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Preface

Scheduling theory is concerned with the optimal allocation of scarce resources (for instance,
machines, processors, robots, operators, etc.) to activities over time, with the objective of
optimizing one or several performance measures. The study of scheduling started about
fifty years ago, being initiated by seminal papers by Johnson (1954) and Bellman (1956).
Since then machine scheduling theory have received considerable development. As a result,
a great diversity of scheduling models and optimization techniques have been developed
that found wide applications in industry, transport and communications. Today, scheduling
theory is an integral, generally recognized and rapidly evolving branch of operations
research, fruitfully contributing to computer science, artificial intelligence, and industrial
engineering and management. The interested reader can find many nice pearls of
scheduling theory in textbooks, monographs and handbooks by Tanaev et al. (1994a,b),
Pinedo (2001), Leung (2001), Brucker (2007), and Blazewicz et al. (2007).

This book is the result of an initiative launched by Prof. Vedran Kordic, a major goal of
which is to continue a good tradition - to bring together reputable researchers from different
countries in order to provide a comprehensive coverage of advanced and modern topics in
scheduling not yet reflected by other books. The virtual consortium of the authors has been
created by using electronic exchanges; it comprises 50 authors from 18 different countries
who have submitted 23 contributions to this collective product. In this sense, the volume in
your hands can be added to a bookshelf with similar collective publications in scheduling,
started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and
Punnen (2002), and Leung (2004).

This volume contains four major parts that cover the following directions: the state of the art
in theory and algorithms for classical and non-standard scheduling problems; new exact
optimization algorithms, approximation algorithms with performance guarantees, heuristics
and metaheuristics; novel models and approaches to scheduling; and, last but least, several
real-life applications and case studies.

The brief outline of the volume is as follows.

Part I presents tutorials, surveys and comparative studies of several new trends and modern
tools in scheduling theory. Chapter 1 is a tutorial on theory of cyclic scheduling. It is
included for those readers who are unfamiliar with this area of scheduling theory. Cyclic
scheduling models are traditionally used to control repetitive industrial processes and
enhance the performance of robotic lines in many industries. A brief overview of cyclic
scheduling models arising in manufacturing systems served by robots is presented, started
with a discussion of early works appeared in the 1960s. Although the considered
scheduling problems are, in general, NP-hard, a graph approach presented in this chapter
permits to reduce some special cases to the parametric critical path problem in a graph and
solve them in polynomial time.

Chapter 2 describes the so-called multi-agent scheduling models applied to the situations in
which the resource allocation process involves different stakeholders (“agents”), each
having his/her own set of jobs and interests, and there is no central authority which can
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solve possible conflicts in resource usage over time. In this case, standard scheduling models
become invalid, since rather than computing "optimal solutions”, the model is asked to
provide useful elements for the negotiation process, which eventually should lead to a
stable and acceptable resource allocation. The chapter does not review the whole scope in
detail, but rather concentrates on combinatorial models and their applications. Two major
mechanisms for generating schedules, auctions and bargaining models, corresponding to
different information exchange scenarios, are considered. Known results are reviewed and
venues for future research are pointed out.

Chapter 3 considers a class of scheduling problems under unavailability constraints
associated, for example, with breakdown periods, maintenance durations and/or setup
times. Such problems can be met in different industrial environments in numerous real-life
applications. Recent algorithmic approaches proposed to solve these problems are
presented, and their complexity and worst-case performance characteristics are discussed.
The main attention is devoted to the flow-time minimization in the weighted and
unweighted cases, for single-machine and parallel machine scheduling problems.

Chapter 4 is devoted to the analysis of scheduling problems with communication delays.
With the increasing importance of parallel computing, the question of how to schedule a set
of precedence-constrained tasks on a given computer architecture, with communication
delays taken into account, becomes critical. The chapter presents the principal results related
to complexity, approximability and non-approximability of scheduling problems in
presence of communication delays.

Part Il comprising eight chapters is devoted to the design of scheduling algorithms. Here the
reader can find a wide variety of algorithms: exact, approximate with performance
guarantees, heuristics and meta-heuristics; most algorithms are supplied by the complexity
analysis and/or tested computationally.

Chapter 5 deals with a batch version of the single-processor scheduling problem with batch
setup times and batch delivery costs, the objective being to find a schedule which minimizes
the sum of the weighted number of late jobs and the delivery costs. A new dynamic
programming (DP) algorithm which runs in pseudo-polynomial time is proposed. By
combining the techniques of binary range search and static interval partitioning, the DP
algorithm is converted into a fully polynomial time approximation scheme for the general
case. The DP algorithm becomes polynomial for the special cases when jobs have equal
weights or equal processing times.

Chapter 6 studies on-line approximation algorithms with performance guarantees for an
important class of scheduling problems defined on identical machines, for jobs with
arbitrary release times.

Chapter 7 presents a new hybrid metaheuristic for solving the jobshop scheduling problem
that combines augmented-neural-networks with genetic algorithm based search.

In Chapter 8 heuristics based on a combination of the guided search and tabu search are
considered to minimize the maximum completion time and maximum tardiness in the
parallel-machine scheduling problems. Computational characteristics of the proposed
heuristics are evaluated through extensive experiments.

Chapter 9 presents a hybrid meta-heuristics based on a combination of the genetic algorithm
and the local search aimed to solve the re-entrant flowshop scheduling problems. The
hybrid method is compared with the optimal solutions generated by the integer
programming technique, and the near optimal solutions generated by a pure genetic
algorithm. Computational experiments are performed to illustrate the effectiveness and
efficiency of the proposed algorithm.
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Chapter 10 is devoted to the design of different hybrid heuristics to schedule a bottleneck
machine in a flexible manufacturing system problems with the objective to minimize the
total weighted tardiness. Search algorithms based on heuristic improvement and local
evolutionary procedures are formulated and computationally compared.

Chapter 11 deals with a multi-objective no-wait flow shop scheduling problem in which the
weighted mean completion time and the weighted mean tardiness are to be optimized
simultaneously. To tackle this problem, a novel computational technique, inspired by
immunology, has emerged, known as artificial immune systems. An effective multi-
objective immune algorithm is designed for searching the Pareto-optimal frontier. In order
to validate the proposed algorithm, various test problems are designed and the algorithm is
compared with a conventional multi-objective genetic algorithm. Comparison metrics, such
as the number of Pareto optimal solutions found by the algorithm, error ratio, generational
distance, spacing metric, and diversity metric, are applied to validate the algorithm
efficiency. The experimental results indicated that the proposed algorithm outperforms the
conventional genetic algorithm, especially for the large-sized problems.

Chapter 12 considers a version of the open-shop problem called the concurrent open shop
with the objective of minimizing the weighted number of tardy jobs. A branch and bound
algorithm is developed. Then, in order to produce approximate solutions in a reasonable
time, a heuristic and a tabu search algorithm are proposed.. Computational experiments
support the validity and efficiency of the tabu search algorithm.

Part III comprises seven chapters and deals with new models and decision making
approaches to scheduling. Chapter 13 addresses an integrative view for the production
scheduling problem, namely resources integration, cost elements integration and solution
methodologies integration. Among methodologies considered and being integrated together
are mathematical programming, constraint programming and metaheuristics. Widely used
models and representations for production scheduling problems are reconsidered, and
optimization objectives are reviewed. An integration scheme is proposed and performance
of approaches is analyzed.

Chapter 14 examines scheduling problems confronted by planners in multi product
chemical plants that involve sequencing of jobs with sequence-dependent setup time. Two
mixed integer programming (MIP) formulations are suggested, the first one aimed to
minimize the total tardiness while the second minimizing the sum of total
earliness/tardiness for parallel machine problem.

Chapter 15 presents a novel mixed-integer programming model of the flexible flow line
problem that minimizes the makespan. The proposed model considers two main
constraints, namely blocking processors and sequence-dependent setup time between jobs.
Chapter 16 considers the so-called hybrid jobshop problem which is a combination of the
standard jobshop and parallel machine scheduling problems with the objective of
minimizing the total tardiness. The problem has real-life applications in the semiconductor
manufacturing or in the paper industries. Efficient heuristic methods to solve the problem,
namely, genetic algorithms and ant colony heuristics, are discussed.

Chapter 17 develops the methodology of dynamical gradient Artificial Neural Networks for
solving the identical parallel machine scheduling problem with the makespan criterion
(which is known to be NP-hard even for the case of two identical parallel machines). A
Hopfield-like network is proposed that uses time-varying penalty parameters. A novel time-
varying penalty method that guarantees feasible and near optimal solutions for solving the
problem is suggested and compared computationally with the known LPT heuristic.
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In Chapter 18 a dynamic heuristic rule-based approach is proposed to solve the resource
constrained scheduling problem in an FMS, and to determine the best routes of the parts,
which have routing flexibility. The performance of the proposed rule-based system is
compared with single dispatching rules.

Chapter 19 develops a geometric approach to modeling a large class of multithreaded
programs sharing resources and to scheduling concurrent real-time processes. This chapter
demonstrates a non-trivial interplay between geometric approaches and real-time
programming. An experimental implementation allowed to validate the method and
provided encouraging results.

Part IV comprises four chapters and introduces real-life applications of scheduling theory
and case studies in the sheet metal shop (Chapter 20), baggage handling systems (Chapter
21), large-scale supply chains (Chapter 22), and semiconductor manufacturing and
photolithography systems (Chapter 23).

Summing up the wide range of issues presented in the book, it can be addressed to a quite
broad audience, including both academic researchers and practitioners in halls of industries
interested in scheduling theory and its applications. Also, it is heartily recommended to
graduate and PhD students in operations research, management science, business
administration, computer science/engineering, industrial engineering and management,
information systems, and applied mathematics.

This book is the result of many collaborating parties. I gratefully acknowledge the assistance
provided by Dr. Vedran Kordic, Editor-in-Chief of the book series, who initiated this project,
and thank all the authors who contributed to the volume.
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An Extension of Basic Models in Machine
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1. Introduction

There is a growing interest on cyclic scheduling problems both in the scheduling literature
and among practitioners in the industrial world. There are numerous examples of
applications of cyclic scheduling problems in different industries (see, e.g., Hall (1999),
Pinedo (2001)), automatic control (Romanovskii (1967), Cohen et al. (1985)), multi-processor
computations (Hanen and Munier (1995), Kats and Levner (2003)), robotics (Livshits et al.
(1974), Kats and Mikhailetskii (1980), Kats (1982), Sethi et al. (1992), Lei (1993), Kats and
Levner (1997a, 1997b), Hall (1999), Crama et al. (2000), Agnetis and Pacciarelli (2000),
Dawande et al. (2005, 2007)), and in communications and transport (Dauscha et al. (1985),
Sharma and Paradkar (1995), Kubiak (2005)). It is, perhaps, a surprising thing that many
facts in scheduling theory obtained as early as in the 1960s, are re-discovered and re-
rediscovered by the next generations of researchers. About two decades ago, this fact was
noticed by Serafini and Ukovich (1989).

The present survey uniformly addresses cyclic scheduling problems through the prism of
the classical machine scheduling theory focusing on their features that are common for all
aforementioned applications. Historically, the scheduling literature considered periodic
machine scheduling problems in two major classes - called flowshop and jobshop - in which
setup and transportation times were assumed insignificant. Indeed, many machining centers
can quickly switch tools, so the setup times for these situations may be small or negligible.
There are a lot of results about cyclic flowshop and jobshop problems with negligible
setup/transportation times. Advantages of cyclic scheduling policies over conventional
(non-cyclic) scheduling in flexible manufacturing are widely discussed in the literature, we
refer the interested reader to Karabati and Kouvelis (1996), Lee and Posner (1997), Hall et al.
(2002), Seo and Lee (2002), Timkovsky (2004), Dawande et al. (2007), and numerous
references therein.

At the same time, modern flexible manufacturing systems are supplied by computer-
controlled hoists, robots and other material handling devices such that the transportation
and setup operation times are significant and should not be ignored. Robots have become a
standard tool to serve cyclic transportation and assembling/disassembling processes in
manufacturing of airplanes, automobiles, semiconductors, printed circuit boards, food
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products, pharmaceutics and cosmetics. Robots have expanded production capabilities in
the manufacturing world making the assembly process faster, more efficient and precise
than ever before. Robots save workers from tedious and dull assembly line jobs, and
increase production and savings in the processes. As larger and more complex robotic cells
are implemented, more sophisticated planning and scheduling models and algorithms are
required to perform and optimize these processes.

The cyclic scheduling problems, in which setup operations are performed by automatic
transporting devices, constitute a vast subclass of cyclic problems. Robots or other automatic
devices are explicitly introduced into the models and treated as special purpose machines.
In this chapter, we will focus on three major classes of cyclic scheduling problems -
flowshop, jobshop, and parallel machine shop.

The chapter is structured as follows. Section 2 is a historical overview, with the main
attention being paid to the early works of the 1960s. Section 3 recalls three orthodox classes
of scheduling theory: flowshop, jobshop, and PERT-shop. Each of these classes can be
extended in two directions: (a) for describing periodic processes with negligible setups, and
(b) for describing periodic processes in robotic cells where setups and transportation times
are non-negligible. In Section 4 we consider an extension of the cyclic PERT-shop, called the
cyclic FMS-shop and demonstrate that its important special case can be solved efficiently by
using a graph approach. Section 5 concludes the chapter.

2. Brief Historical Overview

Cyclic scheduling problems have been introduced in the scheduling literature in the early
1960s, some of them assuming setup/transportation times negligible while other explicitly
treating material handling devices with non-negligible operation times.

Cyclic Flowshop. Cuninghame-Greene (1960, 1962) has described periodic industrial
processes, which in today’s terminology might be classified as a cyclic flowshop (without
setups and robots), and suggested an algebraic method for finding minimum cycle time
using matrix multiplication in which one writes “addition” in place of multiplication and
operation “max” instead of addition. This (max, +)-algebra has become popular in the 1980s
(see, e.g. Cuninghame-Greene (1979), Cohen et al. (1985), Baccelli et al. (1992)) and is
presently used for solving the cyclic flowshop without robots, see, e.g., Hanen (1994), Hanen
and Munier (1995), Lee (2000), and Seo and Lee (2002).

Independently of the latter research, Degtyarev and Timkovsky (1976) and Timkovsky
(1977) have studied so-called spyral cyclograms widely used in the Soviet electronic industry;
they introduced a generalized shop structure which they called a “cycle shop”. Using a more
standard terminology, we might say that these authors have been the first to study a
flowshop with reentrant machines which includes, as special cases, many variants of the basic
flowshop, for instance, the reentrant flowshop of Graves et al. (1983), V-shop of Lev and
Adiri (1984), cyclic robotic flowshop of Kats and Levner (1997, 1998, 2002). The interested
reader is referred to Middendorf and Timkovsky (2002) and Timkovsky (2004) for more
details.

Cyclic Robotic Flowshop. In the beginning of 1960s, a group of Byelorussian mathematicians
(Suprunenko et al. (1962), Aizenshtat (1963), Tanaev (1964), and others) investigated cyclic
processes in manufacturing lines served by transporting devices. The latters differ from
other machines in their physical characteristics and functioning. These authors have
introduced a cyclic robotic flowshop problem and suggested, in particular, a combinatorial
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method called the method of forbidden intervals which today is being developed further by
different authors for various cyclic robotic scheduling problems (see, for example, Livshits
et al. (1974), Levner et al. (1997), Kats et al. (1999), Che and Chu (2005a, 2005b), Chu (2006),
Che et al. (2002, 2003)). A thorough review in this area can be found in the surveys by Hall
(1999), Crama et al. (2000), Manier and Bloch (2003), and Dawande et al. (2005, 2007).

Cyclic PERT-shop. The following cyclic PERT-shop problem has originated in the work by
Romanovskii (1967). There is a set S of n partially ordered operations, called generic
operations, to be processed on machines. As in the classic (non-cyclic) PERT/CPM problem,
each operation is done by a dedicated machine and there is sufficiently many machines to
perform all operations; so the question of scheduling operations on machines vanishes. Each
operation i has processing time p; > 0 and must be performed periodically with the same
period T, infinitely many times.

For each operation i, let <i, k> denote the kth execution (or, repetition) of operation i in a
schedule (here k is any positive integer). Precedence relations are defined as follows (here we
use a slightly different notation than that given by Romanovskii). If a generic operation i
precedes a generic operation j, the corresponding edge (i, j) is introduced. Any edge (i,j) is
supplied by two given values, L; called the length, or delay, and Hj; called the height of the
corresponding edge (i, j). The former value is any rational number of any sign while the
latter is integer. Then, for a pair of operations i and j, and the given length L;j and height Hj;
the following relations are given: for all k 21, t(ik) + L; < t(j, k + H;j), where {(i,k) is the
starting time of operation <i, k>. An edge is called interior if its end-nodes belong to the same
iteration (or, one can say “to the same block, or pattern”) and backward (or, recycling) if its
end-nodes belong to two consecutive blocks.

A schedule is called periodic (or cyclic) with cycle time T if (i, k) = t(i,1) + (k-1)T, for all
integer k 21, and for all ieS (see Fig. 1). The problem is to find a periodic schedule (i.e., the
starting time #(i,1) of operations) providing a minimum cycle time T, in a graph with the
infinite number of edges representing an infinitely repeating process.

el B>

Figure 1. The cyclic PERT graph (from Romanovskii, (1967))

In the above seminal paper of 1967, Romanovskii proved the following claims which have

been rediscovered later by numerous authors.

e Claim1. Let the heights of interior edges be 0 and the heights of backward edges 1. The
minimum cycle time in a periodic PERT graph with the infinite number of edges is
equal to the maximum circuit ratio in a corresponding double-weighted finite graph in
which the first weight of the arc is its length and the second is its height: Tmin = maxc

ZLI-]'/ ZH,-j, where maximum is taken over all circuits C; ZLij denotes the total circuit

length, and ZHij the total circuit height.
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e Claim 2. The max circuit ratio problem and its version, called the max mean cycle
problem, can be reformulated as linear programming problems. The dual to these
problems is the parametric critical path problem.

e Claim 3. The above problems, namely, the max circuit ratio problem and the max mean
cycle problem, can be solved by wusing the iterative Howard-type dynamic
programming algorithm more efficiently than by linear programming. (The basic
Howard algorithm is published in Howard (1960)).

e Claim 4. Mean cycle time counted for n repetitions of the first block in an optimal
schedule differs from the optimal mean cycle time by O(1/n).

The interested reader can find these or similar claims discovered independently, for

example, in Reiter (1968), Ramchandani (1973), Karp (1978), Gondran and Minoux (1985),

Cohen et al. (1985), Hillion and Proth (1989), McCormick et al. (1989), Chretienne (1991), Lei

and Liu (2001), Roundy (1992), Ioachim and Soumis (1995), Lee and Posner (1997), Hanen

(1994), Hanen and Munier (1995), Levner and Kats (1998), Dasdan et al. (1999), Hall et al.

(2002). In recent years, the cyclic PERT-shop has been studied for more sophisticated

modifications, with the number of machines limited and resource constraints added (Lei

(1993), Hanen (1994), Hanen and Munier (1995), Kats and Levner (2002), Brucker et al.

(2002), Kampmeyer (2006)).

3. Basic Definitions and lllustrations

In this section, we recall several basic definitions from the scheduling theory. Machine
scheduling is the allocation of a set of machines and other well-defined resources to a set of
given jobs, consisting of operations, subject to some pre-determined constraints, in order to
satisfy a specific objective. A problem instance consists of a set of m machines, a set of 1 jobs
is to be processed sequentially on all machines, where each operation is performed on
exactly one machine; thus, each job is a set of operations each associated with a machine.

Depending on how the jobs are executed at the shop (i.e. what is the routing in which jobs

visit machines), the manufacturing systems are classified as:

e flow shops, where all jobs are performed sequentially, and have the same processing
sequence (routing ) on all machines, or

e job shops, where the jobs are performed sequentially but each job has its own
processing sequence through the machines,

e parallel machine shop, where sequence of operations is partially ordered and several
operations of any individual job can be performed simultaneously on several parallel
machines.

Formal descriptions of these problems can be found in Levner (1991, 1992), Tanaev et al.

(1994a, 1994b), Pinedo (2001), Leung (2004), Shtub et al. (1994), Gupta and Stafford (2006),

Brucker (2007), Blazewicz et al. (2007). We will consider their cyclic versions.

The cyclic shop problems are an extension of the classical shop problems. A problem

instance again consists of a set of m machines and a set of 1 jobs (usually called products, or

part types) which is to be processed sequentially on all machines. The machines are
requested to process repetitively a minimal part set, or MPS, where the MPS is defined as the
smallest integer multiple of the periodic production requirements for every product. In
other words, let ¥ = (11, r2,..., 1) be the production requirements vector defining how many
units of each product (j=1,...,n) are to be produced over the planning horizon. Then the MPS
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is the vector rvps = (r1/9, 12/, ..., /q) where g is the greatest common divisor of integers
11, t2... , Ta. Identical products of different, periodically repeated, replicas of the MPS have
the same processing sequences and processing times, whereas different products within an
MPS may require different processing sequences of machines and the processing times. The
replicas of the MPS are processed through equal time intervals T called cycle time and in
each cycle, exactly one MPS’s replica is introduced into the process and exactly one MPS’s
replica is completed.

An important subclass of cyclic shop problems are the robotic scheduling problems, in
which one or several robots perform transportation operations in the production process.
The robot can be considered as an additional machine in the shop whose transportation
operations are added to the set of processing operations. However, this “machine” has
several specific properties: (i) it is re-entrant (that is, any product requires the utilization of
the same robot several times during each cycle) and (ii) its setup operations, that is, the
times of empty robots between the processing machines, are non-negligible.

3.1. Cyclic Robotic Flowshop

In the cyclic robotic flowshop problem it is assumed that a technological processing
sequence (route) for n products in an MPS is the same for all products and is repeated
infinitely many times. The transportation and feeding operations are done by robots, and
the sequences of the robotic operations and technological operations are repeated cyclically.
The objective is to find the cyclic schedule with the maximum productivity, that is, the
minimum cycle time. In the general case, the robot's route is not given and is to be found as
a decision variable.

A possible layout of the cyclic robotic flowshop is presented in Fig. 2.

ol

'fq. il
! #

31

Figure 2. Cyclic Robotic Flowshop

A corresponding Gantt chart depicting coordinated movement of parts and robot is given in
Fig. 3. Machines 0 and 6 stand for the loading and unloading stations, correspondingly.
Three identical parts are introduced into the system at time 0, 47 and 94, respectively. The
bold horizontal lines depict processing operations on the machines while a thin line depicts
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the route of a single robot between the processing machines. More details can be found in
Kats and Levner (1998).

Machine

g F | 1 } 13 | S S - ,|:
a 10 20 30 40 50 &0 7O =1e] -
Tima

Figure 3. The Gantt chart for cyclic robotic flowshop (from Kats and Levner (1998))

3.2 Cyclic Robotic Jobshop
The cyclic robotic jobshop differs from cyclic robotic flowshop only in that each of n
products in MPS has its own route as depicted in Fig. 4.

1

Loading 5 Unloading
station e st tion 1l

Fig. 4. An example of a simple technological network with two linear product routes and
five processing machines, depicted by the squares, where —— denotes the route for
product 4, and === denotes the route for product b (from Kats et al. (2007))

The corresponding graphs depicting the sequence of technological operations and robot
moves in a jobshop frame are presented in Fig. 5 and 6 .

The corresponding Gantt chart depicting coordinated movement of parts and robots in time
is in Fig. 7, where stations 1 to 5 stand for the processing machines and stations 0 and 6 are,
correspondingly, the loading and unloading ones. In what follows, we refer to the machines
and loading/unloading stations simply as the stations.
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Cycle 1

L]
un?®
llllll---‘-‘

Figure 5. The sequence of robot operations in two consecutive cycles (from Kats et al. (2007))

.
.
«® %e Cycle 2
.

Figure 6. Graph depicting the sequence of processing operations and robot moves for two
successive cycles (Kats et al. (2007)). The variables are presented as nodes and the constraints
as arcs, where denotes the robot operation sequence,**=+*»the processing time window
constraints, —> setup time constraints, and = = = = = ® the cut-off line between two cycles

-
a®
sssnuuunt?®

-90 -60
Part a of MPS O e=== Part b of MPS 0 === Part a of MPS -1 Part b of MPS -1 Part a of MPS 1
e Part b of MPS 1 Part a of MPS -2 Part b of MPS -2 Robot

Figure 7. The Gantt chart of coordinated movement of parts and a robot in time (Kats et al.

(2007))
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3.3 Cyclic Robotic PERT Shop

This major class of cyclic scheduling problems which we will focus on in this sub-section,
has several other names in the literature, for example, ‘the basic cyclic scheduling problem’,
‘the multiprocessor cyclic scheduling problem’, ‘the general cyclic machine scheduling
problem’. We will call this class the cyclic PERT shop due to its evident closeness to project
scheduling, or PERT/CPM problems: when precedence relations between operations are
given, and there is a sufficient number of machines, the parallel machine scheduling
problem becomes the well-known PERT-time problem.

We define the cyclic PERT shop as follows: A set of n products in an MPS is given and the
technological process for each product is described by its own PERT graph. A product may be
considered as assembly consisting of several parts. There are three types of technological
operations: a) operations which can be done in parallel on several machines, ie. the parts
consisting the assembly are processed separately; b) assembling operations; c) disassembling
operations. There are infinitely many replicas of the MPS and a new MPS's replica is introduced
in each cycle. In the cyclic robotic PERT shop, one or several robots are introduced for performing
the transportation and feeding operations. The objective is to find the cyclic schedule and the
robot route providing the maximum productivity, that is, the minimum cycle time.

Classes of scheduling Subclasses of cyclic R .
. epresentative references
problems scheduling problems
Cuninghame-Greene (1960, 1962),
Models with negligible Timkovsky (1977), Karabati and
setups and no-robot Kouvelis (1996), Lee and Posner
(1997)
Cyclic Flowshop Suprunenko et al. (1962), Tanaev
(1964), Livshits et al. (1974),
Models Phillips and Unger (1976), Kats
Robotic models and Mikhailetskii (1980), Kats
(1982), Kats and Levner (1997a,
1997b), Crama et al. (2000),
Dawande et al. (2005, 2007).
Models with negligible Roundy (1992), Hanen and
Cyclic Jobshop Models setups and no-robot Munier (1995), Hall et al. (2002)
Robotic models Kampmeyer (2006), Kats et al.
(2007)
Models with setups Romanovskii (1967), Chretienne
negligible, no-robot (1991), Hanen and Munier (1995)
PERT-shop Models Lei (1993), Chen et al. (1998),
Robotic models Levner and Kats (1998), Alcaide
et al. (2007), Kats et al. (2007)

Remark. For completeness, we might mention three more groups of robotic (non-cyclic) scheduling
problems which might be looked at as “atomic elements” of the cyclic problems: Robotic Non-cyclic
Flowshop (Kise (1991), Levner et al. (1995a,1995b), Kogan and Levner 1998), Robotic Non-cyclic Jobshop
(Hurink and Knust (2002)), and Robotic Non-cyclic PERT-shop (Levner et al. (1995c)). However, these
problems lie out of the scope of the present survey.

Table 1. Classification of major cyclic scheduling problems
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The cyclic robotic PERT shop problems differs from the cyclic robotic jobshop in two main
aspects: a) the operations are partially ordered, in contrast to the jobshop where operations are
linearly ordered; b) there are sufficiently many processing machines, due to which the
sequencing of operations on machines vanishes. This type of problems is overviewed in
more detail in surveys by Hall (1999) and Crama et al. (2000).

We conclude this section by the classification scheme for cyclic problems and the
representative references (see Table 1).

4. The Cyclic Robotic FMS-shop

4.1. An Informal Description of the Cyclic Robotic FMS Shop

The cyclic robotic FMS-shop can be looked at as an extension of the cyclic robotic jobshop in
which there given PERT-type (not-only-chain) precedence relations between
assembly / disassembly operations for each product. In other view, the robotic FMS-shop can
be looked at as a generalized cyclic robotic PERT-shop in which a finite set of machines
performing the operations are given. In what follows, we assume that K PERT projects
representing the technological processes for K products in an MPS are given and to be
repeated infinitely many times on m machines.

Example. (Levner et al. (2007)). MPS consists of two products MPS ={a, b} with sequence of
processing operations for products a and b given in the form of PERT graphs as shown in
Fig. 8.

4 Product b 4
1 5

Product a

Figure 8. Two fragments of a technological network in which partially ordered (PERT-type)
networks are given for two individual products in an FMS-shop

There are five processing machines and loading and unloading stations (stations 0 and 6
correspondingly). Infinite number of MPS replicas are waiting for processing and arrive
periodically in process as shown in Fig. 9.

Figure 9. The Gantt chart of several MPS replicas arriving in the technological process
through equal time intervals
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We give the problem description basing on the model developed in Kats et al. (2007). The
product (part type) processing time at any machine is not fixed, but defined by a pair of
minimum and maximum time limits, called the time window constraints. The movements of
parts between the machines and loading/unloading stations are performed by a robot,
which travels in a non-negligible time. To move a part, the robot first travels to the station
where the part is located, wait if the part is still in process, unload the part and then travels
to the next station specified by a given sequence of material handling operations for the
robot. The robot is supplied by multiple grippers in order to transport several parts
simultaneously to an assembling machine or from an disassembling machine. There is no
buffer available between the machines and each machine can process only one product at
time. If different types of products are processed at the same machine, then a non-negligible
setup time between the processing of these products may be required. The general problem
is to determine the product sequence at each machine, the robot route and the exact
processing time of each product at each machine so that the cycle time is minimized while
the time windows, the setup times, and the robot traveling time constraints are satisfied.
Scheduling of the material handling operations of robots to minimize the cycle time, even
with a single part per MPS and a single one-gripper robot, has been known to be NP-hard in
strong sense (Livshits et al. (1974); Lei and Wang (1989)).

In this chapter, we are interested in a special case of the cyclic scheduling problem
encountered in such a processing network. In particular, we solve the multiple-product
problem of minimizing the cycle time for a processing network with a single multi-gripper
robot, a fixed and known in advance sequence of material handling operations for the robot
to be performed in each cycle and the known product sequence at each machine.
Throughout the remaining analysis of this chapter, we shall denote this problem as Q.
Problem Q is a further extension of the scheduling problem P introduced and solved in Kats
et al. (2007). The problem P is the jobshop scheduling problem where technological
operations for each product are linked by simple chain-like precedence relations (see Fig. 5
above). Like in P, in problem Q the sequence of robot moves is assumed to be fixed and
known. With this special case, the sequencing issue for the robot moves vanishes, and the
problem reduces to finding the exact processing times from the given intervals. This case
has been shown to be polynomial solvable by several researchers independently via
different approaches. Representative work on this can be found in the work by Livshits et al.
(1974), Matsuo et al. (1991), Lei (1993), Ioachim and Soumis (1995), Chen et al. (1998), Van de
Klundert (1996), Levner et al. (1996, 1997), Levner and Kats (1998), Crama et al. (2000), Lee
(2000), Lei and Liu (2001), Alcaide at al. (2007), Kats et al. (2007).

In this section, we analyze the properties of Q and show that it can be solved by the
polynomial algorithm, originating from the parametric critical path method by Levner and Kats
(1998) for the single-product version of the problem. Our main observation is that the
technological processes for products presented by PERT-type graphs (see Fig. 8) can be
treated by the same mathematical tools as more primitive processes presented by linear
chains considered in Kats et al. (2007).

4.2. A formal analysis of problem Q

Each given instance of Q has a fixed sequence of material handling operations o, and an
associated MPS with K products and PERT-type precedence relations. The set of processing
operations of a product in the MPS is not in the form of a simple chain like in problem P, but
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rather linked into a technological graph, containing assembling and disassembling operations.
Let G denote the associated integrated technological network which integrates K technological
graphs of all products in the MPS with the given sequence of processing operations on
machines. In network G, each node specifies a machine or the loading station 0/unloading
station ul, each arc specifies a particular precedence relationship between two consecutive
processing operations of a product, and each technological graph to be performed for each
product corresponds to a subgraph in network G.

Now, let €2 be the set of distinct stations/nodes in a given technological network G, j be the
index to enumerate stations, j € 0, and k be the index for product, 1 <k < K. Each
product k requires a total of n; partially ordered processing operations with each operation
taking place at a respective workstation. In each material handling operation the robot
removes a product (or a “semi-product”) from a station. Therefore,

n=K+3, k=1.2.... K My is the total number of all operations to be performed by the robot
in a cycle, including a total of K operations at station 0 (i.e., one for each product in the MPS
to be introduced into the process in a cycle). The processing time for product k at station j,

Pjk>1sa deterministic decision variable that must be confined within a given interval

[aj kabj k] ,for1<k<K, j=12..m and j# 0, where parameters a;x and b;x are the

given constants and define the time window constraints on the part processing time at
workstation j. That is, after arriving at workstation j, a part of type k must immediately start
processing and be processed there for a time interval no less than a;x and no more than bjy.
In the practices of assembling shops, the violating of the time window constraints,

a;k <p ik <b j k> may deteriorate the product quality and cause a defect product.

For any given instance of Q sequence O , o = <([i], #[i], f(i)), i=1,2, ...,n> specifies a total of n
(material handling) operations to be performed by the robot in each cycle. The ith operation
in o, ([i], r[i], fi)) where 1<i<n, [i1le Q\{ul}, rlile{l,2,....K}, f(i)elkeep, load)
consists of the following sequential motions:

e Unload product ¥[i] from station [i];

e If f(i) = load, then transport product F[i]to the next station on its technological route, s|i],

s[i] € Q, and load product r[i] to station s[i] which include the loading of all parts of the

product kept by grippers.
o If f(i) = keep, then keep the unloaded product in gripper.
o Travel to station [i+1], where [i +1] € Q\{ul}, and wait if necessary. When i=n, [n+1] =
0.
In each cycle, the given sequence of operations, g, is performed exactly once, so that exactly
one MPS is introduced into the process and exactly one MPS is completed and sent to
station ul. In this infinite cyclic process, parts being moved and processed within a cycle
could belong to different MPS’s replicas introduced in different cycles and full processing
time (life cycle) of one MPS could be much longer than cycle time T.
Network G introduces two types of precedence relationships. The first type of relationships
ensures the processing time window constraints, and the second type refers to the setup time
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constraints on sharing stations. The latter incorporates the corresponding setup times into the
model when two or more part types are to be processed at the same station.

Let time moment 0 be a reference time point in the infinite cyclic process and assume,
without loss of generality, that the current cycle starts at time 0. Let MPS(g) be the gth replica
of the MPS such that its first operation starts at time ¢ - 7', where g= 0, +1, £2,...

Let Z(;) ;) be the moment when part r[i]le€ MPS(0) is removed from station [i]. Then

ilr
Yiori) = Zigon (M0d T) =2 oy =My iy - T 2

is the moment within interval [0, T) when part r[i]e MPS(-hy;,,; ) is removed from station [i]
To make a formal definition for problem Q, let’s introduce the following additional notation:

L[i] The part loading time at station [i], [l] eQ\ {Ml} ;

U, [ The part unloading time at station [i], [l] e\ {0} ;

d[ L The robot traveling time from stations [i] to [i'];

g [C;’]b The pre-specified setup time at shared station [i] between the processing
of part a and the processing of part b, wherea, b €{1,..., K};

o The given set of paired technological operations;

Y Sequence (c)-dependent binary constants: Y(; =1 if (s[i], r[i]) and ([i], [i])

are in the same cycle, and Y}; = 0 otherwise (see Kats et al. (2007)).
Problem Q can be described in the same terms as P in Kats et al. (2007):

Q: Minimize T

subject to
The multigripper robot traveling time constraints
Foralli, 1 <i <n, such that f(i) = load

tii + Up + dpigsti) + Loty + dsti), (5411 < vy oivn) (3a)
Forall i, 1<i<n, such that f(i) = keep
titin + Up + d i, 011 < Hisa)otie, (3b)
where tp1)n+1) =ty + T
The processing time window constraints
Foralli, 1 <i <n, such that f(i) = load
if Y =0
et > U o . —
fstin i)~ Hanti) 2 Uiy sty + Loty + asi i
e < I . A
Lottty ~ Hineti) < Uliy + sty + Loty + Dsgi i
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ifYm=1
T + tofitefi1 -ttt 2 Ui + diigstiy + Lt + asiafil, (4b)

T + tofipefiy -ttt < Upg + drigsti] + Lsgig + Defig -

The setup time constraints on sharing stations
Forall i'<i,1<i',i <n, [i']=[i], and ([i],7[i'],"[i]) € D

The non-negativity condition
All variables T, ¥, 1 ,1 <@ < n, are non-negative.

Constraints (3) ensure the robot to have enough time to operate and to travel between the
starting times of two consecutive operations in sequence c. Constraints (4) enforce the part
processing time at a station to be in given windows. Constraints (5) ensure the required
setup time at the shared stations to be guaranteed.

The processing time window constraints (4a)-(4b) ensure ajx < pj « < bjx, where Ps[i,r]i]

stands for the actual processing time of part r[i] in station s[i] and is determined by the
optimal solution to Q. The “no-wait” requirement means that a part, once introduced into
the process, must be in the status of either being processed at a station or being transported
by a material handling robot.

One can easily observe that the relationships (3) - (6) are of the same form as those in the
model P, and thus an extension of simple chains to the PERT-graphs for each product does
not change the inherent mathematical structure of the model suggested by Kats et al. (2007),
and the complexity of the algorithm proposed for solving P.

4.3. A Polynomial Algorithm for Scheduling the FMS Shop

In this section, we develop results contained in Alcaide et al. (2007) and Kats et al. (2007).
Our considerations are based on the strongly polynomial algorithm for solving problem P
suggested by Kats et al. (2007). However, for reader’s convenience, we present the algorithm
for problem Q in a simplified form, following the scheme and notation developed in Levner
and Kats (1998). To do so, let’s start with the following result.

PROPOSITION 1. Problem Q is a parametric critical path (PCP) problem defined upon a directed
network Gp= (V, A) with parameter-dependent arc lengths.

The proof is along the same line as for problem P in Kats et al. (2007).

The algorithm below for solving Q is called the Parametric Critical Path (PCP) algorithm. As
that for problem P, it consists of three steps (Table 2 below). The first step assigns initial
labels to nodes in a given network Gp, the second step corrects the labels, and the third step,
based on the labels obtained, finds the set A of all feasible cycle times or discovers if this
set is empty.
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PARAMETRIC CRITICAL PATH (PCP) ALGORITHM
Step 1. // Initialization.
Enumerate all the nodes of V\U {f} in an arbitrary order.
Assign labels pO(s)= p19= 0, p0 = w(s —>j)if j#s;
Pred(s) = &} and p9(v) = - o to all other nodes v of VAU f.
Step 2. // Label correction.

For i:=1ton-1do
For each arc e = (t(e), hi(e)) € A compute max{p-i(h(e)), p-i(t(e)) + w(e)).

Calculate
pl)= max max{p" (k(e)).p" (u)+ wlu — h(e))}}. ©

/ /Notice that for u e Pred(h(e)), u — h(e) denotes the existing arc from u to hi(e)).

Step 3. / / Finding all feasible T values or displaying ‘no solution’.
For each arc e = (t(e), h(e)) € A solve the following system of functional
inequalities

pri(te) +wle) < pri(h(e)), )
with respect to T.

Let A be the set of values of T satisfying (7) for all e € A.
If A # O, then return A and stop. Otherwise return ‘no solution’.

At termination, the algorithm either produces the set A of all feasible T, or it
reveals that A = J. In the case A # &, then A = [Tiin, Trax] is an interval.

Let A be the set of values of feasible T satisfying (6)-(7) for all e € A.

If A # J, then return A and stop. Otherwise return “No solution” and stop.

Table 2. The Parametric Critical Path (PCP) Algorithm
The algorithm terminates with a non-empty set, A, if there exists at least one feasible cycle

*
time on Gp. By the definition of A, the optimal cycle time 7" is the minimal value in A.
Once the value of T* is known, the optimal values of all the t-variables in model Q (i.e., the
optimal starting times of robot operations in sequence o) are known as well, and the optimal

processing time, P, Where as[i]’r[i]Sps[i]’r[i]Sbs[i]’r[i],for each part
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rlil=k e {1,2,...,K } in each respective station S[i]along its route, 1 <7 < n, can be
found.

For each arc ecA(Gp), let t(e), h(e), and w(e) denote the tail, the head, and the length of arc e,
respectively. Let j denote node ([ j],7[j]), 2< j<n+1, Y([jl,r[j]) €V, pj denote

the distance label of node j found at the i-th iteration of the PCP algorithm, and (k— j) denote
the arc from node k to j. Let N= n+1 be the total number of nodes of Gp (counting for all the
nodes in V plus the added dummy node f), and M the total number of iterations.

It is worth noticing that labels pi(u) in (6)-(7) are not numbers but the piecewise-linear
functions of T.

PROPOSITION 2. The Parametric Critical Path algorithm finds the optimal solution to problem Q
correctly. The complexity of the parametric critical path algorithm is O(n#), in the worst case.

The proof is identical to that for problem P in Kats et al. (2007).

The following example illustrates how an optimal schedule is obtained by the use of the
proposed PCP algorithm.

Example (Continued). The sequence o of robot moves is fixed and given:

o = <(0bo,U), (2boL), (4a1,U), (1,bs,U), (4bsLl), (BaiU), (5ail),
(3/ba,L), (0,a0,U), (LaoL), (5,a1,U), (6,a1,L), (3,b1,U), (LaoU), (3a0L),
(4,b4,U), (5,baL), 2boU), (1,boL), (2,a0L), (5b1,U), (6,b4,L), (4a0L),
(2,a0,U)>.

Here we use a more detailed description of robot operations given in the form of triplets (¥,
*, *). A number in the first position determines the processing machine or
loading/unloading station, numbered 0 and 6, respectively. A symbol in the second position
determines the product type (a or b); a corresponding subscript determines to which MPS
replica the product belongs. A symbol in the last position determines that a product is either
loaded (symbol L) or unloaded (symbol U).

Then the life cycle of the MPS is completed within two consecutive cycles o] | g, and is
shown in Fig. 6. The Gantt chart of the movements of products and the robot under the
optimal schedule are presented graphically in Fig.10. The minimum cycle time T* = 88.

Figure 10. The Gantt chart of product processing operations and robot movements

We have studied a variation of the single multi-gripper robot cyclic scheduling problem
with a fixed robot operation sequence and the time window constraints on the processing
times. It generalizes the known single-robot single-product problems into the one involving
a processing network, multiple products, and general precedence relations between the
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processing steps for different products in the form of PERT graphs. We reduced the problem
to the parametric critical path problem and solved it in polynomial time by an extension to
the Bellman-Ford algorithm. In particular, we simplified the description of the labeling
procedure suggested by Kats et al. (2007) needed to solve the parametric version of the
critical path problem in strongly polynomial time.

5. Concluding Remarks

Since Johnson's (1954) and Bellman’s (1956) seminal papers, the machine scheduling theory
have received considerable development and enhancement over the last fifty years. As a
result, a variety of scheduling problems and optimization techniques have been developed.
This chapter provides a brief survey of the evolution of basic cyclic scheduling problems
and possible approaches for their solution started with a discussion of early works appeared
in the 1960s. Although the cyclic scheduling problems are, in general, NP-hard, a graph
approach described in the final sections of this chapter permits to reduce some special case
to the parametric critical path problem in a graph and solve it in polynomial time. The
proposed parametric critical path algorithm can be used to design new heuristic search
algorithms for more general problems involving multiple multi-gripper robots, parallel
machines/tanks at each workstation and more general scenarios of cyclic processes in the
cells, like, for example, multi-degree periodic processes. These are the topics for future
research.
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1. Abstract

Scheduling models deal with the best way of carrying out a set of jobs on given processing
resources. Typically, the jobs belong to a single decision maker, who wants to find the most
profitable way of organizing and exploiting available resources, and a single objective
function is specified. If different objectives are present, there can be multiple objective
functions, but still the models refer to a centralized framework, in which a single decision
maker, given data on the jobs and the system, computes the best schedule for the whole
system.

This approach does not apply to those situations in which the allocation process involves
different subjects (agents), each having his/her own set of jobs, and there is no central
authority who can solve possible conflicts in resource usage over time. In this case, the role
of the model must be partially redefined, since rather than computing "optimal" solutions,
the model is asked to provide useful elements for the negotiation process, which eventually
leads to a stable and acceptable resource allocation.

Multi-agent scheduling models are dealt with by several distinct disciplines (besides
optimization, we mention game theory, artificial intelligence etc), possibly indicated by
different terms. We are not going to review the whole scope in detail, but rather we will
concentrate on combinatorial models, and how they can be employed for the purpose on
hand. We will consider two major mechanisms for generating schedules, auctions and
bargaining models, corresponding to different information exchange scenarios.

Keywords: Scheduling, negotiation, combinatorial optimization, complexity, bargaining,
games.

2. Introduction

In the classical approach to scheduling problems, all jobs conceptually belong to a single
decision maker, who is obviously interested in arranging them in the most profitable (or less
costly) way. This typically consists in optimizing a certain objective function. If more than
one optimization criterion is present, the problem may become multi-criteria (see e.g. the
thorough book by T'Kindt and Billaut [33]), but still decision problems and the
corresponding solution algorithms are conceived in a centralized perspective.
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This approach does not apply to situations in which, on the contrary, the allocation process
involves different subjects (agents), each with its own set of jobs, requiring common
resources, and there is no "superior" subject or authority who is in charge of solving conflicts
on resource usage. In such cases, mathematical models can play the role of a negotiation
support tool, conceived to help the agents to reach a mutually acceptable resource
allocation. Optimization models are still important, but they must in general be integrated
with other modeling tools, possibly derived from disciplines such as multi-agent systems,
artificial intelligence or game theory.

In this chapter we want to present a number of modeling tools for multi-agent scheduling
problems. Here we always consider situations in which the utility (or cost) function of the
agents explicitly depends on some scheduling performance indices. Also, we do not
consider situations in which the agents receiving an unfavorable allocation can be
compensated through money. Scheduling problems with transferable utility are a special
class of cooperative games called sequencing games (for a thorough survey on sequencing
games, see Curiel et al. [9]). While interesting per se, sequencing games address different
situations, in which, in particular, an initial schedule exists, and utility transfers among the
agents take into account the (more or less privileged) starting position of each agent. This
case does not cover all situations, though. For instance, an agent may be willing to complete
its jobs on time as much as possible, but the monetary loss for late jobs can be difficult to
quantify.

A key point in multi-agent scheduling situations concerns how information circulates
among the agents. In many circumstances, the individual agents do not wish to disclose the
details of their own jobs (such as the processing times, or even their own objectives), either
to the other agents, or to an external coordinator. In this case, in order to reach an allocation,
some form of structured protocol has to be used, typically an auction mechanism. On the
basis of their private information, the agents bid for the common resource. Auctions for
scheduling problems are reviewed in Section 3, and two meaningful examples are described
in some detail. A different situation is when the agents are prone to disclose information
concerning their own jobs, to openly bargain for the resource. This situation is better
captured by bargaining models (Section 4), in which the agents must reach an agreement over
a bargaining set consisting of all or a number of relevant schedules. In this context, two
distinct problems arise. First, the bargaining set has to be computed, possibly in an efficient
way.

Second, within the bargaining set it may be of interest to single out schedules which are
compatible with certain assumptions on the agents' rationality and behavior, as well as
social welfare. The computation of these schedules can also be viewed as a tool for an
external facilitator who wishes to drive the negotiation process towards a schedule
satisfying given requirements of fairness and efficiency. These problems lead to a new,
special class of multicriteria scheduling problems, which can be called multi-agent or
competitive scheduling problems. Finally, in Section 5, we present some preliminary results
which refer to structured protocols other than the auctions. In this case, the agents submit
their jobs to an external coordinator, who selects the next job for processing. In all cases, we
review known results and point out venues for future research.
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3. Motivation and notation

Multi-agent scheduling models arise in several applications. Here we briefly review some

examples.

e Brewer and Plott [7] address a timetable design problem in which a central rail

administration sells to private companies the right to use railroad tracks during given
timeslots. Private companies behave as decentralized agents with conflicting objectives
that compete for the usage of the railroad tracks through a competitive ascending-price
auction. Each company has a set of trains to route through the network and a certain
ideal timetable. Agent preferences are private values, but delayed timeslots have less
value than ideal timeslots.
Decentralized multi-agents scheduling models have been studied also for many other
transportation problems, e.g., for aiport take-off and landing slot allocation problems
[27]. For a comprehensive analysis of agent-based approaches to transport logistics, see
[10].

e In [29, 4] the problem of integrating multimedia services for the standard SUMTS
(Satellite-based Universal Mobile Telecommunication System) is considered. In this
case the problem is to assign radio resources to various types of packets, including
voice, web browsing, file transfer via ftp etc. Packet types correspond to agents, and
have non-homogeneous objectives. For instance, the occasional loss of some voice-
packet can be tolerated, but the packets delay must not exceed a certain maximum
value, not to compromise the quality of the conversation. The transmission of a file via
ftp requires that no packet is lost, while requirements on delays are soft.

e  Multi-agent scheduling problems have been widely analyzed in the manufacturing
context [30, 21, 32]. In this case the elements of the production process (machines, jobs,
workers, tools...) may act as agents, each having its own objective (typically related to
productivity maximization). Agents can also be implemented to represent physical
aggregations of resources (e.g., the shop floor) or to encapsulate manufacturing
activities (e.g., the planning function). In this case, using the autonomous agents
paradigm is often motivated by the fact that it is too complex and expensive to have a
single, centralized decision maker.

e Kubzin and Strusevich [16] address a maintenance planning problem in a two-machine
shop. Here the maintenance periods are viewed as operations competing with the jobs
for machines occupancy. An agent owns the jobs and aims to minimize the completion
time of all jobs on all machines, while another agent owns the maintenance periods
whose processing times are time dependent.

We next introduce some notation, valid throughout the chapter. A set of m agents is given,

each owning a set of jobs to be processed on a single machine. The machine can process only

one job at a time. We let i denote an agent, i = 1,..., m, JW s job set, and -"r_}i} the j-th of its
jobs, having length PE,-”. Let also 1; = |J'"]. Depending on specific situations, there are
other quantities associated to each job, such as a due date (f_?\n, a weight ?f‘_E-iJ, which can be
regarded as a measure of the job's importance (for agent i), a reward 7, which is obtained if
the job is completed within its due date. We let .J, denote a generic job, when agent's

ownship is immaterial. Jobs are all available from the beginning and once started, jobs
cannot be preeempted. A schedule is an assignment of starting times to the jobs. Hence, a



24 Multiprocessor Scheduling: Theory and Applications

schedule is completely specified by the sequence in which the jobs are executed. Let 0 be a

schedule. We denote by ("_}:] (o) the completion time of job "r }!} in 0. If each agent owns
exactly one job, we indicate the above quantities as p;, d;, w;, C;(o).

Agent i has a utility function ”“](U ), which depends exclusively on the completion times of
its own jobs. Function u® (o) is nonincreasing as the completion times of its jobs grow. In
some cases it will be more convenient to use a cost function ¢\’)(¢), obviously nondecreasing
for increasing completion times of the agent's jobs.

Generally speaking, each agent aims at maximizing its own utility (or minimizing its costs).
To pursue this goal, the agents have to make their decisions in an environment which is
strongly characterized by the presence of the other agents, and will therefore have to carry
out a suitable negotiation process. As a consequence, a decision support model must
suitably represent the way in which the agents will interact to reach a mutually acceptable
allocation. The next two chapters present in some detail two major modeling and procedural
paradigms to address bargaining issues in a scheduling environment.

4. Auctions for decentralized scheduling

When dealing with decentralized scheduling methods, a key issue is how to reach a
mutually acceptable allocation, complying with the fact that agents are not able (or willing)
to exchange all the information they have. This has to do with the concept of private vs.
public information. Agents are in general provided a certain amount of public information,
but they will make their (bidding) decisions also on the basis of private information, which
is not to be disclosed. Any method to reach a feasible schedule must therefore cope with the
need of suitably representing and encoding public information, as well as other possible
requirements, such as a reduced information exchange, and possibly yield "good" (from
some individual and/or global viewpoint) allocations in reasonable computational time.
Actually, several distributed scheduling approaches have been proposed, making use of some
degree of negotiation and/or bidding among job-agents and resource-agents. Among the
best known contributions, we cite here Lin and Solberg [21]. Pinedo [25] gives a concise
overview of these methods, see also Sabuncuoglu and Toptal [28]. These approaches are
typically designed to address dynamic, distributed scheduling problems in complex, large-
scale shop floor environments, for which a centralized computation of an overall "optimal"
schedule may not be feasible due to communication and/or computation overhead.
However, the conceptual framework is still that of a single subject (the system's owner)
interested in driving the overall system performance towards a good result, disregarding
jobs' ownship. In other words, in the context of distributed scheduling, market mechanisms
are mainly a means to bypass technical and computational difficulties. Rather, we want to
focus on formal models which explicitly address the fact that a limited number of agents,
owning the jobs, bid for processing resources. In this respect, auction mechanisms display a
number of positive features which make them natural candidates for complex, distributed
allocation mechanisms, including scheduling situations. Auctions are usually simple to
implement, and keep information exchange limited. The only information flow is in the
format of bids (from the agents to the auctioneer) and prices (from the auctioneer to the
agents). Also, the auction can be designed in a way that ensures certain properties of the
final allocation.
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Scheduling auctions regard the time as divided into time slots, which are the goods to be
auctioned. The aim of the auction is to reach an allocation of time slots to the agents. This
can be achieved by means of various, different auction mechanisms. Here we briefly review
two examples of major auction types, namely an ascending auction and a combinatorial
auction.

In this section we address the following situation. There is a set G of goods, consisting of T

. . . . . . (2) .
time slots on the machine. Processing of a job requires an integer number P’; " of time slots

. . . . . . (2) .
on the machine, which can, in turn, process only one job at a time. If a job )'r J,-“ is completed

within slot ¢ !.E;’ ], agent i obtains a reward [?;. The agents bid for the time slots, and an
auctioneer collects the bids and takes appropriate action to drive the bidding process
towards a feasible (and hopefully, "good") allocation. We will suppose that each agent has a
linear utility or value function (risk neutrality), which allows to compare the utility of
different agents in monetary terms. The single-agent counterpart of the scheduling problem
addressed here is the problem 1|| Y R;U;.

What characterizes an auction mechanism is essentially how can the agents bid for the
machine, and how the final allocation of time slots to the agents is reached.

4.1 Prices and equilibria

Wellman et al. [34] describe a scheduling economy in which the goods have prices,
corresponding to amounts of money the agents have to spend to use such goods. An
allocation is a partition of G into i subsets, X = {X1, Xy,..., Xiu}. Let v; (X;) be the value function
of agent i if it gets the subset X; C (& of goods. The value of an allocation v (X) is the sum of
all value functions,

o(X) = ui(X))
i=1

If slot t has price p;, the surplus for agent i is represented by
‘”.f{_-\-.f) - Z J“.'
teX;
Clearly, each agent would like to maximize its surplus, i.e. to obtain the set X;* such that
Hi(p) = vi(X]) — Z = 'Ij‘_'él(-f{ v;(S) — Z P}
te ,\'; - tesS

Now, if it happens that, for the current price vector p, each agent is assigned exactly the set
Xi*, no agent has any interest in swapping or changing any of its goods with someone else's,
and therefore the allocation is said to be in equilibrium for p!. An allocation

1 Actually, a more complete definition should include also the auctioneer, playing the role of the owner
of the goods before they are auctioned. The value of good ¢ to the auctioneer is g, which is the starting
price of each good, so that at the equilibrium p; = g, for the goods which are not being allocated. For the
sake of simplicity, we will not focus on the auctioneer and implicitly assume that g, = 0 for all £.
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X ={X1, Xo,...,. X} is optimal if its total value is maximum among all feasible
allocations.

Equilibrium (for some price vector p) and optimality are closely related concepts. In fact, the
following property is well-known (for any exchange economy):

Theorem 1: If an allocation X is in equilibrium at prices p, then it is optimal.

In view of this (classical) result, one way to look at auctions is to analyze whether a certain
auction mechanism may or may not lead to a price vector which supports equilibrium (and
hence optimality). Actually, one may first question whether the converse of Theorem 1
holds, i.e., an optimal allocation is in equilibrium for some price vector. Wellman et al. show

that in the special case in which all jobs are unit-length ( P_(;} =1forall j € JW,i=1,...,
m) , an optimal allocation is supported by a price equilibrium (this is due to the fact that in
this case each agent's preferences over time slots are additive, see Kelso and Crawford [15]).
The rationale for this is quite simple. If jobs are unit-length, the different time slots are
indeed independent goods in a market. No complementarities exist among goods, and the
value of a good to an agent does not depend on whether the agent owns other goods.
Instead, if one agent has one job of length p; = 2, obtaining a single slot is worthless to the
agent if it does not get at least another.

As a consequence, in the general case we cannot expect that any price formation mechanism
reaches an equilibrium. Nonetheless, several auction mechanisms have been proposed and
analyzed.

4.2 Interval scheduling

Before describing the auction mechanisms, let us briefly introduce an optimization
subproblem which arises in many auction mechanisms.

Suppose that to use a certain time slot ¢, an agent i has to pay A;. Given the prices of the
time slots, the problem is to select an appropriate subset of jobs from ./'" and schedule them
in order to maximize the agent i's revenue. Let uj; the utility (given the current prices) of

L (1) . . . . . .
starting job J J,-i at time t. Recalling that there is a reward 17; for timely completion of job
(1) . . . .
f J,-i (otherwise the agent may not have incentives to do any job), one has

t+pt =1

wie=RYS) —t—p" +1) - > A

=t

where f)‘(_-f') =1ifx>0and f)‘(_-f') = 0 otherwise. Letting xj; = 1 if -;'r_}f} is started in slot t, we
can formulate the problem as:

max w = Ut 1)
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T

Y oxy < 1,j€J9

=1

Elendner [11] formulates a special case of (1) (in which u;; = u; for all j) to model the winner
determination problem in a sealed-bid combinatorial auction, and calls it Weighted Job
Interval Scheduling Problem (WJISP), so we will also call it. In the next sections, we show
that this problem arises from the agent's standpoint in several auction mechanisms. Problem
(1) can be easily proved to be strongly NP-hard (reduction from 3-PARTITION).

4.3 Ascending auction

The ascending auction is perhaps the best known auction mechanism, and in fact it is widely
implemented in several contexts. Goods are auctioned separately and in parallel. At any
point in time, each good t has a current price (3, which is the highest bid for ¢ so far. The
next bid for t will have to be at least (3, + ¢ (the ask price). Agents can asynchronously bid
for any good in the market. When a certain amount of time elapses without any increase in a
good's price, the good is allocated to the agent who bid last, for the current price.

This auction scheme leaves a certain amount of freedom to the agent to figure out the next
bid, and in fact a large amount of literature is devoted to the ascending auction in a myriad
of application contexts. In our context, we notice that a reasonable strategy for agent i is to
ask for the subset X® maximizing its surplus for the current ask prices. This is precisely an
instance of WJISP, which can therefore be nontrivial to solve exactly.

Even if, in the unit-length case, a price equilibrium does exist, a simple mechanism such as
the ascending auction may fail to find one. However, Wellman et al. [34] show that the
distance of the allocation provided by the auction from an equilibrium is bounded. In
particular, suppose for simplicity that the number of agents m does not exceed the number

of time slots. In the special case in which |-/ " =1and pi =1 for all i, the following results
hold:

Theorem 2 The final price of any good in an ascending auction differs from the respective
equilibrium price by at most 1me.

Theorem 3 The difference between the value of the allocation produced by an ascending auction and

the optimal value is at most m”°e.

4.4 Combinatorial mechanisms

Despite their simplicity, mechanisms as the ascending auction may fail to return satisfactory
allocations, since they neglect the fact that each agent is indeed interested in getting bundles
of (consecutive) time slots. For this reason, one can think of generalizing the concept of price
equilibrium to combinatorial markets, and analyze the relationship between these concepts
and optimal allocations. This means that now the goods in the market are no more simple
slots, but rather slot intervals [#;, £;]. This means that rather than considering the price of
single slots, one should consider prices of slot intervals. Wellman et al. show that it is still
possible to suitably generalize the concept of equilibrium, but some properties which were
valid in the single-slot case do not hold anymore. In particular, some problems which do not
admit a price equilibrium in the single-unit case do admit an equilibrium in the larger space
of combinatorial equilibria, but on the other hand, even if it exists, a combinatorial price
equilibrium may not result in an optimal allocation.
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In any case, the need arises for combinatorial auction protocols, and in fact a number has
appeared in the literature so far. These mechanisms have in common the fact that through
an iterative information exchange between the agents and the auctioneer, a compromise
schedule emerges. The amount and type of information exchanged characterizes the various
auction protocols. Here we review one of these mechanisms, adapting it from Kutanoglu
and Wu [17]2. The protocol works as follows.

1. The auctioneer declares the prices of each time slot, let Ay, t=1,..., T indicate the price
of time slot t. On this basis, each agent i prepares a bid B, i.e., indicates a set of (disjoint)
time slot intervals that the agent is willing to purchase for the current prices. Note that
the bid is in the format of slot intervals, ie. B; = { [”':'lf"'- hl.”:- [ I-[;]- IrJ::}]- co ) meaning
that it is worthless to the agent to get only a subset of each interval.

2. The auctioneer collects all the bids. If it turns out that no slot is required by more than
one agent, the set of all bids defines a feasible schedule and the procedure stops. Else, a
feasible schedule is computed which is "as close as possible" to the infeasible schedule
defined by the bids.

3. The auctioneer modifies the prices of the time slots accounting for the level of conflict on
each time slot, i.e., the number of agents that bid for that slot. The price modification
scheme will tend to increase the price of the slots with a high level of conflict, while
possibly decreasing the price of the slots which have not been required by anyone.

4. The auctioneer checks a stopping criterion. If it is met, the best solution (from a global
standpoint) so far is taken as final allocation. Else, go back to step 1 and perform
another round.

Note that this protocol requires that a bid consists of a number of disjoint intervals, and each

of them produces a certain utility if the agent obtains it. In other words, we assume that it is

not possible for the agent to declare preferences such as "either interval [2,4] or [3,5]". This
scheme leaves a number of issues to be decided, upon which the performance of the method
may heavily depend. In particular:

¢ How should each agent prepare its bid

e  How should the prices be updated

e  What stopping criterion should be used.

4.4.1 Bid preparation

The problem of the agent is again in the format of WJISP. Given the prices of the time slots,
the problem is to select an appropriate subset of jobs from J'") and schedule them in order
to maximize the agent i's revenue, with those prices. The schedule of the selected jobs
defines the bid.

We note here that in the context of this combinatorial auction mechanism, solving (1) exactly
may not be critical. In fact, the bid information is only used to update the slot prices, i.e., to
figure out which are the most conflicting slots. Hence, a reasonable heuristic seems the most
appropriate approach to address the agent's problem (1) in this type of combinatorial
auctions.

2 Unlike the original model by Kutanoglu and Wu, we consider here a single machine, agents owning
multiple jobs, and having as objective the weighted number of tardy jobs.
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4.4.2 Price update

Once the auctioneer has collected all agents' bids, it can compute how many agents actually
request each slot. At the r-th round of the auction, the level of conflict Dj ‘of slot t is simply
the number of agents requesting that slot, minus 1 (note that )] = — 1 if no agent is
currently requesting slot £). A simple rule to generate the new prices is to set them linearly
in the level of conflict:

AL = max{0,\] + k" DI’}

where k' is a step parameter which can vary during the algorithm. For instance, one can start
with a higher value of k7, and decrease it later on (this is called adaptive tatonnement by
Kutanoglu and Wu).

4.4.3 Stopping criterion and feasibility restoration

This combinatorial auction mechanism may stop either when no conflicts are present in the
union of all bids, or because a given number of iterations is reached. In the latter case, the
auctioneer may be left with the problem of solving the residual resource conflicts when the
auction process stops. This task can be easy if few conflicts still exist in the current solution.
Hence, one technical issue is how to design the auction in a way that produces a good
tradeoff between convergence speed and distance from feasibility. In this respect, and when
the objective function is total tardiness, Kutanoglu and Wu [17] show that introducing price
discrimination policies (i.e., the price of a slot may not be the same for all agents) may be of
help, though the complexity of the agent subproblem may grow. As an example of a
feasibility restoration heuristic, Jeong and Leon [18] (in the context of another type of
auction-based scheduling system) propose to simply schedule all jobs in ascending order of
their start times in the current infeasible schedule. Actually, when dealing with the multi-
agent version of problem 1|| > RiU;, it may well be the case that a solution without conflicts
is produced, since many jobs are already discarded by the agents when solving WJISP.

4.4.4 Relationship to Lagrangean relaxation

The whole idea of a combinatorial auction approach for scheduling has a strong relationship
with Lagrange optimization. In fact, the need for an auction arises because the agents are
either unwilling or unable to communicate all the relevant information concerning their jobs
to a centralized supervisor. Actually, what makes things complicated is the obvious fact that
the machine is able to process one job at a time only. If there were no such constraint, each
agent could decide its own schedule simply disregarding the presence of the other agents.
So, the prices play the role of multipliers corresponding to the capacity constraints.

To make things more precise, consider the problem of maximizing the overall total revenue.
Since it is indeed a centralized problem, we can disregard agent's ownship. and simply use j
to index the jobs. We can use the classical time-indexed formulation by Pritsker et al. [26]3.
The variable x;j: is equal to 1 if job j has started by time slot ¢ and 0 otherwise. Hence, the
revenue /1 is won by the agent if and only if job j has started by time slot d; —p; + L.

3 The following is a simplification of the development presented by Kutanoglu and Wu, who deal with
job shop problems.
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max E Rjxjd,—p,+1
Jjed

T+ :: €Tt } cJt=1....T

jc )
xy € {01} jedt=1,..., r

Constraints (2) express machine capacity. In fact, for each t there can be at most one job j
which has already started at slot ¢ and had not yet started at time ¢t — p; (which means that j
is currently under process in slot f) . Now, if we relax the machine capacity constraints in a
Lagrangean fashion, we get the problem

"
L(\) = max Z R; Tjdimpi+1 — Z A (Z{.rﬂ — Ty .u__.) - I) 3)
JjEJ

t=1 JjEJ

T4 Z £y ;' e Jt=1,....T
e {01} jedt=1,....T

.I"Jlr

(Note that (3) can be solved by inspection, separately for each job.) The value L(A) is an
upper bound on the optimal solution to (2). In an optimization context. one is typically
interested in finding the best such bound, i.e..

LN = min L(\) (4)

To solve (5), a very common approach is to iteratively update the multiplier vector A by the
subgradient algorithm, i.e., indicating by ' the current optimal solution to (3) when A = Ar

)\;--il — N4 Sy (Z{?I; ..F-J'_f P J |) (5)

jed

where s, is an appropriate step size. Now, observe that the term in braces in (5) is precisely
what we previously called the level of conflict. Hence, it turns out that the subgradient
algorithm is equivalent to a particular case of combinatorial auction (with adaptive
tatonnement).

5. Bargaining problems and Pareto optimal schedules

We next want to analyze the scheduling problem from a different perspective. So far we
supposed that it is possible, to a certain extent, to give a monetary evaluation of the quality
of a solution. Actually, the value function of each agent might depend on certain schedule-
related quantities which may not be easy to assess. For instance, completing a job beyond its
due date may lead to some monetary loss, but also to other consequences (e.g. loss of
customers' goodwill) which can be difficult to quantify exactly. In such cases, it appears
more sensible that the agents directly negotiate upon possible schedules.

Bargaining models are a special class of cooperative games with non-transferable utility. For
our scheduling situations, this means that the agents are, in principle, willing to disclose
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information concerning their jobs, and use this information to build a set of solutions and
reach a satisfactory compromise schedule. Note that, unlike our previous assumptions, the
agents may now have heterogeneous objectives. Also, for the sake of simplicity we deal here
with the situation in which there are only two agents. However, the major concepts can be
cast in a more general, m-agent, setting.

The viewpoint of axiomatic bargaining models is to characterize certain schedules,
displaying some desirable properties which make them special candidates to be the outcome
of negotiation. Here we want to apply some of these concepts to the scheduling setting,
pointing out key issues from the modeling and computational viewpoints.

5.1 Bargaining problems
In a bargaining problem, two players (Agent 1 and Agent 2) have to negotiate a common
strategy, i.e., choose an element of a set S of possible agreements. Each point s € S is a pair of
payoffs for Agent 1 and 2 respectively, denoted by u1(s) and us(s). If negotiation fails,
Agents 1 and 2 get the payoff di and d> respectively. A bargaining problem is a pair (S, d),
where:
1. SCR?
2. d=(dy, do) is the disagreement point, i.e. the results of the failure of negotiation
3. atleast one point (u1, up) € S exists such that u; > dy and uz > d.
We next want to suitably characterize certain agreements in terms of efficiency and fairness.
In fact, even if negotiation is helped by an external entity, it makes sense to select a few
amonyg all possible schedules, in order not to confuse the players with an excessive amount
of information. A solution of a bargaining problem is an application ¥ which assigns to any
problem instance (S, d) a subset of agreements (possibly, a single agreement) ¢ (S, d) € S.
Consider now the following four axioms. which may or may not be satisfied by a certain
solution ¥:
1. (Weak) Efficiency (PAR):
ifs € ¥ (S, d), then thereisno t € Ssuchthatt; > S;and t,> S,
2.  Symmetry (SYM):
if (S, d) is symmetric, (u1, us) € ¥ (S, d) if and only if (u1, u2) € ¥ (S, d)
3. Scale Covariance (SC) :
VA1 A2, 7172 € R such that A\, Ay > 0, if welet S = {(Aju + 71, Aattn + 72)
: (uy,us) € S} and d = (Adi+71, Aada+72), then ©(S".d') = {(Ajug +71.
Aot + 7o) (11, u2) € (S, d)}
4. Independence of Irrelevant Alternatives (HA) :
if we restrict the bargaining set to a subset S’ such that S’ M ¢(S) # ), then
(8. d) = @(S.d)yU S
The meaning of these axioms should be apparent. PAR means that if s € {7 (S, d), then there
is no other agreement such that both agents are better off, i.e., s is Pareto optimal. SYM
implies that whenever the two agents have identical job sets and payoff functions, the
outcome should give both players the same payoff. SC is related to the classical concept of
utility, and states that the solution should not change if we use equivalent payoff
representations. Finally, IIA says that the solution of a problem should not change if some
agreements (not containing the solution) are removed from the bargaining set.
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The classical notion of bargaining problem assumes S be a compact, convex subset of R?.
For this case, Nash [23] proved that if and only if a solution ¥ (S, d) satisfies all four axioms,
then ¥ (S, d) consists of a single agreement i/ € S, given by:

v=arg max |[(ug —di)(us — ds)] (6)

(wy,u2)ES

and ;. is called the Nash bargaining solution (NBS). Since in our case the bargaining set is
indeed a finite set of distinct schedules, the concept of NBS must be suitably extended.
When S is a general, possibly discrete, set, Mariotti [22] showed that if and only if a solution
o~ (S, d) satisfies all four axioms 1-4, then @ (S, d) is given by

on (S d) = {(u},u3) € S (u} — dy)(uh — dy) = max [(uy — dy)(uy — dy)]} @)

The price we pay for this generalization is that /(5. d) may no longer consist of a single
agreement. We still refer to set ¢ (.S, d) as the NBS.

So far we considered the payoffs (i1, u2) associated with an agreement. For our purpose, it is
convenient to associate with each agreement a pair of costs (c1,c2), and let S be the set of all
cost pairs. Let now ¢; and ¢» be the costs of the worst agreements for Agent 1 and 2
respectively, i.e.

¢ = max{c : (¢, ) € Q} ®)
€1, c2) €S}

o = max{cy: (e, ¢

In what follows, we assume that the players' costs in the event of breakdown are given by
¢ and ¢; respectively. This is equivalent to assuming that S also includes the point (¢, ).
Clearly, this models a situation in which the players are strongly encouraged to reach an
agreement (other than (¢, ¢,)). Letting u; = ¢; — ¢j and U2 = C2 — C2, we can define a
bargaining problem (S, d) in which S is obtained from S by a symmetry with respect to the
point (&, ¢,), followed by a shift (—&;, —¢, ), so that the disagreement point is the origin. In
other words, we use as value function of a given agreement the saving with respect to the
most costly alternative. The disagreement point is hence mapped in (0, 0) and the NBS is
therefore given by

on(S.(0,0))

arg max {ujuy : (ug, uz) € S}
arg max {[r-l — )€ — )i (e1,e0) € 5} ©)

5.2 Application to scheduling problems

Let us now turn to our scheduling scenario. We denote the two players as Agent 1 (having
. L g7l 71 1 1 272 72 2

job set Jh={J f,,l }) and Agent 2 (with job set J {'}1 N/ N '}n._) }) We
call 1-jobs and 2-jobs the jobs of the two sets. The players have to agree upon a schedule, i.e.,
an assignment of starting times to all jobs. Agents 1 and 2 are willing to minimize cost
functions ¢'(¢) and (o) respectively, where 0 denotes a schedule of the n = n; + n5 jobs,
and both cost functions are nondecreasing as each job's completion time increases. Note that
we can restrict our analysis to active schedules, i.e., schedules in which each job starts
immediately after the completion of the previous job. As a consequence, a schedule is
completely specified by the sequence in which the jobs are scheduled. Also, we can indeed
restrict our attention to Pareto optimal schedules only, since it does not appear reasonable
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that the agents ultimately agree on a situation from which penalizes both of them. In order
to find Pareto-optimal schedules, consider the following problem:

{
Yi=0; Q:=+4o00;i:=0
while the problem 1[f? < Q|f' is feasible

{

ii=i+1

o)) := Pareto-optimal solution of 1|f% < Q|f!
¥ =% uslt

Q' = f*(o'")

Q:=0Q —¢

}
}

Figure 1. Scheme for the enumeration of Pareto optimal schedules
PROBLEM 1|c¢? < Q|¢!
7 * such that

. Given job sets J1, J2, cost functions c( ), c2(-), and an integer Q, find

c(0*) = min{c'(a)|c*(0) < Q}.

Note that if @ *is not Pareto optimal, a schedule of cost c1(*) which is also Pareto optimal
can be found by solving a logarithmic number of instances of 1|¢? < Q|f'l. In order to
determine the whole set X of Pareto optimal schedules one can think of solving several
instances of 1|¢? < Q |¢!, for decreasing values of Q (see Fig, 1).

A related problem is to minimize a convex combination of the two agents' cost functions [5]:
ProBLEM 1|[Ac’ + (1 — A)c?. Given job sets J1, J2, cost functions cl(?), (), and A € [0,1],
find a schedule 0 *such that Ac'(o") + (1 — \)c?(0™) is minimum.

The optimal solutions to 1||Ac! + (1 — \)¢?, which are obtained for varying A, are called
extreme solutions. Clearly, all extreme solutions are also Pareto optimal, but not all Pareto
optimal solutions are extreme. The following proposition holds.

Proposition 1: If problem 1|c* < Q|c" is solvable in time O(g,(n)), and S has size O(go(n)), then
1IAe! + (1 — \)e? is solvable in time O(g1(n)g2(n)) for a given A

Recalling (8) and (9), we can now formally define a scheduling bargaining problem. The
bargaining set S consists of the origin d = (0, 0) plus the set of all pairs of payoffs
(ur(o). uzlo)) = (¢1 — (o). ¢z —ez(0)), for o € X The set of Nash bargaining schedules N is
then

N = {a“ sy (o us(e”) = 111__;1\,;{ iy (o)ug(o) }} (10)
In order to analyze a scheduling bargaining problem, one is therefore left with the following

questions:
¢ How hard is it to generate each point in 5?
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¢ How hard is it to generate extreme solutions in S?

e  How large is the bargaining set S?

e  How hard is it to compute the Nash bargaining solution?

The answers to these questions strongly depend on the particular cost functions of the two

agents. Though far from drawing a complete picture, a number of results in the literature

exist, outlining a new class of scheduling problems.

In view of (10), the problem of actually computing the set of Nash bargaining schedules is

therefore a nonlinear optimization problem over a discrete set. In what follows, we study

the computational complexity of generating the bargaining set S, for various cost functions

c():

o (maximum of regqular functions) [yax(o) = max;—; . {fi(C;(c))}, where each f;(-) is
nondecreasing in C; .

o (number of tardy jobs) > Uj(o) =377 U;(a), where Uj(0) =1 if job Jj is late in 0 and
U;(o) = 0 otherwise.

o (total weighted flow time) >_ w;Cj(0) = > 1L, w;Ci(o).

We next analyze some of the scenarios obtained for various combinations of these cost

functions.

5-3 ( l:lile flfmx)

This case contains all cases in which each agent aims at minimizing the maximum of non-
decreasing functions, each depending on the completion time of a job. Particular cases
include makespan Ciax, maximum lateness Lyax, maximum tardiness Tmaxand so on.

The problem of finding an optimal solution to 1//2,, < Q|f... be efficiently solved by an
easy reduction to the standard well-known, single-agent problem l|prec|fu.x, which can be
solved, for example, with an O(n?) algorithm by Lawler [19]. Lawler 's algorithm for this
special case may be sketched as follows. At each step, the algorithm selects, among
unscheduled jobs, the job to be scheduled last. If we let T be the sum of the processing
times of the unscheduled jobs, then any unscheduled 2-job ./ f such that f7(7) < () can be
scheduled to end at 7. If there is no such 2-job, we schedule the 1-job ./, for which f}}(7)is
minimum. If, at a certain point in the algorithm, all 1-jobs have been scheduled and no 2-job
can be scheduled last, the instance is not feasible. (We observe that the above algorithm can
be easily extended to the case in which precedence constraints exist among jobs, even across
the job sets J! and J2. This may be the case, for instance, of assembly jobs that require
components machined and released by the other agent.)

For each 2-ob .JZ, let us define a deadline D? such that f2(C2) < @ for C? < D? and
fA(C?) = Q for €} = D}. The job set J2 can be ordered a priori, in non-decreasing order of
deadlines Dj., in time O(n, Iog ). At each step the only 2-job that needs to be considered is
the unscheduled one with largest Di. On the other hand, for each job in Ji, the
corresponding [ (7) value must be computed. Supposing that each f}(-) value can be
computed in constant time, whenever no 2-job can be scheduled. all unscheduled 1-jobs may
have to be tried out. Since this happens n; times, we may conclude with the following

Theorem 4: Problem 1|f2,. < Q| fL.. can be solved in time O(n} + nylogns).
Using the above algorithm, we get an optimal solution 0* to 1|f2 . < Q|f!... Let
Q= fL..(6")and Qs = f2  (c%). In general, we are not guaranteed that 0 * is Pareto

optimal. However, to find an optimal solution which is also Pareto optimal, we only need to
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exchange the roles of the two agents, and solve an instance of 1| [, < frax in which Q*
is the optimal value of fL . obtained with the Lawler's algorlthm. Since thls computation
will require time O(n3 + ny log n ), we may state the following

Theorem 5: A Pareto optimal solution to Problem 1|f2 . < Q|f}.. can be computed in time
O(ni + n3).

The set of all Pareto optimal solutions (i.e., the bargaining set S) can be found by the
algorithm in Fig.l in which the quantity ¢ must be small enough in order not to miss any
other Pareto-optimal solution. The ¢ to be used depends on the actual shape of the f
functions. If their slope is small, small values of # may be needed. Finally, in [1] it is shown
that the following result holds.

Theorem 6: There are at most nmny Pareto optimal schedules in 1||(f..s [ s )-

As a consequence, and recalhng Proposition 1, the problem I|)\f”, a F (1 =A)f2 . can be
solved in time O(nin, + nyn3) for any value of A € [0, 1]. Similarly, from Theorem 6,
finding the Nash bargaining solution simply requires to compute values ui( 7 )ux( ) in
equation (10) for all possible pairs of Pareto optimal solutions, which can be done in time
O(niny + nyni).

1 £2
5.4 (Z; C; 1 fme]x)
This case contains all cases in which Agent 1 aims at minimizing the completion time of its

jobs, while Agent 2 wants to minimize the maximum of nondecreasing functions, each
depending on the completion time of the jobs in J2.

541 [l = Q€

In this section we show that 1|/ffu. < @) Z_; s polynomially solvable. Two lemmas
allow us to devise the solution algorithm for this problem.

Lemma 1: Consider a feasible instance of | faax < Q Z Cj jand let T = Py + P> If there is a
2-job ]f such that [(7) < Q, then there is an optimal schedule in which .]L. is scheduled last, and
there is no optimal schedule in which a 1-job is scheduled last.

Proof. Let 0' be an optimal schedule in which J| is not scheduled last, and let @ * be the
schedule obtained by moving ]f in the last position. For any job .J;* other than.]f.,
C¥(0*) < C¥(0’) and therefore, 2.;Ci o) < 2 Ci Yo'). In particular, if a 1-job is last
in 0, then >_;C;'(0") <>, C;'(0"), thus contradicting the optimality of 0. For what

concerns ]L , its completlon time is now T, and by hypothesis f‘; (7) < €. Hence, due to
the regularity of f7(-) for all k, the schedule ¢ *is still feasible and optimal.

The second lemma specifies the order in which the 1-jobs must be scheduled.

Lemma 2: Consider a feasible instance of L frax < Q| Z Cj joand let T = Py + P, If for all 1-
jobs JZ, f7(T) > Q, then in any optimal schedule a longest I-job is scheduled last.

Proof. The result is established by a simple interchange argument.

The solution algorithm is similar to the one in Section 5.3. At each step, the algorithm selects
a job to be scheduled last among unscheduled jobs. If possible, a 2-job is selected. Else, the
longest l-job is scheduled last. If all 1-jobs have been scheduled and no 2-job can be
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scheduled last, the instance is infeasible. It is also easy to show that the complexity of this
algorithm is dominated by the ordering phase, so that the following result holds.

Theorem 7: 1| /i < Q| 2_; C7} can be solved in time O(m log n1 + nylog n).

The optimal solution obtained by the above algorithm may not be Pareto optimal. The next

lemma specifies the structure of any optimal solution to L fiw < Q| Z_; C7} thus including
the Pareto optimal ones. Given a feasible sequence 0, in what follows we define 2-block a
maximal set of consecutive 2-jobs in 7.

Lemma 3: Given a feasible instance of 1| f2,. < Q| Z_}- C'}, for all optimal solutions:

(1) The partition of 2-jobs into 2-blocks is the same

(2) The 2-blocks are scheduled in the same time intervals.

Proof. See [1].

Lemma 3 completely characterizes the structure of the optimal solutions. The completion
times of the 1-jobs are the same in all optimal solutions, modulo permutations of identical
jobs. The 2-blocks are also the same in all optimal solutions, the only difference being the
internal scheduling of each 2-block. Hence, to get a Pareto optimal schedule, it is sufficient
to order the 2-jobs in each 2-block with the Lawler's algorithm [19]. Notice that selecting at
each step the 2-job according to the Lawler's algorithm implies an explicit computation of
the fi(*) functions. As a result, we cannot order the 2-jobs a priori, and the following
theorem holds.

Theorem 8: An optimal solution to 1|f

2L <Q| Z_}. C : which is also Pareto optimal can be
computed in time O(n1 log ny + n22).

We next address the problem of determining the size of the bargaining set. From Lemma 2
we know that in any Pareto optimal schedule, the jobs of J! are SPT-ordered. As ()
decreases, the optimal schedule for 1|f2.. < Q| Z_}. C'} changes. It is possible to prove [1]

that when the constraint on the objective function of agent 2 becomes tighter, the completion
time of no 1-job can decrease. As a consequence. once a 2-job overtakes (i.e. it is done before)
a 1-job in a Pareto optimal solution. As () is decreased, no reverse overtake can occur when
() decreases further. Hence, the following result holds.

Theorem 9: There are at most mn, Pareto optimal schedules in 1| |(Z e } TR

Finally, in view of Proposition 1 and Theorem 8, one has that an optimal solution to

LAY, CH+ (1= X)fZ,., as well 