Jj|b — pj < S(Jj) a}.

By the definitions of A and B we have S(Jj) > a for any job Jj  A\ B. If both rj < b and rj < S(Jj)
hold for some Jj  A \ B, we will deduce a contradiction as follows. Let 

be the completion times of Mi just before job Jj is assigned in the LS 

schedule. First observe that during the period [a, b], at least one machine must be free in the 
LS schedule. Denote such a free machine by  and let  be the machine to which Jj is

assigned. Then a < S(Jj) = because rj < S(Jj) and Jj is assigned by Step 3. On the other hand 

we have that  a because rj < b and must be free in (a, ) in the LS schedule before 

Jj is assigned as all jobs assigned on machine to start at or after b must have higher 

indices than job Jj. This implies < and job Jj should be assigned to machine  , 

contradicting the assumption that job Jj is assigned to machine  instead. Hence, for any 

job Jj  A \ B, either rj  b or rj = S(Jj). As a consequence, for any job Jj  A \ B, the
processing that is executed after time b in the LS schedule cannot be scheduled earlier than b
in any optimal schedule. Let  = 0 if B is empty and if B is 

not empty. It is easy to see that the amount of processing currently executed after b in the LS 
schedule that could be executed before b in any other schedule is at most |B|. Therefore, 
taking into account that all machines are busy during [b,L1] and that |B|  m — 1, we obtain 
the following lower bound based on the amount of processing that has to be executed after 
time b in any schedule: 

On the other hand let us consider all the jobs. Note that, if  > 0, then in the LS schedule, 
there exists a job Jj with S(Jj)  a and S(Jj) – rj = . It can be seen that interval [rj, S(Jj)] is a 
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period of time before a with length of , during which all machines are busy just before Jj is
assigned. This is because no job has a release time bigger than rj before Jj is assigned and, by 

the facts that S(Jj) – rj = > 0, and . Combining with the 

observations that during the time interval [b, L1] all machines are occupied and at any other 
time point at least one machine is busy, we get another lower bound based on the total 
amount of processing: 

Adding up the two lower bounds above, we get 

Because rn b, we also have 

Hence we derive 

Hence we have . This creates a contradiction as L is a counterexample 

satisfying  . It is also well-known in Graham (1969) that, when  r1= r2 = 

...= rn = 0, the bound is tight. Hence (1) holds.  
However, for jobs with arbitrary release times, (1) does not hold any more, which is stated in 
the next theorem. 
Theorem 2. For the problem of scheduling jobs with arbitrary release times, 

Proof: Let L = { J1, J2, ... , Jn} be an arbitrary sequence of jobs. Job Jj has release time rj and 
running time pj (j = 1, 2, ... ,n). Without loss of generality, we suppose that the scheduled 
completion time of job Jn is the largest job completion time for all the machines, i.e. the 

makespan. Let P be , ui (i = 1, 2, ... , m) be the total idle time of machine Mi, and s be

the starting time of job Jn. Let u = s — L1, then we have 

It is obvious that 
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Because  max {r1, r2, ... , rn} we have ui (i = 1, 2, ... ,m). So

By the arbitrariness of L we have .  The following example shows that 

the bound of  is tight. 

Let  with 

It is easy to see that the LS schedule is 

Thus . One optimal off-line schedule is 

Thus . Hence

Let  tend to zero, we have . That means .

The following theorem says that no on-line algorithm can have a worst case performance 
ratio better than 2 when jobs' release times are arbitrary. 
Theorem 3. For scheduling jobs with arbitrary release times, there is no on-line algorithm 
with worst case ratio less then 2. 
Proof. Suppose that algorithm A has worst case ratio less than 2. Let L = { J1, J2, ... , Jm+1}, with 
r1 = l, p1 = , rj = 0, pj = S +  (j = 2, 3, ... , m + 1), where S  1 is the starting processing time of 
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job J1. Let  = { J1; ... , Jk}(k = 1, 2, ... , m + 1). Because R(m, A) < 2, any two jobs from the job 

set cannot be assigned to the same machine and also . But 

, so

Let  tend to zero, we get R(m, A)  2, which leads to a contradiction. 
From the conclusions of Theorem 2 and Theorem 3, we know that algorithm LS is optimal 
for m = 1. 

4. Improved Algorithms for m  2

For m  2, to bring down the performance ratio, Li & Huang (2004) introduced a modified 

LS algorithm, MLS, which satisfies R(m, MLS) with . To 

describe the algorithm, we let 

where denotes the largest integer not bigger than .
In MLS, two real numbers and will be used. They satisfy 

and  > 0, where  and   is a root of the following equation 

Algorithm MLS
Step 1.  Assume that Li is the scheduled completion time of machine Mi (i = 1, 2, ... , m).

Reorder machines such that L1 L2  ...  Lm and let Jn be a new job given to the 
algorithm. Set Lm+1 = + .

Step 2. Suppose that there exist some machines which have idle intervals for job Jn. Select a 
machine Mi which has an idle interval [T1, T2] for job Jn with minimal T1. Then we 
assign job Jn to machine Mi to be processed starting at time max{T1, rn} in the idle 
interval. If no such Mi exists, go to step 3. 

Step 3. If rn L1, we assign Jn on machine M1 to start at time L1.
Step 4. If Lk < rn Lk+1 for some 1 k  m and pn mrn, then we assign Jn on machine Mk to

start at time rn.
Step 5. If Lk < rn Lk+1 for some 1 k  m and pn < mrn and Lk+1 + pn (rn + pn), then we 

assign Jn on machine Mk+1 to start at time Lk+1.
Step 6. If Lk < rn Lk+1 for some 1 k  m and pn < mrn and Lk+1 + pn > (rn + pn), then we 

assign Jn on machine Mk to start at time rn.
The following theorem was proved in Li & Huang (2004).  
Theorem 4. For any m  2, we have 
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Furthermore, there exists a fixed positive number  independent of m such that 

Another better algorithm, NLMS, was further proposed by Li & Huang (2007). In the 
following we will describe it in detail and reproduce the proofs from Li & Huang (2007). In 
the description, three real numbers , and  will be used, where 

and they are the roots of the next three equations. 

(2)

(3)

(4)

The next lemma establishes the existence of the three numbers and relate them to figures. 
Lemma 5. There exist  = , y =  and z =  satisfying equations (2), (3) and (4) with 

 and 2 < 2.78436 for 

any m  2. 
Proof. By equation (3) and (4), we have 

 (5) 

Let . It is easy to check that 

Hence there exists exactly one real number 1 < < 2 satisfying equation (5). 
By equation (2), we have 

where the two inequalities result from > 1. 

By equation (3), we get  and

Let . It is easy to show that  and 

. Because , we have . Because of equation (5), we get 
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Hence  = 1.75831. In addition, by equation (5), we have  = 1.56619. 

Noticing that  is an increasing function on q as , we have 

That means  holds. In the same way as above, we can show that 

 holds. Thus  holds for any m  2. 

By equation (4), we have and hence 

. Thus we get  and 

i.e. . Similarly we can get . That means 

2< 2.78436 holds for any m  2.  
For simplicity of presentation, in the following we drop the indices and write the three 
numbers as  if no confusion arises. The algorithm NMLS can be described as 
follows: 
Algorithm NMLS
Step 0.  := 0, Li := 0, i = 1, 2, ... , m. Lm+1 := + .

Step 1. Assume that Li is the scheduled completion time of machine Mi after job Jn-1 is

assigned. Reorder machines such that L1  L2  ... Lm. (s) (s = 1, 2, ... , m)

represents the sth smallest number of , i = 1, 2, ... , m. Let Jn be a new job 

given to the algorithm. 
Step 2. Suppose that there exist some machines which have idle intervals for job Jn. Select a 

machine Mi which has an idle interval [T1, T2] for job Jn with minimal T1. Then we 

assign job Jn on machine Mi to start at time max{T1, rn} in the idle interval.  := 
, i = 1, 2, ... , m. If no such Mi exists, go to Step 3. 

Step 3. If rn < L1, we assign Jn on machine M1 to start at time L1.  := , i = 1, 2, ... , m.
Step 4. If Lk  rn < Lk+1 and all of the following conditions hold: 

(a) ,

(b) ,

(c) ,

(d) ,

then we assign Jn on machine Mk+1 to start at time Lk+1 and set  := , i = 1, 

2, ... , m. Otherwise go to Step 5. 

Step 5. Assign job Jn on machine Mk to start at time rn. Set ,i  k.
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5. Performance ratio analysis of algorithm NMLS 

In the rest of this section, the following notation will be used: For any 1 j < n, 1 i  m, we 

use to denote the job list {J1, J2, ... , Jj} and to denote the completion time of machine 

Mi before job Jj is assigned. For a given job list L , we set 

where ui (L) (i = 1, 2, ... , m) is the total idle time of machine Mi when job list L is scheduled 
by algorithm NMLS. We first observe the next two simple inequalities which will be used in 
the ratio analysis. 

(6)

(7)

Also if there exists a subset in job list L satisfying ,
then the next inequality holds. 

(8)

In addition, if j1 > j2, then

In order to estimate U(L), we need to consider how the idle time is created. For a new job Jn

given to algorithm NMLS, if it is assigned in Step 5, then a new idle interval [Lk, rn] is 
created. If it is assigned in Step 3 or Step 4, no new idle time is created. If it is assigned in 
Step 2, new idle intervals may appear, but no new idle time appears. Hence only when a job 
is assigned in Step 5 can it make the total sum of idle time increase. Because of this fact, we 
will say idle time is created only by jobs which are assigned in Step 5. We further define the 
following terminologies 

• A job J is referred to as an idle job on machine Mi, 1  i  m, if it is assigned on machine 
Mi in Step 5. An idle job J is referred to as a last idle job on machine Mi, 1  i  m, if J is 
assigned on machine Mi and there is no idle job on machine Mi after job J.

In the following, for any machine Mi, we will use  to represent the last idle job on 

machine Mi if there exist idle jobs on machine Mi, otherwise  to represent the first job 

(which starts at time 0) assigned on machine Mi.
Next we set 

By the definitions of our notation, it is easy to see that the following facts are true: 
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For the total idle time U(L), the next lemma provides an upper bound. 
Lemma 6. For any job list L = {J1, J2, ... , Jn}, we have 

Proof. By the definition of R, no machine has idle time later than time point R. We will 
prove this lemma according to two cases. 
Case 1. At most machines in A are idle simultaneously in any interval [a, b] with 

 a < b.

Let vi be the sum of the idle time on machine Mi before time point and be the sum of 

the idle time on machine Mi after time point , i = 1, 2, ... , m. The following facts are 

obvious:

In addition, we have 

because at most machines in A are idle simultaneously in any interval [a, b] with 

 a < b  R. Thus we have 
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Case 2. At least  machines in A are idle simultaneously in an interval [a, b]

with  a < b.
In this case, we select a and b such that at most machines in A are idle 

simultaneously in any interval [a', b'] with a < b  a' < b'. Let

That means >  by our assumption.  Let , be such a machine that its 

idle interval [a, b] is created last among all machines . Let

Suppose the idle interval [a, b] on machine is created by job . That means that the idle 

interval [a, b] on machine Mi for any i A' has been created before job  is assigned. Hence 

we have  for any i A'. In the following, let 

We have  b because  b and b,   i A'.

What we do in estimating is to find a job index set S such that each job Jj (j  S)

satisfies and . And hence by (8) we have 

To do so, we first show that 

 (9) 

holds. Note that job must be assigned in Step 5 because it is an idle job. We can conclude 

that (9) holds if we can prove that job  is assigned in Step 5 because the condition (d) of 

Step 4 is violated. That means we can establish (9) by proving that the following three 
inequalities hold by the rules of algorithm NMLS: 

(a)

(b)

(c) 

The reasoning for the three inequalities is: 

(a). As  we have 
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Next we have because idle interval [a, b] on machine is created by job .
Hence we have 

i.e. the first inequality is proved. 

(b). This follows because .

(c). As  we have .

For any i A', by (9) and noticing that and , we 

have

That means job  appears before , i.e. . We set 

is  processed  in  interval  on  machine  Mi},  i A';

We have because  is the last idle job on machine Mi for any i
A'. Hence we have 

(10)

Now we will show the following (11) holds: 

(11)

It is easy to check that and for any i A', i.e.  (11) holds for any 

j Si (i A') and j = . For any j Si (i A') and j , we want to establish (11) by 
showing that Jj is assigned in Step 4.  It is clear that job Jj is not assigned in Step 5 because it 

is not an idle job. Also  > j because . Thus we have 

where the first inequality results from j and the last inequality results from  > j. That 
means Jj is not assigned in Step 3 because job Jj is not assigned on the machine with the 

smallest completion time. In addition, observing that job  is the last idle job on machine 

Mi and  by the definition of Si, we can conclude that Jj is assigned on machine Mi

to start at time . That means j >  and Jj cannot be assigned in Step 2. Hence Jj must be 

assigned in Step 4. Thus by the condition (b) in Step 4, we have 
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where the second inequality results from j > . Summing up the conclusions above, for any 
j S, (11) holds. By (8), (10) and (11) we have 

Now we begin to estimate the total idle time U(L). Let be the sum of the idle time on 
machine Mi before time point  and  be the sum of the idle time on machine Mi after

time point  , i = 1, 2, ... , m. The following facts are obvious by our definitions: 

By our definition of b and k1, we have that b  and hence at most machines in 

A are idle simultaneously in any interval [a', b'] with  a' < b'  R. Noting that no 

machine has idle time later than R, we have 

Thus we have 

The last inequality follows by observing that the function is a 

decreasing function of  for . The second inequality follows because 

 and is a decreasing function of 

on . The fact that is a decreasing function follows because < 0 as 

The next three lemmas prove that is an upper bound for  .  Without loss of 

generality from now on, we suppose that the completion time of job Jn is the largest job 

completion time for all machines, i.e. the makespan . Hence according to this 

assumption, Jn cannot be assigned in Step 2. 
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Lemma 7. If Jn is placed on Mk with Lk  rn < Lk+1 , then

Proof. This results from  = rn+pn and  rn+pn.
Lemma 8. If Jn is placed on Mk+1 with Lk  rn < Lk+1, then

Proof. Because  = Lk+1+pn and  rn +pn, this lemma holds if Lk+1+pn

(pn + rn).
Suppose Lk+1+pn > (pn + rn). For any 1 i  m, let 

is  processed  in interval on  machine  Mi}.

It is easy to see that 

hold. Let 

By the rules of our algorithm, we have 

because Jn is assigned in Step 4. Hence we have  and .
By the same way used in the proof of Lemma 6, we can conclude that the following 
inequalities hold for any i B:
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Thus by (8) and (10) we have 

The second last inequality results from that   and 

as .  The last equality follows because  and rn r11.  Also we have 

 because Jn is assigned in Step 4. Hence we have 

The second inequality results from the fact that  is a decreasing 

function of  for . The last inequality results from 

 and the last equation results from equation (4).  

Lemma 9. If job Jn is placed on machine M1, then we have 
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Proof. In this case we have L1 rn and  = L1 + pn . Thus we have 

The next theorem proves that NMLS has a better performance than MLS for m  2. 
Theorem 10. For any job list L and m  2, we have 

Proof. By Lemma 5 and Lemma 7—Lemma 9, Theorem 10 is proved. 
The comparison for some m among the upper bounds of the three algorithms' performance 

ratios is made in Table 1, where .

m αm m R(m, LS) R(m, MLS) R(m, NMLS)
2 2.943 1.443 2.50000 2.47066 2.3465

3 3.42159 1.56619 2.66667 2.63752 2.54616

9 3.88491 1.68955 2.88889 2.83957 2.7075

12 3.89888 1.69333 2.91668 2.86109 2.71194

oo 4.13746 1.75831 3.00000 2.93920 2.78436

Table 1. A comparison of LS, MLS, and NMLS 

6. LS scheduling for jobs with similar lengths 

In this section, we extend the problem to be semi-online and assume that the processing 
times of all the jobs are within [l,r], where r  1. We will analyze the performance of the LS 
algorithm. First again let L be the job list with n jobs. In the LS schedule, let Li be the 
completion time of machine Mi and ui1, ... , uiki denote all the idle time intervals of machine 

Mi (i = 1, 2, ... , m) just before Jn is assigned. The job which is assigned to start right after uij is 
denoted by Jij with release time rij and processing time pij. By the definitions of uij and rij, it is 
easy to see that rij is the end point of uij. To simplify the presentation, we abuse the notation 
and use uij to denote the length of the particular interval as well. 
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The following simple inequalities will be referred later on. 

(12)

(13)

(14)

where U is the total idle time in the optimal schedule. 
The next theorem establishes an upper bound for LS when m  2 and a tight bound when   
m = 1. 
Theorem 11.    For any m  2, we have 

(15)

and .

We will prove this theorem by examining a minimal counter-example of (15). A job list L = { 
J1, J2, ... Jn} is called a minimal counter-example of (15) if (15) does not hold for L, but (15) 
holds for any job list L' with |L'| < |L|. In the following discussion, let L be a minimal 
counter-example of (15). It is obvious that, for a minimal counter-example L, the makespan 
is the completion time of the last job Jn, i.e. L1 + pn. Hence we have 

We first establish the following Observation and Lemma 12 for such a minimal counter-
example.
Observation. In the LS schedule, if one of the machines has an idle interval [0, T] with T > r,
then we can assume that at least one of the machines is scheduled to start processing at time 
zero.
Proof. If there exists no machine to start processing at time zero, let  be the earliest starting 

time of all the machines and . It is not difficult to see that any job's 
release time is at least t0 because, if there exists a job with release time less than t0, it would 
be assigned to the machine with idle interval [0, T] to start at its release time by the rules of 
LS. Now let L' be the job list which comes from list L by pushing forward the release time of 
each job to be t0 earlier. Then L' has the same schedule as L for the algorithm LS. But the 
makespan of L' is t0 less than the makespan of L not only for the LS schedule but also for the 
optimal schedule. Hence we can use L' as a minimal counter example and the observation 
holds for L'.
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Lemma 12. There exists no idle time with length greater than 2r when m  2 and there is no 
idle time with length greater than r when m = 1 in the LS schedule. 
Proof. For m  2 if the conclusion is not true, let [T1, T2] be such an interval with T2—T1 > 2r.
Let L0 be the job set which consists of all the jobs that are scheduled to start at or before time 

T1. By Observation , L0 is not empty. Let  = L \ L0. Then  is a counter-example too 

because  has the same makespan as L for the algorithm LS and the optimal makespan of 

 is not larger than that of L. This is a contradiction to the minimality of L. For m = 1, we 
can get the conclusion by employing the same argument.  
Now we are ready to prove Theorem 11. 
Proof. Let  be the largest length of all the idle intervals. If , then by (12), (13) and 

(14) we have 

Next by use of  1 +  instead of pn and observe that pn r we have 

So if m  2, r  and , we have 

because  is a decreasing function of . Hence the conclusion for m  2 

and r  is proved. If  m  2 and 
1

mr
m
<
−

we have 

because  2 by Lemma 12 and  is an increasing function of .

Hence the conclusion for m  2 is proved. For m = 1 we have 
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because  < 1 by Lemma 12. Consider L = {J1, J2} with r1 = r — ,p1 = 1, r2 = 0, p2 = r and let 
tend to zero. Then we can show that this bound is tight for m = 1. 
From Theorem 11, for m  2 and 1 r <  we have R(m, LS) < 2 because  

 is an increasing function of r and . This 

is significant because no online algorithm can have a performance ratio less than 2 as stated 
in Theorem 3. An interesting question for the future research is then how to design a better 
algorithm than LS for this semi-online scheduling problem. The next theorem provides a 
lower bound of any on-line algorithm for jobs with similar lengths when m = 1. 
Theorem 13. For m = 1 and any algorithm A for jobs with lengths in [1, r], we have 

where  satisfies the following conditions: 

a)

b)
Proof. Let job J1 be the first job in the job list with p1 = 1 and r1 = . Assume that if J1 is 
assigned by algorithm A to start at any time in [ , r), then the second job J2 comes with p2= r
and r2 = 0. Thus for these two jobs,  1 + r +  and  = 1 + r. Hence we get 

On the other hand, if J1 is assigned by algorithm A to start at any time k, k  [r, ), then the 

second job J2 comes with p2 = r and r2 = k — r + . Thus for these two jobs,  1 + r + k
and  = 1 +k + . Hence we get 

Let  tend to zero, we have 

where the second inequality results from the fact that  is a decreasing function of 

for  0. Lastly assume that if J1 is assigned by algorithm A to start at any time after , then 

no other job comes. Thus for this case,  1 +  and  = 1 + . Hence we get 

For r = 1, we get  = 0.7963 and hence R(l, A)  1.39815. Recall from Theorem 11, R(l, LS) = 
1.5 when r = 1. Therefore LS provides a schedule which is very close to the lower bound. 
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1. Abstract 

This chapter presents a NeuroGenetic approach for solving a family of multiprocessor 
scheduling problems.  We address primarily the Job-Shop scheduling problem, one of the 
hardest of the various scheduling problems.  We propose a new approach, the NeuroGenetic 
approach, which is a hybrid metaheuristic that combines augmented-neural-networks 
(AugNN) and genetic algorithms-based search methods.  The AugNN approach is a non-
deterministic iterative local-search method which combines the benefits of a heuristic search 
and iterative neural-network search.  Genetic algorithms based search is particularly good at 
global search.  An interleaved approach between AugNN and GA combines the advantages 
of local search and global search, thus providing improved solutions compared to AugNN 
or GA search alone.  We discuss the encoding and decoding schemes for switching between 
GA and AugNN approaches to allow interleaving.  The purpose of this study is to 
empirically test the extent of improvement obtained by using the interleaved hybrid 
approach instead of applied using a single approach on the job-shop scheduling problem.  
We also describe the AugNN formulation and a Genetic Algorithm approach for the Job-
Shop problem.  We present the results of AugNN, GA and the NeuroGentic approach on 
some benchmark job-shop scheduling problems. 

2. Introduction 

Multiprocessor scheduling problems occur whenever manufacturing or computing 
operations are to be scheduled on multiple machines, processors or resources. A variety of 
such scheduling problems are discussed in the literature.  The most general scheduling 
problem is the resource-constrained project-scheduling problem; this problem has received 
a lot of attention in the literature Herroelen et al. (1998), Kolisch (1996).  The open-shop, 
flow-shop, job-shop and task scheduling problems can be considered special cases of the 
resource-constrained project-scheduling problem.  While smaller instances of the various 
types of scheduling problems can be solved to optimality in reasonable computing time 
using exact solution methods such as branch and bound, most real-world problems are 
unsolvable in reasonable time using exact methods due to the combinatorial explosion of the 
feasible solution space.  For this reason, heuristics and metaheuristics are frequently 
employed to obtain satisfactory solutions to these problems in reasonable time.  In this 
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paper, we propose a new hybrid metaheuristic approach called the NeuroGenetic approach 
for solving one family of multiprocessor scheduling problems – the job-shop scheduling 
problem.  The NeuroGenetic approach is a hybrid of the Augmented Neural Networks 
(AugNN) approach and the Genetic Algorithms (GA) approach.  The AugNN approach 
provides a mechanism for local search, while the GA approach provides a mechanism for 
global search.  An interleaving of the two approaches helps guide the search to better 
solutions. 
In this chapter, we focus on the job-shop scheduling problem (JSSP).  In JSSP, there are n
jobs, each having m operations and each operation requires a different machine, so there are 
m machines.  For each job, the order in which operations require machines is fixed and is 
independent of the order of machine requirement on other jobs.  So in a 2x3 job shop-
problem, for example, say job 1 requires machines in the order 2, 3 and 1, job 2 may require 
the machines in a different order, say 1, 3 and 2 or 1, 2 and 3 or 3, 1 and 2 or it could be the 
same i.e., 2,3 and 1.  In a flow-shop problem (FSP), which is special case of the job-shop 
problem, the order in which machines are needed for each operation is assumed to be the 
same for each job.  An FSP is therefore, a special case of the JSSP.  In both JSSP and the FSP, 
there is only one machine of each type, and a machine can only process one operation at a 
time.  The problem is to find a precedence and resource feasible schedule for each operation 
for each job with the shorted possible makespan.  In general, preemption is not allowed, i.e. 
operations must proceed to completion once started. 
A job-shop scheduling problem can be considered a special case of the resource-constrained 
project scheduling problem (RCPSP).  In the RCPSP, a PERT chart of activities can be drawn 
just like for a JSSP.  The RCPSP is more general because it allows multiple successors for an 
operation, whereas a JSSP allows only one successor.  Also, while in RCPSP an activity may 
require multiple units of multiple resource types, in JSSP activities require only one unit of 
one resource type.  Task scheduling problem is also a special case of RCPSP, in that only one 
type of resource is required for all activities.  In task scheduling there can be multiple 
successors for an operation, like in an RCPSP. 
In the next section, we review the literature primarily on JSSP.  In the following section, the 
AugNN formulation for a JSSP is described.  Section 4 outlines the GA approach for solving 
the JSSP.  Section 5 describes the Neurogenetic approach and discusses how the AugNN and 
GA approaches can be interleaved.  Section 6 provides the computational results of several 
benchmark problems in the literature.  Section 7 summarizes the paper and offers 
suggestions for future research.  This study contributes to the literature of job-shop 
scheduling by proposing for the first time an AugNN architecture and formulation for the 
JSSP and also proposing a hybrid of AugNN and GA approach.

3 Literature Review 

The JSSP has been recognized as an academic problem for over four decades now.  Giffler 
and Thompson (1960) and Fisher and Thompson (1963) were amongst the first to address 
this problem.  Exact solution methods have been proposed by Carlier and Pinson (1989), 
Applegate and Cook (1991) and Brucker et al. (1994).  A number of heuristic search methods 
have also been proposed, for example, Adams et al. (1988) and Applegate and Cook (1991).  
A variety of metaheuristic approaches have also been applied to the JSSP, such as Neural 
Networks (Sabuncuoglu and Gurgun, 1996), Beam Search (Sabuncuoglu and Bayiz, 1999), 
Simulated Annealing (Steinhofel et al. 1999), Tabu Search (Barnes and Chambers, 1995; 
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Nowicki and Smutnicki, 1996; Pezzella and Merelli, 2000; Zhang et al. 2008), Genetic 
Algorithms (Falkenauer and Bouffoix, 1991; Storer et al, 1995; Aarts et al., 1994; Bean, 1994; 
Croce et al., 1995), Evolutionary Algorithms (Mesghouni and Hammadi, 2004), Variable 
Neighborhood Search (Sevkli and Aydin, 2007), Global Equilibrium Search technique 
(Pardalos and Shylo, 2006).  Jain and Meeran (1999) provide a good survey of techniques 
used for the JSSP.  For the RCPSP, a number of heuristic and metaheuristic approaches have 
been proposed in the literature.  For a good review of the heuristics, see Herroelen et al., 
1998.

4. Augmented Neural Network Formulation 

The AugNN approach was first introduced by Agarwal et al. (2003).  They applied the 
AugNN approach to the task scheduling problem and offered an improved approach for 
using AugNN approach in Agarwal et al. (2006).  In this approach, a given scheduling 
problem is converted into a neural network, with input layer, hidden layers and output 
layer of neurons or processing elements (PEs).  The connections between the PEs of these 
layers are assigned weights.  Input, activation and output functions are then designed for 
each node in such a way that a single-pass or iteration from the input to the output layer 
produces a feasible solution using a heuristic.  An iteration, or a pass, consists of calculating 
all the functions of the network from the input up to the output layer.  A search strategy is 
then applied to modify the weights on the connections such that subsequent iterations 
produce neighboring solutions in the search space. 
We now describe, with the help of an example, how to convert a given JSSP problem into a 
neural network.  We will assume a simple 3x2 JSSP instance of Figure 1 for this purpose. 

Job 1 2 3 
1 (4) 2 (5) 1 (3) Machine (Proc Time)
2 (3) 1 (4) 2 (6) 

Figure 1. An Example 3x2 Job Shop Scheduling Problem 

In this 3x2 problem, there are 3 jobs, each with 2 operations, for a total of 6 operations (O11,
O12, O21, O22, O31 and O32).  Job 1 requires 4 units of time (ut) on machine 1 (O11) followed by 
3 ut on machine 2 (O12).  Job 2 requires 5 ut on machine 2 (O21) followed by 4 ut on machine 
1 (O22).  Job 3 requires 3 ut on machine 1 (O31) followed by 6 ut on machine 2 (O32).  The 
problem is how to schedule these six operations such that the makespan is minimized.  
Figure 2 shows a neural network for this problem.  
There are two operation layers, corresponding to the two operations for each job.  Each 
operation layer has three nodes corresponding to each job.  Note that for a more general nxm
case, there will be m operation layers, each with n nodes.  Following each operation layer is a 
machine layer with 3 nodes each.  Each of the three operation nodes is connected to a machine 
which is determined by the given problem.  So, for example, given our 3x2 problem of Figure 
1, O11 is connected to machine 1 and O12 is connected to machine 2; O21 is connected to machine 
2 and O22 is connected to machine 1, and so on.  For a more general n x m case, there will be n
machine nodes in each of the m machine layers.  An input layer is designed to provide a signal 
to the first operation layer to start the scheduling process.  There is also an output layer with 
one PE labeled OF for “final operation”, which is a dummy operation with zero processing 
time and no resource requirement.  The operation and the machine layers can be regarded as 
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hidden layers of a neural network.  Connections between operation nodes and machine nodes 
are characterized by weights.  These weights are all the same for the first iteration, but are 
modified for subsequent iterations.  There are also connections between machine nodes and 
subsequent operation nodes, which are not characterized by any weights.  These connections 
serve to pass signals from one layer to the next to trigger some functions. 

Figure 2: AugNN Architecture to solve a 3x2 Job Shop Scheduling Problem 

The output of the operation nodes (OO) becomes input to the machine nodes.  There are 
three types of outputs from each machine node.  One output (OMF) goes to the next 
operation node (or to the final node).  This signals the end of an operation on that machine.  
The second type of output (OMM) goes to the machine node of its own type.  For example, 
machine 1 sends an output to all other machine 1 nodes.  Similarly, machine 2 sends an 
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output to all other machine 2 nodes.  These signals are used to enforce the constraint that the 
same machine cannot process more than one operation at the same time.  The third output 
(OMR) is in the reverse direction, back to the operation node.  Whenever an operation is 
assigned to a machine, the machine node sends a signal back to the operation node, 
indicating that it has been assigned.  This signal changes the state of the operation node and 
triggers other functions. 
We now describe the input, activation and output functions for each node and the search 
strategy for the weights.  We will need the following notation to describe our functions: 

n Number of jobs 
m Number of machines 

C Current iteration  

J Set of jobs = {1,..,n}
Ji Job i, i ∈ J
M Set of machines = {1,..,m}
Mk Machine k, k ∈M
O Set of operations 
Oij ijth operation node, i ∈ J, j∈M
Mk,ij Node for machine k, connected from Oij, i ∈ J, j ∈M, k ∈M
ωij Weight on the link from Oij to machine node, i ∈ J, j ∈M
ωm Large weight on the link between machine nodes. 

α Search coefficient 

εc Error in iteration c
OF Final Dummy operation node 
STijk Start time of Oij on Mk , i ∈ J, j ∈M, k ∈ M
PTij Processing Time of Ji on Mj,  i ∈ J, j ∈M
Winij Winning status of Job Ji on Machine Mj, i ∈ J, j ∈M

Following are all functions of elapsed time t : 
t Elapsed time 
II(t) Input function value of the Initial I node. 
IOij(t) Input function value of Operation node Oij, i ∈ J, j ∈ M
IOF(t) Input function value of Operation node OF
IMk,ij(t) Input function value of Machine node k from operation Oij, i ∈ J, j ∈ M, k∈M
OI(t) Output function value of the Initial I node. 
OOij(t) Output function value of Operation node Oij, i ∈ J, j ∈ M
OOF(t) Output function value of Operation node OF
OMFk,ij(t) Output of Mc. node Mk,ij to the operation node in forward direction,  i∈ J, j∈

M, j  m, k∈M
OMFk,ijF(t) Output of Machine node Mk,ij to OF in the forward direction,  i ∈ J, j=m, k∈ M
OMRk,ij(t) Output of Machine node Mk,ij to Oij in reverse direction, i ∈ J, j ∈ M, k∈ M
OMMk(t) Output of Machine node Mk* to Mk* k∈ M
θOij(t) Activation function of Operation node Oij, i ∈ J, j ∈ M
θMk,ij(t) Activation function of Machine node Mk,ij, i ∈ J, j ∈ M, k∈M
assignijk(t) Operation Oij assigned to Machine Mk
S(t) Set of operations that can start at time t. S(t) = {Oij | OOij(t)= 1}
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The neural network algorithm can be described with the help of the input, activation and 
output functions for the various PEs (input node, operation nodes, machine nodes and the 
final node) and the search strategy. 

• AugNN Functions 
Input Layer (Node I): 
Input function: II(0) =1
Output function: OI(0) = II(0)
Operation Layer Nodes:  
Input function: 

 IOi1(0) = II(0) = 1, ∀  i ∈ J (1)

IOij(0) = 0  , ∀ i ∈  J, j ∈ M, j > 1  (2) 

 IOF(0) = 0 (3) 

These functions at time t = 0 provide initial signals to the operation layers.  The first 
operation nodes of all the jobs (i.e. for j = 1) get a starting signal of 1 at time 0 (equation 1).  
The remaining operation layers get a signal of 0 (equation 2) and the final output layer also 
gets a signal of 0 (equation 3). 
For time t > 0, we have the following functions: 

For all other operations i.e. ∀ j > 1 Λ t > 0 

IOij(t) = IOij(t-1) +  
, 1( )k ijOMF t−  , ∀ i∈ J, j∈ M, j > 1, k ∈ M (4) 

 IOF(t) = IOF(t-1) + 
, ( )k ijFOMF t  , j=m , ∀ k ∈ M, i∈ J (5) 

IOij (equation 4) helps to enforce the constraint that a new operation of a job cannot start 

unless the current operation is completed.  At t = 0, IOij is 0.  When an operation node gets a 
signal from the machine node (OMF, described later), IOij becomes 1, which indicates that it 
is ready to start. 
IOF (equation 5) is the input of the final node.  It gets an input from all the machines nodes 
of all the jobs.  When IOF becomes n, we know that all jobs are done. 
Activation function: 
Operation nodes’ initial activation state (i.e. at t=0) is 1. 

∀ i ∈ J,  j ∈ M, 

,

1                 if       ( )  0

2                if      ( ( -1)  1 2)  ( )  1
( )

3                if      ( ( -1)  2 3) ( ) = -1

4                if      ( -1)  

ij

ij ij
ij

ij k ij

ij

IO t
O t IO t

O t
O t OMR t

O t

θ
θ

θ
θ

=

= ∨ ∧ =
=

= ∨ ∧

= ,4 ( ( -1) 3 ( ) 0)ij k ijO t OMR tθ∨ = ∧ =

State 1 above implies that operation Oij is not ready to be assigned because input to this 
operation is still 0.  State 2 implies that the operation is ready to be assigned to a machine 
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because its input is 1.  State 3 implies that the operation is in process because it is receiving a 
negative signal from a machine k that it is currently being processed.  State 4 implies that the 
operation is complete and the negative signal from machine k is no longer there. 
Output functions: 

If an operation is ready to start (i.e. θOij(t) = 2), then the operation node sends a unit signal 
to the machine node that it can be assigned. 
Machine Layer Nodes: 
Input function:

, m( )   ( ) *   ( )*                      ,  ,    
ijk ij ij kIM t OO t OMM t i J j M k Mω ω= + ∀ ∈ ∈ ∈ (6)

There are two components of IMk,ij(t).  The first component (OOij(t) * ωik )is the weighted 
output from operation node Oij.  Whenever it is positive, it means that machine k is being 
requested by operation Oij for assignment.  Remember that OOij becomes 1 whenever it is 
ready to be assigned.  The second component is either zero or large negative.  The second 
component becomes large negative whenever machine k is already busy with another 
operation.
Activation function: 

,1          if   ( )*   0 

( )                                                              ,  ,  

0         otherwise

k ij

ijk

IM t HeuristicParameter
assign t i J j M k M

>

= ∀ ∈ ∈ ∈

We have mentioned earlier that the AugNN functions, in addition to enforcing the 
constraints of the problem, also help embed a chosen heuristic into the problem.  We have 
also seen how using the output of the operation node, The assignment takes place if the 
product of input of the machine node and the heuristic dependent parameter, (such as 
Processing Time or Earliest Finish Time) is positive and highest.  The requirement for it 
being positive is to honor the inhibitory signals.  The requirement for highest is what 
enforces the chosen heuristic. 

k
STassign

ij

ijkijk

machineonOoperation theof time

start therecord weplace, takesassignmentan  Whenever t. then 1,(t)If ==

If |S(t) | > 1 then if assignijk(t) = 1 then Winik = 1 
The Winik term will be used later during the search strategy.  We want to modify the weights 
of links based on whether a particular operation node won the competition in case there was 
more than one node competing for assignment. 
Machine nodes’ Initial Activation State (i.e. at t=0) is 1. 

1               if   ( ) 2          ,     
( )

0              otherwise

ij
ij

O t i J j M
OO t

θ = ∀ ∈ ∈
=
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   , ,  i J j M k M∀ ∈ ∈ ∈ ,

, ,

,

1                                                                                       : machine available

2  if    ( ( -1)  1  ( ) 1)  ( )  1    :machine busy (just 

( )

k ij k ij ijk

k ij
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M t

θ θ
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( -1)  1   ( )*  0          : assigned to another job
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θ ω
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-1)  1 5)  ( )*  0   : released by other job or not assigned

                                                                                            to any other job
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OMM t
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ω

θ
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At t = 0, all machines are available (State 1).  When an assignment occurs on a machine, that 
machine enters state 2 (Busy, just assigned).  State 2 turns into state 3 (Busy) the following 
time unit and state 3 continues till the machine is processing an operation.  As soon as a 
machine is done processing it enters state 4 (Just finished).  When a particular machine node 
is assigned to an operation, all other machine nodes that represent the same machine enter 
state 5.  For example, if machine node M1,11 is assigned to operation O11 then machine nodes 
M1,31, M1,22 also enter state 5. In state 5, they cannot be assigned to another operation.  When 
a machine is finished processing an operation, it reaches state 6 (Just released).  A machine 
node enters the state of 1 from a state of 5 if it stops receiving a negative signal from other 
machine nodes. 
Output functions: 

,

,

,
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k ij
k ij

k ij

M t
OMF t i J j k M

M t
θ
θ

=
= ∀ ∈ ∈

=

Whenever a machine node is done processing an operation, i.e. it reaches state 4, it sends a 
signal to the operation ahead of it that it may start. 

,
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Whenever a machine node is busy processing an operation (i.e. in states 2 or 3), it sends a 
negative signal to the operation node that it is processing.  This helps switch the state of the 
operation node from 2 to a 3. 
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Whenever a machine node is busy processing an operation (i.e. in states 2 or 3), it also sends 
a signal to other machine nodes corresponding to the same machine in other machine layers.  
This ensures that the same machine is not assigned to another job at the same time.   
Output Layer (Node F)
The output of F represents the makespan and the assignijk(t) gives the schedule.  If a machine 
is either assigned or released during a certain time unit, all functions need to be recalculated 
without incrementing the time clock. 
Input function: 

IOF(t) = IOF(t-1) +  OMFk,ijF(t) 

Output function: 

=
=

otherwise0

)(if
)(

ntIOt
tOO F

F

The final node outputs the makespan (t), the moment it receives n signals (one from each 
job) indicating that all jobs are complete. 
Search Strategy: 
A search strategy is required to modify the weights. The idea behind weight modification is 
that if the error is too high, then the probability of a different machine being the winner 
should be higher during subsequent iteration.  Since the machine with the highest value of 
IM, is the winner, an increase of weights will make the machine more likely to win and 
conversely a decrease of weight will make it less likely.  The magnitude of change should be 
a function of the magnitude of the error and of some job parameter, such as processing time.  
Keeping these points in mind, the following search strategy is used for the weights on the 
links.  
Winning tasks:  If Winik = 1 then  

1( ) ( ) * *       ,    ik c ik c ik cPT i J k Mω ω α ε+ = − ∀ ∈ ∈

Non-winning Tasks:   If Winik = 0 then  

1( ) ( ) * *      ,  ik c ik c ik cPT i J k Mω ω α ε+ = + ∀ ∈ ∈

When the above functions and search strategies are employed, each pass or iteration 
provides a feasible solution. 

• End of iteration routines: 
Calculate the gap (the difference between obtained makespan and the lower bound). Lower 
bound is the time of the critical path on the PERT chart, assuming infinite resources.  The 
lower bound can be calculated once at the beginning. 
1. Store the best solution so far. 
2. If the lower bound is reached, or if the number of iterations is greater than a specified 

number, stop the program. 
3. If continuing with the next iteration, modify weights using the search strategy.   
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5. Genetic Algorithm 

Many different chromosome encodings have been suggested for the JSSP.  For example, 
Falkenauer and Bouffouix (1991) proposed a chromosome formed of several 
subchromosomes, one for each machine; each subchromosome is a string of symbols, each 
symbol identifying an operation that has to be processed on the relevant machine.  Croce et 
al. (1995) used the same encoding as Falkenauer and Bouffouix.  Bean (1995) used a random 
key alphabet U(0,1), a vector of random numbers.  Each solution chromosome is made of 2n
genes where n is the number of operations.  The first n genes are used as operation 
priorities, whereas the genes between n+1 and 2n are used to determine the delay times 
used when scheduling an operation.  Dagli and Sittisathanchai (1995) use a chromosome 
with n.m genes, where n is the number of jobs and m the number of machines, each gene 
represents an operation.  The order of genes represents the order in which the operations 
will be scheduled. 
In this work, we use the representation similar to the one used by Dagli and Sittisathanchai 
(1995), i.e. there will be n.m number of genes, each gene represents an operation number, 
and the order of the genes dictates the order in which the operations are scheduled.  Care 
has to be taken that the ordering of operations is feasible.  Any order in which the 
operations of each job are in the required order would be a feasible ordering.  The GA 
algorithm is described as: 
{ Generate an initial population of feasible ordered chromosomes Pi, where i = 1 
 Evaluate each chromosome in the initial population. 
 While stopping criteria is not met, repeat 
 { Select best chromosomes of initial population to copy to the next population. Pi+1 
    Crossover best chromosomes of Pi and place into Pi+1 
    Mutate chromosomes in Pi and place in Pi+1
    Evaluate population Pi+1
 } 
}
Crossover 
The crossover mechanism should be such that the resulting child chromosome must 
produce a feasible schedule.  In other words, the priority order represented by the child 
chromosome must be precedence feasible.  We use a two-point crossover scheme.  In a two-
point crossover, two integer points c1 and c2 are randomly generated such that c2 > c1 and c2 –
c1 > nm/3 and both c1 and c2 are between 1 and n.m.  Two parent chromosomes are used as 
input. The child chromosome genes are produced as follows: 
Genes1 through c1 from parent 1 go the child chromosome as is. Genes c1 + 1 to c2 genes of 
the child come from parent 2 using the rule that any unused genes in parent 2 starting from 
the first position are placed in the child till c2 genes in the child are filled.  The remaining 
genes in the child come from parent 1 i.e. all unused genes appear in the child in the same 
order as they appear in parent 1.  This rule ensures the feasibility of the schedule generated 
by the child chromosome. 
Mutation
With a certain mutation probability, a certain number of genes are moved in such a way that 
the schedule remains precedence feasible, i.e. the order of operations with respect to a 
particular job is not disturbed, but the order of jobs with respect to other jobs may be 
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disturbed.  Since the order of jobs between jobs is independent of each other, such a move 
maintains the precedence order of operations. 
Evaluation 
A given chromosome, which basically represents the ordering of the operations, is evaluated 
by generating a schedule.  We perform better of forward and backward scheduling and also 
perform double justification to make sure the best possible schedule is obtained for the 
given chromosome.  A parallel schedule generation scheme was found to be better than a 
serial schedule generation scheme for the job-shop problem.  The Smallest Latest Finish 
Time Operation First and the Highest Remaining Work Next heuristics gave the best results. 

6. Neurogenetic Approach 

In the NeuroGenetic approach, we interleave the search between AugNN and GA.  For 
example, we may run x number of generations of GA, take the best chromosome so far and 
try to improve upon this solution in the local search space, using y number of iterations of 
the AugNN search.  However, in order to switch from GA search mode to AugNN search 
mode, appropriate weight vector has to be determined.  The weight vector should be such 
that in conjunction with a chosen heuristic, AugNN would produce the same schedule as 
the given GA schedule.  Using this set of weights and the chosen heuristic, we run say y
iterations using the AugNN approach.  If better solutions are found during the AugNN 
search iterations, these solutions can replace the worst solutions in the most recent GA 
population.  GA search can then resume for another x number of generations, and so on till 
some stopping criteria is met.  The critical part of this interleaving mechanism is how to 
determine the set of weights that would allow AugNN to replicate a given GA solution.  We 
next describe an algorithm to determine the weights using the heuristic Highest Remaining 
Work (RWK) Next.  We start with a unit weight vector for all activities.  We will call the 
chromosome that we want to achieve using the weights and the RWK Next heuristic the 
target chromosome and the starting chromosome the source chromosome. 
Algorithm for Switching from GA Encoding to AugNN Encoding 
Create a source chromosome based on non-increasing order of RWK. 
Repeat until each gene in the source chromosome is at the same as position as in the target chrom. 
{ Let wa and wb represent the weights corresponding to the out of place gene and the target 
  position gene 
 If (wa*RWKa > wb*RWKb and positiona > positionb) and
  Set wa > wb * (RWKb/RWKa) = 0.1 + wb * (RWKb/RWKa)
 End If 
 Rearrange the source chromosome based on non-increasing order of w*RWK 
}
Example: let us say we are scheduling activities in a PERT chart and we are using the 
heuristic of “Max Remaining Work Next”.  Suppose there are eight activities and the vector 
F of their Remaining Work is (19, 12, 14, 10, 9, 6, 5, 0).  Assume a vector of weights w = 
(1,1,1,1,1,1,1,1).  Assume that GA produces a string of (1, 2, 3, 5, 4, 6, 7, 8) which is our target 
vector.  The source vector S, based on the vector F would be (1, 3, 2, 4, 5, 6, 7, 8).  We notice 
that the gene at positions 2, 3, 4 and 5 in S are different from the target vector.  To bring gene 
in position 2 in S to position 3, 
So, set w2 = w3 * (RWK3/RWK2) + 0.1 
Or w2 = 1 * (14/12) + 0.1 = 1.267 
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So the new w = (1.0, 1.267, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) and the new w.F = (19, 15.2, 14, 10, 9, 6, 5, 
0).  The new ordering based on w.F = (1, 2, 3, 4, 5, 6, 7, 8).  At this point, gene in position 4 is 
not in the same position as the target. 
So we set w5 = w4*(RWK4/RWK5) + 0.1 
Or w5 = 1*(10/9) + 0.1 = 1.211 
So the new w = (1.0, 1.267, 1.0, 1.0, 1.211, 1.0, 1.0, 1.0) and the new w.F = (19, 15.2, 14, 10, 10.9, 
6, 5, 0).  The new ordering based on w.F = (1, 2, 3, 5, 4, 6, 7, 8) which is the target string. 
Switching from AugNN Encoding to GA Encoding 
Switching the encoding schemes from AugNN to GA is a relatively straightforward.  
Whatever ordering of operations is obtained using the product of the weight vector and the 
heuristic parameter becomes the ordering of genes in the GA chromosome. 

Instance Size BKS1 Heuristic AugNN GA NeuroGenetic Dev.
(%)

MT06 6x6 55 55 55 55 55 0.00 

MT10 10x10 930 1051 980 965 950 2.15 

MT20 20x10 1165 1265 1182 1191 1178 1.12 

        

ABZ5 10x10 1234 1287 1249 1252 1245 0.89 

ABZ6 10x10 943 986 952 961 945 0.21 

ABZ7 20x15 656 721 711 702 672 2.44 

ABZ8 20x15 665 736 699 698 680 2.25 

ABZ9 20x15 679 739 718 715 685 0.88 

        

ORB01 10x10 1059 1145 1072 1082 1063 0.38 

ORB02 10x10 888 919 902 905 893 0.56 

ORB03 10x10 1005 1110 1008 1110 1007 0.19 

ORB04 10x10 1005 1071 1051 1060 1031 2.58 

ORB05 10x10 887 959 895 899 894 0.78 

ORB06 10x10 1010 1110 1053 1042 1036 2.57 

ORB07 10x10 397 431 410 405 399 0.50 

ORB08 10x10 889 1034 925 930 910 2.36 

ORB09 10x10 934 978 945 952 934 0.00 

ORB10 10x10 944 1028 978 990 961 1.80 

        

Average       1.20 
    1Best Known Solution 

Table 1. Makespan using different algorithms on some well-known benchmark problems 
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Instance Size BKS1 Heuristic AugNN GA NeuroGenetic Dev. (%) 

LA01 10x5 666 666 666 666 666 0.00 
LA02 10x5 655 677 655 670 655 0.00 
LA03 10x5 597 636 617 607 599 0.33 
LA04 10x5 590 619 607 609 592 0.34 
LA05 10x5 593 593 593 593 593 0.00 
LA06 15x5 926 926 926 926 926 0.00 
LA07 15x5 890 890 890 890 890 0.00 
LA08 15x5 863 863 863 863 863 0.00 
LA09 15x5 951 951 951 951 951 0.00 
LA10 15x5 958 958 958 958 958 0.00 
LA11 20x5 1222 1222 1222 1222 1222 0.00 
LA12 20x5 1039 1039 1039 1039 1039 0.00 
LA13 20x5 1150 1150 1150 1150 1150 0.00 
LA14 20x5 1292 1292 1292 1292 1292 0.00 
LA15 20x5 1207 1207 1207 1207 1207 0.00 
LA16 10x10 945 1010 981 965 950 0.53 
LA17 10x10 784 817 793 788 784 0.00 
LA18 10x10 848 909 869 852 848 0.00 
LA19 10x10 842 899 875 844 842 0.00 
LA20 10x10 902 951 927 922 910 0.88 
LA21 15x10 1046 1162 1127 1085 1047 0.09 
LA22 15x10 927 1034 982 950 936 0.97 
LA23 15x10 1032 1072 1032 1032 1032 0.00 
LA24 15x10 935 1025 979 982 957 2.35 
LA25 15x10 977 1105 1031 1016 988 1.12 
LA26 20x10 1218 1311 1236 1241 1222 0.32 
LA27 20x10 1235 1345 1296 1265 1261 2.10 
LA28 20x10 1216 1363 1281 1295 1236 1.64 
LA29 20x10 1152 1228 1189 1178 1166 1.21 
LA30 20x10 1355 1418 1382 1388 1368 0.96 
LA31 30x10 1784 1784 1784 1784 1784 0.00 
LA32 30x10 1850 1850 1850 1850 1850 0.00 
LA33 30x10 1719 1719 1719 1719 1719 0.00 
LA34 30x10 1721 1752 1735 1730 1721 0.00 
LA35 30x10 1888 1898 1888 1890 1888 0.00 
LA36 15x15 1268 1451 1368 1325 1305 2.92 
LA37 15x15 1397 1550 1457 1498 1446 3.51 
LA38 15x15 1196 1311 1247 1258 1223 2.26 
LA39 15x15 1233 1335 1256 1272 1242 0.73 
LA40 15x15 1222 1354 1285 1271 1251 2.37 
        

Average       0.62% 
    1Best Known Solution  

Table 2. Makespan using different algorithms on Lawrence benchmark problems 
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7. Computational Results 

We show results for several benchmark datasets including three problems from Fisher and 
Thompson (1963), 40 problems from Lawrence et al. (1984), five problems from Adams et al. 
(1988) and ten ORB problems.  Tables 1 and 2 summarize the results.  We run the AugNN, 
the GA and the NeuroGenetic algorithm for 1000 unique solution iterations each.  The 
results are not the best as found in the literature, but we did not run our algorithm for long 
periods of time.   We were interested in seeing whether the interleaving of AugNN and GA 
resulted in any improvements.  In general, we found that the interleaved approach gave 
some improvement.  We provide the best known result in the BKS column, the result of 
dispatch rule heuristic in the heuristic column, followed by the AugNN, the GA and the 
NeuroGenetic results.  The last column shows the percent deviation of the NeuroGenetic 
makespan with respect to the best known solution.  For the Lawrence problems (Table 2), 
the average deviation across the 40 problems was 0.61%; for the other 18 benchmark 
problems (Table 1), the average deviation was 1.2%.  The heuristic gave the optimum 
solution for 15 of the 40 Lawrence problems, AugNN provided the optimum solution for 17 
problems and NeuroGenetic approach provided optimum solution for 21 problems. 

8. Summary and Conclusions  

In this study we combine two metaheuristic search techniques, the Augmented Neural 
Networks and Genetic Algorithms approach to create a hybrid metaheuristic called the 
NeuroGenetic approach.  We apply this hybrid approach to a multiprocessor scheduling 
problem, the job-shop scheduling problem to test if the hybridization helps improve the 
solution.  The hybridization of AugNN and GA is achieved by interleaving the two 
approaches.  Since the GA approach is better at diversification or global search whereas 
AugNN is better at intensification or local search, the combination provides improved 
solutions than either GA or AugNN search with the same number of iterations.  
Computational results showed that such hybridization provided improvements in the 
solutions, than if each technique was used alone.  Given the encouraging results, more 
research needs to be done in this area.  Such hybrid techniques can be applied to other 
scheduling problems and also on the job shop scheduling problem by applying other GA 
approaches that have performed well in the literature.  The AugNN technique can also be 
hybridized with other non GA techniques such Tabu Search and Simulated Annealing 
approaches, which tend to give good results for the job-shop scheduling problem. 
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1. Introduction  

This research deals with the problem of scheduling N jobs on M unrelated parallel 
machines. Each job has a due date and requires a single operation. A setup that includes 
detaching one die and attaching another from the appropriate die type is incurred if the type 
of the job scheduled is different from the last job on that machine. Due to the mechanical 
structure of machines and the fitness of dies to each, the processing time for a job depends 
on the machine on which the job is processed, and some jobs are restricted to be processed 
on certain machines. Furthermore, the required detaching and attaching times depend on 
both the die type and the machine. This type of problems may be encountered, for example, 
in plastics forming industry where unrelated parallel machines are used to process different 
components and setups for auxiliary equipment (e.g., dies) are necessary. This type of 
scheduling problems is also frequently encountered in injection molding departments where 
many different parallel machines are also used to produce different components and for 
which setups are required for attaching or detaching molds.   
In general, the dies (or molds) are quite expensive (tens of thousands dollars each) and thus 
the number of each type of dies available is limited. Therefore, dies should be considered as 
secondary resources, the fact of which distinguishes this research from many past studies in 
unrelated parallel-machine scheduling in which secondary resources are not restricted.  
This type of problems is NP-hard (So, 1990). When dealing with a large instance 
encountered in industry, in the worst case, it may not be able to obtain an optimal solution 
in a reasonable time. In this research heuristics based on guided search, record-to-record 
travel, and tabu lists from the tabu search (TS) are presented to minimize the maximum 
completion time (i.e., makespan or Cmax) and maximum tardiness (i.e., Tmax), respectively, to 
promote schedule performance. Computational characteristics of the proposed heuristics are 
evaluated through extensive experiments. 
The rest of this research is organized in six sections. Previously related studies on parallel 
machine scheduling are reviewed in Section 2. The record-to-record travel and tabu lists are 
briefly described in Section 3. The proposed heuristic to minimize makespan and the 
computational results are reported in Section 4. The proposed heuristic to minimize 
maximum tardiness and the computational results are reported in Section 5. Conclusions 
and suggestions for future research are discussed in Section 6. 
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2. Previously related studies on parallel machine scheduling 

Parallel machine scheduling problems have been widely studied in the literature. The 
machines considered in parallel scheduling problems may be divided into three classes 
(Allahverdi & Mittenthal, 1994): (1) identical machines, in which the processing time of a 
specific job is the same on all machines; (2) uniform machines, in which the processing time 
of a specific job on a given machine is determined by the speed factor of that machine; and 
(3) unrelated machines, in which the processing time of a specific job among machines may 
change arbitrarily. 
Parker et al. (1977) formulated a parallel machine scheduling problem as a vehicle routing 
problem and developed algorithms to minimize the total changeover cost. Geoffrion & 
Graves (1976) developed a quadratic assignment heuristic to minimize the sum of 
changeover costs. Hu et al. (1987) presented optimum algorithms to minimize the sum of 
changeover costs. Sumichrast & Baker (1987) also presented an approach to minimize the 
number of machine changeovers. A branch-and-bound procedure to minimize the number 
of major setups was developed by Bitran & Gilbert (1990). Tang (1990) presented a heuristic 
and two lower bounds for the makespan problem. An assignment algorithm to minimize 
Cmax was developed by Bitran & Gilbert (1990). Monma & Potts (1993) proposed two 
heuristics to minimize Cmax with preemption allowed. Lee & Guignard (1996) developed a 
hybrid bounding procedure for the Cmax problem. Weng et al. (2001) proposed several 
heuristics to minimize the total weighted completion time. Webster & Azizoglu (2001) 
presented dynamic programming algorithms to minimize total weighted flowtime. 
Baker (1973) selected the unscheduled job based on earliest-due-date-first (EDD) and 
assigned it to a machine according to certain rules. Dogramaci & Surkis (1979) presented a 
list-scheduling heuristic that generates three schedules and selects the one with least total 
tardiness. Elmaghraby & Park (1974) proposed a branch-and-bound algorithm to minimize 
some penalty functions of tardiness. An improved algorithm for this case was proposed by 
Barnes & Brennan (1977). Dogramaci (1984) developed a dynamic programming procedure 
to minimize total weighted tardiness. Ho & Chang (1991) sorted jobs based on the “traffic 
congestion ratio” and assigned jobs to machines by applying the list-scheduling procedure 
of Dogramaci & Surkis (1979). Luh et al. (1990) presented a Lagrangian-relaxation based 
approach to minimize total weighted tardiness. An “earliest-gamma-date” algorithm to 
minimize total weighted tardiness was proposed by Arkin & Roundy (1991). Koulamas 
(1994) sorted jobs based on shortest-processing time-first and generated m copies of this list 
for the m machines. He then applied certain rules to select the next job to be scheduled to 
minimize total tardiness. In the later study, Koulamas (1997) presented a decomposition 
heuristic and a hybrid heuristic to minimize mean tardiness. Suresh & Chaudhuri (1994) 
presented a GAP-EDD algorithm to minimize maximum tardiness. Guinet (1995) employed 
a simulated annealing method to minimize mean tardiness. Randhawa & Kuo (1994) 
examined the factors that may have influence on the scheduling performance and proposed 
heuristics to minimize mean tardiness. Schutten & Leussink (1996) proposed a branch-and-
bound algorithm to minimize the maximum lateness. Alidaee & Rosa (1997) developed a 
“modified-due-date” algorithm to minimize total weighted tardiness. Azizoglu & Kirca 
(1998) developed a branch-and-bound algorithm to minimize total tardiness. Dessouky 
(1998) considered that all jobs are identical and have unequal ready times. He proposed a 
branch-and-bound procedure and six single-pass heuristics to minimize maximum lateness. 
Balakrishnan et al. (1999) proposed a mixed integer formulation to minimize the sum of 
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earliness and tardiness. Funda & Ulusoy (1999) developed two genetic algorithms to 
minimize the sum of weighted earliness and tardiness. 
Armentano & Yamashita (2000) presented a TS heuristic to minimize mean tardiness. Yalaoui 
& Chu (2002) derived some dominance properties and proposed a branch-and-bound 
procedure to minimize total tardiness. Park et al. (2000) applied neural networks to obtain 
some look-ahead parameters which were used to calculate the priority index of each job to 
minimize total weighted tardiness. Lee & Pinedo (1997) presented a three-phase heuristic to 
minimize total weighted tardiness. In the first phase, factors or statistics which characterize an 
instance are computed; in the second phase, a sequence is constructed by an ATCS rule; in the 
third phase, a simulated annealing (SA) method is applied to improve the solution obtained in 
the second phase. Eom et al. (2002) also proposed a three-phase heuristic to minimize total 
weighted tardiness with both family and job setup times. In the first phase, jobs are listed by 
EDD and are divided into job sets based on a decision parameter; in the second phase, each job 
set is organized into several families by using the ATCS algorithm and then a TS method is 
applied to improve the sequence of jobs in each family; in the third phase, jobs are allocated to 
machines by using a threshold value and a look-ahead parameter. An SA heuristic was 
presented by Kim et al. (2002) to minimize total tardiness.   
Although parallel-machine scheduling has been studied extensively, not much research has 
considered the case in which a setup for dies is incurred if there is a switch from processing 
one type of job to another type, the number of dies of each type is limited, the processing 
time for a job depends on the machine on which the job is processed, and some jobs are 
restricted to be processed on certain machines. In this research, effective heuristics based on 
guided search, record-to-record travel, and tabu lists are proposed to deal with this type of 
scheduling problems so that maximum completion time and maximum tardiness can be 
minimized, respectively, to promote schedule performance. Computational characteristics of 
the proposed heuristic are evaluated through extensive experiments. 
Underlying assumptions are considered in this research: 
1. A setup that includes detaching one die and attaching another from the appropriate die 

type is incurred if there is a switch from processing one type of job to another type; 
2. The detaching (attaching) time depends on both the die type and the machine on which 

the die is detached (attached); 
3. The processing time for a job depends on both the job and the machine on which the job 

is processed, and each job is restricted to processing on certain machines; and 
4. The number of dies of a die type is limited. 

3. Record-to-record travel and tabu lists 

The concept of record-to-record travel and tabu lists from the tabu search are briefly 
described in this section. First, the record-to-record travel is described. 

3.1 Record-to-record travel  

The record-to-record travel (RRT) was introduced by Dueck (1993). Basically, RRT is very 
similar to SA. The main difference between RRT and SA is the mechanism to determine 
whether a neighborhood solution (Y) is accepted or not. SA accepts a worse neighborhood 
solution with a controlled probability. RRT accepts a neighborhood solution if its solution value 
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(V(Y)) is not worse than the current best solution (i.e., RECORD) plus a controlled DEVIATION.
The algorithm of record-to-record travel to minimization may be generalized as follows: 

RRT for minimization 
generate an initial solution 
choose an initial DEVIATION > 0 
set RECORD=the current best solution value
Repeat: generate a neighborhood solution that is a perturbation of the current solution (i.e., Y = 
PERTURB (X)) 
  IF (V(Y)) <RECORD + DEVIATION 
       THEN accept the move (i.e., X = Y) 
  IF (V(Y)) <RECORD 
       THEN set RECORD = (V(Y)) 
  IF no improvement on the solution quality after a number of iterations 
       THEN lower DEVIATION 
  IF the stop criterion is reached 
       THEN stop 
GOTO Repeat 

3.2 Tabu lists 

Since neighborhood solutions not leading to improvement are accepted in RRT, it is possible 
to return to previously visited solutions and cause cycling solutions. Hence, tabu lists from 
the tabu search (Glover, 1989) are applied to overcome this problem. The tabu lists store 
attributes that identify certain moves are forbidden in the later search. By using tabu lists, 
the solutions previously searched may be avoided and new regions of the search space may 
be explored. 
Theoretically the tabu lists need to store all previously visited solutions. However, this 
would require too much memory and computational efforts. An practical way is to store 
only the moves occurring in the last s iterations, in which s is known as the tabu size. By 
using an appropriate tabu size, the likelihood of cycling solutions may be avoided. 
An aspiration criterion is used to free a tabu solution if it is of sufficient quality and possibly 
would not cause cycling solutions. Hence, a solution is not forbidden if its attributes are not 
tabu or it passes the aspiration criterion test. 

4. Heuristic procedure to minimize Cmax and computational results 

The proposed heuristic to minimize Cmax, Heu_Cmax, and computational results are 
presented in this section. The development of Heu_Cmax is based on observing secondary 
resource constraints and process restrictions, and applying a guide search to improve the 
solutions. In order to avoid being trapped in local optimum, the record-to-record travel 
mechanism is applied. In addition, tabu lists are used to prevent obtaining cycling solutions. 
Heuristic Heu_Cmax consists of a procedure to generate an initial solution, a group
scheduling procedure to improve makespans of machines, and several procedures to generate 
neighborhood solutions. Before proceeding to the details of Heu_Cmax, the following 
notations are defined: 
group: a set of jobs that are allocated to the same machine and require the same type 

of die 
sub_group:      a subset of a group
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j:         index for jobs (j = 1, 2, …, N)
m:         index for machines (m = 1, 2, …, M)
d:         index for die types (d = 1, 2, …, D)

4.1 Generation of initial solutions 

A rule based on process efficiency is applied to assign jobs and allocates dies to machines. 
The jobs in each machine are then scheduled according to a group scheduling procedure. The 
initial solution is generated as follows: 

Step 1. Assign each job j J to its most efficient machine. If that machine is not allocated with 
a required die type, allocate a required die type to that machine. 

Step 2. (group scheduling procedure) Form groups on each machine and schedule the groups
with the longest detaching time last on each machine. 

4.2 Generating neighborhood solutions  

In order to minimize makespan, it is necessary to reassign jobs from the machine associated 
with maximum completion time to another machine. However, there are situations in which 
reassigning jobs from the latest completion machine to an earlier completion machine is not 
allowed or makespan cannot be reduced. Hence, it is sometimes necessary to reassign jobs 
from the latest completion machine to an intermediate machine and simultaneously reassign 
jobs from this intermediate machine to another machine. Moreover, sometimes it is more 
appropriate to reassign a group or several jobs than just a single job. Therefore, the 
neighborhood solutions are generated according to the following procedures (Chen, 2005). 

4.2.1 Group reassignment 

This procedure reassigns one group along with its required die from the machine with the 
latest completion time to another machine. The group and machine resulting in the least 
makespan are selected. 

4.2.2 Job reassignment  

This procedure reassigns one job from the machine with the latest completion time to 
another machine. The job and machine resulting in the least makespan are selected. 

4.2.3 Sub_group reassignment

This procedure reassigns one sub_group from the machine with the latest completion time to 
another machine. First, each group in the machine with the latest completion time is divided 
into several equal sub_groups based on total processing time for the group. One sub_group is 
then reassigned to another machine. The sub_group and machine resulting in the least 
makespan are selected. The number of sub_groups in one group is randomly determined so 
that a different number of jobs are reassigned in each iteration. 

4.2.4 Group and group chain reassignment  

In this procedure, one group along with its required die from the machine with the latest 
completion time are reassigned to an intermediate machine and another group along with its 
required die from this intermediate machine are reassigned to another machine. The groups
and machine resulting in the least makespan are selected. 
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4.2.5 Group and sub_group chain reassignment

In this procedure, one group along with its required die from the machine with the latest 
completion time are reassigned to an intermediate machine and one sub_group from this 
intermediate machine is reassigned to another machine. The group, sub_group, and machine 
resulting in the least makespan are selected. 

4.2.6 Sub_group and sub_group chain reassignment 

This procedure reassigns one sub_group from the machine with the latest completion time to 
an intermediate machine and simultaneously reassigns one sub_group from this intermediate 
machine to another machine. The sub_groups and machine resulting in the least makespan 
are selected. 

4.2.7 Sub_group and job chain reassignment 

This procedure reassigns one sub_group from the machine with the latest completion time to 
an intermediate machine and simultaneously reassigns one job from this intermediate 
machine to another machine. The sub_group, job, and machine resulting in the least 
makespan are selected. 

4.2.8 Job and job chain reassignment 

In this procedure one job from the machine with the latest completion time is reassigned to 
an intermediate machine and another job from this intermediate machine is reassigned to 
another machine. The jobs and machine resulting in the least makespan are selected. It is 
noted that in the above procedures a sub_group or job can be reassigned to a machine only if 
that machine is allocated with a required die or there is a required die not yet allocated to 
any machine. 

4.2.9 Reattachment 

The above reassignment procedures do not apply any reattachments of dies.  It is possible 
that the maximum completion time can be reduced by reattaching dies to other machines. In 
this reattachment procedure one job from the machine with the latest completion time is 
reassigned to another machine that may not be allocated with a required die. The die to be 
reattached is taken from other machines allocated with the required die.  This job may be 
processed very early or very late depending on the availability of the required die. If these 
arrangements are accepted, they are performed. This procedure is applied repeatedly to 
reduce the maximum completion time. 
When performing the above procedures to generate neighborhood solutions, discard moves 
that are tabu (unless a tabu move results in an overall best solution). If the makespan 
obtained is accepted (i.e., (V(Y)) < RECORD + DEVIATION), perform the reassignment and 
update the current solution.  If the makespan is improved, update the best solution. 

4.3 Heuristic Heu_Cmax

Heuristic Heu_Cmax is now outlined as follows. 
Step 0. Initialization 

Initialize Total_counter and set Inner_max, Outer_max, and initial DEVIATION RATE
(DR).  Note that Total_counter is used to update DR.
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Step 1. Generate an initial solution and set RECORD = initial solution value and 
DEVIATION = RECORD × DR. 

Step 2. Apply the group reassignment procedure until an Inner_max number of moves are 
performed without any improvement to the best known solution. 

Step 3. Apply the job reassignment procedure until an Inner_ max number of moves are 
performed without any improvement to the best known solution. 

Step 4. Apply the sub_ group reassignment procedure until an Inner__max number of 
moves are performed without any improvement to the best known solution. 

Step 5. Apply the group and group chain reassignment procedure until an Inner__max
number of moves are performed without any improvement to the best known 
solution. 

Step 6. Apply the group and sub_ group chain reassignment procedure until an Inner _max
number of moves are performed without any improvement to the best known 
solution. 

Step 7. Apply the sub_ group and subgroup chain reassignment procedure until an Inner_ 
max number of moves are performed without any improvement to the best known 
solution. 

Step 8. Apply the sub_ group and job chain reassignment procedure until an Inner_ max 
number of moves are performed without any improvement to the best known 
solution. 

Step 9. Apply the job and job chain reassignment procedure until an Inner_ max number of 
moves are performed without any improvement to the best known solution. 

Step 10. If an Outer__max number of moves are performed without any improvement to the 
best known solution, reinitialize Total_counter, update DR, and go to Step 11.  
Otherwise, set Total_ counter = Total_counter + 1, update DR, and return to Step 2.   

Step 11. Apply the reattachment procedure. 
Step 12. If an Outer_ max number of moves are performed without any improvement to the 

best known solution, terminate Heu_Cmax.  Otherwise, set Total_counter = 
Total_counter + 1, update DR, and return to Step 11. 

It is noted that the reattachment procedure may complicate the allocation of dies to 
machines; hence it is not performed until all the other procedures cannot improve makespan 
any further. 

4.4 Computational results 

A set of test problems are used to evaluate the computational characteristics of Heu_Cmax.
The runtime and solution quality of Heu_Cmax are compared with a basic simulated 
annealing (BSA) method (Tamaki et al., 1993). Both Heu_Cmax and the SA method were 
coded in C and all of the experiments were performed on a Pentium 4 1.6 GHz PC with 
256M SDRAM 

4.4.1 Data sets 

The test problems were generated “randomly” according to the following factors:  

number of jobs (N),

number of machines (M), 

number of die types (D), and 
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number of dies of a die type (bd).

It is known that all of these factors have impacts on the size and complexity of this 
scheduling problem. The parameters for this data set are listed in Table 1, in which rd is the 
number of jobs requiring die type d. 

N 25, 30, 35, 40, 45 50, 55, 60, 65, 70 
M 3, 4, 5 6, 7, 8 
D N/6 +1, N/7 +1
bd rd /3 +1, rd /4 +1

Speed factor for jobs of type d on machine m, fdm 1/U[5, 15]
Processing time for job j on machine m, pjm 1/fdm *U[10, 40]

Attaching time for a die of type d on machine m, s1dm U[10, 30]
Detaching time for a die of type d on machine m, s2dm U[10, 30]
Probability that a die type can be attached to a 
machine 

0.5

Table 1. Parameters of the test data

4.4.1 Parameter settings 

For the BSA (Tamaki et al., 1993), the solution is represented by a binary string 

X~ =(  The neighborhood of a string).~ ... ~~~ ... ~~ ... ~ ... ~~~ ... ~~
 11011101 11011211 NNNNNNMN wwwzzzyyyxxx X~ is

the set of strings with Hamming distance 1 from X~ . A procedure is used to transform a 
binary string to a feasible schedule of 
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The temperature of the kth stage was set at T(k) = 0.9k × 100, the number of iterations in each 

stage was set at 1000, and the termination criterion was T(k)  0.01 
For heuristic Heu_Cmax, each improvement procedure utilized one tabu list with a size of 5, 

Inner_max was set at 5, Outer_max was set at 5, and DR was updated by 0.9 (1+Total_counter)/5 .
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4.4.2 Results 

According to the computational results, the performance of Heu_Cmax was very impressive. 
The BSA method did not obtain any better solution value than Heu_Cmax in all of the 120 
test problems. Heu_Cmax was better than the BSA method not only on the solution value but 
also on the runtime.  Table 2 shows the mean value comparisons of Heu_Cmax and BSA.
According to Table 2, on an overall average the solution value and runtime were improved 
10.98% and 97.77%, respectively. 
The improvement of Heu_Cmax is more significant when N or M is large. The magnitude of 
N and M affects the size and complexity of this scheduling problem. Hence, this 
computational experience may indicate that Heu_Cmax may perform much better than the 
BSA method when this type of scheduling problems involves more jobs or more parallel 
machines. The improvement of Heu_Cmax is also more significant when bd is small. The 
number of dies of each type affects the availability of the secondary resource. Hence, this 
computational experience may indicate that Heu_Cmax may perform much better than the 
BSA method when secondary resources are tightly constrained. 

5. Heuristic procedure to minimize Tmax and computational results 

The heuristic proposed in section 4 can be modified to minimize Tmax. The modified heuristic 
is named Heu_Tmax and is described in the followings. 

(BSA-Heu_Cmax)/BSA*100%

Cmax CPU sec. Cmax CPU sec. Cmax CPU sec. 

25 1355.52 32.70 1235.66 1.17 8.84% 96.42%
30 1635.08 49.95 1520.44 1.46 7.01% 97.09%
35 2048.58 113.80 1897.71 1.69 7.36% 98.52%
40 2401.92 214.60 2142.68 2.30 10.79% 98.93%

45 2630.00 246.65 2411.11 2.86 8.32% 98.84%
50 1744.20 289.80 1538.96 5.06 11.77% 98.25%
55 1900.24 299.70 1681.33 7.88 11.52% 97.37%
60 2075.28 365.50 1797.81 8.06 13.37% 97.79%
65 2250.09 395.20 1941.77 12.62 13.70% 96.81%

N

70 2415.63 442.20 2019.26 11.58 16.41% 97.38%

3 2772.22 133.65 2480.65 1.61 10.52% 98.80%
4 1801.42 119.85 1722.22 1.64 4.40% 98.64%
5 1469.02 141.15 1327.37 2.45 9.64% 98.27%
6 2590.42 343.85 2238.58 9.34 13.58% 97.28%
7 2024.74 364.60 1753.44 9.65 13.40% 97.35%

M

8 1616.10 366.95 1398.96 8.13 13.44% 97.78%

N/6 +1 2048.40 244.25 1832.60 5.77 10.54% 97.64%D
N/7 +1 2042.91 245.75 1823.12 5.17 10.76% 97.90%

rd/3 +1 2008.85 245.30 1825.82 6.07 9.11% 97.53%bd rd/4 +1 2082.46 244.70 1829.90 4.87 12.13% 98.01%
Overall average 2045.65 245.00 1820.97 5.47 10.98% 97.77%

Table 2. Mean value comparisons of Heu_Cmax and BSA 
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5.1 Generation of initial solutions 

For the initial solution, each job is first assigned to its most efficient machine. If that machine 
is not allocated with a required die, allocate a required die to that machine. The job sequence 
in each machine is then improved by a rescheduling procedure. The rescheduling procedure is to 
improve job sequence within a machine. It is applied whenever group, sub_group, and jobs 
are reassigned from one machine to another. The rescheduling procedure includes the 
following steps: 
Step 1. Form groups in each machine and sequence jobs in the same group according to 

EDD.
Step 2. Schedule the group last of the entire groups unscheduled if it would incur the least 

maximum tardiness. Repeat this process until all groups are scheduled. 
Step 3. Starting from the first job of the second group in the sequence, move the job along 

with all its predecessors in the same family forward to the best position to improve 
maximum tardiness. 

5.2 Generating neighborhood solutions 

The neighbourhood generation procedures are similar to those described in subsection 4.2 
except that the group, subgroup, or job reassigned is selected from the machine associated 
with maximum tardiness and that the group, subgroup, or job and machine resulting in the 
least maximum tardiness are selected (Chen, 2006). 

5.2.1 Group reassignment 

This procedure reassigns one group along with its required die from the machine associated 
with the maximum tardiness to another machine. The group and machine resulting in the 
least maximum tardiness are selected. 

5.2.2 Job reassignment  

This procedure reassigns one job from the machine associated with the maximum tardiness 
to another machine. The job and machine resulting in the least maximum tardiness are 
selected. 

5.2.3 Sub_group reassignment

This procedure reassigns one sub_group from the machine associated with the maximum 
tardiness to another machine. First, each group in the machine associated with maximum 
tardiness is divided into several equal sub_group based on the total processing time for the 
group and the due date of every job in the first sub_group’s being earlier than that of any job 
in the second sub_group, and the due date of every job in the second sub_group’s being earlier 
than that of any job in the third sub_group and so on. One sub_group is then reassigned to 
another machine. The sub_group and machine resulting in the least maximum tardiness are 
selected. 

5.2.4 Group and group chain reassignment  

In this procedure, one group along with its required die from the machine associated with 
the maximum tardiness are reassigned to an intermediate machine and another group along 
with its required die from this intermediate machine are simultaneously reassigned to 
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another machine. The groups and machine resulting in the least maximum tardiness are 
selected. 

5.2.5 Group and sub_group chain reassignment  

In this procedure, one group along with its required die from the machine associated with 
the maximum tardiness are reassigned to an intermediate machine and one sub_group from 
this intermediate machine is simultaneously reassigned to another machine. The group, 
sub_group, and machine resulting in the least maximum tardiness are selected. 

5.2.6 Sub_group (job) and sub_group (job) chain reassignment 

This procedure reassigns one sub_group (job) from the machine associated with the 
maximum tardiness to an intermediate machine and simultaneously reassigns one sub_group
(job) from this intermediate machine to another machine. The sub_group(s), job(s), and 
machine resulting in the least maximum tardiness are selected. 

5.2.7 Reattachment  

In this procedure, one job from the machine associated with the maximum tardiness is 
reassigned to another machine that may not be allocated with a die. This job may be 
processed very early or very late depending on the availability of the required die. The job 
and machine resulting in the least maximum tardiness are selected. 

5.3 Heuristic Heu_Tmax

The structure of heuristic Heu_Tmax is very similar to that of heuristic Heu_Cmax. Readers 
may refer to subsection 4.3. 

5.4 Computational experiments 

A set of test problems is used to evaluate the computational characteristics of Heu_Tmax.
The runtime and solution quality of Heu_Tmax are compared with an EDD-based procedure 
and a basic SA method (BSA) (Tamaki et al., 1993). 

5.4.1 Data Sets 

The test problems were “randomly” generated based on the following factors:  
5. number of jobs (N);
6. number of machines (M); 
7. number of die types (D); 
8. number of dies of a die type (bd);
9. due date range factor (R); and 

10. due date priority factor ( ).  
The level settings for each factor are: 4 levels for N, 3 levels for M, and 2 levels each for the 
other factors. This results in a total of 192 test problems. The parameters for the test 
problems are given in Table 3. Note that in Table 3 the due dates of jobs were generated as 
suggested by Potts & Van Wassenhove (1982), where 

Cmax= and M’j is set of machines that can process job j.MMssp jjmjm
j jMm

jm /|)'|/)21((
'
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N 30, 50, 70, 90

M 4, 6, 8

D N/5 + 1, N/7 + 1
bd rd/4 + 1, rd/6 + 1

Speed factor for jobs of type d on machine m, fdm 1/U[5, 15]

Processing time for job j on machine m, pjm 1/fdm*U[10, 40]

Attaching time for a die of type d on machine m, s1dm U[10, 100]

Detaching time for a die of type d on machine m, s2dm U[10, 100]

R 0.4, 1

0.4, 0.8

Due date U[Cmax(1 - - R/2), Cmax(1 - + R/2)]

Probability that a die type can be attached to a
machine 

0.5

Table 3. Parameters for the test data 

The EDD-based procedure selects jobs on the basis of EDD and assigns jobs to the machine 
where it can be completed as early as possible. However, if a required die is not available, 
the next job is selected. For heuristic Heu_Tmax, each neighborhood generation procedure 
use a tabu list of size 5, Inner_max and Outer_max were both set at 5, and DR was updated by 

0.9 (1+Total_counter)/5 .

5.4.2 Results  

According to the computational results, Heu_Tmax outperformed EDD and BSA in terms of 
solution quality. EDD and BSA did not obtain better solutions than Heu_Tmax in all of the 
192 tested instances. EDD and Heu_Tmax obtained the same solutions in 12 tested problems; 
BSA and Heu_Tmax obtained the same solutions in 24 tested problems. As for the runtime 
consumed, the EDD-based procedure required less than 1 second to solve each of the tested 
instances. Depending upon the problem sizes, the runtime of Heu_Tmax ranged from less 
than 1 second to near 6 minutes, which was much less than that of BSA.
Table 4 shows the corresponding mean values of EDD, BSA, and Heu_Tmax. According to 
Table 4, maximum tardiness increases as the number of jobs (i.e., N) increases or the number 
of machines (i.e., M) decreases. Maximum tardiness also increases when secondary 

resources are more restricted (i.e., bd = rd/6  + 1) or the due dates of job are tight (i.e.,  = 
0.8). On an overall average, the solution value of EDD was improved 42.88%; the solution 
value and the runtime of BSA were reduced 27.92% and 90.48%, respectively. Heu_Tmax is 
significantly better than EDD and SA when M is large. The sizes of M affect the size and 
complexity of this scheduling problem. Hence, this computational experiment may indicate 
that the performance of Heu_Tmax may be much better than EDD and BSA when this type 
of scheduling problems involves more parallel machines. 
Heu_Tmax is significantly better than EDD and SA when R is small (i.e., R = 0.4). The value 
of R affects the dispersion of job due dates. Hence, this computational experience may 
indicate that the performance of Heu_Tmax may be much better than EDD and BSA when 
the due dates of jobs are more dispersive. Heu_Tmax is also significantly better than EDD
and BSA when  is small (i.e.,  = 0.4). The value of  influences the tightness of due dates.  
Hence, this computational experiment may indicate that the performance of Heu_Tmax may
be much better than EDD and BSA when the due dates of jobs are loose.  
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EDD BSA Heu_Tmax
Tmax Tmax CPU sec. Tmax CPU sec. 

30 672.19 508.13 33.73 410.81 1.35
50 1012.77 853.58 120.93 645.79 4.17
70 1382.63 1130.48 268.30 740.65 19.67

N

90 1810.85 1373.35 468.83 989.21 59.69
4 1536.30 1241.33 219.69 909.64 25.71
6 1162.59 946.70 220.41 702.67 24.19M
8 959.94 711.13 228.74 477.53 13.75

N/5 +1 1276.10 1017.23 224.64 712.64 26.18D
N/7 +1 1163.12 915.54 221.25 680.59 16.26

rd/4 +1 1202.87 944.29 246.28 678.71 27.21bd rd/6 +1 1236.35 988.48 199.61 714.52 15.23
0.4 1500.54 1090.60 221.85 661.97 18.32R
1 938.68 842.17 224.04 731.26 24.12

0.4 459.09 212.14 223.02 51.04 6.13
0.8 1980.13 1720.64 222.88 1342.19 36.31

Overall average 1219.61 966.39 222.95 696.62 21.22

Table 4. Mean value comparisons of Heu_Tmax, EDD, and BSA

6. Conclusions and suggestions for future research 

This research has dealt with scheduling jobs on unrelated parallel machines with secondary 
resource constraints. Effective heuristics based on guided search, record-to-record travel, 
and tabu lists from tabu search have been proposed to minimize makespan and maximum 
tardiness, respectively. The solution quality of the proposed heuristics have been evaluated 
in empirical comparisons with an BSA method and EDD. Computational results have 
demonstrated that the presented heuristics outperform these method and procedures tested. 
It is expected that this research may provide an innovative approach for production 
managers to schedule jobs in the production environment where unrelated parallel 
machines are used to process different components and for which setups are required for 
auxiliary equipments.  Since the development of the proposed heuristics observe secondary 
resource constraints, family setup times, process restrictions, hence it is believed that the 
proposed heuristics may also be effectively applied to solve the parallel-machine scheduling 
problems with family and job setup times. 
As for future research, it may be desirable to develop and study effective heuristics for the 
dynamic case where jobs arrive over time. Considering that the jobs (orders) from important 
customers have strict due-date constraints is another important issue for future research to 
pursue.
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1. Introduction 

In many manufacturing and assembly facilities, a number of operations have to be done on 
every job. Often these operations have to be done on all jobs in the same order implying that 
the jobs follow the same route. These machines are assumed to be set up in series, and the 
environment is referred to as a flow-shop. The assumption of classical flow-shop scheduling 
problems that each job visits each machine only once (Baker, 1974) is sometimes violated in 
practice. A new type of manufacturing shop, the re-entrant shop has recently attracted 
attention. The basic characteristic of a re-entrant shop is that a job visits certain machines 
more than once. The re-entrant flow-shop (RFS) means that there are n jobs to be processed
on m machines in the shop and every job must be processed on machines in the order of M1,
M2, …, Mm, M1, M2, …, Mm, …, and M1, M2, …, Mm. For example, in semiconductor 
manufacturing, consequently, each wafer re-visits the same machines for multiple 
processing steps (Vargas-Villamil & Rivera, 2001). The wafer traverses flow lines several 
times to produce different layer on each circuit (Bispo & Tayur, 2001). 
Finding an optimal schedule to minimize the makespan in RFS is never an easy task. In 
fact, a flow-shop scheduling, the sequencing problem in which n jobs have to be processed 
on m machines, is known to be NP-hard (Kubiak et al., 1996; Pinedo, 2002; Wang et al., 
1997); except when the number of machines is smaller than or equal to two. Because of 
their intractability, this study presents the genetic algorithm (GA) to solve the RFS 
scheduling problems. GA has been widely used to solve classical flow-shop problems and 
has performed well. In addition, hybrid genetic algorithms (HGA) are proposed to 
enhance the performance of pure GA. The HGA is compared to the optimal solutions 
generated by the integer programming technique, and to the near optimal solutions 
generated by pure GA and the non-delay schedule generation procedure. Computational 
experiments are performed to illustrate the effectiveness and efficiency of the proposed 
HGA algorithm.  

2. Literature review 

Flow-shop scheduling problem is one of the most well known problems in the area of 
scheduling. It is a production planning problem in which n jobs have to be processed in the 
same sequence on m machines. Most of these problems concern the objective of minimizing 
makespan. The time between the beginning of the execution of the first job on the first 
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machine and the completion of the execution of the last job on the last machine is called 
makespan. To minimize the makespan is equivalent to maximize the utilization of the 
machines. 
Johnson (1954) is the pioneer in the research of flow-shop problems. He proposed an 
“easy” algorithm to the two-machine flow-shop problem with makespan as the criterion. 
Since then, several researchers have focused on solving m-machine (m > 2) flow-shop 
problems with the same criterion. However, these fall in the class of NP-hard (Rinnooy 
Kan, 1976; Garey et al., 1976), complete enumeration techniques must be used to solve 
these problems. As the problem size increases, this approach is not computationally 
practical. For this reason, researchers have constantly focused on developing heuristics for 
the hard problem. 
In today’s competitive, global markets, effective production scheduling systems which 
manage the movement of material through production facilities provide firms with 
significant competitive advantages such as utilization of production capacity. These 
systems are particularly important in complex manufacturing environments such as 
semiconductor manufacturing where each wafer re-visits the same machines for multiple 
processing steps (Vargas-Villamil & Rivera, 2001). A wafer traverses flow lines several 
times to produce different layers on each circuit. This environment is one of the RFS 
scheduling problems.  
In a RFS problem, these processes cannot be treated as a simple flow-shop problem. The 
repetitive use of the same machines by the same job means that there may be conflicts 
among jobs, at some machines, at different levels in the process. Later operations to be done 
on a particular job by some machine may interfere with earlier operations to be done at the 
same machine on a job that started later. This re-entrant or returning characteristic makes 
the process look more like a job-shop on first examination. Jobs arrive at a machine from 
several different sources or predecessor facilities and may go to several successor machines.  
A number of researchers have studied the RFS scheduling problems. Graves et al. (1983) 
modeled a wafer fab as a RFS, where the objective is to minimize average throughput time 
subject to meeting a given production rate. Kubiak et al. (1996) examined the scheduling 
of re-entrant shops to minimize total completion time. Some researchers examined 
dispatching rules and order release policies for RFS. Hwang and Sun (1998) addressed a 
two-machine flow-shop problem with re-entrant work flows and sequence dependent 
setup times to minimize makespan. Demirkol and Uzsoy (2000) proposed a 
decomposition method to minimize maximum lateness for the RFS with sequence-
dependent setup times. 
Pan and Chen (2004) studied the RFS with the objective of minimizing the makespan and 
mean flow time of jobs by proposing optimization models based on integer programming 
technique and heuristic procedures based on active and non-delay schedules. In addition, 
they presented new priority rules to accommodate the reentry feature. Both the new rules 
and some selected rules of earlier research were incorporated in the schedule generation 
algorithm of active (ACT) and non-delay (NDY) schedules, and that of the priority rules in 
finding heuristic solutions for the problems. They compared ACT and NDY procedures and 
tested the combinations of 12 priority rules with ACT and NDY. Their simulation results 
showed that for RFS the best combinations were (NDY, SPT/TWKR) for minimizing 
makespan, where SPT means shortest processing time and TWKR means total work 
remaining. 
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3. Problem statement and optimization model 

3.1 Problem description 

Assumed that there are n jobs, J1, J2, …, Jn, and m machines, M1, M2, …, Mm, to be processed 
through a given machine sequence. Every job in a re-entrant shop must be processed on 
machines in the order of M1, M2, …, Mm, M1, M2, …, Mm, …, and M1, M2, …, Mm. In this case, 
every job can be decomposed into several levels such that each level starts on M1 and 
finishes on Mm. Every job visits certain machines more than once. The processing of a job on 
a machine is called an operation and requires a duration called the processing time. The 
objective is to minimize the makespan. A minimum makespan usually implies a high 
utilization of the machine(s). 
The assumptions made for the RFS scheduling problems are summarized here. Every job 
may visit certain machines more than once. Any two consecutive operations of a job must be 
processed on different machines. The processing times are independent of the sequence. 
There is no randomness; all the data are known and fixed. All jobs are ready for processing 
at time zero at which the machines are idle and immediately available for work. No pre-
emption is allowed; i.e., once an operation is started, it must be completed before another 
one can be started on that machine. Machines never break down and are available 
throughout the scheduling period. The technological constraints are known in advance and 
immutable. There is only one of each type of machine. There is an unlimited waiting space 
for jobs waiting to be processed. 

3.2 Optimization model 
General symbol definition 

Ji  = job number i;
Mk  = machine number k;

i
lkO  = the operation of Ji on Mk at layer l;

Problem parameters 
m  = number of machines in the shop;  
n  = number of jobs for processing at time zero;  
M  = a very large positive number;  
L  = number of layers for every job; 

i
lkp  = the processing time of i

lkO ;

Decision variables 
Cmax= maximum completion time or makespan; 

i
lks = the starting time of i

lkO ;
ii
kllZ ′
′  = 1 if i

lkO  precedes i
klO ′
′  (not necessarily immediately); 0 otherwise; 

Pan and Chen (2004) were the first authors to present the integer programming model for 
solving the reentrant flow-shop problem. The model is as follows. 

Minimize Cmax  (1)

Subject to i
lks + i

lkp ≤ i
kls

1, +    i = 1, 2,..., n; l = 1, 2,..., L; k = 1, 2, ..., m − 1  (2) 

i
lms + i

lmp ≤ i
ls

1,1+    i = 1, 2,..., n; l = 1, 2,..., L − 1  (3) 

 M(1 − ii
kllZ ′
′ ) + ( i

kls ′′ −
i
lks ) ≥ i

lkp    1 ≤ i < i′ ≤ n; l, l′ = 1, 2, ..., L; k = 1, 2, ..., m  (4) 
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 M ii
kllZ ′
′ + ( i

lks − i
kls ′′ ) ≥ i

klp ′
′    1 ≤ i < i′ ≤ n; l, l′ = 1, 2, ..., L; k = 1, 2, ..., m  (5) 

i
mLs

,
+ i

mLp
,
≤ Cmax    i = 1, 2, ..., n  (6) 

Cmax ≥ 0, i
lks ≥ 0 i = 1, 2, ..., n; l = 1, 2, ..., L; k = 1, 2, ..., m

ii
kllZ ′
′ = 0 or 1   1 ≤ i < i′ ≤ n; l, l′ = 1, 2, ..., L; k = 1, 2, ..., m (7) 

Constraint set (2) ensures that Mk begins to work on i
klO

,1+  only after it finishes i
lkO .

Constraint set (3) ensures that the starting time of i
lO

1,1+  is no earlier than the finish time of 
i
lmO . Constraint sets (2) and (3) together specify the technological constraints. Constraint sets 

(4) and (5) satisfy the requirement that only one job may be processed on a machine at any 
instant of time. Constraint set (6) defines Cmax to be minimized in the objective function (1). 

The non-negativity and binary restrictions for i
lks  and ii

kllZ ′
′ , respectively, are described in (7). 

4. A hybrid genetic algorithm for re-entrant flow-shop 

4.1 Basic genetic algorithm structure 

GA is one of the meta-heuristic searches. Holland (1975) first presented it in his book, 
Adaptation in Natural and Artificial Systems. It originates from Darwin’s “survival of the 
fittest” concept, which means a good parent produce better offspring. GA searches a 
problem space with a population of chromosomes and selects chromosomes for a continued 
search based on their performance. Each chromosome is decoded to form a solution in the 
problem space in the context of optimization problems. Genetic operators are applied to 
high performance structures (parents) in order to generate potentially fitter new structures 
(offspring). Therefore, good performers propagate through the population from one 
generation to the next (Chang et al., 2005). Holland (1975) presented a basic GA called 
“Simple Genetic Algorithm” in his studies that is described as follows: 
Simple genetic algorithm () 

{
  Generate initial population randomly 
  Calculate the fitness value of chromosomes 
  While termination condition not satisfied 
  { 
  Process crossover and mutation at chromosomes  
  Calculate the fitness value of chromosomes 
  Select the offspring to next generation 
 } 
}

A GA contains the following major ingredients: parameter setting, representation of a 
chromosome, initial population and population size, selection of parents, genetic operation, 
and a termination criterion. 

4.2 Hybrid genetic algorithm 

The role of local search in the context of the genetic algorithm has been receiving serious 
consideration and many successful applications are strongly in favor of such a hybrid 
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approach. Because of the complementary properties of GA and conventional heuristics, a 
hybrid approach often outperforms either method operation along. The hybridization can be 
done in a variety of ways (Cheng et al., 1999), including: 
1. Incorporation of heuristics into initialization to generate well-adapted initial 

population. In this way, a hybrid genetic algorithm (HGA) with elitism can guarantee 
to do no worse than the conventional heuristic does. 

2. Incorporation of heuristics into evaluation function to decode chromosomes to 
schedules. 

3. Incorporation of local search heuristic as an add-on extra to the basic loop of GA, 
working together with mutation and crossover operations, to perform quick and 
localized optimization in order to improve offspring before returning it to be evaluated. 

One of the most common HGA forms is incorporating local search techniques as an add-on 
to the main GA’s recombination and selection loop. In the hybrid approach, GAs are used to 
perform global exploration in the population, while heuristic methods are used to perform 
local exploitation of chromosomes. HGA structure is illustrated in Fig. 1. 

Figure 1. The hybrid genetic algorithm structure 

4.3 The proposed hybrid genetic algorithms for re-entrant flow-shop 

In this study, we propose an HGA for RFS with makespan as the criterion. The flowchart of 
the hybrid approach is illustrated in Fig. 2. 

4.3.1 Parameters setting 

The parameters in GA comprise population size, number of generations, crossover 
probability, mutation probability, and the probability of processing other GA operators. 

4.3.2 Encoding 

In GA, each solution is usually encoded as a bit string. That is, binary representation is 
usually used for the coding of each solution. However, this is not suitable for scheduling 
problems. During the past years, many encoding methods have been proposed for 
scheduling problem (Cheng et al., 1996). Among various kinds of encoding methods, job-
based encoding, machine-based encoding and operation-based encoding methods are most 
often used for scheduling problem. This study adopts operation-based encoding method. 
For example, we have a three-job, three-machine, two-level problem. Suppose a 
chromosome to be (1, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 1, 2, 2, 3, 3), which means each job has six 
operations, it occurs exactly six times in the chromosome. If one of the alleles is generated 
more than six times or less than six times by GA operators such as crossover or mutation, 
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this chromosome is not a feasible solution of the RFS problem and it should be repaired to 
form a feasible one. Each gene uniquely indicates an operation and can be determined 
according to its order of occurrence in the sequence. Let Oijk denote the jth operation of job i
on machine k. The chromosome can be translated into a unique list of ordered operations of 
(O111, O122, O211, O311, O133, O222, O322, O141, O333, O233, O152, O241, O341, O163, O252, O263, O352,
O363). Operation O111 has the highest priority and is scheduled first, then O122, and so on. 
Hence there are (n×m×l)!/[(m×l)!]n schedules for an n-job, m-machine, l-level RFS problems. 

Crossover

Mutation

Other genetic operator

Output the best 
solution

Selection

Generating new 
population

End

No

Yes

Input initial 
data

Evaluating fitness 
value

Terminate ?

Encoding

Parameters setting

Generating initial 
population

Figure 2. The flow chart of the proposed hybrid approach 

4.3.3 Generation of initial population 

The initial population sets are generated by two heuristic methods; one is (NDY, 
SPT/TWKR), the best heuristic for RFS problems proposed by Pan and Chen (2004). The 
other is NEH heuristic (Pan & Chen, 2003), the best heuristic for re-entrant permutation 
flow-shop (RPFS) problems. The RFS scheduling problem where no passing is allowed is 
called the RPFS (Pan & Chen, 2003).  
The population is separated into two parts and each part contains a number of 1/2 
population size of individuals. The first schedule of the first part was generated by (NDY, 
SPT/TWKR), the rest of the first part were generated by selecting two locations in the first 
schedule and swapping the operations in them. The first schedule of the second part was 
generated by NEH heuristic (Pan & Chen, 2003) and the remaining individuals of this part 
were produced by interchanging two randomly chosen positions of it. Because the NEH 
heuristic (Pan & Chen, 2003) is based on job number, it is needed to re-encode those 
individuals of the second part based on operations. 

4.3.4 Crossover 

Crossover is an operation to generate a new string (i.e., child) from two parent strings. It is 
the main operator of GA. During the past years, various crossover operators had been 
proposed (Murata et al., 1996). Murata et al. (1996) showed that the two-point crossover is 
effective for flow-shop problems. Hence the two-point crossover method is used in this 
study. 



A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem 159

Two-point crossover is illustrated in Fig. 3. The set of jobs between two randomly selected 
points are always inherited from one parent to the child, and the other jobs are placed in the 
order of their appearance in the other parent. 

1 2 3 4 5 6 7 8Parent 1

8 1 3 4 5 6 2 7Child

5 8 1 4 2 3 7 6Parent 2

Figure 3. A two-point crossover 

4.3.5 Mutation 

Mutation is another usually used operator of GA. Such an operation can be viewed as a 
transition from a current solution to its neighborhood solution in a local search algorithm. It 
is used to prevent premature and fall into local optimum. In RFS, neighborhood search-
based method is used to replace mutation as discussed next. 

4.3.6 Other genetic operators 

In traditional genetic approach, mutation is a basic operator just used to produce small 
variations on chromosomes in order to maintain the diversity of population. Tsujimura and 
Gen (1999) proposed a mutation inspired by neighbor search technique which is not a basic 
operator and is used to perform intensive search in order to find an improved offspring. 
Hence, we use neighborhood search-based method to replace mutation. 

4 1 3 1 2 3 2 4Parent

Neighbor chromosome

3 1 3 2 4 1 4 2

4 1 3 3 2 1 2 4 3 1 3 2 4 1 4 2

4 1 3 4 2 3 2 1 3 1 3 2 4 1 4 2

4 1 3 1 2 4 2 3 3 1 3 2 4 1 4 2

4 1 3 3 2 4 2 1 3 1 3 2 4 1 4 2

4 1 3 4 2 1 2 3 3 1 3 2 4 1 4 2

4 1 3 1 2 3 2 4 3 1 3 2 4 1 4 2

Figure 4. A local search mutation 
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For operation-based encoding, the neighborhood for a given chromosome can be considered 
as the set of chromosomes transformable from a given chromosome by exchanging the 
position of k genes (randomly selected and non-identical genes). A chromosome is said to be 
k-optimum, if it is better than any others in the neighborhood according to their fitness 
value. Consider the following example. Suppose genes on position 4, 6, and 8 are randomly 
selected. They are (1, 3, 4) and their possible permutations are (3, 1, 4), (4, 3, 1), (1, 4, 3), (3, 4, 
1) and (4, 1, 3). The permutations of the genes together with remaining genes of the 
chromosome from the neighbor chromosomes are shown in Fig. 4. Then all neighbor 
chromosomes are evaluated and the chromosome with the best fitness value is used as the 
offspring.

4.3.7 Fitness function 

Fitness value is used to determine the selection probability for each chromosome. In 
proportional selection procedure, the selection probability of a chromosome is proportional 
to its fitness value. Hence, fitter chromosomes have higher probabilities of being selected to 
next generation. To determine the fitness function, first calculate the makespan for all the 
chromosomes in a population, find the largest makespan over all chromosomes in current 
population and denote it as Vmax. The difference between each individual’s makespan and 
Vmax to the 1.005 power is the fitness value of that particular individual. The power law 

scaling (α) was proposed by Gillies (1985), which powers the raw fitness to a specific value. 
In general, the value is problem-dependent. Gillies (1985) reported a value of 1.005. The 

fitness function denote by Fi = (Vmax − Vi)
α. This is done to ensure that the probability of 

selection for a schedule with lower makespan is high. 

4.3.8 Termination 

GA continues to process the above procedure until achieving the stop criterion set by user. 
The commonly used criterions are: (1) The number of executed generation; (2) A particular 
object; and (3) The homogeneity of population. This study uses a fixed number of 
generations to serve as the termination condition.  

4.3.9 Selection 

Selection is another important factor to consider in implementing GA. It is a procedure to 
select offspring from parents to the next generation. According to the general definition, the 
selection probability of a chromosome should show the performance measure of the 
chromosome in the population. Hence a parent with a higher performance has higher 
probabilities of being selected to next generation. In this study, the process for selecting 
parents is implementing via the common roulette wheel selection procedure presented by 
Goldberg (1989). The procedure is described below. 
Step 1: Calculate the total fitness value for each chromosome in the population. 
Step 2: Calculate the selection probability of each chromosome. This is equal to the 

chromosome’s fitness value divided by the sum of each chromosome’s fitness value 
in the population. 

Step 3: Calculate the cumulative probability of each chromosome. 
Step 4: Generate a probability P randomly where P~[0, total cumulative probability], if

P(n) ≤ P ≤ P(n + 1), after that select the (n + 1) chromosome of population to next 
generation, where P(n) is the cumulative probability of the nth chromosome. 
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In this way, the fitter chromosomes have a higher number of offspring in the next 
generation. However, this method is not guaranteed that every good chromosome can be 
selected to the offspring to next generation. Hence one chromosome is randomly selected to 
be replaced by the best chromosome found until now. 

5. Analysis of experiment results and conclusions 

5.1 Experiment design 

We describe types of problems, comparison of exact and heuristic algorithms, experimental 
environment, and facility in this section. 

5.1.1 Types of problems 

The instance size is denoted by n×m×L, where n is the number of jobs, m is the number of 
machines, and L represents the number of levels. The test instances are classified into three 
categories: small, medium, and large problems. Small problems include 3×3×3, 3×3×4, 
3×4×2, 4×3×3, 4×4×3, 4×5×3, 4×4×4, and 4×5×4. Medium problems include 6×6×2, 6×8×5, 
6×9×3, 7×7×5, 7×8×4, 8×8×3, 9×9×2, and 10×10×2. Large problems include 12×12×10, 
15×15×5, 20×20×4, 25×25×8, and 30×30×5. The processing time of each operation for each 
type of problem is a random integer number generated from [1, 100], since the processing 
times of most library benchmark problems are generated in this range (Beasly 1990). 

5.1.2 Performance of exact and heuristic algorithms 

For small problems, the performances of HGA are compared with optimal solution, NEH, 
and (NDY, SPT/TWKR). For medium and large problems, the performances of HGA are 
compared with that of (NDY, SPT/TWKR), and non-hybrid version of GA, i.e., pure GA.  

5.1.3 Experimental environment and facility 

Hybrid GA, pure GA, NEH, and (NDY, SPT/TWKR) are implemented in Visual C++ while 
optimal solutions are solved by ILOG CPLEX. These programs are executed on a PC with 
Pentium IV 1.7GHz. 

5.2 Analysis of RFS experiment results 

The analysis of RFS experiment results are described in this section. The test instances are 
classified into three categories: small, medium, and large problems. 

5.2.1 Small problems 

The HGA parameters setting are as follows: the population size is 50, the crossover 
probability is 0.8, the mutation probability is 0.1, the hybrid operator probability is 0.5, and 
the maximum number of generations allowed is 100.  
For small size problems, there are 8 types of problems with 10 instances in each type, i.e., 80 
instances are tested. The optimal solution is obtained by using integer programming 
technique (Pan & Chen, 2004). Because GA is a stochastic searching heuristic, the result of 
every test instance is unlikely to be the same. In order to compare the average performance, 
10 instances were solved in each test and the average makespan (denoted by Avg. Cmax) and 
the minimum of these makespans (denoted by Min. Cmax) are recorded. 
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The decoding scheme in this study is based on NDY schedule generation method, i.e., the 
schedules are always non-delay. Though sometimes the HGA cannot find optimal solutions 
because optimal solutions are not necessarily non-delay, Pan and Chen (2004) reported that 
for RFS problems, the solution quality of non-delay schedules is obviously superior to that 
of the active schedules; therefore, the makespan is calculated by non-delay schedule in this 
study. 
The experimental results for small size problems of integer programming (IP), HGA, NEH 
and (NDY, SPT/TWKR) are listed in Table 1. The deviation is defined as follows. 

Deviation = 
)IP(

)IP()H(

max

maxmax

C
CC −

× 100% 

where Cmax(H) denotes the makespan obtained by heuristic H. Heuristic H includes pure 
GA, HGA, NEH, and (NDY, SPT/TWKR). Cmax(IP) denotes the optimal makespan and that 
is obtained by using integer programming technique (Pan & Chen, 2004). 
The improvement rate of method A over method B is defined as follows. 

Improvement rate = 
)H_B(

)H_A()H_B(

max

maxmax

C
CC −

× 100% 

where Cmax(H_A) and Cmax(H_B) denote the makespan obtained by heuristics H_A and H_B, 
respectively.
The experimental results of IP, HGA, NEH and (NDY, SPT/TWKR) for small size problems 
are listed in Table 1. From Table 1, HGA performs quite well. The objective function values 
it obtained are about 0.3% above the optimal values. While compared to NEH and (NDY, 
SPT/TWKR), HGA performs better than both of them by having improvement rate of 2.68% 
and 5.28%, respectively. The number of times that HGA finds optimal solutions is obviously 
more than those of NEH and (NDY, SPT/TWKR). This result is similar to that of small size 
problems, and it is found that the range of processing time does not affect the solution 
quality of the proposed GA. 

5.2.2 Medium problems 

The parameters are the same as those in small problems, except that generation is 200. There 
are 8 types of problems with 10 instances in each type. The performances are compared with 
(NDY, SPT/TWKR).  
Table 2 shows the comparison results of pure GA, HGA, and (NDY, SPT/TWKR). The 
column (Cmax(HGA) < Cmax(GA)) is the number of times that the Min. Cmax of HGA is better 
than that of pure GA in each instances. In medium size problems, the improvement rate of 
HGA over (NDY, SPT/TWKR) is nearly 6.93%. Table 2 also shows that although the 
improvement rate does not enhance obviously, the solution of HGA are consistent better 
than that of pure GA. 

5.2.3 Large problems 

The parameters are the same as those in small problems, except that generation is 400. There 
are 5 types of problems with 10 instances in each type. Table 3 reports the performances of 
pure GA, HGA, and (NDY, SPT/TWKR) in large problems. 



A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem 163

The experimental results show that even when dealing with large size problems, HGA still 
has good performance. The average improvement rate of HGA over (NDY, SPT/TWKR) is 
5.25% and average improvement of HGA over pure GA is 1.36%. 

Number of optimal solution 
found 

CPU time(s) 
The improvement 
rate of HGA over 

Problems* 

HGA NEH 
(NDY, 

SPT/TWKR) 
IP HGA NEH 

(NDY, 
SPT/TWKR) 

Avg. 
deviation 
of HGA 

3×3×3 10 6 2 0.31 7.05 1.32% 3.69% 0.06% 

3×3×4 10 3 2 0.80 6.73 2.50% 4.04% 0.00% 

3×4×2 10 5 4 0.09 4.86 1.10% 4.22% 0.00% 

4×3×3 6 0 0 7.38 5.33 4.46% 5.34% 0.42% 

4×4×3 7 0 0 6.65 4.04 2.13% 4.50% 0.59% 

4×5×3 8 1 0 6.75 16.25 2.66% 5.50% 0.29% 

4×4×4 5 0 0 209.44 12.29 4.41% 9.02% 0.50% 

4×5×4 8 0 0 32.76 17.85 2.87% 5.95% 0.28% 

*Specified by n jobs × m machines × L levels. 

Table 1. Comparison of all small problems 

CPU time(s) HGA versus GA 
HGA versus 

NDY(SPT/TWKR) 

Problems* 

GA HGA
(NDY, 

SPT/TWKR)

The 
improvement 
rate of HGA 

over GA 

Cmax(HGA)
<

Cmax(GA) 

The 
improvement 
rate of HGA 
over (NDY, 

SPT/TWKR)

Cmax(HGA) 
<

Cmax(NDY, 
SPT/TWKR)

6×6×2 5.56 23.88 <0.1 1.82% 10 6.42% 10 

6×8×5 8.04 23.88 <0.1 2.31% 10 7.27% 10 

6×9×3 8.43 19.37 <0.1 1.74% 10 8.86% 10 

7×7×5 13.13 26.55 <0.1 2.73% 10 6.87% 10 

7×8×4 9.83 26.73 <0.1 1.76% 9 5.54% 10 

8×8×3 5.27 32.40 <0.1 1.43% 9 4.22% 10 

9×9×2 5.02 31.89 <0.1 1.29% 10 7.24% 10 

10×10×2 5.90 38.28 <0.1 1.44% 10 8.97% 10 

*Specified by n jobs × m machines × L levels. 

Table 2. Comparison of all medium problems 
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CPU time(s) HGA versus GA 
HGA versus 

NDY(SPT/TWKR) 

Problems*
GA HGA 

(NDY, 
SPT/TWKR)

The 
improvement 
rate of HGA 

over GA 

Cmax(HGA)
<

Cmax(GA) 

The 
improvement 
rate of HGA 
over (NDY, 

SPT/TWKR)

Cmax(HGA) 
<

Cmax(NDY, 
SPT/TWKR)

12×12×10 121.61 368.28 0.12 1.38% 10 4.83% 10 

15×15×5 107.77 366.26 0.13 1.39% 10 4.76% 10 

20×20×4 161.29 695.76 0.13 1.27% 10 5.56% 10 

25×25×8 241.36 965.44 0.17 1.44% 10 5.73% 10 

30×30×5 188.70 634.80 0.15 1.31% 10 5.37% 10 

*Specified by n jobs × m machines × L levels. 

Table 3. Comparison of all large problems 

6. Conclusions and suggestions 

This study developed a hybrid genetic algorithm (HGA) for the RFS problems with 
makespan as the criterion. The computational experiments have shown that the HGA can 
favorably improve the results obtained by (NDY, SPT/TWKR) and NEH in RFS problems. 
GA is inspired by nature phenomena. If it mimics exactly the way nature works, an 
unexpected long computational time must take. Hence the effect of parameters must be 
studied thoroughly in order to obtain good solution in a reasonable time. The probability to 
obtain near-optimal solution increases in the cost of longer computational time when the 
number of generations or population size enlarges. When dealing with large size problems 
or large re-entrant times, the probability to obtain near optimal solution increases by setting 
larger population size or generations. In conclusion, GA provides a variety of options and 
parameter settings which still have to be fully investigated. This study has demonstrated the 
potential for solving RFS problems by means of a GA, and it clearly suggests that such 
procedures are well worth exploring in the context of solving large and difficult 
combinatorial problems. 
The most challenging problem in the test of RFS is to prevent early convergence of the 
genetic algorithm. The convergence speeds up when the number of operations enlarges. In 
future study, a thorough investigation may be done on this issue. The parameter setting in 
GA affects computational efficiency and quality of solution greatly. Not only job numbers 
and machine numbers have impacts on parameter setting, but also the number of levels 
contributed a lot. It is an important future study issue to determine the best parameter 
setting for GA in different environment. In future study, the GA can be combined with other 
heuristics or algorithms to obtain the more efficiency and the better quality solution. 
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1. Introduction 

In a manufacturing system, whether it is a flow shop or job shop, often one of its facilities 
constrains the production flow and determines the production rate. It is the one that causes 
the bottleneck of the whole production environment. The bottleneck facility is seen as an 
input bay, where the orders get accumulated [Drobouchevitch, & Strusevich, 2000, 
Drobouchevitch, & Strusevich, 2001]. So, the scheduling of bottleneck facility problems is 
exceedingly important for several reasons, probably the most relevant of which is that good 
solutions to this problems provide a support to mange and model the behavior of more 
complex systems such as flexible manufacturing systems [Baker, 1995]. It is therefore an 
important problem from the application point of view. Scheduling bottleneck facility is the 
assignment of jobs to be processed on a bottleneck machine over time. The single machine 
problem addresses the bottleneck situation in scheduling literature. This chapter addresses 
the problem characteristics, objectives, solution strategies and methodologies, and few 
hybrid search heuristics for the bottleneck scheduling problems. 

2. Bottleneck Scheduling Problem  

2.1. Problem Characteristics 

The bottleneck facility scheduling problem considered in this chapter is characterized by the 
following conditions: 

• a set of n independent jobs is available for processing at time zero and the job 
descriptors are known in advance 

• a bottleneck facility is continuously available and is never kept idle  

• the set up times for the jobs are independent of job sequence and can be included in 
processing times 

• jobs are processed to completion without preemption
The various features of bottleneck machine are, 
Jobs  
Jobs are the activities that need to be scheduled on the bottleneck facility, where , only one 
job can be processed at a time. 
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Processing Time  
The processing time represents the period of time a job is actively assigned to the bottleneck 
facility. Usually, the assigned time is fixed and varies with each job. 
Preemption and Non-preemption 
Non-preemption disallows jobs from being interrupted by another job after processing has 
started. Most of the bottleneck scheduling problem considers non-preemption while there 
has been little research done with job preemption. 
Deadlines / Due Dates 
All jobs to be scheduled may have the same due dates and all the jobs must be processed 
before this date. But, in most real industry problems that has to deal with customer orders 
and product shipments, each job may possess different due dates [Tsiushuang et al., 1997]. 
The completion of a job after its due date is allowed, but a penalty is incurred. When the due 
date must absolutely be met, it is referred to as a deadline. 
Weight
The weight of job is basically a priority factor. It denotes the importance of job relative to the 
other jobs in the system. For example, a weight may represent the actual cost of keeping the 
job in the system.  

2.2. Objectives 

With the well defined characteristics of scheduling problem, the motive of automated 
scheduling has been to significantly improve production line utilization and cost reduction. 
This may be achieved by imposing any of the following objective functions : 

• Minimizing completion time, flow time and make span 

• Minimizing the lateness 

• Minimizing earliness and tardiness 

• Minimizing weighted measures 

• Multi-criteria objective 
However, the current trends indicate that the minimization of total weighted tardiness 
objective is of much importance because of the following reasons. This is a crucial form of 
decision-making in manufacturing as well as in service industries. The buyer - vendor 
relationship plays an important role in business. Usually, buyers desire a reliable time 
delivery for meeting their schedules, and so the primary objective becomes to reduce the 
amount by which the individual completion times exceed the promised times, i.e. due dates. 
For example, when a company has to meet the shipping date on which it has committed its 
products to the customers and the production time depends to a great extend on one 
resource, as is often the case, it is faced with the bottleneck facility total weighted tardiness 
problems. Thus the problem of how jobs' due dates can be met such that the cost of jobs 
being late, as measured by the weighted tardiness, is minimized. The ability to cope 
efficiently with this kind of problems will boost the company's competitiveness.  

2.3 Problem Definition 

A set of jobs (indexed 1,2,3, . . j . .  n) is to be processed without interruption on a bottleneck 
facility that can process one job at a time. All jobs become available for processing at time 
zero. Jth job has an integer processing time pj, a due date dj, and a positive weight wj. A 
weighted tardiness penalty is incurred for each time unit of tardiness Tj if job j is completed 
after its due date dj. The tardiness value Tj is zero when the job is completed before the due 



Hybrid Search Heuristics to Schedule Bottleneck Facility in Manufacturing Systems 169

date and other wise is (Cj – dj) where Cj is the completion time of the job [Bahram Alidaee & 
Ramakrishnan, 1996]. The problem can be formally stated to find a sequence  that 
minimizes  

 Z( ) = 

=

n

j
jjTw

1

 (1) 

2.4. Complexity of the problem 

While scheduling n jobs in a bottleneck facility, there is a one-to-one correspondence 
between a sequence of these n jobs and a permutation of the job indices. The total number of 
different solutions to the scheduling bottleneck facility problem is n!. Bottleneck machine 
scheduling problems are proved as NP- hard [Lawler, 1977; Du & Leung, 1990]. That is, the 
time the best possible algorithm will need to solve the problem increases in the worst case 
exponentially with the size of the problem.    

3. Solution Methodologies  

The task in bottleneck scheduling problems is to find a permutation of jobs that meets the 
problem’s objective best. Some of the scheduling algorithms viz. enumerative and branch 
and bound techniques, Langarangian method, construction heuristics, heuristic search 
algorithms etc. reported in the literature to solve the problem are presented below, 

3.1. Enumerative and Branch and Bound Techniques 

A straightforward strategy is to solve the bottleneck facility scheduling problems by 
enumerating all possible solutions and then pick the best one. Yet, this may take 
considerable time as there are n! no. of different sequences available for n jobs. Fortunately 
there exist more complex methods like branch – and - bound algorithms that allow 
discarding parts of the search space in which the optimal solution cannot be found.  
Lawler and Wood (1966) proposed a branch – and - bound technique which is a 
backtracking type algorithm that searches through the space of partial solutions. Potts and 
Van Wassenhove (1985) addressed implicit enumerative algorithms for the total weighted 
tardiness problem and observed that the state-of-the-art branch and bound algorithm yields 
optimality, but they require considerable computer resources both in terms of computation 
time and memory requirements. Abdul-Razaq et al., (1990) performed a computational 
comparison of several state-of-the-art exact algorithms for the bottleneck facility total 
weighted tardiness problems. Szwarc and Mukhopadhyay (1997) and Della Croce et al. 
(1998) presented branch and bound procedures for total tardiness problem.  

3.2. Langrangian relaxation method 

Another popular solution technique is integer-programming problems based Lagrangian 
relaxation method. Here the integer constraint which is the main problem is to be removed 
or relaxed. Shapiro (1979) made a survey about Lagrangian relaxation, which has been used 
in discrete optimization for many decades. Potts and Van Wassenhove (1982) combined 
Lawlers’ decomposition theorem with the approach of Schrage and Baker, 1978, to 
implement an efficient algorithm to solve instances up to 100 jobs. 



Multiprocessor Scheduling: Theory and Applications 170

3.3. Construction heuristics 

Often solutions for problems are needed very fast, as the problem is an element of a 
dynamic real world setting. This requirement can generally not be met by exact algorithms 
like branch and bound algorithm and Lagrangian relaxation method, especially when the 
problem is NP hard. Besides, not everyone is interested in the optimal solution. In many 
cases, it is preferable to find a sub-optimal, but good solution in a short time which can be 
obtained by constructive algorithms. Most of the researchers have reported that the above 
enumerative and Lagranginan algorithms are computationally expensive for larger problem 
size and tend for other techniques viz. construction heuristics and heuristic search 
algorithms. Constructive algorithms generate solutions from scratch by adding solution 
components to an initially empty solution until it is complete. A common approach is to 
generate a solution in a greedy manner, where a dispatching rule decides heuristically 
which job should be added next to the sequence of jobs that makes up the partial solution. 
Dispatching rules have been applied consistently to scheduling problems. They are 
procedures designed to provide good solutions to complex problems in real-time. The term 
dispatching rule, scheduling rule, sequencing rule or heuristic are often used 
synonymously. 
Panwalker and Iskander (1977) named construction heuristics as scheduling rules and made 
a survey about different scheduling rules. Blackstone et al. (1982) called as dispatching rules 
and discussed the state of art of various dispatching rules in the manufacturing operations. 
Haupt (1989) termed the construction heuristics as priority rules and provides a survey of 
this type of priority rule based scheduling. Montazer and Van Wassenhove (1990) 
extensively studied and analysed these scheduling rule using simulation techniques for a 
flexible manufacturing system. 
A distinction in dispatching rules can be made as static and dynamic rules. Static rules are 
just a function of the a priori known job data and dynamic dispatching rules, on the other 
hand, depend on the partial solution constructed so far. An example of a static rule is 
Earliest Due Date (EDD) and an example of a dynamic rule is Modified Due Date (MDD). A
possibility to get still better performing dispatching policies is to combine simple rules like 
EDD or MDD. After having pilot investigations on the different dispatching rules, a 
Backward heuristic dispatching rule is suggested for bottleneck facility total weighted 
tardines problems which is described as below [Maheswaran, 2004] : 

3.3.1. Backward Heuristics (BH). 

BH is a dynamic dispatching rule. It is a greedy heuristic procedure, in which the sequential 
job assignment starts from the last position and proceed backward towards the first 
position. The assignments are complete when the first position is assigned a job. The process 
consists of the following steps: 
Step 1: Note the position in the sequence in which the next job is to be assigned. The 

sequence is developed starting from position n and continuing backward to 
position 1. So, the initial value of the position counter is n.

Step 2:     Calculate T, which is the sum of the processing times for all unscheduled jobs. 
Step 3:  Calculate the penalty for each unscheduled job i as (T – di) X wi. If di>T, the penalty 

is zero, because only tardiness penalties are considered. 
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Step 4: The next job to be scheduled in the designated position is the one having the 
minimum penalty from step 3. In the case of tie, choose the job with the largest 
processing time. 

Step 5:  Reduce the position counter by 1. 
Repeat steps 1 through 5 until all jobs are scheduled.  
Numerical Example: 
The backward heuristics is explained by a numerical example by considering a four jobs 
problem in which the processing time, due date and weight of the four jobs are given below, 

Job no. Processing time pi Due Date di Weight wi

1 37 49 1 

2 27 36 5 

3 1 1 1 

4 28 37 5 

For backward heuristics, the sequence is developed from the fourth position and at this time 
T = 93 and penalty for job 1 is  44, job 2 is 285, job 3 is 93 and job 4 is 280. The job 1  is having 
the minimum penalty and scheduled at the fourth position of the sequence. 
For the third position, T = 56 and penalty for the job 2 is 100, job 3 is 55 and job 4 is 140. 
Now, job 3 is having minimum penalty and scheduled at the third position of the sequence. 
For, the second position, T = 55 and the penalty of job 2 is 95 and job 4 is 90 and so job 4 is 
scheduled ant second position and job 2 is scheduled at first position of the sequence. 
The resultant sequence generated from the backward phase is 2 – 4 – 3 – 1 with a total 
weighted tardiness value of 189. 

3.4. Heuristic Search Algorithms 

Heuristic search algorithms are often developed and used to solve many difficult NP-hard 
type computational problems in science and engineering. Since uninformed search by 
enumeration methods seems computational prohibitive for large search spaces, heuristic 
search receives increasing attention [Morton & Pentico, 1993]. Heuristics can derive near 
optimal solutions in considerably less time than the exact algorithms. Heuristics often seek 
to exploit special structures in a problem to generate good solutions quickly. However, there 
is no guarantee that heuristics will find an optimal solution.  
Heuristics are obtained by 

• using a certain amount of repeated trials, 

• employing one or more agents viz. neurons, particles, chromosomes, ants, and so on, 

• operating with a mechanism of competition and cooperation, 

• embedding procedures of self modification of the heuristic parameters or of the 
problem representation.

Heuristic search algorithms utilize the strengths of individual heuristics and offer a guided 
way for using various heuristics in solving a difficult computational problem. According to 
Osman (1996), a heuristic search “is an iterative generation process which guides a subordinate 
heuristic by combining intelligently different concepts for exploring and exploiting the search 
spaces…” [Osman, 1996, Osman & Kelly, 1996]. Heuristic search algorithms have shown 
promise for solving “…complex combinatorial problems for which optimization methods have failed 
to be effective and efficient.”
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A wide range of different heuristic search techniques have been proposed. They have some 
basic component parts in common and are: 

• A representation of partial and complete solutions is required.  

• Operators, which either extend partial solutions or modify complete solutions are 
needed.

• An objective function, which either estimates the costs of partial solutions or determines 
the costs of complete solutions is needed.  

• The most crucial component of heuristic search techniques is the control structure that 
guides the search.  

• Finally, a condition for terminating the iterative search process is required.  
Common heuristic methods include: 

• Tabu search, [Glover 1989; 1990; Glover et al., 1993; 1995], 

• simulated annealing [Kirkpatrick et al., 1983],  

• greedy random adaptive search procedures (GRASP) [Deshpande & Triantaphyllou, 
1998; Feo & Resende, 1995], 

• iterated local search [Helena et al., 2001],  

• genetic algorithms [Goldberg, 1989],  and  

• ant colony optimization [Den Besten et al., 2000].  
Instead of searching the problem space exhaustively, Reeves (1993) informs that modern 
heuristic techniques concentrate on guiding the search towards promising regions of the 
search space. Prominent heuristic search techniques are, among others, simulated annealing, 
Tabu search and evolutionary algorithms. The first two of them have been developed and 
tested extensively in combinatorial optimization. To the contrary, evolutionary algorithms 
have their origin in continuous optimization. Nevertheless, the components of evolutionary 
algorithms have their counterparts to other heuristic search techniques. A solution is called 
an individual which is modified by operators like crossover and mutation. The objective 
function corresponds to the fitness evaluation. The control structure has its counterpart in 
the selection scheme of evolutionary algorithms.In evolutionary algorithms, the search is 
loosely guided by a multi-set of solutions called a population, which is maintained in 
parallel. After a number of iterations (generations) the search is terminated by means of 
some criterion.  

3.4.1. Classification of Heuristic Search Algorithms 

Depending upon the characteristics to differentiate between search algorithms, several 
classifications are possible and each of them being the results of a specific view point. The 
most important methods of classification are: 

• Nature inspired vs Non nature inspired 

• Population based vs Single point search 

• Dynamic vs Static objective function 

• One vs Various neighborhood structure    

• Memory Usage vs Memory less method 
Nature inspired vs Non nature inspired 
Perhaps, the most intuitive way of classifying heuristic search algorithms is based on the 
origin of the algorithms. There are nature inspired algorithms like evolutionary algorithms 
and ant algorithms, and non nature inspired algorithms like Tabu search and iterated local 
search / improvement algorithms. This classification is not meaningful for the following 
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two reasons. First, many hybrid algorithms do not fit in either class or in a sense that it fit 
both at the same time. Second, sometimes it is difficult to clearly tell the genesis of an 
algorithm. 
Population based vs Single point search 
Another characteristic which can be used for the classifications is the way of performing the 
search. Does the algorithm work on a population or on a single solution at a time? 
Algorithms working on single solution are called as trajectory methods and encompass local 
search based heuristics. They all share the property of describing a trajectory in the search 
space during the search process. Population based methods on the contrary perform search 
process which describe the evolution of a set of points in the solution space. 
Dynamic vs Static objective function 
Search algorithms can also be classified according to the way they make use of the objective 
function. While some algorithms keep the objective function given in the problem 
representation “as it is” and some others like guided local search will modify during the 
search. The idea behind this search is to escape from the local optima by modifying the 
search landscape. Accordingly, during the search the objective function is altered by trying 
to incorporate information collected during the search process. 
One vs Various neighborhood structure    
Most search algorithms work on single neighborhood structure. In other words, the fitness 
landscape, which is searched doesn’t change in the course of the algorithm. Other 
algorithms use a set of neighborhood structures which gives the possibility to diversify the 
search and tackle the problem jumping between different landscapes 
Memory Usage vs Memory less method 
A very important feature to classify the heuristic search algorithms is whether they use 
memory of search history or not. Memories less algorithms perform a Markov process, as 
the information they need is only the current state of the search process. There are several 
different ways of making use of memory. Usually it will be differentiated between short 
term and long term memory structures. The first usually keeps track of recently 
performed moves, visited solutions or, in general, decisions taken. The second is usually 
the accumulation of synthetic parameters and indexes about the search. The use of 
memory is nowadays recognized as one of the fundamental elements of the powerful 
heuristics. 

4. Hybrid Algorithms Developed 

The main objective of this work is to formulate different hybrid search heuristics which are 
designed to solve the problems of higher sizes within reasonable time. In this work, three 
different heuristic search algorithms are formulated and used to solve the bottleneck 
scheduling problems with objective of minimizing the total weighted tardiness.  
They are: 

• Heuristic Improvement algorithm [Maheswaran & Ponnambalam, 2003] 

• Iterated Local Improvement Evolutionary Algorithm [Maheswaran & Ponnambalam, 
2005]

• Self Improving Mutation Evolutionary Algorithms [Maheswaran et al., 2005] 
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4.1. Heuristic Improvement algorithm (HIA)
Heuristic Improvement algorithm is devised in such a way to improve an initial sequence 
generated by construction heuristics. Generally, construction heuristics can be used to get 
the solution to the scheduling problems in a faster way. Construction heuristics generate 
solutions from scratch by adding solution components to an initially empty solution until it 
is complete. But, the results of these heuristics are not accurate. A common approach is to 
generate a solution in a greedy manner, where a dispatching rule decides heuristically 
which job should be added next to the sequence of jobs that makes up the partial solution. 
After pilot  anlaysis, it is observed that the dynamic backward dispatching rules based on 
heuristics is performing well. It is proposed to apply a greedy heuristic improvement 
algorithm, which will operate on the sequence developed by backward heuristic as initial 
sequence for the improvement.  

4.1.1. Procedural Steps of Heuristic Improvement Algorithm 

The proposed heuristic improvement algorithm adopts the forward heuristic method 
addressed by Sule (1997) operating on some initial sequence. The procedure is out lined 
below:
Step 1: Initialize the sequence with backward heuristics and set its total weighted tardiness 

value as the objective value. The sequence obtained from backward heuristic is 
assumed to be the initial sequence and this is the best sequence at this stage with 
the total weighted tardiness as the objective value. 

Step 2: Let k define the lag between two jobs in the sequence that are exchanged. For 
example, jobs occupying positions 1 and 3 have a lag k = 2.

Step 3: Perform the forward pass on the job sequence found in the backward phase that is 
the best sequence at this stage. The forward pass progresses from the job position 1 
towards the job position n.
Step 3.1:  Set k = n – 1 
Step 3.2:  Set exchange position j = k + 1 
Step 3.3: Determine the savings by exchanging two jobs in the best sequence with a 

lag of k. The job scheduled in position j is exchanged with the job 
scheduled in a position (j-k). If (j-k) is zero or negative then go to step 3. 6. 
Calculate the penalty after exchange and compare it to the best sequence 
penalty.

Step 3.4:If there is either positive or zero savings in step 3.3, then go to step 3.5; 
otherwise the exchange is rejected. Increase the value of j by one. If j is 
equal to or less than n, then go to step 3.3. If j >n, then go to step 3.6. 

Step 3.5: If the total penalty has decreased, the exchange is acceptable. Perform the 
exchange. The new sequence is now the best sequence; Go to step 3.1. 
Even if the savings is zero, make the exchange and go to step 3.1, unless 
the set of the jobs associated in this exchange has been checked and 
exchanged in an earlier application of the forward phase. In that case, no 
exchange is made at this time. Increase the value of j by one. If j < n, then
go to step 3.3. If j = n, then go to step 3.6. 

Step 3.6: Decrease value of k by one. If k > 0, then go to step 2. If k = 0, then go to 
step 4. 

Step 4:  The resulting sequence is the best sequence generated by this procedure. 
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Numerical Example : 
The four jobs problem given in section 3.3.1 is further improved by the forward phase. The 
sequence generated by backward phase 2 – 4 – 3 – 1 with a total weighted tardiness value of 
189 is consider as the best sequence at this stage. Set Lag k = n – 1 which yields k = 3.
Exchange jobs in the position between j & (j+k). So, in the present sequence exchange job 2 
and job 1 and the new sequence is 1 – 4 – 3 – 2 which  yields a total weighted tardiness value 
of 420 and there is no savings and the exchange is not accepted. 
There is no more exchange possible for the lag k = 3 and reduce k by one which yields k = 3. 
Exchange job 2 and job 3, which yields the sequence 3 – 4 – 2– 1 with value 144. As there is 
savings and accept the change and this is the best sequence now. 
Once again set the lag k = 3, and repeat the procedure for the new sequence and finally the 
optimum sequence will be 3 – 2 – 4 – 1 with a total weigted tardiness of 139. 
The forward phase algorithm is described by means of a flowchart as shown in the figure 1. 

Figure 1. Heuristic Improvement Algorithm 
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4.2. Iterated Local Improvement Evolutionary Algorithm (ILIEA)
According to the survey of Thomas Baeck et al. (1991), on the Evolution Strategies and its 
community has always placed more emphasis on mutation than crossover. The role of local 
search in the context of evolutionary algorithms and the wider field of evolutionary 
computing has been much discussed. In its most extreme form, this view casts mutation and 
other local operators as mere adjuncts to recombination, playing auxiliary (if important) 
roles such as keeping the gene pool well stocked and helping to tune final solutions. 
Radcliffe and Surry. (1994) investigated that a greater role for mutation, hill-climbing and 
local refinements are needed for evolutionary algorithms. Ackley (1987) recommends genetic
hill climbing, in which crossover plays a rather less dominant role.  
Iterated local improvement evolutionary algorithm is designed similar to an iterated local 
improvement algorithm with evolutionary based perturbation tool. Iterated local 
improvement algorithm is a simple but effective procedure to explore multiple local 
minima, which can be implemented in any type of local search algorithm. It is to perform 
multiple runs with the algorithm and each using a different starting solution. A promising 
but relatively unexplored idea is to restart near a local optimum, rather than from a 
randomly generated solution. Under this approach, the next starting solution is obtained 
from the current local optimum where the current local optimum is usually either the best 
local optimum found so far from the history, or the most recently generated local optimum 
by applying a pre-specified type of random move to it which is referred as kick or 
perturbation.

Figure 2. Iterated Local Improvement Evolutionary Algorithm 
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Iterated Local Improvement Evolutionary Algorithm (ILIEA) is hybrid algorithm having 
POP = 2. The complexity of the algorithm is governed by the number of iterations used for 
termination criterion. The complete process of iterated local improvement evolutionary 
algorithm with an example is given in the figure 2. It consists of the following modules: 

• Initial parents generation 

• Population size POP = 2
• Crossover operation (Evolutionary perturbation technique) 

• Crossover probability (Pc) = 1 

• Mutation operation (Self improvement technique) 

• Mutation probability (Pm) = 1 

• New parents generation 

4.2.1. Initial Parents Generation 

A sequence of the bottleneck facility scheduling problem is mapped into a chromosome 
with the alleles assuming different and non repeating integer values in the [1,n] interval. 
Any sequence can be mapped into this permutation representation. This approach can be 
found in most genetic algorithm articles dealing with sequencing problems [Franca et al., 
2001]. The total weighted tardiness of a sequence is assumed to be the fitness function for 
ILIEA.
In this algorithm the population size is assumed to be two and the sequence developed by 
the backward phase acts as one parent and sequence generated taking events in a random 
order acts as the other parent.  

4.2.2. Crossover Operation (Evolutionary Perturbation Technique) 

Perturbation is a pre-specified type of random move applied to a solution. For a current 
solution s*, a change or perturbation is applied to an intermediate state s’. Then the Local 
Improvement is applied on s’ and a new solution s*’ is reached. If s*’ passes an acceptance 
test, it becomes the next base solution for the search otherwise it returns to s*. The overall 
procedure is shown in figure 3. 

Figure 3. Procedures for Perturbation 
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The crossover operation adopted in this work uses an evolutionary perturbation technique, 
which involves the following processes: 

• Iterated local search (ILS)
• Perturbation tool 

• Perturbation strength 

• Acceptance criterion 
Iterated Local Search: The underlying idea of ILS is that of building a random walk in S*,
the space of local optima defined by the output of a given local search. Four basic 
ingredients are needed to derive an ILS:

• a procedure to GenerateInitialSolution, which returns some initial solution, 

• a local search procedure for LocalSearch,
• a scheme of how to perturb a solution, implemented by a procedure Perturbation, and

• an AcceptanceCriterion, which decides from which solution the search is continued. 
The particular walk in S* followed by the ILS can also depend on the search history, which is 
indicated by history in Perturbation and AcceptanceCriterion. 
The effectiveness of the walk in S* depend on the definition of the four component 
procedures of ILS: The effectiveness of the local search is of major importance, because it 
strongly influences the final solution quality of ILS and its overall computation time. The 
perturbations should allow the ILS to effectively escape local optima but at the same time 
avoid the disadvantages of random restart. The acceptance criterion, together with the 
perturbation, strongly influence the type of walk in S* and can be used to control the balance 
between intensification and diversification of the search. The initial solution will be 
important in the initial part of the search. The configuration problem in ILS is to find a best 
possible choice for the four components such that best overall performance is achieved. The 
algorithm outline of iterated local search is given in the figure 4. 

Outline of Iterated Local Search 
s0 = GenerateInitialSolution 
s* = LocalSearch (s0)

REPEAT
s’ = Perturbation (s*, history) 
s*’ = LocalSearch (s’) 
s* = AcceptanceCriterion (s*, s*’, history) 
until
termination criterion met 

Figure 4. Iterated Local Search  

Perturbation Tool :Though many researchers followed different types of perturbation tools, 
an evolutionary operator perturbation tool is used in this work. Here, an ordered crossover 
operator (OX) is used as perturbation tool. The operation of the OX is given as follows: The 
operator takes the initial sequence s* from the base heuristics and another sequence s** is
generated randomly. The resultant sequence s’ will take, a fragment of the sequence from s*
and the selection of the fragment is made uniformly at random. In the second phase, the 
empty positions of s’ are sequentially filled according s**. The accepted s* for the next 
iteration will replace with worst of the previous s* and s**.
As an example, the sequence s’ inherits the elements between the two crossover points, 
inclusive, from s* in the same order and position as they appeared. The length of the 
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crossover is in the range between a random number generated in the range of [1, n-1] job 
position as lower limit (LL) and a random number generated in the range of [LL, n] as the 
upper limit (UL). The remaining elements are inherited from the alternate sequence s** in 
the order in which they appear, beginning with the first position following the second 
crossover point and skipping over all elements already present in s’.
An example for the perturbation tool is given in figure 5. The elements  , , ,  and  are 
inherited from s*  in the same order and position in which they occur. Then, starting from 
the first position after the second crossover point, s’ inherits from s**. In this example, 
position 8 the next position, s’[8] = , which is already present in the offspring, so s** is 
searched  until an element is found which is not already present in s’.  Since ,  and  are 
already present in s’, the search continues from the beginning of the string and s’ [8] = s** [2] 
= , s’ [9] = s** [3] = , s’ [10] = s** [5] = , and so on until the new sequence is generated 
[Starkweather. T. et al., 1991].  

Parent 1 (s*)  :  - - - - - - - - -
Parent 2 (s**):   -  – - -  -  -  -  -  –
Cross over points:  LL = [3] and UL = [7] 
Offspring (s’) :  – - - - - - -  – -

Figure 5. Ordered Crossover (OX)
Perturbation Strength : For some problems, appropriate perturbation strength is very small 
and seems to be rather independent of the instance size. The strength of a perturbation is 
referred as the number of solution components directly affected by a perturbation. The OX
operator will change most of the solution components in the sequence according to the 
generated LL & UL values. 
Acceptance Criteria : The perturbation mechanism together with the local improvement 
defines the possible transitions between a current solution s* to a “neighboring” solution s*’.
The acceptance criteria determines whether s*’ is accepted or not as the new current 
solution. A natural choice for the acceptance criterion is to accept only better solutions 
which are a very strong intensification for search. This is termed as BETTER criterion. 
Diversification of the search is extremely favored if every s*’ is accepted as the new solution. 
This is termed as random walk (RW) criterion which is represented as 

 RW(s*, s*’, history) : = s*’ (2) 

Since, the operator OX completely changes most of the solution components, the acceptance 
criterion is chosen as RW.
The sequence obtained after perturbation is further improved in the mutation operation 
which is self improving. 

4.2.3. Mutation Operation (Self Improvement Technique) 

The mutation operation adopted in this research uses a self improvement technique, which 
consists of the following parts: 

• Local search 

• Neighborhood structure 
Local Search : Local search methods move iteratively through the solution set S. Based on 
the current and may be on the previous visited solutions, a new solution is chosen. The 
choice of the new solution is restricted to solutions that are somehow close to the current 
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solution i.e. in the 'neighborhood' of the current solution. Different local search methods 
may be formulated depending on the method of choosing solutions from the neighborhood 
of the current solution and the way in which the stopping criteria are defined [Helena, 1995]. 
A neighborhood search method requires a representation of solutions to be chosen, and an 
initial solution to be constructed by some heuristic rule or created randomly. A neighbor is 
generated by some suitable mechanism, and an acceptance rule is used to decide whether it 
should replace the current solution or not. The acceptance rule in a neighborhood search 
method usually requires the comparison of objective function values for the current solution 
and its neighbor.  
Neighborhoods are usually defined by first choosing a simple type of transition to obtain a 
new solution from a given one, and then defining the neighborhood as the set of all 
solutions that can be obtained from a given solution by performing one transition. 
Generally, a local search method is based on the following two routines: 

• Given an instance, construct an initial solution. 

• Given an instance and any solution, determine if there is a neighboring solution of 
lower cost, and if so, return one such solution. If no such solution exists, then the input 
solution is returned and it is indicated that it is a local optimal solution. 

The basic structure of a local search is presented in figure 6 

Procedure Local Search (Search Space S, Neighborhood N, Z( );

begin

0 : = Initial sequence ( );
i : = 0; 

while (¬termination criteria ( i, i )) do

m : =  Selectmove ( i, N,, Z( i));
if Z1( ) > Z ( )
then i+1 = i  m; 
 else i+1 = i ;

  i = i+ 1 
 end 
end;

Figure 6. Local Search 

Neighborhood Structure : Before applying local search methods to any problem a 
neighborhood structure is to be defined.  A systematic way of defining neighborhoods is 
needed; otherwise, it is not possible to store the neighborhood. The neighborhoods define a 
frame for the possibilities of walking through the solution space; they have a crucial 
influence on the behavior of local search. If neighborhoods are small, the walk is very 
restricted and, thus, it may be hard to reach good solutions. On the other hand, if 
neighborhoods are large, it may be time consuming to decide in which direction (i.e. to 
which neighbor) the search shall continue. However, not only the size but the more the 
quality of the solutions in a neighborhood is of interest. If a neighborhood contains 
promising solutions, it does not matter if the size of the neighborhood is small and, on the 
other hand, large neighborhoods with only solutions of poor quality are not very helpful. 
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Three common neighborhood schemes are used for scheduling problems and are given 
below:

• Adjacent neighborhood interchange in which a job may be swapped with jobs directly 
to its left or right in the schedule. 

• Swap in which any two jobs in the schedule can be swapped. 

• Insert in which a job is taken from its current position and placed in another position in 
the schedule. 

In this work, four mechanisms are used for finding the neighborhood solutions to solve the 
bottleneck facility scheduling problems are investigated. They are: 

• Adjacent neighborhood interchange

• Randomized neighborhood structure 

• Randomized adjacent interchange ( ai),

• Randomized sliding mutation ( sl) and  

• Randomized pair wise interchange ( pw)
Adjacent neighborhood interchange  
The process of the adjacent neighborhood interchange mechanism is shown in figure 7.  For any 
solution s, neighbourhood of s, N(s), includes (n-1) different alternative neighbouring 
solutions obtained by interchanging a job with its right job in the sequence. 

Figure 7. Adjacent Neighborhood Interchange 

Randomized Adjacent Interchange ( ai)
This is a randomized version of adjacent interchange neighborhood structure. This operator 
will generate a random number (R) in the range [1, n] and just interchanges the job present 
in the position R with the next job in the sequence (R+1) and represented as: 

ai ( ij ) = ji   (3) 

Job-2

Job-1

Job-n

Job-(n-1)

Job-3
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Randomized Sliding Mutation ( sl)
This is a randomized version of inert neighborhood structure. This operator may be also 
termed as randomized extraction and backward shift insertion operator. Sliding mutation 
refers to “moving a job from the jth place and placing it before the ith position”. Two values 
are generated randomly (R1 and R2) in the range [1,n] in such a way that R1 < R2 and applied 
to jobs present in the positions in between R1 and R2. The job in position R2 is placed before 
the job in position R1 and all jobs in between R1 and R2 are pushed one position and 
represented as: 

sl ( i j ) = ji   (4) 

Randomized Pair wise Interchange ( pw)
This operator may be also termed as random swap operator and similar to swap 
neighborhood structure. Random swap refers to “the swapping according to the randomly 
generated values”. Two values are generated randomly (R1 and R2) in the range [1,n] and 
applied to jobs present in the positions R1 and R2 and the jobs are swapped according to the 
random values generated and represented as: 

pw ( i j ) = j i   (5) 

The improvement technique will be stopped with a maximum number of trials which is 
assumed to be a function related to number of jobs (n).
The local search with different neighborhood structures with a termination criteria n*n*n
number of iterations, so that the complexity of the algorithm is in the order of O (n3), applied 
on the initial sequence obtained by backward phase heuristics.  
The potentials of three randomized neighborhood structure are investigated by applying on 
the sequences generated by the EDD, MDD and BH heuristics as initial sequences. These 
local search is applied for a termination criteria n*n*n number of iterations so that the 
complexity of the algorithm is in the order of O (n3). It is observed that the local search 
algorithm with adjacent neighborhood interchange is applied on the sequence generated by 
backward heuristics is not able to improve further and it is decided to use the randomized 
neighborhood structure. For large sizes of n, pw structure can be applied as self improving 
technique in this proposed iterated local improvement evolutionary algorithm with a 
maximum number of trials for local improvement, which can be assumed as a function of 
size of the problem. 

4.2.4. New Parent Generation 

In this proposed algorithm, the locally improved offspring obtained after self improvement 
technique is used as a parent for the next generation. Even though, the improved offspring 
value is less than the previous parents, it must be considered for the next generation. The 
best parent of the previous generation will act as the other parent and the evolution process 
is continued for the predetermined number of generation. 

4.3. Self Improving Mutation Evolutionary Algorithms (SIMEA)
Evolutionary algorithms are generally used to solve problems of higher search spaces. The 
search space in bottleneck facility scheduling problems is quite large (n!). Evolutionary 
Algorithms (EA) is the term used to describe search methods based on the mechanics of 
natural selection and evolution. Evolutionary Algorithms are often presented as general 
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purpose search methods. The evolutionary process can be simulated on a computer in a 
number of ways and two self improving mutation based evolutionary algorithms are 
designed in this work to improve the results obtained from iterated local improvement 
algorithm. Self Improving Mutation Evolutionary Algorithms (SIMEA) are population based 
evolutionary algorithms in which each individual represents a sequence and the population 
evolves through tournament selection, ordered crossover and self improving mutation. The 
selection of initial population and termination criteria plays a vital role in the quality of the 
solution and complexity of the algorithm. The process of self improving mutation 
evolutionary algorithm is explained as below, 
Self Improving Mutation Evolutionary Algorithm (SIMEA) is a hybrid algorithm having 
population size POP = n, Crossover probability (Pc) = 1 and Mutation probability (Pm) = 1. 
The complexity of the algorithm is governed by different parameters like size of the 
population (POP) used for evolution, maximum trials for self improving mutation (M) and 
number of generation needed for termination. The complete process of self improving 
mutation evolutionary algorithm with an example is given in the figure 8. It consists of the 
following parts: 

• Sequence representation 

• Initial population 

• Selection Operator 

• Crossover operator  

• Self improving mutation operator 

• Termination criterion  
The proposed self improving mutation evolutionary algorithm is shown in the figure 8. 

Figure 8. Self Improving Mutation Evolutionary Algorithm 
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4.3.1. Sequence Representation for SIMEA 

The solution representation for SIMEA is similar to the ILIEA. The sequence is mapped into 
a chromosome with the alleles assuming different and non repeating integer values in the [1, 
n] interval. Any sequence can be mapped into this permutation representation. The objective 
function namely the total weighted tardiness of a sequence is considered as the fitness 
function of SIMEA. 

4.3.2. Initial Parents 

For the SIMEA, the size of the initial population is assumed to be the number of jobs. The 
individuals in the population are generated by means of a spread heuristics which 
ensures a better range of possible values of the chromosomes in the initial population. The 
individuals are generated in such a way that job 1 is fixed at the nth position for the nth

chromosome. 

4.3.3. Selection Operator 

In this algorithm, it is proposed to use tournament selection with two different criteria on 
number of individuals selected for evolution (POP). In one version of SIMEA, all individuals 
in the population are selected for evolution (SIMEA I). Another version SIMEA applies a log 
arithmetic reduction heuristic, which allows only elog10 n individuals are selected for evolution 
(SIMEA II).

4.3.4. Crossover Operator 

On the selected individuals, the ordered crossover (OX) is implemented. The OX explained 
in the section 4.2.2 is used to generate offspring. Since, the number of individuals selected 
for evolution is more than two; more number of offspring will be generated.  

4.3.5. Self Improving Mutation   

The off springs obtained from the crossover are improved further by means of the self 
improving operator explained in section 4.2.3. Here, it is assumed to have the termination 
criterion for the improvement as n/2.

4.3.6. Termination Criterion 

The termination criterion of the algorithm is based on the number of predetermined number 
of generations. To have determined complexity, it is assumed to have n2 number of 
generations as termination criteria for both SIMEA I & SIMEA II.

5. Performance Evaluation 

The set of bottleneck facility total weighted tardiness problem instances available in the 
Operation Research Library maintained by Beasley are considered. The problem instances 
are generated as follows: 
For each job i (i=1,...,n), an integer processing time pi was generated from the uniform 
distribution [1,100] and integer processing weight wi was generated from the uniform 
distribution [1,10]. Instance classes of varying hardness were generated by using different 
uniform distributions for generating the due dates. For a given relative range of due dates 
RDD (RDD=0.2, 0.4, 0.6, 0.8, 1.0) and a given average tardiness factor TF (TF=0.2, 0.4, 0.6, 
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0.8, 1.0), an integer due date di for each job i was randomly generated from the uniform 

distribution [P x (1-TF-RDD/2), P x (1-TF+RDD/2)], where

=

=
n

i
ipP

1

.

Here, there are 25 different combinations for (RDD, TF) pairs and five replicates are taken 
for each (RDD, TF) combinations yielding 125 different test instances for each value of n.
In the OR library, there are three files wt40, wt50, and wt100 containing the instances of size 
40, 50, and 100 respectively. Each file contains the data for 125 instances, listed one after the 
other. The n processing times are listed first, followed by the n weights, and finally n due 
dates, for each of the 125 instances in turn. 
For example in wt40 the first 40 integers in the file are the processing times for the 40 jobs in 
the first instance. The next 40 integers are the first instance’s weights. The next 40 integers 
are the first instance's due dates. The next 40 integers are the second instance's processing 
times, etc. 

5.1. Optimal and Best Known Solution Values for SMTWTP
Optimal values of solutions are available for 124 instances out of 125 problems for 40 jobs 
problem and the unsolved 40 jobs problem is number 19. The values for the unsolved 
problems given in the files wtopt40 is the best known to Crauwels, et. al., 1998.  
Optimal values of solutions are available for 115 instances out of 125 problems the 50 jobs 
problem instances and the unsolved 50 jobs problems are problem no. 11, 12,  14, 19, 36, 
44, 66, 87, 88 and 111. The values for the unsolved problems given in the files wtopt50 are 
the best known to Crauwels, Potts & Van Wassenhove. The values of the solutions not 
known to optimality have not been improved upon since and appear quite likely to be 
optimal. 
The best solution values known to Crauwels, Potts & Van Wassenhove (1998) for the 100 
jobs problems are given in file wtbest100a. These solution values were used as the best 
known by both Crauwels et al. and Congram et al, 1990. Therefore using the best solution 
values known to Crauwels et al. allows results from future heuristics to be compared 
directly with the tables given. 
The local search heuristic iterated dynasearch has in some cases found better solutions to the 
100 job problems than those known by Crauwels, Potts & Van Wassenhove. The best known 
solutions to date are given in the file wtbest100b. 
All the 125 problem instances for the different sizes n = 40, n = 50 and n = 100 are solved by 
the three hybrid algorithms and compared with the best known results.  

5.2. Performance Analysis of Heuristic Improvement Algorithm 

Greedy forward heuristic is applied on BH sequence to improve the solution. This is only a 
heuristic improvement operating on  the sequence generated by the BH as initial sequence. 
The average total weighted tardiness values calculated by the heuristic improvement for n = 
40 is 38809.91, for n = 50 is 54509.62. But this heuristic improvement algorithm is not giving 
good results for higher size n = 100. The results obtained are compared with the 
optimum/best known results available in OR library. The average total weighted tardiness 
for the different combinations of (RDD, TF) are calculated and the percentage of deviation 
from best known values are given in table 1 for n = 40 and for n = 50.
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n = 40  n = 50 

Average weighted 
tardiness

Average weighted 
tardiness

S.No RDD T.F. 

Best Known HIA 

% of
deviation 

Best Known HIA 

% of
deviation

1. 0.2 0.2 1151.8 1252 8.699 2184.4 2335.6 6.922 

2. 0.2 0.4 9221.2 9897.8 7.337 13343.4 14007 4.973 

3. 0.2 0.6 21464.8 22612.4 5.346 43196.8 44285.6 2.521 

4. 0.2 0.8 73120.2 76097.8 4.072 87714.4 91441.6 4.249 

5. 0.2 1.0 112514 114099 1.409 189113 190486.6 0.726 

6. 0.4 0.2 66.4 89.4 34.639 176.4 265 50.227 

7. 0.4 0.4 4815.8 5459 13.356 6452.4 6999 8.471 

8. 0.4 0.6 20039.8 21438.2 6.978 32574.6 35494.2 8.963 

9. 0.4 0.8 69790.8 74849 7.248 89835.2 93276.8 3.831 

10. 0.4 1.0 91736.8 92656.2 1.002 166049.6 168238.2 1.318 

11. 0.6 0.2 0 34.8 ----- 0 39.2 ----- 

12. 0.6 0.4 3273.6 3611.2 10.313 3426.6 4324.8 26.213 

13. 0.6 0.6 18541.2 19754.8 6.545 23277.6 26031.8 11.832 

14. 0.6 0.8 71892.4 73419.8 2.124 81545.4 84014.2 3.028 

15. 0.6 1.0 90276 91539.6 1.400 130365 133429.2 2.351 

16. 0.8 0.2 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 1071.4 75.812 2191.2 2782 26.962 

18. 0.8 0.6 14593.8 16380.8 12.245 25873.8 29013.6 12.135 

19. 0.8 0.8 49719.8 51182.6 2.942 63134.6 65413.8 3.610 

20. 0.8 1.0 121667.6 123609 1.600 153155.6 155049.4 1.234 

21. 1.0 0.2 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 960.2 24.057 1839.4 2074.6 12.787 

23. 1.0 0.6 22629.2 24172.8 6.821 20864.8 23921.4 14.650 

24. 1.0 0.8 51664 53565.4 3.680 76158 77863.4 2.239 

25. 1.0 1.0 91482.4 92494.6 1.106 109855.4 111953.4 1.910 

Table 1. (RDD, TF) factor wise comparison - HIA

Experience with this method showed that in most instances the best sequence is obtained 
either immediately after the application of the backward phase or with a very few additional 
iterations of the forward phase. This seemed to be promising but not for large number of 
jobs.

5.3. Performance Analysis of ILIEA
The iterated local improvement algorithm is coded in C++ on a personal computer with 1.3 
GHz Pentium IV CPU and 128 MB main memory and running on Micro soft Windows 
operating system 2000 (5 RELEASE version) with Borland C/C++ compiler (version 3.1). 
They are tested on 125 bench mark instances of total weighted tardiness problems of each 
sizes n = 40, n = 50 and n = 100.   
Here, there are 25 different combinations for (RDD, TF) pairs and five replicates are taken 
for each (RDD, TF) combinations yielding 125 different test instances for each value of n.
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The average total weighted tardiness values of five replicates of each (RDD, TF)
combinations for the size n = 40, n = 50, n = 100 are considered and compared with the best 
known values available in the file wtopt40, wtopt50, wtopt100 respectively. 
The (RDD, TF) factor wise comparison of results of iterated local improvement evolutionary 
algorithm as given in the table 2. 

n = 40  n = 50  n = 100  

Average
weighted
tardiness

Average
weighted
tardiness

Average
weighted
tardinessS.NoRDD T.F.

Best 
known
value

ILIEA

% of 
deviation Best 

known
value

ILIEA

% of 
deviation Best 

known
value

ILIEA

% of 
deviation 

1. 0.2 0.2 1151.8 1190.6 3.370 2184.4 2214.2 1.362 5343.8 6180.4 15.656 

2. 0.2 0.4 9221.2 9221.2 0.000 13343.4 13523.2 1.347 52570 53164.6 1.131 

3. 0.2 0.6 21464.8 21464.8 0.000 43196.8 43216.8 0.004 185027.8185835.2 0.004 

4. 0.2 0.8 73120.2 73120.2 0.000 87714.4 87749.4 0.004 433824.6436382.6 0.006 

5. 0.2 1.0 112514 112514 0.000 189113 189950.8 0.004 665021.4666331.8 0.002 

6. 0.4 0.2 66.4 66.4 0.000 176.4 176.4 0.000 256.6 256.6 0.000 

7. 0.4 0.4 4815.8 4833.2 0.360 6452.4 7102.2 10.070 24792.8 27262.8 9.963 

8. 0.4 0.6 20039.8 20070 0.001 32574.6 32588.6 0.000 132402.4137293.2 3.694 

9. 0.4 0.8 69790.8 69999 0.003 89835.2 90302.8 0.005 374993.8379095.6 1.093 

10. 0.4 1.0 91736.8 91887.2 0.002 166049.6 166274 0.001 691626.8703858.2 1.768 

11. 0.6 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

12. 0.6 0.4 3273.6 3303.4 0.009 3426.6 3604.6 0.052 12955 14756 13.903 

13. 0.6 0.6 18541.2 18583 0.002 23277.6 24065.2 0.034 85544.2 91407.6 6.854 

14. 0.6 0.8 71892.4 72006.8 0.002 81545.4 81756.4 0.003 315179.2330526.8 4.869 

15. 0.6 1.0 90276 90796.6 0.006 130365 130731 0.003 607101.8611426.4 0.007 

16. 0.8 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 633.8 4.00 2191.2 2291.8 4.591 656.6 695.4 5.909 

18. 0.8 0.6 14593.8 14672 0.005 25873.8 26188.8 1.217 67259.2 71899.8 6.900 

19. 0.8 0.8 49719.8 50817.2 2.207 63134.6 63179.8 0.001 295368.4297195.6 0.006 

20. 0.8 1.0 121667.6121667.6 0.000 153155.6153227.6 0.000 576902 578342.4 0.002 

21. 1.0 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 780.4 0.008 1839.4 1839.4 0.000 285 338.4 18.736 

23. 1.0 0.6 22629.2 22839.6 0.009 20864.8 21067.6 0.010 132623 141838.2 6.948 

24. 1.0 0.8 51664 51664 0.000 76158 76166.2 0.000 300435 303187.6 0.009 

25. 1.0 1.0 91482.4 91502.8 0.000 109855.4109908.6 0.000 486114.2487220.8 0.002 

Table 2. (RDD, TF) factor wise comparison - ILIEA

From the table 2, it is observed that the average percentage of deviation is 0.399% from the 
best known values for size n = 40; 0.748% for size n = 50; 3.898% for size n = 100.

5.4. Performance Analysis of SIMEA I 
The SIMEA I algorithm has been implemented in the C++ language on a personal computer 
with 1.3 GHz Pentium IV CPU and 128 MB main memory. The  
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Sself Improving Evolutionary algorithm was running on FreeBSD operating system (4.3 
RELEASE version) with the GNU C/C++ compiler (version 2.95.3) which is easier for CPU 
calculations. SIMEA I is having the following parameters POP = n, M = n/2 and no. of 
iterations for termination is n*n. The algorithm is tested on 125 bench mark instances of total 
weighted tardiness problems of each sizes n = 40, n = 50 and n = 100.   
The (RDD, TF) factor wise comparison of results of Self Improving Evolutionary algorithm 
algorithm version I is given in the table 3. 

n = 40  n = 50  n = 100  

Average
weighted
tardiness

Average
weighted
tardiness

Average
weighted
tardinessS.NoRDD T.F.

Best 
known
value

SIMEA I

% of 
deviation Best 

known
value

SIMEA I

% of 
deviation Best 

known
value

SIMEA I

% of 
deviation 

1. 0.2 0.2 1151.8 1170.4 1.615 2184.4 2224.8 1.849 5343.8 5372 0.528 

2. 0.2 0.4 9221.2 9315 1.017 13343.4 13538.2 1.460 52570 52801.2 0.440 

3. 0.2 0.6 21464.8 21575.6 0.516 43196.8 43458.8 0.607 185027.8185742.8 0.386 

4. 0.2 0.8 73120.2 73223.8 0.142 87714.4 87981.2 0.304 433824.6434668.6 0.195 

5. 0.2 1.0 112514 112539.6 0.023 189113 189139 0.014 665021.4 665064 0.006 

6. 0.4 0.2 66.4 66.4 0.000 176.4 195.8 10.998 256.6 280.4 9.275 

7. 0.4 0.4 4815.8 4892.8 1.599 6452.4 6599.4 2.278 24792.8 25229.2 1.760 

8. 0.4 0.6 20039.8 20180 0.670 32574.6 32968.2 1.208 132402.4 133846 1.090 

9. 0.4 0.8 69790.8 70047.2 0.367 89835.2 90117 0.314 374993.8376054.2 0.283 

10. 0.4 1.0 91736.8 91806 0.075 166049.6166105.4 0.034 691626.8 691788 0.023 

11. 0.6 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

12. 0.6 0.4 3273.6 3420 4.472 3426.6 3518.8 2.691 12955 13543.2 4.540 

13. 0.6 0.6 18541.2 19224.6 3.686 23277.6 23824.4 2.349 85544.2 86340.4 0.931 

14. 0.6 0.8 71892.4 71968.2 0.105 81545.4 81861 0.387 315179.2316436.6 0.399 

15. 0.6 1.0 90276 90349 0.081 130365 130433.6 0.053 607101.8607239.6 0.023 

16. 0.8 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 717.6 17.755 2191.2 2255.2 2.921 656.6 685.8 4.447 

18. 0.8 0.6 14593.8 14845 1.721 25873.8 26231 1.381 67259.2 68757 2.227 

19. 0.8 0.8 49719.8 49861 0.284 63134.6 63435.6 0.477 295368.4296705.4 0.453 

20. 0.8 1.0 121667.6121714.4 0.038 153155.6 153222 0.043 576902 577189 0.050 

21. 1.0 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 784 1.292 1839.4 1935.2 5.208 285 295 3.509 

23. 1.0 0.6 22629.2 22975 1.528 20864.8 21290.2 2.039 132623 134451 1.369 

24. 1.0 0.8 51664 51926.8 0.508 76158 76405.6 0.325 300435 301911.8 0.489 

25. 1.0 1.0 91482.4 100839.4 10.228 109855.4110345.6 0.446 486114.2486581.6 0.096 

Table 3. (RDD, TF) factor wise comparison – SIMEA I

From the table 3, it is observed that the average percentage of deviation is 1.91% from the 
best known values for size n = 40; 1.49% for size n = 50; 1.3% for size n = 100.
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5.5. Performance Comparision of SIMEA II 
The SIMEA II algorithm has also been implemented in the C++ language on a personal 
computer with 1.3 GHz Pentium IV CPU and 128 MB main memory. SIMEA II is having the 
following parameters POP = elog10 n, M = n/2 and no. of iterations for termination is n*n. The 
algorithm is tested on 125 bench mark instances of total weighted tardiness problems of 
each sizes n = 40, n = 50 and n = 100.
The (RDD, TF) factor wise comparison for the average total weighted tardiness SIMEA II
with reduction heuristics and the percentage of deviation from the best known values are 
given in the table 4.

n = 40  n = 50  n = 100  

Average
weighted
tardiness

Average
weighted
tardiness

Average
weighted
tardinessS.No RDD T.F.

Best 
known
value

SIMEA 
II

% of 
deviation Best 

known
value

SIMEA 
II

% of 
deviation Best 

known
value

SIMEA 
II

% of 
deviation

1. 0.2 0.2 1151.8 1170 1.580 2184.4 2211.8 1.254 5343.8 5371.4 0.516 

2. 0.2 0.4 9221.2 9369.4 1.607 13343.4 13363.8 0.153 52570 52797 0.432 

3. 0.2 0.6 21464.8 21598 0.621 43196.8 43540.6 0.796 185027.8185655.2 0.339 

4. 0.2 0.8 73120.2 73824.4 0.963 87714.4 88120.8 0.463 433824.6 434416 0.136 

5. 0.2 1.0 112514 112769 0.227 189113 189373.2 0.138 665021.4 665842 0.123 

6. 0.4 0.2 66.4 120.8 81.928 176.4 212 20.181 256.6 313.2 22.058 

7. 0.4 0.4 4815.8 4905.4 1.861 6452.4 6712.6 4.033 24792.8 25412.8 2.501 

8. 0.4 0.6 20039.8 20345.6 1.526 32574.6 32913 1.039 132402.4134384.2 1.497 

9. 0.4 0.8 69790.8 70228 0.626 89835.2 91501 1.854 374993.8378026.8 0.809 

10. 0.4 1.0 91736.8 92310.6 0.625 166049.6166540.8 0.296 691626.8 693124 0.216 

11. 0.6 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

12. 0.6 0.4 3273.6 3575.4 9.219 3426.6 3745 9.292 12955 13465.2 3.938 

13. 0.6 0.6 18541.2 18714.4 0.934 23277.6 24133.6 3.677 85544.2 87208.4 1.945 

14. 0.6 0.8 71892.4 72350.2 0.637 81545.4 82350 0.987 315179.2316216.4 0.329 

15. 0.6 1.0 90276 90897 0.688 130365 130864 0.383 607101.8608054.2 0.157 

16. 0.8 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 837 37.348 2191.2 2439 11.309 656.6 1065.2 62.230 

18. 0.8 0.6 14593.8 15030.4 2.992 25873.8 26446.8 2.215 67259.2 69316.8 3.059 

19. 0.8 0.8 49719.8 50249.2 1.065 63134.6 63622.4 0.773 295368.4 296488 0.379 

20. 0.8 1.0 121667.6 121976 0.253 153155.6 153291 0.088 576902 577365.6 0.080 

21. 1.0 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 1111.6 43.618 1839.4 1973 7.263 285 310.4 8.912 

23. 1.0 0.6 22629.2 23411.2 3.456 20864.8 22067.6 5.765 132623 135687 2.301 

24. 1.0 0.8 51664 52064.6 0.775 76158 77737.6 2.074 300435 301742.4 0.433 

25. 1.0 1.0 91482.4 92003.4 0.570 109855.4110337.6 0.439 486114.2487448.4 0.274 

Table 4. (RDD, TF) factor wise comparison -  SIMEA II

From the table 4, it is observed that the average percentage of deviation is 7.724% from the 
best known values for size n = 40; 2.978% for size n = 50 and  4.506% for size n = 100.
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5.6. Performance Comparison of Algorithms 

The average total weighted tardiness of all 125 problem instances obtained by different 
search algorithms are calculated for the different sizes n = 40, n = 50 & n = 100 and 
compared with the best known values and given in table 5. 

S.No n
Best 
known
values

Backward 
Heuristics 

HIA ILIEA SIMEA 
I

SIMEA
II

1 40 37641.8 52602.07 38809.91 37745.35 38137.67 37954.46 

2 50 52893.1 74157.74 54509.62 53086.02 53083.44 53339.87 

3 100 217852.1 314076.6 
Code Not 
Structured

220978.9 218439.3 218788.4 

Table 5. Comparison of Average Total weighted tardiness values 

The percentage of deviation of the average total weighted tardiness obtained by the 
different algorithms are calculated and given in figure 9.
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Figure 9. Performance Comparison 

From the figures, it is experienced that the performance of heuristic improvement algorithm 
is poor for the higher sizes of n. This algorithm is giving results within less computational 
time and it is not able to solve the problems of size n = 100 effectively and so not included in 
the figure 9. 
The iterated local improvement algorithm is giving results closer to the best known values 
for n = 40 than other algorithms. But, when size of the problem is increased the percentage 
of deviation is also increasing. 
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But self improving mutation evolutionary algorithms perform well for higher sizes of 
problems. It is observed SIMEA II is producing similar results with lesser computational 
time than SIMEA I.

5.7. Percent Improvement  

Since all the three algorithms have been developed from the backward heuristic sequence, 
the percent improvement of the different heuristic search algorithms are calculated by the 
formula,

 Percent improvement = x100
Z

ZZ

phase)(backward

)(algorithmphase)(backward −
%  (6) 

The average percent improvement of the various heuristic search algorithms from backward 
phase heuristic for different sizes n = 40, n = 50 & n = 100 are given in the table 6 and 
comparison of percent improvement is shown in figure 10. 

S.No n HIA ILIEA SIMEA I SIMEA II
1. 40 26.22 28.24 27.50 27.85 

2. 50 26.49 28.41 28.41 28.07 

3. 100 NA 29.64 30.45 30.33 

Table 6. Average Percent Improvement from Backward Heuristics 
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Figure 10. Comparison of Percent Improvement  

The observations on percent improvement reveals that SIMEA I & SIMEA II provide higher 
improvements than other two heuristic algorithm  namely, HIA & ILIEA. Besides this, HIA is 
not structured to solve problems of higher size (i.e. n = 100). 

6. Conclusion 

Scheduling function is embedded in the domain of production planning control and it plays 
an important role in the manufacturing process. The bottleneck scheduling problems can 
arise in different practical situations in the manufacturing system. The objective function of 
scheduling problem may be minimization of make span, lateness, weighted measures etc. In 
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weighted performance measure cases, the priority indexes may be given to different jobs 
according to the importance. Total weighted tardiness problems are proved to be NP hard
type problems. Enumerative methods are time consuming to solve problems of higher sizes 
and construction heuristics are giving inaccurate results. In practice, there is a need to get 
near optimal solutions within reasonable time. Heuristic search algorithms are used to get 
near optimal solution. In this work, an attempt is made to hybridize trajectory and 
population methods for solving the bottleneck facility total weighted tardiness problems. 
The three heuristic search algorithms are developed and used to solve the different 
benchmark instances. 
Heuristic improvement algorithm is a trajectory method operating on a single sequence 
developed by some construction heuristics as initial sequence. The forward heuristic is 
working by a heuristic procedure with interchange method. It is observed that the process of 
this improvement algorithm is tedious and is not able to solve problems of higher sizes 
The ILIEA algorithm uses only a single pair of parents; one sequence obtained from a greedy 
backward phase heuristic and the other by random generation act as the initial parents. The 
performance of this algorithm, with and without crossover operation, is compared. The 
average percentage of deviation is ranging from 27.54% to 38.28% for the iterated local 
improvement algorithm without crossover and the ranging from 0.28% to 16.84% for the 
iterated local improvement evolutionary algorithm with crossover.  
SIMEA I algorithm is the extended form of the iterated local improvement evolutionary 
algorithm with size of the population equal to number of jobs. Further, a log arithmetic 
reduction rule is applied in the parent selection to develop another version SIMEA II and tested 
with benchmark instances of SMTWTP. The performance of these two versions is compared 
and it is observed SIMEA II is producing similar results with lesser computational time.  
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1. Introduction  

A frequently occurring operational problem is one of processing a given number of jobs 
(commodities) on a specified number of machines (facilities) - referred to by various 
investigators as scheduling, dispatching, sequencing, or combinations thereof (Gupta and 
Stafford, 2006). In most manufacturing environments, a set of processes is needed to be 
serially performed in several stages before a job is completed. Such system is referred to as 
the flow shop environment that is one class of scheduling problems. In a flow shop problem, 
we consider n different jobs that need to be processed on m machines in the same order. 
Each job has one operation on each machine and the operation of job i on machine j has 
processing time pij (Baker, 1974).  
The early groups of flow shop researchers were quite small and these people were 
concentrated in a few US academic and research institutions. However, today’s flow shop 
research community is global and from every continent and every geographical region 
(Gupta and Stafford, 2006). Recently, flow shop scheduling problems have been one of the 
most renowned problems in the area of scheduling and there are numerous papers that have 
investigated this issue (Murata et al., 1996). For instance, Gupta and Stafford (2006) 
investigated the evolution of flow shop scheduling problems and possible approaches for 
their solution over the last fifty years. They introduced the current flow shop problems and 
the approaches were used to solve them optimally or approximately. Suliman (2000) 
considered the permutation flow shop scheduling problem by makespan as objective and he 
proposed a two-phase heuristic approach to solve it. Cheng et al. (2001) addressed the three 
machine permutation flow shop scheduling problem with release times where the objective 
is to minimize maximum completion time. They proposed a branch and bound algorithm 
for solving this problem. Grabowski and Wodecki (2004) proposed a tabu search based 
algorithm for the permutation flow shop problem with makespan criterion. Solimanpur et 
al., (2004) proposed a neural networks-based tabu search method for the flow shop 
scheduling problem, in which the objective is to minimize makespan. Whang et al. (2006) 
dealt with a two machine flow shop scheduling problem with deteriorating jobs by 
minimizing the total completion time. 
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The multi-objective flow shop scheduling problem has been addressed by some of papers. 
Murata et al. (1996) proposed a multi objective genetic algorithm to tackle flow shop 
scheduling problem. They considered the problem with two objectives of minimizing 
makespan and total tardiness and then they investigated the problem with respect to 
minimizing makespan, total tardiness and total flowtime as objectives. Ponnambalam et al. 
(2004) proposed a TSP-GA multi objective algorithm for flow shop scheduling where they 
use a weighted sum of multiple objectives (i.e. minimizing makespan, mean flow time and 
machine idle time). Toktas et al. (2004) considered the two machine flow shop scheduling 
problem by minimizing makespan and maximum earliness as objectives. Ravindran et al. 
(2005) proposed three heuristic algorithms to solve the flow shop scheduling problem which 
in makespan and total flow time have been considered as objectives. 
This chapter deals with a multi-objective no-wait flow shop scheduling problem. The 
weighted mean completion time and the weighted mean tardiness are to be optimized 
simultaneously. To tackle this problem, an effective multi-objective immune algorithm 
(MOIA) is designed for searching locally Pareto-optimal frontier. The rest of this chapter is 
organized as follows: Basic definitions of multi-objective optimization are presented in 
Section 2. Section 3 gives the problem definition. In Section 4, the background of immune 
algorithm is described and then the proposed algorithm is given. The experimental results 
are provided in Section 5. Finally, In Section 6 we conclude. 

2. Multi-Objective Optimization 

A single objective optimization algorithm is terminated upon obtaining an optimal solution. 
However, it is always difficult to find out a single solution for a multi-objective problem. So, 
it is natural to find out a set of solutions depending on non-dominance criterion. In the 
following, we provide a summary of some basic definitions in order to better understand 
the multi-objective optimization problem. Without loss of generality, let us consider a 
general multi-objective minimization problem with p decision variables and q objectives 
(q>1) as follows: 

Minimize y= f(x) = (f1(x), f2(x),..., fq(x)) (1) 

where x Rp, and y Rq.
Definition 2.1. A solution a is said to dominate solution b if and only if: 

1)     )()( bfaf ii            },...,2,1{ qi  (2) 

2)      )()( bfaf ii            },...,2,1{ qi  (3) 

Solutions which dominate the others but do not dominate themselves are called non-
dominated solutions. Local and global optimality are defined as follows: 
Definition 2.2. A solution a is locally optimal in the Pareto sense if there exists a real 

0 such that there is no solution b which dominates the solution a with ,

where

),(aBRb p

),(aB shows a bowl of center a and radius .

Definition 2.3. A solution a is globally optimal in the Pareto sense if there does not exist any 
vector b such that b dominates the vector a.
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The main difference between this definition and the definition of local optimality lies in the 

fact that we do not have any restriction on the set anymore.  pR
When, we have a globally optimal solution which is not dominated by any other solution in 
the feasible space, we call it Pareto- optimal. The set of all Pareto-optimal solutions is also 
termed the Pareto-optimal set or efficient set. Their corresponding images in the objective 
space are called the Pareto-optimal frontier. 
The development of various methodologies, in order to solve multi-objective problems, has 
been a continuing effort by researchers. There exists various methods for optimizing the 
multi-objective optimization problems and we have classified them into five sets as follows 
(Collette and Siarry, 2003): 

Scalar methods, 

Interactive methods, 

Fuzzy methods, 

Methods with use a metaheuristics, 

Decision aid methods, 
Among the above mentioned methods, meta-heuristic methods seem to be practically 
suitable to solve multi-objective optimization problems. Different approaches appear in the 
literature, for example vector evaluated genetic algorithm (Schaffer, 1985), multi-objective 
genetic algorithm (MOGA) (Fonseca & Fleming, 1993), niched Pareto genetic algorithm 
(NPGA) (Horn et al., 1994), non-dominated sorting genetic algorithm (NSGA and NSGA-II) 
(Deb, 1999; Deb et al., 2002), Pareto Stratum- Niche Cubicle genetic algorithm (PS-NC GA) 
(Hyun et al., 1998), Multiple Objective Genetic Local Search (MOGLS) (Jaszkiewicz, 1999), 
strength Pareto evolutionary algorithm (SPEA and SPEA2) (Zitzler et al., 2001a; 2001b), 
Micro-Genetic Algorithm (Coello Coello & Toscano, 2001), Pareto archive evolution strategy 
(PAES) (Knowles and Come, 1999), multi-objective tabu search (MOTS) (Pilegaard, 1997), 
multi-objective scatter search (MOSS) (Beausoleil, 2006). 

3. Problem Definition 

3.1 No-Wait Flow Shop Scheduling Problem 

In this chapter, a no-wait flow shop scheduling problem is considered. The addressed 
scheduling problem can be described as follows: Consider an n job m machine no-wait flow 
shop scheduling problem where the machines are ceaselessly ready to be used from time 
zero onwards. At any time, every job can be processed at most one machine and every 
machine can process at most one job. Preemption is not permitted; i.e., once an operation is 
started, it must be completed without interruption. Given the known uninterrupted 
processing time of job i on machine j, Pij, and due date of job i, di and the precedence 
constraint, the objective is to seek a schedule that minimizes the weighted mean completion 
time and the weighted mean tardiness of the manufacturing system.  
The problem is considered under the following assumptions: (1) All jobs are available at zero 
time; (2) machines are always available; (3) processing time of each job on each machine is 
known and constant; (4) setup times and removal times are included in processing times; (5) 
preemption is not allowed; (6) passing is not allowed; (7) Transportation times are negligible; 
(8) each job may have its own due date; (9) each machine can process only one job at the same 
time; (10) a job cannot processed on more than one machine at the same time; and (11) jobs 
cannot wait between two successive machines and intermediate storage does not exist. 
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3.2 Objectives Functions

3.2.1 Minimizing the Weighted Mean Completion Time

We consider the no-wait flow shop scheduling problem by minimizing the weighted mean 

completion time (i.e.,
i ii

w
Cw

W
C 1)( ), where is the completion time for job and  is a 

possible weight related to job i and

iC i iw

i iwW .

3.2.2 Minimizing the Weighted Mean Tardiness 

The second objective is to minimize the weighted mean tardiness (i.e., 
i ii

w
Tw

W
T 1)( ),

where  is a possible weight associated to job i,iw iii dCT ,0max  is the tardiness related 

to job i, and  indicates the due date of job i.id

4. Immune Algorithm 

4.1 Artificial Immune Systems in General 

The biological immune system is a robust, complex, adaptive system that defends the body 
from foreign pathogens. It is able to categorize all cells (or molecules) within the body as 
self-cells or nonself cells. Depending on the type of the pathogen, and the way it gets into 
the body, the immune system uses different response mechanisms either to neutralize the 
pathogenic effect or to destroy the infected cells (Aickelin and Dasgupta, 2005). The immune 
defense mechanism is either nonspecific (innate), which is obtained through evolutions from 
generation to generation, or specific (acquired), which is learnt through its own encounters 
with antigens (Khoo and Situmdrang, 2003). The clonal selection and affinity maturation 
principles are used to explain how the immune system reacts to pathogens and how it 
improves its capability of recognizing and eliminating pathogens (Ada and Nossal, 1987). 
The immune system mostly consists of the immune cells. The most common type of immune 
cells is lymphocytes (B-cells and T-cells). Both cells have receptor molecules on their 
surfaces that they are able to recognize disease causing pathogens (antigens). The B-cell 
receptor molecule also called as antibody (Engin and Doyen, 2004). Clonal selection states 
that by pathogen invasion, a number of immune cells (lymphocytes) that recognize these 
pathogens will proliferate; some of them will become effecter cells (plasma cells), while 
others will be maintained as memory cells. The effecter cells secrete antibodies in large 
numbers, and the memory cells have long life spans so as to act faster and more effectively 
in future exposures to the same or a similar pathogen (Zandieh et al., 2006). During cellular 
reproduction, the cells suffer somatic mutations at high rates, together with a selective force; 
the cells with higher affinity to the invading pathogen differentiate into memory cells. 
Generally, cells with low affinity receptors are mutated at a higher rate, whereas cells with 
high affinity receptors will have a lower mutation rate (Khoo and Situmdrang, 2003). This 
whole process of somatic mutation plus selection is known as affinity maturation (Zandieh 
et al., 2006). 
A novel computational intelligence technique, inspired by immunology, has emerged, 
known as Artificial Immune Systems (AIs). Several concepts from immunology have been 
extracted and applied for the solution of real world science and engineering problems 
(Aickelin and Dasgupta, 2005).  
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4.2 Previous Work in Artificial Immune System 

Recently, the artificial immune system has advocated special attention to itself in order to 
various applications. For instance, Dasgupta and Forrest (1995) considered tool breakage 
detection in milling operations by using a negative selection algorithm. Aickelin and 
Dasgupta (2005) suggested using AIs for the intrusion detection systems and collaborative 
filtering and clustering in datamining. Other applications of AIs are for solving optimization 
problems and pattern recognition tasks. De Castro and Von Zuben (2000, 2002) used the 
clonal selection principle to perform machine learning and pattern recognition tasks and to 
solve optimization problems. Luh et al. (2003) proposed an immune based algorithm for 
finding Pareto optimal solutions to multi-objective optimization problems. Coello Coello 
and Cortes (2005) applied clonal selection principle to solve multi-objective optimization 
problems. Also artificial immune algorithm has been used to tackle scheduling problems by 
some papers, Such as, by using the immune algorithm Alisantoso et al. (2003) considered the 
scheduling of a flexible PCB flow shop. Khoo and Situmdrang (2003) dealt with the design 
of assembly system for modular products by using an approach based on the principles of 
natural immune systems. Engin and Doyen (2004) dealt with the hybrid flow shop 
scheduling problem where they applied clonal selection principle and affinity maturation 
mechanism in order to solve the problem. Kumar et al. (2005) used artificial immune system 
to tackle a continuous flow shop problem with total flow time as criterion. Zandieh et al. 
(2006) used the immune algorithm for solving the hybrid flow shop scheduling problems 
where setup times depended on sequence.  

4.3 The Proposed Multi-Objective Immune Algorithm (MOIA) 

{Initialize search parameters
Create the initial antibody repertoire with elite tabu 

search 

Initialize the adaptive Pareto archive set so that is empty  
For 1 to MaxIter (the maximum number of iterations) 

   Perform non-dominated sorting 

   Update the adaptive Pareto archive set  

   While (pool size is not reached) 
The high affinity antibodies, including both 

dominated and non-dominated antibodies, are cloned 

and added to the Pool 
   End While 

   While (Hypermutation rate is not satisfied) 

       Perform swapping mutation on selected antibody 

   End While 

   While (Combination rate is not met) 
Select a prespecified number of antibodies from the 

pool 

Perform linear combination method on the selected 
antibodies to generate a new antibody 

 End While 

End For}

Figure 1.  The general scheme of MOIA 
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In this chapter, the proposed algorithm is based on the clonal selection principle, modeling 
the fact that only the highest affinity antibodies will proliferate. The distinguishing criterion 
between antigens and antibodies is Pareto dominance. In other words, non-dominated 
solutions are the antigens and dominated solutions are the antibodies. The multi-objective 
immune algorithm (MOIA) implementation is described in the following sections. Fig. 1 
presents the pseudo-code of the proposed MOIA. 

 4.3.1 Antibody Representation 

One of the most important decisions in designing a metaheuristic lies in deciding how to 
represents solutions and relate them in an efficient way to the searching space. Solution 
representation must have a one-to-one relation with searching space and besides that should 
be easy to decode to reduce the cost of the algorithm. Two kinds of different antibody 
representations are used simultaneously in this study, namely job-to-position and 
continuous representation. Each antibody concurrently has a job-to-position and continuous 
representation, each of them is used in different steps in our algorithm. In the next sections 
we discuss how and when they are used.

4.3.1.1 Job-to-Position Representation 

One of the most widely used representations for scheduling problems is job-to-position 
representation. In this kind of representation, a single row array of the size equal to the 
number of the jobs to be scheduled is considered. The value of the first element of the array 
shows which job is scheduled first. The second value shows which job is scheduled second 
and so on. Suppose that the sequence of seven jobs must be determined. Fig. 2 illustrates 
how this representation is depicted. 

Location in a sequence 1 2 3 4 5 6 7

Job to be scheduled 1 2 4 3 5 6 7

Figure 2. Job-to-position representation for a flow shop scheduling problem 

4.3.1.2 Continuous Representation 

Tasgetiren et al. (2004) devised a new way of representation for scheduling problems using 
continuous values. Here, a modified version of this representation is provided. Consider the 
sample job-to-position representation illustrated in Fig. 2. To construct the continuous 
version of this representation, we first need to generate 7 (as many as the number of the jobs 

to be produced) random numbers between ]4,0[],0[ maxx , then these numbers will be 

sorted and the first smallest of them will be assigned to the position that contain the first job, 
that is job number 1, the next smallest will be assigned to position that contain the second 
job, that is job number 2 and so on. Suppose the numbers shown in Table 1 are the random 
numbers obtained. 

No.1 No.2 No.3 No.4 No.5 No.6 No.7

0.46 2.96 1.77 2.49 1.54 3.61 2.88

Table 1. A sample set of random numbers 

To build the continuous representation, we have to assign 0.46 to job number 1, 1.54 to job 
number 2, 1.77 to job number 3 and so on. Thus, Fig. 3 shows the associated representation. 
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Location in a sequence 1 2 3 4 5 6 7

Continuous representation 0.46 1.54 2.49 1.77 2.88 2.96 3.61 

Figure 3. Continuous representation of Fig. 2 

To illustrate how the job-to-position representation is obtained from the representation 
shown in Fig. 3, we just need to schedule the first job in the place of the first smallest values 
of the continuous representation, the second job in the place of the next smallest values of 
the continuous representation and so on. 

4.3.2 Antibody Initialization 

Most evolutionary algorithms use a random procedure to generate an initial set of solutions. 
However, since the output results are strongly sensitive to the initial set, we propose a new 
elite tabu search (ETS) mechanism to construct this set of solutions. The main purpose of 
applying this meta-heuristic is to build a set of potentially diverse and high quality 
antibodies in the job-to-position representation form. Before describing the elements of the 
proposed tabu search, the following definition must be provided: 
Ideal Point- Ideal point is a virtual point that its coordinates are obtained by separately 
optimizing each objective function.      
Finding the ideal point requires separately optimizing each of the objective functions of the 
problem. On the other hand, even optimizing a single objective non-linear problem is a 
demanding task. To overcome this obstacle, the problem in hand is first linearized so that 
each of the objective functions can be solved to optimality with available optimization 
software such as Lingo 8. Another problem in the process of finding the ideal point, even 
after linearization, is the NP-hardness of the large size problems due to their large feasible 
space and our inability to find the global optimum (even a strong local optimum) in a 
reasonable time. When finding the exact ideal point is not easy, an approximation of the 
Ideal Point is used instead. The approximation involves interrupting the optimization 

software (Lingo 8)  seconds after the first found feasible solution and report the best 

found solution as the respective coordinate of the ideal point. The value of  is determined 

after running various test problems. 

4.3.2.1 ETS Implementation 

The desired size of the antibody repertoire, which is shown by N, remains constant during 
the optimization process. To construct N diverse and good antibodies, the proposed elite 

Tabu Search (ETS) must be done N  times where is an integer greater than or equal to 

1. The Tabu Search starts from a predetermined point called the Starting Point which can be 
set to be the related sequence of any one of the two values obtained for coordinates of the 
ideal point. Here, the string of objective function 1 is considered as the starting point. Then, 
the current solution is saved in a virtual list and will be replaced by a desired solution in its 
neighborhood that meets the acceptance criterion. This process must be continued until the 
prespecified termination criterion is met. The detailed description of implementation of the 
proposed tabu search is as follows:
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4.3.2.2 Move Description 

The proposed move procedure, which is used to generate a neighborhood subset , is 

based on an implementation of what is known in the GA literature as the inversion operator. 
Inversion is a unary operator that first chooses two random cut points in an antibody. The 
elements between the cut points are then reversed. An example of the inversion operator is 
presented below: 

Before inversion:  2 1 3 | 4 5 6 7 |  9 8 
After inversion:     2 1 3 | 7 6 5 4 |  9 8 

4.3.2.3 Tabu List 

The move mechanism uses the intelligent Tabu Search strategy, whose principle is to avoid 
returning to the solution recently visited by using an adaptive memory called Tabu List. The 
proposed tabu list is attributive and made of a list of pairs of integers (i, j),
where . It means that it is forbidden to change the job i with the job j, if the pair 

(i, j) exists in the tabu list. The size of tabu list, which is shown by

},...,1{, nji
, is a predetermined and 

sufficiently large value. To diversify the search, a long-term memory is deployed and the 
Tabu Tenure (Tmax) will be considered infinite. Besides that, the recency-based memory and 
frequency-based memory are used. 

4.3.2.4 Search Direction 

In order to simultaneously maintain suitable intensification and diversification, we 
introduce a new function based on Goal Attainment method. This Function can be shown as 
follows: 
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where is the  objective function value of the solution is the  coordinate value of 

the ideal point and  is the weight of  objective function. The motivation to use this 

metric is that a solution is efficient for a given set of weights w if it minimizes
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The main difference of the proposed function with the existing ones is that it allows working 
with a set of solutions which is not necessarily convex. This advantage makes the proposed 
ETS very popular that can be implemented in every optimization problem with every search 

space pattern. Another advantage is achieved by generating  randomly. According to this 

approach, the proposed ETS can search the solution space in various directions, so the high 
diversification is maintained.  

iw

To explain the acceptance criteria of a new solution, the variable  is defined as follows:  

AB  (5) 

where A is the current solution and B is generated from A by a recent move. So the 
acceptance criteria can be defined in the following way:  

1. If 0  and the move is not found in the tabu list, solution A will be replaced by B.
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2. If 0  but the move is found in the tabu list, the aspiration strategy is used and 

solution A will be replaced by B.

3. If 0  and the move is not found in the tabu list, solution A will be replaced by B
when solution B is not dominated by solution A.

4. If 0  and the move is found in the tabu list, solution A does not change. 

4.3.2.5 Stopping Criteria 

The proposed tabu search must be done N  times. After running the ETS, We have 

N number of antibodies that are selected among the whole set of visited solutions to be 

as near to the Pareto front as possible. To construct N initial antibodies, we select the N best 

solutions among N  according to their distances to the ideal point. 

4.3.3 Adaptive Pareto Archive Set 

In many researches, a Pareto archive set is provided to explicitly maintain a limited number 
of non-dominated solutions. This approach is incorporated to prevent losing certain 
portions of the current non-dominated front during the optimization process. This archive is 
iteratively updated to get closer to correct Pareto-optimal front. When a new non-dominated 
solution is found, if the archive set is not full, it will enter the archive set. Otherwise it will 
be ignored. When a new solution enters the archive set, any solution in the archive 
dominated by this solution will be removed from the archive set. 
When the maximum archive size is exceeded, removing a non-dominated solution may 
destroy the characteristics of the Trade-off front. There exist many different and efficient 
methods which deal with the updating procedure when the archive size is exceeded. 
Among them the most widely adopted techniques are: Clustering methods and k-nearest 
neighbor methods. But most of these algorithms do not preclude the problem of temporary 
deterioration, and not converge to the Pareto set. 
In this study, we propose an adaptive Pareto archive set updating procedure that attempts 
to prevent losing new non-dominated solutions, found when Pareto archive size has 
reached its maximum size.   
The archive size, which is shown by Arch_size, is a prespecified value and must be 
determined at the beginning of the algorithm. When a new non-dominated solution is 
found, one of the two following possibilities may occur for updating the Pareto archive set: 
1. Number of the solutions in the archive set is less than Arch_size, thus this solution joins 

the archive set. 

2. Number of the solutions in the archive set is equal to (or greater than) Arch_size, thus 
the new solution will be added if its distance to the nearest non-dominated solution in 
the archive is greater-than-or-equal-to the “Duplication Area” of that nearest non-
dominated solution in the archive and the size of Pareto archive increases. 

Duplication area of a non-dominated solution in the Pareto archive is defined as a bowl of 

center of the solution and of radius . This area is used as a measure of dissimilarity in 

order to find diverse non-dominated solutions. The distance between the new non-
dominated solution and the nearest non-dominated solution in the archive is measured in 
the Euclidean distance form. To put it another way, if the new non-dominated solution is 
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not located in the duplication area of its nearest non-dominated solution in the archive, it is 
considered as a dissimilar solution and added to the Pareto archive set.  
The main advantage of this procedure is to save dissimilar non-dominated solutions, 
without losing any existing non-dominated solutions in the archive. It must be noticed that, 
the Pareto archive is updated at the end of each iteration of the proposed immune 
algorithm. 

4.3.4 Cloning 

In clonal selection, only the highest affinity antibodies will be selected to go to the pool. In 
this study, antibodies gain membership to the pool to their quality or their diversity. In 
other words, the pool is a subset of both diverse and high quality antibodies that consists of 
an approximation to the Pareto-optimal set. 

{For 1 to the required number of antibodies)
Tournament selection between two dominated antibodies 

If candidate 1 is dominated by candidate 2:
Select candidate 2 

If candidate 2 is dominated by candidate 1: 
Select candidate 1 

If both candidates are non-dominated:  

Find the minimum hamming distance of each 

candidate to the non-dominated antibodies in the 

Pareto archive set.   

Select the candidate with the larger distance 
End for}

Figure 4.  The general scheme of clonal selection mechanism 

The construction of the pool starts with the selection of all non-repeated non-dominated 
antibodies from Pareto archive set. If the number of such non-dominated antibodies is 
smaller than the required pool size, the remaining antibodies are selected among the 
dominated antibodies. For this purpose, the dominated antibodies are divided into various 
fronts and the required number of antibodies is selected with the selection mechanism 
which depicted in Fig. 4. 
In this study, the hamming distance is used as a measure to diversify the solution space. 
This measure is the number of positions in two strings of equal length for which the 
corresponding elements are different. Put another way, it measures the number of 
substitutions required to change one into the other.  

4.3.5 Hypermutation 

The high affinity antibodies selected in the previous step are submitted to the process of 
hyper-mutation. This process consists of two phases that are implemented in a sequential 
manner. 

4.3.5.1 Swapping Mutation 

The proposed immune algorithm uses a swapping mutation for each of the clones. In other 
words, each clone in its related job-to-position representation is subjected to be mutated.  
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4.3.5.2 Antibodies Combination 

The combination method that we implemented is based on linear combination. Each time 
the combination procedure is to be used, the pre-specified number of the mutated clones, 

( ), are selected randomly and linearly combined together to produce a new antibody. Let 

 be 3 and xi, xj and xk be the selected antibodies being combined, then the new antibody xl

is obtained with the following line search:  

1
3

1
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It must be noted that the selected clones must be in their continuous representations 

and ,  are randomly generated.iw 3,2,1i

4.3.6 Stopping Criterion 

The proposed immune algorithm must be repeated during a prespecified number of times.  

5. Experimental Results 

The performance of the proposed multi-objective immune algorithm is compared with a 
well-known multi-objective genetic algorithm, i.e. SPEA-II. These two algorithms have been 
coded in the Visual Basic 6 and executed on an AMD Athlon™ XP 64 bit, 3.0 GHz, and 
Windows XP using 512 MB of RAM. At first, we present a brief discussion about the 
implementation of SPEA-II. 

5.1 Strength Pareto Evolutionary Algorithm II (SPEA-II) 

Zitzler et al., (2001b) proposed a Pareto-based method, the strength Pareto evolutionary 
algorithm II (SPEA-II), which is an intelligent enhanced version of SPEA. In SPEA-II, each 
individual in both the main population and elitist non-dominated archive is assigned a 
strength value, which incorporates both dominance and density information. On the basis of 
the strength value, the final rank value is determined by the summation of the strengths of 
the points that dominate the current individual. Meanwhile, a density estimation method is 
applied to obtain the density value of each individual. The final fitness is the sum of rank 
and density values. Additionally, a truncation method is used to maintain a constant 
number of individuals in the Pareto archive. 

5.2 Algorithm Assumptions 

The experiments are implemented in two folds: first, for the small-sized problems, the other 
for the large-sized ones. For both of these experiments, we consider the following 
assumptions:  

General assumptions: (1) The processing times ( ijP ) are integers and are generated 

from a uniform distribution of U(1, 40), (2) The due dates ( id ) are uniformly 

distributed in the interval 
1,1

RTPRTP
22

 where PmnP 1  with P  the mean 

total processing time. The values of T and R are set to 0.2 and 0.6 respectively, (3) The 
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jobs’ weights ( iw ) are uniformly generated in the interval (1,20), (4) Each experiment is 

repeated 15 times.  

Multi-objective immune algorithm’s assumptions: (1) The value of is set to 10, (2) The 

pool size is considered to be equal with antibody repertoire, (3) The combination rate is 

set to 1 and (4) the value of  is fixed to 3. 

SPEA-II’s assumptions: (1) The initial population is randomly generated, The binary 
tournament selection procedure is used, (3) The selection rate is set to 0.8, (4) The order 
crossover (OX) and inversion (IN) are used as crossover and mutation operators, and 
(5) The ratio of ox-crossover and inversion is set to 0.8 and 0.4, respectively.  

5.3 Small-Sized Problems 

5.3.1 Test Problems 

The first experiment is carried out on a set of the small-sized problems. This experiment 
contains 16 test problems of different sizes generated according to Table 2. The proposed 
multi-objective immune algorithm (MOIA) is applied to the above problems and its 
performance is compared, based on some comparison metrics, with the above mentioned 
multi-objective genetic algorithm. The comparison metrics are explained in the next section.  

5.3.2 Comparison Metrics 

To validate the reliability of the proposed MOIA, five comparison metrics are taken into 
account. 

Problem Job (n) Machine (m)

1 6 5
2 6 10
3 6 15
4 6 20
5 7 5
6 7 10
7 7 15
8 7 20
9 8 5
10 8 10
11 8 15
12 8 20
13 9 5
14 9 10
15 9 15
16 9 20

Table 2. Problem sets for small-sized problems 

5.3.2.1 The Number of Pareto Solutions (N.P.S) 

This metric shows the number of Pareto optimal solutions that each algorithm can find. The 
number of found Pareto solutions corresponding to each algorithm is compared with the 
total Pareto optimal solutions which are obtained by the total enumeration algorithm. 
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5.3.2.2 Error Ratio (ER) 

This metric allows us to measure the non-convergence of the algorithms towards the Pareto-
optimal frontier. The definition of the error ratio is the following: 

N

e
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n

i
i

1  (6) 

where N is the number of found Pareto optimal solutions, and 

  0        if the solution i Pareto-optimal frontier 

  1        otherwise 
ie

The closer this metric is to 1, the less the solution has converged toward the Pareto-optimal 
frontier.

5.3.2.3 Generational Distance (GD)    

This metric allows us to measure the distance between the Pareto-optimal frontier and the 
solution set. The definition of this metric as follows:   
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where  is the Euclidean distance between solution i and the closest which belongs to the 

Pareto-optimal frontier obtained from the total enumeration.  
id

5.3.2.4 Spacing Metric (SM)  

The spacing metric allows us to measure the uniformity of the spread of the points of the 
solution set. The definition of this metric is the following: 
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where d is the mean value of all .id

5.3.2.5 Diversification Metric (DM) 

This metric measures the spread of the solution set. Its definition is the following: 
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where ii yx ''  is the Euclidean distance between of the non-dominated solution  and 

the non-dominated solution .
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5.3.3 Parameter Setting 

For tuning the algorithms, extensive experiments were conducted with different sets of 
parameters. At the end, the following set was found to be effective in terms of solution 
quality and diversity level: 
Multi-objective immune algorithm’s tuned parameters: (1) The size of antibody repertoire 
at each iteration, N, is set to 50, (2) The algorithm is terminated after 50 iterations, (3) Since 
each objective function is linear and the lingo software can obtain the best values of the 

coordinates of the ideal point immediately, the value of  is set to 0, (4) The neighborhood 

subset size, , and the tabu list size, , are respectively set to 3 and 20, in both of the ETS, 

(5) The maximum Pareto archive size, Arch_Size, is fixed to 35. 
SPEA-II’ tuned parameters: (1) The population size is set to 50, (2) Algorithm is terminated 
after 50 iterations. 

5.3.4 Comparative Results 

In this section, the proposed MOIA is applied to the test problems and its performance is 
compared with SPEA-II. Table 3 represents the average values of the above mentioned 
comparison metrics. 

NPS ER GD SM DM
Problem 

MOIA SPEA II MOIA SPEA II MOIA SPEA II MOIA SPEA II MOIA SPEA II

1 3 3 0 0 0 0 2.95 3.12 5 0.72

2 4 4 0 0 0 0 4.34 6.42 6.93 1.19

3 4 4 0 0 0 0 5.65 7.08 7.8 1.25

4 3 3 0 0 0 0 5.74 5.89 7.13 1.11

5 3.8 3.6 0.12 0.08 0.16 1.81 1.42 2.53 5.8 1.25

6 5.73 5.6 0.17 0.08 0.38 3.46 0.18 1.04 6.87 1.83

7 5.73 4.07 0.05 0.26 0.12 16.52 0.12 0.87 8.27 2.03

8 6.6 5.4 0.04 0.14 0.09 12.67 0.23 0.4 6.93 2.69

9 5.47 4.47 0.27 0.23 0.36 6.77 0.2 0.67 5.8 1.5

10 3.73 3.33 0.36 0.43 0.74 20.23 1.79 2.34 6.27 2.81

11 7.6 7.27 0.12 0.11 0.38 7.14 0.29 0.64 5.53 3.57

12 3.67 2.27 0.02 0.36 0.07 25.6 5.31 5.89 7.27 3.47

13 6.2 2 0.53 0.8 0.76 22.71 1.18 1.56 7.47 3.18

14 2.67 1.54 0.1 0.15 0.24 6.42 5.14 7.23 7 3.43

15 3.67 2 0.21 0.59 0.77 38.42 3.95 4.25 8.07 3.04

16 3.13 2.33 0.1 0.34 0.48 27.55 8.38 8.66 9.87 3.23

Table 3. Computational results for small-sized problems 

As shown in Table 3, the proposed MOIA is superior to the SPEA-II in each test problems. In 
other words: 
1. MOIA could achieve the greater number of Pareto optimal solutions in comparison 

with SPEA-II. 
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2. The proposed MOIA has less error ratios in most test problems. This data suggest that 
the proposed MOIA has higher convergence toward the Pareto-optimal frontier.  

3. The proposed immune algorithm can obtain Pareto solutions which are considerably 
closer to the true Pareto-optimal frontier in comparison with the benchmark algorithm.   

4. MOIA provides non-dominated solutions which have less average values of spacing 
metric. This fact reveals that non-dominated solutions obtained by MOIA are more 
uniformly distributed in comparison with the other algorithm. 

5. The average values of diversification metric in MOIA are considerably more than the 
other algorithm. In the other word, MOIA could find non-dominated solutions which 
are more scattered. 

Table 4 represents the average of computational times that algorithms consume. As 
illustrated in Table 4, the proposed MOIA consumes more computational time than SPEA-II. 
Since MOIA, Because of the structure of the proposed elitist tabu search and antibody 
combination method, can search intelligently more regions of the search space, this higher 
value of computational time is reasonable.

Problem MOIA SPEA II 

1 9 1

2 9 2

3 15 2

4 26 3

5 8 1

6 10 1

7 16 2

8 17 3

9 8 2

10 12 2

11 39 2

12 50 3

13 8 1

14 43 2

15 39 3

16 65 4

Table 4. The average values of computational times (sec.) for small-sized problems 

5.4 Large-Sized Problems 

5.4.1 Test Problems 

Another experiment is implemented for the large-sized problems. To construct the desired 
test problems, 20 test problems of different sizes generated according to Table 5. 
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Problem Job (n) Machine (m)

1 50 5

2 50 10

3 50 15

4 50 20

5 100 5

6 100 10

7 100 15

8 100 20

9 200 5

10 200 10

11 200 15

12 200 20

13 300 5

14 300 10

15 300 15

16 300 20

17 500 5

18 500 10

19 500 15

20 500 20

Table 5. Problem sets for large-sized problems 

5.4.2 Comparison Metrics 

Because of the large size of the test problems, it is impossible to find out the Pareto optimal 
solutions using the total enumeration algorithm. Therefore, the comparison metrics which is 
used in the small sized problems must be changed. For this purpose, the following 
comparison metrics are used: (1) the number of non-dominated solutions (N.P.S) that each 
algorithm can find; (2) the quality metric (QM) that is simply measured by putting together 
the non-dominated solutions found by two algorithms, i.e. A and B, and reporting the ratio 
of the non-dominated solutions which are discovered by algorithm A to the non-dominated 
solutions which are discovered by algorithm B; (3) spacing metric (SM); and (4) 
diversification metric (DM) (the definition of the third and fourth metrics is the same as 
explained in Section “small-sized problems”).

5.4.3 Parameter Setting 

For tuning this category of problem, extensive experiments were implemented with 
different sets of parameters too. At the end, the following set was found to be effective in 
terms of the above mentioned metrics: 
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5.4.3.1 Multi-objective immune algorithm’s tuned parameters:  

(1) The size of antibody repertoire at each iteration, N, increases to 200, (2) The algorithm is 

terminated after 500 iterations, (3) The value of  is set to 300 minutes, (4) The 

neighborhood subset size, , and the tabu list size, , are respectively fixed to 3 and 40, in 

the ETS, (5) The maximum Pareto archive size, Arch_Size, is set to 100.   

5.4.3.2 SPEA-II’s tuned parameters:  

(1) The population size increases to 200, (2) each algorithm is terminated after 500 iterations.

5.4.4 Comparative Results 

Table 6 represents the average values of the four above mentioned metrics. 

NPS QM SM DM
Problem 

MOIA SPEA II MOIA SPEA II MOIA SPEA II MOIA SPEA II 

1 17.44 14.27 64.8 35.2 5.16 6.90 17.93 12.22
2 18.25 15.56 69.3 30.7 5.37 5.80 21.14 17.56
3 17.53 14.89 73.4 26.6 5.23 6.14 18.55 14.46
4 19.06 17.34 67.2 32.8 6.25 6.35 25.41 18.88
5 18.42 16.87 60.1 39.9 5.21 5.55 22.56 18.46

6 18.74 16.54 60.8 39.2 5.93 6.81 22.94 20.47
7 20.69 18.67 63.5 36.5 6.32 6.65 31.46 18.72
8 19.55 16.37 73.5 26.5 5.21 5.55 24.43 19.64
9 21.14 17.06 60.9 39.1 6.45 6.85 35.35 26.67

10 22.43 18.32 70.2 29.8 6.45 6.85 31.17 25.46
11 25.16 21.67 67.1 32.9 7.34 8.32 29.93 21.12

12 23.88 20.56 80.2 19.8 6.29 6.45 33.76 28.55
13 24.15 22.71 74.3 25.7 4.52 7.67 17.17 12.34
14 27.18 24.44 66.4 33.6 5.74 6.64 37.83 32.40
15 25.14 19.93 77.9 22.1 5.70 6.31 27.15 22.46
16 19.31 14.76 65.2 34.8 6.14 6.37 35.09 29.81
17 25.30 23.89 62.4 37.6 6.32 6.65 21.53 17.45

18 31.14 26.66 70.2 29.8 6.39 6.74 31.17 27.57
19 35.38 29.58 71.4 28.6 7.34 8.32 32.93 26.09
20 30.13 27.45 60.4 39.6 4.21 5.24 27.32 24.91

Table 6. Computational results for large-sized problems

As illustrated in table 6, the proposed MOIA shows better performance in all problem sets. 
In other words, MOIA provides the higher number of diverse locally non-dominated 
solutions which are closer to the true Pareto-optimal frontier. Computational time increases 
depending on the number of jobs which must be processed. On the average, MOIA 
consumes about 2.5 times more than the computational time that SPEA-II spends.

6. Conclusion 

This chapter has presented a new multi-objective immune algorithm (MOIA) for solving a 
no wait flow shop scheduling problem with respect to the weighted mean completion time 
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and the weighted mean tardiness. To validate the proposed multi-objective immune 
algorithm, we designed various test problems and evaluated the performance and the 
reliability of the proposed MOIA in comparison with a conventional multi-objective genetic 
algorithm (i.e. SPEA II) to solve the given problems. Some useful comparison metrics (such 
as, number of Pareto optimal solutions founded by algorithm, error ratio, generational 
distance, spacing metric, and diversity metric) were applied to validate the efficiency of the 
proposed MOIA. The experimental results indicated that the proposed MOIA outperformed 
the SPEA II and was able to improve the quality of the obtained solutions, especially for the 
large-sized problems. 
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Concurrent Openshop Problem to Minimize the 
Weighted Number of Late Jobs1

H.L. Huang and B.M.T. Lin 
National Chiao Tung University 

Taiwan, R.O.C. 

1. Introduction   

Concurrent open shop problem can be viewed as the two-stage assemble-type flow shop (Lee et 
al., 1993) ignoring the second-stage assembling operation. Consider a set of jobs J = {1, 2, …, n}
and a set of machines M = {1, 2, …, m}. Each job Ji is composed of tasks tik which have to be 
processed on specific machine k with processing time pik. Each job Ji has a weight wi and due date 
di. The major difference of this problem from the traditional open shop problem is that all tasks 
belong to the same job could be processed concurrently. Let Cik be the completion time of task of 
job i on machine k. The completion time of a job, Ci, is the greatest completion time among all of 

its tasks, i.e. Ci=max1 k m{Cik}. There are several variant applications in the production field 
(Roemer, 2006). The objective of minimizing the number of tardy jobs has been discussed 
extensively in different applications. In this chapter, we consider the concurrent open shop 
problem of minimizing the weighted number of tardy jobs. Following the three-field notation of 

Graham et al. (1979), we denote this problem by PD|| wiUi.
To best of our knowledge, this problem was first proposed by Ahmadi and Bagchi (1990). Most 
works consider the objective Ci or wiCi. Roemer (2006) has done an extensive review on 
different objectives on this problem. Because this chapter discusses only the objective wiUi, we 
simply review the due date related results. The complexity result was first given by Wagneur 
and Sriskandarajah (1993). They have shown that even if there are only two machines, this 

problem is NP-hard. Leung et al. (21006) has shown that the PD|di=d| Ui is NP-hard and they 

proposed a Revised Hodgson-Moore algorithm to solve the PD|| Ui problem with agreeable 

conditions. Ng et al. (2003) introduced a negative approximation result of the PD|di=d, pik

{0,1}| Ui problem. They also designed an LP-rounding algorithm with an error ratio of d+1 for 

the PD|di=d, pik  {0,1}| wiUi problem. Ahmadi and Bagchi (1997) and Cheng et al. developed 

dynamic programming algorithms independently for PDm|| wiUi. Lin and Kononov (2006) 

have shown some negative approximation results for PD2|di=d| Ui and proposed an LP-based 
approximation algorithm for unweighted and weighted cases. 
The problem to minimize the weighted number of tardy jobs subject to a common due date is 
equivalent to the multiple-dimensional 1-0 knapsack problem. The number of machines could be 

                                                                
1 This research was partially supported by the National Science Council of Taiwan under grant NSC96-

2416-H-009-001. 
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viewed as the number of dimensions of the knapsack. The objective function can be transformed 
to selecting the items (jobs) to maximize the profits. 
This chapter is organized as the following. The formulation of the studied problem is proposed 
in Section 2. In Section 3, we introduce a branch and bound algorithm. Approximation 
algorithms are presented in Section 4. The computational experiments will be shown in Section 5 
and the conclusion remarks will be given in Section 6. 

2. Problem Formulation 

The mathematical formulation could help us define the problem more precisely. In this section, 
we propose a mathematical formulation to describe this problem. In 1992, Lasserre and 
Queyranne (1992) introduced an orignal formulation using positional variables , j

iu . The 

positional variables could be used in most scheduling problems. If job i is scheduled in the j-th 
position of a sequence, then   = 1; otherwise,  = 0. In 1995, Dauzere-Peres (1995) used 

positional variables to formulate single machine scheduling to minimize the number of late jobs. 
Dauzere-Peres and Sevaux (1997) modified the previous formulation to remove the big-M
variable so as to achieve a better effieicncy. The new formulation could deal with problems with 
50 jobs. After some modifications, their formulation could be adpated to formulate the 
concurrent open shop problem with multiple machines. As we know, for the concurrent open 
shop problem, the sequence of orders is identical on every machine in at least one optimal 
solution. By this property, this formulation only requires n2 positional variables, regardless of the 
number of machines invloved. The notations and formulation are described as follows: 

i
ju

i
ju

tjk : the time that the j-th job starts to be processed on machine k;
pik : the processing time of job i on machine k;
di : the due date of job i;
Ui : if job i  is late, Ui = 1; otherwise, Ui = 0. 
Minimize n
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The objective function is to minimize the weighted number of late jobs. Constraints (1) enforce 
that the job scheduled in the (j+1)-th position cannot start before its preceding job is finished. 
Constraints (2) guarantee that the scheduled jobs must be completed before their due dates. 
Constraints (3) ensure that every job can only be scheduled at most once. Constraints (4) state 
that jobs are either scheduled early or late. Since there is at least one optimal solution that all on-
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time jobs are scheduled by thier due dates in non-decreasing order, constraints (5) are added to 
reduce the solution space.  
This formulation can be used to solve small-scale problems. However, for large-scale problems, 
this formulation might take a exceedingly long time to get the optimal solution.  

3. Branch and Bound Algorithms 

In this section, we introduce the branching scheme and a lower bound that will be used to 
develop branch-and-bound algorithms. For different problems, based on their properties, we 
may suggest different branching schemes. Sometimes, the selection of branching scheme is 
critical in branch and bound algorithms because different branching schemes may present 
different performances.  
For forward sequential branching scheme, the accumulation of objective value is lingering. At the 
beginning, the objective value of each node could be identical. One of the crucial properties in 
this problem is that no matter what the sequence is the makespan is fixed. Since the makespan is 
fixed and the due dates of each job are known, using backward sequential branching scheme, the 
exact current objective value could be calculated. The accumulation of objective value is faster 
than the former one in the earlier stage. 
Another observation is that the early jobs should be scheduled, without idle time inserted, in the 
non-decreasing order of their due date before the tardy jobs. Suppose there are two jobs i and j,
di>dj but job i precedes job j. it is clear that we can interchange the two jobs without increasing the 
objective value. Therefore, using the backward branching scheme, once an early job occurs, we 
could assume the rest jobs are scheduled early by the non-decreasing order of their due date. For 
forward branching scheme, this property could be view as a dominance rule. 
Dominance: For any two early jobs i and j, if di<dj, we say job i dominates job j and will precede 
job j.
To minimize the number of tardy jobs, the order of late jobs could be ignored. However, in 
branch and bound algorithms, each node represents an ordered partial solution. Therefore, there 
can be several solutions that are identical by the definition. To avoid such a situation, we only 
consider the situations that the tardy jobs are scheduled in the increasing order of their indices. 
Dominance: For any two tardy jobs i and j, if i<j, job i dominates job j.
Each node in the branch-and bound tree represents a partial solution. The lower bound method 
is applied on each node to estimate the possible cost. If the existing and estimated cost is greater 
than the current best solution, the branching would be bounded.  
Denote the partial schedule by P with the set of late jobs L(P).. The current weighted number of 

late jobs is .
( )

i
i L P

w

To minimize the number of late jobs on a single machine without considering release dates, we 
can schedule the jobs by the EDD rule. The rule arranges the jobs according to non-decreasing 
order of their due dates. Once a job is late, we identifies the scheduled job with the longest 
processing time and discards that. After considering all jobs, we could get the optimal solution. 
If we apply the EDD rule on each machine for unscheduled jobs, we can get the minimum 
number of late orders on each machine.  The maximum number among all machines is a lower 
bound on the number of late orders. Assume that the maximum number is l. Then, the sum of 
smallest l weights of unscheduled jobs is a lower bound of weighted tardy jobs. To prevent over-
estimation of the weighted number of late jobs of rest jobs, the smallest I weights are used to 
calculate the lower bound. 



Multiprocessor Scheduling: Theory and Applications 218

4. Approximation Algorithms 

Since this problem is NP-hard, it is unlikely to find an efficient algorithm. It might be acceptable 
to get an approximate solution in a reasonable time. In this section, we propose heuristic and  
tabu search algorithms. An efficient initial solution can reduce the time a meta-heuristic requires 
to converge. The heuristic method we propose is not only used to find an approximate solution 
but also to produce an initial solution for the tabu search algorithm. 

4.1 Heuristic Method 

We use the concept of the Hodgson-Moore algorithm (1968) to design our heuritic method. This 

algorithm could produce an optimal sequence for 1|| Ui. The jobs are considered by the order 
of non-decreasing due dates. Once tardiness occurs, the scheduled job with longest processing 
time would be dropped. All early jobs precede tardy jobs. 
First of all, we renumber the indices of all jobs in non-decreasing order of their due dates such 
that for any two jobs i, j if i < j, di < dj. We schedule  the jobs by their indices. Denote the partial 
schedule by P for j jobs being considered. There is no job late in P and the set of late jobs is L(P).  
Next, we add job Jj+1 into  P and get a new schedule called P’. If there is no late job in P’, we 
accept P’ as our current partial schedule with the set of late job L(P) and consider the next job Jj+2.
If tardiness occurs on machine k in P’, mark the job with smallest pik/wi. Since this problem could 
be viewed as maximizing the weighted number of early jobs, the job with smallest pik/wi

contributes the least unit profits on machine k. If we remove the marked job in P’ and Jj+1 still 
remains late, mark the job with second smallest pik/wi.  Following the same procedure, there 
might be more than one job having to be marked. If the sum of weights of the marked jobs is less 
than wj+1, then the former will be removed from P’ to L(P’) and this schedule will be accepted as 
the current partial schedule; otherwise, P will be accepted and Jj+1 will be included in L(P).
Following the same procedur, we could get a sequence.  

4.2 Tabu Search 

Tabu search method was first proposed by Glover (1989). It is a simple idea with excellent 
computational efficiency. The word, tabu, means the things that cannot be touched. It is a single 
agent meta-heuristic which gets one solution at each iteration. In each iteration, based on the 
current solution, it generates several neighborhood solutions. The agent selects the best solution 
among them and follows the same procedure. Tabu search method keeps track of the recent 
accepted solutions and will not accept such solutions in regulative iterations which is controlled 
by the tabu list size. The agent will not stop until the stopping criteria is satisfied. The stopping 
criteria can be the improvement ratio of the initial solution or the number of iterations in which 
the solution is not improved.  
We set the tabu list size as 7 and 20 neighborhood solutions are generated randomly for each 
iteration. We use the heuristic method developed above to find the initial solution. If the current 
best solution is updated, we do the hill climbing procedure that is to find the order with largest 
weight among all late orders and interchange it and the order with least weight among all early 
jobs. If the weight of the late one is less than that of the early one or the solution has not been 
improved, we terminate the procedure. If the best solution is not updated within 1000 
consecutive iterations, tabu search stops.  
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5. Computational Experiments 

The experiment framework was designed from Fisher’s experiment. The platform is 
personal computer with an Intel i586 CPU of 2.4GHz running Microsoft XP. The program is 
coded in C. The detailed information of experimental data is described below. 

a). pik [1,10]; 

b). wi [1,10]; 

c). di  [T×(1- -R/2), T×(1- +R/2)], where T = 
i

imm
p

1

max  and  and R are the factors of due date. 

n

The instances are generated from uniform distribution. For each problem size, we generated 20 
instances randomly. The experiments consist of two parts. One is for small-scale problems solved 
by two different branching schemes, heuristic and tabu search method. The other is for large- 
scale problems solved by heuristic and tabu search method.  
Due to the exponential growth of the solution space, the scale of the problem that can be solved 
by the branch and bound algorithms is quite limited. Table 1 summarizes the numerical results of 
small-scale test instances. Two branching schemes are compared by the number of nodes visited 
and the elapsed run time. From Table 1, we can see that the the backward branching scheme 
performs much better than the forward counterparyt. Numerical results also suggests that the 
lower bound is not tight, with deviations of 60% to 70% from the optimal solutions. Looking at 
the results of approximation algorithms, we know that tabu search performs very well in the 
small scale problems.  The column entitled #_Opt contains the number of instances that have 
been optimally solved. For all test instances, the tabu search algorithm can find optiml solutions. 

Forward B&B Backward B&B Lower Bound Heuristic Tabu Search 
n

Time Node Time Node # of opt
Error
(%)

# of
Opt

Error
(%)

Time # of opt 
Error
(%)

10 0.194 7.6E05 0.000 2342 4 61.250 6 65.00 0.016 20 0

12 28.019 7.8E07 0.009 5.2E04 1 71.277 2 100.00 0.018 20 0

14 0.100 8.4E05 5 57.333 2 133.33 0.021 20 0

16 0.141 1.1E06 6 57.143 2 121.43 0.024 20 0

18 1.327 1.3E07 4 68.932 2 133.01 0.026 20 0

Table 1. B&B vs. Tabu Search 

Tabu Search
n Time (Sec.) Improvement (%)

20 0.029 66.464
30 0.056 77.628

40 0.084 81.245
50 0.124 84.136
60 0.176 83.596
70 0.230 81.148
80 0.255 84.703
90 0.360 80.798

100 0.468 81.949

Table 2. Improvement by Tabu Search 

Next, we examine the improvement achieved through the deployment of tabu search for 
large-scale problems. The heuristic is applied first to get an initial solution. The tabu search 
algorith is activated to start the impeovement phase from the initial solution. The results are 
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shown in Table 2. The run time required by the heuristic algorithm is niglegible. Although 
tabu search takes more time, it still remains within the reasonable executive time. However, 
the performance between this two method is quiet different. As the problem scale increases, 
the performance deviation between these two methods grows.  

6. Concluding Remarks 

In this chapter, we discussed the concurrent open shop problem PD|| wiUi. A 
mathematical formulation was given to describe the problem. We proposed a lower bound 
and studied the performance of different branching schemes for branch-and-bound 
algorithms. The branching schemes play an important role in this problem. To produce 
approximate solutions in a reasonable time, we proposed a heuristic and a tabu search 
algorithm. Computational experiemnts suggest that the tabu search algorithm is efficient 
and effective in the sense that it can produce quality solutions in an acceptable short time.  
For future work, Lagrangian relaxation might be an alternative way to getting a tighter 
lower bounds and approximate soltuions. Equipping the concurrent open shop model with 
other constraints, such as precedence relation s, can be an interesting direction. 
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Integral Approaches to Integrated Scheduling 

Ghada A. El Khayat 
Alexandria Institute of Engineering and Technology 

Egypt

1. Introduction  

The objective of this chapter is to address integrative views to production scheduling 
problems. These views are relative to constraining resources integration in the problem 
formulation, cost components integration to guide optimization and solution methodologies 
integration to achieve computational performance. We reconsider the widely used models and 
representations for production scheduling problems, we review optimization objectives and 
we discuss and propose efficient solution approaches to the production scheduling problem.  
Traditionally, machines are considered to be the only constraining resources when solving a 
production scheduling problem. This representation although resulting in high 
mathematical complexity, does not reflect the real problem. Many other constraining 
resources are needed in a production setting. Among these are material handling resources, 
buffers, route segments and intersections on a shop floor, labor, tools, pallets, fixtures and 
energy. Rich formulations considering these resources were presented in the literature 
together with corresponding solution approaches. These formulations are frequently 
referred to as the integrated scheduling problem. We provide an overview of these 
formulations within a proposed framework that builds on special characteristics of the 
different resources needed. Objective functions guiding optimization are also revisited for 
relevance analysis. Moreover, a generic cost function integrating different components is 
proposed. It unifies and complements, in some cases, most of the objective functions 
proposed in the literature.  
This rich picture is not without cost. The corresponding formulations result into very high 
mathematical complexity and exact solutions become difficult. Literature analysis as well as 
our research in this area reveals the importance of integral approaches to tackle such 
problems. Integral approaches may combine different methodologies whether at the level of 
the algorithm development subsuming one method into another or at the level of solvers 
cooperation for sharing information or at other levels of integration. Among methodologies 
considered and being integrated together are mathematical programming, constraint 
programming and metaheuristics. An integration scheme is proposed and performance of 
approaches is analyzed.  
The high cost of integration suggests a prudent approach to the integrated scheduling 
problem. Resources to integrate, objectives to consider and methodologies to use remain 
questions to answer according to the industrial reality studied. We conclude with a 
proposition of a methodology for diagnosis of a scheduling problem that allows tackling the 
problem, at first, by the most appropriate formulation. This methodology proposes 
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measures for identifying critical resources involved in a production process.   Section 2 
presents integrated scheduling problems, section 3 reconsiders the widely used optimisation 
objectives and provides a new cost function, section 4 discusses integration schemes, section 
5 presents integral approaches for solving the problem, section 6 elaborates on a diagnosis 
methodology for the problems and the conclusion is presented in section 7. 

2. Integrated Scheduling Problems 

Scheduling tasks on machines in production scheduling problems is addressed in a 
hierarchy of decision making following the production planning problem. At a lower level, 
scheduling decisions relative to other resources are made. The advantage of this approach is 
to be able to tackle problems of reasonable size. However, this approach results in 
suboptimal solutions.  

Figure 1. Information flow diagram in a production system (Pinedo, 1995) 

Ideally, we would integrate different levels of decision making when this is possible and 
necessary. The example is integrating scheduling and planning decisions. We refer to this as 
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multi-level integration. At the scheduling level, integrating all influencing factors and 
resources allows the calculation of a realistic schedule. We refer to this as single level 
integration. Here, the level is the scheduling level. One multi-level integration problem is 
the simultaneous lot-sizing and scheduling for single machines. A review on these problems 
was presented by Elmaghraby (1978). Since then a number of researchers studied the 
problem. Simultaneous determination of lot sizes and dynamic sequences for several 
products in a single machine environment with capacity constraints was studied by 
Salomon et al. (1991), Cattrysse et al. (1993) and also by Glass (1992) who considers only the 
three products case.  Pinto and Rao (1992) studied the same problem in a flow shop setting 
with capacity constraints. Heuristic solution methods were proposed.  
The job shop problem was also approached with a more integrative view by Wein and 
Chevalier (1992). The authors consider three decisions to optimize at a time: fixing due dates 
for jobs, launching jobs on the shop floor and sequence determination. A two machine shop 
is considered. Lasserre (1992) considers an integrated model that addresses simultaneously 
planning and scheduling problems in job shops. A decomposition procedure alternating 
between the two problems is used to solve the integrated problem.  

2.1. Resources needed in the production process 

We focus in the following paragraphs on the single level integration. Single level integration 
considers influencing resources when solving a scheduling problem. Influencing resources 
include material handling equipment, buffers and tools.  Neglecting these resources 
assumes an infinite capacity for all of them. It also underestimates the interdependence 
between the different resources.  

Figure 2.  Mutual influences and decisions related to production resources 

The different hierarchical decision making models do not include decisions relative to a 
number of resources influencing a schedule. Decisions related to handling equipment, to 
buffers and to tools are not enumerated in an explicit manner. Consequently we neglect an 
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important number of constraints and decisions in order to be able to present a solution to 
the scheduling problem. Neglected constraints are sometimes addressed in a second 
separate problem or in the same problem. However, this is done at a later stage after 
calculating machine schedules.  
Scheduling decisions incorporating tools can be studied in light of contributions in 
production scheduling with resource constraints.  These contributions consider resources to 
be used in the same time during the machines operation. This is also the case of raw 
materials. In the case of integrating the material handling equipment, production scheduling 
with resource constraints literature does not offer much help.   Machines and the material 
handling system have different interdependence relations.  Handling equipment, buffers 
and route segments are used before or after transformation on machines. Precedence 
constraints are to be respected and dead heads have to be accounted for. 
Material handling system design and operation including scheduling, routing and 
assignment was studied in the Flexible Manufacturing Systems literature. Flexible 
Manufacturing systems include Automated Guides Vehicles that are costly investments and 
bottleneck resources in many cases. In these problems, handling requests are determined by 
the machine schedules. In some cases, the problem is reduced to a vehicle routing problem 
that was extensively studied in the literature and for which small instances are solved 
efficiently.
Cmax is a very common objective to optimize in the scheduling literature. The material 
handling scheduling can be used to further optimize this measure. Some authors studied 
realistic scheduling problems where production lots are not equal to transfer lots. The idea 
is to devise production lots in sub-lots to enable overlapping of operations. Potts and Baker 
(1989), study the transfer lots for a flow shop problem in single and multi-product cases. 
Vickson and Alfredsson (1992) consider this problem for two and three machines flow 
shops. They study the objective of minimizing the total flow time.  Trietsch and Baker (1993) 
study a transfer lots problem with material handling equipment capacity constraints.  Glass 
et al. (1994) study the single product problem in flow shops, job shops and open shops.  
Sriskandarajah and Wagneur (1998) consider this problem in a no-wait two machines flow 
shop in the case of multi-products.  Esaignani et al. (1999) consider the same problem in an 
open shop environment.  Langevin et al. (1999) calculate the transfer lots in a flow shop for 
minimizing all relevant costs.  Among all these contributions, only Trietsch and Baker (1993) 
consider a finite capacity for the handling equipment when studying the transfer lots 
problem.  Langevin et al. (1996) consider a cost associated to the utilization of handling 
equipment with no capacity constraints.
Now that the integration of decisions is clear, we present in a concise fashion in table 1 the 
major contributions in the literature that addressed the integrated scheduling problem. We 
consider single level integration incorporating basically material handling resources. These 
resources are of special importance as discussed above. They may also represent most of the 
constraining resources in a certain reality. For example, Lau and Zhao (2006) develop a joint 
approach to solve the problem of integrated scheduling of different types of material 
handling equipment in a typical automated air cargo handling system where schedules for 
different cooperating equipment are highly interactive. Finally, it is worth noting that all the 
contributions address single objective optimization. However, Reddy and Rao (2006) 
recently solved a multi-objective integrated scheduling problem in a flexible manufacturing 
environment using evolutionary algorithms.  
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AGV Automated Guided Vehicle Hier-Sch Hierarchical Scheduling 
L/U Load/Unload Int-Sch Integrated Scheduling 
Cmax Makespan DP Dynamic Programming 
ED Exponential Distribution Pi Processing time on machines 
PD Poisson Distribution  MIP Mixed Integer Programming 
UD Uniform Distribution  IP Integer Programming 
Dyn Dynamic MNLP Mixed Non Linear Programming  
ES Empirical Study Bidir-Seg Bidirectional Segment 
BB Branch and Bound Unidir-Seg Unidirectional Segment  
FS Flow Shop FMS Flexible Manufacturing System 
JS Job Shop Sta Static
N/A Not Available  Tij Duration of Material Handling Task 
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Table 1. Contributions in integrated scheduling 

3. Optimization Objectives 

In this section we discuss the relevance of the objective functions of scheduling problems 
formulations presented in the literature. We also present a decomposition of the different 
relevant production costs. This cost decomposition helps in the formulation of more realistic 
optimization objectives for practitioners.   
Scheduling literature mostly addresses classical problems defined since the 1950's. Too little 
analysis of the relevance of constraints and objectives has been done. Formulations lack 
richness and do not represent the industrial realities. This observation was supported by 
Browne et al. (1981).   
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Formulations naturally include constraints and objectives. These differ according to the 
setting studied. Often, all constraints are not formally considered. Some of these are 
addressed in an approximate manner at a lower level in the decision making. In the 
integrated scheduling problem addressed by a number of authors classical objectives are 
often used. We mean by classical objectives; system objectives and due date objectives 
(Graves et al. 1981).  

3.1 Common Objective Functions 

Commonly used objectives in the production scheduling literature include: 

• Minimize the makespan (Cmax)

• Minimize the maximum tardiness (Tmax)

• Minimize the total tardiness (ΣTj)

• Minimize the total weighted completion times ( wj Cj ) 

• Minimize total completion times  ( Cj ) 

• Minimize the total discounted weighted completion times wj(1-re-rcj dt)  

• Minimize total weighted tardiness ( wjTj ) 

• Minimize the number of tardy jobs ( Uj)

• Minimize the weighted number of tardy jobs ( wjUj)
Objectives used in material handling scheduling problems are also numerous. Examples 
follow:

• Maximize throughput 

• Minimize dead heads 

• Maximize the utilization or the average utilization of material handling equipment 

• Minimize the number of utilized equipment 

• Minimize the average flow time for jobs 

• Maximize the production volume or the average production volume (average number 
of finished jobs) 

• Minimize the maximal length of queues 

• Minimize the average waiting time 

• Minimize the total traveled distance = Minimize the transportation time 

• Minimize the jobs completion time 

• Minimize the total lateness 

• Minimize the makespan 

• Minimize the number of tardy jobs 

• Minimize the work in process 
Most of the literature addresses mono-objective problems. Bagchi (1989) solves a multi-
criteria single machine problem. Other researchers also solved multi-criteria single machine 
problems. However, material handling system constraints were not considered.  This 
situation proposes that the problems addressed corresponded to a certain reality of interest 
to practitioners and researchers in this period of time. Since then, objectives were not 
reconsidered. Objectives need to be reviewed in light of the practitioners needs. Complexity 
of scheduling problems has always attracted the researches attention to the development of 
better solution methods without giving enough attention to the compatibility and relevance 
of the objectives. Very few contributions discuss the compatibility of these objectives and 
objectives addressed by practitioners in industry. Another problem related to the objectives 
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is the place of the objectives in relation to constraints as well as the place of the constraints in 
relation to the objectives.  
In 1973, Holloway and Nelson argued that problems formulated in the literature are tackled in 
a different way than that of practitioners. According to the two points of view the formulation 
of constraints and objectives is mixed up. The article presents an example of a job shop 
scheduling problem with the objective of minimizing lateness subject to the constraints of 
respecting the machines capacity and respecting the precedence constraints among tasks. The 
authors propose two alternative formulations describing the same problem according to the 
different points of view.  The first formulation presents a practical point of view: 

• minimizing the necessary resources or the overtime for meeting the orders subject to 
due date and precedence constraints.  
The second formulation is interesting for solving purposes: 

• minimizing the precedence constraints violations subject to due date and machines 
capacity constraints. If we find a solution for this formulation without violating the 
precedence constraints, we will provide eventually an optimal solution for the initial 
formulation of the problem.  This second formulation has also allowed the development 
of a heuristic to solve the problem. Good solutions were obtained with the heuristic. 
The test problems size was very limited (up to 7 machines and 14 jobs).  To our 
knowledge, this review of the relevance of scheduling problems formulations was not 
readdressed in the literature. 

The first proposed formulation among these two reflects an important point of view.  In 
industry, we should respect the due dates according to a cost to be determined. Using over 
time is sometimes inevitable. In some cases, we may also need subcontracting. 
The idea of the second formulation proposes solving a constraints satisfaction problem, 
which can be done by constraint programming methodologies.  This technique is very 
effective for solving constraint satisfaction problems and it very much fits the above 
presented formulation.   
Among the interesting objectives considered for the scheduling problems are the "just in 
time” objectives which target the minimization of the lateness as well as the earliness of jobs 
in production (Biskurp, D. and Cheng, T.C.E., 1999).  The rationale behind the formulation 
of this objective is to save inventory costs as well as lateness penalties. This view to the 
problem proposes the consideration of important costs throughout the production process.  
However, the real problem would be to respect the due dates while minimizing the costs 
related to inventory and supplementary resources if needed.  Hence, a compromise must be 
worked out among different relevant costs.  The objective of minimizing costs related to the 
functioning of the production system, which is rarely studied (Lasserre, 1992), would be 
more practical and relevant. This formulation considers a production unit cost, an inventory 
cost, a stock out cost and a setup cost. The problem formulation covers a number of periods.  
Objectives related to cost optimization are generally used in planning models for calculating 
the production lots.  They are not commonly used in scheduling problems.  McNaughton 
(1959) presents an objective of minimizing the total linear lateness costs for a single machine 
problem, which is equivalent to minimizing the total lateness.  

3.2 Cost Functions 

The definition of an optimization objective for a scheduling problem reflects a certain cost 
that is considered the most important.  For example, when minimizing the makespan, we 
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minimize an idle time for equipment and workers and hence we minimize a cost to the 
enterprise. Minimization of the total lateness or the maximal lateness also reflects a cost that 
would be related, for example, to 

• the loss of a client  

• the cost of a more expensive shipping alternative in order to respect due dates. 
It would be interesting to consider direst, indirect, penalty and opportunity costs which 
were not presented in a complete fashion in problems formulated in the literature. However, 
it is important to attribute adequate coefficients to the different costs to obtain a total 
significant cost.   This demands an estimate for the different costs.  
Costs incurred by manufacturing firms were identified by Lovett, JR., (1995): 

• cost of engineering, design and development 

• manufacturing manpower 

• cost of equipment and tools  

• cost of material 

• supervision 

• cost of quality assurance, control and tests 

• cost of shipping and receiving 

• cost of packing 

• cost of handling and inventory 

• cost of distribution and marketing 

• financing

• taxes and insurance 

• overheads

• administrative costs 
Among costs listed above, only some are directly related to the scheduling problem. The 
other costs are incurred by the firm regardless the production schedule in place. 
The relevant costs are listed hereunder with proposed definitions and notations: 

• manufacturing man-power. A total cost is considered with direct components and 
indirect components like training and social benefits.  We consider only one rate for 
operators of a certain type of equipment. Differences related to competence or seniority 
are not considered.  

Cost of manufacturing man-power = MP (r) + MP (sr) +MP (sf) 
MP (r)   = regular man-power   
MP (sr) = overtime for manpower during the working days  
MP (sf) = overtime for manpower during the weekends 
Cost related to operators should be calculated according to shifts in the industry to allow for 
calculations of overtime or supplementary workforce. If we suppose that the calculated 
schedule is of z time units length, we may consider that the first x time units represent the 
regular time (corresponding to the shift) and that the following y time units represent the 
overtime.
The hourly rates of the manufacturing manpower differ according to the operators specialty 
(respective workstations: packaging, test or other), and their functions. Hence, a supervision 
cost can be envisaged.    

• Cost of equipment and tools (utilization cost/unit time). Cost of acquisition, 
depreciation and inflation are included in this cost.  Idle time of equipment is not to be 
estimated and it is among decisions to be made at other levels. 
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Un extra cost for using production or material handling equipment is reflected by expenses 
of more frequent maintenance activities, after a certain number of utilization hours. For a 
schedule that includes y extra time units we consider the following incurred cost: 

(y/nbHM)* CM 

where nbHM = number of allowed working hours of the equipment before doing the 
maintenance. 
CM = maintenance cost for the equipment.   
Stretching the schedule increases maintenance costs because equipment remains working 
even if part of the time is considered idle from the production point of view. Maintenance 
may also impose the need for extra equipment.  

• Material handling cost. In addition to the cost generated by operation overtime, 
maintenance, system supervision and eventually operators, there is a cost 
corresponding to the traveled distance. 

For an order, we should minimize:  Dt * Cp  
where Dt = total distance traveled in shop.  

    Cp = cost of traveling one unit distance.  

• Inventory cost. Orders being processed represent work in process inventory which is a 
cost to the enterprise corresponding to the flow time in the workshop. Raw material with 
a less value added cost less than almost finished products. Meanwhile, products quitting 
the system generate money which is considered a source of financing.  Possession of 
products also represents an immobilized capital and hence an opportunity cost. To 
simplify the cost calculation, we can consider only three inventory costs, even if we reach 
different levels of added value during the product flow time in shop. 

CsRM= raw material inventory cost 
CsWIP= work in process inventory cost 
CsFG= finished products inventory cost  
Other costs are to be included: 

• Lateness penalties.  The lateness penalties are evaluated according to contract terms 
and they can reach double the value of an order.  This cost is related to a promised level 
of service and it can eventually correspond to the loss of a client. 

• Setup cost.  This cost is to consider when production maybe interrupted It corresponds 
to time where production is stopped and where specializes operators are solicited for 
the setup operation. 

• Pallets cost. This cost becomes important when we consider several transfer lots. We 
can also consider a utilization cost as function in time. 

• Opportunity cost. an unnecessarily lengthy schedule including a number of idle time 
units represents an opportunity cost the same way as immobilized capital. 

• Extra cost generated by a shipping option to respect due dates. 
We have here tried to limit the costs to those related to the scheduling problem. It is clear 
that relevant cost exceed the shop floor limits. It is important to estimate these cost elements 
but this is naturally context dependant.  Our integration scheme is formalized in the next 
section and literature contributions are presented. 
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4. Integration Schemes 

As the title of this chapter suggests integration can be viewed from different angles. We are 
developing three integrative views for the scheduling problems in this chapter; namely: 

• resources integration; 

• cost elements integration and 

• solving methodologies integration.   
In our opinion these three dimensions offer an integration scheme in light of which a 
scheduling problem should be analyzed, formulated and eventually solved. However, we 
cannot leave the reader with the impression that there was no effort in structuring the 
integration concept and offering some schemes for a wide variety of optimization problems. 
We present two important classifications that address the integration and the hybridization 
concepts.   
The first classification structure is proposed by Jacquet-Lagrèze (1998). The author 
recognizes different types of hybridization and categorizes them based on the looseness or 
tightness of integration. The categories are: 

• Organizational Decomposition: 
The organization or end-user considers the problem within the organizational structure of 
the company and solves the corresponding sub-problems. In some respect the overall 
problem is computationally too difficult to be solved as a single problem, although there 
would be benefits in doing so.  

• Complexity Decomposition: 
The model is too complex to be solved as one with current software and hardware 
technologies. It is therefore broken into sub-problems, small enough to be solved by a single 
technology. The problem-solving team may also be split for each sub-problem.  

• Hybrid Decomposition: 
For efficiency reasons sub-problems may be solved using two or more models with 
associated algorithms co-operating and exchanging information.  
Little (2005) proposes the following classification structure: 

• One Technology Subsumed in Another  
One technology, or aspect of it, is subsumed within a more dominant solving technology to 
enhance its performance. This is the case with Branch and Cut (Balas et al., 1996), which is 
based on a B&B search, but enhanced at each node with cutting plane techniques.  

• Problem Decomposition
Decomposing the problem into separated modules, and then solving each part with a 
different technique. Here, the techniques collaborate by passing the results of applying the 
first technology on to the second. 

• Independent Solvers  
Solvers share information obtained by running each technology. Here one solver is run to 
some point, and then information is passed across to the other solver. In this way, each 
solver has its own model and retains its own character and strengths. However, it still uses 
aspects of the other in the form of information about the problem.  
These two schemes present a number of similarities. Organizational decomposition and 
problem decomposition can be viewed as being more or less the same. They represent an 
aggregation for both resources decomposition and cost elements decomposition that were 
important to detail earlier in a way that encompasses the scheduling problems reality.  The 
resources decomposition and the cost elements decomposition were hence two essential 
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views that merited analysis. That is why they represent two distinct elements in our 
proposed scheme.  

5. Integral Approaches for Solving Integrated Scheduling Problems  

The last section showed that efficiency entails that models and algorithms cooperate for 
exchanging information. It also showed that technologies can be integrated through 
subsuming for enhancing performance.  Getting back to the developments of section 2, it 
will be two pretentious from our side to try to draw conclusions on possible hybridizations 
or integrations. This would be imposing constraints on ideas and avenues for integrating 
approaches since different realities may suggest a variety of approaches.  In lieu of this we 
will present some observations regarding the issue.  
We observe that the complexity of the problem should orient our attention to metaheuristics 
in solving the integrated scheduling problem with efforts in hybridization. Genetic 
algorithms were used in this regard.  Zhou et al. (2001) used a hybrid approach where the 
scheduling rules were integrated into the process of genetic evolution. Tabu search was less 
used for integrated scheduling problems and other metaheuristics are not yet enough 
exploited. Hybridization among these methodologies can be envisaged. 
Hybridization among operations research techniques and constraint programming 
techniques is one of the most promising avenues for this class of problems. For more on the 
issue, Hooker and Ottosson (2003) and Milano (2004) present interesting developments.   
Contributions using constraint programming mostly employ general purpose propagation 
algorithms. A research effort is needed for developing efficient propagation algorithms for 
this class of problems.  This will also help in the hybridization efforts. For an introduction to 
constraint programming and for applications in scheduling the reader is referred to Mariott 
and Stuckey (1998), Hooker (2000) and Baptiste et al. (2001). 
It is clear that hybrid approaches can be used on the methodological level to solve 
scheduling problems, but this is not all. At the implementation level hybridization can be 
thought of from a tool box perspective. A scheduling support system might include a 
number of programmed methodologies that the practitioner may use as appropriate 
depending on the data or the size of the problem. These methodologies can also cooperate in 
sharing information. This approach was used by El Khayat et al. (2003) and El Khayat et al. 
(2006) where separate methodologies were used to solve the same problem as appropriate. 

6. Diagnosis Methodology 

As developed earlier, production scheduling problems posed in the literature do not 
correspond to what we find in real facilities (Browne et al. 1981).  In general three paradigms 
are used to tackle scheduling problems: the optimization paradigm including simulation 
and artificial intelligence among other techniques, the data processing paradigm and the 
control paradigm (Duggan and Browne 1991).  The preceding literature analysis mainly 
focused on the first paradigm with a focus on realistic formulations and solution 
methodologies for production scheduling problems. This involves integrating resources that 
were generally neglected in solving scheduling problems. Machines and material handling 
network with all its corresponding resources: vehicles, route segments, intersections and 
buffers are all constraining resources.  The more resources are integrated, the more complex 
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the problem becomes and the more difficult it can be solved. However, affirming difficulty 
should not discourage tackling the problem in a rigorous fashion.  
We think it is important to propose to practitioners in industry a diagnosis methodology for 
scheduling problems. This methodology should include an analysis and an evaluation step 
of the criticality of resources to better identify the elements necessary to include in the 
problem formulation. With the actual limits of available solving technologies, integrating 
the whole reality in a formulation may allow efficient solving of some very special cases. We 
think of equal processing times and simple precedence relations. This is to be confirmed 
through tests. This diagnosis should be undergone with simple and effective means of 
decision support. It should specify the formal problem to be addressed. To illustrate this 
methodology, we present the following figure where we try to answer three questions. 

Figure 3. Diagnosis methodology of a scheduling problem 

This methodology proposes a simplification/decomposition of the scheduling problem and 
to consider a part of it at a second level of decision making. Evidently our objective was to 
integrate the decisions and the decomposition we are proposing is different and thoughtful. 
A classical decomposition approach would be to formulate the integral problem 
incorporating all resources and then propose decomposition at the level of the solution 
methodology. In this case we target the model structures without considering data such as 
task durations, resources and precedence relations determining the criticality of a resource 
or punctual criticality phenomena. Decomposition based on the problem definition and data 
analysis seems promising and prevents either over-estimation or underestimation in the 
choice of a solution methodology. In other terms, this prevents simplifying the models if this 
penalizes and complicating them when it is not rewarding.   
However, proposing a resources criticality evaluation grid for a scheduling problem is not 
an easy task.  This evaluation should give quick and relevant information on the important 
part to consider in the first place when solving a difficult problem. We should not solve the 
whole problem to get this information. We should be able to measure criticality with 
quantifiable indicators. This information will help propose the appropriate formulation for a 
scheduling problem. We think that starting with a formulation integrating the most critical 
resources is the first determinant factor of efficient and satisfactory solving of a scheduling 
problem. Critical resources differ according to different realities. This might give rise to 
interesting methodological approaches.  
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7. Conclusion and Future Research  

In this chapter we have tried to address some integrative views for the production 
scheduling problem; namely resources integration, cost elements integration and solution 
methodologies integration. Representative literature was also covered. The integrative 
views oriented our attention to the necessity of having a diagnosis methodology assessing 
the criticality among resources and hence guiding to appropriate formulations and solution 
methodologies. The development of a criticality evaluation tool is hence an important 
research avenue.  
More research avenues can be suggested. Relevant costs are of special interest when tackling 
a scheduling problem. This stresses the need for developing cost estimation tools for this 
purpose.  The study of sequences and identification of dominance criteria when solving an 
integrated scheduling problem is also very important in the understanding and 
development of solution approaches.
Performance of approaches is most of the time data dependant, so data analysis to guide the 
choice of approaches is necessary. There has been no effort in exploiting the structural 
properties of the integrated scheduling problems. Here is an avenue to explore. 
Development of search strategies and propagation algorithms is also a promising area for 
enhancing the performance of both operations research and constraint programming 
techniques.
Our current and future research involves using a number of performing tools such as Tabu 
search to solve the integrated scheduling problem. Hybridizations with other approaches 
are being envisaged since tools are sometimes complementary.  Objective functions with 
different cost components are also being used in the different problems under study.  
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1. Introduction 

Competitions and ever-changing customer requirements are the driven forces behind 
manufacturers to reevaluate their planning and scheduling methods and manufacturing 
systems. Customers’ satisfaction in most cases can be measured by the ability of the 
manufacturing firms to provide goods with reasonably good prices, acceptable quality 
standard and deliver at the right time. Scheduling plays an important role in all of the 
important issues that are considered to measure customers’ satisfaction. In recent years, 
there has been an increased interest in production planning problems in the multi product 
chemical and pharmaceutical industry. Multi product chemical plants use either a 
continuous production system or a batch production system. Batch process plants involve 
small amounts of a large variety of finished products, therefore are suitable for the 
production of small-volume, high-value added products. In such industry, products are 
often grouped into incompatible product families, where an intensive setup is incurred, 
whenever production changes from one product family to another. 
A classical example of the multi product chemical plants is the manufacturing of resins. 
Typically, in the resin production environment , the planning and scheduling task starts by 
considering a set of orders where each order specifies the product and the amount to be 
manufactured as well as the promised due date. The most important task of the planner is 
the so-called batching of orders. Batching of orders is the process of transforming customers’ 
product orders into sets of batches to be planned and subsequently assigned due date. This 
process is commonly practiced in the industry such as this, since a batch is frequently shared 
by several orders with the earliest one determining the batch due date. Moreover, while the 
planner is carrying out this task, his/her objective is to minimize as much as possible the 
setups between products that are generated from incompatible families. Therefore, in such 
manufacturing environment, setup activities cannot be disregarded and the production 
range is usually composed of a number of incompatible product families, in a way that no 
setup is required between production of two products belonging to the same family; long 
and expensive setup operations are required otherwise. 
Scheduling is known as a decision-making process of allocating limited resources over time 
in order to perform a collection of tasks for the purpose of optimizing certain objectives 
functions (Baker 1974). Tasks can have difference in their priority levels, ready time, and 
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process times. The objective function could be, for example, minimizing completion time, 
minimizing the number of tardy jobs, or adopting the (JIT) concepts and calls for 
minimization of earliness and tardiness. There are two issues associated with scheduling 
problems: how to allocate jobs on machines and how to sequence jobs on each machine. 
Therefore, the scheduler is mainly concerned with allocation decisions and sequencing 
decisions. On another issue, one must state at this stage that there is a difference between 
sequencing and scheduling. Sequencing corresponds to a permutation of the job set in which 
jobs are processed on a given machine. While scheduling is defined as an allocation of jobs 
within a more complicated setting of machines, which could allow for preemptions of jobs 
by other jobs that are released at a later point of time. 
In the scheduling literature, setups have for long been considered negligible and hence 
ignored, or considered as part of the process time. But there are situations that call for 
treating the setups separately from the process time. In such cases, two problem types exist. 
In the first type, setups depend only on the job to be produced; hence, it is called sequence-
independent. In the second type, setups depend on both the job to be processed and the 
immediate preceding job; hence it is called sequence-dependent.
This paper aims to explore the scheduling and sequencing problem confronted by planners 
in the multi product chemical plants that involve sequencing of jobs originated from 
incompatible families making it a situation that requires sequencing of jobs with sequence-
dependent setup time. Our intension is to focus on these types of scheduling problems and 
suggest two mixed integer programming (MIP) formulations. The first formulation 
considers a single machine situation and aims to minimize total tardiness, while the second 
formulation attempts to minimize the sum of total earliness/tardiness for parallel machine 
situation.
This paper is organized as follows: Section 2 presents the literature review. Section 3 
introduces a typical multi product chemical production environment. Section 4 presents 
problem description and formulation. We present our computational example in Section 5. 
Finally, we present our conclusions and remarks in Section 6. 

2. Literature review 

Enormous solutions have been proposed for machine scheduling problems, and we do not 
attempt to cover it all here. However, interested readers are referred to the reported reviews 
by Allahverdi et al. (1999), Yang and Liao (1999), Cheng et al. (2000), Potts and Kovalyov 
(2000) and Allahverdi et al. (in press). However, we will provide a brief review related to 
our work for total tardiness for single machine and the case of earliness/tardiness for 
parallel machines situation. 

2.1 Single machine total tardiness problem 

Tardiness is the positive lateness a job incurs if it is completed after its due date and the 
objective is to sequence the jobs to minimize total tardiness. In the weighted case, each job’s 
tardiness is multiplied by a positive weight. The weighted tardiness problem in a single 
machine is NP-hard in the strong sense (Lenstra et al (1977)). Adding the characteristics of 
jobs originated from incompatible families increases the difficulty of the problem of 
minimizing the total weighted tardiness on a single machine. Many practical industrial 
situations require the explicit consideration of setups and the development of appropriate 
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scheduling tools. Among the reported cases, Pinedo (2002) describes a manufacturing plant 
making papers bags where setups are required when the type of bag changes. A similar 
situation was observed in the plastic industry by Das et al. (1995). The aluminium industry 
has a casting operation where setups, mainly affecting the holding furnaces are required 
between the castings of different alloys (see Gravel et al. (2000)).  
Previous research done in the case of incompatible job families has been focused mostly on 
single batch machine problems. Fanti et al. (1996) focused on makespan as the performance 
measurement. Kemf et al. (1998) investigated a single machine having a second resource 
requirement, with a goal of minimizing makespan and total completion time. Dobson and 
Nambimodom (2001) considered the problem of minimizing the mean weighted flow time 
and provided an integer programming (IP) formulation. Mehta and Uzsoy (1998) presented 
a dynamic programming (DP) algorithm as well as heuristics that can provide near optimal 
solutions where the performance under analysis is total tardiness. Azizoglu and Webster 
(2001) describe a branch and bound procedure to minimize total weighted completion time 
with arbitrary job sizes. Their procedure returns optimal solutions to problems of up to 25 
jobs. Most recently, Perez et al. (2005) developed and tested several heuristics to minimize 
the total weighted tardiness on single machines with incompatible job families. Their tests 
consistently show that the heuristics that uses Apparent Tardiness Cost (ATC) rule to form 
batches, combined with Decomposition heuristics (DH) to sequence jobs, perform better 
than others tested, except ATC combined with Dynamic Programming algorithms (DP). 
Their testes show that ATC-DH and ATC-DP results are close. 
The literature is also not extensive either for single machine scheduling problems with 
sequence-dependent setups, where the objective is to meet delivery dates or to reduce 
tardiness. However, Lee et al. (1997) have proposed the Apparent Tardiness Cost with 
Setups (ATCS), a dispatching rule for minimizing weighted tardiness. Among other authors 
who have treated the problem, we find Rubin and Raagatz (1995) developed a genetic 
algorithm and local improvement method while Tan and Narasimhan (1997) used simulated 
annealing as a solution procedure. Tan et al. (2000) presented a comparison of four 
approaches and concludes, following a statistical analysis, that a local improvement method 
offers a better performance than simulating annealing, which in turn is better than branch-
and-bound. In this comparison, the genetic algorithm had the worst performance. 

2.2 Parallel machines with earliness/tardiness problem 

Another scheduling approach that considers job earliness and tardiness penalties is 
motivated by the just-in-time concept (JIT). This approach requires only the necessary units 
to be provided with the necessary quantities, at the necessary times. Production of one extra 
unit is as bad as being one unit short. In today’s manufacturing environments, many firms 
are required to develop schedules that complete each customer’s order at, or near, its due 
date, and at the same time to ensure the cost-efficient running of the plant. 
There are a large number of published research papers that consider scheduling problems, 
with both earliness and tardiness penalties. These include models with common due dates 
or distinct due dates, with common/symmetrical penalty functions as well as distinct job 
dependent penalty functions. Except for a few basic models, most of these scheduling 
problems have been shown to be NP-Hard. Readers are referred to the work of Webster 
[1997] and Chen [1997] for discussion, about the complexity boundaries of these problems. 
Readers interested in earliness-tardiness scheduling are referred to the survey conducted by 
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Baker and Scudder [1990] and the recent book by T’kindt and Billout [2000]. Readers 
especially interested in earliness and tardiness scheduling with setup considerations, are 
referred to the survey article by Allahverdi et al. [in press]. However, we summarize below 
some published works related to earliness and tardiness scheduling problems considered in 
this paper. 
Kanet [1981] examined the earliness and tardiness problem, for a single machine, with equal 
penalties and unrestricted common due dates. A problem is considered unrestricted, when 
the due date is large enough not to constrain the scheduling problem. He introduced a 
polynomial time algorithm to solve the problem optimally. Hall [1986] extended Kanet’s 
work and developed an algorithm that finds a set of optimal solutions for the problem based 
on some optimality conditions.  Hall and Posner [1991] solved the weighted version of the 
problem with no setup times. Azizoglu and Webster [1997] introduced a branch-and–bound 
algorithm to solve the problem with setup times. Other researchers who worked on the 
same problems with a restricted (small) due date, included Bagchi et al. [1986], Szwarc 
[1989, 1996], Hall et al. [1991], Alidee and Dragan [1997] and Mondal and Sen [2001].None of 
the previous papers consider sequence-dependent setup times. 
The majority of the literature on earliness and tardiness scheduling deals with problems that 
consider single machine only. Problems with multiple machines have been investigated in 
only a handful of papers which includes among others, Emmons [1986], Cheng and Chen 
[1994], De et al. [1994], Li and Cheng [1994], Kramer and Lee [1994], Federgruen and 
Mosheiov [1996,1997], Adamopouls and Pappis [1998] and Chen and Powell [1999].  To the 
best of our knowledge, there have been very few publications that propose a mixed integer 
programming solution for parallel machines that consider setup for the earliness and 
tardiness scheduling problem. Balakrishnan et al. [1999] considers the problem of 
scheduling jobs on several uniform parallel machines and presented a mixed integer 
programming formulation. However, their reported experiments show that their approach 
cannot solve a problem with more than 10 jobs. More recently, Zhu and Heady [2000] 
proposed a mixed integer programming formulation for minimizing job earliness and 
tardiness scheduling problem for a non-uniform parallel machine and setup considerations. 
However, their reported experiments show that their approach cannot solve a problem with 
more than 10 jobs. Furthermore, their reported formulation suffers from a serious error 
making their reported job/machine assignment and sequential job orders questionable. And 
the work of Omar and Teo (2006) whom they corrected Zhu and Heady (2000) and proposed 
an improved MIP formulation for minimizing the sum of earliness/tardiness in identical 
parallel machine. Their tests show that their proposed formulation can provide optimal 
solution for 18 jobs originated from 4 incompatible families. 

3. Production environment  

A resin manufacturing company in South East Asia will be used to illustrate the production 
environment. The plant has two production lines and the major types of production 
reactions include Alklylation, Acyliction and Aminotion, leading to the production of over 
100 finished products. Figure 1 show the structure of the most active 20 products which are 
generated from 5 incompatible families. 
The plant operates on three shifts, and each production year has 358 days. Working capacity 
is around 742 tons and 663 tons per month for line one and line two respectively.  The 
operation in each production line is a reaction process, where the chemical reaction takes 
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place in a reactor; mixing where chemicals are mixed in a thinning tank; filtering, where 
purities are controlled to meet customer’s request; and packaging. Reaction is the bottleneck 
operation, hence the working capacities estimated, are based on the reaction process.  
Demand of finished products is considered to be high and therefore, all products cannot be 
satisfied from production runs, since some of the available capacity is consumed for setups. 
The workforce involved on the production is very limited and each shift requires 7 persons 
to run the process and the company does not practice workforce variation policies. 

Figure 1.  Distribution of Product families for the most active products 

When the demand estimates for the next year are ready, the marketing division passes these 
estimates to the production division to prepare the operational budget for the next year.  The 
order batching process starts when the production planner receives customers’ orders with due 
dates.  The ultimate objective of this process is to meet the customers due dates and minimize 
setup activities. Interested readers are referred to the work reported by Omar and Teo (2007) for 
detailed solution for the planning and scheduling problem described in this section. 

4. Problem formulation

In the production environment described above, the scheduling and sequencing problem 
can be formulated in various ways. We will present two different formulations that reflect 
some management policies that the company might wish to implement. First, the 
management might wish to implement a product/production line dedication policy, and in 
that case, the two production lines will be treated as a two separate single production lines, 
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or in another world, two separate single machine situation. For this case, we will provide an 
MIP modeling approach that aims to minimize total tardiness. In the second case, the 
company may consider examining the idea which assumes that that all products can be at 
any instant of time produced in any of the production lines. In such a case, we will provide 
an MIP modeling approach that treats this situation as identical parallel machines and aims 
to minimize the total earliness and tardiness. 
It is worth noting that MIP codes have a weakness when confronted with real life industrial 
scheduling and sequencing problems that involve hundreds of products, since the 
computational time will increase exponentially as the number of integer variables increase. 
Consequently, the decision maker may not be able to obtain results in real time to be of any 
use for implementation purposes. However, MIP codes are beneficial to researchers for 
testing the performance of their developed heuristics, which are normally developed for 
industrial application and tested against other heuristics, a dangerous procedure practiced 
by researchers ( see Ovacik and Uzsoy (1994)). 

4.1. Single machine problem formulation  
Notations
Parameters

i

th

th

number of families.

n number of jobs in family .

total number of jobs

due date of j  job in family .

processing time of j  job in family .

 setup time of family .

=
=
=
=

=

=

ij

ij

i

m
i

n
d i

p i
s i

Decision Variables: 

=

=

otherwise
kpositionatjobabeforeneededisssetupif

Y

otherwise
kpositioninplacedisifamilyfromjjobif

X

i
ik

ijk

0

1

0

1

th

completion time of the job at position .

tardiness of the j  job in family  at position 

=

=
k

ijk

C k

T i k
Formulation
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nm n
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i 1 j 1 k 1
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i 1 j 1

n

ijk i

k 1

Min T (1)

 Subject to:

X 1 k 1, 2,..., n (2)

X 1 i 1, 2,..., m; j 1, 2,..., n (3)

= = =

= =

=

= =

= = =
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−
= = =

= = = =

= + + =

− ≤ =

≥ =
≥ = = =

In the above formulation, equation (1) represents the objective function, which is to 
minimize total tardiness. Equations (2) and (3) state that each position can be occupied by 
only 1 job and each job can be processed only once. Equation (4) checks whether or not the 
preceding job and the following job are from the same family. If so, there is no setup time 
between them. Otherwise, a family setup time of the job in position k exists. Equation (5) 
states the completion time of the job in the first position. Equation (6) calculates the 
completion time from the second position to the last position of the sequence. Equation (7) 
determines the tardiness values for all positions. Equations (8) and (9) give the non-
negativity constraints. 

4.2. Parallel machines problem formulation 
Notations
Parameters:  

m    = number of families. 

r    = number of production lines. 

n    = total number of jobs. 

jf    = family of job j, 
jf =1, 2,…, m 

jd  = due date for job j.

jlp  =   processing time of job j at production line l.

je  = earliness penalty for job j.

jt  = tardiness penalty per period for job j.

jks = setup time from family of job j to family of job k.

=

≠
=

kj

kjjk

if0

if

ff
ffs

G jk

M = A large positive number. 
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Decision Variables: 

jE  = earliness for job j.

jT  = tardiness for job j.

jC  = completion time of job j.

=
otherwise0

.lineinprocessedfirst theisjobif1 lj
jlα

=
otherwise0

.jobafterrightscheduledbeenhasjobif1 jk
jkθ

jlβ   : Continuous variable restricted to the range [0, 1], denoting that job j has been 

scheduled in line l but not in first place. 
Formulation
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jkkjkj dd θθ ≤ , nknj ,...,2,1;,...,2,1 ==  (19) 

0,, ≥jjj TEC , nj ,...,2,1=  (20) 

In the above formulation, equation (10) represents the objective function, which is to 
minimize the weighted sum of earliness-tardiness. Equation (11) states that each job must be 
assigned to one production line. Equation (12) enforces both the job and its direct successors 
in the processing sequence to be manufactured on the same line. Equation (13) states that 
each job, if first, can only be processed first on one line. Equation (14) enforces that a job is 
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either the first to be processed, or succeed another in the processing sequence. Equation (15) 
ensures that every job should at most be directly succeeded by another job in the processing 
sequence, unless it is last in the sequence. Equation (16) ensures that the processing start 
time for a job can never be lower than the completion time of its direct predecessor job in the 
processing sequence. Equation (17) states that completion time of a job must be later or 
equal to its processing time. Equation (18) measures the degree to which each job is tardy or 
early. Equation (19) states that the due date of a job must be the same or earlier than its 
direct successor job. Equation (20) is the non-negativity constraint. 

5. Computational example 

The models are illustrated using the data shown in Tables 1 and 2. The data presented in 
Table 1 is for a scheduling and sequencing problem that consists of 10 jobs that can be 
originated from 2, 3 or 4 incompatible families. As it could be seen in Table 1, the setup time 
required when the production runs change from one family to another is fixed. On the other 
hand, Table 2 is used to create variable setup times among the different product families. It 
is worth noting that in our computations for parallel machines situation, earliness penalty 

was calculated using the value of 1)1( −+J  whereas the tardiness penalty was kept to be 

equal to one. 

10 jobs originated from 2 incompatible families 

J 1 2 3 4 5 6 7 8 9 10 

F 1 1 1 1 1 2 2 2 2 2 

P 3 8 9 5 2 6 11 4 10 7 

DD 11 18 16 17 27 19 15 12 21 26 

Setup 1 1 1 1 1 1 1 1 1 1 

10 jobs originated from 3 incompatible families 

J 1 2 3 4 5 6 7 8 9 10 

F 1 1 1 1 1 2 2 3 3 3 

P 3 8 9 5 2 6 11 4 10 7 

DD 11 18 16 17 27 19 15 12 21 26 

Setup 1 1 1 1 1 1 1 1 1 1 

10 jobs originated from 4 incompatible families 

J 1 2 3 4 5 6 7 8 9 10 

F 1 1 1 2 2 3 3 3 4 4 

P 3 8 9 5 2 6 11 4 10 7 

DD 11 18 16 17 27 19 15 12 21 26 

Setup 1 1 1 1 1 1 1 1 1 1 

J=Job, F= Family. P=process time in hours. DD=Due date in hours. Setup in hours  

Table 1. Ten jobs originated from different incompatible families with constant setup time 
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In this study, the MIP models were developed using OPL Studio version 3.6 and solved 
using CPLEX version 8. Models were executed with Pentium IV 2.80Hz. processor, while 
Microsoft Excel is used to export and import data and solution. The data required by the 
developed MIP models, and to be used for illustrative purposes is presented in Tables 1 and 
2.

 F1 F2 F3 F4 

F1 0 2 1 2 

F2 1 0 2 3 

F3 2 1 0 1 

F4 3 2 1 0 

Table 2. Families setup time matrix 

No. of 
jobs

No. of 
families 

Sequence Total 
tardiness

No. of 
setups 

Single machine with constant setup time 

10 2 1 4 8 6 10 5 2 3 9 7 141 3 

10 3 8 1 4 2 5 6 10 9 3 7 150 4 

10 4 1 8 6 4 5 10 9 2 3 7 154 5 

Single machine with variant setup time 

10 2 8 6 1 4 2 5 3 10 9 7 148 2 

10 3 4 1 8 6 5 2 3 10 9 7 153 5 

10 4 1 8 6 4 5 2 3 10 9 7 157 5 

Parallel machines with constant setup time 

L1:8 7 6 10 5
10 2 L2:1 3 4 2 9

31.88 2 

L1:1 3 4 2 9
10 3 L2:8 7 6 10 5

37.80 4 

L1:1 3 4 2 9
10 4 L2:8 7 6 10 5

38.81 5 

Parallel machines with variant setup time 

L1:1 3 4 2 5
10 2 L2:8 7 6 9 10

32.80 - 

L1:1 3 4 2 9
10 3 L2:8 7 6 10 5

39.9 4 

L1:8 7 6 10 5
10 4 L2:1 3 4 2 9

43.81 5 

Table 3 Summary of the computational results 
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Figure 2. for 10J 2 F single machine fixed setup times 

Figure 3. for 10J 2 F single machine variable setup times 

Figure 4. for 10J 2 F parallel machines fixed setup times 

Figure 5. for 10J 2 F parallel machines variable setup times 

6. Concluding remarks 

The results of the performance of the developed MIP for single and parallel machines are 
summarized in Table 3 and the sample of the results is presented in Gantt chart is shown in 
Figures 2-5. Examining the results presented in Table 3 reveals that for all cases tested, total 
tardiness and number of setups increases as the number of incompatible families involved 
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in the scheduling activities increases. As it is expected, when more resources are involved in 
the scheduling activities, the total tardiness will decrease, when an additional machine is 
added, tardiness improved almost 5 times 
As a summary, in this research we presented the characteristics of an industrial 
environment where products (jobs) that originated from incompatible families are required 
to be scheduled and sequenced to meet some predetermined due dates. We presented two 
MIP formulations to solve such scheduling and sequencing requirements. The first MIP 
formulation aims to minimize the total tardiness while the second MIP formulation adopts 
the just-in-time concept and calls for minimizing the sum of earliness and tardiness for 
parallel machines. Moreover, we presented computational examples that consider fixed and 
variable setup times when the production runs changes from one product family to another. 
It is worth noting that with MIP models, computational time grows in an almost exponential 
manner as the problem size is increased. This known fact is considered as a major drawback 
for using MIP in real industrial application, none the less, MIP models are the only way to 
check optimality of heuristics solutions employed to solve industrial size scheduling 
problems.
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1. Introduction 

This chapter presents a novel, mixed-integer programming model of the flexible flow line 
problem that minimizes the makespan of a product. The proposed model considers two 
main constraints, namely blocking processors and sequence-dependent setup time between 
jobs. We extend two previous studies conducted by Kurz and Askin (2004) and Sawik 
(2001), which considered only one of the foregoing constraints. However, this chapter 
considers both constraints jointly for flexible flow lines. A flexible flow line consists of 
several parallel processing stages in series, separated by finite intermediate buffers, in which 
each stage has one or more identical parallel processors. The line produces several different 
jobs, and each job must be processed by at most one processor at each stage. The completed 
job may remain on a machine and block the processor until a downstream processor 
becomes available for processing in the next stage; this is known as the blocking processor
constraint. In the sequence-dependent setup time constraint , the processing of each job requires 
a setup time for preparing the processor that is immediately dependent on the preceding 
job. The objective, therefore, is to determine a production schedule for all jobs in such a way 
that they are completed in a minimum period of time (i.e., makespan). A number of 
numerical examples are solved and some computational results are reported to verify the 
performance of the proposed model. Finally, areas for future research are identified. 
A flexible flow line consists of several processing stages in series, separated by finite inter-
stage buffers, where each stage includes one or more identical parallel machines. The line 
produces several different job types. Each job must be processed by at most one machine in 
each stage. A processed job on a machine in some stage is transferred either directly to an 
available machine in the next stage (or another downstream stage depending on the job-
processing route), or, when no intermediate buffer storage is available, to a buffer ahead of 
that stage. The job may remain on the machine and block it until a downstream machine 
becomes available (i.e., a blocking processor) (McCormick, 1989; Hall and Sriskandarajah, 
1996; Sawik, 2000; Sawik, 2002). However, this blockage prevents another job from being 
processed on the blocked machine. Actually, a flexible flow line represents a special type of 
traditional flow shop, in which there is only one machine in each stage and unlimited 
intermediate storage between successive machines. The flexible flow line with unlimited 
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intermediate buffers has been also referred to a hybrid flow line (Blazewicz et al., 1994). 
Blocking scheduling problems arise in modern manufacturing environments, such as just-
in-time production systems or flexible assembly lines, that have limited intermediate buffers 
between machines, or no buffers (e.g., surface mount technology (SMT) lines in the 
electronics industry for assembling printed circuit boards (Sawik, 2001)). 
Setup includes work required to prepare the machine, process, or bench for job parts or the 
cycle. This presentation includes obtaining tools, positioning work-in-process inventory, 
returning tools and fixtures, cleaning up, setting the required jigs and fixtures, adjusting 
tools, and inspecting materials. Because of its complexity, in most studies, the setup 
operation (time and/or cost) has been considered negligible and hence ignored, or 
considered as part of the processing time in the case of setup times. While this may be 
justified for some scheduling problems, many other situations call for explicit (separable) 
setup time consideration. For a separable setup, two types of problem exist. In the first type, 
setup depends only on the job to be processed, hence is called sequence-independent. In the 
second type, setup depends on both the job to be processed and the immediately preceding 
job, hence is called sequence-dependent (Allahverdi et al., 1999).  

2. Literature Review 

The literature on the traditional flow shop and parallel machines scheduling is abundant 
and contains various optimization and approximation algorithms (Blazewicz et al., 1994). In 
addition, scheduling for flexible lines has been analyzed extensively in the literature over 
the last three decades. Kusiak (1988) considered flexible machining and assembly systems as 
two dependent subsystems, and proposed a heuristic two-level scheduling algorithm for a 
system consisting of a machining and an assembly subsystem in a flexible manufacturing 
system (FMS).  Brandimart (1993) proposed a hierarchical algorithm for the flexible job shop 
scheduling problem based on a tabu search algorithm to minimize the makespan and the 
total weighted tardiness. Daniels and Mazzola (1993) used a tabu search algorithm for the 
flexible-resource flow shop scheduling problem (FRFSP). They introduced the FRFSP as a 
generalization of the flow shop scheduling problem. It explicitly considers the dynamic 
allocation of a flexible resource to machines, with operation processing times determined as 
a function of the amount of assigned resource. This problem requires that job-sequencing 
and resource-allocation decisions be made in conjunction, thus creating an environment in 
which significant operational benefits can be realized. Control of operation processing times 
by means of strategic resource allocation is a familiar concept in the project management 
literature. Riezebos et al., (1995) introduced a special instance of the flow shop scheduling 
problem originating from flexible manufacturing systems. In this problem, there is one 
machine at each stage. A job may require multiple operations at each stage. The first 
operation of a job on stage j cannot start until the last operation of the job on stage j-1 has 
finished. Preemption of the operations of a job is not allowed. To move from one operation 
of a job to another requires a finite amount of time, called a time lag. This time lag is 
independent of the sequence and may not be the same for all operations or jobs. During a 
time lag of a job, operations of other jobs may be processed.  
Lee and Vairaktarakis (1998) compared the throughput performance of several flexible flow 
shop and job shop designs. They considered the two-stage assembly flow shops with m
parallel machines in Stage 1 and a single assembly facility in Stage 2. Every upstream 
operation can be processed by any one of the machines in Stage 1 prior to the assembly 
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stage. They also studied a similar design where every Stage 1 operation is processed by a 
predetermined machine. For both designs, they presented heuristic algorithms with good 
worst-case error bounds, and showed that the average performance of these algorithms is 
near optimal. Jayamohan and Rajendran (2000) investigated the effectiveness of two 
approaches using different dynamic dispatching rules for the scheduling of flexible flow 
shops minimizing the flow times and tardiness of the jobs. Quadt and Kuhn (2005) 
considered a lot-sizing and scheduling problem of flexible flow lines for a semiconductor 
industry that minimizes the mean flow time as well as set-up, inventory holding, and back-
order costs. Hong et. al., (2005) introduced a new fuzzy flexible flow shops for more than 
two machine centers with uncertain processing times and triangular membership functions. 
They also applied the triangular fuzzy LPT algorithm to allocate jobs and triangular fuzzy 
Palmer algorithm to find suitable sequence for the jobs. Alisantoso et al., (2003) proposed an 
immune algorithm for the scheduling of a flexible flow shop for PCB manufacturing.  Torabi 
et al., (2005) studied the common cycle multi-product lot-scheduling problem in 
deterministic flexible job shops, and proposed an efficient enumeration method to 
determine the optimal solution for their model. Tavakkoli-Moghaddam and Safaei, (2005) 
proposed a queen-bee-based genetic algorithm to schedule flexible flow lines while 
considering the blocking processor. Tavakkoli-Moghaddam et al., (2007) also proposed a 
memetic algorithm to solve the mentioned scheduling problem. Jungwattanakit et al., (2007) 
formulated a 0–1 mixed-integer program to address the flexible flow shop scheduling 
problem in the textile industries that determines a schedule by minimizing a convex 
combination of makespan and the number of tardy jobs.  
Research on the development of scheduling algorithms for flexible flow lines with finite or 
limited capacity buffers, or with no in-process buffers, is mostly restricted to the heuristics 
domain, in which good solutions are produced in reasonable computing times (Sawik, 1993; 
Sawik, 1994). Sawik (2000; 2001; 2002) first proposed an integer programming formulation 
for scheduling flexible flow lines with blocking processor and limited buffers. Sawik (2001) 
presented new mixed-integer programming formulations for blocking scheduling of SMT 
lines for printed wiring board assembly to minimize the makespan. He tested the model for 
small-sized problems (e.g., five stages and ten jobs). Kaczmarczyk et al., (2004) proposed a 
new mixed integer programming formulation for general or batch scheduling in SMT lines 
with continuous or limited machine availability. Their formulation is an improved version 
of the model presented by Sawik (2001), incorporating new cutting constraints on decision 
variables. They also presented a new formulation for batch scheduling with various specific 
cutting constraints. Tavakkoli-Moghaddam and Safaei (2006) presented an intial idea to 
consider both the blocking processor and sequence dependent setup time in flexible flow 
lines. Kis and Pesch (2005) provided a comprehensive and uniform overview on exact 
solution methods for flexible flow shops with branching, bounding, and propagating of 
constraints, under the following two objective functions: minimizing both the makespan and 
mean flow time of a schedule. Quadt and Kuhn (2007) also presented a taxonomy for 
flexible flow line scheduling procedures that included heuristic, metaheuristic, and holistic 
approaches.
The significance of setup times has been investigated in several studies. Wilbrecht and 
Prescott (1969) found that sequence-dependent setup times were significant when a job shop 
was operated at or near full capacity. In a survey of industrial managers, Panwalkar et al., 
(1973) discovered that out of about three-quarters of the managers' reports, at least some of 
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their scheduled operations require sequence-dependent setup times, while approximately 
15% reported all operations requiring sequence-dependent setup times. Flynn (1986) 
determined that applications of both sequence-dependent setup procedures and group 
technology principles increased output capacity in a cellular manufacturing shop. Wortman 
(1992) also underlined the importance of considering sequence-dependent setup times for 
the effective management of manufacturing capacity. Krajewski et al., (1987) examined those 
factors in a production environment that had the biggest influence on performance and 
concluded that, regardless of the production system in use, simultaneous reduction of setup 
times and lot sizes was the most effective way to reduce inventory levels and improve 
customer service. Kurz and Askin (2004) presented an integer programming (IP) approach 
for a flexible flow line problem with infinite buffer and sequence-dependent setup time; 
their model does not consider blocking processor. A major disadvantage of the above 
integer programming approaches to scheduling is the need for solving large mixed-integer 
programs to obtain meaningful optimal solutions (Greene and Sadowski, 1986; Jiang and 
Hsiao, 1994). The size and complexity of the integer programming formulation increase 
when introduction of finite-capacity buffers results in a blocking scheduling problem. 
Although recent theoretical advances in integer programming and the advent of 
sophisticated computer hardware have enabled very powerful commercial software 
packages to come into use, large-sized problems cannot be optimaly solved within a 
reasonable time. Thus, heuristic or metaheuristic algorithms must be used for solving large 
and complex problems (Kurz and Askin, 2004).  
While recent advances in manufacturing technologies such as flexible manufacturing 
systems (FMSs) or single-minute exchange of die (SMED) concepts have reduced the 
influence of setup time, there are still many environments where setup time is significant. 
There are also many practical applications that support separate consideration of setup tasks 
from processing tasks. These applications can be found in various shop types and 
environments; e.g., production, service, and information processing. Pinedo (1995) 
described a paper-bag factory where setup was needed when the machine was switched 
between types of paper bags, and the setup duration depended on the degree of similarity 
between consecutive batches, e.g., size and number of colors. The printing industry provides 
numerous applications of sequence-dependent setups where the machine cleaning involved 
depends on the color of the current and immediate following orders (Conway et al., 1967). 
In several textile industry applications, setup for weaving and dying operations depends on 
the job sequence. In the container and bottle industry, the settings change depending on the 
sizes and shapes of the containers. Further, in the plastic industry, different types and colors 
of jobs require sequence-dependent setups (Das et al., 1995; Franca, 1996; Srikar and Ghosh, 
1986; Bianco, 1988). Similar practical situations arise in the chemical, pharmaceutical, food 
processing, metal processing, and paper industries (Bitran and Gilbert, 1990). Also, in an 
automatic turning center (ATC), setup time depends on the difference in the number and 
types of tools currently mounted on the turret and those required for the next work piece. 
Other examples of sequence-dependent setup time applications include a semiconductor 
testing facility (Kim and Bobrowski, 1994) and a machine shop environment (Ovacik and 
Uzsoy, 1992). Sule and Huang (1983) described the activities typically associated with 
sequence-dependent and sequence-independent operations in machine shop environments.
Allahverdi et al., (1999) conducted a comprehensive review of setup-time research for 
scheduling problems classifying into batch, non-batch, sequence-independent, and 
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sequence-dependent setup. Also, Wang (2005) reviewed research on flexible flow shops 
(FFSs). Botta-Genoulaz (2000) solved a FFS problem with precedence constraints, time lags, 
setup and removal times, and due dates to minimize the maximum lateness.  
In this chapter, we consider the flexible flow line problem (FFLP) with sequence-dependent 
setup time, without intermediate buffers that may lead to blocking processors. 
Simultaneouse consideration of both sequence-dependent setup time and blocking 
processor make the problem very complex for modeling and solving. We present a mixed-
integer programming model that is optimally solved by a branch-and-bound (B/B) 
approach for small-sized problems. The rest of the chapter is organized as follows. The 
problem is described in Section 3; the proposed model is presented in Section 4; 
computational results are reported in Section 5; and in Section 6, conclusions are presented. 

3. FFLP with Sequence-Dependent Setup Time and Blocking Processor 

As mentioned earlier, the flexible flow lines problem (FFLP) with blocking (FFLPB) 
processor is a flexible flow line scheduling problen with no intermediate buffers or in-
process buffers (Sawik, 2000). A processed job on a machine may remain there and block the 
processor until a downstream processor becomes available for processing in the next stage. 
A unified modeling approach is adopted with the buffers viewed as machines with zero 
processing times. As a result, the scheduling problem with buffers can be converted into one 
with no buffers but with blocking (Sawik, 1993 and 1995). The blocking time of a machine 
with zero processing time denotes job waiting time in the buffer represented by that machine. 
We assume that each job must be processed in all stages, including the buffers stages. 
However, zero blocking time in a buffer stage indicates that the corresponding job does not 
need to wait in the buffer. It is worth noting that for each buffer stage, job completion time is 
equal to its departure time from the previous stage, since the processing time is zero. In the 
notation proposed by Sawik (2000), buffers and machines are jointly called processors.
In this chapter, the FFLB problem consists of m processing stages in series, as shown in 

Figure 1. Each stage i (i =1,…, m) is made up of ni  1 identical parallel processors. The 
system produces K jobs of various types. Each job must be processed without preemption on 
exactly one processor in each of the stages sequentially. That is, each job must be processed 
in stage 1 through stage m, in that order. The order of processing the jobs in every stage is 
identical and determined by an input sequence in which the jobs enter the line. Let pik be the 
processing time for job k (k =1,…,K) in stage i. Also, the completion time for job k in stage i is 
denoted by cik , and dik is its departure time from stage i. Processing without preemption 
indicates that job k completed in stage i at time cik had started its processing in that stage at  

time cik - pik . Job k completed in stage i at time cik departs at time dik cik to an available 
processor in the next stage i+1. If time cik of all ni+1 processors in stage i+1 are occupied, then 
the processor in stage i is blocked by job k until time dik = c(i+1)k - p(i+1)k , when job k starts 
processing on an available processor in stage i+1 (see Figure 2). Note that c(i+1)k is 
determined with respect to c(i+1)(k-1). The objective is to determine an assignment of jobs to 
processors in each stage over a scheduling horizon in such a way that all the jobs are 
completed in a minimum time in order to minimize the makespan (i.e., Cmax = maxk{cmk}).     
With blocking processor, on the other hand, it is possible that we encounter idle time for 
processors. In Figure 3, job l must be processed on stage i+1 (on the same processor) 
immediately before job k, where cik > d(i+1)l. Therefore, the corresponding processor incurs an 
idle time in interval (d(i+1)l, cik]. As depicted in Figure 3, the complete and departure times for 
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job k in stage i are the same, because the corresponding processor in stage i+1 is idle at the 
same time and job l can be processed on stage i+1 immediately after completion in stage i.

Figure 1. A flexible flow line with no intermediate buffers 

Figure 2. A schema of processor blocking 

As noted earlier, setup time can include the time for preparing the machine or the processor.  
In an FFLPB with sequence-dependent setup time (FFLPB-SDST), it is assumed that the 
setup time depends on both jobs to be processed, the immediately preceding job, and the 
corresponding stage. Thus, a proper operation sequence on the processors has a significant 
effect on the makespan (i.e., Cmax). As already assumed, the processors in each stage are 
identical, whereas the stages are different. Therefore, it is assumed that the setup time also 
depends on the stage type. A schema of sequence-dependent setup time in the FFLPB is 
illustrated in Figure 4. Job q must be processed immediately before job k in stage i. Also, job l
must be processed immediately before job k in stage i+1. siqk is equal to the processor setup 
time for job k if job q is the immediately preceding job in the sequence operation on the 
corresponding processor. Likewise, s(i+1)lk is equal to the processor setup time for job k if job l
is  the immediately preceding job. Job q is completed in stage i at time ciq and departs as time 

diq  ciq to an available processor in stage i+1 (excepting the one that is processing job k). As a 

result, job k is started at time diq+siqk in stage i and departs at time dik  d(i+1)l to stage i+1.

Likewise, job l is completed in stage i+1 at time c(i+1)l and departs at time d(i+1)l  c(i+1)l to an 
available processor in the next stage. As a result, job k started at time d(i+1)l +s(i+1)lk in stage 
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i+1 and completed at time c(i+1)k. It is worth noting that the blocking processor or idle times 
cannot be used as setup time, because we assume the preparing processor requires the 
presence of a job. 
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Figure 3. A schema of idle time 

Figure 4. A schema of sequence-dependent setup time in FFLPB 

4. Problem Formulation 

In this section, we present a proposed model for the FFLP by considering both the blocking 
processor and sequence-dependent setup time. This model belongs to the mixed-integer 
nonlinear programming (MINLP) category. Then, we present a linear form for the proposed 
model. Without loss of generality, the FFLP can be modeled based on a traveling salesman 
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problem approach (TSP), since each processor at each stage plays the role of salesman once 
jobs (nodes) have been assigned to the processor. In this case, the sum of setup time and 
processing time indicates the distance between nodes.  Thus, essentially the FFLP is an NP-
hard problem (Kurz and Askin, 2004). A detailed breakdown of the proposed model 
follows.  

4.1. Assumptions 

The problem is formulated under the following assumptions. Like Kurz and Askin (2004), 
we also consider blocking processor and sequence-dependent setup times. 
1. Machines are available at all times, with no breakdowns or scheduled or unscheduled 

maintenance. 
2. Jobs are always processed without error.
3. Job processing cannot be interrupted (i.e., no preemption is allowed) and jobs have no 

associated priority values. 
4. There is no buffer between stages, and processors can be blocked. 
5. There is no travel time between stages; jobs are available for processing at a stage 

immediately after departing at previous stage. 
6. The ready time for all jobs is zero.
7. Machines in parallel are identical in capability and processing rate. 
8. Non-anticipatory sequence-dependent setup times exist between jobs at each stage. 

After completing processing of one job and before beginning processing of the next job, 
some sort of setup must be performed. 

4.2. Input Parameters 

m = number of processing stage.  
K = number of jobs. 
ni= number of parallel processors in stage i.
pik = processing time for job k in stage i.
silk = processor setup time for job k if job l is the immediately preceding job in sequence 

operation on the processor i. As discussed earlier, we assume that processors at each 
stage are identical, thus Silk is independent of index j, i.e., the processor index. 

4.3. Indices 

i  = processing stage, where i =1,…, m.
j = processor in stage, where j =1,…, ni.
k, l = job, where k, l =1,…, K.

4.4. Decision Variables 

Cmax = makespan. 
cik = completion time of job k at stage i.
dik = departure time of job k from stage i.
xijlk = 1, if job k is assigned to processor j in stage i where job l is its predecessor job; 

otherwise xijlk = 0. Two nominal jobs 0 and K+1 are considerd as the first and last 
jobs, respectively (Kurz and Askin, 2004). It is assumed that nominal jobs 0 and 
K+1 have zero setup and process time and must be processed on each processor in 
each stage. 
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4.5. Mathematical Formulation 
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xijlk {0,1}     i,j,l,k     ;       cik , dik  0       i,k  

The objective function is to minimize the schedule length. Constraint (1) ensures that each 
job k in every stage is assigned to only one processor immediately after job l. Constraint (2), 
which is complementary to Constraint (1), is a flow balance constraint, guaranteeing that 
jobs are performed in well-defined sequences on each processor at each stage. This 
constraint determines which processors at each stage must be scheduled. Constraint (3) 
calculates the complete time for the first available job on each processor at stage 1. Likewise, 
Constraint (4) calculates the complete time for the first available job on each processor in 
other stages, and also guarantees that each job is processed in all downstream stages with 
regard to setup time related to both the job to be processed and the immediately preceding 
job. Constraint (5) controls the formation of the processor's blocking. Constraint (6) 
calculates the processing of a job depending on the processing of its predecessor on the same 
processor in a given stage. This constraint controls creating the processor's idle time. Both 
constraint sets (5) and (6) ensure that a job cannot begin setup until it is available (done at 
the previous stage) and the previous job at the current stage is complete. Constraint (6) 
indicates that the processing of each job in every stage starts immediately after its departure 
from the previous stage plus the setup time of the immediately preceding job. Actually, this 
constraint calculates the departure time related to each job at each stage except for the last 
stage. Constraint (7) ensures that each product leaves the line as soon as it is completed in 
the latest stage. Finally, Constraint (8) defines the maximum completion time. 
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4.6. Model Linearization 

The proposed model has a nonlinear form because of the existence of Constraint (5). Thus, it 
cannot be solved optimally in a reasonable time by programming approaches. Thus, we 
present a linear form for the proposed model by defining the integer variable yijlk and
changing Constraint (5), as indicated in the following expressions. 

1           , , ,ijlk ilk il ijlky s d M x i j l k  (9) 

 (10) 

1 1,

         ,
in K

ik ik ijlk
j l l k

c p y i k

where M is an arbitrary big number. Constraint (5) must be replaced by Constraints (9) and 
(10) in the above proposed model.  

4.7 A Lower Bound for the Makespan 

In this section, we develop a processor based on a lower bound and evaluate schedules 
produced in this manner with other heuristic (or metaheuristic) approaches. The proposed 
lower bound was developed based on the lower-bound method presented by Sawik (2001) 
for the FFLPB. The proposed lower bound resulted from the following theorem: 
Theorem. Equation (11) is the lower bound on any feasible solution of the proposed model.  
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Proof. Let Sik be the minimum time required to set up job k at stage i. We know that every 
job k must be processed at each stage and must also be set up. In an optimistic case, we 
assume that the work-load incurred to processors at each stage is identical. Thus, each 

processor at stage i has the minimum mean workload (1/ni) ( k[pik+Sik]) (i.e., the first term 
in Equation (11)). According to constraint sets (4) and (5), a job cannot begin setup until it is 
available and the previous job at the current stage is complete. Actually, constraint sets (4) 
and (5) remark two facts. First, each processor at each stage i incurs an idle time because of 
waiting for the first available job. A lower bound for this waiting time in stage i can be the 
second term in Equation (11). Second, each processor at each stage i incurs an idle time after 
accomplishment of processing untill the end of scheduling. This idle time is equal to the 
sum of the minimum time to processing jobs at the next stages (i.e., i+1, ..., m). A lower 
bound for this idle time can be the third term in Equation (11). The sum of the above three 
terms indicates a typical lower bound in terms of an optimistic scheduling in stage i. Thus, 

LB in Equation (11) is a lower bound on any feasible solution.

5. Numerical Examples 

In this section, many numerical examples are presented, and some computational results are 
reported to illustrate the efficiency of the proposed approach. Fourteen small-sized 
problems are considered in order to evaluate the proposed model. Each problem has some 
integer processing times selected from a uniform distribution between 50 and 70, and 
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integer setup times selected from a uniform distribution between 12 and 24 (Kurz and 
Askin, 2004). To verify the model and illustrate the approach, problems were generated in 
the following three categories: (1) Classical flow shop (one processor at each stage), termed 
CAT1 problems; (2) FFLP with the same number of processors at each stage, termed CAT2 
problems; and (3) FFLP with a different number of processors at each stage, termed CAT3 
problems. The CAT1 problems are considered simply to verify the performance of the 
proposed model. To make the comparison of runs simpler and also for standardization, we 
assume that the total number of processors in all stages is equal to double the number of 

stages, i.e., knk = 2 m. For example, a problem with three stages has six processors in total. 
These problems have been solved by the Lingo 8.0 software on a personal computer with 
Celeron M 1.3 GHz CPU and 512 MB of memory. Each problem is allowed a maximum of 

7200 seconds of CPU time (two hours) using the Lingo setting ( /Option/General 
Solver/time Limitation = 7200 Sec.). 
Table 1 contains additional information about CAT1 problems for finding optimal solutions 
(i.e., classical flow shop). Problems are considered with two, three, and four stages and more 
than four jobs. The values for Columns 'B/B Steps' and 'CPU Time' are two vital criteria for 
measuring the severity and complexity of the proposed model. Also, the dimension of the 
problem is shown when regarding the number of 'Variables' and 'Constraints' in Table 1. In 
CAT1 problems, the number of variables is less than the number of constraints. Thus, CAT1 
problems are more severe than CAT2 and CAT3 problems in terms of the time complexity and 
computational time required. For example, despite all efforts, a feasible solution is not found in 
2 hours for problem 10 (i.e., 6 jobs and 4 stages = 4 processors). However, for problem 3 in 
Table 2 with nearly the same condition and dimension (i.e., 6 jobs and 2 stages = 4 processors), 
the optimal solution is reached in less than one hour. Likewise, for problem 3 in Table 3 (i.e., 6 
jobs and 2 stages = 4 processors), the optimal solution is reached in less than three minutes. To 
illustrate the complexity of solving FFLPB-SDST, the behavior of the B/B’s CPU time vs. 
increasing the number of jobs for different numbers of stages related to data provided in Table 
1 is shown in Figure 5. As the figure indicates, by increasing the number of stages, the CPU 
time increases progressively. Table 1 also shows that increasing the number of stages (or 
processors) leads to a greater increase in computational time, rather than an increase in the 
number of jobs. Table 2 contains additional problem characteristics and information for 
optimal solutions related to CAT2 problems (i.e., there are two processors at each stage). 
Likewise, Table 3 contains additional problem information for obtaining optimal solutions 
related to CAT3 problems (i.e., different numbers of processors at each stage).   

Number of 

No. K m ni Variables Constraints B/B Steps CPU Time  Cmax LB

1 4 2 1,1 81 95 330 00:00:03 384 383 
2 5 2 1,1 121 138 2743 00:00:17 450 445 
3 6 2 1,1 169 189 151739 00:14:52 524 503 
4 7 2 1,1 225 248 - > 2 hours 610* 585 

5 4 3 1,1,1 121 140 1849 00:00:25 465 430 
6 5 3 1,1,1 181 204 9588 00:01:45 544 519 
7 6 3 1,1,1 253 280 - > 2 hours 615* 577 

8 4 4 1,1,1,1 161 185 297 00:00:26 548 520 
9 5 4 1,1,1,1 241 270 122412 00:21:20 627 605 
10 6 4 1,1,1,1 337 371 - > 2 hours Infeasible** 700 

  * The best feasible objective value is found so far. 
  ** A feasible solution is not found so far.

Table 1. Optimal solutions for CAT1 problems 
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       Number of 

No. K m ni Variables Constraints B/B Steps CPU Time  Cmax LB

1 4 2 2,2 145 145 872 00:00:05 230 218 
2 5 2 2,2 221 220 10814 00:00:55 295 252 
3 6 2 2,2 313 311 240586 00:47:36 299 291 
4 7 2 2,2 421 418 - > 2 hours 380* 335 

5 4 3 2,2,2 217 215 6644 00:00:32 314 306 
6 5 3 2,2,2 331 327 232987 01:02:38 376 328 
7 6 3 2,2,2 469 463 - > 2 hours 389* 376 

8 4 4 2,2,2,2 289 285 28495 00:02:23 395 392 
9 5 4 2,2,2,2 441 434 - > 2 hours 446* 390 

  * The best feasible objective value is found so far.  

Table 2. Optimal solution for CAT2 problems 

Number of 

No. K m ni Variables Constraints B/B Steps CPU Time  Cmax LB

1 4 2 1,3 209 145 251 00:00:03 381 380 
2 5 2 1,3 321 220 1849 00:00:36 434 429 
3 6 2 1,3 457 311 6921 00:02:32 527 523 
4 7 2 1,3 617 418 - > 2 hours 584* 577 

5 4 3 2,1,3 311 215 754 00:00:11 437 426 
6 5 3 2,1,3 481 327 89714 00:13:52 484 479 
7 6 3 2,1,3 685 463 84304 00:25:26 574 570 
8 7 3 2,1,3 925 623 - > 2 hours 645* 639 

  * The best feasible objective value is found so far.  

Table 3. Optimal solution for CAT3 problems 

m=3

m=2

m=1

Figure 5. The behavior of the B/B’s CPU time vs. increasing the number of jobs for a 
different number of stages 

A linear regression analysis was made to fit a line through a set of observations related to 
values of Cmax (i.e., makespan) vs. the lower bound (LB). Original figures were obtained 
from the results in Tables 1, 2, and 3. This analysis can be useful for estimating the Cmax

value for the large-sized problems genererated by using  the form presented in this chapter. 
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A scatter diagram of Cmax vs. the LB is shown in Figure 5. Obviously, the linear trend of the 
scatter diagram is noticeable. Table 4 contains regression results. According to Table 4, Cmax

can be estimated as . The R2 value, which is called the coefficient of 

determination, compares estimated with actual Cmax values ranging from 0 to 1. If R2 is 1, 
then there is a perfect correlation in the sample and there is no difference between the 
estimated Cmax value and the actual Cmax value. At the other extreme, if R2 is 0, the regression 
equation is not helpful in predicting a Cmax value. Thus, R2 = 0.981 implies the goodness of 
fitness and observations. For instance, we generate a problem with 20 jobs and 3 stages 
belonging to CAT2 (two processors at each stage) that cannot be solved optimally in a 
reasonable time. According to Equation (14), the lower bound for the generated problem is 
886, thus, the estimated Cmax is 893. If some other approach can achieve a solution with a 
Cmax value in the interval (886, 893], we can say that this is an efficient approach. Thus, 

interval (LB, ] can be a proper criterion for evaluating the performance of other 

approaches.

maxĈ 0.9833 LB 0.0325

maxĈ

Slop Constant R2 Regression sum of squares  Residual sum of squares 

0.9833 0.0325 0.981 912.44 202313.79

Table 4. Regression results 

As further illustrations, we present a typical optimal scheduling for each category of 
problem, i.e., CAT1, CAT2, and CAT3, in Figures 7, 8, and 9, respectively. These figures are 
created by using the notations shown in Figure 6. Figure 7 illustrates the optimal scheduling 
for problem 9 in Table 1. For instance, there is a blocking time in stage 2 (S2-P2), that is close 
to the completion time of job 3, since job 2 is not departed from stage 3. In addition, there is 
a blocking processor and immediate idle time in stage 3 that is close to the completion time 
of job 3, because job 2 is not still departed from stage 4 and the completion time of job 1 in 
stage 2 is greater than departure time of job 3 in stage 3. It is worth noting that the 
processing sequence is the same at all stages implying a classical flow shop. Figure 8 depicts 
the optimal scheduling for problem 6 shown in Table 2, in which there is one tiny blocking 
time and several relatively long idle times. For instance, there is a tiny blocking time next to 
job 3 in stage 2 on processor 1 (S2-P1) because job 2 is not yet departed from stage 3 on 
processor 2 (S3-P2). Figure 8 also presents the processing sequence between each pair of 
observed jobs. For example, the departure time of job 2 is always later than the setup time 
(processing start time) of job 1 at the stages. In general, we expect few blocking times for 
CAT1 and CAT2 problems because there are an equal number of processors at each stage 
and the model endeavors to allocate the same workload to each processor at each stage for 
minimizing Cmax. On the other hand, in CAT3 problems, we expect more blocking time 
because of the unequal number processor times at each stage. For instance, as shown in 
Figure 9, there are two relatively long blocking times in stage 1 because all jobs must be 
processed in stage 2 on only one processor. On the other hand, there are several relatively 
long idle times in stage 3 because of the above reason. Actually, stage 2 plays the role of 
bottleneck here.  
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Figure 7. Optimal scheduling for problem 9 shown in Table 1 from CAT1 
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Figure 8. Optimal scheduling for problem 6 shown in Table 2 from CAT2 

Figure 9. Optimal scheduling for problem 6 shown in Table 2 from CAT3 
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6. Conclusions 

In this chapter, we presented a new mixed-integer programming approach to the flexible 
flow line problem without intermediate buffers by assuming in-process buffers and 
sequence-dependent setup time. The proposed mathematical model can provide an optimal 
schedule by considering blocking processor and idle time as well as sequence-dependent 
setup time. We solved the proposed model for three problem categories, i.e., classical flow 
shop (CAT1), stages with an equal number of processors (CAT2), and stages with an 
unequal number of processors (CAT3). Computation results showed that solving CAT3 
problems requires low computational time, since there are less complex than CAT1 and 
CAT2 problems. On the other hand, in the classical flow shop case (i.e., CAT1), a high 
computational time is required. In many practical situations, the proposed model cannot 
optimally solve more than seven jobs with three stages (or six processors). Further, we 
developed a lower bound to evaluate the schedules produced with other heuristic or 
metaheuristic approaches. Also, a linear regression analysis was made to find a logical 
relationship between the makespan and its lower bound, which can be used in future 
research. The proposed model can be solved by other heuristic or metaheuristic approaches 
as well, and with uncertain processing times and/or setup times. It can also be solved using 
limited intermediate buffers instead of in-process buffers.  
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1. Introduction 

Scheduling is a scientific domain concerning the allocation of limited tasks over time. The 
goal of scheduling is to maximize (or minimize) different criteria of a facility as makespan, 
occupation rate of a machine, total tardiness … In this area, scientific community usually 
group the problem with, on one hand the system studied, defining the number of machines 
(one machine, parallel machine), the shop type (as Job shop, Open shop or Flow shop), the 
job characteristics (as pre-emption allowed or not, equal processing times or not) and so on. 
On the other hand scientists create these categories with the definition of objective function 
(it can be single criterion or multiple criteria). The main goal of this chapter is to present 
model and solution method for the total tardiness criterion concerning the Hybrid Job Shop 
(HJS) and Parallel Machine (PM) Scheduling Problem.  
The total tardiness criterion seems to be the crux of the piece in a society where service 
levels become the central interest. Indeed, nowadays a product often undergoes different 
steps and then traverses different structures along the supply chain, this involve in general a 
due date at each step. This can be minimized as a single objective or as a part of a multi-
objective case. 
On the other hand, the structure of a hybrid job shop consists in two types of stages with 
single and parallel machines. That is why we propose to point out the parallel machine PM 
problem domain which can be used to solve the hybrid job shop scheduling system. This 
hybrid characteristic of a job shop is very common in industry because of two major factors: 
at first some operations are longer than other ones and secondly flexible factory. Indeed, if 
some operations too long; they can be accelerated by technical engineering but if it is not 
possible they must be parallelized to avoid bottlenecks. Another potential cause is the 
flexible factory: if a factory does many different jobs these jobs can perhaps pass through a 
central operation and so the latter must increase his efficiency. 
This work is organized as follow: firstly a state of the art concerning PM is realized. The 
latter leads us to a the HJS problem where we summarize a state of the art on the 
minimization of the total tardiness and in a second step we present several results 
concerning efficient heuristic methods to solve the Hybrid Job Shop problem such as 
Genetic Algorithm or Ant Colony System algorithm. We also deal with multi-objective 
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optimizations which include the minimization of total tardiness using the NSGA-II see Deb 
et al., (2000). The Hybrid Job Shop Parallel Machine Scheduling rises in actual industrial 
facilities, indeed some of the results presented here have direct real application in a printing 
factory. Here the hybridization between the parallel machine stage and the single stage is 
provided by the printing and the winding operations which proceed with more jobs than 
cutting and packaging operations. 
To put it in a nutshell, this chapter presents exact and approximate results useful to solve 
the Hybrid Job Shop problem with minimization of total tardiness. 

2. Problem formulation 

The hybrid job shop problems or the flexible job shop problem are various considered in this 

document can be shown using the classical notation HJSm | prec, S m
sd , rj, dj | jT . It can be 

formulated as follow: n jobs (j = 1, ..., n) have to be processed by m machines (i = 1, ..., m) of 
different types gathered in E groups. In this case two types of groups are considered: groups 
with single machines and groups with identical parallel machines.  
Each job has a predetermined route that it has to follow through the job-shop. Only one 
operation for a job can be processed in a group. The maximal number of operations is equal 
to the number of groups. All the machines are available at the initial time 0. No order 
priority is assigned to the job. 
The processing of job j on machine i is referred to as operation Oi,j, with processing time pi,j.
The processing times are known in advance. Job j has a due date dj and a release date rj,
respectively, the last job operation completion time and the first job operation availability. 
No job can start before its release date and its processing should not exceed its due date. If 
operation Oi,k immediately succeeds operation Oi,j on machine i, a setup time Si

j,k is incurred. 
Such setups are sequence dependent see Yalaoui (2003) and Si

j,k need not be equal to Si
j,k. Let 

Cj denote the completion time of job j and Tj = max (Cj - dj, 0) its tardiness. The objective is to 

find a schedule that minimizes the total tardiness T = =
n
j jT1  in such a way that two jobs 

cannot be processed at the same time on the same machine. The splitting and the pre-
emption of the operations are forbidden.  

Table 1 shows an instance of the HJSm | prec, S m
sd , rj, dj | jT  problem with four jobs and 

four machines 4*4. 

Job rj dj

Total
processing 

time
Sequence Processing time 

1 0 35 27 2-1-4-3 p2,1 = 4, p1,1 = 8, p4,1 = 10, p3,1 = 5 

2 0 22 11 1-2-4 p1,2 = 2, p2,2 = 6, p4,2 = 3 

3 4 25 20 1-2-4-3 p1,3 = 7, p2,3 = 5, p4,3 = 1, p3,3 = 7 

4 1 34 14 4-3-1 p4,4 = 7, p3,4 = 4, p1,4 = 3 

Table 1. Example 4*4 

The HJSm | prec, S m
sd , rj, dj | jT  problem, extends the classical job shop problem by the 

presence of identical parallel machines, by allowing for sequence dependent setup times 
between adjacent operations on any machine and the restriction of jobs arrival dates. 
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The classical job-shop problem, Jm || , is a well-known NP-hard combinatorial 
optimization one, see Garey  and Johnson, (1979),  which makes our problem a NP-hard 
problem too. The Jm ||  problem has been investigated by several researchers. It can be 
classified in two large families according to the objective function: minimizing makespan 
and minimizing tardiness. 

3. State of the Art 

3.1 Parallel Machine 

The Hybrid Job Shop is linked in some way to Parallel Machine Job Shop. Indeed as can 
seen in the Figure 1, an Hybrid Job Shop is composed of different stages which can contain 
one single machine or parallel machines. 

Figure 1. Example of Hybrid Job Shop 

So this type of problem can be described as a sequence of parallel machine problem. 
Moreover the Parallel Job Shop problem has been widely studied especially for the 
minimization of the total tardiness.  
The Parallel Machine problem consists of scheduling N jobs on M different parallel 
machines without interruption. The goal here is to minimize the total tardiness. The parallel 
machine problem is known as NP-Hard, so the minimization of total tardiness in a parallel 
machine problem is also NP-Hard according to Koulamas C., (1994) and Yalaoui & Chu, 
(2002). Different reviews exist in the literature as Koulamas C., (1994) and Shim & Kim, 
(2007) and it appears that the one machine problem has been more studied than the multiple 
machine problems. On the other hand, one can also stress that the objective is mainly to 
minimize the makespan, the total flow time and more recently the minimization of the total 
tardiness. We now mention different interesting works for their heuristics or their problem.  
In 1969 Pritsker et al., (1969) have done the formulation with linear programming. Alidaee & 
Rosa, (1997) have proposed a method based on the modified due date method of Baker K.R. 
& Bertrand J.W., (1982). Other priority rules can be found in the work of Chen et al., (1997). 
Koulamas has proposed the KPM to extend the PSK method of Panwalker et al., (1993) to 
parallel machines problem, the former has proposed also a method based on Potts & Van 
Wassenhove, (1997) on the single machine problem and also an hybrid method with 
Simulated annealing Koulamas, (1997). Other authors were interested in this type of 

M1 M2 M1

M3

M1
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problem, as Ho & Chang, (1991)  with their traffic priority index or Dogramaci & Surkis , 
(1979) with different rules like Early Due Dates, Shortest Processing Time or Minislack. 
There is the work of Wilkerson & Irwin, (1979) and finally one must mention the 
Montagne’s Ratio Method (Montagne, 1969).  
We can also quote works of: Eom et al., (2002), the tabu search based method of Armentano 
and Yamashita, (2000), the three phase method of Lee and Pinedo, (1997), the neural 
network method of Park & Kim, (1997), the work of Radhawa and Kuo, (1997) and also 
Guinet, (1995). And the former work of Arkin & Roundy, (1991), Luh et al., (1990), Emmons 
& Pinedo, (1990) and Emmons, (1987). 
More recently Armentano and  de França Filho, (2007) have proposed a tabu-search with a 
self adaptive memory, Logendram et al. , (2007) proposed six efficient approach in order to 
take the best schedule, one can also mention the work of Mönch and Unbehaun, (2007) who 
compare their results to the best known lower bound.  Anghinolfi and Paolucci, (2007)have 
proposed an algorithm based on tabu search, simulated annealing and variable 
neighbourhood search. 
We have only cited heuristic approaches but some exact methods exist with tardiness as 
criteria as the work of Azizoglu & Kirca, (1998), Yalaoui & Chu, (2002), and Shim & Kim, 
(2007). The Branch and Bound method of Elmaghraby & Park, (1974), Barnes & Brennan, 
(1977), Shutten & Leussink, (1996) and Dessouky, (1998).  

3.2 Parallel machine: useful results 

One can mention different results which can be useful for a Hybrid Job Shop. Now, we 
propose a selection of properties and especially dominance ones from different authors. 
Assuming the following notations: 
J set of jobs 
M set of machines 
n number of the jobs (n=|J|)
m number of the machines (m = |M|)
pi processing time of job i
di due date of job i
Ci( ) completion time of job i in partial schedule 
Ti( ) tardiness of job i in partial schedule 

( ) completion time of the last job on machine k in (partial) schedule 
nk( ) number of jobs assigned to the same machine, in partial schedule 
S( ) set of jobs already included in partial schedule 
We will now enumerate the selection of dominance properties: 
Proposition 1 (Azizoglu & Kirca, (1998)): There exists an optimal schedule in which the number of 
jobs assigned to each machine does not exceed N such that: 

Ap
N

i
i ≤

=1
][  and Ap

N

i
i ≥

+

=

1

1
][  (1) 

Where p[i] is the processing time of the job with the ith shortest processing time. 
Proposition 2 (Azizoglu & Kirca, (1998)): If di pi for all jobs an SPT schedule is optimal. 
Proposition 3 (Azizoglu & Kirca, (1998)): For any partial schedule , if  di  pi + mink in M k( ) for 
all i not in S( ), then it is better to schedule jobs after  in an SPT order. 
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Proposition 4 (Yalaoui & Chu, (2002)): For a partial schedule  and any job i that is not included 
in , if there is another job j not included in  that satisfies pj pi and (pi-pj) (max k in M ( )-1) 

min{di-pi, mink in M k( ik*)} – max{dj – pj, mink in M k( )}, where  ( ) denote the number of 
additional jobs that are schedule on machine k after partial schedule  in an optimal schedule,  then 
complete schedule ik* are dominated 
Proposition 5 (Yalaoui & Chu, (2002)): For a partial schedule  and any job i that is not included 
in , if there is another job j not included in  that satisfies 0 pj - pi minr S( )pr, dj min k in 

M k( )+pj di and (pj - pi)( ( )-1 )  min{di-pi,mink in M k( ik*)}- min k in M k( ),  then complete 
schedule ik* are dominated.
Proposition 6 (Shim & Kim, (2007)): For any schedule  in which job i and job j are assigned to the 
same machine and job j precedes job i, there is a schedule that dominates , if at least one of the 
following three conditions holds:
1. pi pj and di  max (Cj( ),dj)
2. di  dj and Ci ( ) - pj  dj  Ci( )
3. Ci( )  dj

3.3 Hybrid Job shop

Much of the research literature in job shop scheduling deals with pure job shop 
environments. However, currently most processes involve a hybrid of both the job shop and 
a flow shop with a combination of flexible and conventional machine tools. 
In a classical job shop problem, the elementary product operations follow a completely 
ordered sequence according to the product to be manufactured. In some structures, each 
elementary operation may be carried out on several machines, from where, thanks to the 
versatility of the machines, a greater flexibility is obtained. We can talk about total flexibility 
if all the machines are able to carry out all the operations, otherwise, it is a partial flexibility. 
This is what we call the hybrid job shop or the flexible job shop.  
This flexibility may also be applied to the flow shop problem leading then to the hybrid flow 
shop configuration. A hybrid flow shop is constituted of several stages or groups. Each 
stage is composed by a set of machines. The passing order in the stages for each part to be 
manufactured is the same one as in Gourgand et al., (2001). In this work, we are particularly 
interested in the hybrid job shop scheduling problem. 
The Hybrid Job Shop Problem (HJSP) is then an important extension of the classical job shop 
scheduling problem which allows an operation to be processed by any machine from a 
given set thus creating an additional complexity. The methodology is to assign each 
operation to a machine and to order the operations on the machines, such that the maximal 
completion time (makespan) of all operations or the total tardiness is minimized.  
Many scheduling optimization problems have been studied in the research works dealing 
with complex industrial cases with flexibility. The hybrid job shop scheduling problem was 
one of those studies presented in the literature like Penz, (1996), Dauzere-Peres et al., (1998), 
Xia and Wu (2005) and many others.  
Chen et al., (1999) present a genetic algorithm to solve the flexible job-shop scheduling 
problem with a makespan criterion to be minimized. The chromosomes representing the 
problem solutions consist of two parts. The first part defines the routing policy and the 
second part the sequence of the operations on each machine. Genetic operators are 
introduced and used in the reproduction process of the algorithm. Numerical experiments 
show that the algorithm can find out high-quality schedules. 
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Gomes et al., (2005) present an integer linear programming (ILP) model to schedule flexible 
job shop. The model considers groups of parallel homogeneous machines, limited 
intermediate buffers and negligible set-up effects. Orders consist of a number of discrete 
units to be produced and follow one of a given number of processing routes with a 
possibility of re-circulation. Good solution times are obtained using commercial mixed-
integer linear programming (MILP) software to solve realistic examples of flexible job shops 
to optimality.  
A genetic algorithm-based approach is also developed to solve the considered problem by 
Chan et al., (2006). The authors try to solve iteratively a resource-constrained operations-
machines assignment problem and flexible job-shop scheduling problem. In this connection, 
the flexibility embedded in the flexible shop floor, which is important to today's 
manufacturers, is quantified under different levels of resource availability. 
Literature review shows that minimizing tardiness in hybrid job shop problems has been an 
essential criterion. It is the main objective of the work of Scrich et al., (2004). Two heuristics 
based on Tabu Search are developed in this paper: a hierarchical procedure and a multiple 
start procedure. The procedures use dispatching rules to obtain an initial solution and then 
search for improved solutions in neighborhoods generated by the critical paths of the jobs in a 
disjunctive graph representation. Diversification strategies are also implemented and tested. 
Alvarez-Valdez et al., (2005) presented the design and implementation of a scheduling 
system in a glass factory aiming at minimizing tardiness by means of a heuristic algorithm. 
The structure basically corresponds to a flexible job-shop scheduling problem with some 
special characteristics. On the one hand, dealing with hot liquid glass imposes no-wait 
constraints on some operations. On the other hand, skilled workers performing some 
manual tasks are modeled as special machines. The system produces approximate solutions 
in very short computing times. 
Minimizing tardiness in a hybrid job shop is one of the objectives in the work of Loukil et al., 
(2007) that the authors tried to optimize. A simulated annealing is developed and many 
constraints are taken in consideration such as batch production; existence of two steps: 
production of several sub-products followed by the assembly of the final product; possible 
overlaps for the processing periods of two successive operations of a same job. At the end of 
the production step, different objectives are considered simultaneously: the makespan, the 
mean completion time, the maximal tardiness and the mean tardiness. 
For our case study, two works have discussed the problem of minimizing tardiness in a 
hybrid job shop. The first was that of Nait Tahar et al., (2004) by using a genetic algorithm. 
Only one criterion was taken into account which was the total tardiness. The results 
obtained showed that the genetic algorithm technique is effective for the resolution of this 
specific problem. Later, an ant colony optimization algorithm was developed by Nait Tahar 
et al., (2005) in order to minimize the same criterion with sequence dependent setup times 
and release dates. 

4. Case study: industrial 

In this section we will describe an industrial case of hybrid job-shop. Firstly we will describe 
the problem encountered by a company, and then we will develop three ways of solving the 
problem: one with a genetic algorithm, the second with a meta heuristic based on ant colony 
system and the third one with a non-dominated sorting genetic algorithm coupled with a 
simulation software. 
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The problem is located in the printing factory that could be described in Figure 2. This 
factory produces printed and unprinted roll from the raw material: paper, plastic film and 
ink are combined to produce a finish product. The plant employs 90 people to produce high 
quality packaging. It produces about 1500 different types of finished goods and delivers 
about 80 orders per week. During the process, Each product (job) is elaborated on a given 
sequence of machines. The tasks performed on these machines are called operation. 

Figure 2. Structure of the printing factory, Nait Tahar et al.(2004)) 

As it appears, the factory structure shows an hybrid job shop structure, with some single 
machine stage (M5, M6) and multiple machines (M7,M8,M9, for instance) stage with 
identical parallel machines. Setup times are present: when a machine switch from one 
operation to another a “switching time” is required. The process is divided into four areas: 
printing, assembly, paraffining, winding and cutting. The process starts in the printing area 
where a drawing in one or more colours is reproduced on a paper, raw material. Two 
printing process can be used: photoengraving and flexography. The assembly combines two 
supports (printed or not) with a binder (adhesive) on their surface forming one. Paraffining 
put paraffin on the surface. Then the products reach the cutting and winding area. Finally 
the products are packaged, stored or shipped. 
We now describe two methods used to solve this problem using Ant Colony System (ACS) 
based algorithm and Genetic Algorithm (GA).  
Then a third method is presented  dealing with a multi-objectif case resolution. 

4.1 Genetic Algorithm 

The first method of Nait Tahar et al., (2004) uses a genetic algorithm to solve the problem. In 
a genetic algorithm the solution is represented in a chromosome. The first step is the 
modeling of the solution in a genetic way, each encoding is specific to one problem. We 
employ the following encoding with a matrix as it is shown in table 2. 
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Machine Operation1 Operation2 Operation3 Operation4 

1 2,1,2,- 1,1,4,- 4,3,3,- 3,1,7,- 

2 2,2,6,- 1,1,8,- 3,2,5,-  

3 4,2,4,- 3,4,7,- 1,4,5,-  

4 2,3,3,- 4,1,7,- 3,3,1,- 1,3,10,- 

Table 2. Solutions encoding (example) 

This encoding represents the scheduling in a table of m lines. Each line represents the 
operations to schedule in the form of n cells (n is the number of jobs). Each cell contains: the 
job number, the order of the operation in the manufacturing process, the processing time 
and the operation completion date. The representation of a solution considers the sequences 
for each job, a machine sequences and not a group sequences. The evaluation (fitness) of an 
individual is  simply the total tardiness. 
Since the encoding is chosen, we have to propose mutation and crossover operators. Three 
crossovers are known for the problems of sequencing: LOX (Linear Order Crossover), OX 
(Order Crossover) and X1 (One point crossover). We adopt X1 crossover with the studied 
problem for our encoding. For a parent P1 having a length t, a random position p (p<t) is 
generated. To build the child E1, the portion P1 between 1 and p inclusive is copied in E1

using the same positions. Then the portion of P2 between p which is not included and t is 
swept. Only the non present elements in E1 are copied. The missing elements in E1 are added 
after, from left to right. The construction of child E2 is identical, by permuting the role of P1

and P2. A chromosome contains all the operations of the problem, and each operation is 
assigned to only one machine. To prevent a too fast convergence of the algorithm, a 
mutation is applied to the children with a weak rate. We tested two types of mutation 
named mut-ch and mut-nb. The first interchange two operations randomly selected from the 
busiest machine in the chromosome. mut-nb interchanges two operations from the machine 
having the most total tardiness. 
The population stores a fixed number (Tpop) of chromosomes in a table. These initial 
solutions are created randomly. For each machine belonging to a single machine group, a 
sequence is thus randomly generated. For the groups containing several units (identical 
parallel machines), the operation assignment and sequencing on each machine are also 
randomly done by balancing the work-load  of the machine. For the selection we tested 
roulette technique and direct tournament. The genetic algorithm is an incremental (steady 
state) one : the new solutions immediately replace existing solutions in the population. Five 
procedure have been tested for the replacement: each parent is replaced by its children if 
there is improvement, the worst parent is replaced by the best descendant, the worst 
individual of the population is replaced by the better of the solutions, a randomly selected 
parent is replaced by a randomly selected child, the child replaces an individual chosen 
uniformly chosen under the median (incremental replacement). Our algorithm is tested with 
production data, coming from the network of the printing factory. These data are adapted to 
our algorithm, by creating instances of the same size as the randomly generated (25, 50, 100 
jobs). We used a probability of 90% for the crossover and 10% for the mutation probability. 
Table 3 gives results form many instances, different columns show name of the instance, its 
size and its number of operations, moreover we can see the total tardiness of the industrial 
solution and the one with the solution given by the algorithm. Finally this table shows the 
improvement between industrial and genetic based solution. 
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Instance Size Operations Real total 
tardiness

GA total 
tardiness

Improvement
in % 

A1 25 133 1297.9 919.95 29.12 

A2 25 145 1330.1 915.91 31.14 

A3 25 161 1488.4 1106.33 25.67 

A4 25 155 1451.6 908.12 37.44 

A5 25 114 1237.4 809.75 34.56 

B1 50 339 2311.2 1268.62 45.11 

B2 50 297 2122.4 1229.72 42.06 

B3 50 308 2178.1 1432.75 34.22 

B4 50 325 2219.3 1350.67 39.14 

B5 50 341 2297.4 1335.02 41.89 

C1 100 637 4587.0 2366.89 48.40 

C2 100 524 4233.3 2279.63 46.15 

C3 100 612 4524.9 2308.15 48.99 

C4 100 688 4721.2 2307.72 51.12 

C5 100 653 4642.8 2512.68 45.88 

Table 3. improvement of the industrial solution, Nait Tahar et al., (2004) 

The Genetic Algorithm has been coded in C on a 440 Mhz bi processors, it took near from 
1000 seconds to get solutions. One can see that the improvement is important from 29 to 
51% from the industrial solution use by the factory and based on the “Early Due Date” 
policy. We have improve significantly the industrial solution. We will see now how this 
solution can be improved with another meta-heuristic called Ant Colony System 
optimization.

4.2 Ant Colony System 

The ACS Nait Tahar et al.,(2005) attempts to solve the problem imitating the behaviour of 
ants searching food in the nature. Consider for instance the four-job example of table 1. 

U

V2

V4

V1

V3

V

0

0

4

1

4 8 5

3

1

6

10

6

5

34

7

2
0

7

0

0

0

: machine i, operation k of job j

2,1,1 1,1,2 4,1,3

4,2,32,2,21,2,1

1,3,1 2,3,2 4,3,3

1,4,33,4,24,4,1

3,3,4

3,1,4

i,j,k disjunctive arc
conjunctive arc

Figure 3. A disjunctive graph for 4x4 instance , Nait Tahar et al.,  (2005) 
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We have to describe the sequence by a graph (see Figure 3) in order to apply an ant colony 
based algorithm. The former is  a disjunctive graph where node are operations of the job on 
a certain machine, and the conjunctive arc are weighted by the duration of operations and 
the arc connecting the node U correspond to the release date rj . 
Thanks to this description we can apply an ant colony based algorithm sketched by the 
algorithm 4: 

INITIALIZE 
Represent the problem by a weighted connected graph 
Set initial pheromone for every arc 

REPEAT
FOR each ant DO 

Randomly select a starting node 
REPEAT

Choose the next node according to a node transition 
Update pheromone intensity on arc (a,b) using a local 
pheromone updating rule 

UNTIL a complete path from U to V is realized 
FOR each arc DO 

Update pheromone intensity using a global pheromone 
updating rule 

  ENDFOR 
 ENDFOR 

UNTIL satisfying stopping criterion 
Output The global best path from U to V found 

Algorithm 4. A skeleton of the Ant Colony System algorithm (Nait Tahar (2005)) 

A solution is a path From U to V. This path is build by an ant step by step, node by node. 
The principle is to simulate ants walking trough the graph, at each node they have to choose 
one arc. The criterion for this choice is the probability of each arc to be taken: this probability 
grows with the number of ants which have traversed this arc. This mechanism is assumed 
by the pheromone lay down by each ant. 
In this algorithm two things have to be precised: a,b the quantity of pheromone on the arc 
(a,b), how the next node b is chosen, and finally how the pheromone quantity is updated on 
each arc. 
Here is described how the pheromone quantities are determined: 
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With Wk is the total tardiness of the arc selected by the ant k, Q is a constant, n is the number 
of job generated and a,b is the quantity of pheromone at initial time. Now an ant can “walk” 
through the graph (i.e. it can build a path), partially guided by the pheromone: 
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Where a,b is an estimate of desirability of the transition a,b according to the apparent 
tardiness cost (ATCS) heuristic, Lee et al., (1997), Succ(a) is the set of adjacent nodes to a,  is  
a random number in [0,1], and 0 is a tuning parameter. Here we simulate the route of an 
ant k through the graph by a two-level decision making, Dorigo & Gambardella, (1997). At 
first there is a draw of : if  is lower than 0 then the next node visited by k will have the 

maximum value of [ ] [ ]βα ητ baba ,, , otherwise the probability will be determined with the 

equation number (5).  
And after making a choice for an arc, we have to update the pheromone according to the 
algorithm. We do this with the formula: 

0,, )1( θττθτ +−= baba  (6) 

Where  (0< <1) is the local pheromone decay parameter and 0 is the initial amount of 

pheromone deposited on each arc. In our case we consider 1
10 )( −
=Σ= EDDj

n
j Tτ  where 

EDDj
n
j T )( 1=Σ  is the total tardiness given by the Early Due Date. Once all of the ants have 

completed their path, the intensity of pheromone on each arc is update according to below: 

Δ+−= k
bababa ,,, )1( τλτλτ  (7) 

Where ka,b  calculated by equation (2)  is the pheromone currently laid by ant k, and  is 
the evaporation rate of previous pheromone intensity (0< <1). 
Finally the authors compare this algorithm to Genetic Algorithm. In order to compare them 
to each other, the authors have tested these algorithms on 900 different instances, and they 
compare the computation time took by ACS and GA. This is possible with the use of Cycle*
determined by Cycle*=PWIxCyclemax where Cyclemax is the stopping criterion of the algorithm 
and PWI is coefficient showing the weight of Cyclemax between the two methods, here we 
choose Cyclemax= 3000 for the ACS and Cyclemax = 1000 for the GA, these values represent the 
same amount of CPU time. 
Finally we obtain better results with ACS than Genetic Algorithm. According to the Figure 5 
it can be seen that this the Ant Colony System based algorithm improve its result at each 
iteration rather than the Genetic Algorithm does. 
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Figure 5. Comparison between ACS and GA (Nait Tahar et al.(2005)) on 900 instances 

To conclude, we have introduced an interesting ant colony system for hybrid job shop 
scheduling problem with sequence dependent setup times and release dates to minimize the 
total tardiness, encountered in industrial situation. The ant colony method proved to be very 
efficient for randomly generated and real instances compared to a genetic algorithm. 

4.3 Non Dominated Sorting Genetic Algorithm

This part presents an optimization technique built by coupling the ARENA®, Kelton et al.,
(2003) simulation software with a multi-objective optimizer based on the second version of a 
nondominated sorting genetic algorithm (NSGA-II) coded in Visual Basic for Application 
(VBA). This simulation-based-optimization technique is used to optimize the performances 
of the simulation model representing the considered workshop (the same study case 
adopted for the ACS and the GA) by testing new scheduling rules different from the only 
First In First Out (FIFO) rule which was adopted for the machines. 
This work was developed in order to assess, by the means of a simulation software, the 
production system and to have a comprehensive tool in which the whole system’s 
constraints will be handled as well as those of the logistical and handling system. These 
additional constraints have required a powerful simulation tool to manage them. In addition 
to that, the stochastic nature of some system’s parameters (like the downtime of machines, 
the arrival times of products or others) makes analytical models very complicated or 
computationally intractable. That is why we have decided to use the simulation based 
optimization technique as it has been proved to be effective for such kind of applications. 
Indeed, simulation is more and more used in today’s industries with the aim of assessing 
their systems or to study the impact of changing system design parameters, Muhl et al.,
(2003) and Sahlin et al., (2004). ARENA®, developed by Systems Modelling Corporation, is 
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one of the softwares that can be used to model industrial systems in different domains like 
automobile, aeronautics as well as others like hospitals, banks, …Kelton et al., (2003). 
While simulation makes it possible to test potential changes in an existing system without 
disturbing it or to evaluate the design of a new system without building it, simulation based 
optimization can be defined by coupling an optimization method with simulation in order 
to test many parameters that can maximize the performances of the simulated system, Hani 
et al., (2006). 
The coupling of heuristic methods with the ARENA® software, or other simulation 
software, was the subject of many works like Harmonosky (1995), Drake & Smith (1996) or 
others.
The second version of the non-dominated sorting genetic algorithm (NSGA-II) is a heuristic 
algorithm based on the genetic techniques applied by Goldberg (1989) and it was initially 
implemented by Deb et al., (2000). It is based on the principle of the genetic algorithms by 
means of creating an initial population, selecting parents in order to get children and finally 
choose the best solution constructed from genes.  
In addition to that, it consists on affecting fronts or groups to the proposed solutions. Front 1 
contains the non-dominated solutions of the created population. Those individuals or 
solutions are then virtually removed from the population. We compare the remaining 
solutions and the next set of non-dominated solutions is assigned to front 2 and so on until 
that each individual of the population is affected to a front. Many works and researches 
have as a main subject the impact of NSGA algorithms on different optimization problems 
such as in Dolgui et al. (2005) for balancing and optimizing production lines or in Deb and 
Reddy (2003) and Deb et al. (2004). 
Our model allows to simulate the production system with graphical animations starting 
from the exit of raw materials form the warehouse and until the exit of finished products 
while modeling their circulations which will be really done by the means of Auto Guided 
Vehicles (AGV). All the machines were modelled. In addition to the machines and handling 
systems’ characteristics, the model contains as inputs: 

• the workshop structure (production areas, warehouse and stock zones ...) on the scale, 

• the different job sequences which guide the products forward between the servers, 

• the simulation horizon (one year), 

• the statistical law representing time between product arrivals. 
In order to validate the simulation and to evaluate the production system, performances 
indicators were introduced in the model and they were compared to the real indicators 
adopted in the workshop. These indicators to optimize are: 
1. The performance rate of each machine (g1(k)) (to be maximized) 
2. The occupation rate of each machine (g2(k)) (to be maximized) 
3. The total tardiness time resulting from processing all the jobs on a considered horizon 

of time T (to be minimized) 
The multi objective optimization consists of finding the optimal objective function vector, 
g(k) = [g1(k), g2(k), T], instead of a unique objective function. It aims at finding a compromise 
between the set of objectives. 
We try to optimize those objectives by choosing the best priority for each queue of the 
considered machines. The multiplicity of choices could lead to results which are better in the 
case of using a unique rule as it was shown in the paper of Liu and Wu (2004). Until the 
beginning of this work, only one rule was tested: FIFO (First In First Out). 
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In our work, four priority rules were adopted to be tested as a first step: FIFO, LIFO (Last In 
First Out), SPT (Shortest Processing Time) and LPT (Longest Processing Time). The results 
obtained by the optimization algorithm will help us to make the final choice. 
We present in this part the different properties of the developed algorithm. 
A chromosome specifies the scheduling rule for each machine. The number of genes in the 
chromosomes of our algorithm is equal to the number of machines. The first step of our 
algorithm is then to create an initial population. The value of each gene ki is generated 
randomly based on a uniform distribution U[Kimin, Kimax]. Kimin and Kimax are respectively the 
minimum and the maximum possible values of Ki. As we have four policies then Kimin = 1 
and Kimax = 4. The scheduling rules and the corresponding numbers are shown in table 4. 

Priority rule Corresponding number 
FIFO 1 

LIFO 2 

SPT 3 

LPT 4 

Table 4. Priority rules

The binary tournament technique is used to select the parents: two solutions are randomly 
selected and the best one becomes the first parent. This process is repeated to get the second 
parent. We choose the two-point crossover operation with a high probability and a very 
small point mutation probability. 
The steps of the algorithm, as shown in Fig. 6, were inspired from the work of Deb et al.
(2000). The overall structure of the NSGA-II algorithm is presented in Fig. 7. For more 
details about the algorithm, reader is referred to Chehade et al. (2007). 

Mt

Nt

Ot

Rejected

F3

F2

F1

Mt+1

Crowding distance

sorting

Non-dominated

sorting

Figure 6. Steps of the NSGA-II algorithm (Deb et al., 2000)

The simulation model and the optimization algorithm interact by means of a VBA 
procedure as the ARENA® software has a Visual Basic Editor. The coupling process works 
in the following way: 
1. The algorithm starts by executing the first steps of the NSGA-II, to generate an initial 

population (Mt) of size ns
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2. In order to calculate the fitness functions for the individuals of (Mt), the simulation 
model is launched on ns iterations. Each iteration is supposed to calculate one fitness 
function corresponding to one individual (chromosome). The queues’ priority rules of 
each machine are read directly from the chromosomes of the algorithm 

3. Rank solutions in (Mt)
4. The algorithm creates then the offspring population Nt (of size ns) by processing genetic 

functions (selection of parents, crossover, mutation) 
5. The simulation model does ns new iterations in order to evaluate the chromosomes of 

the (Nt) population. At this stage, we have now the population (Ot) of size 2ns
6. Rank solutions in (Ot)
7. The algorithm executes its remaining steps (decomposition into fronts, crowding 

distance sorting ). We have now the new parent population (Mt+1)
8. Repeat steps 4 to 7 till the stopping criteria is reached (which is in our case the number 

of generations) 

Create the initial population Mt of size ns
Evaluate the ns solutions using simulation 
Sort Mt by non domination 
Compute the crowding distance of each solution 
REPEAT
Creation of the offspring population Nt: add n children at the end of Mt (with genetic 
operators: selection, crossover and mutation of two parents) and evaluate each 
solution by simulation 

Sort Nt by non domination 
Compute the crowding distance of each solution 
Sort the resulting population Ot of 2*ns solutions by non-domination 
Mt+1 = 0; 
i = 1 
WHILE |Mt+1| + |front(i)|  n do 

Add front(i) to Mt+1

i = i + 1 
END WHILE 
missing = n |Mt+1|
IF missing  0 THEN 

Sort the solutions by descending order of the crowding distance 
FOR j = 1 to missing DO 

Add the jth solution of front(i) to Mt+1

END FOR 
P = Mt+1

END IF 
UNTIL Stopping Criterion 

Algorithm 7. Overall Strusture of the NSGA-II algorithm (Deb et al., 2000)

Table 5 shows a comparison between the real industrial data (RID) and the first results of 
simulation (SIM) initially get without applying the NSGA-II algorithm. It shows that a very 
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small gap for the three performances indicators was noticed which is a very good basis to 
realize later the optimization procedures. 
Final results obtained after 100 generations showed that individuals of the last population 
are distributed on three fronts. Table 6 shows the optimization results which are compared 
to previous simulation results (SIM). The three objectives presented in the table are the 
performance rate of the machines (PR), the occupation rate of the machines (OR) and the 
total tardiness time (TT). It shows first the average result for each objective (OABF), the best 
(BIBF) and worst individual for each objective (WIBF), which gives an idea about the 
distribution of the individuals in this front. The numbers in brackets for OABF, BIBF and 
WIBF represent the difference between those parameters and the simulation results (SIM). 
The last row shows the standard deviation (STD) of those non-dominated individuals.  
Table 6 shows results where each simulation iteration is set to cover a production horizon of 
ten years. We adopted a warm-up period of two years. The size of the initial population is 
20, the number of generations is 100, the crossover probability is 0.9 and the mutation 
probability is 0.01. The average of the numerical results of the best front shows that the 
performance rate and occupation rate are improved by 6.28% and 12.7% respectively. As for 
the third indicator which is total tardiness, it is reduced by 48.3% on average. 
As a consequence, the algorithm has showed that it has considerable improvements on the 
performances of the model. 

RID SIM GAP (%) 
Performance rate (%) 56 57.2 2 

Occupation rate (%) 75 74.4 0.8 

Total tardiness 53.6 53.1 0.9 

Table 5. Simulation results compared to real industrial data 

PR(%) OR(%) TT(hours) 
SIM 57.2 74.4 53.1 

OABF 63.48 (+6.28%) 87.1 (+12.7%) 27.6 (-48.3%) 

BIBF 68.9 (+11.7%) 94.8 (+20.4%) 19.9 (-62.53%) 

WIBF 57.8 (+0.6%) 76.9 (+2.5%) 36.2 (-31.8%) 

STD 4.63 6.96 6.15 

Table 6. Optimization results

5. Conclusion 

In this chapter we have presented different results useful for scheduling tasks trough a 
hybrid job shop system. At first we have dealt with the parallel machine job shop since its 
structure is near from the multi processors stages of a Hybrid Job Shop. Then we have 
presented some theoretical results and their application in the industry. We have developed 
some examples of modeling industrial lines for a genetic application or an ant colony system 
application. After this step of modeling, the result show real improvements of the 
minimization of the total tardiness in an industrial case. These results could be very usefull 
in the semiconductor manufacturing or in the paper industries since the Hybrid Job Shop 
structure seem to be common in this area. 
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1. Introduction   

The classical identical parallel machine scheduling problem can be stated as follows: Given 
n jobs and m machines, the problem is to assign each job on one of the identical machines 
during a fixed processing time so that the schedule that optimizes a certain performance 
measure is obtained. Having numerous potential applications in real life, in recent years, 
various research works have been carried out to deal with the parallel scheduling problems.  
The literature of parallel machine scheduling problems has been extensively reviewed by 
(Cheng & Sin, 1990; Mokotoff, 2001). Among many criteria, minimizing makespan 
(maximum completion time) has been one of the most widely studied objectives in the 
literature.
Using the three-field classification introduced in (Graham et al., 1976), the problem is 
denoted in the scheduling literature as P||Cmax where P designates the identical parallel 
machines, Cmax denotes the makespan. We assume, as is usual, that the processing times are 
positive and that 1<m<n. The problem is known to be NP-hard in the strong sense (Garey &  
Johnson, 1979; Sethi, 1977).  
Although traditional techniques such as complete enumeration, dynamic programming, 
integer programming, and branch and bound were used to find the optimal solutions for 
small and medium sized problems, they do not provide efficient solutions for the problems 
with large size. Having found no efficient polynomial algorithm to find the optimal solution 
led many researchers to develop heuristics to obtain near optimal solutions. Though, 
efficient heuristics can not guarantee optimal solutions, they provide approximate solutions 
as good as the optimal solutions. These can be broadly classified into constructive heuristics 
and improvement heuristics. Most of the algorithms belong to the first category and have 
known worst case performance ratio (Coffman et al., 1978; Friesen & Langston, 1986; 
Friesen, 1987; Graham, 1969; Hochbaum & Shmoys, 1987; Leung, 1989; Sahni, 1976). The 
LPT rule of Graham, one of the most popular constructive heuristics, has been shown to 
perform well for the makespan criterion. This rule arranges jobs in descending order of 
processing times, such that p1 p2 … pn, and then successively assigns jobs to the least 
loaded machine. The MULTIFIT algorithm, a classical constructive heuristic developed by 
(Coffman et al., 1978), determines the smallest machine capacity to find a feasible solution 
using the LPT scheme. This is achieved by solving heuristically a series of bin packing 
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problems. Although MULTIFIT is not guaranteed to perform better than LPT, it has been 
shown that it has a worst case bound better than LPT.  
Improvement based algorithms are based upon local search in a neighbourhood in which a 
feasible solution is taken as a starting point and then tried to be improved by iterative 
changes. Application of these algorithms to the P||Cmax problem can be found in 
(Frangioni et al., 1999; Hübscher & Glover, 1994; Jozefowska et al. 1998). 
Although a large number of approaches such as mathematical programming, dispatching 
rules, expert systems, and neighborhood search to the modeling and solution of scheduling 
problems have been reported in the literature, over the last decades, there has been an 
explosion of interest in using Artificial Neural Networks (ANNs) for the solution of various 
scheduling problems. This is mainly after the success of the use of Hopfield and Tank’s 
network (Hopfield & Tank, 1985) in solving the Traveling Salesman Problem. The authors 
showed that if an optimization problem can be represented by an energy function, then a 
Hopfield network that corresponds to this energy function can be used to minimize this 
function to provide an optimal or near-optimal solution. Since then, a variety of scheduling 
problems are solved using Hopfield type networks (Chen & Dong; 1999; Foo et al. 1995; 
Liansheng et al., 2000; Lo & Bavarian, 1993; Satake et al. 1994; Vaithyanathan & Ignizio, 
1992; Willems & Brandts; 1995; Zhou et al., 1991). 
But a few papers are proposed for the solution of parallel machine scheduling problem 
using ANNs. Park et al. (2000) presented a backpropagation network for solving identical 
parallel machine scheduling problems with sequence dependent set up times. They tried to 
find the sequence of jobs processed on each machine with the objective of minimizing 
weighted tardiness. Hamad et al. (2003) dealt with the non-identical parallel machines 
problem with the sum of earliness and tardiness cost minimization and proposed a way of 
representing the problem to be fed into a backpropagation network. Akyol & Bayhan (2005) 
proposed a coupled gradient network approach for solving the earliness and tardiness 
scheduling problem involving sequence dependent setup times.  
The objective of this research is to apply ANNs to the identical parallel machine scheduling 
problem for minimizing the makespan. We employ a dynamical gradient network approach 
to attack the problem and this work is an extension of the work of Akyol & Bayhan (2006) 
where they consider only a small sized scheduling problem and analyze the effect of 5 
different initial conditions on the solutions. In this study, after the appropriate energy 
function is constructed by using a penalty function approach, the dynamics are defined by 
steepest gradient descent on the energy function. In order to overcome the tradeoff problem 
encountered in using the penalty function approach, a time varying penalty coefficient 
methodology is proposed to be used. By performing simulation experiments, we analyze the 
impact that the initial conditions of the network have on the performance on 5 different data 
sets by running each data set 20 times (20 different initial conditions) for different sizes of 
jobs and machines.  

2. Problem Statement 

Consider a set J of n jobs Ji ,i=1,...,n  to be processed, each of them on one machine, on a set 
M of m machines Mj , j=1,...,m. All the jobs can be processed on any of the m machines. We 
consider identical machines models, for which the processing times of each job, pi, are 
machine independent. The objective is to find an appropriate allocation of jobs to machines 



Identical Parallel Machine Scheduling with Dynamical Networks 
using Time-Varying Penalty Parameters 295

that would optimize a performance criterion. We are interested in the makespan criterion 
(maximum completion time), Cmax.
The following notations are used throughout the rest of this paper. 
Ji : job i, i N={1,...,n} 
Mj : machine j, j M={1,...,m} 
pi: processing time of Ji

Ci: completion time of Ji

Cmax: makespan, the maximum completion time of all jobs 
Cmax = max{C1, C2, ...,Cn}

xij : 0/1 assignment variable = 
otherwise

jmachinetoassignedisijobif
0

1

A MIP formulation of the minimum makespan problem can be defined as follows: 
min Cmax 

subject to  

 (1) nix
m

j
ij 11

1

(2)mjxpC ij

n

i
i 10max

1

The first constraint given in (1) ensures that each job is assigned to only one machine. The 
second constraint given in (2) ensures that the makespan is at least the completion time of 
each machine.  

3. Design of the Proposed Dynamical Gradient Network 

In this section, we describe how dynamical gradient networks can be used to solve the 
considered problem presented in the previous section. The proposed approach is an 
extension of the original formulation given in (Hopfield, 1984; Hopfield & Tank, 1985). 
Firstly the network architecture is explained, and then derivation of the energy function 
representing the proposed network, and dynamics and proof of the convergence of the 
proposed network are given. Finally, the proposed penalty parameter determination 
method is illustrated with an example. 

3.1 The Network Architecture 

The proposed gradient network has two types of neurons: a continuous type neuron to 
represent real valued variable Cmax, and discrete types of neurons to represent binary 
valued variables X11,…, X1m; X21,…, X2m; Xn1,…,Xnm. UXij symbolizes the input to the neuron 
for job i and resource j, and UCmax denotes the input to the neuron representing Cmax. The 
dynamics of the gradient net will be defined in terms of these input variables. 
VXij designates the output of the neuron for job i and resource j. This neuron will be 
activated if job i is allocated to resource j. VCmax depicts the output of the neuron 
representing Cmax. We use a linear type activation function for neuron Cmax. Neurons 
with sigmoidal nonlinearity are used to represent discrete variables Xij, so that the activation 
function for discrete neurons will take the usual sigmoidal form with slopes X. Here, we 
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use a log-sigmoid function to convert discrete neurons to continuous ones and its functional 
form is shown in Figure 1. 

3.2 The Energy Function 

Instead of using linear programming or the k-out-of-N rules to develop the energy function, 
we directly formulate the cost function according to the constraints term by term. The 
energy function for this network is constructed using a penalty function approach. That is 
the energy function E consists of the objective function Cmax plus a penalty function to 
enforce the constraints. For the problem considered, the penalty function P(X, Cmax) will 
include three penalty terms: P1, P2 and P3. 
The first term P1 adds a positive penalty if the solution does not satisfy any of the equality 
constraints given in (3).  In other words, the first term attempts to ensure that each job is 
allocated to one only one machine. 

 (3) nix
m

j
ij 11

1

In this case, P1 = . This term yields zero when these equality constraints are 

satisfied. P2 adds a positive penalty if the solution does not satisfy any of the inequality 
constraints given in (4). 
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n
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In accordance with this constraint, P2 will take the following form 

where v represents the penalty function. 

(Watta & Hassoun, 1996) and the functional form of this function is shown in Figure 2.  
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We require that Xij {0,1}. These constraints will be captured by P3 which adds a positive 
penalty if the binary constraints Xij {0,1} are violated. In Fig. 3, the functional form of this 
penalty term is shown. It can be seen that the penalty will be zero at either Xij = 0 or Xij = 1.   

P3 = and correspondingly, the total penalty function P (X, Cmax) with 

all constraints can be induced as follows.  
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The complete energy function can thus be written as: 
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where A, B, C and D are positive penalty coefficients. 
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  VXij

UXij

Figure 1. Activation function for discrete neurons 

( )

Figure 2. Penalty function for enforcing inequality constraints 

     Xij(1-Xij)

Xij

Figure 3. Penalty function for enforcing the 0,1 constraints 
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3.3 The Dynamics 

In addition to defining the energy function to be employed, we need to consider the 
equation of motion of the neuron input. The dynamics for the gradient network are obtained 
by gradient descent on the energy function. The equations of motion are obtained as 
follows.  

m

j

n

i
iji CXPCA

C
E

dt
dUC

1 1

max

max

max

][)1(

(5)

)21(][)(]1[2
1

max

1

ij

n

l
ljl

m

k
ik

ij

ij

XDCXpPiCXB

X
E

dt
dUX

 (6) 

where Cmax and X are positive coefficients which will be used to scale the dynamics of the 
network, and ’ is the derivative of the penalty function .   

00)(02)( allforandallfor

The computation is performed in all neurons at the same time so that the network operates 
in a fully parallel mode. 
The solution of equations of motion may be accomplished via the use of Euler’s 
approximation. The states of the neurons are updated at iteration k as follows. 

dt
dUCUCUC C

kk max
max

1

maxmax
(7)

dt
dUX

UXUX ij
X

k
ij

k
ij

1 (8)

Neuron outputs are calculated by V=g (U), where g (.) is the activation function, U is the 
input and V is the output of the neuron. 

VCmax=g(UCmax) = UCmax  (a linear function) 

VXij = g(UXij) = logsig ( X×UXij)  (a log-sigmoid function) 

where X is the slope of the activation function and logsig(n) = 1 / (1 + exp(-n)). 

3.4 Proof of Convergence 

In order to use the proposed Hopfield-like dynamical network for the solution of the 
problem, we have to prove the convergence of the network. To do so, we have to show that 
energy does not increase along the trajectories, energy is bounded below, the solutions are 
bounded and time derivative of the energy is equal to zero only at equilibria. 
Consider the time derivative of the energy function E given below. 
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Since 0])([ 1

ij
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ij VXg
dVX
dUX  (monotone increasing) for log-sigmoid function, the right-

hand side of the equation given in (9) will be obviously negative. This ensures that the 

energy does not increase along trajectories, so we can write 0
dt
dE .

0
dt
dE  implies that jiallfor

dt
dVX ij

,0   and 0
max

dt
dVC . In other words, 0

dt
dE  at 

the equilibrium points.  
Since Xijs are binary variables, they are bounded but we have to check the boundedness of 
Cmax. If we rewrite the motion equation for Cmax, we obtain the following: 
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Case 2: Assume that 0max
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and we can conclude that the solutions are bounded. 
Combining this fact with the fact that the energy E is bounded (since the cost is always 
greater than zero), we conclude that the network converges to a stable state which is a local 
minimum of E(X,Cmax). In other words, the time evolution of the network is a motion in 
space tends to that minimum point as t goes to infinity.  

3.5 Selection of Parameters 

In order to simulate the proposed network for solving the problem described by the 
dynamics given in Section 3.3, some parameters should be determined. These are the 
penalty parameters A, B, C and D; the activation slopes X; the step sizes Cmax, X and the 
initial conditions.  
Because there is no theoretically established method for choosing the values of the penalty 
coefficients for an arbitrary optimization problem, the appropriate values for these 
coefficients can be determined empirically. That is simulation runs are conducted, and 
optimality and/or feasibility of the resulting equilibrium points of the system are observed. 
The network can be initialized to small random values, and then synchronous or 
asynchronous updating of the network will allow a minimum energy state to be attained. In 
order to ensure smooth convergence, step size must be selected carefully (Watta & Hassoun, 
1996).    
The dynamics of the proposed Hopfield-like gradient network will converge to local 
minima of the energy function E. Since the energy function includes four terms, competing 
to be minimized, there are many local minima and a tradeoff among the terms. An infeasible 
solution may be obtained when at least one of the constraint penalty terms is non-zero. In 



Identical Parallel Machine Scheduling with Dynamical Networks 
using Time-Varying Penalty Parameters 303

this case, the objective function term will generally be quite small but the solution will not 
be feasible. Alternatively, a local minimum, which causes a feasible but not a good solution, 
may be encountered even if all the constraints are satisfied. In order to satisfy the each 
penalty term, its associated penalty parameter can be increased but this results an increase 
in other penalty terms and a tradeoff occurs. The penalty parameters that result a feasible 
and a good solution, which minimizes the objective function, should be found.  
Determining the appropriate values of the penalty parameters, network parameters and 
initial states are so critical issues associated with gradient type networks that by adjusting 
the parameters, the convergence performance to valid solutions can be improved. It is clear 
that solving scheduling problems represented by many constraints will cause a tradeoff 
among the penalty terms to be minimized.
Due to the problems of Hopfield like NNs in solving optimization problems, various 
modifications are proposed to improve the convergence of the Hopfield network. While 
several authors modified the energy function of the Hopfield network to improve the 
convergence to valid solutions (Aiyer, Niranjan, & Fallside, 1990; Brandt, Wang, Laub & 
Mitra, 1988; Van Den Bout & Miller, 1988) many others studied the same formulation with 
different penalty parameters (Hedge, Sweet, & Levy, 1988; Kamgar-Parsi & Kamgar-Parsi, 
1992; Lai & Coghill, 1992). In recent years, time based penalty parameters are proposed to 
overcome the tradeoff problems encountered in using penalty function approach. Wang 
(1991) used monotonically time-varying penalty parameters for solving convex 
programming problems. Dogan & Guzelis (2006) proposed linearly increasing time-varying 
penalty parameters for solving clustering problems. Here, we propose to use time varying 
penalty parameters that take zero values as a starting value and then are increased in a 
linear fashion in a stepwise manner to reduce the feasible region and also by updating all 
the neurons synchronously, better simulation results are obtained. 
The proposed gradient network algorithm can be summarised by the following pseudo-code.
Step 1. Construct an energy function for the considered problem using a penalty function 
approach.
Step 2. Initialize all neuron states to random values. 
Step 3. Select the slope of the activation function ( ) and step sizes ( ).
Step 4. Determine penalty parameters

Step 4.1 Select C (the coefficient of the inequality constraint) and assign zero as initial 
value to other penalty parameters A, B and D. If the constraint associated with 
parameter C is satisfied, proceed to Step 4.2 otherwise go back to Step 4.1. 
Step 4.2 Select D (a higher value than C to increase the effect of equality constraint), and 
use the predetermined value of C (without taking into consideration of the effect of 
parameter A and B) to check whether both of the constraints associated with these 
terms are satisfied. If yes go to step 4.3, otherwise to step 4.4. 
Step 4.3. Select B (a higher value than D), assign 1 to A, and use the predetermined 
values of C, D together with B to check whether all of the constraints associated with 
these terms are satisfied. If yes go to step 5, otherwise to step 4.4.  
Step 4.4 Increase the value of parameter whose associated constraint is not satisfied. 

Step 5. Repeat n times: 
Step 5.1. Update U using equations (7) and (8), and then compute V by V=g (U). 

Step 6. If the energy has converged to local minimum proceed to step 7, otherwise go back to 
step 5. 
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Step 7. Examine the final solution to determine feasibility and optimality. 
Step 8. Adjust parameters A, B, C, D if necessary to obtain a satisfactory solution, reinitialize 
neuron states and repeat from step 5. 

3.6 An Example 

We explain the procedure with a 5-job 3-machine identical parallel machine scheduling 
problem. After constructing the energy function for this problem, all neuron states are 
initialized to random values chosen uniformly from the interval [0,1]. In the proposed 
approach, we firstly suggest to satisfy the inequality constraint by penalizing it.  In the first 
phase of the simulation (for the first 2000 iterations), initial value of the penalty parameter C 
is chosen as 8. Because other penalty parameters are not taken into consideration, they are 
equal to zero. Since this inequality constraint is satisfied after 2000 iterations, it is decided to 
proceed to the next phase. In the second phase (for iterations from 2001 to 4000), one of the 
equality constraints (binary constraints) is taken into consideration, and its associated 
parameter D is chosen as 20, a value greater than C.  The predetermined value of C, 8, is 
used to penalize the inequality constraint. Both of the constraints are satisfied. Thus, it is 
decided to proceed to the next phase (for iterations from 4001 to 5000). In this phase, all of 
the constraints are tried to be satisfied. Together with the predetermined values of C and D, 
the penalty parameter B belonging to the assignment constraint is chosen as 100 (a value 
greater than other parameters). Since A belongs to the original objective function, it is not 
penalized, and we assign 1 to A. After running simulations with all these 4 penalty terms, 
the feasibility and optimality of the final solution is checked. It is seen that except the 
inequality constraint, being violated with a small percentage error, all of the constraints are 
satisfied. Therefore, it is decided to enhance the weight of this constraint, and then value of 
its parameter, C, is increased to 600. Optimal solution is found at iteration 5100. All of the 
constraints were met satisfactorily, and the cost value is 3.1. In Table 1, values of penalty 
parameters used during the solution of the problem considered are displayed. 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 1. Penalty parameter values in four phases of simulation 

4. Simulation Results 

A simulation experiment was conducted to test the effectiveness of the proposed gradient 
network approach in terms of solution quality. The initial conditions of the network and the 
processing times of jobs were chosen randomly from uniform distribution in an interval 
[0,1], and [1,3], respectively. In tables 2-11, penalty coefficients of the proposed gradient 
network and other parameters which were determined empirically by running trial 
simulations are given. 
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For each problem size, the gradient network was run for 20 different initial conditions on 5 
different datasets. It is to be noted that the same set of penalty parameters are tried to be 
found for all the test sets of each problem size during simulations. By tuning the parameters 
for each dataset, it is possible to improve the performance of the proposed network.  

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 2. Penalty coefficients during four phases of simulations for n=5 m=3

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 3. Penalty coefficients during four phases of simulations for n=10 m=3 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 4. Penalty coefficients during four phases of simulations for n=20 m=3 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 5. Penalty coefficients during four phases of simulations for n=50 m=3 
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   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 6. Penalty coefficients during four phases of simulations for n=100 m=3 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 7. Penalty coefficients during four phases of simulations for n=10 m=5 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 10 0

2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 8. Penalty coefficients during four phases of simulations for n=20 m=5 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 10 0

2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 9. Penalty coefficients during four phases of simulations for n=50 m=5 
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   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 10 0

2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 10. Penalty coefficients during four phases of simulations for n=100 m=5 

m n Cmax X X

3 5 0.001 0.1 1
3 10 0.001 0.1 1
3 20 0.001 0.1 1
3 50 0.001 0.1 1
3 100 0.001 0.1 1
5 10 0.001 0.01 1
5 20 0.0008 0.01 1
5 50 0.0008 0.1 1
5 100 0.0008 0.1 1

Table 11. Other Parameters used in the simulation 

The proposed procedure was implemented in Matlab language (Version 6.5) and run on a 
PC with a Pentium IV, 2.6 GHz processor having a 512 MB of RAM. 
In tables 12-20, the solutions obtained by the gradient network using the determined 
parameters are compared with those of the well known LPT heuristic and with the optimum 
solutions found by Lingo (version 8.0), a linear programming software package, in terms of 
Best Cmax (cost of the best solution obtained by the gradient network), Avg. Cmax (cost of the 
average solution obtained by the gradient network), Worst Cmax (cost of the worst solution 
obtained by the gradient network), and % deviations. Columns (6) and (7) represent the % 
deviations of the proposed gradient network solution from the LPT rule solution and from the 
optimal solution, respectively. The % deviations reported in Columns (6) and (7) are given by 

%100*
)max(

)max()max(.
%

LPTC
LPTCnetworkGradientCAvgLPTfromdeviation

%100*
)max(

)max()max(.
%

optimalC
optimalCnetworkGradientCAvgoptimalthefromdeviation

where Avg. Cmax(Gradient network) is the average gradient network solution of the 20 
runs, Cmax(LPT) is the LPT solution and Cmax(optimal) is the optimal solution obtained by 
the linear programming solver. The percentage of times, which resulted in a feasible 
solution by the network, was also displayed in the last columns of these tables. It is obvious 
that the negative % deviation values from the LPT dispatching rule represent the % 
improvement realized by the gradient network. 
As our primary goal was to compare the proposed network solution with the LPT rule and 
with the optimal solutions, in terms of solution quality, the CPU times required for solving 
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each data set are not given. But from the simulation experiments, it is seen that when 
compared with the very long solution times needed to obtain the optimal solutions by the 
Lingo software, the proposed network could converge to valid solutions in reasonable times 
between 13.18 seconds (for n=3 m=5) and 203.57 seconds (for n=100 m=5).  Obviously, by 
the implementation of the proposed network in a dedicated hardware, significant 
reductions can be obtained in running times. 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation 
(%) from 
the LPT 
solution 

(6)

Deviation
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

3.1 3.1 3.1 3.1 3.1 0.00 0.00 100%

4.69 4.69 4.69 4.69 4.69 0.00 0.00 100%

3.55 3.55 3.55 3.55 3.55 0.00 0.00 100%

2.98 2.98 2.98 2.98 2.98 0.00 0.00 100%

3.02 3.02 3.02 3.02 3.02 0.00 0.00 100%

Table 12. Results for m=3, n=5 over 5 problems  

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation 
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

7.33 7.54 7.67 7.59 7.21 -0.66 4.57 100 % 

6.97 7.21 7.47 7.45 6.92 -3.22 4.19 100 % 

7.28 7.56 7.72 7.69 7.2 -1.69 5 100 % 

6.79 7.11 7.30 7.46 6.72 -4.69 5.80 100  % 

 6.77 7.01 7.31 7.44 6.72 -5.78 4.31 100 % 

Table 13. Results for m=3, n=10 over 5 problems  
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Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

13.24 13.53 13.85 13.37 13.05 1.19 3.68 100 % 

13.84 14.24 14.46 14.01 13.74 1.64 3.64 100 % 

13.03 13.42 13.63 13.40 12.92 0.15 3.87 100 % 

14.25 14.54 14.76 14.60 14.05 -0.41 3.48 100  % 

13.35 13.60 13.82 13.46 13.12 1.04 3.66 100 % 

Table 14. Results for m=3, n=20 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

33.53 33.84 34.07 33.70 33.34 0.41 1.50 100 % 

30.58 30.95 31.14 30.75 30.36 0.65 1.94 100 % 

31.47 31.85 32.15 31.65 31.38 0.63 1.49 100 % 

34.53 35.41 35.77 35.32 34.92 0.25 1.40 100  % 

34.68 35.10 35.30 34.88 34.51 0.63 1.71 100  % 

Table 15.  Results for m=3, n=50 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

70.00 70.28 70.58 70.55 69.91 -0.38 0.53 100 % 

66.65 66.94 67.14 67.09 66.45 -0.22 0.73 100 % 

68.42 68.85 69.10 69.04 68.39 -0.27 0.67 100 % 

66.11 66.73 66.52 66.73 66.09 0.00 0.97 100  % 

65.85 66.15 66.33 66.35 65.69 -0.30 0.70 100  % 

Table 16.  Results for m=3, n=100 over 5 problems 
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Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation
(%) from the 

optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

3.43 3.53 3.68 3.43 3.43 2.91 2.91 100 % 

3.38 3.76 3.97 3.79 3.38 -0.79 11.24 100 % 

3.64 3.85 3.97 3.68 3.57 4.35 7.56 100 % 

4.03 4.16 4.24 4.03 4.03 3.22 3.22 100 % 

3.57 3.67 3.73 3.53 3.53 3.97 3.97 100 % 

Table 17. Results for m=5, n=10 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

7.43 7.78 7.91 7.37 7.28 5.56 6.87 100 % 

7.68 7.95 8.08 7.62 7.49 4.33 6.14 100 % 

8.13 8.24 8.37 7.8 7.76 5.64 6.18 100 % 

7.79 7.98 8.13 7.69 7.51 3.77 6.26 100 % 

8.55 8.77 8.92 8.29 8.18 5.79 7.21 100 % 

Table 18. Results for m=5, n=20 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

20.49 20.86 21.09 20.28 20.22 2. 86 3.16 100 % 

21.70 22.17 22.42 21.55 21.49 2.88 3.16 100 % 

18.69 18.94 19.15 18.42 18.40 2.82 2.93 100 % 

20.71 21.11 21.33 20.37 20.33 3.63 3.83 100 % 

19.79 20.01 20.24 19.43 19.41 2.98 3.09 100 % 

Table 19 Results for m=5, n=50 over 5 problems 
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Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

41.65 41.87 42.06 41.24 41.20 1.53 1.63 100 % 

40.16 40.56 40.74 39.78 39.77 1.96 1.99 100 % 

41.90 42.12 42.28 41.36 41.34 1.84 1.89 100 % 

40.20 40.55 40.69 39.83 39.82 1.80 1.83 100 % 

41.54 41.89 42.06 41.19 41.15 1.70 1.8 100 % 

Table 20.  Results for m=5, n=100 over 5 problems 

To interpret the findings in a table, let us consider Table 12. For all the 5 data sets, 20 out of 
the 20 runs of the proposed network resulted in a feasible solution, that is percent feasibility 
is 100 %. The average, worst and the best cost of the 20 feasible solutions for the first dataset 
is 3.1, which is equal to the global optimal solution value, therefore the percent above the 
optimal solution and LPT result is 0.0. Similarly, if we consider Table 20, for the first dataset, 
again, 100 % of the runs resulted in a feasible solution by the proposed network. The 
average Cmax of the feasible solutions is 41.87, which is 1.53 % more costly than the result of 
LPT rule, and 1.63 % more costly than the global optimal solution. The best makespan value 
produced by the gradient network is 41.65, which is 0.99 % ([(41.65-41.24)*100]/41.24) above 
than the LPT result and 1.09 % ([(41.65-41.20)*100]/41.20) above the global optimal solution. 
According to these findings, it is clear that the initial conditions of the network appear to 
have a serious impact on the solution quality. For example in Table 17, for n=10 and m=5, 
although the proposed network results in gaps between 2.91 and 4.35 % from the LPT 
solution, on average, it outperforms the LPT heuristic for one of the datasets. In the same 
table, if the results obtained using the first data set are considered, it is seen that although 
the average makespan from the 20 different initial runs is found as 3.53, the best makespan 
out of the 20 runs, produced by the proposed network is 3.43, which is equal to the optimal 
solution. In addition, although the average Cmax results obtained by the proposed network 
are above the LPT results for the 4 data sets, the best Cmax results outperform the LPT rule 
in 4 data sets. 
In all the simulations carried out to show the performance of the network, convergence to 
valid schedules is achieved and better results are obtained for small number of machines 
and large number of jobs. If all the test cases are considered, the proposed network is, on 
average, able to produce a solution with a makespan value, which is 1.14 % above of cost of 
the LPT result. By tuning the penalty coefficients for each dataset, it is possible to improve 
the convergence and the optimality of the solutions. On the other hand, besides its 
convergence to valid schedules, convergence to good quality solutions of the proposed 
network points out its general applicability in other scheduling environments.   
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5. Conclusions and Future Research 

This study has presented a dynamical gradient network for solving the identical parallel 
machine scheduling problem with the makespan criterion which is known to be NP-hard 
even for the case of two identical parallel machines. Focus of this paper has been on 
demonstrating the optimization capabilities of the proposed network by solving a set of 
randomly generated problems. The proposed Hopfield-like network uses time-varying 
penalty parameters that start from zero and increase in a stepwise manner during iterations 
to overcome the tradeoff problem of the penalty function method, one of the important 
drawbacks of the penalty function approach.. To analyse the performance of the network, it 
is compared with the well-known LPT heuristic commonly used to solve the problem under 
study, and also with the optimal solutions in terms of the solution quality. The simulation 
experiments demonstrated that the proposed network generated feasible solutions in all the 
cases, and, in some of the data sets it found smaller makespan compared to LPT. In general, 
for all the instances, the average deviation percentage of the proposed network is 1.14 % 
from the LPT heuristic. 
By conducting several simulation experiments, the influence of different initializations 
schemes was investigated on the solutions of the problem considered. The analysis results 
showed that the percent error of the network is very sensitive to the selection of the starting 
points and the choice of the parameters used in simulation.   
The contribution of this paper is two fold. We propose to use a novel time varying penalty 
method that guarantees feasible and near optimal solutions for solving the identical parallel 
machine scheduling problem with the makespan criterion. Although a large body of 
literature exists for solving identical parallel machine scheduling problem with the 
makespan minimization criterion, to the best of our knowledge, there is no previously 
published article that tried to solve this NP-hard problem using neural networks, so that this 
study will also make a contribution to the scheduling literature.  
Several issues are worthy of future investigations. First, further studies will be focused on 
selecting the parameters of the network automatically rather than choosing by trial and 
error, which is one of the drawbacks of neural networks. Second, extension of the results to 
large size problems will be worthwhile. Finally, extension of the results to different 
manufacturing scheduling environments is important for industrial applications, and 
implementation of the network in hardware can make progress in computational efficiency.  
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1. Introduction 

Operations planning and scheduling (OPS) problems in flexible manufacturing systems 
(FMSs), are composed of a set of interrelated problems, such as part-type batching, machine 
grouping, part routing, tool loading, part input sequencing, and resource assignment. The 
performance of an FMS is highly dependent on the efficient allocation of the limited 
resources to the tasks, and it is strongly affected by the effective choice of scheduling rules. 
In this study, a heuristic ruled based approach for dynamic scheduling of FMSs, which 
integrates loading, part inputting, routing, and dispatching issues of the OPS is presented, 
and the implementation results are compared with several dispatching rules. 
Scheduling is a decision making process and it concerns the allocation of the limited 
resources to tasks over time [1]. In a manufacturing system, resources represent machines, 
operators, robots, tools, buffers etc., and activities are the processing of products on 
machines, the transportation of products among workstations, or loading/unloading the 
parts from/to machines by the operators. The scheduling problems in FMSs, relate to the 
execution of production orders and include raw part input sequencing, machine, material 
handling device and operator scheduling, part routing, monitoring the system performance 
and taking the necessary corrective actions [2]. Since FMSs comprise very diverse properties 
and constraints (e.g. the availability of alternative machines to perform the same 
operation(s), multi-layer resource sharing, and product varieties), scheduling problems in 
FMSs are more complex than job-shop or flow-shop problems and often very difficult to be 
solved by conventional optimization techniques. Prior studies on FMS scheduling problem 
point out the great impact of scheduling decisions to the system performance [3-5]. 
Scheduling decisions and the effective choice of dispatching rules are influenced by the 
performance criterion and existing shop-floor conditions such as process plans, due date 
requirements, release dates, job priorities, machine setup requirements, and the availability 
of system resources. Scheduling/dispatching control decisions in an FMS must be capable of 
handling simultaneously these diverse factors on a real-time basis. Therefore, rather than 
designing an optimum scheduler, there is a definitive need for a flexible and integrated 
scheduling in order to handle the dynamic and stochastic nature of real-world problems, 
and computationally efficient compared to analytical methods. 
In this study, a heuristic rule-based approach is proposed to solve the resource contention 
problem in an FMS, and to determine the best route(s) of the parts, which have routing 
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flexibility. The paper is organized as follows. Section 2 describes the resource contention 
problem considered in this study. The proposed heuristic rule based system is presented in 
the following section. In section 4, the dynamic scheduling methodology is illustrated on an 
example FMS, and the performance of the proposed rule-based system is compared with 
single dispatching rules. Finally, conclusions and future research directions are given in the 
last section. 

2. Problem Statement 

Due to the unavailability of sufficiently large problem sets, the researchers studying on 
FMSs mostly generate their specific systems [6]. In this study, an FMS with alternative 
operations and setup times is employed to explain the proposed decision support system for 
dynamic shop-floor scheduling and control problem. The FMS operational policy is under 
push paradigm that machines process parts whenever they are available. Some operations 
of the product types can be performed by alternative machines. From the point of part flow 
view three different types of products are processed simultaneously in the system, and each 
product is allowed to have flexible routing (i.e. two or more machines have the ability to 
perform the same operation of a part). Employing flexible routing requires a two-level 
hierarchical decision making process: assignment and sequencing. In the first level, the next 
destination of a job is determined; in the second level the sequencing decisions of a part 
waiting for the limited resources such as workstations, operators, and transporter is taken. 
For scheduling of automated manufacturing systems, supplementary resources such as 
material handling system, operators and buffer spaces should also be taken into 
consideration while taking scheduling decisions. However, this will increase the problem 
complexity, since deadlocks may arise from distinct recognition of multilayer resource 
sharing. In the system considered, when the part type is changed, a setup operation is 
needed. Therefore, we also have to introduce setup requirements of the machines into the 
rule-based system while solving the conflict problems. 
In order to achieve the efficient utilization of the resources, and to find out the best 
operation sequence of each task, a real-time resource allocation policy is needed to be 
adapted, thus to assign resources to the jobs as they advance through the system. Moreover, 
the scheduling decisions should consider the prevailing conditions of the shop-floor in an 
integrated framework. Since a variety of part types have alternative routes on the machines, 
and multiple resources can be selected in a given set, a conflict or deadlock may often arise 
when more than one part is contesting for the same resources such as machines, material 
handling devices, and operators. Thus, the problem is the allocation of limited resources to a 
set of tasks, that is determination of the best route of each task in the system according to the 
current shop-floor condition (i.e. due dates, release dates, order quantities, tardiness 
penalties, inventory levels, priorities, and setup times). However, formulation of real-life 
scheduling problem using traditional methods becomes very complex when part routing 
flexibility, machine setup operations, operator and material handling system constraints are 
also considered. 

3. A Heuristic Rule-Based System for Dynamic Scheduling 

The system control and scheduling approach in the proposed methodology uses a heuristic 
rule-based system to solve resource contention problems and to determine the best route(s) 
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of the parts, which have routing flexibility. The part routing control system aims to handle 
material handling, operator and setup operation constraints together with the machine 
constraints, thus to solve both sequencing and resource sharing problem effectively at the 
same time. The proposed approach is modeled with the help of the high-level Petri Net (PN) 
model of the system by the sequence of execution of transitions [7]. PNs, as a graphical and 
mathematical modeling tool, are well suited for representing FMS characteristics such as 
precedence relations, concurrency, conflicts, and synchronization [8-9]. 
In the developed scheduling system, part flow between workstations are controlled and 
managed by a scheduler module. All the information of each part which is ready to be 
transported in the system is sent to the scheduler module. In the scheduler module, the next 
destination of a part is determined dynamically based on the existing shop-floor conditions 
and the proposed heuristics, then sends a request for AGV assignment. The Scheduler 
module examines the system state at every discrete event when there is a change in the 
status of the system and makes a decision applying scheduling rules in the knowledge base 
then passes the decision to the system. Thus, it provides a computerized support to the user 
so that the decision is taken after comparing the different available options of scheduling 
which are better in respect to the different aspects such as due dates, overhead costs, 
minimum tardiness, and flow time. A set of production rules in the form of "IF..... THEN....." 
statements have been constructed based on the heuristics developed for this work to assign 
the resources to the parts, and to determine the best route(s) of the parts thus to solve the 
resource contention problem. A production rule which is a means of expressing reasoning 
links between facts expresses the behavior of objects in the system of interest [10]. 

where, the cj (j =1,2,..., m) are predicates known as conditions, and the rk (k = 1,2,..., n) are to 
as consequences. 
A predicate checks the state of the system, such as the process plan of the parts, the number 
of conflicting part types, their remaining number of operations, their remaining process 
times, and the setup status of the machines, then selects the next part to be processed from a 
set of parts awaiting according to some priority rules. When the IF portion of a production 
rule (predicate) is satisfied by the conditions, the action specified by the THEN portion is 
performed. When this happens, the rule is said to be fired. In scheduler module, a rule 
interpreter compares the IF portion of each rule with the facts and executes the rules whose 
IF portions match the facts. Each rule in this scheme corresponds to the use of a routing 
control strategy subject to the existence of certain conditions. 
Instead of using a single dispatching rule, it is more expedient to apply one from a set of 
dispatching rules according to the decision point and system characteristics. In the IF...-
THEN... statements, the following dispatching procedural rules are used in decision making 
process;

First come, first served, (FCFS or FIFO) 
Earliest due date, (EDD) 
Smallest number of remaining operations, (SNRO) 
Largest number of remaining operations, (LNRO) 
Shortest processing time, (SPT) 
Job of identical setup, (JIS) 
Critical Ratio scheduling, (CR) 
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Figure 1. Flow Chart of the Routing Control Process 
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The procedure for scheduling operations on the machines is executed whenever a raw part 
for a new order is delivered to the load storage buffer at Load/unload station or a 
workstation completes performing of its current operation and becomes available for the 
next task assignment. When a part is processed at a workstation, it is transferred to the 
work-in-process (WIP) storage area which has a limited capacity and a route request with 
the product data such as product type, due date, and process plan information of the part, is 
sent to the scheduler module for this part. In the scheduler class, all route requests that are 
sent from the workstations and load/unload station are put in order, and replied by 
considering the prevailing system conditions and the rule based system. Once a route 
request is replied, the destination of the pallet is informed back to the station which sent the 
route request and an AGV request is forwarded to the transportation module. By this way, if 
there is an available AGV, it can be directed to the workstation which the part waiting to be 
transferred its next destination. The route requests which are not satisfied join a waiting 
queue, and once a new route request arrives to the scheduler module, all the route request 
including newly arriving one are re-tested in the new system status. This procedure is 
repeated until all route requests are replied. 
Figure 1 illustrates the flow diagram of part routing control process based on the heuristics. 
This algorithm attempts to further reduce the mean flow times of the jobs by reducing the 
setup times incurred while the product types change. 

4. Performance Evaluation of the Dynamic Scheduling Based on the Rule-
based System 

A high-level PN based simulation analysis is performed for the performance evaluation of 
the part routing, and resource allocation strategies under different levels of system 
parameters. The input data to the PN models consists of part types to be processed, 
machines, load/unload station, material handling device, and operators. Input data for the 
performance analysis of the example FMS are as follows: 

PARTS:

Parameter Value

Number of product types 3(Pl,P2,P3)

Order batch size 1

Product type arrival ratio (% 30, P1); (% 40, P2); (% 30, P3)

Order inter arrival time Exponential with mean 30 min. 

Due date 
Arrival time + (100+ uniform (0;2)* max.total processing 

time)

MACHINES:

Parameter Value

Number of machines 9

Machine setup time 20 min. 

Loading/unloading parts to/from machines 0.2 min. 
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LOAD/ UNLOAD PROCESS: 

Parameter Value

Loading / unloading parts to/from pallets 0.3 min. 

Moving pallets to load / unload storage buffers 0.2 min. 

MATERIAL HANDLING SYSTEM: 

Parameter Value

Number of AGVs 1

Transfer time between the stations 1.5 min. 

OPERATORS: 

Parameter Value

Number of operators 8

Operator transfer time between workstations 0.5 min 

For each product type, Tables 1 and 2 show the operational sequences with required 
resources and processing times without setup times. 

Operations Machine required - Processing time 

O-l M-l (4.5 min.) / M-3 (3.2 min.) 

O-2 M-2 (4.5 min.) / M-4 (3.2 min.) 

O-3 M-5 (9 min.) / M-6 (5.2 min.) / M-7 (6 min.) / M-3 (3.6 min.) 

O-4 M-8 (2 min.) 

O-5 M-9(1.5min.) 

Table 1. Process plan of product type 1 (P1)

Operations Machine required - Processing time 

O-l M-3 (3.7 min) 

O-2 M-4 (5.3 min.) 

O-3 M-5 (13 min.) / M-6 (7.5 min. for P2; 8.5 min. for P3) / M-3 (5.25 min.) 

O-4 M-8 (2 min.) 

O-5 M-9(1.5min.)

Table 2. Process plan of product type 2 and 3 (P2 and P3)

Ten independent replications for each dispatching strategies were run for 180.000 operating 
minutes (125 days with three 8 hr shifts) during the simulation of the PN model. In each run, 
the shop is continuously loaded with job-orders that are numbered on arrival, and each run 
produced one observation for each performance measure. Different random number seeds 
were used to prevent correlation between the parallel runs of the factorial experiment. In 
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order to ascertain when the system reaches a steady state, the shop parameters, such as 
mean flow time of jobs and utilization level of machines, were observed, and it has been 
found that the system became stable after a warm-up period of 43.200 simulated minutes (30 
days with three 8 hr shifts). Thus, for each replication, the first 43.200 minutes was discarded 
to remove the effect of the start-up condition, which was an idle and empty state. 
Performance of the proposed rule-based system was compared with single dispatching rules 
such EDD, FIFO, SNRO, and LNRO with respect to mean flow time of jobs, mean tardiness, 
percentage of tardy jobs, and number of tardy jobs. In these cases, the jobs waiting for the 
next operations in the central buffer are ranked by only considering a fixed dispatching rule, 
and the job which is ranked first is routed to the available machine which can process part 
with the smallest processing time (SPT) among the alternative process plans. Therefore, we 
only make modification on the scheduler module to replace by a single dispatching rule 
instead of the rule-base, and the simulation model of the system is used in the same way. 
Table 3 summarizes the performance analysis results that are obtained by taking the mean 
over 10 replications for each procedure. 

EDD FIFO SNRO LNRO
Rule-based
System

Mean job flow time (min) 133.12 134.13 141.71 138.38 115.04

Mean job tardiness (min) 28.58 26.11 34.76 32.19 19.74

Proportion of tardy jobs (%) 48.6 55.6 53.3 51.8 32.3

Number of tardy jobs 2225 2577 2460 2366 1499

Table 3. Performance analysis results 

Implementation results show that, the proposed dynamic routing heuristics usable for real-
time scheduling/dispatching and control of FMSs yield better results compared to the fixed 
dispatching rules and be computationally efficient and easier to apply than optimization-
based approaches in real-life problems. 

5. Conclusions 

In this study, a new and simple alternate routing heuristics, which would be superior to the 
conventional routing strategies in terms of various system performance measures and easier 
to apply practically, was presented. Because of the high investment costs of FMSs, it is also 
definitely worth choosing the best operating policy and system configuration by analyzing 
the system model, and adapting to changes over time. In future research, the heuristic rule 
base will be extended to include other supplementary constraints such as dynamic tool 
allocation and sequence dependent setup times. For practical implementation of the 
proposed decision support system, additional research in the area of human interfaces could 
be useful to develop more user friendly system which automatically constructs simulation 
model of the system from the knowledge base of a production system. 
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1. Introduction 

With the decreasing cost of embedded systems, product designers now ask for more 
functionalities from them. Parallel programming is a way to handle their complexity, and 
embedded platforms can support such programming, such as in C or Java. When more than 
one thread is being used in a program, the threads are running concurrently and are known 
as concurrent processes. Concurrent programs can allow more effective use of a computer's 
resources but require greater effort on the part of the developer to design them. On the other 
hand, a key feature of embedded systems is that they interact with a physical environment 
in real time. Indeed, parallel programming in a real-time context is rather new. Simple 
extensions of existing analysis tools for sequential processes are not sufficient: parallelism 
with threads involves purely parallel-specific phenomena, like deadlocks. In this chapter we 
examine the behavior of a class of concurrent processes sharing resources, from the point of 
view of the worst-case response time (WCRT). To address this complex issue, we introduce a 
model, called timed PV diagram, and exploit its geometric nature in order to deal with the 
state explosion problem arising in the analysis of concurrent processes. This idea is inspired 
by the results in the analysis of concurrent programs using PV diagrams, a model introduced 
by Dijkstra [9]. It has been used, since the beginning of the 90's, for the analysis of 
concurrent programs [13,11] (see [15] for a good survey). We focus on a particular problem: 
finding a schedule which is safe (that is, without deadlocks) and short. To this end, one 
needs to resolve the conflicts between two or more processes that happen when their 
simultaneous demand for the same resource exceeds the serving capacity of that resource. 
The motivations of this scheduling problem are: 

• The process under study might be part of a global system (for example, the body of an 
infinite loop in a program) and subject to a deadline. If no precise timing analysis result 
is available, one often estimates the WCRT by sequentializing all the processes and 
taking the sum of the WCRTs of each process considered individually. This measure 
can easily be greater than the deadline, while the real WCRT is probably much smaller. 
We are thus interested in providing a better estimation of the real WCRT. In addition, 
from the schedule, the designer can gain a lot of insight about other properties, e.g. the 
frequency and duration of waits. 
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• When finding a short schedule using our methods, the guarantee that the schedule is 
deadlock-free comes "for free". 

The paper is structured as follows. In Section 2 we recall basic definitions and concepts 
related to PV programs and diagrams. Here, PV diagrams are described in the discrete 
world—ZN. In the next section we describe our timed version of PV programs and diagrams. 
Then we introduce the notion of the worst case response time for a given schedule and 
discuss its computation. In Section 4 we explain an abstraction of efficient schedules, and 
show how this abstraction serves to find efficient schedules (w.r.t. execution time). Section 5 
describes how to construct this abstraction using the geometry of timed PV diagrams and 
presents a spatial decomposition method, which is suitable for the exploration of the 
abstraction. In Section 7 we describe some related work on timed PV diagrams and on 
scheduling of concurrent programs. In Section 8 we conclude and present future work. 

2. PV Programs and Diagrams 

In this section we briefly present PV programs and PV diagrams. We adapt the vocabulary 
to our application domain: we use "threads" instead of "processes", and we call a set of 
threads running together a "program" or a "PV program". We first explain the model with 
the classical example of the "Swiss flag". 
PV Programs. "P" and "V" are actions on semaphores. "P" is for "proberen", "to test" in Dutch, 
and "V" is for "verhogen" ("to increment"), as applied on Dijkstra semaphores. In 
multithreaded programs vocabulary, P is for "lock", and V for "unlock" or "release". In PV 
programs, only lock and unlock actions are considered. The Swiss flag program is: 

where  and  are 1-semaphores. In this program threads  and  run concurrently, for 
example they might be executed on two processors—one for each thread. 
PV Diagrams. PV programs have a geometric representation. The PV diagram of the Swiss 
flag program is shown in Figure 1. 
The meaning of the diagram is that a schedule for the program is represented by a sequence 

of arrows from the bottom left corner of the diagram, point to the top right 
corner, point . Indeed, any possible schedule is a particular order of events (P or
V) of threads  and . A schedule is shown in the diagram, drawn in solid arrows. 
In this diagram the black circles indicate the "forbidden points", that is those that are not 
possible in a schedule. For example, point (2,1) is forbidden because its associated 

combination of actions, , means that both threads lock resource  at the same time, 
which is not possible since  is a 1-semaphore. Consequently, we do not draw the arrows 
that have black points as source or target. We draw in dotted line all the arrows that a 
schedule could follow. The small black squares mark the squares of the diagram which are 
"forbidden squares", which are the "expansion" of each forbidden point to the adjacent 
upper-right little square. The "Swiss flag" name of the example comes from the cross form of 
the union of these forbidden squares. 
The advantage of such diagrams is that they allow to visualize special behaviours of a 
program. In this example, we can see two special cases: point (1,1), which is a deadlock; and
point (3,3), which is an unreachable point.
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Figure 1. The Swiss flag diagram; a schedule 

2.1 PV Diagrams: Formal Definitions 

We now formalize the above explanation and provide the basis for our subsequent 
development of a timed version of PV programs and diagrams. We use partial orders to 
model threads. When B is a partial order, we use the term "arc" or "arrow" to refer to an 
element ', and we denote it by .
Orders
Resources. Shared resources are represented by a set  of resource names. Each resource is 
protected by a semaphore, which is represented with a function limit: . We 
suppose that each resource has a finite limit, since this is the case which interests us. An 
action (by a thread) is the locking or unlocking of a resource. If r , the action of locking r
is denoted by Pr, and the action of unlocking r is denoted by Vr.
Threads. We consider a set of N threads, which we index with integers, for convenience: E1,
..., EN. Each thread Ei, is a partial order of events. A thread event e has one associated action. 
We denote by act(e) the action associated with thread event e, for example act(e) = Pr. The set 
of events of thread i is denoted by , and the order relation on it by Ei (also written 
simply  when no confusion is possible). This order is total (no branching considered in the 
present study.) Each thread Ei contains at least two events: its start event, Ei, which is the 

bottom element of the order, and its end event, Ei, which is the top element of the order. The 

threads we consider are well-behaved, in the sense that for each resource r , the thread 
has form: B*(PrB*Vr)*B*, where B is the set of actions Pr’ or Vr’ with r'  r.
We say that thread i is accessing resource r at event e if and only if Pr has occurred before or 
at e, and the corresponding release Vr occurs (strictly) after e. Formally, this is the case if 
there exist an e' e with act(e') = Pr, and an e" with e e" and act(e") = Vr such that e' e e",
and for all e''' with e' e''' e", act(e''')  Pr, act(e''')  Vr.
The running together of N threads is formalized by the product of N partial orders,  = 

. We denote by  the bottom ( E1, . . . , EN) of this partial order, and by  its 

maximum ( E1, . . . , EN). We denote by  the order of . We will use letters , ', . . . to
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denote elements of . Given , i is the event that belongs to thread 
Ei.
Forbidden Elements. For each element of , and each resource a , we compute the 
number of threads which access resource a at this element. A point is forbidden if there is at 
least one resource to which the number of concurrent accesses is greater than its initial 
semaphore value. Formally, the element is forbidden if and only if 

 where  if thread i is

accessing resource r at i ,  otherwise. 

We denote by F the set of all forbidden elements of , and we denote by (for "allowed") 
the restriction of order to non-forbidden elements (elements of ).
Strings and Schedules. We use in the remainder of this paper the following notation: if e B
and e B, where B is a total order, then predB(e) denotes the direct predecessor of e in B.
That is, predB(e) e, and e' B : predB(e) e' e e' = predB(e). When the order B
considered is clear in the context, we will simply write pred(e).
Among arrows in relation , we distinguish the "small steps". An arrow  is a 
small step if : i = 1, . . . , N : pred( i) 'i i. For example, in the diagram of Figure 1, the 
dotted arrows are small steps from .
Definition 1. A string s is subset of , which forms a path from an element  to an element 

'  with ', such that for each element " in s \ {e}, arrow  is a small step. A 
string which forms a path from to is called a schedule (for the program).
An element of a string is called state. From now on, the letter will denote a schedule. 

Geometric Realization Now we define the mapping of a program and its schedules to a 
diagram and trajectories, which we call the geometrization mapping. The idea is to map the 
set of schedules to trajectories inside an N-dimensional cube, going from the bottom left 
corner (for ) to the top right corner (for ) of the cube. Since we want to stay in the 

discrete world, we describe geometric realization in . We use notation " " for the 
mapping; hence, is the image of schedule by this mapping. We map threads Ei onto a 

subset of  as follows. Each event e of thread Ei is associated with an ordinate c(e). The 
ordinates are defined inductively as follows: 

The order of Ei is mapped onto the order  between the integers c(e). We denote by the 
resulting partial order . This mapping is clearly an isomorphism of 
partial orders. 

Mapping the Product of the Threads. Since is isomorphic to Ei, the product of partial orders 

is isomorphic to . We denote by this product: it is indeed 

the geometrization of . If looked onto an N-dimensional discrete Euclidian space, elements 
of are points of an N-dimensional grid. More precisely, the mapping sends every 

 to the point . So for example,  is (0, . . . , 0), 
and  is .

Mapping Forbidden Elements and Strings. The set of forbidden elements is mapped onto ;
has an intuitive form geometrically: if every point of lends a colouring of the adjacent 

top right "little box" , then we see a union of N-dimensional boxes, which we call "forbidden 
boxes" or forbidden regions. 
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As a sub-order of , any string is mapped onto , which is the set of points 

of , together with the order it inherits from . Geometrically schedules are trajectories 
that avoid touching the front boundary of the forbidden boxes. 

3. Timed PV Programs and Diagrams 

In this section we present our timed version of PV programs and diagrams. This version 
differs from existing versions of timed PV programs and diagrams [14, 10]. These latter 
works are briefly presented in Section 7, where we also explain why we introduce a new 
version of timed PV programs and diagrams. 

3.1 Timed PV Programs 

Our version of timed PV programs is an enrichment of untimed PV programs with a task 
duration between any two consecutive events of each thread. This is motivated by 
considerations of practical real-time programming, where one may measure the duration of 
the execution of the program code between two events. Such measures are usually done to 
foresee the worst case, so this duration is a worst-case execution time (WCET). After denning 
our timed version of PV programs, our goal is to define the duration of a given schedule. 
And then we aim at finding a quick schedule, in the sense of the schedule that makes the 
execution of all threads finish as soon as possible. 
Adding Duration of Tasks. In our definition of timed programs, we associate with each event e
in a thread Ei the duration (the WCET) of the task, i.e., the part of the program code which is 
performed between the direct predecessor of e and e. We denote by E the union 

 . The task durations are given in form of a function . We define 

d( Ei ) = 0 for each thread Ei.
Example: the Timed Swiss Flag Program. A timed version of the Swiss flag program is as 
follows: 

Timed Schedules. A schedule in our timed version is, as in the untimed case, an order of 
events of the threads. 

3.2 Geometric Realization 

We now define the mapping of a timed PV program and its schedules into a diagram and 
trajectories. In principle, we could use the geometric realization for the untimed case, since 
the involved orders are the same. However, it is more convenient to have a diagram where 
one can visualize durations. To this end, we only have to change the ordinate function c as 
follows. Each event e of thread Ei, is associated with ordinate c(e). Ordinates are chosen so as 
to visually reflect task durations in the Euclidian dimension (in one dimension). A special 
case is tasks with zero duration, for which we choose a fixed length  > 0 to represent the 
order geometrically. The ordinates are defined inductively as follows: 
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The order of Ei is mapped onto the order  between integers c(e) . We denote by the

resulting partial order . The timed diagram for the timed Swiss Flag 

program is shown in Figure 2 (with  = 1).

Figure 2. A timed schedule 

3.3 3D Example: the Timed Dining Philosophers 

We also give a timed version of the 3 philosophers problem. The philosophers, as usually, 
have to get their left and right forks for eating. In the program forks are named , , and :
the left fork of philosopher  is , and its right fork is ; and so on. The forks are 1-
semaphores. We add a 2-semaphore for controlling an access to a small thinking room 
which can contain no more than 2 philosophers at a time. Each philosopher thinks in the 
thinking room, then walks to the eating room (which can contain the three philosophers), 
and eats. Non-zero task durations are given for thinking, walking, and eating. The program 
is the following: 

Then the trajectory for a schedule has to be taken in the cube shown in Figure 3 (a). We add 
little white cubes to indicate the  and  corners. The forbidden regions for the forks are the 
three intersecting bars. The forbidden region for the thinking room is the cube at the bottom 
left of the overall cube. We show also, in Figure 3 (b), the geometry of a more complex 
version which has concurrent access to an anti-stress, and a small ashtray, etc. 
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 a) b) 
Figure 3. Forbidden regions of the three philosophers problem: (a) simple version; 
(b) enriched version 

3.4 Duration of Strings 

Now we explain how the duration of a string (and hence of a schedule) is denned. We have 
added durations between events, which are WCETs. The duration we consider for a string 
corresponds to the case where all the tasks take their WCET as effective duration; thus the 
duration of a string is its worst-case response time. 
Waits. The computation of the duration can be understood in terms of a logic of waits. More 
concretely, we assume that a thread could begin its tasks as soon as the necessary resources 
are available. However, the real "permission" depends on the schedule under consideration. 
For example, a thread A might be ready to begin a task after event e but is forced to wait 
until another thread  performs an event e', if the schedule indicates that event e cannot
happen before event e'.
New Events. For convenience, we introduce the notion of new events along a schedule. New 
events are the events that happen at an element in a string. Given a string s and an element 

s, the set of new events, denoted by news( ), that occur at along the string s is denned 
as: if . If  = S, then news( )
is denned as .
Algorithm to Compute the Duration of a String. Consider a string s (which can be a schedule). 
The duration of string s, which we denote by d(s), is computed with the following algorithm. 
The algorithm iterates over the states of the string, beginning at S and ending at S. Its 
goal is to find "what time is at least at S " when time is 0 at S. To this end, the algorithm 
uses clocks: N local clocks — one for each thread — , and one global clock. The global clock 
is not indispensable, but eases the explanation. We call the variable for the global clock ,
and  the array (of size N) of the local clocks, with indices from  is the local 
clock for thread i. The algorithm is as follows. 

• First all clocks, global and local, are initialized to 0. 

• Then we iterate over the sequence of states of s, beginning from the element just above 
its bottom element. For each element of the sequence, do, in the following order: 

1. Update the global clock according to all threads i that have a new event at 
:   for all i such that i news( ).
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2. Update the local clocks of all threads i that have a new event at :
 for all i such that i news( ).

When element S has been processed, the algorithm returns the final value of  which is the 
duration of the string, d(s). 
We explain the algorithm: when arriving at a state  one observes which events occur at this 
state. Let i the index of a thread that has a new event at .
(1) The last time an event of thread i happens is stored as value . Now, since that 

point, time has elapsed by at least d( i) time units, since we now observe event i.
Therefore, the global time at state e must be at least . So we update the 
global clock accordingly. The "max" function is needed because it is possible that value 

 is in fact not greater than the last  recorded. An example of this case is 
given below. 

(2) After the global clock has been updated in step (1), the local clocks of the threads that 
have new events have to be synchronized. Indeed, we know that current time is now at
least , so the local clocks are updated accordingly. 

Example. The algorithm is illustrated with the schedule shown in Figure 2. The vector-like 
annotations that accompany the trajectory indicate the values of the local clocks during the 
execution. We have not indicated the global clock, since its value at one state is always the 
maximum of the values of the local clocks. We execute the algorithm on the sequence of 
states of the schedule, and we explain below what happens at some particular states. We 
identify states by their coordinates in the diagram. 

• State (1,0): at this state, a new event of thread A happens. Since only A has a new event, 
the global clock is updated to max(0,0 + 1) = 1, and thread A updates its local clock to 1. 
Hence the vector of local clocks is (1,0) at this state. 

• State (4,1): at this state a new event happens to each thread A and B. The global clock 
becomes 4, and both local clocks are updated. The schedule implies that action Pb of 
thread B does not happen before thread A performs Vb. Since thread A runs for 4 time 
units before executing Vb, B cannot execute its action Pb before that time point. The fact 
that the local clock of B is updated to 4 shows that the soonest B can access b (with this 
schedule) is at t = 4. So B has a lapse of 4 time units for executing its task of duration 1. 
For example, if it executes this task immediately—beginning at date 0—, at global time 
1 it has finished, it is forced to wait for 3 time units until A releases resource b.

• State (11,7): at this state, a new event of thread B happens. But the duration of the task 
before this event is zero, so there is no change to be made. 

The final value of the global clock is 11. This defines the WCRT for the considered schedule. 

4. Abstraction of Efficient Schedules 

4.1 The Scheduling Problem and Approach 

We are interested in finding a quick schedule. Let us first assume that we are looking for the 
quickest possible one (in the sense of a schedule has the minimal WCRT). We observe that 
the approach of computing the duration for each possible schedule and then picking the 
schedule with the minimal duration is not feasible in general. Indeed, the combinatorial 
explosion comes not only from the number of possible states, but also from the total number 
of possible schedules from bottom to top. If we also count the forbidden schedules (which 
pass through forbidden regions), to simplify computations, we get the following numbers: 
for the timed Swiss flag example, 6 x 6 = 36 states and 1683 possible schedules; for the timed 



A geometric approach to scheduling of concurrent real-time  
processes sharing resources 331

philosophers example, 8x8x8 = 512 states and 75494983297 possible schedules; for the 
enriched version of the timed philosophers, 16 x 18 x 26 = 7488 states and more than 5 x 1030

possible schedules.1

Given this complexity problem, we propose to exploit the geometry of the diagrams to 
construct abstractions that can make the computation of one or all shortest paths feasible. In 
this section we define these abstractions, and we will describe in the next section a method 
to compute them. 
Eager Strings. We focus on a class of strings which is interesting w.r.t looking for efficient 
schedules: eager strings are the strings that make no unnecessary wait—that is, a wait in the 
string is necessarily induced by waiting for a locked resource to be unlocked. 
Notice the difference between being eager and being the quickest schedule: while the 
quickest schedule is necessarily eager, the converse is not true. For example, in the example 
in Figure 1, a string from  to  that goes above the cross could be eager, but will not be 
optimal. Indeed, since thread A has to wait for the resources a and b to be unlocked by 
thread B, the quickest string that goes above the cross will have duration 5 + 1 + 9 = 15 time 
units. 
We give also an example of a non-necessary wait in a schedule (which eager strings do not 
have). In the time Swiss flag example a schedule with an unnecessary wait would go, for 
example, through points (4, 0) and (9, 0) before going to (9,1): this corresponds to B waiting 
for A to release resource a before accessing resource 6, while resource b is already available. 
As a result, the local clocks in this case would be (9, 9) at point (9,1) and (9,12) at point (9, 5), 
reflecting the time spent on waiting. 
Studying eager strings, we are interested in what we call the critical exchange points: the 
points where a resource is exchanged, and which border a forbidden region. Those are the 
only points where a wait can be justified (or necessary). In the Swiss flag diagram critical 
exchange points are indicated with the circled addition symbols. 
In conclusion, an eager string waits only at critical exchange elements, and between any two 
such elements makes no wait (since it would be unnecessary). Thus an eager string is 
characterized by the critical points it passes through. We need to add  and  in the set of 
critical exchange points, since it is possible that a quickest schedule does not touch the 
forbidden regions. This characterization of eager strings by critical exchange points is the 
basis for our abstraction method for looking for efficient schedules. In the following we will 
prove that looking only at critical exchange points is sufficient to construct an abstraction of 
all the quickest schedules. To do so, we need first to introduce an abstraction of wait-free 
strings. 
Bows: Abstractions of Wait-Free Strings. In order to define abstractions for eager strings, we 
first define abstractions for their wait-free parts. For this we introduce the notion bow. 
Intuitively, a bow is an arc from such that the longest side of the cube (in the 
geometric realization) whose bottom left and top right corners correspond to e and e' is 
equal to the duration of the quickest strings between e and e'.
We first introduce the abstraction which we will use for the duration of wait-free strings. 
Definition 2.  The distance between two elements , '  with ' is defined as: 

= , where for any thread Ei and event 

.

                                                                
1 —5589092438965486974774900743393, to be precise.
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Note that s(e) c(e) in general: c(e) is the ordinate of e for the geometrization, while s(e) is 
the "true ordinate" of e in term of the sum of the WCETs of the tasks. The case s(e) c(e)
when there is at least one e' e that has d(e') = 0: then s(e) < c(e).
We want to use arcs of  as abstractions of strings, so we introduce the following operation. 

Definition 3. Given any arc  from , the stringing of , which we denote by ,
is the set of all the strings from  to ' that have the smallest duration.
This set is not empty, since ' implies that there is a sequence of small steps from  to '

in . We call the tightened length of an arc  from , the duration of any element of 

. For simplicity of discussion we extend notation d, the duration of a string, to sets 

of strings that have the same duration. Then the tightened length of  is written 

d( ).

Now in abstracting wait-free strings, we want to be conservative with respect to looking for 
the quickest schedule. So we look at arcs whose distance is not smaller than the duration of 
the strings they could abstract. 

Definition 4. A bow is an arc  from , such that  and .

The height of a bow  is the distance . In fact, d( )

d( ) = . This is summarized as: 

Lemma 1. For any bow , d( ) = .

Proof: We want to prove that for any bow , d( ) = .

Pick a string s in . This string must execute, for each thread j, all of the tasks whose 

durations are the (see the definition of the duration of string) . Thus the 

duration of s is greater than or equal to . But the latter is (by 

definition) . Thus d( ) . We can conclude that d( ) = 

.
Example. The notion of a bow is best explained on an example. Consider again the Swiss flag 
diagram in Figure 2. Arc (9, 0), (11, 6)  is a bow, while arc (0, 1), (9, 8)  is not. Indeed, the 

latter arc has length (0, 1), (9,8)  = 9, while its tightened length is 11 (the quickest string 

from (0, 1) to (9,8) exchanges resource b at point (2,7), and thread A has to wait for it for at 
least 2 time units) . 
Critical Potential Exchange Points. We define critical potential exchange points — the only 
points where an eager string can wait. A potential exchange point is an element  of 
where a resource can be exchanged. That is, there exist at least one resource r , and two 
indices i,j, such that i = Vr and j = Pr. We use the term "potential" because in order to be a 
real exchange point, it must be the element of a schedule  which has 

.

Definition 5. A potential exchange point for a resource r with accessing(r, ) = limit(r) is called a 
critical potential exchange point.

4.2 The Abstraction Graph 

We are now ready to define our abstraction of all the eager strings (and hence also of all the 
quickest schedules). It is the graph constructed from the critical potential exchange points, 
having bows as arrows. We call it the abstraction graph.
We denote by C the union of all critical potential exchange points for the PV program with 

. The abstraction graph is then denned as a relation , characterized by: 
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if and only if and is a bow. We label each arc of with a weight which is 

.
Definition 6. A path p in graph G from an element C to ' C is any sequence of critical exchange 
points, p : {0, . . . , K}  C, with p(0) = , p(K) = ' , and i {1, . . . , K}  is a bow.
The length of a path p in G, denoted by l(p), is denned as .
For , ’ C with ', we denote by the set of the shortest paths from to ' ( '
ensures that the set is not empty). And by abuse of notation, we denote by l( ) the 

length of any of the paths in .

Example. We look again at the Swiss flag example in Figure 2. The critical potential exchange 
points (except for  and ) are indicated by circled addition symbols. The arrows (of G)
between them are from (0,0) to (4,1), from (4,1) to (9,5), from (9,5) to (11,8); from (0,0) to (1,6), 
from (1,6) to (2,7), from (2,7) to (11,8); and from (4,1) to (11,8) and from (1,6) to (11,8). Here 
we see that a bow is not completely tied to the geometry: the last two bows, if represented as 
line segments between the points in the space, do cross the forbidden region. 

4.3 Property of the Abstraction Graph. 

In the example of Figure 2, we see that the shortest path has length 4 + 5 + 2 = 11. The 
following theorem states an important property of the graph G:
Theorem 1. The duration of a quickest schedule is the length of a shortest path in G. 
More formally: 

4.4 Proof of the Theorem 1 

We first introduce some useful notions. 
Abstraction. Abstractions of eager strings are paths. This is formalized here. 
Definition 7. The pathing of a string s, which we denote by s , is the path which is constituted of 
all the critical potential exchange points contained in s. This operation is authorized only if both S
and  S are critical potential exchange points, and s is eager.
The construction is correct: If s is an eager string, then s is a path in Proof:
Let s : [0,...,K] C. We want to prove that for each i = l,...,K, . That 

is, we want to prove: for any 
Take i  [1, . . . , K]. Between s (i — 1) and s (i), there is no critical potential exchange 

point (otherwise it would have been included in the pathing). But critical potential exchange 
points are the only elements which can induce a necessary wait, and the string, which is 
eager, has waits only at critical exchange points. Thus between s (i — 1) and s (i) the

string has no unnecessary wait so its duration from elements s (i — 1) to s (i) is exactly 

the maximum of the tasks to be executed, .
Concretization. The "reverse" operation of abstraction of strings, is concretization of paths of 
G into strings. 
Definition 8. The stringing of a path p : [0,... , K] C from G, which we denote by p , is the set 
of all the string from p(0) to p(K) which have the smallest duration and contain all points p(i), fori = 
l,...,K-l.
This set is not empty, since a string from p(0) to p(K) can be constructed from the strings 
from the sets , which are not empty since bows are arcs of 

. For a path p from G, we denote by d(p ) its tightened length.
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Interaction of Abstraction and Concretization.
Lemma 2. Let , with , ’ C. Then there exists a string s which is such 
that l(s ) = d(s).
In the following, a string s is said to be optimal if d(s) = .

Proof: Pick a s in  (any s). This is possible, since and so the set s
is not empty. This string is optimal, so it is eager, so pathing is valid for it: s is a 

path in G. Let K be the number of elements in s . That is: s : [0,..., K] C. The proof is by 

induction on K.
• Case K = 1. In this case, we have only one bow,  . Since s is optimal, 

. So by lemma 1, 
 = d(s). So the proposition is true 

for K = 1, with this string s.
• Case K > 1. We want to prove that the property is true for K assuming it is true for K—1.
Element s (K—1) is a critical potential exchange point. We look at what happens from 

s (K-1) to s (K). For one (or more) dimension k, —
, that is, the maximal sum of task durations between s (K—1) and s (K) is 

for dimension k. Then there are two possible cases: 
1. Thread k has a new event at s (K—1).

Let  be the value of the global clock at s (K—1). Then the global clock at s (K)

is . Thus d(s) = 
= . Then, using the recurrence hypothesis on 
the subpath from s/ (0) to s/ (K — 1), one gets the desired property, with this string s.

2. Thread k has no new event at s (K—1).

That is,  happens in s before s (K—1).

We construct a string s' from s, as follows: we substitute element s (K—1) with 

element , where succs( ) denotes 
the successor of  in the total order s. That is, string s' goes from 
directly to an element where action  occurs. 
(The proof that the new point is not k-forbidden is done by contradiction. Suppose that 
it is the case, then thread k would have to go around a k-forbidden region (and wait) 
between s (K—1) and s (K), which is not possible since it is the "leader" thread for 

this bow, i.e., k is the dimension that determines the distance between s (K—1) and 

s (K).)

The substitution does not change the duration of the string. Indeed, only the dimension 
k is affected, and thread k had no new event at s (K—1). Now there are two cases: 

a) the substitution replaces a point of C with a point of . Then K' = K — 1, and we 
use the recurrence hypothesis to show that string s' satisfies the desired property. 

b) the substitution replaces a point of C with another point of C. But at this new point 
thread k has a new event. So the situation is as in case (1) but string s' replaces string s.

Conclusion:   the proposition is true for K = 1 and K > 1, so it holds for all K 1.
Optimal Paths. A path p in G from to ' is said to be optimal if p .
Lemma 3. Let , with e, ' C. If string s is such that l(s ) = d(s), then s
is an optimal path.
Proof: By contradiction. Existence of such a string s with l(s ) = d(s) is given by lemma 2. 

Now suppose s is not an optimal path. Then there exists an optimal path q from  to '
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with l(q) < l(s ). Then we get: d(s), which means that there are 

strings from  to ' whose duration is smaller that of s, which is not possible by the 
optimality of s. So s must be an optimal path. 

Proof of theorem 1. We can now prove .

Take in , such that (which is possible by lemma 2). By lemma 3, 

is optimal. Thus .

An interesting computational implication of Theorem 1 is that the size of the graph G is
reasonable since the number of critical potential exchange points is much smaller than the 
number of elements in ; hence the shorstest paths in G can be efficiently computed. We 
will discuss this in more detail in the following section. 

5. Finding Efficient Schedules using Geometric Realization 

The construction of graph G has two parts: 1) find the critical potential exchange points; 2) 
find the bows between these points. Then the shortest path in graph G is computed. Notice 
that this approach automatically finds a deadlock-free path. Indeed, if a path in G leads to a 
deadlock point, no bow goes from it; and a shortest path from  to  is, above all, a path 
from  to , and hence contains no deadlock. 
We use geometry for the construction. Notice however that our method does not depend on 
the coordinates c(e), in the sense that the function c of the untimed case would give the same 
results. This is because we use the structure of the geometry of (the forbidden boxes), not 
the distances in the embedding. We use a function c which uses d(e) only for visual intuition 
(the "max" measure is still close to the Euclidian distance). 
Notice that is it possible, after we have found a satisfying path p in G, to actually construct an
eager string abstracted by this path. The construction operates bow by bow. For one bow 

the quickest string abstracted by it is one that just makes no unnecessary wait, so a 
possible procedure is to start from and to pick the adjacent small step to an " which 

increases the least the duration (there may be several), among those that have not 
in one of the dimensions i.

5.1 Computing the Critical Potential Exchange Points 

The critical potential exchange points are given by some points on the boundary the 
forbidden regions: in dimension 2, these are the bottom-right and top-left points of the 
forbidden regions; in dimension 3, all points on some edges of the boundary; etc. The formal 
characterization of this geometric aspect of critical potential exchange points is 
straitforward.
Computing the Forbidden Regions. In this section we describe briefly the algorithm we use to 
compute the forbidden regions from the timed PV program. Clearly checking for each 
element whether it is forbidden is not a reasonable approach. We use instead the access 
intervals of the threads. A thread Ei, creates an access interval when it accesses resource r (Pr)
at an event e, and releases it some time after (Vr), at event e' e: this access interval is stored 
as the triplet of integers (i, c(e), c(e')). Moreover the algorithm proceeds resource by resource: 
for each resource r , we compute the forbidden regions created by access to r by more 
than limit(r) threads concurrently. This set Rr is computed as follows. 
1. For each thread Ei construct the set accesses(r,i) of access intervals by i to resssource r.
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2. Then for efficiency we proceed as follows. First we determine the abstract occurrences of 
forbidden concurrent accesses. This is when there are more than limit(r) accesses 
concurrently to resource r. So, from the set of all sets accesses(r, i) which are not empty 
(this set contains m  N elements), we compute its subsets of cardinal limit(r) + 1: those 
are the abstract occurrences. 

3. Then we compute the concrete occurrences of forbidden concurrent accesses from each 
abstract one, by combining the access intervals. When the cardinal of a concrete 
occurrence is less than N, it means that one (or more) thread(s) k are not concerned by 
this forbidden concurrent access: then dimension k is added as access interval 

, because geometrically the forbidden access holds for all ordinates 
of k. This each concrete occurrence defines the coordinates of an N-dimensional box. 

In step (2) of the procedure, computing the parts with a cardinal greater than limit(r) + 1 is 
not necessary because those occurrences are included (geometrically) in the regions 
computed for the (limit(r) + 1)-occurrences. 
Example. We consider the three philosophers program of page 6. We compute the forbidden 
regions for resource . Suppose threads ,  and  have respective indices 1, 2 and 3. (1) We 
get: accesses( , 1) = , accesses( , 2) = {(2,22,28)}, accesses( , 3) = {(3,19,22)}. (2) The non-empty 
sets among those are {(2,22,28)} and {(3,19,22)}. Since limit( ) = 1, the abstract occurrences 
must have cardinal 2. There is only one such abstract occurrence here: {{(2, 22, 28)}, {(3,19, 
22)}}. (3) This abstract occurrence of a forbidden access results in a single concrete 
occurrence 

{(1,0, 28), (2, 22, 28), (3,19, 22)} 

which defines a 3-dimensional box whose bottom and top vertices are (0, 22,19) and (28, 
22,19) respectively. 

5.2 Finding the Arrows of the Abstraction Graph 

From the forbidden boxes we can compute the critical potential exchange points, which are 
the nodes of the abstraction graph G. But it remains to compute the bows between the 

critical potential exchange points. A simple method to determine whether an arc is a 

bow is to determine the tightened length of the arc by enumerating all the strings from to 
’ and then check the condition of Definition 4. However, this method is clearly very 

expensive and, to remedy this, we will exploit some properties of the geometrization. 
We use a method which uses some arcs which are necessarily bows: we use a decomposition 
of forbidden-point-free regions. Using this approach we may not find a quickest schedule 
but we can find a good schedule. This decomposition approach and the strategies for 
looking for the quickest schedule are discussed in the following. 
Finding Efficient Schedules using Decomposition. We denote .

In  , , that is the image by the geometrization mapping of the product of all the 
threads, forms a (non- uniform) N-dimensional grid over the box B. A potential exchange 
point corresponds to a grid point, denoted by ; therefore, a bow corresponds to a line 

segment connecting two grid points, and a path in the graph G corresponds to a sequence of 
such line segments. It is important to note that while the graph G is used to model the 
schedules with the shortest duration, it does not capture resource conflicts. Consequently, to 
construct the graph G we need to consider the bows which do not cause a resource conflict. 
In this geometric setting, the forbidden regions is a union of boxes whose vertices are grid 
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points. This union is indeed an orthogonal polyhedron [5], denoted by PF. Let PA =  \ PF

denote the allowed polyhedron. We now make the following observation: if a box contains no 
forbidden points, then any two points on its boundary form a bow if there are grid points. 
Indeed, intuitively, the line segment between them does not intersect polyedron PF. This 
motivates considering a decomposition of the polyedron PA.
Definition 9 (Decomposition). We define a decomposition of an orthogonal polyhedron P as a 
set  where each Bi (i  {1, . . . , k}) is a full- dimensional box such that the 
following conditions are satisfied:
1. For all i  {1, . . . , k} the vertices of Bi  are grid points. 
2.
3. For all i, j  {1, . . . , k}, i  j, the boxes Bi and Bj are non- overlapping, that is their interiors do 

not intersect with each other.
Note that the vertices of the boxes in a decomposition are not necessarily critical exchange 
points. If all the vertices of a box are grid points then it is called grid box. Additionally, if a 
grid box does not contain any other grid boxes, then it is called elementary box. We will use in 
the sequel two types of decompositions that we call elementary and compact. Given a 
decomposition , is called elementary if all Bi are elementary boxes; 

is called compact if there exists no pair of Bi and Bj with i  j such that Bi Bj is a grid 
box. Intuitively, in a elementary decomposition none of its boxes can be split into smaller 
grid boxes, and in a compact decomposition no pair of its boxes forms a grid box. Note that 
there exists a unique elementary decomposition of a given orthogonal polyhedron, however 
there may be many different compact decompositions. 
We now show how to use decompositions to construct the abstraction graph G. Let be

a decomposition of the allowed polyhedron PA. We first recall the observation we use to 
reduce the complexity of the search for bows: a line segment connecting two vertices of a 
box Bi  which are critical exchange points corresponds to a bow (since it is a direct 

path which does not cross the forbidden polyhedron PF). It is however clear that even when 
is the elementary decomposition, the set of all such edges does not allow to cover all 

possible bows since two vertices of two different boxes might also form a bow. However, if 
our goal is to find one path with the shortest duration that respects resource constraints, it is 
not necessary to construct the whole graph G but we need to include all the bows that form 
such a path. It can be proved that there exists a decomposition such that the vertices of its 
boxes are enough to discover a shortest path. We call such a decomposition an effective
decomposition, and it is of great interest to find such a decomposition, which is our ongoing 
work. Other possible heuristics to approach such decomposition is discussed in the next 
paragraph. 
We finish this section by briefly describing our current method for computing a compact 
decomposition of orthogonal polyhedra. The essential idea of the method is as follows. 
From a given starting box we try to merge it with other elementary boxes, along one or more 
axes, so as to maximize the volume of the resulting box. To do so, we make use of the 
efficient algorithms for Boolean operations and membership testing developed based on a 
compact and canonical representation of such polyhedra (see [5]). In some cases, the 
criterion of maximizing the volume of merged boxes may not be the best one with respect to 
including the shortest path in the graph. Alternative criteria are merging as many as 
possible boxes along a fixed axis. Intuitively, a shortest path tends to approach the diagonal 
between the bottom left and top right corners of the box B while avoiding the forbidden 
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regions; hence, we can combine different merging criteria depending on the relative position 
to the forbidden regions. 

5.3 Experimental Results 

We demonstrate in this section the effectiveness of our method. We have written a 
prototype which implements the exposed method. For computing the forbidden regions we 
use a program written in the language Maude [6] and executed with the Maude system. The 
execution time for computing the forbidden regions is negligible. The program for the 
decomposition (construction of allowed boxes from the forbidden boxes), the construction of 
the abstraction graph from the allowed boxes, and the search of the shorstest path in this 
graph is written in C++. The construction of the allowed boxes from the forbidden ones is 
rather quick, and most of the time in the execution of this program is spent in the 
construction of the graph from the allowed boxes—due to the number of vertices we use, as 
we explain below. We present in the table below some experiments with this program. 
We first test with the philosophers problem, in 3 dimensions and more. That is, we use N
forks—one per philosopher—and one thinking room which can take only N — I 
philosophers. Then we take the same program, but with a thinking room which can contain 
only half the philosophers ("phil. s.th.-r" is for "philosophers with small thinking room"). 
Program "enr. phil." is the enriched version of the philosophers problem whose geometry is 
shown in Figure 4 (b). Program "more enr. phil." is when we add still more actions to this 
enriched version. Program "enr. phil. 4D" is when we add a fourth philosopher to the 
enriched version. Program "3 phil. 2 procs" is the program of Section 6, whose geometry is 
shown in Figure 4. In the table, "na" stands for "not available"—the computation was not 
finishing in less than 10 minutes. We have used a PC with a Xeon processor of 2.40 GHz 
frequency, 1 Go of memory and 2 Go of swap. 

program dim #states #forbid #allowed #nodes #edges t (sec.) 

3 phil. 3 512 4 35 151 773 0.58

4 phil. 4 4096 5 107 743 7369 17.38

5 phil. 5 32768 6 323 3632 67932 571.12

6 phil. 6 262144 7 971 na na na

3 phil. s.th.-r. 3 512 6 59 227 1271 1.50

4 phil. s.th.-r. 4 4096 8 199 1147 13141 60.24

5 phil. s.th.-r. 5 32768 15 1092 na na na

6 phil. s.th.-r. 6 262144 21 3600 na na na

enr. phil. 3 7488 26 390 1468 7942 51.01

more enr. phil. 3 29568 137 1165 4616 30184 461.18

enr. phil. 4D 4 119808 44 5447 na na na

3 phil. 2 procs 3 1728 12 78 352 2358 2.56
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One can observe that the number of allowed boxes is very reasonable compared with the 
number of states. The number of nodes reflects the fact in our current prototype, we add in 
the graph some of the vertices of the allowed boxes which are not critical exchange points, to 
compensate for the fact that we do not currently include inter-allowed-box bows: thus we 
can find paths whose length approximate (conservatively) the weight of such inter-box 
bows. The advantage of this approach is that any decomposition can serve to find a 
relatively good schedule. Its inconvenient is that the number of considered vertices for a box 
is of order 2N. Thus the number of threads considered is the main obstacle in our current 
implementation.
We find good schedules: in the case of the 3 philosophers program of Sec. 3.3, the durations 
of the threads are 24, 25 and 20 respectively, and the found schedule has duration 39, which 
is good. In the case of the enriched version of Fig. 3(b), the threads have respective durations 
83, 94, and 95, and the found schedule has duration 160, which is also good in view of the 
many forbidden regions which bar the direct way. 
Our future experiments will use the following heuristics: using, for each box in the 
decomposition, only its bottom and top elements. Intuitively, quick schedules follow 
diagonals, so this heuristics could be useful. It addresses the main obstacle of our method—
the number of vertices considered per allowed box (we descend from 2N points per box to 
only 2). On the other hand, how close one then gets to the quickest schedule depends on the 
decomposition, as discussed in the previous section. 

6. Limited Number of Available Processors 

The Problem. We have defined the WCRT of a schedule assuming that the threads run 
concurrently. But in concrete terms, this implies that N processors are available. It might be 
possible that less than N are needed, for example when thread migration is allowed and  
N—1 processors are enough for this schedule because the schedule has some particular 
waiting patterns. Therefore the true question is: what does the WCRT of the schedule 
become when there are only M < N processors available? 
The problem of denning the mapping of the N threads (or processes) onto M processors, that 
we call the thread distribution mapping, has already been treated in [7]. But this is in the 
untimed context, and aims at building a scheduler that avoids deadlock states. We are 
looking not only for safe schedules using a limited number of processors, but also efficient 
schedules. 
We distinguish two approaches: 1) first compute an efficient schedule with the method 
shown in the previous section; and then compute a good mapping of this particular 
schedule onto M < N processors. The advantage of this approach is that it separates "abstract 
scheduling" and mapping. The inconvenient is that there may be some schedules that were 
not considered efficient in the abstract world, but that could do very well on M < N
processors. 2) Integrating the mapping problematics into the model, and computing an 
efficient schedule that takes this constraint into account. The advantage of this approach is 
that it is more precise. But it can also lead to state explosion, as we discuss in the following. 
In this section we examine the second solution, because it gives some geometric intuition on 
the mapping, and in addition, for many practical cases the complexity of the computation is 
reasonable.
A Solution. The idea is to model the resource limitation in terms of available processors, as a 
M-semaphore. This modelling assumes that the threads have no preference on which 
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processor to run on. This is reasonable in the case of a homogeneous architecture—all the 
processors are the same. It also ignores issues to communication optimisation, so it 
implicitly assumes a shared memory architecture. The advantage of using a semaphore is 
that it makes a drastic combinatorial simplification: when 2 threads A and B, among a pool 
of 3 concurrent threads A, B, C, are running on 2 processors p1 and p2, we do not have to say 
whether A is running onto p\ and B onto p% or vice-versa. Knowing that A and B are 
running, and not C, is what interests us from the point of view of scheduling. The effective 
distribution of the threads onto the processors can then be done statically, or at run time, but 
in any case, after we have already determined the schedule. 
We use a manual locking and releasing of a processor in a PV program. This corresponds to 
manual proposition of preemption: the programmer decides when a thread gives a chance 
to other threads of taking the processor. If the schedule which is eventually chosen does not 
use this preemption opportunity, then of course in the implementation of this schedule the 
thread does not need to preempt itself. 
Example. As an example we use the simple version of the three philosophers problem. Here 
the programmer decides that a philosopher keeps the processor for thinking and walking to 
the eating room, and before entering the thinking room makes a proposition of preemption 
so as to give the opportunity for other threads to get the processor. We denote by  the 

semaphore for the processors. The program of philosopher  is modified as follows (the 
modification is similar for philosophers  and ):

The geometry of the new program is shown in Figure 4. We see that a trajectory must go 
through the "canyons" between the p-forbidden boxes, as well as avoiding the parts of the 
previous forbidden regions that still emerge from these new boxes. Notice that the room-
forbidden box is now included in the bottom left -forbidden box. Indeed, the room 

semaphore served to forbid acces to the room by more than two philosophers, which is no 
longer necessary. 

Figure 4. Forbidden regions of the three philosophers problem with two processors 



A geometric approach to scheduling of concurrent real-time  
processes sharing resources 341

Limitations of the Approach. Remark that since each philosopher accesses 2 times a processor 
(through a lock of semaphore ), we indeed get 23 = 8 boxes that form the corresponding 

forbidden regions. Computationally, it means that a thread should not propose preemption 
too often. On the other hand, finding the optimal schedule "for all possible preemptions" 
would imply, on the contrary, proposing a preemption between each event of the original 
program (which can be done automatically). But this would induce an exponential number 
of forbidden regions ( -forbidden regions). 

On the other hand, this geometric approach can give new ideas for optimizations of the 
control of programs that run on a limited number of processors. For example, in the 
previous example, the geometry indicates that, in the given preemption is implemented, 
then the implementation can dispense with the  semaphore. 

7. Related Works 

Timed PV Diagrams. Some other versions of timed PV diagrams have been proposed. We 
have not used them, for the reasons we explain below. 

• The work [10], which presents a timed version of PV programs and diagrams, attempts 
to model multiple clocks, as in timed automata [4]. In the present paper we do not use 
the timed automaton model. Moreover, in the approach of [10] time is modeled as an 
additional dimension—one per clock. Thus, with one clock and three threads, a 4-
dimensional space is studied. In this paper we consider each thread (or process) 
dimension as a "local time dimension", and then define the synchronization of local 
time dimensions. 

• The work [14] exploits the dimension of each process as a time dimension. In this 
aspect, this work is close to ours. However there are important differences. First, the 
definitions in [14] are given in a continuous setting, and therefore topological spaces are 
considered, such that the duration of a schedule is described with an integral. In our 
work we stay in a discrete domain, an the definition of the duration of a schedule is 
given by an algorithm on a discrete structure. On the other hand, the fact that the 
definitions in [14] are tied to geometry implies, in particular, that zero-delays between 
two consecutive actions in a process (for example two successive locks, which often 
happens in programs that share resources) are not possible since the two actions would 
be the same in the geometry. In our approach, while we exploit the geometry to 
construct abstractions, the notion of duration itself is not geometric. Consequently, 
zero-delays are possible. This is of particular interest if one considers that the practical 
delay, on most architectures, between two consecutive locks, is too small to be modelled 
as a non-zero value. We conjecture that our version of timed PV diagrams is a 
discretized version of the continuous version of [14] (in the case of no zero-delays in the 
program).

Timed Automata. A large class of real-time systems can be adequately modelled with timed 
automata [4], and in this framework the problem of scheduling has been addressed [3,1, 
2,16,17], often closely related to the context of controller synthesis. A timed PV program has 
a direct representation using timed automata. First, each thread is modelled as an 
automaton, where each node represents an event, and each transition from node e to node e' 
is labeled with constraint "i > d(e'y plus a reset of the clock. The global automaton is the 
product of all the thread-automata. Semaphores can be represented via variables. Such a 
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product of automata is very close to that of [16], where the aim is also to schedule multi-
threaded programs. In this work a scheduler is constructed to guarantee that a schedule does 
not go into deadlock states or deadline-breaking directions. We look for a complete schedule 
which is not only safe but also efficient; however our model is not as rich as the timed 
automata model: we have not yet included deadlines, branching, and looping. 
Scheduling and the Polytope Model. Another geometry-based method for scheduling 
concurrent programs is the polytope model (see, e.g., [8]), which is used in the context of 
automatic par-allelization. However the semantics of the points in the geometric space is not 
the same as in PV diagrams: each point inside a polytope represents a task which has to be 
executed, while in PV diagram each point is a possible state and only a very small number 
of these states have to be represented in the implementation. Also the polytope model does 
not consider resource sharing, and has no task durations. 

8. Conclusion and Future Work 

In this paper, we denned a timed version of PV programs and diagrams which can be used 
to model a large class of multithreaded programs sharing resources. We also introduced the 
notion of the worst-case response time of a schedule of such programs. This framework was 
then used to find efficient schedules for multithreaded programs. In particular, to tackle the 
complexity problem, we define an abstraction of the quickest schedules and we show how 
to exploit the geometry of PV diagrams to construct this abstraction and compute efficient 
schedules as well as a quickest one. This work demonstrates an interesting interplay 
between geometric approaches and real-time programming. An experimental 
implementation allowed us to validate the method and provided encouraging results. 
Our future work will explore the following directions. 

• When developing a real-time system one is often interested in the worst-case response 
time of the whole program, if it is part of a larger system, for any schedule. As a 
definition, this WCRT could be given as the duration of the eager schedule that has the 
longest duration. We conjecture that we could use abstraction graph G for computing 
the longest eager schedule by computing the longest path in a subgraph of G. Defining 
this subgraph is a topic of our future research. 

• We are able to find schedules, but it remains to see how they can be implemented. An 
obvious solution is controlling the computed schedule so as to enforce exactly the order 
of events it describes. But an interesting question is: among those control points, which 
can we "forget" while guaranteeing that the real execution will not diverge from the 
planned schedule as far as critical exchanges of resources are concerned? Indeed, in 
practice tasks can take less time than the WCET: control is needed for ensuring that 
such behaviour does not make the trajectory follow a direction which does not 
correspond to the schedule. 

• We are currently investigating the problem of adding deadlines in our model. This 
extension is not straightforward since the "symmetry" with the definition of a lower 
bound to the duration spent by a thread between two consecutive events (the WCET of 
the task) is not trivial. We also intend to examine the possibility of lifting to the timed 
case the existing studies on the geometry of loops [12] or branching (if-then-else 
constructs) in PV programs. 
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• Another approach to treat deadlines is to integrate our geometric abstractions into 
existing tools that use timed automata, such as [16]. These tools suffer from the problem 
of state explosion. Since our model is close to a product of automata, integrating our 
geometric approach into these tools could allow to handle larger systems. 
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1. Introduction 

1.1 History 

Sheet metal operations have been in existence since 8000 B.C. (Fries-Knoblach, 1999). Due to 
its long history, sheet metalworking is, unfortunately, often seen as archaic and 
uninteresting. That metal sheets can be transformed with the aid of robust machines into 
fancy consumer products with tight tolerances is inconceivable to many. Yet, sheet metal 
operations are used for producing both structural components and durable consumer 
goods. Nowadays, sheet metal parts are widely present in different daily life products. 
During the past decades, scientific research in the field of sheet metal operations has been 
booming and international conferences on different sheet metal topics attract numerous 
attendants. Both industry and the academic community recognize the importance of 
continuing improvement in sheet metal operations. 
Thirty years ago, the rapid advance of computer systems triggered the introduction of 
automation in manufacturing environments. Also for sheet metal operations the use of 
computer systems has become indispensable to survive. Computer aided design (CAD) and 
computer aided manufacturing (CAM) systems are widely present in sheet metal production 
environments. At the earliest design stage, CAD systems are used to computerize the whole 
process of drawing and redrawing the desired part. Most modern CAD systems allow to build 
up a part from several re-usable 3D components, thus automating to a large extent the time 
consuming design process. The use of computers has also entered the manufacturing stage 
through computer aided manufacturing. The CAD file is converted into a sequence of 
processes for manufacture on a numerically controlled (NC) machine.  
The use of computers helps operators in automating different steps of the production 
process. As far as planning is concerned, most attention is focused on the computerization of 
sheet metal process planning. Production planning proper received much less attention due 
to a long tradition of experience-based production planning.  

1.2 Scope of the research 

If one queries the internet for sheet metal operations, numerous entries on processes are 
found, for instance on laser cutting, punching, deep drawing, bending, incremental forming, 
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etc.  Since many different sheet metal production processes and production environments 
can be identified, it is important to clearly delineate the scope of the research. The research 
as described in this chapter focuses on sheet metal operations in a flow shop environment 
(Figure 1). As far as the production processes are concerned, only laser cutting and air 
bending are considered. 

Figure 1. Sheet  metal operations 

Figure 2. Typical sheet metal parts (a) complex part; (b) standard profile 

Figure 3. The air bending principle 

All parts follow a unidirectional flow in the sheet metal shop. In a preliminary stage, a large 
standard metal sheet or coil is cut to the right dimensions by using a pair of automated 
scissors (the shearing operation). Next, in the cutting stage, the unfolded blank of a part is 
punched with a punch press or cut with a laser machine. After cutting, the parts are bent 
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and transformed into 3D products. Air bending is used for this purpose. The air bending 
machine or press brake consists of a fixed bed on which the dies are fastened and a 
vertically movable ram (driven by hydraulic cylinders) on which the punches are mounted. 
A vertical force causes the ram to move down, forcing the sheet into the die, creating the 
bend line. The larger the vertical force, the smaller the bend angle (Figure 3). 
To produce a bend line of a part, a punch and die are required (called a tool set). The 
geometrical properties of the bend line (i.e. internal radius, bend allowance, type of profile, 
etc.) determine the characteristics of the required tool set. Punches and dies are supplied in 
sections (segments) for easy handling and quick set-up. If a long tool is needed, different 
segments are required. A combination of different segments to produce a single bend line is 
called a station. If a part consists of multiple bend lines, multiple stations are usually 
required (e.g. one station per bend line). Some stations may be used to produce several bend 
lines, while other stations can only be used for very specific lines. If a part requires different 
stations, all stations are positioned on the press brake with the required space between 
them, resulting in a production layout (Figure 4). A production layout can be used for 
bending several parts (depending on the geometrical properties of the part). 
This chapter mainly focuses on combinatorial optimization models and algorithms of use to 
production planning in Belgian small to medium-sized enterprises. Typically, in a Belgian 
SME, a single laser machine and press brake are available for production. Batch sizes range 
from a single workpiece to larger series (200 parts).  

Figure 4. Press brake with a production layout consisting of three stations (every station is 
built up with different segments) 

1.3 Outline 

The research as described in this chapter evolved from a project in cooperation with a large 
sheet metal machine constructor and has been carried out by members of the Centre for 
Industrial Management, K.U.Leuven. The main goal of the project was to tackle a series of 
practical problems in a typical sheet metal shop.  
The chapter has six sections. Section 2 discusses some process planning issues for sheet 
metal laser cutting and air bending. An overview is given and relevant literature is 
mentioned. Section 3 elaborates on the tooling layout problem for air bending. The problem 
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is analyzed and several solution procedures are proposed. Section 4 analyzes the production 
planning problem for air bending. A traveling purchaser problem approach (TPP) and a 
generalized traveling salesperson problem approach (GTSP) are proposed to reformulate the 
air bending production planning problem. Section 5 discusses production planning 
integration of laser cutting with air bending. The problems are highlighted and 
mathematical models are proposed. Computational results are discussed for a number of 
test cases. Section 6 concludes the chapter and formulates future research topics. 
In the chapter, mathematical models are formulated for the different planning issues, taking 
into account numerous problem-specific constraints. Typically, in a first stage, optimization 
procedures are used to obtain overall optimal solutions, but the computational effort required 
to solve combinatorial problems to optimality appears to grow very fast with the size of the 
problem. Local search, a class of heuristic methods, is applied at that point. It allows in a 
straightforward way to determine good, but not necessarily optimal solutions after a limited 
computational effort. In the problems discussed in this chapter two classes of local search 
techniques are implemented: simple neighborhood search and guided local search.  
Neighborhood search starts with a known feasible solution and tries to improve this solution 
by making well-defined moves in the solution space, shifting from one neighbor to another. 
A move is evaluated by comparing the objective function value of the current solution to 
that of its neighbor. In a pure descent method, only improving moves are allowed. When no 
further improvement can be found, the procedure ends. All feasible moves need to be 
defined and the search has to be initialized with a first solution. Although good choices for 
the different implementation issues can improve the performance of a descent algorithm, 
the resulting solution is, most likely, a local optimum, not a global optimum. A classical 
remedy for this drawback is to perform multiple runs of the procedure starting from 
different initial solutions and to take the best result as final solution (multi-start descent). 
Another possibility is to use a combination of different neighborhood structures (variable 
neighborhood search), as introduced by Mladenovi  & Hansen (1997). In this way, a local 
optimum relative to a number of neighborhoods is determined.  
A more specialized type of local search is guided local search (GLS). The main feature of this 
approach is the iterative use of local search sequences. GLS penalizes, based on a utility 
function, unwanted solution features at the end of a local search sequence. In this way the 
solution procedure may escape from a local optimum and continue the search. The 
interested reader is referred to Voudouris & Tsang (1999). 

2. Process planning issues 

Besides production planning, the authors have used combinatorial optimization techniques 
also for a number of sheet metal process planning aspects. Next section discusses the state of 
the art regarding process planning issues and summarizes some of the process planning 
research conducted by the authors.  

2.1 Process planning for laser cutting 

Past decades steel prices have been increasing, resulting in a higher material cost for sheet 
metal parts. Hence, the amount of waste material needs to be minimized. In order to reduce 
the waste material, sheet metal parts with identical characteristics (material and thickness) 
are, if possible, combined on a large standard sheet to obtain high sheet utilization ratios. 
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The problem of combining different patterns on a flat blank or coil (apart from metal, the 
material can be paper, cardboard, leather, wood, plastic, textile, etc.) is known as the cutting 
stock problem and has received much attention. Alternatively, the name nesting is used. 
Numerous publications and applications can be found on this topic and a wide variety of 
solution techniques is proposed.  
Research on the cutting stock problem started with Eisemann (1957) discussing the problem of 
minimizing losses when cutting rolls of paper, textile, metal and other materials. This trim 
problem aims at allocating raws to machines and setting up the different cuts in such a way 
that the demanded rolls are cut to the right width, minimizing the overall trimming loss. Small 
problems are solved by enumerating the different possibilities. Most cutting stock problems 
were at that time formulated as integer programming problems to be solved with standard 
solution procedures. An overview is given by Haessler & Sweeney (1991). Research also 
focused on the determination of optimal sheet layouts. For such problems one has a number of 
rectangular sheets that need to be filled with two-dimensional regular and irregular shapes, 
minimizing the waste material. In the earliest days, researchers proposed to work with 
encaging rectangles. Adamowicz and Albano (1976) propose a two-stage approach. In a first 
stage, optimal rectangular modules are produced encaging one or more  parts.  
In the second stage those modules are positioned on a sheet, minimizing the waste material. 
Working with encaging rectangles can only produce a rough plan since the exact shape of 
the parts is not considered. 
When personal computers with larger computational power became available, research 
shifted towards the nesting of the complex parts themselves instead of encaging rectangles. 
Lee & Woo (1988) developed a method to seek the minimal area convex hull of two convex 
polygons P and Q with Q being allowed to be translated along the boundary of P. If both 
translation and rotation operations are allowed, the problem of finding the minimal area 
convex hull becomes more difficult. The interested reader is referred to Nye (2001).  
Nesting remains an important issue in sheet metal cutting. Different peculiarities inherent to 
sheet metal production have to be taken into account when nesting different unfolded 
blanks on a large standard sheet. Prasad (1994) proposes some heuristic algorithms for 
nesting irregular sheet metal parts, taking into account grain orientation, minimum bridge 
width (i.e. the distance between two parts should be strong enough to withhold the bending 
force) and maximal material utilization. Tang and Rajesham (1994) propose an algorithm 
taking into account the rolling direction of the part. The rolling direction influences the 
brittleness of the part in both traverse and rolling direction. When bending the part this can 
cause the bend to crack at the bending edge. Generally it is assumed that a bend made at 30° 
to the grain flow is enough to avoid breakage. To overcome this problem, rolling direction 
information is taken into account at the nesting procedure. The method proposed 
approximates the part by a polygon with a sufficient number of sides to represent closely 
the original geometric shape. A more recent overview of sheet metal nesting is given by 
Valvo and Licari (2007).  
Besides the nesting proper, other related process planning issues received attention as well. 
After optimal nestings are generated, the cutting technology (laser power, cutting speed, 
position of the focal point, cutting gas pressure, stand-off distance between nozzle and 
material, lead-in, piercing method, etc.) and the cutting path need to be determined (taking 
into account common cuts, cutting distance minimization, heat build up in the material 
when cutting, etc.). Fortunately for the end-user, those different issues have been 
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satisfactorily studied and are implemented in commercial nesting software. Such dedicated 
software tools allow the user to generate good nestings and to determine the cutting 
technology automatically. 

2.2 Process planning for air bending 

As for the laser cutting process, research on the bending process focuses on process 
planning. When a (3D) sheet metal part is produced with air bending, one starts from the 
unfolded blank of the required part (Figure 5). Gradually, this 2D flat blank is transformed 
into a 3D final workpiece by producing the different required bend lines. Different 
sequences are possible for producing the bend lines. Some bend sequences will cause 
collisions between the part, the machine and the tools while other sequences create no 
problems. The main goal of process planning is to determine an executable bend sequence 
and to select the different tools to use for each bend line, the gauging positions and the 
punch displacements.  

Figure 5. Different unfoldings of a part 

In order to determine the bend sequence, the different interactions between the part, the 
machine and the operator need to be investigated. For this purpose, a model is required 
representing the part during each of the consecutive process steps. If all geometric 
specifications, topological information, material characteristics and process related 
information would be included in such a representation model, the memory requirements 
could become very large. Some information, however, is redundant and only key 
information needs to be included. Duflou (1999) proposes a reduced foil model that contains 
only specific geometric information. This model also contains information regarding the 
topological relationships between the flange and the bend features of a part. For this 
purpose the part is represented by a graph with n nodes.  
The nodes represent the flanges, while the arcs represent the connecting features. The part 
can then be represented by a binary matrix, indicating whether two flanges are connected or 
not (Figure 6). For most parts the graph representation has to correspond with a spanning 
tree in the complete nxn graph.  
If loops are present in the graph representation scheme, a number of possibilities occur:  

• the part can still be produced with air bending, but dedicated tooling will be required;  
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• the part can still be produced if a set of bends is simultaneously executed (so-called 
compulsory combined bends);   

• no producible part’s unfolding can be determined: one or more bend connections need 
to be converted in weld connections or open seams.  

The interested reader is referred to Duflou (1999). Additionally to the geometric and 
topological constraints, also technological constraints are enforced on the part. Non-
compliance with those constraints causes the part to be infeasible to manufacture.  

Figure 6. Part representation schemes (Duflou, 1999): (a) the 3D sheet metal part; (b) the 
unfolded blank of the part and the spanning tree; (c) the incidence matrix 

Figure 7. Possible collision with (a) the punch and (b) the ram, when the bend sequence is 
not optimal 

Thus the part representation scheme is used to determine the bend sequence and the gauging 
positions. The  number of bend lines of the part, the number of gauging positions of the press 
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brake and the different possible tools to produce the part tremendously increase the number of 
possible bend sequences. Duflou (1999) proposes a traveling salesperson problem based 
method to identify feasible (near-optimal) bend sequences. To limit in this TSP approach the 
number of possible candidate solutions, a number of criteria is used. Amongst others, 
ergonomic factors and productivity criteria are taken into account when verifying the 
feasibility of the different bend sequences. Also hard reject criteria (unavailability of proper 
gauging edges, collisions, non-compliance of the part dimensions with the specified tolerances, 
etc.) and soft criteria (e.g. looking at the ease of workpiece handling and total resource 
utilization) are used to reduce the number of candidate solutions. Each criterion is assigned a 
weight to be included in the TSP objective function. As such, a feasible (near optimal) bend 
sequence is determined from the remaining candidates. 
Bend sequencing is often integrated with tool selection (Nguyen, 2005). For each bend line a 
short list of possible tools is made based on technological and geometrical constraints. The 
technological constraints verify if the part can technically be made with the specific tool. 
Geometrical constraints check if there are any foreseeable collisions (Figure 7). In general a 
two-phase approach is followed. In the first phase (preselection phase) all nonconforming 
toolsets are eliminated for each bend line, based on the technological and geometric 
constraints. In the second phase (refined selection phase) the preselected tools are adjusted 
whenever a collision occurs to suit the stricter conditions imposed by this collision. Based on 
this data, the bend sequence is determined. The search procedure starts at the root node of the 
decision tree (the first bend line to be produced). Gradually, other bend lines are added to the 
intermediate bend sequence. At each node of the decision tree, collision detection tests are 
executed. If a collision occurs, all nodes from the same level are tested to detect a collision-free 
path. If no collision-free path can be determined, a tool change is executed if possible (Figure 
8). To select a new tool (from the short list for that bend line), a number of rules are followed:  

• minimize the number of tool profiles to be used for producing the part; 

• maximize common preference for tools in a company; 

• minimize the chance for sub-collision due to selection of a certain tool. 
A penalty system ensures that no redundant changes are made. The final result of the 
approach generates a collision-free bend sequence together with the different tools to be 
used for each bend stroke.  The interested reader is referred to Nguyen (2005). For a 
comprehensive overview of other process planning issues, see Duflou et al. (2005). 

Figure 8. Selecting the appropriate bending tooling to avoid collisions (Nguyen, 2005) 
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After determining the bend sequence and the tools, the physical layout of those tools on the 
press brake needs to be generated. A shrewd choice of the position of the different stations 
minimizes the total distance traveled for the operator during the bending process. Next 
section elaborates on this topic. 

3. Tooling layout on a press brake for sheet metal air bending 

3.1 Problem formulation 

This section discusses the practical planning problem of locating all the required stations for 
a specific workpiece on a press brake. Process constraints and objectives regarding efficiency 
are taken into account. The n stations are mounted on a single press brake, their 
configuration is called the production layout (Figure 4). A station i has a length wi  and li

and ri are the free spaces required respectively on the left and on the right side of station i. 
This free space depends on the bending operations assigned to the station, the intermediate 
shapes and the changing dimensions of the sheet metal part throughout the bend sequence. 
With the bend sequence S, a row of m station numbers is linked, specifying the order of the 
stations on which the m bending operations have to be executed. The actual location of all 
stations required for a specific workpiece on a press brake is determined by minimizing the 
total distance an operator has to travel during the processing  of a specific work order. The 
main objective is to construct a fast algorithm for solving this problem because in a typical 
industrial environment, only a few seconds of computational time can be made available. 
Since exhaustive enumeration requires too much computational time, a neighborhood 
search method is suggested. 
The stations have to be located on a single line: the stations will be placed along the z-axis of 
the press brake. Experience with a large number of sheet metal parts allows to conclude that 
n=10 might be a safe upper limit for the number of required stations. Looking at the stations 
along the line, from the left to the right, the sequence of station numbers is a permutation of 
the n stations. Once a permutation is determined, the z-coordinate zi of each station, 
indicating the position of the middle of the station on the z-axis, is easily calculated.  
For any two stations i and j where i is located to the left of j, the following constraints have 
to be satisfied: 

/ 2 / 2j i i j jz z w w l≥ + + +  (1) 

/ 2 / 2i j j i iz z w w r≤ − − −  (2) 

The quality of a specific layout can be calculated by the total distance traveled by an 
operator when he is executing a bend sequence: 
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where Si and Si+1 indicate the station numbers of two consecutive bending operations. 
Because this total distance traveled should be as small as possible, the stations will be placed 
as close as possible to each other, leaving no unnecessary space. 
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Figure 9. Example of a station layout on a press brake 

Figure 9 shows an example with n=2 stations. The parameters for station 1 and 2 are w1=100, 
l1=90, r1=70 and w2=80, l2=80, r2=50, respectively. In this layout, station 2 is placed at the first 
position and station 1 at the second position. From these relative positions, the absolute 
positions zi can be calculated: 

2 2 2 / 2z l w= +

1 2 2 2 2 1/ 2  max( , ) / 2z z w r l w= + + +

For a bend sequence S=[1,2,1], the total distance traveled is equal to |300-120| + |120-300| 
or 360. Note that when the two stations exchange positions, the zi coordinates have to be 
recalculated (z1=140, z2=310). This is because the free space needed on the left of a station 
can be different from the free space required on the right side. Hence, the total distance 
traveled is not necessarily equal to the one of the first layout (|140-310| + |310-140| or 340). 

3.2 Solution approaches 

In the traditional approach no computer is used for determining the relative positions of the 
different stations on a press brake, only machine deformation considerations are taken into 
account. For the sake of symmetry and because both the table and the ram of a press brake 
are deformed during bending operations, the station for the longest bend line is located as 
centrally as possible. The second and third largest station are placed next to this largest 
station, one to the left and the other to the right, and this process is continued until all 
stations are placed. As a result, when going along the line of the stations from the left to the 
right, the stations become longer and longer until the longest station is reached; then they 
become smaller again until the end of the line is reached. This placing technique results in 
2|n/2| possible solutions, because for each next pair of largest stations two alternatives exist: 
one station to the left of the partial layout and the other to the right and vice versa. The 
number of stations on a press brake is limited to 10, thus the maximum number of different 
solutions is equal to 25 = 32. This is a very small number and all the solutions can easily be 
generated by a computer by exhaustive enumeration. This approach is called the technical 
approach (EnumT). 
In a second approach, the length of the stations is not taken into account for determining the 
sequence of the stations. All possible solutions are listed by generating the n permutations of 
the set {1, 2, …, n}. For this optimal approach (EnumP) the minimal change order algorithm 
is used (Kreher & Stinson, 1999). 
In the third approach, the deformation of both the table and the ram of the press brake is 
again taken into account. This deformation is primarily caused by the largest stations and 
consequently, they should be placed as centrally as possible. The other, shorter stations can 
be placed freely along the line aside these few large stations. Parameter nw indicates the 
number of largest stations that have to be fixed in the middle of the line. For practical use, 
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the number of largest stations that should be placed as centrally as possible, can be 
calculated taking into account the geometrical aspects of the workpiece and the derived 
required forces during the bending operations. 
The solution procedure for this hybrid approach (EnumC) is a combination of the two 
procedures of the first two approaches. Permutations ( ) for the nw largest stations are 
generated by a procedure similar to EnumT and these stations are placed as centrally as  
possible. For each generated permutation, a procedure similar to EnumP is used to generate 
all permutations ( ) for the (n-nw) shorter stations. The first part of a permutation  is 
placed to the left of  and the rest to the right. In total, 2 nw/2 (n-nw)! alternative layouts have 
to be generated, except when n is even and nw is odd. In that case, the number of 
alternatives is twice this value. 
The computational effort required to solve the problems related to the optimal and the 
hybrid approach grows very fast with the size of the problem. Therefore, descent methods 
are developed to solve these problems. For the optimal approach, the natural representation 
is a permutation of the integers (1, …, n) with n the number of stations. On this 
representation, two basic neighborhoods can be defined. With insert (INS) a station is 
removed from one position in the sequence and inserted at another position (either before or 
after the original position). General pairwise interchange (GPI) or “swap” swaps two 
stations. A special case is API adjacent pairwise interchange where the two stations are 
adjacent. For the order in which the neighborhood is searched, a fixed natural lexicographic 
ordering is used, i.e. (1,2), (1,3), …, (1,n), (2,1),(2,3),…, (i,j), …, (n-1,n), with i and j the two 
station numbers (for GPI only pairs where i<j are considered). Each time an improving 
move is executed, the next iteration restarts at the beginning of the ordering. 
Different initial solutions were investigated. With at random, the first solution is equal to the 
permutation of the different stations in numerical order, i.e. (1,2, …, n). In the most visited 
initial solution, the station that is visited most frequently is placed in the middle of the line. 
The others are placed to the left and to the right of this station in order of descending 
frequency of use. The start bend sequence seed is created in accordance to the sequence of 
bending operations. This can be a promising initial solution when most stations are visited 
only once. The end bend sequence seed is analogous to the previous method, but the search 
is started at the end of the bend sequence and continues in reverse order through the 
sequence. For each of these four initial solutions, an additional initial seed is considered by 
using the generated solution in reverse order. By performing multiple runs of the procedure 
starting from the eight different initial seeds and taking the best sequence as final solution, 
we get a multi-start descent solution approach. 
For the hybrid approach, only a descent method for the placement of the shorter stations is 
considered. In practical situations, the number of largest stations nw is small and all 
corresponding permutations can easily be generated by exhaustive enumeration. The 
neighborhood is a variation of the swap neighborhood defined for the optimal approach: 
only stations from the first part (before the fixed largest stations) and from the last part 
(after the fixed largest stations) are considered for a pairwise interchange. The initial seed is 
a layout that satisfies the specifications of the technical approach. The fixed largest stations 
are already positioned as centrally as possible. Around this fixed part, the other stations are 
added in an order from long to short. 
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3.3 Computational experience 

For the computational tests, the enumeration algorithms and the descent techniques were 
coded in C and run on a HP 9000/L1000 computer. The data set (with 48 instances) used to 
test the different procedures is at random data offering a good approximation for real 
instances. An optimal solution value to each problem is obtained with the enumeration 
algorithm EnumP.  
For problems with up to n=8 stations, this exhaustive enumeration requires less than one 
second of computational time. The longest computational time is used for problems with 
n=10 stations, i.e. nineteen seconds. The performance of the technical approach and the 
hybrid approach and of the heuristics for the optimal approach is compared by listing the 
number of times (out of 48) that an optimal solution is found (NO), the average relative 
percentage deviation (ARD) of the solution value from the optimal value and the maximum 
relative percentage deviation (MRD) from the optimal value. 
Table 1 compares the results when using the technical approach or the hybrid approach 
(with nw the number of fixed largest stations) instead of the more ideal station layout based 
on the optimal approach. It is clear that a lot more distance has to be traversed when a 
layout based on the first approach is used. Note that the ARD and MRD performance 
measures are not an indication for the bad performance of the solution procedures. They just 
give information about how much the layouts based on the technical or hybrid approach 
deviate from the optimal layout because of the additional process constraints. For some 
instances, this distance is more than twice the distance resulting from a layout based on the 
optimal approach. 
The results of Table 1 indicate that it is worthwhile to consider the hybrid approach, where 
only a few large stations are fixed as centrally as possible. In most practical situations, fixing 
the largest station in the middle is adequate to prevent an asymmetrical deformation within 
one bend line. The column with label nw=1, shows that the total distance traveled is on 
average raised with 10%.  

EnumT

nw=1 nw=2 nw=3

NO 6 14 6 6

ARD(%) 54.84 10.43 24.36 37.60

MRD(%) 259.67 46.60 66.30 135.60

EnumC

Table 1. Results of the enumeration algorithms 

When more large stations have to be fixed in the middle of the line, the additional distance 
that has to be traversed, increases. Hence, it is important that stations that cannot cause any 
significant deformation, are freely placed on the line in order to minimize the total distance 
traveled as much as possible. 
The left part of Table 2 shows the performance of the multi-start descent method on the 
optimal approach considering the three neighborhoods, adjacent pairwise interchange 
(API), general pairwise interchange (GPI) and insert (INS). This method requires less than 
one second for each instance of the data set.  
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API GPI INS nw=1 nw=2 nw=3

NO 29 39 47 29 35 42

ARD(%) 1.84 0.33 0.02 1.66 1.07 0.22

MRD(%) 13.71 5.01 0.85 13.51 14.44 4.63

Hybrid approachOptimal approach

Table 2. Neighborhood search results 

Note that in this table the ARD and MRD performance measures are an indication for the 
effectiveness of the heuristic solution procedure. One of the characteristics of a 
neighborhood for determining the effectiveness is its size, i.e. the number of neighbors for a 
single solution. The sizes of the used neighborhoods are (n-1) for API, n(n-1)/2 for GPI and 
(n-1)2 for INS. With a larger neighborhood, more diversity can be introduced in the search 
and this generally results in a better performance as can be observed in the left part of Table 
2. The number of problems solved to optimality increases and the average relative deviation 
decreases when a larger neighborhood is used. 
It is worthwhile to investigate the performance of the neighborhood search technique for 
solving problems based on the hybrid approach. For instances with n=10 stations, exhaustive 
enumeration requires about four seconds of computational time. In the right part of Table 2, 
the results of the descent method based on a swap neighborhood are compared with the 
values calculated with the enumeration procedure for the third approach. Quite good results 
are obtained: a lot of instances are solved to optimality and the average relative percentage 
deviation is small. The fact that only a single-start version is used, is probably the cause for the 
large MRD value. It is remarkable that  the performance of the heuristic increases when the 
number of fixed stations nw increases. With a larger nw value, the solution space is smaller and 
the swap neighborhood is probably capable to search this space adequately. 

3.4 Summary 

This section presents some practical methods for placing a number of stations consisting of a 
punch and a die, on a press brake for sheet metal air bending. Comparing the best values of 
the total distance traveled according to the technical approach and to the optimal approach, 
indicates that a lot of traveling distance can be saved when the tooling layout is based on the 
optimal approach. Yet, when very large stations have to be used for producing a workpiece, 
one cannot ignore the asymmetric machine deformation. Therefore, a third approach is 
suggested. In this approach only the largest stations are placed as centrally as possible and 
the other stations are freely added to the left and to the right of these largest stations. The 
computational results indicate that layouts based on this hybrid approach are to be 
preferred, especially when only one large station has to be fixed in the middle. Apparently, 
a simple neighborhood search technique gives good results.  
After the physical layout of the different stations on the press brake is determined, the part can 
be produced with air bending. Production planning for air bending is usually carried out by 
an experienced operator. Makespan reduction is the most important criterion in this process. 
Since interchanging production layouts is time consuming, such set-ups should be avoided as 
much as possible. Section 4 discusses the authors’ effort to automate production planning for 
press brakes and to improve on the schedules of an experienced production planner. 
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4. Automated production planning of press brakes for sheet metal bending 

4.1 Problem formulation 

For bending, every part requires a specific production layout and the time to produce this 
part depends on the properties of the layout. Changing production layouts is time 
consuming and should be avoided. Fortunately, some production layouts can be used for 
several parts.  For instance a bend line with length (k) can be made with a tool set length  
(k+x) if that bend line does not contribute to forming a box-type part. The other way around 
is impossible: a bend line with length (k) cannot be made with a tool set length (k-x).  Table 
3 presents a small example with four jobs and six production layouts.  Job 1 can be 
processed using production layout a in 100 seconds, using production layout d in 130 
seconds, or using production layout f in 120 seconds.  With production layout d it is possible 
to produce jobs 1, 2 and 3.  Table 4 summarizes the set-up times between the different 
production layouts; the matrix is inherently an asymmetric one. 
The different possible production layouts per job and the different possible production 
layouts for combinations of jobs can be generated by a computational procedure (see e.g. 
Duflou et al. 2003) starting from the complete (initial) set of jobs.  The different 
manipulations during set-up from a particular layout to another one can be analyzed; 
standard time and motion studies will provide set-up time estimates.  Furthermore, time 
and motion analysis allows for the calculation of production times (Vansteenwegen & 
Gheysens, 2002). 

Job a b c d e f

1 100 - - 130 - 120

2 - 60 - 90 - 80

3 - 40 - 70 50 -

4 140 - 120 - 60 -

Production layout

Table 3: Feasible production layouts per job and corresponding production times (seconds) 

Production layout end a b c d e f

start - 72 58 48 79 53 48

a 55 - 74 136 38 324 0

b 30 128 - 22 184 90 210

c 36 40 40 - 70 50 164

d 63 140 32 38 - 60 112

e 35 200 152 34 30 - 110

f 35 20 90 38 118 18 -

Table 4: Set-up times between the production layouts (seconds) 

Currently, production planning practices for bending are based on experience. The press 
brake operator receives a work list with parts to bend. Based on his knowledge and skill, the 
production layouts are selected and the parts scheduled.  Until now, no assisting software 
packages are available on the market. Typically, the task of a production planner should be: 

• select for each job a production layout, minimizing the total production time; 
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• sequence the different jobs at the press brake, minimizing the makespan for the pool of 
jobs.

For the example (Table 3 and Table 4), a feasible solution is layout sequence [e - f] with jobs 
1 and 2 assigned to production layout f, while jobs 3 and 4 are assigned to production layout 
e. The makespan for this small set of orders equals 53 + (50+60) + 110 + (120+80) + 35 = 508 
seconds. Apparently, the Press Brake Planning problem (PBP) has a very specific structure. 
Two well known models from the literature, the traveling purchaser problem (TPP) and the 
generalized traveling salesperson problem (GTSP) can capture this structure. Both modeling 
approaches are investigated to verify whether production planning for air bending can be 
automated, minimizing the makespan, or not. The computational requirements and quality 
of the final solution are determinant factors when comparing the two methods. Next 
subsections discuss both lines of action. 

4.2  The traveling purchaser problem (TPP) 

Ramesh (1981) describes the TPP as a generalization of the traveling salesperson problem 
(TSP). An agent must visit a number of markets/cities in order to buy, at minimum cost, a 
set of items. The cost consists of two elements: the travel cost between the markets and the 
purchase cost of the items.  
The production planning problem for air bending is now reformulated, using following 
parameters and variables: 

• i,j: indices for markets 

• k: index for the product  

• cij: travel cost when traveling from market i to market j 

• hik: purchase cost for product k at market i  

• xij: binary variable indicating whether or not the agent travels from market i to j  

• yik: binary variable indicating whether product k is bought at market I 

• I: all cities/markets, where 0 is the starting position of the agent (I0 = I \ {0}) 

• K: all products 
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In formulation (4)-(10), the objective function (4) minimizes the total cost. Constraints (5) 
ensure that all products are purchased. Constraints (6) allow to buy a product only when a 
market is visited. Constraints (7) are the balancing constraints: a market entered has to be 
left as well. Constraint (8) indicates the tour starts at the starting point. Constraints (9) are 
the subtour elimination constraints and constraints (10) limit the variables to Boolean values. 
The example from Table 3 is represented as a TPP instance in Figure 10. The squares (cities) 
represent the production layouts, the circles (items) the jobs. The traveling costs between the 
cities are the set-up times between the production layouts, while the purchase costs are the 
production times of the parts, given a specific production layout. Some parts or jobs (circles) 
are connected by arrows to several production layouts (squares) since some jobs can be 
produced with a few production layouts. The dotted arrows represent a feasible job 
allocation: only two production layouts are chosen, e and f. Jobs 3 and 4 are produced with 
layout e; jobs 1 and 2 are produced with production layout f.  In total, the production time 
equals 310 seconds and the total set-up time is 198 seconds. This results in a makespan of 
508 seconds. Several procedures are available to solve the TPP. The interested reader is 
referred to Ramesh (1981), Pearn (1991) and Singh & Van Oudheusden (1997).  

Starting position
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da

Job

Production layout

Figure 10. TPP presentation of the example 
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Heuristic solutions of the TPP can be generated in different ways, depending on the 
emphasis put on either production or set-up times.  If one only wants to minimize the 
number of set-ups a set covering  formulation can address the problem (E. El-Darzi & G. 
Mitra, 1995). Generally speaking this approach will yield poor results with regard to 
makespan since production and set-up times are not taken into account. For the example 
presented in Tables 3 and 4, many solutions with only two set-ups appear, i.e. -a-b-, -b-a-, -a-
d-, -d-a-, -e-f-, -f-e-, -c-d-,  and -d-c-.  But the makespan varies quite a lot: respectively 516, 
581, 573, 674, 508, 411, 591 and 563 seconds. 
A much better approach, fitting the intrinsic TPP structure, would be a hierarchical 
decomposition procedure. In a first step a simple plant location problem (SPLP) is solved for 
instance by means of the procedure of Erlenkotter (1978), using average set-up times 
between the production layouts as the fixed costs for the different plants. In this way each 
workpiece is assigned a production layout, minimizing the total number of layouts for the 
pool of workpieces. In a second step a TSP is solved to determine the sequence for bending 
the different parts. Real set-up costs between the production layouts are used as the 
traveling costs.  

4.3 The generalized traveling salesperson problem (GTSP) 

The GTSP (Srivastava et al., 1969) is the problem of finding a minimum length tour through 
a predefined number of subsets of customers while visiting at least one customer in each 

subset. The node set N consists of m mutually exclusive node sets SI such that N = S1 ∪ S2 ∪
…Sm and SI ∩ SJ = ∅ for all i and j (i ≠ j).  Assume that arcs are defined only between nodes 
belonging to different sets.  The objective is to find a minimum length tour visiting a node in 
every set. Following parameters and variables will be used in the formulation: 

• i,j: indices for the cities 

• cij: travel cost when traveling from city i to city j 

• xij: binary variable indicating whether or not the salesperson travels from city i to j 

• A: all arcs connecting two cities   

• N: all nodes 
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{ }0,1ijx ∈ , ( , )i j A∀ ∈  (16) 

The objective function (11) minimizes the total traveling cost.  Constraints (12) and (13) 
ensure that in every subset one node is visited. Constraints (14) indicate that an entered 
node j has to be left as well. Constraints (15) are subtour elimination constraints, while 
constraints (16) limit the variables to Boolean values. A graphical representation of the GTSP 
formulation of the previous example with the same feasible solution is seen in Figure 11.   
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Figure 11. GTSP presentation of the example 

The arrow cost comprises the set-up cost between the production layouts and the 
production cost of the jobs with a certain production layout. In this way the traveling costs 
represent set-up as well as production time. Exact algorithms are available to tackle the 
problem but since the procedure has to run on line, heuristic procedures are preferred.  For 
GTSP, local search algorithms can be quite naturally developed (Johnson & McGeoch, 1997). 
A feasible solution can be represented by a permutation vector of size m, each element 
representing a customer belonging to one subset.  The feasible solution of Figure 11 can be 
represented by { e4, e3, f1, f2 }. It is simple to create a neighborhood by using a 3-opt 
procedure, i.e. removing three arcs and rearranging the order of the three resulting parts. 
Once a new order is fixed, it is accepted and declared to be the new current solution if the 
makespan is reduced. To speed up the local search procedure not the complete 
neighborhood is investigated, but only changes leading to neighbors that look promising.  



Sequencing and scheduling in the sheet metal shop 363

This descent procedure is then embedded in a guided local search procedure where long 
arcs , which are unlikely to appear in a good tour, are penalized. The lengths of some arcs of 
the current solution are thus artificially increased and the local search procedure is recalled, 
hoping to escape in this way from the local minimum death trap.  

4.4 Computational results 

Test problems are generated based on real-life data from different test companies. The test 
cases comprise 10, 15 or 20 orders. A distinction is made between complex parts and 
standard profiles (Figure 2). The production layout used for producing a standard profile 
can most likely be used for other profiles as well due to the simple structure of the profiles 
(mostly a single bend line). For producing a batch of orders comprising mainly (or 
exclusively) profiles, less production layouts are required compared to a batch of orders 
comprising complex parts. Indeed, the probability that a production layout (PL) of a 
complex part can be used for bending another complex part is rather small. In general one 
can observe that by decreasing the number of profiles from the pool of orders, on average, 
the number of required production layouts is increasing.   
The problems encoded with an index a (SMBXXa) refer to problems which contain 50% or 
more profiles and with an index b (SMBXXb) to problems with less than 50% profiles (see 
table 5). The algorithms for solving TPP and GTSP were coded in C/C++ and were run on a 
personal computer (Pentium 4, 2.66 GHz, 256 Mb RAM) under Windows XP.  The results 
are based on single runs for each problem. 

PBPs TPP GTSP REF

All 4.71 4.41 12.98

SMB10 4.25 3.99 12.19

SMB15 4.59 4.37 12.97

SMB20 5.59 5.12 14.19

SMB10a 4.42 4.42 10.03

SMB10b 4.11 3.63 14.09

SMB15a 4.40 4.19 11.12

SMB15b 4.72 4.48 14.25

SMB20a 4.52 4.49 11.27

SMB20b 6.05 5.39 15.44

Average deviation from lower bound (%)

Table 5. Computational results 

For each problem, a lower bound (LB) and a "reference" solution (REF) are calculated.  The 
lower bound is based on the simple plant location problem solution using the smallest set-
up time as the fixed cost. The makespan value of the reference solution is calculated as 
follows: the best production layout is selected for every job and then the jobs are sequenced. 
One can interpret this makespan as the time a good production planner would obtain by 
solving the press brake planning problem by hand. Table 5 summarizes the deviation (%) 
from the lower bound.  The average deviation is given for all problems, for each problem set 
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and also for every problem split up according to a (50% profiles or more) and b (less than 
50% profiles). Table 6 contains the calculation time to obtain these solution values. 
The TPP column gives the solution values obtained by the hierarchical approach, the GTSP 
column the solutions obtained with the guided local search procedure, the REF column is 
the reference solution value and the LB column gives the lower bound.  
The results indicate that it is worthwhile to apply the TPP or GTSP approach instead of 
relying on the results of an experienced production planner.  The solution improves by 8 % 
on average.  The improvement is larger for problems with fewer profiles, the deviation goes 
up to 10 % while for problems with a larger number of profiles it varies around 7 %.  The 
difference originates from the fact that for the problems with a fewer number of profiles less 
process plans are generated by a human production planner than by the automatic 
production planner.  Moreover, the more parts included in the pool of orders, the more 
difficult it becomes for an experienced production planner to keep a good overview of the 
planning process.  A human production planner rarely combines different jobs to be 
produced with a single production layout because mentally he cannot take into account all 
possible combinations. 
The simple TPP hierarchical approach is amazingly good. The difference between the TPP 
approach and the GTSP approach is quite small, especially for the problems with many 
profiles. For profiles there are less set-ups required since a few layouts can be used for many 
products. But if less profiles appear in the work orders, set-ups become more important and 
the performance of the hierarchical approach gets worse as can be seen in Table 5. The 
difference in deviation between the TPP and GTSP approach is always smaller for the 

SMBXXa problems (≥ 50% profiles). When set-up importance is increasing, the hierarchical 
procedure is not working as well.  

PBPs TPP GTSP REF LB

All 0.06 83.26 0.00 0.01

SMB10 0.02 29.51 0.00 0.00

SMB15 0.04 65.59 0.00 0.03

SMB20 0.15 190.40 0.00 0.00

SMB10a 0.02 11.26 0.00 0.00

SMB10b 0.03 45.48 0.00 0.00

SMB15a 0.03 16.24 0.00 0.00

SMB15b 0.05 90.27 0.00 0.04

SMB20a 0.07 45.24 0.00 0.00

SMB20b 0.18 252.61 0.00 0.00

CPU time (seconds)

Table 6. CPU times 

The TPP approach has the advantage that a solution is determined in a very small amount of 
time. It never takes more than 0.5 seconds to generate a solution. Solving the SPLP takes less 
than 0.01 seconds, the remaining time is for the local search approach (10,000 iterations), 
which solves all the TSP problems tested to optimality in less than 0.05 seconds on average. 
The solution time of the guided local search procedure solving the GTSP formulation is 
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linear in the number of iterations allowed. The reported computation times are limited to 
100,000 and take on average 90 seconds. 

4.5 Summary 

The purpose of this research is to investigate the possibility of automating the complete 
production planning function and, if possible, improving on the schedules of an experienced 
production planner. In this section the press brake planning problem is discussed. Two 
approaches, the TPP and GTSP approach, are tested. The hierarchical decomposition 
approach (TPP) produces good results and requires only little time (less than 0.5 seconds for 
the larger problems) so that the procedure can be used on line to generate the production 
plan at the beginning of a day or when rush orders arrive during the day.  The GTSP 
approach yields better results but requires more time. 
Additional tests indicate that the time estimates for set-up and production times are 
sufficiently accurate and robust; more importantly the makespan values generated by the 
TPP and GTPS approaches appear to be very realistic.  The conclusion therefore is that the 
production planning of press brakes for sheet metal bending can indeed be automated. In 
this way, considerably more efficient planning can be achieved and less time has to be spent 
on the frequent planning and replanning of the different steps. The modeling and 
algorithmic intricacies of the approach appear to be modest. 
The success of the TPP and GTSP approaches is due to the optimization of trade-offs 
between set-up and production times. Generally speaking, this optimization will become 
better when more choices can be made; the number of choices being a function of the 
number of considered production layouts. Thus it is important to consider, from the outset, 
a sufficiently large set of possible production layouts.  Detailed analysis could determine 
how precisely the solutions are affected by changes in the set of possible production layouts.  
The different algorithms for the press brake planning problem have not been implemented 
in commercial applications yet. Experience-based planning practices are still omnipresent at 
the bending stage. Although laser cutting and air bending planning can thus be optimized, 
simply sequencing the optimal solutions of the two processes can create problems for the 
sheet metal flow shop. Section 5 addresses these issues. 

5. Integrated approach for production planning 

5.1 Need recognition 

As discussed, certain process planning issues and production planning issues can be 
optimized separately for laser cutting and bending. However, the optimization of the 
distinct processes gives no guarantee for a globally optimized situation. Optimization 
decisions taken at one production stage influence the preceding stages. As such, the 
different objectives can counteract one another creating a non-optimal situation for the 
complete production chain. This actually happens when looking at the sheet metal flow 
shop with laser cutting and air bending. At the cutting stage, nesting software is used to 
determine the sheet layout that generates the best material utilization for the available 
workpieces. Low scrap percentages are preferred and if parts of the sheet are unused, 
remnant sheets are stored for later use. After the workpieces are cut (sheet by sheet), they 
are sent to the press brake for bending (if a 3D workpiece is required). At the press brake, 
an experienced operator tries to reduce the set-ups between production layouts as much 
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as possible. However, since at the cutting stage no information regarding the required 
bending tools was taken into account, multiple set-ups occur at the press brake. In the 
worst case scenario, every single workpiece of a sheet requires a different production 
layout for bending. If multiple set-ups are required, a substantial amount of time is 
needed to produce the workpieces. Distinct step optimization thus leads to counteracting 
benefits: the effort spent on nesting is counteracted by an increased number of set-ups at 
the press brake.  
Another trigger for an integrated production planning approach is the fact that currently 
production planning is mainly experience based. Although experienced operators are able 
to generate feasible production plans, there is ample space for improvements. The press 
brake operator will sequence the jobs that are physically waiting in front of the press brake. 
For a small amount of workpieces he will get a clear overview of the different possibilities. 
However, if many workpieces are available for bending, he may get lost in the process. In 
those cases he will generate a feasible but not optimal solution since an experienced 
operator will most likely not consider all possibilities. Another important remark should be 
made. The press brake operator will do his best to sequence the workpieces waiting in front 
of the press brake with as little set-ups as possible. Unfortunately, this operator has no 
overview of all workpieces that need to be produced in the coming period. It may thus 
happen that determining a good sequence for the current batch turns out to require multiple 
set-ups for the next period. An integrated approach should take all workpieces into account 
and generate a production sequence with a reduced makespan for the complete set of 
orders.
Thus, computerizing the production planning process and approaching it from an 
integrated perspective offers several opportunities: 

• one looks at the complete picture to generate a plan for the coming T time buckets;  

• one verifies automatically more possibilities than an experienced operator; 

• one integrates both production stages to avoid counteracting benefits. 
The research as described in this section aims at producing such integrated production 
plans. 

5.2 Mathematical model for the integrated production planning problem  

5.2.1 IP formulation 

For solving the integrated production planning problem, an integer programming 
formulation (IP) is proposed. A number of variables and parameters are defined: 

• i: workpiece index 

• l: production layout index 

• k: sheet index 

• fl: average set-up time for production layout l 

• zik: binary parameter indicating if workpiece i can be nested on sheet k 

• pil: bending time for workpiece i with production layout l 

• cil: binary parameter indicating if workpiece i can be bent with production layout l 

• Ai: surface of workpiece i 

• li: length of workpiece i 

• wi: width of workpiece i 

• Ck: capacity of sheet k 
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• lk: length of sheet k 

• wk: width of sheet k 

• xilk: binary variable indicating if workpiece i is assigned production layout l and nested 
on sheet k 

• ylk: binary variable indicating if production layout l is used for sheet k 

• I: all workpieces 

• L: all production layouts 

• K: all sheets 
The IP formulation for the problem becomes: 
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The objective function (17) of the IP model has two components. Firstly, the number of set-
ups at the press brake is minimized. There is an average set-up time fl associated with every 
production layout l used per sheet. Every time a production layout is selected for a certain 
sheet, the objective value is increased with the average set-up time for that production 
layout. This formulation assures that as few as possible production layouts are selected for a  
sheet, thus minimizing the set-ups at the bending stage. If a new production layout is 
required, preferably one with a low average set-up time is chosen. As such, workpieces 
requiring the same production layout will preferably be combined on the same sheet, 
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creating less set-ups at the press brake. Secondly, the total bending time at the press brake is 
minimized. A workpiece's bending time is influenced by the selected production layout for 
bending. The second part of the objective function assures that workpieces are assigned to a 
production layout with low bending times in order to decrease the makespan of the pool of 
jobs. Constraints (18) make sure that a workpiece can only be assigned to a specific 
production layout for a sheet, if that layout is selected for that particular sheet. The binary 
ylk variable will increase the objective function, every time a new production layout is 
required. Constraints (19) indicate that each workpiece should be produced, i.e. each 
workpiece should be assigned to a production layout and should be nested on a sheet for 
cutting. Constraints (20) limit the layouts that can be used for a certain workpiece. The 
binary workpiece-layout matrix indicates whether a certain workpiece i can be made with 
layout l. Not all workpieces can be produced with all available production layouts because 
of restrictions imposed by the workpiece’s geometry. Constraints (21) verify if a workpiece 
can be nested on a certain sheet, based on the material type and the sheet thickness. 
Constraints (22) guarantee that the total usable area (Ck) of a sheet is not exceeded while 
nesting the different workpieces. A safety zone ( ) is taken into account. This ( ) takes into 
account the required spacing between workpieces (heat build-up when cutting) and the 
clamping zone. Constraints (23) and (24) check the length and width of a workpiece 
compared to the length and width of a particular sheet to avoid creating infeasible nestings. 
Constraints (25) limit the decision variables to Boolean values. 
The result of the mathematical model (17-25) determines for each sheet which workpieces 
should be combined for cutting (nesting). It is important to note that the actual arrangement 
of those workpieces on the sheet is not generated by the IP model.  
Dedicated algorithms, implemented in commercial software, allow to generate the best 
arrangement, taking into account process planning aspects such as heat build up when 
cutting, piercing of initial holes, cutting path minimization etc. It is not the purpose of this 
research to introduce process planning issues in the production planning module. Besides 
the groupings of the workpieces, the IP model also indicates for each workpiece the 
required production layout for bending. The total number of production layouts is thus 
minimized and all workpieces are assigned to a unique production layout. Besides a 
possible makespan reduction (due to the reduced set-up time at the press brake), material 
utilization plays an important role. Minimization of the number of sheets is not as such 
included in the mathematical model. The number of sheets is fixed in advance (user-
defined). This number can be determined based on:  

• the theoretical number of sheets: for every material type and sheet thickness, the total 
parts' area is divided by a sheet's area and rounded upwards and the necessary margins 
for clamping,  etc. are taken into account;   

• the optimal number of sheets as determined by dedicated nesting software: commercial 
packages can be used to determine for each material type and thickness the amount of 
sheets required. 

The exact production sequence for the different sheets is not determined by the IP model. 
Since the sheet metal shop is seen as a flow shop with single machines at each stage, the 
order of cutting the sheets also determines the order of bending the sheets and vice versa. In 
the presented research, the order of cutting the sheets is determined by the bending stage. 
This means that the sheets are sequenced such that the set-ups between production layouts 
of consecutive sheets at the press brake are minimized. It is important to notice that when 
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talking about the bend sequence, one usually discusses the sequence in which the bend 
lines of an individual workpiece need to be executed to avoid collisions.  
For production planning issues, the bend sequence indicates the sequence in which the 
different sheets need to be bent. To avoid this confusion, a specific terminology has been 
developed: 

• Bend sequence: is shown on the process plan and gives the sequence for producing the 
different bend lines of a workpiece (to avoid collisions when bending the workpiece, 
e.g. bend line 1 - bend line 5 - bend line 3 - etc. ). 

• Production sequence: is related to the production plan and gives the sequence for 
cutting and bending the sheets (e.g. sheet 1 - sheet 4 - sheet 3). The term production 
sequence is used for flow shops with a single machine at each stage (the production 
sequence for cutting is then the production sequence for bending).  

• Production bend sequence: is mentioned on the production plan and indicates for a 
sheet the sequence in which the different workpieces of that sheet need to be bent (e.g. 
workpiece 1 - workpiece 12 - workpiece 3). 

The IP model neither generates the production sequence nor the production bend sequence 
for the different sheets. Thus, some additional steps are required to generate the final 
production plan. The list from the IP model indicates for each sheet the different workpieces 
to bend and the production layout to use. A TSP instance is solved for each sheet with the 
sequence-dependent set-ups between the production layouts as travel distances. The result 
of this step is a list with the different sheets, and the production bend sequence for bending 
the workpieces of each sheet. Next, a TSP instance is solved to determine the production 
sequence for the different sheets. In this last step, the sheets can swap/shift positions, but 
the production bend sequence of a sheet cannot be altered anymore. Table 6 displays a 
typical final production plan. 

Demostuk (PL181) L_prof_1.5 (PL4) Banister_1.5 (PL66)

Voorbeeld (PL181) L_prof_1.5 (PL4) Banister_1.5 (PL66)

Schofbeurs (PL181) Banister_3 (PL66) Banister_1.5 (PL66)

Autodemo (PL25) Banister_3 (PL66) Banister_3 (PL66)

161757_test (PL25) Banister_3 (PL66)

Multifan (PL64) Banister_3 (PL66)

Banister_3 (PL66)

Cutting time (sec.) 223 394 594

Bending time (sec.) 1125 280 718

Set-up time (sec.) 372 376 0

Sheet1(S_1) Sheet2(SS_1.5) Sheet3(SS_1.5)

Table 6. Example of a final production plan 

5.2.2 Computational experience 

To verify the ability to generate qualitative integrated production plans, different real-life 
test cases are used. In total, 30 orders/jobs are included (complex workpieces and profiles). 
Two materials, i.e. steel (S) and stainless steel (SS) and five thicknesses ranging from 1mm to 
6mm are included in the test batch. Based on the available tool segments in the test-case 
company, 201 different production layouts (PL) are selected.  
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The results of the production planning model are compared with the reference approach for 
that particular case. This reference approach can be interpreted as “the current way of 
planning”.  For the reference approach, nesting is carried out with dedicated nesting 
software (CADMAN-PL) and for bending, the production layout is selected by an 
experienced operator. The IP-model (17-25; called Appr1) is generated in C++ and solved 
with ILOG CPLEX V10.01. Table 7 displays the results obtained. 

Case

Thick_1mm 1.24 8.6 21.0 25.6 420.0 0.0

Thick_1.5mm 0.58 6.3 15.4 40.6 71.0 0.0

Thick_2mm 0.9 7.6 18.6 38.9 3.2 0.0

Thick_3mm 0.91 3.2 7.7 6.1 91.0 0.0

Thick_6mm 11.78 0.3 0.8 89.5 3600.0 36.9

Thick_small 0.78 3.7 8.9 44.7 131.7 0.0

Thick_small_profiles 0.54 4.6 11.3 42.3 10.1 0.0

Thick_small_complex 1.87 4.0 9.8 35.3 7.2 0.0

Thick_large_profiles 3.8 1.0 2.5 72.5 19.3 0.0

Thick_large_complex 11.11 0.6 1.4 42.3 3600.0 31.0

AVERAGE 4.0 9.7 43.8

Ratio
MR

(%)

MR

(days/yr)

STR

(%)

GT

(sec)

GAP

(%)

Table 7. Results of the mathematical model (Appr.1) 

Material utilization: Compared to the reference approach, no additional sheets are required 
when the integrated planning model is used. Note that in the planning model the number of 
sheets is determined based on the theoretical minimal number of sheets (i.e. the total 
required area per thickness and material, taking into account some safety zones). This 
number is user-defined to set an upper limit to the number of different sheets. The main 
difference between the reference case and the integrated model is the arrangement of the 
nested workpieces and hence the geometry of the remnant sheets, i.e. sheets that are 
partially filled and stored for later use. The surface of the remnant sheets remains 
approximately the same since the total surface to nest is identical for both cases, but the 
geometry can be different due to the grouping of different workpieces. Note also that the 
actual layout of the sheets (the parts' positioning) is to be determined with dedicated nesting 
software. Process planning details such as cutting path, laser technology, lead-ins, piercings, 
etc.  are also determined with this specialized software tool. 
Makespan reduction: On average a makespan reduction (MR) of about 4.1% is obtained for 
the complete batch of the ten cases. On daily basis one would be able to save 0.32 hours 
(almost 20 minutes). Extrapolating this to a complete year results in an average saving of 
approximately 11.3 working days if the batches would be continuously reproduced during 
the year. The makespan reduction is the highest for the instances that comprise mainly 
workpieces with small sheet thickness. This can be explained due to the fact that for small 
sheet thickness, the cutting and bending time are of comparable magnitude. Any reduction 
in the set-up time at the bending stage contributes to makespan reduction. If the sheet 
thickness increases, the laser time increases drastically. The bending time, however, does not 
increase accordingly. For large sheet thickness, cutting will thus require much more time 
compared to bending. The laser machine becomes dominant and reductions at the press 
brake are insignificant compared to the total production time. To determine the cases where 
one of the machines is dominant, the production times of both machines are compared. The 
ratio between the total cutting time and the total bending time should be calculated. If this 

8.8

4.1 11.3
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ratio is smaller than 0.5 or larger than 2, one of the machines is considered dominant. The 
ratios of the cases are mentioned in Table 7. As can be seen, if one of the machines is 
dominant, the integrated approach yields negligible makespan reductions.   
Set-up time reduction: Besides the reduced makespan, the set-up time at the bending stage 
decreases on average with 43.8% (STR: set-up time reduction). This can be explained by the 
fact that the mathematical model minimizes the number of production layouts to produce a 
batch of workpieces. A reduced number of production layouts results in a reduced set-up 
time at the press brake. The proposed approach analyzes the workpiece/layout matrix and 
produces if possible many workpieces with a common production layout. An experienced 
operator will try to do the same, but as the number of workpieces and/or production 
layouts increases, this becomes more difficult. Additionally, the different sheets are grouped 
in such a way that set-ups between subsequent sheets are avoided (TSP formulation). 
Generation time and quality of the solution: The model is run for 60 minutes maximum. If 
an optimal solution is not reached, the gap between the linear relaxation and the best 
solution found is mentioned. As can be observed, the optimal solution cannot be obtained 
within a reasonable amount of time in all cases. Another shortcoming of the approach is the 
use of sequence-independent set-up times between the different production layouts. To 
somewhat overcome this problem, a traveling salesperson formulation with sequence-
dependent set-ups is applied to sequence the workpieces per sheet. Although the quality is 
improved by including this step, better solutions might be possible. The interested reader is 
referred to Verlinden et al. (2007).  

5.3 Reformulation of the planning problem 

5.3.1 Vehicle routing  

The classical vehicle routing problem formulation (VRP) is a well-known integer 
programming problem which falls into the category of NP-Hard problems. The aim of 
solving VRPs is to design the optimal set of routes for a fleet of vehicles in order to serve a 
given set of customers. If the trucks have a limited capacity, the problem is a capacitated 
vehicle routing problem (CVRP).  The (C)VRP can be seen as an “intersection” of two well-
known combinatorial problems: the traveling salesperson problem (TSP) and the bin 
packing problem (BPP). A good overview of the VRP is given by (Laporte et al., 2000).   
When an integrated production plan needs to be generated for sheet metal laser cutting and 
bending, two main issues need to be tackled:  
1. the workpieces need to be grouped on the sheets, minimizing the waste material;  
2. the number of set-ups for bending needs to be minimized, taking into account 

sequence-dependent set-ups between the production layouts at the press brake.  
It appears that the optimization task is a combination of bin packing (filling a minimal 
number of sheets) and set-up-time minimization (minimizing sequence-dependent set-ups 
at the press brake). Hence, an integrated sheet metal production planning can, after small 
modifications, be modeled as a VRP, more precisely as a CVRP due to the limited sheet 
capacity. The sheets with a limited usable sheet area represent the trucks with a limited and 
fixed capacity. The workpieces with a certain surface represent the different customers with 
a specific demand and the set-up times between the production layouts for bending 
represent the traveling distances between the different customers. 
It is important to note that there remain some differences between the standard CVRP and 
the integrated sheet metal production planning problem. The IP formulation of the CVRP 



Multiprocessor Scheduling: Theory and Applications 372

should thus be modified to address the problem. Yet, the CVRP formulation is a good 
starting point for modeling.  Figure 12 gives a rough sketch of the reformulation. 

Figure 12. Reformulating sheet metal production planning as a VRP instance (PL = 
production layout) 

5.3.2 IP formulation 

Following parameters and variables are used: 

• i,j: workpiece indices 

• k: sheet index 

• sij: set-up time between the production layout of workpiece i and the production layout 
of workpiece j 

• Ai: surface of workpiece i 

• Ck: capacity of sheet k 

• xijk: binary variable indicating if workpiece i is followed by workpiece j on sheet k 

• I: all workpieces. Workpiece zero is the depot. 

• K: all sheets  
The mathematical formulation of the alternative approach for sheet metal integrated 
production planning becomes: 
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The objective function (26) minimizes the total set-up time between the production layouts 
of the different workpieces. In this formulation sequence-dependent set-up times are used. 
A minimization of the number of sheets is not incorporated in the objective function. This  
number of sheets is preset to a user-defined fixed quantity, based on the theoretical 
minimum number of required sheets for that particular batch (K-value is fixed) or based on 
the number of sheets required by dedicated nesting software. If a feasible solution cannot be 
found with the preset quantity of sheets, the number of sheets (characterized by a specific 
material and thickness) is increased with one. Production constraints (27) make sure that 
every workpiece is included on a sheet and hence produced. Constraints (28) and (29) 
originate from the general (capacitated) vehicle routing problem: every truck must start and 
end at the depot. These constraints are needed to generate the production bend sequence for 
each sheet. Flow constraints (30) maintain the flow for a truck: if a truck enters a city, it will 
also leave that city. Translated to the sheet metal planning problem: if a workpiece is bent, it 
will be preceded and followed by another workpiece. This constraint creates per sheet a 

j=0

j=0 i =0

 i =0
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smooth sequence for bending the different workpieces. Capacity constraints (31) ensure that 
a sheet is only filled to at most its available capacity (taking into account safety margins). 
Subtour elimination constraints (32) and (33) make sure that no infeasible flows of 
workpieces are created for bending. Constraints (34) limit the decision variables to Boolean 
values.
The production sequence is not yet determined by applying this alternative approach. To 
sequence the different sheets, a TSP formulation is used. In this last step only the order of 
the sheets is altered because this might reduce the set-ups between consecutive sheets. 
To generate an integrated production plan for laser cutting and air bending with the CVRP-
based approach (Appr.2), a number of steps need to be followed.  

• All workpieces to be produced within T days are collected in a pool of jobs. 

• Each workpiece is assigned a unique production layout by solving a simple plant 
location problem (SPLP) instance. This SPLP approach minimizes the number of 
different production layouts required to produce the pool of jobs. The interested reader 
is referred to Verlinden et al. (2007). 

• An IP formulation (CVRP based) is solved to assign the different workpieces to sheets 
and to determine the production bend sequence for each sheet. 

• A TSP instance is solved to determine the final production sequence (set-up time 
between production layouts of consecutive sheets will be minimized). 

5.3.3 Computational experience 

The results of this alternative approach (Appr.2) are compared against both the first 
approach (Appr.1) and the reference approach.  
Material utilization: Waste material minimization is all-persuasive in the sheet metal shop 
due to the ever increasing prices for the raw materials. To assure that the number of sheets is 
minimized, user-defined values are used, based on the amount of sheets required when 
nesting the parts with dedicated software tools. It appears that, in all cases, the integrated 
approach requires no  additional sheets compared to the reference approach.  
Makespan reduction: As can be observed from Table 8, modeling the integrated sheet metal 
production planning problem as a modified CVRP instance results in an average makespan 
reduction of 5.1%. If the batches would be continuously reproduced, 13.4 working days 
could be saved on a yearly base, compared to the reference approach. Compared to the very 
first mathematical model, the average makespan reduction is higher (4.1 to 5.1%). In the 
alternative approach, sequence-dependent set-ups at the press brake are included in the 
objective function. This results in alternative groupings of workpieces as compared with the 
first model. Here again, as the amount of thicker workpieces increases, the makespan 
reduction decreases. 
Set-up time reduction: An average set-up time reduction of 48.8% can be observed for the 
different test cases. This extra time can be used for bending other workpieces or for 
performing administrative tasks, etc.  Since experienced press brake operators are hard to 
find, any set-up time reduction  at the press brake is very valuable for the companies. 
Generation time: Table 8 also displays the required generation time (GT) for the different 
test cases. Compared to the previously proposed IP model, more computational time is 
required to generate the solution. The quality of the solution is, however, better.  
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 Case

 Thick_1mm 1.24 8.6 10.9 26.7 45.0 420.0 932.4 0.0

 Thick_1.5mm 0.58 6.3 7.3 17.7 44.9 71.0 83.0 0.0

 Thick_2mm 0.90 7.6 8.2 19.9 41.8 3.2 16.4 0.0

 Thick_3mm 0.91 3.2 4.7 11.4 6.1 91.0 321.7 0.0

 Thick_6mm 11.78 0.3 0.3 0.8 90.5 3600.0 3600.0 41.0

 Thick_small 0.78 3.7 4.2 10.2 45.2 131.7 412.0 0.0

 Thick_small_profiles 0.54 4.6 6.1 14.6 52.0 10.1 317.0 0.0

 Thick_small_complex 1.87 4.0 4.3 10.5 36.2 7.2 96.7 0.0

 Thick_large_profiles 3.80 1.0 1.2 2.8 83.9 19.3 122.2 0.0

 Thick_large_complex 11.11 0.6 1.0 2.4 42.3 3600.0 3600.0 36.0

 AVERAGE 4.0 4.8 11.7 48.8

GT

Appr.2

(sec)

GAP

Appr.2

(%)

MR

Appr.2

(days/yr)

STR

Appr.2

(%)

GT

Appr.1

(sec)

Ratio

MR

Appr.1

(%)

MR

Appr.2

(%)

Table 8. Results of the second approach (Appr.2) compared to the reference approach and 
the first model (Appr.1)  

Thus it can be concluded that modeling the integrated planning problem as a modified 
CVRP allows to generate good production plans. It reduces the makespan compared to the 
current way of planning. Compared to Appr.1, the makespan is more significantly reduced 
(since now sequence-dependent set-ups at the press brake are taken into account already at 
the nesting stage). Unfortunately, computational times are for some cases too large and 
between subsequent sheets sequence-independent set-ups are used. To tackle both issues, a 
variable neighborhood search heuristic is developed. This VNS procedure will allow to 
generate production plans of high quality almost instantaneously.  

5.4 Variable neighborhood search 

For the variable neighborhood procedure, a number of moves are defined. Swap_task swaps 
two tasks which may not be adjacent. With shift_task a task is removed from one position in 
the sequence and inserted at another position (either before or after the original position). 
Some problem instances contain a number of jobs, each consisting of a small number of 
similar tasks. Especially for this kind of problem, two additional neighborhood structures 
are defined. Swap_job swaps two jobs (each consisting of more than one task) which may 
not be adjacent. This swap is only considered when the two jobs are on the same sheet or 
when all tasks of the two jobs each are on a same sheet. With shift_job a job is removed from 
one position in the sequence and inserted at another position (either before or after the 
original position). Again, all the tasks of the job have to be on the same sheet. When the 
considered tasks or jobs are on different sheets, these four types of moves are only 
considered when the two sheets have the same thickness and are of the same material. Also, 
the total used surface of both sheets has to be smaller than the usable surface of a sheet. On 
this level, a fifth neighborhood shift_sheet can be defined. A move is executed by removing 
a sheet from one position in the sequence and inserting it after some other sheet.  
For this neighborhood the best position to insert a sheet is searched and this move is 
executed when it results in a better objective function value. Note that it is possible that the 
production layout for bending the last task on a sheet is the same as the one required by the 
first task on the next sheet. In that case shifting that sheet to another position in the sequence 
is probably not beneficial. Therefore, not only single sheets are considered for shifting but 
also subsequences of sheets where the last task of the previous sheet and the first task of the 
next sheet require the same production layout.   

8.8 9.9 24

4.1 5.1 13.4
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For the order in which a neighborhood is searched, a fixed natural lexicographic ordering, 
i.e. (1,2), (1,3), … (1,n), (2,1),  (2,3), … , (i,j), …, (n-1,n) is used. For swap-moves only pairs 
where i<j are considered. Each time an improving move is executed, the next iteration 
continues with the same i and the next j value. The procedure applied to the different 
problem instances starts with a descent method with the swap_task neighborhood. On the 
resulting sequence, a descent method based on the shift_task neighborhood is applied. 
Then, the shift_sheet neighborhood is searched. Finally, the swap_job and shift_job 
neighborhoods are searched. When during one of these five descent procedures an 
improvement is found, the complete cycle with the five neighborhoods is repeated until no 
improvement can be found with one of the five neighborhoods. In this way, a local optimum 
relative to five different neighborhood structures is determined. Figure 13 displays the 
different neighborhoods. 
Another issue is the choice of the starting solution. The search is initialized with a first 
solution, constructed by grouping together tasks that require the same material and sheet 
thickness. Metal sheets are filled until no more workpieces can be added. Different 
orderings in which the tasks are grouped, can be considered:  
1. as given in the problem data input (ordered by thickness); 
2. the reverse order of the problem data input; 
3. based on the tool layout number: from small to large; 
4. calculated by the nearest neighbor heuristic: the first task is the one with the smallest 

average set-up time; following tasks are added by looking for the smallest set-up time 
from the actual task to the following task.  

By using these four initial seeds, a multi-start approach is implemented.  

Figure 13. Different neighborhood structures in the VNS procedure 
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5.4.2 Computational experience 

The same ten test-cases have been applied. The generation time for the VNS procedure is for 
all test cases less than one second. Table 9 indicates that the makespan and set-up time are 
reduced as compared to both the first and second mathematical model. 

 Case

 Thick_1mm 8.6 10.9 11.1 25.6 45.0 44.0

 Thick_1.5mm 6.3 7.3 7.3 40.6 44.9 45.0

 Thick_2mm 7.6 8.2 8.2 38.9 41.8 41.0

 Thick_3mm 3.2 4.7 5.6 6.1 6.1 6.0

 Thick_6mm 0.3 0.3 0.5 89.5 90.5 90.0

 Thick_small 3.7 4.2 4.4 44.7 45.2 51.6

 Thick_small_profiles 4.6 6.1 6.3 42.3 52.0 52.0

 Thick_small_complex 4.0 4.3 7.8 35.3 36.2 45.0

 Thick_large_profiles 1.0 1.2 1.5 72.5 83.9 85.0

 Thick_large_complex 0.6 1.0 1.3 42.3 42.3 47.5

 AVERAGE 4.0 4.8 5.4 43.8 48.8 50.7

MR

VNS

(%)

STR

Appr.1

(%)

STR

Appr.2

(%)

STR

VNS

(%)

MR

Appr.1

(%)

MR

Appr.2

(%)

Table 9. Comparison of the results 

5.5 Summary 

To overcome the problems due to separate optimization of the cutting and bending process, 
integrated production planning models are proposed. An IP model allows to generate 
integrated production plans, but the use of sequence independent set-ups at the bending 
stage decreases the solution quality. A second formulation (a modified CVRP instance) 
includes sequence dependent set-ups and hence increases the solution quality, but 
computational times are still too large. A variable neighborhood search procedure is 
developed to generate production plans of high quality in an acceptable time frame. The 
makespan reduction is the largest in those cases where the cutting and bending operation 
are somewhat balanced, i.e. the production times are of comparable magnitude. If one of the 
operation stages is clearly dominant, the makespan reduction is negligible. The set-ups at 
the press brake are in all cases (balanced or not) reduced. 

6. Conclusions and future research 

Although process planning issues for sheet metal operations are largely computerized, 
production planning is still carried out by hand and is based on human experience. This 
chapter addressed the authors' effort to computerize and optimize different sheet metal 
production planning issues.  Specific models of a combinatorial nature and dedicated 
algorithms were developed by the authors to design efficient production plans.  
A first problem is the layout outline for the placing of the different stations on a press brake, 
minimizing the travel distance for the press brake operator. The proposed approach takes 
asymmetric deformations, due to the use of long stations, into account and generates good 
solutions. The use of a local search procedure assures that solutions are generated in a short 
period. The developed algorithms are implemented in commercial CAD software tools, 

8.8 9.9 9.9

4.1 5.1 5.6
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allowing to generate automatically and instantaneously the required production layout 
when designing a sheet metal part.  
The generated production layouts are then used in an automated procedure to  determine 
the production plan for sheet metal air bending. The proposed algorithms minimize the 
makespan of the pool of jobs by reformulating the planning problem as a TPP or GTSP. The 
results indicate that production planning for air bending can indeed be automated and good 
results can be obtained compared to production plans generated by an experienced 
operator. In this context also (guided) local search techniques are used to generate solutions 
of good quality in a short period. This is very important since the generation of a production 
plan should be done almost instantaneously at distinct moments. 
Research on sheet metal production planning revealed that it is mandatory to look at the 
entire sheet metal production chain when generating production plans. If the distinct 
production plans are sequentially combined, only a sub-optimal plan is achieved for the 
shop. Procedures are proposed for integrating laser cutting with air bending. The different 
algorithms allow to approach the problem in an integrated way, resulting in reduced set-up 
times at the press brake and a reduced makespan for the pool of orders.  
The results reveal that, although considered very difficult by many, sheet metal production 
planning can indeed be automated at least for relatively simple configurations (flow shop 
with single machines at the two stages). As a result, significant improvements are obtained 
compared to current planning practices. 
Ongoing research focuses on the inclusion of multiple machines at both the cutting stage 
and bending stage. At the different stages, multiple machines with different characteristics 
are available. An additional task is now to assign the sheets to the different machines, still 
minimizing the makespan.  
Future research will address the challenge to include other processes such as welding, 
painting packaging etc. The main objective will however not change: generating integrated 
production plans with a reduced makespan in a very short time period. 
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1. Introduction  

Agile and lean manufacturing are the trendy buzz-words among manufacturers today. Low-
volume high-variety product series have radically changed the conditions for 
manufacturing systems. 
To handle the new challenges and continuously optimize production flow, new 
requirements for flexible manufacturing systems have been introduced. Moving away from 
dedicated hardware and mass production additionally stress the disturbances of a dynamic 
environment. Whereas dedicated hardware are optimized system-wide and not expected to 
perform unless it is fully operational, flexible manufacturing systems should deal with these 
circumstances in the line of product variety, because the production usually allow the 
system to continue under restricted conditions.   
It seems evident that not only are these systems harder to build in hardware, as they should 
be able to handle different products, but controlling them in an optimal manner is far from 
being a trivial development task. 
In this chapter we will present novel approaches and strategies for developing a multi-agent 
based solution to control a baggage handling system of a larger airport hub. 
The baggage-handling system (BHS) is similar in setup, complexity, and operation to many 
manufacturing systems. Items enter the system at input facilities, the procurement of the 
system, undergo some processing at various stations during its way to the output facilities – 
shipping in classic production terminology. 
The research activities being described are conducted on a real case study of a BHS in Asia, 
and the project is part of a larger research project, called DECIDE, which seeks to prove and 
evaluate the feasibility of using multi-agent based control in large manufacturing systems. 
The project has been supported by the Ministry of Science, Technology, and Innovation in 
Denmark.
The chapter is structured as follows. We start by giving a detailed introduction to the 
evolution of manufacturing systems towards the flexible setup suitable for agent-based 
control. Next we provide an introduction to the FIPA specifications used to generalize agent 
interoperability and design. 
Then we give a general introduction to the baggage handling problem, and briefly describe 
the case of the Denver International Airport, which among airport managers still may be a 
warning to experiment with intelligent baggage handling systems. 
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Before going into details about the strategies for the agents, we describe how the BHS has 
been agentificated (how agents have been mapped to the entities of the BHS) and how they 
are organized. 
The strategies being documented give a limited, but not exhaustive, set of collaborative agent 
interactions to control important parts of the BHS. Some results and discussions follow before 
the general conclusions and our plans to continue work on the system in the future.  

2. History 

Beginning in the industrial ages, high-volume low-variety products were the new trend 
among manufacturers resulting in low-cost high-quality products. To begin with customers 
were satisfied by the new opportunities realized by mass production, even though customer 
requirements were not the driving forces in product design. Due to low competition in 
markets manufacturers were more concerned with production efficiency than customer 
requirements (Sipper & Bulfin, 1997). 
Likewise dominating management theories of that time focussed on rationalization, such as 
Taylor’s scientific management (Taylor, 1911). 
Improvements in automation technologies led manufactures to see the possibilities of 
exchanging labour-intensive tasks with specialized machines and material handling systems 
to rationalize production. The automotive industry was among the first to take advantage of 
automation; Oldsmobile Motor introduced a stationary assembly line in 1907, followed by a 
moving assembly line in 1913 at Ford’s new factory Highland Park in Michigan, even 
handling parts variety (Sipper & Bulfin, 1997). 
For decades mass production, automation, rationalization, and scientific management were 
the dominating factors in manufacturing, but that gradually changed towards the end of the 
20th century. Especially, due to the growth in international competition, market demands 
pushed forward new challenges for manufacturing – flexibility and customization. Japanese 
were the first to address the new conditions and changed from mass production to lean 
production. Instead of focussing on having high-volume and rationalization as the key 
drivers in developing of mass production environments, lean production focuses on the 
whole process of production; eliminating inventory, declining costs, increased flexibility, 
minimizing defects, and high product variety. 
As trends in the automotive market changed customers were no longer satisfied by standard 
cars, but required customization (Brennan & Norrie, 2003). Lean production is focussed on 
not only production layout, but also on introducing flexibility in control and scheduling. 

2.1 Flexible manufacturing 

As flexibility was commonly accepted as one of the primary non-functional requirement to 
new manufacturing systems, research and development initiatives naturally concentrated 
on means and technologies to cope with the new demands. 
The notion of a flexible manufacturing system (FMS) was born when Williamson in the 1960s 
presented his System24, a flexible machine that could operate 24 hours without human 
intervention (Williamson, 1967). 
Computerized control and robotics were promising tools of the framework for automation 
with increased flexibility. Obviously not all products or systems would benefit from or 
require increased flexibility, but FMS was intended to close the gab between dedicated 
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manufacturing hardware and customization, as outlined by Swamidass (Swamidass, 1998) 
in figure 1. 

Figure 1. The manufacturing flexibility spectrum, adopted from (Brennan & Norrie, 2003) 

FMS has the advantages of zero or low switching times, and hence is superior to 
programmable systems, but despite that FMS to its full extend has only had limited success 
in manufacturing setups. 
Systems integration is the main issue for FMS to be successful and flexible hardware and 
manufacturing entities is only one part of the answer. The control software to handle and 
integrate the flexible entities in the overall process is equally important (Brennan & Norrie, 
2003).
The control software is often regarded as the critical part, as it requires high expertise from 
developers. The complexity of the system and time-consuming process for reconfiguration 
often led to low understandability of the system, which is an important problem to 
manufacturers, who are not experts in manufacturing technologies. 
The centralized control generally used in FMSs, which are based on principle and 
algorithms of classical control theories, which would not scale very well for such large 
systems was identified by Sandell (Sandell et al., 1978) as the main issue leading to new 
approaches for manufacturing control. Bussmann was even more specific and clear in his 
conclusion (Bussmann 1998): 
 “Manufacturing systems on the basis of CIM (Computer Integrated Manufacturing) 

are inflexible, fragile, and difficult to maintain. These deficits are mainly caused by a 
centralized and hierarchical control that creates a rigid communication hierarchy and 
an authoritarian top-down flow of commands.” 

2.2 Distributed systems 

The experienced problems with complexity and maintenance led to new approaches in the 
area of manufacturing control. Parunak states that traditionally a centralizing scheduler is 
followed by control (Parunak, 1995), which would generate optimal solutions in a static 
environment, but no real manufacturing system can reach this level of determinism. Even 
though scheduling of a shop floor environment could be optimized centrally, the system 
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would fail in practice to generate optimal solutions, due to the dynamic environment caused 
by disturbances, such as failures, varying processing time, missing materials, or rush orders 
(Brennan & Norrie, 2003). 
In general rescheduling and dissemination of new control commands are time-consuming 
and brings the centralized model to failure. Instead Parunak argues that manufacturing 
systems should be build from decentralized cooperative autonomous entities, which rather 
than following predetermined plans have emergent behaviour spawned from agent 
interactions (Parunak 1996). He lists them as three fundamental characteristics for a new 
generation of systems 

• Decentralized rather than centralized 

• Emergent rather than planned 

• Concurrent rather than sequential 
The area for intelligent manufacturing systems was born, and research was conducted in 
different directions. One of the major approaches was a project under the Intelligent 
Manufacturing Systems (IMS) programme, called Holonic Manufacturing Systems
(Christensen, 1994), which settled as a new research area for manufacturing control. Holonic 
systems is composed of autonomous, interacting, self-determined entities called holons. 
The notion was much earlier introduced by Koestler (Koestler, 1967), as a truncation of the 
Greek word holos, which mean whole, and the suffix on that means part, similar to the notion 
used for electrons and protons. Thus holons, or the manufacturing entities are parts of a whole.
The HMS project was initialized by a prestudy (Christensen, 1994), before the large-scale 
project was launched in the period from 1995 to 2000. A huge initiative with more than 30 
partners worldwide, and the project not only focussed on applications, but 3 of the 7 work-
packages concentrated on developing generic technologies for holonic systems, such as 
system architecture, generic operation (planning, reconfiguration, communication, etc.), and 
strategies for resource management. The application-oriented foci were organized in four 
work-package concerning manufacturing units, fixtures for assembly, material handling 
(robots, feeders, sensors, etc.), and holomobiles (mobile systems for transportation, 
maintenance, etc.). 
The project was very successful regarding generic structures of the holons aimed at low-
level real-time processing. The specification of the holons was even formally standardized 
by the International Electrotechnical Commission (IEC) 61499 series of standards. 
The holonic parts of a system came to short in systems requiring higher level of reasoning 
(Brennan & Norrie, 2001), thus the term of holonic agents was introduced (Ma ik & 
P chou ek, 2001). Software agents that encapsulate the holon, and provide higher level 
decision-logic and reasoning, but also more intelligent mechanisms to cooperate with other 
holonic agents. 
Generally agent technologies provides a software engineering approach to analyse, develop, 
and implement intelligent manufacturing control for distributed entities and holons. 
Whereas the holons were formally specified through the IEC standards, agent-based 
manufacturing control still lacks from having formal standards, even though various 
attempts have been taken, YAMS (Yet Another Manufacturing System) by Parunak 
(Parunak, 1987) or MASCADA (Bruckner et al., 1998) among others. 
The most accepted and most promising initiative for standardizing agents are taken by FIPA 
(Foundation for Intelligent Physical Agents), which will be discussed in detail in the next 
section. 
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3. FIPA Standardization 

The shortcomings of holons from being truly reasoning and having deliberate behaviour, 
but having only reactive capabilities were independently researched in agent communities. 
FIPA is a European based non-profit association that seeks to boost agent interoperability 
through standardized specifications. 
Interoperability can be defined as the means for achieving agency (Ma ik et al., 2003), where 
agency or agent-hood covers the concepts of autonomy and collaborative behaviour for agents. 
Whereas the HMS project had a strong focus on the internals of the holons, the FIPA 
specifications solely focus on external behaviour of the agents to handle interoperability. 
The specifications split into normative and informative specifications (Ma ik et al., 2003). 

• Normative specifications settle the external behaviour of agents to ensure 
interoperability not only among agents, but also with FIPA specified subsystems that 
make up a multi-agent system. These specifications are neutral with respect to both 
application domain, and the hardware and software platforms to be used. 

• Informative specifications provide guidelines for developers and industries on how to 
use FIPA technologies for applications of that domain. 

The FIPA subsystems mentioned above are supporting components that help to thigh an 
agent system together. Three subsystems are mandatory to a FIPA compliant platform and 
deals with the management of agents: 

• Agent Management System (AMS): is similar to a white-page service that maintains a 
list of all registered agents to a platform and their global identifiers. The AMS is also 
responsible for creating and deleting agents as running processes in the platform. 

• Directory Facilitator (DF): is a yellow-page service for agents, where agents can register 
their services or search for services using abstract queries. 

• Agent Communication Cannel (ACC): handles message transport to and from agents. 
The ACC is split into two components. MTS (message transport protocol) as the 
infrastructure for agents within an agent platform, and MTP (message transport 
protocol) for inter-platform communication. 

The three subsystems that make up the Agent Management of a FIPA compliant platform 
covers one part of the FIPA Abstract Architecture for agent platforms, see figure 2 (FIPA 
2002a).

Figure 2. The FIPA Abstract Architecture 

The Agent Management Component contains the formal models mentioned above, and the 
Agent Communication Language specifies the composition and semantics of an agent 
message, which comply with the FIPA-ACL specification that is based on the speech-act 
defined by Searle in the late sixties (Searle, 1969). Beside usual information, such as the 
receiver, sender, etc., the message container also holds information about the ontology used 
for encoding the content of the message, the time-out indicating the period the sender will 
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wait for a reply, and a performative for the message, which indicate which communication 
act the message follows. 
A total of 22 performatives are specified by FIPA, but the list below only give examples of 
some of the most commonly used (FIPA, 2002b): 

• INFORM: The sender informs the receiver that a given proposition is true. 

• QUERY REF: The action of asking another agent for the object referred to by a 
referential expression. 

• AGREE: The action of agreeing to perform some action, possibly in the future. 

• REFUSE: The action of refusing to perform a given action, and explaining the reason for 
the refusal. 

The content field of a message is also formalised and FIPA provides a semantic language 
(FIPA-SL) for that purpose. The Message Transport Component of the architecture contains 
formal specifications for the messaging service (ACC) explained above. It specifies the 
transport protocols used by the ACC; examples are IIOP (Internet Inter-Orp Protocol), WAP, 
or HTTP. 
As mentioned in the beginning of the section, FIPA also provide guidelines for application 
domains through informative specifications. Currently 8 specifications are approved, which 
cover topics, such as personal travel assistance, audio-visual entertainment, and network 
management. 
An agent platform must follow the structure of the abstract architecture in order to be truly 
FIPA compliant, and only a handful have reached that state yet. FIPA-OS and JADE are 
undoubtedly the most well-known, but others exist (Zeus and Grasshopper). 
FIPA-OS is a component-based toolkit that simplifies the implementation of FIPA compliant 
agents and is JAVA-based. JADE developed by CSELT Laboratories at Telecom Italia is 
currently the most referenced FIPA compliant platform under active development with a 
huge developer community and has been used in a number of research projects. 
JADE has also been our choice as an agent platform to implement the agent-based control 
solution for the baggage handling system discussed next.  

4. Baggage handling 

Handling of baggage in airports is shadowed by matters of complexity and uncertainty from 
the perspective of most passengers, similar to all other issues related to air traffic. 
Many passengers, frequent or not, fell the moment of uncertainty when watching their bags 
disappearing behind the curtains at check-in counters. Will they ever see their bags again at 
the output of this “black-box”.
Only few imagine which kind of complex system that handles the bags in major airport 
hubs. Small airports or charter destinations do not fall into this category, but airports with 
many connecting flights experience this huge sorting and distribution problem. Baggage 
from check-in is usually not the biggest problem, as the sorting can to some extend be 
handled by distributing flights correctly at the check-in counters, but bags from arriving 
planes that have not meet their final destination will arrive totally unsorted. So the core task 
of a baggage handling system (BHS) is to bring each piece of baggage from the input facility 
to its departure gate. The identity, and hence the destination, of the bags is unknown by the 
system until scanned at the input facility, which make the routing principle more attractive 
than scheduling and offline planning. 
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A BHS is a huge mechanical system, usually composed of conveyor-like modules capable of 
transferring totes (plastic barrels) carrying one bag each. The investigated BHS has more 
than 5,000 modules each with a length of 2-9 meters and run at speeds between 2-7 meters 
per second. The conveyor lanes of the modules that make up the BHS in the airport of 
Munich range 40 km in total length, and the system can handle 25,000 bags per hour, so the 
airport can serve its more than 25 million passengers yearly, and the BHS in Munich covers 
an area of up to 51.000 square meters. Thus the BHS of Munich is slightly larger than the 
investigated, as it has 13,000 modules and more than 80 different types of modules are used, 
but in setup and control they are very alike. We will return to the different types of modules 
when describing how agents have been mapped to the BHS. Figure 3 shows a snapshot into 
a BHS, where a tote containing a bag runs on the conveyors in the foreground. 

Figure 3. Snapshot into a BHS with a moving tote in the foreground 

A BHS often covers an area similar to the basements of the terminals in an airport, and 
tunnels with pathways connect the terminals. The system is rather vulnerable around the 
tunnels, because typically there are no alternative routes and the tunnels only contain one or 
two FIFO-based lanes that could be several kilometres long. Therefore the topology of the 
BHS could look like connected clusters of smaller networks, but within a terminal the 
network of conveyors is far from being homogeneous, as special areas to some degree serves 
special purposes. 
Thus the BHS apparently shares several control characteristics with routing of packages in 
network traffic. Forced by both economical and architectural constraints of the airport, the 
layout of the BHS would usually have a rather low density of lanes and alternative routes 
compared to communication networks or traffic systems. The low density of connections in 
the graph of conveyors and the limited number of alternatives routes, makes the BHS less 
appropriate for intelligent network routing algorithms, such as SWARM-based approaches 
like ant-based control (Schoonderwoerd et al., 1997) or AntNet (Di Caro & Dorigo, 1996). 
Another important difference between communication strategies and the flow of bags in the 
BHS, is that a lost package always can be resubmitted in a package-switched network, that is 
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not an option in the design of a BHS. In contrast to traffic control systems the BHS is actual 
aware of the correct destination for a tote, as soon as the bags enters the BHS, which makes 
it more attractive to use more system-wide collaboration of the agents. 
Inspiration from other approaches of applying multi-agent technologies to manufacturing 
systems and material handling systems, such as the Production 2000+ project at 
DaimlerChrysler (Bussmann & Schild, 2001), could also be relevant. The Production P2000+ 
project has a strong focus on flexibility in a more traditional job shop manufacturing 
environment, where high diversity in orders and production flow through operational 
stations is the main issue. The BHS could still be considered as a production system, as 
mentioned above, because we have the input facilities (toploaders), which receive baggage 
from arriving planes or check-in. There are a number of processing stations in the BHS as 
well, but primarily they fall into the category of diverters and mergers, which split or merge 
conveyor paths respectively. There exists special processing stations in the system, such as 
manual handling stations, which are used e.g. for bags that have lost their tracking id. Also 
elements such as lifts or temporary storage elements are some specials versions of elements 
that form the entire conveyor system of the BHS. 
A number of research papers deal with agent-based manufacturing from a more general 
perspective, such as (Maionea & Naso, 1996; Giret & Botti, 2005). Primarily the research has 
focused on flexibility in scheduling and planning of resources in the productions 
environment under the constraint of the processing steps the different orders have to go 
through. Approaches for planning are more or less formalized, such as the Generalized 
Partial Global Planning (GPGP) applied e.g. for scheduling and resource optimization in 
(Decker, 1995; Decker & Li, 1998; Decker & Li, 2000). Others general strategies include the 
PACO planning, described in (Gufflet & Demazeau, 2004), and more deliberate agents using 
BDI-based architecture for local optimizations (Flake et al., 1999). 
Besides the physical characteristics of the BHS a numbers of external factors influence the 
performance

• Arriving baggage are not sorted, but arrives mixed from different flights and with 
different destinations, as baggage for baggage-claim are usually separated and handled 
by other systems. 

• Identity and destination of bags are unknown to the system until the bag is scanned at 
the input facilities, thus preplanning and traditional scheduling is not an option. 

• Obviously the airport would try to distribute the load of not only baggage, but all air-
traffic related issues over the entire airport, but changes in flight schedules happen all 
the time, due to both weather conditions and delayed flights. 

• Most airports have a number of peak times during the day, and flight schedules may 
also differ on a weekly basis or the season of the year. Peak times may influence the 
strategy on routing empty totes back to the inputs, as they share the pathways of the 
full totes. 

4.1 The performance criteria 

Top priority for a BHS is that no bags are delayed, which postpone flights and the airport 
will be charged by airline companies. Therefore the BHS must comply with the maximum 
allowed transfer time, which is this case is between 8-11 minutes depending on the number 
of terminals to cross. Keeping the transfer time low is also a competitive factor among 
airports, as airline companies want to offer their customs short connections. 
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Besides securing that bags reach their destination in time the capacity of the BHS should 
also be maximized, and the control system should try to distributed the load and utilize the 
entire system, if it should be capable of handling peak times. 
Robustness and reliability is also of top priority, as breakdowns and dead lock situations 
inevitable will lead to delayed baggage, and in worst case stop the airport for several hours. 
To fully understand the importance of delayed bags, the concept of rush bags must be 
introduced. Dischargers are temporarily allocated to flights, which define a window where 
bags can be dropped for a given flight. Normally, the allocation starts 3 hours before departure 
time, and closes 20 minutes before departure. Bags arriving later than 20 minutes before 
departure will miss the characteristic small wagon trains of bags seen in the airport area. Thus 
the system must detect if the bag will be late, and redirect it to a special discharger, where all 
bags are handle individually and transported directly to the plane by airport officers. 
Obviously this number should be minimized, due to the high cost of manual handling. 
Bags entering the system more than 3 hours before departure are not allowed to move 
around in the system waiting for a discharger to be allocated, they must be sent to 
temporary storage – Early Baggage Storage (EBS). Figure 4 illustrate the system life time of a 
bag with the mentioned phases. 

Figure 4. States of a bag in the BHS 

Given those criteria, the traditional approach for controlling a BHS uses a rather simplified 
policy of routing totes along static shortest paths. By the static shortest paths is meant the 
shortest paths of an empty system, but during operation minor queues are unavoidable, 
which lengthen the static shortest routes. In the traditional control all totes are sent along the 
static shortest routes irrespective of the time to their departure in order to keep the control 
simple and reliable. A more optimal solution would be to group urgent baggage and clear 
the route by detouring bags with a distant departure time along less loaded areas.  
On top of the basic approach described above the control software are fine-tuned against a 
number of case-studies to avoid dead lock situations, but basically it limits the number of 
active totes in different areas of the system. The fine-tuning process is time-consuming and 
costly for developers; hence a more general and less system specific solution is one of the 
ambitions with an agent-based solution. 
Naturally the control of the BHS should try to maximize through-put and capacity of the 
BHS, which is indirectly linked to the issues of rush-bags. Beside that a number of secondary 
performance parameters apply as well, such as minimising energy consumption of the 
motor and life time of the mechanics, e.g. by minimizing the number of start and stops of 
the elements and avoid quick accelerations.  

4.2 Worst-case scenario 

Apparently from the descriptions above there should be opportunities for improvement of 
the control logic in the BHS, and one might ask why it has not been tried before, but it has... 
Still listed as one of the history's top ten worst software scandals are the BHS of Denver 
airport in Colorado, US. The Denver International Airport was scheduled to open in October 
1993, but caused by a non-working BHS the opening of the airport was delayed in 16 



Multiprocessor Scheduling: Theory and Applications 390

months costing $1 million every day. When it finally opened in 1995 it only worked on 
outbound flights in one of the three terminals, and a backup-system and labour-intensive 
system was used in the other terminals (Donaldson, 2002). 
The original plan for the BHS developed and built by BAE was also extremely challenging, 
even compared to many BHS built today. Instead of moving totes on conveyors the BHS in 
Denver is based on more than 4,000 autonomous DCV (Destination coded vehicles) running 
at impressive speeds of up to 32 kph on the 30 km long rail system. It was a kind of agent-
based with many computers coordinating the tasks, but the first serious troubles was caused 
by the overloaded 10Mbit Ethernet. Also the optimistic plan of loading and unloading DCVs 
while running caused DCVs to collide, baggage to be damaged or thrown out of the DVCs. 
Even unloading a bag from one running DVC into another was part of the original plan, 
whereas many systems today still stops a tote or DCV before unloading, even at stationary 
discharging points. 

5. System setup 

Developing control software for material handling and manufacturing systems are generally 
a slow task, if all tests are carried out on the real hardware. In Munich two years was spend 
by engineers to test the system, and during the final tests on the real system more than 
10,000 real bags were checked in to the BHS. Thus just the clean-up is time-consuming, and 
tests must be planned in details. 
Luckily, recent year’s advancement in computer and graphics performance has made it 
possible to do realistic real-time simulations of very complex environments, including 
material handling systems like a BHS. The ability to continuously interact with the 
simulation model during operation creates a perfect off-site test-suite for the control-
software, which emulates the real BHS.  

5.1 Emulation model 

Together with another consortium partner, Simcon, the BHS company FKI Logistex has 
created an emulation model of the researched BHS using the AutoMod simulation and 
modeling software package. AutoMod is a de-facto-standard for systems analysis of 
manufacturing and material handling systems. 

Figure 5. Snapshot of the emulation model of the BHS 
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One of the strong advantages of using AutoMod is that you can communicate with the model 
over a standard socket connection, which is almost identical to the connection between the 
control server and the PLCs in the real hardware. Thus the control software cannot see the 
difference, if it is connected to the emulation model or the real hardware. The same protocol 
and telegrams are used, which simplifies the development process, and makes the emulation 
model reliable, whenever the basic communication has been tested correct. 
A snapshot of the emulation model is shown in figure 5. It shows the area with input 
facilities for terminal 3 of the airport. 

5.2 Agent platform 

As already mentioned at the end of section 3, JADE has been chosen as the agent platform 
for the researched BHS. Firstly because JADE is FIPA compliant, it is well documented, 
continuously updated, and among the most reference agent platforms. In our setup the 
agents are still virtual collaborating processes running in a single JADE container on a single 
computer due to performance reasons1.

6. Agent design 

In this section we will in details describe the tasks of the different elements in the BHS, 
which will form the final strategies we have applied to control the BHS. The elements are 
the building block of the BHS and from an intuitive point of view the potential candidates 
for agents in the system, as all actions of the system are performed by the elements. A classic 
approach of software engineering methods would lead to a functional decomposition, such 
as one agent for scheduling, another for resource management, etc. (Parunak, 1999), which is 
appropriate for centralized systems, but inspired from natural distributed systems Parunak 
also evinces that a physical decomposition of manufacturing systems into an agent model is 
both obvious and appropriate (Parunak, 1997). 
Our approach to model the system concentrates on the reasoning part of agents and their 
interaction. Following the notion of holonic agents by Ma ik & P chou ek, the holon part of 
the agent is packed into logic of the emulation model, but no special attention was given to 
comply with the IEC standard, which would modify the existing hardware. 
An alternative approach would be to consider the totes as “consumer” agents and the BHS 
as a collection of “producer” agents, as the BHS can solve the tasks that the totes want to 
have performed - bringing the tote to the destination. In principle a tote could then negotiate 
its way through the system, and if the bag was urgent it would be willing to pay a higher 
price than non-urgent bags. 
This approach often leads to other complications, such as communication overhead and 
complex agent management (Brennan & Norrie, 2003). Because the BHS generally consists of 
pathways of FIFO queuing lanes with little and often no possibilities of overtaking it is more 
appropriate to design the agents around the flow of the BHS, which makes the elements the 
potential candidates for agents alone. The element agents should then coordinate their 
activities to optimize system performance and should therefore be considered as 
collaborative agents, rather than competitive agents. 

                                                                
1 There is a huge overhead, when communicating across different agent containers or even worse when 

communicating across different JAVA JVMs. 
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6.1 Toploader 

The input facilities of the BHS are called toploaders, as they drop bags into the totes from a 
conventional conveyor belt, see figure 6. Before the bag is inducted into the tote it is has 
passed a scanner, which reads its id and destination that are coupled with the tote, so the 
control system has exact tracking of the bag at all time. 
Identity and destination of the bag are unknown until the bag passes the scanner at the 
toploader shortly before being inducted if a tote is ready. The scanning initializes routing of 
the tote, but the short time leaves no option for global optimized planning of all current 
totes, and replanning when the next arrives.  

Figure 6. A toploader, where bags arrive on a traditional conveyor belt 

Basically the task of the toploader could be decomposed into scanning of the bag, which 
happen automatically and have no direct impact on the control. Secondly it initiates the 
journey of the tote on the BHS. In order to start the routing of the tote, the end-point 
(discharger) must be set for the tote. In order to optimize the capacity several dischargers 
are often allocated to the same flight destination2. Therefore the toploader agents initiate a 
negotiation with the possible dischargers to find the best suited discharger, the evaluation of 
the proposals from the dischargers is not trivially chosen as the lowest offer, but weighted 
with the current route length to the dischargers, which the toploader requests from a route 
agent - a mediator agent with a global focus on the dynamic route lengths of the BHS. 
The toplader can take two different approaches for routing the tote: 

• Routing by static shortest path: After the toploader has decided on the discharger it 
could instruct all diverting elements along the route to direct that specific tote along the 
shortest path. Then the agent system would in principle work as the traditional control 
system by sending all totes along predefined static shortest routes3.

• Routing on the way: Instead of planning the entire route through the BHS, the 
toploader could just send the tote to the next decision point along the shortest route. A 
more dynamical and flexible approach, as the tote can be rerouted at a decision point if 
the route conditions have change, perhaps another route have become the dynamical 
shortest one, or the preferred discharging point have changed. 

                                                                
2 Due to the stopping of totes while unloading, the discharger has a lower line capacity than straight 

elements. 
3 In the researched BHS the decision between the alternative dischargers would also be predefined in 

the conventional control. The BHS is built in layers to minimize cost and maximize space utilization, 
and alternative dischargers are always split on different layers, and the control system would try to 
avoid switching layers. 
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6.2 Straight elements 

Most of the elements of a BHS are naturally straight or curved elements that connect the 
nodes of the routing graph. Straight or curved elements are not considered as agents in our 
current design, because mechanically they will always forward a tote to the next element if 
it free, thus there are no decisions to be made. In principle the speed of each element could 
be adjusted to give a more smooth flow and avoid queuing, so one could argue that these 
decisions should be taken by the element itself. In the current setup it would generate an 
enormous communication overhead, because each element should be notified individually 
and the agents should be very responsive to change the speed in order to gain anything 
from speed adjustments.  

6.3 Diverters 

When straight elements are not considered as agents, divert elements becomes the first 
natural decision points on the routes. A diverter splits a conveyor lane into two, either a left 
or right turn and straight ahead. Lifts and so-called cross-transfers could be considered as 
special editions of the diverters. The cross-transfer allows the tote to be forwarded in all four 
directions. 

Figure 7. A diverter element with an empty oversize tote 

In respect to the strategies described above the diverter would either just forward the tote in 
the direction determined by the toploader, or it should reconsider alternative routes by 
restarting the negotiation process with dischargers and requesting updated information on 
dynamic route lengths. A diverter should be concerned about the relevancy of reconsidering 
the route for a tote, because in many cases there is only one possible direction at a given 
diverter for a given tote. We want to generalize the control logic of the diverter agents 
instead of customizing it according to the placement of the diverter in the BHS layout. Thus 
initially it adjusts itself to different destinations based on static route information. As 
mentioned for many diverters there are no alternative direction, for some the decision will 
have little impact, e.g. if the tote is close the discharger and there is little difference in 
dynamical route length between the two directions. For a few diverters the decision would 
have great impact on future decisions. That is mainly diverters placed at the points in the 
BHS, where it is possible to change layers4. Basically it is only important to reconsider the 
alternative dischargers at this point, because due to the layout of the BHS it is not possible to 
switch back to the other layer again, before the dischargers have been passed. 

                                                                
4 BHS is constructed as two layers of conveyor to save both space and cost. 
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That leaves us with decision logic rather identical to the dynamic routing principle at 
toploaders, but diverters should fine-tune their decisions according to the local environment 
in which they are situated. In other words a strong influence on the decision logic of the 
diverter is based on its position in the routing graph.  

6.4 Mergers 

Mergers are the opposite of diverters, as they merge two lanes. Traditionally mergers are 
not controlled, as there are no alternatives to continuing on the single lane ahead, and the 
merger simply alters between taking one tote from either input lane, if both are occupied. 
Obviously, more intelligent decisions could be considered than just switching between the 
input lanes, which is the argument for applying agents to the merger elements. The ratio 
between merging totes from the input lanes should be determined by the aggregated data of 
the totes in either of the two lanes. E.g. if the number of urgent totes waiting to be merged 
are higher in one lane that lane should be given higher priority. Also waiting totes in one 
lane could have greater impact on the overall system performance, if a queue of totes in one 
lane is more likely to block other routes behind that point.  

6.5 Dischargers 

Dischargers are responsible for unloading bags from the totes, when the tote reaches its 
destination. When bags are discharged they fall onto carrousels similar to those at baggage 
claim and are drown to the plane in small wagon trains. 

Figure 8. A discharger element that can tilt the tote, so bags slide onto the conveyor belt 

Besides being involved in the negotiation process described for the toploaders, the task of 
the discharger could seem rather simple - just tilting the tote, but a discharger also has to 
take care of the empty totes. Some BHSs have separate conveyor system for the empty totes, 
but many systems including the researched BHS use the same lanes for routing the empty 
totes back to the tote stackers at the toploaders. 
The task of routing empty totes is similar to routing full totes at the toploaders, but actually 
much more complex, due to a number of considerations that must be taken into account. 

• The number of destinations (tote stackers) is larger than alternative dischargers for full 
totes (typically 2), whereas the number of tote stackers is equal to the number of 
toploaders, which is 12 in our case. 

• Specially in the input area, empty totes are mixed with full totes and the area could 
easily get overloaded and blocked. 
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• During peak times it should be considered sending some empty totes to temporary 
storage in the EBS area, which is far from the input area, and released again when the 
load on the system is lower. 

• The status of empty tote stackers. If a stacker runs empty, no totes will be available at 
the toploaders for new bags. 

• The distance to the stackers. It is more appropriate to return the empty tote to a stacker 
nearby than sending it half way through the system. 

All factors should be considered and measured against a fuzzy set, which are weighted to 
an aggregated value - a proposal of a bid plan to go to each of the stackers.  

6.6 EBS elements 

Early baggage storage elements, or EBS for short, are temporary storage elements for totes 
with bags for which a discharger has not been allocated yet, as described above when 
defining the concept of rush-bags. 

Figure 9. EBS elements, here storing a line of empty totes 

It is a complete research area for itself to optimize the utilization of the EBS, as totes are stored 
in lanes, which are released into the system again, but planning and coordinating the totes in 
different lanes is not a simple task, but will not be given further attention in this chapter.  

7. Agent interactions and ontology 

As mentioned in section 3 FIPA has not yet approved specifications and guidelines for agent 
applications in the manufacturing domain. Thus we have developed the agent interactions 
based on the elements responsibility and participation in the function of the BHS, as 
described in the previous section. 
Due to both time constraints and focus of the DECIDE project, it was never an issue to 
change the setup of the hardware. The layout of the BHS was determined in advance of the 
project, and research goals were to investigate if multi-agent based control software could 
replace traditional control structures in an efficient way. 

7.1 Adapter Agent 

Given the setup, where the agents resides as virtual representations of their corresponding 
elements in a container of the JADE platform, and the actions of the agents are visualized in 
the emulation software, we required a gateway agent to handle the communication 
protocol. This agent was named AdapterAgent and could be understood as a converter of 
stimuli and action messages between the agent community and the real world or hardware, 
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which in our setup is represented by the AutoMod model. The interface between the 
AutoMod model and the AdapterAgent follows the same protocol and telegram structure as 
the interface to the real hardware. 
The AdapterAgent constantly listen for new telegrams from the AutoMod model. Thus it 
encapsulates the entire perception of the whole agent community towards the environment, 
the notifications received from the model are converted to agent messages complying with 
the FIPA ACL specification and message contents are encoded with the ontology we have 
defined for the BHS domain. 
The AdapterAgent is not thought to be a filter of the message exchange, thus all information 
from the model is encoded into the messages and forwarded to interested agents, and no 
notifications are omitted. Ideally all agents would be connected to the model, and communicate 
directly with their corresponding element, but that would require more than 300 concurrent 
threads listening on their own socket connection to the model, which is inappropriate for 
performance reasons. Thus perception has been extracted and isolated into the AdapterAgent, 
in order leave the element agents with a natural external interface they subscribe to interesting 
messages from the AdapterAgent. It is not the task of the AdapterAgent to figure out, where to 
send messages. During initialization all element agents initiate a subscription for each of the 
emulator notifications they are interested in. The negotiation of subscriptions follows the FIPA 
subscription specification, but subscriptions are always approved. 
Because no handshaking is defined for communication with the model, all message sent 
from the AdapterAgent are inform messages with no expectation of agree or accept replies. 
That also has the positive side effect that the AdapterAgent is not required to understand 
the messages (except simple conversation) and couple a response to a notification. Element 
agents are fully responsible for replying if require. Exactly the same apply in the opposite 
direction as well (no coupling between commands or queries to the model and the replies), 
thus inform message are a natural choice.  

7.2 Mediator agents 

There is a balance between giving agents detailed information about the environment and 
maintaining an internal world model, or let them query the environment about information 
when required. 
The FIPA Directory Facilitator is a strong tool when dynamically searching the environment 
for appropriate services. It is used when dischargers are allocated to a flight, they register a 
new service for that departure in the DF and agents requesting a flight can simply search the 
DF, instead holding information about all dischargers. That is a quite trivial use of the 
yellow page service of the DF. 
In theory the service and discovery approach could be used to route totes around in the 
system to fully decouple agents from physical connections, but that would generate too 
much overhead and complicate the simple routing principles. Instead agents can be assisted 
by mediator agents, who collect aggregated information for the entire system. The 
RouteAgent is an example of such an agent. In the initialization process the RouteAgent 
generates all possible routes in the system by building up a graph for the BHS with nodes 
corresponding to the element agents. During operation it constantly monitors traffic on 
edges of the graph by subscribing to such information in the AdapterAgent and update the 
weights in the graph, so dynamic shortest paths can be calculated using classic Dijkstra for 
dynamic shortest path calculations (Dijkstra, 1959).  
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Following the FIPA query-ref communication act element agents can request routes to a 
given destination packed in a referential expression of the query message. The referential 
expression is composed using the ontology we have defined for the BHS domain, which 
extends and follows the structure of the FIPA-SL. The RouteAgent understand two concepts 
of the ontology, RouteBetween and LineBetween:

• RouteBetween is the concept used, when agents are interested in full or parts of a 
route, but only with a granularity of finding other element agents along the path – only 
information on nodes of the graph are returned. 

• LineBetween is the fine-grained concept providing all details about a conveyor line of 
connected elements in the BHS – information about edges between two given connected 
nodes. 

To give an example of the generality embedded in ontology-based messages, a query to the 
RouteAgent could contain the following abstract referential expressions: 

(iota
:Variable (Variable :Name x :ValueType set) 
:Proposition (routeBetween 

:origin (element :elementID DFB01.TLA001) 
:destination (element :elementID DLA02.DIA023) 
:viaPoints (Variable :Name x :ValueType set) 
:numNodes 0 

)
)

Abstract because it contains the variable x that must be replaced by the responder in a 
response to the query. In this case a set of points (id’s of element agents between the given 
origin and destination). The predicate iota is just one of three from the FIPA-SL specification, 
which means exactly one object that fulfils the expression, whereas the other predicates, any
and all, would return any or all routes between the origin and destination, respectively. 
The approach of the RouteAgent was not only taken to omit the world model in the element 
agents, but also to support a simple implementation of the basic approach of the traditional 
control software to compare against the agent-based solution. 
In current and future experiments conducted on the BHS we try to exclude the RouteAgent 
by giving elements agents a dynamic profile of their local environment, which is further 
described in under future work, because it simplifies agent interactions.  

7.2 Routing negotiations 

The negotiation and collaboration interactions framing the simple routing principle in the 
BHS, have been selected to give an illustration of how the interoperability among agents are 
achieved using normative FIPA specifications. 
The toploading and routing principle are described in general terms in the beginning of 
section 6. It is also mentioned that the inter-agent communication is almost identical at both 
toploaders and diverter, when we deal with dynamic routing – in case of routing along 
static shortest path, the toploader simply make all the decisions and informs all diverters 
along the route how to direct the tote. 
The toploader receives a stimuli by means of an inform message from the AdapterAgent that 
a new bag has been scanned. Assuming no problems the toploader searches the DF for 
discharge agents that have been allocated to the destination of the bag revealed in the 
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scanned code of the bag. If no discharger are available the bag will be routed to the EBS, 
otherwise the toploader will initiate a FIPA contract net with the dischargers to collect 
proposals of accept for the new bag. Concurrently the toploader request route information 
to the dischargers from the RouteAgent, where route lengths are combined with the 
proposals from the dischargers to take the final decision of the best discharger for the bag. 
Shortly after the first stimuli from the AdapterAgent the toploader will receive another stimuli 
from the model that the bag has been inducted into the tote and the tote is released from the 
toploader. This inform message purely serves the purpose of combing the scanned bag id (the 
IATA tag) with the tote id, so routing can be handled correctly for the rest of the journey. 
In case of the static routing principle the toploader send FIPA request messages to all node 
agents along the route with an action request to direct the tote in the given direction, when it 
is seen at the node. This approach purely violates the autonomy of those agents, but as 
mentioned above it primarily serves the purpose of comparison. Figure 10 illustrates the 
interactions in a simplified sequence diagram. 

Figure 10. Example of agent interoperability 

As outlined above all communication follows the FIPA specifications in order to generalize 
the interoperability among agents and increase the possibility of reuse. The content of the 
messages are encoded in abstract task descriptions or status reports from the individual 
element agents, again to minimize the influence of application domain.  

8. Internal agent reasoning 

The previous section dealt with agent interoperability and the communication design in 
respect to the FIPA specification. As stated in section 3 FIPA is only concerned with the 
external behaviour of the agents, but the internal behaviour of agents and the reasoning part 
is also of extreme importance. 
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In this section we will present internal agent reasoning principles to optimize the flow in the 
BHS in different ways to meet some of the performance parameters. Deep reasoning and 
long-term goals are not currently pursued in the strategies, due to the flow speed and high 
number of totes in the system. Instead the intensions behind the strategies are to optimize 
the situation for more than a single tote or forthcoming actions. 
We will give examples of three different deliberate behaviours, which take part in both 
necessary routing and optimizing strategies for the BHS.

8.1 Returning empty totes 

As explained in section 6.5 the task of dischargers is more complicated than just emptying 
the tote. The tote continues on the conveyors and should be routed back to tote stackers 
located at the input facilities. We currently omit the EBS logic from the control software (no 
arriving bags will have more than 3 hours to departure), so we do have to consider 
temporarily storing empty totes in the EBS area.  
The most important factor that influences the decision of where the empty tote should be 
returned to, is the full status of the tote stackers, but also the distance to the tote stackers 
should be considered. There is no reason to send it to the other end of the system, if a 
stacker is nearby, unless the other is empty. 
Each stacker monitors its full status as a simple ratio between the current and maximum 
number of totes in the stacker. By a standard indeed fuzzy hedge (Negnevitsky, 2005) the 

ratio is converted into a priority is for requesting extra totes. 
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where ir  is the full-ratio for the i 'th stacker. A plot of the function is shown in figure 11.  

Figure 11. Plot of ETS priority function 

The priority determined is used to scale the dynamic route length to each tote stacker, so a 
nearly empty stacker will have a very short route length or value in the decision, whereas a 
full stacker will have its full route length. 

iii sdv ⋅=  (2) 

where id is the dynamic distance (requested from the RouteAgent) to the stacker from the 

decision point. 
This behaviour clearly serves our purpose of refilling the empty tote stackers at the input 
facilities, but the importance of correct routing will be far more interesting when the EBS 
area is included in the agent system. For the discharger the EBS could be considered as just 
another destination (stacker) that never runs full in practice, but in the long run it generates 
extra traffic to send the tote back via the EBS area.  
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8.2 Overtaking urgent bags 

Consider a typical layout of a discharging area in figure 12. The bottom lane is a fast forward 
transport line, the middle a slower lane with the dischargers and the upper lane is the return 
path. A diverter (in the bottom lane) has the option to detour non-urgent to the middle lane to 
give way for urgent baggage in the transport line, but with no queues in the system all totes 
should follow the shortest path. When the routes merge again at the mergers in the middle lane, 
it will give higher priority to totes from the merging leg with the most urgent baggage. 

Figure 12. Area of the BHS layout with indication of diverters, mergers, and dischargers 

Urgency is a constructed function, which gives high priority to urgent totes and negative 
priority to totes, where remaining time to departure exceed a threshold. 
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where maxU  is the full window size of the allocated discharger. If the tote’s remaining time 

exceed this value it should go to EBS. TU  is the threshold value, which is set to 20 min, as no 

tote should be considered urgent, if it has more than 20 min left before the discharger 

closes5. jt  is the remaining time for the j 'th tote. The graph is plotted in figure 13. 

Figure 13. Urgency function for totes 

The urgency factor is converted to a scale factor for the dynamic route lengths of alternatives 
routes. Then the principle of simple modification of the route lengths can be used here as well.  
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where 1+kv  is the aggregated urgency value for the next decision point along the route, which is 

requested in a communication act (FIPA request-ref) to the divert agent. The formula secures that 

                                                                
5 When the discharger closes the tote becomes a rush-bag, but the threshold of 20 minutes is 

independent of the 20 minutes time limit for rush bags, described in section 4.1, so in total a tote is 
considered non-urgent if it has more than 40 minutes left to departure. 



Decentralized scheduling of baggage handling using multi-agent technologies 401

urgent totes will group along the shortest route (as 1+kv  is close to 1), whereas non-urgent are 

punished along the detour. If there are no queues on the routes the 1+kv  is 0, and the scale factor 

has no effect. 
The mergers in the middle lane simply give higher priority to input lanes with more urgent 
totes. The ratio between the aggregated urgency factors of the input lanes becomes the ratio 
for merging totes from the input lanes.  

8.3 Saturation management 

Another important strategy is trying to avoid queues at all by minimizing the load on the 
system in critical areas. We assume everybody is familiar with slow starting queues of cars 
at an intersection, when the light turns green. Acceleration ramps and reaction times relative 
to drivers ahead accumulate to long delays in traffic queues, even though in theory all 
drivers should be able to accelerate synchronously (no reaction time). 
The same problem arises in the BHS, where reaction times correspond to the delay of the 
element head reporting clear6. These matters result in the characteristics of the work in-
progress against capacity curve (WIPAC), which is further described in (Kragh, 1990) that 
states the capacity of a system goes dramatically down, if the load on the system exceed a 
certain threshold value, as indicated in the figure 14. 

Figure 14. Theoretical WIPAC 

The curve is dynamical, due to the various and changing load on the system, and the 
maximum cannot be calculated exactly. Thus the strategy is to quickly respond to minor 
observations, which indicates that the maximum has been reached, and then block new 
inputs to the area. We call this approach for saturation management, and currently we block 
a toploader if the routes from the toploader are overloaded. 
Queues close to the toploader are most critical, as the toploader have great impact on filling up 
those queues, whereas the parts of the route far from the toploader could easily have been 
resolved before the new totes arrive. Instead of blocking the toploader completely, we can just 
slow down the release of new totes using the following fraction of full speed for the toploader. 
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6 In the mechanical setup of the BHS a tote can only be forwarded from one conveyor element to the 

next element, if that element is clear. A synchronized row of totes can then pass at full speed, from one 
element to another, but in queue situations acceleration ramps delays each element. 
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where tv  is the full speed of the toploader, and iw  are weights of the queue statues, iq , along 

the routes. The weight is given by a fitted coefficient, α , and the distance from the toploader 

id . Queue statuses, iq , are always a number between 0 and 1, where 1 indicates no queue. 

The effect of the saturation management strategy is clearly documented by the graph in 
figure 15. Thus the decision taken by the toploader agent is highly dependent on the current 
configuration of the environment around the toploader. 

Figure 15. Result of a test scenario with and without the saturation management strategy 

9. Conclusion 

Is this chaper we have presented novel research contributions from an application project 
under the DECIDE project that deals with multi-agent based control in production systems. 
In this case a baggage handling system (BHS) in a major airport hub in Asia. Agents were 
intended to substitute existing control logic, but not change the layout of the BHS.  
Interoperability of the agents have been secured through the use of FIPA specifications, which 
generalized the design of the agents to be applicable for other material handling systems. 
We have succeeded in keeping the decision logic of the agents rather general in order to 
improve reusability and understandability for the agent based control. 
Special attention has been given to the task of the different type of agents, and examples of 
implemented decision logic have proven successful compared to the traditional approach.  

9.1 Future work 

We continue our research on the BHS and will develop more new strategies for the local 
agents, and increase their mutual collaboration to maximize the utilization of the BHS during 
peak times. We will try to avoid the use of centralized mediator agents (the RouteAgent) and 
rely on roles and profiles for the agents. Ideally a swarm of local agents would provide the 
most general setup, which easily can be ported to other manufacturing and material handling 
systems. During the research we will pay special attention to develop abstract and general 
design methodologies for the topological domain of impact for agent collaborations.  
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1. Introduction 

Many companies are enhancing their competitiveness by offering Just-in-Time (JIT) 
delivery. Costs or penalties are incurred by delivering an order either earlier or later than 
the customer’s due-dates. Besides, maintaining short response time from order acceptance to 
final delivery is one of the key competitive advantages. Thus, many companies deliver 
products to customers directly after production without holding finished product inventory. 
This is particularly true for the industries with short product life cycle, such as consumer 
electronics manufacturing, ready-mix concrete supplying and food catering industry (Garcia 
et al. 2004; Chen and Vairaktarakis, 2005; Li et al., 2005). In order to improve customer 
service and reduce production and transportation costs, scheduling of assembly 
manufacturing and transportation should be synchronized.  
Nowadays, due to the professional services provided by third party logistics (3PL) provider, 
it is more efficient to outsource the transportation or distribution to 3PL. There are two types 
of operations. If 3PL only serves one customer, the schedule of 3PL’s vehicle is determined 
by the order completion time in manufacturing. This type of operation is particularly true 
for 3PLs that providing road transportation services. On the hand, if 3PL provides services 
to more than one manufacturer, the departure and arrival time of the vehicle is determined 
by 3PL rather than by the manufacturer. In addition, the unit transportation cost of each 
vehicle varies. The manufacturer can book capacity on the available vehicles accordingly. 
Then, decision on allocation of orders to the vehicles is made to utilize the booked capacity 
efficiently. The typical case is the air-cargo transportation service provided by cargo airlines.  
Motivated by above application, this chapter studies the problem of synchronized 
scheduling of assembly manufacturing and transportation in the make-to-order (MTO) 
consumer electronics supply chain (CESC). In this context, materials or components are kept 
in inventory before assembly. Upon reception of customer orders, the materials are 
transferred to manufacturing job shop. Through several processes such as assembly, testing, 
packing, the assembly manufacturing is completed. Then, the order is transported to 
customers directly by the vehicle of 3PL. Chen and Vairaktarakis (2005) addressed the 
integrated production transportation scheduling problem considering the first type of 3PL 
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operations, which is mentioned above. Conversely, the second type of 3PL operations is 
considered in this chapter.  
The objective of this problem is first to determine appropriate allocation of orders to 
available vehicle capacities to minimize total delivery cost which consists of transportation 
cost, delivery earliness penalty cost and delivery tardiness penalty cost. The allocation is 
constrained by production capacity. In other words, manufacturing of orders should be 
completed before the departure time of the vehicle that the order allocated to. Then, the 
schedule of assembly manufacturing is determined to make sure that each order is 
completed on time, while the order waiting time before transportation is minimized. 
According to Li et al. (2005), the solution method consists of two phases. A network 
representation of the two stage decision model is shown in Figure 1. 

flight 1

......

flight 2

flight n

Assembly

manufacturing flow

shop

orders

Customer

Figure 1. Two stage decision model in CESC 

In the first phase, the proposed Integer Linear Programming (ILP) model will run for the 
transportation issues of the outbound logistics assuming that the number of completed-
customers'-orders are available and the production rate of assembly manufacturing is fixed 
and known. In the second phase, using the above optimal decision obtained for the 
outbound logistics, i.e., the flight wise customers' orders movement strategy, an efficient 
release control policy is decided for the assembly manufacturing based on the available 
assembly capacity. 
The 3PL transportation allocation problem and the assembly scheduling problem 
formulated in this work are based on the following assumptions:  

Decisions of transportation allocation and assembly scheduling are for the orders 
accepted in the previous planning periods.  

All the packed products have same or similar dimensions.  

Business processing time and cost, together with loading time and loading cost for each 
vehicle are included in the transportation time and transportation cost.   

Vehicle departure time is taken as the time that 3PL’s vehicle set out from the 
manufacturer’s plant. Vehicle arrival time is taken as the time that the vehicle reaches 
customer. 

Orders released into production facility for the planning period are delivered within the 
same planning period which means there are no production backlogs. 

For assembly manufacturing, setup time is included in the processing time.  

Assembly flow shop consists of single machine. The machine can process only one part 
at a time. 

There are no machine breakdowns and preemptions. 

Total manufacturing time of an order is directly proportional to the order’s quantity. 
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Waiting penalties for orders before transportation are order independent, i.e., they are 
not determined based on any job characteristics.  

The starting time of the planning period is set equal to zero. 

2. The 3PL Transportation Problem 

The 3PL transportation problem is formulated using an Integer Linear Programming (ILP) 
model. As the air transportation is a typical case for the 3PL transportation, the 3PL 
transportation is represented by air transportation hereafter. The model allocates orders to 
the existing air transportation capacities with minimum costs. Synchronization is 
incorporated into the ILP model by including the constraint that balances the production 
rate of the assembly facility with the flight allocation.  
The following notation is defined:  
i = order index, i=1, 2, …. N;                      f, f’ = flight index, f=1,2,……F;
k = destination index, k = 1,2,……L;        Af  = arrival time of flight f at the destination; 
Desi = order i’s destination;                      Desf = flight f’s destination;  
LN = a large number;                               |LN| = absolute value of LN;
Qi = quantity of order i;                             di = due date of order i;
Df =departure time of flight f at the local place where the manufacturing plant is located; 
NCf = transportation cost for per unit product allocated to normal capacity area of flight f;
SCf = transportation cost for per unit product allocated to special capacity area of flight f;
NCapf  = available normal capacity of flight f;
SCapf  = available special capacity of flight f;

i = delivery earliness penalty cost (/unit/hour) of order i;
i  = delivery tardiness penalty cost (/unit/hour) of order i;

WTi = waiting time of order i between assembly and air transportation; 
PEif = per unit delivery earliness penalty cost for order i when it is transported by flight f,

 PEif= Max(0,di - Af)* i (1)

PLif = per unit delivery tardiness penalty cost for order i when it is transported by flight f, 

 PLif= Max(0,Af - di)* i (2)

Zif  = quantity of order i allocated to flight f
Xif = the quantity of the portion of order i allocated to flight f’s normal capacity area; 
Yif = the quantity of the portion of order i allocated to flight f’s special capacity area; 
PR = the production rate of assembly manufacturing; 
In case of split deliveries, an order can be split and delivered among any number of flights. 
The ILP model for the multi-destination air transportation problem is expressed as follows:  

Minimize 

i f
ifif

i f
iffi

i f
iff

i f
iff ZPLZPEYSCXNC (3)

Subject to: 

ififif ZYX , for all i, f (4)

1||** fiif DesDesXLN , for all i, f (5) 
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The decision variables are: Xif, Yif, and Zif. All decision variables are non-negative integer 
variables. The objective is to minimize overall total cost which consists of total 
transportation cost for the orders allocated to the normal flight capacity, total transportation 
cost for orders allocated to the special flight capacity, total delivery earliness penalty cost 
and total delivery tardiness penalty cost. Constraint (4) ensures that the quantity of the 
proportion of order i allocated into flight f consists of quantities of the proportion of order i
allocated into normal capacity area of flight f and the proportion of order i allocated to 
special capacity area of flight f. Constraints (5) and (6) ensure that if order i and flight f have 
different destinations, order i cannot be allocated to flight f. Constraint (7) and (8) ensure 
that the normal and special capacity of flight f is not exceeded. Constraint (9) ensures that 
order i is completely allocated. Constraint (10) ensures that allocated orders do not exceed 
production capacity. It ensures that allocated quantity can be supplied by sufficient 
assembly capacity. 
Subsequently, the equality of the above air transportation allocation problem with an 
unbalanced transportation problem is established. For the air transportation problem, each 
order can be taken as a supply point and each flight’s capacity can be taken as a demand 
point. It is noted that the normal capacity and special capacity of each flight are considered 
as two demand points with different transportation costs. The unit transportation cost from 
a supply point SPi to a demand point DPf is the sum of the unit transportation cost and the 
unit delivery earliness (or tardiness) penalty cost of order SPi when transported by flight DPf

. As total quantity of all orders is less than total capacity of all flights, the air transportation 
problem can be taken as an unbalanced transportation problem (Winston, 1994). As the 
transportation problem can be solved in polynomial time, this air transportation problem is 
also solvable using one of the commercial solvers.  

3. Single Machine Assembly Scheduling Problem 

For the assembly scheduling problem, the assembly flow shop is first assumed to be a single 
machine. A release time is determined for each order to minimize the average waiting time 
(AWT) before transportation. AWT is defined as the mean of sum of the waiting times for all 
orders. Transportation allocation results provide the inputs for the assembly problem which 
includes the orders, quantity and transportation departure times. Orders may be split and 
allocated to different flights. The split orders will be treated as separate orders in assembly. 
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The transportation departure time is taken as the due date of assembly for each order. The 
assembly schedules adhere to the following conditions: (i) each machine processes only one 
job at a time (ii) pre-emption is not allowed, which means once a job’s processing is started, 
it can not interrupted by another job  and (iii) processing time of each order is known. Two 
methodologies for assembly scheduling problem are presented in this section. 

3.1 Forward Synchronized Scheduling Heuristic (FSSH)

Normally in practice, the schedules constructed use dispatching rules and follow a forward 
dispatch method. Forward approach schedules jobs in a given sequence one by one, starting 
from the first job, to achieve feasible and compact schedules. The approach usually 
generates non-delay schedules.  A non-delay schedule is one in which no machine is kept 
idle at any time when at least one job is waiting for processing. Longest Processing Time 
(LPT) rule is selected as the dispatching rule. LPT minimizes total earliness in single 
machine scheduling in the situation of no tardiness for jobs (Panwalkar et al., 1982). Since 
there may be split orders in allocation, the sequence determined by LPT rule may be 
adjusted to combine the split orders to facilitate assembly manufacturing while maintaining 
the transportation schedule of the split orders.  
The general scheme for FSSH is:  
Step 1: Group orders that are allocated to the same flight, and sequence the order groups by 
the rule of earliest flight departure time first. 
Step 2:  Use LPT rule to sequence the orders within the each group.  
Step 3: Assembly batching of split orders (ABSO): This step is used to combine the split 
orders in a batch for assembly so that split orders in transportation can be treated as a whole 
order in assembly. This step is applied only in the situation when an order is split and 
allocated to two adjacent flights. The split orders are processed in sequence by scheduling 
them as last order for the first flight and first order for the second flight. This is to facilitate 
the assembly processing of an order.  
Step 4: Calculate each order’s release time by forward dispatch method starting from the 
first order to the last order. The first order’s release time equals zero. The release time of 
succeeding orders are obtained by adding the assembly processing time of their preceding 
orders
Step 5:  Compute the AWT between assembly and transportation.  
The number of order groups in the planning period, corresponds to the number of flights 
that transport orders to the customer destinations, is determined by the transportation 
allocation model. Each order group consists of set of orders and they have same assembly 
due-date. 

3.2 Backward Synchronized Scheduling Heuristic (BSSH) 

Steps of BSSH are the same as FSSH except for step 4. Backward scheduling is used in step 4 
in BSSH instead of forward scheduling in FSSH.  
Backward scheduling is reverse of the forward scheduling approach and schedules are 
defined on a reverse time frame. The start time and completion time of the same job in 
forward scheduling mode is related to the completion time and start time of the same job in 
backward scheduling mode. In other words, the completion time of each job is determined 
first. The release time (or start time) for each job is then obtained using the determined 
completion time. To arrive at a schedule after using backward scheduling approach, the 
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processing sequence is reversed, and the schedule time frame is reversed back to forward 
time frame. 
The backward scheduling considers inserted idle times between processing of orders. 
Forward scheduling is a straightforward method that schedules jobs one by one from the 
beginning time of the planning period. The main objective is to make sure that each job can 
meet its due date. The forward scheduling methodology presented in the previous section 
does not minimize AWT effectively. This is overcome by adopting a backward approach 
that inserts idle times between order groups.  
The last flight’s departure time determines the completion time for the last order to be 
scheduled in the assembly in the planning period. To minimize order earliness before 
transportation, the favorable completion time for each order is their corresponding flight 
departure time. Hence, within each group, orders are scheduled one by one without 
inserted idle time in backward direction from the order group’s due-date. Once the 
completion time for the last order to be scheduled in each group is determined, the release 
times for the preceding orders is calculated by subtracting its processing times from the 
release time of the succeeding orders. Idle times are inserted only between order groups. 
When the release time of the first order in the succeeding group is later than the current 
order group’s due date, idle time is inserted between the two groups. Thus the last job of the 
current order group is scheduled to complete at the corresponding flight departure time.  
The pseudo code description of the backward scheduling logic is presented below:  
If (job i is the last job in flight j) then

     If (flight j is the last flight) then

  Release time(job i, flight j) =Departure time(flight j) –
    Processing time(job i, flight j)
     Else
         If (Release time (the first job, fight j+1) is earlier than
              Departure time(flight j)) then

     Release time (job i, flight j) =Release time (the first job,  
       flight j+1) – Processing time(job i, flight j)
               Else   
   Release time (job i, flight j) =Departure time (flight j) –  
       Processing time (job i, flight j)
               End if 
     End if 
Else  
  Release time (job i, flight j) =Release time (job i+1, flight j) –  
     Processing time (job i, flight j)       
End if  
Computational results indicate that BSSH outperforms FSSH in terms of AWT. For detailed 
results of the comparison, it can be referred to Li et al. (2005).  

4. Single Machine Assembly Scheduling Problem with random delay 

Today’s manufacturing environment is highly time varying, and most of the components in 
the supply chain have stochastic nature of objectives and constraints due to environmental 
uncertainties and executional uncertainties (Szelke & Markus, 1997). These uncertainties can 
be triggered by machine breakdowns, shortage of materials, interruption of machine 
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operations when their performance violates quality control standards, etc. The occurrence of 
interruptions and the time required for assembly to resume from the interruptions are often 
highly stochastic in nature. These issues always lead to unexpected delays in assembly. The 
deterministic schedule obtained prior to the start of assembly processing is affected and 
becomes inappropriate. Thus, the deterministic schedule should be updated so as to 
minimize the disturbances due to uncertainties. The scenario of assembly process delays 
caused by the stochastic events is studied and a schedule repair heuristic is presented to 
minimize the influence of stochastic events on deliveries.  
There are two types of orders, viz., regular (non-delayed) orders and delayed orders. 
Regular (non-delayed) orders are the orders that are released into the shop as per the 
predetermined transportation allocation. Orders that have not been processed in assembly 
because of unexpected uncertainties are referred as delayed orders. The decision consists of 
the schedule of the delayed orders which have missed their earlier departure due-dates 
along with non-delayed orders. A delay is characterized by a start time and duration. It may 
result from machine breakdowns, shortage of materials, interruption of machine operations 
when their performance violates quality control standards, etc. The jobs completed prior to 
the delay are not taken into account. Hence, this section considers a situation of 
rescheduling the delayed orders along with non-delayed orders with a possibility of 
identifying a sequence in which non-delayed orders in the original schedule can reach their 
destination on time. It is also to be stated again that if an order misses it scheduled 
departure time it can only be shipped by a commercial fight at a higher cost. Basically, this 
possibility is considered to avoid a situation of very high disruptions caused in relation to 
the customer deliveries.  

4.1 Problem formulation 

The formulation presented in this section assumes that the new schedule obtained does not 
include unexpected delays in the remaining time of the planning period. However, if delay 
occurs at any future time point in the planning period, a new schedule is generated again 
considering the remaining time horizon. Thus, the formulation considers a decision 
situation of re-scheduling both delayed and non-delayed orders without considering 
unexpected future delays.  The input data consists of a set of orders to be processed, the 
machine capacity, allocation of orders to flights, transportation cost by commercial flight, 
and delivery earliness/tardiness cost per unit time for each order. The objective is to 
minimize the total waiting cost between assembly and transportation, the total 
transportation cost, total delivery earliness/tardiness costs, and the penalty costs of missed 
allocations. The following notation is defined before presenting the Mixed Integer 
Programming (MIP) model.  

i      the job/order index, i=1, 2, …, N , N  is the total number of jobs considered at the  
decision instant;  
t          the delay start time; 
DU      the delay duration; 
Ri         the release time of job i;
Pi       the processing time of job i;
Ci        the assembly completion time of job i

1i        per unit transportation cost of job i when transported by a commercial flight; 

1i        the per hour earliness penalty of job i for assembly and it is assumed that 1i = Qi ;
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PIij       1 if job i precedes job j immediately, 0 otherwise; 
EFif    1 if assembly completion time of job i is earlier than flight f’s departure time, 
otherwise 0; 
PAif      the predetermined allocation, 1 if job i is predetermined to be allocated to flight f by 
the ILP model, 0 otherwise; 
TCif      the transportation cost matrix which is determined by the ILP model.  
The model is expressed as follows: 
Min
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The decision variables are Ri, PIij, EFif. The objective function includes the two early and two 
late penalties for the orders.  Early penalties are incurred when assembly of the order is 
completed earlier than its transportation departure time. The late penalties are the special 
flight transportation cost when orders miss their predetermined flight. Since the assembly 
scheduling model considers synchronization with transportation, early and late penalty for 
assembly together with final delivery early and late penalties are taken into account in this 
model. The first term in the objective function is the cost of early penalties of the orders 
when they can catch its pre-determined flight. The early penalties consist of earliness cost 
before transportation, predetermined flight transportation cost, final delivery 
earliness/tardiness costs. The second term in the objective function is the late penalties of 
the orders when they miss their predetermined flights. The late penalties consist of the 
commercial flight transportation cost, the final delivery earliness/tardiness costs.  
Note that two dummy jobs are created in order to facilitate the representation of the 
immediate precedence of the jobs. They are the first and the last job which has zero quantity. 
Constraint (12) represents the relationship among the release time, completion time and 
processing time of each order. Constraint (13) sets the release time of the first job, R0, to the 
assembly resume time, which is the sum of delay start time t and the delay duration DU.
Constraint (14) sets the release time of the last job, RN’+1, larger or equal to the total 
processing time of all the jobs. These two constraints denote that there might be inserted idle 
time between the release times of each two adjacent jobs. Constraint (15) and (17) ensure 
that all the jobs should have a precedence job except the first job. Constraint (16) and (18) 
ensures that all the jobs should have a successive job except the last job. Constraint (19) 
represents the completion time relationship between any two jobs. Constraint (20) and (21) 
indicate that when a job’s completion time is earlier than a flight departure time, it can catch 
the flight. Constraint (22) indicates that PIij is 0-1 integer variable.  

4.2 NP-completeness proof 

To prove the assembly scheduling problem is NP-hard, it is reduced to a single machine 
scheduling problem with distinct due windows and job dependent earliness/tardiness 
penalty weights. The reduced problem is then proved to be NP-hard. Thus, the assembly 
scheduling problem investigated in this chapter is also NP-hard. In the following, the 
equivalence is established between the reduced problem and the problem studied by Wan & 
Yen (2002), which is NP-hard.  
The reduced problem: For the present discussion, the air transportation cost and time is 
ignored, as well as the final delivery earliness penalties. This is equivalent to say that these 
parameters take value zero. Therefore, the problem basically becomes a scheduling problem 
with distinct due-windows and job dependent earliness/tardiness penalty weights for each 
job. The due-window has a length equal to the difference between the final customer 
delivery time and transportation departure time. 
Distinct due-windows: There is waiting cost if an order completed earlier than its assembly 
due date. As there is no earliness cost for final delivery, only tardiness cost is taken into 
account if the order is delivered later than the final due-date. Also, it is assumed that the air 
transportation cost and time are ignored. Therefore, the assembly of orders completed 
between assembly due-date and final due-date lead to no penalty. It is obvious that the 
number of flights corresponds to the number of due-dates for assembly. Thus, the assembly 
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due-date is distinct. In addition, the final due-date of each order is distinct. Hence the 
reduced problem is a distinct due windows scheduling problem.  
Job dependent earliness penalty: If assembly of a job is completed earlier than its due date, 
there is a waiting penalty, which depends on the product of the early time and the quantity 
of the job.  
Job dependent tardiness penalty: As assumed that if an order is delivered later than its 
final due date, a late delivery penalty, which is the product of lateness time length and the 
order quantity, is incurred.  
Wan & Yen (2002) show that the single machine scheduling problem with distinct due 
windows to minimize total weighted earliness and tardiness is NP-hard. As the reduced 
assembly scheduling problem is equivalent to the problem studied by Wan & Yen (2002), 
the prior problem is NP-hard. Therefore, the assembly scheduling problem studied in this 
chapter is NP-hard.  

4.3 Schedule Repair Heuristics 

In many production situations, it is not desirable to reschedule all the non-delayed jobs 
along with the delayed jobs. Instead, the required changes should be performed in such a 
way that the entire system is affected as little as possible (Roslöf, et al. 2001). This process is 
termed schedule repair in this chapter. To repair an unfinished schedule which has delayed 
orders, its valid parts (or the remaining unaffected schedule) should be re-used as far as 
possible, and only the parts touched by the disturbance are adjusted (Szelke & Markus 
1997). At the beginning of assembly, the schedule obtained using BSSH is executed. Suppose 
the delay is caused by machine breakdown starting from time t and the assembly resumes 
after time length DU. Jobs that are to be released between t and t+DU in original schedule 
are only influenced by the disturbance. In line with the concept of schedule repair, the 
schedule after time t+DU is valid part and should be kept unchanged. The schedule of the 
influenced jobs between time t and t+DU should be adjusted. 
The schedule generated using BSSH methodology will have idle times between job groups, 
during which the assembly does not work at its full capacity. The idle time can be utilized to 
process the delayed jobs. Therefore, a heuristic to repair the disturbed schedule is proposed 
is this section. The main motive is to insert the disturbed job into the idle time spans so that 
the assembly utilization is improved at the advantage of minimizing the delay penalties for 
the jobs. If still some jobs cannot be inserted into the idle time span, they are appended after 
the last job of the final schedule. Figure 2 illustrates this idea in detail.  

Figure 2. Illustration of schedule repair heuristic  
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In Figure 2, the x axial denotes time. The blocks denote the scheduled jobs. During time t to 
t+DU, the jobs predetermined to be processed are denoted using shaded blocks. The 
delayed jobs are to be inserted into the idle times among the job groups in the BSSH 
schedule as denoted by the arc in the figure using the following heuristic.  
The schedule repair heuristic (SRH):  
1. Sequence the jobs scheduled between t and t+DU by Longest-Processing Time (LPT) 

first rule.
2. Insert disturbed jobs into the idle time spans between order groups. Suppose there are 

Nd disturbed jobs and are sequenced by LPT rule. Let the BSSH schedule has S idle 
time spans from time t+DU till the end of the planning period. The detailed steps are:  

2.1. i=1, j=1
2.2. If Length[span(i)]>ProcessingTime[job(j)], insert job j into span i.
       Else, go to 2.5.   
2.3. Length[span(i)]= Length[span(i)]- ProcessingTime[job(j)].  
2.4. j=j+1. If j> Nd, go to 2.7. Else, go to 2.2.  

2.5. i=i+1. If S, go to 2.2. Else, go to 2.6.  

2.6. Append the remaining Nd -j jobs after the last job of the BSSH schedule.  
2.7. Stop. 
By computational experiments, it is shown that SRH can achieve good results. For 
detailed content, it can be referred to Li et al. (2006).  

5. Conclusion and Further Research 

In this chapter, the formulation of synchronized scheduling problem of production and 
transportation is presented. The solution methodology is to decompose the overall problem 
into two sub-problems, i.e., the transportation allocation problem and machine scheduling 
problem. The 3PL transportation allocation problem is formulated using an integer 
programming model. It is shown that the problem is solvable in polynomial time. 
Furthermore, the formulations for single machine with and without random delay are 
presented. The methods to solve these two problems are summarized. Further research can 
address the assembly sub-problem with parallel machines or sequential machines, etc.  
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1. Introduction  

We have proposed the heuristic Load Balancing (LB) scheduling (Shr et al., 2006a) (Shr et al., 
2006b) (Shr et al., 2006c) and Multiagent Scheduling System (MSS) (Shr, et al. 2006d) 
approaches to provide solutions to the issue of dedicated photolithography machine 
constraint. The dedicated photolithography machine constraint, which is caused by the 
natural bias of the photolithography machine, is a new challenge in the semiconductor 
manufacturing systems. Natural bias will impact the alignment of patterns between 
different layers. This is especially true for smaller dimension IC for high technology 
products. A study considered different production control policies for semiconductor 
manufacturing, including a “machine dedication policy” in their simulation, has reported 
that the scheduling policy with machine dedication had the worst performance of 
photolithography process (Akcalt et al., 2001). The machine dedication policy reflects the 
constraint we are discussing here.  
In our previous work, along with providing the LB scheduling or MSS approaches to the 
dedicated machine constraint, we have also presented a novel model––the Resource 
Schedule and Execution Matrix (RSEM) framework. This knowledge representation and 
manipulation method can be used to tackle the dedicated machine constraint. A simulation 
system has also been implemented in these researches and we have applied our proposed 
scheduling approaches to compare with the Least Slack (LS) time approach in the simulation 
system (Kumar & Kumar, 2001). The reason for choosing the LS scheduling approach was 
that this approach was the most suitable method for solving the types of problems caused 
by natural bias at the time of our survey. 
The LS scheduling approach has been developed in the research of Fluctuation Smoothing 
Policy for Mean Cycle Time (FSMCT) (Kumar & Kumar, 2001), in which the FSMCT 
scheduling policy is for the re-entrant production lines. The entire class of the LS scheduling 
policies has been proven stable in a deterministic setting (Kumar, 1994) (Lu & Kumar, 1991). 
The LS approach sets the highest priority to a wafer lot whose slack time is the smallest in 
the queue buffer of one machine. When the machine becomes idle, it selects the highest 
priority wafer lot in the queue buffer to service next. However, the simulation result has 
shown that the performances of both our proposed LB and MSS approaches were better 
than the LS method. Although the simulations were simplified, they have reflected the real 
situation we have met in the factory.  
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Extending the previous simulations, we introduce two different types of simulation for the 
dedicated machine constraint in this paper. One is to show that our proposed LB scheduling 
approach is still better than the LS approach under the different capacity and service 
demand of the wafer lots. The case of setting with different photolithography machines 
represents the different capacity of the semiconductor factory, while the case of setting with 
different photolithography layers represents the different products’ demand for the 
semiconductor factory. The other simulation is to show the situation of the thrashing 
phenomenon, i.e., the load unbalancing among the photolithography machines during the 
process when we apply the LS approach. We have also learned that the load unbalancing is 
consistent with different photolithography machines. 
The rest of the paper is organized as follows: Section 2 describes the motivation of this 
research including the description of dedicated machine constraint, the load balancing issue, 
and related research. In Section 3, we present the construction procedure and algorithms of 
the RSEM framework to illustrate the proposed approach for dedicated machine constraint. 
The proposed LB scheduling approach is presented along with an example of the 
semiconductor factory in Section 4. Section 5 shows the simulation results and we conclude 
the work in Section 6. 

2. Motivation 

2.1 Dedicated Machine Constraint 

Dedicated machine constraint forces wafer lots passing through each photolithography 
stage to be processed on the same machine. The purpose of the limitation is to prevent the 
impact of natural bias and to keep a good yield of the IC product. Fig. 1. describes the 
dedicated machine constraint. When material enters the photolithography stage with 
dedicated machine constraint, the wafer lots dedicated to machine X need to wait for it, even 
if machine Y is idle. By contrast, when wafer lots enter into non-photolithography stages 
without any machine constraints, they can be scheduled to any machine, A, B, or C. 
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Figure 1. Dedicated machine constraint 
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Presently, the dedicated machine constraint is the most significant barrier to improving 
productivity and fulfilling the requests of customers. It is also the main contributor to the 
complexity and uncertainty of semiconductor manufacturing. Moreover, photolithography 
is the most important process in semiconductor manufacturing. A good yield of IC products 
is heavily dependent on a good photolithography process. At the same time, the process can 
also cause defects. Therefore, the performance of a factory particularly relies on the 
performance of photolithography machines. 

2.2 Load Balancing Issue 

The load balancing issue is mainly derived from the dedicated photolithography machine 
constraint. This happens because once the wafer lots have been scheduled to one of the 
machines at the first photolithography stage, they must be assigned to the same machine in 
all subsequent photolithography stages. Therefore, if we randomly schedule the wafer lots 
to arbitrary photolithography machines at the first photolithography stage, then the load of 
all photolithography machines might become unbalanced. Any unexpected abnormal events 
or a breakdown of machines will cause a pile-up of many wafer lots waiting for the machine 
and cause a big problem for the factory. Therefore, the unbalanced load among 
photolithography machines means that some of the photolithography machines become idle 
and remain so for a while, due to the fact that no wafer lots can be processed, and the other 
is always busy while many wafer lots bound to this machine are awaiting processing. As a 
result, some wafer lots are never delivered to the customer on time, and the performance of 
the factory decreases. Moreover, it cannot meet the fast-changing market of the 
semiconductor industry. 

2.3 Related Research 

The scheduling problems of the semiconductor manufacturing systems or photolithography 
machines have been studied by some researchers. By using a queuing network model, a ''Re-
Entrant Lines'' model has been proposed to provide the analysis and design of the 
semiconductor manufacturing system. Kumar's research described several scheduling 
policies with some results concerning their stability and performance (Kumar, 1993) 
(Kumar, 1994). These scheduling policies have been proposed to deal with the buffer 
competing problem in the re-entrant production line, wherein they pick up the next wafer 
lot in the queue buffers when machines become idle. A study proposed a stochastic dynamic 
programming model for scheduling a new wafer lot release and bottleneck processing by 
stage in the semiconductor factory. This scheduling policy is based on the paradigm of 
stochastic linear quadratic control and incorporates considerable analysis of uncertainties in 
products' yield and demand (Shen & Leachman, 2003). A special family-based scheduling 
rule, Stepper Dispatch Algorithm (SDA-F), is proposed for the wafer fabrication system 
(Chern & Liu, 2003). SDA-F uses a rule-based algorithm with threshold control and least 
slack principles to dispatch wafer lots in photolithography stages. Many queuing network 
scheduling policies or methods have been published to formulate the complexity of 
semiconductor manufacturing problems; however, they need to be processed off-line and 
cannot respond rapidly to dynamic changes and uncertainty in the environment. 
Vargas-Villamil, et al. proposed a three-layer hierarchical approach for semiconductor 
reentrant manufacturing (Vargas-Villamil et al., 2003), which decomposes the big and 
intractable problems of semiconductor manufacturing into smaller control problems. It 
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reduces the effort and frequency of the control decisions. The scheduling problems of the 
photolithography machines have been studied by some researchers. Their proposed 
scheduling methods make an effort to improve the performance of the photolithography 
machines. Two approaches were reported to use simulations to model the photolithography 
process. One of them proposed a Neural Network approach to develop an intelligent 
scheduling method according to a qualifying matrix and lot scheduling criteria to improve 
the performance of the photolithography machines (Mönch et al., 2001). The other approach 
decides the wafer lots assignment of the photolithography machines at the time when the 
wafer lots are released to the manufacturing system in order to improve the load-balancing 
problem (Arisha & Young, 2004). These researches have emphasized that photolithography 
process scheduling issues are the most important and critical challenge of the semiconductor 
manufacturing system. However, it might be difficult to have the proper training data to 
build a Neural Network scheduling system. It is also inefficient to manually adjust lot 
scheduling criteria or lot assignment to fit the fast-changing market of semiconductor 
manufacturing. Moreover, their proposed scheduling methods did not concern the 
dedicated machine constraint. 

3. Resource Schedule and Execution Matrix (RSEM) Framework 

In this section, the procedure and algorithm associated with the Resource Schedule and 
Execution Matrix (RSEM) framework are presented. The RSEM framework construction 
process consists of three modules including the Task Generation, Resource Calculation, and 
Resource Allocation modules.  
The first module, Task Generation, models the tasks for the scheduling system and it is 
represented in a two-dimensional task matrix. One dimension is reserved for the tasks, t1, t2,
…, tn; the other represents the periodical time events (or steps) s1, s2, …,sm. Each task has a 
sequential Process Pattern to represent the resources it needs to go from the raw material to 
a product during the process sequence and we put the process pattern in an array. We 
define each type of resource as rk, k =1 to o. For example, the process pattern, r1, r2, …, ro,
means that a particular task needs the resources in the sequence of r1 first and r2 following 
that until ro is gained. Therefore, the matrix looks as follows:  

s1 s2 . . sq . . . sj . sm

t1 r1 r2 r3 .. .. .. ... .. .. .. .. 

t2  r3 r4 .. .. .. .. .. .. .. .. 

.    r1 r3 .. .. .. ..   

ti     r3 r4 .. .. rk ..

.       . .    

tn     .. .. .. .. .. ..  



Scheduling for Dedicated Machine Constraint 421

The symbol rk in the task matrix entry [ti, sj] represents that task ti needs the resource rk at 
the time sj. If ti starts to be processed at sq, and the total number of steps needed for ti is p, we 
will fill its process pattern into the matrix from [ti, sq]… to [ti, sq+p-1] with rk, k =1 to o. All the 
tasks, t1…tn, follow the illustration above to form a task matrix in the Task Generation
module. To represent dedicated machine constraint in the matrix for this research, the 
symbol rkx, a replacement of rk, represents that ti has been dedicated to a particular instance x
of a resource type rk at sj. One more symbol wk represents the wait situation when the rk

cannot allocate to ti at sj. The situation can be that rk is assigned to other higher priority tasks 
or it is breakdown. This symbol will be used in the Resource Allocation module. 
The Resource Calculation module summarizes the value of each dimension as the factors for 
the scheduling rule of the Resource Allocation module. For example, by counting the task 
pattern of the row ti in the task matrix, we can determine how many steps ti processed after 
it finished the whole process. We can also realize how many wait steps ti has had by 
counting wk from the starting step to the current step in that row of the task matrix. 
Furthermore, if we count the symbol rkx at the column sj, we can know how many tasks will 
need the machine mx of resource rk at sj.
We need to generate the task matrix, obtain all the factors for the scheduling rules, and build 
up the scheduling rules before starting the execution of the Resource Allocation module. The 
module schedules the tasks to the suitable resource according to the factors and predefined 
rules. To represent the situation of waiting for rk ; i.e. when the resource of rk is not available 
for ti at sj, then we will not only insert the symbol wk in the pattern of ti , but will also need to 
shift one step for the process pattern following ti in the matrix. Therefore, we can obtain the 
updated factor for the number of tasks waiting for rk at sj by simply counting wk at the 
column sj. We can also obtain the factor for the number of wait steps ti has by counting wk,

1≤k≤o by the row ti in the matrix.  
Our proposed approach can provide two kinds of functions. One is that, to define the factors 
and resource allocation rules according to expert knowledge, we can quickly determine the 
allocation of resources at each step by the factors summarized from the task matrix. The 
other is that we can predict the bottleneck or critical situation quickly by executing proper 
steps forward. This can also evaluate the predefined rules to obtain better scheduling rules 
for the system at the same time. Moreover, by using different predefined rules and factors, 
the RSEM framework could apply to different scheduling issues or constraints of 
semiconductor manufacturing. 

3.1 Procedure for Constructing the RSEM framework 

To better understand our proposed scheduling process, the flowchart of the RSEM 
framework construction process is shown in Fig. 2. The process of using the RSEM 
framework starts from the Task Generation module, and it will copy the predefined task 
patterns of tasks into the matrix. Entering the Resource Calculation module, the factors for the 
tasks and resources will be brought out at the current step. This module will update these 
factors again at each scheduling step. The execution of the scheduling process is in the 
Resource Allocation module. When we have scheduled for all the tasks for the current step, 
we will return to check for new tasks and repeat the whole process again by following the 
flowchart. We will exit the scheduling process when we reach the final step of the last task if 
there is still no new task appended to the matrix. After that, the scheduling process will 
restart immediately when the new tasks arrives in the system. 
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Figure 2. Flowchart of the RSEM framework construction process 

3.2 Algorithms Associated to the RSEM framework 

To make the construction process of the proposed RSEM framework more concrete, three 
algorithms for the Task Generation (Algorithm-1), Resource Calculation (Algorithm-2), and 
Resource Allocation (Algorithm-3) modules are depicted as follows. 
In Algorithm-1, the procedure appends tasks to the task matrix by copying the task patterns 
of the tasks in the matrix. It will start from the start step ss and go to the end step se of each 
task. The ss will not start before the current step sc and the se should not end beyond the 
maximum step m of the matrix in the system. The task matrix will be passed to and 
manipulated at the other two algorithms.

Algorithm-1 Task_Generation
{
// sc  ss  se  m, where m is the max step in system, and  
// sc is current step. 

for i = 1 to n do
Copy task pattern of ti into matrix from its starting step ss, to its ending step se

next 
}
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Algorithm-2 Resource_Calculation
{

//Factor for tasks, function: Total_Step(ti)
//To count total steps of tasks n: total tasks, m: max step in system. 

for i = 1 to n do
for j = 1 to m do;

if (matrix[ti,sj] is not empty) then
Total_Step(ti)= Total_Step(ti) + 1; /*Count total steps*/ 

end if 
next 

next 
//Factor for tasks, function: Wait_Step(ti)
//To count total wait steps of tasks, sc: current step. 

for i = 1 to n do
for j = 1 to sc do;

if (matrix[ti,sj] = wk) then
Wait_Step(ti)= Wait_Step(ti) + 1; /*Count wait steps*/ 

end if 
next 

next 
//Factor for resource, function: Resource_Demand(rk)
//To count total tasks which are need of the resource rk

//o: total resource. 

for k = 1 to o do
for i = 1 to n do

if (matrix[ti,sc] = rk) then
Resource_Demand(rk)= Resource_Demand(rk) + 1; 

end if 
next 

next 
//Factor for Resource, function: Queue_Buffer(rk)
//To count total tasks which are waiting for of the resource rk

for k = 1 to o do
for i = 1 to n do

if (matrix[ti,sc] = wk) then
Queue_Buffer(rk)=+1;

end if 
next 

next 

//Factor for ... 

…. // factor Load, Utilization, and so on. 

}

We will have four factors ready for scheduling after the Resource Calculation process 
described in Algorithm-2, namely, Total_Step(ti) and Wait_Step(ti) for the tasks, and 
Resource_Demand(rk) and Queue_Buffer(rk) for the resources.  
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We obtain these factors by simply counting the occurrences of the desired symbols like rk or 
wk, along the specific task ti dimension or the current step sc of the task matrix. We can also 
include other factors in this module depending on different applications, e.g., the factors of 
the load of a particular photolithography machine and the remaining photolithography 
stages of the tasks in the example of Section 3. 
The procedure of Algorithm-3 executes the scheduling process for the tasks and resources. 
The first part of the scheduling process allocates all the available resources to optimize the 
performance or production goals of the manufacturing system, but it must satisfy all the 
constraints. The scheduling rule of our proposed Load Balancing approach is one of the 
examples. After the process for resource allocation, the second part of the scheduling 
process is to insert a wait step and shift a step for all the tasks which are not assigned to a 
machine. A wait symbol wk represents the state of waiting for machine type k, and a wkx is 
waiting for dedicated machine number x, mx, of machine type k.

Algorithm-3 Resource_Allocation
{

//Scheduling; o: total resource, sc:current step. 

for k = 1 to o do
Assign tasks to rk, according to predefined rules 

e.g., the Load Balancing scheduling (LB), 
Multiagent Scheduling System (MSS) or

Least Slack time scheduling (LS) rules 

next 

//Execution; shift process pattern of the tasks,

//which do not be scheduled at current step;

//x: the machine number.

for i = 1 to n do
if (ti will not take the resource at this step) then 

insert wk to wait for rk; /* without dedicated constraint */

or
insert wxk to wait for mx of rk; /*dedicated constraint */

end if 
next 

}

4. Load Balancing Scheduling Method 

In this section, we apply the proposed Load Balancing (LB) scheduling method to the 
dedicated machine constraint of the photolithography machine in semiconductor 
manufacturing. The LB method uses the RSEM framework as a tool to represent the 
temporal relationship between the wafer lots and machines during each scheduling step. 

4.1 Task Generation 

After obtaining the process flow for customer product from the database of semiconductor 
manufacturing, we can use a simple program to transform the process flow into the matrix 
representation. There exist thousands of wafer lots and hundreds of process steps in a 
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typical factory. We start by transforming the process pattern of wafer lots into a task matrix. 

We let r2 represent the photolithography machine and rk (k ≠ 2) represent non-
photolithography machines. The symbol r2x in the matrix entry [i,j] represents the wafer lot ti

needing the photolithography machine mx at the time sj with dedicated machine constraint, 

while rk (k ≠ 2) in [i,j] represents the wafer lot ti needing the machine type k at sj without 
dedicated machine constraint. There is no assigned machine number for the 
photolithography machine before the wafer lot has passed the first photolithography stage. 
Suppose that the required resource pattern of t1 is as follows: 
r1r3r2r4r5r6r7r2r4r5r6r7r8r9r1r3r2r4r5r6r7r3r2r8r9…and starts the process in the factory at s1. We will fill its 
pattern into the matrix from [t1,s1] to [t1,sn], which indicates that t1 needs the resource r1 at 
the first step, resource r3 at the second step, and so on. The photolithography process, r2, in 
this process pattern has not been dedicated to any machine and the total number of steps for 
t1 is n. The task t2 in the task matrix has the same process pattern as t1 but starts at s3;
meanwhile, ti in the matrix starts at s8. It requires the same type of resource r2, the 
photolithography machine, but the machine is different from the machine t2 needed at s10;
i.e., t2 needs the machine m1, while ti has not been dedicated to any machine yet. Two tasks, 
t2 and ti, might compete for the same resource r4 at s11 if r4 is not enough for them at s11. The 
following matrix depicts the patterns of these tasks. 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 .. .. s20 s21 s22 s23 s24 s25 .. .. sj .. sm

t1 r1 r3 r2 r4 r5 r6 r7 r2 r4 r5 r6 r7 r8 .. .. r6 r7 r3 r2 r8 r9 .. ..   .
t2   r1 r3 r2 r4 r5 r6 r7 r21 r4 r5 r6 .. .. r4 r5 r6 r7 r3 r2 r8 r9 .. ..

..                      

ti        r1 r3 r2 r4 r6 r5 .. .. .. .. .. .. .. .. .. .. rk ..

                         

4.2 Resource Calculation 

The definitions and formulae of these factors for the LB scheduling method in the Resource 
Calculation module are as follows: 

W: wafer lots in process, 
Wp : wafer lots dedicated to the photolithography machine, p, 
P: numbers of photolithography machines, 
R(ti): remaining photolithography layers for the wafer lot ti,
K: types of machine (resource), 
ss: start step, sc: current step, se: end step. 

Required resources: 
• How many wafer lots will need the k type machine x  at sj?
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Count steps: 
• How many wait steps did ti have before sj?
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• How many steps will ti have? 
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• The load factor, Lp, of the photolithography machine p.

∈
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Lp is defined as the wafer lots that are limited to machine p multiplied by the remaining 
layers of photolithography stages these wafer lots have. Lp is a relative parameter, 
representing the load of the machine and wafer lots limited to one machine compared to 
other machines. A larger Lp means that more required service from wafer lots is limited to 
this machine. The LB scheduling method uses these factors to schedule the wafer lot to a 
suitable machine at the first photolithography stage, which is the only photolithography 
stage without the dedicated constraint. 

4.3 Resource Allocation 

The process flow of the Resource Allocation module for the example is described in this 
section. Suppose we are currently at sj, and the LB scheduling method will start from the 
photolithography machine. We check to determine if there is any wafer lot that is waiting 
for the photolithography machines at the first photolithography stage. The LB method will 
assign the p with the smallest Lp for them, one by one. After that, these wafer lots will be 
dedicated to a photolithography machine. For each p, the LB method will select one wafer 
lot of Wp that has the largest WaitStep(ti) for it. The load factor, Lp, will be updated after 
these two processes. The other wafer lots dedicated to each p, which cannot be allocated to 
the p at current step sj, will insert a w2 in their pattern. For example, at s10, ti has been 
assigned to p; therefore, ti+1 will have a w2 inserted into s10, and then all the following 
required resources of ti+1 will shift one step. All other types of machines will have the same 
process without need to be concerned with the dedicated machine constraint. Therefore, we 
assigned the wafer lot that has the largest WaitStep(ti), then the second largest, and so on for 
each machine rk. Similarly, the LB method will insert a wk for the wafer lots which will not be 
assigned to machines rk at this current step. Therefore, WaitStep(ti) represents the delay 
status of ti.

s9 s10 s11 s12 s13 s14 .. .. sj .. sm

..     .. ..      

ti .. r2p r4 r6 r5 r7 .. ..    

ti+1 .. w2 r2p r4 r6 r5 .. .. .. ..  

.. ↑ → → → →      
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4.4 Discussion 

Realistically, it is not difficult to approximate the real machine process time for different 
steps using one or several steps together with a smaller time scale step. We can also use the 
RSEM framework to represent complex tasks and allocate resources by simple matrix 
calculation. This reduces much of the computation time for the complex problem. 
Another issue is that the machines in the factory have a capacity limitation due to the capital 
investment, which is the resource constraint. The way to make the most profit for the 
investment mostly depends on optimal resource allocation techniques. However, most 
scheduling policies or methods can provide neither the exact allocation in an acceptable 
time, nor a robust and systematic resource allocation strategy. We use the RSEM framework 
to represent complex tasks and allocate resources by simple matrix calculation. This reduces 
much of the computation time for the complex problem. 

5. Simulation 

We have done two types of simulations using both the Least Slack (LS) time scheduling and 
our LB approach. The LS policy has been developed in the research, Fluctuation Smoothing 
Policy for Mean Cycle Time (FSMCT) (Kumar & Kumar, 2001). The FSMCT scheduling 
policy is for re-entrant production lines. The LS scheduling policy sets the highest priority to 
a wafer lot whose slack time is the smallest in the queue buffer of one machine. When the 
machine becomes idle, it will select the highest priority wafer lot in the queue buffer to 
service next. The entire class of LS policies has been proven stable in a deterministic setting 
(Kumar, 1994) (Lu & Kumar, 1991), but without the dedicated machine constraint. To 
simplify the simulation to easily represent the scheduling approaches, we have made the 
following assumptions: (1) each wafer lot has the same process steps and quantity, and (2) 
there is an unlimited capacity for non-photolithography machines 

5.1 Simulation Results 

We implemented a simulation program in Java and ran the simulations on NetBeans IDE 5 
(http://www.netbeans.org/). To represent the different capacity and required resource 
demand situation for a semiconductor factory, we take account of different 
photolithography machines and wafer lots with different photolithography layers in the 
simulation program. Our simulation was set with 6, 10, 13, and 15 photolithography 
machines, and 11 to 15 photolithography layers. There are 1000 wafer lots in the simulation. 
The wafer arrival rate between two wafer lots is a Poisson distribution. We also set up the 
probability of breakdown with 1% for each photolithography machine at each step in the 
simulation. The duration of each breakdown event may be 1 to 4 steps and their individual 
probability is based on a Uniform distribution.  
Fig. 3(a) illustrated the average Mean Time Between Failures (MTBF) and Mean Time 
Between Repairs (MTBR) of different photolithography machines, i.e. in the case of 6 
machines the average of MTBF and MTBR is 101.03 and 2.97 steps, respectively. While the 
average MTBF and MTBR of different photolithography layers are shown in Fig. 3(b), in the 
case of 15 layers the average of MTBF and MTBR is 102.56 and 3.30 steps, respectively. 
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Figure 3. MTBF and MTBR of machine breakdown 
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In the task patterns, the symbol r represents the non-photolithography stage; and r2 the 
photolithography stage. The basic task pattern for 11 layers is: 
“rrrrr2rrrrrrrrrrrrrrr2r2r2r2r2r2rrrrrrrrrrrrrrrr2r2r2r2rrrrrrrrrrrrrrrrrr2r2r2rrrrrrrr2r2rrrrrrr2r2rrrrr2r
2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrr”. Then the task pattern for each added layer after 11 layers 
is: “r2rrrr”. Therefore, the task pattern for 12 layers is: 
“rrrrr2rrrrrrrrrrrrrrr2r2r2r2r2r2rrrrrrrrrrrrrrrr2r2r2r2rrrrrrrrrrrrrrrrrr2r2r2rrrrrrrr2r2rrrrrrr2r2rrrrr2r
2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrr”,…, and the task pattern for 15 layers is: 
“rrrrr2rrrrrrrrrrrrrrr2r2r2r2r2r2rrrrrrrrrrrrrrrr2r2r2r2rrrrrrrrrrrrrrrrrr2r2r2rrrrrrrr2r2rrrrrrr2r2rrrrr2r
2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrrr2r2rrrr”. The task matrix for 15 layers 
looks as follows: 

s1 ……………………………………………………………………………… sm

t1  rrrrr2rrrrrrrrrrrrrrr2r2r2r2r2r2rrrrrrrrrrrrrrrr2r2r2r2rrrrr........r2r2rrrr
t2 rrrrr2rrrrrrrrrrrrrrr2r2r2r2r2r2rrrrrrrrrrrrrrrr2r2r2r2rrrrr........r2r2rrrr
..                                                                 :  

ti                rrrrr2rrrrrrrrrrrrrrr2r2r2r2r2r2rrrrrrrrrrrrrrrr2r2r2r2rrrrr........
..   

t1000                                                                 :  

Task Matrix (15 photolithography layers) 

Both LB and LS approaches were applied to the same task matrix during each simulation 
generated by the Task Generation module described in Section 3. The result of simulation, as 
described in detail in the following subsections, shows the advantage of the LB approach 
over the LS approach under different numbers of machines by the average of the different 
photolithography layers, and under different numbers of layers by the average of the 
different photolithography machines. 
Different Photolithography Machines: By comparing the mean of cycle time, in the case of 
6 machines, the LS method has 164.49 (LS-LB) steps more than the LB approach. That is 
7.12% ((LS-LB)/LS) more in the simulation. The different steps from machines 10 to 15 
incrementally rise from 175.54 to 184.16 steps and the percentages of the difference rises 
from 14.92% to 28.83%. The simulation result of different photolithography machines 
indicates that the more photolithography machines, the better the LB approach performs 
than the LS method does. The simulation result is shown in Fig. 4(a). 
Different Photolithography Layers: On the other hand, the simulation result of different 
layers (11 to 15 layers) indicates that there is no significant difference with different 
photolithography layers. The outperformance in percentage of the LB approach is between 
the minimum, 16.71%, to the maximum, 19.72%. Such a simulation result is shown in Fig. 
4(b).
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Simulation Result -- Different Machines
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Figure 4. Simulation results 
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5.2 Thrashing and Load Unbalancing 

After applying the LS approach to the above simulations and counting the required 
resource (Equation (1): RR(rkx, sj) of Section 4.2, k=2, x=6, 10, 13, 15) for the 
photolithography machines at each step, we can observe that the load balancing status in 
terms of the difference between maximum and minimum counts of the required resource 
for the machines becomes larger and unstable, i.e., the thrashing phenomenon takes place 
in the simulations. The simulation is set with 6, 10, 13, and 15 photolithography machines 
and 15 photolithography layers. In the simulation, the Max-Min and Standard Deviation 
of wafer lots in machine buffers set with 6, 10, 13, and 15 machines are shown in the 
graphs in Fig. 5 ((a), (b), (c), and (d)), respectively. The simulation results also reveal that 
the fewer machines the system has, the worse the situation of an unbalanced load would 
be to the system. On the other hand, while applying the LB method, the load balancing 
status is stable and consistent with different machines, and it is always less then 2.5 at 
each execution step. 

6. Conclusion 

We presented the Resource Schedule and Execution Matrix (RSEM) framework–a novel 
representation and manipulation method for the tasks in this paper. The RSEM framework 
is used as a tool to analyze the issue of dedicated machine constraint and develop solutions. 
The simulation also showed that the proposed LB scheduling approach was better than the 
LS method in various situations. Although the simulations are simplified, they reflect the 
real situation we have met in the factory.  
The advantage of the proposed RSEM framework is that we can easily apply various 
policies to the scheduling system by simple calculation on a two-dimensional matrix. The 
matrix architecture is easy for practicing other semiconductor manufacturing problems in 
the area with a similar constraint. We also want to apply other scheduling rules to the 
Resource Allocation module in the RSEM framework. Our intended future work is to develop 
a knowledge-based scheduling system for the Resource Allocation module or to model it as 
distributed constraint satisfaction scheduling project. 
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Max-Min & STD of  Machine Buffers - LS Method with 6 Machines

0

10

20

30

40

50

60

St
ep

=0

St
ep

=20
0

St
ep

=40
0

St
ep

=60
0

St
ep

=80
0

St
ep

=10
00

St
ep

=12
00

St
ep

=14
00

St
ep

=16
00

St
ep

=18
00

St
ep

=20
00

St
ep

=22
00

St
ep

=24
00

St
ep

=26
00

St
ep

=28
00

St
ep

=30
00

St
ep

=32
00

St
ep

=34
00

St
ep

=36
00

St
ep

=38
00

St
ep

=40
00

St
ep

=42
00

Ste
p=44

00

St
ep

=46
00

Ste
p=48

00

St
ep

=50
00

St
ep

=52
00

St
ep

=54
00

St
ep

=56
00

St
ep

=58
00

STD

Max-Min

Max STD = 19.93

Max-Min & STD of Machine Buffers - LB Approach with 6 Machines
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Figure 5(a). Thrashing phenomenon—6 machines 
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Max-Min & STD of Machine Buffers - LS Method with 10 Machines
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Max-Min & STD of  Machine Buffers - LB Approach with 10 Machines
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Figure 5(b). Thrashing phenomenon—10 machines 
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Max-Min & STD of Machine Buffers - LS Method with 13 Machines
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Figure 5(c). Thrashing phenomenon—13 machines 
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Min-Max & STD of Machine Buffers - LS Method with 15 Machines
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Figure 5(d). Thrashing phenomenon—15 machines 
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